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Abstract 
 

 

Anti-tuberculosis drug-induced liver injury is a rare but serious adverse drug reaction. 

This study aimed to identity specific genes conferring susceptibility to this serious 

adverse drug reaction, especially in relation to isoniazid treatment and to study the 

underlying mechanism for toxicity.  

 

Anti-tuberculosis drug-induced liver injury cases (n=26) and community controls 

(n=90) from Europe and South Asia were genotyped for polymorphisms in NAT2, GST 

genes, CYP2E1, PXR and SOD2. NAT2 slow acetylators were more susceptible to liver 

injury (OR=4.60; 95% CI=1.47-14.44). The GSTM1 null genotype was more common 

in cases than controls (OR=2.91; 95% CI=1.14-7.43). Risk of liver injury was 

significantly increased in subjects with combined NAT2 slow acetylator and GSTM1 

null genotype (OR=3.71; 95% CI=1.48-9.31). No significant effects were seen for the 

other genotypes studied except that a GSTA4 haplotype was slightly more common in 

liver injury cases.  

 

The contribution of NAT2 genotype to isoniazid toxicity was examined using an in vitro 

overexpression approach. Stable expression of either NAT2*4 or NAT*5 constructs in 

HepG2 cells had small effects on reduced glutathione to oxidised glutathione ratio and 

apoptosis. These changes were consistent with higher NAT2 activity increasing 

isoniazid toxicity. In addition, overexpression and siRNA knockdown approaches 

showed protective roles for GSTA1 and A4 against isoniazid toxicity.  

 

The relevance of combinations of anti-tuberculosis drugs to overall toxicity was 

investigated by studies in human hepatocytes and LS180 cells. In the LS180 cells, 

rifampicin coadministation with isoniazid resulted in a small but significant decrease in 

both isoniazid and pyrazinamide toxicity. Studies on the isoniazid-rifampicin 

combination in human hepatocytes gave inconsistent findings but a decrease in cell 

toxicity due to isoniazid by pretreatment with rifampicin was seen in some donors. 

Increased expression of the carboxyesterase gene CES2 was seen in LS180 cells and in 

some hepatocytes and could represent a protective effect. 
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1.  Introduction 

1.1 Adverse drug reactions  

 

According to WHO, adverse drug reactions (ADRs) are defined as ‘a response to a 

medicine which is noxious and unintended, and which occurs at doses normally used in 

man for the prophylaxis, diagnosis, or therapy of disease, or for the modification of 

physiological function’ (WHO, 2002). ADRs are a significant cause of hospital 

admission, often lead to considerable morbidity and mortality and remain a challenging 

clinical issue faced by the healthcare professionals (Farcas and Bojita, 2009). A meta-

analysis of 39 prospective studies reported by Lazarou et al. suggested that the total 

incidence of ADRs was 6.7% with an overall fatality rate of 0.32% of hospitalised 

patients and found that ADRs are listed as one of the top ten causes of death in the 

United States (Lazarou et al., 1998). A recent Swedish study has also implicated ADRs 

to be the seventh most common cause of death with an estimation of 6.4% for the 

incidence of fatalities in hospital caused by ADRs (Wester et al., 2008). In the UK, at 

least 1 in 7 hospital in-patient experienced an ADR, resulting in prolonged 

hospitalisation and considerable financial burden to National Health Service (NHS) 

(Davies et al., 2009). Warfarin, fibrinolytics, unfractionated heparin, loop diuretics and 

allopurinol were found to be the most frequently implicated drugs causing ADRs in the 

large-scale prospective study (Davies et al., 2009). That study estimated that ADRs cost 

the NHS around £637 million annually, or approximately £5000 per hospital bed per 

year. Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely 

prescribed drugs for their anti-inflammatory, anti-pyretic, anti-thrombotic and analgesic 

properties and causing serious gastrointestinal ADRs including bleeding and ulceration 

(Helin-Salmivaara et al., 2007). ADRs Over half of the ADRs are definitely or 

potentially avoidable, and strategies are needed to minimize the risk of preventable 

ADRs. Although medication errors can occasionally occur, not all ADRs are 

attributable to medication errors and therefore identification of risk factors contributing 

to ADRs is essential to reduce the event of preventable ADRs. Factor predisposing 

patients to ADRs are presented in Table 1.1. Patient with concomitant diseases such as 

renal, cardiac and hepatic impairment are at greater risk for developing an ADR. 

Incidence of ADR is increased in aged patients and patients receiving multiple 

medication or polypharmacy (Davies et al., 2009). Drug-drug interactions are also an 

important contributor to approximately 15% of ADRs involving altered bioavailability, 

distribution and clearance of certain drugs (Passarelli et al., 2005). Over the past few 
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decades, the association of genetic polymorphisms in drug metabolising enzymes with 

various ADRs have been extensively studied. Recent progress in pharmacogenetics 

research suggests that patients with specific genetic characteristics may be prone to 

specific ADRs and personalized drug therapy with pharmacogenetics can therefore lead 

to safer, more effective drugs and reduce ADRs. The detailed information of the current 

research progress on genetic polymorphisms in drug-metabolising enzymes and drug 

transporters is described in section 1.5. The evaluation of predisposing factors of ADRs 

may not fully prevent the occurrence of ADRs, but it can reduce the incidence and 

severity of ADRs, reduce the overall cost of healthcare and improve patient outcomes. 

The practice of pharmacovigilance by regulatory agencies, pharmaceutical companies, 

and individual health care providers is important in monitoring for ADRs. 

Pharmacovigilance is a science relating to the detection, assessment, understanding, and 

prevention of adverse effects, particularly long-term and short-term side effects of 

medicines (WHO, 2004). The involvement of all healthcare providers in 

pharmacovigilance practice and the participation of patients in ADRs reporting are vital 

to minimize the risk of ADRs as much as possible.  

 

ADRs can be classified into Type A and B drug reactions (Patel et al., 2007). Type A 

reactions are predictable, dose related and account for the majority of ADRs. These 

common dose related ADRs are due to an increased in the effective concentration of the 

drug or its metabolite, resulting in either on-target or off-target toxic side effects. Unlike 

Type A, Type B ADRs are unpredictable, not dose related and do not resemble the 

known pharmacologic profile of the causative agent. Type B reactions are also referred 

to as idiosyncratic drug reactions and often involve a small subset of treated patients. 

Premarketing trials generally fail to identify potentially serious ADRs of this type due to 

their very low incidence and ADRs are usually observed only when the drugs are 

marketed for a period of time and given to large patient populations. Thus idiosyncratic 

ADRs are a major problem to the healthcare professionals, pharmaceutical industry and 

drug regulatory agencies such as the US Food and Drug Administration (FDA) and 

European Medicines Agency (EMA). They are the leading cause for drugs withdrawn 

from the market or receiving a black box warning. This often results in the 

abandonment of potentially effective drugs. Statin-induced myopathy, drug-induced 

long QT and drug-induced liver injury (DILI) are the major idiosyncratic ADRs. DILI, 

in particular, is a leading cause of acute liver failure and is described in more detail in 

section 1.2. 
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             Table 1.1 Risk factors that contribute to the development of ADRs* 

 

Risk factors for ADRs 

Pharmacodynamics  

         Variation in drug response resulting from altered receptor sensitivity  

Pharmacokinetics  

 Changes in drug absorption, distribution, metabolism and excretion 

Presence of underlying or concurrent disease 

 Renal, cardiac and hepatic impairment 

Drug-drug interactions 

 Concomitant administration of other drugs 

Physiologic conditions 

 Age, pregnancy, obesity 

Diet and lifestyle 

 Smoking, alcohol intake 

Genetic polymorphisms 

 Variation in drug response traits 

Adherence to regimen prescribed 

 Poor adherence to prescribed medication especially elderly patients who 

require continuous polypharmacy 

 Medication errors 

 Errors in medication prescribing, dispensing or use 

    
 

    *
 Table adapted from Farcas et al: Adverse drug reactions in clinical Practice: A 

causality assessment of a case of drug-induced pancreatitis (Farcas and Bojita, 

2009) 
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1.2 Drug-induced liver injury  

 

The liver is commonly affected by drugs because of its role as the central organ in drug 

metabolism and detoxification. Drug-induced liver injury (DILI) is the most common 

ADRs and accounts for more than 50% of acute liver failure cases (Ostapowicz et al., 

2002). DILI or hepatotoxicity can be defined as liver injury caused by drugs used either 

in medical practice or herbal medicines resulting in persistent significant elevations in 

liver enzyme levels, abnormalities in liver test or liver dysfunction. Medications such as 

antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics are the most 

commonly prescribed drugs associated with DILI (Ibanez et al., 2002). Commonly used 

medications that have exhibited hepatotoxic effects are listed in Table 1.2. The effect of 

DILI leads to a large range of pathological conditions including chronic hepatocellular 

hepatitis, cholestasis, cirrhosis, steatosis, sinusoidal and hepatic artery or vein damage 

(Larrey, 2000). The idiosyncratic nature of such adverse drug reactions has drawn most 

attention because they are unpredictable and often occur unexpectedly (Boelsterli, 

2003). Although DILI is infrequent, up to 10% of cases may develop acute liver failure 

(Kaplowitz, 2005) and it has been shown that 75% of cases of acute liver failure linked 

to DILI led to liver transplantation or death (Ostapowicz et al., 2002). This significant 

patient morbidity and mortality has caused DILI to be the key reason for drug 

withdrawals from the pharmaceutical market (Temple and Himmel, 2002). An 

examination of the Physician’s Desk Reference (PDR) for all new chemical entities 

approved by the FDA within the past 25 years (1975-1999) by Lasser et al. had revealed 

that approximately 10% of a total of 548 new chemical entities acquired a new black 

box warning or were withdrawn from the market (Lasser et al., 2002). Four (25%) out 

of 16 drugs withdrawn from the market were associated with DILI. Unrecognised 

serious ADRs were usually emerged after FDA approval and the safety of the new 

drugs can only be established with complete certainty until the drugs are marketed for 

many years.  Examples of drugs that have been received black box warnings for 

hepatotoxicity include bosentan, trovafloxacin, tolcapone, felbamate and isoniazid, 

while drugs withdrawn from the market because of idiosyncratic hepatotoxicity include 

nefazodone, rofecoxib, troglitazone and bromfenac.  

 

DILI due to idiosyncratic reactions involves individual susceptibility related to 

environmental and/or genetic factors that remain poorly understood. Routine animal 

toxicology fails to identify the risk of subsequent problems in drug development as 



 

 

 

6 

idiosyncratic reactions are not reproduced in experimental animals and appear only after 

a latency period of weeks to years (Lee, 2003). Drug-induced idiosyncratic 

hepatotoxicity remains a major challenge for clinicians, the pharmaceutical industry and 

regulatory agencies including the Food and Drug Administration (FDA) because of the 

limited knowledge regarding its mechanism, identification of susceptible individuals 

and pre-clinical test systems. Clinical diagnosis and prediction of DILI remains 

complex due to confounding factors such as pre-existing liver disease, multiple drug 

usage and lack of reliable screening methods or diagnostic standards. Further 

advancement and better understanding of idiosyncratic drug hepatotoxicity is important 

to provide practical solutions instead of limiting the use of drugs associated with DILI 

through withdrawals from the pharmaceutical market. 
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                      Table 1.2 Commonly-used drugs associated with DILI 

 

Indication/drug action Drug 

Hepatocellular injury  

Analgesic Paracetamol 

NSAIDs Diclofenac, ibuprofen, naproxen 

Antibiotics Isoniazid, Pyrazinamide, minocycline, nitrofurantoin, 

trovafloxacin 

Antifungal Ketoconazole 

Immunosuppressants Azathioprine, cyclophosphamide 

Anti-arrhythmia Amiodarone 

Anticonvulsant Carbamazepine, phenytoin, felbamate, valproic acid 

Pulmonary hypertension Bosentan 

Cholesterol-lowering Niacin 

Gout Allopurinol 

Antithyroid Propylthiouracil 

Anaesthetic Halothane 

Immunomodulator Leflunomide 

Acne Isotretinoin 

Anti-androgen Flutamide 

Alcoholism Disulphiram 

Muscle relaxant Dantrolene 

Diabetes Acarbose 

Antipsychotic Nefazodone 

Alzheimer’s disease Tacrine 

Asthma Zafirlukast, Zileutin 

Parkinson’s disease Tolcapone 

CNS stimulant Pemoline 

Cholestatic  injury  

NSAIDs Sulindac 

Antibiotics Rifampicin, ciprofloxacin, erythromycin, flucloxacillin, 

amoxicillin-clavulanic acid 

Antifungal Terbinafine 

Antipsychotic Phenothiazines, chlorpromazine 

Depression Tricyclic antidepressants 

Hypertension Angiotensin-converting enzyme inhibitors 
 

*
 Table adapted from Kaplowitz (2005): Idiosyncratic drug hepatotoxicity (Kaplowitz, 

2005)  
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1.2.1 The epidemiology of DILI 

 

The epidemiology of DILI is poorly understood owing to the lack of prospective studies 

on its incidence (Bjornsson, 2010).  The frequency of DILI among users of most drugs 

is extremely rare with the estimation of an occurrence rate from 1 in 10,000 to 1 in 

100,000 or even lower in other drugs (Larrey, 2002). Most clinical drug trials recruit 

less than 10,000 patients, indicating that DILI is often not detected during clinical trial 

stages and it has been mostly discovered in the post-marketing phase. The highly 

variable and inconsistent findings in a small number of retrospective studies reflect the 

lack of internationally standards for its diagnosis, under-reporting and incomplete 

reporting of DILI events which lead to bias in the data collected (Bjornsson, 2010). 

Several retrospective studies have reported the incidences rate of DILI to be between 

1.27 and 7.4 cases per 100,000 inhabitants, which is probably an underestimation 

(Hussaini et al., 2007; De Valle et al., 2006; Meier et al., 2005; de Abajo et al., 2004; 

Ibanez et al., 2002). Meier et al. have observed the incidence of DILI to be 1.4% with 

approximately 1 in 100 patients developing DILI during the course of hospitalisation 

(Meier et al., 2005) though most of the cases in this survey appeared to have suffered 

mild DILI with elevated levels of liver enzymes only just above the upper limit of 

normal. In retrospective studies from the UK, the reported crude incidence rate of DILI 

and drug-induced jaundice were 2.4 and 1.27 per 100,000 inhabitants per year 

respectively (Hussaini et al., 2007; de Abajo et al., 2004). In a recent study from 

Sweden, a crude incidence rate of 2.3 per 100,000 inhabitants was reported and DILI 

cases constituted 6.6% of patients in an out-patient hepatology clinic (De Valle et al., 

2006). So far, only one population-based prospective study has been carried out in 

France but this is generally considered the best estimation so far of the true incidence of 

DILI (Sgro et al., 2002). The reported incidence rate of DILI was 13.9 per 100,000 

inhabitants which would be 16 times greater than is being officially spontaneously 

acknowledged (Sgro et al., 2002). Determining DILI remains a major challenge in 

clinical practice because of the lack of reliable markers. Clinical scales such as the 

Councils for International Organisation of Medical Sciences/ Roussel Uclaf Causality 

Assessment Method (CIOMS/RUCAM) is considered the best method for assessing 

causality in DILI (Lucena et al., 2008b) and the details of this scoring system is 

discussed in section 1.3.1. 
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1.2.2 Types of DILI 

 

DILI covers a wide variety of clinical and pathological expressions of liver damage 

(Zimmerman, 1981). Liver injury can result from direct damage to hepatocytes leading 

to hepatocellular necrosis and may interfere with bile flow by damaging the bile ducts 

or vascular structures (Lee, 2003). Total bilirubin (TBIL), alkaline phosphatase (ALP), 

alanine transaminase (ALT) and aspartate transaminase (AST) are the useful 

biochemical markers in the evaluation and detection of DILI. DILI can be characterised 

as hepatocellular, cholestatic, or mixed type injury (Lee, 2003). Although 

hepatocellular, cholestatic and mixed reactions are the general terms used to classified 

DILI, the other form of DILI phenotypes include granulomas, fibrosis, steatohepatitis, 

cirrhosis, vascular and neoplastic lesions (Verma and Kaplowitz, 2009). Hepatocellular 

hepatotoxicity is predominantly associated with the elevation of ALT whereas 

cholestatic injury is linked to an increase in ALP level, conjugated bilirubin, and γ-

glutamyl transpeptidase (Holt and Ju, 2006). Mixed pattern or cholestatic hepatitis is 

manifested when both ALT and ALP are elevated. Even though biochemical markers 

are good predictors for the patterns of liver injury, observation of histological 

abnormality, clinical picture and the cell type involved are more accurate in 

characterisation of liver injury (Abboud and Kaplowitz, 2007).  

 

1.2.2.1 Hepatocellular injury 
 

Hepatocellular injury has been defined as an increase in serum transaminase with an 

ALT/ALP ratio greater than 5 (Benichou, 1990). Although manifestation of 

hepatocellular injury includes hepatocyte necrosis with or without steatosis, patients 

may present as asymptomatic or experience fatigue, right upper quadrant pain, jaundice 

or acute liver failure (Verma and Kaplowitz, 2009). Halothane, a widely used 

anaesthetic has been reported to cause serious hepatocellular injury and fatal jaundice 

with a high mortality rate (40 %) (Bjornsson and Olsson, 2005). Other common drugs 

associated with hepatocellular injury are disulfiram, isoniazid, nitrofurantoin, halothane, 

azathioprine, flutamide, omeprazole and ibuprofen (Bjornsson and Olsson, 2005). 

Reactive drug metabolites generated during the process of drug biotransformation have 

been postulated to be the important cause for hepatocellular injury. The interaction 

between these reactive metabolites and cellular macromolecules such as proteins, lipids, 

and nucleic acids will lead to protein dysfunction, lipid peroxidation, DNA damage, 

oxidative stress and cellular dysfunction (Holt and Ju, 2006). The accumulated 
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oxidative stress, loss of ionic gradients and altered cellular calcium homeostasis may 

result in the dysfunction of mitochondria and lead to the pathogenesis of necrotic and 

apoptotic cell death (Holt and Ju, 2006). Damage to hepatocytes may trigger activation 

and inflammatory responses of innate immune cells and result in the initiation of 

immunological reactions (Kaplowitz, 2005). The mechanism of immune-mediated DILI 

is further described in section 1.4. 

 

1.2.2.2 Cholestatic injury 
 

By contrast to hepatocellular injury, cholestatic injury is defined as the elevation of 

ALP or an increase in ALT/ALP ratio of less than 2. Cholestatic injury is manifested 

primarily by jaundice and pruritus, resulted from impairment of bile flow and retention 

of bile salts and bilirubin. Cholestatic injury due to progressive destruction of small bile 

ducts may also lead to vanishing bile duct syndrome (Reau and Jensen, 2008). Though 

it can be bland without any parenchymal inflammation or may show slight hepatocyte 

injury and mild portal inflammation, rare cases of cholestatic injury may progress to 

ductopenia and primary biliary cirrhosis (Reau and Jensen, 2008). Examples of drugs 

associated with cholestatic injury are rifampicin, estradiol, nafcillin, flucloxacillin, co-

amoxiclav, chlorpromazine, erythromycin and trimethoprim-sulfamethoxazole (Lee, 

2003). Cholestasic injury appears to be less serious than hepatocellular patterns of 

injury but a high mortality rate ranging from 5-14.3% has been reported in recent 

studies (Chalasani et al., 2008; Andrade et al., 2006; Bjornsson and Olsson, 2005). In 

patients with cholestatic injury, the liver test abnormalities often resolved over the 

course of several months longer compared to the hepatocellular type injury (Andrade et 

al., 2002; Andrade et al., 2001). The prolonged cholestatic injury could be due to the 

slower regeneration capacity of bile duct cells than the hepatocytes (Abboud and 

Kaplowitz, 2007). 

 

1.2.2.3 Mixed pattern of liver injury 
 

The mixed form of DILI is characterised by the combination of both hepatocellular and 

cholestatic injury. It is defined as the elevation of both ALT and ALP with an ALT/ALP 

ratio between 2 and 5. This pattern of liver injury has been associated with the lowest 

mortality rate (approximately 2%), comparing to hepatocellular and cholestatic type of 

DILI (Chalasani et al., 2008; Andrade et al., 2006; Bjornsson and Olsson, 2005). Drugs 

known to cause hepatocellular or cholestatic liver injury including flucloxacillin, 

erythromycin, diclofenac, amoxicillin-clavulanate and carbamazepine may also give rise 
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to this form of DILI in some patients (Bjornsson and Olsson, 2005). Though it is mainly 

drugs that are known to induce cholestatic injury that are most often implicated in 

mixed pattern DILI (Larrey, 2000), some drugs found to induce a hepatocellular pattern 

of damage may sometimes be associated with mixed injury (Andrade et al., 2004).  

 

1.3 Causality assessment in DILI 

 

The diagnosis of DILI and prediction of DILI occurrence remain challenging as DILI is 

a diagnosis of exclusion and the lack of an objective, valid and widely available 

screening method makes the causality assessment of DILI difficult. Identification of 

elements in the medical history, clinical presentation, laboratory results, as well as 

subsequent course is important in assigning causality in DILI. The assessment criteria 

such as the onset of DILI, course of the reaction, clinical features, risk factors for the 

reaction, the exclusion of other causes of liver damage, and previous information on the 

hepatotoxicity of the implicated agent were proposed to improve causality assessment. 

Information regarding the rechallenge of the administered drug could confirm the role 

of a drug in the development of DILI. A positive rechallenge is manifested by 

significant doubling of the ALT (hepatocellular injury) and ALP (cholestatic injury) 

values (Zimmerman, 1999). Nevertheless, it may not be feasible in some cases as false 

negative response to rechallenge may be seen in certain drugs such as isoniazid and 

some causative agents can evoke serious and potentially lethal hypersensitivity 

reactions upon rechallenge (Papay et al., 2009). Rechallenge is usually performed only 

if no other alternative medication available and the potential benefits of re-introducing 

the drug outweigh the potential risks to the patient (Lee, 2003). Evaluation of liver 

biopsy is essential for assigning causality in DILI although it is often not available. 

However, the timing in assessing histological features of DILI and also characterisation 

of the role of liver biopsy in improving the diagnosis and management of DILI are to be 

defined clearly (Fontana et al., 2010). The use of in vitro laboratory tests include the 

lymphocyte-stimulation or transformation test have been proposed to aid the diagnosis 

of immune-mediated drug reactions, particularly in patients exposed to more than one 

drug (Maria and Victorino, 1998). Though the studies of this test have been promising, 

standardisation, test sensitivity and reproducibility are needed in order to fully realise its 

potential benefits in the identification of causative drugs. Recently, several reports 

suggest that use of the CIOMS assessment method (see section 1.3.1) with some 

modification is the most appropriate approach for assessing DILI causality (Aithal, 
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2011; Takikawa et al., 2003; Lucena et al., 2001). This approach has the advantage that 

it is suitable for use by non-expert assessors (Aithal, 2011). However, there are also 

alternative recent recommendations requiring assessment of each case by expert 

hepatologists (Fontana et al., 2010) and these are considered in Section 1.3.2 below.  

 

1.3.1 International Organisation of Medical Sciences (CIOMS) scale/ 

RUCAM 

 

The first method developed at international consensus meetings for drug causality 

assessment in DILI was the International Organisation of Medical Sciences (CIOMS) 

method which is also referred to as the Roussel Uclaf Causality Assessment Method 

(RUCAM) (Danan and Benichou, 1993). It was established by an international panel of 

experts who aimed to develop a standardised scoring system for the diagnosis and 

determination of the severity of DILI. The parameters required for RUCAM scale were 

based on six components:   

 Time to onset and  clinical course of the reactions  

 Risk factors (age, alcohol consumption, pregnancy) 

 Assessing the role of concomitant therapies  

 Screening for non-drug related causes 

 Previous information on hepatotoxicity of the drug 

 Validation of the reaction by positive rechallenge or in vitro assay 

  

According to RUCAM, hepatocellular injury pattern is characterised by an increase in 

ALT >2 x ULN (upper limit of normal) or R ≥ 5, where R is the ratio of serum activity 

of ALT to ALP. Cholestatic type is defined by ALP >2 x ULN or R ≤ 2, whereas mixed 

injury pattern is defined by ALT >2 x ULN and 2 < R <5.  The RUCAM scale provides 

a scoring system with the sum of points varied from -3 to +3 for each component. Based 

on the final scores ranges from -8 to +14, the degree of association between the 

causative agent and ADRs was translated as highly probable (score > 8), probable 

(score 6-8), possible (score 3-5), unlikely (score 1-2) and excluded (score ≤ 0). 

Validation of the RUCAM using patients who had been positively rechallenged was 

originally assessed by (Benichou et al., 1993) The system had shown to be reliable with 

high levels of sensitivity (86%) and specificity (89%) in assessing causality for DILI 

prior to rechallenge or when concomitant drugs were included (Benichou et al., 1993). 

The RUCAM has the advantage of providing a subjective and definite diagnosis of DILI 
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with minimal required questions and also with newly marketed drugs or old drugs 

associated with unrecognised DILI previously (Andrade et al., 2007). Nevertheless, the 

RUCAM scale has its limitations, which include the complexity of its scoring system 

and the arbitrary weighting of factors such as age, alcohol consumption and pregnancy 

(Andrade et al., 2007). It was recently validated by three experts in the Drug-induced 

Liver Injury Network (DILIN) study and was found to be of mediocre reliability in 

assessing DILI events (Rochon et al., 2008). Though RUCAM appears to be superior to 

other causality assessment systems and proved useful to identify the event of ADRs, 

modifications are needed to improve its efficiency, reliability and reproducibility in 

DILI causality assessment. Detailed recommendations on how this can be achieved have 

now been assembled as part of a phenotype standardisation project for DILI (Aithal, 

2011). 

 

1.3.2      DILIN expert opinion  

 

An attempt to standardise expert opinion for assessing causality was initiated by the 

Drug-Induced Liver Injury Network (DILIN) by reviewing a prospective registry of 

patients with DILI with the aims to develop and evaluate causality assessment 

instruments for used prescription and non-prescription drugs, as well as herbal products 

(Fontana et al., 2009). This methodology relies on the clinical judgment of three 

experienced hepatologists who were given clinical, laboratory and imaging data to 

assign a causality score independently ranging from 1 to 5 to minimise individual 

biases. Score 1 is assigned as definite when the percentage likelihood of causality used 

was ≥95%, and followed by score 2 (highly likely; 75-94% likelihood), score 3 

(probable; 50-74% likelihood), score 4 (possible; 25-49% likelihood) and score 5 

(unlikely; <25). The DILIN’s expert opinion method has its strengths by providing a 

prospective evaluation of patients who met the minimal laboratory or histological 

criteria within 6 months of DILI onset. A long term follow up was also included to 

identify any other etiology in causing DILI and whether rechallenge occurred. Though 

expert opinion has been considered as the gold standard for diagnosis of DILI, it is 

limited by its lack of generalizability and the weighted kappa score for assessment of 

the level of agreement between all three hepatologists was low (0.23-0.38) (Fontana et 

al., 2010). Thus, continuous efforts to produce an authoritative, unbiased, reliable and 

user-friendly causality assessment instrument are needed to improve the diagnosis, 

management and prevention of DILI.  
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1.4 Mechanism of DILI 

1.4.1 Overview of DILI mechanism  

 

Though the liver is involved in detoxification of many drugs, drugs and their reactive 

metabolites can also potentially cause toxicity to the liver in various ways based on their 

mechanism of action. The exact mechanism of DILI remains largely unknown, but 

currently there have been at least six mechanisms involving hepatocytes proposed for 

liver injury (Lee, 2003) (Figure 1.1). Drugs and their reactive metabolites that interrupt 

the bile salt transport proteins such as basolateral bile salt efflux pump (BSEP), encoded 

by ABCB11 at the canalicular membrane, may disrupt bile excretion, allowing toxic 

bile acids to accumulate and causing injury to hepatocytes (Trauner et al., 1998). 

Biotransformation by CYP enzymes may lead to covalent binding of drugs to 

intracellular proteins, causing disruption of calcium homeostasis that results in the 

disassembly of actin fibrils at the cell surface, cell rupture and lysis (Kaplowitz, 2002). 

Formation of adducts through binding of drug metabolites to cellular proteins, DNA or 

other cellular molecules could result in hepatic cellular dysfunction that then initiates 

both adaptive and innate immune responses. Drug-protein adducts may migrate to the 

cell surface and induce adaptive immune responses that causes liver damage by direct 

cytotoxic T cell or antibody-mediated cytotoxic responses (Robin et al., 1997). 

Hepatocyte stress could trigger the inflammatory responses of the innate immune 

system by the activation of Kupffer cells (KC), natural killer (NK) cells and natural 

killer T (NKT) cells. Hepatocyte exposure to cytokines produced in immune-mediated 

injury may initiate apoptosis through ligand-receptor interactions of TNF-α and Fas 

ligand (FasL) that triggers a cascade of caspases activation leading to loss of viability 

(Reed, 2001). Another mechanism for liver injury involves drug induced mitochondrial 

damage by disrupting fatty acid oxidation and energy production (Pessayre et al., 1999).  

Hepatocellular and cholestatic/mixed patterns liver injury can be classified as immune- 

and non-immune-mediated reactions (Abboud and Kaplowitz, 2007). An immune-

mediated reaction is characterised by the presence of clinical signs of drug 

hypersensitivity such as fever, rash, eosinophilia, formation of autoantibodies and the 

rapid onset on rechallenge. Conversely, non-immune-mediated reactions, also known as 

metabolic idiosyncratic reactions are characterised by the absence of such signs 

(Abboud and Kaplowitz, 2007; Zimmerman, 1999).  
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Figure 1.1 The six mechanisms of DILI 

  

Drugs and its metabolites may affect the hepatocytes in six ways. (A) Drugs may interact 

with the bile salt transport proteins at the canalicular membrane hence, disrupting bile 

excretion and causing injury to hepatocytes as toxic bile acid accumulates. (B) 

Biotransformation of drugs cause disruption of calcium homeostasis that results in the 

disassembly of actin fibrils at the cell surface leading to cell lysis. (C) Drug-protein adduct 

formation may initiate the innate immune responses by activating the Kupffer cells (KC), 

natural killer (NK) cells and natural killer T (NKT) cells; or (D) induce the adaptive 

immune response causing liver damage by direct cytotoxic T cell (Tc) and antibody-

mediated cytotoxic response. (E) Immune-mediated injury may initiate apoptosis through 

ligand-receptor interactions of TNF-α and FasL that triggers a cascade of caspases 

activation leading to the loss of viability. (F) Drugs may disable respiratory chain enzymes 

or mitochondrial DNA causing oxidative stress that lead to severe adverse effects in liver 

cells (Image adapted from Lee, 2003 (Lee, 2003)). 
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1.4.2 Immunological idiosyncratic reactions 

1.4.2.1  The hapten hypothesis 
 

Many DILI reactions appear to be immune-mediated rather than due to metabolic 

idiosyncracy (Uetrecht 2007). Though several hypotheses for DILI mechanisms have 

been proposed in the past, the hapten hypothesis is still considered as a dominant 

mechanistic hypothesis. The hapten hypothesis involves a chemically reactive drug or 

reactive metabolite acting as a hapten that covalently binds to cellular protein, DNA or 

other cellular molecule and lead to an adaptive immune response. It was first observed 

by Landsteiner et al. that immune reactions could not be triggered by small molecules 

unless they were chemically reactive and bound to protein (Landsteiner and Jacobs, 

1935). Many drugs can be converted into a chemically reactive metabolite by drug 

metabolising enzymes such as the cytochrome P450 enzymes to form the hapten. For 

instance, halothane is oxidized by cytochrome P450 to trifluoroacetyl chloride (TFA), 

an electrophilic reactive intermediate which may bind covalently to hepatocyte 

macromolecules and phospholipids to form TFA-protein adducts (Eliasson et al., 1998). 

These TFA-protein adducts may be recognised as foreign by the immune system, 

resulting in the generation of autoantibodies (Eliasson and Kenna, 1996). It has been 

demonstrated that several different autoantibodies and TFA-protein adducts can be 

detected in the serum of patients with halothane-induced hepatitis (Spracklin et al., 

1997). In addition, TFA can also bind to the CYP enzyme responsible for the generation 

of these electrophilic reactive intermediate and thus elevate the immunological reaction. 

It has been reported that a high levels of autoantibodies against TFA-modified CYP2E1 

was identified in human and rats treated with halothane, indicating that the 

autoantibodies recognizing this autoantigen may evoke an immune response and play an 

important role in the pathogenesis of halothane hepatitis (Spracklin et al., 1997).  

 

1.4.2.2 Danger hypothesis 
 

The danger hypothesis of Matzinger proposes that an additional “danger signal” is 

required for the development of an immune-related idiosyncratic drug reaction as 

haptenized proteins alone might not be sufficient to trigger an immune reaction 

(Matzinger, 1994). Absence of a danger signal even though drug- and/or metabolite-

specific antibodies were detected in some cases would be associated with immunologic 

tolerance (Uetrecht, 2008). This tolerance prevents the body from initiating an immune 

response when the foreign antigens/hapten poses no threat or danger to the individual. 
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Thus, a second-stimulatory trigger, the danger signal is required alongside the 

presentation of the hapten to the APC for the development of a full immune response. 

Danger signals which include cytokines may be released as a result of oxidative stress 

and/or cellular damage.  

 

1.4.2.3 Activation of the adaptive immune response 
 

Formation of adducts through binding of drug metabolites to cellular proteins, DNA or 

other cellular molecules results in hepatic cellular dysfunction that may initiate both 

adaptive and innate immune responses. Drug-protein adducts may migrate to the cell 

surface and induce adaptive immune responses that cause liver damage by direct 

cytotoxic T cell or antibody-mediated cytotoxic responses (Robin et al., 1997). Major 

histocompatability complex (MHC) class II proteins present on the surface of antigen 

presenting cells (APC) along with the release of co-stimulatory signals allow 

recognition by helper T cells, leading to a T cell response to the antigen. The cytotoxic 

T cells are then targeted against hepatocytes that express the protein adducts or with 

MHC class I present on the cell surface and this leads to the subsequent development of 

DILI (Kaplowitz, 2005). Activation of B cells by helper T cells causes production of 

antibody to protein adducts, promoting antibody-dependent hepatotoxicity.  

 

1.4.2.4 Stimulation of innate immune response 
 

Hepatocyte stress and/or cell damage could release the danger signals that trigger the 

inflammatory responses of the innate immune system by the activation of Kupffer cells 

(KC), natural killer (NK) cells and natural killer T (NKT) cells. These cells produce 

proinflammatory mediators including cytokines, chemokines and reactive oxygen 

species (ROS) that contribute to the progression of DILI. Inflammatory cytokines such 

as tumour necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), Fas or Fas ligand 

(FasL) and interleukin-1 beta (IL-1β) have been shown to be directly involved in 

causing tissue damage in the liver (Ishida et al., 2002; Blazka et al., 1996; Blazka et al., 

1995). On the other hand, activated innate immune cells also release interleukin-10 (IL-

10), interleukin-6 (IL-6) and other cytokines which play a hepatoprotective role of 

counteracting inflammatory responses and stimulating liver regeneration (Masubuchi et 

al., 2003; Bourdi et al., 2002; Ju et al., 2002). It has been shown that IL-10 and IL-6 null 

mice are more susceptible to paracetamol toxicity, suggesting the protective role of IL-

10 and IL-6 against paracetamol-induced liver injury (Masubuchi et al., 2003; Bourdi et 
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al., 2002). Therefore, the balance of hepatotoxic and hepatoprotective mediators 

produced by activation of innate immune cells will determine an individual’s 

susceptibility to DILI.  

 

1.4.2.5 Autoimmunity 
 

Drug-induced autoimmunity is associated with the apparent lack of immune reactions 

observed in immune-mediated hepatitis and often misclassified as metabolic or 

nonimmune-mediated DILI (Uetrecht, 2008). Two drugs, nitrofurantoin and 

minocycline were reported to be the main causes of drug-induced autoimmune hepatitis 

(Bjornsson et al., 2010). The autoimmune reactions resulting in production of 

autoantibodies against self-antigens/haptenised proteins and the antigens are still present 

even after the causative drug is stopped. However, autoimmune DILI usually, although 

not always, resolves rapidly after administration of the offending drug has stopped. 

Therefore the continued administration of the responsible drug is required in an event of 

autoimmune DILI, possibly to provide the additional danger signal necessary to 

stimulate an immune response (Uetrecht, 2008). When the drug is removed, the 

autoimmune T cells are consequently made anergic. Thus, the lack of a rapid onset on 

rechallenge seen in drug-induced autoimmunity could be due to the induction and 

maintenance of immune tolerance involving the autoimmune T cells. Many immune-

mediated DILI cases could have been misclassified and autoimmunity is still remained a 

special problem when causality in DILI is being assessed. 

  

 

1.4.3 Metabolic idiosyncratic reactions 

1.4.3.1 Toxic metabolites 
  

Metabolic idiosyncrasy is also referred as non-immune idiosyncratic reactions may be 

caused by aberrant drug metabolism or clearance, leading to the accumulation of toxic 

metabolites and causing toxicity to hepatocytes. For this reason, genetic variation 

affecting drug-metabolizing enzymes has been suggested to be a risk factor for DILI. 

The inter-individual differences in the ability to metabolize or detoxify certain drugs 

could increase susceptibility to DILI due to toxic metabolites accumulation. 

Polymorphisms in genes encoding drug metabolizing enzymes such as cytochromes 

P450 (CYP450), glutathione S-transferases (GST) and N-acetyltransferase 2 (NAT2), 

together with others encoding proteins such as superoxide dismutase 2 (SOD2) and 
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cytokines have been proposed to be associated with metabolic idiosyncrasy (Verma and 

Kaplowitz, 2009). Though P450-mediated metabolism usually biotransforms drugs into 

water-soluble metabolites which are easier to eliminate, in some cases it causes the 

activation of a drug to a hepatotoxic metabolite and increases drug toxicity. In the case 

of isoniazid, polymorphisms in metabolic enzymes such as NAT2 and CYP2E1 have 

been shown to be associated with isoniazid-induced liver injury due to the increased 

level of toxic metabolites of isoniazid. However, significance of NAT2 and CYP2E1 

polymorphisms and their susceptibility to isoniazid-induced liver injury remains unclear 

and has not been confirmed in all studies, suggesting that additional factors may be 

required to explain the idiosyncratic nature of liver toxicity caused by isoniazid 

(Uetrecht, 2008). Isoniazid-induced hepatotoxicity is discussed further in section 1.6. It 

is also possible that metabolic idiosyncrasy may be due to environmental or nutritional 

factors rather than genetic factors (Xu et al., 2005). 

 

1.4.3.2 Disruption of intracellular calcium homeostasis  
 

Drug and their reactive metabolites may cause hepatotoxicity which is usually 

predictable and dose-dependent. Paracetamol is a classic example of a known intrinsic 

or predictable hepatotoxin, however paracetamol overdoses can produce the reactive 

metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes glutathione 

resulting in an excessive quantity of reactive metabolites. The resultant unconjugated 

reactive metabolites may bind covalently to cellular proteins and DNA, causing 

disruption of calcium homeostasis. Disruption of intracellular calcium homeostasis 

leads to the disassembly of actin fibrils at the cell surface of the hepatocyte which 

results in cell rupture and lysis (Kaplowitz, 2002).  

 

1.4.3.3 Mitochondrial damage  
 

Another mechanism for liver injury involves drug induced mitochondrial damage by 

disrupting fatty acid oxidation and energy production. Extensive formation of reactive 

metabolites that disable respiratory chain enzymes or mitochondrial DNA results in 

oxidative stress, defined as the exposure of the cell to extreme amount of oxidants 

commonly known as reactive oxygen species (ROS). ROS such as superoxide, 

hydrogen peroxide and hydroxyl radicals have been implicated in liver injury. When 

hepatocytes are exposed to excess ROS or there is lack of ROS elimination by 

antioxidants, oxidative stress occurs and can trigger the mitochondrial permeability 
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transition pore to open. The pore opening leads to an influx of protons from the 

intermembrane space into the mitochondrial matrix, culminating in mitochondrial 

depolarisation, major ATP depletion and cell necrosis (Boelsterli and Lim, 2007). Pore 

opening may also result in the entry of water into the mitochondrial matrix, causing the 

rupture of the outer membrane and release proapoptotic substances such as cytochrome 

c, which activate caspases and induce apoptosis (Haouzi et al., 2000). It has been 

suggested that progressive mitochondrial damage may produce a danger signal and 

initiate an innate and/or adaptive immune response (Uetrecht, 2008).  

 

1.5 Pharmacogenomics in DILI 

1.5.1 Xenobiotic metabolism 

 

Genetic factors determining susceptibility to drug-induced hepatotoxicity have recently 

gained much attention as the important risk factor for DILI. Genetic associations related 

to DILI are generally drug specific. Most of the susceptibility genes may relate to a 

range of different pathways, including those encoding drug-specific metabolising 

enzymes and drug transporters, immune reactions, mitochondrial function and apoptosis 

(Kaplowitz, 2005). The rarity of DILI and the wide range of drugs have contributed to 

the difficulty of recruiting a desired number of affected individuals for statistical power. 

However, some replicated associations for DILI susceptibility with particular genes due 

to specific drugs have been detected by using genome-wide association studies (GWAS) 

and candidate gene association studies (Daly, 2010).  

Biotransformation of drugs usually involves several steps, including Phase I reactions 

including reduction, oxidation or hydrolysis, followed by Phase II metabolism which 

includes acetylation, methylation, conjugation to glucuronide, sulphate or glutathione 

that will produce hydrophilic products to be exported into plasma or bile and 

subsequently excreted by the kidney or the gastrointestinal tract. Inter-individual and 

inter-ethnic differences in gene encoding the drug metabolising enzymes result in 

variability to drug response. It may cause abolished, reduced, altered or increased 

enzyme activity and can either cause susceptibility or protection to DILI dependent 

upon whether the drug or its metabolite causes the adverse drug reactions.  
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1.5.2 Phase I metabolising enzymes  

 

Human cytochrome P450 (CYP450) superfamily of phase I metabolising enzymes are 

often responsible for many idiosyncratic hepatotoxicity due to the formation of reactive 

metabolites of the drug. CYP450 enzymes are present primarily in drug-eliminating 

organs, including the liver, kidney and intestinal tract. So far, over 57 CYP450 genes 

have been identified. Within the same family, all CYP proteins share at least 40% 

sequence identity in their amino acid sequence and those within the same subfamily 

sharing greater than 55% identity (Nelson et al., 1996). Families CYP1, CYP2, and 

CYP3 are those most commonly involed in the metabolic cleareance of the most 

xenobiotics/drugs and these genes are highly polymorphic resulting in interindividual 

variation in the rate of enzyme activity. There is some limited data suggesting 

associations between CYP polymorphisms and susceptibility to some forms of DILI. 

The main association reported is between INH-induced DILI and certain CYP2E1 allelic 

variants. CYP2E1 plays a major role in the metabolic activation of paracetamol, 

chlorzoxazone, and ethanol and it has been linked to paracetamol-induced DILI in 

humans though data on this is quite limited (Sinclair et al., 1998). The CYP2E1*5 allele 

is common CYP2E1 variant with polymorphisms in the 5’-flanking region which have 

been reported to cause an increase in the expression of the enzyme (Watanabe et al., 

1994; Hayashi et al., 1991) and it has been linked to associated with an increased risk of 

developing hepatotoxicity due to anti-tuberculosis drugs including INH, though not all 

studies show this. Genetic polymorphism of CYP2E1 and the risk of anti-tuberculosis 

medication are discussed further in section 1.7.   

Another P450 named CYP3A4, may also have a more indirect involvement in some 

forms of DILI. It is believed that CYP3A4 interindividual variability is mainly due to 

CYP3A4 enzyme induction and inhibition rather than variations in the gene (Burk et al., 

2004). CYP3A4 is regulated by pregnane X receptor (PXR). It has been shown that 

CYP3A4 contributes to the formation of reactive metabolites in troglitazone and 

flucoxacillin, though there is currently no evidence for the involvement of the reactive 

metabolite in the troglitazone or flucoxacillin induced hepatotoxicity (Masubuchi, 2006; 

Lakehal et al., 2001). However, in a recent study, an upstream polymorphism affecting 

levels of PXR expression was found to be associated with flucoxacillin-induced liver 

injury (Andrews et al., 2010). DILI cases due to this drug were more likely to have the 

allele associated with low PXR expression which may be associated with lower 

CYP3A4 expression.  



 

 

 

22 

1.5.3 Phase II metabolising enzymes  

 

Phase II reactions consist of glucuronidation, acetylation, methylation, sulphation, and 

glutathione conjugation. Associations between genetic polymorphisms of Phase II 

metabolising enzymes with DILI have been studied extensively. Polymorphism in the 

genes encoding arylamine N-acetyltransferase 2 (NAT2), glutathione transferases 

(GSTs) and UDP-glucuronosyltransferases (UGTs) have been reported to increase 

susceptibility to adverse drug reactions. 

 

1.5.3.1 UDP-glucuronosyltransferases (UGTs) 
 

The human UDP-glucuronyl transferase (UGT) superfamily has been classified into the 

UGT1A, 2A and 2B subfamilies which catalyse reactions of conjugation with 

glucuronic acid. UGTs are found in many of the major organs including the liver and 

responsible for the elimination of drugs and other xenobiotics and endogenous 

compounds such as bile acids, bilirubin hydroxyl-steroids and thyroid hormones 

(Kaivosaari et al., 2011). UGT1A1 is the most abundant UGT isoform in the liver and 

individuals who carry the UGT1A1*28 mutant allele can be more susceptible to 

irinotecan toxicity due to impaired UGT1A activity (Iyer et al., 2002). An association 

between UGT1A6-A528G polymorphism with tolcapone-induced hepatotoxicity was 

found by Acuna et al., where the G allele was associated with decreased enzyme 

activity resulting in compromised drug clearance and drug toxicity (Acuna et al., 2002). 

Diclofenac-induced liver injury has also been associated to glucuronidation mechanism 

pathway, resulting in the production of reactive metabolite, diclofenac acyl glucuronide. 

The reactive diclofenac acyl glucuronide is capable of covalent modification of cellular 

proteins and resulting in immune-mediated destruction of hepatocytes (Kretz-Rommel 

and Boelsterli, 1995). The UGT2B7 has been implicated in the diclofenac-induced DILI 

and the variant UGT2B7*2 allele is associated with increased enzyme activity which in 

turn may result in the increased production of the toxic diclofenac acylglucuronide 

(Daly et al., 2007). 

 

1.5.3.2 Arylamine N-acetyltransferase 2 (NAT2) 
 

The human arylamine N-acetyltransferase 2 (NAT2) is involved in the acetylation of 

numerous xenobiotics and ary-lamine or hydrazine-containing drugs such as isoniazid 

(INH), sulfamethoxazole, hydralazine, dapsone and procainamide. Blum and colleagues 
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have first provided evidence that the gene encoding NAT2 is polymorphic through 

‘INH inactivation’, thus causing interindividual variation in the NAT2 acetylation 

capacity and resulting in rapid or slow acetylator phenotypes (Blum et al., 1990). 

NAT1, on the other hand, is monomorphic and shows no variability in the N-acetylation 

of certain arylamine drugs such as p-aminosalicylic acid. Vatsis and colleagues were 

then confirmed that NAT2 corresponds to INH acetylator phenotypes  (Vatsis et al., 

1991). Determination of NAT2 genotype and phenotype has been proposed to predict 

hepatotoxicity in patients with tuberculosis receiving INH or concomitant treatment of 

INH with other anti-tuberculosis medication such as rifampicin, pyrazinamide and 

ethambutol. It has been suggested that slow acetylators/poor metabolisers are prone to 

adverse drug reactions due to accumulation of toxic metabolites or low detoxification of 

drugs and/or their toxic metabolites. The role of NAT2 in DILI caused by anti-

tuberculosis medication is described in detail in section 1.7.  

 

1.5.3.3 Glutathione S-transferases 
 

The glutathione S-transferase enzymes (GSTs) play a major role against endogenous 

oxidative stress, as well as in the detoxification of exogenous potential toxins including 

toxic chemicals, carcinogens and drugs. They protect cells for direct toxicity by their 

detoxification effects through the conjugation of glutathione with harmful electrophiles 

generated during oxidative stress and lipid peroxidation. The mammalian cytosolic 

GSTs have been classified into eight classes including alpha, kappa, mu, omega, pi, 

sigma, theta and zeta (Pearson, 2005). Studies to date have been limited to the common 

deletion polymorphisms in the genes encoding the GSTM1 and GSTT1 resulting in the 

absence of enzyme. The presence of combined alleles GSTM1 and GSTT1 deficiencies 

has been associated with raised liver enzymes and increases susceptibility to DILI 

regardless of the type of causative agents (Lucena et al., 2008a). A more detailed role of 

GSTs in DILI caused by anti-tuberculosis medication is described in section 1.7.  

 

1.5.4 Drug transporters 

 

Member of the ATP binding cassette (ABC) transporter family such as P-glycoprotein 

(P-gp) and multidrug resistance-associated protein (MRP) play a vital role in the 

disposition of drugs in the body by providing a formidable barrier against drug 

penetration (Xu et al., 2005). Drugs and their metabolites can be effluxed from the 
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hepatocyte via these ABC transporters into the bile (Figure 1.2). Along with P-gp 

(MDR1; ABCB1), the bile salt efflux protein (BSEP; ABCB11) is a major bile acid 

efflux pump. The human MRP subfamily consists of at least nine members. MRP2, also 

known as ABCC2 is present on the canalicular membrane and involved in drug 

excretion into bile, especially of glucuronidated metabolites. Different from MRP2, 

MRP1 and MRP3 are found on the basolateral membrane of polarised cells which efflux 

drugs and metabolites into the bloodstream leading to increased excretion into the urine. 

Polymorphisms in some transporter genes have been shown to affect susceptibility to 

DILI caused by either specific drugs or a mix of drugs. A polymorphism in exon 13 of 

BSEP which has been linked with apparent decreased of hepatic BSEP expression was 

found to have an association with drug-induced cholestasis caused by various drugs 

(Lang et al., 2007). The C-24T MRP2 polymorphism which has previously been 

associated with decreased functional expression of the transporter was shown to be 

associated with diclofenac-induced liver injury (Daly et al., 2007). Choi and colleagues 

have further studied a few variants in MRP2 and found that a haplotype containing the 

C-24T variant was associated with hepatocellular type liver injury, and haplotype 

containing the -1774delG polymorphism was found with increased frequency in 

cholestatic and mixed liver injury caused by various causative drugs, specifically herbal 

remedies. The same study also looked at the functional significance of these variants 

including -1774delG, G-1549A and C-24T polymorphisms, and results revealed that 

these genetic variations in the promoter region of MRP2 are associated with decreased 

promoter activity leading to the development of liver injury (Choi et al., 2007).  
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Figure 1.2 Transport proteins for drugs and endogenous substances in 

basolateral and apical membranes of hepatocytes. 

  

Human hepatocyte uptake transporters in the basolateral (sinusoidal) membrane 

include the sodium/taurochplate co-transporting peptide (NTCP), organic anion 

transporting polypeptide (OATP), organic anion transporter (OAT) and organic 

cation transporter (OCT). Efflux pumps include several multidrug resistance proteins 

(MRP3, MRP4 and MRP6) are localised to the basolateral membrane and 

effluxchemicals. Apical (canalicular) efflux pumps of the hepatocyte comprise P-gp; 

bile-salt export pump (BSEP); breast cancer resistance protein (BCRP); and MRP2. 

In addition, multidrug and toxin extrusion protein 1 (MATE1) is located in the apical 

hepatocyte membrane for excretion of organic cations in the liver (Image adapted 

from Giacomini et al., 2010 (Giacomini et al., 2010)). 
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1.5.5 Oxidative stress  

 

Reactive oxygen species (ROS) such as hydrogen peroxide, superoxide and hydroxyl 

radical are generated as a result of energy production from mitochondria, as well as 

detoxification reactions carried out by the CYP450 system. When the production of 

ROS exceeds the body’s natural antioxidant defence mechanisms, oxidative stress 

occurs. Oxidative stress in liver can be induced by drugs and their reactive metabolites, 

ethanol and inflammatory stress, causing cell death and leading to the pathogenesis of 

liver injury. Genetic polymorphisms in ROS detoxification enzymes can contribute to 

individual susceptibility to DILI. These enzymes participate in a number of different 

reactions. Superoxide dismutases (SOD) convert superoxide to hydrogen peroxide 

whereas glutathione peroxidases (GPX) convert hydrogen peroxide to water in 

glutathione-dependent reactions. A polymorphism in mitochondrial enzyme manganese-

dependent superoxide dismutase (SOD2), a major scavenger of mitochondrial 

superoxide is associated with DILI. This T to C allele substitution in exon 2 of the 

SOD2 which results in a valine to alanine change (SOD2 Val16Ala) in the leader 

sequence involved in import of the enzyme into mitochondria, was subsequently related 

to increased susceptibility to DILI caused by a combination of hepatotoxic drugs 

(Huang et al., 2007). Recently, Lucena and colleagues have found an association of 

SOD2 Val16Ala polymorphism with the risk of developing DILI, particularly in 

patients with cholestatic/mixed hepatotoxicity (Lucena et al., 2010). In addition to 

SOD2, the group also studied the glutathione peroxidase I (GPXI) polymorphism, a 

proline to leucine substitution (GPX1 Pro200Leu) which has previously been associated 

with reduced enzyme activity (Hamanishi et al., 2004). Patients homozygous for GPX1 

Leu allele were shown to be associated with a 5.1–fold increased risk for developing 

cholestatic type liver injury (Lucena et al., 2010). Another mitochondrial enzyme, DNA 

polymerase gamma (POLG) may also be relevant to risk of DILI. Rare mutations lead 

to decreased activity which may result in impaired ability to deal with oxidative stress. 

Patients exhibiting rare mutations in POLG were more likely to develop DILI caused by 

sodium valproate (VPA) (Stewart et al., 2010; McFarland et al., 2008). 
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1.5.6 Immune related genes  

1.5.6.1 Human leukocytes antigen (HLA) 

 

Genetic polymorphisms of the human leukocyte antigens (HLA) have been strongly 

associated with drug-induced hepatotoxicity, indicating the presence of an immune-

mediated reaction (Daly, 2010). The HLA is the name of the human major 

histocompatibility complex (MHC) and can be classified into HLA class I and HLA 

class II whose gene products are predominantly involved in antigen presentation on the 

surface of cells. Genes of the HLA class I are grouped into A, B or C and the class II 

genes are grouped into DR, DP or DQ. All these genes are located in the MHC region of 

chromosome 6 in a region where there is strong linkage disequilibrium extending over a 

long distance. 

 

A GWAS has revealed that the class I HLA-B*5701 is strongly associated to 

flucloxacillin-induced liver injury with a significant odds ratio of approximately 80 

when DILI cases were compared to flucloxacillin-tolerant controls (Daly et al., 2009). 

Abacavir-induced hypersensitivity reactions are found to be very significantly 

associated with the HLA-B*5701 in another study (Mallal et al., 2002) though these 

reactions don’t normally involve the liver and the reason why the flucloxacillin and 

abacavir reactions show a similar genetic association remains unclear. The HLA class II 

allele DRB1*1501 has been previously associated with co-amoxiclav induced liver 

injury in two small cohort studies (O'Donohue et al., 2000; Hautekeete et al., 1999). 

Recently the association between DRB1*1501 and DILI due to co-amoxiclav was 

replicated, suggesting that DRB1*1501 allele may play a particularly important role in 

co-amoxiclav induced hepatotoxicity (Donaldson et al., 2010). Very recently, a GWAS 

on co-amoxiclav DILI has found that in addition to the DRB1*1501 association, a HLA 

class I gene A*0201 is also a risk factor for DILI (Lucena et al., 2011). It has also been 

suggested that ximelagatran-induced hepatotoxicity is related to immune-mediated DILI 

as it is found to be associated with a HLA class II haplotype DRB1*0701-DQA1*0201 

(Kindmark et al., 2008). A further HLA association has recently found to be associated 

with DILI caused by selective NSAID COX-2 inhibitor lumiracoxib (Singer et al., 

2010). The GWAS study has identified a strong association to a common HLA 

haplotype DRB1*1501-DQB1*0602-DRB5*0101-DQA1*0102 which may indicate a 

role of HLA class II alleles as a markers for NSAID-induced liver injury (Singer et al., 

2010). A high incidence of ticlopidine-induced severe cholestatic hepatotoxicity was 
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observed in Japanese patients with HLA-A*3303, suggesting a role of HLA 

polymorphisms in ticlopidine-induced hepatotoxicity (Hirata et al., 2008). Sharma and 

colleagues have shown that patients with specific HLA alleles (the absence of HLA-

DQA1*0102 or the presence of HLA-DQB1*0201 alleles were at increased risk of 

hepatotoxicity due to anti-tuberculosis medication (Sharma et al., 2002). However, in a 

genome-wide association study involving 28 European DILI cases linked to INH, no 

evidence for a HLA association was found (Urban et al., 2011). All these published 

studies have demonstrated associations between certain HLA genotypes with their 

relevant causative agents, thus suggesting that the immune mechanism in these specific 

examples of DILI could be caused by drug-specific factors rather than by the types of 

liver injury (Daly, 2010).  

 

1.5.6.2 Cytokine genes 
 

Associations between genetic polymorphisms in genes encoding cytokine-related 

proteins and susceptibility to DILI have been reported. Aithal and colleagues observed 

polymorphisms in IL-4 (C-590TA) and IL-10 (C-627A) resulting in low IL-10 and high 

IL-4 gene transcription were associated with diclofenac-induced hepatotoxicity (Aithal 

et al., 2004). Apart from IL-4 and IL-10, genetic polymorphisms of IL-6 (-597A, -572G, 

-174G and variable nucleotide tandem repeat-D alleles) were found to be associated 

with DILI caused by tacrine, an anticholinesterase inhibitor used for the treatment of 

Alzheimer’s disease (Carr et al., 2007). Although some associations of cytokine 

polymorphisms have been associated with DILI, the associations are not as strong as 

that seen in HLA alleles, thus suggesting a minor role of cytokines in contributing to 

DILI.    

 

1.6 Anti-tuberculosis drugs-induced liver injury 

1.6.1 The burden of tuberculosis (TB) 

 

Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium tuberculosis 

(M. tuberculosis) and a major cause of disease burden worldwide. This disease is 

contracted through the exposure to M. tuberculosis in microscopic droplets expelled 

into the air from an infected person by coughing, speaking or sneezing. According to 

the World Health Organisation (WHO), over one-third of the world’s population is 

currently infected with M. tuberculosis (WHO, 2010b) but not everyone who is infected 

develops the disease as asymptomatic latent TB infection is most common. However, 
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untreated latent infections will eventually progress to active TB. In 2009, the estimates 

of the global burden of disease caused by TB are as follows: 14 million latent TB cases 

(a prevalence rate of 203 cases per 100,000 population), 9.4 million active TB cases (an 

incidence rate of 139 cases per 100,000 population), 1.3 million deaths among human 

immunodeficiency virus (HIV) -negative people and 0.38 million deaths among HIV-

positive people (WHO, 2010a). In the UK, a total of 8497 active TB cases were reported 

in 2006, a rate of 14.0 cases per 100,000 population (HPA, 2007). Increased risk factors 

for contracting TB have been identified as age, sex, HIV infection, smoking and family 

history of TB infection (Lienhardt et al., 2003). The disease is more common in 

countries with poverty, malnutrition and crowding as the risk of exposure to M. 

tuberculosis, consequently risk of infection is increased (Accorsi et al., 2005). 

According to the latest WHO annual report, most cases were in the South-East Asia 

(35%), African (30%) and western Pacific regions (20%) (WHO, 2010a). HIV-positive 

individuals who infected with M. tuberculosis are more susceptible to develop active 

TB due to their weak immune system. In Africa, HIV is the single most important factor 

contributing to the increase in the incidence of TB and accounted for approximately 

80% of these cases (WHO, 2010a). It has also been noted that healthcare workers have 

higher risk of exposure and latent infection (Kayanja et al., 2005).  

 

1.6.2 Anti-TB drugs (ATD) 

 

First-line anti-TB drugs used for disease treatment and latent TB infection (LTBI) are 

isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA), ethambutol and streptomycin 

(Figure 1.3). For the past 15 years, the gold-standard treatment for TB involves six 

months of daily treatment with RMP and INH, supplemented with PZA and either 

ethambutol or streptomycin in the initial two months (six-month, four-drug regimen) 

(HPA, 2007). The initial four-drug regimen is designed to diminish the bacterial 

population as rapidly as possible and also to prevent emergence of drug- and multidrug-

resistant TB strains. The recommended daily oral dosages for the treatment of TB by the 

British National Formulary are 300mg for INH, 450-600mg for RMP, 1.5-2g for PZA 

and 15mg/kg for ethambutol (Table 1.3). Ethambutol is bacteriostatic against actively 

growing mycobacteriae by disrupting cell wall synthesis and is included in a treatment 

regimen when INH resistance is suspected. Streptomycin, a bactericidal aminoglycoside 

given at a dose of 15 mg/kg daily, is rarely used in the UK except for the initial phase of 

TB treatment if resistance to INH has been established. INH, also known as isonicotinyl 
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hydrazine, is cheap and highly effective, and commonly combined with RMP in treating 

TB. RMP belongs to the rifamycin group of antibiotics produced by Streptomyces 

mediterranei and covers a broad spectrum of antibacterial, antiviral and antineoplastic 

activity. It acts by binding to DNA-dependent RNA polymerase in bacterial cells, thus 

inhibiting transcription and subsequent translation of proteins. PZA is an effective TB 

drug that helps shorten the treatment regimen from 9 months to 6 months when used in 

combination with RMP and INH. It is a prodrug that needs to undergo metabolic 

activation catalysed by bacterial pyrazinamidase into its active derivative pyrazinoic 

acid for activity against M. tuberculosis (Konno et al., 1967). The emergence of drug-

resistant TB is mainly caused by human errors, including inconsistent or incomplete 

treatment, wrong treatment regimens prescribed by doctors and health workers, and also 

unknown or unreliable source of quality drugs (WHO, 2010b). Multidrug-resistant TB 

(MDR-TB), a particularly dangerous form of drug-resistant TB is caused by 

mycobacterial strains resistant to the two most potent first-line anti-TB drugs, especially 

INH and RMP. Though MDR-TB is generally curable by extensive chemotherapy with 

second-line anti-TB drugs that takes up to two years, the treatments are more costly and 

cause more severe ADRs than the first-line drugs. These second-line agents include 

amikacin, capreomycin, cycloserine, azithromycin, clarithromycin and moxifloxacin.   
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Figure 1.3 Schematic diagrams of molecular structures of isoniazid, 

rifampicin, pyrazinamide, streptomycin and ethambutol (Kumari and Ram, 

2004). 

Isoniazid 
Pyrazinamide 

Rifampicin 

Streptomycin 

Ethambutol 
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Table 1.3 Recommended doses of first-line anti-tuberculosis drugs for adults  

 

Drugs    Dose and range                         

(mg/kg body weight) 
    Maximum dose 

Isoniazid               

+ 

  5 (4-6) mg/kg daily 300 

Rifampicin              

+ 

10 (8-12) mg/kg daily 600 

Pyrazinamide  

together with  

25 (20-30) mg/kg daily 2000 

Ethambutol          

or 

15 (15-20) mg/kg daily – 

Streptomycin 15 (12-18) mg/kg daily – 

 

 

1.6.3 Metabolism of anti-TB drugs (ATD) 

1.6.3.1 Isoniazid (INH) 
 

INH is primarily cleared through acetylation by N-acetyltransferase 2 (NAT2) in the 

liver, resulting in acetylisonazid which is then hydrolysed to isonicotinic acid and 

monoacetylhydrazine (MAH) (Figure 1.4). INH also undergoes hydrolysis catalysed by 

isoniazid hydrolase and forms hydrazine, which is then metabolised to MAH by NAT2. 

MAH can be acetylated to diacetylhydrazine which is non-toxic, or oxidised by 

cytochrome P4502E1 (CYP2E1) into hepatotoxic intermediates (Ryan et al., 1985). 

Acetylhydrazine can be hydrolysed to hydrazine which may further induce CYP2E1, 

increasing the production of toxic metabolites. Hydrazine, MAH and isonicotinic acid 

are potentially hepatotoxic metabolites of INH and accumulation of these reactive 

metabolites in patients may cause serious adverse drug reactions. The enzyme 

responsible for INH hydrolysis has still not been well characterised. It is usually 

described as an amidase but in a recent report (Tafazoli et al., 2008), it was found that 

hydrazine formation from INH in rat hepatocytes could be inhibited by treatment with 

bis-p-nitrophenylphosphate, which was originally described as a carboxylesterase 

inhibitor (Buch et al., 1969). There is increasing evidence that the hydrolysis of INH is 

catalyzed by a carboxylesterase but the precise isoform responsible is still unclear 

(Yamada et al., 2009). In human liver, two carboxylesterase isoforms CES1A1 and 
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CES2 are expressed at detectable levels and show different substrate specificities (Yang 

et al., 2009). 

 
1.6.3.2 Rifampicin (RMP) 
 

The metabolic pathways for RMP are deacetylation and non-enzymatic hydrolysis 

(Venkatesan, 1989). In the liver, RMP is deacetylated to 25-desacetylrifampicin, a 

major metabolite that possesses potent bactericidal activity against M. tuberculosis. 

RMP is also hydrolysed to form 3-formylrifampicin SV and 3-formyldesacetyl 

rifampicin. It is known as a very potent inducer of drug metabolism, including its own 

metabolism. This is due to it being a potent agonist for the nuclear pregnane X receptor 

(PXR) which upregulates expression of a number of enzymes important in drug 

 

Figure 1.4 Isoniazid metabolic pathways  
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metabolism. It promotes the upregulation of phase I CYP450 enzymes, particularly 

CYP3A4 which catalyse the metabolism of 50-60% of clinically prescribed drugs 

(Kolars et al., 1994; Shimada et al., 1994). In addition to CYP3A4, RMP has shown to 

induce drug transporters such as multidrug resistance 1 (MDR1), mediated through PXR 

activation (Rae et al., 2001). It promotes the clearance of potentially toxic xenobiotics 

or their reactive metabolites from the liver and intestine, and has also been shown to 

interplay with CYP3A4 in RMP inducing drug-drug interactions (Cummins et al., 

2003). Studies have indicated that RMP administration may induce the production of 

hepatotoxic hydrazine metabolites by accelerating the INH hydrolase activity in the 

non-acetylating hydrolysis metabolic pathway particularly in individual with slow 

acetylator phenotype (Fukino et al., 2008; Askgaard et al., 1995; Sarma et al., 1986).  

 

1.6.3.3 Pyrazinamide (PZA) 
 

PZA is an effective sterilising drug and subjected to metabolism by hepatic microsomal 

deamidase and xanthine oxidase (XO) (Yamamoto et al., 1989). PZA, a prodrug is 

hydrolysed to the active metabolite pyrazinoic acid by a liver microsomal deamidase 

(Figure 1.5). This reaction can also be performed by the mycobacterial enzyme 

pyrazinamidase. Pyrazinoic acid is further hydroxylated to 5-hydroxypyrazinoic acid by 

XO. PZA is also directly oxidised to 5-hydroxypyrazinamide by XO. As with INH 

conversion to hydrazine (section 1.6.3.1), the microsomal deamidase involved in 

pyrazinamide hydrolysis is probably a carboxylesterase but the isoform responsible has 

not been identified. These three PZA metabolites are mainly excreted in urine (Lacroix 

et al., 1989; Weiner and Tinker, 1972). Pyrazinoic acid may be converted to pyrazinuric 

acid through a minor pathway by its conjugation with glycine.  
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1.6.4 Anti-TB drugs-induced liver injury (ATD-DILI) 

 

The three key drugs for this treatment, RMP, INH and PZA are potential causes of 

hepatotoxicity and may lead to serious adverse effects including hepatitis, cutaneous 

reactions, gastrointestinal intolerance, haematological reactions and renal failure (Forget 

and Menzies, 2006). The frequency of anti-TB drugs hepatotoxicity increases greatly 

when they are used simultaneously (van Hest et al., 2004). It has been reported that the 

frequency of overt clinical hepatitis caused by INH and RMP coadministration was 

2.6%, but only 1.1% with rifampicin alone and 1.6% with INH alone (Steele et al., 

1991). ATD-DILI varies widely in severity, ranging from asymptomatic elevation of 

liver transaminases to acute liver failure (Kumar et al., 2010; Reuben et al., 2010). 

 

Figure 1.5 Pyrazinamide metabolic pathways (Tostmann et al., 2010). 
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Factors that increase the risk of anti-TB drug-induced hepatotoxicity include HIV 

infection, chronic viral hepatitis B and C infections, old age, malnutrition and 

alcoholism (Tostmann et al., 2008; Dworkin et al., 2005; Fernandez-Villar et al., 2004; 

Ungo et al., 1998; Krishnaswamy et al., 1991).  

 

In 1969, INH received a black box warning from the US Food and Drug Administration 

due to its association with high incidence of adverse drug reactions, particularly 

hepatocyte injury (Black et al., 1975). Various metabolites of INH have been suggested 

as hepatotoxic, including hydrazine, monoacetyl hydrazine (MAH), acetylisoniazid and 

isonicotinic acid (Mitchell et al., 1976). Administration of acetylhydrazine or 

acetylisoniazid in rats leads to the production of reactive alkylating species and covalent 

binding to liver proteins, causing hepatocyte injury (Timbrell et al., 1980). NAT2, the 

major known enzyme involved in the metabolic pathway of INH and metabolites is 

suggested to play an important role in INH-induced hepatotoxicity, particularly the 

NAT2 slow acetylator genotypes/phenotypes. A more detailed of the association 

between NAT2 genetic polymorphisms and ATD-DILI is found in section 1.7.  

RMP has also been reported to affect metabolism of other drugs by inducing CYPs and 

UGT activities (Burk et al., 2004; Schuetz et al., 1996), which may complicate the 

analyses of ATD-DILI due to potential overlapping toxicities and drug-drug interactions 

following the concomitant administration of RMP and some first-line ATD. It has also 

been suggested that RMP may increase hepatotoxicity by inducing CYP3A4 metabolic 

activity in combination treatment with INH (Li et al., 1997). It is also shown to enhance 

idiosyncratic hepatocellular reactions by inducing formation of hydrazine from INH 

particularly in NAT2 slow acetylators (Sarma et al., 1986). Several studies have shown 

that serious liver injury by RMP alone is rare but this apparent low rate of 

hepatotoxicity awaits confirmation in larger prospective studies (Page et al., 2006; 

Menzies et al., 2004).  

 

PZA may exhibit both dose-dependent and idiosyncratic hepatotoxicity. The incidence 

of PZA-induced liver injury has been reported to be higher when supplemented with 

other first-line anti-TB drugs (Chang et al., 2007; Yee et al., 2003; Parthasarathy et al., 

1986; Association, 1981). A retrospective cohort study involving 3,007 patients has 

shown that the risk of hepatotoxicity for PZA-containing regimens relative to standard 

regimens that do not contain PZA was 2.6, suggesting that incorporation of PZA to INH 

and RMP increases the risk of DILI. In a separate study, seven out of 12 patients (58%) 
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treated for latent TB with ethambutol and PZA developed transaminase elevation of 

more than four times the upper limit of normal (Younossian et al., 2005). Because 

ethambutol alone is not hepatotoxic, PZA was likely to be the offending agent. The two 

months regimen of RMP and PZA for latent infection has reported serious 

hepatotoxicity and therefore it is no longer recommended to patients (CDC, 2003).  

RMP may occasionally cause interference with bilirubin excretion by inhibiting the 

major bile salt exporter pump, resulting in transient hyperbilirubinaemia (Byrne et al., 

2002). It is probably that co-administration of RMP affects the activities of drug 

transporters of some first-line ATD (INH, PZA and ethambutol) and leads to a more 

severe ATD-DILI.  

 

Hepatotoxicity has also been reported in simultaneous administration of the anti-TB 

drugs with other hepatotoxic drugs including paracetamol, methotrexate, sulfasalazine, 

carbamazepine and allopurinol (Vanhoof et al., 2003; Berkowitz et al., 1998; Crippin, 

1993; Lacroix et al., 1988). For example, increased paracetamol metabolism as a 

consequence of CYP induction by INH causes the formation of toxic metabolites, 

depletion of GSH stores and subsequent hepatotoxicity (Crippin, 1993). Accumulation 

of pyrazinoic acid induced by allopurinol will decrease its clearance and cause toxicity 

in the liver (Lacroix et al., 1988). Anti-TB DILI occurs with high frequency and 

severity in patients demonstrating hepatoxicity risk factors (Fernandez-Villar et al., 

2004) and complications could be reduced by monitoring patients at risk through 

frequent laboratory testing of liver function. 

 

1.7 Candidate genes for ATD-DILI 

 

Metabolism of ATD is a very complex process, involving both activation and 

detoxification processes catalysed by a variety of enzymes. Genetic polymorphisms in 

the genes that encode ATD-metabolising enzymes have been hypothesised to contribute 

to the development of ATD-DILI. Genetic variants in these genes can result in 

differences in protein expression and catalytic activity, thus resulting in individuals, 

groups or population variability in the efficacy and toxicity of ATD. Reactive toxic 

metabolites generated by ATD-metabolising enzymes may cause more hepatotoxicity 

than the parent drug itself and could be converted to immunogens by covalently binding 

to endogenous proteins to initiate an immune response. Thus, identification and analysis 

of single nucleotide polymorphisms (SNPs) in the ATD-metabolising enzymes can 
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potentially unveil the underlying genetic mechanism of ATD-DILI. The relationship 

between particular genes and susceptibility to ATD-DILI has been identified and some 

of these reported associations such as NAT2, CYP2E1 and GSTM1 have now been 

replicated. 

 

1.7.1 N-acetyltransferase 2 (NAT2)  

 

Polymorphism in NAT2 gene causes different biotransformation rates of substrate drugs 

and individual INH N-acetylation capacity is used to classify rapid or slow acetylators 

phenotypes (Blum et al., 1991). Besides INH, other substrates such as sulfamethazine, 

sulfonamides, procainamide, hydralazine, dapsone, and caffeine were used to determine 

the NAT2 acetylator phenotype (Blum et al., 1991). The NAT2 phenotype variation is 

due to SNPs in the 870bp NAT2 protein coding sequence. Rapid acetylators are 

homozygous or heterozygous for wild-type allele (NAT2*4) while slow acetylators are 

homozygous for mutant alleles (NAT2*5, NAT2*6 and NAT2*7) associated with amino 

acid substitutions which appear to abolish enzyme activity. The frequency of slow 

acetylators varies widely among different ethnic groups, ranging from 90% in North 

Africans, 50% in Caucasians and South Asians and 10% in East Asians (Daly, 2003). A 

number of studies have examined the association between INH-induced DILI and NAT2 

acetylator status. It was initially suggested that rapid acetylator individuals were more 

susceptible to hepatic injury because they generate more acetyl isoniazid, which further 

metabolise to the toxic intermediate, MAH (Yamamoto et al., 1986; Mitchell et al., 

1975). However, both rapid and slow acetylators were observed to excrete similar 

proportions of MAH, suggesting that rapid acetylators also convert MAH into non-toxic 

diacetyl hydrazine more rapidly and decrease MAH hepatotoxin accumulation (Ellard et 

al., 1978). Another NAT2 phenotyping study has shown that the slow acetylator 

phenotype lacking functional NAT2 catalytic activity is associated with an increased 

risk of INH-induced DILI (Dickinson et al., 1981). Several confirmation studies 

involving genotyping analyses (Table 1.4) have been performed during the past decade, 

indicating that slow acetylator instead of rapid acetylator status predisposes to ATD-

DILI. Among these, five studies on East Asian populations (Japan, Korea and Taiwan) 

which have a lower prevalence of NAT2 slow acetylator genotypes (approximately 

10%) have reported a significant increased frequencies of ATD-DILI in slow acetylators 

(Lee et al., 2010; Kim et al., 2009; Cho et al., 2007; Huang et al., 2002; Ohno et al., 

2000). Another three studies based in Brazil, Turkey and Northern India where a higher 
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prevalence of the slow acetylation genotypes is found have also confirmed the findings 

in Asia (Bose et al., 2011; Bozok Cetintas et al., 2008; Possuelo et al., 2008). 

Nonetheless, no association of risk with acetylator status was observed in two studies 

based in Europe and Canada with mixed ethnicity (Yamada et al., 2009; Vuilleumier et 

al., 2006). Recently a polymorphism in the NAT2 promoter region (-9796T>A) was 

found to be associated with decreased expression of NAT2 with individuals carrying the 

variant -9796 A allele were predisposed to ATD-DILI (Kim et al., 2009). Generally, the 

role for NAT2 in susceptibility to ATD-DILI is evident and has been highlighted in 

majority of published studies, however its overall impact on DILI severity is not well 

understood and requires further investigation.  

 

Table 1.4 Previous published genotyping studies of NAT2 acetylator status and 

their association with ATD-DILI 

 

Ethnicity Number 

of cases 

Increased risk of 

DILI 

Odds ratio Reference 

Japanese 14 slow acetylator 4.0 (1.9-6.1) and 28 

(26-30) 

(Ohno et al., 

2000) 

Taiwanese 33 slow acetylator 3.66 (1.58-8.49); 

P=0.003 

(Huang et al., 

2002) 

Korean 18 slow acetylator 5.4 (1.8–16.6); 

P=0.005; 

(Cho et al., 2007) 

Turkish 30 slow acetylator 8.8 (3.3-23.9); 

P<0.0001 

(Bozok Cetintas 

et al., 2008) 

Brazilian 14 slow acetylator 5.4 (1.57 – 19.4); 

P=0.003 

(Possuelo et al., 

2008) 

Korean 67 slow acetylator 2.33 (1.45-3.78) for 

NAT2*6 possession 

(Kim et al., 

2009) 

Taiwanese 45 slow acetylator 3.15 (1.47-6.48); 

P=0.0026 

(Lee et al., 2010) 

Northern 

India 

 slow acetylator 2.99 (1.4-6.2);  

P=0.0045 

(Bose et al., 

2011) 

Mixed 34 No association Not significant (Vuilleumier et 

al., 2006) 

Mixed 23 No association Not significant (Yamada et al., 

2009) 
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1.7.2 CYP2E1 

 

CYP2E1 is constituently expressed primarily in the human liver and involved in the 

metabolic activation of many toxicants including paracetamol and ethanol. Several 

polymorphic sites in the CYP2E1 at the 5’-regulatory or intron as well as in exon 

regions have been identified. To date, 13 different CYP2E1 alleles have been described 

from the Human Cytochrome P450 Allele Nomenclature Committee 

(http://www.cypalleles.ki.se/cyp2e1.htm). In the 5’-flanking region, a tandem repeat 

polymorphism namely CYP2E1*1D is associated with greater CYP2E1 transcriptional 

activity and has been shown to promote metabolic activity in patients with chronic 

alcoholism and obesity (Nomura et al., 2003; McCarver et al., 1998). Three 

nonsynonymous polymorphisms have been identified but only one allele namely 

CYP2E1*2 (Arg to His substitution) is associated with decreased enzyme synthesis and 

catalytic activity (Hu et al., 1997). This variant allele occurs at a low frequency (2.6%) 

and has only been identified in Chinese population but not other ethnic groups (Hu et 

al., 1997). CYP2E1*5 and CYP2E1*6 polymorphisms in the 5’-flanking region are the 

most studied variants. The CYP2E1*5B allele is identified by loss of a RsaI restriction 

site and designated c2 whereas the wild-type allele with the restriction site is designated 

c1. The CYP2E1*6 allele is identified by a DraI restriction fragment length 

polymorphism (RFLP). A common allele CYP2E1*5A is designated when both the RsaI 

variant and DraI variant are present, as is usually the case.  The RsaI polymorphism has 

been evaluated in association with DILI due to anti-tuberculosis drugs including INH. 

CYP2E1 is involved in the metabolism of INH, catalyses oxidation of MAH and forms 

hepatotoxic intermediates (Ryan et al., 1985). Huang and colleagues have reported that 

the wild-type CYP2E1 c1/c1 genotype shows higher CYP2E1 activity and therefore 

may lead to increased production of hepatotoxins (Huang et al., 2003). They have 

further demonstrated an increased risk of ATD-DILI from 3.94 for NAT2 rapid 

acetylators with CYP2E1 c1/c1 genotype to 7.43 for slow acetylators with the CYP2E1 

c1/c1 genotype (Huang et al., 2003). Another two independent studies based in China 

(Wang et al., 2010) and Taiwan (Lee et al., 2010) have also reported a significant 

association between ATD-DILI and the CYP2E1 c1/c1 genotype. Bose and colleagues 

have recently found an association between the mutant C allele of CYP2E1 DraI 

polymorphism (CYP2E1*5A and *6 alleles) with the risk of ATD-DILI (Bose et al., 

2011). Combined analysis of acetylator status and variants for the CYP2E1 DraI 

polymorphism was further performed and it was shown that slow acetylators and 
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carriers of the variant allele were predisposed to develop ATD-DILI (Bose et al., 2011).  

However, controversial results have been reported in some studies with no association 

found between CYP2E1 and susceptibility to ATD-DILI in Koreans (Kim et al., 2009; 

Cho et al., 2007) and in the British Columbian population of Canada (Yamada et al., 

2009). 

  

1.7.3 Glutathione S-transferase enzymes (GSTs)  

 

Oxidative stress has been suggested as the important factor that accelerates the 

progression of ATD-DILI.  Increased oxidative stress and raised levels of reactive 

oxygen species (ROS) due to generation of reactive ATD metabolites are closely 

associated with decreased glutathione levels. The glutathione S-transferase enzymes 

(GST) may play a major role against liver injury by its detoxification effects through the 

conjugation of glutathione with harmful electrophiles generated during oxidative stress 

and lipid peroxidation. However there is limited information about genetic 

polymorphism of these detoxification enzymes and their association with DILI as 

previous published studies appear to be restricted to GSTM1 and GSTT1. GSTM1 and 

GSTT1 deficiencies, caused by a homozygous deletion of the gene (null genotype) are 

common. Though the prevalence of GSTM1 and GSTT1 null genotypes varies between 

different ethnic groups, it was reported that the frequency of GSTM1null genotype 

ranges from 13.1% to 54.5% in Caucasians, from 41.7% to 55.5% in Asians, 46.7% in 

African-Americans, and 26.9% in Africans (Mo et al., 2009). For the GSTT1null 

genotype, the reported prevalence rates were 11.1-28.6% in Caucasians, 41.9-52% in 

Asians, 26.7% in African-Americans, and 36.6% in Africans (Mo et al., 2009). 

Individuals with homozygous null mutations of these genes have no enzymatic activity 

for the particular enzyme and therefore are likely to be more susceptible to carcinogens 

and drug-related toxicities. The presence of combined alleles GSTM1 and GSTT1 

deficiencies has been associated with raised liver enzymes and increases susceptibility 

to tacrine-induced hepatotoxicity in Alzheimer's disease patients (Simon et al., 2000). 

Lucena and colleagues have shown an 8.8-fold increased risk of developing NSAID-

induced hepatotoxicity in carriers of double GSTM1 and GSTT1 deletion (Lucena et al., 

2008a). They have also reported the individuals of double GSTM1/GSTT1 null 

genotypes had an overall of 2.7-fold increased risk of developing DILI regardless of the 

type of causative agents, indicating the possible role of both GSTT1/GSTM1 null 

genotypes as the non drug-specific biomarkers of DILI susceptibility (Lucena et al., 
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2008a). Individuals homozygous null for both GSTM1 and GSTT1 have also been 

associated with an increased risk of DILI relating to troglitazone, co-amoxiclav and 

carbamazepine (Lucena et al., 2008a; Ueda et al., 2007; Watanabe et al., 2003). It has 

been shown that homozygosity for the GSTM1 or GSTT1 null allele was associated with 

ATD-DILI in three independent studies. Two studies based in India and Taiwan 

reported an association with the GSTM1 null genotype but no association was found 

between cases and controls for GSTT1 null genotype (Huang et al., 2007; Roy et al., 

2001), whereas another study involving the Caucasian population showed an a higher 

frequency of GSTT1 null genotype in cases compared with controls but no difference 

was found for GSTM1 null genotype (Leiro et al., 2008). In addition, the gene encoding 

the manganese superoxide dismutase (MnSOD) which is known as SOD2, an anti-

oxidative stress gene important in detoxifying mitochondrial ROS was also found to be 

associated with increased susceptibility to DILI, especially to ATD-DILI (Huang et al., 

2007).  

 

1.8 Aims of the study  

 

The primary aim of this study was to identify specific genes conferring susceptibility to 

hepatotoxicity due to anti-tuberculosis drugs (ATD). To identify novel genetic 

associations, polymorphisms in genes involved in relevant ATD metabolic pathways 

were evaluated by a case-control study approach. The examined predictors of ATD-

DILI were chosen based on previously published studies or biological relevance and 

include NAT2, CYP2E1, GSTM1, GSTT1 and SOD2, as well as PXR, GSTA1, GSTA4 

and NAT1 which may be potential genetic predictors for ATD associated hepatotoxicity. 

The functional significance of NAT2 acetylation phenotypes will also be examined 

using an in vitro overexpression approach to characterise NAT2 acetylation phenotypes 

and their relevance to the development of isoniazid-induced hepatotoxicity. In addition, 

the protective role of glutathione S-transferase (GSTs) and their association with 

isoniazid-induced DILI will be assessed by using in vitro overexpression and siRNA 

knockdown approaches.  

 



 

 

 

43 

 
Chapter 2. General Materials and Methods 
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2 General Materials and Methods 

2.1 General Laboratory Practice 

 

All experiments were performed to university standards for safe working with 

chemicals substances in laboratories, which comply with the Control of Substances 

Hazardous to Health Regulations 2002 (COSHH, 2002). Routinely used chemicals of 

analytical and molecular biology grade were obtained from the named suppliers as listed 

(Table 2.1). Water for all experiments was purified by a Nanopure water purification 

system (Thermo Scientific). Where necessary, sterilisation of water, biological and 

chemical reagents, plastics, glassware and other equipment was achieved by autoclaving 

at 120°C, 15 pounds per inch (PSI) pressure for 20 min. In addition solutions for tissue 

culture work were filter-sterilised using 0.2 mm filters (Millipore). For PCR work and 

primer dilution pre-purchased sterile water was used (Fresenius Kabi Limited). For all 

RNA work, diethyl pyrocarbonate (DEPC) treated, nuclease free water (Fisher 

Scientific) was used in the preparation of solutions. 

 

2.2 Chemical Reagents 

 

Unless otherwise stated, all routine chemical reagents were purchased from Sigma-

Aldrich. 
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  Table 2.1 List of suppliers and addresses 

 

Supplier Address 

Bioline London, UK 

Bio-Rad Hemel Hempstead, UK 

Eurofin MWG Operon London, UK 

Fermentas York, UK 

Fisher Scientific Loughborough, UK 

GE Healthcare Little Chalfont, UK 

Greiner Bio-ONe Stonehouse, UK 

Gibco-Invitrogen Paisley, UK 

Macherey-Nagel (MN) Surrey, UK 

Merck Biosciences Nottingham, UK 

Milipore  Watford, UK 

Molecular Devices Winnersh, UK 

New England Biolabs (NEB) Hitchin, UK 

PAA Laboratories GMBH Austria 

PE Applied Biosystems Warrington, UK 

Promega Southampton, UK 

QIAGEN Crawley, UK 

Sarstedt Leicester, UK 

Scientific Laboratory Supplies Newcastle, UK 

Sigma Aldrich Gillingham, UK 

Stuart Scientific Essex, UK 

Thermo Scientific Barnstead, UK 

VH Bio Gateshead, UK 
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2.3 Mammalian Cell culture 

2.3.1  General Materials 

 

Unless stated otherwise, all disposable tissue culture plastic ware was from Greiner Bio-

One and cell culture reagents from PAA Laboratories. 

 

2.3.2 Routine Passage 

 

Cell culture was performed under aseptic conditions in a Class II laminar flow 

microbiological safety cabinet. LS180 colon cancer cells, HepG2 hepatoblastoma cells, 

Huh7.5 hepatocellular carcinoma and Caco-2 colon cancer cells were cultured as 

adherent monolayers in T75 flask at 37˚C, 5% CO2 in humidified air. Routine culture 

was performed in complete growth medium (GM). LS180, HepG2 and Caco-2 cells 

were cultured in Eagle’s Minimum Essential Medium (EMEM) and Huh7.5 cells were 

cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM). Both Media 

were supplemented with 10% foetal calf serum (FCS), Penicillin-Streptomycin (0.1 

mg/ml), 2 mM L-glutamine and 0.1 mM non essential amino acid (NEAA). Cells 

exposed to drugs were cultured in drug-containing maintenance media (MM) 

supplemented with 2% FCS, Penicillin-Streptomycin (0.1 mg/ml) and 2 mM L-

glutamine. All media were stored at 4˚C and warmed to 37˚C prior to use. 

 

2.3.3 Cell line maintenance 

 

Cultures displaying 70-80% confluence were passaged within 3-5 days. Medium was 

aspirated, the cell monolayer rinsed with sterile 1x Dulbecco’s phosphate buffered 

saline (PBS) (PAA Laboratories) followed by 0.25% trypsin-EDTA 

(ethylenediaminetetraacetic acid) (Gibco-Invitrogen). After removing trypsin-EDTA, 

the monolayer was then incubated at 37˚C for 5 min until the cells dissociated. 

Detached cells were resuspended in GM, and passaged at a ratio of 1:3-6. 

 

2.3.4 Cell line storage 

 

Cell stocks were accumulated early and frozen at -80˚C allowing experiments to be 

performed using stores of low passage number cells. Logarithmically growing cell 

cultures were pelleted then resuspended in freezing medium composed of FCS 
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supplemented with 10% dimethylsulphoxide (DMSO). 1 ml aliquots of 5 X 10
6
 were 

frozen in 1.8 ml cryogenic vials (Corning). To revive the cells, frozen stocks were 

rapidly thawed at 37˚C, resuspended in GM and centrifuged at 1000 rpm for 5 min. The 

supernatant was discarded, the cell pellet was resuspended in GM, and plated in tissue 

culture flasks.  

 

2.3.5 Microscopy and cell counting 

 

Cell pellets were resuspended in complete medium and 10 µl of single cell suspension 

was then transferred to a haemocytometer counting chamber. The number of cells 

overlying the ruled grid was counted using low power magnification (x10) on an 

inverted microscope (Olympus) and the number of cells per ml was calculated. The 

suspension was then appropriately diluted, and the correct cell number seeded out for 

each experiment.  

 

2.3.6 Cell lines 

 

The LS180 colon cancer cell line, purchased from the European Collection of Cell 

Cultures (ECACC) (Porton Down, UK), was derived from a 58 year old female 

Caucasian with Dukes type B adenocarcinoma of the colon. Caco-2, HepG2 and Huh7.5 

cell lines were given by Professor Geoffrey Toms. Caco-2 is derived from a human 

colon adenocarcinoma, while HepG2 and Huh7.5 are derived from human 

hepatoblastoma and hepatocellular carcinoma respectively. 

 

2.4 Genomic DNA preparation and analysis 

2.4.1  DNA extraction 

 

Cells were pelleted by centrifugation (Sigma 3-16PK centrifuge) at 3000 g for 10 min at 

4ºC and resuspended with 2 ml of nuclear lysis buffer (400 mM tris-HCl pH 8.0, 60 mM 

EDTA, 150 mM sodium chloride and 1% (w/v) sodium dodecyl sulphate). The mixture 

was then transferred into a 15 ml polypropylene centrifuge tube and 0.5 ml of 5 M 

sodium perchlorate was added. The samples were then rotary mixed at room 

temperature for 15 min (Stuart Scientific) and incubated at 65ºC for 30 min. The 

samples were combined with 2.5 ml chloroform and rotary mixed for 10 min at room 

temperature to form a homogenous emulsion before centrifugation at 3000 g for 10 min 
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at 4ºC. The top aqueous layer containing DNA was removed and dispersed into a new 

15 ml polypropylene centrifuge tube. Ethanol (5 ml) was added and mixed by rapid 

inversion of the tube several times. The precipitated DNA was spooled using a sterile 

disposable plastic loop and allowed to air-dried for 10 min at room temperature. The 

DNA was then dissolved overnight at 60ºC in 200 µl 5 mM tris -HCl, pH 8.0 in a sterile 

1.5 ml screw-cap microcentrifuge tube.  

 

2.4.2  Determinants of DNA yield and purity 

 

The amount and purity of the DNA samples were examined by Nanodrop 

spectrophotometer ND-1000 (Thermo Scientific). An absorbance unit of 1 at 260 nm is 

equivalent to 50 µg/ml double stranded DNA. The absorbance at 260 and 280 nm is 

used to assess the purity of DNA and a 260/280 nm ratio of 1.8 – 2.0 indicates pure 

DNA. A secondary measure of DNA purity can be assessed by measuring the 

absorbance at 260 and 230 nm. The 260/230 nm ratio of 1.8-2.2 indicates pure DNA. If 

the ratio is appreciably lower, it may indicate the presence of protein, phenol or other 

contaminants. 

 

2.4.3 DNA sample storage 

 

The quantified DNA samples were diluted to 50 ng/µl and aliquoted into 1.5 ml sterile 

screw-cap microfuge tubes. Working stocks were kept at 4ºC and the remaining 

aliquotes were stored at -80ºC. 

 

2.4.4 Polymerase Chain Reaction (PCR) 

2.4.4.1 Primers  
 

Primer sets were designed using PerlPrimer v1.1.3 software, unless otherwise stated. 

Nucleotide blast search (NCBI, www.ncbi.nlm.nih.gov/blast) was performed to ensure 

sequence specificity. Primers were purchased from Eurofin MWG Operon in a 

lyophilized state. All primers were dissolved in sterile water to a stock concentration of 

200 µM and stored at -20ºC. 
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2.4.4.2 PCR procedure 
 

The PCR reaction was carried out in 25 µl solution consisting of 0.25 µM specific 

primer (Eurofin MWG Operon), 0.1 mM dNTPs (VH Bio), 0.1 µg of genomic DNA as 

template, and 0.625U Taq polymerase (NEB) in 50 mM potassium chloride, 10 mM 

tris-HCl pH 9.0, 0.1% (v/v) triton X-100, 1.5 mM MgCl2. The PCR program consisted 

of initial denaturation at 95ºC for 5 min and 35 cycles of denaturation at 94ºC for 1 min, 

annealing at a specified temperature for 1 min, extension at 72ºC for 1 min, and a final 

extension at 72ºC for 7 min. Amplifications were performed in an Applied Biosystems 

2720 Therma Cycler (PE Applied Biosystems). PCR products were visualized by 

ethidium bromide staining on 2% agarose gel (see section 2.6).  

  

2.4.5 Electrophoresis and visualisation of DNA fragments 

2.4.5.1 Agarose gel electrophoresis  

 

Two percent agarose gels were made using DNase and RNase free agarose powder 

(Bioline) in 1x tris-borate-EDTA (TBE) buffer (0.09 M tris-base, 0.09 M boric acid and 

2 mM EDTA), containing ethidium bromide (0.5 µg/ml ). One micro litre of 6 X gel 

loading buffer (0.25 % bromophenol blue, 0.25 % xylene cyanol, 30% glycerol) was 

mixed with 5 µl DNA sample and applied to the gel. The DNA fragment sizes were 

estimated by comparison to a 100 bp DNA ladder (NEB). Electrophoresis was 

performed at constant voltage of 80V for 30-45 min in 1 X TBE buffer.  

 

2.4.5.2 Polyacrylamide gel electrophoresis (PAGE)  

 

Polyacrylamide gel solution (10%) containing 30% acrylamide-bis arylamide 29:1 

(Fisher Scientific) in 1X TBE buffer, 0.4 mg/ml ammonium persulphate (APS) and 

0.1% TEMED was prepared. The gel was cast between two 200 mm x 200 mm glass 

plates separated by 0.8 mm spacers and allowed to polymerize at room temperature for 

30 min. Three micro litres of 6 X gel loading was mixed with 15 µl of DNA samples 

and applied to the gel. The DNA fragment sizes were estimated by comparison to a 

100bp DNA ladder (NEB). Electrophoresis was performed at constant voltage of 150V 

for 4-6 h in 1 X TBE buffer and the gels were stained for 30 min in 0.5 µg/ml ethidium 

bromide in 1 X TBE buffer. Gels were then destained for 10 min in distilled water 

before viewing. 
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2.4.5.3 Gel visualisation  

 

Visualization of the DNA fragments was done using the Flour-S MultiImager system 

(Bio-Rad Laboratories) and Quantity One analysis software (Bio-Rad Laboratories). 

 

2.4.6 DNA purification and sequencing 

 

PCR products and plasmid DNA were eletrophoresed in 1% agarose gel along with a 

100 bp DNA ladder. DNA fragments were then excised from the agarose gel and 

purified using the QIAquick gel extraction kit (QIAGEN) according to the 

manufacturer’s protocol. Both purified PCR products (5 ng/µl) and plasmid DNA (100 

ng/µl) were transferred into 1.5 ml microfuge tubes in a minimum volume of 15 µl. 

Primers used for PCR products sequencing were diluted to 2 ng/µl and transferred into 

1.5 ml microfuge tubes in a minimum volume of 15 µl. Both purified PCR products and 

plasmid DNA together with their specific primers used for sequencing were sent to 

Eurofin MWG. DNA sequencing was performed by Eurofin MWG and the sequences 

were then compared using BLAST alignment tool.  

 

2.5 Recombinant cell line construction  

2.5.1 Insertion of PCR product into plasmid vector 

 

PCR product was purified and ligated into a pTARGET mammalian expression vector 

(Promega) according to the manufacturer’s instructions. The pTARGET vector contains 

a 3’ terminal thymidine at both ends which improve the efficiency of ligation with the 

A-tailing of PCR product into the vector.  Figure 2.1 shows the map of the pTARGET 

vector. Briefly, a 10 µl reaction mixture was set up with 10 ng mammalian expression 

vector pTARGET (Promega), 5 µl of ligation buffer (2x), 1 µl T4 DNA ligase (1U), and 

3 µl of 300 ng of insert DNA fragment. The ligation reaction mixture was incubated at 

4°C for 16 h prior to transformation.  
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The pTARGET mammalian expression vector contains a 3’ terminal thymidine at 

both ends which improve the efficiency of ligation with the A-tailing of PCR 

product into the plasmid.  The vector contains a modified version of coding 

sequence of the α-peptide of β-galactosidase, allowing blue/white recombinant 

screening. The vector carries the human cytomegalovirus (CMV) immediate-

early enhancer/promoter region to promote constitutive expressions of cloned 

DNA inserts in mammalian cells. This vector also contains the neomycin 

phosphotransferase gene, a selectable marker for mammalian cells. Expression 

of the neomycin phosphotransferase gene in the pTARGET vector confers 

resistance to the antibiotic G-418 and allows the selection of stably transfected 

cells.  

Figure 2.1 Map of the pTARGET mammalian expression vector 
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2.5.2 Transformation 

 

Competent Escherichia coli (E. coli) JM109 cells (50 µl) were mixed with 2 µl of 

ligation reaction mixture in a sterile 15 ml polypropylene tube and transformed by 

placing on ice for 20 min. The E. coli cells were heat shocked by incubating the reaction 

tube in a water bath at 42°C for 1 min. After heat shock, the tube was immediately 

transferred to ice and incubated for 2 min. SOC medium (950 µl) (10 mM NaCl, 2.5 

mM KCl, 10 mM MgSO4, 10 mM MgCl2, 20 mM glucose, 0.5% yeast extract and 2 % 

tryptone)  was added into the cells. The tube was then incubated in an orbital incubator 

at 150rpm at 37°C for 1.5 h. Subsequently, E. coli cells (100 µl) were plated onto a 

1.5% Luria-Bertani (LB) agar plate containing 100 µg/ml ampicillin, 20 mg of 5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside, and 200 mg/ml of isopropyl-β-D-

thiogalactopyranoside (IPTG). The plate was incubated overnight at 37°C.  

 

2.5.3 Isolating recombinant plasmid DNA 

 

The pTARGET vector contains a modified version of coding sequence of the α-peptide 

of β-galactosidase, allowing blue/white recombinant screening. The transformants 

(white colonies) were inoculated individually using a sterile pipette tip and transferred 

into LB broth (5 ml) containing 100µg/ml ampicillin. Transformants were allowed to 

grow for 16 h at 37°C and harvested by centrifugation at 1500rpm at 4°C for 10 min. 

Plasmids were then extracted using the QIAGEN mini-prep plasmid extraction kit. The 

presence of the recombinant construct was confirmed by digesting the plasmid DNA (3 

µl) with EcoRI restriction enzyme. Plasmids containing the desired insert were further 

confirmed by sequencing in both forward and reverse strands (see section 2.4.6). 

 

2.5.4 Transfection and generation of stable cell lines 

 

Exponentially growing cells were seeded at a density of 3x10
5
 cells per ml using 2 ml of 

antibiotic-free culture medium into 6-well plates. After 24 h, cells were transiently 

transfected using GeneJuice transfection reagent (Novagen, Merck Biosciences). 

Briefly, GeneJuice (3 µl) was premixed with 250 µl of EMEM (serum-free, non-

antibiotics) in a sterile 15 ml polyethylene tube and incubated for 5 min at room 

temperature. Plasmid DNA (1 µg) was then added into the mixture and incubated 

further at room temperature for 10 min. The complex mixture was then added into the 
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cells and incubated for 24 h. At 24 h after transient transfection, cells were transferred 

into 100 mm culture dish and stable cell lines were generated by selection with 500 

µg/ml G-418 antibiotic (Sigma) for 2-5 weeks. The pTARGET vector contains the 

neomycin phosphotransferase gene, which confers resistance to G-418. Death of cells 

not expressing neomycin phosphotransferase was detected after 10-14 days following 

addition of G-418. The medium were changed every 2-3 days until the drug-resistant 

clones appear. The cell clones were observed after PBS washing and the larger single 

cell clones were separated with sterile tip, cultured in 500 µg/ml G-418 selective culture 

medium for another 2 weeks. The stable transfected cell lines were obtained after 

passage by 2-3 generations and maintained in 250 µg/ml G-418 selective culture 

medium. 

 

2.6 RNA isolation and analysis 

2.6.1 RNA isolation and quantification 

 

Monolayer cell cultures were washed twice with ice-cold PBS, scraped off into PBS and 

pelleted by centrifugation for 5 min at 1000 rpm. Total RNA was extracted using 

NucleoSpin RNA II extraction kit (Macherey-Nagel, MN) according to the 

manufacturer’s instructions. RNA concentrations were then quantified using a 

NanoDrop 1000 spectrophotometer (Thermo Scientific).  

 

2.6.2 Synthesis of cDNA 

 

One microgram of RNA was reverse transcribed in 1 X RT buffer + 2.5 U/µl reverse 

transcriptase (NEB), 5 mM deoxynucleotide (dNTP) mixture (Fermentas), 20 ng/µl 

random hexamers (QIAGEN), and 1 U/µl RNase inhibitor (NEB). RNA with random 

hexamers were incubated at 65˚C for 10 min and immediately put on ice. Reverse 

transcription was carried out at 42˚C for 30 min, 50˚C  for 30 min, 70˚C  for  10 min, 

then incubated at 4˚C. The cDNA was then stored at -20˚C prior to analysis. 
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2.6.3 Semiquantitative reverse transcription-PCR (Semiquantitative 

RT-PCR) 

 

Amplification of cDNA was performed using PCR (see section 2.4.4). The PCR 

conditions for the target gene were 35 cycles at 95ºC for 15 s, annealing at a specified 

temperature for 30 s, and 72ºC for 45 s except for Beta-actin (β-actin) and 

Glyceraldehyde-3-phosphate (GAPDH). β-actin and GAPDH are housekeeping genes 

which used as internal control to evaluate the gene expression analysis. The PCR 

conditions for β-actin and GAPDH were 30 cycles at 95ºC for 15 s, 52ºC for 30 s, and 

72ºC for 45 s. PCR products were then visualized by ethidium bromide staining on a 2% 

agarose gel. The primer sequences and PCR conditions used for semiquantitative RT-

PCR analysis are summarized in Table 2.2.  
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                                                                      Table 2.2 Semiquantitative RT-PCR primer sequences and conditions 

 

Gene name Short name Primer sequences Expected 

size 

Annealing 

Temperature 

Glyceraldehyde-3-phosphate GAPDH 5’-GACAACTTTGGTATCGTGGAAGGA-3’    

5’-ACCAGGAAATGAGCTTGAC-3’ 

445 bp 52ºC 

Beta-actin β-actin 5’-GTTGCCAATAGTGATGACCT-3’                

5’-GACCTGACAGACTACCTCA-3’ 

207 bp 52ºC 

N-acetyltransferase 2 NAT2 5’-ACGTCTCCAACATCTTCATTTATAACC-3’ 

5’-TCAACCTCTTCCTCAGTGAGAGTTTTA-3’ 

161 bp 51ºC 

Glutathione S-transferase alpha 4 GSTA4 5’-CAAGTTGCAGGATGGTAACC-3’               

5’-ACATGTCAATCAGGGTTCTC-3’ 

158 bp 53ºC 
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2.6.4 Quantitative real-time PCR (Quantitative RT-PCR)  

 

Real-time PCR is the continuous collection of fluorescent signal from polymerase chain 

reactions over a range of cycles. Quantitative real-time PCR, on the other hand, allows 

the conversion of the fluorescent signals from each PCR reaction into a numerical value 

for each sample (Dorak, 2006). It is based on the detection of the fluorescence signals 

produced by a reporter molecule which increases, as each cycle of the PCR 

amplification proceeds. By monitoring and recording the intensity of the fluorescence 

emission during each PCR cycle, it is possible to identify the exponential phase of the 

PCR reaction and from this to determine the initial amount of target template (Dorak, 

2006). The amount of target template present corresponds to the level of fluorescence. 

Thus, the higher the starting copy number of the target template, the fewer the 

amplification cycles needed before a significant increase in fluorescence is observed. 

During the initial cycles of PCR, the background signal prior to the significant 

accumulation of the target amplicon is used to determine the baseline fluorescence 

across the entire reaction. When the target amplification is sufficiently above the 

baseline value and within the exponential part of the amplification curve, a fixed 

fluorescence threshold is set. The threshold cycle (Ct) reveals the cycle number at which 

the fluorescence emission crosses the fixed threshold. It reflects the statistically 

significant point above the baseline during a reaction at which a sufficient number of 

amplicons have accumulated. Thus, the higher the initial amount of target template, the 

faster accumulated PCR product is detected, and the lower the Ct value.  

 

The commonly used fluorescent reporter molecules include intercalating fluorescent 

dyes such as SYBR Green I and sequence specific probes. Sequence specific probes, 

such as TaqMan probes are oligonucleotides longer than the primers (20-30 bases long) 

that contain a fluorescent reporter (FAM- and VIC-labelled) and a quencher (usually 

TAMRA or a non-fluorescent quencher) at their 5’ and 3’ ends, respectively (Figure 

2.2). A passive reference dye such as 6-carboxyl-x-rhodamine (ROX) is primarily used 

to normalise for non-PCR-related fluctuations in fluorescence signal. When the probe 

binds to an internal region of a PCR product, the 5’exonuclease activity of the DNA 

polymerase cleaves the reporter dye from the probe. This separates the reporter dye 

from quencher dye, ends the activity of the quencher and thus allows the fluorescence 

emitted by the reporter. The increased in the reporter fluorescence signal is correlated to 
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the amount of the PCR product generated in each reaction. The resulting fluorescence is 

only detectable if the cleavage occurs when the probe hybridizes to its target sequences. 

Therefore the detected fluorescence is specific amplification and little optimization is 

required for a well-designed TaqMan probe. However, compared to SYBR Green, 

TaqMan probes are relatively expensive and a different probe has to be synthesized for 

each specific target.  

 

SYBR Green I dye is an intercalating agent that binds to all double-stranded DNA or 

PCR products. During DNA denaturation, SYBR Green I dye is released and the 

fluorescence signal is drastically reduced. When PCR amplification is complete, SYBR 

Green I dye binds to the double stranded products, resulting in an increase in 

fluorescence (Figure 2.2). The advantage of using SYBR Green I dye is the relative 

simplicity of this assay system where no probes are required, thus reduces assay setup 

and running cost. However, the primary disadvantage is that it may generate false 

positive signals by binding to any double-stranded DNA including primer dimers, 

contaminating DNA, and PCR product from mis-annealed primer. Extensive 

optimization is therefore required for assay setup. Figure 2.3 shows a typical 

amplification plot on NAT2 expression obtained during this project. Melting point or 

dissociation curve analysis can be generated following a reaction to verify whether only 

one product is being amplified. As shown in Figure 2.4a, once the final PCR 

amplification cycle is completed, a maximum amount of SYBR Green I is bound to 

double-stranded DNA and a high level of fluorescence signals is generated. However, 

DNA product melts or dissociates with increasing temperature (>80ºC), releasing SYBR 

Green and decreasing the fluorescent signal. The melting point is defined as the 

inflection point of the melting curve which is shown as a peak in the derivative melt 

curve plot (Figure 2.4b). A single peak indicates a single product whereas multiple 

peaks indicate the presence of non-specific priming including primer dimers and 

genomic DNA contamination. The predicted size of single peak can be verified by 

agarose gel electrophoresis. 

 

The expression level of a target gene can be measured by relative quantitative in relation 

to the level of a control gene. An ideal control generally demonstrates gene expression 

that is highly abundant and relatively constant across tissues and cell types. By using an 

invariant control, quantitation of an mRNA target can be normalised for differences in 
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the amount of total RNA added to each reaction. Commonly used internal control genes 

such as Glyceraldehyde-3-phosphate (GAPDH), β-actin and 18S ribosomal RNA (18S 

rRNA) are constitutively expressed housekeeping proteins, however, they may not 

always the most ideal or appropriate candidates for normalisation in RT-PCR. For 

instance, GAPDH expression may be upregulated in proliferating cells, and β-actin is a 

better active reference for these cells instead of GAPDH (Suzuki et al., 2000). GAPDH 

is also not recommended for cancer studies due to its high expression in aggressive 

cancer cells (Goidin et al., 2001). Additional caution should be taken when 18S rRNA is 

used as an control especially if the expression level of the target gene is low (Dorak, 

2006). The strategy of using a combination of multiple controls as normaliser may be 

useful for relative expression studies by quantitative RT-PCR. More details and a 

typical calculation are shown in section 4.3.2.1. A Taqman probe-based RT-PCR assay 

(allelic discrimination assay) can also use to perform genotyping studies with any 

possible SNP by using two allele-specific probes. Use of a Taqman SNP genotyping 

assay is described in detail in section 3.2.7.  

 

The SYBR green-based RT-PCR assay used in our present study is SYBR Green I 

JumpStart Taq ReadyMix, obtained from Sigma-Aldrich. The hot-start mediated Taq 

polymerase (JumpStart Taq) enhances the efficiency and increases the specificity and 

yields of the desired sequence by eliminating polymerase activity at temperatures below 

70ºC. Briefly, quantitative RT-PCR was performed utilizing 0.2 µl cDNA per reaction 

in triplicate in a 13 µl volume on a ABI Prism 7000 Sequence Detection System. PCR 

amplification conditions were as follows: 50ºC, 2 min, followed by 95ºC, 10 min, then 

40 cycles at 95ºC, 15 s; and 40 cycles at 60ºC, 1 min. Amplification of GADPH or β-

actin was performed using the same conditions as the genes being tested but in separate 

tubes. A “no template” control for each gene was performed, replacing cDNA with 

water. Data analysis was performed using SDS 2.2 software (PE Applied Biosystems). 

At the end of the PCR, dissociation curves were generated and analysed to identify the 

possibility of non-specific PCR products. Standard curves were assessed by r
2
 value, 

with a minimum of 0.98 required for successful PCR analysis. Quantitation of the target 

cDNAs in all samples was normalized to GAPDH or β-actin (GAPDH; Cttarget – CtGAPDH 

= ∆Ct), and the effects of each compound on the target cDNA was expressed relative to 

the amount in the vehicle control sample (∆Ctcompound - ∆Ctvehicle = ∆∆Ct). Relative fold 

changes in target gene expression were determined by taking 2 to the power of the ∆∆Ct 
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value (2
-∆∆Ct

) as per the user bulletin (PE Applied Biosystems) (Livak and Schmittgen, 

2001). The primer sequences used for Q-RTPCR analysis are summarized in Table 2.3.  
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Figure 2.2 Comparison of Taqman®- and SYBR®-Green based detection (Image 

obtained from Applied Biosystems website (http://www.appliedbiosystems.com)  
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Figure shows the amplification plots of target gene (NAT2) and control (GAPDH) in 

non-transfected, RAR- and SAR stably transfected HepG2 cells. NAT2 expressions in 

RAR- and SAR-stably transfected cells are higher than the non-transfected cells as a 

much lower Ct values (20-21) was detected in those cells compares to the non-

transfected cells (Ct values ≈ 30). The Ct values for GAPDH are quite consistent in 

all three types of cells with Ct values around 17.  

Figure 2.3 Representative amplification plot quantitative RT-PCR using SYBR 

Green I detection dye 
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Figure 2.4 Melting curve (a) and derivative melting curve (b) analyses 

for the reactions shown in Figure 2.3 
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Table 2.3 Quantitative RT-PCR primer sequences 

 

Gene name Short name Primer sequences 

Glyceraldehyde-3-phosphate GAPDH  5’-GGGTGTGAACCATGAGAAGTATGA-3’                  

5’-CATGAGTCCTTCCACGATACCAA -3’ 

Beta-actin β-actin 5’-GTTGCCAATAGTGATGACCT-3’                               

5’-GACCTGACAGACTACCTCA-3’ 

Cytochrome P450 3A4 CYP3A4 5’-TGTCCTACCATAAGGGCTTTTGTA-3’                     

5’-TTCACTAGCACTGTTTTGATCATG-3’ 

Carboxylesterase 2 CES2 5’-AACCTGTCTGCCTGTGACCAAGT-3’                                 

5’-ACATCAGCAGCGTTAACATTTTCTG-3’ 

Cytochrome P450 2E1 CYP2E1 5’-ACCTGCCCCATGAAGCAACC-3’                              

5’-GAAACAACTCCATGCGAGCC-3’ 

N-acetyltransferase 2 NAT2 5’-ACGTCTCCAACATCTTCATTTATAACC-3’             

5’-TCAACCTCTTCCTCAGTGAGAGTTTTA-3’ 

Glutathione S-transferase alpha 4 GSTA4 5’-CCGGATGGAGTCCGTGAGATGG-3’                              

5’-CCATGGGCACTTGTTGGAACAGC-3’ 

Glutathione S-transferase alpha 1 GSTA1 5’-AAGGAGAGAGCCCTGATTGATATGT-3’                

5’-GTCTTGTCCATGGCTCTTTAAGACT-3’ 
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2.7 Protein analysis 

2.7.1 Protein extraction and quantification 

 

Protein was extracted from harvested cells using RIPA buffer (Fisher Scientific) 

containing 25 mM tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium 

deoxycholate, 0.1% SDS and a protease inhibitor cocktail (Sigma). Cell lysates were 

homogenised using a syringe and quantified using BioRad DC Protein Assay.  A 

standard dilution of Bovine Serum Albumin (BSA) (Bio-Rad) was prepared ranging 

from 0.125 – 4 mg/ml in RIPA buffer. Absorbance was read at 750nm using 

Spectramax M5e and protein concentrations were calculated using the Softmax Pro5.2 

software.  

 

2.7.2 SDS polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

Protein preparations were analysed by SDS-polyacrylamide gel electrophoresis (PAGE) 

according to Laemmli et. al. (Laemmli, 1970). Polyacrylamide gels were cast and run 

using Mini PROTEAN II equipment (Bio-Rad). A 12% SDS-polyacrylamide resolving 

gel was cast under a 4% stacking gel. The resolving gel contained 16 ml acrylamide/bis 

solution, 20 ml resolving gel buffer (0.75 M tris-HCl, pH 8.8 and 0.2% (w/v) SDS), 400 

µl APS, 160 µl TEMED  and 4 ml H2O. The stacking gel contained 2 ml arylamide/bis 

solution with 5 ml stacking gel buffer (0.25 M tris-HCl, pH 6.8 and 0.2% (w/v) SDS), 

100 µl APS, 40 µl TEMED  and 3 ml H2O. The resolving gel was first cast between two 

200 mm x 200 mm glass plates and the gel surface was overlayed with 2-butanol to 

avoid any formation of air bubbles. The resolving gel was allowed to polymerize at 

room temperature for 30 min and rinsed with water after polymerisation. Subsequently 

the stacking gel solution was added on top of the resolving gel and a comb was placed 

between the gel plates. The stacking gel was then allowed to polymerize for 30 min 

before removing the comb. Fifty micrograms of protein was mixed with SDS sample 

loading buffer (5 M urea, 2.5% SDS, 0.5 M tris-HCl pH 6.8, 3.5% β-mercaptoethanol 

and 0.02% bromophenol blue) in the ratio of 1:1 and heated at 95°C for 5 min. Protein 

samples and molecular weight marker (PageRuler Prestained Protein Ladder, 

Fermentas) were applied to a SDS-PAGE gel and separated at 175V for 2 h in running 

buffer (25 mM tris-HCl pH 8.3, 192 mM glycine and 0.1% SDS). Proteins were then 

transferred onto a nitrocellulose membrane (Amersham Hybond-C, GE Healthcare) in 

transfer buffer (25 mM tris base, 0.15 M glycine, 10% methanol) at 60V for 2 h. After 
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transfer, proteins were visualised by staining the nitrocellulose membrane with Ponceau 

S solution and scanned before immunoblotting to ensure equal loading. Membranes 

were then rinsed with PBS to remove remaining Ponceau S stain. 

 

2.7.3 Western Blotting 

 

The nitrocellulose membrane containing transferred proteins was blocked for non-

specific binding with 10% milk in 1x phosphate buffered saline (PBS, pH 7.4) (120 mM 

NaCl, 9 mM Na2HPO4, 3.7 mM NaH2PO4 and 2.7 mM KCl) for 1 h at room 

temperature on a shaker. Primary antibodies were diluted in 1% milk made in PBS 

according to their optimised concentration and added onto the membrane for an 

overnight incubation at 4°C on a shaker. Membranes were washed three times in PBS 

for 10 min before incubated in appropriate horseradish peroxidase (HRP) labelled 

secondary antibodies for 1 h at room temperature on a shaker. After incubation, the 

membranes were washed three times in PBS for 10 min and the proteins were detected 

using chemiluminescence system by Amersham ECL
 
Western Blotting Detection 

Reagents (GE Healthcare). The membrane was then exposed on Amersham Hyperfilm 

(GE Healthcare) and developed manually through a 1 min rinse each in GBx developing 

and fixing solution. Membranes were then stripped by incubation at room temperature 

with gentle shaking for 10 min in 100% acetonitrile. The acetonitrile was removed from 

the membrane before their incubation at 56 ˚C in 150 ml stripping buffer for 30 min 

with gentle rocking. Membranes were then washed four times for 15 min in PBS on 

shaker and six times for 15 min in deionised water. They were either dried at room 

temperature and store between sheets of whatmann paper at -20 ˚C or used immediately 

for immunostaining. The list of antibodies used was shown in Table 2.4. 
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                          Table 2.4 Antibodies used for Western blotting 

 

Primary antibodies Source Company Dilution 

Anti-GAPDH polyclonal Rabbit Sigma 1:1000 

Anti-β-actin polyclonal Rabbit Sigma 1:1000 

Anti-NAT2 polyclonal Mouse Abnova 1:500 

Anti-GSTA4 polyclonal Mouse Abnova 1:1000 

Anti-GSTA1 monoclonal Mouse Abnova 1:1000 

Secondary antibodies    

HRP-labelled anti-mouse Goat DAKO 1:3000 

HRP-labelled anti-rabbit Goat DAKO 1 :3000  
 

 

 

 

 

2.7.4 Quantitation of protein bands 

 

Quantitation of the protein bands was done by using ImageJ software (Wayne Rasband, 

INH). A scanned image of the immunoblot was saved as a TIFF file and the intensity of 

the protein bands were quantified according the procedure detailed. 

(http://rsb.info.nih.gov/ij/).  

 

 

2.8 Assessment of cell viability  

 

A cell viability test was performed using the 3-(4,5-dimethypthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay in a 6-well plate. Cells were seeded 

overnight at a density of 1x10
6
 cells per ml and exposed to drug treatment for 

designated period of time. On the day of assay, medium was removed, cells were 

washed with PBS, and 900 µl of fresh medium together with 100 µl MTT solution in 

PBS (5mg/ml) was added into each well at 37ºC for 3 h. The media containing MTT 

solution was removed and 100µl of isopropanol containing 0.04 M HCl was added to 

each well. The plates were shaken to solubilise the blue formazan produced for 30 min 

at 4ºC and absorbance was measured at a wavelength of 570nm with background 
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subtraction at 690nm in a plate reader. Assays were performed in duplicate from three 

independent experiments. Data of the MTT assays were analyzed using two-way 

analysis of variance (ANOVA) to identify specific differences between selected groups. 

In all cases, P<0.05 was required for significance to identify specific differences. The 

fifty-percent effective concentration (EC50), representing the concentration
 
of drug 

causing 50% cell death compared with control cells, was determined by non-linear 

regression using GraphPad Prism 5.0 (California, USA).  

 

2.9 Determination of intracellular glutathione content 

 

The amount of reduced glutathione (GSH) and oxidized glutathione (GSSG) in 

mammalian cells were determined using the enzymatic recycling method adapted to 

microplate reader according to Baker et al. (Baker et al., 1990). The total intracellular 

GSH was determined by the colorimetric reaction of 5,5’-dithiobis(2-nitrobenzoic acid) 

(DTNB) with GSH to form the coloured product 5-thio-2-nitrobenzoic acid (TNB). 

GSSG is then reduced by glutathione reductase (GR) to form GSH, using the reduced β-

nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. The rate of 

formation of TNB, which is proportional to the total GSH content (GSH + GSSG), was 

measured spectrophotometrically at 405nm. Briefly, cells were seeded overnight on a 6-

well plate at a density of 1x10
6
 cells/ml and subjected to drug treatment for designated 

time period in duplicate. A positive control was included in the assay by treating the 

cells with 0.5 mM diethyl maleate (DEM) which reduce GSH levels when compared to 

the media control (no drug treatment).  Cells were then washed with room temperature 

PBS and lysed by scraping them in 100 µl ice-cold 5% 5-sulfosalicylic acid (SSA). 

Lysed cells were transferred to 0.5 ml microfuge tubes, incubated for 10 min on ice and 

centrifuged at 8000 x g for 5 min. To assay for total GSH, cell lysates were first diluted 

1:2 with 5% SSA, and further diluted to 1:2 with 400 mM sodium carbonate, then 

further diluted 1:8 with phosphate-EDTA dilution buffer (100 mM sodium phosphate, 1 

mM EDTA, pH 7.4) (total dilution of 1:32). Standards containing from 0-8µM of GSSG 

were prepared by diluting the 5% SSA-diluted GSSG stock (16 µM) with 200 mM 

sodium carbonate and 2.5% SSA. The samples and standards were kept on ice until 

being loaded in the 96-wells microtiter plate. To measure the GSSG, the GSH in the 

samples was treated with 2-vinylpyridine (2VP) to conjugate GSH before assay of 

residual GSSG (Griffith, 1980). Equal volume of the optimized concentration of 2VP, 

200 mM final, was added into the samples and the samples were further diluted 1:2 with 
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400 mM sodium carbonate (total dilution 1:4). GSSG assay samples were incubated at 

room temperature for an hour to allow the conjugation of GSH with 2VP.  The 

microtitre plate was prepared by pipetting 20 µl of standards, 2VP-treated and untreated 

samples and blank per well. Subsequently, 180 µl of freshly prepared assay reaction 

mixture containing 0.4 mM NADPH, 0.3 mM DTNB, and 1.9 units/ml of GR in 

phosphate-EDTA dilution buffer was added into the wells and the plate was incubated 

in the dark on an orbital shaker. The absorbance in the wells at 405nm after 25 min was 

measured using a plate reader. The GSH and GSSG content were determined from the 

GSH standard curves by using the following formula: 

 

GSH   =    (Absorbance at 405nM) ─ (Y-intercept)     X    sample dilution  

        Slope                                      

GSSG =    (Absorbance at 405nM) ─ (Y-intercept)     X    (sample dilution)/2 

        Slope 

The dilution factor for GSSG content was corrected for the conversion of GSH to GSSG 

as GR reduces the GSSG formed into 2GSH. Protein concentration of each cell extract 

was quantified using BioRad DC Protein Assay (see section 2.9.1). The total glutathione 

(GSH+GSSG, µM/mg) and GSH/GSSG ratio data in each sample were analyzed. A 

two-way ANOVA was performed to identify specific differences between selected 

groups using GraphPad Prism 5.0. In all cases, P<0.05 was required for significance to 

identify specific differences. Figure 2.2 shows the GSH standard curve ranging in 

concentration from 0.2-8.0 µM. Data presented are means ± S.D. of duplicates. 
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GSH calibration curve was prepared from serial dilution of GSH ranging 

from 0.2-8.0 µM plotted versus their absorbance values. Data presented are 

means ± S.D. of duplicates. The change in absorbance at 405 nm is a linear 

function of the GSH concentration with r
2
 > 0.99. 

 

Figure 2.5 GSH calibration curve as absorbance values versus 

glutathione concentrations 

GSH calibration curve 
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2.10 DNA fragmentation assay 

 

DNA fragmentation was assessed by Apoptotic DNA Ladder Extraction Kit (Biovision). 

Briefly, approximately 1X10
7
 cells were harvested, washed with PBS, and pelleted by 

centrifugation for 5 min at 500 × g. The supernatant was removed and the cell pellet 

was resuspended in 50 μl DNA Ladder Extraction Buffer. The mixture was then mixed 

by gentle pipetting for 10 seconds and centrifuged for 5 min at 1600 × g. The 

supernatant was transferred to a new 1.5 ml microfuge tube and the cell pellet was 

extracted again with 50 μl DNA Ladder Extraction Buffer. The supernatants were 

combined and 5 μl Enzyme A solution was added into the supernatant. The solution was 

mixed by gentle vortexing and incubated at 37°C for 10 min. Enzyme B solution (5 μl) 

were then added into the mixture and further incubated overnight at 50°C. The 

following day, 5 μl of ammonium acetate solution was added to the sample and mixed 

well. Isopropanol (100 μl) was then added and the solution was mixed well and kept at 

−20 °C for 20 min. DNA pellet was obtained by centrifugation at 13,000 × g for 10 min 

followed by washing twice with 75% ethanol. The pellet was air-dried for 5 min and 

resuspended in 30 μl DNA Suspension Buffer. Samples were loaded on to a 1.2% 

agarose gel and subjected to electrophoresis at 50 V for 1 h in 1 X TBE buffer. Gels 

were then stained with ethidium bromide and observed under UV light and 

photographed. For each experiment, a negative control was prepared by incubating the 

cells with medium only (no drug treatment). A positive control for apoptosis was also 

included each time when the assay was performed by treating the cells with 5 µM 

camptothecin. Figure 2.3 reveals a characteristic ladder pattern of low molecular weight 

DNA fragments from apoptotic cells induced by camptothecin for 24 h.  
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M     1      2     3      4      5    M     1      2     3      4      5    

 

Lane M :  DNA molecular mass marker (100-bp ladder) 

Lane 1 :  No treatment (control) 

Lane 2 :  1 µM camptothecin 

Lane 3 :  2.5 µM camptothecin 

Lane 4 :  5 µM camptothecin 

Lane 5 :  10 µM camptothecin 

Figure 2.6 Camptothecin induces apoptotic DNA fragmentation in 

HepG2 cells  

 

The apoptotic DNA laddering patterns was observed in HepG2 cells 

treated with 5 and 10 µM camptothecin for 24 h. No DNA fragmentation 

was detected in cells treated with 0-2.5 µM camptothecin.   
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2.11 Caspase-3 activity assay 

 

Caspase-3 activity in cell extracts was measured using Sigma Caspase-3 Fluorometric 

Assay Kit. The detection of caspase activity is based on the hydrolysis of the peptide 

substrate acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin (Ac-DEVD-AMC) by 

caspase-3, resulting in the release of the fluorescent 7-amino-4-methylcoumarin (AMC) 

moiety. Cells were seeded in T75 flasks at a density of 1X10
7
 cells/ml and exposed to 

inducing agent for designated period of time, pelleted and washed twice with PBS. A 

negative control was prepared by incubating the cells in the absence of inducing agent. 

Cells were then lysed by adding 100 µl of lysis buffer (50 mM HEPES pH7.4, 5 mM 3-

[(3-cholamidopropyl) dimethylammonio]-propanesulfonate (CHAPS), and 5 mM 

dithiothreitol (DTT)) and incubated on ice for 30 min. The lysed cells were centrifuged 

at 4500 rpm for 10 min at 4°C. Five micro litres of cell lysates or caspase 3 positive 

controls were transferred into a black 96-well view plates. These are black plates 

designed for optimal measurement of fluorescence. Assays were performed in the 

presence and absence of 2 µl of caspase 3 inhibitor, Acetyl-Asp-Glu-Val-Asp-al (Ac-

DEVD-CHO) to exclude nonspecific background in the enzymatic reaction. A blank 

control containing assay buffer (20 mM HEPES pH 7.4, 0.1% CHAPS, 5 mM DTT and 

2 mM EDTA) was included to determine the background fluorescence of the substrate. 

The reaction was carried out by adding 200 µl of Ac-DEVD-AMC containing reaction 

mixture into each sample and plates were further incubated for 2 h in the dark. The 

reaction scheme was summarized in Table 2.5. The fluorescence intensity (relative 

fluorescence units, ∆FU) was then measured at excitation 360nm and emission 460nm 

in the Spectramax M5e plate reader (Molecular Devices). Protein concentration of each 

cell extract was quantified using BioRad DC Protein Assay (see section 2.6.1). A 

standard curve was prepared by 10 mM AMC with assay buffer to yield AMC solutions 

ranging in concentration from 200-4000 pmol (Figure 2.4). Data presented are means ± 

S.D. of triplicates. The enzyme specific activity for each sample was calculated using 

the formula below. 

 

 X = pmol AMC liberated per h in the absence of inhibitor 

 Y = pmol AMC liberated per h in the presence of inhibitor 

  

 Caspase activity =       (X-Y)        pmol AMC liberated/ h/ mg 

                                                        protein (mg) 
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Figure 2.7 AMC reference standard calibration curve 

 

A 7-amino-4-methylcoumarin (AMC) fluorescent reference standard 

was plotted as FIV (fluorescence intensity value) versus AMC 

concentration in the range of 200-4000 pmol. Data presented are 

means ± S.D. of triplicates.  
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                                                                             Table 2.5 Reaction scheme for caspase 3 assay 

 

 1 x Assay 

Buffer 

Caspase 3 

(0.5µg/ml) 

Cell lysate Caspase 3 inhibitor                 

Ac-DEVD-CHO (200 µM) 

Reaction 

Mixture 

Reagent Blank 5 µl − − − 200 µl 

Caspase 3 positive control − 5 µl − − 200 µl 

Caspase 3 positive control +   inhibitor − 5 µl − 2 µl 200 µl 

Non-induced cells − − 5 µl − 200 µl 

Non-induced cells  + inhibitor − − 5 µl 2 µl 200 µl 

Induced cells − − 5 µl − 200 µl 

Induced cells + inhibitor − − 5 µl 2 µl 200 µl 
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Chapter 3. Genetic Polymorphisms of Anti-tuberculosis 

Drugs Metabolizing Enzymes 
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3 Genetic polymorphisms of anti-tuberculosis drugs 
metabolizing enzymes 

3.1 Introduction 

 

As described in section 1.7, there have been a number of previous studies relating 

genotype to susceptibility to DILI due to anti-TB drugs (ATD), though the overall 

findings are still unclear. NAT2 remains the best studied genotype, especially since there 

is a clear rationale for an association since it has been demonstrated the levels of NAT2 

will affect isoniazid metabolite levels and patterns of metabolites (Lauterburg et al., 

1985; Timbrell et al., 1980). Polymorphisms in CYP2E1, GSTM1, GSTT1 and SOD2 

have also been investigated previously though the contribution of the gene products to 

anti-TB drug metabolism is less direct. The main aim of the work presented in this 

chapter was to investigate the association between NAT2 genotype and ATD-DILI. It 

was also decided to study CYP2E1, GSTM1, GSTT1 and SOD2 polymorphisms in view 

of the previous contradictory data linking these polymorphisms to ATD-DILI. In 

addition, it was decided to study selected polymorphisms in GSTA1, GSTA4, NAT1 and 

PXR as more novel candidates. GSTA1 and GSTA4 were chosen because of their role in 

the detoxification of products of oxidative stress (section 1.5.3.3) including 4-

hydroxynonenal (Gardner et al., 2003; Hartley and Petersen, 1997). NAT1 was studied 

because of unpublished data that became available from a collaborating laboratory 

pointing to a novel association with ATD-DILI (Shen Y and Daly AK, unpublished). 

PXR is of general relevance to both drug metabolism and metabolism of endogenous 

compounds relevant to liver injury such as bile acids, with rifampicin being a potent 

agonist (section 1.6.3.2).  
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3.2 Materials and Methods 

3.2.1 Patient recruitment 

 

The DILIGEN study seeks to identify susceptibility genes for DILI by collecting DNA 

samples from patients diagnosed with DILI either in the past or at the time of sample 

collection from hospitals throughout the UK (Daly et al., 2009). In particular, patients 

who have suffered DILI linked to anti-TB drugs, co-amoxiclav and flucloxacillin are 

being studied. When the study was initiated in 2004, the aim was to collect samples 

from 300 cases of DILI linked to anti-TB drugs. However, up to September 2009, only 

28 cases linked to anti-TB drugs had been enrolled which is poor compared with 

approximately 150 cases linked to flucloxacillin, co-amoxiclav and, more recently, 

other prescribed drugs. Among these 28 cases, a number of different ethnicities were 

represented, including 14 white European, 3 Chinese, 2 African and 9 from the Indian 

subcontinent. The patients were taking a number of different drug combinations for 

their TB, but for all except for one patient of European origin, this included INH. An 

additional 4 cases of Bangladeshi origin were recruited by Dr Abul Hasnat, University 

of Dhaka, Bangladesh. All had been exposed to isoniazid. All cases met one of the 

following biochemical criteria for enrolment into this study: (a) alanine 

aminotransferase (ALT) > 5 x the upper limit of normal (ULN), (b) alkaline 

phosphatase (ALP) > 2 x ULN and bilirubin > ULN, or (c) clinical jaundice or bilirubin 

> 40µmol/l. For the DILIGEN cases, causality assessment was based on the 

biochemical markers and Roussel Uclaf Causality Assessment Method (RUCAM) 

(Danan and Benichou, 1993). The causality assessment was performed using the 

international consensus criteria (ICC) with ICC scoring graded as unlikely, possible, 

probable and highly probable (see section 3.3.1). Only cases assessed as highly 

probable, probable or possible were enrolled in the study. For the Dhaka samples, 

causality assessment was not possible but other causes of liver damage such as hepatitis 

A or B infection were excluded. Ethical approval for the DILIGEN study was provided 

by the Leeds East Research Ethics committee with ethical approval in Bangladesh 

provided by the University of Dhaka. 

It was decided to study the 13 white European cases exposed to isoniazid, the 9 

DILIGEN cases from the Indian subcontinent and the 4 Bangladeshi cases in a case-

control study on NAT2 and other genotypes. As controls, 50 controls of European 

ancestry were supplied by Dr Pete Donaldson (Velaga et al., 2004) together with 81 
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ATD-tolerant controls and 40 controls without TB from the Indian subcontinent. Table 

3.1 summarises clinical information on the cases from the Indian subcontinent and of 

European ethnic origin. The African and Chinese cases were not studied in the case 

control study but sequencing studies were performed on one African patient who 

underwent a liver transplant.    

 

 

 Table 3.1 Clinical and biochemical parameters of DILI patients exposed to INH 

 

 
European cohort South Asian cohort 

DILIGEN  

(n=13) 

DILIGEN  

(n=9) 

BANGLADESH  

(n=4) 

Sex (F/M) 8/5 7/2 1/3 

Age of onset (years) 58.8 ± 12.5 39.3 ± 14.3 46 ± 4.5 

Time to onset (days) 32.4 ± 37.4  52.75 ± 61.8 * Data not available 

Total days on drug 38.8 ± 35.9  60.25 ± 74.0 * Data not available 

Histology patterns  
   

       Cholestatic 3 (23.08%) 6 Data not available 

       Hepatocellular 10 (76.92%) 2 

ICC scoring 
   

       3-5 (possible) 5  (38.46)   
 

Data not available        6-8 (probable) 5  (38.46)  

       >8 (highly probable) 3  (23.08)  

Peak Bilirubin (µmol/l) 130 ± 110.0 179 ± 252.7 * 83.4 ± 19.5 

Peak ALT (U/l) 937 ± 1001.0 793 ± 488.8 * Data not available 

Peak ALP (U/l) 219 ± 98.0 225 ± 146.0 * Data not available 

Liver transplant 

 

2 (15.38%) 3 (33.33%) 0 

 

* Average of the values from 8 samples as the clinical data of 1 patient was not available for   

this study 
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3.2.2 PCR-restriction fragment length polymorphism (PCR-RFLP) 

 

PCR reactions were carried out according to section 2.4.4. RFLP analyses were 

developed for a range of polymorphisms by using specific restriction endonuclease 

enzymes (New England Biolabs) and the restriction fragments were separated by 

electophoresis on either 2% agarose gels or 10% polyacrylamide gels as described in 

section 2.4.5.  

 

3.2.3 Genotyping of NAT2  

 

The amplification of NAT2 fragment in the region of exon 2 was performed by PCR 

with 2 previously reported primers (Kocabas et al., 2004). The sequences of the primers 

were 5'-GACATTGAAGCATATTTTGAAAG-3' and 5'-GATGAAAGTATTTGATGT 

TTAGG-3'. The PCR program consisted of initial denaturation at 94ºC  for 5 min and  

35 cycles of denaturation at 94ºC for 1 min, annealing at 50ºC for 1.5 min, extension at 

72ºC for 2 min, and a final extension at 72ºC for 7 min.  The 999bp PCR product was 

digested with KpnI, TaqI, and BamHI for the detection of mutations 481C>T 

(rs1799929), 590G>A (rs1799930), and 857G>A (rs1799931) respectively (Figure 3.1-

3.3). The wild-type NAT2*4 allele is designated when none of the mutant alleles are 

present. NAT2*5, NAT*6 and NAT*7 variant alleles were identified by KpnI, TaqI and 

BamHI digestions respectively. The presence of any 2 variant alleles defines the slow-

acetylator phenotype, whereas rapid acetylators have 1 or 2 wild-type NAT2*4 alleles. 

In addition, a genetic variant in the promoter region of NAT2 (-9796T>A; rs4646244) 

which has shown a significant lower luciferase activity in reporter gene assays was 

included in the current study (Kim et al., 2009). Amplification of the -9796T>A 

promoter region was performed using the primers 5’-

AATCCCAGTAGACAACACCAG-3’ and 5’AATAGGTTTTGAGGGCCATG-3’. 

PCR was subjected to initial denaturation at 94ºC  for 5 min and  35 cycles of 

denaturation at 94ºC for 1 min, annealing at 54ºC for 1 min, extension at 72ºC for 1 min, 

and a final extension at 72ºC for 7 min. The 469bp PCR product was then digested with 

restriction enzyme MboI resulting in fragments of 277bp and 192bp (A allele; cut) or 

467bp (T allele; uncut). Figure 3.4 shows the detection of the MboI restriction 

fragments of NAT2 -9796T>A on a 2% agarose gel. For selected samples, the NAT2 

coding region was sequenced. The same PCR reaction used for genotyping was 

performed with sequencing carried out as described in section 2.4.5. 
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Restriction analysis for NAT2*5 (481C>T) gene fragment after digestion with 

KpnI on a 2% agarose gel; lane 1 and 2 [without (─) and with (+) KpnI 

digestion] display homozygous CC; lane 3 and 4 [without (─) and with (+) 

KpnI digestion] are homozygous TT; lane 5 and 6 [without (─) and with (+) 

KpnI digestion] are heterozygous CT 

 

Figure 3.1 PCR-RFLP analysis of NAT2*5 (481C>T) polymorphism 
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Restriction analysis for NAT2*6 (590G>A) gene fragment after digestion 

with TaqI on a 10% Polyacrylamide gel; lane 1, 2 and 6 display 

homozygous AA; lane 3 and 4 are homozygous GG; lane 5 are 

heterozygous GA 

 

Figure 3.2 PCR-RFLP analysis of NAT2*6 (590G>A) polymorphism 
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Restriction analysis for NAT2*7(857G>A) gene fragment after digestion 

with BamHI on a 2% agarose gel; lane 1 and 2 [without (─) and with 

(+) BamHI digestion] display homozygous GG; lane 3 and 4 [without 

(─) and with (+) BamHI digestion] are heterozygous GA 

 

 

 

Figure 3.3 PCR-RFLP analysis of NAT2*7(857G>A) polymorphism 
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Figure 3.4 PCR-RFLP analysis of NAT2 (rs4646244) 

Restriction analysis for NAT2 (rs4646244) gene fragment after digestion 

with MboI on a 2% agarose gel; lane 1 and 2 [without (─) and with (+) 

MboI digestion] display homozygous TT; lane 3 and 4 [without (─) and 

with (+) MboI digestion] are homozygous AA; lane 5 and 6 [without (─) 

and with (+) MboI digestion] are heterozygous TA 
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3.2.4 Genotyping of CYP2E1 

 

For CYP2E1 genotyping, 3 SNPs from the promoter region -1293G>C (CYP2E1*5B), -

1053C>T (CYP2E1*5B) and -71G>T (CYP2E1*7B), and 1 SNP from the intron 7 

9896C>G (CYP2E1*1B) were genotyped using the PCR-RFLP method (see section 

3.2.3). Figure 3.5 and Table 3.2 show the position of the 4 SNPs on the positive strand 

of the gene and also their respective PCR-RFLP conditions. For -1293G>C 

(CYP2E1*5B) genotyping, PCR product was digested with PstI resulting in fragments 

of 413bp (G allele; uncut) or 295bp and 118bp (C allele; cut) (Figure 3.6). For -

1053C>T (CYP2E1*5B) analysis, PCR product was digested with RsaI to differentiate 

the C→T polymorphism. The wild type C allele produced two fragments of 352bp and 

61bp, whilst T alleles yielded one single fragment of 413bp (Figure 3.7). Analysis of -

71G>T (CYP2E1*7B) polymorphism was performed by digesting the PCR product 

with DdeI. Fragments of 212bp and 163bp (G allele; cut) or 375bp (T allele; uncut) 

were identified following gel electrophoresis analysis (Figure 3.8). For 9896C>G 

(CYP2E1*1B) analysis, a 444bp PCR product was amplified and digested with TaqI. 

The common C allele was identified from its two fragments on 273bp and 171bp, whilst 

G allele remains uncut (Figure 3.9). 
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                                                    Table 3.2 Description of CYP2E1 alleles and their PCR-RFLP conditions 
 

 

Alleles Location Nucleotide 

change 

Rs 

identifier 

Primer sequences Expected 

size 

Annealing 

Temperature 

Restriction 

enzyme 

CYP2E1*5B Promoter -1293G>C rs3813867   5’ CCAGTCGAGTCTACATTGTCA 3’ 

  5’ TTCATTCTGTCTTCTAACTGG 3’ 
413 bp 51 °C PstI 

CYP2E1*5B Promoter -1053C>T rs2031920 

 

  5’ CCAGTCGAGTCTACATTGTCA 3’ 

  5’ TTCATTCTGTCTTCTAACTGG 3’ 
413 bp 51 °C RsaI 

CYP2E1*7B Promoter -71G>T rs6413420 

 

  5’ CACAGTCCAACTCCATCCTC 3’ 

  5’ GAAGAGGTTCCCGATGATGG 3’ 
375 bp 57 °C DdeI 

CYP2E1*1B Intron 7 9896C>G rs2070676 

 

  5' AAGAGCCTCAGCAGATAGTG 3’ 

  5’ TGATCTTTCTCACCTGTGGA 3’ 
444 bp 51 ºC TaqI 

Figure 3.5 The position of four studied SNPs in CYP2E1 

 

rs2031920; -1053C>T

rs6413420; -71G>T
rs2070676; 9896C>G

rs3813867; -1293G>C

rs2031920; -1053C>T

rs6413420; -71G>T
rs2070676; 9896C>G

rs3813867; -1293G>C
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Restriction analysis for CYP2E1 -1293G>C (rs3813867) gene fragment 

after digestion with PstI on a 10% Polyacrylamide gel; lane 2, 3 and 5 

display homozygous GG; lane 1 and 4 are heterozygous GC 

 

 

 

Figure 3.6 PCR-RFLP analysis of CYP2E1 -1293G>C (rs3813867)  
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Figure 3.7 PCR-RFLP analysis of CYP2E1 (rs2031920) 

Restriction analysis for CYP2E1 (rs2031920) gene fragment after 

digestion with RsaI on a 2% agarose gel; lane 1 and 2 [without (─) and 

with (+) RsaI digestion] display homozygous CC; lane 3 and 4 [without 

(─) and with (+) RsaI digestion] are heterozygous CT 
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Restriction analysis for CYP2E1 (rs6413420) gene fragment after digestion 

with DdeI on a 2% agarose gel; lane 1 and 2 [without (─) and with (+) DdeI 

digestion] display homozygous GG; lane 3 and 4 [without (─) and with (+) 

DdeI digestion] are heterozygous GT; lane 5 and 6 [without (─) and with (+) 

DdeI digestion] are homozygous TT 

 

 

 

 

Figure 3.8 PCR-RFLP analysis of CYP2E1 (rs6413420) 
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Figure 3.9 PCR-RFLP analysis of CYP2E1 (rs2070676) 

 

Restriction analysis for Cyp2E1 (rs2070676) gene fragment after digestion 

with TaqI on a 10% Polyacrylamide gel; lane 1 and 2 [without (─) and 

with (+) TaqI digestion] display homozygous CC; lane 3 and 4 [without 

(─) and with (+) TaqI digestion] are heterozygous CG; lane 5 and 6 

[without (─) and with (+) TaqI digestion] are homozygous GG 
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3.2.5 PXR -25385 SNP genotyping 

 

Analysis of PXR -25385C>T polymorphism (rs3814055) was performed by the 

approach of primer-engineered RFLP detection described in Andrews et al. (Andrews et 

al.). The sequences of the forward and the reverse primers used  for PCR amplification 

were 5’-TTTTTTGGCAATCCCAGGAT-3’ and   5’-CGAATGTGGTGGATACCAG-

3’. An MboI restriction site was engineered by a nucleotide substitution (T→A) in the 

forward primer to allow RFLP analysis. PCR was subjected to initial denaturation at 

94ºC for 5 min and 35 cycles of denaturation at 94ºC for 1 min, annealing at 51ºC for 1 

min, extension at 72ºC for 1 min, and a final extension at 72ºC for 7 min. PCR product 

was digested with MboI resulting in fragments of 220bp (T allele; uncut) or 200bp and 

16bp (C allele; cut). Figure 3.10 shows the 10% polyacrylamide gel electrophoresis of 

the MboI digestion products. 
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Figure 3.10 PCR-RFLP analysis of PXR-25385 C/T (rs3814055) 

 

Restriction analysis for PXR-25385 C/T (rs3814055) gene fragment after 

digestion with MboI on a 10% Polyacrylamide gel; lane 1 and 2 [without 

(─) and with (+) MboI digestion] display homozygous TT; lane 3 and 4 

[without (─) and with (+) MboI digestion] are homozygous CC; lane 5 and 

6 [without (─) and with (+) MboI digestion] are heterozygous CT 
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3.2.6 Genotyping of anti-oxidative stress-related genes 

3.2.6.1 GSTA1 

 

PCR-RFLP of GSTA1 -69C.>T (rs3957357) in the promoter region was carried out as 

described by Coles et al. (Coles et al., 2001). PCR was performed using the gene-

specific forward and reverse primers, 5’-AATTGTTGATTGTTTGCCTGAAATT-3’ 

and   5’-GTTAAACGCTGTCACCGTCCT-3’ respectively. PCR was subjected to 

initial denaturation at 94ºC for 5 min and 35 cycles of denaturation at 94ºC for 1 min, 

annealing at 61ºC for 1 min, extension at 72ºC for 1 min, and a final extension at 72ºC 

for 7 min. PCR product was then digested with EarI. The wild type C allele yielded one 

single fragment of 480bp, whilst T allele produced two fragments of 380bp and 100bp. 

Figure 3.11 shows the PCR-RFLP analysis of GSTA1 -69C>T polymorphism  on  

agarose gel. 

 

Figure 3.11 PCR-RFLP analysis of GSTA1 -69C>T (rs3957357) 

Restriction analysis for GSTA1 -69C>T (rs3957357) gene fragment after 

digestion with EarI on a 2% agarose gel; lane 1 and 2 [without (─) and 

with (+) EarI digestion] display homozygous CC; lane 3 and 4 [without 

(─) and with (+) EarI digestion] are heterozygous CT; lane 5 and 6 

[without (─) and with (+) EarI digestion] are homozygous TT 
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3.2.6.2 GSTA4 

 

Tag SNPs in the GSTA4 gene region were chosen using the Hapmap database 

(http://www.hapmap.org) and Haploview (http://www.broad.mit.edu/mpg/haploview). 

Haploview was used to generate the linkage dissequilibrium (LD) plot patterns as 

shown in Figure 3.12, and the tag SNPs were selected using Tagger with a pairwise 

tagging algorithm with a minor allele frequency (MAF) ≥ 0.08 and an r
2 

≥ 0.8. Five tag 

SNPs, rs316141, rs4147618, rs316128, rs3756980 and rs13207376, which cover most 

of the genetic variation in the GSTA4 were selected and genotyped using the PCR-

RFLP method (see section 3.2.3). The position of the SNPs and their PCR-RFLP assay 

conditions are summarised in Table 3.3. For rs316141 genotyping, a 329bp PCR 

product was digested with restriction enzyme Msp1 resulting in fragments of 164bp and 

165bp (C allele; cut), or 329bp (T allele; uncut) (Figure 3.13). RFLP analysis of a 

T→A polymorphism in rs4147618 was performed by digesting the PCR product with 

HinfI. Fragments of 216bp and 74bp (T allele; cut) or 290bp (A allele; uncut) were 

identified following gel electrophoresis analysis (Figure 3.14). For   rs316128 

genotyping, PCR product was digested with Bpu10I. The wild type A allele yielded one 

single fragment of 268bp, whilst C allele produced two fragments of 177bp and 91bp 

(Figure 3.15). Genotyping of rs3756980 was done by digesting the 218bp PCR product 

with HpyCH4III resulting in fragments of 218bp (A allele; uncut) or 183bp and 35bp (G 

allele; cut). Figure 3.16 shows the restriction enzyme digestion products on 10% 

Polyacrylamide gel. Analysis of rs13207376 was performed by digesting the PCR 

product with HpyCH4IV. Fragments of 122bp and 119bp (G allele; cut) or 241bp (A 

allele; uncut) were identified following agarose gel electrophoresis analysis (Figure 

3.17).   
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Figure 3.12 LD plot of GSTA4 tag SNPs and their position in the gene 

GSTA4 tag SNPs are displayed according to their position on the positive strand 

of the gene. The r
2
 pairwise LD plot and its values were generated using 

Haploview 4.2 software with its standard R-squared colour scheme. The 

intensity of the colour is proportional to the strength of the LD. Five tag SNPs 

(r2 ≥ 0.8; MAF ≥ 0.08) out of a total of 25 reference SNPs, rs316141, 

rs4147618, rs316128, rs3756980, and rs13207376, which cover most of the 

genetic variation in the GSTA4 were selected for analysis.  
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Table 3.3 PCR-RFLP primer sequences and conditions of GSTA4 tag SNPs 

 
 

Rs 

identifier 
 

Location 

 

Chromosome

position Alleles Primer sequences 

 

Expected 

size 

 

Annealing 

Temperature 

 

Restriction 

enzyme 

rs316141 Intron 1 52846158 C/T 

 

5’-CATTGGTACAAAGCCATGC-3’ 

5’-TGTACTTATTGAACTGGTGG-3’ 
 

329 bp 56 °C MspI 

rs4147618 Intron 1 52846742 T/A 

 

5’- AAGTTAGGAAATTCTAAGCC-3’ 

5’-AAACTCAAGCATCCACTGCC-3’ 
 

292 bp 51 °C HinfI 

rs316128 Intron 2 52849146 A/C 

 

5’-GGAAGTGGTTAACATGGCCC-3’ 

5’-CTGAATCATGTGGTCCTAGC-3’ 
 

269 bp 57 °C Bpu10I 

rs3756980 Intron 4 52851979 A/G 

 

5'- GTTGAAATTGCCAGGAAATCAC-3’ 

5’-CCAGGATGCCTCAGATAGTG-3’ 
 

218 bp 55 ºC HpyCH4III 

rs13207376 Intron 6 52859230 A/G 

 

5'-GTCTTCAACCCAGTGCTCA-3’ 

5’-ATTTGTGAAATCCCGTACTG-3’ 
 

241 bp 56 ºC HpyCH4IV 
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Figure 3.13 PCR-RFLP analysis of GSTA4 (rs316141) 

Restriction analysis for GSTA4 (rs316141) gene fragment after digestion 

with MspI on a 10% Polyacrylamide gel; lane 1 and 2 [without (─) and 

with (+) MspI digestion] display homozygous TT; lane 3 and 4 [without 

(─) and with (+) MspI digestion] are heterozygous CT; lane 5 and 6 

[without (─) and with (+) MspI digestion] are homozygous CC 

 

 

 



 

 

 

96 

Figure 3.14 PCR-RFLP analysis of GSTA4 (rs4147618) 

Restriction analysis for GSTA4 (rs4147618) gene fragment after 

digestion with HinfI on a 10% Polyacrylamide gel; lane 1 and 2 [without 

(─) and with (+) HinfI digestion] display homozygous AA; lane 3 and 4 

[without (─) and with (+) HinfI digestion] are heterozygous TA; lane 5 

and 6 [without (─) and with (+) HinfI digestion] are homozygous TT 
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Figure 3.15 PCR-RFLP analysis of GSTA4 (rs316128) 

 

 

Restriction analysis for GSTA4 (rs316128) gene fragment after digestion 

with Bpu10I on a 10% Polyacrylamide gel; lane 1 and 2 [without (─) and 

with (+) Bpu10I digestion] display homozygous AA; lane 3 and 4 [without 

(─) and with (+) Bpu10I digestion] are heterozygous AC; lane 5 and 6 

[without (─) and with (+) Bpu10I digestion] are homozygous CC. 
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Figure 3.16 PCR-RFLP analysis of GSTA4 (rs3756980) 

Restriction analysis for GSTA4 (rs3756980) gene fragment after digestion 

with HpyCH4III on a 10% Polyacrylamide gel; lane 1 and 2 [without (─) 

and with (+) HpyCH4III digestion] display homozygous AA; lane 3 and 4 

[without (─) and with (+) HpyCH4III digestion] are homozygous GG; 

lane 5 and 6 [without (─) and with (+) HpyCH4III digestion] are 

heterozygous AG. 
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Figure 3.17 PCR-RFLP analysis of GSTA4 (rs13207376) 

 

 

 

 

Restriction analysis for GSTA4 (rs13207376) gene fragment after digestion 

with HpyCH4IV on a 2% agarose gel; lane 1 and 2 [without (─) and with 

(+) HpyCH4IV digestion] display homozygous GG; lane 3 and 4 [without 

(─) and with (+) HpyCH4IV digestion] are heterozygous AG; lane 5 and 6 

[without (─) and with (+) HpyCH4IV digestion] are homozygous AA 
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3.2.6.3 GSTT1 

 

Analysis of GSTT1 gene polymorphism was performed by PCR described in Abdel-

Rahman et al. using primers 5’-TTCCTTACTGGTCCTCACATCTC-3’ and   5’-

TCACCGGATCATGGCCAGCA-3’ (Abdel-Rahman et al., 1998). The promoter region 

of gene encoding tumour necrosis factor-alpha (TNF-α) was co-amplified and used as 

an internal control with the primers 5’-ATCTGGAGGAAGCGGTAGTG-3’ and 

5’AATAGGTT TTGAGGGCCATG-3’. PCR was subjected to initial denaturation at 

94ºC  for 5 min and  35 cycles of denaturation at 94ºC for 1 min, annealing at 50ºC for 1 

min, extension at 72ºC for 1 min, and a final extension at 72ºC for 7 min.  GSTT1 null 

genotypes were detected by the absence of 430bp DNA fragment, while the internal 

positive control (TNF-α) yielded a band of 222bp (Figure 3.18). 

 

 

Figure 3.18 PCR analysis of GSTT1 genotype 

The presence of GSTT1 gene was detected by the presence of a 430bp PCR 

fragment (lane 2, 4, 5, 6, and 7). Lane 1, 3 and 8 show the GSTT1 null 

genotype (the absence of the 430bp fragment). Fragments of 222bp 

indicate the internal controls for TNF-α. 
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3.2.6.4 GSTM1 

 

Analysis of GSTM1 gene polymorphism was performed by PCR described in Zhong et 

al. using primers 5’-CGCCATCTTGTGCTACATTGCCCG-3’ and   5’-

TTCTGGATTGTAGCAGATCA-3’ (Zhong et al., 1993). For an internal control, 

GSTM4 gene fragment was co-amplified using the primers 5’-

CGCCATCTTGTGCTACATTGCCCG-3’ and 5’-ATCTTCTCCTCTTCTGTCTC-3’. 

PCR was subjected to initial denaturation at 94ºC  for 5 min and  35 cycles of 

denaturation at 94ºC for 1 min, annealing at 53ºC for 1 min, extension at 72ºC for 1 min, 

and a final extension at 72ºC for 7 min.  GSTM1 null genotypes were detected by the 

absence of 230bp DNA fragment, while the internal positive control (GSTM1) yielded a 

band of 157bp (Figure 3.19). 

 

 

Figure 3.19 PCR analysis of GSTM1 genotype 

The presence of GSTM1 gene was detected by the presence of a 

230bp PCR fragment (lane 3and 4). Lane 1 and 2 show the GSTM1 

null genotype (the absence of the 230bp fragment). Fragments of 

157bp indicate the internal controls for GSTM1. 
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3.2.6.5 SOD2 

 
Tag SNPs in SOD2 (r

2
 ≥ 0.8; MAF ≥ 0.08) were selected from HapMap CEU 

population and the Linkage disequilibrium (LD) calculation was performed by the 

Haploview software (Figure 3.20). Two tag SNPs, rs4880 and rs5746136 which 

encompass the majority of the genetic variation in SOD2 were identified and 

genotyped using the PCR-RFLP method. PCR for rs4880 was performed using the 

primers 5’-CAGCCCAGCCTGCGTAGACGG-3’ and 5’-

GCGTTGATGTGAGGTTCCAG-3’. A 172bp PCR product was then digested with 

restriction enzyme BsaW1 to identify the common T→C polymorphism resulting in an 

amino acid substitution (Valine to Alanine). The T allele (Val) resulted in fragments of 

89bp and 83bp, whilst the C allele (Ala) remain uncut, which is 172bp (Figure 3.21). 

For rs5746136, a 534bp PCR product was amplified using the primers 5’-

AGTAAGCTGCTCTATTGTAGC-3’ and 5’-TTTGCTGTTGAAGTTTGCCT-3’, 

followed by restriction digestion with TaqI resulting in fragments of 534bp (A allele; 

uncut) or 364bp and 170bp (G allele; cut). Figure 3.22 shows the agarose gel 

electrophoresis of the restriction enzyme digestion products.  
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Figure 3.20 LD plot of SOD2 tag SNPs and their position in the gene 

 

SOD2 tag SNPs are displayed according to their position on the positive 

strand of the gene. The r
2
 pairwise LD plot and its values were generated 

using Haploview 4.2 software with its standard R-squared colour scheme. Two 

SNPs out of a total of 6 reference SNPs, rs4880 and rs5746136, which 

encompass the majority of the genetic variation in the SOD2 were selected for 

analysis.  
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Figure 3.21 PCR-RFLP analysis of SOD2 V16A (rs4880) 

 

Restriction analysis for SOD2 V16A (rs4880) gene fragment after 

digestion with BsaW1 on a 10% Polyacrylamide gel; lane 1 and 2 [without 

(─) and with (+) BsaW1 digestion] display homozygous Ala/Ala (CC); 

lane 3 and 4 [without (─) and with (+) BsaW1 digestion] are homozygous 

Val/Val (TT); lane 5 and 6 [without (─) and with (+) BsaW1 digestion] 

are heterozygous Val/Ala (TC) 
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Figure 3.22 PCR-RFLP analysis of SOD2 (rs5746136) 

 

Restriction analysis for SOD2 (rs5746136) gene fragment after digestion 

with TaqI on a 2% agarose gel; lane 1 and 2 [without (─) and with (+) 

TaqI digestion] display homozygous AA; lane 3 and 4 [without (─) and 

with (+) TaqI digestion] are homozygous GG; lane 5 and 6 [without (─) 

and with (+) TaqI digestion] are heterozygous GA 
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 3.2.7 Taqman SNP genotyping assay for NAT1 (rs2739685) 

 

Genotyping for a C/T polymorphism in rs2739685 was carried out using the validated 

Taqman SNP genotyping assay method (assay ID: C__15930238_10, PE Applied 

Biosystems). The assay contains two probes, one for each allele in a two-allele system. 

Each probe consists of oligonucleotides for amplifying the specific sequence with a 5’- 

end fluorescence reporter dye. Specifically, the VIC fluorescence reporter dye is linked 

to the allele 1 probe for the detection of allele C. FAM, another fluorescence reporter 

dye, is linked to the allele 2 probe for the detection of allele T. The reactions were 

prepared in duplicate by using 2x Taqman Universal Master Mix, 40x SNP Genotyping 

Assay Mix, DNase-free water, and 10ng genomic DNA in a final volume of 20µl per 

reaction. Positive controls and a no template control were included in each assay as a 

quality control measure. The positive controls consist of three different genotypes were 

validated by sequencing (Figure 3.23). The PCR amplification was done using the ABI 

Prism 7000 Sequence Detection System machine under the following thermocycler 

conditions: 10 min at 95ºC to activate the AmpliTaq Gold polymerase followed by 40 

cycles of denaturation at 95 ºC for 15s and annealing/extension at 60 ºC for 1 min. The 

allelic discrimination results were determined using the SDS 2.2 software after the 

amplification by performing an end-point read.  
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Sequencing trace for SNP rs2739685 TT homozygote, TC heterozygote and CC 

homozygote positive controls are shown in A, B, C respectively in both forward 

and reverse sequence orientations. 

 

 

GGCCC

A

B HetHet

AATT

Forward sequencing Reverse sequencing

GGGGCCCCCCC

A

B HetHetHetHet

AAAATT

Forward sequencing Reverse sequencing

 

Figure 3.23 Sequence electropherogram of the forward and reverse sequence 

traces from a C/T polymorphism in SNP rs2739685 in NAT1 
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3.2.8  Statistical analysis 

3.2.8.1 Power Calculations 

 

Using an online statistical power calculator (http://statpages.org/proppowr.html), a 

power calculation was performed for the NAT2 polymorphism based on the number of 

samples available before the genotyping studies were initiated. The use of 26 cases and 

90 controls provided a statistical power of 80% to detect a change in the proportion of 

slow acetylators from 50% to 80% (Odds ratio 3.33 approx) at a significance level of 

p=0.05.  

 

3.2.8.2 Hardy-Weinberg Equilibrium 

 

In the early twentieth century, through mathematical modelling, both G.H. Hardy and 

W. Weinberg separately concluded that allelic frequencies in a gene pool are inherently 

stable, however evolution should be expected in all populations at all times (Weinberg, 

1963; Hardy, 1908). The model has become known as the Hardy-Weinberg equilibrium 

(HWE) based on the principle for a hypothetical situation in which there is no change of 

the frequencies of alleles in the gene pool and therefore no mechanisms of evolution are 

acting on a population. In order for equilibrium to remain in effect from generation to 

generation, a few basic assumptions need to be met; first, the population has to be 

infinitely large with no random shifts in the frequency of the individual alleles in the 

gene pool. Spontaneous mutations are negligible and there is no migration into or 

emigration out of the population. Individuals are mating randomly and natural selection 

is not occurring in the population. In addition, all individuals in the population are able 

to breed and produce the same number of offspring. When all these assumptions are 

valid and being met, both allele and genotype frequencies in a population will remain 

constant over generations, and the population is said to be in HWE. However, evolution 

is a common occurrence in nature due to natural selection and hence it is virtually 

impossible to meet all these assumptions in the HWE model. Hence, Hardy-Weinberg 

model plays an important role in the field of population genetics and provides a 

theoretical basis for the measurement of evolutionary change. It enables the comparison 

of the predicted or “expected” genotype frequencies with the actual or “observed” 

frequencies in a population and allows scientists to determine whether the population is 

in HWE. If the genotype frequencies deviate from values expected from HWE, it can be 
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assumed that evolution occurs where one or more of the model’s assumptions are being 

violated.  

 

The Hardy-Weinberg model consists of two equations that allow the calculation of 

allele and genotype frequencies respectively. Both equations will sum up to one since 

frequency is involved. In the simplest case of a single locus with two alleles of a diploid 

organism, the dominant allele is denoted A and the recessive allele is denoted a. If p 

represents the frequency of A, f (A)=p and q represents the frequency of a, f(a)=q, the 

equation for allele frequency is p+q=1. Three possible genotypes, AA, Aa and aa can be 

derived from these two allelic forms using a Punnett square (Table 3.4). The Punnett 

square depicts the probabilities of generating all possible genotypes at a diallelic locus 

in a population that conforms to Hardy-Weinberg assumptions. The final three expected 

genotypic frequencies in the offspring become f(AA)= p
2
, f(Aa)= 2pq and f(aa)= q

2
 and 

the equation for genotype frequencies is (p
2
) + (2pq) + (q

2
) = 1. The genotypic 

frequency distribution will not change from generation to generation once a population 

is in HWE. Nevertheless, populations in their natural environment are unable to meet all 

the assumptions required to achieve HWE. Genetic drift or allelic drift happens when 

the allele frequencies in a population change across generations. To test whether 

observed genotypes of a population conform to Hardy-Weinberg expectations, a simple 

chi-square goodness-of-fitness test can be performed. Under the null hypothesis of 

HWE, the observed genotype frequencies are not significantly different from those 

predicted for a population in equilibrium. A probability value, or P value is used to 

evaluate the significance of a chi-square by setting a cutoff point of 0.05 (5%) for 

significance. For example, a P value of less than or equal to 0.05 indicates a significant 

difference between the observed and expected genotype frequencies, the null hypothesis 

is rejected and the population is therefore in HWE. For large-scale genomic studies 

especially those involve the evaluation of thousands of loci segregating for multiple 

alleles, a more robust and powerful exact test is needed for HWE testing to reduce the 

risk of a type I error (Wigginton et al., 2005).  
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          Table 3.4 Punnett square for Hardy-Weinberg equilibrium 

 

 
Females 

A (p) a (q) 

Males 
A (p) AA (p

2
) Aa (pq) 

a (q) Aa (pq) Aa (q
2
) 

 

 

Deviation from Hardy-Weinberg expectations denotes the evolution of a population due 

to the violation of the assumptions of HWE model. Factors that cause violation include 

non-random mating, mutations, selection, limited population size, random genetic drift, 

gene flow and meiotic drive. In a small population, inbreeding or mating between close 

relatives is more likely to occur rather than random mating. Inbreeding changes 

genotype proportions by decreasing the frequency of heterozygotes and increasing the 

frequency of homozygotes. This effect of inbreeding resulting from the inheritance of a 

copy of the same recessive allele from both parents may increase the homozygous 

recessive diseases susceptibility in an individual or a population. Assortative mating is 

another cause of deviation from the HWE. Assortative mating occurs when individuals 

select mates non-randomly from within their population which causes an increase in 

homozygosity for the genes involved in the trait. Small population size may lead to a 

random change in allele frequency. This is due to a sampling effect, also known as 

genetic drift which causes greater chance of deviation of a population from Hardy-

Weinberg expectations during random mating. These sampling effects may result from 

the processes of genetic drift, founder events and population bottlenecks in natural 

populations. All these sampling errors can cause a rapid loss of genetic variation 

through the loss of rare alleles, leading to decreased heterozygosity and an increased 

degree of inbreeding and adaptation impairment (Shama et al., 2011; Nei, 1975).   

Mutation and natural selection can cause the change in allele frequencies. Natural 

selection leads to differential rates of survival and reproduction where individuals with 

some favouring traits are able to adapt to their environment better than individuals with 

other traits. While directional selection leads to decrease over time in the frequency of 

an unfavoured allele, balancing selection, in the contrast to the directional selection, 
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maintains genetic polymorphism in populations (Andrews, 2010). Balancing selection 

leads to equilibrium population with Hardy-Weinberg proportions even though it 

violates the assumption in Hardy-Weinberg principles.  

 

Deviations of the observed genotype frequencies with those expected by Hardy-

Weinberg may suggest violation of HWE assumptions, but may also indicate 

genotyping errors due to selection bias in sample enrolment or laboratory error. These 

genotyping errors could lead to false conclusions and decrease the power of certain 

statistical test for linkage and/or association studies. Thus, the used of HWE testing for 

data quality control is important to limit and detect genotyping error within population-

based data sets. Checking for HWE deviation is a standard practice when performing 

genome wide association studies with markers which fail at test of HWE generally 

discarded. However, deviation can also be due to disease association when this is 

present in a disease group though the controls should still be in HWE. It is also 

suggested that copy number variation (CNV), an event in which a large DNA fragment 

(range from 1,000 base pairs to 5 megabases) is duplicated or deleted could play an 

important factor of HWE violation (Lee et al., 2008). Therefore the study of these SNP 

markers that lies within CNV regions may show an apparent deviation from HWE.    

 

3.2.8.3 Genotype analysis 

 

Statistical analysis was performed using GraphPad Prism 3.0 (California, USA). 

Genotype frequencies between groups were compared using Fisher’s exact test, where 

p-values <0.05 were considered to be statistically significant. Odd ratios (OR) and 95% 

confidence intervals (CI) were also calculated to estimate the risk of ATD-DILI 

associated with each polymorphism. 

 

3.2.8.4 Haplotype analysis 

 

Haplotypes were constructed from genotype data and assigned to each of the case-

control subjects. Haplotype frequencies of the case and control groups for GSTA4 were 

analysed using PHASE v2.1.1. Odd ratios and 95% confidence intervals were calculated 

using the GraphPad Prism 3.0 software. The p-value was determined by fisher’s exact 
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test to assess the significance of differences in haplotype frequencies between the case-

control groups.  

 

3.2.8.5 Multiple testing 

 

The null hypothesis H0is a hypothesis which a researcher seeks to disprove, reject or 

nullify. The acceptance or rejection of the null hypothesis is based an appropriate 

statistical test (Wackerly D., 2008). Type I errors happen when the null hypothesis H0 is 

rejected although the hypothesis is in fact true. On the other hand, Type II error occurs 

when the null hypothesis H0 is accepted although the hypothesis is false. The probability 

of making a Type I error is denoted by α (alpha), and the probability of making a Type 

II error is denoted by β (beta).  A cut-off point of the α level is commonly set at 0.05, 

which means one in twenty statistical tests will incorrectly reject the null hypothesis H0  

and give rise to a false positive finding (Table 3.5). The chance of Type I error could be 

reduced by using a more stringent cut-off value such as 1% (1 in 100) or 0.1% (1 in 

1000) to increase specificity. However, as shown in Table 3.1, when there is a decrease 

in the probability of a Type I error, there is an increase in the probability of a Type II 

error occurring (false negative rate). Therefore, it is important to estimate and optimise 

the balance between Type I and Type II errors. 

 

Table 3.5 Contingency table showing Type I and Type II errors (Rao D. C., 2008) 

 

     Null is true      Alternative is true 

Reject null False positive (Type I error) True positive 

Accept null True negative False negative (Type II error) 

 

With recent advances in single nucleotide polymorphism (SNP) genotyping 

technologies, candidate gene approaches and also genome-wide associations studies 

(GWAS) have gained much popularity in identifying gene with common variants that 

influence susceptibility to complex diseases. The simultaneous testing of hundreds of 

thousands or even millions of SNP markers was made possible, however, this has also 

led to challenges in multiple comparison testing. Failure to adjust for multiple 

comparisons appropriately will yield the rate of Type I errors and decrease the power to 

detect association between genetic markers and a disease phenotype. When a large 
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number of SNPs are tested, the Type I error rate is more inflated as the magnitude of 

increase in type I error rate depends on the sample size (Marquard et al., 2009; 

Moskvina et al., 2006). Generally, the nominal significance level which is also the 

probability of making type I error (α) is adjusted downwards to reduce the likelihood of 

false positive results. Several methods have been proposed to overcome this problem. 

The effects of multiple testing could be minimised through the adjustment of the 

number of tests by limiting the number of association tests performed (Lunetta, 2008). 

For instance, when the associations of a single phenotype and numerous SNPs are 

examined, one could limit the number of tests by performing a single test per SNP by 

selecting the most closely associated SNP with the phenotype. Another option to limit 

the number of tests includes the use of haplotype or multilocus genotypes, rather than 

single SNPs alone to strengthen the power to detect associations. A multivariate test is 

useful for large scale association studies involving different phenotypes and numerous 

SNPs. Associations between individual genetic markers (SNPs) and each phenotype 

will be tested to find out which phenotype or subset of phenotypes is associated with the 

marker (Lunetta, 2008).  

 

Bonferroni correction is a simple and widely used method to correct for multiple 

testing. The adjustment of Bonferroni correction is made by multiplying the nominal P 

values by the total number of tests performed. The adjustment controls the family-wise 

error rate (FWER), which is the probability of making one or more Type I errors. For 

example, if one sets the experiment-wide error rate at 0.05 over 50 independent tests, 

then the Bonferroni-adjusted P values must be <0.001 to be considered significant, and 

the probability of observing at least 1 such result in the entire experiment is ≤0.001. By 

assuming analyses involve independent markers and phenotypes, Bonferroni correction 

is considered as the most stringent and highly conservative method for multiple 

comparisons. Several less conservative multiple test corrections have been proposed, 

such as the step-down correction of Holm (Holm, 1979), the Westfall and Young 

permutation method (Westfall and Young, 1993), and the Benjamini and Hochberg false 

discovery rate (Benjamini and Hochberg, 1995). 

 

The step-down correction of Holm is reasonably similar to the Bonferroni, but slightly 

less conservative. By using a stepwise procedure to assess the ordered set of null 

hypotheses, the test with the lowest probability is tested first with a Bonferroni 
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correction involving all tests. The second test is tested with a Bonferroni correction 

involving one less test and so on for the remaining tests until it fails to reject a null 

hypothesis. This sequential Bonferroni correction procedure of Holm is thus less 

conservative and generally more powerful than the corresponding single-step procedure 

while still maintaining the FWER. 

 

The Westfall and Young permutation method is an alternative way to correct for large 

numbers of tests in typical association studies (Westfall and Young, 1993). It integrates 

the correlation between phenotypes and genotypes and is far less stringent than that 

used in a standard Bonferroni adjustment. To rearrange the apparent relationship 

between phenotypes and genotypes, observed phenotypes are permuted with their 

respective genotypes while the correlation among phenotypes is preserved, and the 

relationship between genotypes (linkage disequilibrium patterns between SNPs) is 

retained within an individual. The entire process is performed by random rearrangement 

and repeated many times until all possible permutations are generated. The association 

between test statistics and corresponding P values of each permuted data set is 

computed similarly to the non-permuted data set. The new minimum P values from the 

permuted data sets are compared to the original P value of the non-permuted data set. 

The adjusted P value is defined when the permuted-based minimum P values is less 

than the original P values. Although permutation testing is complex and 

computationally expensive, it is considered the gold standard for multiple testing 

correction in GWAS by providing unbiased type I error control and high power (Pahl 

and Schafer, 2010).  

 

The false discovery rate (FDR), first proposed by Benjamini and Hochberg, is the least 

stringent form of adjustment compared to other multiple comparison procedures 

described earlier on. The FDR aims at controlling the expected proportion of falsely 

rejected hypotheses (type I errors), unlike other multiple comparisons procedures that 

control the FWER. When all the null hypotheses are true, the FWER and FDR are 

equivalent; otherwise, the FDR is less than the FWER. The FDR approach tolerates 

more false positives while allowing considerably fewer type II errors, and therefore 

provides a sensible alternative with good balance between discovery of statistically 

significant genes and limitation of type I errors. FDR plays an important role in the 

analysis of high-throughput data, such as the discovery of differential expression in 
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microarray and SNP biomarker selection by offering a less conservative with greater 

ability or power to find truly significant results. Nevertheless, careful selection of 

multiple testing comparison procedure is important in limiting type I errors and also to 

prevent erroneous study conclusions. In this chapter, because the total number of 

genotyping tests performed was relatively small, it was decided to correct for multiple 

testing using the Bonferroni correction method above. The primary hypothesis that 

overall NAT2 genotype predicts susceptibility was first investigated without correction.  

 

 

3.3 Results 

3.3.1 NAT2 

3.3.1.1 Investigation of a possible association between NAT2 

genotype and susceptibility to ATD-DILI 

 

To investigate our primary hypothesis that NAT2 slow acetylators were more 

susceptible to ATD-DILI, a total of 26 DILI cases and 90 community controls together 

with 81 controls from the Indian subcontinent who were treated with similar anti-TB 

drugs without developing DILI were genotyped for three SNPs in the NAT2 exons 

(481C>T, 590G>A and 857G>A). Since a SNP in the promoter region of NAT2-

9796T>A (rs4646244) has recently been suggested to be associated with an increased 

risk of DILI (Kim et al., 2009), samples were also genotyped for this SNP. The NAT2 

genotyping results for the combined dataset and for the European and Asian cohorts 

separately are shown in Table 3.6, Table 3.7 and Table 3.8 respectively. All 

polymorphisms were in Hardy-Weinberg equilibrium. The odds ratios and p-value for 

the overall genotypes for the entire cohort as well as for the Europeans and South 

Asians considered separately shown. We observed no significant association between 

the case and control groups either in the combined dataset or in the Asian cohorts alone 

(p>0.05). However, in the European cohort alone, the AA genotype of 590G>A 

polymorphism was found to be associated with ATD-DILI with a p-value of 0.028 

(OR=6.96; 95% CI=1.33-36.57). For -9796T>A, the combined European-South Asian 

cohort showed no evidence for an association of this variant with the risk of ATD-DILI 

(p=0.35) and there was also no significance in the Asian subjects. In the European 

cohort alone, the frequency of the homozygous AA genotype was significantly higher in 

cases compared to control subjects (OR=6.96; 95% CI=1.33-36.57) with a p-value of 

0.028.   



 

 

 

116 

 

Table 3.6 Association of NAT2 genotypes and the risk of ATD-DILI in combined 

European and South Asian cohorts 

 

NAT2 

SNP  Genotype 

 

Cases       

(n=26) 
 

 

Community 

controls (n=90) 
 

         Cases vs Controls  

P-value OR (95% CI) 

481C>T  

(rs1799929) 

 
 

590G>A 

(rs1799930) 

 
 

857G>A 

(rs1799931) 
 

-9796T>A 

(rs4646244) 

  CC 

  CT 

  TT 
   

  GG 

  GA 

  AA 
   

  GG 

  GA 
   

  TT 

  TA 

  AA 

  10 (0.38) 

  10 (0.38) 

    6 (0.24) 
     

    8 (0.31) 

  13 (0.50) 

    5 (0.19) 
   

  23 (0.88) 

    3 (0.12) 
   

  11 (0.42) 

  10 (0.39) 

        5 (0.19) 

 41 (0.46) 

 36 (0.40) 

 13 (0.14) 
  

 39 (0.43) 

 41 (0.46) 

 10 (0.11) 
  

 79 (0.88) 

 11 (0.12) 
  

 38 (0.42) 

 44 (0.49) 

   8 (0.09) 

 

 

       0.37 
 

 

 

       0.27 
 

 

     1.00 
 

 

   

     0.16 

 

 

1.78 (0.6-5.26) 
 

 

 

1.72 (0.68-4.37) 
 

 

1.07 (0.27-4.15) 
 

 

 

2.44 (0.72-8.23) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

 

 

 

  Table 3.7 Association of NAT2 genotypes and the risk of ATD-DILI in European    

cohort 
 

NAT2 

SNP  Genotype 

 

Cases       

(n=13) 
 

 

Community 

controls (n=50) 
 

         Cases vs Controls  

P-value OR (95% CI) 

481C>T  

(rs1799929) 

 
 

590G>A 

(rs1799930) 

 
 

857G>A 

(rs1799931) 
 

-9796T>A 

(rs4646244) 

  CC 

  CT 

  TT 
   

  GG 

  GA 

  AA 
   

  GG 

  GA 
   

  TT 

  TA 

  AA 

       6 (0.46) 

       2 (0.15) 

       5 (0.39) 
 

       6 (0.46) 

       3 (0.23) 

       4 (0.31) 
 

     13 (1.00) 

       0 (0.00) 
 

       7 (0.54) 

       2 (0.15) 

       4 (0.31) 

        18 (0.36) 

        23 (0.46) 

          9 (0.18) 
 

        26 (0.52) 

        21 (0.42) 

          3 (0.06) 
 

        48 (0.96) 

          2 (0.04) 
         

        25 (0.50) 

        22 (0.44) 

          3 (0.06)  

      

 

      0.14 
 

 

 

      0.028 
 

 

      1.00 

 
 

 

      0.028 

 

 

2.85 (0.75-10.77) 
 

 

 

6.96 (1.33-36.57) 
 

 

1.39 (0.06-30.78) 
 

 

 

6.96 (1.33-36.57)  

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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Table 3.8 Association of NAT2 genotypes and the risk of ATD-DILI in South Asian 

subjects 
 

NAT2 

481C>T (rs1799929)             CC      CT      TT  P-value  OR (95% CI) 

 Cases (n=13) 

 ATD-tolerant controls (n=81) 

 Community controls (n=40) 
 
 

  4 (0.31)       

47 (0.58) 

23 (0.57) 

  8 (0.61) 

30 (0.37)  

13 (0.33) 

  1 (0.08) 

  4 (0.05)  

  4 (0.10) 

 

0.08 

0.12 

 

3.11 (0.88-10.94) 

3.04 (0.80-11.56) 

 590G>A (rs1799930)     GG      GA      AA  P-value  OR (95% CI) 

 Cases (n=13) 

 ATD-tolerant controls (n=81) 

 Community controls (n=40) 
 

  2 (0.15)       

34 (0.42) 

13 (0.33)  

10 (0.77) 

37 (0.46)  

20 (0.50)  

  1 (0.08) 

10 (0.12)  

  7 (0.17) 

 

0.12 

0.31 

 

3.98 (0.83-19.13) 

2.65 (0.51-13.73) 

 857G>A (rs1799931)     GG     GA      AA  P-value  OR (95% CI) 

Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 
 

10 (0.77)       

64 (0.79) 

31 (0.78) 

  3 (0.23) 

17 (0.21)  

  9 (0.22)  

  0 (0.00) 

  0 (0.00)  

  0 (0.00) 

 

1.00 

1.00 

 

1.13 (0.28-4.57) 

1.03 (0.23-4.58) 

-9796T>A (rs4646244)      TT     TA      AA  P-value  OR (95% CI) 

Cases (n=13) 

ATD-tolerant controls (n=81)       

Community controls (n=40) 
 

  4 (0.31)       

34 (0.42) 

13 (0.33) 

  8 (0.62) 

37 (0.46)  

22 (0.55)  

  1 (0.08) 

10 (0.12)  

  5 (0.12) 

 

0.55 

1.00 

 

1.63 (0.46-5.73) 

1.71 (0.18-16.19) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

118 

The three SNPs in the exons were further assigned into alleles NAT2*5 (481C>T), 

NAT2*6 (590G>A), NAT2*7 (857G>A) and NAT2*4 (apparent wild-type). The 

presence of any two mutant alleles defines the slow acetylator phenotype (genotypes 

NAT2*5*5, NAT2*5*6, NAT*5*7, NAT2*6*6, NAT2*6*7 and NAT2*7*7), whereas 

rapid acetylators had no more than one mutant allele (genotypes NAT2*4*4, 

NAT2*4*5, NAT2*4*6 and NAT2*4*7). The overall genotype results obtained are 

summarised in Table 3.9. The odds ratios and p-value for the overall phenotypes for the 

entire cohort as well as for the Europeans and South Asians considered separately 

shown in Table 3.10. In the combined European-South Asian cohort, the slow 

acetylator phenotype was found to be associated with the risk of ATD-DILI (OR=4.60; 

95% CI=1.47-14.44) (p-value=0.006) when compared with the community controls 

with 80% of cases being slow acetylators. In the European cohort alone, an apparent 

increased frequency of the slow acetylator phenotype was observed in the cases but this 

was not statistically significantly different (OR=3.33; 95% CI=0.82-13.58; p=0.12). 

However, for the South-Asian cohort, slow acetylator status was found to be associated 

with an increased susceptibility to ATD-DILI with the p-value of 0.002 (OR=13.58; 

95% CI=1.69-109.4) when compared to the ATD-tolerant controls. A borderline 

significant difference was also observed in these cases when compared to the 

community controls with a p-value of 0.041 (OR=8.00; 95% CI=0.94-67.67).  

 

The relationship between -9796T>A and the other NAT2 polymorphisms studied was 

also investigated. As summarised in Table 3.11, many subjects positive for -9796T>A 

were also positive for NAT2*6. In particular, among the community controls, all 8 

individuals with a AA genotype for the -9796 SNP had a NAT2*6*6 genotype while for 

the cases this was true for 5 of the 6 individuals. Analysis by Fisher’s exact test 

comparing *6 genotypes in those carrying one or more A-9796 alleles (Table 3.12) 

showed a highly significant association for both cases (p=0.0008) and controls 

(p<0.0001) suggesting that the 590G>A and -9796T>A SNPs were in strong linkage 

disequilibrium. 
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            Table 3.9 Association of NAT2 genotypes and the risk of ATD-DILI 
 

   NAT2 

Combined European-South Asian cohort 
 

 NAT2 Allele 
Cases                                     

(n=26) 

Community controls     

(n=90) 

Rapid acetylator 

NAT2*4*4 

NAT2*4*5 

NAT2*4*6 

NAT2*4*7 

Slow acetylator 
NAT2*5*5 

NAT2*5*6 

NAT2*5*7 

NAT2*6*6  

NAT2*6*7 

 

 

 

 2 (0.08) 

 0 (0.00) 

 2 (0.08) 

 0 (0.00) 

 

 6 (0.23) 

 8 (0.31) 

 1 (0.04) 

 5 (0.19) 

 2 (0.08) 

 

 

     6 (0.07) 

   14 (0.16) 

   16 (0.18) 

     5 (0.06) 

 

   13 (0.14) 

   20 (0.22) 

     2 (0.02) 

   10 (0.11) 

     4 (0.04) 

European cohort 
  

NAT2 Allele 
Cases                                     

(n=13) 

Community controls     

(n=50) 
  

Rapid acetylator 

NAT2*4*4 

NAT2*4*5 

NAT2*4*6 

NAT2*4*7 

Slow acetylator 
NAT2*5*5 

NAT2*5*6 

NAT2*5*7 

NAT2*6*6  

         NAT2*6*7 

 

 

2 (0.15) 

0 (0.00) 

1 (0.08) 

0 (0.00) 

 

5 (0.38) 

1 (0.08) 

0 (0.00) 

4 (0.31) 

0 (0.00) 

 

 

     4 (0.08) 

   12 (0.24) 

     9 (0.18) 

     0 (0.00) 

 

     9 (0.18) 

   11 (0.22) 

     1 (0.02) 

     3 (0.06) 

     1 (0.02) 

        

South Asian cohort 
 

        NAT2 Allele 
Cases                                     

(n=13) 

  ATD-Tolerant 

controls (n=81) 

Community    

controls (n=40) 
 

Rapid acetylator 

NAT2*4*4 

NAT2*4*5 

NAT2*4*6 

NAT2*4*7 

Slow acetylator 
NAT2*5*5 

NAT2*5*6 

NAT2*5*7 

NAT2*6*6  

         NAT2*6*7 

 

 

0 (0.00) 

0 (0.00) 

1 (0.08) 

0 (0.00) 

 

1 (0.08) 

7 (0.54) 

1 (0.08) 

1 (0.08) 

2 (0.15) 

 

     

  7 (0.09) 

10 (0.12) 

17 (0.21) 

  9 (0.11) 

 

  4 (0.05) 

16 (0.20) 

  4 (0.05)  

10 (0.12) 

  4 (0.05) 

 

 

   2 (0.05) 

   2 (0.05) 

   7 (0.18) 

   5 (0.13) 

 

   4 (0.10) 

   9 (0.23) 

   1 (0.03) 

   7 (0.18) 

 3 (0.08)   
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          Table 3.10 Predicted NAT2 acetylator phenotype and the risk of ATD-DILI 
 

  NAT2  

  
Acetylator Phenotype 

P-value OR (95% CI) 
Rapid Slow 

 

Combined European and 

South Asian cohort 
Cases (n=26) 

Community controls (n=90) 

 

 

 

 
  4 (0.15) 

41 (0.46) 

 

 

 

 
22 (0.85) 

49 (0.54) 

 

 

 

 

 

0.006 

 

 

 

 

 

4.60 (1.47-14.44) 

 
 

European cohort 
Cases (n=13) 

Community controls (n=50) 

 

 

 
  3 (0.23) 

25 (0.50) 

 

 

 
10 (0.77) 

25 (0.50) 

 

 

 

 

0.120 

 

 

 

 

3.33 (0.82-13.58) 

 

South Asian cohort 
Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

 
  1 (0.08) 

43 (0.53) 

16 (0.40) 

 
12 (0.92) 

38 (0.47) 

24 (0.60) 

 
 

0.002 

0.041 

 
 

13.58 (1.69-109.40) 

8.00 (0.94-67.67) 

 

P-value for comparison of acetylator phenotype frequencies between cases vs controls using 

Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

  

 

 

Table 3.11 The relationship between 9796T>A and the other NAT2 polymorphisms  

 

Combined European-South Asian cohort 
 

NAT2 Allele 

Genotype -9796T>A (rs4646244) 

Cases (n=26)  Community controls (n=90) 

TT TA AA   TT TA AA 

Rapid acetylator 

NAT2*4*4 

NAT2*4*5 

NAT2*4*6 

NAT2*4*7 

Slow acetylator 
NAT2*5*5 

NAT2*5*6 

NAT2*5*7 

         NAT2*6*6  

     NAT2*6*7 
 

 

   2 (0.08) 

        - 

   1 (0.04) 

        - 

 

   5 (0.19) 

   1 (0.04) 

   1 (0.07) 

        - 

   1 (0.07) 
 

  

        - 

        - 

   1 (0.04) 

      - 

 

 1 (0.04) 

 7 (0.27) 

      - 

   1 (0.04) 

        - 

 

        - 

        - 

        - 

        - 

 

        - 

        - 

        - 

   5 (0.19) 

        - 

 

    4 (0.04) 

  12 (0.13) 

    1 (0.01) 

    3 (0.03)  

 

   13 (0.14)            

     3 (0.03) 

     2 (0.02) 

         - 

         - 

  

   2 (0.02) 

   2 (0.02) 

 15 (0.17) 

   2 (0.02) 

    

        - 

 17 (0.19) 

        - 

   2 (0.02) 

   4 (0.04)    

 

        - 

        - 

        - 

        - 

 

        - 

        - 

        - 

    8 (0.09) 

        - 
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Table 3.12 Statistical analysis of the association between -9796T>A and other    

NAT2 alleles 
  

  
Genotype -9796T>A (rs4646244) 

P-value OR (95% CI) 
         TT TA/AA 

 

Cases 
NAT2*6 positive  

NAT2*6 negative  

 

 
3 (0.12) 

8 (0.31) 

 

 

 
       14 (0.54) 

 1 (0.04) 

 
 

 
 

0.008 

 
 

 
 

37.33 (3.3-421.8) 

 

Controls 
NAT2*6 positive 

NAT2*6 negative 

 

 

 
4 (0.04 

34 (0.38) 

 

 

 
46 (0.51) 

  6 (0.07) 

 

 

 

 

<0.0001 

 

 

 

 

65.2 (17.1-249.1) 

 
 

P-value for comparison of NAT2-9796T>A genotypes frequencies between NAT2*6 positive vs 

NAT2*6 negative using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 
 

A total of 6 patients who underwent liver transplant following liver failure due to ATD-

DILI were studied in detail. Five of these were cases in the main study but a sixth case 

was of African ethnic origin and was not included in the main study. As shown in Table 

3.13, genotyping for NAT2*5, *6 and *7 suggested that 50% of these cases were fast 

acetylators including two, of European ethnic origin and African ethnic origin 

respectively, who were homozygous for NAT2*4 and therefore predicted to be very 

rapid acetylators. To investigate the possibility that some of these cases of severe DILI 

might be positive for additional NAT2 mutations, the complete coding sequence in all 6 

cases was determined. For the African case, the sequencing showed that this individual 

was heterozygous for NAT2*14A because a G>A base change at position 191 (Arg to 

Glu) was detected (Figure 3.24). This individual was still classed as a rapid acetylator 

as the final genotype was NAT2*4*14A. 

 
Table 3.13 NAT2 genotypes (for *5, *6 and *7) and predicted phenotypes in 6       

liver-transplanted patients  

 

 

* Later found by sequencing to have the genotype NAT2*4*14A 

Patient Ethnic origin NAT2 Genotypes NAT2 Phenotype 

1 African* NAT2*4*4 Rapid acetylator 

2 Bangladeshi NAT2*4*6 Rapid acetylator 

3 European NAT2*4*4 Rapid acetylator 

4 European NAT2*5*5 Slow acetylator 

5 Pakistani NAT2*5*6 Slow acetylator 

6 Indian NAT2*5*6 Slow acetylator 
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Figure 3.24 Detection of the NAT2 191G>A nucleotide change in a liver 

transplant patient from African origin 

 

Sequencing traces showed that this individual possessed the GA genotype 

and therefore was heterozygous for NAT2*14A.   

 

 

          

Heterozygous GA genotype      

(position 191)

Heterozygous GA genotype      

(position 191)
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3.3.1.2 Sensitivity analysis on NAT2 genotype as a predictor of anti -

TB DILI 
 

Using the data shown in Table 3.8 for the combined European and South Asian cohort, 

analysis of the value of NAT2 genotype for predicting DILI due to anti-TB drugs was 

determined. Sensitivity, specificity, negative predictive value and positive predictive 

value were each calaulated using standard methods (www.hpa-

midas.org.uk/sensitivity_calculator.asp). The incidence of DILI due to anti-TB drugs 

was assumed to be 2% for the predictive value calculations. The results obtained are 

shown in Table 3.14.  

 

                     Table 3.14 Sensitivity analysis for NAT2 genotyping  

 
 

 

 

 

 

 

 

 

 

 

   

 

     * Predictive values are expressed as a proportion or probability, with a range of 0 to1  

 

 

3.3.2 Genotyping for additional candidate genes for ATD-DILI 

3.3.2.1 Genes chosen for study 
 

To assess the possible contribution of other genes relevant to either ATD metabolism or 

to protection against oxidative stress, it was decided to study the candidate genes and 

SNPs listed in Table 3.15. In the case of PXR, GSTA1, GSTT1 and GSTA1, it was 

decided to study specific polymorphisms which had previously been demonstrated to 

show functional significance. For CYP2E1, the SNPs chosen for study were based on 

previous studies on disease association but for GSTA4 because of the absence of 

previous data, we selected SNPs that tagged the most common haplotypes based on 

information from the Hapmap. For SOD2, we chose to study one SNP previously 

suggested to be functionally significant and relevant to DILI but also selected a second 

SNP so that the common haplotypes were tagged. A total of 14 different polymorphisms 

were chosen for study. All SNPs studied were successfully genotyped and we found no 

deviation from the Hardy-Weinberg equilibrium in all controls except for -1053C>T in 

 
Sensitivity Specificity 

Predictive value* 

Positive Negative 

NAT2 

genotyping 
84.6% 45.6% 0.03 0.99 

http://www.hpa-midas.org.uk/sensitivity_calculator.asp
http://www.hpa-midas.org.uk/sensitivity_calculator.asp
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CYP2E1. The minor allele frequency of -1053C>T in CYP2E1 is closed to zero which 

results in a deficiency of heterozygotes relative to Hardy-Weinberg expectations. For 

GSTT1 and GSTM1, the Hardy-Weinberg equilibrium analysis was excluded for these 

genes as the data presented (presence versus the absence of the GSTT1/GSTM1 

polymorphism) cannot be used to assess Hardy-Weinberg equilibrium. Considering that 

a total of 15 genotyping assays were evaluated in our study, the adjusted significant P 

value is 0.0033 after Bonferroni correction for multiple testing. 

 

                          Table 3.15 Additional candidate genes chosen for study 

 

   Gene Position       SNP Reference SNP ID 

CYP2E1 Promoter   -1053C>T   rs2031920 

 Promoter   -71G>T   rs6413420 

 Intron 7   9896C>G   rs2070676 

PXR Promoter   -25385C>T   rs3814055 

GSTA1 Promoter   -69C>T   rs3957357 

GSTA4 Intron 1         –   rs316141 

 Intron 1         –   rs4147618 

 Intron 2         –   rs316128 

 Intron 4         –   rs3756980 

 Intron 6         –   rs13207376 

GSTT1                             Null allele 

GSTM1                      Null allele 

SOD2 Exon 2         –   rs4880 

 3’UTR         –   rs5746136 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

125 

3.3.2.2 CYP2E1 

 

Four SNPs in CYP2E1 (-1293G>C, -1053C>T, -71G>T and 9896C>G) were selected 

and genotyped. The -1293G>C and -1053C>T genotypes were in complete linkage 

disequilibrium and therefore the genotype data for the -1293G>C was excluded in this 

study. The genotyping results for -1053C>T, -71G>T and 9896C>G polymorphisms for 

the combined European-South Asian cohorts are shown in Table 3.16. As shown in 

Table 3.16, an apparent increased frequency of the -1053CT genotype was observed in 

ATD-DILI cases compared to the community controls, however, the difference was not 

significant (OR=7.42; 95% CI=0.65-85.35; p=0.13). We also observed no significant 

differences between the groups in the analysis of -71G>T and 9896C>G 

polymorphisms. In the European cohorts, an increased frequency of the -1053CT 

genotype was found in ATD-DILI cases compared to the community controls 

(OR=21.96; 95% CI=0.99-489.3) with a p-value of 0.04. The result is however not 

reliable as the genotype frequencies in the community controls for the SNP -1053C>T 

did not fit with the Hardy-Weinberg equation (Table 3.17). If Bonferroni correction for 

multiple testing is performed to reflect the fact that genotyping for 15 different 

polymorphisms has been performed and the level of significance is set at 0.0033, the p-

values here are not significant. Genotyping for -71G>T and 9896C>G polymorphisms 

in the cases and controls also showed no significant difference in frequency between the 

groups (p=0.69-0.30). As shown in Table 3.17, there was an increased frequency of 

wild-type CC (9896C>G) in cases compared to ATD-tolerant controls (OR=3.68; 95% 

CI=0.45-23.48) and community controls (OR=4.55; 95% CI=0.53-39.29); however it 

showed no statistical difference in the South Asian cohorts. For the -1053C>T and -

71G>T polymorphisms, there were no differences between the cases and ATD-tolerant 

controls, nor in the community controls (p=1.00).   
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Table 3.16 Association of CYP2E1 genotypes and the risk of ATD-DILI in 

combined European-South Asian cohorts 
 

   CYP2E1 

 
Genotypes 

Cases           

(n=26) 
 

Controls 

(n=90) 

Cases vs Controls 

P-value  OR (95% CI) 

 

-1053C>T  

(rs2031920) 

 

CC 

CT 

TT 

CC vs CT+TT 

 

24 (0.92) 

  2 (0.08) 

0 (0.00) 

 

 

 89 (0.99) 

   1 (0.01) 

   0 (0.00) 

 

 

 

 

 

0.13 

 

 

 

 

 7.42 (0.65-85.35) 

 

-71G>T 
(rs6413420) 

 

 
GG 

GT 

TT 

GG vs GT+TT 

 
22 (0.85) 

  4 (0.15) 

0 (0.00) 

 

 
 79 (0.88) 

 11 (0.12) 

   0 (0.00) 

 

 
 

 

 

0.74 

 
 

 

 

 1.31 (0.38-4.51) 

 

9896C>G 

(rs2070676)  

 

 
CC 

CG 

GG 

CC vs CG+GG  

 

 
21 (0.81) 

  5 (0.19) 

  0 (0.00) 

 
 68 (0.76) 

 11 (0.12) 

   1 (0.01) 

 

 
 

 

 

0.76 

 
 

 

 

 1.35 (0.43-4.27) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

 

 

Table 3.17 Association of CYP2E1 genotypes and the risk of ATD-DILI in 

European cohorts 
 

   CYP2E1 

 
Genotypes 

Cases           

(n=13) 
 

Controls 

(n=50) 

Cases vs Controls 

P-value  OR (95% CI) 

 

-1053C>T  

(rs2031920) 

 

CC 

CT 

TT 

CC vs CT+TT 

 

11 (0.85) 

  2 (0.15) 

0 (0.00) 

 

 

 50 (1.00) 

   0 (0.00) 

   0 (0.00) 

 

 

 

 

 

0.04 

 

 

 

 

 21.96 (0.99-489.3) 

 

-71G>T 
(rs6413420) 

 

 
GG 

GT 

TT 

GG vs GT+TT 

 
10 (0.77) 

  3 (0.23) 

0 (0.00) 

 

 
 43 (0.86) 

   7 (0.14) 

   0 (0.00) 

 

 
 

 

 

0.42 

 
 

 

 

 1.84 (0.40-8.41) 

 

9896C>G 

(rs2070676)  

 

 
CC 

CG 

GG 

CC vs CG+GG  

 

 
  9 (0.69) 

  4 (0.31) 

  0 (0.00) 

 
 39 (0.78) 

 11 (0.22) 

   0 (0.00) 

 

 
 

 

 

0.49 

 
 

 

 

 1.58 (0.41-6.11) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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 Table 3.18 Association of CYP2E1 genotypes and the risk of ATD-DILI in South 

Asian subjects 
 

  CYP2E1 

 -1053C>T (rs2031920) 
 

CC 

 

CT 

 

TT 

 

P-value 

 

 OR (95% CI) 

 Cases (n=13) 

 ATD-tolerant controls (n=81) 

 Community controls (n=40) 

 

13 (1.00) 

76 (0.94) 

39 (0.97) 

  0 (0.00) 

  5 (0.06) 

  1 (0.03)   

  0 (0.00) 

  0 (0.00) 

  0 (0.00) 

 

1.00 

1.00 

 

1.94 (0.10-37.20) 

1.03 (0.04-26.72) 

 -71G>T (rs6413420) 
 

GG 

 

GT 

 

TT 

 

P-value 

 

 OR (95% CI) 

 Cases (n=13) 

 ATD-tolerant controls (n=81) 

 Community controls (n=40) 

 

12 (0.92) 

74 (0.91) 

36 (0.90) 

  1 (0.08) 

  6 (0.08) 

  4 (0.10)   

  0 (0.00) 

  1 (0.01) 

  0 (0.00) 

 

1.00 

1.00 

 

1.14 (0.13-10.07) 

1.33 (0.14-13.13) 

 9896C>G (rs2070676) 
 

CC 

 

CG 

 

GG 

 

P-value 

 

 OR (95% CI) 

 Cases (n=13) 

 ATD-tolerant controls (n=81) 

 Community controls (n=40) 

 

12 (0.92) 

62 (0.77) 

29 (0.73) 

  1 (0.08) 

18 (0.22) 

10 (0.25)   

  0 (0.00) 

  1 (0.01) 

  1 (0.02) 

 

0.29 

0.25 

 

3.68 (0.45-23.48) 

4.55 (0.53-39.29) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

 

 

 

3.3.2.3 PXR 

 

The genotyping results for PXR -25385C>T polymorphism in the European and South 

Asian cohorts are shown in Table 3.19. In the combined European-South Asian cohorts, 

an increased frequency for the carriage of a wild-type C allele was observed in the cases 

compared with the community controls, yet the difference was not significant 

(OR=3.00; 95% CI=0.65-13.89; p=0.24). In the European cohort, no association was 

observed between the cases and the community controls (p=0.54). However, in the 

South Asian cohort, a slight increase for the carriage of a wild-type C allele was found 

in the cases compared with the community controls, however the difference was not 

significant (OR=6.05; 95% CI=0.32-113.50; p =0.17). There was also no association 

found between the ATD-tolerant controls with ATD-DILI cases (p=1.00). 
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             Table 3.19 Association of PXR genotypes and the risk of ATD-DILI  
 

PXR 

 -25385C>T (rs3814055) 
 

TT 

 

CT 

 

CC 

 

P-value 

 

 OR (95% CI) 
 

Combined European-

South Asian cohorts 
Cases (n=26) 

Community controls (n=90) 

 

 

 

 
  2 (0.08) 

18 (0.20) 

 

 

 

 
15 (0.58) 

33 (0.37) 

 

 

 

 
  9 (0.35) 

39 (0.43) 

 

 

 

 
 

0.24 

 

 

 

 
 

3.00 (0.65-13.89) 

 
 

 

European cohorts 
Cases (n=13) 

Community controls (n=50) 

 

 

 
   2 (0.15) 

 11 (0.22) 

 

 

 
   8 (0.62) 

 21 (0.42) 

 

 

 
   3 (0.23) 

 18 (0.36) 

 

 

 
 

0.72 

 

 

 
 

 1.55 (0.30-8.07) 

 
 

South Asian cohorts 
Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 
 

 

 
   0 (0.00) 

   4 (0.05) 

   7 (0.18) 

 

 
   7 (0.54) 

 42 (0.52) 

 12 (0.30) 

 

 
   6 (0.46) 

 35 (0.43) 

 21 (0.53) 

 

 

 

1.00 

0.17 

 

 

 

 1.57 (0.08-30.84) 

 6.05 (0.32-113.5) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

 

 

3.3.2.4 GSTA1 
 

The genotyping results of -69C>T in the European and South Asian cohorts are shown 

in Table 3.20. We found no association of GSTA1 genotypes and the risk of ATD-DILI 

in Europeans, South Asians and both cohorts combined. The relative frequency of the 

TT genotype among the community control groups varied from 21% in Europeans to 

5% in South Asians. An increased frequency of TT genotype was observed in the cases 

compared to the community controls in the South Asian cohort, however it showed no 

statistical difference in each group (OR=3.46; 95% CI=0.44-27.44; p=0.25). 
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          Table 3.20 Association of GSTA1 genotypes and the risk of ATD-DILI  

 

GSTA1 

 -69C>T (rs3957357) 
 

TT 

 

CT 

 

CC 

 

P-value 

 

 OR (95% CI) 
 

Combined European-

South Asian cohorts 
Cases (n=26) 

Community controls (n=90) 

 

 

 
  6 (0.23) 

14 (0.16) 

 

 

 
  9 (0.35) 

41 (0.46) 

 

 

 
11 (0.42) 

35 (0.39) 

 

 

 
 

0.38 

 

 

 
  

  1.63 (0.56-4.78) 

 
 

European cohorts 
Cases (n=13) 

Community controls (n=50) 

 

 

 
  4 (0.31) 

12 (0.24) 

 

 

 
  5 (0.38) 

23 (0.46) 

 

 

 
  4 (0.31) 

15 (0.30) 

 

 

 
 

0.72 

 

 

 
 

  0.71 (0.19-2.73) 

 
 

South Asian cohorts 
Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

 

 
  2 (0.15) 

  7 (0.09) 

  2 (0.05) 

 

 
  4 (0.31) 

33 (0.41) 

18 (0.45) 

 

 
  7 (0.54) 

41 (0.51) 

20 (0.50) 

 

 

 

0.61 

0.25 

 

 

 

  1.92 (0.35-10.47) 

  3.46 (0.44-27.44) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

 

 

3.3.2.5 GSTA4 
 

The association of five SNPs in GSTA4 and the risk of ATD-DILI in the combined 

dataset and for the European and South Asian cohorts separately are shown in Table 

3.21, Table 3.22 and Table 3.23 respectively. In the combined European-South Asian 

cohorts, we observed an apparently significant association (p<0.05) in rs316128 and 

rs3756980 with the risk of ATD-DILI (Table 3.21). For rs316128, the proportion of A 

allele carriers was significantly higher in the cases compared to the controls (OR=7.14; 

95% CI=0.91-56.05) with a p-value of 0.041. Patients with AA genotype (rs3756980) 

were associated with a higher risk of developing hepatotoxicity due to anti-TB drugs 

(OR=3.67; 95% CI=1.02-13.24) with a p-value of 0.046. However, the p-values here are 

not significant after correction for multiple testing (p>0.0033). In the South Asian 

cohorts, lack of association was observed between GSTA4 polymorphisms and the risk 

of ATD-DILI (p=0.45-1.00). In the European cohort, carriage of a wild-type A allele in 

rs316128 was found to be associated with increased susceptibility to ATD-induced DILI 

with a p-value of 0.027 (OR=11.79; 95% CI=0.7-211.2). An apparent differences of the 

homozygous AA genotype in rs3756980 was also found in the cases compared to the 

controls but this was not significant (OR=8.00; 95% CI=1.0-66.5; p-value=0.045). For 
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rs316141, the frequency of the homozygous CC genotype was higher in the cases than 

the controls; again the difference was not significantly different (OR=3.00; 95% 

CI=0.86-10.51; p=0.103).  

 

Further analysis was performed by reconstructing haplotypes and estimating their 

frequencies using PHASE v2.1.1. The results are summarised in Table 3.24 and Table 

3.25. In the combined European-South Asian dataset, no association was found between 

the ATD-DILI susceptibility with a particular haplotypes. However, in the European 

cohort, a greater frequency of the CTAAA haplotype in the case group (69%) compared 

to the controls (44%) was detected. This gave an odds ratio of 2.86 (95% CI=1.14-7.2) 

with a p-value of 0.028 (Table 3.24).  

 

Table 3.21 Association of GSTA4 genotypes and the risk of ATD-DILI in combined 

European-South Asian cohorts 
 

GSTA4 

 
Genotypes 

 

Cases           

(n=26) 
 

 

Controls 

(n=90) 

 

Cases vs Controls 

P-value  OR (95% CI) 

 

 rs316141 
 

TT 

CT 

CC 

CC+CT vs TT 

 

  2 (0.08) 

12 (0.46) 

12 (0.46) 

 

 

 17 (0.19) 

 40 (0.44) 

 33 (0.37) 

 

 

 

 

 

0.240 

 

 

 

 

 2.80 (0.6-12.99) 

 

 rs4147618 

 
TT 

TA 

TT vs TA 

 
23 (0.88) 

  3 (0.12) 

 

 
 75 (0.83) 

 15 (0.17) 
 

 
 

 

0.760 

 
 

 

 1.53 )(0.41-5.77) 

 

 rs316128 

 
AA 

AC 

CC 

AA+AC vs CC 

 
  9 (0.34) 

16 (0.62) 

  1 (0.04) 

 
 30 (0.33) 

 40 (0.45) 

 20 (0.22) 

 

 
 

 

 

0.041 

 
 

 

 

7.14 (0.91-56.05) 

 

 rs3756980 

 
AA 

AG 

GG 

AA vs AG+GG 

 
22 (0.85) 

  3 (0.12) 

  0 (0.00) 

 
 60 (0.67) 

 27 (0.30) 

   3 (0.03) 

 

 
 

 

 

0.046 

 
 

 

 

 3.67 (1.02-13.24) 

 

 rs13207376 

 
AA 

AG 

GG 

AA vs AG+GG 

 

 
23 (0.88) 

  2 (0.08) 

  1 (0.04) 

 
 84 (0.93) 

   2 (0.02) 

   4 (0.05) 

 

 
 

 

 

0.420 

 
 

 

 

 1.83 (0.42-7.87) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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Table 3.22 Association of GSTA4 genotypes and the risk of ATD-DILI in 

European cohorts 
 

  GSTA4 

 
Genotypes 

 

Cases           

(n=13) 
 

 

Controls 

(n=50) 

 

Cases vs Controls 

P-value  OR (95% CI) 

 

 rs316141 
 

CC 

CT 

TT 

CC vs CT+TT 

 

   7 (0.54) 

   6 (0.46) 

   0 (0.00) 

 

 

 14 (0.28) 

 24 (0.48) 

 12 (0.24) 

 

 

 

 

 

0.103 

 

 

 

 

 3.00 (0.86-10.51) 

 

 rs4147618 

 
TT 

TA 

TT vs TA 

 
 12 (0.92) 

   1 (0.08) 

 

 
 40 (0.80) 

 10 (0.20) 
 

 
 

 

0.433 

 
 

 

 3.00 (0.4-25.9) 

 

 rs316128 

 
CC 

CA 

AA 

AA+CA vs CC  

 
   0 (0.00) 

   8 (0.62) 

   5 (0.38) 

 
 15 (0.30) 

 22 (0.44) 

 13 (0.26) 

 

 
 

 

 

0.027 

 
 

 

 

11.79 (0.7-211.2) 

 

 rs3756980 

 
AA 

AG 

GG 

AA vs AG+GG 

 
 12 (0.92) 

   1 (0.08) 

   0 (0.00) 

 
 30 (0.60) 

 18 (0.36) 

   2 (0.04) 

 

 
 

 

 

0.045 

 
 

 

 

 8.00 (1.0-66.5) 

 

 rs13207376 

 
AA 

AG 

GG 

AA vs AG+GG 

 

 
 11 (0.85) 

   2 (0.15) 

   0 (0.00) 

 
 47 (0.94) 

   2 (0.04) 

   1 (0.02) 

 

 
 

 

 

0.273 

 
 

 

 

 0.35 (0.1-2.4) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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Table 3.23 Association of GSTA4 genotypes and the risk of ATD-DILI in South 

Asian subjects 
 

GSTA4 

rs316141 
 

TT 

 

CT 

 

CC 

 

P-value 

 

 OR (95% CI) 

Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

  2 (0.15) 

11 (0.14) 

  5 (0.13) 

   6 (0.46) 

 36 (0.44) 

 16 (0.40)   

   5 (0.39) 

 34 (0.42) 

 19 (0.47) 

 

1.00 

0.75 

 

1.16 (0.35-3.85) 

1.45 (0.40-5.20) 

rs4147618 
 

TT 

 

TA 

 

AA 

 

P-value 

 

 OR (95% CI) 

Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

11 (0.85) 

73 (0.90) 

35 (0.88) 

   2 (0.15) 

   7 (0.09) 

   5 (0.12)   

   0 (0.00) 

   1 (0.01) 

   0 (0.00) 

 

0.63 

1.00 

 

0.60 (0.11-3.22) 

0.79 (0.13-4.64) 

rs316128 
 

AA 

 

AC 

 

CC 

 

P-value 

 

 OR (95% CI) 

Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

  4 (0.31) 

31 (0.38) 

17 (0.42) 

   8 (0.61) 

 39 (0.48) 

 18 (0.45)   

   1 (0.08) 

 11 (0.14) 

   5 (0.13) 

 

0.76 

0.53 

 

1.40 (0.40-4.92) 

1.66 (0.44-6.32) 

rs3756980 
 

AA 

 

AG 

 

GG 

 

P-value 

 

 OR (95% CI) 

Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

10 (0.77) 

59 (0.73) 

30 (0.75) 

   2 (0.15) 

 21 (0.26) 

   9 (0.22)   

   1 (0.08) 

   1 (0.01) 

   1 (0.03) 

 

1.00 

1.00 

 

1.24 (0.31-4.94) 

1.11 (0.25-4.86) 

rs13207376 
 

AA 

 

AG 

 

GG 

 

P-value 

 

 OR (95% CI) 

Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

12 (0.92) 

78 (0.96) 

37 (0.92) 

   0 (0.00) 

   0 (0.00) 

   0 (0.00)   

   1 (0.08) 

   3 (0.04) 

   3 (0.08) 

 

0.45 

1.00 

 

0.46 (0.04-4.81) 

0.97 (0.09-10.26) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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Table 3.24 Association of the most common GSTA4 haplotypes and the risk of 

ATD-DILI in combined European-South Asian cohorts 
 

GSTA4 

Haplotype 

Haplotype frequency Frequency of other haplotype  

Cases 

n=52 

Controls 

n=180 

Cases    

n=52 

 Controls    

n=180 
P-value OR (95% CI) 

 

 

CTAAA 

TTCAA 

TTCGA 

 

 

28 (0.54) 

10 (0.19) 

1 (0.02) 

 

 

 95 (0.53) 

 33 (0.18) 

 18 (0.10) 

 

 

 24 (0.31) 

 42 (0.88) 

 51 (0.96) 

 

 

  85 (0.47) 

147 (0.82) 

162 (0.90) 

 

 

1.00 

0.84 

0.08 

 

 

 1.04 (0.56-1.94) 

 1.06 (0.48-2.33) 

 5.67 (0.74-43.52) 
 

 

P-value for comparison of genotypes frequencies between groups using Fisher’s exact 2 tailed test; 

OR, odds ratios; CI, confidence interval 

 

 

 

 

Table 3.25 Association of the most common GSTA4 haplotypes and the risk of 

ATD-DILI in European cohorts 
 

GSTA4 

Haplotype 

Haplotype frequency Frequency of other haplotype  

Cases 

n=26 

Controls 

n=100 

Cases    

n=26 

 Controls    

n=100 
P-value OR (95% CI) 

 

 

CTAAA 

TTCAA 

TTCGA 
 

 

 

18 (0.69) 

  3 (0.12) 

1 (0.04) 

 

 

44 (0.44) 

20 (0.20) 

12 (0.12) 

 

 

   8 (0.31) 

 23 (0.88) 

 25 (0.96) 

 
 

  56 (0.51) 

  80 (0.88) 

  88 (0.88) 

 
 

0.028 

0.404 

0.300 

 
 

 2.86 (1.14-7.2) 

 1.92 (0.52-7.03) 

 3.41 (0.42-27.5)  

 

P-value for comparison of genotypes frequencies between groups using Fisher’s exact 2 tailed test; 

OR, odds ratios; CI, confidence intervals 
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3.3.2.6 GSTT1 
 

The relative frequency of the GSTT1 null genotype among community control groups 

varies from 27% in the Europeans and 10% in the South Asians (Table 3.26). No 

GSTT1 null mutation was detected in the South Asian cases and only 2 cases (15%) 

with GSTT1 null mutation was observed in the European cohorts. We observed no 

association between GSTT1 null genotype and ATD-DILI in combined dataset and also 

the European and South Asian cohorts separately, thus suggesting that GSTT1 null 

mutation is unlikely to be associated with the risk of ATD-DILI in our studied cohorts.   

 

 

 

 Table 3.26 Statistical analysis of GSTT1 ‘null’ polymorphism and the risk of 

ATD-DILI  
 

   GSTT1  

  
‘Null’ mutation 

P-value  OR (95% CI) 
Present Absent 

 

Combined European and 

South Asian cohorts 
Cases (n=26) 

Community controls (n=90) 

 

 

 

 
  2 (0.08) 

18 (0.20) 

 

 

 

 
24 (0.92) 

72 (0.80) 

 

 

 

 
 

0.24 

 

 

 

 
 

3.00 (0.65-13.89) 

 
 

European cohorts 
Cases (n=13) 

Community controls (n=50) 

 

 
  2 (0.15) 

14 (0.28) 

 

 
11 (0.85) 

36 (0.72) 

 

 

 

0.49 

 

 

 

 2.14 (0.42-10.90) 

 

South Asian cohorts 
Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

 
  0 (0.00) 

15 (0.19) 

  4 (0.10) 

 
13 (1.00) 

66 (0.81) 

36 (0.90) 

 
 

0.12 

0.56 

 
 

6.29 (0.35-111.8) 

0.30 (0.02-5.97) 

 

P-value for comparison of genotypes frequencies between cases vs controls using Fisher’s 

exact 2 tailed test; OR, odds ratios; CI, confidence intervals 
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3.3.2.7 GSTM1 
 

The association of GSTM1 null polymorphism and the risk of ATD-DILI in Europeans, 

South Asians and both cohorts combined are shown in Table 3.27. All samples, except 

one from the South Asian cases, were successfully genotyped. In the European cohort, 

frequency of the GSTM1 null genotype was higher in the cases than the controls but this 

was not statistically significant (OR=2.44; 95% CI=0.66-8.98; p=0.221). In the South 

Asian cohorts, an apparent increased frequency of  the GSTM1 null genotype was 

observed in the cases, however it was not statistically significant when compared to the 

ATD-tolerant controls (OR=3.40; 95% CI=0.94-12.26; p=0.064) and the community 

controls (OR=3.71; 95% CI=0.95-14.54; p=0.094). In the combined dataset, we 

observed an apparently significant increase in the GSTM1 null mutation in the cases 

(68%) compared to the controls (42%) with a p-value of 0.026 (OR=2.91; 95% 

CI=1.14-7.43). The p-value here however is not significant after correction for multiple 

testing (p>0.0033). The association of the combined effect of NAT2 and GSTM1 

polymorphisms with the risk of ATD-DILI was further examined (Table 3.28). In the 

combined European-South Asian cohorts, the NAT2 slow acetylator phenotype and 

GSTM1 null genotype together showed highest distribution in the cases (56%) 

compared to the controls (26%) with a p-value of 0.007 (OR=3.71; 95% CI=1.48-9.31). 

In contrast, the NAT2 rapid acetylator and GSTM1 null genotype combination was 

higher in the controls with a p-value of 0.008 (OR=9.75; 95% CI=1.25-75.87). This 

suggests that NAT2 slow acetylator and GSTM1 null genotype combination correlated 

significantly with susceptibility to ATD-DILI. 
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Table 3.27 Statistical analysis of GSTM1 ‘null’ polymorphism and the risk of 

ATD-DILI  
 

   GSTM1  

  
‘Null’ mutation 

 P-value  OR (95% CI) 
Present Absent 

 

Combined European-

South Asian cohorts 
Cases (n=25) 

Community controls (n=90) 

 

 

 

 
  17 (0.68) 

  38 (0.42) 

 

 

 

 
    8 (0.32) 

  52 (0.58) 

 

 

 

 
 

0.026 

 

 

 

 
 

2.91 (1.14-7.43) 

 
 

European cohorts 
Cases (n=13) 

Community controls (n=50) 

 

 
    9 (0.69) 

  24 (0.48) 

 

 
    4 (0.31) 

  26 (0.52) 

 

 

 

0.221 

 

 

 

2.44 (0.66-8.96) 

 

South Asian cohorts 
Cases (n=12) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

 

 
    8 (0.67) 

  30 (0.37) 

  14 (0.35) 

 
    4 (0.33) 

  51 (0.63) 

  26 (0.65) 

 
 

0.064 

0.094 

 
 

3.40 (0.94-12.26) 

3.71 (0.95-14.54) 

 

P-value for comparison of genotypes frequencies between cases vs controls using Fisher’s 

exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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Table 3.28 Statistical analysis of combined effect of NAT2 acetylator status and 

GSTM1 ‘null’ polymorphism in ATD-DILI  
 

    

Combined European-South Asian    

cohorts 

Case 

(n=25) 

Control 

(n=90) 
 P-value  OR (95% CI) 

 Slow acetylator + GSTM1 null 

 Slow acetylator + GSTM1 present 

 Rapid acetylator + GSTM1 null 

 Rapid acetylator + GSTM1 present 

 

   

  14 (0.56) 

    7 (0.28) 

    3 (0.12) 

    1 (0.04) 

     

  23 (0.26) 

  26 (0.29) 

  15 (0.17) 

  26 (0.29) 

 

0.007 

1.000 

0.760 

0.008 

 

3.71 (1.48-9.31) 

1.04 (0.39-2.80) 

1.47 (0.39-5.53) 

9.75 (1.25-75.87) 

 European cohorts  Case 

(n=13) 

Control 

(n=50) 
 P-value  OR (95% CI) 

 Slow acetylator + GSTM1 null 

 Slow acetylator + GSTM1 present 

 Rapid acetylator + GSTM1 null 

 Rapid acetylator + GSTM1 present 

 

   

    7 (0.54) 

    3 (0.23) 

    2 (0.15) 

    1 (0.08) 

     

  13 (0.26) 

  12 (0.24) 

  11 (0.22) 

  14 (0.28) 

 

0.092 

1.000 

0.729 

0.162 

 

3.32 (0.94-11.71) 

1.05 (0.25-4.46) 

1.55 (0.30-8.07) 

4.67 (0.55-39.32) 

 South Asian cohorts  Case 

(n=12) 

Control 

(n=40) 
 P-value  OR (95% CI) 

 Slow acetylator + GSTM1 null 

 Slow acetylator + GSTM1 present 

 Rapid acetylator + GSTM1 null 

 Rapid acetylator + GSTM1 present 

 

   

    7 (0.58) 

    4 (0.33) 

    1 (0.08) 

    0 (0.00) 

     

  10 (0.25) 

  14 (0.35) 

    4 (0.10) 

  12 (0.30) 

 

0.042 

1.000 

1.000 

0.047 

 

4.20 (1.09-16.24) 

1.08 (0.28-4.22) 

1.22 (0.12-12.11) 

5.14 (0.60-44.12) 

 

 South Asian cohorts  
Case 

(n=12) 

ATD-tolerant 

control (n=81) 
 P-value  OR (95% CI) 

 Slow acetylator + GSTM1 null 

 Slow acetylator + GSTM1 present 

 Rapid acetylator + GSTM1 null 

 Rapid acetylator + GSTM1 present 

 

   

    7 (0.58) 

    4 (0.33) 

    1 (0.08) 

    0 (0.00) 

     

      17 (0.21) 

      21 (0.26) 

      13 (0.16) 

      30 (0.37) 

 

0.147 

0.728 

0.685 

0.054 

 

2.69 (0.76-9.54) 

1.43 (0.39-5.24) 

2.10 (0.25-17.72) 

7.06 (0.87-57.03) 

 
 

P-value for comparison of genotypes frequencies between cases vs controls using Fisher’s 

exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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3.3.2.8 SOD2 
 

The association of SOD2 polymorphisms and their risk with ATD-DILI in the combined 

dataset and the European and South Asian cohorts separately are shown in Table 3.29, 

Table 3.30 and Table 3.31 respectively. Two SNPs in SOD2 (rs4880 and rs5746136) 

were selected and genotyped. No significant association was found between the case 

and control groups either in the combined dataset or in the European and South Asian 

cohorts separately (p>0.05). 

 

 

Table 3.29 Association of SOD2 genotypes and the risk of ATD-DILI in combined 

European-South Asian cohorts 
 

   SOD2 

 
Genotypes 

 

Cases           

(n=26) 
 

 

Controls 

(n=90) 

 

Cases vs Controls 

P-value  OR (95% CI) 

 

 rs4880 
 

TT 

TC 

CC 

CC+TC vs TT 

 

  7 (0.27) 

12 (0.46) 

  7 (0.27) 

 

 

 20 (0.22) 

 45 (0.50) 

 25 (0.28) 

 

 

 

 

 

0.61 

 

 

 

 

 1.29 (0.47-3.50) 

 

 rs5746136 

 
GG 

GA 

AA 

GA+AA vs GG  

 

 
  8 (0.31) 

16 (0.61) 

  2 (0.08) 

 
 42 (0.47) 

 39 (0.43) 

   9 (0.10) 

 

 
 

 

 

0.18 

 
 

 

 

 1.97 (0.78-4.99) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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Table 3.30 Association of SOD2 genotypes and the risk of ATD-DILI in European 

cohorts 
 

   SOD2 

 
Genotypes 

 

Cases           

(n=13) 
 

 

Controls 

(n=50) 

 

Cases vs Controls 

P-value  OR (95% CI) 

 

 rs4880 
 

TT 

TC 

CC 

CC+TC vs TT 

 

  3 (0.23) 

  7 (0.54) 

3 (0.23) 

 

 

 11 (0.22) 

 23 (0.46) 

 16 (0.32) 

 

 

 

 

 

0.74 

 

 

 

 

 1.57 (0.38-6.50) 

 

 rs5746136 

 
GG 

GA 

AA 

GA+AA vs GG  

 

 
  4 (0.31) 

  9 (0.69) 

 

 
 25 (0.50) 

 21 (0.42) 

   4 (0.08) 

 

 
 

 

 

0.35 

 
 

 

 

 2.25 (0.61-8.27) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 

 

 

 

Table 3.31 Association of SOD2 genotypes and the risk of ATD-DILI in South 

Asian subjects 
 

SOD2 

   rs4880 
 

TT 

 

TC 

 

CC 

 

P-value 

 

 OR (95% CI) 

  Cases (n=13) 

  ATD-tolerant controls (n=81) 

  Community controls (n=40) 

 

  4 (0.31) 

11 (0.14) 

  9 (0.23) 

   5 (0.38) 

 36 (0.44) 

 22 (0.55)   

   4 (0.31) 

 34 (0.42) 

   9 (0.23) 

 

0.21 

0.71 

 

2.83 (0.74-10.79) 

1.53 (0.38-6.16) 

   rs5746136 
 

GG 

 

GA 

 

AA 

 

P-value 

 

 OR (95% CI) 

  Cases (n=13) 

  ATD-tolerant controls (n=81) 

  Community controls (n=40) 

 

  4 (0.31) 

40 (0.49) 

17 (0.42) 

   7 (0.54) 

 34 (0.42) 

 18 (0.45)   

   2 (0.15) 

   7 (0.09) 

   5 (0.13) 

 

0.25 

0.53 

 

2.20 (0.63-7.71) 

1.67 (0.44-6.32) 

 

P-value for comparison of genotypes frequencies possession of one or two variant alleles between 

cases vs controls using Fisher’s exact 2 tailed test; OR, odds ratios; CI, confidence interval 
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3.3.3 NAT1 

 

As preliminary evidence from a genome-wide association study on the European ATD-

DILI cases suggested that rs2739685 showed borderline significance for a genome-wide 

association using a different control group (Daly and Shen, unpublished), it was decided 

to genotype all the ATD-DILI cases and the controls for this SNP. A Taqman SNP 

genotyping assay used in this study produced a satisfactory allelic discrimination for 

rs2739685 SNP in all the DNA samples. Figure 3.25 shows three distinct genotype 

clusters from the intensity plot of an allelic discrimination assay using VIC and FAM 

dyes. The generation of the fluorescent signals from VIC and FAM probes only occur in 

the presence of the complementary target sequence to indicate the specific allele. The 

allelic distribution was in Hardy Weinberg equilibrium in both European (p=0.335) and 

South Asian cohorts (p=0.997). As shown in Table 3.32, the frequency of allele C was 

significantly higher in the European cases than controls (OR=7.13; 95% CI=1.86-27.34). 

Fisher’s exact test revealed a significant association between the variant allele (C) and 

the risk of ATD-DILI (p=0.006), suggesting its role of conferring increased risk of the 

development of ATD-DILI. If correction for multiple testing is performed which for a 

total of 15 genotyping assays results in the level of significance set at 0.0033, the 

association observed here is not statistically significant. In the South Asian cohorts, an 

increased frequency of the carriage of T allele was found in the cases but it was not 

statistically significant when compared to the ATD-tolerant controls (OR=2.68; 95% 

CI=0.76-9.40; p=0.14) and community controls (OR=3.75; 95% CI=0.98-14.33; 

p=0.06). In the combined dataset, no significant association was detected between NAT1 

genotypes and ATD-DILI. The lack of association in the combined dataset could be due 

to the allelic heterogeneity between the two populations. The minor allele frequencies 

(MAF) and its 95% confidence interval (CI) values of our present community control 

data sets were analysed and compared against genotypes data from population based 

controls. Using the publicly available data from the British 1985 Birth Cohort 

(http://www.b58cgene.squl.ac.uk/), the MAF from 1398 population controls was 15% 

(95%CI=13-16%). In our present European community controls data set, the MAF was 

12% (95%CI=7-17%), similar to that in the population control group. On the other hand, 

genome data of Gujarati Indians in Houston (n=88) obtained from Ensembl genome 

viewer (http://www.ensembl.org/index.html) was used as the ethnically matched control 

to compared with our South Asian cohort. The published MAF of Gujarati Indians was 

http://www.b58cgene.squl.ac.uk/
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34% (95%CI=29-39%) which is similar to our South Asian cohort (MAF=32% 

(95%CI=24-39%).  
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Figure 3.25 Allelic discrimination plot of the DNA samples 
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Vertical axis represents relative fluororesence for FAM label (marker of T-major 

allele); horizontal axis represents relative fluorescence for VIC label (marker of 

C- minor allele). Cluster colored blue is homozygous TT genotype. Green 

colored cluster is heterozygous TC genotype while red cluster is homozygous CC 

genotype.Grey colored cluster denotes the no template control (containing 

distilled water).  

Allelic Discrimination Plot  
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        Table 3.32 Association of NAT1 genotypes and the risk of ATD-DILI  

 

NAT1 

 rs2739685 
 

TT 

 

TC 

 

CC 

 

P-value 

 

 OR (95% CI) 
 

Combined European-

South Asian cohorts 
Cases (n=26) 

Community controls (n=90) 

 

 

 

 
13 (0.50) 

53 (0.59) 

 

 

 

 
10 (0.38) 

31 (0.34) 

 

 

 

 
  3 (0.12) 

  6 (0.07) 

 

 

 

 
 

0.50 

 

 

 

 
 

1.43 (0.60-3.44) 

 
 

 

European cohorts 
Cases (n=13) 

Community controls (n=50) 

MAF=12% (95% CI=7-17%) 
 

 

 

 
  4 (0.31) 

38 (0.76) 

 

 

 

 
  6 (0.46) 

12 (0.24) 

 

 

 
  3 (0.23) 

  0 (0.00) 

 

 

 
 

0.006 

 

 

 
 

 7.13 (1.86-27.34) 

 

 

South Asian cohorts 
Cases (n=13) 

ATD-tolerant controls (n=81) 

Community controls (n=40) 

MAF=32% (95%CI=24-39%) 
 

 

 
  9 (0.69) 

37 (0.46) 

15 (0.38) 

 

 

 
  4 (0.31) 

33 (0.41) 

19 (0.48) 

 

 
  0 (0.00) 

11 (0.14) 

  6 (0.15) 

 

 

 

0.14 

0.06 

 

 

 

 2.68 (0.76-9.40) 

 3.75 (0.98-14.33) 

 

P-value for comparison of genotypes frequencies between cases vs controls using Fisher’s exact 2 

tailed test; OR, odds ratios; CI, confidence interval; MAF, minor allele frequency 

 

 

 

3.4 Discussion 

 

The NAT2 polymorphism has been shown as a major susceptibility risk factor for ATD-

DILI; variants associated with slow acetylation showed an increased risk of ATD-DILI 

and this clear association has been confirmed in several studies (Bose et al., 2011; Lee 

et al., 2010; Kim et al., 2009; Bozok Cetintas et al., 2008; Possuelo et al., 2008; Cho et 

al., 2007; Huang et al., 2002; Ohno et al., 2000) including our present findings. The 

frequency of the slow acetylator genotypes in the present study is significantly higher in 

cases (85%) compared to the community controls (54%) with a p-value of 0.006 

(OR=4.60; 95% CI=1.47-14.44) in the combined European-South Asian cohorts. When 

the data from this combined analysis was used for sensitivity analysis, it was found that 

though sensitivity and negative predictive values were high at 85% and 0.99 

respectively, specificity was relatively low at 46% and the positive predictive value was 

only 0.03. This means that if genotyping for NAT2 was performed before prescribing 

isoniazid and slow acetylators were not given this drug, only 3 cases of anti-TB DILI 

would be prevented for every 100 cases tested with many patients being deprived of 
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beneficial isoniazid treatment unnecessarily and possibly prescribed more toxic drugs 

instead. 

 

When the cohorts were studied separately, slow acetylator status in the South Asian 

cohort was found to be associated with an increased susceptibility to ATD-DILI with 

the p-value of 0.002 (OR=13.58; 95% CI=1.69-109.4) when compared to the ATD-

tolerant controls. Similar observations was found in India which showed a statistically 

significant increased frequency of the slow acetylator genotypes in cases (71%) 

compared to the ATD-tolerant controls (45%) with a p-value of 0.005 (OR=2.99; 95% 

CI=1.4-6.2) (Bose et al., 2011). However the differences of the slow acetylator 

frequencies were not significant between cases and controls in the European cohort (p-

value=0.12) which may be a consequence of having insufficient statistical power due to 

small sample sizes (n=13). When the variants of NAT2 in the exon region (481C>T, 

590G>A and 857G>A) were examined separately, 590G>A polymorphism or NAT2*6 

allele was the only SNPs found to be associated to ATD-DILI in the European cohort 

alone with a p-value of 0.028 (OR=6.96; 95% CI=1.33-36.57). The lack of significant 

association of  NAT2*6 allele with ATD-DILI susceptibility observed in cases of the 

South Asian cohorts could be due to their high frequency of NAT2*6 allele (42%) in the 

controls compared to the European controls (27%). The prevalence of NAT2*6 allele is 

low in East Asians with approximately 20% reported in Korean and Taiwan (Lee et al., 

2010; Kim et al., 2009; Huang et al., 2002). Nevertheless, Kim and colleagues have 

reported that NAT2*6 allele was significantly associated with ATD-DILI susceptibility 

(p-value=0.0016) in the Korean population (Kim et al., 2009). Similar observations 

were found by Huang and colleagues where a higher frequency of NAT2*6 allele was 

detected in DILI cases compared to the ATD-tolerant controls (P<0.05) among the 

Taiwanese (Huang et al., 2002). It is however another study based in Taiwan which 

reported neither NAT2*6 nor NAT2*5 (481C>T) alleles were associated with the risk of 

ATD-DILI. Instead, a significant association between NAT2*7 (857G>A) allele and the 

risk of ATD-DILI was found (Lee et al., 2010). In our current study, NAT2*5 allele was 

highly prevalent (42%) among the South Asians which is in agreement with a previous 

study based in India (Bose et al., 2011) indicating that this allele is very common in the 

Indian/South Asian population. NAT2*5 allele was rare among the East Asians with a 

low frequency of 7%, whereas the NAT2*6 and NAT2*7 alleles were predominant (47% 

and 25% respectively) in Taiwanese population (Lee et al., 2010; Huang et al., 2002). 
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NAT2*7 allele was rare among the Europeans (2%) compared to that in South Asians 

(11%) as shown in our current study. When the three alleles were further assigned into 

slow and rapid acetylator phenotypes, both European and South Asian cohorts showed a 

similar frequency of slow acetylator distribution (50-60%), higher than those reported in 

East Asian cohorts (10%). A meta-analysis showed a stronger significant association of 

slow acetylator status with ATD-DILI when the analysis was limited to Asian 

populations (OR=2.52; 95%CI=1.49-4.26) compared to the results from a combination 

of various ethnicity (OR= 1.93; 95%CI 0.81-4.62) (Sun et al., 2008), indicating 

heterogeneity between and within populations could account for the lack of association 

of NAT2 slow acetylator status with ATD-DILI susceptibility. This ethnic heterogeneity 

for the NAT2 effect was observed in two studies based in Europe and Canada with 

mixed ethnicity where no association of risk with acetylator status was found (Yamada 

et al., 2009; Vuilleumier et al., 2006). A polymorphism (-9796T>A) in the NAT2 

promoter region was found to be associated with decreased expression of NAT2 and 

individuals carrying the variant -9796 A allele and NAT2*6 allele were predisposed to 

ATD-DILI (p=0.0004) (Kim et al., 2009). In the present study, a strong linkage 

disequilibrium between -9796 A allele and NAT2*6 allele was observed in both cases 

(p=0.0008) and controls (p<0.0001). Both alleles were also found to be associated to 

ATD-DILI in the European cohort with a p-value of 0.028 (OR=6.96; 95% CI=1.33-

36.57), indicating that these variants in the promoter and exons of NAT2 increase the 

risk of ATD-DILI by decreasing the expression of NAT2 thus confer slow acetylator 

status. As well as numbers of cases being small and of more than one ethnic origin, an 

additional limitation of the present study is that the majority of the patients studied had 

been treated with additional ATD to INH. Though generally causality had been 

demonstrated between exposure to ATD and onset of DILI, it is not possible to 

determine which drug caused DILI and the numbers studied are too small to look at 

separate drug groups. It remains possible that some of the observed DILI was caused by 

pyrazinamide exposure, but DILI due to this drug is unlikely to relate to NAT2 

genotype.  

 

Besides NAT2, association between CYP2E1 and ATD-DILI have been reported. Huang 

and colleagues have reported that the CYP2E1 c1/c1 genotype which is associated with 

the CYP2E1*5B allele shows higher CYP2E1 activity and therefore may lead to a 

greater production of hepatotoxic intermediates by the increased oxidation of 
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acetylhydrazine (Huang et al., 2003). Another two independent studies based in China 

(Wang et al., 2010) and Taiwan (Lee et al., 2010) have also reported a significant 

association between ATD-DILI and CYP2E1 c1/c1 genotype. The CYP2E1*5B (c2 

allele) occurs in approximately 24% of the East Asian population (Lee et al., 2010; 

Wang et al., 2010; Huang et al., 2003), but was rarely found in our present study cohorts 

(<2%). The lack of significant association observed in our present study cohorts might 

be explained by the substantially lower statistical power caused by the lower prevalence 

of CYP2E1 c2 allele. However the high frequency of the c1 allele (>98%) may indicate 

a high prevalence of ATD-DILI susceptibility in the South Asian and European cohorts. 

Controversial results have been reported in some studies with no association found 

between CYP2E1*5B and susceptibility to ATD-DILI in Korean (Kim et al., 2009; Cho 

et al., 2007) and British Columbian population of Canada (Yamada et al., 2009). This 

may indicate that the role of CYP2E1 in determining ATD-DILI may be less important 

compared to NAT2. However the combined risk for ATD-DILI associated with CYP2E1 

genotype and acetylator status may be essential to predict the risk of ATD-DILI. Huang 

and colleagues have demonstrated an increased risk of ATD-DILI in patients with 

combined slow acetylator status with CYP2E1 c1/c1 genotype (OR=7.43; 95% CI=2.42-

22.79) compared to patients possess NAT2 rapid status and CYP2E1 c1/c1 genotype 

(OR=3.94; 95%CI=1.45-10.67) (Huang et al., 2003). Bose and colleagues have also 

shown that slow acetylators carrying the CYP2E1 mutant CD or CC genotype were 

predisposed to develop ATD-DILI (OR=4.76; 95%CI=2.19-10.48) compared to rapid 

acetyators with CYP2E1 mutant CD or CC genotype (Bose et al., 2011).   

 

In present study, some evidence for associations between polymorphisms in the 

glutathione S-transferase genes, particularly GSTM1 and GSTA4 and ATD-DILI was 

found, suggesting a protective role of these enzymes in preventing ATD-DILI. 

However, these associations were not significant after correction for multiple testing. 

GSTA4 plays a major role against liver injury by its detoxifying effects through the 

conjugation of glutathione with harmful electrophiles generated during oxidative stress 

and lipid peroxidation (Zimniak et al., 1994). In particular, GSTA4 has been reported to 

conjugate with 4-hydroxynonenal, a mutagenic compound produced during oxidative 

stress and lipid peroxidation (Esterbauer et al., 1991). Though polymorphisms in 

GSTA4 have not been extensively studied, associations between GSTA4 variants with 

Alzheimer’s disease and Parkinson’s disease have been suggested, which may both be 
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linked to ROS exposure (Coppede et al., 2005). The result produced by this study 

suggests that the GSTA4 haplotype [C-T-A-A-A] carrying A allele at rs316128 and 

rs3756980 (OR=2.86; 95%CI=1.14-7.2) is associated with increased risk of ATD-DILI 

but loses significance after correction for multiple testing. For GSTM1 genotyping 

analysis, we observed an increased incidence of GSTM1 null mutation in the cases 

(68%) compared to the controls (42%) with a p-value of 0.026 (OR=2.91; 95% 

CI=1.14-7.43) in the combined European-South Asian cohorts. This result is consistent 

with two other studies involved Indian (OR=2.13; 95%CI=1.25-3.50) and Taiwanese 

populations (OR= OR=2.23; 95%CI=1.07-4.67) (Huang et al., 2007; Roy et al., 2001). 

However, when our studied cohorts were analysed separately, frequency of the GSTM1 

null genotype was higher in the cases than the controls but this was not statistically 

significant in neither European nor South Asian cohorts (p>0.05). This could be 

possibly due to an inadequate sample size of the European (n=13) and South Asian 

(n=12) to achieve adequate power. A similar observation was made in a Taiwanese 

population where the frequency of GSTM1 null genotype was higher in the cases 

(60.6%) than the controls (48.6%) but this was not statistically significant (OR=1.62; 

95%CI=0.94-2.79). Another two studies involving Indian and Caucasians have however 

reported no difference of GSTM1 null genotype between cases and controls (Chatterjee 

et al., 2010; Leiro et al., 2008). It was reported that the frequency of GSTM1 null 

genotype ranges from 20% to 79% in the Indian population (Naveen et al., 2004). India 

has a heterogeneous population with subjects from the southern part differing 

significant from those of the northern and eastern regions, thus require careful 

consideration for subject recruitment. Our current South-Asian cohort has shown a 

frequency of 35% of GSTM1 null genotype in the community controls which was in 

agreement with a previous report based on South India population (30.4%) (Naveen et 

al., 2004). As for the European cohort, we have observed a frequency of 48% of GSTM1 

null genotype among the controls which is similar to studies based in Taiwan (46%), 

China (48.6%) and Spain (41.7%) (Wang et al., 2010; Leiro et al., 2008; Huang et al., 

2007). of 48% 13.1% to 54.5% in Caucasians, from 41.7% to 55.5% in Asians, 46.7% 

in African-Americans, and 26.9% in Africans (Mo et al., 2009). In our present study, 

the risk of ATD-DILI susceptibility was significantly increased in subjects with 

combined NAT2 slow acetylator phenotype and GSTM1 null genotype (OR=3.71; 95% 

CI=1.48-9.31). In contrast, the NAT2 rapid acetylator and GSTM1 null genotype 

combination was higher in the controls (OR=9.75; 95% CI=1.25-75.87). This finding 
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was in agreement to a study reported by Fukino and colleagues which involved 

Japanese populations (Fukino et al., 2008). In their study, the genotypes of genes coding 

for drug-metabolising enzymes involved in INH metabolism including NAT2, CYP2E1, 

GSTT1 and GSTM1, and their relationship with serum concentrations of INH and its 

metabolites were examined in 129 tuberculosis patients. It was found that serum 

concentration of hydrazine was significantly higher in subjects with NAT2 slow 

acetylator phenotypes, high concentration of serum RMP, and GSTM1 null genotype. 

Hydrazine, a major INH toxic metabolite can be formed both directly by amidase-

catalysed hydrolysis of INH or indirectly by amidase-catalysed hydrolysis of acetyl 

isoniazid. Studies have indicated that hydrazine plays an important role in the 

mechanism of INH-induced hepatotoxicity in animals and human (Sarich et al., 1999; 

Woo et al., 1992). It has also been demonstrated that RMP enhance idiosyncratic 

hepatocellular reactions by inducing formation of hydrazine from isoniazid particularly 

in slow acetylators (Sarma et al., 1986). Thus, GST enzymes could play an important 

role to limit or prevent ATD-DILI by reducing INH toxic metabolites or neutralising 

toxic products of oxidative stress such as 4-hydroxynonenal, particularly in slow 

acetylators.  

 

PXR genotype was studied because RMP treatment may lead to the increased 

expression of certain genes including various CYPs and carboxyesterases that may be 

relevant to INH metabolism. The SNP studied had been shown to be functionally 

significant and a risk factor for flucloxacillin-induced DILI (Andrews et al., 2010) but 

had not been studied previously in ATD-DILI. No association was detected but as with 

the other genes studied, the possibility of a small effect not detectable because of lack of 

statistiual power cannot be ruled out. 

 

A significant association was detected between a NAT1 SNP (rs2739685) and ATD-

DILI in European cohort (OR=7.13; 95% CI=1.86-27.34). This result confirmed the 

preliminary evidence from a genome-wide association study on the European ATD-

DILI cases (Daly and Shen, unpublished). However no association was found in South 

Asian cohort and also currently there is no clear role of this gene in the metabolism of 

anti-tuberculosis medications. Further studies are required to elucidate a possible role 

for NAT1 in ATD-DILI. In our present study, we found no association of ATD-DILI 

susceptibility with GSTA1, GSTT1, SOD2, CYP2E1 and PXR. We could not confirm the 



 

 

 

148 

previous findings that the risk of ATD-DILI is higher in subjects with GSTT1 null 

genotype (OR=2.60; 95%CI=1.08-6.24) (Leiro et al., 2008), the C variant allele of 

SOD2 (OR=2.47; 95%CI=1.13-5.39) (Huang et al., 2007) or CYP2E1 alleles (Bose et 

al., 2011; Lee et al., 2010; Wang et al., 2010; Vuilleumier et al., 2006; Huang et al., 

2003). In addition, genotyping for an additional SOD2 SNP so that the main haplotypes 

were tagged did not indicate any further SOD2 association. SOD2 is an attractive 

candidate gene for susceptibility to DILI induced by a variety of drugs because of its 

major role in protecting against oxidative stress. An association has been reported with 

SOD2 C homozygotes suggested to be more prone to suffer DILI from drugs that are 

hazardous to mitochondria or produce reactive intermediates (Lucena et al., 2010). 

Though INH is a drug which may be in this category, the studies performed here did not 

confirm this association with C homozygotes. 

 

HLA genotypes are also important genetic risk factors for DILI due to certain drugs 

(Daly, 2010). Though the present study did not consider HLA genotypes in ATD-DILI, 

the absence of HLA-DQA1*0102 (OR=4.0), and the presence of HLA-DQB1*0201 

alleles (OR=1.9) (Sharma et al., 2002) have been suggested to be risk factors 

previously. However, recent GWAS analysis of the European ATD-DILI cases did not 

find any evidence that HLA genotype was a predictor for this form of DILI (Daly and 

Shen, unpublished). Nevertheless, the previously reported HLA class II gene association 

may indicate the possibility of some cases of ATD-DILI involving an adaptive immune 

mechanism. It has been previously shown that INH can induce other immune responses, 

in particular autoimmunity similar to lupus (Salazar-Paramo et al., 1992).  
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Chapter 4. In Vitro Hepatotoxicity and                                        

Interactions between Anti-tuberculosis Drugs 
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4 In vitro hepatotoxicity and interactions between 
anti-tuberculosis drugs 

4.1 Introduction 

 

Rifampicin (RMP) is an effective antibiotic and prescribed along with isoniazid (INH) 

for the treatment of TB. It has been reported that the concurrent use of RMP and INH 

has resulted in increased incidence of hepatotoxicity (2.6%), greater than when these 

drugs were administrated separately (1.6% with INH and 1.1% with RMP alone) (Steele 

et al., 1991). Though RMP combined with pyrazinamide (PZA) has been used 

previously for treating latent TB, a two months regimen of PZA and RMP is no longer 

recommended as severe and fatal cases of hepatotoxicity were observed among patients 

receiving the RMP plus PZA regimen (CDC, 2003; Lee et al., 2002). The additive or 

synergistic adverse effects of RMP with other anti-TB drugs could be due to its potent 

inducing or suppressing effect on drug-metabolising enzymes, which can result in 

clinically relevant drug-drug interactions (Grange et al., 1994). Studies have indicated 

that RMP administration may induce the formation of hepatotoxic hydrazine 

metabolites by stimulating the INH hydrolase activity in the non-acetylating hydrolysis 

metabolic pathway (see section 1.6) particularly in individuals with the slow acetylator 

phenotype (Fukino et al., 2008; Askgaard et al., 1995; Sarma et al., 1986). A previous in 

vivo study in rats suggested that hydrazine induced the cytochrome P4502E1 (CYP2E1) 

and increased the hepatotoxicity of INH (Yue et al., 2004). CYP2E1 is a major 

contributor of reactive oxygen species (ROS) and has been associated with lipid 

peroxidation stimulation which plays an important role in the development of INH-

induced hepatotoxicity (Caro and Cederbaum, 2004). Recently, it has been proposed 

that RMP enhanced INH-induced toxicity via induction of CYP2E1 in primary human 

hepatocytes in vitro (Shen et al., 2008). However, there is controversy about the 

CYP2E1-inducing effect of RMP seeing that the levels of CYP2E1 mRNA and protein 

were not increased by RMP in human hepatocytes in vitro as well as rat liver in vivo 

(Yue et al., 2009; Raucy et al., 2004; Yue et al., 2004; Rae et al., 2001).  On the 

contrary, it appears that RMP suppresses the expression of CYP2E1 in rats and thus 

reduces the risk of INH-induced oxidative stress through hepatic CYP2E1 (Yue et al., 

2009; Yue et al., 2004). Previous studies in mice also demonstrated that RMP protects 

against carbon tetrachloride-induced hepatotoxicity by suppressing CYP2E1 expression 

and therefore reduced the formation of free radicals (Takeda et al., 2000; Huang et al., 
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1995). It has also been suggested that another drug-metabolising enzyme rather than 

CYP2E1 could be involved in the adverse effects of RMP in INH-induced 

hepatotoxicity (Shen et al., 2008).  

 

RMP binds to nuclear pregnane X receptor (PXR) resulting in the activation of target 

genes that involved in xenobiotic detoxification and excretion. It promotes the 

upregulation of phase I CYP450 enzymes such as CYP2B6, CYP2C8, CYP2C9 and 

CYP3A4 (Song et al., 2004; Kliewer et al., 2002). CYP3A4, the most abundant 

CYP450 isoform, comprises approximately 50% and 60% of total P450 expressed in 

human liver and small intestine respectively (Kolars et al., 1994; Shimada et al., 1994). 

CYP3A4 is more efficiently induced than other CYP450 enzymes and catalyses the 

metabolism of 50-60% of clinically prescribed drugs subject to P450 metabolism (Desai 

et al., 2002; Gibson et al., 2002). Variations in its catalytic activity occur in humans 

resulting in individual differences in the oral bioavailability of CYP3A4 substrates 

(Evans and McLeod, 2003; Guengerich, 1999; Shimada et al., 1994). These differences 

may be of clinical significance and affect the disposition of drugs and their metabolites 

which in turn increase drug toxicity due to toxic metabolites accumulation and 

CYP3A4-mediated drug-drug interactions (Martinez-Jimenez et al., 2007). In addition 

to CYP3A4, RMP has been shown to induced the expression of carboxylesterase 2 

(CES2) in cultured human and rat hepatocytes (Yang and Yan, 2007; Zhu et al., 2000). 

CES2, highly expressed in the human small intestine and liver, plays an important role 

in the metabolism and detoxification of drugs/prodrugs by increasing their 

bioavailability and aqueous solubility (Satoh et al., 2002). It is possible that the induced 

expression of CES2 by RMP stimulates the INH hydrolysis pathway and increases the 

formation of toxic metabolite hydrazine. Furthermore, INH-induced toxicity was greatly 

reduced following in vivo administration of carboxylesterase inhibitor, bis-p-

nitrophenyl phosphate (Tafazoli et al., 2008; Mitchell et al., 1975).  

In the present study, we investigated the role of RMP in regulation of CYP2E1, 

CYP3A4 and CES2 expression in LS180 cells and also in human hepatocytes. LS180 is 

a well characterized human intestinal colon carcinoma cell line and appears to be 

responsive to RMP, in contrast to other cell lines such as HepG2, thus making it a 

suitable model for intestinal drug absorption studies. Human hepatocytes cultured in 

vitro are excellent hepatic model system in predicting enzyme induction in vivo and 

valuable for evaluating the effects of xenobiotics on drug-metabolizing enzyme 
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induction, particularly of the CYP450 family. The aim was to examine the expression of 

these genes in the presence or absence of RMP and the response of the cells to INH and 

PZA treatment in the presence or absence of RMP.  

 

4.2  Materials and Methods 

4.2.1 Cell culture of human hepatocytes  

 

Fresh human primary hepatocytes from three donors were purchased from Gibco-

Invitrogen Corporation (UK) in a 24-well plate with a density of 3x10
5 

cells per well. 

Immediately upon arrival, the medium of the hepatocytes were replaced with Williams’ 

medium E (WME) supplemented with 1μg/ml insulin (Sigma), 50µg/ml gentamicin 

(Sigma), 100U/ml Penicillin (PAA), 10mg/ml Streptomycin (PAA) and 2 mM 

Glutamine (PAA). The cells were allowed to settle overnight prior to any treatment.  

 

4.2.2 Cell proliferation effects of RMP combined with INH and PZA 

4.2.2.1 LS180 cells 

 

The effects of RMP combined with INH and PZA on cell proliferation were assessed by 

performing the MTT assay according to section 2.8. The intestinal human colon 

adenocarcinoma cell line LS180 (passage number 56-62) was cultured according to 

section 2.3 and seeded overnight in a 6-well plate at 1x10
6
 cells per well. To examine 

the effects of RMP on cell viability, LS180 cells were either pre-treated with 50 µM 

RMP for 72 h before adding INH or pre-treated with 0.5% DMSO for 72 h followed by 

simultaneous treatment of RMP and INH for 48 h. A control without RMP treatment 

was included by pre-treating the cells with 0.5% DMSO for 72 h followed by 0, 40, 50, 

60, 70 and 80 mM INH for 48 h. In addition, the effect of RMP on PZA response was 

examined by exposing the cells with 0, 25, 50 and 75 mM of PZA for 24 h with or 

without 72 h RMP pre-treatment. Assays were performed in duplicate from three 

independent experiments.  

 

4.2.2.2 Human hepatocytes 

 

The cytotoxic effects of RMP on INH in human primary hepatocytes were determined 

by the MTT assay (see section 2.8). To examine the effects of RMP in cell proliferation, 
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hepatocytes were treated with 50 µM RMP or vehicle control (0.5% DMSO) for 72 h 

before proceeding to INH treatment for 48 h. Assays were performed in duplicate from 

three independent experiments, derived from three donors. 

 

4.2.3 Effects of Rifampicin on mRNA expression profile 

4.2.3.1 LS180 cells 
 

LS180 cells were cultured according to section 2.3 and seeded overnight in a 6-well 

plate at 1x10
6
 cells per well. To determine the effect of RMP in the mRNA expressions 

of CES2, CYP2E1 and CYP3A4, LS180 cells were treated with 50 µM RMP or vehicle 

control (0.5% DMSO) for 48 or 72 h. Medium was replaced daily under the same 

condition of drug treatment. Cells were then harvested using a sterile plastic scraper and 

RNA was immediately extracted and reverse-transcribed into cDNA prior to analysis 

(see section 2.6). The Q-RTPCR was performed in triplicate from three independent 

experiments using specific primers listed in Table 2.3. 

 

4.2.3.2 Human hepatocytes 
 

Human hepatocytes derived from three donors were treated with 50 µM RMP or vehicle 

control (0.5% DMSO) for 72 h. Medium was replaced daily under the same condition of 

drug treatment. Cells were then harvested using a sterile plastic scraper and RNA was 

immediately extracted and reverse-transcribed into cDNA. The transcript levels of 

CYP3A4, CYP2E1 and CES2 in these cells were then determined by quantitative RT-

PCR using specific primers listed in Table 2.3.  

 

4.2.4 NAT2 genotyping 

 

To investigate whether NAT2 acetylator genotypes affect the cytotoxic effect of INH, 

NAT2 genotyping was performed on human hepatocytes derived from three donors and 

LS180 cells (see section 3.2.4). Briefly, cells were harvested using a sterile plastic 

scraper and genomic DNA was immediately prepared (see section 2.4). Amplification 

of NAT2 fragment was performed by PCR and RFLP analyses were carried out by 

digesting the PCR product with KpnI, TaqI and BamHI to detect the NAT2*5, NAT*6 

and NAT2*7 mutant alleles respectively. The wild-type NAT2*4 allele is designated 

when none of the mutant alleles are present. The presence of any 2 mutant alleles 
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defines the slow-acetylator phenotype, whereas rapid acetylator have 1 or 2 wild-type 

NAT2*4 alleles.  

 

4.3 Results 

4.3.1 Cell proliferation effects of RMP combined with other anti-TB 

medications 

4.3.1.1 LS180 cells 

 

The effect of 50 µM RMP exposure on INH cytotoxicity was assessed in LS180 cells by 

MTT assay. As shown in Figure 4.1, cells receiving 40 mM INH and RMP 

concurrently are inclined to cell death (P<0.05) compared to RMP pre-treated and no 

pre-treatment control cells. However, a significant INH-induced cell death at 40, 50, 60, 

70 and 80 mM was observed in cells with RMP pre-treatment and concurrent 

administration of RMP and INH compared to the control cells. The EC50 values for cells 

with RMP pre-treatment (49.05 mM) and cells treated with INH and RMP 

simultaneously (48.04 mM) were lower than the control cells (60.33 mM). These 

findings suggest that concurrent or pre-administration of RMP amplifies the effect of 

INH on cell proliferation in LS180 cells. The effect of RMP on PZA response was also 

examined by exposing the cells with 0, 25, 50 and 75 mM of PZA for 24 h with or 

without 72 h RMP pre-treatment. Figure 4.2 reveals that RMP pre-treated cells were 

more susceptible to PZA-induced inhibition of proliferation with a significant difference 

at 60 and 75 mM INH (P<0.001). A lower EC50 (64.86 mM) was also observed in RMP 

pre-treated cells compared to the no pre-treatment cells (78.51 mM), suggesting 

administration of RMP increases the inhibitory effect of PZA on the proliferation of 

LS180 cells.  
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Figure 4.1 The influence of rifampicin co-administration on INH-induced  

decreased cell proliferation in LS180 cells 

 
To examine the effects of RMP on cell proliferation, LS180 cells were either pre-treated 

with 50 µM RMP for 72 h before INH treatment or pre-treated with 0.5% DMSO 

(vehicle control) for 72 h followed by concurrent administration of RMP and INH for 48 

h. The inhibitory effect of INH alone on cell proliferation was also determined by pre-

treating the LS180 cells with 0.5% DMSO for 72 h and followed by 48 h INH treatment 

at 0, 40, 50, 60, 70 and 80 mM. Proliferation was assessed immediately after 96 h of 

INH/RMP treatment using the MTT colorimetric assay.  Treatment with INH causes a 

dose-dependent inhibition of LS180 cell proliferations. The EC50 values of RMP pre-

treated cells (49.05 mM) and concurrent administration of RMP with INH (48.04 mM) 

were lower than the no treatment control cells (60.33 mM). Concurrent or pre-

administration of RMP has significantly inhibited cell proliferation in LS180 when 

treated with 40, 50, 60, 70 and 80 mM INH (P<0.05) which indicates that RMP 

increases the inhibitory effect of INH on the proliferation of LS180 cells. 
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Values are the means ± S.D of duplicate from three independent experiments. Difference 

between groups was assessed statistically by two-way ANOVA (*P<0.05) 

Figure 4.2 The influence of rifampicin co-administration on PZA-induced  

decreased cell proliferation in LS180 cells. 

 
The effect of RMP on PZA response in LS180 cells was examined by exposing the cells 

with 0, 25, 50 and 75 mM of PZA for 24 h with or without 72 h RMP pre-treatment. 

Cells proliferation was assessed immediately after 96 h of PZA/RMP treatment using 

the MTT colorimetric assay. A dose-dependent inhibition on LS180 cell proliferation 

was observed following PZA treatment (0-75 mM). The EC50 value of RMP pre-

treated cells (64.86 mM) was lower than the no treatment control cells (78.51 mM). 

RMP pre-treatment has significantly decreased cell proliferatin compared to the 

control cells when treated with 45, 60 and 75 mM PZA (P<0.001), suggesting that 

RMP increases the inhibitory effect of PZA on the proliferation of LS180 cells. 
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4.3.1.2 Human primary hepatocytes 
 

To evaluate the effect of RMP exposure on cell proliferation, human hepatocytes were 

treated with 50 µM RMP or vehicle control (0.5% DMSO) for 48 h before proceeding 

to INH treatment for 48 h. Figure 4.3 shows the results of MTT assay performed in 

duplicate from three donors.  Hepatocytes from Donor 1 were pre-treated with or 

without RMP followed by INH treatment in the range from 0-10 mM INH. RMP pre-

treatment has reduced cell proliferation compared with cells with no pre-treatment 

(Figure 4.3 (A)). However, no significant differences were found in these cells. It was 

also observed that no inhibitory effect of INH on cell proliferation in this range of 

concentration and therefore a higher concentration of INH (0-50 mM) was applied to 

Donor 2 and 3. As shown in Figure 4.3 (B), reduced cell proliferation caused by RMP 

pre-treatment was observed compare to the control cells. The EC50 value of the RMP 

pre-treated cells was higher (29.89 mM) than the control cells (9.7 mM) with a 

significant increased at 10 mM INH treatment (P<0.05). Conversely, these phenomena 

did not occur in hepatocytes obtained from Donor 3 as RMP pre-treated cells were more 

susceptible to the inhibition of cell proliferation compared to the control cells (Figure 

4.3 (C)).  The EC50 value of the RMP pre-treated cells (16.93 mM) was lower than the 

control cells (38.42 mM) with a significant decrease at 10 mM INH treatment (P<0.05). 
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Figure 4.3 Effect of Rifampicin pre-treatment in hepatocytes derived from (A) 

Donor 1, (B) Donor 2 and (C) Donor 3, evaluated by the MTT assay 
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4.3.2 Effects of Rifampicin on mRNA expression profile 

4.3.2.1 LS180 cells  

 
The effect of RMP exposure on mRNA expression of CYP3A4, CYP2E1 and CES2 

was further evaluated in LS180 cells by quantitative RT-PCR. A typical calculation of 

the relative expression study by using the ∆∆Ct method is shown in Table 4.1. Figure 

4.4 shows the average fold change found in LS180 cells in response to 50 µM RMP 

treatment to corresponding levels in vehicle controls (set as 1), normalized with respect 

to GAPDH mRNA levels. Following exposure to 72 h RMP, CYP3A4 and CES2 

mRNA levels were significantly (p<0.001) increased with 11- and 4-fold induction 

respectively, but the apparent elevation of these mRNA levels seen at 48 h was not 

statistically significant. At 48 h of exposure to RMP, CYP2E1 mRNA level was 

reduced by 30% compared with controls but this was not statistically significant. A 

longer RMP exposure time (72 h) showed no change in CYP2E1 mRNA level in LS180 

cells.  

 

Table 4.1 A sample calculation for the fold change expression of CYP3A4 after 

RMP treatment by using the ∆∆Ct method 

 

Sample 
CYP3A4 

Average Ct 

GAPDH 

Average Ct 
∆Ct 

 

∆∆Ct 

 

2
-∆∆Ct

 

Vehicle control 

(0.5% DMSO) 
 

28.51±0.40 17.34±0.17 11.16 0.00±0.54 1.0±0.35 

50 µM RMP 

treatment (48 h) 

26.47±0.21 16.99±0.12 9.49 –1.68±0.32 3.3±0.66 

 

Data presented are means ± S.D. of triplicates from an independent experiments of the 

fold increase of CYP3A4 mRNA expression levels in LS180 cells to corresponding 

levels in vehicle control (0.5% DMSO), normalized with respect to GAPDH mRNA 

levels. ∆Ct values are calculated (∆Ct = CtCYP3A4 – CtGAPDH), and the effects of RMP on 

the target cDNA was expressed relative to the amount in the vehicle control sample 

(∆∆Ct = ∆Ctcompound - ∆Ctvehicle). Relative fold changes in target gene expression were 

determined by taking 2 to the power of the ∆∆Ct value (2
-∆∆Ct

). 
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Gene Fold increase in mRNA expression 

 48 h 72 h 

CYP3A4 4.48 ± 2.99 10.59 ± 4.66 

CYP2E1 0.70 ± 0.43 1.07 ± 0.52 

CES2 2.60 ± 0.90 4.05 ± 1.58 
 

Data presented are means ± S.D. of triplicates from three independent 

experiments of the fold increase of CYP3A4, CYP2E1 and CES2 mRNA 

expression levels in LS180 cells to corresponding levels in vehicle control (0.5% 

DMSO), normalized with respect to GAPDH mRNA levels. 
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Figure 4.4 Quantitative RT-PCR analysis of the effect of 50 µM of RMP on 

CYP3A4, CYP2E1 and CES2 mRNA expression level in LS180 cells.  

 

LS180 cells were treated with 50 µM RMP or 0.5% DMSO (control) for 48 or 72 h 

prior to quantitative RT-PCR analysis. (A) Table shown is the average fold change 

found in LS180 cells in response to 50 µM RMP treatment to corresponding levels in 

controls (set as 1), normalized with respect to GAPDH mRNA. A chart (B) was then 

plotted and difference between groups was assessed statistically by two-way ANOVA 

(*P<0.05, **P<0.01, ***P<0.001). 
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4.3.2.2 Human primary hepatocytes 

 

The effect of RMP in the mRNA expression of CYP3A4, CYP2E1 and CES2 in human 

primary hepatocytes was evaluated by quantitative RT-PCR (Figure 4.5). Following 

exposure to 50 µM RMP, approximately a 20-fold (Donor 1 and 2) and 10-fold (Donor 

3) increase in CYP3A4 expression was observed. The CYP2E1 mRNA level in Donor 1 

was not altered by RMP treatment. Conversely, a significant decrease of CYP2E1 level 

was found in Donor 3 (P<0.01) and a marginal significant decrease was observed in 

Donor 2 (P=0.054). The substantial decrease in CYP2E1 expression in Donor 2 and 3 

may be associated with a rapid loss of CYP2E1 expression in these cells. RMP 

treatment caused significant differences in CES2 expression in all donors. Interestingly, 

CES2 expression was elevated in Donor 1 and 2 (P<0.01) but decreased in Donor 3 by 

23% (P<0.05).   

 

4.3.3 Determination of NAT2 genotype 

 

Among the three donors of the human hepatocytes, Donor 1 (NAT2*5/NAT2*4) was a 

rapid acetylator and Donor 2 (NAT2*5/NAT2*7) and Donor 3 (NAT2*6/NAT2*6) were 

found to be slow acetylators. LS180 cells possessed the NAT2*5/NAT2*6 genotype 

and therefore was classified as slow acetylator. 
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 Gene 
Fold increase in mRNA expression 

Donor 1 Donor 2 Donor 3 

 CYP3A4 23.46  ±  4.77 19.70  ±  2.74 11.26  ±  2.01 

 CYP2E1   1.02  ±  0.09   0.69  ±  0.30   0.29  ±  0.16 

 CES2   4.69  ±  2.43   3.12  ±  1.05   0.77  ±  0.31 
   

Data presented are means ± S.D. of triplicates from two independent experiments of 

the fold increase of CYP3A4, CYP2E1 and CES2 mRNA expression levels in human 

hepatocytes from three donors to corresponding levels in vehicle control (set as 1),  

normalized with respect to GAPDH mRNA level. 
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Human hepatocytes from 3 donors were treated with 50 µM RMP or 0.5% DMSO 

(control) for 72 h prior to quantitative RT-PCR analysis. (A) Table shown is the 

average fold change of mRNA expression levels in response to 50 µM RMP 

treatment to corresponding levels in controls (set as 1), normalized with respect to 

GAPDH mRNA. A chart (B) was then plotted and difference between groups was 

assessed statistically by student’s t-test (*P<0.05, **P<0.01, ***P<0.001). 

 

 

 

Figure 4.5 Quantitative RT-PCR of CYP3A4, CYP2E1 and CES2 transcript 

level in human hepatocytes exposed to rifampicin (50 µM) 
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4.4  Discussion 

 

In the present study, the in vitro INH and PZA toxicity in LS180 was increased 

following pre-treatment or concurrent administration of a non-toxic concentration of 

RMP (50 µM) (Figure 4.1 and 4.2). However, in the human hepatocyte samples, 

differential effect of RMP on INH toxicity was demonstrated by the results that RMP 

enhanced INH-induced cytotoxicity in Donor 3 but not in Donor 1 and 2 (Figure 4.3). 

Conversely, RMP pre-treatment was shown to provide some protection against INH-

induced cytotoxicity in Donor 1 and 2. These results suggest the intriguing possibility 

that the altered expression or activity of drug-metabolising enzymes by RMP might 

have a protective role against INH toxicity. The lack of induction of CYP2E1 mRNA by 

RMP in both LS180 and human hepatocytes may indicate that CYP2E1 is unlikely to 

magnify INH toxicity caused by RMP pre-treatment. Furthermore, INH itself is an 

inducer of CYP2E1 (Skakun and Shman'ko, 1985) and therefore free radical generation 

through CYP2E1 induction could be from INH administration. It has been proposed that 

hepatic CYP2E1induction by hydrazine contributes to INH-induced hepatotoxicity in 

rats through free radical generation (Yue et al., 2004). Rats, as well as rabbits appear 

more susceptible to INH-induced hepatotoxicity compared to the human due to a higher 

amidase activity, which catalyses the hydrolysis of INH to hydrazine, enhances 

CYP2E1 and therefore generates more free radicals. In our present study, RMP has 

shown to elevate the CES2 mRNA level in LS180 cells (approximately 2 to 4-fold) 

suggesting that CES2 elevation by RMP may increase the hydrolysis of INH which in 

turn generates more hydrazine. Therefore, it is possible that RMP can elevate CYP2E1 

when RMP is given concomitantly with INH by an indirect mechanism involving CES2 

induction and cause more toxicity to the cells through hydrazine formation. However, 

the moderate induction of CES2 did not demonstrate any obvious toxic effect in our 

current donor 1 and 2 hepatocyte cultures. In addition, a lack of CES2 expression was 

detected in Donor 3, thus suggesting that CES2 may not play a major role in the 

aggravation of INH toxicity by RMP in human hepatocytes. It was recently revealed 

that RMP co-administration significantly reduced INH-induced CYP2E1 activity and 

increased the levels of the glutathione S-transferase mu isoform (GST mu) activity in rat 

liver (Yue et al., 2009). Previous studies in mice also demonstrated that RMP reduced 

the formation of free radicals by suppressing the CYP2E1 expression and may play an 

essential role against carbon tetrachloride-induced hepatotoxicity (Takeda et al., 2000; 
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Huang et al., 1995). Shen et al. presented data showing that RMP exacerbated INH 

toxicity in human hepatocytes possibly through CYP2E1 induction (Shen et al., 2008). 

In that study, hepatocytes from five patients were harvested where Donors 1-3 were 

used to demonstrate the effect of RMP on INH toxicity and CYP2E1 metabolic activity; 

Donors 3-5 were used to evaluate toxicity caused by INH only, and Donor 5 was used 

for CYP2E1 mRNA expression assay. The reliability of the results presented was 

questionable and inconclusive as the hepatocytes from different donors were used for 

separate experiments involving different treatments. According to Yue et al. (Yue and 

Peng, 2009), 4-nitrophenol hydroxylase (4-NPH) activity was the only probe used in the 

paper to demonstrate the increased CYP2E1 activity by RMP but CYP3A was also 

previously found to make a significant contribution to 4-NP activity in human and rat 

hepatocytes. The increase in 4-NPH activity could be due to the induction of CYP3A as 

RMP is a strong inducer of human CYP3A. Semi-quantitative RT-PCR but not 

quantitative RT-PCR was performed on Donor 5 only. The finding of Shen et al. that 

RMP exacerbates INH toxicity in human hepatocytes through increased CYP2E1 

mRNA expression and metabolic activity is therefore questionable and needs 

confirmation by others. In the current study, as expected, RMP has greatly induced 

CYP3A4 and caused a 10 to 20-fold induction of CYP3A4 mRNA expression in LS180 

and human hepatocytes. Previous observations in cultured human hepatocytes and small 

intestinal enterocytes revealed a marked inter-individual difference in CYP3A4 mRNA 

expression caused by RMP induction (Kolars et al., 1992; Watkins et al., 1989). These 

differences affect the oral bioavailability of CYP3A4 substrates and lead to variations in 

drug efficacy and/or toxicity. In the present study, we observed an approximately 10-

fold CYP3A4 induction in LS180 and the hepatocytes from donor 3 after 72 h of RMP 

treatment. Both samples demonstrated a significant increased of INH toxicity caused by 

RMP. On the other hand, we observed a 20-fold CYP3A4 induction in hepatocytes from 

donors 1 and 2 and these observations correlated with an inhibitory effect of RMP in the 

development of INH toxicity. Nevertheless, it was previously reported that CYP3A4 

contributed to INH toxicity in HepG2 cells by increasing the INH toxic metabolites 

(Vignati et al., 2005). Vignati et al. demonstrated that CYP3A4-overexpressing HepG2 

cells exhibit higher INH toxicity and co-incubation with the CYP3A4 inhibitor 

ketoconazole prevented the INH toxicity by reducing the formation of toxic metabolites 

(Vignati et al., 2005). RMP did not increase the INH toxicity in rat and mouse (Yue et 

al., 2009; Takeda et al., 2000; Huang et al., 1995) possibly due to the lack of CYP3A 
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inducibility by RMP in rat and mouse because of differences in the PXR in these 

species  (Martignoni et al., 2006). Hence, another drug-metabolizing enzyme rather than 

CYP3A4 could be involved in the reduced INH toxicity by RMP in hepatocytes from 

donors1 and 2 inour current studies. NAT2 acetylator status of the hepatocyte donors did 

not seem to be the likely factor that leads to RMP-induced INH toxicity as Donor 2 who 

possesses the NAT2 slow acetylator genotype was also shown to have a reduced INH 

cytotoxic effect by RMP.  

 

In addition to CYP3A4, RMP has shown to induce UDP-glucuronosyltransferase 1A 

(UGT1A), some glutathione-S-transferases (GSTs) and multidrug resistance 1 (MDR1) 

(Soars et al., 2004; Rae et al., 2001; Greiner et al., 1999). The upregulation of UGTA1 

by RMP through PXR and CAR promotes UGT glucuronidation of steroids and 

xenobiotics and thus increases the clearance of steroids and potentically toxic 

xenobiotics or their reactive metabolites (Soars et al., 2004; Xie et al., 2003). GSTs play 

an important role in the detoxification by catalysing the conjugation of reactive 

electrophilic alkylating agent of the xenobiotics with reduced glutathione. P-

glycoprotein, a well characterised ATP-binding cassette (ABC) superfamily of transport 

proteins encoded by the ABCB1 gene, is found primarily in the epithelia of drug-

eliminating organs (intestine, liver and kidney) (Fromm, 2003). It is responsible for the 

efflux of toxins and xenobiotics from cells and has also been shown to interplay with 

CYP3A4 in RMP inducing drug-drug interactions (Cummins et al., 2003). RMP did not 

aggravate INH toxicity after 72 h treatment in Donor 1 and 2, which could be due to the 

general upregulation of PXR-mediated detoxification genes (UGT1A, GSTs and p-

glycoprotein) by RMP which enhanced the excretion of both INH and its toxic 

metabolites from hepatocytes. Further work is needed to elucidate the potential role of 

RMP in INH-mediated hepatotoxicity.   

 

The present results using primary human hepatocytes were slightly more sensitive to 

INH toxicity compared to the LS180 cell lines. Primary human hepatocytes appear to 

retain major drug metabolising activities including inducible cytochrome P450 

enzymes, thus making it the most suitable in vitro model for use in drug metabolism and 

toxicity studies. An alternative to our current individual gene expression analysis is 

using the microarray approach which allows a more comprehensive evaluation of the 

effects of drugs by interrogating thousands of genes at once. It is an excellent tool for 
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gene expression studies especially in limited samples such as the primary human 

hepatocytes and provides useful information on the mechanism of drug toxicity. 

However, there are limitations in the use of human primary hepatocytes. One of the 

major limitations is the availability of the healthy human hepatocytes for primary 

culture, which makes it difficult to obtain a reproducible data. The rapid loss of specific 

drug metabolising enzymes especially the P450 enzymes due to dedifferentiation is a 

common problem with primary cultured cells (Elaut et al., 2006). It is notable that the 

human hepatocytes exhibit substantial interindividual variability in response to enzyme 

inducers such as that observed in our study. Recently a hepatoma cell line HepaRG was 

found to retain important hepatic functions for several weeks, including expression of 

the major CYP450 isoforms. It has also been shown to differentiate at levels 

comparable with those found in primary human hepatocytes (Andersson, 2010; Aninat 

et al., 2006). HepaRG cells could therefore provide an alternative to human hepatocytes 

for prediction of drug-induced hepatotoxicity. 

 

In summary, these experiments indicated a modulatory effect by RMP on inhibition of 

cell proliferation by INH though this was rather inconsistent. The ability of RMP to 

induce CES2 expression at the RNA level was confirmed. Hepatocytes showing 

induction of CES2 by RMP treatment showed decreased INH toxicity suggesting that 

the hydrolysis pathway involving hydrazine formation from INH might not be an 

important contributor to overall toxicity. 
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Chapter 5. In Vitro Effects of NAT2 Allelic Variants on 

Isoniazid Toxicity 
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5 In vitro effects of NAT2 allelic variants on isoniazid 
toxicity 

5.1 Introduction 

 

The gene encoding NAT2 is polymorphic, thus resulting in rapid and slow acetylator 

phenotype. As described previously in section 1.6, the predominant pathway of 

isoniazid (INH) is acetylation by the hepatic enzyme NAT2. Early NAT2 phenotyping 

study has shown that the fast acetylator phenotype with detectable NAT2 is associated 

with an increased risk of INH-induced DILI (Mitchell et al., 1975). However, later 

studies have revealed that individuals with the slow acetylator phenotype lacking 

functional NAT2 catalytic activity are more susceptible to developing INH-induced 

DILI due to accumulation of the toxic metabolite acetylhydrazine (Lauterburg et al., 

1985; Dickinson et al., 1981; Timbrell et al., 1980). Approximately 50% of Caucasians 

in Europe are of slow acetylator phenotype and are less efficient than rapid acetylators 

in the metabolism of INH (Blum et al., 1991). The slow acetylator phenotype results 

from nonsynonymous SNPs in the NAT2 coding region. These SNPs have been 

identified and characterized for their functional and structural effects (Table 5.1) 

(Walraven et al., 2008).  

 

Previous studies have investigated the relationship between NAT2 genotype and 

acetylator phenotype through recombinant expression of NAT2 alleles or haplotypes and 

individual SNPs using bacteria (Hein et al., 1995; Hein et al., 1994), yeast (Fretland et 

al., 2001) and mammalian (Zang et al., 2007a; Zang et al., 2004; Blum et al., 1991) cell 

systems. Some of these NAT2 alleles including NAT2*5 (341T>C), NAT2*6 (590G>A) 

and NAT2*7 (857G>A) showed reduced levels of NAT2 protein and also decreased 

NAT2 catalytic activity when compared with NAT2*4 (Zang et al., 2007b; Blum et al., 

1991).  NAT2*5 and NAT2*6  alleles account for more than 90% of slow acetylator 

alleles of the European Caucasians (Blum et al., 1991). Our present study on NAT2 

genotyping has revealed that among the European control subjects, NAT2*5 and 

NAT2*6 alleles account for 60% and 36% of the slow acetylator alleles respectively. A 

strong linkage disequilibrium was reported among the 341T>C, 481C>T and 803A>G 

polymorphisms in European Caucasians as well as North Indian population (Batra et al., 

2006).  
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The aim of this chapter is to examine the functional significance of NAT2 acetylation 

phenotypes using an in vitro overexpression approach to characterise NAT2 acetylation 

phenotypes and their relevance to the development of isoniazid-induced hepatotoxicity. 

Two recombinant plasmids contained the NAT2*4 and NAT2*5 (possessing 341T>C 

and 481C>T variants) alleles were constructed to represent the rapid and slow 

acetylation phenotype respectively.  
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Table 5.1 Non-synonymous SNPs in human NAT2 function and structure*  

 

SNP rs identifier Amino acid 

change 

NAT2 allele/haplotype Functional effect(s) Structural Effect(s) 

190C>T 1805158 R64W NAT2*19 Decreased stability Loss of electrostatic 

interactions 

191G>A 1801279 R64Q NAT2*14 cluster & others Decreased stability Loss of electrostatic 

interactions 

341C>T 1801280 I114T NAT2*5 cluster Increased protein degradation Conformational change 

364G>A 4986996 D112N NAT2*12D Decreased protein Catalytic triad disruption 

411A>T 4986997 L137F NAT2*5I Decreased protein Conformational change 

434A>C - Q145P NAT2*17 Decreased protein Conformational change 

499G>A - E167K NAT2*10 Decreased protein Conformational change 

590G>A 1799930 R197Q NAT2*6 cluster & others Decreased stability Loss of electrostatic 

interactions 

803A>G 1208 K268R NAT2*12 cluster & others No effect None expected 

845A>C 56054745 K282T NAT2*18 Slight decreased stability Loss of electrostatic 

interactions 

857G>A 1799931 G286E NAT2*7 cluster Decreased protein Altered active site size/shape 

 

* Table is adapted from (Walraven et al., 2008)
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5.2 Materials and Methods 

5.2.1 Choice of Cell line 

 

To determine the best choice of cell line for NAT2 overexpression study, HepG2, 

LS180 and Huh 7.5 cell lines were genotyped for common NAT2 alleles using the PCR-

RFLP method (see section 3.4). The cell line with the slow acetylator phenotype was 

used for NAT2 overexpression studies.  

 

5.2.2 Construction of NAT2 recombinant stable cells 

 

Two 879 bp NAT2 open reading frame DNA fragments representing the wild-type 

NAT2*4 and NAT2*5 (possessing 341T>C and 481C>T variants) alleles were 

amplified by PCR from DNA samples of known NAT2 genotype. Comparison of both 

DNA inserts containing the NAT2*4 and NAT2*5 alleles are shown in Figure 5.1. The 

PCR parameters were 35 cycles at 95ºC for 1 min, 55ºC for 1.5 min, and 72ºC for 1.5 

min; forward primer: 5’-GCCACCATGGACATTGAAGCAT-3’and reverse primer: 5’- 

CTAAATAGTAA GGGATCCATCACC -3’. The PCR products were separated on a 

2% agarose gel and purified using QIAGEN Gel Extraction Kit. The amplified product 

was cloned in the mammalian expression vector pTARGET (Promega) to generate a 

rapid acetylator recombinant (RAR) containing the NAT2*4 allele and a slow acetylator 

recombinant (SAR) containing the NAT2*5 allele (see section 2.5). The presence of the 

recombinant construct was confirmed by digesting the plasmid DNA (3 µl) with EcoRI 

restriction enzyme. Figure 5.2 shows the presence of DNA inserts after EcoRI digestion 

of pTARGET plasmids. The sequences of both RAR and SAR plasmids were confirmed 

by sequencing (see section 2.4.6). The plasmids were then stably transfected into 

HepG2 cells and the cells were selected with 500 µg/ml G418 antibiotic for 3-4 weeks 

until the G418-resistant clones were established (see section 2.5.4). The stably 

transfected cells were then maintained in 250 µg/ml G418. 
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Figure 5.1 Comparison of DNA sequences of rapid acetylator recombinant (RAR) 

and slow acetylator recombinant (SAR) plasmids.  

 

The DNA sequences of NAT2 coding region of RAR (NAT2*4 allele) and SAR (NAT2*5) 

plasmids are shown in (A) and (B) respectively. Primers used to amplify the DNA 

fragments of NAT2*4 and NAT2*5 alleles are shown in underline; the start codon (ATG) 

and stop codon (TAG) are shown in blue bold letters; the 341T>C and 418C>T single 

nucleotide polymorphisms (SNPs) are highlighted in red bold letters.  
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Figure 5.2 Ethidium bromide-stained agarose gel pattern showing digested 

pTARGET plasmids 

 

The presence of desired DNA fragments after EcoRI digestion demonstrates the 

successful cloning of insert DNA into the pTARGET plasmids. The upper bands 

(approximately 5,620 bp) of lane 1, 2 and 3 are the linearised pTARGET 

plasmids after EcoRI digestion. The lower bands of lane 1 and 2 are DNA 

fragments of NAT2*4 and NAT2*5A alleles respectively while the lower band of 

lane 3 is the cDNA fragment of GSTA4. 
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5.2.3 Recombinant expression of NAT2 alleles  

 

The NAT2 overexpression efficacy of rapid acetylator recombinant (RAR) and slow 

acetylator recombinant (SAR) were assessed by RT-PCR and immunoblotting. The non-

transfected cells were used as a control. Immunoblotting and RT-PCR were performed 

as described in Section 2.6 and 2.7. For the immunoblot, quantification of the protein 

bands was done by uploading a scanned image of the blot saved as a GIF file into the 

program ImageJ and following the procedure for analysis described for this program 

(http://rsb.info.nih.gov/ij/).  

 

5.2.4 N-acetyltransferase-2 enzyme assay 

 

The NAT2 enzyme activity in RAR, SAR and non-transfected cells were measured by 

the bioluminescent NAT2 enzyme assay (Promega) using a novel luciferin derivative, 

Luciferin-NAT2 as a specific substrate. The Luciferin-NAT2 is prosubstrate for the 

light-generating reaction of firefly luciferase. As shown in Figure 5.3, Luciferin-NAT2 

is substantially converted to a more active luciferin substrate by NAT2 enzyme that is 

detected in a second reaction with luciferin detection reagent (LDR). LDR containing 

firefly luciferase reacts with active luciferin to produce light. The amount of light 

generated is proportional to NAT2 enzyme activity. Briefly, cells were harvested and 

disrupted by sonication in buffer (66 mM NaH2PO4, pH 7.2, 1 mM EDTA, and 2 mM 

DTT). The cell lysates were centrifuged at 12,000g for 10 min at 4˚C and the 

supernatants were immediately assayed. Protein concentration was determined using 

BioRad DC Protein Assay (see section 2.9.1). A stock solution of Luciferin-NAT2 (1 

mM) was prepared in a solution of water and methanol (1:1) containing 2 mM HCl. The 

assay was performed by mixing 25 µl of 80 µM Luciferin-NAT2 solution in assay 

buffer (100 mM HEPES, pH 8) with 23 µl of cell lysate (1:10 dilution with assay 

buffer) and 2 µl of 10 mM acetyl coenzyme A (Acetyl-CoA). The final concentrations 

of Luciferin-NAT2 and Acetyl-CoA were 40 µM and 400 µM respectively. A no-

enzyme background control for each sample was prepared by replacing acetyl-CoA with 

distilled water. The mixture was then incubated for 0-12 h prior to the addition of LDR 

(50 µl). The luminescence was measured 20 min later using a Modulus luminometer 

(Turner Biosystems). NAT2 enzyme activity for each sample was calculated by 

subtracting the background control and expressed in relative luminescent units per mg 



 

 

 

175 

of sample per h (RLU/mg/h). A positive control consisting of rat liver lysate was 

included each time when the assay was performed. Preparation of rat liver lysate is 

described in section 5.2.5. Figure 5.4 shows the increased NAT2 activity of rat liver 

lysate using various concentration of Luciferin-NAT2 in assay buffer (2.5-80 µM). 

 

 

        

 

NAT2 enzyme

Luciferin Detection Reagent (LDR)

Light

pro-luciferin substrate

active luciferin (substrate)

NAT2 enzyme

Luciferin Detection Reagent (LDR)

Light

pro-luciferin substrate

active luciferin (substrate)

                                         

Figure 5.3 Detection of NAT2 enzyme activity using Luciferin-NAT2 

The Luciferin-NAT2, a novel luciferin derivative, is a prosubstrate for the light-

generating reaction of firefly luciferase. Acetylation of Luciferin-NAT2 by NAT2 

enzyme produces a more active luciferin substrate for the light-generating 

enzyme in the luciferin detection reagent (LDR). LDR generates light in the 

proportion to the activity of the NAT2.  
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Figure 5.4: NAT2 activity in rat liver lysate using Luciferin-NAT2 
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The Km of Lucifein-NAT2 with rat liver lysate is 22.2 ± 4.0 µM. Rat liver lysate 

were incubated with various concentration of Luciferin-NAT2 in assay buffer for 

1 h before the addition of Luciferin Detection Reagent. Values presented are 

means ± SD, n=3. 

Dose-response curve of rat liver lysates to 

Luciferin-NAT2 
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5.2.5 Rat liver lysate preparation 

 
Rat liver (2 g) was washed repeatedly using homogenisation buffer (0.25 M sucrose in 

10 mM Tris-HCl, pH 7.4 contaning 1 mM EDTA), transferred into a pre-cooled beaker 

and minced into small pieces.  Homogenisation buffer (10 ml) was then added into the 

beaker and the entire contents of the beaker were then transferred into a pre-cooled 

Potter-Elvehjem homogeniser tube. Homogenisation of the liver was done by five 

passess of a Teflon pestle. All steps were carried out at 4°C to reduce proteolysis. The 

homogenate was then transferred into a Beckman centrifuge tube and centrifuged at 

1000 g for 10 min at 4°C. The supernatant was removed into a new centrifuge tube and 

subjected to centrifugation at 12,500 g at 4°C for 15 min. The supernatant was analysed 

on proteins and stored at -80°C. 

 

5.2.6 Functional characterisation of NAT2 acetylation phenotypes  

 

To test whether NAT2 acetylation phenotypes affect isoniazid toxicity, RAR, SAR and 

non-transfected HepG2 cells were subjected to MTT test, GSH assay, DNA 

fragmentation assay and Caspase-3 activity assay (see section 2.8-2.11). A two-way 

ANOVA analysis was performed to identify specific differences between selected 

groups using GraphPad Prism 5.0. In all cases, P<0.05 was required for significance to 

identify specific differences. 

 

 

5.3 Results 

5.3.1 Sequencing  

 

Sequencing traces showing the variation of SNPs (341T>C and 418C>T) in the NAT2 

coding region of RAR and SAR plasmid constructs are presented in Figure 5.5. The 

complete sequencing traces of plasmid inserts for both plasmids are shown in Appendix 

A & B. Sequence analysis showed that no variant (wild type) was detected in the NAT2 

coding region of RAR plasmid while SAR plasmid contained no other variant except for  

341T>C and 481C>T (mutant alleles).  
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TT genotype (position 341)

CC genotype (position 481)

A TT genotype (position 341)

CC genotype (position 481)

TT genotype (position 341)

CC genotype (position 481)
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CC genotype (position 341)

TT genotype (position 481)

B CC genotype (position 341)
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CC genotype (position 341)

TT genotype (position 481)
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   Figure 5.5 Sequencing result of the (A) rapid acetylator recombinant (RAR) plasmid 

containing the NAT2*4 wild-type allele and (B) slow acetylator recombinant (SAR) 

plasmid containing the NAT2*5 allele (341T>C and 481C>T) 
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NAT2 genotypes of HepG2, LS180 and Huh 7.5 cell lines were determined using PCR-

RFLP methods. Huh7.5 was found to be a rapid acetylator (NAT2*4/*4) while HepG2 

and LS180 cells possess NAT2*5/*6 slow acetylation genotypes. HepG2 was chosen for 

the expression studies and was stably transfected with RAR and SAR plasmids to study 

the effect of NAT2 overexpression. NAT2 overexpression efficacy of rapid acetylator 

recombinant (RAR) and slow acetylator recombinant (SAR) were assessed by RT-PCR 

and immunoblotting at mRNA and protein levels respectively. Figure 5.6 shows the 

semiquantitative RT-PCR analysis of NAT2 mRNA expressions in non-transfected, 

RAR and SAR cells. B-actin and GAPDH were used as a control. The NAT2 mRNA 

level in RAR and SAR cells are markedly higher by the presence of the more intense 

bands when compared to the non-transfected cells. However, NAT2 mRNA expression 

was similar between RAR and SAR cells. It was then further confirmed by quantitative 

RT-PCR analysis which showed no expression differences between RAR and SAR-

stably transfected cells (Table 5.2). The NAT2 mRNA expression in RAR and SAR 

were increased 364.76 ± 85.13 and 335.04 ± 74.31 fold respectively compared to the 

non-transfected cells. Figure 5.7 shows the expression level of NAT2 at protein level in 

(A) non-transfected, (B) RAR and (C) SAR cells. Relatively high level of NAT2 

expression was found in RAR and SAR cells compared to the non-transfected cells. 

However, NAT2 protein expression in SAR is lower when compared to the RAR cells. 

Quantification of the NAT2 bands in the immunoblot using ImageJ software revealed 

that NAT2 protein expression in SAR was 39% of that for RAR though untransfected 

cells also showed a detectable band of intensity about 10% of the RAR cells (Table 

5.3).  
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Table 5.2 Quantitative RT-PCR of NAT2 transcript level in non-transfected, 

RAR and SAR stably transfected cells 

 

Cell lines Average fold increase in mRNA 

expression 

Non-transfected HepG2 1.00  ±  0.02 

RAR-stably transfected HepG2  364.76  ±  85.13 

SAR-stably transfected HepG2  335.04  ±  74.31 

 

Data presented are means ± S.D. of triplicates from three independent experiments of 

the fold increase of NAT2 mRNA expression levels in RAR and SAR-stably transfected 

cells to corresponding levels in non-transfected cells, normalized with respect to 

GAPDH mRNA levels. 
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Figure 5.6 Semiquantitative RT-PCR analysis of NAT2 mRNA expressions 
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Table 5.3 Quantification of recombinant protein expressions of NAT2 alleles in 

HepG2 cells normalized to GAPDH expression using ImageJ software 

 

Cell lines Integrated 

density value* 
 

Fold increase in NAT2 

protein expression 

Non-transfected HepG2 34465   1.0 

RAR-stably transfected HepG2  345894 10.0 

SAR-stably transfected HepG2  135169   3.9 

* Integrated density values of NAT2 was normalized to respective GAPDH level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Western blot of NAT2 protein expressions in non-transfected 

(A), RAR-stably transfected (B) and SAR-stably transfected cells (C) 
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5.3.2 Determination of NAT2 enzyme activity 

 

To determine whether overexpression of NAT2 enzyme results in catalytically active 

enzyme in RAR and SAR cells, the NAT2 enzyme activities were assayed and 

compared to the non-transfected cells (control). NAT2 enzyme activities were readily 

detectable in RAR, SAR and control cells incubated with 40 µM Luciferin-NAT2 for 0-

12 h. Figure 5.8 displays the linearly increased of the relative luminescent units (RLU) 

over the entire time course with r
2
 > 0.9 for all samples.  NAT2 enzyme activity for 

each sample are presented in Table 5.4 and expressed in relative luminescent units per 

mg protein per h (RLU/mg/h). A significantly higher NAT2 activity (p<0.05) was 

detected in the RAR and SAR compared to the control cells, indicating the functional 

overexpression from both RAR and SAR plasmids. As shown in Table 5.4, RAR cells 

demonstrated a 4.3-fold increase in NAT2 activity over constitutive HepG2 activity 

compared with SAR where there was still an increase but this was significantly lower at 

2.2 fold (p<0.05). These data suggest that cell lines showing overexpression of NAT2 

from the RAR and SAR clone have been created, with the RAR clone exhibiting 

significantly higher NAT2 activity than SAR.  
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Table 5.4 NAT2 activities of RAR, SAR and non-transfected cells as 

evaluated by the bioluminescent NAT2 enzyme assay 

 

Cell lines NAT2 activity 

(RLU/mg/h) 

Fold increase 

Non-transfected 367.60  ±  22.76    1 

SAR 825.66  ±  82.16 2.2 

RAR 1590.11  ±  127.76 4.3 

 

Data presented are means ± S.D. of triplicates from two independent experiments 
† 
Net NAT2 activities in RAR and SAR were calculated by subtracting the activity 

measured in the non-transfected cells
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Cell lysates of RAR, SAR and non-transfected cells were incubated with 40 µM 

Luciferin-NAT2 with or without the presence of 400 µM Acetyl-CoA for 0-12 h prior 

to adding LDR. Zero-time values were measured in samples where the acetyl-CoA was 

withheld until after LDR addition. Data presented are means ± S.D. of triplicates from 

two independent experiments. The reactions were linear over the entire time course 

with r2>0.9 for all samples.  

Time course of NAT2 activity with Luciferin-NAT2 

Figure 5.8 Time course of NAT2 activity with Luciferin-NAT2 
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5.3.3 Functional characterisation of NAT2 acetylation phenotypes  

5.3.3.1 Effects of NAT2 overexpression on cell proliferation  

 
The functional consequences of difference NAT2 acetylation phenotypes on INH 

toxicity were evaluated. MTT assays were performed and the EC50 values were 

determined. As shown in Figure 5.9, no apparent differences were observed in RAR 

and SAR cells compared to the control cells.  The EC50 values of the control cells was 

slightly higher (28.43 mM) than the RAR (EC50=24.73 mM) and SAR cells (24.76 

mM). However, these differences were not statistically significant. 
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Significant difference between groups was assessed statistically by two-way ANOVA 

(*P<0.05). 

 

Figure 5.9 INH-induced decreased cell proliferation at 48 h in RAR, SAR and 

non-transfected cells 
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5.3.3.2 Effects of NAT2 overexpression on cellular GSH and GSSG  

 

RAR, SAR and the non-transfected cells were assessed for cellular content of GSH and 

GSSG after 48 h exposure to INH. The effect of NAT2 overexpression on total 

glutathione (GSH+GSSG) and GSH/GSSG ratio are summarized in Figure 5.10 and 

Figure 5.11 respectively. INH exposure decreases the total glutathione levels in all cell 

types. No significant differences in total glutathione levels were observed in RAR and 

SAR compared to the non-transfected cells. The GSH/GSSG ratio was further 

calculated and a significant decrease was found between RAR and the non-transfected 

cells at 20 mM INH (p<0.05) and 40 mM INH (p<0.001). Compared to the non-

transfected cells, GSH/GSSG levels were lower in SAR and a significant decrease was 

observed at 40 mM INH treatment (p<0.05). GSH/GSSG levels in RAR appeared lower 

than SAR at various concentration of INH treatment but these differences were not 

statistically significant. These data indicate that overexpression of NAT2 may slightly 

decrease the GSH/GSSG ratio, indicating an increased level of intracellular oxidative 

stress. 
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Figure 5.10 The effect of NAT2 overexpression on total glutathione depletion 

in RAR, SAR and non-transfected cells 

Values are the means ± S.D of duplicates from three independent experiments. 
Difference between groups was assessed statistically by two-way ANOVA 

(*P<0.05). 
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Figure 5.11 The effect of NAT2 overexpression on GSH/GSSG ratio in RAR, 

SAR and non-transfected cells 

**  

Values are the means ± S.D of duplicates from three independent experiments. 

Difference between groups was assessed statistically by two-way ANOVA (*P<0.05, 

**P<0.01, ***P<0.001). 
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5.3.3.3 Effects of NAT2 overexpression on INH-induced apoptosis  
 

To investigate the functional role of NAT2 overexpression on INH-induced apoptosis, 

DNA fragmentation assay and caspase-3 activity assay were performed in RAR, SAR 

and non-transfected cells. As shown in Figure 5.12, apoptotic DNA laddering was 

observed in all cell types at the INH concentration of 50 and 60 mM. Nevertheless, an 

early apoptotic ladder pattern was seen in RAR at 40 mM of INH treatment. RAR are 

cells with higher acetylation capacity than SAR and appear to be more susceptible to 

INH-induced apoptotic DNA fragmentation. Caspase-3 activity assay was then 

performed to verify the findings of DNA fragmentation assay. Figure 5.13 shows the 

significant increased of caspase-3 activity in RAR and SAR compared to the non-

transfected cells (p<0.05) when exposed to various concentration of INH. However 

there was no significant difference of caspase-3 activity observed between RAR and 

SAR cells. These findings suggest that RAR cells are marginally more susceptible to 

apoptosis at high INH concentrations. 
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Figure 5.12 Effects of NAT2 overexpression on INH-induced DNA 

fragmentation  

Image shown is the representative from one of two duplicates. DNA 

fragmentation assay was performed as indicators of apoptosis following 48 

h of INH treatment. The apoptotic ladder patterns were seen in all cell 

types at 50 and 60 mM INH. However, RAR were found to be more 

susceptible to apoptosis induced by 40 mM INH compared to SAR and non-

transfected cells as a more intense apoptotic DNA laddering was observed 

in these cells.  
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Figure 5.13 INH-induced increased caspase-3 activity in RAR, SAR and non-

transfected cells 
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5.4 Discussion 

 

These experiments aimed to look at the effect of stably expressing a wild-type NAT2 

gene on isoniazid toxicity in a cell line that was homozygous for variant NAT2 alleles 

and therefore had a slow acetylator phenotype. As a control, a variant (NAT2*5) gene 

was expressed in a parallel experiment. The first step involved the isolation of HepG2 

cell lines stably expressing the relevant genes. Previous studies have described the 

transient expression of NAT2*4 and a few of the mutant NAT2 alleles or haplotypes 

including a combination of NAT2*5 alleles (341T>C and 481C>T) in monkey kidney 

COS-1 cells (Zang et al., 2007; Zang et al., 2004; Blum et al., 1991) and E.coli (Hein et 

al., 1994). The 341T>C polymorphism results in an amino acid change (Ile-114 to Thr) 

which substitutes a polar (Thr) for a non-polar (Ile) amino acid, whereas 481C>T is a 

synonymous SNP which has no effect on NAT2 mRNA, protein or catalytic activity 

(Zang et al., 2007). Blum and colleagues reported that the M1 allele which contain the 

341T>C and 481C>T variants greatly reduced the expression of NAT2 protein without 

affecting mRNA expression (Blum et al., 1991). They concluded that the combined 

variants of these two SNPs together affected impaired translation of NAT2 protein 

when compared to the expression of NAT2*4 allele using COS-1 cells. However, Hein 

and colleagues did not observe any significant reduction of NAT2 protein in 

recombinant NAT2 containing both 341T>C and 481C>T variants in expression studies 

in E.coli (Hein et al., 1994), indicating the distinction between recombinant NAT2 

protein expression system in prokaryotic and eukaryotic cells. Our present study 

showed that the stable expression of slow acetylator recombinant (SAR) featuring both 

NAT2 variants (341T>C and 481C>T) in HepG2 cells has a significantly reduced NAT2 

protein expression level but a similar mRNA transcription level compared to the rapid 

acetylator recombinant (RAR), agreeing with the earlier finding using COS-1 cells. 

However the level of NAT2 protein in cells overexpressing the NAT2*4 reference allele 

was 6.1-fold higher than in COS-1 cells overexpressing 341T>C variant (Zang et al., 

2004). Zang and colleagues have also demonstrated the 341T>C variant showed eight-

fold lower NAT2 catalytic activity compared to COS-1 cells overexpressing NAT2*4 

allele using sulfamethazine as substrate (Zang et al., 2004). In another transfection study 

using sulfamethazine as NAT2 substrate, Blum and colleagues reported that NAT2 

catalytic activity from the M1 allele (NAT2*5) was about 5-fold lower compared to that 

seen when the NAT2*4 allele was transfected (Blum et al., 1991). It was proposed that 
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the lower NAT2 protein and enzyme activity due to 341T>C polymorphism resulted 

from enhanced protein degradation (Zang et al., 2004). Our current study has 

demonstrated a 2.7-fold statistically significant lower NAT2 activity in SAR stable 

transfected cells compared to RAR stable transfected cells. The observed lower NAT2 

catalytic activity (2.7-fold) agrees well with the lower NAT2 protein expression (3.1-

fold lower than expression from NAT2*4) by western blotting. Nevertheless, the 

observed difference in NAT2 catalytic activity in SAR compared to RAR using 

Luciferin-NAT2 as substrate was smaller than those reported previously. The significant 

overexpression of NAT2 enzymes in both SAR and RAR cells leads to a substantial net 

increase in NAT2 enzyme activity over background (non-transfected HepG2 cells) 

could be the reason why a smaller than expected difference was detected between the 

RAR and SAR cells. Ideally, a pTARGET empty plasmid or a nonsense vector should 

have been stably expressed in parallel to eliminate any non-specific effects which could 

have led to an underestimate of the difference in enzyme activity between RAR and 

SAR cells. A sensitive direct assay for isoniazid acetylation would have been more 

appropriate but this was not available for the current study. A comparison with a 

NAT2*6 construct similar to the NAT2*4 and *5 constructs used here would also be of 

interest.  

 

We studied three different cell lines, the original "slow acetylator genotype" HepG2 

cells, HepG2 cells with increased expression of mutated NAT2 and HepG2 cells with 

expression of wild-type NAT2. Previous studies showed that INH treatment could 

decrease cell proliferation and increase oxidative stress with mitochondrial dysfunction 

accompanied by apoptosis seen in HepG2 cells as well as in other cell lines (Bhadauria 

et al., 2010; Schwab and Tuschl, 2003). Both studies have demonstrated that INH could 

produce apoptosis in HepG2 cells at millimolar concentrations (26 mM) and therefore a 

comparable concentration in the range of 20 to 60 mM was used in our present study. 

The results from MTT assay showed that overexpression of either wild-type or variant 

NAT2 has no effect on cell proliferation as no significant differences of the EC50 values 

were observed in RAR and SAR cells compared to the control cells. However, when the 

cells were assessed for cellular content of GSH and GSSG, the GSH/GSSG ratio in both 

RAR and SAR cells were significantly lower than the controls, indicating that 

overexpression of NAT2 may increase the level of intracellular oxidative stress. 

However, the effect in RAR cells seems greater than for SAR. Overexpression of either 
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NAT2 construct also increased INH-induced apoptosis in HepG2 cells. These results 

suggested that the INH reactive metabolites generated by NAT2 rather than the parent 

drug might be responsible for the development of INH-induced toxicity in HepG2. 

Acetylhydrazine, a toxic metabolite of INH has been suggested to be the cause of INH-

induced hepatotoxicity, especially in slow acetylation phenotype (Lauterburg et al., 

1985; Timbrell et al., 1980; Ellard et al., 1978). Individuals with rapid acetylator 

phenotype were suggested to be less susceptible to INH-induced DILI as they convert 

acetylhydrazine more rapidly into non-toxic diacetylhydrazine and decrease 

acetylhydrazine accumulation. On the other hand, slow acetylators with reduced NAT2 

enzyme convert acetylhydrazine to diacetyhydrazine more slowly and thus increase 

acetylhydrazine accumulation. Acetylhydrazine can be hydrolysed into hydrazine, a 

major INH toxic metabolite and it has been shown that hydrazine is of greater 

quantitative significance in slow than in rapid acetylator (Sarich et al., 1996). Slow 

acetylators with increased acetylhydrazine accumulation will hydrolyse some of the 

acetylisoniazid to hydrazine via this alternate pathway. More recent studies have 

suggested that hydrazine rather than acetylhydrazine could be the cause of INH-induced 

hepatotoxicity (Sarich et al., 1996; Gent et al., 1992; Noda et al., 1983). 

 

 In our present study, there was no statistically significant difference in functional 

consequences of NAT2 acetylation phenotypes on INH toxicity observed between RAR 

and SAR cells though some suggestions that toxicity was greater in RAR were seen. 

The relatively small effects and lack of specificity could be due to the short duration of 

INH treatment (48 hours) in these cells and perhaps a longer duration for the cells 

exposed to INH is needed to allow the possibility for accumulation of more toxic effects 

of hydrazine and acetylhydrazine. Another reason could be due to that the amount of 

hydrazine formed indirectly by this alternate pathway via hydrolysis of acetylisoniazid 

was very little and may not cause serious toxicity to the cells. Conceivably, hydrazine 

formed directly by direct hydrolysis of INH may play an important role in the 

development of hepatotoxicity. It has been demonstrated that RMP enhance 

idiosyncratic hepatocellular reactions in slow acetylators by inducing formation of 

hydrazine from isoniazid (Sarma et al., 1986). A more recent study has also 

demonstrated that serum concentration of hydrazine was significantly higher in subjects 

with NAT2 slow acetylator phenotypes, high concentration of serum RMP, and GSTM1 

null genotype (Fukino et al., 2008). These may suggest that polymorphisms in the 
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NAT2 alone may not fully account for the development of ATD-DILI and there could 

be another ATD metabolising enzymes or additional factors that contribute the 

idiosyncratic nature of liver toxicity caused by anti-tuberculosis medication. Though 

these preliminary findings suggesting overexpression of NAT2 results in increased INH 

toxicity are interesting, there are a number of limitations. In particular, HepG2 cells are 

not a perfect model for liver metabolism because they show relatively low levels of 

P450 and other xenobiotic metabolising enzyme expression (Westerink and Schoonen, 

2007). However, it would not have been possible to perform these stable transfection 

studies in primary hepatocytes and HepG2 was the best alternative available.  
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Chapter 6. The Protective Role of Glutathione S-transferase 

A Class Isoforms against Cytotoxic Effects of Isoniazid 
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6 The protective role of glutathione S-transferase A 
class against cytotoxic effects of isoniazid 

6.1 Introduction 

 

As described in chapter 5, INH-induced hepatotoxicity appears to be associated with 

reactive metabolites produced by NAT2, a major drug-metabolizing enzyme in INH 

metabolism. Exposure to reactive INH metabolites is believed to play a central role in 

accumulation of reactive oxygen species (ROS) within hepatocytes that may promote 

intracellular oxidative stress and lead to hepatocyte death via apoptosis and necrosis. 

Thus several enzyme systems including glutathione S-transferase enzymes (GSTs) and 

superoxide dismutase 2 (SOD2) may play a major role against liver injury by its 

detoxification effects through the conjugation of glutathione with harmful electrophiles 

generated during oxidative stress and lipid peroxidation. The inter-individual 

differences in the ability to detoxify certain drugs and their toxic intermediates could 

increase susceptibility to DILI due to toxic metabolites accumulation. As described in 

section 1.7.3, genetic polymorphisms of GSTM1, GSTT1 and SOD2 have previously 

found to be associated with ATD-DILI. In our present genotyping study (Chapter 3), 

some evidence for associations between polymorphisms in the glutathione S-transferase 

genes, particularly GSTM1 and GSTA4 and ATD-DILI was found, suggesting a 

protective role of these enzymes in preventing ATD-DILI. The aim of this chapter is to 

assess the protective role of glutathione S-transferase (GSTs) and their association with 

INH-induced DILI by using in vitro overexpression and siRNA knockdown approaches. 

In view of the well characterised role of GSTA4  in detoxification of 4-hydroxynonenal 

(Hubatsch et al., 1998), a product of lipid peroxidation, the main aim of the experiments 

described in this chapter was to perform in vitro studies on this isoform in relation to 

INH toxicity.  
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6.2 Materials and Methods 

6.2.1 The overexpression effect of hGSTA4 on INH toxicity 

6.2.1.1 Construction of hGSTA4 recombinant stable cell lines 

 

Total RNA was isolated from human primary hepatocytes and reverse transcription of 

mRNA was performed to synthesize cDNA (see section 2.5). Amplification of hGSTA4 

cDNA was performed by using PCR. The PCR conditions were 35 cycles at 95ºC for 

60s, 51ºC for 90s and 72ºC for 90s; forward primer: 5’-AAGCTATCATGGCAGCAAG 

G-3’ and reverse primer: 5’- GACAATACCATCTCTAGGA -3’. The PCR product 

(729 bp) was analysed in a 2% agarose gel and purified using Qiagen Gel Extraction 

Kit. It was used as the DNA insert for the recombinant plasmid construction (Figure 

6.1) and cloned into the mammalian expression vector pTARGET (Promega). The 

presence of the recombinant construct was confirmed by digesting the plasmid DNA (3 

µl) with EcoRI restriction enzyme (Figure 5.2) and the nucleotide sequence of the 

plasmid containing the DNA inserts were confirmed by sequencing (see section 2.4.6). 

The plasmid was then stably transfected into HepG2 cells using GeneJuice transfection 

reagent and the cells were selected with 500 µg/ml G418 antibiotic for 3-4 weeks until 

the G418-resistant clones were established (see section 2.5.4). The stably transfected 

cells were maintained in 250 µg/ml until further analysis. The overexpression of 

GSTA4 in the stably transfected cells were evaluated using quantitative RT-PCR and 

western blotting. The non-transfected HepG2 cells were used as a control. 

 

6.2.1.2 Functional analysis of GSTA4 overexpression in HepG2 cell 

line against isoniazid hepatotoxicity  
 

To test whether hGSTA4 overexpressing cell lines have a protective role against 

isoniazid hepatotoxicity, hGSTA4-stable transfected cell lines were harvested prior to 

apoptosis markers and cell viability analyses. G-418 selective culture medium were 

removed and replaced with fresh growth medium for 2 days. Cells were then subjected 

to MTT test, DNA fragmentation assay and Caspase-3 fluorometric assay (see section 

2.8, 2.10 and 2.11). 
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AAGCTATCATGGCAGCAAGGCCCAAGCTCCACT

ATCCCAACGGAAGAGGCCGGATGGAGTCCGTGAGATGGGTTTTAGCTGCCGCCGGAGTCG

AGTTTGATGAAGAATTTCTGGAAACAAAAGAACAGTTGTACAAGTTGCAGGATGGTAACC    

ACCTGCTGTTCCAACAAGTGCCCATGGTTGAAATTGACGGGATGAAGTTGGTACAGACCC

GAAGCATTCTCCACTACATAGCAGACAAGCACAATCTCTTTGGCAAGAACCTCAAGGAGA 
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ATCCTTTCTTAAAACCAGATGATCAGCAAAAGGAAGTGGTTAACATGGCCCAGAAGGCTA   

H--P--F--L--K--P--D--D--Q--Q--K--E--V--V--N--M--A--Q--K--A--

TAATTAGATACTTTCCTGTGTTTGAAAAGATTTTAAGGGGTCACGGACAAAGCTTTCTTG   

I--I--R--Y--F--P--V--F--E--K--I--L--R--G--H--G--Q--S--F--L--

TTGGTAATCAGCTGAGCCTTGCAGATGTGATTTTACTCCAAACCATTTTAGCTCTAGAAG   

V--G--N--Q--L--S--L--A--D--V--I--L--L--Q-=T=-I--L--A--L--E--
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ATGAAATTTATGTGAGAACCGTCTACAACATCTTTAGGCCATAAAACAACACATCCATGT   

D--E--I--Y--V--R--T--V--Y--N--I--F--R--P--*-................

GTGAGTGACAGTGTGTTCCTAGAGATGGTATTGTC 

...................................
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Figure 6.1 Nucleotide sequences of plasmid insert possessing GSTA4 coding   

region.  

 

Figure shown is the nucleotide sequences of plasmid insert (729bp) containing 

GSTA4 coding region. Primers used to amplify the DNA fragments are shown in 

underline; the start codon (ATG) and stop codon (TAG) are shown in red bold 

letters; the protein sequences are highlighted in yellow. 
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6.2.2 Effects of GSTA1 inhibition in INH Cytotoxicity 

6.2.2.1 Detection of GSTA1 expression in mammalian cells  

 

To assess the significance of GSTA1 mRNA and protein expression, HepG2, LS180, 

Caco-2, and Huh 7.5 cell lines were evaluated using quantitative RT-PCR and western 

blotting. Cell line with the presence of highly abundant GSTA1 protein was used for 

siRNA studies.  

 

6.2.2.2 Small interfering RNA (siRNA) knockdown of GSTA1 

 

Small interfering RNA (siRNA) GSTA1 knockdown experiment was performed using 

validated Silencer Select predesigned siRNA (Ambion, Applied Biosystems). The 

siRNA sequences consisted of sense: r(AAUAAAGUACUUUACCUAA)dTdT and 

antisense: r(UUAGGUAAAGUACUUUAUU)dGdT, targeting the exon 7 of the 

GSTA1. A reverse transfection technique was performed using RiboJuice siRNA 

transfection reagent (Novagen, Merck Biosciences). Cell lines were passaged every 2-3 

days to ensure rapid growth and doses were optimised to ensure highest transfection 

efficiency. Briefly, cells were detached from the flask to form a suspension of 1,000,000 

cells per well in a 6-well plate format. For each well, 2 µl of RiboJuice were mixed 

thoroughly in 224 µl of serum free medium in a sterile tube and incubated for 5 min at 

room temperature. The optimized concentration of siRNA was then added into the 

mixture and incubated further at room temperature for 10 min. The 

siRNA/RiboJuice/medium complex mixture was then added into the cell suspension in 

1.25 ml of antibiotic-free complete medium. After 4-8 h incubation, the transfection 

mixture were removed and replaced with complete growth medium. The cells were 

incubated for 72 h to allow optimal silencing of the GSTA1 expression and GSTA1 

knockdown was assessed by both RTPCR and immunoblotting.  

 

Pilot experiments included internal controls of untreated cells, mock-transfected cells 

with no siRNA, and a non-silencing siRNA control (Silencer Select Negative Control 

siRNA, Ambion). The Silencer Select Negative Control siRNAs are siRNAs with 

sequences that do not target any gene product to determine siRNA transfection 

efficiency and to control for the effects of siRNA delivery. A positive control using 

Silencer Select GAPDH siRNA (Ambion) was tested to develop and optimizing the 
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transfection condition. Optimisation of gene silencing was performed by quantifying 

GSTA1 mRNA levels by Q-RTPCR and GSTA1 protein levels by immunoblotting. 

 

6.2.2.3 Analysis of the effects of GSTA1 inhibition in INH 

cytotoxicity  
 

The effect of GSTA1 silencing on INH cytotoxicity was tested by performing the 

apoptosis marker and cell viability analyses. Cells were transfected with GSTA1 siRNA 

or non-silencing siRNA control for 72 h and subjected to MTT test, DNA fragmentation 

assay and Caspase3 fluorometric assay (see section 2.8, 2.10, 2.11). 

 

 

6.3 Result 

6.3.1 The effect of hGSTA4 in INH toxicity 

6.3.1.1 Evaluation of GSTA4 expression in stably transfected 

HepG2 cells with GSTA4 plasmid 
 

The GSTA4 overexpression efficacy of stably transfected HepG2 cells with GSTA4 

plasmid at mRNA and protein levels was assessed by RT-PCR and immunoblotting 

respectively. Figure 6.2 shows the semiquantitative RT-PCR analysis of GSTA4 

mRNA expression in (A) non-transfected and (B) hGSTA4-stably transfected HepG2 

cells. B-actin and GAPDH were used as a control. GSTA4 mRNA level in hGSTA4-

stably transfected HepG2 cells are increased by the presence of the more intense bands 

when compared to the non-transfected cells. The semiquantitative RT-PCR findings 

were further quantified by quantitative RT-PCR analysis as shown in Table 6.1. The 

hGSTA4-stably transfected cells have shown an approximately 60 fold increase in 

GSTA4 transcript level when compared with the non-transfected cells. Data presented 

are means ± S.D. of triplicates from three independent experiments of the fold increase 

of GSTA4 mRNA expression levels in hGSTA4-stably transfected cells to 

corresponding levels in non-transfected cells, normalized with respect to GAPDH 

mRNA levels.  

The expression level of GSTA4 at protein level reflected mRNA findings, with a 

relatively high level of GSTA4 expression in hGSTA4-stably transfected cells compared 

to the non-transfected cells (Figure 6.3). 
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Table 6.1 Quantitative RT-PCR of GSTA4 transcript level in non-transfected 

and stably transfected HepG2 with hGSTA4 plasmid 

 
 

Cell lines 
Average fold increase in mRNA 

expression 

Non-transfected HepG2   1.00  ±  0.02 

hGSTA4-stably transfected HepG2 60.29  ±  6.41 

 

Data presented are means ± S.D. of triplicates from three independent experiments of 

the fold increase of GSTA4 mRNA expression levels in hGSTA4-stably transfected 

cells to corresponding levels in non-transfected cells, normalized with respect to 

GAPDH mRNA levels. 
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Figure 6.3 Immunoblot of GSTA4 protein expressions in 

non-transfected (A) and GSTA4-stably transfected HepG2 

cells (B) 
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Figure 6.2 Semiquantitative RT-PCR analysis of GSTA4 mRNA 

expressions in non-transfected (A) and hGSTA4-stably transfected 

HepG2 cells (B) 
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6.3.1.2 Functional role of GSTA4 against INH-decreased cell 

proliferation in HepG2 cells  
 

To evaluate the functional consequences of hGSTA4 overexpression on cell 

proliferation, MTT assays were performed and the EC50 values were determined. The 

hGSTA4-stably transfected cells have significantly reduced cell proliferation inhibition 

caused by INH at 20, 30, 40, 50 and 60 mM, compared with the non-transfected cells 

(P<0.05). The EC50 values of the hGSTA4-stably transfected cells was 38.64 mM 

which was higher than the non-transfected cells (29.16 mM), indicating that GSTA4 has 

a protective role against toxicants generated by INH (Figure 6.4).  
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Figure 6.4 INH-induced decreased cell proliferation at 48 h in hGSTA4-

transfected and non-transfected HepG2 cells 
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INH-induced decreased cell proliferation  
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Values are the means ± S.D of duplicates from three independent experiments. 

Difference between groups was assessed statistically by two-way ANOVA (*P<0.05, 

**P<0.01, ***P<0.001). 
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6.3.1.3 Inhibitory effect of INH-induced apoptosis in HepG2 

overexpressing GSTA4 
 

DNA fragmentation assay and caspase-3 activities were determined as indicators of 

apoptosis following 48 h of INH treatment in hGSTA4-stably transfected and non-

transfected cells. DNA fragmentation was detected by an ethidium bromide stained gel 

following INH treatment (Figure 6.5). In non-transfected cells, obvious DNA 

fragmentation was observed at the concentration of 50 mM and 60 mM INH. However, 

DNA fragmentation ladder pattern of hGSTA4-stably transfected cells was only evident 

after INH treatment at 60 mM. This result was consistent with the findings in caspase-3 

activity assay as reduced caspase-3 activity was observed in hGSTA4-stably transfected 

cells compared to the non-transfected cells (Figure 6.6). Significantly reduced (P<0.05) 

caspase-3 activity was observed in hGSTA4-stably transfected cells at 50 mM INH 

treatment. This result is concordant with the results of MTT and DNA fragmentation 

assay, suggesting the inhibitory effect of INH-induced cytotoxicity in HepG2 by the 

overexpression of GSTA4. 
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Figure 6.5 INH-induced DNA fragmentation in hGSTA4-stably 

transfected cells 

Early detection of apoptotic DNA fragmentation was seen in non-

transfected cells treated with 50 mM INH, whilst 60 mM INH in hGSTA4-

transfected cells. Shown is a representative gel from two experiments. 
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Values are the means ± S.D of duplicates from three independent experiments. 

Difference between groups was assessed statistically by two-way ANOVA 

(*P<0.05). 
 

**  

Figure 6.6 INH-induced increased caspase-3 activity in hGSTA4- and non-

transfected HepG2 cells 
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6.3.2 The effect of isoniazid on GSTA1 expression profile in human cell 

line 

 

To examine whether the toxicity of INH is enhanced in GSTs-knockdown cells, small 

interfering RNA (siRNA) GSTA4 knockdown experiment was initially performed in 

HepG2 and LS180 cells. GSTA4 mRNA and protein expression were evaluated in both 

cell lines. However due to the lack of GSTA4 expression in both cell lines (data not 

shown), GSTA1 was then chosen as the candidate gene to study the toxicity profile of 

INH in GSTA1-knockdown cells.  

  

6.3.2.1 GSTA1 expression in mammalian cell lines 
 

The expression of GSTA1 transcripts in mammalian cell lines was investigated using 

quantitative RT-PCR and GSTA1 protein levels were assessed by immunoblotting. The 

GSTA1 transcript expression level in the HepG2, LS180 and Huh7.5 is relatively low to 

corresponding level in Caco-2 cells (Table 6.2). The Caco-2 cell line has shown to 

express higher GSTA1 transcript expression levels. The expression level of total 

GSTA1 at protein level reflected mRNA findings, with relatively low levels of 

expression in (A) HepG2, (B) LS180 and (D) Huh7.5 and higher levels in (C) Caco-2 

cell lines (Figure 6.7).  
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Table 6.2 Quantitative RT-PCR of GSTA1 transcript level in Caco-2, HepG2, 

Huh7.5, and LS180 cell lines 

 
 

Cell lines 

 

Average fold reduction in mRNA expression 
 

Caco-2 1.000  ±  0.129 

HepG2 0.072  ±  0.063 

Huh7.5 0.019  ±  0.012   

LS180  0.001  ±  0.001 

 

Data presented are means ± S.D. of triplicates from two independent experiments 

of the fold increase of GSTA1 mRNA expression levels in HepG2, Huh7.5 and 

LS180 to corresponding levels in Caco-2 cells, normalized with respect to GAPDH 

mRNA levels. 
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Figure 6.7 Immunoblot of GSTA1 protein level in mammalian 

cell lines 

Immunoblotting was used to determine GSTA1 expression levels in (A) 

HepG2, (B) LS180, (C) Caco-2 and (D) Huh 7.5 cells. No GSTA1 

protein level was detectable in HepG2, LS180 and Huh7.5 except for 

Caco-2 cell lines. 
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6.3.2.2 GSTA1 silencing decreased GSTA1 transcript levels  

  

Caco-2 cell line was chosen as the cell line for GSTA1 silencing work, due to its high 

expression levels of GSTA1. The efficiency of GSTA1 knockdown was analyzed by 

quantitative RT-PCR 72 h after transfection. Cells were transfected with 5 nM, 10 nM 

and 25 nM GSTA1 siRNA for 72 h. Comparison was made between non-silencing 

siRNA controls (NSCs) and the GSTA1 siRNA. Internal controls included no treatment 

and mock-transfected cells with RiboJuice only. The GSTA1 knockdown efficiency at 

the mRNA transcript level was shown in Table 6.3 and Figure 6.8. Neither mock-

transfected nor no treatment cells had significantly reduced GSTA1 transcript levels 

compared to NSCs. Both 10 nM and 25 nM GSTA1 siRNAs significantly reduced the 

expression levels of GSTA1 by 77% and 81% respectively when compared to the 

NSCs. 

 

Table 6.3 Quantitative RT-PCR analysis of the effect of GSTA1 siRNA on 

GSTA1 transcript levels at 72 h  

 
 

Treatment 
Average fold reduction in 

mRNA expression 
 

Non-silencing siRNA controls (NSCs) 1.00  ±  0.12 

Mock-transfection  0.87  ±  0.17 

No treatment 0.97  ±  0.10 

5 nM GSTA1 siRNAs 0.41  ±  0.21 

10 nM GSTA1 siRNAs 0.23  ±  0.12 

25 nM GSTA1 siRNAs 0.19  ±  0.05 

 

Data presented are means ± S.D. of triplicates from two independent experiments.  
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Figure 6.8 Silencing effect of GSTA1 siRNA on GSTA1 transcription levels at 

72 hours by quantitative RT-PCR 

Quantitative RT-PCR analysis of GSTA1 transcription levels  

GSTA1 transcription levels in Caco-2 cells transfected with 5, 10 and 25 nM of GSTA1 

siRNA, comparing with non-silencing siRNA controls (NSCs), mock transfection with 

RiboJuice only and no treatment control. All mRNA levels were normalized to GAPDH 

levels. The mRNA level for NSCs was set at 1 and fold reduction in the respective 

mRNA levels in the presence of corresponding siRNAs were determined. As shown, 25 

nM GSTA1 siRNA efficiently silences the GSTA1 mRNA levels by greater than 80%. 

The GSTA1 transcript levels remained unchanged in all controls.  
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6.3.2.3 GSTA1 silencing decreased GSTA1 total protein levels  
 

Having determined that GSTA1 siRNA successfully reduced GSTA1 at transcript levels, 

the effect on protein expression was assessed by immunoblotting after 72 h. In keeping 

with mRNA finding, GSTA1 protein levels remained unaltered in mock transfected 

NSCs and no treatment controls (Figure 6.9) (Table 6.4). Quantification of the GSTA1 

bands using ImageJ software revealed 5 nM, 10 nM and 25 nM GSTA1 siRNAs reduced 

the protein expression levels of GSTA1 by 32%, 79% and 89% respectively when 

compared to the NSCs. Knockdown efficiency of GSTA1 is increased when cells were 

transfected with higher concentration of GSTA1 siRNA (25 nM). Therefore 25 nM 

siRNA was used for efficient knockdown of GSTA1 functional analyses. 
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Table 6.4 Quantification of protein expression of GSTA1 normalized to β-actin 

level using ImageJ software 

 

Treatment Absolute peak 

area value* 
 

Fold reduction in 

GSTA1 expression  

Non-silencing siRNA controls (NSCs) 22.88 1.00 

Mock-transfection  22.66 0.99 

No treatment 23.20 1.01 

5 nM GSTA1 siRNAs 15.66 0.68 

10 nM GSTA1 siRNAs   4.90 0.21 

25 nM GSTA1 siRNAs   2.52 0.11 

* Absolute peak area value of GSTA1 were normalized to β-actin level 
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Immunoblotting was used to determine GSTA1 expression levels in Caco-2 cells 

transfected with (A) 5, (B) 10 and (C) 25 nM of GSTA1 siRNA, comparing with (D) no 

treatment (control), (E) mock transfection with RiboJuice only and (F) non-silencing 

siRNA controls (NSCs) at 72 h. Knockdown of GSTA1 protein was obvious by the 

GSTA1 siRNA at the concentration of 25 nM, and GSTA1 expression was unaltered in 

all control treatments 

Figure 6.9 Effect of GSTA1 siRNA on GSTA1 protein levels 

 
Figure 6.9 Effect of GSTA1 siRNA on GSTA1 protein levels 
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6.3.2.4 GSTA1 silencing abolished protection against INH-induced 

cell proliferation inhibition 
 

MTT assays were performed to determine the functional consequences of GSTA1 

silencing on cell proliferation in Caco-2 cells. Treatment with INH causes a dose-

dependent inhibition of cell proliferation in both NSCs and GSTA1 siRNA knockdown 

cells (GSTA1s). As shown in Figure 6.10, GSTA1 silencing has significantly enhanced 

cell proliferation inhibition in GSTA1s compared to the NSCs when treated with 30, 45, 

60, 75 and 90 mM INH (p<0.001). The EC50 value of the GSTA1s was 48.82 mM 

lower than the NSCs (68.88 mM) which indicates that GSTA1s were more susceptible 

to INH-mediated cell proliferation inhibition compared to NSCs.  
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Figure 6.10 INH-induced decreased cell proliferation in GSTA1 siRNA 

knockdown cells (GSTA1s) 
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Values are the means ± S.D of duplicates from three independent experiments. 

Difference between groups was assessed statistically by two-way ANOVA (*P<0.05, 

**P<0.01, ***P<0.001). 
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6.3.2.5 GSTA1 silencing promotes INH-induced apoptosis  
 

To investigate the functional role of GSTA1 in INH-induced apoptosis, DNA 

fragmentation assay and caspase-3 activity assay were performed in NSCs and 

GSTA1s. As shown in Figure 6.11, DNA fragmentation ladder pattern of GSTA1s was 

evident after INH treatment at 30, 45 and 60 mM. In NSCs, intense DNA laddering was 

observed at the concentration of 45 and 60 mM INH and a faint ladder pattern was seen 

at 30 mM INH. None of the apoptotic DNA laddering was observed in NSCs and 

GSTA1s cells, neither in caco-2 cells without INH treatment. Caspase-3 activity assay 

was performed to confirm the findings of DNA fragmentation assay. Figure 6.12 shows 

the increased of caspase-3 activity in NSCs and GSTA1s when exposed to 15, 30, 45 

and 60 mM INH. A significant induction of caspase-3 activity was observed in GSTA1s 

at 15, 30 and 45 mM INH (P<0.001) compared to NSCs. These findings confirmed the 

results of MTT and DNA fragmentation assay, suggesting GSTA1 silencing increased 

INH-induced cytotoxicity in Caco-2 cells. 
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Figure 6.11 DNA fragmentation analyses in Caco-2 cells transfected 

with NSCs and GSTA1s cells 

The apoptotic DNA fragmentation was detected in NSCs and GSTA1s 

treated with 30, 45 and 60 mM INH. However, less apoptotic DNA 

laddering was observed in NSCs compared to GSTA1s when treated with 

30 mM INH, suggesting the protective role of GSTA1 against INH-induced 

apoptosis. No DNA fragmentation was detected in caco-2 cells (N), NSCs 

and GSTA1s in the absence of INH treatment.  

 



 

 

 

212 

 
 

 

6.4 Discussion 

 

Though P450 mediated metabolism usually biotransforms drugs into water-soluble 

metabolites which are easier to eliminate, in some cases it causes the activation of a 

drug to a hepatotoxic metabolite and increases drug toxicity. In the case of isoniazid, 

polymorphisms in metabolic enzymes such as NAT2 and CYP2E1 may be associated 

with isoniazid-induced liver injury due to the increased level of toxic metabolites of 

isoniazid. Thus, GST enzymes may play an important role to limit or prevent ATD-

DILI by reducing INH toxic metabolites or neutralising toxic products of oxidative 

stress such as 4-hydroxynonenal, particularly in slow acetylators. The present study 

aimed to examine in detail the possible relevance of GSTA4 to protection against INH-

related toxicity. GSTA4 appears to be the main GST isoform that protects against 4-

hydroxynonenal toxicity (Balogh and Atkins, 2011). Transfection of HepG2 cells with 
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Figure 6.12 INH-induced increased caspase-3 activity in GSTA1 siRNA 

knockdown cells (GSTA1s) 

 

 

******  

******  

******  

Values are the means ± S.D of duplicates from three independent experiments. 

Difference between groups was assessed statistically by two-way ANOVA 

(*P<0.05, **P<0.01, ***P<0.001). 
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GSTA4 has also been shown previously to protect against 4-hydroxynonenal-mediated 

oxidative injury (Gallagher et al., 2007) but the effect of its stable expression on INH-

related toxicity has not been previously investigated. The current study has shown 

clearly that GSTA4 expression in HepG2 cells does result in decreased INH-related 

toxicity. This is of interest in view of the borderline significant associations seen for 

some GSTA4 SNPs for ATD-DILI (Chapter 3). 

 

To confirm the GSTA4 protective effect, we sought to assess INH toxicity after siRNA 

transfection to knockout GSTA4. Unfortunately, it was not possible to do this in any of 

the available cell lines as none were found to express GSTA4 constitutively at 

detectable levels. As an alternative and further investigation on the role of GSTA 

isoforms in protection against INH toxicity, siRNA studies were performed to knockout 

GSTA1. GSTA1 is not able to conjugate 4-hydroxynonenal but has been shown to 

decrease reduction of lipid peroxides due to having GSH peroxidase activity (Balogh 

and Atkins, 2011). This means it may have a role in preventing the formation of 4-

hydroxynonenal. As for GSTA4, GSTA1 was expressed at low levels in several cell 

lines including HepG2. However, levels of expression in the epithelial colorectal 

adenocarcinoma cell line Caco-2 were relatively high and it was therefore decided to do 

the siRNA studies in these cells although a liver cell line would have been a better 

model for INH-related DILI. GSTA1 silencing significantly abolished protection against 

INH-induced cell proliferation inhibition and increased INH-induced apoptosis in Caco-

2 cells.  

 

Therefore, though the GSTA isoforms were not able to prevent completely toxicity 

induced by INH, these results demonstrated that expression of GSTA1 or A4 could 

function to limit the effect of INH on the extent of apoptosis/necrosis. This finding 

suggests that lipid peroxidation could play a role in the mechanism for ATD-DILI.  

In Chapter 3, some evidence that individuals with the GSTM1 null genotype are more 

susceptible to ATD-DILI was also obtained. There is evidence that GSTM1 may also 

contribute to detoxification of 4-hydroxyalkenals from lipid peroxidation as well as 

having GSH peroxidase activity (Berhane et al., 1994) and it would also have been 

interesting to have performed expression and siRNA studies for this isoform. GSTA1, 

GSTA4 and GSTM1 are all expressed in human hepatocytes (Aninat et al., 2006) and 

are therefore very relevant to ATD-DILI.  
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As well as the findings reported in Chapter 3, it has been shown that the homozygous 

null genotype of GSTM1 and GSTT1 is implicated in methotrexate, troglitazone and 

carbamazepine-induced liver injury as well as DILI relating to a range of different drugs 

(Lucena et al., 2008a; Imanishi et al., 2007; Ueda et al., 2007; Watanabe et al., 2003). 

Therefore it is worth undertaking further studies on the possible role of GST in DILI 

using the types of approaches described in this chapter. In this present study, 

overexpression of GSTA4 have significantly reduced cell proliferation inhibition caused 

by INH and decreased INH-induced apoptosis in HepG2 cells. GSTA1 silencing has 

significantly abolished protection against INH-induced cell proliferation inhibition and 

increased INH-induced apoptosis in Caco-2 cells. Though the GSTs were not able to 

revert completely hepatic injury induced by INH, these results enabled to conclude that 

expression of GSTs could function to limit the effect of INH to the extent of 

apoptosis/necrosis. Individuals with GSTs deficiency are suggested to be less capable of 

detoxifying reactive metabolites thus, causing their hepatocytes to be less protective 

against oxidative damage during INH metabolism. In the previous chapter, some 

evidence for associations between polymorphisms in the GSTs, particularly GSTM1 and 

GSTA4 and ATD-DILI were found, suggesting a protective role of these enzymes in 

preventing ATD-DILI. It has been shown that homozygous null mutations of GSTM1 

and GSTT1 implicated in methotrexate, troglitazone and carbamazepine-induced liver 

injury (Imanishi et al., 2007; Ueda et al., 2007; Watanabe et al., 2003). Genetic 

polymorphisms of GSTs have also been associated with many diseases including cancer 

and alcoholic liver disease (Andrade et al., 2009). Therefore it is worth undertaking 

further studies on the possible role of the polymorphisms in anti-oxidative stress genes 

which may influence their expression and consequently predict susceptibility and 

severity of DILI in individuals.  
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Chapter 7. General Discussion 
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7 General Discussion 

 

Drug-induced liver injury (DILI) is one of the most commonly detected adverse drug 

reactions both during drug development and in clinical practice. Idiosyncratic adverse 

drug reactions such as DILI have received much attention because they are 

unpredictable and are often the key reason for useful drug withdrawals from the 

pharmaceutical market. Genetic factors in idiosyncratic DILI remain poorly understood. 

Over the past few decades, the association of genetic polymorphisms in drug 

metabolising enzymes with various ADRs have been extensively studied. Recent 

progress in pharmacogenetics research suggests that patients with specific genetic 

characteristics may be prone to specific ADRs and personalized drug therapy with 

pharmacogenetics can therefore lead to safer, more effective drugs and reduce ADRs. 

The evaluation of predisposing factors of ADRs may not fully prevent the occurrence of 

ADRs, but it can reduce the incidence and severity of ADRs, reduce the overall cost of 

healthcare and improve patient outcomes. 

 

First-line anti-TB drugs used for disease treatment and latent TB infection (LTBI) are 

isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA), ethambutol and streptomycin. 

The fact that multiple drugs are used is vital in treating the disease effectively but also 

means that assigning an adverse drug reaction to a particular drug is more difficult. 

DILI due to ATD is more common than most other forms of idiosyncratic DILI with the 

frequency of overt clinical hepatitis caused by INH and RMP coadministration reported 

to be 2.6%, but only 1.1% with rifampicin alone and 1.6% with INH alone (Steele et al., 

1991). The frequency of anti-TB drugs hepatotoxicity increases greatly when they are 

used simultaneously (van Hest et al., 2004). These findings contrast with the reported 

frequencies of DILI due to flucloxacillin as 8.5 in every 100,000 new users (Daly et al., 

2009) and co-amoxiclav as 1 in every 10,000 prescriptions (Donaldson et al., 2010). 

Despite the higher frequency for ATD-DILI, progress in identifying genetic risk factors 

and understanding the underlying mechanism has been slower than for other forms of 

DILI. However, it is important to point out that most of the other strong genetic 

associations described so far are with HLA alleles and any evidence for HLA 

involvement in ATD-DILI is very limited. 
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There has been some progress in identifying genetic risk factors for DILI with reported 

associations with genes such as NAT2, CYP2E1 and GSTM1 now reported and 

replicated, though not all studies have reported positive associations (see Chapter 1). 

The NAT2 and GSTM1 associations have been replicated in the current study but the 

overall effects are not particularly high with odds ratios of 4.6 for NAT2 slow 

acetylators and 2.9 for GSTM1 null detected. The current study has considerable 

limitations with numbers of cases studied small and subject to ethnic heterogeneity. The 

positive associations with NAT2 and GSTM1 seem to be particularly driven by the South 

Asian subjects, with less overall effect in Europeans and this needs further study  in 

larger patient groups, especially since a lack of association between NAT2 slow 

acetylators and European ATD-DILI cases has been reported previously by others 

(Yamada et al., 2009; Vuilleumier et al., 2006).  

 

Using the data from the current study, it was possible to determine negative and positive 

predictive values for NAT2 genotyping to prevent DILI from isoniazid. The negative 

predictive value of 0.99 suggests that genotyping would lead to a decrease in the 

number of cases but the low positive predictive value of 0.03 showed that large numbers 

of patients would be deprived of isoniazid treatment unnecessarily. Despite a much 

higher odds ratio for the association of flucloxacillin-related DILI with HLA B*5701 

than for isoniazid DILI with NAT2 slow acetylation, the positive predictive value for 

B*5701 for DILI is only 0.002(Daly et al., 2009) so is lower than that for NAT2 slow 

acetylator alleles for isoniazid DILI. This difference arises mainly because the risk of 

developing DILI from flucloxacillin is much lower than from isoniazid. Flucloxacillin 

DILI affects only 1 in every 500 individuals who are B*5701-positive whereas 

isoniazid-related DILI affects approximately 4 in every 100 individuals who are slow 

acetylators. There is therefore no clinical value in genotyping for either risk factor 

before the particular drugs are prescribed. NAT2 typing could be included in a range of 

genotyping tests if additional genetic risk factors for DILI due to isoniazid could be 

identified and this increased the overall positive predictive value of a genotyping test. 

 

Metabolic idiosyncrasy is generally postulated as the basis for the development of INH-

induced hepatotoxicity. Our present study using an in vitro overexpression approach has 

suggested that toxic metabolites of INH caused more cytotoxicity than the parent drug 

in HepG2 cells overexpressing NAT2 enzymes. Hydrazine, acetylhydrazine and 
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isonicotinic acid are potentially hepatotoxic metabolites of INH and accumulation of 

these reactive metabolites in patients may cause DILI (Metushi et al., 2011). However, 

it has been suggested recently (Metushi et al., 2011) that in addition to factors 

determining reactive metabolite formation, an immune component to isoniazid DILI is 

also a possibility. These workers suggest that this is partly suggested from features such 

as the delay in development of DILI following exposure to the drug and the appearance 

of liver biopsies from ATD-DILI patients which often have an appearance similar to 

those from patients with autoimmune hepatitis. A previous report of an HLA association 

is also cited as evidence for an immune association (Sharma et al., 2002) but a recent 

genome-wide association study (GWAS) involving some of the cases included in the 

current study has failed to detect any HLA association (Daly and Shen, unpublished). 

Nevertheless, the possibility of some involvement from either the innate or adaptive 

immune system in ATD-DILI as recently suggested (Metushi et al., 2011) deserves 

further study. 

 

Most of the genetic studies up to now on ATD-DILI have focussed on INH, probably 

because this tends to the common drug used in the patients who develop DILI though 

some also receive pyrazinamide which is known to increase the risk of DILI when 

included in a ATD regimen (Stout et al., 2003). Occasionally patients who receive PZA 

but not INH also develop DILI but such cases tend to be rare in the UK because PZA 

without INH will be mainly only used where the mycobacteria are found to be INH-

resistant. It is also sometimes possible to identify cases where the DILI is likely to have 

been due to PZA not INH on the basis of successful reintroduction of ATD following 

DILI. However, this also raises the complication of adaptation where patients may 

suffer ATD-DILI which meets the phenotypic requirements used in studies such as the 

DILIGEN study but then do not suffer recurrence of symptoms when the drugs are 

reintroduced (Watkins, 2005). All these factors make genetic studies on ATD-DILI, 

including the present one, very challenging, though it may be possible to find cases 

where the DILI can be shown to be clearly due to either INH or PZA if sufficient 

numbers of ATD-DILI cases with good clinical information can be collected.  

 

Recent success in identifying strong genetic associations for particular adverse drug 

reactions including DILI, myotoxicity and skin reactions have involved genome-wide 

association studies, not candidate gene association studies. For example associations 
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with HLA-B*5701 have been detected for DILI due to flucloxacillin (Daly et al., 2009), 

with HLA-DRB1*1501 and A*0201 for DILI due to co-amoxiclav (Lucena et al., 2011), 

with SLCO1B1 for simvastatin-induced myopathy (Link et al., 2008) and with HLA-

A*3101 for carbamazepine-induced skin rash (McCormack et al., 2011). A similar study 

to understand genetic factors affecting susceptibility to ATD-DILI seems the best way 

forward. A small GWAS study on the available European ATD-DILI samples in the 

present study has been negative apart from the NAT1 association described in Section 

3.3.3 (Daly and Shen, unpublished) but efforts to increase recruitment and collaborate 

with other international DILI networks including EUDRAGENE (Molokhia and 

McKeigue, 2006) and DILIN (Fontana et al., 2009)  should enable a larger GWAS 

study to be performed and hopefully detect specific genetic associations which can be 

replicated (Daly AK, personal communication). 

 

The in vitro studies described in this thesis (Chapters 4 to 6) have provided some novel 

findings concerning increased INH toxicity when NAT2 is overexpressed but decreased 

toxicity when GSTA4 is expressed. The finding that RMP pretreatment decreases INH 

toxicity while inducing expression of genes such as CES2 in at least some human 

hepatocyte preparations is also interesting. Whether CES2 can catalyse the formation of 

hydrazine from INH is still unclear and this aspect needs further study. A general 

limitation of all the in vitro studies is that millimolar concentrations of INH are needed 

to cause detectable toxic effects in either primary cultures or established cell lines. The 

maximum recommended dosage of INH is 300 mg/day and this will typically result in 

plasma levels of approximately 10 ug/ml which would give a molar concentration of 

approx. 100 uM. Hepatocytes could be exposed to slightly higher concentrations than 

those seen in plasma but they are unlikely to be as high as those needed in vitro to see 

detectable toxicity. It would be helpful to find more sensitive indicators for toxicity.  

Examining changes in mRNA expression by use of expression microarrays as reported 

recently in studies on flucloxacillin DILI (Andrews et al., 2010) or at the protein level 

by proteomics analysis after treating hepatocytes or other cell cultures with lower INH 

concentrations would be interesting. If a change in gene expression at a physiological 

INH concentration was seen, the transfection studies described here could be repeated to 

see if they could either prevent the change or make it larger. 
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In conclusion, the candidate gene studies described in this thesis provide further 

confirmation that NAT2 genotype affects susceptibility to ATD-DILI, though this risk 

factor only accounts for a small proportion of total susceptibility. Approx. 50% of the 

UK population are positive for the slow acetylator NAT2 genotype but only 1 or 2% are 

likely to develop ATD-DILI should they need treatment for TB. Therefore, 

susceptibility must involve a combination of NAT2 slow acetylator genotype and several 

other susceptibility genes along with non-genetic risk factors. Considerable further work 

is needed both to understand the mechanism by which ATD-DILI occurs and to develop 

a genotyping test that would have adequate sensitivity and specificity to detect those at 

risk of ATD-DILI. A test of this type would be helpful since it would be possible to use 

alternatives to INH in TB treatment if it could be shown that this would prevent a 

patient developing DILI.  
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Chapter 8. Appendices 
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Appendix A (i) Electropherogram for rapid acetylator recombinant (RAR) plasmid  
 

Electropherogram shown is the sequencing traces of RAR plasmid using T7 primer (5’-TAATACGACTCACTATAGGG-3’). 

Appendix A 
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Continue….Continue….

 

Appendix B (ii) Electropherogram for rapid acetylator recombinant (RAR) plasmid  
 

Electropherogram shown is the sequencing traces of RAR plasmid using second primer (5’-TAATACGACTCACTATAGGG-3’), located 

251 to 271 bp downstream of the start codon (ATG). 
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Appendix A (iii) Electropherogram for rapid acetylator recombinant (RAR) plasmid  
 

Electropherogram shown is the sequencing traces of RAR plasmid using third primer (5’-TCCTGCCAAAGAAGAAACAC-3’), located 538 to 

558 bp downstream of the start codon (ATG). 
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Appendix B (i) Electropherogram for slow acetylator recombinant (SAR) plasmid  
 

Electropherogram shown is the sequencing traces of SAR plasmid using T7 primer (5’-TAATACGACTCACTATAGGG-3’). 

Appendix B 
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Appendix B (ii) Electropherogram for slow acetylator recombinant (SAR) plasmid  
 

Electropherogram shown is the sequencing traces of SAR plasmid using second primer (5’-TAATACGACTCACTATAGGG-3’), located 

251 to 271 bp downstream of the start codon (ATG). 
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Appendix B (iii) Electropherogram for slow acetylator recombinant (SAR) plasmid  
 

Electropherogram shown is the sequencing traces of SAR plasmid using third primer (5’-TCCTGCCAAAGAAGAAACAC-3’), located 538 

to 558 bp downstream of the start codon (ATG). 
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