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Abstract 
 

Testing Web Services applications and their Fault Tolerance Mechanisms (FTMs) is crucial 

for the development of today's applications. The performance and FTMs of composed 

service systems are hard to measure at design time because service instability is often caused 

by the nature of the network. Testing in a real internet environment is difficult to set up and 

control. However, the adequacy of FTMs and the performance of Web Service applications 

can be tested efficiently by injecting faults and observing how the target system performs 

under faulty conditions.  

This thesis investigates what is involved in testing the software-implemented fault tolerance 

mechanisms of Web Service systems through fault injection. We have developed a fault 

injection toolkit that emulates a WAN within a LAN environment between composed service 

components and offers full control over the emulated environments, in addition to the ability 

to inject communication and specific software faults. The tool also generates background 

workloads on the tested system for producing more realistic results.  

The testing method requires that the target system be constructed as a collection of Web 

Services applications interacting via messages. This enables the insertion of faults into the 

target system to emulate the incorrect behaviour of faulty conditions by injecting 

communication faults and manipulating messages. This approach allows the injection of 

faults while not requiring any significant changes to the target system.  

This testing method injects two classes of faults, manly communication and interface faults 

due to their big impact on Web service system dependability.  The method differs from the 

previous work not only by injecting communication faults based on a Wide Area Network 

emulator, but also in its ability to inject a combination of communication and interface faults, 

which could cause what are called Byzantine faults (Arbitrary faults) at the application level.  

The proposed fault injection method has been applied to test a Web Service system 

deploying what is called a WS-Mediator for improving the system reliability. The WS-

Mediator claims to offer comprehensive off-the-shelf fault tolerance mechanisms to cope 

with various kinds of typical Web Service application scenarios. We chose to use the N-

version programming mechanism offered by the WS-Mediator, which has been tested 

through out tool. The testing demonstrated the usefulness of the method and its capacity to 

test the target system under different circumstances and faulty conditions.  
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1. Chapter 1 - Introduction  
 

1.1 Motivation 
 
Web Services [1] and Service-Oriented Architectures (SOAs) [2] represent a new paradigm 

for building distributed computing applications [3][4]. Their applications include such 

applications as e-commerce [5], for example, online auctions [6]. The advantages of Web 

Services, such as their loosely-coupled architecture and standardized interoperability, are 

attracting more and more users, along with growing body of work in the relevant research 

and development domains. Given the importance of this technology, it is essential that 

methods are developed to ensure that dependable and reliable software services are deployed. 

 

Web Services have addressed many existing issues in the conventional technologies, such as 

Enterprise Application Integration (EAI) [7] and Common Object Request Broker 

Architecture (CORBA) [8], to name two of the more popular ones that have been extensively 

applied in the past decades. In these conventional distributed applications, service integration 

commonly relies on centralized brokers, or coordinators, which implement object-based or 

message-based interoperability [4] with the participating component services and interact 

with them to perform automated business processes. The limitation of such a paradigm lies in 

the fact that the middleware has to be centralized and trusted by all participating component 

service providers. Consequently, this becomes an issue for the integration of cross-

organizations and heterogeneous services [4].  

 

Web Services resolve these issues with their loosely-coupled interaction model, standardized 

interoperability, extended peer-to-peer integration fashion and so forth [4]. In Web Services, 

functionalities implemented by internal business procedures are deployed and exposed as 

services that can be discovered and connected through the Web. The interaction between the 

Service client and the Service provider generally relies on the SOAP/HTTP message binding 

[9][10][11]. The client invokes Web services by sending a SOAP request message [2][11]. 

Web services receive the SOAP request message and process it and return the results to the 

client via SOAP response messages. During the integration, the client does not necessarily 

know anything about the Web services involved, other than their WSDL interface [12]; the 
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communication between them is guaranteed by the standardized interoperability, and no third 

party service broker or coordinator is required. Therefore, compared with the conventional 

technologies, the integration of autonomous and independent services is achieved in Web 

services at a low cost.  

 

Nevertheless, even with the advantages described above, Web services do not resolve all 

problems of distributed applications. Web service middleware, similarly to other distributed 

technologies, relies on existing underlying middleware, such as network protocols, to 

implement the essential low-level services [4]. Thus Web Services inherit many of the 

dependability issues the conventional middleware infrastructure suffers from. For example, 

the interaction between the client and Web services relies on the Web or other networks, 

which are inherently unreliable media that may cause communication problems such as a 

loss, delay or damage of the message [3][13][14]; also Web services are deployed on 

application servers, which may become unreliable or out-of service, due to system 

maintenance or other internal activities [15]; the design or implementation of the Web 

services business procedure may contain faults and result in their erratic behaviour [15]. 

Thus, their dependability is a vital issue in dependability-critical applications, even more so 

in those based on a service composition in which a service, as an undependable component, 

can undermine the dependability of the entire application. Thus, it is only to be expected that 

testing the dependability of Web services has attracted active interest as a research domain in 

recent years. 

 

Testing dependability is a realistic approach for assessing a system since it measures the 

reliance that can be placed upon a service rather than validating it against its specification 

and includes methods that increase this reliance. Testing dependability is therefore important 

to aid in increasing the reliability of a system, not only to uncover existing problems with 

services. 
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1.2 Our Research 
 
This dissertation reports our work in assessing Web Service systems by using fault injection 

techniques. We started the research by investigating the assessment of dependability in the 

context of Web services, followed by an in-depth analysis of the most common faults 

affecting Web Service based systems. At the same time, we studied related work conducted 

by other researchers working in similar research areas. As a result, we have developed a 

novel solution for injecting a combination of faults in order to test and improve the 

dependability of Web services. 

 

Fault injection is a well-known method of testing software systems through exercising 

systems by injecting faults. Although much work has been done in the area of fault injection 

and Web Service systems in general, it appears to lack some important characteristics in 

terms of the kinds of faults injected, the workload during testing, and testing all parties 

(components) of the system, independent of the hosting testing environment. 

  

Conceptually, this solution is based on our understanding of the specific testing 

characteristics of Web services. It addresses some testing issues that have not yet been 

covered by the existing work. In particular, our research focuses on the problem domain 

from certain original perspectives, avoiding a duplication of others’ work. We have 

overcome some of the problems mentioned above through: adopting several novel 

approaches and concepts in the solution proposed; developing certain unique mechanisms to 

ensure the novelty and efficiency of our approach; and proving them in a series of 

experiments with real world Web services.  

 

In this work we proposed a method for testing Web Service applications in order to 

overcome the above problems [16][17]. The testing method is for testing the performance 

and fault tolerance of either a single Web Service or a composed service, without any 

modification to the system being tested. No recompiling or patching is necessary. In 

addition, two classes of faults should be injected: communication faults and interface faults. 

Furthermore, the tool should generate background workload to more accurately emulate real 
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networks in order to produce more realistic results. Finally, the tool should also be 

independent of the hosting environment for portability. 

 

1.3 Our contributions  
 

While the recent active research efforts aimed at testing Web services have developed some 

effective fault injection testing methods, including those focusing on service composition, we 

believe that there are still many issues remaining in this domain, particularly concerning the 

testing of service composition that relies on autonomous Web services. We have learnt from 

many related works [18][19] that in Web Service systems the two sides (Service requester 

and Service provider) might be affected dramatically by communication faults, which can be 

a consequence of network faults and software faults. 

  

In the internet world, the communication channels are very unreliable. It is hard to know 

when the next error situation will occur, such as connection break, messages failing to be 

delivered or being delayed more than expected, or messages transmitted in the wrong 

sequence, and even worse the application crashing during message transmission. From the 

literatures, there are many evidences indicating that communication and interface faults have 

a big affect of Web service system dependability, we elaborate on this in section 2.3.4.  

The effect of each of these failure modes will depend on the fault tolerance capability of the 

system, in detecting them and preventing the system from deviating from its specified 

behaviour. This therefore calls for testing method solutions that would assess these fault 

tolerance mechanisms of Web service systems and their dependability from two sides (client 

and service sides). In order to address this, our testing method in assessing Web service 

applications is based on three main issues: injecting communication faults, injecting software 

faults and providing a network environment emulator. The main contributions of our work 

are as follows: 

 

o We have developed a NetFIS tool to test the dependability and the fault tolerances 

of Web Service applications. The approach offers an off-the-shelf mediator to test 



 

 5 

service composition applications without any modification to the system under test. 

The tool is independent of any hosting environment for portability purposes.  

 

o By using NetFIS Communication faults are injected at application message level 

rather than at network message level. This allows faults to be injected on an entire 

application message and affect a specific middleware service, rather than test error 

recovery in a network protocol stack. Communication faults are injected based on a 

WAN emulator which generates background workload to more accurately emulate 

real networks in order to produce more realistic results. Emulating additional 

workload during the testing of a system could give rise to different results. Different 

workloads could lead to different testing results, due to causing different system 

activation patterns [20].  

 

o By using NetFIS Software faults are injected through decoding middleware 

messages. Faults are injected into middleware messages by using information on 

message formats derived from interface definition language definitions of a service 

to allow targeted triggering on specific messages corresponding to specific 

operations. Using such information-specific parameters can be perturbed in an RPC 

exchange, allowing software faults to be injected alongside communication faults in 

order to emulate what are called Byzantine faults. 

 

1.4 Thesis Outline 
 

The dissertation is organised as follows: 

 

 Chapter 2 explains the fundamental concepts and definitions of SOA and Web 

services. We explain how dependability is assessed in the context of Web services 

and analyse fault injection techniques and their roles in testing Web Service systems. 

Finally, we summarize some related work in the area. 
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 Chapter 3 presents some existing problems in testing Web Service systems and 

suggests some solutions by presenting our NetFIS approach. In this chapter we 

discuss some problems in the existing related work that we are trying to resolve and 

introduce our testing method as well as explaining the NetFIS architecture and its 

components in detail. 

 

 Chapter 4 introduces a prototype of the NetFIS tool. In this chapter, we explain how 

to implement the NetFIS system using the Java Web service technology. 

 

 Chapter 5 reports on the experiments conducted to evaluate the NetFIS approach. The 

results of the experiments with real-world Web services are analysed to demonstrate 

the applicability of the NetFIS approach. 

 

 Chapter 6 concludes this dissertation, offering our vision for the possible further 

development of the NetFIS testing tool system. 
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2 Chapter 2 - Service-Oriented Architecture and Dependability 
 

This chapter will define the concepts and technology of Service-Oriented Architecture 

(SOA) and Web services, which is particularly relevant to this thesis. We will explore a 

general definition of SOA and then explore how SOA is implemented via Web services.  

Furthermore, having introduced the general concept of dependability, we will discuss 

what dependability means in the Web services context that our work is concerned with. 

Thereafter, we will explain how dependability can be assessed in existing Web service 

applications. Lastly, we will review studies conducted by other researchers working in 

related fields of some relevant assessment tools for testing the dependability of web service 

applications and we will provide a brief overview of the background and foundation that our 

work is built upon. 

2.1 Preliminaries 
 

Although often used, the terms Service-Oriented Architecture (SOA) and Web Services are 

not always consistently defined. It is, however, important to clearly define these terms here 

as fundamental concepts for this thesis. 

2.1.1 Service-Oriented Architecture 

 

The definition of SOA as provided by the World Wide Web Consortium (WC3) [2] is as 

follows:  

 

Service-Oriented Architecture: A set of components which can be invoked, and whose 

interface descriptions can be published and discovered. 

 

The above definition is a basic definition that describes what SOA is, and yet it is rather 

abstract: it does not explicitly define the underlying concepts and technologies it relies upon. 

It is the specification [1] that refines the definition, presenting SOA as a form of distributed 

systems architecture in which services implement an abstracted interface for exchanging 

messages with clients and other services. The machine-processable abstracted interface 
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describes only those details of services that are important for use by clients. The service 

implementation details and internal structure are hidden from clients.  

 

The messages exchanged between services and clients rely on an underlying computer 

network, such as the Internet. The actual technologies used for constructing a SOA are not 

made specific in these definitions and may vary in real world applications. 

 

2.1.2 Web Services 

 

The definition of Web Services is also given in [1] as follows:  

 

Web Service: a software system designed to support interoperable machine-to-machine 

interaction over a network. It has an interface described in a machine-processable format 

(specifically WSDL). Other systems interact with the Web Service in a manner prescribed by 

its description using SOAP-messages, typically conveyed using HTTP with an XML 

serialization in conjunction with other Web-related standards. 

 

Comparing the above definition with that of SOA, it becomes obvious that Web Services are 

a form of SOA. The definition explicitly specifies the underlying technologies involved in 

constructing Web Services. Some of these technologies, such as the Web Service Description 

Language (WSDL) [12] and the Simple Object Access Protocol (SOAP) [11], have been 

purposefully developed for Web Services, while others have been adapted from the existing 

standards and protocols, such as the Hyper-Text Transport Protocol (HTTP) [10] and the 

Extensible Mark-up Language (XML) [21]. 

 

2.2 SOA, Web Services and their Dependability 
 
SOA and Web Service technologies have been developing extraordinarily fast in the recent 

years. They are becoming significant in many businesses and scientific distributed 

computing applications [22] and thus prompting a great deal of research interest in the field 

of dependability. In [15], the term dependability covers varied characteristics; however the 

meaning of dependability may vary from one context to another. In this work we will 
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describe the meaning of dependability that our work is concerned with in terms of 

measurements. We will also explain a specific analysis of the dependability measurement 

issues commonly manifested in existing Web Service applications. Lastly, we will report on 

our studies of some relevant testing tools conducted by other researchers working in related 

fields for testing the dependability of web service applications.  

 

2.2.1 Overview of SOA and Web Services 

 

Service-Oriented-Architecture (SOA) has received much attention over the past years. SOA 

is an architecture design that relies on loosely coupled software components the called 

services, which can be orchestrated to improve business agility and can be shared among 

different domains . Therefore SOA and service orientation are based on the idea that 

application software supporting a business process should be composed of a collection of 

smaller, related pieces, that is, services.   

 

The main building blocks of SOA are: the Service provider, the Service registry, and the 

Service requester. Service providers are software applications that provide a service to the 

Service requester (client). The provider publishes a description of the services they provide 

via a service registry. Service requesters consume the service. When considering service 

composition, a software application can act as both a Service requester and a Service 

provider at the same time. Clients must be able to find the description of the services they 

require and must be able to bind to them. 

 

Web Services are one of the technologies implementing SOA principles. A web service is a 

platform-independent, loosely coupled, self contained, programmable web-enabled piece of 

application that can be described, published, discovered, coordinated and configured using 

XML [21] artefacts for the sake of developing distributed interoperable applications. Web 

Services allow applications to work together over standard internet protocols (HTTP - 

Hypertext Transfer Protocol) [10] to automate business operations without any intervention 

by humans [23]. In Web Services, clients and services are assumed to be loosely-coupled, 

which means that they are stand-alone systems independent of each other. The services are 

normally autonomous, and developed and deployed by different service providers.  
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Regarding service composition, Web Services also implement the composed service of the 

SOA, thus the term ‘composed Web Service’. This is a system that is composed of many 

Web Services applications and client applications to form a distributed system. Composed 

Web Service refers to two or more Web Services applications interacting with one or more 

client applications. Web Service applications can be both the Service requester and the 

Service provider at the same time.  

 

2.2.2 Web Service architecture 

 

A Web Service is a software service defined by many standards that can be used to provide 

interoperable data exchange and processing between dissimilar machines and architectures. 

For the purposes of this work we are concerned with Web Services defined by the W3C, that 

are described by WSDL [12] and implemented using SOAP [11] and the Remote Procedure 

Call (RPC) model [24].  

 

The organization providing the Web Service owns the Web Service and implements the 

business logic that underlies the Web Service. The Web Service is, then, published in a 

service registry which is hosted by a service discovery agency. The description of the Web 

Service contains information about the business, service, and technical information 

concerning the Web Service. The Web Service publisher has to describe this information in a 

registry, in a predefined format specified by the discovery agency. Figure 2-1 shows a typical 

Web Service architecture. 
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FIGURE  2-1 TYPICAL WEB SERVICE ARCHITECTURE. 

 

The definition of Web Services (in Section 2.1.2) specifically states that a Web Service 

interface should be described in the WSDL. Clients interact with Web Services through 

SOAP messages relying on underlying network protocols such as HTTP. Clients can 

discover services through various discovery services, such as UDDI. The discovered 

information is sufficient for the client to make invocations on the Web Service.  

2.2.2.1  Transport 
 

Web Services are built up like an interoperable messaging architecture, and the transport 

technology is the foundation of this architecture. Web Services are inherently transport 

neutral, so one could transport Web Services messages though ubiquitous Web protocols 

such as HyperText Transport Protocol (HTTP) [10], Simple Mail Transfer Protocol (SMTP), 

Transmission Control Protocol (TCP) or Securer HTTP (HTTPS). Transport protocols are 

fundamental to Web Services because they are a defining factor in the scope of 

interoperability, but most of the time transport protocols details are hidden during the design 
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and development of Web Services applications, due to flexibility and platform 

interoperability. 

 

Although as shown above, transportation is not restricted to a specific protocol or method, 

HTTP became the most popular way to exchange messages based on XML format between 

Web Services. Web Service systems typically utilize the HTTP protocol to transmit data 

between services using the XML format. 

 

2.2.2.2  Remote Procedure Calls (RPC) 
 

According to the concept of Remote Procedure Calls (RPC) [23], services communicate to 

each other by sending messages through the networks. RPCs have traditionally been 

procedures called in a programme on one machine (client) that go over the network to 

another programme (server) that actually implements the called procedure. The called 

procedure implementation details are hidden from the client programme in such a way as to 

make the invocation look like a normal routine call. Then the called programme bundles up 

the results of the procedure call and send those results back to the caller. The calling 

programme then continues executing. Hence RPC is a synchronous message passing 

paradigm. 

Web Service RPC based applications use SOAP messages for formatting RPC calls 

over HTTP protocol according to the WSDL interface of the called Web Service [25].  

 

2.2.2.3  Extensible Mark-up Language (XML) 
 

Both WSDL and SOAP employ Extensible Mark-up Language (XML) [21] to define and 

implement Web Service message exchange. XML notation and terminology is used in this 

study and its basic terms are explained below. 

 

XML is an abbreviation for eXtensible Mark-up Language [21]. It is designed to describe 

data and improve the functionality of the Web by providing more flexible and adaptable 

ways of information representation. It is called extensible and its format is not fixed like 
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HTML. Instead, XML is a meta-language that lets one design one’s own customized markup 

languages. A markup is a mechanism to specify structures within a document, and the way to 

add a markup to a document is defined by the XML specification.  

 

Unlike HTML, XML does not specify semantics or a set of tags. There is no prescribed 

method for rendering XML documents, so semantics will be defined by the application using 

it or by style sheets. The following  

 is a simple example showing the basic structure of an XML document and how data is 

represented: 

 
 
<?xml version="1.0" encoding="utf-8"?> 

   <note noteID="1"> 

     <to>Bob</to> 

     <from>A1</from> 

     <heading>Meeting</heading> 

     <body>university, computing school today</body> 

   </note> 

 

TABLE  2-1 BASIC STRUCTURE OF AN XML DOCUMENT 

 
The above simple XML document starts with the XML declaration in the first line. It 

defines the XML version and the character encoding used. In this case the document uses 

version 1.0 of the XML standard and characters are encoded in UTF-8 (8-bit Unicode 

Transformation Format). 

The next line describes the root element of the document. Elements are one way to 

store data in an XML document. The following four lines describe the child elements of the 

root (to, from, heading and body). By looking at the elements it is easy to see that the XML 

document represents a message. The last line describes the end of the root element, 

completing the note from Al to Bob. Along with the root element in the second line an 

attribute called noteID is specified. Attributes are additional ways to store data which are 

used to provide additional information about elements, also called meta-data.  

 

A list of legal elements that defines the document structure is the Document Type Definition 

(DTD). A document with correct XML syntax is called "Well Formed" while a "Valid" XML 

document also conforms to a DTD. 
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More and more applications make use of XML to store information because of its benefits. 

Some of the benefits of using XML are: 

 The structure is well-defined and can be passed between different computer systems 

which would otherwise be unable to communicate 

 Data payload is encapsulated in XML tags and therefore readable by human viewers 

 Due to their textual nature, XML-Files are platform-independent. 

 

These advantages make XML a perfect format to communicate between Web Service 

systems. To ensure a platform- and language- independent use for every Web Service, SOAP 

was developed. It is an XML application with defined elements and a predefined structure. 

The following section will elaborate on SOAP in more detail. 

2.2.2.4  Simple Object Access Protocol (SOAP) 
 

Simple Object Access Protocol (SOAP) [11] is one of the significant protocols of Web 

Services and provides a simple and relatively lightweight mechanism for exchanging 

structured and typed information between services.  

 

SOAP is designed to reduce the cost and complexity of integrating applications that 

are built on different platforms. SOAP has undergone revisions since its introduction, 

and the W3C has standardized the most recent version, SOAP 1.2. [26].  

 

SOAP is an XML-based communication protocol for exchanging messages between services. 

Web Services rely on SOAP for exchanging messages between applications, regardless of 

their operating systems and programming environment.  

 

Our research in this thesis is mainly concerned with the RPC mechanism over SOAP. This is 

defined by the W3C in [25] which describes a general purpose RPC mechanism. The 

message structure types that are involved in an RPC exchange and the relevant features used 

by our method are briefly detailed here. 
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A SOAP XML document instance is called a SOAP message or SOAP envelope. It is carried 

as the payload of some other network protocol such as HTTP [27]. A common SOAP 

structure has been documented in XML form with three main parts: an envelope, a header, 

and a body. Usually, the root element of the SOAP message is the envelope: it contains zero 

or more headers and at least one body. The header is an optional part of a SOAP message 

and it is a generic mechanism for adding extensible features to SOAP. The child element of 

the header is called the head block. SOAP defines several well-known attributes that one can 

use to indicate who should deal with a header block and whether processing it is optional or 

mandatory. The mandatory body element is always the last child element of the envelope: it 

includes the actual payload message content. The body element is populated with elements 

that make up the payload of a request, response or fault message. 

 

An example of SOAP request messages is shown in Table  2-2. The body element contains 

one method call in the request. The called method's name is GetStockPrice whereas the 

method’s parameter has the name StockName and the value IBM.  

 

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"   

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding"> 

     <soap:Body xmlns:m="http://www.example.org/stock"> 

          <m:GetStockPrice> 

              <m:StockName>IBM</m:StockName> 

         </m:GetStockPrice> 

     </soap:Body> 

</soap:Envelope> 

 

TABLE  2-2  TYPICAL SOAP REQUEST MESSAGE 

 

The GetStockPrice method is defined in the wsdl:operation (see next section) which contains 

parameter elements that represent the RPC Parameters. In the example above the 

GetStockPrice method takes one string parameter called StockName which contains the 

string data for that parameter which is IBM. Parameters are defined in WSDL by wsdl:part 

elements in wsdl:message elements (see next Section). 

 

An example of a typical response message is shown in Table  2-3. The structure of the 

response message is similar to the request message, but the method response name is 

suffixed with the word Response, as defined in the wsdl:operation element in the WSDL.  
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<soap:Envelope 

xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding"> 

<soap:Body xmlns:m="http://www.example.org/stock"> 

  <m:GetStockPriceResponse> 

    <m:Price>34.5</m:Price> 

  </m:GetStockPriceResponse> 

</soap:Body> 

</soap:Envelope> 

 
TABLE  2-3  TYPICAL SOAP RESPONSE MESSAGE 

 

In the above example the response element name is GetStockPriceResponse. The response 

element contains elements that represent any method return value. Method return results 

follow the naming convention of the method name suffixed by the word Return and are 

represented in the WSDL by wsdl:part elements. The return element name is Price which 

contains the return data for that parameter, which is 34.5. 

 

Table  2-4 shows a typical SOAP Fault Message. Fault Messages are used to return error 

information from a server to a client. The SOAP fault message contains a root element called 

Fault element which must appear within the Body element. The Fault element contains 

three elements: faultcode, faultstring and detail. 

 

The faultcode element defines a small set of SOAP fault codes covering basic SOAP 

faults, and this set can be extended by applications. The faultstring element provides 

information about the fault in a form intended for a human reader. The detail element 

carries application-specific error information. For instance as the following table shows, 

when a piece of user code on a server throws a Java exception, the faultcode is set to 

soapenv:Server.userException to indicate that the fault originates in server side 

user code. Then the fault string is set to the text description of the exception and the detail 

element is not used. 
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<soapenv:Envelope 

   xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

   xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

   xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"> 

   <soapenv:Body> 

     <soapenv:Fault> 

         <faultcode>soapenv:Server.userException</faultcode> 

         <faultstring>java.rmi.RemoteException: can&apos;t get a stock 

price for this                   symbol 

         </faultstring> 

         <detail/> 

     </soapenv:Fault> 

   </soapenv:Body> 

</soapenv:Envelope> 

 
TABLE  2-4 TYPICAL SOAP FAULT MESSAGE 

 

2.2.2.5  Services Description  
 

The description of deployed services is a key aspect of Web Services technology. Such 

descriptions define metadata that fully describe the characteristics of services which are 

fundamental to achieving the loose coupling. It also accords with SOA architecture and 

provides the abstract information to deploy or interact with services.  

 

The Web Services Description Language (WSDL) [12] is the leading standard for the 

description of Web Services and provides an XML-based syntax to specify the exposed 

interface and the location of a Web Service, as well as how to access it. It allows developers 

to describe the functions that a service performs. It tells the client what actions a service 

performs and how the messages are received and sent. In the Web Services world, SOAP is a 

message format that people use to understand the communication ‘language’, and WSDL is 

what people use to tell others what they can do.  

 

“WSDL is an XML format for describing services as a set of endpoints that operate on 

message containing either document-oriented or procedure-oriented information.” [26] 

(Weerawarana et al. 2005, p.40). As our research is mainly concerned with RPC message 

exchanges, the WSDL provides clear explicit information on the structure of message 

exchanges between Web Services and their clients. 
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The overall structure of WSDL documents is illustrated in Table  2-5 and can be split up into 

two parts. The abstract part, which consists of the types, message, and portType elements, 

describes the Web Service interface, that is, the exposed operations and used data types. The 

concrete part comprising the service and binding elements, describes a concrete 

implementation of the service's interface at a network endpoint, that is, where the Web 

Service exists and how it can be accessed.  

 
<wsdl:definitions name=”..” targetNamespace=”uri”>  

   <import namespace=”uri” location=”uri”/>  

   <wsdl:types>  

   …  

   </wsdl:types>  

   <wsdl message name=”..”>  

   …  

   </wsdl:message>  

   <wsdl:portType name=”..”>  

   …  

   </wsdl:portType>  

   <wsdl:binding name=”..” type=”..”>  

   …  

   </wsdl:binding>  

   <wsdl:service name=”..”>  

     <wsdl:port name=”..” binding=”..”>  

     …  

     </wsdl:port>  

     …  

   </wsdl:service>  

</wsdl:definitions>  

 

 

TABLE  2-5 WSDL DOCUMENT STRUCTURE EXAMPLE 

 

The major elements in the above WSDL example are as follows:  

o definitions – defines a bag of definitions for a single namespace;  

o types – provides data type definitions used to describe the message exchanged;  

o message – represents the description of messages exchanged in the Web Service;  

o portType – is a set of abstract operations;  

o binding – specifies concrete protocol and data format specifications for the 

operations and messages defined by a particular portType;  

o port – specifies an address for a binding, contains the endpoint address itself and 

refers to a binding;  

o Service – is used to aggregate a set of related ports.  
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2.3 Dependability assessment   
 

This section gives a review of the dependability terms used in this work. As our work is 

concerned with testing the reliability of Web Services, a measurement of the overall quality 

of a service is needed. The assessment of systems utilises some of the same attributes present 

in Dependability; however Dependability is concerned not only with measuring the 

Dependability of a system but also with the means to improve the Dependability of a System. 

 

The definition of dependability is given in paper [15], a well known and widely used source 

which offers a comprehensive explanation of the basic concepts and meanings of 

dependability in computing systems: 

 

Dependability: the ability to deliver service that can justifiably be trusted. 

 

The above definition is universally recognised in the domain of dependability research. It is, 

however, very abstract and brief. Paper [15] offers an alternative definition of dependability: 

 

Dependability: the ability to avoid service failures that are more frequent and more severe 

than is acceptable to the user(s). 

 

The above further refines the dependability definition. In spite of the fact that it is still quite 

abstract, it precisely defines the principle for regarding if a system is dependable. The paper 

also specifies that dependability can be broken down into some specific attributes as follows: 

 

 Reliability which characterizes the ability of a system to perform its service correctly 

when needed. 

 Availability which means that the system is available to perform this service when 

required. 

 Safety is a characteristic that quantifies the ability to avoid catastrophic consequences 

for the user(s) and the environment. 

 Confidentiality, meaning the absence of unauthorized disclosure of information. 
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 Integrity, meaning the absence of improper system alterations. 

 Maintainability, which is ability to undergo modifications and repairs. 

 

Thus, researchers can identify and specify the means of dependability in their specific 

research domains according to the above taxonomy. For the purposes of this work we are 

interested in factors that can be used to test dependability by using fault injection [28]. 

However, we need to explain briefly some of the concepts that can affect the Dependability 

of a system and go through some ways that the Dependability of a system can be increased. 

 

As detailed in paper [15], there are three main kinds of threats to dependability which may 

cause a drop in the dependability level: failure, error and fault. As our research is about 

assessing Web Service systems by injecting faults, it is necessary to explain the difference 

between these threats to the system. 

 

1. A failure occurs when a running system deviates from its specified behaviour. The 

cause of a failure is called an error.  

2. An error is the part of the system state that is liable to lead to a failure. The error 

itself is the result of a defect in the system or fault.  

3. A fault is the cause of an error. In other words, a fault is the root cause of a failure. 

That means an error is the indication of a fault. A fault may not necessarily cause an 

error, however the same fault may result in multiple errors. Similarly, a single error 

may lead to multiple failures. 

For example, an incorrectly written instruction in a programme may decrement a variable 

instead of incrementing it. Clearly, if this instruction is executed, it will result in the incorrect 

value of that variable being written. If other programme statements use this variable 

afterwards, the system will deviate from its specified behaviour. In this case, the erroneous 

statement is the fault, the invalid value is the error, and the failure is the behaviour that 

results from the error. However if this variable is never read after being written, no failure 

will occur. Or, if the invalid statement is never executed, the fault will not lead to an error. 

Thus, the mere presence of errors or faults does not necessarily imply system failure.  
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2.3.1 Means for Achieving Dependability 
 

Since faults may cause undesired deviation of the system, how to deal with faults is the main 

problem in building a reliable system. There are many techniques used to increase 

dependability. Paper [29] groups these techniques into the following four categories: 

o Fault prevention can deal with and eliminate a number of faults hidden in the design 

and implementation of the system. It has to be deployed during the system design 

stage by employing quality control techniques such as modularization, structured 

programming, and so on [15]. 

o Fault-tolerance mechanisms act upon errors to maintain the continuity of services. 

The aim of fault tolerance is to avoid system failures in spite of the presence of faults. 

It mainly consists of two phases: error detection and system recovery [15]. Error 

detection is used to identify the presence of errors, while system recovery, by 

applying error and fault handling, is aimed at transforming a system state that 

contains one or more errors and (possibly) faults into a state without detected errors 

or faults that could be activated again. Error handling eliminates errors from the 

system state, while fault handling prevents faults from being activated again [15]. 

o Fault removal is generally applied in the development phase or during system 

maintenance. It focuses on discovering potential faults in a system and removing 

them to avoid failures [15]. 

o Fault forecasting is to predict possible faults by concurrently evaluating system 

performance. The dependability attributes of a system may change during the life 

cycle of the system because of system ageing. By employing modelling and testing 

techniques, dependability attributes can be evaluated, and the probabilistic estimates 

of dependability measures can help to make changes to the system to avoid system 

failures. Thus, in fault-tolerant systems, fault forecasting can evaluate the 

effectiveness of fault tolerance mechanisms and lead to improvements in their 

implementation. There are many examples, as presented in papers [30] and [31], 

which report how to use the fault-injection technique to assess the dependability of 

Web Services, as proposed in our study [16]. 
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2.3.2 Assessing dependability   
 

The dependability of computer systems in general can be examined by either model-based or 

measurement-based techniques [20]. Model-based techniques can be used at the design stage 

of the system to obtain potential predictions of its errors and faults. Measurement-based 

techniques can be used for existing systems and may not require access to source codes or 

design documentation. 

 

There are two main measurement-based techniques: 

 

o Observation measurement can be applied by observing errors and failures in a large 

set of operated systems such as [32]. This technique relies on error information 

obtained by logs from system administrators or by logs from automatic logging 

mechanisms. By analyzing the data obtained, information on the frequency of faults 

and information on the type of activity that led to the failure of the system can be 

obtained. The drawback of this technique is that failures are rare, which means data 

needs to be collected from the system over a long time span.  

o Fault Injection is the deliberate insertion of faults into the target system in order to 

observe its behaviour in the presence of faults [28]. We will elaborate on this 

technique in the next section.  

 

2.3.3 Fault injection 

 

Fault injection consists of the deliberate insertion of faults or errors into a system and the 

observation its consequent behaviour [28]. This method is usually used to assess error 

recovery and fault tolerance mechanisms. It can also be used to exercise seldom-used control 

pathways within the system, which might go unused for a long period of time [33].  

 

For a long time, fault injection techniques have been used to assess the dependability of a 

system by analyzing its behaviour when a fault occurs. Many attempts have been made to 

develop techniques for systematically injecting faults into a system. Most of the developed 

techniques fall into two main categories [28]: 
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- Hardware-Implemented fault injection: This is accomplished at the physical level. This 

type of fault injection technique is called Hardware Implemented Fault Injection (HWIFI) 

and simulates hardware failures within a system. It uses additional hardware to inject faults 

into the hardware of the system. Hardware-based fault injection methods fall into two 

categories: 

• HWIFI with contact. This is where the injection has direct physical contact with the 

system, such as injecting voltage or current changes externally to the target chip.  

• HWIFI without contact. This is where the injection has no direct physical contact 

with the system, such as heavy ion radiation and electromagnetic interference, 

causing spurious currents inside the target chip. 

 

- Software-Implemented fault injection: The objective of this technique consists of 

reproducing errors at the software level that would have been produced by faults occurring in 

the hardware and software. 

In recent years, software-implemented fault injection techniques have become more popular 

amongst researchers because they do not require expensive hardware. Furthermore, they can 

be used to target both applications and operating systems, which are difficult to target by 

using the hardware-implemented fault injection technique [28].  

 

SWIFI techniques are categorized into two classes, based on when the faults are injected: 

during compile-time or during run-time.   

 

1. Compile-Time Injection:  

Compile-Time Injection is a fault injection technique which modifies the source code in 

order to inject simulated faults into a system. This technique injects errors into the source 

code of the target programme to emulate the effect of a hardware and software faults. The 

modified source code alters the execution of the programme instructions, causing injection. 

The injected fault produces an erroneous state and when the system is executed the fault is 

activated [28]. 
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This technique requires the source code of the programme to be modified, but it does not 

require additional software or hardware during run-time. Further, because the faults are hard-

coded into the system and require no communication with a fault injector, it has a 

considerably smaller impact on the execution timing of the system than other techniques. 

Finally this system is very simple to implement, but it does not allow the injection of faults 

as the tested programme runs. 

 

However this technique has its own drawbacks. The main drawback is that it requires the 

modification of the source code of the system under test. That requires the availability of the 

actual source code of the system, which will not be possible in some cases, such as Common 

Off-The-Shelf (COTS) systems. In addition the altered source code being executed is not the 

same source code of the system under test. 

 

2. Run-Time Injection:  

A Runtime Injection technique is a mechanism to inject faults into a system during run-time. 

Faults can be injected by using a number of triggering mechanisms [28]. Commonly used 

triggering mechanisms include: 

 

• Time-out. This technique is based on using a timer. When the time is expired, a fault is 

triggered and injected into the system. Specifically, the time-out event generates an interrupt 

to cause fault injection. The timer can be based on either hardware or software. This 

technique does not require any modification to the system under test. Since this method 

injects faults based on time points, rather than specific events or system state operations, it 

produces unpredictable effects in a system. It is suitable for emulating transient faults and 

intermittent hardware faults within a system. 

 

• Exception/trap. In these mechanisms a hardware exception and a software trap are used to 

generate an event control for injecting faults. Using an exception/trap requires injecting a 

fault based on certain events or conditions occurring. For example, a hardware exception 

calls the Fault Injection Mechanism when a hardware observed event occurs, such as when a 

particular memory location is accessed. The trap mechanism is used by inserting a code into 
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a particular point of a target programme in order to execute the fault injection code. When 

the hardware exception or trap executes, it causes a transfer of control to an interrupt handler.  

 

This technique has the advantage that it requires no modification to the code and can be 

triggered based on the occurrence of a specific event.  

 

• Code insertion. This technique involves inserting instructions into the target programme 

that causes a fault injection code to execute just before an event is to occur; it is similar to the 

code-modification method. This technique differs from compile-time injection in that it 

injects its faults at run-time rather than at compile time and, rather than corrupt existing code, 

it adds code to perform the fault injection. As Code insertion performs fault injection during 

programme run time, it inserts instructions, instead of changing original instructions as code 

modification does.  

 

It has the disadvantage that it requires the system source code to be modified. However it has 

the advantage that the fault injector can be used as a library and run as part of the system in 

user mode on systems that support this process protection model [34]. 

 

As detailed above, SWIFI techniques can be useful and economical. We now need to 

determine which SWIFI techniques are most appropriate for assessing the dependability of 

Web Services. A number of criteria have been identified as necessary to fulfil our stated 

goals. 

 

One of the main features of Web Services is that they run in a heterogeneous environment, in 

terms of machine architecture and programming language. The fact that Web Services are 

run in a virtual machine can, however, prevent testers from injecting faults directly onto the 

hardware of the hosting machine.  

 

One of our main stated aims of this research is that the developed fault injection method 

should be non-invasive. Consequently, any SWIFI technique selected should not make any 

modifications to the source code and the environment. 
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Therefore, when comparing Run-time and Compile-time injection methods, it is obvious the 

former would be the more appropriate technique. Run time injection methods do not modify 

the source code of the system. For example, techniques such as Code-insertion provide a 

more appropriate fault injection method than Compile-time injection, which corrupts existing 

algorithms. Code-insertion can be used to manipulate inputs and outputs with a high degree 

of control since it inserts extra code; for instance, method parameters can be corrupted when 

a method call is made. 

Runtime injection techniques can use various techniques for injecting faults into a system via 

the triggering mechanisms described above. These fault injection techniques can be used to 

assess the impact of different fault classes on a system [20]. Some of these techniques are 

listed below, although the list is not exhaustive: 

o Corruption of the memory space: this technique injects faults affecting the memory 

subsystem, such as corrupting RAM, processor registers, and I/O map. 

o Syscall interposition techniques: this technique is concerned with fault propagation to 

the middleware from operating system kernel interfaces. Faults can be injected by 

intercepting operating system calls to the middleware and injecting faults into them, 

such as returning an error code from a system call and signalling an exception. 

o Network Level fault injection: this technique is for injecting faults by corrupting, 

losing or reordering network packets at the network interface. Faults can be injected 

by instrumenting the operating system protocol stack as in [35]; however this runs the 

risk of being detected and rejected by the other end of the receiving systems protocol 

stack. It is therefore preferable to inject the fault at the application level [19].  

These Run-time fault insertion techniques have to be compared in terms of their applicability 

for testing Web Service systems, which are the target of our research. The heterogeneous 

nature of Web Service environments contributes a major concern about whether it is 

appropriate to use any technique that depends on a specific hardware environment. Moreover, 

the technique capability can also be scaled by the number of faults that can be injected into 

the system. The technique must be able to inject faults into the system reliably and precisely 

in order to assess the system with different faults and circumstances. 
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Network level fault injection can be an appropriate fault insertion technique to use for testing 

Web Service systems. Web Service systems usually use networks to communicate by 

transferring messages; therefore injecting faults into these messages would satisfy the two 

criteria, namely the number of faults injected and the requirement not to tightly tie the fault 

injection to a specific hardware environment. However, the other two techniques (Corruption 

of the memory space and Syscall interposition techniques) are tightly coupled with specific 

hardware platforms. 

 

In the case of Web Services the insertion techniques can be used to insert faults at both 

interface level and communication level. Interface faults affect operations input or output 

parameters and other SOAP message fields by corrupting data or assigning invalid parameter 

values. On the other hand, communication faults affect the messages transferred across the 

network by delaying the forwarding of messages or simulating a connection loss, for 

example.  

2.3.4 The communication and interface faults impact on Web service systems 

 

These two types of faults (communication and interface faults) are very important for testing 

Web Service systems. Web service middleware, similarly to other distributed technologies, 

relies on existing underlying middleware, such as network protocols, to implement the 

essential low-level services [4]. Thus Web Services inherit many of the dependability issues 

the conventional middleware infrastructure suffers from. For example, the interaction 

between the client and Web services relies on the Web or other networks, which are 

inherently unreliable media that may cause communication problems such as a loss, delay or 

damage of the message [3][13][14].  

 

It is critical to guarantee the reliability of service-oriented applications. This is because they 

may employ remote Web Services as components, which may easily become unavailable in   

the   unpredictable   Internet environment [36], as a consequences, communication faults can 

be occurred. In [36] paper presents a practical distributed mechanism named WS-DREAM 

for assessing reliability of Web services in real-world applications. The benchmarking Web 
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Services include six identical  Amazon  book  displaying  and  selling  Web Services 

distributed in six countries. Users who request these Web services are distributed in five  

locations  all  over  the world by executing 1,000,000 test cases. The results indicate that 

unstable Internet environments and server  connections  leads  to  unreliability  of Web 

services [36].  In [37] presents a practical experience in benchmarking a   number   of   

existing   Web   Services,   and   investigating   the instability  of  their  performance  and  the  

delays  induced  by  the communication medium.  The experiment is conducted with two 

Web Services, which provide similar functionalities. One deployed by the European 

Bioinformatics Institute, Cambridge, UK, the other Web Service hosted by the DNA 

Databank, Japan.  In the experiment, three consumers (clients) of those Web services are 

deployed from three locations so as to simultaneously send requests in order to observe the 

differences in their behaviour and how the locations (networks) affect the dependability of 

the two Web Service. Two of these clients were located in Newcastle upon Tyne, UK, whilst 

the other one was deployed in the China Education and Research Network, china.  The 

results indicate that network instability significantly depends on the quality of service of a 

local Internet Service Provider. Besides, occasional transient and long-term  Internet  

congestions,  packet  losses  and  network  route  changes  that  are  difficult-to-predict  also  

affect  on  stability  of operation of Web Service systems.   

In [14] presents  the  results  of a  40 day reliability study on a set of  97 popular services 

done from the user's perspective.  The results show that the majority of Connection Timeout 

failures  caused by network problems,  whereas the Connection Refusals failures caused by 

hosted Servers.  That is, Network related failures marginally outnumber host related failures, 

In addition, results show that Network related failures last longer than host related failures. 

Moreover, as Web services are deployed on application servers, which may become 

unreliable or out-of service, due to system maintenance or other internal activities [15]; the 

design or implementation of the Web services business procedure may contain faults and 

result in their erratic behaviour [15].   

 

Interface faults (related to problems in the interaction among software components [38]), are 

particularly relevant in an environment based in Web services. Web services must provide a 

robust interface to the client applications in spite of any presence of invalid inputs, which 
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may be occurred due to program defects or bugs in the client applications, corruptions caused 

by network faults, or even security attacks. There are many testing tools which assessing the 

Web services based on injecting interface faults. Injecting Interface faults has become an 

attractive method to assess the behaviour of a system in presence of erroneous inputs [39]. 

Such testing methods stimulate the system in a way that triggers internal errors, therefore 

systems can be assessed according to the number and type of errors uncovered. A number of 

such testing tools are detailed in the next section.  

 

Based on all the discussion above, therefore, the success of using insertion techniques of 

fault injection for combining between interface and communication faults could generate 

more complex errors and permit deeper injection tests. We will therefore provide further 

elaboration of these in the next chapter.   

 

2.3.5 Existing Fault Injection Tools 

 

There are many Software Fault Injection tools for testing distributed systems in general and 

other tools for testing Web Service systems in particular. Fault injection tools for testing 

Web Service systems can be classified into two main categories, as outlined in this sub-

section.  

 

There are network level fault injecting tools which were not originally developed for testing 

Web Services but which might be very useful for injecting communication faults. The most 

commonly used tools, such as DOCTOR [40], and Orchestra [41], both support network 

level fault injection and could potentially be used to inject faults into Web Services. 

 

DOCTOR [40] (integrateD sOftware fault injeCTiOn enviRonment) is a tool for injecting 

faults into CPU, memory, and network communication faults through time-outs, traps, and 

code modification. 

    

Orchestra [41] is a fault injection tool which is based around Network Level Fault Injection. 

The fault injector layer is inserted between the protocol layer and the lower layers. It allows 

messages exchanged between the participant protocols to be manipulated. Messages can be 
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delayed, lost, reordered, duplicated, and modified. The message modifications are specified 

using a user-defined script. Orchestra was initially developed for the Mach Operating System; 

therefore the user has to implement his faults injection layer for other Operating Systems.  

 

Ferrari [42] (Fault and Error Automatic Real-Time Injection) uses software traps to inject 

errors into the system. Software traps are triggered by either calls to the desired memory 

locations or a timer. When the traps are triggered, the trap handler injects faults into the 

system by changing the content of a register or memory locations to be corrupted. 

Experiments showed that error detection is dependent on the fault type.  

 

All of these methods are invasive, in the sense that they operate on the same system as the 

hardware they test. Due to the heterogeneous environment operated in by Web Services, a 

fault injection testing tool must not rely on a particular hardware platform. Any tool used has 

to be able to run equally well under any hosting environment that Web Services operate in.  

 

Moreover, using some of these tools for injecting communication faults is not enough to test 

Web Services. As some of these tools have been designed to inject faults at network protocol 

level, they can not decode complete middleware message sequences. In this level only 

packets can be captured and modified, and these usually do not correspond to application 

messages. Application level messages may span more than one network packet, therefore 

targeting a particular part inside a message (function call parameter) is very hard in this 

level. More addition, Injecting faults at the network level is very likely to produce side 

effects detectable by applications. These effects may not be what the user intended and 

wanted to inject. When a packet is dropped it may not lead to application level messages 

being dropped, but could lead to delays due to retransmissions and error correction. 

Therefore, other researchers have focused on providing other fault injection tools which have 

the capability to decode complete middleware SOAP messages, in order to inject significant 

interface faults.  

 

There are many other fault injection tools for testing Web Service systems. In [43] a tool is 

developed for generating and validating test cases. Tools start from the WSDL schema types 
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and introduce an operator to generate a request with random data and a test script that 

manipulates the request parameters.  

 

In [44] a technique for testing Web Services using mutation analysis is proposed. A mutant 

WSDL document is generated by applying mutant operators to the original WSDL 

document. A test tool called WSDLTest tool [45] generates Web Service requests from the 

WSDL schemas and tunes them in accordance with pre-conditions written by the tester and 

verifies the response against the post-conditions offline. In [46] a testing tool is proposed 

based on some rules defined in XML schema or DTD. The tool modifies the value of the 

parameters in requests by using boundary value testing, and of interaction perturbation, using 

mutation analysis.  

 

The work described in [47] helps service requesters create test cases so as to select suitable 

and correct Web Services from public registries. It proposes a method where faults are 

injected into SOAP messages to test the boundaries of the parameters, as specified in the 

WSDL document.  

 

This kind of tool suffers from two main disadvantages. First, its main focus is on injecting 

faults into SOAP messages by corrupting data and procedure parameters inside them. As 

they do not inject communication faults, problems such as message delaying, for example, 

cannot be assessed. 

 

The second problem is about the type of tests that can be performed. As such tools perform 

by simulating Service requesters in order to test Service providers as shown in Figure 2.2, the 

fault injector needs to invoke the Service provider to be tested. In composed Web Services,  
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FIGURE  2-2 CLIENT-SIDE FAULT INJECTION ARCHITECTURE 

 

where the Service provider needs to be a Service requester to another Service provider in 

order to serve a request, it is essential to test the Service requester and its reliability, in order 

to prevent the whole system from failing to provide the required service. Moreover, it is also 

impossible to use such tools to test communications between service partners in composed 

Web Services because testing communications between a service and its original client 

application will be substituted by the injector itself. 

 

To overcome the above disadvantages, there is a need for a tool to address both 

communication and interface faults. A fault injector tool should be able to intercept 

communication messages exchanged between Service partners or between a Service provider 

and its Service requesters, as shown in the schema presented in Figure 2-3. 
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FIGURE  2-3  SUGGESTED FAULT INJECTION ARCHITECTURE 

 

Another tool [19] introduces a framework intercepting and perturbing SOAP messages by 

injecting faults to corrupt the encoding schema addressed and inserting random text in the 

SOAP Body. To the best of our knowledge, WS-FIT [31] is currently the best Web Service 

fault injector that can fit this architecture. WS-FIT can inject both interface and 

communication faults by using scripts. The SOAP messages are intercepted between the 

Service requester and Service provider. The function parameters in the SOAP message are 

modified by using the value boundaries specified by the tester. Also the intercepted messages 

can be delayed and dropped between the two sides (Service requester and Service provider). 

However, WS-FIT needs to implement a set of hooks at the SOAP protocol layers of every 

machine hosting any Service requester or Service provider being tested. This introduces a 

strong intrusiveness and could disrupt the communication. Moreover, WS-FIT can only be 

used in a completely controlled testing environment so as to modify the SOAP protocol 

layers. In addition, it does not emulate additional workload in the system, which could give 

rise to different results. Different workloads could lead to different testing results, due to 

their creation of different system activation patterns [20].  

2.4 Conclusions  
 

In this chapter the concepts and the problems of Web Service technology for implementing 

SOA are reviewed. The loosely-coupled distributed architecture of Web Services has brought 

many benefits for distributed applications such as e-science and e-commerce systems. 

However, such architecture is inherently undependable. Research on the dependability of 

Web Service applications has to deal with both Service failures and network failures. It is 

important that solutions to these failures should be properly assessed and examined, 

especially when the system is constructed of a combination of services from different service 
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providers. Using this combination of services in a composed service which may not have 

been assessed and examined implies that the level of trust will be reduced, since interaction 

faults may be raised that have not been detected. 

    

Although many approaches have been developed to assessing the fault tolerance mechanisms 

and the dependability of Web Services and service composition, our analysis shows that the 

limitations of those solutions restrict their applicability and efficacy. These limitations are 

varied: for example some tools are designed for general-purpose dependability assessment of 

network protocol stacks and not for assessing middleware products. Others concentrate only 

on limited classes of faults. Also further assessment tools are needed to test the underlying 

environment such as middleware layer or the network stack layer but the application of such 

tools could introduce a strong intrusiveness and disrupt the communication. 
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3 Chapter 3 - Fault Injection Method for testing Web Services 
 

Using traditional testing techniques raises many problems with distributed systems. 

Performance and fault tolerance assessment provides a useful method for obtaining a level of 

reliability in a system. Although much work has been done in testing Web Services, there 

still appears to be a requirement for more research on Web Services in general and composed 

Web Services in particular. 

 

It is particularly hard to test web service applications which are developed to run over the 

Internet. Testing Web Service applications which involve running software in different 

environments and platforms is not an easy task without modifying the sources or the 

networking libraries of the hosting operating systems. Testing such systems requires a run-

time environment, which means using the Internet to test the performance of each component 

of the system and also to assess the impact of the fault tolerance mechanisms applied to the 

system. Such approaches are not always attractive or achievable. The cost of setting up a 

WAN or using the Internet for the sake of testing is very high. Moreover, controlling the 

dynamics of the network such as inputting more stress, load, or errors is almost impossible. 

 

Some fault injection testing methods have been conducted using fault injection to test the 

performance and fault tolerance mechanisms of CORBA applications, with fault injection 

taking place at a network level with successful results [48]. Therefore our research used this 

as a starting point for our new fault injection testing method. 

 

3.1 Problems Involved in Testing Web Service Systems 
 

There are many problems for testing distributed software in the development cycle, and Web 

Service systems are no exception. Modifying the system for the sake of testing is not 

desirable, since the modified system under test is not the same as the system to be deployed. 

Furthermore, testing the performance and fault tolerance of a system using a real WAN 
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environment is affected by difficulties in setting up the environment itself and controlling it 

for evaluation purposes. Previous work has not resolved all problems; the tested systems lack 

the realization of a Wide Area Network that the system runs over. Most of these are low 

level tools, sometimes requiring special hardware or modifications to the middleware or 

networking stack. 

 

3.1.1 Problem of modifying the system under test 

 

To test Web Service systems properly requires putting them into certain states in order to 

ensure that particular paths are executed. The tester needs to have the ability to execute 

certain chains of events in order to produce hard-to-reach cases in the distributed 

computation. This can usually be done by injecting faults or hard-coding them within the 

system. Moreover, testing a web service system and its fault-tolerance capabilities requires 

that the particular chains of events (which would lead to hard-to-reach cases) are applied to a 

single participating service in the system, or to a small set of such services. This may require 

the modification of these services. However, it is not always possible or advisable to modify 

the code of the system under test. The source code may simply not be available in the case of 

published services or COT services. Furthermore, it is not reasonable to modify systems with 

hard-coded faults for the purpose of testing, for the very fact that the hard-coded faults in the 

system will mean that it has become different from the system to be tested.  

3.1.2 Problems of Setting up a distributed testing environment 

 

In Web Service systems, service location is typically dynamic, so that services are 

discovered, selected, and composed, possibly at run-time. With such services, it is hard to 

assess behaviour and performance in the presence of faults. As Web Services are usually 

distributed and run over the Internet, there is no guarantee that all parts of the service will 

have high reliability. In [20] it is reported that communication faults such as message loss, 

duplication reordering, or corruption have unpleasing effect on traditional distributed 

systems and their reliability such as CORBA applications. Moreover it has been found that 

unstable Internet environments and server connections can lead to the unreliability of Web 

Service applications [36].  
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Since Web Services usually run over the Internet, the performance and fault tolerance of a 

service are very difficult to measure at design time. Testing such systems requires a 

distributed testing environment, such as a Wide Area Network (WAN) or the Internet. 

Therefore testing the performance and fault tolerance of the system could be achieved by 

deploying the system and running it over a WAN or the Internet.  

 

However using the Internet or WAN for the sake of testing is usually impracticable. It is 

costly in terms of time consumed and setting up a WAN or using the Internet for the sake of 

testing. Furthermore, it is almost impossible to control dynamic environments such as 

networks such as by increasing stress, load, or errors. Moreover, errors and faults may take a 

long time to occur. Some errors may not occur without applying a certain specific chain of 

events.  

 

A more practical approach is to run the system in one machine or over a LAN using a WAN 

emulation system, which can provide the sense that the system is running over a WAN and 

attempts to provide all the properties of a dynamic WAN such as the Internet [16]. This 

allows the system testers to examine performance and fault tolerance by running the system 

under varying scenarios, such as different network traffic load, delays, loss rate, and so on. 

By using network emulation, not only can the performance of the whole system be measured 

under different circumstances, but the contribution of each service to the overall composed 

service system can be measured and a services bottleneck can be discovered. That is, firstly 

running the whole system components (services) on a different network emulation scenarios, 

such as identical network traffic load, bandwidth, packet drop and error rate. Secondly, 

running the same system on different emulated network which emulates a various network 

links that have different traffic load, bandwidth, packet drop and error rate, and so on. That 

will simulate different performance for each component (service) running on different 

emulated network link so as to measure the performance of each component in such runtime 

environment and can be compared with first scenario. Such a run-time environment should 

also be able to inject faults into the system under test. The aim of our research is to provide 

such an environment. 
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3.1.3 Problem of testing composed services for performance and fault tolerance  

 

Web Services can be adopted to develop information systems through integration of services 

to obtain complex composed services. Web Service technology is being used to allow the 

creation of complex systems, composed of simple Web Services, which exchange messages 

to form complex conversation schemas [49]. These services are usually developed and 

administrated by different service providers, running on different platforms and also 

distributed over the Internet in different locations. In reality, there is no guarantee that all 

services will be highly reliable.    

 

Execution time measurements of composed service systems are very hard to estimate at 

design time. When analysing the time of a composed service, it needs to be taken into 

account that the execution time of completing a composed service increases when slow 

services are present. The contribution of each component service within a composed service 

to the time required depends on the processing time of the process, and also to the network 

properties such as delay time. That is, the position of a slow processing service and the 

network quality influences the overall execution time. For example, if the execution flow of 

a composed service forks into three parallel branches with varying execution times, the most 

time consuming branch (say branch1) determines the whole execution time of system, since 

the other two branches terminate earlier, but the composed service system still has to wait for 

branch1 to complete. Similarly, if a service is invoked through the network, because the 

invocation takes a long time due to some network-related problem, its long response time 

affects the composed service execution time more than any other contributing service which 

has a good network connection.   

In composed services, time-out mechanisms are often present and these too may cause some 

problems. If a response is not received within a specified time interval, an exception will be 

thrown by the sender which concludes that either the request or response message was lost 

somewhere in the network. The problem of this approach is how to choose a reasonable 

time-out interval. If the time-out interval is made too short, then there is a risk of duplicating 

messages and also, in some cases, reordering messages. If the interval is made too long, then 



 

 39 

the performance of the system is badly affected. We will elaborate on this issue in section 

3.3.5.  

3.1.4 Limitation of previous work 

 

As discussed in the previous chapter, although some of the testing tools developed earlier are 

stable and accurate, they have their limitations as follows: 

I. Tools for injecting communication faults: testing tools such as [40] and [41], for 

injecting faults, are useful for injecting communication faults into Web Service 

systems, However they are invasive, in the sense that they operate on the same 

system as the hardware they test. Due to the heterogeneous environment where 

Web Services operate, the fault injection testing tool must not rely on a 

particular hardware platform. Any tool used has to be able to run equally well 

under any hosting environment that Web Services operate in. Because these 

tools have been designed to inject faults at network protocol level, they cannot 

decode complete middleware message sequences.  

II. Tools for injecting interface faults: other researchers focused on providing other 

fault injection tools which have the capability to decode complete middleware 

SOAP messages in order to inject significant interface faults. In [43], [44], [45], 

[46] , and in [47], this kind of tool is seen to suffer from a limited class of faults 

that can be injected. Their focus is on injecting faults into SOAP messages by 

corrupting data and procedure parameters inside SOAP messages. Whereas they 

do not inject communication faults so that message delaying, for example, 

cannot be performed.  

III. Simulating Service requesters as Fault injectors: most Web Service testing tools 

work by simulating Service requesters in order to test Service providers as 

shown in Figure 2.2. The fault injector needs to consume the Service provider to 

be tested. In composed Web Services where the Service provider needs to be a 

Service requester to another Service provider in order to serve a request, it is 

essential to test the Service requester (Service partner) and its reliability, in 

order to prevent the whole system from failing to provide the required service. 

Moreover, it is also impossible to use such tools to test communications 
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between Service partners in composed Web Services, because testing 

communications between a service and its original client application will be 

substituted by the injector itself. 

IV. Tools for injecting both faults (communication and interface faults): although 

this is the only tool [19] we are aware of that can inject both classes of faults 

(communication and interface faults), it introduces a strong intrusiveness. WS-

FIT [19] needs to implement a set of hooks at the SOAP protocol layers of 

every machine hosting any Service requester or Service provider being tested.  

V. Emulating additional workload: to the best of our knowledge none of the Web 

Service testing tools emulate additional workload in the system being tested. 

Emulating additional workload during the testing of a system can give rise to 

different results. Different workloads could lead to different testing results, due 

to cause different system activation patterns [20].  

 

In this work we develop a method for testing Web Service applications in order to overcome 

the above problems. The testing method is appropriate for testing the performance and fault 

tolerance of either a single Web Service or a composed service, without any modification to 

the system being tested. No recompiling or patching is necessary. In addition, two classes of 

faults may be injected, communication faults and interface faults. Furthermore, the tool 

generates background workload to more accurately emulate real networks in order to 

produce more realistic results. Finally the tool is independent of the hosting environment for 

portability. 

 

3.2 Overview of the Proposed Approach   
 

To address the need for testing the performance and the impact of fault tolerance 

mechanisms applied to Web Service applications, a new method has been introduced. The 

proposed testing method will try to overcome the problems mentioned above. The main goal 

of the proposed method is to set a distributed run-time environment using a WAN emulator 

which gives the sense that the system is running over the Internet, and injecting two classes 
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of faults, communication faults and interface faults, without any modification whatsoever to 

the system under test. 

 

Our testing tool is called the Network Fault Injector Service (NetFIS) approach. The NetFIS 

method is basically intended for testing composed services for performance and fault 

tolerance mechanisms. For the purpose of the NetFIS method we will define a composed 

service as being a simple system, composed of a number of services and clients 

interconnected via a middleware layer. Clients can make use of services via the middleware 

layer and services may make use of other services via a middleware layer (see Figure 4-1). 

We may further assume that a heterogeneous middleware layer is being used by each service, 

and also that services may run on heterogeneous platforms for portability reasons. 

 

 

 

FIGURE  3-1 A SIMPLE COMPOSED SERVICE SYSTEM 

 

 

This thesis details the NetFIS performance and fault tolerance testing method and shows how 

it can be applied to composed service-based systems. The only requirement for the 

application of the method is that the target system be distributed in a modular fashion of 

services interacting via SOAP formatted messages, so that messages can be intercepted and 
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manipulated to emulate incorrect behaviour of faulty services. NetFIS is an intermediary 

composed service, which implements our fault injection method in order to test the fault 

tolerance mechanisms applied to Web Service applications.  

 

The major contribution of this work is the novel fault injection method that uses a Wide Area 

Network Emulator to inject network faults at application level and uses Mediators to inject 

software-specific faults without the need for any modifications to the system being tested. 

This novel injection method is achieved by intercepting messages going through proxies, 

giving the composed service systems the sense of running over a Wide Area Network and 

injecting appropriate faults without any modification to the system under test. It requires no 

modifications to the underlying operating system, networking libraries or the web service 

applications under test. By intercepting messages at this level it is possible to perform 

parameter perturbation. This is detailed in later sections. 

  

3.3 Design Approach 
 

The proposed fault injection method is not only for testing the Service provider but also for 

testing a Service requester. In composed service systems the Service provider could also be a 

Service requester to other service provider/s. In some composed systems the requested 

service in order to serve a request needs to call other services and afterwards sends the 

response to its requester. In such systems it is very important to test both sides of the system 

(Service requester and Service provider), because if either side failed to be sufficiently 

reliable it could bring down the whole system. 

 

This method is for injecting communication faults and software faults at application level. 

The communication faults include dropping, delaying and randomly corrupting bytes of the 

exchanged messages. In addition, software faults are also injected into individual Remote 

Procedure Call (RPC) parameters, based on obtaining the relevant Web Services parameter 

definitions (including data types) from the Web Service interface. As the method can inject 

many different kinds of faults, it offers the user the flexibility to inject appropriate faults as 
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required and also gives the applications a configurable emulated network, creating in the 

system the sense it is running over a network without any modification [16].  

 

Before describing further details of the proposed system architecture, it is worthwhile to go 

over some of the major design choices as follows: 

I. The choice of injecting faults at the application or the network level is 

discussed along with why it differs from other testing methods and how the 

method will fit into the system under test.  

II.  What operational profile or simulated system activity should be applied during 

the test and whether to simulate or emulate a network and why LANs alone are 

not sufficient testing environments is discussed. 

III. Which classes of faults are to be injected, why are they chosen, and where will 

they be inserted? The injection of a fault may be triggered by the occurrence of 

an event, occur after a predetermined time period, or randomly. 

IV. How the tested system behaviour is monitored and the failure modes are 

classified. It is important that all significant events be observed, which may not 

be easy in a distributed system. 

 

The above issues have been addressed precisely to target the exchanged messages between 

services forming a Web Service system distributed over a WAN. 

 

3.3.1 Fault injection location mechanism 

 

As detailed in previous chapter, there are many Fault Injection Mechanism techniques 

available. We have decided to base our fault injection method on network level fault 

injection techniques for the following reasons: 

 

I. Since the test environment involves data transferred across a network interface, 

it is a similar architecture to the design of Web Service systems. 
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II. It can be simple to implement under the heterogeneous middleware used by 

services forming composed service systems, because it can be implemented 

using proxies, which can intercept messages exchanged between services. 

III. Exchanged messages can be intercepted and tampered with to simulate a large 

number of fault classes, for instance network faults, API parameter faults, and 

so on. 

 

Our fault injection method uses a modified network level fault injection technique to inject 

faults into Web Service systems. The standard network fault injection technique is usually 

administered at network level by performing network related faults such as corrupting, 

reordering, and dropping on network packets. Such a fault injection method is traditionally 

used for testing the reliability and performance of networking protocol stacks. However, our 

testing method is for testing the impact of communication faults and interface faults on 

middleware and at the application level. In analyzing the network level fault injection 

technique used for injecting network faults at the network protocol stack level, the following 

problems have been faced: 

 

o At the network level, only packets can be captured and modified, and these 

usually do not correspond to application messages. Application level 

messages may span more than one network packet, therefore targeting a 

particular part inside a message (function call parameter) is very hard. 

o Tampering with packets at network level involves high risk of being detected 

by the actual underlying network protocol stack. Modifying or dropping 

packets at the network level could be detected by the receiver’s error 

detection mechanisms, such as checksums. In consequence a correction 

mechanism could be automatically applied to the packets such as 

retransmission. As a result, the application and middleware intended to be 

tested will most likely not experience the occurrence of such error; therefore 

their dependability will not be tested and examined in such circumstances. 

o When the messages are intercepted after they are signed or encrypted, it 

makes it impossible for them be tampered with in order to inject faults into 
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them without them being detected as being tampered with and then rejected 

by the destination. 

o Injecting faults at the network level is very likely to produce side effects 

detectable by applications. These effects may not be what the user intended 

and wanted to inject. When a packet is dropped it may not lead to application 

level messages being dropped, but could lead to delays due to retransmissions 

and error correction. 

 

With all the potential drawbacks given above, a better choice may be to move the fault 

injection location away from the network interface and position it in the middleware layer 

[20]. Messages at middleware level are complete entities, so they can be intercepted as a 

complete message and faults can be injected into them, rather than into just part of a network 

packet, which may be discarded before it reaches the middleware layer at the other end. 

However intercepting messages in the middleware layer requires some customization to that 

layer, which will decrease the generality of our fault injection method. Our fault injection 

method aims to provide a general purpose testing methodology that facilitates testing all 

kinds of web service middleware systems. There are many web service middleware 

platforms such as AXIS, JBoss, Glassfish, and so on. Therefore customizing any particular 

middleware platform for the sake of intercepting messages prevents the tester from using 

such a method to test systems using different web service middleware.  

 

Based on the discussion above, while the fault injection method can be based on injecting the 

mentioned network fault injection technique to inject network faults and application faults, it 

should move the fault injection location away from the network interface and middleware 

level and position it at the application level. 

 

3.3.2 A General proposed architecture of fault injection location 

 

Some major requirements of the fault injection system need to be further developed. The 

faults injected should attach themselves to the communication subsystem or medium without 

alerting or modifying the applications being tested. Nor should they alter or modify the 
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underlying networking libraries or host operating systems. Additionally, the fault injection 

should be transparent to the application. That is, it should not alter the application’s 

behaviour, nor what it expects from the underlying network, nor break the semantics of Wide 

Area Networks. For example, if there is any error in the fault injection application, it should 

not cause the application being tested to break. 

 

Based on the above requirements it would be a good design choice if the fault injection 

system were developed as a stand-alone Web Service mediator, as shown Figure  3-2. Each 

web service Mediator can capture messages between any Client requester and Service 

provider and then faults can be injected and also WAN emulation can be provided to the 

system under test. These Web Services are stand-alone services which can work on their own 

and even run on a different application space which can be a different physical machine, OS, 

or web service middleware.  

 

 

FIGURE  3-2  A GENERAL VIEW OF THE INITIAL PROPOSED APPROACH  

 

By using this way of intercepting messages, not only is the generality is enhanced, but the 

non-intrusiveness is improved, in the sense that it does not require any modification to the 

middleware or to the hosting operating system and of course to the Web Service system 

under test. However, there is another side to intrusiveness which is the overhead of 

intercepting the messages and processing them. It is true that this overhead could be 

neglected if it is kept to a minimum. This is due to the fact that the actual systems will 
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operate over a Wide Area Network or the Internet. So, the delays introduced by the Fault 

Injection tool and the processing could be neglected if they fall within the delays usually 

incurred by transmission delays in such networks [17]. When designing this fault injection 

method, therefore, care must be taken to minimize this overhead and keep it to a minimum.   

 

However, this way of intercepting system communications could introduce other problems, 

regarding how to make the system under test forward the exchanged message to the fault 

injection service. There are many web service technologies that could be used for this task, 

such as WS-Addressing [50], WS-Routing, and of course Web Service proxies. We will 

elaborate on these options in the next chapter (the implementation chapter).      

3.3.3 Run-time Environment   

 

As discussed earlier, the proposed method is for testing the impact of fault tolerance and the 

performance of Web Service systems. Therefore there is a need to test the system in a run-

time environment such as the Internet or WAN. However (as discussed in Section 3.1.2) 

using the Internet or WAN for the sake of testing is usually impracticable. It is time 

consuming and costly in terms of setting up a WAN. In addition, using the Internet for the 

sake of testing is impossible in terms of controlling the variety of network conditions like 

latency, data loss/error/reordering and bandwidth and also putting more stress or load on the 

target network. Moreover, errors and faults may take a long time to occur. Some errors may 

not occur without applying a certain chain of events.  

 

One of the alternatives is to test Web Service systems over local area networks (LANs). On 

the plus side, LANs are very cheap and very fast compared to WANs. LANs are also much 

more controllable. They are also very reliable. These characteristics are very useful for 

testing. However, these very characteristics are also drawbacks: LANs are not WANs (which 

are the target environment for Web Service systems). The performance of LANs is different 

from that of WANs and they have different faults.  

 

Therefore, there is a need to emulate or simulate a virtual Wide Area Network environment 

and its behaviour, which would enable the tester to control the virtual network environment 
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and its parameters to test the system under different circumstances, such as different 

dropping rate, error rate, delay, workload traffic, and so on.   

3.3.3.1 Wide Area Network Emulation 

One of the more realistic approaches is to run the system in one machine or over a LAN 

using a WAN simulator or emulator, which can provide the sense that the system is running 

over a WAN. Such a method would enable the tester to control the virtual network 

environment and its parameters in order to test the system under different circumstances such 

as different dropping rate, error rate, delay and so on. However there are differences between 

network simulation [51] and network emulation [52]. While both create virtual networks or 

execution environments, emulators differ from simulators in that they do not create virtual 

applications. Instead, they work with real applications, which can be attached to the emulator 

and will behave as if they are attached to a real network.  

 

Simulation requires the programmes to be recompiled or even modified for the simulator. 

This means that the programmes do not operate exactly as they are supposed to. Instead, they 

are built especially to work for the simulator. Simulation can be used in many situations, 

because of its ability to give a more accurate and controlled run-time environment. It also 

helps to analyse systems or models without the need to build (or implement) them.  

 

However, emulation involves a more seamless method of running programmes in a virtual 

run-time environment. It is often the case that programmes are already developed and cannot 

be modified for the sake of a simulator. Emulation also gives more accurate results, since the 

programmes are not modified and are executed as they are running in the actual target run-

time environment. 

 

Based on the discussion above, and as part of the suggested fault injection method in this 

study, we propose emulating customizable and controllable WANs over LANs, as shown in 

Figure  3-3. This way, the web service systems are tested on virtual WANs that are very 

similar and comparable to the actual target WAN environments. Testing over these virtual 

WANs will avoid encountering the problems of real WANs, as discussed above. The 
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assumption made in this thesis is that the actual LANs used in hosting the virtual WANs are 

very reliable and fast, and thus uncontrolled faults and delays will be negligible. 

 

 

 

FIGURE  3-3 HOW A WAN EMULATOR RUNS OVER A LAN 

 

 

However in order to provide a virtual Wide Area Network environment to run Web Service 

systems, the existence of other network traffic occupying the emulated network is also 

significant. Therefore it is better to emulate the Wide Area Network behavior over LANs and 

at the same time simulate the presence of other sources of network traffic as discussed in the 

next section.  

3.3.3.2  Traffic simulation  

A major feature of Wide Area Networks is the existence of other network traffic occupying 

the network. Apart from the increased delays, errors and routing, what makes a WAN 

different from a LAN is that applications performance can frequently be affected due to other 
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traffic occupying the network resources. What took a second to transfer minutes ago could 

now take 10 seconds, due to a surge in traffic. 

 

To provide a virtual Wide Area Network environment on which to run Web Service systems, 

it is better to emulate the Wide Area Network behaviour and at the same time simulate the 

presence of other sources of traffic. Testing systems against network faults requires 

additional network traffic to be generated in order to test the reliability and the performance 

of the system under different traffic stress scenarios. That will help the testers to examine 

systems performance under different traffic loads that consume networking resources 

together with the distributed application being tested [53].  

 

Although simulating Synthesizing network traffic is always the best approach to testing 

systems for reliability and performance, it is difficult to generate network packets with 

different aspects of network properties. Yet the results reported in [54] demonstrate that 

actual network traffic (including Ethernet LANs, WANs) is much more varied and assumes 

various forms and volumes. Therefore, generating effective testing traffics using the methods 

available for the network software system is highly important. 

 

Nowadays, most software tools have the ability to measure a system’s performance through 

network testing. However, a large amount of studies shows that these testing systems only 

adopt traditional testing methods driven by specific test data or test scripts [53]. However 

simulating network traffic is difficult, in terms of reflecting realistic network traffic when 

measured over time scales ranging from milliseconds to minutes and hours. More recent 

studies [53] show that the self-similar model is much more accurate in its statistical aspects 

than the traditional network traffic models based on Poisson processes or other such relevant 

processes.  

 

Therefore when designing this part of the system it needs to be taken into account that the 

traffic in a network can assume various forms and volumes, for example, actual traffic traces 

captured at routers, peer-to-peer traffic, and so on. The WAN emulator should support the 

simulation of various traffic models, including self-similar, random, and constant and even 
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replaying previously captured traffic traces. Since studies of network traffic show that it is 

self-similar in nature [53], it is more realistic that we opt for emulating the presence of 

continuous self-similar traffic in our emulated Wide Area Networks. Moreover, packet sizes 

in Wide Area Networks are not random, but follow a special distribution. Therefore 

generating artificial traffic with random sizes may not be accurate. Also designing the 

network emulation to generate and handle artificial traffic would increase the overhead of the 

system. The large volumes of traffic common in Wide Area Networks would make the 

emulation useless, unless simulating the network traffic were achieved in some way that did 

not task the emulation system. Artificial traffic generation is an integral part of the network 

emulation system. Thus, it is only reasonable to build the traffic generator inside the 

emulation engine. 

 

Our method should make use of an existing WAN emulation [55]. This network emulator is 

used with a fault injection tool to test CORBA applications. However, in this emulator some 

of the concerns were already taken care of such as the traffic simulation, whereas others 

would need to be dealt with in our proposed network emulation implementation such as the 

way faults are injected (We will elaborate on other concerns in section 4.2).  

3.3.3.3  Proposed architecture of the network emulation 

 

Based on the network emulation of the CORBA fault injection tool and on the discussion 

above about building a Wide Area Network emulator for our fault injection method, we can 

use the sample network topology in Figure  3-4 to analyze the system to be emulated. 
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FIGURE  3-4 SAMPLE WIDE AREA NETWORK 

 

The above sample network could be decomposed into two main components: Hops - 

representing nodes in the target network, and Links - representing communication mediums 

linking the nodes. 

 

The Hops are the nodes in a Wide Area Network. These should be addressable machines that 

are capable of running actual application code. In the proposed emulation system, Hops 

should be represented virtually for the sake of emulating real network Hops and machines 

that execute the user code to be tested. 

 

Network Hops (or nodes) have the following properties: names, address and Routing tables. 

The Hops are capable of the following actions: handling/forwarding network traffic and 

application communication. 

 

Links should also have a virtual representation in the emulation system. Each virtual Link 

represents a physical network Link. Links should be represented to enforce the properties of 

actual Links in the network to be tested. Network Links have the following physical 

properties: bandwidth, delay and error rate. We can also assume networking buffers to be 

part of the virtual Links even though they are physically part of the networking interfaces in 

the Hops. They are also capable of a single action: carrying traffic. 
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Figure  3-5 shows the initial stage of the WAN emulation system design. The WAN emulator 

intercepts all system communication and emulates a WAN before forwarding messages to 

their destinations.  

 

 

 

FIGURE  3-5 A HIGH LEVEL VIEW OF THE INITIAL PROPOSED NETWORK EMULATION 

 

Looking into the design of the WAN emulator raises many design choices to be reviewed. 

These system design options are discussed below. 

 

I. Network Emulation Engine 

One of the design choices for the network emulation engine would be to have only one 

programme as a network emulation engine. It would be an immense, single application that 

would perform the emulation of all the links and nodes of the emulated network in one place. 

Such a design minimizes the overhead of communication and management. However, such a 

large application will not only be hard to develop but would require a single machine to host 

the entire emulation application. For large networks, a single machine may not be able to 

provide enough processing power to carry out a realistic emulation. 

 

Another design consideration would be a multi-threaded emulation programme. It would 

distribute the processing between multiple threads. Each thread will represent a node or a 

link (or a combination of the two) that will be responsible for emulating that node or link in 
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the emulated network. The emulation includes both network functions and application 

management. Such a design is more flexible and is easier to develop. However, it might 

introduce the issue of scalability: could a single machine be capable of running multi-threads 

that emulate tens or even hundreds of nodes? 

 

Using standalone Web Services like the multi-threaded design, each node or link will be 

represented by a Web Service. Each Web Service will be responsible for emulating that node 

or link on the network. However, these Web Services are stand-alone services that can work 

on their own and be running on a different application space, that might be a different 

physical machine, OS or Web Service middleware. This could overcome the scalability 

problem and introduce more benefits such as making the network emulation portable so as to 

be used by different distributed applications.  

 

II. Providing network emulation to the system being tested: 

A major requirement of the network emulation system is the ability to provide network 

emulation through the intercepted communication between the components of the system 

being tested. However as discussed earlier (section 3.3.2), communication between the 

system components being tested would be intercepted by using Fault Injection Mediators. 

One of the tasks so far for the Fault Injection Mediators is to provide network emulation to 

the captured messages of the system under test. To gain such a service, the Fault Injection 

Mediators have to communicate with the network emulation engine.   

 

One of the design options for providing such communication between Fault Injection 

Mediators and the Network Emulation Engine is to integrate them within a single Web 

Service. The network emulation engine could therefore be built inside Web Service 

Mediators as a sub-component. Pursuing this design option would overcome any problem of 

communication between the Fault Injection Mediators and the Network Emulation. That is, 

when the Fault Injection Mediator captured a message, it would communicate internally with 

its Network Emulation Engine sub-component and the service of network emulation 

provided. However integrating the emulation engine inside the Fault Injection Mediators is 

likely to increase its complexity and overhead, negatively affecting its performance.  
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The other possible option for providing the network emulation would be where the Fault 

Injection Mediator and Network Emulation Engine are each built as a standalone service. 

Figure  3-6 below gives a more detailed view of this network emulation system architecture. 

 

 

 

FIGURE  3-6. INITIAL HIGH LEVEL VIEW OF WAN EMULATION CONNECTED TO FIM 

 

Designing the network emulation engine subsystem as a standalone service and also the Fault 

Injection Mediator also as a standalone service will reduce the emulation engine complexity 

and produce a clearer, more modular, design. In addition communication between the two 

services can be made on demand as required. Moreover if stand-alone services are applied, 

each service can work on its own and can run on a different application space which can be a 

different physical machine, OS, web service middleware or location. This could enhance the 

generality of the tool by separating the network Emulation Service from the Fault Injection 

Service so the Network Emulation can be used to provide Network Emulation to different 

distributed applications. However this is likely to introduce extra communication overhead 

(delays), therefore care should be taken when designing the system to address this issue and 

keep it to a minimum. 
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3.3.4 Faults affecting web service systems 

From a fault-tolerance perspective, distributed systems have a major advantage, which is that 

they can easily be made redundant, a core attribute of all fault-tolerance techniques. 

However, distribution also means that the imperfect and fault-prone physical world cannot be 

ignored, so that as much as they help in supporting fault-tolerance, distributed systems may 

also be the source of many faults. In this section we review some of the faults and problems 

of distributed systems and in particular Web Service systems.  

In Web Service systems distributed over the Internet where services are communicated by 

message passing, the failure of a service can be exhibited by its external behaviour, which is 

entirely represented by the messages the service sends (or fails to send). Thus, the failure of a 

service can be emulated by having the service send manipulated messages, failing to send, or 

delaying message sending. There is no need to be concerned about the internal conditions of 

the failed service.  

 

A web service can fail in various ways. Classifying a system’s faults helps in the design of 

fault injection campaigns that faithfully represent the actual faults that can exist in the 

system. There are many approaches to the process by which a system can fail. Some of these 

approaches are revisited below, in an attempt to cover the largest possible set of web service 

system faults. 

 

A fault model is a type of fault that could occur in a system as it is running. There are many 

types of fault that can affect distributed systems, as classified in [20][56][57][58]. From 

these, we present a summary list of the classes of faults which might affect active Web 

Service applications. We will go into particular depth over the classifications most relevant 

to the faults that are selected to be injected by our fault injection method.  

 

One of the classifications [20] has classified the faults affecting distributed systems in 

general into five types, as follows: 
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1) Physical Faults: this class covers all faults in the hosting hardware. For example 

faults effecting RAM or processor registers such as a hardware fault may cause a 

bit-flip in memory address. 

 

2) Software Faults: this class covers all faults in the distributed application’s 

software. For example, design or programming errors such as where an 

application may pass an invalid pointer to the middleware. 

 

3) Communication faults: this class covers all faults in the communication system. 

For example, message loss, duplication, reordering or corruption, while this class 

of faults does not affect middleware that is built over a reliable LAN. However, 

Web Services run over WANs may be unreliable, especially in message delivery 

times. 

 

4) Resource-management faults: this class covers all faults related to resource 

management. For example, memory leakage and exhaustion of resource such as 

file descriptors. 

 

5) Lifecycle faults: this class covers all process-aging faults, for example, referencing 

a destroyed object. 

 

The last two classes of faults (resource-management and lifecycle faults) are sometimes 

grouped together under the category of environmental faults. This list only covers classes of 

faults commonly found within most distributed systems. 

 

Another fault classification approach [58] classifies faults in terms of their type in the 

distributed system instead of considering their location, cause or environment. This 

classification is based on the fact that message exchange is the attribute that distinguishes 

distributed from standalone systems. According to this way of classifying faults in 

distributed systems, faults are classified as omission faults, value faults, timing faults and 

arbitrary faults as follows: 
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1) Omission faults: this class of faults prevents the expected response message from 

being received by the requester at all. An example of a component suffering from an 

omission fault is a communication link which occasionally looses messages.  

 

2) Value faults: this class of faults causes the response message to be received within 

the specified time frame, but with corrupted or erroneous contents. For example, a 

communication link which delivers corrupted messages on time suffers from a value 

fault. 

 

3) Timing Faults: this class of faults occurs where the response with correct contents 

is received outside the specified time frame, either early or late. An overloaded 

processor which produces correct values but with an excessive delay suffers from a 

timing failure. Timing failures can only occur in systems which impose timing 

constraints on computations.  

4) Arbitrary or Byzantine faults: subsumes all the previous three classes of faults. An 

arbitrary fault causes any deviation from a specified behaviour in terms of timing 

and/or value. It is possible for a component to fail in both domains in a manner 

which is not covered by one of the previous classes. A failed component which 

produces such an output will be said to be exhibiting an arbitrary failure (Byzantine 

failure).  

 

We have chosen a fault model based on the above model of fault classification [58] as a 

general fault model for distributed systems, shown in Figure  3-7. The relationships among 

these fault classes can be expressed through the recognition that that an omission fault can be 

treated as either a (infinitely) late timing fault or a value fault causing no value to be 

produced. In addition, a Byzantine fault causes any violation from the specified behaviour in 

terms of timing and/or value.  
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FIGURE  3-7 FAULT CLASSIFICATION HIERARCHY 

 

As denoted by the colour-coding in Figure 3-7, we have slightly adapted this classification 

and consider faults in three classes: timing faults, value faults, and arbitrary faults.  

 

Therefore our fault injection technique should be able to support two main fault classes 

which could lead to timing and vault faults being injected to the system being tested. The 

first class of faults is Network Faults, whereas the second class of faults is Software Value 

faults. We will review how these faults can be mapped into our fault injection system in the 

following sections. 

  

3.3.5 Timing Faults 

 

Timing faults can be the cause of what are called communication faults. Communication 

faults can be a result of either Network faults or Web Service applications crashing or 

overflowing buffered messages. Our research will pay more attention to Network faults as 

the main cause of timing faults and able to be used to simulate Web Service application 

faults that cause Timing faults.  

 

Timing faults caused by Communication faults in general and network faults in particular 

can affect Web Service systems. A source of Web Service failure common in most 

distributed systems derives from network faults. The most obvious failure is a permanent 

hard failure of the entire communication between system components, such as network 
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partitioning [59]. Such failure makes communication between services in the system 

impossible. This type of failure can lead to partitioning of the system into multiple parts that 

are completely isolated from each other. The danger here is that the different parts of the 

system might perform activities that conflict with each other.  

A different type of network failure is an intermittent failure. These are failures where 

messages exchanged through a network are lost, reordered, or duplicated. These faults are 

not always due to hardware failures, for example, a message may be lost because the system 

may have temporarily overflowed for buffering it [59].    

Messages taking different paths through the network may cause message reordering. If the 

delays incurred on the network paths are different, they may overtake each other. Duplication 

can also occur in different ways, for example, it may occur as the result of a retransmission, 

due to the wrong conclusion that the original message was lost in transit. 

One of the main problems with unreliable networks is that it is not always possible to make 

sure that a message that was sent has definitely been received by the intended remote service. 

A common technique for dealing with this problem is to use some type of positive 

acknowledgement protocol. In such protocols, the receiver notifies the sender when a 

message is received. However, there is also a possibility that the acknowledgement message 

itself will be lost, so that such protocols are for optimizing the problem but not solving it. 

The most common technique that is used for detecting lost messages is based on time-outs. If 

a positive acknowledgement is not received within some reasonable time interval, we 

conclude that it was lost somewhere in the network. The problem of this approach is how to 

distinguish between a message (or its acknowledgement) that is simply experiencing a delay 

in the network, from the situation in which a message has actually been lost. If the time-out 

interval is made too short, then there is a risk of duplicating messages and also reordering in 

some cases. If the interval is made too long, then the system becomes unresponsive [59].  

While time delays are not necessarily failures, they can certainly lead to failures in some 

cases. As noted in the previous section, a delay can be misconstrued as a lost message. There 

are two different types of faults caused by message delays [59]. One type results from time 
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delays (jitter), when the time it takes for a message to reach its destination can vary 

significantly. As composed services usually run over unstable Internet environments, the 

time delays can be due to a number of factors, such as the route taken through the network, 

congestion in the network, congestion at the server sites (e.g., a busy receiver), intermittent 

hardware failures, and so on. If the transmission delay is constant, then it can be much more 

easy to assess when a message has been lost. Therefore, some communication networks are 

designed as synchronous networks, so that delay values are fixed and known in advance. 

However, even if the transmission delay is constant, other problems such as out-of-date 

information may still arise, although this is outside the scope of our work.  

Transmission delays also lead to a complex situation about Message ordering. This is as a 

consequence of the fact that transmission delays between different services in a composed 

system may be different and also due to the different routes taken by the individual messages 

and the different delays along those routes. As a result, different services may see the same 

set of messages, but in a different order.  

As shown above, most time faults are caused by network faults or the system. Therefore we 

have decided to use network faults to simulate faulty behaviour in the system.   

  

3.3.5.1  Types of Network Faults 
 

Networking faults can be classified based on three attributes: fault location, fault duration 

and fault type. A network fault can happen in one of the following networking component 

locations: 

- Node: a node on the network can fail in many ways. Failure of a networking 

node affects its entire links. It might also affect the entire network if it 

results in partitioning it or breaking the routing. 

- Link: a single link on the network can also fail in many ways. Failure of a 

network link affects only the traffic going through it. Similar to a failure of a 

node, it might also affect the entire network if it results in partitioning it or 

breaking the routing. 
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The other attribute used for classifying network faults is the fault duration. A network fault 

could either be a permanent hard failure or an intermittent failure, lasting for a temporary 

period, as explained in the last section. 

 

The last attribute of network fault classification is the type of network faults. These are 

classified into the following categories: 

1. Delays: delays can occur because of networking resources overloading. Network 

delays can cause a failure of applications. They could also be the source for other 

types of networking faults such as data loss or further delays. 

2. Data loss: packets or entire messages could be lost due to buffer overruns, faulty 

links and nodes, and so on. Data loss can also be the cause of the failure of poorly 

designed applications and could also lead to other networking faults like delays. 

3. Transmission errors: transmission errors occur due to faulty links and/or nodes. 

Unlike data loss, the data arrives at its destination but corrupted. Like the other 

types of networking faults, transmission errors may be the cause of the failure of 

applications and may also lead to other networking faults. 

4. Data reordering: packet or message reordering occurs because of network traffic 

congestion and routing table reconfiguration. Distributed applications must ensure 

proper handling of data reordering. Otherwise, they will break and may lead to 

further networking faults. 

5. Partitioning: network partitioning can occur due to node and/or link failures. It 

may also occur due to faulty routing. 

 

The above classification should be considered and taken into account when producing our 

fault injection testing system. All possible network faults should be injected explicitly into 

the system under test and the reaction of the system should be observed so as to evaluate it. 

Table  3-1 shows how the three classifying attributes could be combined and injected 

explicitly to cover all the cases of networking faults together with some examples. 
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TABLE  3-1 HOW TO INJECT NETWORK FAULTS USING OUR METHOD 

 

3.3.5.2  Injecting WAN Faults 
 

Although the fault injection tool has to provide network emulation as a run-time 

environment, to run the system to be tested, it also needs to provide the ability to inject all 

possible network faults and, of course, application-specific faults; and then to observe the 

tested system’s reaction to such faults. Our initial architecture designed in Figure  3-6 should 

be extended to emulate the faults common in Wide Area Networks. Some design options and 

considerations about where to inject network faults and how should be taken into account as 

follows: 

 

 Network Fault Injection Location: as suggested in Section 3.3.3.3 (Proposed 

Architecture of the Network Emulation), the communication between the system 

components (Service requesters and Service providers) should be intercepted by the 
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sub-component Interception Mediator, and the network emulated by the Network 

Emulation Engine sub-component. Therefore the network fault injection subsystem 

could be built inside the emulation engine or could also be built inside the 

Interception Mediator.  

Integrating the fault injection as a subsystem inside the emulation engine is likely to 

increase its complexity, reduce its probability of extension and introduce more 

overhead, negatively affecting its performance. On the other hand, designing the 

network fault injection subsystem inside the Interception Mediator will reduce the 

emulation engine’s complexity and produce a clearer, more modular, design. This 

design option will also enhance the implementation of the Interception Mediator and 

its extendibility to support injecting other faults into the system under test. Moreover 

only the Interception Mediator needs to be modified in the case of supporting 

additional platforms (e.g. CORBA, RMI, raw sockets, etc.). 

 

 Network Fault Sources: As network faults should be injected as a result of the 

Network Emulation subsystem, the design of the network fault injection subsystem 

should take into account that the networking faults described earlier should be 

injected based on the decisions coming from the emulation engine. If the fault 

injection subcomponent is placed in the Interception Mediator, the Interception 

Mediator needs to contact the Network Emulation Engine when any communication 

message is intercepted in order to provide the network emulation.  

 

Figure  3-8 below shows the updated overview system architecture that supports Network 

Fault Injection. 
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FIGURE  3-8  OVERVIEW OF THE NETWORK FAULT INJECTION LOCATION 

 

3.3.6 Software faults  

 

Simulating software faults to assess the impact of remaining bugs or validating fault 

tolerance mechanisms is extremely important. Many studies show a clear 

predominance of software faults (i.e. programming defects or design problems) [32][60] 

as the root cause of system failures. As the enormous complexity of today’s software 

increases, the volume of software faults will tend to increase as well.  

 

Web Services are not an exception, as they normally use intricate software components 

that implement a compound service, in some cases comprising compositions of a 

number of web services, which make them even more complex. 

 

Web Services provide a simple interface between a Service requester and a Service 

provider and are a convenient means of exchanging data. Interface faults, related to 

problems in the interaction between software components, are particularly relevant in 

an environment that is based in Web Services.  
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Based on the literature of classifying software value faults, we generated Figure  3-9, 

which shows all possible causes of value faults. 

 

FIGURE  3-9 SOFTWARE VALUE FAULTS 

 

In fact, web service applications should provide a reliable interface to client 

applications, even in the case of invalid inputs, which may be caused due to bugs in the 

code applications (design faults), corruptions caused by network failures (transmission 

faults), or even security attacks (malicious service). They can be tolerated by some fault 

tolerance mechanisms applied to the system, for example, being caught by exceptions or 

discarded in some voting process [55, 61].  

 

Our proposed approach will concentrate on injecting a set of tests (i.e. invalid Web Services 

call parameters) that are applied during execution in order to reveal both programming and 

design problems. Injecting invalid values into the system helps in assessing the system’s 

robustness.  

The robustness of a system can be defined as its capacity to present acceptable behaviour in 

the presence of faults or stressful environmental conditions [62]. Testing for robustness is 

becoming an attractive evaluation method to characterize the behaviour of a system in the 

presence of invalid values [63][64]. This kind of testing can be achieved by modifying data 

at a component’s interface level and observing its behaviour. It can also be achieved by 

running the system under a heavy load and observing its behaviour. Robustness testing is 

particularly useful in assessing how a system uses fault tolerance mechanisms in order to 
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prevent invalid input, such as input that may be received by a system when it is under 

malicious attack. It also can be used to assess the system under different load so as to give an 

indication of how a scalable a system will be when in use. 

 

3.3.6.1  Injecting software faults (value faults) 
 

Value faults can be injected into the system through many different SWIFI approaches. For 

example, a code mutation approach could be very useful for injecting value faults. A code 

mutating SWIFI tool utilizes the source code of the application under test to inject value 

faults directly into the code. This approach violates the requirement of not utilizing the 

source code of the application. However in the robustness testing approach, the explicit 

interface of the system is utilized to inject faulty data at the system interface while it is under 

test. This approach is limited by the requirement that the system has clear and explicit 

interfaces. In the Network level fault injection approach, faults are injected into the system 

through the messages being exchanged between the system components. This approach 

suffers the least limitations and has been shown to be effective for injecting software faults 

[20]. 

Web Service applications interact through invoking operations on the Web Service through 

message exchange. In order to inject faults into Web Service systems, messages must be 

captured and manipulated. As web service applications communicate with one another 

through message exchanges, messages provide a natural and convenient way of injecting 

faults into the system. Exchanged messages could be intercepted and manipulated for 

injecting not only software faults but also communication faults, as our work proposes.  

As discussed in Section 3.3.2, the location of capturing the exchanged messages should be 

moved up to avoid the limitations of Network level fault injection, by emulating this 

technique at the application level. Messages captured at application level would be taken as 

complete entities, so they can be manipulated, modified and faults can be injected. In 

addition messages at this level are captured as XML documents; this makes it easy to target 

any part of the message and manipulate it, such as targeting individual Remote Procedure 

Call (RPC) parameters in the message and modifying it to simulate a large number of 

software faults. 
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In Web Service systems, the rules used to define the interface of a Web Service are typically 

encapsulated in a WSDL document. The WSDL document explicitly defines the messages to 

be exchanged with the Service requester. Therefore, it is possible to use the published WSDL 

document to decompose the service interface into method calls with their associated 

messages and within the messages to identify specific parameters. 

Thus, by using a WSDL document, information about each message’s required structure can 

be obtained. As a WSDL contains information about the operations, associated messages, 

parameters and types, it would be possible to arrange this information into groups of 

information. Each group of information could present all the information about one particular 

operation included in the WSDL interface required to construct a fault injection trigger. For 

example, each group contains nodes representing the operation name, message 

request/response, parameter names and types of each parameter. Although trigging faults can 

be constructed to any node in the group, our fault injection system is primarily concerned 

only with manipulating parameters in RPC messages.  

There are many testing tools for injecting value faults through function call parameters, such 

as [64] and [30]. Ballista [64] is a well known tool, with successful results, that uses fault 

injection to test software components for robustness, focusing especially on operating 

systems. Tests are made using combinations of exceptional and acceptable input values of 

parameters of kernel system calls, based on the data types of the parameter list.  

As Ballista testing can be performed on almost any API that employs calls with parameter 

lists [64], our proposed value testing approach could use Ballista as a starting point for 

injecting value faults through the function call parameters. The suggested approach consists 

of a set of valid and invalid Web Services call parameters that can be injected during the run-

time. The value fault model is based on combinations of exceptional and acceptable input 

values of function call parameters based on the data types of each parameter as shown in 

Table  3-1.   

Before starting the testing, a number of test values must be generated for each data type used 

in the system under test. For example, if an operation to be tested requires an integer data 

type as an input parameter, test values must be generated for testing integers. Values to test 

integers might include 0, 1, upper or lower integer bounds.   

As shown in  
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Table  3-2, triggering faults is based on the type of the parameters and the return 

results. For each type of parameter, a list is presented of all possible mutations that can be 

performed by using a set of mutation algorithms.     

 
Type Test case Parameter Mutation 

S
tr

in
g

 

Insert ASCII  Randomly insert ASCII character  

Skip character Randomly remove character 

double character  Randomly double character   

Null  Replace by null value 

Missing value Replace by empty string 

Predefined Replace by predefined string 

Non Printable Replace by string with nonprintable characters  

Add None Printable Add nonprintable character to the string 

Add Number Replace by alphanumeric string 

Overflow Duplicate characters until maximum sized overflows 

is caused 

N
u

m
b

er
 

Null Replace by null value 

Empty Replace by empty value 

Absolute Minus One Replace by -1 

Absolute One Replace by 1 

Absolute Zero Replace by 0 

Upper Bound Upper Bound value  

Lower Bound Lower Bound value 

Upper Plus One Replace by Upper Bound + 1 

Lower Minus One Replace by lower Bound - 1 

Between upper and lower Random values between upper and lower bounds   

D
at

e 

Null  Replace by null value 

Empty  Replace by empty date 

Max Replace by maximum valid date  

Min Replace by minimum valid date  

Max Plus One  Replace by maximum valid date + 1 

Min Minus One Replace by minimum valid date – 1 

Different formats Switching the month and day fields  

 

TABLE  3-2 PARAMETER VALUES MUTATION ALGORITHMS. 
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By using the above table and creating triggers at specific parameters of the message, our 

fault injection method must target individual elements of a message, rather than inject 

random faults into exchanged messages as in standard network level fault injection 

techniques (and as used in some other fault injection tools, such as the CORBA fault 

injection-testing tool [65]).  An important aspect of our proposed testing method is that the 

source code of the Web Services is not required. This is true for both the Service requester 

and the Service provider. 

Value fault injection should be designed as a subcomponent of the designed fault injection 

system, as shown in Figure  3-10.  
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FIGURE  3-10   SOFTWARE VALUE INJECTOR 

 

The same design as discussed in Section 3.3.5.2 (Injecting WAN faults), about extending the 

emulator architecture to support Network fault injection, also applies for the addition of the 

value fault injection subcomponent. To maintain modularity of the design and minimize the 

system complexity and overhead, the value fault injection subcomponent should be excluded 

from the emulation engine. It should be attached to the Interception Mediator as a separate 
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fault injection subcomponent. Figure  3-10 shows extended system architecture that supports 

a value fault injection subcomponent inside the Interception Mediator alone, with the 

Network Fault Injection subcomponent. 

 

Although such fault injection methods already exist, our proposed value fault injection 

method could be performed with a combination of other faults. One of our aims in this work 

is to study the effect of injecting value faults through the function call parameters with 

simultaneous injection of timing faults. By injecting value and time faults together, we could 

simulate what are known as Byzantine faults. 

 

  

3.3.7 Value and Network faults injected together  

 

Although much work has been done in the area of testing value faults in Web Service 

applications, our work is differentiated from others through the way that the value fault is 

injected into the system alongside the injection of delays into the system under test. Injecting 

delays into the system is based on the Network Emulation Engine, whose general task is to 

emulate a WAN, in order to give the impression that the system under test is running over a 

WAN.  

 

Injecting value and time faults together into the system is in order to simulate what is called 

an arbitrary failure (Byzantine failure). Byzantine failure/arbitrary failure cause a deviation 

from the specified behaviour of the system in terms of combined timing and value faults 

[58]. It is possible for a service to fail in both the domains of faults (value and time faults) in 

a manner which is not covered by either of the two domains alone. A failed component 

which produces such an output will be said to be exhibiting an arbitrary failure (Byzantine 

failure). As detailed earlier, our fault injection model is a combination of two main fault 

models: communication faults (Network faults) and interface faults (software faults/value 

faults). Choosing how the two fault models are combined to form testing scenarios should be 

left to the tester, in order to make the method more flexible by using both Network 

configuration files and the generated value test cases. However the method should be 
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designed with a default setup. The method should be able to be configured through many 

built-in setup cases. Table  3-3 below shows how the two fault models can be combined 

together and how they override each other in any constructed test cases. 

 

Possible 

Test cases 

Network faults Generated Script   

Drop Delay Random Corrupt  Manipulating value  

Case 1  Applied None None None 

Case 2  None Applied None Applied 

Case 3  None None Applied None 

Case 4  None None None Applied 

 

TABLE  3-3  POSSIBLE COMBINATION OF INJECTED FAULTS 

 

As shown in Table  3-3, faults have a priority for injection into the system based on their 

occurrence. When the message is sent through the network, the first possibility for faults to 

occur is through the network, while other faults may take place thereafter. Therefore the 

table shows injecting network faults have more priority than injecting value faults. However 

value faults can be injected into the same message where a network delay was injected. 

Moreover value faults are also injected when no network faults have been injected into the 

message. The next chapter will show how a user can control and choose the desired scenario 

test case by using well defined configuration files provided by the tool. 

3.3.8 System monitoring (failure detection)  

 

Here we will discuss the many ways in which distributed systems, and in particular web 

service systems, can fail and the effects of each failure on the system. In [20] failure modes 

for CORBA applications have been classified, while [34] has classified failure modes for 

web service systems. In [64] there is a classification of the target operating system according 

to the CRASH scale failure modes.  

Based on these failure mode classifications, we have summarized the failure modes of Web 

Service systems as follows:  
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1) Crash of a service instance/hosting environments: the Web Service crashes or the 

application server used to run the web-service under testing may become corrupted 

or the machine crashes or reboots.   

2) Hang of a service: hung services are present in the system in a way that can be seen 

by other services, but do not process requests or return results. 

3) Corruption of data coming into the system: this class covers all failure modes 

resulting from bad or corrupted input. 

4) Corruption of data coming out of the system: this covers failure modes resulting 

from bad or corrupt replies. 

 5) Duplication of messages: this class covers failure modes resulting from duplicated 

messages. 

6) Omission of messages: this class covers failure modes resulting from lost request 

and response messages. 

7) Delay of messages: delay of messages may cause failure due to message time-outs. 

 

This list is very general. Every Web Service system has its own specific failure modes. 

However, the majority, if not all, of these failure modes can be classified into one of the 

above major classes. Listing failure modes can help in both the design of the fault injection 

campaign and the monitoring of the outcomes of our fault injection testing method.  

 

The effect of each of these failure modes will depend on the capacity of the system’s fault 

tolerance to detect them and prevent the system from deviating from its specified behaviour. 

Corrupted data coming into the system should be detected by the middleware (or the web 

service application) and rejected, then raise the appropriate error exception as a response. 

Corruption of data coming out of the system should be handled by the middleware at the 

service client. However this is the most severe failure mode when it is not signalled by the 

system and propagated from the middleware to the application level, where a mechanism 

must be deployed to deal with this.  

 

The duplication and omission of messages should also be handled by the middleware layer of 

the service and should raise the appropriate exceptions. However, the omission of messages 
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from client to service must be detected by the client’s middleware, since the service would 

have no mechanism for knowing the message had been sent, so it could not generate an 

exception.  

 

If the application server has crashed, it will not be able to accept the invocation and the client 

will receive an exception from the transport layer. If the application server hangs, it may 

either accept the invocation but not respond so the client will not know what is happening, or 

the application server may not be able to accept the invocation at all, producing an effect that 

is similar to a crash.  

 

Delayed messages are not a failure but may cause timing faults. These should be detected by 

the middleware at the service side when a response message is not received. However at the 

service client, there is a problem of distinguishing between a lost request message and the 

message experiencing a long delay in the network. To minimise this issue, a reasonable time 

span should be deployed before raising a time-out exception at the service client.  

 

Because of all the problems noted above, some of the failure modes are very difficult to 

detect. For example, as discussed above, it is difficult to distinguish between crash and hung 

failure modes, in some cases where the testing run by the service client does not have access 

to the application server logs where the Web Service is running. In addition some other 

failure modes are also difficult to detect when the tester has no access to the service client 

logs, for example the omission of requests when a client request is lost before reaching the 

service provider. As a result of this, the mechanism deployed to detect omission of request 

messages at the service client cannot be tested.  

 

To face some of these problems we rely on the logging mechanism of the proposed method. 

We propose a simplified failure detection that is based on two observable detected outcomes 

from our fault injection method, as follows: 1) Detecting exception, 2) No effect. 

1) Detecting exception: when corrupted data are propagated to the middleware or to the 

application level, the normal reaction is an exception sent back to the client. 

Middleware need to have the capacity to detect corruption in the SOAP messages, 
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while Service implementations need to have the capacity to detect the corruption of 

faults in the SOAP function parameters by raising exceptions. When the exception of 

the corrupted data is expected but not detected, the testing method will flag it to the 

user as a discrepancy. When the expected exception is received it will be classed as 

the correct behaviour outcome. In addition, unexpected exceptions can be also raised 

by the service providers. These unexpected exceptions can result from perturbed input 

parameters in allowed parameter bounds and should therefore be flagged up to the 

user. The same mechanism applies to exceptions resulting from duplication, crashes 

and the omission of messages (responses) from service to client which should sent by 

the service provider.  

 

2) The ‘No effect’ would be expected mainly from normal message flows continued with 

no data corruption or exceptions, as, for example, in the case of omission of messages 

from client to server, since the server would have no mechanism for knowing the 

message had been sent, so it could not raise an exception. With regard to injecting 

delay before sending the message, if the time span of the time-out is not reached, this 

would result in performance degradation rather than time-out exceptions. 

 

It is important to emphasize that all the failure modes mentioned before can be easily 

observed by not only analysing the tool’s logging mechanism (exception, corruption of data), 

but also by using application server logs if available (failure modes crash and hang of the 

service) and at service client logs (omission of message from the client to service).  

 

The logging mechanism should be placed in the tool where it can monitor and log all the 

communications of the system under test and the fault injection activity. The Interception 

Mediator would be able to capture all the system communication. Moreover in the 

Interception Mediator all the injected faults (both network faults and value faults) will be 

performed, it would be the best place to deploy the logging mechanism subcomponent. 

 

However, care must be taken when implementing it. For example the logging mechanism 

should minimize the overhead latency introduced by the logging mechanism by using simple 
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logging files. Also data should not be stored into the logging files each time a message is 

captured.  

 

3.4 Conclusions 
 

This chapter has detailed the Network Fault Injection Service (NetFIS) method. The NetFIS 

method is composed of a novel Wide Area Network Emulator, combined with a Fault 

Injection Mechanism for injecting two classes of faults: communication faults and interface 

faults.  

The novel fault injection technique used allows communication faults to be injected based on 

a WAN emulator and injecting software faults (interface faults) into the intercepted message 

allowing perturbations of specific RPC parameters at middleware message level.   

 

Previous work which called upon the WAN emulator for testing CORBA applications has 

been adapted for testing Web Service applications. This was done by adopting the 

architecture of a Wide Area Network emulator used for testing CORBA systems, and 

extending it to test composed service systems so as to emulate customizable and controllable 

WANs, over LANs. This way the Web Service systems are tested on virtual WANs that are 

very similar and comparable to the actual target WAN environments. Testing over these 

virtual WANs will not encounter the problems of using real WANs. Using the real network 

is time consuming and costly in terms of setting up a WAN; it also presents difficulties in 

controlling a variety of network conditions and network parameters.   

 

Injecting communication faults is achieved by the use of the WAN emulator. That is done by 

controlling network conditions such as latency, data loss/error/reordering and bandwidth and 

also putting more stress or load on the target network. Errors and faults may take a long time 

to occur. Some errors may not occur without applying a certain chain of events. Our method 

would enable the tester to control the virtual network environment and its parameters to test 

the system under different circumstances such as different dropping rate, error rate, delay, 

and so on. The method also generates additional traffic workload on the tested system in 

order to produce more realistic results. 
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Interface faults are injected through intercepting the messages exchanged between the 

services. In order to inject interface faults into Web Service applications, messages are 

captured and manipulated. As Web Service applications communicate with one another 

through message exchanges, messages provide a natural and convenient way of injecting 

faults into the system. The location of capturing the exchanged messages should be moved 

up to avoid the limitations of Network level fault injection and emulating this technique at 

the application level. Messages are captured at application level as complete entities so they 

can be manipulated and modified and faults can be injected. In addition messages at this 

level are captured as XML documents; therefore it is easy to target any part of the message 

and manipulate it, for example, targeting individual Remote Procedure Call (RPC) 

parameters in the message and modifying them to simulate a large number of software faults.  
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4 Chapter 4 - NetFIS applied to SOAP based Web Service 
 

The Network Fault Injection Service (NetFIS) detailed in Chapter 3 describes a generic 

method that can be applied to a number of RPC based middleware [17], such as CORBA, 

Web Services and so on. This chapter applies the FIM to Web Service middleware in order 

to demonstrate the method. This implementation is termed Network Fault Injection Service 

or NetFIS. 

 

NetFIS is conceived in four distinct phases. The first phase is an implementation of a fairly 

conventional fault injector proxy, but with the enhancement that it processes middleware 

messages as opposed to network packets. The second phase is the network emulator which is 

implemented to give the sense that the system is running over a WAN. The third phase is 

built onto the first phase, allowing network faults to be injected into the system based on the 

network emulator in the second phase. The fourth phase builds on the first, allowing 

meaningful faults to be injected into specific parts of a middleware message.  

 

4.1 Web Service middleware system 
 

The NetFIS implementation for Web Services uses the method described in Chapter 3 and 

provides a performance and fault tolerance assessment method that can be applied to SOA 

based on any Web Service middleware SOAP stack (see Figure  4-1). Because our fault 

injection has been made applicable to any web service middleware system, the 

implementation of our method is independent of any Web Service middleware and runs as a 

standalone application. This implementation has, however, been applied to a range of Web 

Service middleware such as Apache Axis 2 and JBOSS Web Service SOAP 2.3 for the 

SOAP implementation. 

 

This NetFIS implementation can be deployed with any heterogeneous distributed system 

comprising many different machine architectures, with the middleware layer allowing 
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interoperability between them (See Figure  4-1). The NetFIS must be generic enough to 

overcome any heterogeneous middleware layer of Web Service systems.  

 
 

FIGURE  4-1 WEB SERVICE MIDDLEWARE SYSTEM 

 

The NetFIS implementation addresses the following areas which were defined in Chapter 3: 

 

1. Fault injection mechanism 

2. Network emulation mechanism  

3. Injecting network faults 

4. Injecting software faults 

5. Failure detection (System monitoring) 

This chapter shows the details of how the NetFIS method has been implemented and applied 

to Web Services and describes the concepts behind network emulator implementation. In 

addition it demonstrates how network and software faults were injected into the system being 

tested. Finally it demonstrates how the system under test can be monitored and how failures 

can be detected. 
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4.2 Fault injection mechanism  
 

As discussed in Section 3.3.1 (Fault injection location) our fault injection method is based on 

injecting Network faults and also software faults at application level. We have moved the 

fault injection location away from the Network interface and positioned it at the application 

level by using proxies between the Service requester/s and the Service provider/s 

participating in a Web Service system.  

 

 

FIGURE  4-2 THE CHOSEN LOCATION FOR INJECTING FAULTS INTO THE SYSTEM. 

 

 

As shown in Figure  4-2 the Fault Injection Mediator (Interceptor) instances can be installed 

into the system under test depending on the total number of Service providers and Service 

clients. For example in Figure  4-2 the Fault Injection Mediator (proxy) instances are installed 

three times. Every connection between a Service requester (client) and a Service provider 

needs one fault injection Interceptor instance. According to the system in Figure  4-2, for 

every Service provider, a proxy is generated by the fault injection tool. The Service requester 
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can therefore invoke the intended Service provider through its proxy. In case a Service 

provider needs to connect other Service providers in order to serve a request, this Service 

provider (as in site b in Figure  4-2) will become a Service requester to connect to the 

intended Service provider (Service provider in site c in Figure  4-2). Therefore the Fault 

Injection Mediator instance generates a proxy Web Service for the Service provider to be 

called through. In this way all the communication between the system components (clients 

and Web Services exchanging messages) under test can be intercepted by the generated 

proxies. Request messages coming from Service requester at site a) are intercepted by the 

Service provider proxy between them; and response messages coming from Service provider 

at site b) are also intercepted by the same Service provider proxy. As messages go through 

proxies, faults are injected into the messages by the fault injection engine tool.  

 

The proxy code is further sub-divided into two sub-components: one component is for 

intercepting incoming messages (requests) whereas the second component is for intercepting 

outgoing messages (responses). This is partly dictated by the design of the SOAP stack (there 

are two distinct pathways through the code to allow processing of incoming and outgoing 

messages) and to allow differentiation between the two message types. Although it would be 

possible to utilize only one pathway for both messages (incoming and outgoing messages), 

subdividing it into two components has certain advantages in terms of the flexibility of the 

method and injecting faults. 

 

The extra flexibility offered by our fault injection tool is to separate the interception location 

of the requests from the interception location of the responses by deploying two Fault 

Injection Mediator (FIM) instances between any Service requester and Service provider as 

shown in Figure  4-3. The tasks of each FIM are based on where it is deployed (Service 

requester side or Service provider side). 
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FIGURE  4-3 A GENERAL VIEW OF THE INTERCEPTION MEDIATOR PLACED INTO A COMPOSED 

SERVICE SYSTEM 

 

o The FIM at the Service requester tasks are: 

1) Generating any number of Web Service proxies that this Service requester might invoke; 

2) Intercepting incoming messages from Service requester; 

3) Injecting the appropriate faults (Network and Software faults); 

4) Forwarding the requests to the other FIM at the actual invoked Web Service; 

5) Forwarding the responses to the Service requester.  

 

o Whereas the FIM at service provider tasks are:  

1) Intercepting outgoing messages from Service provider;  

2) Injecting appropriate faults (Network and Software faults); 

3) In the case of Web Service systems where the Service provider needs to invoke another 

Service provider in order to serve a request, the FIM at Service provider can generate any 

number of Web Service proxies required. In other words, any Service requester invoking any 

number of Web Services has its own FIM. In addition every Service provider has its own 

FIM;   

4) Forwarding the responses to the other FIM at the service client. 
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For instance as shown in Figure  4-3 the Service requester on site a) can send a request to the 

Service provider on site b) through the proxy generated by FIM at site a). Then FIM at site a) 

injects faults (if any) through its subcomponents (detailed later); thereafter it forwards the 

request to FIM at side b) whose task here is only to forward the request to the actual invoked 

Web Service at site b). In case the Web Service at site b) needs to call another Web Service 

(Web Service at site c) in order to serve the request, it sends the request to the FIM at site b) 

through the proxy generated for calling the Web Service at site c). Then the request at FIM at 

site b) forwards it to the FIM at site c) which will forward it to the actual called Web Service 

at site c).   

 

This way of deploying two instances of FIM (which both separates the interception of the 

requests and is separated from the interception of the responses) enhances the architecture of 

the Network emulation, increases the performance and simplifies the monitoring of the 

system under test. Every Fault Injection Mediator (FIM) will be able to serve the emulation 

of only one network node of the target emulated network and also could provide other 

services such as injecting faults, as discussed in Chapter 3. The proposed architecture of the 

network emulation is maintained by providing one Interception Mediator for each node of 

the target emulated network (this is detailed later in the section network emulation). The 

performance is also increased by the possibility of running each FIM instance in a separate 

machine. Moreover different fault injection configurations can be used by feeding each FIM 

with any desired different fault model configuration file. Thus, as a consequence, monitoring 

the system will be also more easily realised. We will elaborate on this in the coming sections 

of the implementation. 

 

The implementation of FIM is divided into two main components. The first component is the 

implementation of how the messages are intercepted whereas the second component details 

how the faults are injected into the system under test. In the next section, the implementation 

details of how the FIM is implemented are discussed.  
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4.2.1 Fault Injection Mediator Service  

 

The Fault Injection Mediator Service (FIMS) is the implementation of the FIM. The FIMS is 

implemented as a SOAP-based Web Service and is to be deployed between the system 

components (Service requester/s and Service provider/s). In addition to its main task of 

injecting faults, the FIMS acts as a Proxy Web Service that the Service requester will need to 

invoke in order to be connected to the actual called Web Service. In this way all the 

messages exchanged between the system components are captured and faults can be injected.  

  

Based on the architecture of the Fault Injection Method discussed in Chapter 3, the location 

of our fault injection method is implemented as a standalone Web Service application 

between the system components under test. The FIMS is the core of our fault injection tool, 

whose main tasks are to intercept the messages exchanged between the components of the 

system under test, injecting the proper faults and mentoring the system during the test.  

 

The implementation of the FIMS is divided into three sub components (Proxy Generator 

(PG), Message Interceptor (MI), and Fault Injection Engine (FIE), in order to fulfil the 

proposed architecture as shown in Figure  4-4.  

 

Before going into further detail about how the FIMS and its sub-components are 

implemented, it will be worthwhile to explain a general overview of how messages are 

processed and faults injected into a system using our tool. This will help in understanding 

how the messages are intercepted and how the sub-components work.  

 

– The message’s journey through NetFIS: 

The scenario shown in Figure  4-4 is a simple system consisting of two applications (Service 

requester and Service provider), communicating with each other by exchanging SOAP 

messages over a Wide Area Network Emulator.  
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FIGURE  4-4 NETWORK FAULT INJECTION SERVICE (NETFIS) 

 

 

The request messages from the Service requester to the Service provider are processed by the 

NetFIS in the following steps, as shown in Figure  4-5: 

 

1-  The Proxy Generator (PG) sub-component of the FIMS deploys a Proxy Web Service 

(PWS) to be called by the Service Client/requester (SC). The PG uses the WSDL file of 

the actual intended web service to generate the PWS.   

2- The SC transmits a SOAP request message by using the WSDL of the published PWS. 

3- When the request is received by the PWS, the Message Interceptor (MI) sub-component 

of the FIMS intercepts the request and forwards it to the third sub-component Fault 

Injection Engine (FIE). 

4- The FIE decides the fate of the request by using the Network Emulation and the user 

script fault model.  
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5- If the decision is to drop the message, the message is dropped and no further processing 

takes place. 

6- If the decision is otherwise (do nothing with the message, delay, randomly flip bytes of 

the SOAP body, manipulate the function parameters), the fault is injected (if any) and 

the message is transmitted back to the MI. 

7- The MI transmits the request message to the other corresponding FIS which runs in front 

of the actual invoked  Web Service. 

8- The FIS in this situation only needs to forward the received request message to the actual 

called web service. 

 
 

 
FIGURE  4-5 REQUEST MESSAGE THROUGH NETFIS 

 

 

The above scenario gives a general view about how NetFIS injects both Communication and 

interface faults (Network and Software faults). As discussed in Section 3.1.4, although the 

only tool [31] we are aware of that can inject both classes of faults (communication and 
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interface faults), it introduces some kind of intrusiveness in terms of modifying the SOAP 

stack library. WS-FIT needs to implement a set of hooks at the SOAP protocol layers of 

every machine hosting any Service requester or Service provider being tested. That made it a 

less general purpose testing tool. Our fault injection tool has been designed in such a way 

that no modifications to the system under test have been needed. It requires no modifications 

to the underlying operating system, networking libraries, middleware, or the web service 

applications under test.  

 

By intercepting messages in this way it is possible to perform parameter perturbation because 

of complete message entities obtained at this level; it also gives the system under test the 

sense of running over a Wide Area Network and injecting network faults. Moreover it gives 

the system under test the sense that there are other − synthetic − applications running at the 

same time and sharing the networking resources without a perceivable emulation overhead 

(as will be discussed further in the coming sections).  

 

The response messages from the Service provider to Service requester are processed in a 

somewhat similar way, with the exception that the faults injected into the messages can be 

different from the faults injected to the requests by NetFIS in the following way (see 

Figure  4-6): 
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FIGURE  4-6 RESPONSE MESSAGE THROUGH NETFIS 

 

 

9- Because the request message received by the Web Service comes from the FIMS running 

in front of the Web Service, by default the response message is transmitted to the same 

FIMS came from.  

10- At FIMS, the received response message is intercepted by the sub-component MI which 

forwards it to the other sub-component FIE. 

11- The FIE provides the network emulation for the received response and injects the 

appropriate fault (if any), in the same way as was done for the request message at the 

other FIMS running in front of the Service requester. 

12- Afterwards, the response message (if any) is sent back to the FIMS running in front of 

the Service requester. 

13- When the response is received by the FIMS running in front of the Service requester the 

sub-component MI forwards it to the Service requester. 
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Our fault injection method has extended the standard Network Level Fault injection in the 

way it injects Network faults based on the Network emulation provided with the tool. The 

fault injection tool gives the system under test the sense of running over a Wide Area 

Network and injecting Network faults such as loss, delay, and corrupt exchanged message. 

Moreover it gives the system under test the sense that there are other − synthetic − 

applications running at the same time and sharing networking resources without a 

perceivable emulation overhead, which will be discussed in the coming sections. In this way 

the tool provides a run-time environment to test not only systems reliability but also to 

measure the performance of systems under test.  

 

Although there are other architectures which could provide similar implementation to 

achieve the required goal, our choice of intercepting the exchanged messages in two FIMs 

has some advantages in terms of flexibility and performance. We could have opted for a 

simpler architecture, using only one FIMS to intercept all the exchanged messages between 

all the system components (Service clients and Service providers). However, intercepting all 

the system messages through only one FIMS would increase the overheads of the tool and 

decrease its performance, in particular when a tested system consists of many components 

exchanging a large number of messages. Also it would be more complex and difficult both to 

monitor and to provide a clear picture of the online system monitoring. The most important 

issue is to have two FIMS for each Client and service running in different locations, means 

adapting the same architecture which has been chosen for emulating a WAN. That is, every 

Network Emulator Service instance (Node emulator) is responsible for emulating only one 

node and all the links from that node to other nodes (as discussed in section 4.3 on Network 

emulation mechanisms).    

 

More details of the three sub-component roles of the FIS implementation are each described 

in some detail below.  

i. Proxy Generator (PG): its main task is to generate any number of Proxy Web 

Services (PWSs) needed by a Service requester (Client).    
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Any Web Service involved in the system under test needs a PG sub-component of the 

FIMS to generate a proxy Web Service in order to be called by a Client. As mentioned 

earlier, each Service requester and each Service provider has its FIMS running in front 

of it. Therefore every FIMS running in front of a Service requester has to generate a 

Web Service proxy of the actual Web Service that the Service client needs to invoke. 

In this way all the requests from this Service client to a particular Web Service are 

received by its corresponding Web Service proxy as shown in Figure  4-5.     

 

In the case that the Service client needs to connect to more than one Web Service, the 

PG has the ability to generate any number of web service proxies needed. When the 

Web Service proxies are generated and deployed, all the requests coming from this 

particular Service client for any particular web service proxy are directed to a separate 

instance of Message interceptor (MI) thread controlled by the FIMS. In this way all 

requests going to a particular Web Service can be treated differently such as injecting 

different faults, providing different configuration for the network emulation, or logging 

in a specific file.  

 

The only requirement that GP needs to generate a web service proxy is the URL of 

where the WSDL document published. Every Service client involved in the tested 

system needs to deploy a FIMS in an application server, and then needs to call this 

FIMS so as to send the URL of the WSDL of the actual Web Service that needed to be 

called by the Service client. Then the FIMS passes the WSDL URL to its GP sub-

component, which will use it to generate a new Web Service proxy by publishing the 

same actual WSDL but with a different endpoint URL. The new URL will point to this 

FIMS. Furthermore, the FIMS will also generate two different interceptors, one for 

dealing with the request messages, whereas the other deals with response messages. In 

this way, every Web Service proxy has its own interceptor’s instances (for requests and 

responses). Although − in the case of a number of proxies generated − it would be 

possible to intercept all the requests by using only one interceptor instance and also 

intercept all the responses by using only one interceptor, capturing all the messages for 

every proxy separately has certain advantages in terms of the flexibility of injecting 
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different faults, and emulating different network links. Above all it enhances the 

flexibility and clarity of the method. 

We have used this design of intercepting the system messages, rather than something 

more complex because we believe that it provides the most portable solution between 

different SOAP implementations. For instance with our main test environment it would 

be possible to intercept the outgoing messages and the incoming messages by using a 

plug-in module in the processing chain in the SOAP Stack. While this would provide a 

solution for a particular implementation of SOAP, it would not be possible to 

implement a plug-in module under all implementations, since this facility is not 

available on some SOAP implementations.  

 

As our system would use WS-Addressing [50] or WS-MessageDelivery [66], it would 

be possible to redirect the SOAP messages to our fault injector via the protocol stack, 

effectively removing the requirement for generating Web Service proxies on systems 

under test, but this would restrict the tools to working on SOAP based SOA that 

supported these standards and would make it harder to use the fault injector on other 

middleware systems that are not supporting these standards.  

 

One of our main objectives is not to do any modification to the system under test, 

which will affect the generality of the tool in a way it would not be used to test other 

middleware distributed systems. Our Fault Injection Mediator Service is implemented 

as a standalone fault injection system which can be used by any other distributed 

systems for not only injecting faults but also providing the impression that they are 

running over a WAN.   

 

ii. Message Interceptor (MI): its task is to intercept all messages (incoming and 

outgoing messages) exchanged between service client/s and service provider/s. The MI 

acts as a message interceptor to the messages exchanged between the client/s and Web 

Service/s of the system under test and then forwards them to their final destinations. 

The MI is divided into two sub-components (Request interceptor and Response 

interceptor). All the request messages coming from the Service client for a particular 
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Web Service proxy are intercepted by the sub component MI. When the first request 

message for a particular Web Service proxy is received by the MI, the MI generates 

two instances of interceptors (one instance for intercepting requests and the other one 

for intercepting response messages). That is, from this point on, all the requests and 

responses coming in or going out are intercepted by these two interceptors.  

 

Although it would be possible to have only two interceptors for all the web service 

proxies generated in each FIMS, generating two interceptors for each Web Service 

proxy has some advantages. These advantages are − in terms of distinguishing between 

messages going to different Web Services − that it helps in providing a different fault 

injection service and providing different network emulation, especially for different 

messages going to different Web Services in different locations of the tested system. 

We will elaborate on this in the next section.  

 

MI implantation is developed in a way that the task of its interceptors is different, 

depending on where the messages are coming from and going to as set out in what 

follows. 

 

Request interceptor tasks as shown in Figure  4-5 are: 

1) When the request is received from the Service client the Request interceptor 

sub-component task is to pass the request message to the FIE sub-component 

for injecting the appropriate fault (if any).  

2) The FIE then passes back the request message (if the fault is not to drop the 

message) to the Request interceptor, which in turn forwards the message to the 

other FIMS running in front of the actual called Web Service.  

3) Afterwards the Request interceptor of the other FIMS only has the task of 

forwarding the request message to the actual invoked Web Service. 
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Whereas Response interceptor tasks as shown in Figure  4-6 are: 

1) When the response message is received from the actual Web Service by the 

FIMS running in front of the Web Service, the response interceptor task is to pass 

on the message to the FIE sub-component for injecting the appropriate fault. 

2) Then the FIE passes back the response message (if any) to the response 

interceptor, which in turn forwards the message to the other FIMS which the 

request came from.  

3) The message is received by the response interceptor sub-component in the 

latterly-mentioned FIMS, whose task is only to forward the response message to 

the service client. 

In order to implement the proposed scenario above, when the GP generates a Web 

Service proxy, two interceptors are generated (Request and Response interceptors) and 

assigned to deal with all the messages coming from or going to from this particular 

Service client. Whereas, when a request is received for the first time coming from 

another FIMS, two interceptors are generated and assigned to deal with all the 

messages coming out from or going in to this particular FIMS. In this way the 

messages coming out from and going in to any particular Service client and Web 

Service are separated from other messages. 

 

Therefore this way enhances the simplicity of the architecture and also simplifies how 

to distinguish between the messages going through the FIMS. Moreover, as mentioned 

before, different scenarios for each message going in to or coming out from can be 

treated differently in terms of the types of injected faults and also Network emulation.       

 

iii. Fault Injection Engine (FIE): this sub-component is the core component of our 

NetFIS (Network Fault Injection Service) tool; its main task is to inject the proper 

faults into the intercepted messages based on the Network emulation and on the tester 

fault model script. It also has to log all the required events so that they can be analysed 

for evaluating the system under test offline.  
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Once a SOAP message has been received from either the Request or Response 

interceptor by the FIE, it must be processed. The FIE is split up into a number of sun-

components to aid processing these messages, the details of these components are as 

follows. 

 

 Decision Maker: all the messages received by the FIE are controlled by the sub-

component Decision Maker. Decision Maker is a programme that is responsible for 

taking decisions about whether or not to inject faults, and which faults to inject, and 

connects to a WAN emulator Service which is responsible for emulating a node and the 

link of the emulated network.  

Decision Maker also connects to the sub-component Message Manipulator in the case 

of injecting software-specific faults (function parameter value faults). In order to 

minimize the overhead latency of the fault injection process, the Decision Maker relies 

on a priority algorithm ( as explained in Table 3.3) for injecting the proper fault. That 

is, whenever the fault that needs to be injected is a drop message, Decision Maker does 

not have to contact the sub-component Message Manipulator (MM) which is 

responsible for injecting software-specific faults. Instead it contacts only the sub-

component Fault Injector (FI).   

 

Message Manipulator: this sub-component task is to inject software-specific faults 

(function parameter value faults) into the intercepted messages as appropriate by using 

the user fault injection configuration file (this will be detailed in the later section on 

Injecting Software faults). Message Manipulator uses the user fault injection 

configuration file to determine whether or not software faults are to be injected into the 

message, which part of the message needs to be manipulated, and what fault should be 

injected. It then passes all the information to the Decision Maker, which in turn passes 

commands to a Fault Injector sub-component to inject the fault into the message in the 

proper chosen location.   

 

Fault Injector: its task is to inject any faults decided on by the Decision Maker. The 

Decision Maker sends all the information about what fault/s are to be injected, and also 
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where they are to be injected into the message, in the case of manipulating the function 

parameters or the return result of the SOAP message. 

 

Logging: this sub-component is responsible for logging all the required events going 

through the tool so that it can be used to monitor the tool and to collect all the 

information needed to for the offline analysis. All the original messages (requests and 

responses) going through the tool are to be logged. Moreover, logging takes place of all 

messages after faults injected are into them, also recording what kind of fault has been 

injected.  

In order to speed up the logging mechanism XML [21] files are used to store all the 

required information. That is, the logged information is stored in the memory for only a 

short period of time, then it is frequently flushed into an XML file. More details are 

given in the section on fault detection or monitoring.      

Whilst the above sub-components are the functional steps followed by the FIMS 

design, in the actual implementation some sub-components will be involved to perform 

the injection of each specific fault for efficiency’s sake. For example, when the drop 

message fault needs to be injected only the Decision Maker and the Fault Injector will 

be involved. Therefore the Message Manipulator will not be involved in this specific 

fault injection process and needs not to be called by the Decision Maker. This will 

speed up the processing and reduce the overhead introduced by the tool to the tested 

system.  

4.2.2 Fault injection scenario cases  

 

As presented in Table 3.3 the software faults and network faults that can be injected are 

based on some rules introduced by the tool. Corresponding to the design, there are four fault 

injection cases performed by the tool. Therefore the implementation is optimized depending 

on what faults are to be injected, from the decisions taken by Decision Maker sub-component 

which is based on the tester configuration.  

These paths are performed as mentioned earlier, depending on the fault injection case 

campaign. The first case campaign is when only Network Faults have to be injected, where 

the second case campaign is followed when both Network and Software-specific faults have 
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to be injected. We assume that the two mentioned path campaign cases are the default 

configuration and NetFIS have been optimized accordingly when both the Network 

Emulation Service is enabled and the User Fault Model Document is provided. We have 

chosen this way of choosing which fault to inject because we have implemented the FIE 

according to how faults occur in the real world, as discussed earlier. 

 

– First case of injecting faults  

The First case specifies the steps and the path through the code when a message is received 

and only Network Faults are injected into it. This is shown in Figure   4-7.  

 

 

 

 
 

FIGURE   4-7 MESSAGE PROCESSED BY FIE TO INJECT NETWORK FAULTS 
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1. The extracted SOAP Message (a) is received by Decision Maker (1). 

2. The Decision Maker sends a request to the Network Emulation (2) responsible for 

emulating a WAN of this node (location). The request is for a SOAP message (b) 

containing the URL destination of the SOAP Message (a). 

3. The Network Emulation therefore provides a WAN Emulation for the system running 

in this node (location) by deciding the fate of SOAP Message (a).  

4. Then a SOAP response message (c) is received by the Decision Maker containing the 

fate of the SOAP message (a) which is in this case can be either DROPPING or 

RANDOM_DAMAGE. 

5. The Decision Maker, in this case, has no reason  to contact Message Manipulator, 

because the message has to be dropped or randomly corrupted based on the Network 

Emulation Decision (b). Therefore the Decision Maker’s decision is to call (i) the 

sub-component, Fault Injector (4) to drop or damage the SOAP Message (a). 

6. When response (ii) is received by the Decision Maker (1) which contains the 

corrupted SOAP message or in the case of dropping a message, contains a 

confirmation tells that the message is dropped, the Decision Maker sends the 

response (d) to the Request Interceptor to stop any further processing of the message 

(a); or in the case of damaging the message, the damaged SOAP Message (a) is sent 

back to the Request Interceptor to forward the message to its destination. 

Although the above steps are performed when the Network faults are to be injected, namely 

to drop and corrupt messages, delaying intercepted messages can also be injected, when only 

a Network Emulation Service is enabled and User Fault Model is disabled. However Delays 

can be also injected when injecting Software faults, as discussed in Table 3.3. Implementing 

the tool in such a way provides the test user with flexibility in combining what faults to inject 

based on Network faults and/or Software faults. 

  

The first case fault injection allows traditional fault injection operations to be implemented, 

for instance corruption of bytes within a SOAP message, or dropping messages. However 

our tool provides a Network Emulation Service that has a network background workload 
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running, which gives the system the sense that it is running over a WAN. This can be used 

for SOAP protocol stack assessment and to test the application’s fault tolerance mechanisms.  

 

– Second case of injecting faults  

The second case of injecting faults is also implemented by default to reflect the choices 

detailed in Table 3.3 as shown in Figure  4-8.     

 

      

 
 

FIGURE  4-8 MESSAGE PROCESSED BY FIE TO INJECT SOFTEWARE FAULTS 

 

1. The extracted SOAP Message (a) is received by the Decision Maker (1). 
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2. The Decision Maker sends a SOAP request to the Network Emulator Service 

responsible for emulating a WAN of this node (location), The request is a SOAP 

message (b) that contains the URL destination of the SOAP Message (a). 

3. The Network Emulation Service (2) receives the requested SOAP Message (b). 

Therefore it provides a WAN Emulation for the system running in this node 

(location) by deciding the fate of SOAP Message (a) based on the emulated WAN.  

4. The response SOAP Message (c) contains in this case the decision DELAY and the 

Period of the Delay.  

5. When Decision Maker receives the response (c) containing the Network Emulation 

Service Decision, it contacts (i) the sub-component Message Manipulator (3) by 

sending the SOAP message (a), which is then used by the Message Manipulator (3) to 

determine if the SOAP message should be triggered on and a fault injected. This is 

done by pattern-matching specific XML tags to determine the specific message, for 

instance a request/response message and message number, and/or if it contains 

specific RPC parameters. This stage uses a SAX parser implementation and the 

decision was made to implement it using pattern matching to reduce latency 

overheads.  

6. If the SOAP message does not match the trigger criteria, the data are passed back (ii) 

to the Decision Maker (1) with a NONE value, which relays that no faults were 

injected (15).  

7. If the SOAP message matches the trigger criteria the data is returned (ii) to the 

Decision Maker (1). The data is the precise location in the SOAP message where the 

fault associated with a trigger should be inserted.  

8. Once the location in the message has been found and the fault is generated in (3), the 

Decision Maker (1) sends this information (iii) to the Fault Injector (4) that injects the 

faults into the SOAP message (a). In addition to modifying the message the required 

delay period decision is also performed by the Fault Injector (4).  

9. After the Fault Injection process has been performed, the manipulated SOAP 

message is sent back (iv) to the Decision Maker which in turn passes the manipulated 

SOAP message (d) to the Message Interceptor to forward to its destination.  
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The other two testing cases which can be performed by the tool are injecting only Network 

faults or injecting only Software faults. Network faults such as dropping, corrupting and 

delaying messages, can be injected into the system under test without injecting any other 

Software faults. That is done by configuring the tool to enable only Network Emulation. The 

other Fault Injection campaign case is to only configure the tool to inject Software faults by 

feeding the tool with User Fault Model configuration files only, and disabling the WAN 

Emulation. How to configure the tools to inject Network faults and Software faults is 

discussed in the coming sections. 

–  Logging   

All the cases write data to a log at two main stages during the testing (v) shown in the above 

two Figures. The Logger (5) stores the data in a structured XML document that in each 

transaction is enclosed in an XML element to aid in the analysis of the data. 

 

The first stage is in the initial processing of the SOAP message, when Decision Maker (1) 

receives the SOAP message (a) from the Message Interceptor. Decision Maker sends the data 

to the Logger (5), for example timestamp which indicates the time when the message has 

been received by the Message Interceptor, and the original SOAP message (a). This provides 

a record of all messages and the timestamps going through the tool for later analysis. This 

also allows the tester to obtain all the data from any system that is running, when there is no 

fault to be injected. This allows comparisons to be made with later fault injection campaigns. 

The second stage data is written to the log at the end of the Fault Injection process (v) when 

faults are injected. The Logger (5) logs the modified SOAP message along with the injected 

fault and a timestamp, however in the case of dropping the message a NONE is logged 

instead of the message. This logging stage allows the logging of the faulty message and the 

original message in order to be compared when the experiment result is analyzed offline. The 

timestamp is used to assess the latency introduced by the FIMS and also is used to calculate 

the time difference between the timestamp of the request and the timestamp of the response 

in order to calculate the Round Trip Time (RTT) of messages.  

 

 

 



 

 101 

4.3 Network Emulation Mechanism  
 

As discussed in the previous chapter (section WAN Emulation), there are many design 

choices to implement in the Network emulation. We have decided to implement the Network 

emulation as standalone Web Service system, as shown in Figure  4-9. A Web Service 

application will represent each node or link, which will be responsible for emulating that 

node or link on the target-emulated network. We have chosen this design for the following 

reasons. 

 

1. These Web Services will be stand-alone services that can work on their own and be 

running on a different application space, which can be a different physical machine, 

OS or Web Service middleware.  

2. The design will reduce the emulation engine’s complexity, as every Web Service 

Network Emulator will be responsible for emulating only one node of the target 

Network.  

3. This design would produce a clearer more modular design as the nodes number of the 

target-emulated network is represented in the same fashion by the same number of 

Network Emulator Web Services. 

4. Moreover, this could overcome the scalability problem that could be introduced in the 

case of designing only one complex network emulation as mentioned in the previous 

chapter. 

5. It will introduce more benefits such as making the Network emulation portable to 

different distributed applications such as CORBA, GRID, and so on.  

 



 

 102 

 
 

FIGURE  4-9 A GENERAL VIEW OF THE NETWORK NODE EMULATORS PLACED INTO A 

COMPOSED SERVICE SYSTEM 

 

Figure  4-9 shows a composed Web Service system consisting of three components, namely a 

Client Service, Web Service 1 and Web Service 2. These system components are distributed 

over a virtual network consisting of three nodes (a, b and c). In the shaded area at every 

site/node in the virtual network (Emulated Network), there is a Network Node Emulator 

Service. There are also Fault Injection Mediator Services for capturing the exchanged 

messages between the system components and consulting the Network Node Emulator 

Services to provide WAN emulation for the captured traffic. In addition to the Fault Injection 

Mediator Services and the Network Node Emulators, there is a single service component, 

which is the Network Controller Service (at site x). It facilitates the interaction between the 

neighbouring Network Node Emulators.      

By implementing the network emulation in this way, Network emulation will be 

transparent to the system under test and only the Fault Injection Mediator Service need know 

of its existence. As each Interception Mediator will be capturing the communication of the 
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system under test, it also needs to contact the Network Node Emulator to provide the 

network emulation for a particular node of the emulated network. Therefore, the major 

feature of the proposed Network Emulation is that it does not require any modification and 

access to the system under test. That means any Web Service system can obtain the network 

emulation service, even with the absence of its source code.   

 

The internal design of the network emulation is based on the internal design of other network 

emulation done for CORBA applications [55] with successful results for testing such 

applications [48]. The original testing method is for emulating the behaviour of WAN and 

injecting network faults at Object Request Broker (ORB) level. The messages exchanged 

between CORBA components are intercepted (using CORBA Interceptors), network 

emulation is provided to the system, and then network faults are injected.  

 

Our research uses [55] as a starting point for our fault injection testing method for testing 

Web Service systems for the reasons set out as follows. 

 

1. Web Service applications and CORBA applications have a lot in common. They both 

exist to add the capability to applications to communicate over a network. The 

applications can be integrated remotely to form more complex systems through the use of 

a technology called middleware. 

2. In [20] it is reported that communication faults such as message loss, duplication 

reordering, or corruption have an effect on traditional distributed systems such as 

CORBA applications. Moreover it has been found that unstable Internet environments 

and server connections can lead to the unreliability of Web Service applications [36]. 

Therefore by using this technique, various network faults can be simulated in the system 

such as dropping, delaying, reordering, and corrupting messages.   

3. A fault injection method is needed in order to develop a network run-time environment 

emulator to estimate the contribution of each contributed service to the overall system 

and to measure the performance and fault tolerance mechanisms of the system under 

different circumstances, such as different network traffic load, delays, loss rate, and so 

on. 
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4. Extending and modifying the architecture of the previous network emulator will not only 

provide a network emulation but also a convenient way of injecting network faults and 

also messages can be manipulated such as modifying the function call parameters and 

return values inside exchanged SOAP messages.  

5. This work can be modified and extended to inject more classes of faults affecting Web 

Service systems. For example, complete exchanged messages between Web Services can 

be intercepted and a WAN emulation can be provided, and also the intercepted messages 

can be manipulated and then forwarded to their destination again without altering the 

system under test.   

 

However, there are some shortcomings of the CORBA fault injection approach [55]. At the 

ORB level, communication is typically carried over TCP. This means there should be no lost 

messages, nor should there be any errors. If such problems arise, ORBs throw COMM 

CORBA exceptions. Therefore this method does not have the ability to inject faults such as 

dropping or modifying messages at this level. As a result it does not target any particular 

elements in the message to inject faults such as function parameters in the case of RPC. The 

only things this method does are delaying messages, or throwing all kinds of exceptions at 

this level. This means that the CORBA fault injection method assumption is to inject the 

mentioned faults to test only the system’s ability to deal with such exceptions; whereas it is 

more logical to inject explicitly the fault and observe its effects on the system. Injecting 

faults such as dropping and delaying messages can help developers to assign a reasonable 

time period before the system times out. The problem of the CORBA approach cannot help 

in how to distinguish between cases in which a message (or its acknowledgement) is simply 

experiencing a delay in the network from those in which a message has actually been lost. If 

the time-out interval is made too short, then there is a risk of duplicating messages and 

reordering in some cases. If the interval is made too long, then the system becomes 

unresponsive. 

  

All the issues discussed above have been taken into account in order to produce a WAN 

Emulation for our fault injection method. As discussed in the previous section, the messages 

are intercepted at application level by using proxies, so at this level, the complete message 
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entities are captured and any particular part of the messages could be manipulated. In 

addition, network faults could be injected explicitly (dropped or corrupted messages). And 

also the proposed solution for choosing a reasonable time-out period should be tackled by 

testing the system under different real delay rate and drop rate scenarios, then monitoring the 

system in order to assign the best time-out period that can minimize the risk of confusing 

normal network delays with message losses.   

The internal network emulation subsystem is implemented as two main components, 

Network Node Emulator Service and Network Controller Service as described in the next 

two subsections. 

4.3.1 Network Controller Service (NCS) 

 

The NCS is a Web Service controlling the emulated network which could consist of a set of 

Network Node Emulators Services (NNES) that are responsible for emulating the nodes of 

the targeted network. Its main task is to start emulating the network by firstly loading the 

target topology network configuration file and then waiting for the NNESs to register 

themselves. It then acts as a controller of the emulation by issuing Start and Stop commands 

to the registered NNESs. It can also reconfigure the topology and the parameters for each 

node. The Controller provides a directory which is like a repository for the NNESs. It 

provides a directory of Web Services locations. It also provides the locations of the NNESs 

between themselves. As NCS is implemented as a SOAP-based Web Service, it is 

communicated with SOAP messages.  

All the information required for the emulated network is written in the network topology file 

as shown in Table  4-1. The topology file is an XML file in a simple format recognized by 

Java’s StAX parser class [67]. It is meant to wrap all the information about the target 

emulated network in nested tags. The topology file must describe the target network 

topology accurately. It must state the number of nodes in the network, along with their 

virtual names. For each node, the topology file must state the arrivals trace file name to be 

used. If the unit time (bin size) used to create the trace file is not provided in the topology 

file, then the default value of 1000 ms is used. The default values of 12000, 1.0 and ‘true’ are 

used for the node’s default SOAP packet size, SOAP packet size modifier and the node’s 

active status respectively. A topology file must also include the routing table for each node. 
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The topology file must also state each node’s outbound links. This is done by stating the 

number of outbound links, the names of the nodes on the other end of these links and for 

each link, the following parameters: active status (active or down), bandwidth, buffer size, 

propagation delay, loss rate and drop rate.  

<topology> 

  <hostsNumber>3</hostsNumber> 

  <hostsNames>A,B,C</hostsNames > 

  <SOAPPacketSize>1.0< SOAPPacketSize > 

  <host> 

    <Name>A</Name> 

    <traceFile>traceA.atf</traceFile> 

    <active>true</active> 

    <routes defult=B> 

      <route to=B>B </route> 

      <route to=C>C </route> 

    </routes>          

    <links> 

      <linksNum>2</linksNum>  

     <link> 

 <Name>B</name> 

 <active>true</active> 

 <bufferSize>256000</bufferSize> 

 <propagation>2<propagation> 

 <bandwidth>4000000</bandwidth> 

 <dropRate>0.0001</dropRate> 

 <errorRate>0.0001</errorRate> 

     </link> 

     <link> 

                <Name>C</name> 

                <active>true</active> 

                <bufferSize>256000</bufferSize> 

                <propagation>50<propagation> 

                <bandwidth>4000000</bandwidth> 

                <dropRate>0.0000</dropRate> 

                <errorRate>0.0000</errorRate> 

     </link> 

    <links> 

         </host> 

        <host> 

    <Name>B</Name> 

         … 

        <host> 

        <host> 

    <Name>C</Name> 

         … 

        <host> 

< topology > 

TABLE  4-1  A SAMPLE NETWORK TOPOLOGY WITH SNIPPETS OF THE TOPOLOGY FILE 

DESCRIBING IT 

 

4.3.2 Network Node Emulator Service (NNES) 
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NNES has been implemented as a Web Service component responsible for emulating one 

node of the target emulated network. A NNES is basically a Web Service that provides 

emulation decisions to the Fault Injection Mediator Service and to other neighbouring 

NNESs that emulate other nodes of the target network. Based on the configuration 

parameters for the node it is emulating, NNES calculates the load on the network node 

resources and gives an estimation of how long it will take to transfer a request between two 

ends (nodes). It handles synthetic arrival events from its traffic generator sub-component and 

the messages arrivals from the Interception Mediator and its neighbouring NNESs. The 

NNES decisions are affected by some major parameters like the buffer size, drop and error 

rates, bandwidth and delays.  

The NNES should have the following "reconfigurable" parameters provided by the NCS as 

shown in Table  4-1: 

o Network trace file: any trace file that shows arrival counts per unit time. It could be self-

similar, real trace captured over time, bursty trace or Poisson trace. 

o Unit time: the time that an entry in the trace file corresponds to. Smaller unit times require 

powerful machines and fast languages. A reasonable unit time for Java ranges from 1 

second to 0.1 seconds. 

o Packet error rate: for example, 1 packet in every 1 million contains an error. 

o Bandwidth: WAN link bandwidth. For a WAN cloud, it is reasonable to select the BW of 

the slowest link in the path. Our WAN is symmetric (up and down rates are equal). 

o WAN Propagation Delay: one-way propagation delay between two ends of the WAN 

cloud (or link). This equals the sum of link delays along a path. Could simply be taken out 

of Ping traces. 

o Buffer size: number of packets we can have waiting in the system before we stop 

accepting new packets. 

o SOAP packet size: translation rate between a SOAP request (or reply) and a real network 

packet. The default is 1 SOAP transmission equals 1 network packet. This is needed to 

calculate transmission delays. 

The implementation of NNES consists of three sub-modules: the trace file reader, the traffic 

generator and the core emulation engine.  
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1. The core emulation engine: uses the network trace file reader to supply per unit 

time network arrival counts. The trace file reader can use any type of traffic trace. It 

could be a real traffic trace captured from a network. It could be also a synthetic 

trace generated using Poisson, self-similar or any other arrival process model. The 

traffic takes arrival counts from the trace file reader and generates synthetic network 

arrivals during every time bin. The arrival events sent to the core emulator engine 

also include the packet sizes. The implementation of the traffic generator uses even 

packet distribution policy within each time bin. It also uses packet size distribution 

from standard packet traces over the Internet. The job of the core emulation engine 

is also to handle real arrival events sent by the Interception Mediator. In case the 

client and server are running on different nodes, the NNES − with help from the 

Network Controller Service − contacts other NNESs in order to reach an accurate 

emulation of the network topology given by the Network Controller Service.  

2. Arrivals Trace File Reader: is another internal component of an emulator. Its sole 

job is to return the next arrivals count from a trace file. It also supports continuous 

operation by its ability to loop back whenever the trace file ends. That is if it is 

configured to do so. It also reports packet target distributions if any are encountered 

in the trace file. 

 Arrivals trace files are only text files containing arrival counts per unit time. Each 

line in the file contains a number that represents how many packets will arrive 

during the unit time. Such trace files can be used to gain the power to control the 

behaviour of the NNES and to decide what WAN effects Web Service applications 

are subjected to. Each NNES has its own arrivals trace file. This way, different 

nodes in a topology can have their own traffic traces, making the network emulation 

more accurate. The trace files also contain packet target distribution. This makes it 

possible to control the target of the traffic generated at each node. The only action 

needed to change the current packet target distribution of a node is adding a line in 

the trace file that shows the new distribution in the form of ‘percentage target’ pairs 

separated by commas. 
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#### Arrivals Trace File For Node A 

#### 

#### FORMAT: Each line must be one of the following 

####    - int showing packet count for this time slot 

####    - comment starting with # 

####    - destination distribution of the following format 

####        destinations = prob dest,prob dest,prob dest,... 

#### 

####        Where 

####            prob = probability of this being a destination 

####            dest = the destination 

#### 

#### 

Destinations = 0.34 B, 0.33 C 

35 

36 

34 

29 

29 

29 

38 

36 

35 

34 

32 

28 

 

TABLE  4-2 A SIMPLE TRACE FILE 

 

 Favourite models can be used to generate traffic traces. Traces captured from the 

main network used can also be used. Traces can even be created by hand to express 

independent arrivals. A simple trace file as above can be generated through a simple 

wizard used with the WAN Emulator for testing CORBA applications [55]. This 

simple wizard can be used in creating arrival trace files. We have used it to support 

Poisson and Self-Similar models. You can create self-similar traces using two 

different algorithms: the Fast Fourier Transform approximation [68] and the 

Random Mid-point Displacement algorithms [69]. Although these two algorithms 

model self-similar processes, it is not always guaranteed that the traces created will 

correspond to what is needed. This is another open research area. The wizard 

assumes that the user has basic knowledge about the models and their parameters. A 

discussion of these models and their properties is outside the scope of this 

document.  
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3. Synthetic Traffic Generator: this is an internal component of an emulator. It 

generates network arrival events based on the number of arrivals during a unit time. 

The generator included generates arrival events that are evenly distributed within 

the unit time (the bin). Other than arrival events, the generator is also responsible 

for the sizes of the generated packets. The included generator generates packets of 

sizes that follow the distribution of packet lengths on the Internet. It is based on 

traces from NASA’s Amex Internet Exchange [70] and Sprint IP Backbone [71]. 

The generator is also responsible for the targets of the generated packets. If a packet 

target distribution (from the trace file) is set in the generator, it is used to assign 

targets for the packets.  

The system is deployed and exposed as composed Web Service. The network 

emulation consists of one centralized Network Controller Service (NCS), controlling 

the emulated network and a set of NNES’s deployed at each node in the system 

which emulates the nodes of the targeted network. The NCS and every NNES 

communicate with each other by exchanging SOAP messages and also 

communicate with the FIMS using SOAP messages as required.  

4.4 Injecting Network Faults Mechanism 
 

Injecting network faults is done through our WAN emulator. Although the network faults are 

decided by the WAN emulator, the injection task is performed by the Fault Injection 

Mediator Service. Separating the injection mechanism from the WAN emulator makes the 

tool flexible and portable. The flexibility means it reduces the complexity of the tool, which 

can make it easier for the tool to be improved and upgraded in the future. Moreover the 

separation helps each of the two services to be deployed separately; for example the WAN 

emulator service can be deported and used for a different purpose, such as providing a WAN 

emulator for other systems in different environments.  

The WAN emulator’s decisions to inject network faults are based on the emulated network 

parameters, which are included in the network topology configuration files as shown in 

Table  4-3. As the tester has to provide this configuration file to the WAN emulator, the tester 

needs to provide all the network parameters of the emulated network. These network 

parameters are used by the WAN emulator Service in order to decide the fate of the 
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simulated network load traffic and the fate of the system’s exchanged messages, as detailed 

in Section 4.2.2. 

Table  4-3 shows an example about how the intended network faults can be provided to the 

WAN emulator as follows: 

 
 

TABLE  4-3 A SNIPPIT OF SIMPLE NETWORK TOPOLGY FILE 

 

 

<topology> 

  <hostsNumber>3</hostsNumber> 

  <hostsNames>A,B,C</hostsNames > 

  <SOAPPacketSize>1.0</SOAPPacketSize> 

  <host> 

    <Name>A</Name> 

    <traceFile>traceA.atf</traceFile> 

    <active>true</active> 

    <routes defult=B> 

      <route to=B>B </route> 

      <route to=C>C </route> 

    </routes>          

    <links> 

      <linksNum>2</linksNum>  

     <link> 

 <Name>B</name> 

 <active>true</active> 

 <bufferSize>256000</bufferSize> 

 <propagation>2<propagation> 

 <bandwidth>4000000</bandwidth> 

 <dropRate>0.0001</dropRate> 

 <errorRate>0.0001</errorRate> 

     </link> 

     <link> 

        <Name>C</name> 

        <active>true</active> 

        <bufferSize>256000</bufferSize> 

        <propagation>50<propagation> 

        <bandwidth>4000000</bandwidth> 

        <dropRate>0.0000</dropRate> 

        <errorRate>0.0000</errorRate> 

     </link> 

    <links> 

         </host> 

        <host> 

    <Name>C</Name> 

            . 

            . 

        </host> 

        <host> 

    <Name>C</Name> 

            . 

            . 

        </host> 

</topology> 
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The table shows that the emulated network consist of three nodes (A, B and C). Each node 

has its own network parameters, such as how many links it has and a description of the links. 

For example, node/host A has two links: one links to Node B whereas the other links to Node 

C. Each link can be described differently, which makes the emulation more accurate as the 

network links are in the real world.  

By using these link parameters, the tester can control how the network faults should be 

injected. For example, injecting delays into the exchanged system messages is controlled by 

using the element <propagation> which specifies the propagation delays of the emulated 

link. That is, as shown in Table  4-3, all the messages going from Node A to Node B are 

delayed by 2 milliseconds. Our design of the WAN emulator does not target a specific 

message to be delayed, because our objective is based on emulating the behaviour of a 

WAN. Moreover, injecting loss and corruption into the exchanged messages is done by using 

the other two elements, <dropRate> and <errorRate> respectively.  

 

However, injecting loss messages can be done by using different configurations. For 

example the link-generated virtual network traffic load can be configured in a way which 

may lead to the dropping of packets and system messages, caused by an overflow of the 

receiver buffer (<bufferSize>). We will not develop this further at this point, because our 

main concern here is to show how faults can be injected directly, whereas the network 

configuration is elaborated in the next chapter.  

 

4.5 Injecting Software Faults Mechanism 

 

As noted in the discussion of the location of injecting faults discussed in Section 3.3.1 (Fault 

injection location), our fault injection method is able to inject software faults at application 

level. We have moved the fault injection location away from the Network interface and 

positioned it at the application level by using our Fault Injection Mediator Service between 

the Service requester/s and the Service provider/s participating in a Web Service system. 

Therefore all exchanged messages (requests and responses) will be captured. Messages 

captured by the Fault Injection Mediator Service are complete entities, so they can be 

manipulated, modified and injected with faults. In addition messages at this level are 
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captured as XML documents; therefore it can be easy to target any part of the message and 

manipulate it, such as targeting individual Remote Procedure Call (RPC) parameters in the 

message and modifying them to simulate a large number of software faults. 

 

Before being able to inject value faults, we need to obtain some definitions of the Web 

Service operations, parameters, data types and domains. As mentioned earlier, a Web Service 

interface is described as a WSDL file. The WSDL file explicitly defines the messages to be 

exchanged with clients. Therefore, we use the published WSDL document to decompose the 

service interface into method calls with their associated messages and within the messages, 

to identify specific parameters. 

 

Thus by using the WSDL document, the information about the required structure for each 

message is obtained. As the WSDL contains information about the operations, associated 

messages, parameters (including return values) and the associated data types, this 

information will be composed into groups of information. Each group of information could 

present all the information about one particular operation included in the WSDL interface 

required to construct a fault injection trigger. For example, each group contains nodes 

representing the operation name, message request/response, parameter names and types of 

each parameter. Although triggering faults can be constructed for any node in the group, our 

fault injection system is primarily concerned only with manipulating parameters in RPC 

messages.  

 

Based on the information obtained from the groups, a set of valid and invalid Web Services 

call parameters and return values can be injected during the run-time. The value fault model 

is based on combinations of exceptional and acceptable input values of function call 

parameters, based on the data types of each parameter, as shown in Table  3-1.   

 

Our tool uses what is called a Value Fault Model (VFM) document which can be produced 

manually or by our simple attached application. The information required for producing 

VFM is obtained from the WSDL document. The VFM produced is based on the discussion 
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above about grouping the operation name, message request/response, parameter names and 

types of each parameter, as shown in 

Table  4-4. 

 

 

 

TABLE  4-4 VALUE FAULT MODEL FILE PRODUCED, BASED ON WSDL AND PARAMETER VALUES 

MUTATION ALGORITHMS 

 

 

As shown in the simple form of a Value Fault Model (VFM) file, as in 

Table  4-4, the information included is based on the WSDL description and the required 

injected faults provided.   

 

This information is composed into <operation> tags (groups) representing the wsdl:operation 

element in WSDL, which also equivalent to a method in a system.  

 

Furthermore, each <operation>  contains both <input> and <output> tags which in turn 

represent both a wsdl:input element and a wsdl:output element for referring to the request 

<faultModel> 

<operation> 

<input> 

  <message>  

<parameter> 

<name>    </name> 

<type>    </type> 

<injectionRate> <injectionRate> 

<domain> </domain> 

</parameter> 

<parameter> 

<name>    </name> 

<injectionRate> <injectionRate> 

<type>    </type> 

<domain> </domain> 

</parameter> 

. 

. 

  </message> 

</input> 

<output> 

. 

. 

</output> 

</operation> 

. 

. 

<faultModel> 
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and response messages in WSDL description. Lastly <message> tags representing 

wsdl:message elements in the WSDL <message> tag contain all the information needed to 

inject the required faults. It contains <parameter> tags for every function call parameter or 

return result involved in an operation (method) call. The <parameter> tag consists of five 

tags required for generating value mutation. The first tag is <name> which is equivalent to 

the name attribute of the wsdl:part element in WSDL, which represents the name of the 

parameter or return result, so as to distinguish between different parameters of the same 

<operation>. The second tag is <type> which is equivalent to the type attribute of the 

wsdl:part element in WSDL, which will be used by the algorithms to determine the value of 

the injected fault. The third tag is <injectionRate> which indicates the overall percentage for 

the specified fault to be injected into the exchanged messages. The final tag is <domain> 

which is used to specify the allowed domain range for a parameter or return numbers.  

 

However, the valid domain of the parameter or return result cannot be extracted from the 

WSDL description. Information on the valid domains for each parameter (including for 

parameters based on complex data types, which are decomposed in a set of individual 

parameters) should be provided by the user when producing the VFM file. 

 

Based on the information obtained from VFM and on  

Table  3-2, the sub-component Message Manipulator generates faults of the 

parameters and the return results as appropriate. The message Manipulator relies on a set of 

logarithms for each type of parameter so as to generate a list of all possible mutations that 

can be performed. A number of test values will be generated for each data type used in the 

captured exchanged SOAP messages. The generated mutations consist of a set of invalid and 

valid values based on [64]. However the generated value mutations are neither intended to be 

exhaustive nor complete, but are rather to demonstrate our tool implementation. 
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4.6 Failure Detection Mechanism 
 

As discussed in Section 3.3.8 (System monitoring) the failure modes of Web Service systems 

should be monitored in order to detect any problems in the system under test caused by the 

injected faults. As in Section 3.3.8, the failure modes described here are intended to 

demonstrate NetFIS rather than be an exhaustive model that can be applied to any Web 

Service system.  

Our failure detection mechanism uses a set of high-level failure modes [34] as a starting 

point for monitoring the target system . These classify how a Web Service can fail. The 

classifications are outlined below. 

 

Our failure detection mechanism is built upon a set of classified failure modes. These 

classifications indicate how a Web Service can fail:  

1) Crash of a service instance/hosting environment;   

2) Hang of a service; 

3) Corruption of data coming into the system; 

4) Corruption of data coming out of the system; 

 5) Duplication of messages; 

6) Omission of messages; 

7) Delay of messages. 

 

Listing failure modes can help in both the design of the fault injection campaign and the 

monitoring of the outcomes of our fault injection testing method.  

The effect of each of these failure modes will depend on the capacity of the fault tolerance 

mechanisms of the system to detect them and prevent the system from deviating from its 

specified behaviour. 

Due to the many problems detailed in Section 3.3.2 (System monitoring) in detecting these 

failure modes, we rely on a logging mechanism implemented in the NetFIS tool. We have 

implemented a simplified logging mechanism to monitor and detect failures, based on two 

observable detected outcomes from our fault injection method, as follows: 1) Detecting 
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exception, 2) No effect. 

Based on the decision explained in Section 3.3.2, the logging sub-component is placed in the 

FIMS. Placing the logging sub-component in the FIMS will enable the tool to monitor all the 

exchanged messages going through the tool (request, response, fault messages).   

The logging sub-component is written in Java language. All the logged information is written 

into an XML file. The logged information in the XML file will be extracted and analyzed by 

using SAX parser Java class, so as to speed up the analyzing process.  

 

 
TABLE  4-5 A SIMPLE EXAMPLE OF A LOGGING FILE 

 

 
    : 
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Table  4-5 shows a snippet of the logged data during an experiment. The data logged into the 

XML format file contains all the messages going through the system, so that they can be 

analyzed offline to detect defects and failures in the system under test. The logging sub-

component is able to log all the information about these messages such as the time of arrival, 

the length of the SOAP message, the original message, the injected fault, the faulty message, 

and the duration taken to receive the response message, as shown in Table  4-5. This 

information can be easily used to analyze the results of the testing experiments. 

4.7 Conclusions  
 

This chapter has detailed the implementation of the NetFIS method proposed in Chapter 3 

which has been applied to Web Service applications, in particular applications using SOAP 

as a middleware protocol. 

 

This chapter elaborates a description of how the message-based injection mechanisms are 

performed. The location chosen for injecting faults is detailed. As noted in the discussion of 

the location of injecting faults discussed in Section 3.3.1 (Fault injection location) our fault 

injection method is based on injecting Network faults and also software faults at application 

level. We have moved the fault injection location away from the Network interface and 

positioned it at the application level by using Web Service proxies between the Service 

requester/s and the Service provider/s participating in a Web Service system. By using this 

way of intercepting messages, not only is the generality enhanced but also the non-

intrusiveness is improved in the sense that it does not require any modifications to the 

middleware or to the hosting operating system and of course to the Web Service system 

under test.  

 

The WAN emulation is achieved by implementing a WAN Emulator Web Service system. 

The WAN Emulator service is implemented with a collection of Web Service applications 

(composed service) in such a way that each Web Service application is responsible for 

emulating one node of the target emulated network. Whereas only one Web Service 

application is implemented as a coordinator whose job is to control the WAN emulator 

service. The WAN emulator enables the tester to control the virtual network environment 
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and its parameters by using network configuration files so as to test the system under 

different circumstances, such as different dropping rate, error rate, delay, and so on.  

 

The injection of communication faults is based on our WAN emulator Service. The 

communication faults are decided by the WAN emulator, whereas the injection task is 

performed by the Fault Injection Mediator Service (whose main responsibility is intercepting 

the system messages). Separating the injection mechanism from the WAN emulator makes 

the tool flexible and portable.  

Injecting interface faults is effected through the Fault Injection Mediator Service and based 

on the Web Service interface, document WSDL. A system fault model can be created by 

importing WSDL for the Web Services making up the system and mapping certain WSDL 

elements to certain elements within the fault model, based on their type. Following this, a 

fault model can be generated and used to create triggers for injecting faults into the system. 
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5 Chapter 5 - Case studies  
 

This chapter describes main case studies which demonstrate the use of the NetFIS tool. The 

case studies is conducted to explain the use of the NetFIS operations and the performance of 

the tool. It demonstrates the operation of the Fault Injection Mechanism in terms of how the 

messages are intercepted and how the faults are injected, so as to measure the tool overhead 

introduced to the system under test. It also demonstrates how the tool is configured. The case 

studies also demonstrate how NetFIS is used to assess a fault tolerance mechanism applied to 

a running Web Service application. The Web Service application has been tested under 

different scenarios using the NetFIS tool. 

       

 

5.1 Testing a real web service system 
 

In this section we describe an experiment [72] that injects a number of network-related faults 

(delaying, dropping and randomly corrupting SOAP messages) into a Bioinformatics Web 

Service [73]. We deployed the WS-Mediator [74] at the client site to invoke three identical 

Bioinformatics Web Services [73] simultaneously via the NetFIS. The performance and the 

fault tolerance protocols of the system under test have been examined. Moreover the 

overheads introduced to the system by using our tool are also measured. The results obtained 

from logging files are analyzed and discussed. The setup of the experiment is explained in 

the forthcoming sections. 

5.1.1 Setting up the tool 

 

The first stage consists of building a description of the target network using a topology file 

and describing the traffic load generated on all network nodes. The next stage is to start the 

NCS and load the topology. The third step is to start the NESs for all the network nodes, then 

start the FIS for every node, which will generate a proxy service for each service needing to 

be called. The final step is to order the NEC to start the emulation and then start up the 

system to be tested.  
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The Topology file is a simple configuration xml file that describes the target network 

topology, listing the nodes in the network together with their configuration. In addition, a 

trace file also must be provided for each node that describes its traffic load. This shows 

packet counts per unit time and can either be created by hand, captured from real traffic 

traces or produced using network traffic modelling algorithms. Following this, the NCS, 

which is itself a Web Service, is started up. The NCS is used by NESs to provide node 

configuration parameters and locations of neighbouring NESs. Each node of the emulated 

network is represented by one FIS and one NES. 

 

Each FIS at the client side needs to be provided with an xml file containing the URL(s) of 

the Web Service(s) under test. The client needs to call this in order to generate a Web 

Service proxy, which will be invoked by the client instead of the actual Web Service under 

test. The xml file also contains the URL of the NES emulating the same node. 

 

The tool does not require any modifications to the system under test, unless the only job for 

the client is to start calling the proxy service generated by the FIS instead of calling the 

actual Web Service. 

 

5.1.2 Experiment setup 
 

The topology of the target network that we emulated is a four-node network setup, as shown 

in Figure  5-1. In the experiments various types of faults were injected into the emulated 

network. The Network Emulation Service is enabled to generate synthetic traffic through the 

network. For a real application deployed on a WAN, there is a significant variation in 

performance due to other traffic occupying the network resources. NetFIS supports various 

simulated traffic models including, but not limited to, self-similar, random, constant and 

even replayed, previously-captured, traffic traces. Since studies of network traffic suggest 

that it is self-similar in nature [75], we chose to emulate continuous self-similar traffic in our 

network. The mean packet rate is 30 packets/second on each link, and the self-similarity 

value is 0.8. The packet size distribution follows measurements taken from Internet 

backbones [71]. The link utilization varies based on the generated packet size and the link 

configuration.  



 

 122 

 

5.1.3 Network configuration: 
 

We measure the performance of the protocols in four network configurations:  

i). LAN Configuration: the LAN was used without deploying NetFIS to test the actual 

performance of the system. The client issuing the requests was loaded onto machine 

A in Figure 5-2. The three services participating in the test are run on machines B, C 

and D respectively. 

ii). Fast WAN Configuration: The propagation delays are fixed at 2ms, which is 

typical of inter-city links within the UK. The bandwidth of each link is 4mb/s. The 

average utilization of each link given this bandwidth, and the simulated traffic 

described in previous section, ranges between 10% and 20%.  

 

 

 

  

FIGURE  5-1  SIMPLE NETWORK TOPOLOGY 

 

 

 

iii). Slow WAN configuration: This configuration represents the other extreme. All 

services are located in distant geographical locations and connected by slow links. 

The propagation delays are fixed at 50ms which is typical of distant locations and 

international links (e.g. between Newcastle, England and Tripoli, Libya). The 

bandwidth of each link is 512Kb/s. The average utilization of each link, given this 

bandwidth and the traffic, ranges between 20% and 40%.  

iv). Heterogeneous WAN configuration: this configuration represents a case 

somewhere between the two extremes. One of the services was placed in a far away 
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location (connected by slow WAN links) while the other servers and the client were 

closer to each other (connected by fast WAN links). The links and loads used here 

are similar to those used for the slow and fast WAN configurations. 

 

 

5.1.4 Client configuration: 
 

We have developed a special client application implementing several test cases 

corresponding to the fault injection configurations applied during the experiment. The client 

application is implemented on the WS-Mediator framework [74] as shown in Figure  5-2, and 

utilizes the built-in fault tolerance and logging mechanisms of the framework. The WS-

Mediator claims to offer comprehensive off-the-shelf fault tolerance mechanisms to cope 

with various kinds of typical Web Service application scenario. It also includes a monitoring 

mechanism to benchmark a collection of candidate Web Services that would be used during 

service composition and generate their dependability metadata for dynamic composition 

reasoning. The framework allows the client to submit a number of candidate Web Services 

for service composition and define a reconfiguration policy to specify how to make use of 

the candidate Web Services, and thus to reduce the development cost of a dependable client 

application. 
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FIGURE  5-2 A SYSTEM BEING TESTED BY THE TOOL 

 
 

In our client application, we chose to use the N-version programming mechanism offered by 

the WS-Mediator to invoke the NetFIS proxies simultaneously and choose the first valid 

response to service a client’s request. During the invocations, all request and response 

messages are logged using the built-in monitoring mechanism of the WS-Mediator. The 

complexity and processing overheads of the WS-Mediator have been minimized with these 

settings. It is worth noting that a classic N-version programming approach normally requires 

voting for result validation. However in Web Service applications, although similar Web 

Services may return semantically identical responses, they are not usually exact matches. 

The WS-Mediator framework allows policy-based response mapping; however since the 

NetFIS tool injects random faults into the SOAP messages especially with random timing, 
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the response mapping and voting mechanisms are of little value in our test cases. 

Nevertheless, the late responses are also logged for further analysis.  

 

Besides the fault tolerance mechanisms deployed in the client application, the functionality 

of the client is fairly simple. It invokes the three replicated Web Services repeatedly, with or 

without the NetFIS. The number of invocations and the delay interval between invocations 

can be configured dynamically. 

 

5.1.5 Experimental Results 
 

The experiment comprises several test cases for validating the NetFIS approach. All the 

events have been logged (SOAP requests and responses, injected faults, round trip response 

times and exception messages) during the experiment. Those logs generated by the NetFIS 

and the client application have been used for quantitative result analysis.  

 

Section 1: the NetFIS emulates different types of network simulating varied traffic load. The 

detailed settings are shown in 

 

Table  5-1. A preliminary test was carried out to check the network conditions and the Web 

Service prior to the other test cases. The client invoked the three Web Services directly 1,000 

times (interval: 1,000ms) without the NetFIS. The overall maximum, minimum, and average 

round trip response time (RTT) received by the client application are 102ms, 8ms and 57ms 

respectively.  
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FIGURE  5-3 CLIENT INVOCATION RTT 

 
 

Figure  5-3 shows the RTT for the three Web Services logged by the WS-Mediator at the 

client application.  It is very interesting to see the three Web Services had much longer RTT 

at the very beginning of the test, suggesting the RTT could have been optimized by some 

kind of caching mechanism employed in the Web Services. It is also worth noting that 

although the three replicated Web Services have identical hardware, operating systems, 

middleware, and so on, WS3 constantly had longer delays than WS1 and WS2. However, the 

RTT variations of a Web Service and between different Web Services are clearly 

insignificant compared with the delays to be injected by the NetFIS, and therefore can be 

safely ignored. The average RTT of WS1, WS2 and WS3 are 10ms, 11ms and 12ms.  

 

The average client RTT was slightly smaller than 10ms, because it always uses the quickest 

response from the three Web Services.  
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The preliminary test results provided the benchmarking information on the physical LAN and 

Web Services involved in the experiment. Then the NetFIS were added between the client and 

the Web Services, and the client made 1,000 invocations in each setting.  

 

Network 
Bandwidth 

(Mb/s) 

Response time 

Max, ms Min, ms 
Average, 

Ms 

LAN N/A 102 8 57 

Fast WAN 4000 488 35 59 

Slow WAN 512 698 110 190 

Hetero.WAN Fast and Slow 870 99 104 

 

 

TABLE  5-1 RESPONSE-TIME OVERHEAD 

 

 

Table  5-1 clearly indicate the effectiveness of emulating the three different networks between 

the system components. The average RTT − without injecting drop and error faults − shows 

when emulating the Fast WAN is 59ms, where the average RTT without using our tool in 

LAN is 57ms. That means the overhead delay introduced by the NetFIS to the system under 

test is clearly insignificant. However the differences in the average response time between the 

Fast WAN and the Slow WAN are indeed considerable. This is related to the configurations 

of the two emulated networks, specifically the propagation delays and the bandwidths which 

in the Fast WAN are 2ms, 4mb/s and in the Slow WAN are 50ms, 512Kb/s respectively. 

When considering Heterogeneous WAN, the average response time is almost between the 

average response times of the Fast and Slow WANs. That is due to the fact that the 

Heterogeneous WAN is configured of a combination of the other two WANs (Fast and Slow). 
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FIGURE  5-4 RTT OF THE TEST CASES (WEB SERVICE 1) 

 

The Figure  5-4 shows the RTT of WS1 (monitored at the WS-Mediator client) at different 

drop and error rates and network conditions. The ‘injection modes’ axis represents the 

invocation RTT of each injection mode shown in the Figure legend. The overall average RTT 

of the fast network is much smaller than that of the other two network conditions. The Figure 

clearly shows greater RTT variations of the heterogeneous network than the slow network. 

The time-out value has been regulated to 3,000ms in the Figure to make the plots more 

readable. 
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Network 

Emulated 

Injected Drop rate Injected Error rate 

Target 

% 

Achieved 

(total 

messages) 

Target 

% 

Achieved 

(total 

messages) 

Fast 

WAN 

0.1 1 0.1 1 

1 9 1 10 

Slow 

WAN 

0.1 1 0.1 1 

1 10 1 10 

Hetero.

WAN 

0.1 1 0.1 1 

1 9 1 10 

 
TABLE  5-2 DROP AND RANDOM ERROR INJECTED 

 

 

o Section 2: The NetFIS injects various types of faults between the client and the Web 

Services in different emulated network conditions. The combinations of the injected faults are 

shown in Table  5-2. The client invoked the Web Services via the NetFIS 1,000 times in each 

setting. Table  5-2 shows the statistics of the results in each test case as logged by WS-

Mediator logging mechanism. The results indicate that the tool coped well with the settings 

and injected the expected faults correctly. When “drop” was injected, the client threw a “time-

out” exception after a 10 second wait, indicating that the response was lost. When errors were 

injected, except messages reading “Cannot find dispatch methodfor{http:% /webservices. 

calibayes.ncl.ac.uk/} getAvailableSimMethods” were thrown by the client, indicating 

corrupted SOAP messages, but the JAX-WS framework was unable to deal correctly with the 

responses. Figure 5 and Figure 6 show the plots of the results for some test cases, which 

clearly demonstrate the effectiveness of the tool. The tool simulates real work network 

conditions and faults to help with robust client application development (in this case, by 

applying the WS-Mediator). 
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FIGURE  5-5 RTT OF THE TEST CASES (CLIENT) 

 

Figure  5-5 shows a comparison of the RTT of the three Web Services and the final 

responses delivered to the client by the WS-Mediator. The ‘clients’ axis represents the 

invocation RTT monitored at each client thread (which respectively deals with WS1, 

WS2, WS3) and the client application that employs the WS-Mediator to deal with the 

results received by the client threads. We chose the 1% drop rate injection scenario to 

show the comparison, since this test case affects the RTT most. As the faults were injected 

arbitrarily into the three Web Services, the N-version programming fault tolerance 

mechanism in the WS-Mediator successfully dealt with the faults in most test cases and 

masked the reliability problems to the client. The client application only threw exceptions 

when the three Web Services failed simultaneously. 
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NETWORK 

EMULATE

D 

MESSAGE  

TYPE 

INJECTED DROP RATE IN 1000  

REQUESTS 

FOR EACH LINK 

INJECTED ERROR RATE IN 1000  

REQUESTS 

FOR EACH LINK 

Targe

t 

% 

Achieve

d 

% 

Exp. 

Excep

t 

Generated 

Exception

s 

Targe

t 

% 

Achieve

d 

% 

Exp. 

Excep

t 

Generated 

Exception

s 

Fast 

WAN 

Requests 1% 0.9% 1% 

No  

exception

s 

by WS 

but 

timed out  

by  

client  

and 

retrans-

mitted  

1% 1.1% 1% 

0.6% 

fault 

response 

by WS 

  

Response

s 
1% 0.9% 1% 

No action 

by 

WS 

but 

timed-out 

by 

client  

with no 

retrans-

mission. 

 

1% 1% 1% 

0.4% 

Detected 

by 

client by 

throwing 

excep-

tions 

 

 

TABLE  5-3 THE AFFECT OF INJECTED DROP AND ERROR TEST CASES (WEB SERVICE 

1) 

 

o Section 3: Table  5-3 shows the affect of injecting Drop and error into the exchanged 

messages between the client and WS1 by using NetFIS logging mechanism. We have 

chose only WS1 to demonstrate the affectance of the injected faults as the three 

replicated Web Services have identical hardware, operating systems, middleware, and 

so on. The test was performed using a loop iteration of 1000 and was repeated 3 times 

for each emulated WAN. There was no variation in results for each set of results 

produced for a particular emulated WAN in terms of drop rate and error rate which 

was a very small variation in percentage totals between each set of loop iterations, 

which can be safely neglected.       As Table  5-3 shows, the NetFIS logging 

mechanism recorded the following classes of faults for WS1 when Fast WAN 

emulated. We chose the 1% drop rate and 1% error rate injection scenarios to show 

failures recorded by NetFIS, since these two fault injected cases affects the system 

most: 

 

1. Expected exception and generated exception. 
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2. Expected exception but not generated exception. 

 

From the table above it can be noted that when dropping requests and responses in the rate 

1% , no failures or exceptions detected by the NetFIS. Web Service has no way of 

knowing that a request has been sent by the client, that’s due requests dropped before 

reaching the Web service so NetFIS can not detect the affect of dropping requests. 

However NetFIS has recorded that all the discarded requests have been retransmitted 

again by the client. That indicates a level of reliability within the client side which uses 

some kind of time-out mechanism which times out when the specified time out elapses 

and retransmits the lost requests.  However discarded response messages a response 

message from server to client generates no network fault messages since it is discarded in 

the middleware level. However this is handled by a time out at the client side. However 

the requests of the lost responses have not retransmitted again by the client whereas it was 

an exception propagated from the middleware to the client application.  

This dropping messages test appeared to indicate that the system under test has a high 

degree of resilience to SOAP message loss over an unreliable network during the duration 

of the test, since the system continued to operate correctly under the presence of these 

faults. No unexpected figures were faced indicating a level of dependability under this test 

case. Dropping SOAP messages seemed to cause no adverse effects on either the client or 

the server such as server crashes/hangs, that may was because of the N-version fault 

tolerance mechanism applied at client side which uses a number of replicated Web 

services and the high probability that at least one of the responses could be received of the 

other two lost or delayed. 

 

The table above shows also recorded the percentage random error fault injected into 

requests and responses going from client to server, and from server to client, respectively.  

The table shows 1% of request messages have been damaged by inserting extra characters 

into SOAP messages. it can be seen from the table that only 0.6% of the damaged 

messages have caused exceptions to be thrown by the server. Which means almost 50% of 

the corrupted request messages went undetected by the server. That’s due to the inserted 

errors has been inserted into the message randomly, that is, in this case the errors inserted 

into SOAP-ENV:Body element by chance. An exception was expected because the fault 

would break the SOAP stack syntax or would be detected by the client application in the 

case the error would cause a corruption to other elements of the message. In the case of 
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errors inserted into SOAP-ENV:Body element, It seems it was syntactically correct 

according to XML but no exceptions were thrown. However it did not appear to affect the 

dependability of the system during the test, which continued to function correctly in all 

other respects.   

In the case of errors inserted into other parts of the SOAP message which affected the 

syntax of the message according to XML, the server threw exceptions for 0.6% of the 1% 

of the error message rate injected into the request messages, and then fault messages sent 

back to the client. When response messages were corrupted randomly by the tool, the 

client reacts in the same way as the server did. Overall the system appeared to have a high 

degree of dependability since it continued to operate even when injecting errors into 

SOAP envelope. Furthermore, the client was reliable to handle exceptions thrown by the 

server in the case of corrupting the syntax of the message, and the client middleware 

propagated the faults to the client application.  

 

The overall assessment to tested system shows that NetFIS can  be  used  to  conduct 

assessment of the performance and fault tolerance mechanisms of Web services. As the 

faults were injected into the three Web Services, the N-version programming fault 

tolerance mechanism in the WS-Mediator successfully dealt with the faults in most test 

cases and masked the reliability problems to the client. However the system failed to mask 

problems when the three Web Services failed simultaneously. The failures was due to 

faults were injected by NetFIS in the same time when the three requests sent out to the 

three Web Services. In spite of the fact that the WS-Mediator could not mask the failure of 

the system when the three Web Services failed in the same time, the failure average rate 

was only 0.09% of the total requests of the three Web Services when the drop/error rate is 

high (1%).  

In both normal and faulty environment, the system provides a good RTT performance. 

This is reasonable since the first properly returned response will be taken as the final 

outcome. This strategy (N-Version) can be used to tolerate faults and achieve better 

respond time performance, however in the faulty environment; the whole system 

reliability is 99.9% due to the three Web services failed stimulatingly.  Moreover, the 

dependability of Web service applications in the faulty environment is in average of 99%, 

which are due to the corrupted request messages went undetected by the Web service 

applications and also the dropped responses did not get retransmitted again by the Web 

service applications which is due to the faults are happened in the middleware level. We 
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suggest that at the Web service application a fault tolerance mechanism such as WS-

ReliableMessaging [76] need to be deployed so as to detect dropped responses, which 

defines protocols that enable Web services to  ensure  reliable messages exchange.  

5.2  Conclusions  
 

The NetFIS tool has been tested by using real Web Service system case studies. The case 

studies demonstrated that the tool that can inject faults into Web Service applications 

without touching the code of the system under test. In addition, there is great flexibility in 

the number and type of fault that can be injected. The overhead introduced into the system 

by the NetFIS is not significant. This is a negligible overhead that conforms to the design 

assumption that the target WAN to be emulated exhibits much greater delays than this 

small overhead. 

 

Furthermore, the tool demonstrated its capacity to emulate a wide range of networks by 

using different network configurations. The NetFIS also demonstrated how background 

traffic can be generated into the experiment. 

 

The network emulation may not exactly mirror the real world environment. However, it is 

a significant advance on testing using a single machine or a LAN. In particular, sample 

traffic from a real network can be used in the emulation as well as self-similar traffic 

patterns. 

 

Our experiments have clearly demonstrated the network simulation and fault injection 

capacities of the NetFIS and an example of how to use the functionalities of the tool for 

testing the fault-tolerance mechanisms of the client application. In this case, the WS-

Mediator has demonstrated its fault tolerance capacity with service diversity and dynamic 

service composition reconfiguration. However as the tool is capable of injecting a large 

number of faults, it was impossible to represent the extent of the tool’s ability. Thus, the 

tool provides a flexible configuration for allowing the tester to configure the tool to suit 

different scenarios and cases.   
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6 Chapter 6 - Conclusions and Suggestions for Future Work  
 

In this chapter, we summarize our work and make suggestions for further work. In Section 

6.1, we summarize our research and the studies reviewed in each chapter. In Section 6.2, 

we outline a number of possible extensions that could be made to our testing method. In 

addition, we discuss how the knowledge gained in this study can be applied in future work 

to improve the testing of Web Service applications. 

 

6.1  Contributions 
 

Web service technology is developing very fast, and has been regarded as playing a 

critical role in many e-Commerce and e-Science applications. Due to the complexity of 

architecture and complicated application scenarios of Web Services, assessing their 

reliability is a challenging research topic. While there have been many approaches 

developed for improving the assessment of the dependability of individual Web Services 

and Web Service composition applications, there is still a need for testing solutions that 

can assess the dependability of Web Service composition, given the persistence of varied 

types of faults in the infrastructure. It is therefore essential to analyse the concrete 

dependability characteristics of Web Services and other involved components, such as 

individual component services, networks, and so on, and to develop testing solutions to 

assess Web Service systems with specific fault assumptions. 

 

As Web Service composition is an activity involving the integration of several component 

services over computer networks, the dependability of service composition therefore relies 

on the dependability of individual component services and of the networks. The failure of 

a single node (e.g. a component service or a segment of the network) can undermine the 

dependability of the entire application. In reality, it is very hard to ensure that Web 

services do not fail during integration; moreover, computer networks are inherently 

unreliable. Hence, dependability solutions such as fault tolerance mechanisms applied to 

service composition need to be assessed in order to discover how they deal with failures of 

individual component services and networks to ensure the continuity of services. 
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Using traditional testing techniques raises many problems when testing service 

composition systems. It is hard to test Web Service applications which are developed to 

run over the Internet. Testing Web Service applications which involve running software 

on different environments and platforms is not an easy task without modifying the sources 

or the networking libraries of the hosting operating systems. Testing such systems requires 

a run-time environment − which is logically the Internet − to test the performance of each 

component of the system and also to assess the impact of the fault tolerance mechanisms 

applied to the system. However, such approaches are not always attractive or achievable. 

The cost of setting up a WAN or using the Internet for the sake of testing is very high. 

Moreover, it is almost impossible to control the dynamics of such networks, such as 

through increasing stress, load, or errors. 

 

Compared with the existing testing solutions, the most closely-related work was 

undertaken on the assessment of CORBA applications, by using a Wide Area Network 

emulator at application level. This presented promising results [48]. However, some 

shortcomings of this CORBA fault injection approach were identified. In the CORBA 

interceptor level, the messages are already coded in binary code; therefore this method 

does not target any particular elements in the message to inject faults into, such as function 

parameters in the case of RPC. Furthermore, corruption and dropping messages are only 

injected by throwing exceptions. That means the CORBA fault injection method 

assumption is for injecting the mentioned faults solely to test the system’s ability to deal 

with such exceptions; whereas it is more logical to inject explicitly the fault and observe 

its effects on the system. 

 

All this has prompted us to develop a fault injection testing method focused on assessing 

the performance and the fault tolerance mechanisms of composed services, specifically 

service component failures and communication failures.  

 

The testing method is for testing the performance and fault tolerance of either a single 

Web Service or a composed service, without any modification to the system being tested. 

No recompiling or patching is necessary. The method has three main features: first, 

injecting communication faults (loss, delay and corrupting system exchanged messages) 

based on a WAN emulator. The second feature is injecting specific faults into RPC 

parameters of the exchanged messages. And thirdly, the tool generates background 
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workload, to more accurately emulate real networks and thus produce more realistic 

results.  

 

A prototype of our fault injection testing method, called Network Fault Injection Service 

(NetFIS), has been implemented using only the Java Web Service technology. The three 

main features of the method have been implanted as a composed service deployed to 

overlay the network architecture.    

 

The first feature is the WAN emulator. The main task of the WAN emulator is to provide a 

network running environment which generates a virtual workload in the system. We have 

implemented the Network emulation as a standalone composed service system, which 

consists of a number of Web Service applications. Each Web Service application 

represents a node or link, and is responsible for emulating that node or link on the target-

emulated network. We have chosen this design to improve the flexibility of the tool, in 

terms of its capacity to be run on a different application space, which can be a different 

physical machine, OS, or Web Service middleware. In addition, the WAN emulator 

enables the tester to control the virtual network environment and its parameters by using 

the network configuration files so as to test the system under different circumstances such 

as different dropping rate, error rate, delay, and so on.  

 

The second main feature of the tool is injecting communication faults which are based on 

the WAN emulator service. The communication faults are decided by the WAN emulator, 

whereas the injection task is performed by the Fault Injection Mediator Service (whose 

main responsibility is intercepting the system messages). Separating the injection 

mechanism from the WAN emulator makes the tool more flexible and portable to different 

distributed systems.  

 

The third feature is injecting interface faults, which is done through the Fault Injection 

Mediator Service and based on the Web Service interface document, WSDL. A system 

fault model can be created by importing WSDL for the Web Services making up the 

system and mapping certain WSDL elements to certain elements within the fault model 

based on their type. Then a fault model can be generated and used to create triggers for 

injecting faults into the system by injecting specific faults into RPC parameters of SOAP 

exchanged messages. 
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We have conducted a series of experiments with several scenarios relating to real-world 

Web Services (a Bioinformatics Web service [73], which deployed the WS-Mediator [74] 

to improve its dependability) to evaluate our solution, and their results have demonstrated 

the applicability and efficacy of the NetFIS approach. 

 

6.2 Limitations and Future Work  
 

Software testing involves two separate issues: the ability to test and the selection of test 

scenarios. The ability to test has been tackled in this thesis by providing all the necessary 

functionalities in the tool to inject communication faults and software-specific faults into 

the system. However as each fault tolerance mechanism applied to systems must tolerate 

and cope with some particular class of failures, a testing method should be able to generate 

testing scenarios based on this fault tolerance mechanism and its claimed ability to mask 

such failures. Because of the considerable number of possible testing scenarios which 

could be built based on the software itself, this research has left the choice of scenarios to 

the tester. The experiments reported in the thesis were mainly intended to demonstrate the 

functionality and the usefulness of the NetFIS tool. Research is therefore required into 

improving the tool’s capacity to help the tester to generate testing scenarios based on the 

fault tolerant mechanisms claimed to be applied to the system (i.e. the N-version). 

 

Using the NetFIS method needs to be inserted as proxies into the target system so as to 

intercept and manipulate exchanged messages. This obviously causes delays to the 

intercepted messages. The amount of delay added is implementation-dependent and its 

impact on the experiments also depends on the nature of the target system. The important 

issue is whether the added delay is within acceptable bounds. Although the design of the 

tool assumes that the Wide Area Networks to be emulated are large enough so that the 

overhead delay introduced by the emulation is negligible compared to the actual network 

delays, this delay may be unacceptable for some real-time systems. An example of one 

such case is when a value fault is to be injected and the added delay would make the fault 

resemble a value and timing fault (arbitrary fault). Therefore a solution is required for 

reducing this overhead delay: one possibility is running each Network Node Emulator 

Service emulating a network node and its corresponding Fault Injection Mediator Service 
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in the same machine as the service component of the target system. This would reduce the 

time consumed in connecting to each other.  

In Chapter 3, we discussed the possibility of adapting the NetFIS tool and applying it to 

other existing message-based systems such as Grid and CORBA systems. Further detailed 

investigations are needed in this area and the approach should be evaluated with practical 

examples in order to determine differences in message syntax.   

 
Currently the NetFIS implementation does not generate the configuration files of the 

NetFIS (i.e. Value Fault Model, network topology, etc.) which are instead written 

manually. Whilst this is acceptable for short test campaigns it would soon become time 

consuming for large test campaigns. We therefore propose that the NetFIS tool should be 

extended to include this functionality, either as a post-processing step or as part of the run-

time visualization. 

 

From the test cases carried out here, our experiments have clearly demonstrated the 

network simulation and fault injection capacities of the NetFIS and an example of how to 

use the functionalities of the tool for testing Web Service systems. The tool provides a 

large number of flexible configurations for allowing the tester to configure the tool to suit 

different scenarios and cases. Therefore further experiments can be carried out in the 

future when different Web Service systems need to be assessed.   
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8 Appendix – The Performance of NetFIS tool 
 
Tool Performance:  

 

This section presents the basic operations of the NetFIS implementation and measures the 

overhead introduced by the tool to the system under test. The features to be examined are: 

1. Intercepting messages at application level by using proxies; 

2. Providing Network Emulation; 

3. Injecting Timing fault; 

4. Injecting Random Value fault. 

These features describe the Network Fault Injection and the Software Fault Injection at the 

application level on which the NetFIS method is based. 

Scenario: 

The scenario is based on a simple Client and Server application. As detailed in [17], the 

Server is running a SOAP based Web Service application, which is invoked by the Client 

as shown in the below.   

 

A SIMPLE CLIENT AND SERVER APPLICATION 
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The SOAP Web Service was implemented and deployed on a machine in the Newcastle 

University LAN (Machine B), providing a set of operations that return a simple sequence 

of characters. A SOAP client was implemented which invokes these operations. The client 

is also executed on a separate machine in the Newcastle University LAN (Machine A).  

 

The client application is to first invoke the Web Service directly, then via the NetFIS. The 

the basic operations of the NetFIS and its performance have been examined. Moreover the 

overheads introduced to the system by using our tool are also measured. The result 

obtained from the logging files has been analyzed and discussed. The configuration of the 

experiment is explained in the next section. 

 

Configuration: 

 

Two configuration setups were used to perform this experiment, as follows: 

1. The first configuration was for running the client and the Web Service by using a 

middleware package of Apache Axis2. Both the server and the client were hosted on 

two machines in the Newcastle University LAN using Redhat Linux 8.0, running Java 

version 1.6.14.  

 

The client was implemented to measure the response-time delay of the requests in 

three different runs: 1,000, 5,000 and 10,000 requests. The client logged the response-

time delays for each execution, after which the logging was analyzed offline.  

 

2. The second configuration was accomplished by using the same configuration as the 

first, but deploying the NetFIS tool. The client had to invoke the server through the 

NetFIS. In turn the NetFIS had to emulate a WAN and to inject network-related faults 

for evaluating the overhead and the functionality of the NetFIS prototype. The target 

WAN topology is a very simple two-node network setup, which makes it easier to 

monitor its behaviour. Various types of faults were examined; however the synthetic 

traffic of the NESs was disabled. There were no sources of traffic other than the 

normal traffic in the Newcastle University LAN, so as to simplify evaluating the tool.   

 

In the first configuration, the response-time delay of the system under test was measured 

without using the tool. In the second configuration, the performance and the functionality 
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of the tool were measured in two emulated network configurations: a fast WAN and a 

slow WAN. The fast WAN configuration was as follows: the propagation delays are fixed 

to 2ms which is typical of inter-city links within the UK, and the bandwidth of each link is 

4mb/s. The slow WAN parameters were as follows: the propagation delays are fixed to 

20ms which is typical of distant locations and links that span the oceans (e.g. between 

London, UK and Tripoli, Libya), and the bandwidth of each link is 1,000Kb/s. The system 

being tested was a Web Service client-server pair. The server simply offers a service that 

returns an array of characters of fixed length (100 bytes). The server is running on one 

node in the network while the clients are running on the other node.  

In order to emulate our simple two-node network, two NES services and two Fault 

Injection Mediator Services (FIMSs) were required (each node needs one FIMS for 

injecting faults − if any − and one NES for emulating the network of the node); 

furthermore, one NCS was needed for controlling the WAN.      

 

All the systems (Client and Web Service) and the tools were run on three machines from a 

cluster of 24 Linux machines (Fedora Core 5) running on Apache Axis2, connected by a 

100Mb Ethernet LAN. The system application pair was tested using a loop iteration of 

1,000, 5,000 and 10,000 requests. The WAN emulation was provided and faults 

(dropping, and randomly corrupting the SOAP envelope) were injected as configured in 

the WAN emulator and all the events were logged.  

 

Results and analysis:  

 

The test has been undertaken with two different setup configurations. The first setup was 

for testing the delay overhead introduced by the tool. The second setup was for testing the 

functionality of injecting faults, such as delaying, dropping and corrupting the SOAP 

messages exchanged between the client and server.      

 

The table below shows the data collected from the logging files for the first setup 

experiment. The response-time delay in milliseconds was collected by running the system 

without using our fault injection tool (NetFIS). It also shows how the response-time delays 

were measured by running the same experiment under the control of the tool with two 

different emulated network configurations (fast and slow), without generating any 

additional traffic and of course without injecting any dropping and corruption into the 
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exchanged messages. However a delay injected into the system resulted from the 

configuration of the propagation delay parameters for each emulated WAN, namely: 2 

millisecond propagation delays for Fast WAN and 20 millisecond delays for Slow WAN. 

 

 

Emulated 

Network 

Injected 

Delay, 

(ms) 

Total 

requests 

Response time Delay 

Max 

(ms) 

Min 

(ms) 
Avg (ms) 

LAN None 

1000 44.87 7.15 8.085 

5000 56.93 6.67 7.465 

10000 112.93 6.13 7.09 

Fast 

WAN 
2 

1000 291.51 32.87 47.87 

5000 559.77 31.42 41.30 

10000 281.80 29.23 38.56 

Slow 

WAN 
20 

1000 198.89 80.45 91.55 

5000 199.31 79.27 88.96 

10000 217.96 78.59 87.79 

 

RESPONSE-TIME OVERHEAD WITH DELAY 

 

The average response-time delays of running the system (Client and Server) without the 

tool being deployed (when the client invokes the web service) were 8.085, 7.465 and 7.09 

milliseconds for each loop iteration, namely 1,000, 5,000 and 10,000 respectively. There 

was no big variation in results for each result produced for any particular loop iteration 

value but there was a very small variation in percentage totals between loop iterations.  

However the averages of running the system under the control of the NetFIS show that the 

overhead of running the tool ranges between 36 and 45 milliseconds (when subtracting the 

injected delay) when emulating the fast WAN. Also, it ranges between 85 and 89 

milliseconds (when subtracting the injected delay) when emulating the slow WAN. This is 

a negligible overhead that conforms to the design assumption that the target WAN to be 

emulated exhibits much greater delays than this small overhead.  

 

Table above shows the results of the second setup configuration. The data in Table above 

were collected when running the system by using our NetFIS tool. The same 

configurations of the two emulated WANs (fast and slow) were used, except a drop and 

corruption of the exchanged messages needed to be injected.  
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No. of 

requests 

 

Emulated 

Network 

Injected drop  
Injected 

error 

Target 

(%) 

Achieved 

(total 

messages) 

Target 

(%) 

Achieved 

(total 

messages) 

5000 
Fast 

0.001 5 0.001 5 

10000 0.001 9 0.001 10 

5000 
Slow 

0.001 5 0.001 5 

10000 0.001 11 0.001 12 

 

DROP AND RANDOM ERROR INJECTED 

 

As the table above indicates, the tool accurately injects the target network drop and error 

faults by achieving (or almost achieving) the exact  rates targeted. For example, we tried 

to emulate fast and a slow network links with a drop rate of 1 message per 1,000 

messages, which were achieved for 5,000 and 10,000 requests. The target injected random 

error into messages was also achieved in both network cases (fast and slow).  

 

It is important to point out that in real WAN the underlying layers (middleware and 

networking stack layers) will be most likely capable of masking and recovering from 

errors and dropping of messages. However, this method is for propagating such faults to 

the application, so as to enable the application developers to test the performance of their 

applications under such conditions.  

 


