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Abstract 

Background: MYCN-amplification is a major negative prognostic marker, occurring in 

25-30% of neuroblastomas.  MYCN plays contradictory roles in promoting cell growth 

and sensitizing cells to apoptosis, and we have recently shown that p53 is a direct 

transcriptional target of MYCN, and may be an important mechanism of MYCN-

induced apoptosis.  Although p53 mutations are rare in neuroblastoma at diagnosis, the 

p53/MDM2/p14
ARF

 pathway is inactivated in 35% of cases through MDM2-

amplification or p14
ARF

 inactivation. Neuroblastoma is therefore an ideal target for p53 

reactivation using MDM2-p53 antagonists.  MDMX, a homologue of MDM2, is another 

negative regulator of p53 which is often overexpressed in cancers and has been shown 

to compromise the effects of MDM2-p53 antagonists in various cancer types.  MDMX 

expression and the effect on MDM2-p53 antagonists has not been investigated in 

neuroblastoma.   

Hypotheses 1) Reactivation of p53 by inhibition of its negative regulator MDM2, using 

the MDM2-p53 antagonists Nutlin-3 and MI-63, will result in p53-mediated growth 

arrest and apoptosis preferentially in MYCN-amplified cells 2) MDMX knockdown 

increases and p14
ARF

 knockdown decreases the sensitivity of neuroblastoma cell lines to 

MDM2-p53 antagonists. 

Methods: The effect of MYCN, MDM2, MDMX and p14
ARF

  was investigated on the 

response to MDM2-p53 antagonists using siRNA in a panel of 21 neuroblastoma cell 

lines. Sensitivity was measured by growth inhibition, apoptosis assays including 

caspase activity and fluorescent activated cell sorting, and the effect on the p53 response 

measured by Western blotting. 

Results: Using the SHEP Tet21N MYCN regulatable system, MYCN(-) cells were more 

resistant to both Nutlin-3 and MI-63 mediated growth inhibition and apoptosis 

compared to MYCN(+) cells and siRNA mediated knockdown of MYCN in 4 MYCN-

amplified cell lines resulted in decreased p53 expression and activation, as well as 

decreased levels of apoptosis following treatment with MDM2-p53 antagonists.  In a 

panel of cell lines treated with Nutlin-3 and MI-63, the sub-set amplified for MYCN had 

a significantly lower mean GI50 value and increased caspase 3/7 activity compared to 

the non-MYCN-amplified group of cell lines, but p53 mutant cell lines were resistant to 

the antagonists regardless of MYCN status.   

Knockdown of MDM2 did not alter the apoptotic response to Nutlin-3 or MI-63 

but surprisingly, knockdown of MDMX resulted in decreased levels of apoptosis.  

MDMX expression varied amongst the neuroblastoma cell lines and positively 

correlated with caspase 3/7 activity following MDM2-p53 antagonist treatment. p14
ARF

 

impaired cell lines underwent less apoptosis following MDM2-p53 antagonist treatment 

and following Nutlin-3 treatment, 3 of 4 p14
ARF 

impaired cell lines underwent a 

pronounced G1 arrest. p14
ARF

 knockdown alone resulted in decreased caspase 3/7 

activity, and following MDM2-p53 antagonist treatment there was decreased caspase 3 

cleavage and activity, and decreased PARP cleavage.    

Conclusions: Amplification or overexpression of MYCN sensitizes neuroblastoma cell 

lines with wildtype p53 to MDM2-p53 antagonists and these compounds may therefore 

be particularly effective in treating high risk MYCN-amplified disease. This data also 

suggests that neuroblastomas with high MDMX expression may be more susceptible to 

MDM2-p53 antagonist treatment, but that cells with inactivated p14
ARF

 predominantly 

undergo a G1 arrest which may protect them from apoptosis.  MDMX and p14
ARF

 status 

may therefore be important in addition to MYCN in determining the outcome of 

neuroblastomas treated with MDM2-p53 antagonists. 
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Cys  Cysteine 

DAPI  4',6-diamidino-2-phenylindole 

DBD  DNA binding domain 

dH2O  distilled water 

ddH2O  double distilled water 

DDK3  dickopf 3 

DFMO  α-difluoromethylornithine 
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DMs  double minutes 

DMSO  dimethyl sulfoxide  

DNA  deoxyribonucleic acid 

DNA-PK DNA protein kinase 

dNTP  deoxyribonucleoside triphosphate 

DR4  death receptor 4 

DR5  death receptor 5 

dsRNA double stranded RNA 

E2F  E2F family of DNA-binding transcription facotrs 

ECL  enhanced chemiluminescence 

EDTA  ethylenediamine tetra acetic acid 

FACs  fluorescence activated cell sorting/flow cytometry 

FCS  fetal calf serum  

FISH  fluorescence in situ hybridisation 

FITC  fluorescein isothiocyanate 

FL1  fluorescent detector 1 

FL2   fluorescent detector 2 

FL2-A  FL2-area 

FL2-H  FL2-height 

FL2-W  FL2-width 

FL3   fluorescent detector 3 

FRET  fluorescence resonance energy transfer 

FSC-H  forward scatter - height 

G1  Gap 1  

G2  Gap 2 

G0  Gap 0 

GI50 the concentration at which a compound reduces the growth of the cell 

population by 50% 

GADD45 growth arrest on DNA damage 

GD-2  disialoganglioside 

GM-CSF granulocyte-macrophage colony-stimulating factor 

GCS  glucosylceramide synthase 

Gy  gray 

H2O  water 

HAUSP Herpes virus-associated ubiquitin-specific protease 

HCl  hydrochloric acid 

HDAC1 histone deacetylase 1 

Her2  human epidermal growth factor receptor 2 

HIF1α  hypoxia-inducible factor-1α protein 

HIPK2  Homeodomain-interacting protein kinase 2 

hMOF  human orthologue of Drosophila melanogaster MOF 

HRP  horseradish peroxidase  

HSRs  homogeneously staining regions 

I-type  intermediate-type 

IAP  inhibitor of apoptosis 

IC50 Concentration of an inhibitor at which 50% inhibition of the response is 

seen 

ID2  inhibitor of DNA binding 

IgG  immunoglobulin G 

IF  immunofluorescence 

IHC  immunohistochemistry 

IL-2  interleukin 2 
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INPC  International Neuroblastoma Pathology Classification 

INSS  International Neuroblastoma Staging System 

INRG  International Neuroblastoma Risk Group 

IR  irradiation 

JNK  c-Jun N-terminal kinase 

KAP1  KRAB-ZFP-associated protein 1 

Leu  leucine 

LL  lower left 

LOH  loss of heterozygosity 

LR  lower right 

M-phase mitosis-phase 

MAX  Myc associated factor x 

MC  monoclonal 

MCS  multiple cloning site 

MDM2 mouse double minute 2 

MDMX mouse double minute 4 homolog 

MEF  mouse embryonic fibrolast 

MgCl2  magnesium chloride 

Miz-1  Myc-interacting zinc finger protein  

MRD  minimal residual disease  

MRP-1  multidrug resistance protein 1 

mRNA  messenger RNA 

mTOR  mammalian target of rapamycin 

MYC/N members of the MYC family 

N-terminus amino-terminus  

N-type  neuronal-bearing type 

NES  nuclear export signal 

NF-κB  nuclear factor kappa b 

NMI  N-myc interactor 

NMP  nucleophosmin  

NoLS  nucleolar localisation signal 

Non-amp non-amplified 

O/N  overnight 

OD  optical density 

OgD  oligomerisation domain 

ODC  ornithine decarboxylase 

OPTI  optiMEM-glutamax serum free media  

P1  promoter 1  

P2  promoter 2 

p21
WAF1 

p21 wildtype activated fragment 1 

p53 pSer 15 p53 phosphorylation at serine 15 

p53AIP p53-regulated apoptosis-inducing protein  

PAI-1  Plasminogen activator inhibitor-1 

PARP  Poly(ADP-Ribose) polymerase 

PCR  polymerase chain reaction 

PBS  phosphate buffered saline 

PCMV  human cytomegalovirus promoter 

P-gp  p-glycoprotein 

Phe  phanylalanine 

Phox2a/2b paired-like homeobox 2a/2b 

PI  propidium iodide 

PIG3  p53-induced gene 3 
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PminhCMV minimal promoter of human CMV 

PNET  primitive neuroectodermal tumour 

PS  phosphatidylserine 

PUMA  p53-upregulated modulator of apoptosis 

Rb  retinoblastoma protein 

RING  really interesting new gene 

RISCs  RNA-induced silencing complexes 

RNA  ribonucleic acid 

RNAse  ribonuclease 

rpm  revolutions per minute 

RPMI  Roswell Park Memorial Institute 

RT  room temperature 

RT-PCR reverse transcription PCR 

S-phase synthesis-phase  

S-type  substrate adherent type 

SCR  scrambled 

SDS  sodium dodecyl sulphate 

SDS-PAGE  sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

Ser  serine  

shRNA short-hairpin RNA 

siRNA  short interfering RNA 

SKP2  S-phase kinase associated protein 2 

SN  sense 

SNP  single nucleotide polymorphism 

SRB  Sulforhodamine B  

SSC-H  Side Scatter - Height 

STR  short tandem repeat 

TAD  transactivation domain 

TAF1  TBP-associated factor 1 

TBE  Tris/Borate/EDTA 

TBP  TATA-binding protein 

TBS  Tris Buffered Saline 

TCA  Trichloroacetic Acid 

Tet  Tetracycline 

tetO  TET operator 

tetR   Tet respressor protein 

TFIIB  transcription initiation factor B 

TFIID  transcription initiation factor D 

TFIIH  transcription initiation factor H 

TH-MYCN MYCN transgenic mouse 

Thr  threonine 

TIP49  TBP-interacting protein 49 

TIP60  TBP-interacting protein 60 

TNF  tumor necrosis factor 

TP53INP1 Tumor protein p53-inducible nuclear protein 1 

TRAIL  TNF-related apoptosis-inducing ligand 

TRE  Tetracycline Responsive Promoter Element 

Trk  tyrosine kinase 

Trp  tryptophan 

TRRAP transformation/transcription domain-associated protein 

TSG  tumour suppressor gene 

tTA  Tetracycline-controlled Transactivator 
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UK  United Kingdom 

UL  Upper Left 

ULF  ubiquitin ligase of ARF 

UR  Upper Right 

USA  United States of America 

UT  untreated 

UV  Ultra Violet 

VP16  Virion Protein 16 

w/v   weight/volume 

Wt  wildtype 

WWP1  WW domain containing E3 ubiquitin ligase 1 

XIAP  x-linked inhibitor of apoptosis protein 

YY1  ying-yang 1 
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1.1 Cancer 

Cancer forms as a result of multiple genetic mutations which lead to uncontrollable cell 

growth, invasion and metastases, and is influenced by both genetic and environmental 

factors (Pelengaris and Kahn, 2006).  In a normal cell, a physiological balance between 

tumour suppressors and oncogenes carefully controls cell proliferation.  In a cancer cell, 

evidence points towards a multistep process of sequential alterations in oncogenes and 

tumour suppressor genes (TSGs) that result in the acquirement of capabilities known as 

the hallmarks of cancer (Figure 1.1) (Hanahan and Weinberg, 2011).  The increasing 

genomic instability within a cancer cell leads to heterogeneity, where a tumour 

possesses cytogenetically different clones that contribute to differences in clinical 

behaviour and treatment response in the same diagnostic tumour types.   

As shown in Figure 1.1, compounds targeting each of the ten hallmarks of cancer have 

been developed over the last decade, and the list continues to grow.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The hallmarks of cancer (Hanahan and Weinberg, 2011).  
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1.2 Oncogenes 

Gain-of function mutations in oncogenes promote cancer formation.  Oncogenes encode 

proteins that are involved in regulating cell proliferation and apoptosis, and have the 

potential to cause cancer by increasing cell survival and/or promoting cell proliferation.   

Proto-oncogenes can be activated to oncogenes by a number of mechanisms; 1) 

Structural alterations in chromosomes including inversions and translocations or 

juxtaposition of enhancer elements.  These changes may increase or deregulate the 

transcription of an oncogene, for example via an alternative promoter. 2) Gain of 

function mutations which increase protein activity directly, or alter the structure of the 

protein, enhancing activity.  3) Overexpression or amplification (Croce, 2008; Konopka 

et al., 1985; Tsujimoto et al., 1985).  These alterations confer growth advantages and 

increase survival of these cells, as a result of alteration in structure, or deregulation of 

expression (Bishop, 1991).   

There are 6 classes of oncogene products: transcription factors, growth factors, growth 

factor receptors, signal transducers, chromatin remodelers and apoptosis regulators.  

Oncogenes focused on in this thesis include the MYCN transcription factor, mouse-

double minute 2 (MDM2) and the MDM2 paralogue, MDMX. 

Oncogene proteins can be targeted by small molecules.  A well-known example is 

Imatinib, used for the treatment of chronic myelogenous leukemia (CML) (Goldman 

and Melo, 2001).  In this thesis, the use of small molecule MDM2 inhibitors in 

neuroblastoma is investigated.    

1.3 Tumour suppressor genes (TSGs) 

Loss of function mutations within TSGs predispose to cancer.  In normal cells TSGs 

inhibit cancer development and oppose oncogene function.  There are 2 types of TSGs, 

‘gatekeepers’ and ‘caretakers’ (van Heemst et al., 2007; Sherr, 2004; Kinzler and 

Vogelstein, 1997).  Gatekeepers inhibit proliferation and promote apoptosis, regulating 

the growth of tumours, whereas caretakers control cellular processes that repair genetic 

alterations and therefore play key roles in maintaining genomic integrity.   Mutations of 

caretakers cause genomic instability and an overall increase in mutation rate within a 

cell.  TSGs investigated in this study include the p53 gatekeeper, commonly referred to 

as the ‘guardian of the genome’, and p14
ARF

.   
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Familial cancers usually result from an initial germline mutation of one allele of a TSG 

followed later by either a somatic mutation, loss of a second allele (loss of 

heterozygosity), or transcriptional silencing through hypermethylation of the second 

allele (Taneja et al., 2011). 

1.3.1 Knudson’s two-hit cancer model  

The Knudson two-hit hypothesis for cancer development was formulated in 1971 by 

Alfred Knudson (Knudson, 1971).  He proposed that the initiation of cancer requires the 

loss of both wildtype alleles of a TSG and the resulting ‘loss-of-function’.  As shown in 

Figure 1.2, individuals with both wildtype alleles of the TSG require 2 ‘hits’ for cancer 

development.  However, if an individual has a germline mutation in one allele, only one 

‘hit’ is required and these individuals therefore have increased susceptibility to cancer 

development.  It is now thought that four or more individual mutations affecting critical 

cellular signalling pathways are required for tumourigenesis (Vogelstein and Kinzler, 

2004). 

1.4 Neuroblastoma  

Neuroblastoma is the most common solid extracranial cancer in children, representing 7% 

of all solid childhood tumours and 15% of childhood cancer related deaths (Hildebrandt 

and Traunecker, 2005; Maris and Matthay, 1999; Gurney et al., 1997).  In Western 

countries, the incidence of neuroblastoma is 10.9 children per million under the age of 

15 (Spix et al., 2006).  The mean age of diagnosis is 20 months, and 90% of cases are 

diagnosed by the age of 6 years (Ora and Eggert, 2011). It is an extremely 

heterogeneous disease, characterised by its diverse clinical behaviour.  Cases range 

from a relentlessly progressive highly malignant form of the disease, that responds 

poorly to treatment and usually relapses, to low risk localised tumours with excellent 

prognosis (Hildebrandt and Traunecker, 2005).  Neuroblastoma is also unique in that it 

has a high rate of spontaneous regression in infants (Castleberry, 1997).  Over 50% of 

cases are high risk and difficult to cure, with long term survival rates remaining below 

40% despite intense multimodal therapies (Figure 1.3).     
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Figure 1.2. Knudson’s two hit hypothesis model for tumour formation (Richards, 
2001). 
 

 

 

 

 

 

 

Figure 1.3. Survival of patients with neuroblastoma based on risk group.  High risk 
groups have a significantly lower survival rate than low and intermediate groups 
(Maris et al., 2007). 
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1.4.1 Neural Development 

Neuroblastoma is a cancer of the peripheral nervous system that arises from developing 

neural crest cells that go on to form the sympathetic nervous system.  The pluripotent 

sympathogonia form the sympathetic ganglia, the chromaffin cells of the adrenal 

medulla and the paraganglia (Gestblom et al., 1999).  Due to the origin of neural crest 

cells, neuroblastomas develop anywhere in the sympathetic nervous system, such as the 

paraspinal sympathetic ganglia, abdomen, neck, chest and pelvis (Maris et al., 2007; 

Castleberry, 1997).  About 65% of tumours occur in the abdomen, often the adrenal 

medulla.   

During neural development, neural crest cells migrate and differentiate into several 

lineages such as melanocytes, sensory neurons, enteric ganglion cells and sympathetic 

neurons as shown in Figure 1.4.  Bone morphogenetic proteins (BMPs) and their 

receptors are the first signalling molecules and they are responsible for inducing 

differentiation or migration of neural crest cells (Huber et al., 2002).  Differentiation 

into sympathetic neurons is linked with transient expression of basic helix-loop-helix 

(bHLH) transcription factors which include MASH1, HES1, MYCN, HIF1α and HuD, 

in addition to homeobox genes such as Phox2a and Phox2b, and also the p53 paralogue, 

p73.  Some of these genes are upregulated or amplified in aggressive neuroblastoma 

(Nakagawara and Ohira, 2004).  Terminal differentiation to mature sympathetic cells is 

strongly regulated by members of the neurotrophin family and their receptors 

(Nakagawara and Ohira, 2004; Nakagawara, 2001).  Other genetic aberrations 

associated with neuroblastoma have been mapped to specific regions or genes involved 

in regulating neuron differentiation and development, and many genes involved in these 

pathways are expressed at high levels in favourable neuroblastoma (Nakagawara, 2005; 

Nakagawara and Ohira, 2004; Nakagawara, 2001).    

MYCN is transiently expressed and defines the direction of neuronal differentiation.  It 

functions by inducing ID2 proteins which generally function as differentiation inhibitors 

and positive regulators of proliferation in neuronal development (Iavarone and Lasorella, 

2004; Lasorella et al., 2000).  The ID2 proteins inhibit the retinoblastoma protein (Rb) 

and other proteins such as HES1.  MYCN has been shown to induce ID2 in 

neuroblastoma, stimulating cell proliferation through Rb inhibition (Lasorella et al., 

2000).  
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Figure 1.4. The differentiation pathway of sympathetic neurons (Nakagawara and 
Ohira, 2004). 
 
 

1.4.2 Tumour cell biology of neuroblastoma 

Neuroblastomas belong to the ‘small blue round cell’ neoplasm of childhood, and to the 

group of peripheral neuroblastic tumours (Triche, 1986), which comprise neuroblastoma, 

ganglioneuroblastomas (nodular and intermixed) and benign ganglioneuromas shown in 

Table 1.1.   

Schwann cells are sheath cells of the central and peripheral nervous system, which 

support neurones and are derived from the neural crest (Brodeur, 2003).  They are 

involved in regulating both differentiation and apoptosis, and also play a role in 

blocking angiogenesis and cell growth (Liu et al., 2005).  The number of Schwann cells 

and the differentiation status of the neuroblastic component affect the phenotype of the 

tumour, have prognostic significance and are used to assign treatment in some subtypes 

of neuroblastoma.  
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Table 1.1.  Categories of neuroblastic tumours according to the International 
Neuroblastoma Pathology Criteria (Shimada et al., 1999).   
 
 
 

 

 

 

 

 

Figure 1.5. Neuroblastoma tumour cells with varying degrees of differentiation.  a) 
Schwann cells and ganglion cells, the latter indicated by the arrows are prominent in 
stroma-rich differentiated neuroblastoma.  b) Undifferentiated neuroblastoma consists 
of densely packed small round blue cells with little cytoplasm (Maris et al., 2007).  
 
 

1.4.3 Cell Type 

Consistent with its origins from multi-potent neural crest cells, neuroblastoma cell lines 

are composed of a number of cell types which are classified into 3 categories based on 

their morphological and biological characteristics; N-type (neurite-bearing), S-type 

(substrate-adherent) and the intermediate I-type (Table 1.2).  Cell type may have 

Tumour group Description 
Ganglioneuromas 
(Figure 1.5a) 

 Most differentiated form of neuroblastoma 

 Schwannian stroma dominant 
 Contains neurophils 

 Mostly mature ganglia cells neurones (no neuroblasts) 
 Benign 

Ganglioneuroblastoma 
(Figure 1.5b)  

 Undifferentiated tumours or partially differentiated 
tumours 

 Composed of neuroblasts (small round cells) 
 Schwannian stroma rich (intermixed) or a mixture of 

Schwannian stroma rich and Schwannian stroma poor 
(nodular). 

 Malignant and benign parts 
Neuroblastoma  Undifferentiated or poorly differentiated tumours with 

large dense nuclei 

 Little cytoplasm 
 Schwannian stroma poor 
 Malignant 

  

a) b) 



33 

 

prognostic relevance, as in response to certain morphogens they migrate along specific 

neural crest lineages (Ross et al., 2003).  Studies have found that a)  S-type cells have 

increased p21
WAF1 

and MDM2 levels following cytotoxic drug treatment compared to 

N-type cells b) N-type cells have increased apoptosis following DNA damage compared 

to S-type cells, and c) that whilst some N-type cells fail to G1 arrest, all S-type cells G1 

arrest in response to DNA damage (Carr-Wilkinson et al., 2011; Rodriguez-Lopez et al., 

2001; Isaacs et al., 1998).  I-type cells are associated with more malignant and 

progressive disease than N- and S-type (Ross et al., 1995).   

Cell Type Description 

I-type  Stem cells with morphological features of N-type and S-type 
neuroblastoma cells.  They attach equally well to both cell and substrate 
and have a round prominent nucleus. 

N-type  Neuroblastic/neuroendocrine precursors or immature neuroblasts.  
They attach better to cell than substrate and have a round prominent 
nucleus that sometimes has neurites.  The cell bodies are small and 
refractile and have a high nuclear:cytoplasmic ratio, contain neurites 
and have a high saturation density.   

 Present at various differentiation states. 
S-type  These are Schwannian/metabolic precursors that are non-neuronal.  

They adhere tightly to substrates, have no neurites, form monolayers in 
culture and have contact inhibition of growth 

 May be tumour derived. 

Table 1.2.  The 3 cell types that appear in neuroblastoma tumour cell lines.  Adapted 
from (Ross et al., 2003). 
 

1.4.4 Predisposition to neuroblastoma  

Most cases of neuroblastoma occur sporadically through somatic changes including 

allelic gains and losses, oncogene activation, tumour suppressor inactivation and 

changes in cell ploidy (Brodeur, 2003).  Only 1-2% of cases of neuroblastoma occur in 

children with an inherited predisposition to the disease (Maris and Matthay, 1999).  

Familial neuroblastomas have an autosomal dominant pattern of inheritance, with 

incomplete penetrance, arising from a germline mutation in one allele (Maris and 

Matthay, 1999).  The disease has the same diverse clinical behaviour as somatic 

neuroblastoma, ranging from aggressive progression to spontaneous regression (Maris 

et al., 1997).    

Very recently, two genes have been identified as playing a role in familial 

neuroblastoma; the PHOX2B gene and the anaplastic lymphoma kinase (ALK) gene 

(Mosse et al., 2008; Mosse et al., 2004).  The PHOX2B gene is associated with 
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differentiation of the sympathetic nervous system and the synthesis of catecholamines.   

However, somatic mutations of this gene are very rare (Raabe et al., 2008; van Limpt et 

al., 2004).  The ALK gene has been identified as predisposing to neuroblastoma, with 

germline mutations present in neuroblastoma pedigrees (Janoueix-Lerosey et al., 2008; 

Mosse et al., 2008).  ALK is a transmembrane receptor tyrosine kinase that is 

preferentially expressed in the central and peripheral nervous system (Chiarle et al., 

2008).   

1.4.5 Clinical presentation and diagnosis 

Presentation at diagnosis ranges from a painless mass, to a rapidly growing and 

expansive tumour that gives rise to life threatening symptoms.  About half of 

neuroblastoma patients present with metastatic disease, and usually have haematological 

metastases arising in the bone marrow, cortical bone, liver, skin and lymph nodes and 

less commonly, lungs and central nervous system (Friedman and Castleberry, 2007).  

Symptoms may be non-specific, but include fever, pallor, anorexia, bone pain, and 

retro-orbital and orbital metastases.  Spontaneously regressing disease makes up around 

5% of detected cases, and the tumours are usually small and localised with metastases 

usually occurring in the bone marrow, liver and skin (4s disease) (Maris et al., 2007; 

Brodeur, 2003).   

A diagnosis of neuroblastoma is based on both an increase in catecholamines and 

catecholamine metabolites in urine and serum, and histological diagnosis of tumour 

specimen or bone marrow aspirate, with or without immunohistochemistry (Brodeur et 

al., 1993).  A 
123I

I-MIBG scan is often carried out to identify potential metastases.   

1.4.6 Genetics of sporadic neuroblastoma 

A number of genetic aberrations occur in neuroblastoma, some of which have 

prognostic significance and impact on disease severity.  Common cytogenetic 

alterations include loss of chromosome 1p, deletions in chromosomes 2p, 3p, 4p, 9q, 

11q, 14q, gain of 17q and MYCN-amplification.  Allelic imbalances have also been 

described at 5q, 9p and 19q (Caren et al., 2010; Attiyeh et al., 2005; Schwab et al., 2003; 

Caron et al., 2001; Plantaz et al., 2001; Bown et al., 1999; Schleiermacher et al., 1994).  

At regions of genetic loss and gain, there is likely to be oncogene activation and/or 

tumour suppressor inactivation.  Recently, high-resolution array CGH has allowed 

comprehensive examination of aberrations in neuroblastoma tumours and cell lines 

(Janoueix-Lerosey et al., 2009; Carr et al., 2007; Michels et al., 2007; Mosse et al., 2005; 
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Chen et al., 2004).  It is a combination of these genetic abnormalities rather than a 

single one that has been shown to be prognostic, and together they are called segmental 

chromosomal aberrations.  

1.4.6.1 MYCN amplification 

The MYCN oncogene is located on the distal short arm of chromosome 2, at locus 2p24 

(Schwab et al., 1983).  It is amplified in 22-30% of primary neuroblastomas, usually 

with 50-500 copies per cell as shown in Figure 1.6, with correspondingly high protein 

levels in most cases (Seeger et al., 1988; Brodeur et al., 1984).  Amplification occurs in 

the form of homogeneously staining regions (HSRs) at random chromosome regions, or 

as double minute chromatin bodies (DMs), followed by integration as HSRs (Kohl et al., 

1983).   

MYCN-amplification is a major marker of adverse prognosis, and is strongly associated 

with rapidly progressive advanced stage disease (see Section 1.5). It is often associated 

with other genetic abnormalities and most MYCN-amplified tumours have either allelic 

loss of 1p or 17q gain, or both (Bown et al., 1999; Fong et al., 1989).  Some MYCN-

amplified tumours have non-syntenic co-amplification of MDM2 (Corvi et al., 1995b).   

 

 

 

 

 

 

 

Figure 1.6. FISH detection of MYCN-amplification in neuroblastoma cells. 
 

1.4.6.2 1p deletion 

LOH or deletion of the short arm of chromosome 1 (1p) is significantly associated with 

aggressive disease, and occurs in 23-35% of neuroblastoma (Maris et al., 2000; Caron et 

al., 1996).  1p36 deletion was predictive of survival in multivariate analyses, and it is 

likely there are one or more TSGs present in this region, including p73.  The most 
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common cause of 1p loss is the translocation and unbalanced gain of 17q (Bown et al., 

2001).  In addition, 62% of tumours with 1p deletion have MYCN-amplification and 1p 

deletion is associated with di- or tetraploidy (Bown, 2001; Maris et al., 1995; Fong et al., 

1989).  

Some studies found increased relapsed rates were associated with 1p36 deletion in low 

and intermediate risk neuroblastoma.  However, the use of more intensive treatment was 

successful in treating these patients (Cohn et al., 2009).  

1.4.6.3 Gain of 17q 

An unbalanced gain of 17q occurs in more than 50% of neuroblastomas and is strongly 

indicative of poor prognosis, whilst whole chromosome gains of chromosome 17 are 

seen in 40% of triploid cases and may be favourable (Bown et al., 2001; Bader et al., 

1991).  The prognostic significance of 17q gain is not strong enough, nor independent 

enough to be included in clinical trials on its own.  Survivin is located at 17q25, and is a 

member of the Inhibitor of Apoptosis Protein (IAP) family.  In neuroblastoma, Survivin 

expression is associated with unfavourable histology and aggressive tumours (Islam et 

al., 2000; Adida et al., 1998).   

1.4.6.4 Loss of 11q 

Loss at 11q23 occurs in 26-44% of neuroblastomas (Maris et al., 2001; Mertens et al., 

1997) and is associated with unfavourable prognosis in non-MYCN-amplified tumours 

(Attiyeh et al., 2005; Spitz et al., 2003).  It inversely correlates with MYCN-

amplification.  Allelic loss of 11q is an independent marker of decreased event-free 

survival in all risk groups (Canete et al., 2009; Simon et al., 2006; Spitz et al., 2003). 

1.4.6.5 Ploidy 

Gains and losses of one or more chromosomes of the diploid genome occur regularly in 

neuroblastoma.  Near diploid lesions contribute a risk factor for patients with metastatic 

disease between 12 and 18 months of age without MYCN-amplification (George et al., 

2005; Bowman et al., 1997; Look et al., 1991).  Localised tumours with MYCN-

amplification and hyperploidy are associated with better outcome (Bagatell et al., 2009; 

Schneiderman et al., 2008). 

1.4.6.6 ALK mutations 

Somatic and activating mutations in ALK have been identified in 8% of neuroblastomas 

(Chen et al., 2008; George et al., 2008; Janoueix-Lerosey et al., 2008; Mosse et al., 
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2008).  The link between aberrations and tumour biology have not been fully identified 

but as of yet, no consistent correlations between ALK mutations and aggressive disease 

have been identified.  

1.4.6.7 Trk receptor tyrosine kinases 

Neurotrophins and their receptors play roles in regulating both differentiation and 

survival of neural cells during development, and are implicated in the pathogenesis of 

neuroblastoma (reviewed by (Schramm et al., 2005)).  Neurotrophin function is 

mediated through the high affinity TrK family of tyrosine kinase receptors; TrKA, 

TrKB and TrKC.  TrKA and TrKC expression are associated with favourable 

neuroblastoma and good prognosis whereas TrKB expression is associated with 

unfavourable neuroblastoma and MYCN-amplification (Brodeur et al., 1997; 

Nakagawara et al., 1994; Nakagawara et al., 1993; Nakagawara et al., 1992).  

1.4.6.8 Conceptual model of neuroblastoma development 

A model of biological and genetic features which characterise the development of 

neuroblastomas into low and high risk tumours is shown in Figure 1.7.  This model 

assumes all neuroblastomas have a common precursor and that a commitment defining 

risk group is made shortly after tumour initiation (Kushner and Cheung, 2005).  

 

 

 

 

 

 

 

 

Figure 1.7.  A proposed model for the biological and genetic abnormalities involved 
in neuroblastoma development, and risk group categorisation (Kushner and Cheung, 
2005).  
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1.4.7 Risk stratification and staging 

In recent years, survival rates and patient outcome for low and intermediate risk groups 

have improved dramatically due to tailoring of treatment to risk group, resulting in less 

intensive treatment (Baker et al., 2010; De Bernardi et al., 2009; Modak et al., 2009; 

Hero et al., 2008).  However, survival rates for patients with high-risk disease remain 

below 40% despite intense multimodal treatment (Haupt et al., 2010; Pearson et al., 

2008; Maris et al., 2007).  Survivors of high risk disease often relapse and become 

resistant to conventional chemotherapeutic drugs, or have complications from the 

intense therapy later in life (Perwein et al., 2011; Laverdiere et al., 2009).  

Genetic factors, tumour histology and stage all contribute to the likelihood of disease 

progression and a system is needed to categorise patients into different groups to allow 

for treatment to be tailored to tumour behaviour (Maris and Matthay, 1999).   

The International Neuroblastoma Staging System (INSS), developed by Brodeur et al 

classifies patients into stages 1-4s, and is shown in Table 1.3 (Hildebrandt and 

Traunecker, 2005; Brodeur, 2003).  The INSS takes into account the local and distant 

extent of the disease, and the resectabiliy of the tumour, but not any genetic or 

biochemical markers.  

The International Neuroblastoma Pathology Classification (INPC) is a histopathological 

classification system based on age, the presence and absence of Schwannian stroma, the 

degree of differentiation and the mitosis-karyorrhexis index (Shimada et al., 1999).  

Over the past two decades, INSS stage, patient age and amplification of MYCN have 

been used as the 3 major prognostic markers for treatment stratification in clinical trials 

worldwide but it is possible that additional prognostic markers will help.  To make risk 

grouping uniform worldwide and to establish an international consensus approach for 

current pretreatment risk stratification, the International Neuroblastoma Risk Group 

(INRG) was created by the international experts and defines the risk groups as shown in 

Table 1.4 (Cohn et al., 2009). The INSS and the INPC form the basis of the INRG 

which incorporates the basic histopathological categories and tumour cell differentiation 

to achieve a global stratification system, and successfully distinguishes patients with 

highly metastatic disease requiring aggressive multimodal therapy from those who may 

be cured from just surgery or observation alone.  Thirteen variables were analysed in 

8800 patients diagnosed between 1990 and 2002 and a schema developed with 16 

pretreatment designations and the age cut-off was increased to 18 months (Moroz et al., 
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2011; Cohn et al., 2009; London et al., 2005).  The INRG uses radiological 

characteristics of the primary tumour to allow successful surgery, and predicts the 

extent of the disease through bone marrow morphology and imaging studies (Maris et 

al., 2007).   

 

Table 1.3.  INSS staging of neuroblastoma (Maris et al., 2007; Hildebrandt and 
Traunecker, 2005). 
 
 

1.4.8 Current treatment (reviewed by (Ora and Eggert, 2011) and 

(Tweddle, 2009)) 

1. Observation. Most stage 4s neuroblastomas spontaneously regress, therefore patients 

without symptoms or favourable prognostic markers are observed closely.  In a study 

using the ‘wait-and-see’ approach for these patients, 47% of tumours spontaneously 

regressed (Hero et al., 2008), and in another study 17 of 53 required treatment (Tanaka 

et al., 2010).   

Stage Description Incidence 

1 Localised with complete gross excision with or without microscopic 
residual disease; representative ipsilateral lymph nodes negative 
for tumour microscopically (nodes attached to and removed with 
the primary tumour could be positive) 

5% 
 
 

2A Localised tumour with or without complete gross excision, with 
ipsilateral non-adherent lymph nodes negative for tumour 
microscopy 

10% 
 
 

2B Localised tumour with or without complete gross excision, with 
ipsilateral non-adherent lymph nodes positive for tumour 
microscopy.  Enlarged contralateral lymph nodes should be 
negative microscopically. 

3 Unresectable unilateral tumour infiltrating across the midline, with 
or without regional lymph node involvement; or localised 
unilateral tumour with contralateral regional lymph node 
involvement; or midline tumour with bilateral extension by 
infiltration (unresectable) or by lymph node involvement.  

20% 

4 Any primary tumour with dissemination to distant lymph nodes, 
bone, bone marrow, liver, skin, or other organs (except as defined 
by 4S) 
Distant metastatic disease. 

60% 
 

4S Localised primary tumour in infants younger than 1 year (as 
defined for stages 1, 2A, or 2B) with dissemination limited to skin, 
liver or bone marrow (<10% malignant cells) 

5% 
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2. Surgery. Surgery is the main treatment in localised disease, and is sometimes 

performed after chemotherapy to shrink tumour size. 

3. Chemotherapy.  The majority of patients present with metastases at diagnosis and 

require chemotherapy. Chemotherapeutic agents used in the treatment of neuroblastoma 

include alkylating agents such as cyclophosphamide, platinum analogues such as 

cisplatin and carboplatin, vinca-alkoids such as vincristine, epipodophyllotoxins such as 

etoposide and anthracyclines such as doxorubicin.  These compounds have well 

established activities and efficacies against neuroblastoma.  Clinical trials are currently 

in place with combination therapies involving topotecan, irinotecan and temozolomide.  

The chemotherapy course in high risk disease is as follows: 

 

Table 1.4. The International Neuroblastoma Risk Group developed by the 
international experts (Cohn et al., 2009). GN – ganglioneuroma, GNB – 
ganglioneuroblastoma. 

INRG 
stage 

Age 
(months) 

Histologic 
Category 

Grade of Tumour 
Differentiation 

MYCN 11q 
Aberration 

Ploidy Pretreatment 
Risk Group 

L1/L2  GN maturing; 
GNB intermixed 

    Very Low 

L1  Any, except GN 
maturing or GNB 
intermixed 
 

 Not 
amp 
 

  Very Low 

Amp 
 

  High 

L2 <18 
 
 

Any, except GN 
maturing or GNB 
intermixed 
 

 Not 
amp 

No 
 

 

 

Low 

 

Yes  Intermediate 

≥18 
 

GNB nodular; 
neuroblastoma 

Differentiating Not 
amp 

No   

Yes  Low 

Poorly 
differentiated or 
undifferentiated 

Not 
amp 

  Intermediate 

 Amp   High 

M <18  Any Not 
amp 

 Hyper-
diploid 

Low 

<12  Any Not 
amp 

 Diploid Intermediate 

12 to <18   Not 
amp 

 Diploid Intermediate 

<18  Any Amp   High 

≥18      High 

MS <18  Favourable 
Any 
Unfavourable 
Any 

Not 
amp 
 

No  Very Low 

Yes  High 

Amp   High 
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Dose intensive induction, aimed at reducing tumour burden.  This involves 

treatment with combinations of chemotherapeutic drugs, used at high doses in high risk 

patients.  Topotecan is used if initial treatment response is insufficient. 

Consolidation treatment to remove residual tumour and metastases.  High dose 

myeloablative chemotherapy with combinations of busulfan, melphalan, carboplatin and 

etoposide.  Autologous stem cell rescue is being trialled in high risk patients and has 

improved patient outcome (Matthay et al., 2009; Matthay et al., 1999). 

Maintenance treatment to eliminate minimal residual disease (MRD).  Often local 

or systemic relapses occur due to MRD.  To eliminate MRD, differentiation inducing 

therapies are used such as retinoid derivatives (e.g. 13-cis-retinoic acid) and 

immunotherapy with monoclonal antibodies and cytokines such as IL-2.  

Disialoganglioside (GD2) is a surface glycolipid antigen present on neuroblastoma cells 

and normal neurons but does not affect neurons in normal tissues that are protected by 

the blood-brain barrier.  Recent trials with combined GD2, IL-2 and GM-CSF have 

improved the 2-year event free survival of patients with high risk neuroblastoma from 

46% to 66% (Simon et al., 2011; Yu et al., 2010; Gilman et al., 2009; Klingebiel et al., 

1998). 

4. Radiotherapy.  Neuroblastomas are radiosensitive but radiotherapy is not usually 

used in low and intermediate risk patients, unless the disease progresses.  In high risk 

patients, radiotherapy is usually given at the site of tumour during the consolidation 

phase of treatment.   

1.4.8.1 Treatment of recurrent disease 

For relapse from low and intermediate risk disease, second resection may be performed, 

with or without moderately intensive chemotherapy. 

Relapse of high risk disease is extremely difficult to treat, and there are no treatment 

regimes that can offer a long-term cure (Garaventa et al., 2009).  Treatment of high risk 

disease is also associated with dose-related toxicity (Laverdiere et al., 2005). 

1.5 The MYCN oncogene 

The MYCN gene encodes a 60-63kDa nuclear phosphoprotein (Schwab et al., 1983).  In 

common with all MYC family members, the N-terminus contains the transcriptional 
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activation domain and a MYC box, and the C-terminal domain contains a basic helix-

loop-helix/leucine zipper (bHLH/LZ) with a role in protein dimerisation and induction 

of sequence specific DNA binding and transcriptional regulation (Wenzel and Schwab, 

1995).  Like other members of the MYC family, MYCN is a transcription factor that 

plays a critical role in a wide range of cellular functions including cell growth and 

proliferation, differentiation and apoptosis (Brodeur, 2003; Galderisi et al., 1999).   

MYCN and MYCC share 30% homology, and whereas MYCC is expressed at all stages 

of development, MYCN is only expressed during early embryogenesis and 

organogenesis in undifferentiated cells of the nervous system, lung, heart, kidney and 

spleen (Hurlin, 2005; Slamon et al., 1986). More is known about MYCC than MYCN 

but knockout of either results in embryonic lethality (Charron et al., 1992). 

1.5.1 MYCN and embryogenesis 

Expression of MYCN is essential during normal neural crest development, but is 

downregulated as tissues terminally differentiate (Thomas et al., 2004). MYCN is 

expressed at high levels during embryogenesis, and is expressed in migrating neural 

crest progenitor cells where expression is restricted to cells undergoing neuronal 

differentiation (Edsjo et al., 2004; Galderisi et al., 2003).   MYCN may accumulate in 

the nucleus to regulate proliferation and differentiation, but translocates to the 

cytoplasm when no longer required (Galderisi et al., 2003).  MYCN knockout mice had 

a reduced number of neurons in sympathetic ganglia, and abnormalities in 

organogenesis, insufficient proliferation and did not develop into an embryo (Hurlin, 

2005; Sawai et al., 1993; Charron et al., 1992; Stanton et al., 1992).  Amplification of 

MYCN disrupts cell cycle exit, and the terminal differentiation that occurs during 

normal neuroblast development (Grimmer and Weiss, 2006). 

1.5.2 MYCN in neuroblastoma 

MYCN is frequently amplified in advanced stage neuroblastoma, and requires 

aggressive treatment despite age or stage (Cohn and Tweddle, 2004; Brodeur, 2003; 

Seeger et al., 1985; Brodeur et al., 1984).  Infants under 18 months with MYCN-

amplified tumours have an event-free survival of 26% compared to 83% for infant stage 

4 patients without MYCN-amplification (Cohn et al., 2009).  The status of MYCN is 

routinely used in clinical practice to assign treatment.  
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The biology of high risk neuroblastoma is influenced by the subsequent overexpression 

of MYCN oncoprotein, and its targets include telomerase and those functioning in 

ribosome biogenesis and protein synthesis (Boon et al., 2001; Mac et al., 2000). When 

MYCN expression is deregulated through overexpression or amplification, the result is 

autocrine growth factor activity and uncontrollable cell proliferation (Schweigerer et al., 

1990), enhanced tumour cell motility and metastases and invasion (Goodman et al., 

1997), genomic instability through disruption of centrosome replication (Slack et al., 

2007; Sugihara et al., 2004), reduced cell adhesion (Tanaka and Fukuzawa, 2008), 

diminished expression of angiogenic inhibitors (Hatzi et al., 2002; Fotsis et al., 1999) 

and promotion of immune escape in neuroblastoma by inhibition of the chemoattraction 

of natural killer T cells (Song et al., 2007).  Increased MYCN expression correlates 

directly with the growth potential of neuroblastoma cells and MYCN co-operates to 

transform primary cells, and to transform established cells to malignancy (Negroni et al., 

1991; Schweigerer et al., 1990).  The role of MYCN in tumour formation is highlighted 

in transgenic mice, where targeted expression of MYCN in the neuroectoderm resulted 

in neuroblastoma development several months after birth with a phenotype very similar 

to human neuroblastoma (Weiss et al., 1997).  The pro-apoptotic function of MYCN 

was exploited when induced MYCN expression in non-MYCN-amplified cell lines 

resulted in apoptosis and growth suppression (Kang et al., 2006; Nesbit et al., 1999).  

Caspase-3 action was activated and Bcl-XL and Bcl-2 levels reduced, activating BAX 

and sensitising cells to apoptosis from genotoxic stress (Cole and McMahon, 1999).   

1.5.3 MYC-mediated transcription and transrepression 

MYC proteins can transcriptionally activate and repress many target genes.  Many 

MYCC target genes have been identified, as described at 

http://mycancergene.org/site/mycTargetDB.asp (Zeller et al., 2003), but less is known 

about MYCN.  

MYC proteins carry out their transcriptional regulatory function by forming 

heterodimers with MAX, a ubiquitously expressed nuclear phosphoprotein, through 

their bHLH-LZ domain.  MYC-MAX dimers bind DNA at E-box sequences in the 

promoters of target genes where transcriptional co-factors are then recruited (Figure 1.8).  

The canonical E-box is 5’ CACTGT, and non-canonical E-boxes are 5’ CANNTG.  

Surprisingly, almost 40% of MYCC target genes do not contain E-boxes (Zeller et al., 

2006), and it is suggested that a better indicator of MYC binding sites is detection of 

histone H3 – lysine 4 methylation (Guccione et al., 2006). 

http://mycancergene.org/site/mycTargetDB.asp
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MYC family members are highly regulated, and for that reason have a short half-life.  

MAX on the other hand is constitutively expressed, has a long half-life and is in excess 

to MYC.  The formation of MYC-MAX dimers is therefore limited by the levels of 

MYC (reviewed by (Grandori et al., 2000)).  MAX also acts as a cofactor for a family of 

MYC antagonists; Mad, Mnt and Mxi1 (reviewed by (Adhikary and Eilers, 2005)).  In 

quiescent cells, MAX is present at high levels and dimerises with both itself and MYC 

antagonists to repress transcription through binding to E-box sequences at the same site 

that MYC-MAX dimers initiate transcription (Nikiforov et al., 2003; Amati et al., 1992) 

(Figure 1.8).  An increase in MYCN through cell cycle entry or as a result of 

amplification in neuroblastic tumours results in increased levels of MYC-MAX dimers, 

which dominate in proliferating cells (Adhikary and Eilers, 2005).    

MYCN also interacts with some proteins via the C-terminal domain, including the N-

MYC interactor (NMI), transformation/transcription associated protein (TRRAP) and 

TBP interacting protein 49 (TIP49) (reviewed by (Schwab, 2004)).  MYCC can also 

recruit DNA methyltransferases to promoter sequences resulting in methylation and 

repression of target genes (Brenner et al., 2005).   

MYC mediated transcriptional repression is independent of E-boxes, and involves 

recruitment of MYC to target gene promoters by Miz-1, blocking the recruitment of 

transcription factors as occurs for repression of p21
WAF1

 (Seoane et al., 2002; Staller et 

al., 2001). 

 

 

 

 

 

 

 

Figure 1.8.  MAX and its binding partners, including MYCN, and their role in the 
repression and activation of target genes through binding of E-box sequences (Maris 
and Matthay, 1999).   
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1.5.4 The MYCN paradox 

MYCN has a dual function in driving both cellular proliferation, and inducing apoptosis.  

MYC induced apoptosis may be an important mechanism during embryonic 

development, or as a failsafe mechanism to prevent abnormally elevated levels of MYC 

(Nilsson and Cleveland, 2003). 

Ectopic MYCN expression increases DNA synthesis and proliferation, and drives cell 

cycle progression (Lutz et al., 1996) and also potently sensitises neuroblastoma cells to 

enhanced apoptosis in response to a variety of stimuli including TNF-related apoptosis-

inducing ligand (TRAIL), chemotherapy, and irradiation (Petroni et al., 2011; Bell et al., 

2006; Cui et al., 2005; Fulda and Debatin, 2004; Fulda et al., 2000; Lutz et al., 1998).  

To provide a selective advantage for the tumour, defects in apoptotic pathways are 

proposed as a mechanism by which MYCN-amplified neuroblastoma cells evade 

MYCN-induced apoptosis (Hogarty, 2003). 

1.5.4.1 Regulation of genes associated with cell cycle progression  

MYCN affects the G1 checkpoint through p53-dependent and p53-independent 

mechanisms (Bell et al., 2007), and several genes are involved in these processes: 

MDM2. MDM2 was identified as a direct transcriptional target of MYCN (Slack et al., 

2005a), which binds to the P2 region of the MDM2 promoter.  Overexpression of 

MDM2 as a result of MYCN-amplification may be a mechanism by which MYCN-

amplified tumours inhibit p53 function and avoid apoptosis (Slack et al., 2005b).  

MYCN expression in the regulatable SHEP Tet21N system caused centrosome 

amplification, and MDM2 plays a functional role in MYCN-mediated centrosome 

amplification (Slack et al., 2007; Sugihara et al., 2004). 

ODC. Ornithine decarboxylase (ODC) is located at 2p24-25 and is co-amplified with 

MYCN in 19% of MYCN-amplified neuroblastomas (Hogarty et al., 2008).  It is the rate 

limiting enzyme in the polyamine biosynthesis pathway and is also a direct 

transcriptional target of MYCN.  Difluoromethyl ornithine (DFMO), the ODC suicide 

inhibitor, slows growth in MYCN-amplified neuroblastomas, and increases p21
WAF1

, and 

the G1 population of cells (Rounbehler et al., 2009).  TH-MYCN transgenic mice 

treated with DFMO have a significantly longer survival than control mice (Rounbehler 

et al., 2009; Hogarty et al., 2008). 
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SKP2. S-phase associated kinase 2 (SKP2) is part of a ubiquitin ligase complex, and 

acts at the G1-S checkpoint (Nakayama and Nakayama, 2006).  Its primary targets for 

degradation are negative regulators of the cell cycle, including p21
WAF1

 and p27
KIP1

.  

Following MYCN knockdown, SKP2 levels are decreased, alongside a reduction in 

TP53INP, a protein that has been shown to cause a G1 arrest and apoptosis, and 

increases p53-dependent upregulation of p21
WAF1

 (Bell et al., 2007; Tomasini et al., 

2005; Tomasini et al., 2003). 

DKK3. Dickkopf 3 (DKK3) is a member of the DKK family of secreted WNT 

antagonists, and is a tumour suppressor in various cancer types (Kuphal et al., 2006; 

Hoang et al., 2004; Hsieh et al., 2004).  MYCN represses DKK3 indirectly, and ectopic 

expression of DKK3 in neuroblastoma inhibits cell proliferation (Koppen et al., 2008; 

Bell et al., 2007). 

ID2. ID2 is an inhibitor of the Rb protein which inhibits differentiation and promotes 

cell proliferation.  It antagonises the growth suppressive functions p16
INK4a

 by binding 

hypo RB and releasing E2F which then promotes transcription of S-phase proteins 

driving the cell through the cell cycle and enhancing cell proliferation (Lasorella et al., 

2002; Lasorella et al., 2001; Lasorella et al., 2000).  The link between MYCN and ID2 

in neuroblastoma remains unclear. 

E2F1.  E2F proteins are important regulators of cell cycle progression and are 

negatively regulated by the Rb pathway.  E2F proteins directly activate and postiviely 

regulate MYCN in neuroblastoma, in a cell cycle specific manner (Strieder and Lutz, 

2003). In addition, E2F1 is a direct downstream target of MYCC, although this has not 

been confirmed for MYCN (Fernandez et al., 2003).   

1.5.4.2 MYCN and cell cycle arrest 

MYCN-amplified and non-MYCN-amplified cells respond differently to DNA damage 

(Bell et al., 2006; Tweddle et al., 2001b).  MYCN-amplification is associated with 

reduced expression of p21
WAF1

 and hypoRb, and failure to G1 arrest.  MYCN may not 

directly repress p21
WAF1

, but may act via H-TWIST to impair p53 function following 

irradiation.  H-TWIST and MYCN expression strongly correlate and H-TWIST has 

been reported to attenuate p53 function (Valsesia-Wittmann et al., 2004).  Recently we 

have shown that it is a combination of MYCN and neuroblastoma cell type (N and S) 

which determine the response to DNA damage (Carr-Wilkinson et al., 2011). 
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1.5.4.3 Regulation of genes associated with apoptosis 

MYCN plays a role in inducing apoptosis.  There is a high mitosis-karyorrhexis index in 

MYCN-amplified tumours (Saha et al., 2010; Altungoz et al., 2007; Goto et al., 2001; 

Shimada et al., 1999; Shimada et al., 1995) and MYCN transgenic mouse tumours 

(Moore et al., 2008).  In the MYCN transgenic mouse model, tangible body 

macrophages were detected, reflecting higher levels of apoptosis (Moore et al., 2008). 

In addition, forced expression of MYCN in non-MYCN-amplified neuroblastoma cells 

induced apoptosis (Tang et al., 2006a). 

Mechanisms by which MYC family members induce apoptosis are not fully understood 

(Adhikary and Eilers, 2005).  MYCC was shown to induce apoptosis (reviewed by 

(Meyer et al., 2006)) via CD96/Fas (Hueber et al., 1997), TNF (Klefstrom et al., 1994) 

and TRAIL (van Noesel et al., 2003) receptor signalling, direct activation of BAX 

(Mitchell et al., 2000), cytochrome C release (Juin et al., 1999) and induction of pro-

apoptotic BIM (Egle et al., 2004).  Other MYC regulated proteins involved in the 

modulation of apoptosis include: 

p53.  The p53 promoter contains a non-canonical E-box and is a direct transcriptional 

target of MYCN (Chen et al., 2010b).  p53 induces cell cycle arrest and apoptosis (see 

Section 1.6), and MYCN-induced p53 transcription may be an important mechanism by 

which MYCN sensitises cells to apoptosis.   

p14
ARF

. MYCC transcriptionally activates p14
ARF

, a protein involved in activating p53 

in response to oncogenic stress (Gregory et al., 2005; Zindy et al., 1998), and also 

induces apoptosis via p53-independent mechanisms upon MYCC overexpression (Qi et 

al., 2004).  However, there have been no studies reporting that MYCN sensitises cells to 

apoptosis by p14
ARF

.  In addition p14
ARF

 binds directly to MYCC/N, and may repress 

expression of anti-apoptotic genes through inhibition of transcriptional activity and 

sequestration in the nucleolus (Amente et al., 2007; Qi et al., 2004).   

H-TWIST.  H-TWIST is an oncogenic transcription factor with anti-apoptotic activity 

that co-operates with MYCN and is often overexpressed in MYCN-amplified 

neuroblastoma.  H-TWIST may inhibit the p14
ARF

-p53 pathway (Valsesia-Wittmann et 

al., 2004).   

PUMA.  PUMA is a BH3-only, BCL2 family member which is a direct target gene of 

p53, and is a principle mediator of p53-induced apoptosis via the mitochondrial 
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pathway (Jeffers et al., 2003).  PUMA is required for the p53-dependent apoptotic 

response to c-MYC (Jeffers et al., 2003; Yu and Zhang, 2003).  MYCN may sensitise 

cells to apoptosis via p53-mediated upregulation of PUMA.   In MYCN-amplified cell 

lines increased levels of apoptosis have been reported (Bell et al., 2006) and may be 

mediated via pro-apoptotic proteins PUMA and PIG3 as has been described for MYCC 

(Seoane et al., 2002). 

BCL2. MYCC induces a pathway that indirectly suppresses BCL-XL or BCL-2 anti-

apoptotic function and expression and activates BAX (Eischen et al., 2001). MYCN is 

likely to have a similar function.  We have previously reported an inverse correlation 

between BCL2 and MYCN in neuroblastoma (Tweddle, 2002). 

In addition MYCN helps to determine the choice between the cytostatic and apoptotic 

response to p53 induction.  MYCN is directly recruited to the p21
WAF1

 promoter by 

Miz-1, which blocks p21
WAF1

 induction.  Therefore MYCN switches the response in 

favour of apoptosis (Strieder and Lutz, 2003). 

1.5.4.4 Evasion of apoptosis 

High levels of MDM2 in MYCN-amplified neuroblastoma are proposed as a mechanism 

by which neuroblastomas evade apoptosis.  In addition, Survivin is expressed at 

significantly higher levels in MYCN-amplified cells (Miller et al., 2006), and BIN-1, a 

MYC interacting adaptor protein involved in inhibition of MYC-mediated 

transformation and apoptosis, is downregulated in MYCN-amplified cells (Tajiri et al., 

2003; Hogarty et al., 2000).  Caspase 8 is sometimes deleted or silenced though 

hypermethylation, and is associated with MYCN-amplification (Teitz et al., 2000), but 

the effects of this are inconsistent (Fulda et al., 2006; Casciano et al., 2004; Iolascon et 

al., 2003).   

1.6 The p53 tumour suppressor protein 

The p53 tumour suppressor plays a critical role in maintaining genomic integrity within 

a cell and is the central component in a complex network.  The importance of p53 is 

demonstrated by its absence or mutation in over 50% of human cancers. 

1.6.1 p53 function 

p53 is a transcription factor that regulates an array of different genes, encoding both 

proteins and microRNAs, and efficiently inhibits cell proliferation.  As shown in Figure 
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1.9, p53 functions as a key integrator within the cell, responding to a number of diverse 

stress signals and translating them into different cellular outcomes which include cell 

cycle arrest, apoptosis, block in DNA synthesis, DNA repair, senescence, and 

differentiation  (Haupt et al., 2003; Vogelstein et al., 2000).  Less well-studied 

responses include autophagy (Amaravadi and Thompson, 2007; Crighton et al., 2006), 

cell migration (Roger et al., 2006), embryo implantation (Hu et al., 2007b), regulation 

of metabolism (Bensaad et al., 2006; Matoba et al., 2006) and angiogenesis (Teodoro et 

al., 2006).  In total p53 can transactivate and transrepress over 2500 genes to trigger 

antiproliferative programs (Zilfou and Lowe, 2009; Lohrum and Vousden, 1999; 

Agarwal et al., 1998; Giaccia and Kastan, 1998), and there are many other genes whose 

expression is indirectly affected. 

Under normal cellular conditions, p53 levels are tightly regulated and remain low.  

Upon activation by cellular stress, the protein accumulates in the nucleus where it binds 

DNA response elements in a sequence specific tetrameric form, or as a dimer of dimers, 

to two cognate half sites in DNA (Kitayner et al., 2006; Oren, 1999; Agarwal et al., 

1998).  In addition to upregulated translation, the p53 half-life increases up to 5 times 

(usually 30 minutes) (Giaccia and Kastan, 1998).  The manner in which p53 responds to 

different stresses, and decides on its biological response is strongly dependent on the 

tissue and cell type, in addition to the strength and nature of the stress (including type of 

damage and duration of stress signal), and the environment of the cell (reviewed in 

(Murray-Zmijewski et al., 2008)).  A simple model is proposed that assumes low levels 

of stress and reparable damage results in a survival response, whereas high levels of 

sustained stress and irreparable damage results in cell death or senescence (Vousden and 

Prives, 2009).  In addition, there are DNA-sequence specific differences in the contacts 

made between the p53 protein surfaces, which could be involved in determining the 

level of induction of a specific target gene (Kitayner et al., 2006).  

Many models of p53 function assume apoptosis is key to eliminating cancer cells, but 

there is growing evidence that other functions of p53 are equally important in 

preventing tumour formation.  p53 can retain tumour suppressive function even in the 

absence of a robust apoptotic response.  Mice with a p53 mutation preventing apoptosis 

but maintaining other p53 functions were reasonably well protected from tumour 

development (Liu et al., 2004a). 
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Figure 1.9. p53 reacts to a variety of stress signals and initiates a number of 
responses including apoptosis and cell cycle arrest. 
  

1.6.2 The structure of p53 

p53 is a 53kDa nuclear phosphoprotein, encoded by the TP53 gene which spans 11 

exons and is located at the 17p13.1 locus on the short arm of chromosome 17 (reviewed 

by (Mercer et al., 2007)).  The structure of p53 and some common modification sites 

associated with particular responses are shown in Figure 1.10.  The protein contains 4 

principle functional domains: 

1. The N-terminal transactivation domain with a nuclear export signal 

(residues 1-42).  At the N-terminus there are two highly acidic transactivation 

domains; TA1, and TA2 (Candau et al., 1997).  Each has distinct interacting 

partners and exhibit independent transactivation activity (Jenkins et al., 2009).  

Together, they mediate the interaction of p53 with several general transcription 

factors including TBP, TAF1, TFIIB and TFIIH, to stimulate gene transcription 

(Laptenko and Prives, 2006; Espinosa et al., 2003). 

2. A proline-rich domain containing 5 PXXP motifs which allow for rapid 

protein-protein interaction (residues 61-94).  This region also plays a role in 

p53 stability, regulated by MDM2 (Sakamuro et al., 1997). 

3. A core DNA binding domain (residues 102-292).  The core domain comprises 

of an immunoglobulin scaffold with a DNA binding surface formed by a loop-
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sheet-helix motif, and two β-turns, tethered by a single zinc atom (Cho et al., 

1994).  The core domain exhibits sequence specific DNA binding activity within 

the nucleus and also has a cytoplasmic role in Bax activation, leading to the 

permeabilisation of the outer mitochondrial membrane and initiation of the 

caspase cascade.  80% of mutations occur in the core domain, and affect cell fate 

by regulating DNA binding activity and interfering with protein interactions.   

4. A C-terminus containing a tetramerisation domain (residues 324-355) 

flanked by nuclear localisation signals and a strongly basic regulatory 

domain (residues 363-393) (Mercer et al., 2007).  This tetramerisation domain 

mediates intermolecular formation of four p53 monomers to form a tightly 

packed tetramer, which is biologically active and efficiently binds to p53 

response elements.  The regulatory domain is subject to extensive post-

translational modifications, and is implicated in both p53 transactivation and 

DNA binding activities (Ho et al., 2006; An et al., 2004; McKinney et al., 2004; 

Merrill et al., 1999).  

 

 

 

 

 

 

 

Figure 1.10. The structure of the 53kDa p53 protein, and some key residues subject 
to modification and their subsequent responses (Vousden and Prives, 2009). 
 

1.6.3 p53-mediated cell cycle arrest 

1.6.3.1 The cell cycle 

The cell cycle is a series of events that lead to the division and replication of a cell and 

has several distinct phases (shown in Figure 1.11): 
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1. Gap 0 (G0) phase.  Both quiescent and senescent cells enter the G0 ‘resting’ 

phase, when they are no longer dividing.  This is common in fully differentiated 

cells such as neurones. 

2. Gap 1 (G1) phase.  G1 phase, also known as ‘growth phase’ is when cells 

increase in size and synthesise enzymes required for S phase.  Here the G1 

checkpoint control mechanism ensures everything is ready for DNA synthesis. 

3. Synthesis (S) phase. DNA replication occurs during S phase, and the amount of 

DNA in the cell doubles, though the ploidy of the cell remains the same. 

4. Gap 2 (G2) phase. During the gap between S and M phase, significant 

biosynthesis occurs, involving the production of microtubules required for 

mitosis. A G2 checkpoint control mechanism ensures cells are ready to enter M 

phase. 

5. Mitosis (M) phase.  Cell growth stops and cells divide into two daughter cells.  

A checkpoint in the middle of mitosis (metaphase checkpoint) ensures that the 

cell is ready to complete division. 

Cyclins and cyclin-dependent kinases (CDKs) determine a cell’s progress through the 

cell cycle (Nigg, 1995).  Cyclins form the regulatory subunits and CDKs the catalytic 

subunit of an activated heterodimer.  CDKs phosphorylate target proteins to co-ordinate 

entry into the next phase of the cell cycle, and different cyclin-CDK combinations 

determine the downstream target protein.  Cyclins are synthesised at specific stages in 

the cell cycle in response to various molecular signals (Kumar et al., 2004).  

The first cell cycle complex to form is cyclin D-CDK4, which phosphorylates the Rb 

protein releasing E2F and activating transcription of target genes, including cyclin E 

which binds CDK2 and pushes the cell from G1-S phase.  Cyclin B forms a complex 

with cdc2 to initiate the G2-M phase transition.  The nuclear envelope breaks down, and 

the prophase stage of mitosis is initiated (Kumar et al., 2004). 

1.6.3.2 Cell-cycle arrest 

p53 can block cell cycle progression through transcriptional activation of the cyclin-

dependent kinase (CDK) inhibitor p21
WAF1

, and also GADD45 and 14-3-3σ (el-Deiry, 

1998).     
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Figure 1.11. The cell cycle, and key proteins involved in preventing G1-S, and G2-M 
progression at the G1 and G2 checkpoints. I – interphase, M- mitosis phase (cell 
division). Adapted from http://aranzazu17.wordpress.com/2011/05/13/cell-cycle-
mitosis/. 
 

1.6.3.3 p21
WAF1

 

The G1-S checkpoint is regulated through transcriptional stimulation of p21
WAF1

, which 

functions to block G1 to S progression, subsequently inducing a G1 arrest  (Giono and 

Manfredi, 2006; Vousden and Lu, 2002).  p21
WAF1

,
 
encoded by the CDKN1A gene, is a 

member of the Cip/Kip family of CDK inhibitors, and inhibits the function of CDK2, 

CDK3, CDK4, and CDK6 which have direct roles in the transition between cell cycle 

phases (Gartel and Tyner, 2002).  Forced p21
WAF1 

expression has been shown to arrest 

the cell cycle at G1/S and G2/M borders (Dulic et al., 1998).  In the nucleus, p21
WAF1

 

binds to and inhibits the activity of CDK1 and CDK2 and blocks transition from G1-S 

phase, or from G2-M phase after DNA damage, enabling repair of damaged DNA.  

Inhibition of the cyclin E/CDK2 complex prevents phosphorylation of Rb, and 

subsequent release of E2F transcription factors (Sherr and Roberts, 1999) as shown in 

Figure 1.11.  The result is inhibition of S-phase progression and cells arrest in G1 until 

either DNA is repaired, or apoptosis is induced (Sherr and Roberts, 1999; Xiong et al., 

1993).   

p21
WAF1

 is very sensitive to even low levels of p53 induction, and may provide a 

temporary block induced by mild damage or stress, allowing cells to survive until the 

 

http://aranzazu17.wordpress.com/2011/05/13/cell-cycle-mitosis/
http://aranzazu17.wordpress.com/2011/05/13/cell-cycle-mitosis/
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damage is resolved or stress removed.  However, this transient cell cycle arrest could be 

risky in cells with oncogenic potential that cannot be repaired and may resume 

proliferation. 

p21
WAF1

 is also important for induction of replication senescence as well as stress-

induced premature senescence.  In addition, p21
WAF1

 is also reported to positively or 

negatively regulate apoptosis.  When localised in the cytoplasm, p21
WAF1

 has an anti-

apoptotic effect.  It is able to bind to and inhibit caspase 3, ASK1 and JNK (apoptotic 

kinases) (Abbas and Dutta, 2009; Janicke et al., 2007; Gartel and Tyner, 2002).   

The function of p21
WAF1

 in response to DNA damage probably depends on the extent of 

the damage.  A model is proposed where low levels of damage induce p21
WAF1

 and 

subsequent cell cycle arrest, as well as anti-apoptotic functions whereas extensive DNA 

damage results in reduced p21
WAF1

 and apoptosis.  p21
WAF1 

therefore acts as a tumour 

suppressor, but also acts as an oncogene by preventing apoptosis.  

1.6.3.4 Gadd45 and 14-3-3δ 

p53 transcriptionally activates Gadd45 and 14-3-3δ that participate in G2 arrest (Colman 

et al., 2000; Zhan et al., 1999).  Gadd45 prevents the G2/M transition, through inhibition 

of Cdc2 (CDK1), and subsequent inhibition of the cyclin B-Cdc2 interaction and kinase 

function (Taylor and Stark, 2001; Wang et al., 1999; Zhan et al., 1999).  14-3-3δ, a 

scaffold protein, removes cyclin B/Cdc2 from its site of action in the nucleus 

(Hermeking et al., 1997).  Repression of cyclin B through p53 also arrests cells in G1 

(Taylor and Stark, 2001). 

1.6.4 p53-mediated apoptosis 

Apoptosis results from a number of mechanisms including the activation of apoptotic 

genes, repression of anti-apoptotic genes and through non-transcriptional mechanisms.  

As shown in Figure 1.12, there are two main apoptotic pathways regulated by p53; the 

extrinsic pathway and the intrinsic pathway.  It is proposed that the intrinsic pathway is 

primarily utilised in p53-mediated apoptosis, whereas the extrinsic pathway is used to 

augment the apoptotic response (Fridman and Lowe, 2003).  Both pathways converge 

and induce a caspase cascade which results in apoptosis. 

1.6.4.1 The extrinsic/death receptor pathway  

p53 target genes involved in the extrinsic pathway include the death receptors 

Fas/CD95 (O'Connor et al., 2000), DR4 (Liu et al., 2004b), and DR5 (Takimoto and El-
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Deiry, 2000) which are located at the plasma membrane. In response to stress, these 

receptors repress Inhibitor of Apoptosis Proteins (IAPs) (Takimoto and El-Deiry, 2000) 

and induce caspase-mediated apoptosis (Haupt et al., 2003).   

1.6.4.2 The intrinsic/mitochondrial pathway 

The intrinsic pathway is the main apoptotic pathway in response to DNA damage.  

Upon activation, p53 interacts with the Bcl-2 family of proteins in the cytosol.  These 

include the pro-apoptotic proteins Bcl-2-associated X protein (BAX), Bak and Bcl-X1, 

which antagonise the pro-survival function of Bcl-2 and Bcl-XL (Mihara et al., 2003).  

These proteins translocate to the mitochondria, inducing mitochondrial outer membrane 

permeabilisation and cytochrome c release (Cory and Adams, 2002; Marchenko et al., 

2000; Korsmeyer, 1999).  

p53 also induces expression of pro-apoptotic ‘BH3-only’ proteins including BH3-

interacting death agonist (BID), Bad, Noxa (Latin for ‘damage’), p53-upregulated 

apoptosis inducing protein (p53AIP1), and p53-upregulated modulator of apoptosis 

(PUMA) (Haupt et al., 2003; Han et al., 2001; Nakano and Vousden, 2001b).  PUMA 

binds to anti-apoptotic Bcl-2 and BCL-XL (Yu et al., 2001a) promoting BAX 

translocation to the mitochondria and subsequent cytochrome c release (Ming et al., 

2006; Chipuk et al., 2005). Studies have suggested a strong dependence of p53-

mediated apoptosis on the presence of PUMA (Vousden, 2005; Jeffers et al., 2003; Yu 

and Zhang, 2003).  In addition, PUMA can also exhibit p53-independent apoptotic 

functions (Jeffers et al., 2003).   Interestingly, both PUMA and NOXA have been 

shown to mediate neural precursor cell death (Akhtar et al., 2006). 

Cytochrome c release promotes the formation of the apoptosome complex with 

apoptotic protein-activating factor-1 (Apaf-1) and caspase 9 (Nakano and Vousden, 

2001a; Yu et al., 2001b) which induces a caspase cascade and ultimately apoptosis.  
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Figure 1.12. The p53-induced intrinsic and extrinsic apoptotic pathways.  The 
extrinsic pathway involves death receptors and the formation of the death inducing 
complex, inducing apoptosis through a cascade caspase.  The intrinsic pathway is 
induced in response to DNA damage, resulting in mitochondrial depolarisation and 
the release of cytochrome c, also followed by a caspase cascade (Haupt et al., 2003).  
The final caspase cascade for both the intrinsic and extrinsic pathway involves 
caspase 3, 6 and 7. 
 

1.6.5 p53-mediated cellular senescence 

p53 plays a key role in induction of cellular senescence, or irreversible cell cycle arrest. 

Senescence is a major anticancer function and may be a reason why tumours arise so 

easily when p53 is lost.  Senescence is likely to result from changes in the expression of 

a number of genes such as plasminogen inhibitor 1 (PAI-1) and the key mediator, 

p21
WAF1

 (Leal et al., 2008; Kortlever et al., 2006; Brown et al., 1997).  In apoptotic-

defective cells, which retain other functions of p53, p21
WAF1 

activation induces 

senescence (Cosme-Blanco et al., 2007; Van Nguyen et al., 2007).  Mice with this 

mutant were crossed with p21
WAF1

-null mice and the result was loss of cell cycle 

response and cancer formation (Barboza et al., 2006).  Therefore p53-dependent 

activation of p21
WAF1

 is important in senescence-dependent tumour suppression.  

However, lack of p21
WAF1

 does not strongly correlate with tumour development 

(Choudhury et al., 2007).   
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1.6.6 p53 and cancer 

Inactivation of p53 is considered essential for the development of most human cancers, 

and approximately 50% harbour p53 inactivating mutations (Hollstein et al., 1991).  In 

the other 50%, upstream and downstream defects are believed to account for loss of p53 

activity.  p53-mutated or p53-null cancer cells have inactivated growth inhibitory 

pathways (McDermott et al., 2005; Wu and El-Deiry, 1996).  

p53 status usually correlates with the responsiveness of a cancer cell to radiation and 

chemotherapeutic agents.  In addition radiation therapy and other DNA damaging 

stresses that activate p53 select for p53 mutant cells and therefore secondary cancers are 

often associated with therapy-induced mutations in p53 and are resistant to treatment.  

Reactivation of p53 in mouse models leads to regression in many tumour types (Ventura 

et al., 2007; Xue et al., 2007b; Martins et al., 2006), and this is discussed in Section 1.17. 

1.6.7 Types of mutations 

There are a number of ways in which DNA can change, resulting in different types of 

mutations, including: 

1. Single-base substitutions, or point mutations: when a single base is 

substituted for another.  These can be: 

a) missense mutations.  The new nucleotide alters the codon, producing an 

altered amino acid in the protein product.   

b) nonsense mutations.  The new nucleotide changes the codon to a STOP 

codon, resulting in a truncated protein product. 

c) silent mutation.  The nucleotide substitution results in a codon which 

produces the same amino acid as the wildtype nucleotide, and results in no 

change to the protein product. 

d) splice-site mutation.  Nucleotide signals at splice sites guide the 

enzymatic activity responsible for removal of intron sequences.  If this is 

altered, introns may be translated into the protein product. 

2. Insertions and deletions: addition or removal of base pairs results in a 

frameshift mutation, encoding an entirely different amino acid sequence, and 

can also result in a premature STOP codon. 

3. Duplications: the doubling of a section of the genome. During meiosis, 

crossing over between sister chromatids that are out of alignment can 

produce one chromatid with a duplicated gene.  
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4. Translocations: the transfer of a piece of one chromosome to a 

nonhomologous chromosome. 

1.7 Negative Regulation of p53: MDM2 and MDMX 

For controlled activation of p53, tight control of activity and levels of mouse double 

minute- 2 (MDM2) and the MDMX paralogue are necessary (Wade et al., 2010; Wang 

et al., 2009).  MDM2 is considered the principle negative regulator of p53 (Haupt et al., 

1997; Momand et al., 1992), but perhaps less recognised but equally important is 

MDMX.  In addition MDM2 is a direct transcriptional target of p53, forming a negative 

feedback loop (Deb, 2003).  This loop is essential in maintaining the balance of the two 

proteins, and prevents accumulation of either under normal conditions but allows for 

rapid changes of both in response to cellular stress.  Unlike MDM2, MDMX is not a 

transcriptional target of p53 (Wang et al., 2001).  Despite their similarities, neither 

protein can substitute for the loss of the other; analyses of knockout mice show MDMX 

and MDM2 suppress p53 in a nonredundant yet synergistic manner (Marine et al., 2006).  

MDMX-null mice die in utero in a p53-dependent manner, but can be rescued upon p53 

knockout (Parant et al., 2001), whereas MDM2 knockout is lethal during early 

embryogenesis in mice as a result of hyperactive p53, but can also be rescued by p53 

knockout (Montes de Oca Luna et al., 1995).    

1.7.1 Structure and function 

MDMX was originally identified as a paralogue of MDM2, and the proteins share 

substantial sequence homology and have similar structures as shown in Figure 1.13 

(Saha et al., 2010; Shvarts et al., 1997; Shvarts et al., 1996).   

The MDM2 gene spans 12 exons, is located at locus 12q14.3-q15 and encodes a 90kDa 

protein.  MDM2 is an E3 ubiquitin ligase that targets p53 for ubiquitination and 

degradation.  MDM2 variants result from alternative internal splice sites within the gene, 

and each variant contains 2 promoters; P1 upstream of exon 1, and P2 between exons 1 

and 2, to which p53 can bind in order to rapidly activate MDM2 transcription and 

expression (Zauberman et al., 1995; Chen et al., 1994).  P1 is constitutively active at 

low levels, whereas P2 has multiple transcription factor binding sites and an E-box 

(Zauberman et al., 1995).  The MDMX gene is located at locus 1p12, and encodes a 

70kDa protein. 
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Both proteins bind p53 at a short α-helical stretch within the N-terminus, via their most 

conserved N-terminal hydrophobic region (Bottger et al., 1999).  Other conserved 

domains include the RING finger, a Zn-finger and a central acidic domain as shown in 

Figure 1.13.  The RING finger and acidic region of MDM2 are essential for p53 

ubiquitination.  However, corresponding regions of MDMX do not have this function 

(Kawai et al., 2003b; Meulmeester et al., 2003).  p53 levels are mainly controlled at the 

post-translational level through stabilisation and degradation, but can also be controlled 

at the transcriptional level. Under normal cellular conditions, p53 levels are kept low 

and p53 is constantly targeted for degradation by MDM2.  

 

 

 

 

 

 

Figure 1.13. Domain structure of homologies MDM2 and MDMX.  The N-terminus of 
both proteins is responsible for p53 binding.  The central acidic domain of MDM2 but 
not MDMX binds ribosomal proteins, and the RING finger is required for MDM2-
MDMX heterodimerisation (Perry, 2010). 
 

1.7.2 MDM2-mediated control of p53 

Multiple MDM2 activities inhibit p53 function.  MDM2 can regulate both the 

transcriptional activity and the half-life of p53 (Honda et al., 1997).  There are 3 main 

mechanisms by which MDM2 achieves this (shown in Figure 1.14):  

1. MDM2 has E3 ubiquitin ligase activity within the RING domain, and is the main 

mediator of endogenous p53 ubiquitination.  MDM2 functions as an adaptor 

protein, binding the N-terminus of p53 and an E2 conjugating enzyme (Linke et 

al., 2008).  The recruited E3 ligase directly transfers ubiquitin molecules to lysine 

residues within the C-terminus of p53, targeting p53 for proteosomal degradation 

in the cytoplasm by the 26S proteosome (Honda et al., 1997; Wu et al., 1993).  

Cysteine 464 within the RING finger domain is required for the ubiquitin ligase 

activity of MDM2 (Honda et al., 1997). 

 

 

MDMX 

MDM2 
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2. MDM2 has a nuclear export signal (NES) and has the ability to bind p53 and 

shuttle it from its site of action in the nucleus to the cytoplasm where it cannot 

bind DNA, and therefore cannot transcriptionally activate target genes (Tao and 

Levine, 1999).  Export of the MDM2-p53 complex occurs via the CRM1-

dependent export pathway shown by studies whereby p53 stability was increased 

through inhibition of this pathway (Haupt et al., 1997).  Rapid shuttling of p53 

between the cytoplasm and nucleus is important for the regulation of p53 by 

MDM2 (Tao and Levine, 1999; Roth et al., 1998).   

3. Upon interaction MDM2 binds the transactivation domain within the N-terminal 

of p53, directly inhibiting p53-mediated transcription (Wadgaonkar and Collins, 

1999; Momand et al., 1992).  MDM2 binds p53 at the same residues that it binds 

the TFIID complexes required for transcriptional activation of target genes (Lin 

et al., 1994), and therefore MDM2 and TFIID compete for this site.  Also MDM2 

has been reported to inhibit p53 transcriptional activity by promoting conjugation 

of the ubiquitin-like protein NEDD8 to p53 (Xirodimas et al., 2004). 

 

 

 

 

 

 

 

 

Figure 1.14. The regulation of p53 by MDM2.   MDM2 expression induces; 1) p53 
degradation through ubiquitination, 2) exportation of p53 from the nucleus to the 
cytoplasm and 3) MDM2 also blocks p53 transactivation.  These functions of MDM2 
diminish the tumour suppressor activities of p53.  (Chene, 2003). 
 

MDM2 also promotes ubiquitination of histone proteins within the vicinity of p53-

responsive promoters, resulting in transcriptional repression (Xirodimas et al., 2004) 

and may also contribute to p53 inactivation by recruiting several corepressor proteins 
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such as HDAC1, CTBP2, YY1 and KAP1 (Sui et al., 2004; Mirnezami et al., 2003; Ito 

et al., 2002).   

 

1.7.3 MDM2 and MDMX mediated control of p53 

1.7.3.1 MDMX and MDM2 interactions 

There are two models as to how MDMX and MDM2 regulate p53: 

1. MDM2 and MDMX function independently.  MDMX binds tightly at the N-

terminal transcriptional activation domain of p53, inhibiting p53 transactivation 

function (Shvarts et al., 1996).  Binding of MDMX here prevents interaction of 

p300, which results in reduced acetylation of p53, a modification required for 

p53 activation (Danovi et al., 2004; Sabbatini and McCormick, 2002).   MDM2 

inactivates p53 primarily by working as an E3 ligase to control p53 turnover 

(Marine et al., 2007).   

2. There is interplay between MDM2 and MDMX in p53 regulation (Wade et al., 

2010; Kruse and Gu, 2009; Vousden and Prives, 2009; Kawai et al., 2007; 

Poyurovsky et al., 2007; Uldrijan et al., 2007; Marine et al., 2006; Gu et al., 

2002).   

More evidence points towards the second model, and structurally, formation of the 

MDM2-MDMX heterocomplex is favoured over MDM2 homocomplexes (Linke et al., 

2008).  MDMX does not homodimerise. In addition, the two proteins were found to 

exist in cells mainly as heterocomplexes (Kawai et al., 2007).   MDM2 and MDMX 

interact via their C-terminal RING finger domains (Linke et al., 2008; Sharp et al., 

1999). MDMX does not have E3 ubiquitin ligase activity but can modulate p53 levels 

through control of MDM2 levels (Linke et al., 2008).   

The ratio of MDMX and MDM2 has been shown to strongly determine the outcome on 

p53 stability.  Some studies have shown that high MDMX binds p53, preventing 

negative regulation by MDM2 and leading to p53 stabilisation (Gu et al., 2002), 

whereas others have shown that high MDMX favours heterodimerisation with MDM2 

and initiates p53 degradation.  It may be that under different circumstances, MDMX can 

either stimulate or inhibit the E3 ubiquitin ligase activity of MDM2 (Wade et al., 2010).  

In the absence of exogenous stress, MDM2 promotes balanced turnover of itself, 

MDMX and p53 through ubiquitination and autoubiquitination (Stommel and Wahl, 
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2004; de Graaf et al., 2003).  MDM2 is the only known ubiquitin ligase of MDMX, and 

when bound it ubiquitinates MDMX at K422 (Xia et al., 2008; Stommel and Wahl, 

2004).  At low MDMX levels, MDM2 is a relatively ineffective ubiquitin ligase for p53, 

and undergoes autoubiquitination and degradation (Linke et al., 2008; Kawai et al., 

2007; Poyurovsky et al., 2007; Uldrijan et al., 2007).  At increased levels of MDMX, 

heterodimerisation results in reduced autoubiquitination of MDM2, shifting the MDM2 

substrate from itself to p53 as shown in Figure 1.15 (Okamoto et al., 2009; Gilkes et al., 

2008; Linke et al., 2008; Kostic et al., 2006; Linares et al., 2003; Gu et al., 2002).  The 

MDM2-MDMX complex is a more active ubiquitin ligase than MDM2 homodimers, 

and provides an extended interaction motif with the E2 protein (Linke et al., 2008; 

Kawai et al., 2007; Poyurovsky et al., 2007).  Even when the functional ubiquitin ligase 

activity of MDM2 is removed, MDMX promotes p53 ubiquitination, and therefore the 

main reason for heterodimerisation appears to be to promote MDM2 stability (Linke et 

al., 2008).  This interaction also stabilises MDMX, but compared to MDM2, MDMX 

has much less impact on p53 levels.   

In response to stress, both MDMX and MDM2 are eliminated. MDM2 and MDMX are 

phosphorylated at residues outside of the RING domain, and p53 is phosphorylated 

reducing the affinity for MDM2 and MDMX.  MDMX is degraded in an MDM2-

dependent manner, and MDM2 is eliminated through autoubiquitination. Once DNA 

damage signals return to normal, kinase inhibition and phosphatase activation removes 

the pool of phosphorylated MDM2 and MDMX, leading to their stabilization. 

 

 

Figure 1.15. Levels of MDMX are important in determining the role of MDM2.  In 
response to stress, MDMX ubiquitination by MDM2 is upregulated, as is MDM2 
autoubiquitination, and the negative control on p53 is eliminated. 

Stress Resting state 
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1.8 The DNA damage response 

Under normal conditions, both MDM2 and p53 have short half-lives whereas MDMX is 

relatively stable (Gilkes et al., 2008).  In response to DNA damage or stress, p53 

activity and stability are modulated through post-translational modifications including 

phosphorylation and acetylation.  These modifications generally suppress MDM2 

binding, reducing MDM2-mediated degradation and enhancing p53 transcriptional 

activity as a result of stabilisation, and accumulation in the nucleus (Vousden and Lu, 

2002; Oren, 1999; Brooks and Gu, 2003; Xu, 2003).  p53 is phosphorylated by DNA-

damage induced DNA-PK and ATM at serine 15 and serine 37 within the N-terminus, 

repressing the ability of MDM2 to inhibit p53 transcription, perhaps due to 

conformational change.  In addition phosphorylation of p53 at serine 20 by ATM-

activated Chk2 inhibits MDM2 binding (Shieh et al., 1997).  MDM2 is also 

phosphorylated by ATM, impairing its ligase activity and ability to degrade p53 

(Freedman et al., 1999).   

DNA damage also induces phosphorylation of MDMX by ATM, Chk1 and Chk2, at 

several C-terminal residues, generating a docking site for 14-3-3σ (Gilkes et al., 2008; 

Li et al., 2002).  This stimulates nuclear translocation of endogenous MDMX which is 

then degraded in an MDM2-dependent manner (Gilkes et al., 2008; Hu et al., 2006; de 

Graaf et al., 2003; Kawai et al., 2003a; Pan and Chen, 2003).  MDM2-mediated 

degradation of MDMX is strongly stimulated upon ATM-dependent phosphorylation of 

three serine residues S342, S367 and S403.   These phosphorylations have multiple 

effects including nuclear accumulation of MDMX in a 14-3-3σ dependent manner 

(LeBron et al., 2006; Pereg et al., 2006; Chen et al., 2005b; Okamoto et al., 2005).  

Evidence suggests that p53 integrates stress signals via post-translational modifications, 

adapting its response by co-ordinating with different protein partners, enabling the p53-

mediated stress response to be specific (Vousden and Prives, 2009).  Some examples are 

shown in Figure 1.10.  Acetylation at K164 by transcriptional co-activators p300 and 

CREB-binding protein (CBP) appear to be important for the activation of the majority 

of p53 target genes (Tang et al., 2008).  Skp2 prevents p300 from binding to and 

acetylating p53 with consequent reduced expression of p53 targets such as p21
WAF1

 and 

PUMA, implicating p300 and CBP as critical for p53-dependent arrest and apoptosis 

(Kitagawa et al., 2008).  Serine 46 phosphorylation by HIPK2 (homeodomain 

interacting protein kinase 2) correlates with induction of pro-apoptotic p53AIP1 

(D'Orazi et al., 2002).  After moderate DNA damage, MDM2 induces HIPK2 
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degradation, but severe DNA damage results in decreased MDM2, allowing HIPK2 to 

stabilise and phosphorylate p53 at S46 (Rinaldo et al., 2007).  Several other kinases also 

phosphorylate S46.  PUMA levels are induced by acetylation at K120 (Sykes et al., 

2006; Tang et al., 2006b).  

If DNA damage is repaired, the loop is reset and the cell re-enters the cell cycle 

(Freedman et al., 1999).  MDM2 levels increase in a p53-dependent way, and 

antagonise p53, and MDM2 and p53 levels return to normal.  The p53-mediated 

induction of MDM2 under normal conditions limits the duration and intensity of a non-

lethal stress response.  

1.8.1 Co-factors of p53 

Co-factors of p53 are important in determining the p53 response.  p300 is an acetyl 

transferase important in the activation of many p53 target genes.  Once bound to DNA, 

p300 influences p53 stability through acetylation, but does not exhibit any known 

promoter selectivity (Dornan et al., 2003).  Another family of cofactors, Apoptosis 

Stimulating Protein of p53 (ASPP) selectively regulate p53’s activity, and are able to 

selectively affect transcriptional activity of p53 promoters including BAX and p53-

inducible gene-3 (PIG3).  (Vives et al., 2006; Slee et al., 2004; Samuels-Lev et al., 

2001).  Recently, both ASPP1 and ASPP2 were found to bind p300 and cooperate with 

p300 to enhance p53 transcriptional activity, whilst maintaining ASPP promoter 

selectivity (Gillotin and Lu, 2011).     

1.9 p53 localisation and transcription independent functions 

To function as a transcription factor, p53 must be localised in the nucleus where it is 

able to bind DNA.  However, p53 has transcription-independent functions outside the 

nucleus.   

Cytoplasmic p53 

Whereas MDM2-mediated polyubiquitination of p53 regulates p53 stability, in 

conditions of low MDM2, monoubiqutination of p53 induces relocalisation from the 

nucleus to the cytoplasm (Li et al., 2003).  This may occur in unstressed cells although 

one study found p53 was distributed equally between the nucleus and cytoplasm before 

DNA damage (Wang et al., 2007).  Ubiquitin ligases Cullin-7, Parc and WWP1 (WW 

domain containing E3 ubiquitin ligase 1), mediate cytoplasmic localisation of p53 
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(Mulhall et al., 2010; Laine and Ronai, 2007; Andrews et al., 2006),.  Parc and Cullin-7 

do not ubiquitinate p53 whereas WWP1 directly binds and ubiquitinates p53 which then 

remains inactive in the cytoplasm.   

Mitochondrial p53 

In stressed cells, low levels of MDM2 promote monoubiquitination of p53.  

Monoubiqutinated p53 accumulates at the mitochondria where is interacts with pro- and 

anti-apoptotic members of the Bcl-2 family, resulting in release of factors from the 

mitochondria that drive apoptosis (Vaseva and Moll, 2009; Mihara et al., 2003).  At the 

mitochondria p53 is activated by stress-induced HAUSP, a p53-deubiquitinating 

enzyme (Marchenko et al., 2007), and interacts directly with pro-apoptotic Bak and Bax 

proteins, and anti-apoptotic Bcl-XL.  High levels of MDM2 promote polyubiquitination 

which results in degradation of p53 (Lee and Gu, 2010).   

1.9.1 Aberrant localisation of p53 in neuroblastoma 

Aberrant cytoplasmic localisation of p53 has been proposed as a mechanism for p53 

inactivation in neuroblastoma cells.  Increased activity of MDM2, or dysfunction of 

HAUSP results in cytoplasmic retention of p53 in neuroblastoma (Van Maerken et al., 

2009c).  p53 localisation in neuroblastoma is a subject of debate.  In an initial study p53 

was cytoplasmic in 96% of undifferentiated, but not differentiated neuroblastomas 

(Moll et al., 1995).  Other studies report a predominantly nuclear localisation of p53 in 

undifferentiated neuroblastomas and both cytoplasmic and nuclear p53 in differentiated 

neuroblastoma (Chen et al., 2007; Tweddle et al., 2001b; Wolff et al., 2001).  There are 

also conflicting reports in cell lines, with reports that p53 is cytoplasmic, cytoplasmic 

and partly nuclear, equally cytoplasmic and nuclear, and only nuclear (Nikolaev et al., 

2003; Tweddle et al., 2003; Wolff et al., 2001; Smart et al., 1999; Goldman et al., 1996; 

Moll et al., 1996).  Several studies within our group found p53 to be predominantly 

nuclear and functional in neuroblastoma (Chen et al., 2007; Tweddle et al., 2001b). 

Cytoplasmic retention of wildtype p53 may be either an infrequent anomaly, or a 

relative block on p53 that can be overcome by appropriate p53-inducing stimuli (Van 

Maerken et al., 2009c).  Proposed mechanisms for abnormal p53 accumulation in the 

cytoplasm of neuroblastoma cells include hyperactive nuclear export of p53, 

cytoplasmic tethering of p53, resistance of proteosomal degradation and impaired 

nuclear re-import of p53.   
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1.10 p53-independent roles of MDM2 

MDM2 overexpression promotes cancer and resistance to treatment, even in cancer 

patients with deficient p53 (Zhang and Zhang, 2005; Jones et al., 1998).  MDM2 

interacts with molecules other than p53, and is able to bind to some RNA molecules 

(Anderson et al., 2007; Lai et al., 1998; Elenbaas et al., 1996).  MDM2 can bind the 

mRNA of the apoptosis regulator XIAP through the C-terminal RING, mediating 

translation, which may promote resistance to anticancer drugs (Gu et al., 2009).  MDM2 

also activates hypoxia inducible factor-1α (HIF1α) (Lee et al., 2009; Chen et al., 2003). 

Hypoxia is a defining characteristic of solid tumours and HIF-1α plays a central role in 

tumour adaptation to hypoxia through transcription of a variety of genes such as VEGF 

and glycolytic enzymes (Gordan and Simon, 2007). 

1.11 MYCN and MDM2 

MYCN-mediated direct transcriptional upregulation of MDM2 was reported by Slack et 

al, and has since been supported by another study (Westermann et al., 2008; Slack et al., 

2005a).  Chen et al. found MDM2 is required for suppression of p53 activity during 

MYCN driven tumourigenesis in TH-MYCN transgenic mice (Chen et al., 2009).  

siRNA mediated knockdown of p53 in Tet21N MYCN+ cells led to abrogated MDM2 

expression, suggesting that higher MDM2 in these cells is due to increased p53 rather 

than MYCN (Chen et al., 2009).  MYCN may directly upregulate MDM2 to counteract 

p53 induction.  Very recently, MYCN has been identified as a translational target of 

MDM2 (Gu et al., 2011). 

1.12 MDM2 and MDMX in cancer 

1.12.1 MDM2 and cancer 

MDM2 is overexpressed in many cancer types (Fadok et al., 2001; Freedman et al., 

1999; Momand et al., 1998; Haupt et al., 1997; Kubbutat et al., 1997).  MDM2-

amplification occurs in over one third of sarcomas (Leach et al., 1993; Oliner et al., 

1992), and although less frequent, also occurs in other cancers including glioblastomas 

(Reifenberger et al., 1993), leukaemia’s (Bueso-Ramos et al., 1993), oesophageal 

carcinomas (Shibagaki et al., 1995), breast carcinomas (Marchetti et al., 1995) and 

neuroblastoma (Carr-Wilkinson et al., 2010; Tweddle et al., 2001b; Corvi et al., 1995a; 
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Corvi et al., 1995b).  These tumours are usually p53 wildtype and MDM2-amplification 

is proposed as a mechanism of p53 inactivation.   

MDM2 can enhance the tumourigenic potential of cells (Fakharzadeh et al., 1991).  In 

transgenic mouse models and human tumours, MDM2 overexpression results in 

insufficient p53 activity and contributes to tumour formation (Alkhalaf et al., 1999; 

Momand et al., 1998).  MDM2 haploinsufficiency prevented tumourigenesis in Eµ-myc 

mouse models of lymphoma, and B-cell apoptosis was enhanced by MDM2 deficiency 

resulting in reduced tumour formation (Eischen et al., 1999).  

1.12.2 MDMX and cancer   

MDMX is overexpressed in nearly 30% of human cancers (Toledo and Wahl, 2007) 

including 18-19% of breast, lung and colon cancers (Danovi et al., 2004), 50% of head 

and neck squamous carcinomas (Valentin-Vega et al., 2007) and 65% of 

retinoblastomas (Laurie et al., 2006).  MDMX overexpression is mainly a result of 

aberrant transcription (Gilkes et al., 2008) and is mutually exclusive of MDM2 

overexpression in cancer cells (Danovi et al., 2004) suggesting deregulation of either of 

these repressors is sufficient to inactivate p53.  Amplification of the MDMX gene 

(located on chromosome 1q32) also occurs in some cancer types including gliomas 

(Riemenschneider et al. 1999) and retinoblastomas (Laurie et al., 2006).  As in MDM2 

overexpressing or amplified cancers, p53 is usually wildtype in MDMX overexpressing 

or amplified cancers.   

1.13 The p14
ARF

 tumour suppressor gene 

The CDKN2A gene contains the INK4A locus at 9p21-22, which encodes 2 genes; 

p14
ARF

 and p16
INK4a  

(Quelle et al., 1995; Stone et al., 1995).  They share common 

second and third exons, but have a distinct first exon as shown in Figure 1.16.  They are 

read in alternate reading frames, and therefore are not isoforms, share no sequence 

homology and have distinct functions (reviewed by (Gallagher et al., 2006)).  Both 

p14
ARF

 and p16
INK4a

 act as tumour suppressors and play important roles in the 

prevention of cell proliferation and cancer development (Quelle et al., 1995).  p16
INK4a

 

is a Cdk inhibitor, which prevents the phosphorylation of the Rb protein, promoting E2F 

binding and inhibiting cell cycle entry into S-phase (Serrano et al., 1993).  The most 

well-known role of p14
ARF

 is in regulating the p53 pathway, as shown in Figure 1.17 in 

response to hyperproliferative signals. 
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Figure 1.16.  The INK4A locus.  The INK4A locus encodes two genes, p16INK4A and 
p14ARF, each with a unique exon 1 but common exons 2 and 3.  They are read in 
alternative reading frames.  (Gallagher et al., 2006). 
 
 
 

 

Figure 1.17. The 2 products of the INK4a/ARF locus, p16Ink4a and p14Arf indirectly 
regulate the Rb and p53 pathways (Sherr, 2001). 
 

1.13.1 Structure of human p14
ARF 

and comparison to murine p19
ARF

 

p14
ARF 

is an arginine rich protein, containing over 20% arginine residues, and is 

therefore highly basic with hydrophobic properties.  p14
ARF

 is composed of 132 amino 

acids and is 13.9kDa, whereas the murine version, p19
ARF 

has 169 amino acids and is 

19.2kDa (reviewed by (Gallagher et al., 2006)).  These proteins are poorly conserved, 

with only 50% identity and no homology to other proteins.  There are no recognisable 

structural motifs and it may be that to become folded and neutralised, p14
ARF

 must form 

complexes with other molecules.  Human and mouse ARF have 11 out of 14 identical 

amino acids in the N-terminal, the region of most known functions (Gallagher et al., 

2006).  These functions include nuclear localisation, MDM2 binding and the ability to 

induce cell cycle arrest.  The C-terminal of p14
ARF

 contains a nuclear localisation 

sequence but this is not conserved and its function is uncertain (Gallagher et al., 2006).   

Full length p14
ARF

 contains 2 nucleolar localisation signals (NoLS) and preferentially 

localises in the nucleoli, whereas p19
ARF

 has just one NoLS (Weber et al., 1999). The 
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first p14
ARF

 NoLS is located within exon 1β at the N-terminus, and is important for 

MDM2 binding.  It plays an antiproliferative role and its deletion inhibits the ability to 

induce cell cycle arrest (Rizos et al., 2000).  The second NoLS is located within exon 2, 

and is involved in p14
ARF 

mediated SUMOylation of its binding partners (Xirodimas et 

al., 2002).     

There are major differences between p19
ARF

 and p14
ARF

.  Mouse cells lacking p19
ARF

 

do not undergo senescence in culture and p19
ARF

 has been shown to increase as MEFs 

near senescence (reviewed by (Sharpless, 2005)).  However, p14
ARF

 does not appear to 

be required for senescence in humans as levels remain low as cells near senescence and 

p14
ARF

 depleted cells can still undergo senescence when challenged by Ras (Sharpless, 

2005).  These results highlight the difference between p19
ARF

 and p14
ARF

, and indicate 

that properties of p19
ARF 

should not be assumed to be present with p14
ARF

. 

1.13.2 Function and regulation of p14
ARF

 

p14
ARF

 is a key sensor of hyper-proliferative signals generated by activated oncogenes, 

and engages both p53-dependent and p53-independent pathways to protect cells from 

malignant transformation (Sherr, 2006). p14
ARF

 expression is induced by mitogenic 

stress as a result of ectopic expression of a variety of oncogenes such as Myc, E1A, 

E2F1 and Ras, but not DNA damage (Sherr, 2006; Sharpless, 2005) as part of a 

checkpoint response that limits cell cycle progression in response to hyperproliferative 

signals.  p14
ARF

 expression is also induced after exposure to some common cancer 

treatments including radiation and genotoxic drugs, and contributes to the elimination of 

damaged cells from the proliferative pool (Sherr, 2006).  p19
ARF

 is also induced by viral 

infection, and acts to reduce viral infectivity (Garcia et al., 2006).  The best known 

function of p14
ARF

 is in regulating p53 in response to oncogenic stress or aberrant 

growth signals (Xia et al., 2008), but it has both p53-dependent and p53-independent 

functions.   

p14
ARF

 is relatively stable, with a half-life of 1-6 hours (Gallagher et al., 2006).  The 

mechanisms that regulate p14
ARF 

turnover are unclear, but two residues within exon 1β 

are critical for stability (Serrano et al., 1996).  p14
ARF

 undergoes N-terminal 

ubiquitination independently of p53 or MDM2 (Pollice et al., 2008).  A ligase specific 

for p14
ARF

 has been identified, known as ULF (ubiquitin ligase of ARF), and oncogenic 

stress abrogates ULF-mediated p14
ARF

 ubiquitination (Chen et al., 2010a).  
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Figure 1.18.  The dual role of p14ARF in activating the tumour suppressor pathway.  
p14ARF  is induced by MYCN, and activates p53, and also inhibits MYC mediated 
proliferation (Datta et al., 2004; Zindy et al., 1998). 
 

1.13.3 The role of p14
ARF

 in ribosomal RNA transcription 

ARF predominantly resides in the nucleolus where is binds nucleophosmin (NPM) also 

known as B23 as shown in Figure 1.19 (Bertwistle et al., 2004; Itahana et al., 2003).  

NPM is an abundant nucleolar protein whose expression correlates directly with the 

proliferative state of the cell. NPM is a protein that shuttles between the nucleus and 

cytoplasm, and is involved in several cellular processes including ribosome biogenesis 

and centrosome duplication (Grisendi et al., 2006; Lindstrom and Zhang, 2006).  The 

ARF-NMP interaction modulates ARF stability, and there are reduced levels of ARF in 

cells lacking NPM.  In response to oncogenic stress, ARF enters the nucleolus and 

forms a stable complex with NPM, but the biological consequences of these complexes 

are not completely understood (Sherr, 2006). 

1.  ARF may exert growth inhibitory effects in the nucleolus, retarding rRNA 

transcription and processing, and interfering with NPM nucleocytoplasmic 

shuttling and therefore impeding ribosome export to the cytoplasm. 

2. ARF sequestration by NPM in the nucleolus could hold ARF inactive, and its 

nucleoplasmic translocation promotes MDM2 inhibition.  NPM and MDM2 may 

compete for ARF association at the same domains. 

ARF’s ribosome function may inhibit cell growth through binding with NPM in the 

nucleolus, and may regulate p53 activity through binding with MDM2 and ARF-BP1 in 

the nucleoplasm (reviewed by (Ozenne et al., 2010)). 

 

MYC/MYCN 

Proliferation genes             Cell Proliferation               Oncogenesis 
                                                                          (adequate survival factors) 
 

ARF                p53                  Apoptosis 
                                       (Inadequate survival factors) 
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1.13.4 p53-dependent functions of p14
ARF

 

p14
ARF

 is a key activator of the p53 pathway and is predominantly nucleolar (Sharpless, 

2005).  It is able to regulate p53 following aberrant growth or oncogenic stress signals 

such as MYC or Ras.  It is suggested that p14
ARF

 is stored in the nucleolus with NPM, 

regulating ribosome biogenesis, and displaced in the nucleoplasm by stress-induced 

nucleolar perturbation, where it then counteracts MDM2 (Gjerset and Bandyopadhyay, 

2006; Korgaonkar et al., 2005; Llanos et al., 2001).  p14
ARF

 inhibits MDM2 function by 

a) binding to MDM2 antagonising the E3 ubiquitin ligase activity and thereby 

preventing p53 degradation and b) by relocalising MDM2 to the nucleoli, releasing 

nucleoplasmic p53 from MDM2 (shown in Figure 1.19) (Sherr, 2006; Wang et al., 2001; 

Honda and Yasuda, 1999; Tao and Levine, 1999; Zhang et al., 1998).  Reports suggest 

that nucleolar sequestration of MDM2 is required for p53 activation (Korgaonkar et al., 

2005; Lin and Lowe, 2001; Midgley et al., 2000) whereas other studies show p53 

stabilisation and induction of cell cycle arrest without relocalisation of endogenous 

MDM2 to the nucleoli (Korgaonkar et al., 2002; Llanos et al., 2001). 

p14
ARF

 also regulates p53 independently of MDM2.  It inhibits another E3 ubiquitin 

ligase of p53, ARF-binding protein 1 (ARF-BP1), also known as Mule, neutralising the 

p53-antagonising NF-κB pathway (Chen et al., 2005a; Rocha et al., 2003) as shown in 

Figure 1.19. 

 

 

 

 

 

 

 

 

Figure 1.19.  A model for the mechanism of p14ARF in activation of p53.  NMP binds 
p14ARF in the nucleolus and p14ARF binds ARF-BP1 (Coll-Mulet et al.) and MDM2 in the 
nucleoplasm to inhibit their E3 ubiquitin activities (Gallagher et al., 2006). 
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1.13.5 p53-dependent regulation of p14
ARF

 

In p53 null cells, p14
ARF

 is ubiquitously expressed and has increased levels, suggesting 

that when activated, p53 downregulates and inhibits p14
ARF

 expression (Mascaux et al., 

2008; Sharpless, 2005).   

1.13.6 p53-independent functions of p14
ARF

 

Mice lacking p19
ARF

, p53 and MDM2 are more tumour prone than mice lacking p53 

and MDM2 only, and p19
ARF

 -/- mice and +/- mice develop a broader spectrum of 

tumours than p53-null mice (Weber et al., 2000; Kamijo et al., 1999).  ARF has been 

reported to interact with multiple proteins other than MDM2 and ARF-BP1, including 

E2F1, MDMX (see Section 1.13.8), HIF-1α, topoisomerase 1, MYC (see Section 1.13.7) 

and nucleophosmin (NPM) (see Section 1.13.3).   

ARF is able to inhibit cell proliferation independently of p53.  Overexpression of 

p19
ARF

 induced G1 cell cycle arrest in p53-null MEFs (Carnero et al., 2000; Weber et al., 

2000) and p14
ARF

 can alter cells in S-phase and trigger apoptosis by p53-independent 

mechanisms (Hemmati et al., 2002; Yarbrough et al., 2002).  In p53-null lung tumours 

p14
ARF

 inhibited tumour growth through G2 arrest and apoptosis, and in nude mice 

p14
ARF 

expression prevented tumour growth and induced regression (Eymin et al., 2003; 

Itahana et al., 2003; Eymin et al., 2001).  Other studies show that p14
ARF 

interacts with 

and antagonises the transcriptional function of MYC and E2F1 independently of p53 

which may also be evidence of a p53-independent negative feedback mechanism (Sherr, 

2006).  

1.13.7 MYCN and p14
ARF

 

p14
ARF

 has been found to bind and inhibit c-MYC-mediated activation of target genes, 

hyperproliferation and oncogenic transformation (Amente et al., 2006; Gregory et al., 

2005; Datta et al., 2004; Qi et al., 2004).  Amente et al. found that p14
ARF

 can also 

directly bind and inhibit the transcriptional activity of MYCN, and promotes 

relocalisation of MYCN to the nucleolus rendering it inactive (Amente et al., 2007).  In 

addition, MYCC has been shown to induce p14
ARF

 expression.  There are no reports that 

MYCN acts in the same way but due to the similarity to MYCC, it is possible to 

speculate that it does.   However, like MYCC, MYCN also indirectly inhibits p14
ARF

 

through directly activating the HTWIST transcription factors, which impairs p14
ARF

 

activity (Valsesia-Wittmann et al., 2004; Maestro et al., 1999).  This may be a 
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mechanism by which MYCN-amplified neuroblastomas escape from MYCN-dependent 

apoptosis.  

1.13.8 MDMX and p14
ARF

 

MDM2 is reported to undergo p14
ARF

-dependent SUMOylation with subsequent MDM2 

stabilisation (Xirodimas et al., 2002).  When co-expressed with p14
ARF

, MDMX 

undergoes p14
ARF

-mediated sumoylation, and inhibits sumoylation of MDM2 in a dose-

dependent manner (Ghosh et al., 2005).  This induces MDM2 ubiquitination and 

degradation.  MDMX can therefore affect MDM2 stability through interaction with 

p14
ARF

 (Ghosh et al., 2005).  

In  contrast, Wang et al. found that p14
ARF

 stabilised p53 when co-expressed with 

MDMX (Wang et al., 2001), but this may be a result of p14
ARF

 interacting with 

endogenous MDM2 independently of MDMX. 

There is also evidence that like MYCN and MDM2, MDMX binds to and is sequestered 

in the nucleolus by p14
ARF

, resulting in increased p53 transactivation in response to 

cellular stress (Jackson et al., 2001). 

1.13.9 p14
ARF

 and cancer 

Mice null for p19
ARF

 are highly tumour prone, suggesting an important role in 

carcinogenesis and for p14
ARF

 as a tumor suppressor (Kamijo et al., 1997).   Previous 

studies have shown that CDKN2A mutations induce chemoresistance by disabling p53 

(Schmitt et al., 1999) and that loss of p19
ARF

 limits the therapeutic response to Imatinib  

(Williams et al., 2006).  The INK4a/ARF locus is frequently deleted in human tumours, 

and is mutated in 20-40% of multiple case melanoma families (Kefford et al., 1999).  

Mice defective for either p19
ARF

 or p16
INK4A

 have increased susceptibility to 

spontaneous tumour development, but to different degrees.  p19
ARF

 deficient mice 

develop spontaneous tumours within 9.5 months of life, and mouse embryonic 

fibroblasts (MEFs) have a high proliferation rate.  Mice with p16
INK4a

 deletion develop 

spontaneous tumours within 17 months and have a normal proliferation rate (Sharpless, 

2005; Krimpenfort et al., 2001; Kamijo et al., 1999; Kamijo et al., 1997).   

1.14 Summary of p53/MDM2/p14ARF interactions and MYCN 

A summary of the interactions between the p53-MDM2/X-p14
ARF

 network and MYC/N 

is shown in Figure 1.20, along with transcriptional targets and cellular responses. 
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Figure 1.20. The p53-MDM2/X-p14ARF network and interaction with MYC/N and 
some common target genes and cellular responses.  
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1.15 The p53-MDM2/X-p14
ARF

 pathway and MYCN in neuroblastoma 

Since MYCN induces both proliferation and apoptosis, defects in apoptotic pathways 

are thought to occur in the presence of MYCN-amplification.  These include both defects 

in apoptotic pathways and activation of survival or proliferative pathways (reviewed by 

(Hogarty, 2003)).   

Most neuroblastomas respond well to initial therapy, but relapse with chemoresistant 

disease that correlates with the intensity of the therapy (Keshelava et al., 2001).  A high 

proportion of relapsed neuroblastomas have upstream defects in the p53 pathway.  The 

p53/MDM2/p14
ARF

 pathway is frequently abrogated in neuroblastoma.  In studies by 

Carr-Wilkinson et al, the p53/MDM2/p14
ARF

 pathway was inactivated in 53% of 

neuroblastoma cell lines established at relapse (Carr et al., 2006) and in 49% of relapsed 

neuroblastoma tumours (Carr-Wilkinson et al., 2010). Inactivation of the 

p53/MDM2/p14
ARF 

pathway develops during treatment, and contributes to relapse and 

loss of p53 function contributes to multidrug resistant disease (Xue et al., 2007a; 

Keshelava et al., 2001).   

1.15.1 p53  

p53 mutation is independently prognostic for overall survival in neuroblastoma (Carr-

Wilkinson et al., 2010).  However, the frequency of mutations is low in both diagnostic 

and relapsed neuroblastoma, occurring at a frequency of <2% and 15% respectively 

(Carr-Wilkinson et al., 2010; Carr et al., 2006; Tweddle et al., 2003; Keshelava et al., 

2001).  The seven fold increase in mutation at relapse suggests that mutations may be 

acquired during chemotherapy and malignant progression of neuroblastoma (Carr-

Wilkinson et al., 2010; Xue et al., 2007a; Kotchetkov et al., 2005; Tweddle et al., 2003; 

Tweddle et al., 2001a).  A recent study by van Maerken et al. found p53 mutations in 27% 

(9/33) of cell lines, most of which were derived from progressive or relapsed tumours, 

and in the majority of other cell lines p53 was functional (Van Maerken et al., 2011). 

Many studies have shown normal DNA-binding and transactivation functions of the p53 

protein and an intact p53 signal transduction pathway in neuroblastoma with wildtype 

p53 suggesting that evasion of the p53 response relies on inappropriately increased 

activity of inhibitors of p53 signalling, or loss of positive regulators of p53 activity 

(Chen et al., 2007; Xue et al., 2007a; Van Maerken et al., 2006; Tweddle et al., 2003; 

Goldman et al., 1996). 
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The G1 checkpoint function and apoptotic activity of p53 may be impaired through 

cytoplasmic sequestration in some neuroblastomas, although there are conflicting 

reports about p53 localisation in neuroblastoma (see Section 1.9) (Wang et al., 2003; 

Rodriguez-Lopez et al., 2001; Moll et al., 1996).  There is evidence that wildtype p53 in 

neuroblastoma cells may be in the wrong conformation to integrate into transcriptional 

complexes, resulting in reduced transcriptional activity (Wolff et al., 2001) but on the 

whole the evidence supports an intact p53 pathway in neuroblastoma.   

1.15.2 MDM2 

Upstream suppression of p53 via MDM2 might be important for neuroblastoma 

tumourigenesis. MDM2 is sometimes overexpressed or amplified in neuroblastoma 

(Momand, 1998).  In one study, MDM2-amplification occurred at a frequency of 24% in 

neuroblastoma cell lines derived from relapse, and only in the presence of MYCN-

amplification (Carr et al., 2006; Tweddle et al., 2003).  In tumour samples, 13% of 

diagnostic and relapsed tumour samples harboured MDM2-amplification and this 

occurred independently of MYCN-amplification in 2 tumour samples (Carr-Wilkinson et 

al., 2010).  Keshelava  et al. showed that elevated MDM2 expression is associated with 

multidrug resistance in some neuroblastoma cell lines, and that MDM2 ubiquitin ligase 

activity is rate limiting in the degradation of p53 in neuroblastoma (Keshelava et al., 

2001). 

A recent line of evidence supporting a role for the activity of MDM2 in the 

development and malignant behaviour of neuroblastoma stems from epidemiological 

studies of a T>G single nucleotide polymorphism in the MDM2 promoter (SNP309).  

This polymorphism leads to increased binding of the transcriptional activator Sp1 and 

enhanced MDM2 transcription and expression (Perfumo et al., 2009; Cattelani et al., 

2008; Perfumo et al., 2008).  SNP309 is associated with poor survival and individuals 

with SNP309 have an increased risk of neuroblastoma.  Patients homozygous for 

SNP309 had a worse overall survival rate after relapse than homozygous patients, and 

heterozygous individuals showed an intermediate survival rate (Cattelani et al., 2008; 

Perfumo et al., 2008; Bond et al., 2004).   MDM2 plays a role in MYCN induced 

tumourigenesis (Chen et al., 2009).  There is evidence that MYCN-driven expression of 

MDM2 contributes to evasion of p53-directed apoptosis in neuroblastoma (Slack et al., 

2005b).  MDM2 haploinsufficiency in TH-MYCN transgenic mouse models delays 

tumourigenesis due to higher levels of p53 (Chen et al., 2009).  MYCN has also been 

shown to require MDM2 to overcome p53 suppression for MYCN-directed centrosome 
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amplification, and genomic instability (Slack et al., 2007). This data suggests MDM2 is 

important for MYCN to overcome the tumour suppressive functions of p53 during 

neuroblastoma tumourigenesis, and this may be through MYCN-mediated upregulation 

of MDM2.   

Amplification of 12q sequences encompassing the MDM2 gene have been described 

mostly in neuroblastoma tumours that have MYCN-amplification, although a microarray 

study found 12q amplification in 5/95 neuroblastomas, and only 1 of these tumours had 

more than 10 copies of MYCN (Su et al., 2004).  MDM2-amplification in 

neuroblastoma cell lines is associated with attenuated p53 transcriptional function and 

multidrug resistance (Keshelava et al., 2001; Tweddle et al., 2001b; Corvi et al., 1995a; 

Corvi et al., 1995b; Van Roy et al., 1995).   

 

1.15.3 p14
ARF

 

The CDKN2A locus is the most frequent target of homozygous deletion in both 

neuroblastoma cell lines and primary tumours, and is also silenced by methylation 

(Caren et al., 2008; Thompson et al., 2001; Takita et al., 1997).  Homozygous deletion 

affects both p14
ARF

 and p16
INK4a

, whereas in the study by Carr et al, methylation only 

affected p14
ARF

 (Carr et al., 2006).  Upstream inactivation of p53 via p14
ARF

 

abnormalities occurs at an increased frequency compared to MDM2-amplification and 

was detected at diagnosis and relapse in 9 of 12 paired cases of neuroblastoma (29% of 

cases) and 24% of cell lines.  In two studies, methylation of p14
ARF

 was observed at a 

frequency of  7% (Carr-Wilkinson et al., 2010) and 14% (Gonzalez-Gomez et al., 2003).  

Carr-Wilkinson et al. found homozygous deletion in a higher proportion of cases (22%) 

than found in previous reports (Bassi et al., 2004; Omura-Minamisawa et al., 2001; 

Thompson et al., 2001; Diccianni et al., 1996).  There was a lack of p19
ARF

 expression 

in MYCN transgenic tumours with MDM2 haploinsufficiency suggesting these tumours 

have selective pressure to silence the p19
ARF 

locus and low p14
ARF 

expression is 

important in development and progression of wildtype p53 neuroblastomas (Chen et al., 

2009).  In mouse models the cancer protective activity of p53 is lost in the absence of 

p19
ARF

 (Christophorou et al., 2005). 

This data suggests that an altered p53/MDM2/p14
ARF

 axis, particularly increased 

MDM2 activity from amplification or p14
ARF

 inactivation, is a critical mediator of p53 

inactivation in neuroblastoma.  Genetic aberrations of the MDM2 locus as well as 
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epigenetic disruption of the CDKN2A locus may account for inactivation of the p53 

pathway in a subset of neuroblastomas, both at diagnosis and relapse.   

1.15.4 MDMX and neuroblastoma 

MDMX expression in neuroblastoma has not been studied, and the effect of MDMX on 

response to cytotoxic or novel therapies in neuroblastoma has not been investigated.   

MDMX is involved in the cytoplasmic tethering and inactivation of p53 (Ohtsubo et al., 

2009).  Both cytoplasmic MDM2 and MDMX were shown to cooperate in inhibiting 

p53 activity through ubiquitination and subsequent cytoplasmic localisation and 

tethering of p53, which may be mediated by formation of a stable complex.  shRNA-

mediated knockdown of MDMX expression in neuroblastoma cell lines resulted in 

decreased cytoplasmic p53 and a subsequent increase in nuclear p53 and increased 

transcriptional activity (Ohtsubo et al., 2009).   

1.16 Other p53 family members: p63 and p73 

p63 and p73 genes encode proteins that share strong structural, biochemical and 

biological similarities.   Both have significant amino acid sequence homology with p53, 

and a similar function (Kaghad et al., 1997).  In response to DNA damage and other 

conditions that activate p53, both p63 and p73 can bind specifically to DNA at 

conserved p53 response elements to induce a number of p53 responses including cell 

death, cell cycle arrest and cellular senescence, and target genes include p21, PUMA, 

NOXA, BAX and MDM2 (Stiewe et al., 2007; Harms et al., 2004,; Fontemaggi et al., 

2002; Melino et al., 2002; Yang et al., 2002).   In addition, p63 and p73 play roles in 

regulating proliferation and differentiation.  The extent to which p63 and p73 regulate 

p53 target genes remains unclear.   

Like p53, both p63 and p73 contain an N-terminal transactivation domain, a DNA 

binding domain (with 70% homology to p53 and conservation of all essential DNA 

contact residues) and a C-terminal oligomerisation domain (reviewed by Murray-

Zmijewski et al., 2006).  Many post-translational modifications that regulate p53 also 

target p63 and p73, and several p53 modulators and binding partners also signal to p63 

and p73 (Collavin et al., 2010).  Both p63 and p73 contain 2 promoters within the N-

terminal; promoter 1 (P1) and promoter 2 (P2).  Transcription from P1 results in full-

length transactivating p73 (TAp73) and p63 (TAp63) which function as tumour 

suppressors, and can induce cell cycle arrest and apoptosis (Wang et al., 2007; Muller et 
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al., 2005).  Transcription from P2 results in a truncated p63 (ΔNp63) or p73 (ΔNp73) 

protein which function as oncogenes, promoting cell survival (Grob et al., 2001).  In 

addition, both isoforms of p63 and p73 undergo alternative C-terminal splicing, which 

generates up to 7 variants of each.  It is thought that p53, p63, p73 and their isoforms 

co-operate to regulate cell development and to respond to cellular stress (Murray-

Zmijewski et al., 2006).  

ΔNp73 can block the tumour suppressive RB, p53 and TAp73 pathways, and promote 

expression of anti-apoptotic genes (Stiewe et al., 2003; Zaika et al., 2002; Grob et al., 

2001).  ΔNp73 isoforms are dominant negative inhibitors of both TAp73 and p53 by 

competing for promoter binding and therefore overexpression of ΔNp73 could block 

p53 activity and inhibit the transcriptional role TAp73 plays in inducing apoptosis and 

differentiation (Peirce et al., 2009; Deyoung et al., 2007; De Laurenzi et al., 2000).  In 

addition both TAp73 and p53 promote ΔNp73 transcription, forming a negative 

feedback loop.  The various p73 isoforms also bind to MDM2 and MDMX resulting in 

inactivation but not rapid degradation of p73 (Ongkeko et al., 1999; Zeng et al., 1999). 

1.16.1 p73 in neuronal development  

p73 is involved in neuronal development, and plays essential roles in regulating neural 

stem cell self-renewal and maintenance (Talos et al., 2010, Agostini et al., 2010; 

Fujitani et al., 2010).  Complete p73 knockout mice have developmental defects in the 

central nervous system in both embryonal and adult neurogenesis, with 100% 

penetrance and mice die 5-6 weeks after birth (Talos et al., 2010, Yand et al., 2000; 

Yang et al., 1999).   

A ΔNp73 isoform specific knockout mouse model confirmed the pro-survival role of 

ΔNp73 which is expressed in differentiated mature post-mitotic neurons (Wilhelm et al., 

2010; Tissir et al., 2009; Pozniak et al., 2000), and there is evidence of 

neurodegeneration in ΔNp73
-/-

 mice (Yankner et al., 2008).  Isoform specific knockout 

of TAp73 results in defects in neurogenesis (Tomasini et al., 2008) and there is 

evidence that TAp73 is required for neural stem cell proliferation (Fujitani et al., 2001).  

No human genetic disorders are associated with germline mutations in the p73 gene 

(reviewed by Khoury and Bourdon, 2011).   
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1.16.2 p73 in tumourigenesis and neuroblastoma 

Studies have shown that  TAp73
-/- 

mice which retained ΔNp73 exhibit increased 

genomic instability associated with enhanced aneuploidy and have an increased 

incidence of spontaneous tumour formation (Tomasini et al., 2008, Yang et al., 2000).  

In addition, p73 +/- mice and p73+/-:p53+/- mice developed a more aggressive tumour 

phenotype compared to p73+/+ and p73+/+:p53+/+ mice (Flores et al., 2005), indicating 

a role for p73 in preventing cancer progression.  On the other hand, ΔNp73
-/-

 mice show 

impaired tumour formation in nude mice (Wilhelm et al., 2010).   

Compared to p53, p73 is rarely mutated in cancers but its expression is often 

deregulated (Melino et al., 2002; Irwin et al., 2001).   Mechanisms of p73 deregulation 

in a number of cancer types including neuroblastoma (both in cell lines and primary 

tumours) include: 1) hypermethylation of the TAp73 P1 promoter, 2) increased 

expression of the ΔNp73 isoform as a result of demethylation of the P2 promoter, and 3) 

loss of heterozygosity at the p73 locus, 1p36 (reviewed in Rufini et al., 2011).  There is 

also evidence that p73 is a major determinant of chemosensitivity in human tumours 

(Lunghi et al., 2009).  Overexpression of ΔNp73 is usually associated with treatment 

failure and chemoresistance, metastases and invasion, correlating with poor prognosis 

and reduced survival (reviewed in Bisso et al., 2011).  It was found to be expressed at 

high levels by real-time PCR in 30% of primary neuroblastoma tumours and correlates 

with poor overall and progression-free survival in neuroblastoma patients (Casciano et 

al., 2002).  It is a negative prognostic marker regardless of age, primary tumour site, 

stage and MYCN status.    

Both MYCN amplification and 1p36 deletion are associated with poor patient survival in 

neuroblastoma.  Neuroblastomas lacking MYCN amplification frequently contain 

relatively small 1p36 deletions and therefore inactivation of p73 may contribute to 

neuroblastoma formation.   Tumours with MYCN amplification usually contain larger 

deletions that extend proximally beyond the p73 locus.  MYCN has been shown to 

inhibit TAp73 expression; MYCN amplified tumours have reduced expression of p73, 

and transfection of cell lines with MYCN reduces p73 expression (Zhu et al., 2002).  In 

addition, overexpression of TAp73 downregulates MYCN, which may induce 

differentiation (Watanabe et al., 2002; De Laurenzi et al., 2000).  
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1.16.3 p63 in epithelial differentiation and cancer 

p63 is involved in epithelial differentiation.  Genetic experiments in mice show that p63 

is critical for epidermal morphogenesis and limb development, and that impairment of 

p63 results in several disorders.  Mice with complete p63 knockout are born skinless, 

and have severe limb deformities (Yang et al., 1999).   Unlike p73, p63 levels have been 

found to be very low in the central nervous system and it is not implicated in the 

formation of neuroblastoma (Jacobs et al., 2005).  It is however, involved in other 

cancer types and ΔNp63 expression has been shown to correlate with chemoresistance 

(Rocco et al., 2006).  In squamous cell carcinomas expression levels of the ΔNp63 

isoform are significantly increased (Hibi et al., 2000). 

1.17 Inhibiting the MDM2-p53 interaction 

Genetic studies involving transgenic mouse models have demonstrated that p53 

inactivation is critical for both tumour formation, and subsequent maintenance of the 

tumour (Ventura et al., 2007; Xue et al., 2007a; Martins et al., 2006).  Many cancers 

that maintain wildtype p53 have inactive p53 function as a result of upstream defects 

including MDM2 and MDMX overexpression or p14
ARF

 inactivation.  In these p53-

wildtype tumours, reactivation of p53 is an area of intense investigation. 

Potential methods of p53 reactivation include inhibition of the MDM2-p53 interaction, 

lowering MDM2 levels, or blocking cytoplasmic shuttling (Vassilev et al., 2004).  

Genetic restoration of p53 activity in experimental mouse models resulted in inhibition 

of rapid and extensive tumour progression (Ventura et al., 2007; Xue et al., 2007a; 

Martins et al., 2006).  This thesis focuses on p53 reactivation using low molecular 

weight compounds that block the interface of the MDM2-p53 binding site, known as 

MDM2-p53 antagonists (Chene, 2003).   

1.17.1 The MDM2-p53 binding site 

The p53 binding site of MDM2 is well characterised, and antagonists mimicking p53 

can be created to block this interaction (Chene, 2003).   

The MDM2-p53 interaction occurs within the 118 amino acid N-terminal 

transactivation domain of MDM2, and initiates the inhibitory effects of p53 (Oliner et 

al., 1993).  14 hydrophobic aromatic amino acids on the surface of MDM2 form a deep 

hydrophobic cleft in which p53 binds, composed of 2 helices forming the sides, 2 

shorter helices that make up the bottom and two three-stranded  β-sheets that cap each 
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end (Kussie et al., 1996).  The minimal binding site for MDM2 on the p53 protein is 

also located at the N terminus, between residues 18-23, TFSDLW (Picksley et al., 1994).  

The binding domain of p53 forms an amphipathic α-helix , of which two and a half 

turns are involved in the binding of MDM2, and is followed by an extended region of 3 

residues (Kussie et al., 1996).  3 hydrophobic and aromatic amino acids of p53; Phe19, 

Trp23 and Leu26 insert deep into the MDM2 cleft, and Thr18 is important for the 

stability of the helix (Vassilev et al., 2004; Massova and Kollman, 1999; Kussie et al., 

1996).  As well as Van der Waals interactions, three hydrogen bonds are involved in 

MDM2-p53 binding and Trp23 of p53 forms the strongest of these bonds.  The p53-

MDM2 interaction is shown in Figure 1.21.  

 

Figure 1.21.  The structure of the p53-MDM2 complex.  Key residues are shown on 
both p53 and MDM2 and A, and B, show the interaction from different angles 
(Freedman et al., 1999).   
 

Molecules have been developed which mimic the three p53 amino acids involved in 

binding, and the Trp23 hydrogen bond should be preserved to ensure good binding 

affinity (Chene, 2003).  

1.17.2 MDM2-p53 antagonists 

The hydrophobic p53-binding pocket of MDM2 is ideal for developing low molecular 

weight compounds that prevent p53 binding (Vassilev, 2004).  These need to be potent 

and selective, and small molecules will contribute to increased oral bioavailability 

(Vassilev, 2004).  However, due to the hydrophobic nature of the pocket, oral 

bioavailability is slightly compromised as the compounds need to be lipophilic to 

improve binding energy (Chene, 2003).   
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The most well-known and studied MDM2 antagonist is the cis-imidazoline analogue 

Nutlin-3.  Another cis-imidazoline analogue RG7112 is in phase I clinical trials for 

patients with advanced solid tumours (http://clinicaltrials.gov/show/nct00559533).  

Other MDM2 antagonists include the spirooxinodoles such as MI-63 and MI-219, the 

latter of which is expected to enter clinical trials (Millard et al., 2011; Shangary and 

Wang, 2009), the isoindolinones (Hardcastle et al., 2005), and 

chromenotriazolopyrimidines (Allen et al., 2009).  JNJ-26854165, a novel tryptamine 

derivative that blocks MDM2-p53 proteosome interaction is in clinical development 

(Millard et al., 2011). 

1.17.2.1 Nutlins 

Nutlins selectively disrupt the MDM2-p53 interaction in an enantiomer specific manner 

by competing with p53 for the hydrophobic binding pocket of MDM2.  The backbone 

sits in the same position as the p53 helical backbone within MDM2, and projects 3 

groups into MDM2 which mimic the p53 amino acids (Vassilev et al., 2004).  Nutlin-3 

binds MDM2 with a Ki of 36nM (Michael and Oren, 2003).  The structure of Nutlins 1-

3 are shown in Figure 1.22, alongside their IC50 values. 

Nutlins were used to validate the MDM2-p53 antagonist theory in vitro and in vivo and 

have been found to have antiproliferative effects in a variety of adult tumour types.   

Initial investigations with Nutlin-1 showed a dose-dependent antiproliferative and 

cytotoxic effect within cells containing wildtype p53, compared to cells with non-

functional p53 (Tovar et al., 2006; Vassilev et al., 2004).  Nutlin-3 inhibited the ability 

of MDM2 to drive ubiquitination and exportation of p53, resulting in nuclear 

accumulation of p53 and subsequent increased transcriptional activity and initiation of 

the DNA damage response (Tovar et al., 2006; Vassilev et al., 2004).  This results in 

non-genotoxic p53 stabilisation and activation of growth arrest and apoptosis (Carvajal 

et al., 2005; Vassilev, 2004; Vassilev et al., 2004), and also sensitisation to conventional 

chemotherapies (Barbieri et al., 2006; Cao et al., 2006; Coll-Mulet et al., 2006).  Nutlin 

inhibited growth of human tumour xenografts in nude mice (Vassilev et al., 2004). 

Interestingly, whereas Nutlin induced apoptosis in leukaemia cells (Saha et al., 2010; 

Vassilev, 2007), only cell cycle arrest occurred in a wide array of solid tumours in both 

preclinical and clinical studies (Demidenko et al., 2010; Huang et al., 2009; Tovar et al., 

2006).  Upregulation of p21
WAF1

 was associated with altered expression of pro-apoptotic 

genes, and may explain why some tumours undergo a reversible cell cycle arrest in 
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response to Nutlin, instead of apoptosis.  A recent study however, found that the 

increased p21
WAF1

 levels did not protect solid cancers against Nutlin induced apoptosis 

(Xia et al., 2011).     

The Nutlin-3 analogue, RG7112, is currently in phase I clinical trials for solid tumours 

(http://clinicaltrials.gov/show/nct00559533). 

 

Figure 1.22. Structure of Nutlins 1-3, and binding against concentration of each 
Nutlin to recombinant human MDM2 displayed alongside their IC-50.  Nutlin-1 and 
Nutlin-2 were used as racemic mixtures, whereas Nutlin-3a and Nutlin-3b were 
separated on a chiral column (Vassilev et al., 2004).   
 

1.17.2.2 Spirooxinodoles 

Spiooxinodoles are another class of potent, selective, cell permeable, nonpeptidic small 

molecule inhibitors of the MDM2-p53 interaction (Shangary et al., 2008; Ding et al., 

2006; Ding et al., 2005).  MI-63 is one of these molecules and binds MDM2 with a Ki 

of 3nM, 2000 times more potent than the natural p53 peptide (Ding et al., 2006).   

MI-63 was highly effective at activating wildtype p53 and inhibiting cancer cell growth 

(Ding et al., 2006), and induced apoptosis in rhabdomyosarcoma and AML (Samudio et 

al., 2010; Canner et al., 2009).  MI-63 synergised with doxorubicin and AraC to induce 

apoptosis and in comparison with Nutlin was a more potent inhibitor of cell 

proliferation and viability (Samudio et al., 2010; Canner et al., 2009).    

 

http://clinicaltrials.gov/show/nct00559533
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Unfortunately MI-63 has a poor pharmacokinetic profile, and modest bioavailability so 

is not a suitable candidate for drug development (Ding et al., 2006).  Analogues of MI-

63 have been developed that are small and potent with excellent bioavailability (Yu et 

al., 2009); MI-219 and MI-147.  In a SJSA-1 xenograft mouse model, MI-147 was 

highly effective at inhibiting tumour growth and reducing tumour volume with no 

weight loss or toxicity to normal tissues (Yu et al., 2009).  In combination with 

irinotecan, tumour growth was completely inhibited.  MI-219 has a Ki for MDM2 of 

5nM and rapidly but transiently stimulated p53 activation and p53-dependent growth 

arrest and apoptosis in tumour cells and tumour xenograft tissues (Shangary et al., 2008).  

Whilst p53 was activated in normal cells there was no apoptosis, and in vivo, was 

selectively toxic to tumour tissues (Shangary et al., 2008).    The structure of MI-63, 

MI-147 and MI-219 are shown in Figure 1.23. 

 

 

 

 

Figure 1.23. The structures of the spirooxinodole analogues MI-63, MI-147 and MI-
219 (Yu et al., 2009). 
 

1.17.3 MDM2-p53 antagonists in neuroblastoma 

Unlike most cancers, most cases of diagnostic and relapsed neuroblastomas have 

wildtype p53, making reactivation of p53 an attractive therapeutic target.  In addition, 

downstream functions are intact, and p53 is capable of inducing a normal response to 

stress or DNA damage (Fesik, 2005; Hogarty, 2003; Tweddle et al., 2003; Keshelava et 

al., 2000; Goldman et al., 1996; Hosoi et al., 1994; Vogan et al., 1993).  Therefore 

upstream inactivation of p53 is necessary for evasion of cell cycle arrest or apoptosis in 

the face of on-going stress of rapidly proliferating neuroblastoma cells. 

The use of MDM2-p53 antagonists for the treatment of neuroblastoma is under 

investigation.  In comparison to other cancers including CLL, multiple myeloma, lung 

cancer and osteosarcoma, neuroblastomas had much more rapid and robust levels of p53 

induction and rates of apoptosis after 24-48 hour treatment, and apoptosis was induced 

in all cell lines tested (Barbieri et al., 2006; Cao et al., 2006; Kojima et al., 2006; 
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Stuhmer et al., 2005; Vassilev et al., 2004).  Most other solid cancers only undergo cell 

cycle arrest in response to Nutlin.   

Nutlin-3 inhibits the growth of both chemosensitive and chemoresistant neuroblastoma 

in vitro and in vivo in a p53 dependent-manner (Van Maerken et al., 2009a; Van 

Maerken et al., 2009b; Barbieri et al., 2006).  Nutlin induced antitumour effects in 

neuroblastoma cells and xenografts, and induced apoptosis in a dose and time-

dependent manner in addition to limiting cell proliferation (Van Maerken et al., 2009a; 

Barbieri et al., 2006; Van Maerken et al., 2006).  Cells that survived treatment either 

underwent a G1 arrest, cellular senescence or neuronal differentiation (Van Maerken et 

al., 2006).   Nutlin-3 induced cell cycle arrest and apoptosis in multidrug resistant cell 

lines (Van Maerken et al., 2009a). 

1.17.3.1 The p53/MDM2/p14
ARF 

network and MYCN 

p53 mutation renders neuroblastoma cells unresponsive to Nutlin treatment (Van 

Maerken et al., 2009a).  23 of 25 cell lines with wildtype p53 responded to Nutlin 

suggesting upstream defects of p53 in the majority of cell lines, and it is likely that high 

levels of MDM2 are responsible for p53 inactivation in neuroblastoma (Van Maerken et 

al., 2009a).   

Previous reports provide conflicting data about the role of MDM2 on the response to 

MDM2-p53 antagonists in various cancer types, with some studies pointing towards 

sensitisation in the presence of MDM2-amplification or overexpression (Gu et al., 

2008a; Tovar et al., 2006; Kojima et al., 2005), and other studies indicating no effect, 

including in neuroblastoma (although only 1 cell line was tested) (Liu et al., 2009; 

Kojima et al., 2006; Van Maerken et al., 2006).  MDM2 knockdown had minimal effect 

on MI-219 induced growth suppression in other cancer types (Zheng et al., 2010).  To 

investigate the role of MYCN on the response to MDM2-p53 antagonists, Barbieri et al. 

investigated the effect of Nutlin-3 in two MYCN-inducible cell lines, MYCN3 and 

Tet21N, both of which are derived from SHEP cells.  No significant difference in IC50 

values were observed, although there was a trend towards increased sensitivity in 

Tet21N cells (Barbieri et al., 2006).  A report by Van Maerken et al. also found that 

Nutlin-3 initiates a response regardless of MYCN or MDM2 status (Van Maerken et al., 

2006).  Interestingly, Petroni et al. found that Nutlin-3 induced apoptosis more 

efficiently in MYCN-amplified neuroblastoma cells in response to clastogenic agents, 
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and Fulda et al. found that MYCN increased sensitivity to chemotherapeutic drugs 

(Petroni et al., 2011; Fulda et al., 2000).   

Overexpression of p14
ARF

 pointed towards a stimulatory effect of p14
ARF

 expression on 

the Nutlin response.  Downregulation or impairment of p14
ARF

 in neuroblastoma 

resulted in lower levels of apoptosis and decreased cell viability, whereas 

overexpression decreased cell survival and increased apoptosis (Van Maerken et al., 

2011). 

1.17.4 The role of HIPK2 in neuroblastoma and Nutlin-3 treatment 

In solid tumours of non-neuroectodermal origin Nutlin-3 promoted p53 accumulation 

and induced cell cycle arrest but not apoptosis (Tovar et al., 2006).  Nutlin 3 treatment 

decreased HIPK2 expression and accumulation of monophosphorylated p53 in U2OS 

cells undergoing growth inhibition.  Nutlin-3 efficiently induced apoptosis in MYCN-

amplified neuroblastoma cells and sensitised them to DNA damaging drugs, via an 

unexpected and possibly tumour type specific pro-apoptotic regulator,  HIPK2 (Petroni 

et al., 2011).  HIPK2 accumulated in SMSKCNR and IMR32 cells undergoing 

apoptosis in response to Nutlin-3.  HIPK2 depletion in SMSKCNR cells, which are 

MYCN-amplified, resulted in reduced levels of apoptosis suggesting a role for HIPK2 in 

Nutlin-3 mediated apoptosis in neuroblastoma.   

1.17.5 p73 and Nutlin-3 

Nutlin-3, an MDM2 inhibitor, and chemotherapeutic agents such as cisplatin, have been 

shown to induce TAp73, as well as activating p53.  In a p53-null and doxorubicin-

resistant neuroblastoma cell line, Nutlin treatment increased TAp73 expression in an 

E2F-dependent manner, resulting in an increase in the ability of doxorubicin to block 

cell proliferation and induce apoptosis in a TAp73-dependent manner (Peirce et al., 

2009).   In addition, Nutlin has been shown to disrupt the MDM2-TAp73 interaction in 

cancer cell lines, increasing TAp73 transcriptional activity (Lau et al., 2008).   

1.17.6 Combination therapy 

In wildtype p53 cell lines, response to genotoxic drugs is significantly enhanced upon 

disruption of the MDM2-p53 loop.  Therefore MDM2-p53 antagonists may be useful as 

an adjuvant to chemotherapeutic drugs (Barbieri et al., 2006).  Combined therapy is 

appealing as patients would be subjected to lower doses of genotoxic drugs.   
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Many studies have shown a synergistic effect of Nutlin combined with chemo or 

radiotherapy (Barbieri et al., 2006; Cao et al., 2006; Coll-Mulet et al., 2006).  A number 

of cell lines tested with this combined therapy were extremely sensitive to treatment.  

Nutlin-3 in combination with cisplatin induced growth inhibition and a 8-10 fold 

reduction in IC50 compared to cisplatin alone in neuroblastoma (Barbieri et al., 2006).  

Nutlin-3 in combination with bevacizumab lead to a significant repression in tumour 

cell growth compared to nutlin-3 alone both in vivo and in vitro, and in xenograft 

models.  This was associated with a decrease in metastases and metastatic burden, and 

inhibition of angiogenesis (Patterson et al., 2011). Barbieri et al. demonstrated Nutlin-3 

induction of apoptosis resulted in limited proliferation, and an enhanced response to 

genotoxic drugs such as etoposide and cisplatin (Barbieri et al., 2006).  Petroni et al. 

found that Nutlin-3 induced apoptosis more efficiently than and cooperatively with 

bleomycin, and sensitised to other cytotoxic drugs, inducing high levels of apoptosis 

(Petroni et al., 2011).  

1.17.7 The effect of MDMX on the response to MDM2-p53 antagonists 

Nutlin-3 fails to induce apoptosis in cancer cells that overexpress MDMX.  Despite the 

similarities between MDM2 and MDMX, Nutlin is ineffective at interrupting the 

transcription-repressive MDMX-p53 complex, and does not bind MDMX with high 

enough affinity to affect its interaction with p53 (Wade et al., 2006).   MDMX may 

therefore continue to suppress Nutlin-induced p53, and be a major hindrance to MDM2-

p53 antagonists (Wade et al., 2006).   

Many human cancer cell lines overexpress MDMX and inhibit p53 transcriptional 

activity (Hu et al., 2006; Patton et al., 2006; Wade et al., 2006; Ramos et al., 2001).  

Inactivation of p53 by overexpressed MDMX is oncogenic (Marine et al., 2006).  In 

addition, a number of studies have shown that the cellular activity of MDM2 inhibitors 

is decreased by MDMX, and Nutlin-3 does not induce apoptosis in cancer cells that 

express high levels of MDMX protein such as MCF-7 (Hu et al., 2006; Patton et al., 

2006; Wade et al., 2006).  Apoptosis was restored upon siRNA-mediated MDMX 

knockdown in these cells, or upon treatment with a peptide that disrupted both the 

MDM2 and MDMX association with p53 (Wade et al., 2006).    

In addition, recent studies have shown that inhibition of MDMX enhances the response 

to MDM2-p53 antagonists (Vaseva et al., 2011; Wang et al., 2011).  The apoptotic 

efficiency of Nutlin-3 in solid tumours in vitro and in xenografts is dramatically 
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enhanced when combined with the heat-shock-protein 90 inhibitor 17AAG, which 

interferes with MDMX-p53 complex formation and induces MDMX degradation.  A 2.5 

fold increase in transcriptional activity was observed compared to Nutlin-3 only.  

Another small molecule inhibitor of MDMX expression, XI-006 (a benzofluroxan 

derivative), increased p53 activity and induced proapoptotic target genes in various 

cancer cells, displaying an additive rather than synergistic effect (Wang et al., 2011).  

MCF-7 cells underwent apoptosis when treated with XI-006 in combination with nutlin-

3, when previously they only arrested, and this enhanced Nutlin’s effect on cell viability.  

Another small molecule that disrupts MDMX interaction had an additive rather than 

synergistic effect (Reed et al., 2010).  This inhibitor transactivated proapoptotic genes in 

MCF7 overexpressing cells, resulting in apoptosis.   
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1.18 Hypothesis and Aims 

 

Hypotheses: 

The status of MYCN and the p53-MDM2/MDMX-p14
ARF

 network influences the 

response to MDM2-p53 antagonists in neuroblastoma. 

 

Aims: 

1) To investigate the effect of MYCN on the growth inhibitory and apoptotic 

response to the MDM2-p53 antagonists Nutlin-3 and MI-63, using a MYCN 

regulatable neuroblastoma cell line (Tet21N), MYCN siRNA and a panel of 

MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines.  

2) To determine MDMX protein expression levels in neuroblastoma cell lines, and 

to investigate the effect of MDM2 and MDMX on the growth inhibitory and 

apoptotic response to Nutlin-3 and MI-63 using MDM2 and MDMX siRNA, 

and a panel of neuroblastoma cell lines.  In addition, growth inhibition in 

MDM2-amplified neuroblastomas and MDM2-amplified sarcomas are to be 

compared.   

3) To investigate the effect of p14
ARF

 impairment and p14
ARF

 knockdown on the 

cell cycle response, and levels of apoptosis following MDM2-p53 antagonist 

treatment, and to determine the mechanism of increased p14
ARF

 levels in MYCN 

and MDM2 co-amplified neuroblastoma cell lines. 

4) To test 2 cell lines for their response to MDM2-p53 antagonists and to sequence 

the p53 gene.  
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2.1 Cell culture 

Cell culture was carried out under sterile conditions in class II containment hoods 

(Biomat
2
, Medair Technologies, MA, USA).  All cell lines used in this study are 

displayed in Table 2.1, alongside their MYCN, MDM2, p14
ARF

 and p53 status as well as 

their cell type.  Cell lines were validated upon receipt using cytogenetic analysis 

courtesy of Dr Nick Bown, Institute of Human Genetics, Newcastle University, UK.   

Cell lines were routinely checked for mycoplasma using Mycoalert® Detection Kit 

(Lonza, Basel, Switzerland).   

2.1.1 Passaging and seeding of cells 

Cell lines were cultured as adherent monolayers in RPMI 1640 medium (Sigma, Dorset, 

UK) supplemented with 10% fetal calf serum (FCS) and grown in humidified 

incubators (Incu Safe, Sanyo, IL, USA) at 37°C and 5% CO2.   MYCN regulatable 

SHEP Tet21N cells were grown in 200μg/ml of G-418 (Calbiochem, Nottingham, UK), 

and 900µg/ml Hygromycin B (Invitrogen, Paisley, UK), and vector only Tet21 cells 

were grown 200μg/ml of G-418.  Cells were passaged at ~70-80% confluency and 

routinely grown in 25cm
2
, 75cm

2
 or 175cm

2
 flasks (Corning, Amsterdam, Netherlands).  

Cells were first washed with 10ml of phosphate-buffered saline (PBS), and then 2-4mls 

of 1x trypsin-EDTA (Sigma) added and incubated for approximately 5 minutes to 

detach cells from the surface of the flask/plate.  At least an equal volume of medium 

was added to tripsinised cells to neutralise the trypsin.  An aliquot of the cell culture 

was then either used to seed a new flask, or the cells counted so that a desired number of 

cells could be seeded for an experiment.  

2.1.2 Counting cells 

The concentration of cells was estimated using an Improved Neubauer haemocytometer 

(Hawksley, Sussex, UK).  Cells were first dispersed using a 5ml COMBITIP® PLUS 

syringe (Eppendorf, Cambridge, UK) and 50µl of cells mixed with an equal volume of 

Carnoy’s solution (Appendix 1).    A 15µl volume of cell suspension was added to each 

side of the haemocytometer, drawn under the coverslip by capillary action, and the total 

number of cells in each 5x5 grid counted.  Each grid has a total volume of 0.1mm
3
 

(1mm
2
 (area) x 0.1mm (depth)), and is equivalent to 1x10

-4
ml.  The average number of 

cells from the 2 grids was calculated, and the cell count multiplied by 2 to take into 

account the 1 in 2 dilution with Carnoy’s.  To obtain cells/ml, the final cell count was 

multiplied by 10
4
.  The required volume of cell suspension was then calculated and cells 
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added to 6-well or 96-well plates (Corning) in RPMI 1640 medium (10% FCS) and 

incubated for at least 24 hours at 37°C, 5% CO2, to allow cells to adhere before 

treatment. 

Cell Line MYCN 
status 

MDM2 
status 

p14ARF 

status 
p53 

status 
Cell 

Type 
References 

NGP  Amp Amp Wt Wt N (Brodeur et al., 1997) 

LS Amp Amp Wt Wt N (Rudolph et al., 1991) 

NB1691 Amp Amp Wt Wt N (Thompson et al., 1997) 

TR14 Amp Amp Wt Wt N (Cowell and Rupniak, 
1983) 

IMR32 Amp Non-amp Wt Wt N (Tumilowicz et al., 1970) 

NBLW Amp Non-amp Wt Wt N>S (Foley et al., 1991) 

SMSKCNR Amp Non-amp Wt Wt N (Reynolds et al., 1986) 

LAN5 Amp Non-amp Wt Wt N (Seeger et al., 1982) 

PER108 Amp Non-amp Methylated Wt N (McRobert et al., 1992) 

CHLA136 Amp Non-amp Wt Wt N (Keshelava et al., 2000) 

SHSY5Y Non-amp Non-amp Wt Wt N (Biedler et al., 1978) 

NBLS Non-amp Non-amp Wt Wt S (Cohn et al., 1990) 

SJNB1 Non-amp Non-amp Wt Wt S>N (McKenzie et al., 1999; 
McPake et al., 1998) 

SHEP Non-amp Non-amp Deletion Wt S (Biedler et al., 1978) 

NB69 Non-amp Non-amp Wt Wt N>S (Feder and Gilbert, 1983) 

GIMEN Non-amp Non-amp Methylated Wt S>N (Cornaglia-Ferraris et al., 
1990) 

SKNRA Non-amp Non-amp Wt Wt S (Reynolds et al., 2000) 

LAN6 Non-amp Non-amp Deletion Wt N (Wada et al., 1988) 

SKNBe2C Amp Non-amp Wt Mutant I (Biedler et al., 1973) 

IGNR91 Amp Non-amp Wt Mutant N (Ferrandis et al., 1994) 

SKNAS Non-amp Non-amp Wt Mutant S (Sugimoto et al., 1984) 

NB100* Non-amp Non-amp Wt Mutant - (Luque et al., 1994) 

SHEP 
Tet21N 

Non-amp Non-amp Deletion Wt S (Lutz et al., 1996) 

Tet21 
vector 

Non-amp Non-amp Deletion Wt S (Lutz et al., 1996) 

SJSA-1** Non-amp Amp Unknown Wt - (Roberts et al., 1989) 

MHM-N** Non-amp Amp Unknown Wt - (Müller CR, 2007) 

RH18** Non-amp Amp Unknown Wt - (Hazelton et al., 1987) 

T449** Non-amp Amp Unknown Wt - (Müller CR, 2007) 

T778** Non-amp Amp Unknown Wt - (Müller CR, 2007) 

BCH-N-AD Amp Unknown Unknown Mutant ? (Peet et al., 2007) 

BCH-N-NS Amp Unknown Unknown Mutant ? (Peet et al., 2007) 

Table 2.1.  The panel of cell lines used in this study.  All are neuroblastoma cell lines 
with the exception of NB100* (PNET cell line) and SJSA** (osteosarcoma), MHM-N** 
(osteosarcoma), RH-18** (rhabdomyosarcoma), T449** and T778** (liposarcomas).  
For cell type, N = neurite-bearing, S = substrate-adherent, I = mixture of N and S type.  



94 

 

References are to studies that the cell lines were first published in.  The 
p53/MDM2/p14ARF status of all neuroblastoma cell lines (except BCH-N-AD and BCH-N-
NS) has been determined previously (Carr et al., 2006; Keshelava et al., 2001; Tweddle 
et al., 2001a).  Wt – wildtype, Amp – amplified, non-amp – non-amplified. 

2.1.3 Resurrecting and freezing down cells 

Neuroblastoma cell lines were stored either in liquid nitrogen at -180°C.  To resurrect 

cells, vials were defrosted in a waterbath, then transferred to a sterile universal tube and 

centrifuged at 1200rpm for 5 minutes to remove media containing Dimethyl Sulfoxide 

(DMSO) (Invitrogen).  The cell pellet was resuspended in fresh medium and transferred 

to a 25cm
3 

flask to be incubated at 37°C, 5% CO2.  Cells were passaged at least twice 

before experiments were performed.  To replace frozen stocks, 75cm
3
 or 175cm

3
 flasks 

of cells were tripsinised and centrifuged at 1200rpm for 5 minutes.  The cell pellet was 

resuspended in the appropriate amount of freeze media (10% DMSO, 20% FCS and 70% 

1640 RPMI), and 1ml added to a labelled cryogenic vial (NUNC
TM

, Rochester, NY, 

USA).  The cryovial was then placed into the -80°C freezer and once frozen, transferred 

to the liquid nitrogen cryostore (Biosystem, Cryostor). 

2.1.4 Nutlin-3/MI-63 treatment 

Nutlin-3 was purchased from Enzo Life Sciences (Exeter, UK) and MI-63 was kindly 

provided by Siena Biotech (Siena, Italy) as part of a Framework Programe 6 DePPICT 

consortium collaboration.  Both compounds were dissolved in DMSO (Sigma) to a 

10mM stock solution and stored at -20°C.  Cells treated with Nutlin-3 or MI-63 had 

equal volumes of DMSO added within an experiment. The structures of Nutlin-3 and 

MI-63 are displayed in Chapter 1.17.   

2.2 SHEP Tet21N MYCN expression system 

The SHEP Tet21N MYCN expression system allows the effects of conditional MYCN 

expression to be investigated, and has a Tet-OFF mechanism (Lutz et al., 1996).  The 

Tet-OFF system was first developed in 1992 (Gossen and Bujard, 1992), and is 

switched on by the removal of tetracycline, which in the case of Tet21N cells, induces 

expression of MYCN.  SHEP cells normally express no detectable levels of MYCN 

protein, and low mRNA. The SHEP Tet21N cells are an S-type clone of SKNSH cells 

(Biedler et al., 1973) and although they are generated from the least tumourigenic 

neuroblastoma cell type they are very chemoresistant (Rodriguez-Lopez et al., 2001; 
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Tweddle et al., 2001b; Jasty et al., 1998).   Vector only Tet21 cells were used when 

appropriate as a control for tetracycline. 

2.2.1 Generation of SHEP Tet21N MYCN regulatable cells   

Tet-OFF SHEP Tet21N cells were generated by Lutz et al. (1996) using plasmids 

pUHD15-1 (Figure 2.1a), and pUHD10-3/MYCN (Figure 2.1b). The TET-off system 

employs a tetracycline controlled transactivator (tTA).  This is composed of the Tet 

respressor protein (tetR) (from the tetracycline resistance operon of E. coli) fused with 

the C-terminal transactivation domain of Virion Protein 16 of Herpes Simplex Virus.  

The tTA is contained within the pUHD15-1 plasmid, expression of which is under the 

control of the human cytomegalovirus promoter (PCMV).  In the absence of tetracycline, 

the tTA binds to the tetracycline responsive promoter element (TRE), made up of seven 

copies of the TET operator (tetO) sequence which fused upstream of the minimal 

promoter of human CMV (PminhCMV), and is located in the second pUHD10-3 plasmid.  

This initiates gene transcription.  In the presence of tetracycline, the tTA is unable to 

bind the TRE, resulting in no gene transcription.   

In the generation of the SHEP Tet21N cells, the MYCN sequence (lacking the non-

coding exon 1) was cloned into the EcoR1 site of pUHD10-3.  The pUHD15-1 and 

pSV2neo plasmids were co-transfected into SHEP cells and transfected cells selected 

for by addition of G-418 antibiotic 12 hours after transfection.  Clones were then co-

transfected with the pUHD10-3/MYCN and pHMR272 plasmids.  Addition of G-418 

and hygromycin to growth media selected for transfected clones and clones that 

expressed MYCN in the absence of tetracycline, but not in the presence were 

maintained in media containing G-418 and hygromycin (Lutz et al., 1996).  Further 

details on the generation of this cell line are described by Lutz et al. (Lutz et al., 1996) 

2.2.2 Culturing of SHEP Tet21N and Tet21 cells 

SHEP Tet21N cells were routinely cultured in RPMI 1640 with 10% FCS and 200µg/ml 

G-418 (Calbiochem) and 900µg/ml Hygromycin B (Invitrogen).  1µg/ml of tetracycline 

(Sigma) was added to the medium for at least 48 hours before experiments were set up.  

Tetracycline was stored at a stock solution of 1mg/ml in sterile ddH2O and stored at -

20°C.  Medium was changed every 48 hours due to the short half-life of tetracycline. 
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Figure 2.1.  Plasmid maps of a) pUHD15-1 and b) pUHD10-3 used to generate the 
Tet21N cells.  http://www.zmbh.uni-heidelberg.de/bujard/tTA/pUHD15-1.html and 
http://www.zmbh.uni-heidelberg.de/bujard/reporter/pUHD10-3.html  
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2.3 RNA interference 

RNA interference is a mechanism of post-transcriptionally regulating gene expression.  

Discovered in 1998, RNA interference was a major technological advance in molecular 

biology.  RNA interference is a method of silencing gene expression, specifically 

targeting double stranded RNA (dsRNA) for degradation and is triggered by non-coding 

small interfering RNAs (siRNAs).  RNA interference occurs naturally in many 

organisms, where long dsRNA can be used to silence expression of target genes.  The 

mechanism of RNA interference is shown in Figure 2.2.  The long dsRNAs enter the 

RNA interference pathway, where they are first processed into 20-25 nucleotide small 

interfering RNAs (siRNAs) by an enzyme called Dicer.  The siRNAs then assemble on 

to the RNA-induced silencing complexes (RISCs), where they unwind, and 

subsequently guide the RISCs to complementary RNA molecules where they cleave and 

destroy the cognate RNA. 

Synthetic siRNAs are an easy and efficient way of achieving RNA interference.  They 

are typically made of 19 RNA nucleotides with symmetric 2 nucleotide 3’ overhangs 

(usually DNA bases). The use of siRNAs in mammalian cells has been shown to 

effectively bypass the antiviral response which is normally triggered upon introduction 

of long dsRNA, and specifically silences gene expression.   

2.3.1 siRNA design and synthesis 

siRNAs were synthesised by Eurogentec (Southampton, UK); their universal negative 

control was used throughout (cat no. SR-CL000-005) and is referred to as SCR 

(scrambled).  All siRNAs were designed using siRNA design software based on 

published methods (Andrew et al., 2007; Elbashir et al., 2001a; Elbashir et al., 2001b). 

Previously described siRNA sequences for MYCN (Bell et al., 2006), p53 (Armstrong 

et al., 2007) and p14
ARF

 (Xiong and Epstein, 2009) were used (Table 2.2).  MDM2 and 

MDMX siRNAs were designed by Eurogentec (3 of each, sequences shown in Table 

2.2), using siRNA design software, based on published methods for designing siRNA 

(Elbashir et al., 2001b).   BLAST
TM

 searches were performed against the human 

genome to ensure MDM2 and MDMX sequences had no cross-reactivity with other 

genes.   
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Figure 2.2. The mechanism of RNA interference. Image adapted from 
www.ambion.com/techlib/append/RNAi_mechanism 
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siRNA target siRNA sequence (sense) 
MYCN 

 

5’UGAUCUGCAAGAACCCAGAtt 3’ 

p53 5’GACUCCAGUGGUAAUCUACtt 3’ 

MDM2 siRNA 1 5’GGGCUUUGAUGUUCCUGAUtt 3’ 

 

MDM2 siRNA 2 5’CGCCACAAAUCUGAUAGUAtt 3’ 

 

MDM2 siRNA 3 5’GCUUCACAAUCACAAGAAAtt 3’ 

 

MDMX siRNA 1 5’GGAGCAGCAUAUGGUAUAUtt 3’ 

 

MDMX siRNA 2 5’GGAUCACAGUAUGGAUAUUtt 3’ 

 

MDMX siRNA 3 5’GCAGUUAGGUGUUGGAAUAtt 3’ 

 

p14ARF 5’GAACAUGGUGCGCAGGUUCtt 3’ 

Table 2.2. siRNA sequences targeting MYCN, p53, MDM2, MDMX and p14ARF. 
 

2.3.2 siRNA transfection 

Cells were seeded in 6-well plates at a density of 4x10
5
 cells/well, in RPMI 1640 (10% 

FCS) with no antibiotics, 24 hours prior to transfection.  Lipofectamine (Invitrogen) 

was used as the transfection reagent, and OptiMEM-glutamax (OPTI) serum free media 

(Gibco, Invitrogen).  siRNAs were stored at stock concentrations of 20µM.  The 

following calculations were used to determine the volume of siRNA and OPTI 

(400µl/well) required: 

siRNA volume = N x 0.12 x nM 

OPTI volume = 400µl x N 

N = no. wells, nM = final siRNA concentration 

 

Separately, Lipofectamine was diluted in OPTI and the volume required calculated as 

follows:  

Lipofectamine volume = N x 0.15 x nM 

OPTI volume = 400µl x N 

 

The two solutions were gently mixed and incubated separately for 10 minutes at room 

temperature.  An equal volume of siRNA solution was added to the lipofectamine 

solution, gently mixed and incubated at room temperature for a further 30 minutes to 

allow liposomes containing siRNA to form.  Meanwhile, medium was aspirated off the 

cells (in 6-well plates), and 1ml of OPTI added to wash cells and remove any remaining 

FCS.  1.6ml of OPTI was added to each well.  Following the 30 minute incubation, 

800µl of the siRNA-lipofectamine solution was added to each well and incubated at 

37°C, 5% CO2.  After 24 hours, the siRNA-lipofectamine solution was removed and 
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cells either harvested, or medium replaced with 2mls of fresh RPMI 1640 media for 

collection at a later time point (10% FCS).   

2.4 Western blotting 

2.4.1 Principles of Western blotting 

Western blotting is a technique used to assess the protein expression levels of specific 

proteins in complex protein mixtures, such as cell or tissue samples.  The main 

processes of Western blotting are 1) sodium dodecyl sulphate gel electrophoresis (SDS-

PAGE), to separate proteins based on molecular weight under denaturing conditions 

(lysates are boiled with SDS and reducing agent β-mercaptoethanol to break disulphide 

bonds within the protein and coat the proteins uniformly with negative charge), 2) 

transfer of the proteins onto a nitrocellulose membrane, 3) the use of specific antibodies 

conjugated to horseradish peroxidise (HRP) and chemiluminescence to detect and 

visualise proteins.    

2.4.2 Harvesting cells and protein concentration estimation 

For collection of adherent cells only (in 6-well plates), medium was removed, cells 

washed in 1ml PBS and 30µl of lysis buffer (see Appendix 1) added.  Cells were then 

harvested using a cell scraper and lysates placed in a 1.5ml microfuge tube (Eppendorf).  

Samples could be stored at -20°C until required.  To harvest both adherent and non-

adherent cells, the cell media was placed in a 20ml universal tube (Corning), cells were 

washed in PBS (also collected) and tripsinised as previously described (Section 2.1.1).  

Tripsinised cells were neutralised with media then added to the universal tube.  The 

Universal tube was then centrifuged at 1200rpm, supernatant removed and replaced 

with PBS and cells pelleted again.  The appropriate amount of lysis buffer was added 

(equivalent of 30µl/well), and lysates added to a microfuge tube (Eppendorf).  Lysis 

buffer contains SDS, an anionic detergent which denatures the proteins, and gives the 

proteins a negative charge approximately proportional to the length of the protein.  

2.4.3 Pierce Protein Estimation 

The lysed samples were boiled for 10 minutes at 100°C, and since the samples can be 

viscous due to the presence of high molecular weight DNA, they were sonicated on full 

power for 2 x 5 seconds to fragment DNA.   The samples were then mixed by vortexing 

and 5µl added to 45µl water to make a 1:10 dilution.  Albumin standards 0.2, 0.4, 0.6, 
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0.8, 1.0 and 1.2mg/ml were made up from 2mg/ml stock, and 10µl of sample was 

pipetted into wells in a 96 well plate set up as shown in Appendix 1, alongside water as 

a negative control.  Per plate, 20ml of Reagent A was mixed with Reagent B from the 

Pierce® BCA Protein Assay kit (Pierce, Rockford, IL, USA) and 190µl added to each 

well.  This assay combines the reduction of Cu
2+

 to Cu
1+

 by protein in an alkaline 

medium, with the highly sensitive and selective colorimetric detection of the Cu
1+

 by 

bicinchoninic acid (BCA).  The samples were gently mixed by agitation on a plate 

shaker, and incubated at 37°C for 30 minutes.  The optical densities of the samples were 

then measured on a Spectromax 250 (Molecular Devices, Berkshire, UK) at 562nm, 

which was set up to automatically generate a standard curve and give concentrations of 

unknowns.  These values were multiplied by 10 to take into account the 1:10 dilution, 

and the volume of sample required for a specific amount of protein calculated (between 

15-50µg). 

2.4.4 SDS-PAGE 

Novex® 4-20% Tris-Glycine polyacrylamide gels (Invitrogen) were placed in 

Invitrogen Mini-Cell gel electrophoresis tanks and filled with 1x electrode buffer 

(Appendix 1).  5µl of loading buffer containing β-mercaptoethanol and bromophenol 

blue (Appendix 1) was added to each sample (containing 15-50µg of protein), which 

was boiled for 10 minutes, centrifuged briefly, and loaded into wells on the gel (a 10-

well gel takes 50µl sample, 12 or 15 well gels take 20µl of sample). SeeBlue
TM

 

prestained molecular weight markers (Invitrogen) were used on each gel.  The gels were 

run at 150V for approximately 1.5 hours until the dye front reached the bottom of the 

gel.   

2.4.5 Transfer  

Proteins from the polyacrylamide gel were transferred by electrophoresis to 

nitrocellulose Hybond
TM

 C membrane (Amersham, Buckinghamshire, UK).  Transfer 

electrophoresis tanks were filled with transfer buffer (Appendix 1) and set up according 

to manufacturer’s instructions.  Hybond
TM

 C membrane, filter paper and glass fibre 

pads were soaked for 10 minutes in transfer buffer.   Cassettes were set up in the 

following order (black side first): fibre glass pad, filter paper (Whatman, Kent, UK), gel, 

membrane, filter paper, fibre glass pad.  The cassettes were closed and placed in transfer 

tanks, with the black side of the cassette facing the black anode and electrophoretic 

transfer carried out at 30V overnight or at 60V for 2 hours.  
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2.4.6 Blocking  

Background staining on the nitrocellulose membrane was reduced by blocking non-

specific binding using 5% w/v non-fat milk powder (Marvel) dissolved in 1x TBS 

Tween (Appendix 1), for 1 hour at room temperature, on a shaker.   

2.4.7 Primary antibodies 

Primary antibodies alongside their optimal dilutions, incubation times and incubation 

temperatures are shown in Table 2.3.  Membranes were placed in 50ml Falcon tubes 

(BD Biosciences, San Jose, CA, USA) and antibodies added to 3ml 5% milk (dissolved 

in TBS Tween) except Phospho-p53(Ser15), which was added to 5% BSA as milk 

contains casein, a phosphoprotein, which is detected by the phospho-specific antibody, 

causing high background.  Falcon tubes were then placed on a roller.    

Protein Antibody Dilution Incubation 
Time 

Incubation 
Temp 

Antibody 
Type 

Manufacturer 

MYCN OP13 1:100 1 hour RT Mouse MC Calbiochem 
p53 DO-7 1:200 1 hour RT Mouse MC Novocastra 
MDM2 OP40 1:100 1 hour RT Mouse MC Calbiochem 
MDMX A300-287A 1:1000 1 hour RT Rabbit PC Bethyl 
p21WAF1 OP68 1:100 2 hours RT Mouse MC Calbiochem 
Phospho-
p53(Ser15) 

9284 1:1000 1 hour RT Rabbit PC Cell signalling 

PUMA PC686 1:1000 1 hour RT Mouse MC Calbiochem 
p14ARF NA70 1:100 O/N 4°C Mouse MC Calbiochem 
p14ARF RB1554P 1:100 2 hours RT Mouse MC Lab Vision 
Cleaved 
caspase 3 

Asp175 1:1000 O/N 4°C Rabbit PC Cell Signalling 

PARP-1/2 H-250 1:200 1 hour RT Rabbit PC Santa Cruz 
actin AC-40 1:500 1 hour RT Mouse MC Sigma-Aldrich 

Table 2.3. Primary antibodies used in this study.  
MC - monoclonal, PC – polyclonal, O/N – overnight, RT – room temperature. 
 

2.4.8 Secondary Antibodies 

Following the primary antibody incubation, the membrane was washed for 3x 5 minutes 

in 1x TBS Tween, leaving the membrane in the 50ml Falcon tube to minimise contact. 

Goat anti-mouse IgG and goat anti-rabbit IgG (Dako, Glostrup, Denmark) secondary 

antibodies which are conjugated to horseradish peroxidise (HRP), were used at a 1:1000 

dilution in 3ml of 5% milk-TBS Tween in the same 50ml Falcon tube, and incubated at 

room temperature for 1 hour.  The membrane was then washed as before for 3x 10 

minutes on the roller. 
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2.4.9 Enhanced chemiluminescence protein detection  

The Enhanced Chemiluminescence (ECL) kit (Amersham) was used to detect proteins.  

Detection Reagent 1 and Reagent 2 were mixed at a 1:1 ratio and the membranes 

covered in ECL solution for 1 minute.  When SuperSignal® West Dura Kit (Thermo 

Scientific, Leicestershire, UK) was used for p14
ARF

 detection, again Reagent 1 was 

mixed with an equal volume of Reagent 2, but added to the membrane for 5 minutes.  

ECL was drained off well and the membrane was wrapped in cling film and placed in an 

autoradiography cassette (Genetic Research Instrumentation, Essex, UK).  In the dark 

room, x-ray film (Kodak) was placed on the membrane for varying lengths of time and 

subsequently developed and fixed using a Mediphot 937 (Colenta, Austria) automated 

film processor.   

2.4.10 Densitometry 

Densitometry was performed to semi-quantitatively measure protein expression levels 

compared to an actin loading control.  A Fuji-Las Pro (FUJIFILM Life Science, 

Stamford, CA, USA) scanner was used to capture an electronic image of bands on the x-

ray film and AIDA image analyser (Raytest, Straubenhardt, Germany) used to estimate 

size and density of the bands.  The densitometry values for each protein band were 

measured and values normalised to those of the actin loading control.  Fold induction of 

protein was calculated relative to control, and converted to % control.   

2.5 Fluorescence activated flow cytometry 

Two flow cytometers were used in this study; the FACscan and the FACs Calibur (both 

Becton Dickinson, BD Biosciences).  A beam of light of a single wavelength is directed 

onto a hydrodynamically-focused single stream of fluid containing cells.  A number of 

detectors are aimed at the point where the stream passes through the light beam; one in 

line with the light beam (Forward Scatter), and several perpendicular to it (Side Scatter), 

and 3 fluorescent detectors (FL1, FL2 and FL3), all shown in Figure 2.3.  Here the FL2 

parameter was used to detect propidium iodide (PI), a fluorescent dye that binds 

stoichiometrically to DNA, and intercalates between the bases in DNA.   PI is excited 

by UV or blue light to emit a red fluorescence (Ormerod, 2000). The single flow of cells 

pass through the flow cell where light from the argon laser beam excites the fluorescent 

PI dye bound to DNA.  Photodetectors detect the scattered light and dichromic mirrors 

at right angles to the beam of light reflect specific wavelengths of light on to the 



104 

 

detectors.  This light is converted into an electronic signal that is recorded (Ormerod, 

2000).   

PI binds to DNA and provides a quantitative measure of cellular DNA content, so the 

stage of the cell cycle the cells are in can be determined.  Cells undergoing mitosis in 

the G2 phase of the cell cycle have a DNA content double that of G1 or G0 cells, as cells 

have divided, whereas S-phase cells have DNA content between G1 and G2 as cells 

replicate in this phase (the cell cycle is discussed in Chapter 1.6.3).  Cells are also 

treated with RNAase before incubation with PI, to eliminate any binding of PI to RNA. 

2.5.1 Preparation of samples 

Samples were seeded in 6-well plates (densities are specified in chapter specific 

methods).  Following treatment, both adherent and non-adherent cells were harvested, 

washed with ice-cold PBS (spun at 1200rpm for 5 minutes) and fixed with 4:1 

Methanol:Acetone.  Samples were stored at 4°C for up to 2 weeks at this stage.  Cells 

were washed twice in PBS, and then 100µl of RNAse (10x RNAse – 15.5mg in 10ml 

PBS) (Sigma) added for 20 minutes at 37°C, followed by 350µl propidium iodide (100 

µg/ml) (Sigma) for 30 minutes and incubated at 37°C.  After this time, samples were 

stored at 4°C. 

2.5.2 FACscan/Calibur 

Before running samples through the flow cytometer, they were passed through a syringe 

and needle to remove clumps as 2 cells stuck together would have the same DNA 

content as G2 phase cells.  Samples were measured and data acquired using the 

FACScan or FACs Calibur machine (Becton Dickinson), together with CellQuest 

Software (Becton Dickinson).  Scatter plots of SSC-H vs. FSC-H, and FL2-A vs. FL2-

W were set up to optimise instrument settings using an untreated control (see Appendix 

1), as well as a histogram of counts vs. FL2-H where the G1 peak (one diploid 

complement of DNA) was set to 200 on a linear scale, and the G2 peak at 400.  Cell 

aggregates and doublets could be identified on the FL2-A vs. FL2-W scatter plot.  For 

each sample, 10000 events excluding doublets were collected and all events saved.   

2.5.3 Analysis 

Flow cytometry data was analysed using Windows Multiple Document Interface for 

Flow Cytometry 2.8 software (WinMDI 2.8 software (TSRI)).  FL2-W versus FL2-A 

scatter plots were generated and cells were gated to exclude doublets/cell aggregates.  
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For cell cycle analysis, the sub G1 cells were also excluded.  The gated data was used to 

generate corresponding FL2-H histograms, and the proportion of cells in G1, S, G2, 

and/or sub G1 phases was determined by marking the various phases of the cell cycle 

with markers M1, M2, M3 and M4 (shown in Figure 2.4), and generating a table of 

statistics.  An increase in the G1/S ratio defines a G1 arrest, representing an increase in 

proportion of cells in G1, and a decrease in the proportion of cells in S-phase.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The detector arrangement for the FACScan family of cytometers. Adapted 
from http://facs.scripps.edu/facslab.html. 
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Figure 2.4 FL2-W versus FL2-A scatter plots and histograms gated for a) cell cycle and 
b) apoptosis.  Histograms have markers which represent the phases of the cell cycle, 
and the percentage of cells within the region the marker covers can be determined.   
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2.6 Growth Inhibition assays 

Growth inhibition assays allow a GI50 value to be determined, which is the 

concentration at which a compound reduces the growth of the cell population by 50% 

compared to untreated control cultures.  The sulforhodamine B (SRB) assay was used.  

This is a colorimetric assay using a protein dye with absorbance measured at 590nM 

and essentially gives a measure of the protein in the well of a culture dish to indicate the 

number of cells, and takes into account both cell cycle arrest and apoptosis.   A major 

limitation to this assay is that non-adherent cells are lost, and some cell lines are semi-

adherent, or take longer than others to adhere.  This may lead to some inaccuracies in 

the final results.  However the appropriate controls should take this into account.  

Untreated cells were fixed and readings taken at day 0, and at each further time point, 

each plate had wells seeded with half the number of cells, and compared to untreated 

wells seeded with the full number of cells. These wells should have an absorbance value 

of half the value of the wells seeded with the full cell number, indicative that cells are 

growing in log phase.   

2.6.1 Determining optimal cell density 

The optimal number of cells was determined by plating out cells in 96-well plates 

increasing from 0-10000 (in 1000 intervals) and incubating to allow growth and 

division for 96 hours to generate growth curves from the SRB absorbance data.  A cell 

seeding density was chosen where cells were growing in exponential growth phase, and 

had neither plateaued (suggesting cells were confluent) nor were still in lag phase. 

2.6.2 Growth Inhibition assays 

Cells were seeded in 96-well plates at the previously determined optimal cell density.  

They were given 24 hours to attach (in some cases 48 hour), and were then treated with 

a range of drug concentrations; Nutlin-3 - 20µM, 10µM, 4µM, 2µM, 1µM, 0.5µM, and 

0.25µM, MI-63 - 10µM, 5µM, 2µM, 1µM, 0.5µM, 0.25µM and 0.125µM. Plate layout 

is shown in Appendix 1 and 3 wells per treatment were set up.  A Day 0 control was 

also plated, and a half seeding density control to check that the SRB absorbance was 

proportional to cell number (i.e. would be half the value of the untreated normal plating 

density control at 72 hours post-treatment).  Plates were incubated with Nutlin-3 or MI-

63 for 72 hours then fixed with 25µl of 50% trichloroacetic acid (TCA) (Sigma), and 

stored at 4°C for at least 1 hour.   
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2.6.3 Sulforhodamine B assays 

The sulforhodamine B (SRB) assay was developed by Skehan et al (Skehan et al., 1990).  

The SRB dye binds to the basic amino acid residues of proteins in cells, and the optical 

density of the SRB-bound protein recorded at 564nM is linearly proportional to the 

number of cells in the well. 

2.6.4 SRB staining protocol 

Cells that have been fixed in 50% TCA were allowed to come to room temperature, and 

then the TCA was washed off with 5 rinses in distilled H2O.  100µl of SRB dye was 

added to each well and incubated at room temperature for 30 minutes.  Plates were then 

washed 5 times in 1% acetic acid and left to dry overnight.  100µl of 10mM Tris-HCl 

(pH10.5) was added to each well, and placed on a shaker for 10 minutes.  Once the SRB 

dye had dissolved, a SpectroMax 250 (Molecular Devices) 96-well plate densitometer 

was used to scan the plates at 590nM.   

2.6.5 Analysis 

GI50 values were calculated using GraphPad Prism Version 4.0 software (GraphPad 

Software, Inc.).    The percentage cell number relative to control (untreated cells) was 

determined for each concentration of Nutlin-3 or MI-63, and data plotted using Prism 

statistical software. GI50 values were determined by transforming X values 

(concentrations) using X=log(X), and performing a nonlinear regression (curve fit) 

analysis with a sigmoidal dose-response, displaying 95% confidence intervals.  This 

analysis automatically generates a GI50 value.   

2.7 Caspase 3/7 activity assays 

The Caspase-Glo® 3/7 Assay (Promega, Southampton, UK) is a luminescent assay that 

measures caspase-3 and -7 activities in cultures of cells.  The assay provides a 

proluminescent caspase 3/7 substrate which contains the tetrapeptide sequence DEVD.  

The substrate is cleaved by the caspases to release aminoluciferin, a substrate of 

luciferase used in the production of light which can be detected by photomultiplier 

luminometry.  The Caspase-Glo® 3/7 Reagent has been previously optimised for 

caspase activity, luciferase activity and cell lysis by the manufacturers.   
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2.7.1 Caspase-Glo® 3/7 assay protocol 

Cells were seeded at 5000 cells/well in 96-well plates and with a final volume of 

50µl/well prior to caspase reagent addition.  The Caspase 3/7 kit was defrosted and the 

buffer added to the tablet and allowed to come to room temperature.  A 1:1 volume of 

caspase reagent (50µl) was added to each well and incubated for 1 hour at room 

temperature.  During this time cells lyse, and release activated caspase to cleave the 

substrate and generate a ‘glow-type’ luminescence.  After 1 hour, the resulting solution 

from each well was transferred to a white-welled 96-well plate and analysed on a 

microplate Luminometer (Berthold Technologies, Herefordshire, UK).  Luminescence 

readings were normalised and plotted relative to control.  

2.8 Statistical Analyses 

All statistical tests were performed using GraphPad Prism Version 4.0 software 

(GraphPad Software, Inc.).  Tests were performed using log values and all t-tests were 

two-sided and paired or unpaired where stated.  The type of statistical test used is 

specified in figure legends, alongside p-values.  A p-value of p < 0.05 was considered to 

be statistically significant.   
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Chapter 3:   MYCN-amplification or overexpression sensitises 

neuroblastoma cells to the effects of MDM2-p53 antagonists in 

neuroblastoma 
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3.1 Introduction 

This chapter focuses on the effect of MYCN on the growth inhibitory and apoptotic 

response to the MDM2-p53 antagonists Nutlin-3 and MI-63.  MYCN gene amplification 

is a major marker of adverse prognosis, occurring in 25-30% of neuroblastomas and is 

strongly associated with progressive disease and treatment failure (Cohn and Tweddle, 

2004).  Infants under 18 months with stage 4 disease have an event-free survival of 83% 

for MYCN-amplified neuroblastoma, compared to 26% for non-MYCN-amplified 

disease (Cohn et al., 2009). MYCN expression alone, targeted to developing neural 

crest tissue, has been shown to directly result in neuroblastoma tumour formation in 

transgenic mice (Weiss et al., 1997).  There is evidence that MYCN expression 

sensitises neuroblastoma cells to apoptosis induced by cytotoxic drugs (Petroni et al., 

2011; Hogarty, 2003; Fulda et al., 2000).  However, since patients with MYCN-

amplified tumours have such an inferior outcome, acquired aberrations in the apoptotic 

pathway are thought to be associated with MYCN-amplification and to be essential for 

tumour progression. 

3.1.1 p53 inactivation in neuroblastoma 

In neuroblastoma, p53 mutations are rare, occurring in <2% of cases at diagnosis and 

~15% at relapse (Carr-Wilkinson et al., 2010).  However, in 35% of cases in a study of 

diagnostic and relapsed tumours, p53 was found to be inactivated via other mechanisms, 

resulting in destabilisation of p53 or disruption of p53 activity (Carr-Wilkinson et al., 

2010).  In neuroblastoma, other mechanisms of p53 inactivation include amplification 

of the E3 ubiquitin ligase gene MDM2, or impairment of p14
ARF

 (Carr-Wilkinson et al., 

2010; Carr et al., 2006).  Non-syntenic co-amplification of MDM2 and MYCN has been 

reported in neuroblastoma cell lines and tumours, resulting in constant negative 

regulation of p53 (Carr-Wilkinson et al., 2010; Corvi et al., 1995b).  More commonly in 

tumours, p14
ARF

 function is impaired through methylation or homozygous deletion of 

the gene (Carr-Wilkinson et al., 2010).  p14
ARF

 negatively regulates MDM2 and 

therefore p14
ARF 

inactivation drives cell survival through increased MDM2 activity.   

3.1.2 MYCN and the p53/MDM2/p14
ARF 

network 

MYCN is a central modulator of the p53/MDM2/p14
ARF

 network.  There is evidence 

that both p53 and MDM2 are direct transcriptional targets of MYCN (Chen et al., 2010b; 

Slack et al., 2005a), and that p53 may be important for MYCN-induced apoptosis (Chen 

et al., 2010b).  However, whereas both p53 and MDM2 are expressed at high levels in 
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neuroblastomas that express high MYCN (He et al., 2011; Chen et al., 2010b), induced 

expression of MYCN results in increased p53 expression but not MDM2 (He et al., 

2011).   In addition Chen et al. found that the increased MDM2 detected in the presence 

of MYCN decreased upon p53 knockdown suggesting that increased expression in these 

cell lines may be as a result of MYCN-driven p53 expression and not MYCN-driven 

MDM2 expression (Chen et al., 2010b).    

MDM2 haploinsufficiency in mice has been shown to suppress MYCN-driven 

neuroblastoma tumourigenesis (Chen et al., 2009), and there is evidence that MDM2 

may be the critical oncogene by which MYCN-amplified neuroblastomas acquire an 

aggressive phenotype (Slack and Shohet, 2005).  Overactive MDM2 as a result of p53 

being a direct transcriptional target of MYCN, and a transcriptional target of MDM2 

may drive tumour formation in MYCN-amplified neuroblastomas.  On the other hand, 

Carr-Wilkinson et al found that MDM2-amplification was not associated with survival 

in neuroblastoma tumour samples (Carr-Wilkinson et al., 2010).  Since MYCN-

amplification is thought to be associated with defects in activating or executing 

apoptotic pathways it is possible to speculate that MYCN-amplified tumours may be 

more susceptible to compounds that reactivate p53.  Several studies have shown that the 

downstream apoptotic pathway of p53 is generally intact in neuroblastoma (Van 

Maerken et al., 2011; Hogarty, 2003; Tajiri et al., 2003; Tweddle et al., 2001a; Tweddle 

et al., 2001b; Goldman et al., 1996). 

It has also been reported that p14
ARF 

is activated by MYCC (Zindy et al., 1998), and 

although not investigated, due to the similarities between MYCN and MYCC, MYCN 

could also activate p14
ARF

.  In addition, MYCC/N indirectly inactivates p14
ARF

 through 

activation of TWIST1, which is overexpressed in MYCN-amplified neuroblastomas and 

impairs p14
ARF

 activity (Valsesia-Wittmann et al., 2004; Maestro et al., 1999).  TWIST1 

is proposed as a mechanism by which tumours escape MYCN-dependent apoptosis.   

3.1.3 MYCN and the use of MDM2-p53 antagonists 

In neuroblastoma cell lines with wild-type p53, Nutlin-3 has been reported to induce 

cell cycle arrest and apoptosis, and surviving cells underwent senescence or neuronal 

differentiation in the cell lines tested (Van Maerken et al., 2006).  In this study, a 

limited number of 7 p53 wildtype cell lines were tested, 3 of which were MYCN-

amplified, and no significant difference in cell viability or the apoptotic response to 

Nutlin-3 was found in MYCN-amplified compared to non-MYCN-amplified cell lines.  
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In another study, IC50 values for Nutlin-3 in 2 MYCN regulatable cell lines (both SHEP 

derivatives) were determined, and it was found that in Tet21N cells, there was increased 

sensitivity in MYCN(+) cells compared to MYCN(-) cells, both for Nutlin-3 alone and 

in combination with cisplatin (Barbieri et al., 2006).  In SHEP MYCN3 cells, there was 

no difference in IC50 values for MYCN(+) compared to MYCN(-) cells following 

Nutlin-3 treatment, but there was increased sensitivity to combined Nutlin-3 and 

cisplatin treatment in MYCN(+) cells.   

Although not previously investigated in neuroblastoma, or in relation to MYCN, 

another MDM2-p53 antagonist MI-63 has also been shown to induce apoptosis in cell 

lines with wildtype p53 (Canner et al., 2009).   

3.1.4 Manipulating MYCN expression: Tet21N cells 

SHEP cells, which have barely detectable endogenous MYCN, were used to generate a 

synthetic inducible system (SHEP-Tet21N, described in Chapter 2.2) to reversibly 

express MYCN.  This allows the contribution of the MYCN protein to be investigated 

in a neuroblastoma cell line using an isogenic system, and has previously been used in 

many studies.  MYCN induction has been shown to increase DNA-synthesis and the 

proliferation rate (Lutz et al., 1996), MYCN(+) Tet21N cells were more sensitive to 

cytotoxic drugs (Fulda et al., 2000), and MYCN(+) cells have previously been found to 

have lower IC50 values following Nutlin-3 treatment compared to MYCN(-) cells 

(Barbieri et al., 2006).  The SHEP cells used to generate the Tet21N cells are an S-type 

clone of the SKNSH cell line (Biedler et al., 1973), and whilst this is the least 

tumourigenic neuroblastoma cell type (Cell Types are described in Chapter 1.4) it is 

conversely the most drug resistant compared with SHSY5Y (Rodriguez-Lopez et al., 

2001; Tweddle et al., 2001b; Jasty et al., 1998).  In addition, MYCN-amplified S-type 

cells have been found to have lower levels of MYCN expression compared to other cell 

types (Carr-Wilkinson et al., 2011; Foley et al., 1991).  In this study, the Tet21N system 

was used to investigate the effect of MYCN on the growth inhibitory and apoptotic 

response to the MDM2-p53 antagonists Nutlin-3 and MI-63. 

3.1.5 Manipulating MYCN expression: RNA interference 

RNA interference allows post transcriptional silencing of genes, and is a way of 

studying the effect of manipulating a single gene to assess function and importance.   

siRNA or shRNA mediated knockdown of MYCN has been previously used in 

neuroblastoma.  MYCN silencing has been shown to induce apoptosis and suppress cell 
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growth but to also induce neuronal differentiation (Nara et al., 2007; Kang et al., 2006).  

It was also associated with decreased Bcl-xL protein and caspase 3 activation (Kang et 

al., 2006).  The siRNA sequences used in this study have been previously used by our 

group to confirm that p53 as a direct transcriptional target of MYCN (Chen et al., 

2010b), and in a study investigating the role of MYCN in the failure of neuroblastoma 

cell lines to G1 arrest following DNA damage (Bell et al., 2006).  In this study, the 

effect of MYCN knockdown on the response to MDM2-p53 antagonists has been 

investigated in several p53 wildtype cell lines.  

3.1.6 Detecting apoptosis 

This chapter mainly focuses on the effects of the MDM2-p53 antagonists Nutlin-3 and 

MI-63 on the induction of cell cycle arrest and apoptosis.  MDM2-p53 antagonists, 

particularly Nutlin-3, have been shown to induce apoptosis in many cancer cell types 

(Gu et al., 2008b; Kojima et al., 2006; Tovar et al., 2006; Carvajal et al., 2005; Vassilev, 

2004).  Apoptosis is the most commonly studied form of programmed cell death, 

involving the activation of caspases.  Cells undergo apoptosis in normal development 

and morphogenesis, homeostasis and to remove damaged or dangerous cells (Vaux and 

Korsmeyer, 1999).  The mechanisms of apoptosis are described in more detail in 

Chapter 1.6, and involve 2 pathways; the intrinsic and the extrinsic pathways. 

Several methods were used to detect apoptosis in the studies described in this chapter, 

including caspase 3/7 activation, caspase 3 and PARP cleavage, annexin V staining, 

induction of the p53 target gene and apoptotic marker PUMA, and measure of sub G1 

DNA populations.   Since many features of apoptosis and necrosis overlap, and since 

there are many other forms of cell death, several methods have been used to confirm 

cell death by apoptosis.  Sub G1 DNA takes into account all types of cell death, as it 

measures fragmented DNA, and growth inhibition assays take into account any form of 

cell death (in addition to cell cycle arrest), as any adherent cells that have either become 

unattached from the surface, or that have disintegrated are lost compared to the control.  

The various techniques used in this chapter to assess apoptosis are described below. 

3.1.6.1 Caspase 3/7 activity and cleavage 

Caspases are highly conserved, Cysteine-dependent Aspartate-Specific Proteases 

involved in the initiation and execution of both intrinsic and extrinsic apoptotic 

pathways.  Initiator caspases (caspases 2, 8, 9 and 10) are responsible for activating 

effector caspases through proteolytic cleavage (caspases 3, 6 and 7).   The active 
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effector caspase then proteolytically degrades an array of intracellular proteins to carry 

out the cell death programme.  Caspase 3 is considered the most important effector 

caspase, and the proenzyme is activated by cleavage by all initiator caspases.  Following 

cleavage, the two subunits dimerise to form the active enzyme.  Cleaved caspase 3 also 

cleaves and activates caspases 6 and 7.  Caspase 3 and 7 have some overlapping 

functions but also some distinct roles in apoptosis and both are common to both 

intrinsic and extrinsic apoptotic pathways.  Caspase 3 controls DNA fragmentation and 

morphological changes in apoptosis (Lakhani et al., 2006; Slee et al., 2001), whereas 

caspase 7 may be more important in the loss of cell viability (Lakhani et al., 2006).  

Activation of caspases results in cleavage of many substrates involved in DNA 

replication, DNA repair and protein synthesis, in addition to cytoskeletal reorganisation 

and disintegration of the cell into apoptotic bodies.  Caspase 3/7 activity assays 

described in this chapter were used as a way of detecting apoptosis, allowing for rapid 

and quantifiable measurements of apoptotic activation.  Cleaved caspase 3 (activated 

caspase 3) was also detected by Western blot to support caspase 3/7 enzymatic activity 

data. 

3.1.6.2 PARP cleavage 

Full length PARP is involved in DNA repair, differentiation and chromatin structure 

formation.  PARP is efficiently cleaved by caspase 3 and 7, with stronger affinity for 

caspase 7 (Germain et al., 1999; Lazebnik et al., 1994), so whilst caspase activation 

does not guarantee that apoptosis will occur, just that caspase activity is initiated, 

cleavage of PARP suggests that the cells are in fact undergoing apoptosis.  PARP 

cleavage produces a 89kDa fragment, containing the catalytic domain, and a 24kDa 

fragment containing the DNA binding domain which retains activity for strand breaks, 

inhibiting DNA repair, ADP-ribose polymer formation and transcription.  PARP 

cleavage is detectable by Western blot, and in this study, the 89kDa fragment was 

detected.  

3.1.6.3 PUMA induction 

PUMA, a BH3-only protein, is a direct transcriptional target of p53, and plays an 

important role in p53-mediated apoptosis.  It is a pro-apoptotic member of the Bcl-2 

family and functions by binding and inhibiting the anti-apoptotic Bcl-2 proteins (Certo 

et al., 2006; Chen et al., 2005c), and may also activate pro-apoptotic BAX and BAK 

(Gallenne et al., 2009; Kim et al., 2009).  Overexpression of PUMA has been shown to 

be associated with increased BAX expression, BAX conformational change, 
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translocation to the mitochondria, cytochrome c release and reduction in the 

mitochondrial membrane potential (Liu et al., 2003).     

3.1.6.4 Annexin-V staining 

An early feature of apoptosis is the translocation of the membrane phospholipid 

phophatidylserine (PS) from the inner to the outer leaflet of the plasma membrane.  This 

exposes PS to the external cellular environment and facilitates non-inflammatory 

recognition by phagocytic cells, allowing for the early uptake and disposal of damaged 

cells (Fadok et al., 2001). The process of early and efficient uptake with no release of 

cellular constituents results in essentially no inflammatory response.   

Annexin-V is a recombinant and specific PS-binding protein (van Engeland et al., 1998).  

The increase in PS residues exposed on the surface of the plasma membrane during 

apoptosis can be detected by annexin-V labelled with a FITC fluorochrome (Bossy-

Wetzel and Green, 2000), a sensitive probe for identification and quantification of 

apoptotic cells using flow cytometry. 

Annexin-V is used in conjunction with PI which intercalates DNA but can only enter 

the cell upon loss of membrane integrity.  PI is therefore excluded by early apoptotic 

cells, but allows for identification of later stages of apoptosis and necrosis.   

3.1.6.5 Propidium iodide (PI) staining 

Apoptotic cells, or cells undergoing cell death are characterised by DNA fragmentation 

(a later event in apoptosis compared to caspase activity).  Unlike for annexin V and PI 

co-staining, cells analysed for PI staining alone are fixed, allowing PI to enter all cells 

and bind cellular DNA.   The sub G1 peak is determined, and is a measurement of 

fragmented DNA which can occur in apoptosis, necrosis and other forms of cell death.   

PI staining is also used to analyse the cell cycle at the same time, as the amount of DNA 

within an intact cell is determined. 

3.1.6.6 Growth inhibition assays 

GI50 values from growth inhibition assays are measured using colour intensity to 

quantify the proportion of cells that remain adherent to 96-well plates following 

treatment relative to control.  This assay therefore takes into account both cells that have 

undergone cell death and dislodged from the surface, and cell cycle arrest.   
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3.1.7 Other forms of cell death  

Since MDM2-p53 antagonists have been previously shown to induce apoptosis, the 

studies in this thesis have focused on measuring apoptosis following Nutlin-3 and MI-

63 treatment.  However other mechanisms of cell death include; activation of apoptosis 

inducing factor (AIF), and endonuclease G independent of caspases; paraptosis 

(Sperandio et al., 2000), driven by an alternative form of caspase 9 activity that is Apaf-

1 independent; and autophagy, characterised by sequestration of cytoplasm and 

organelles in double or multimembrane vesicles and delivery to lysosomes for 

subsequent degradation.   Nutlin-3 has not been found to induce other forms of cell 

death, although data presented at the 2010 ASH meeting has shown that Nutlin-3 

induces autophagy in leukemia cells in a p53-dependent manner, and that this goes hand 

in hand with apoptosis (Ruvolo et al., 2010).  
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3.2 Hypotheses and Aims 

Hypotheses:  

 Since p53 is a direct transcriptional target of MYCN, MYCN-amplification or 

overexpression sensitises neuroblastoma to the apoptotic and growth inhibitory 

effects of the MDM2-p53 antagonists Nutlin-3 and MI-63. 

 p53 mutant cell lines are resistant to MDM2-p53 antagonists regardless of 

MYCN status. 

 

Aims: 

1. To examine the effect of MDM2-p53 antagonists in the MYCN regulatable 

SHEP Tet21N cell line on the growth inhibitory response, levels of apoptosis 

and induction of the p53 response following Nutlin-3 and MI-63 treatment. 

2. To determine the effect of MYCN knockdown on the p53 and apoptotic 

response to MDM2-p53 antagonists in 5 MYCN-amplified neuroblastoma 

cell lines. 

3. To determine GI50 values (concentration required for 50% growth inhibition) 

and caspase 3/7 activity following Nutlin-3 and MI-63 treatment in a panel 

of MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines, 

including p53 mutant, p14
ARF 

impaired and MDM2-amplified cell lines. 
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3.3 Specific Materials and Methods 

3.3.1 Cell Lines  

22 neuroblastoma cell lines were used to examine the effect of MYCN on the response 

to MDM2-p53 antagonists.  MYCN-amplified neuroblastoma cell lines used were NGP, 

LS, TR14, NB1691, IMR-32, NBLW, SMSKCNR, LAN5, PER-108, CHLA136, and 

the p53 mutant cell lines SKNBe2C and IGRN91.   Non-MYCN amplified cell lines 

used were SHSY5Y, GIMEN, SJNB1, NB69, LAN6, SKNRA, SHEP, NBLS and the 

p53 mutant cell line SKNAS.  Details of cell lines are found in Chapter 2.1. The 

conditional MYCN-expressing SHEP Tet21N cell line was used and cells cultured for at 

least 48 hours in 1µg/ml of tetracycline (Sigma) to switch off MYCN.  Tet21 vector 

only cells were used as a control (Lutz et al., 1996).   All cell lines were cultured in 

RPMI medium (Sigma) supplemented with 10% FCS.  200µg/ml of G-418 antibiotic 

was added to Tet21N and Tet21 media, and 900µg/ml Hygromycin B to Tet21N media.  

3.3.2 siRNA-mediated knockdown of MYCN 

Cells were seeded at 4x10
5 

cells/well in 6-well plates (Corning).  At 30-50% confluency, 

siRNA duplexes against MYCN were transfected into cells with Lipofectamine
TM

 

reagent (Invitrogen) as described in Chapter 2.3 using previously described sequences 

shown in Table 2.2 (Bell et al., 2006).  When siRNA-mediated knockdown was 

performed in 96-well plates, concentrations and volumes were calculated as for 6-well 

plates, then everything was divided by 16, with a final volume of 150µl in each well 

(50µl Lipofectamine:siRNA complexes; 100μl OptiMEM). 

3.3.2.1 Optimisation of MYCN knockdown  

The optimal concentrations of MYCN siRNA were determined for NGP, TR14, IMR32 

and LS cells.  NGP, TR14 and IMR32 cells were treated with 30nM, 40nM and 50nM 

of MYCN siRNA or SCR siRNA for 24 and 48 hours and densitometry performed to 

determine optimal knockdown.  LS cells were treated with 25nM and 40nM siRNA for 

24 hours.  Optimal knockdowns were as follows: NGP 40nM 24 hours, TR14 30nM for 

24 hours, IMR32 40nM for 24 hours and LS 40nM for 24 hours (Figure 3.1).  For 

LAN5 cells a previously optimised concentration of 50nM for 24 hours was used (Chen 

et al., 2010b). 
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Figure 3.1.  Optimisation of MYCN knockdown using siRNA in NGP, TR14, IMR32 and 
LS cells.   
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3.3.3 Flow cytometry 

3.3.3.1 Propidium iodide staining 

For cell cycle and sub-G1 analysis, adherent and non-adherent cells were harvested, 

washed in PBS and fixed in 4:1 Methanol:Acetone.  FACs analysis was performed 

using methods described in Chapter 2.5.  Tet21N cells were seeded at 2x10
5
 cells/well, 

and all other cell lines at 4x10
5
 cells/well in 6-well plates.  Instrument settings for 

LAN5 cells are shown in Appendix 1, and the FL2-H adjusted slightly for each cell line 

so that the G1 peak was at 200 on a linear scale. 

3.3.3.2 Annexin-V staining 

3.3.3.2.1 Preparation of samples for Annexin-V FACs 

NGP cells were seeded at a density of 4x10
5 

cells/well in 6-well plates (1 well per 

repeat).  After 24 hours, cells were treated with SCR or MYCN siRNA as previously 

described (Section 3.3.2) for 24 hours.  Cells were treated with 10µM Nutlin-3 or MI-63, 

or DMSO for 24 hours.  400µl of cells were transferred to microfuge tubes (Eppendorf) 

and pelleted in a microcentrifuge at 3000rpm for 5 minutes.  Pellets were resuspended 

in 200µl sterile PBS and pelleted again at 3000rpm for 5 minutes.  The cell pellet was 

then resuspended in 1x Binding Buffer from the Annexin-V-FITC Apoptosis Detection 

kit 1 (BD Biosciences) to a final concentration of 2x10
5 

cells/100µl.  100µl of cell 

suspension was transferred to a FACs tube, and 5µl of annexin-V, and 5µl of PI added, 

mixed gently and stored in the dark for 15 minutes.  400µl of 1x binding buffer was 

added and samples immediately analysed on the FACs machine.  For each experiment 3 

controls were set up; cells only, PI only, and annexin-V only to help with calibrations. 

3.3.3.2.2  Data acquisition 

Cell only samples (no PI or annexin-V staining) were first analysed on the FACs 

machine and SSC and FSC adjusted so that cells were clustered in the lower left (LL) 

quadrant (Shown in Figure 3.2).  Annexin-V only controls were then analysed and 

parameters FL1 altered until cells formed 2 clusters in the LL and lower right (LR) 

quadrants.  PI only stained cells were loaded into the machine and %FL2 in FL1 

compensation altered to form two clusters in lower right (LR) and upper right (UR) 

quadrants.  Finally, annexin-V and PI stained samples were analysed. 10,000 events 

were counted for each sample. 
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3.3.3.2.3 Data Analysis 

Quadrants were placed on the dot plot so that viable cells (LL) were separated from 

cells in early (LR) or late apoptosis (UR), or necrosis (UL), and the percentage of cells 

in each quadrant calculated using the statistics tool.  Examples of these for Nutlin-3 

treatment alongside the DMSO control are shown in Figure 3.2. 

3.3.3.2.4 Problems with annexin V staining in neuroblastoma cell lines 

Despite a number of publications using annexin-V staining in neuroblastoma 

(Werdehausen et al., 2009; Fang et al., 2008; Ryu et al., 2005) the cell lines used in this 

study had high basal levels of annexin-V staining. Annexin-V staining was therefore not 

an ideal method of investigating apoptosis and was not taken further in these studies.  

Non neuroblastoma cell lines were used as a control for the technique.  

 

 

 

 

 

 

 

 

Figure 3.2.  Annexin-V/PI staining of cells treated with DMSO and cells treated with 
Nutlin-3.  Cells in quadrants lower right (LR) and upper right (UR) are considered 
apoptotic, cells in upper left (UL) are considered necrotic and cells in lower left (LL) are 
considered viable.   
 

3.3.4 Clonogenic assays 

SHEP Tet21N and Tet21 vector only cells (tetracycline+ and tetracycline-) were 

assessed for their colony forming ability, and were seeded at varying cell densities.  

Once optimal cell densities had been determined (300, 500 and 800 for untreated cells) 

cells were seeded in 6-well plates at a density of 2x10
4 

cells/well, treated with 0-40µM 

Nutlin-3 or MI-63 for 24 hours, then cells counted and seeded in 10cm
2
 petri dishes at 3 

densities to assess their long term survival.  Following 2 weeks incubation, colonies 

  

DMSO  Nutlin-3  
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were fixed with Carnoy’s solution (Appendix 1), and stained with crystal violet (0.5% 

w/v) for 10 minutes, before washing and leaving to dry.  Colonies were counted with an 

automated colony counter (ColCount, Oxford Optronics Ltd., Oxford, UK) and the 

plating efficiency relative to DMSO control determined. 

3.3.5 Examining apoptosis following double knockdown of MYCN and 

p53, following irradiation treatment  

MYCN-amplified NGP cells were seeded at a density of 4x10
5 
cells/well (6-well plates) 

and after 24 hours were treated with MYCN siRNA (40nmol/L), p53 siRNA 

(50nmol/L), p53 and MYCN siRNA (35nmol/L of each siRNA), or SCR siRNA 

(70nmol/L) for 48 hours prior to irradiation-induced DNA damage.   X-irradiation was 

used to induce DNA damage and a dose of 4Gy was chosen because it was previously 

used and shown to be sufficient to induce a p53-mediated DNA damage response in 

neuroblastoma cell lines (Tweddle et al., 2001b).  NGP cells were treated with 4Gy of 

X-irradiation from a RS320 irradiation system (Gulmay Medical, Surrey, UK), and 

harvested at 48 hours for Western analysis.  The same experiment was set up 

simultaneously in 96-well plates to assess caspase 3/7 activity using the Caspase-Glo 

3/7 assay (Promega), and performed as previously described (Chapter 2.7).   

3.3.6 Growth inhibition assays 

The cell density was determined as shown in Figure 3.3 and Table 3.1, whereby cells 

were seeded and allowed to grow for 96 hours, and cell densities chosen when cells 

were in exponential phase of growth, as described in Chapter 2.6.1.   SRB assays were 

performed and growth inhibition curves generated as described in Chapter 2.6, and GI50 

values calculated.  
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Figure 3.3. Growth curves to determine cell density for growth inhibition assays. 
 

Cell Line Cell Density Cell Line Cell Density 

NGP 5000 NB69 5000 

LS 5000 LAN6 5000 

NB1691 5000 SKNRA 5000 

TR14 5000 SHEP 2000 

IMR32 5000 NBLS 5000 

NBLW 5000 Be2C 2000 

SMSKCNR 5000 SKNAS 4000 

LAN5 5000 IGNR91 4000 

PER108 6000 Tet21N(tet+) 2000 

CHLA136 5000 Tet21N(tet-) 1500 

SHSY5Y 4000 Tet21(tet+) 2000 

GIMEN 4000 Tet21(tet-) 1500 
SJNB1 3000   

Table 3.1. Cell Densities used for growth inhibition assays. 
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3.4 Results 

3.4.1 Tet21N MYCN(+) cells are more sensitive to MDM2-p53 

antagonist mediated growth inhibition and have decreased cell survival 

compared to MYCN(-) cells  

Tet21N MYCN regulatable cells were treated with the MDM2-p53 antagonists Nutlin-3 

and MI-63 in the presence (MYCN-) or absence (MYCN+) of tetracycline.  Growth 

inhibition assays were performed with 0-20µM Nutlin-3 and 0-10µM MI-63 for 72 

hours.  As shown in Figure 3.4a and 3.4b MYCN(+) cells had significantly lower GI50s 

compared to MYCN(-) cells (p=0.02 for Nutlin-3, and p=0.0008 for MI-63).  GI50 

values are shown in Table 3.2 alongside GI50 values for a panel of MYCN-amplified and 

non-MYCN-amplified neuroblastoma cell lines.  As a control, growth inhibition assays 

were performed under the same conditions for Tet21 vector only transfected cells and 

no difference in GI50 was observed indicating no effect of tetracycline alone.   

As shown in Figure 3.5a, clonogenic survival curves were generated using 0-40µM 

Nutlin-3 or MI-63 for 24 hours followed by a 14-day incubation.  After 14 days, 

MYCN(-) cells formed more colonies, taking into account plating efficiency, indicating 

increased long term cell survival in these cells compared to MYCN(+) cells.   

Interestingly, the colony appearance between untreated MYCN(+) and MYCN(-) cells 

was quite different, with MYCN(+) forming larger and denser staining colonies 

compared to MYCN(-) cells (Figure 3.5b).  It was previously reported that MYCN(+) 

cells have a doubling time of 78.5 hours compared to 90.4 hours for MYCN(-) cells 

(Bell et al., 2006), and this is reflected  in the denser colonies formed by MYCN(+) 

cells compared to the MYCN(-) cells.  Since the colony appearance of MYCN(+) and 

MYCN(-) cells following Nutlin-3 or MI-63 treatment remains the same as in the 

untreated controls, this suggests that whilst MYCN(+) cells form less colonies than 

MYCN(-) cells following MDM2-53 antagonist treatment, the surviving cells still have 

an ability to replicate.  Vector only Tet21 cells were assessed for their colony forming 

ability in the presence and absence of tetracycline and there was no difference in colony 

appearance (Figure 3.5c) indicating that the difference in colony appearance seen in 

Tet21N cells is a result of manipulation of MYCN, and not an effect of tetracycline.  

Surprisingly, the colonies formed by Tet21 cells were very different from those formed 

by both Tet21N MYCN(+) and MYCN(-) cells. 
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3.4.2 Both MYCN(+) cells and MYCN(-) cells undergo a G1 arrest, 

although MYCN(-) cells have an increased basal proportion of cells in 

G1 population 

The shorter doubling time of 78.5 hours in MYCN(+) compared to 90.4 hours for 

MYCN(-) cells (Bell et al., 2006) is reflected in the higher proportion of MYCN(-) cells 

in G1 compared to MYCN(+) cells, which have a greater proportion of cells in S and G2 

phases under normal growth conditions (Figure 3.6, UT controls).  Upon 2.5µM Nutlin-

3 and MI-63 treatment, both MYCN(+) and MYCN(-) cells G1 arrest, but this effect is 

more pronounced in MYCN(+) cells due to the lower G1 baseline proportions.  

Interestingly, there is an increase in the proportion of cells in G2 at increasing 

concentrations of both Nutlin-3 and MI-63 in MYCN(+) and MYCN(-) cells. 

3.4.3 MYCN(+) cells have increased levels of apoptosis compared to 

MYCN(-) cells 

The proportion of sub G1 DNA and the levels of caspase 3/7 activity were used as 

measures of the degrees of apoptosis following Nutlin-3 or MI-63 treatment in Tet21N 

cells. DNA fragmentation is a later event in apoptosis compared to caspase activation, 

so the proportion of sub G1 DNA was measured at 24, 48 and 72 hours compared to just 

24 hours for caspase activity.  As shown in Figure 3.7a, there was an increase in the 

percentage of sub G1 DNA following Nutlin-3 and MI-63 treatment (0-20µM) in 

MYCN(+) cells compared to MYCN(-) cells at all time points and this increase was 

mostly significant (24 hours: Nutlin-3 p<0.0001, MI-63 p=0.2150l; 48 hours: Nutlin-3 

p<0.0001, MI-63 p<0.0001; 72 hours: Nutlin-3 p=0.0185, MI-63 p=0.2053; 2-way 

ANOVA).  An increase in the induction of caspase 3/7 activity at increasing 

concentrations of Nutlin-3 (p<0.0001) and MI-63 (p<0.0001) was observed in 

MYCN(+) compared to MYCN(-) cells (Figure 3.7b). 

3.4.4 Induction of p53, p53 response and apoptotic markers in SHEP 

Tet21N cells 

 As shown in Figure 3.8, following 24 hours treatment with 5, 10 and 20µM Nutlin-3 or 

MI-63, p53 protein, p53 phosphorylation at serine 15 and p53 target gene products 

(p21
WAF1

, MDM2 and PUMA) were induced in both MYCN(+) and MYCN(-) cells.  

Higher basal levels of p53 were detected in MYCN(+) cells and after Nutlin-3 

treatment, increased p53 induction was observed in MYCN(+) cells compared to 

MYCN(-) cells.  Both compounds induced greater levels of p53 phosphorylation at 
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serine 15 in MYCN(+) cells.  In agreement with the sub G1 DNA fraction and caspase 

activity, levels of the p53 target and apoptotic marker PUMA was increased in 

MYCN(+) compared to MYCN(-) cells following both Nutlin-3 and MI-63 treatment, 

providing further evidence that Tet21N cells are more sensitive to apoptosis in the 

presence of MYCN.   
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Figure 3.4. MYCN(+) Tet21N cells are more sensitive to MDM2-p53 antagonist 
mediated growth inhibition than MYCN(-) Tet21N cells.  Growth inhibition assays for 
a) Nutlin-3 and b) MI-63 were performed after a 72 hour drug exposure.  MYCN(+) cells 
have a significantly lower mean GI50 compared to MYCN(–) cells (p=0.02 for Nutlin-3 
and p=0.0008 for MI-63, paired t-test).  No difference in GI50s was observed between 
the control vector only SHEP Tet21 cells in the presence and absence of tetracycline.   
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b)   MI-63 



130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  MYCN(-) Tet21N cells have increased cell survival following MDM2-p53 
antagonist treatment compared to MYCN(+) Tet21N cells.  a) Clonogenic survival 
curves (24 hour drug exposure followed by 2 week incubation) shows MYCN(+) cells 
are much more sensitive to Nutlin-3 and MI-63 long term survival compared to MYCN(-) 
cells (P<0.0001, 2-way ANOVA). b) In untreated controls, MYCN(+) cells have larger and 
denser colonies compared to MYCN(-) cells. c) In untreated control, vector only 
tetracycline(+) and tetracycline(-) cells have the same colony appearance suggesting no 
effect of tetracycline alone. 
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Figure 3.6. Cell cycle analysis after 24 hour drug exposure shows that both MYCN(–) 
and MYCN(+) cells G1 arrest in response to just 2.5µM a) Nutlin-3 or b) MI-63, and 
also shows that MYCN(–) cells have an increased proportion of cells in G1 in control 
samples compared to MYCN(+) cells.  At increasing concentrations of Nutlin-3 and 
MI-63, an increasing number of cells appear to accumulate in G2. 
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Figure 3.7. MYCN(+) Tet21N cells are more sensitive to MDM2-p53 antagonist 
mediated apoptosis than MYCN(-) Tet21N cells.  a) The sub G1 DNA fraction was 
measured in MYCN(-) and MYCN(+) Tet21N cells following Nutlin-3 and MI-63 
treatment at 24, 48 and 72 hours (24 hours: Nutlin-3 p<0.0001, MI-63 p=0.2150l; 48 
hours: Nutlin-3 p<0.0001, MI-63 p<0.0001; 72 hours: Nutlin-3 p=0.0185, MI-63 
p=0.2053; 2-way ANOVA) .   b) Caspase 3/7 activity was significantly reduced in MYCN(-) 
compared to MYCN(+) cells following Nutlin-3 and MI-63 treatment (p<0.0001 for both 
Nutlin-3, and MI-63, 2-way ANOVA). 
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Figure 3.8. Western blots showing no difference in induction of p53, MDM2 and 
p21WAF1 in MYCN(-) and MYCN(+) cells following 24 hours Nutlin-3 and MI-63 
treatment but there were increased levels of phosphorylated p53 and PUMA in 
MYCN(+) compared to MYCN(-) cells.  Actin was used as a loading control. 
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3.4.5 Nutlin-3 and MI-63 induce a p53 response and apoptosis in NGP 

and LS cells 

NGP cells (Figure 3.9a) were treated with 10µM Nutlin-3 and MI-63 for 4 and 24 hours.  

Whilst p53 was induced at 4 hours, p21
WAF1

 and cleaved PARP were detected at 24 

hours, and p53 levels remained the same as at 4 hours.  24 hours of Nutlin-3 or MI-63 

treatment was therefore chosen as a suitable time-point to look for induction of p53, p53 

responsive genes and apoptotic markers.  NGP (Figure 3.9b) and LS (Figure 3.9c) cells 

were treated with 0, 5 and 10µM Nutlin-3 and MI-63 for 24 hours, and Western analysis 

used to analyse p53 and the p53 response.  There was induction of p53, and the p53 

transcriptional targets p21
WAF1

, MDM2 and PUMA (pro-apoptotic protein), as well as 

increased levels of the apoptotic markers cleaved caspase 3 and cleaved PARP.   

Caspase 3/7 activity increased in a dose-dependent manner following Nutlin-3 and MI-

63 treatment in both cell lines (Figure 3.9d), and for a given dose was stronger 

following MI-63 treatment compared to Nutlin-3 treatment, reflecting the higher 

potency of MI-63. 

3.4.6 The cell cycle response to Nutlin-3 and MI-63 is cell line 

dependent 

Following Nutlin-3 and MI-63 treatment, the cell cycle response was analysed at 4 and 

24 hours in NGP cells (Figure 3.10a).  A cell cycle arrest was induced by 24 hours 

following treatment with just 2.5µM Nutlin-3 or MI-63 in NGP cells.  LS cells were 

also treated for 24 hours with Nutlin-3 but did not undergo a G1 arrest (Figure 3.10b) 

suggesting that different neuroblastoma cell lines respond differently, in terms of cell 

cycle arrest, to these compounds.   
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Figure 3.9. MDM2-p53 antagonists induce a p53 response and apoptosis.  a) NGP 
cells were treated with 10µM Nutlin-3 for 4 and 24 hours.  b) NGP cells and c) LS cells 
were treated with 5 and 10µM Nutlin-3 and MI-63 for 24 hours resulting in induction 
of p53 responsive genes and apoptotic markers, detected by western blot.  Actin was 
used as a loading control.  c) A dose-dependent increase in caspase 3/7 activity was 
observed for both compounds, with higher levels of caspase 3/7 activity following MI-
63 treatment compared to Nutlin-3. 
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Figure 3.10. Cell cycle analysis following Nutlin-3 and MI-63 treatment in NGP and LS 
cells.  a) NGP cells were treated with 10µM Nutlin-3 for 4 and 24 hours, and treated 
with 2.5, 5 and 10µM Nutlin-3 and MI-63 for 24 hours. They underwent a G1 arrest at 
24 hours with just 2.5µM of compound.  b) LS cells were treated with 2.5, 5, and 10µM 
Nutlin-3 and MI-63 for 24 hours and did not undergo a G1 arrest. 
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b) LS 



138 

 

3.4.7 siRNA mediated knockdown of MYCN has little effect on p53 and 

p53 responsive genes 

Interestingly, despite both MDM2 and p53 being reported as transcriptional targets of 

MYCN (Chen et al., 2010b; Slack et al., 2005a), MYCN knockdown (Figure 3.11) had 

differential effects on both p53 and MDM2.  p53 decreased in TR14 cells, but remained 

unaltered in NGP, LS and NB1691 cells.  MDM2 expression varied, increasing in 

NB1691 and NGP cells, but decreasing in LS and TR14 cells.  There was little effect on 

p21
WAF1

 protein expression levels following MYCN knockdown.   

3.4.8 Knockdown of MYCN increases resistance of MYCN-amplified 

neuroblastoma cell lines to Nutlin-3 and MI-63 mediated induction of 

p53 and apoptosis detected by Western blot 

To further investigate the role of MYCN on the sensitivity of neuroblastoma cell lines 

to MDM2-p53 antagonists, MYCN was knocked down by siRNA treatment in three cell 

lines co-amplified for MYCN and MDM2; NGP (40nmol/L), TR14 (30nmol/L) and LS 

(40nmol/L), and 2 MYCN-amplified but non-MDM2 amplified cell lines; LAN5 

(50nmol/L) and IMR-32 (40nmol/L).  MYCN siRNA or SCR siRNA was added to cells 

for 24 hours then removed and replaced with 0, 5 or 10µM Nutlin-3 or MI-63 for a 

further 24 hours.  Western analysis in all five cell lines, NGP (Figure 3.12a), LS (Figure 

3.13a), LAN5 (Figure 3.14a), TR14 (Figure 3.15a) and IMR32 (Figure 3.16) showed 

that treatment with Nutlin-3 or MI-63, resulted in a clear increase in p53, p53 

phosphorylation (serine 15), induction of p53 target genes (p21
WAF1

, MDM2 and 

PUMA) and induction of the apoptotic markers PUMA, cleaved caspase 3 and cleaved 

PARP (lanes 4-8).  In all cell lines, high levels of MYCN knockdown were achieved as 

shown by comparison of lanes 2 and 3 (at 24 hours after knockdown before treatment) 

and lanes 4 and 9 (DMSO controls with SCR and siMYCN at 48 hours after 

knockdown).  MYCN knockdown alone had little effect on p53 or induction of p53 

targets but in combination with MDM2-p53 antagonist treatment MYCN knockdown 

resulted in a decreased p53 and apoptotic response.  p53 levels decreased in 4 of 5 cell 

lines, and levels of phosphorylated p53 decreased in all cell lines (Figure 3.12a-3.16a; 

lanes 10-13 compared to lanes 5-8) indicating reduced p53 activation.  p21
WAF1 

or 

MDM2 levels either decreased or did not change and in all cases, a decrease in at least 2 

of the apoptotic markers PUMA, cleaved caspase 3 and cleaved PARP was observed.  

NGP cells were also investigated after 4 hours treatment with Nutlin-3 and MI-63 
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following MYCN knockdown (Figure 3.17) and whilst p53 was induced at this time 

point, no p53 targets or apoptotic markers were detected. 

3.4.9 Knockdown of MYCN increases resistance of MYCN-amplified 

neuroblastoma cell lines to Nutlin-3 and MI-63 mediated induction of 

apoptosis 

Apoptosis following MYCN knockdown and MDM2-p53 antagonist treatment was 

further investigated in NGP, LS, LAN5 and TR14 cells.  Caspase 3/7 activity assays 

were performed in NGP (Figure 3.12b), LAN5 (figure 3.14b) and TR14 (Figure 3.15b) 

cells. Percentage sub G1 DNA was determined in LS cells (Figure 3.13b) following 

10µM Nutlin-3 or MI-63 treatment for 24 hours.  After Nutlin-3 or MI-63 treatment 

alone, a dose-dependent increase in caspase 3/7 activity was seen in all cell lines with 

both compounds, and an increase in sub G1 DNA % in LS cells (SCR control).   

Following MYCN knockdown alone, there was a reduction in caspase 3/7 activity in 

LAN5 and TR14 cells (at 0µM) (Figures 3.14b and 3.15b) compared to SCR control.  A 

significant reduction in caspase activity was observed in NGP, LAN5 and TR14 cell 

lines following MYCN knockdown and Nutlin-3 or MI-63 treatment (NGP p=0.013 

Nutlin-3 and p=0.011 MI-63; LAN5 p=0.0026 Nutlin-3 and p=0.008 MI-63; TR14 

p=0.0015 Nutlin-3, p=0.0001 MI63).   Levels of sub G1 DNA in LS cells (Figure 3.13b) 

reduced after MYCN knockdown following Nutlin-3 (p=0.08) and MI-63 (p<0.05) 

treatment compared to SCR.  The NGP cell line was also analysed for annexin-V 

staining following MYCN knockdown and MDM2-p53 antagonist treatment (Figure 

3.12c).  The proportion of annexin-V positive cells was increased following 10µM 

Nutlin-3 or MI-63 treatment compared to SCR control (Nutlin-3, p=0.015; MI-63, 

p=0.011).  Photomicrographs of NGP cells treated with 10µM Nutlin-3 or MI-63 

following MYCN knockdown shows that more cells are morphologically intact and are 

still adherent following 24 hours of 10µM Nutlin-3 or MI-63 treatment compared to 

SCR (Figure 3.12d).  Interestingly, the TR14 cell line (Figure 3.15b) had increased 

levels of caspase 3/7 activity with SCR control compared to Nutlin-3 or MI-63 only, 

suggesting this cell line is particularly affected by the siRNA treatment and/or 

Lipofectamine.  However, the data shows the same trend as the other 4 cell lines.  These 

data are consistent with the reduction in levels of apoptotic markers shown by Western 

blot and show that reduction of MYCN by siRNA knockdown results in a decreased 

apoptotic response to MDM2-p53 antagonists.  
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3.4.10 Knockdown of MYCN does not alter the cell cycle response to 

MDM2-p53 antagonists 

The effect of MDM2-p53 antagonists on the cell cycle was investigated in NGP, LS, 

LAN5 and TR14 cells.  NGP cells underwent a G1 arrest (Figure 3.12e) following 

MDM2-p53 antagonist treatment (SCR control), but not following MYCN knockdown 

alone (0µM). LS cells did not undergo a G1 arrest following MDM2-p53 antagonist 

treatment but arrested after MYCN knockdown (Figure 3.13c).  LAN5 cells did not G1 

arrest following neither MDM2-p53 antagonist treatment nor MYCN knockdown 

(Figure 3.14c) and TR14 cells underwent a slight G1 arrest upon both Nutlin-3 or MI-63 

treatment and MYCN knockdown (Figure 3.15c).  This data suggests that upon MDM2-

p53 antagonist treatment, or MYCN knockdown, neuroblastoma cell lines have a very 

varied cell cycle response.  However, despite these varied responses, knockdown of 

MYCN did not influence the response to Nutlin-3 or MI-63, with each cell line 

responding in the same manner as with the SCR control.   
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Figure 3.11. siRNA mediated knockdown of MYCN has little effect on p53 and p53 
responsive genes.  MYCN was knocked down in TR14, NGP, LS and NB1691 cells for 24 
and 48 hours.  
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Figure 3.12. MYCN knockdown using siRNA in the NGP MYCN-amplified 
neuroblastoma cell line. a) Western blot showing induction of p53, p53 target genes 
and apoptotic markers following MYCN knockdown compared to SCR control at 0 
hours (before Nutlin-3/MI-63 treatment) and 24 hours after Nutlin-3/MI-63 treatment.   
Actin was used as a loading control.  b) Caspase 3/7 activity following MYCN 
knockdown in combination with Nutlin-3 or MI-63 treatment compared to SCR control 
and Nutlin-3 only (Nutlin-3, p=0.013; MI-63 p=0.011; 2-way ANOVA).  c) Annexin V 
staining following 24 hours 10µM Nutlin-3 or MI-63 treatment after MYCN knockdown 
(Nutlin-3, p=0.015; MI-63,  p=0.011; paired t-test). d) Photomicrographs of cells 
treated with 10µM Nutlin-3 or MI-63 following MYCN knockdown or SCR control. e) 
Cell cycle response following MYCN knockdown and 24 hour antagonist treatment.   
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Figure 3.13. MYCN knockdown using siRNA in the LS MYCN-amplified neuroblastoma 
cell line. a) Western blot showing induction of p53, p53 target genes and apoptotic 
markers following MYCN knockdown compared to SCR control at 0 hours (before 
Nutlin-3/MI-63 treatment) and 24 hours after Nutlin-3/MI-63 treatment.   Actin was 
used as a loading control. b) Percentage sub G1 DNA as determined by FACs analysis 
following 10µM Nutlin-3 or MI-63 treatment for 24 hours (Nutlin-3, p=0.08; MI-63, 
p<0.05; two-tailed unpaired t-test). c) Cell cycle response following MYCN knockdown 
and 24 hour antagonist treatment.   

 

 

 

 

 

 

 

 

 

 

c) 



147 

 

 

  

 

 

 

b) 

a) 



148 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.14. MYCN knockdown using siRNA in the LAN5 MYCN-amplified 
neuroblastoma cell line. a) Western blot showing induction of p53, p53 target genes 
and apoptotic markers following MYCN knockdown compared to SCR control at 0 
hours (before Nutlin-3/MI-63 treatment) and 24 hours after Nutlin-3/MI-63 treatment.   
Actin was used as a loading control.  b) Caspase 3/7 activity following MYCN 
knockdown in combination with Nutlin-3 or MI-63 treatment compared to SCR control 
and Nutlin-3 only (Nutlin-3, p = 0.0026; MI-63, p = 0.008; 2-way ANOVA).  c) Cell cycle 
response following MYCN knockdown and 24 hour antagonist treatment.   
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Figure 3.15. MYCN knockdown using siRNA in the TR14 MYCN-amplified 
neuroblastoma cell line. a) Western blot showing induction of p53, p53 target genes 
and apoptotic markers following MYCN knockdown compared to SCR control at 0 
hours (before Nutlin-3/MI-63 treatment) and 24 hours after Nutlin-3/MI-63 treatment.   
Actin was used as a loading control.  b) Caspase 3/7 activity following MYCN 
knockdown in combination with Nutlin-3 or MI-63 treatment compared to SCR control 
and Nutlin-3 only (p=0.0015 for Nutlin-3, p=0.0001 for MI-63, 2-way ANOVA). c) Cell 
cycle response following MYCN knockdown and 24 hour antagonist treatment.   
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Figure 3.16. MYCN knockdown using siRNA in the IMR32 MYCN-amplified 
neuroblastoma cell line.  Western blot showing induction of p53, p53 target genes and 
apoptotic markers following MYCN knockdown compared to SCR control at 0 hours 
(before Nutlin-3/MI-63 treatment) and 24 hours after Nutlin-3/MI-63 treatment.   
Actin was used as a loading control.   
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Figure 3.17. Knockdown of MYCN at 4 and 24 hours followed by Nutlin-3 or MI-63 
treatment in NGP cells. 
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3.4.11 MYCN amplified neuroblastoma cell lines are more sensitive to 

MDM2-p53 antagonist mediated growth inhibition compared to non-

MYCN-amplified neuroblastoma cell lines.  

The SRB cell culture growth inhibition assay takes into account both cell cycle arrest 

and apoptosis, 2 important p53 responses.  A panel of 12 MYCN-amplified (including 4 

MYCN and MDM2 co-amplified) and 8 non-MYCN-amplified neuroblastoma cell lines 

were investigated for their sensitivity to Nutlin-3 and MI-63 mediated growth 

inhibition.  GI50 values for all p53 wildtype cell lines are shown in Table 3.2, and the 

growth curves they were determined from data presented in Figure 3.18.  

 In response to Nutlin-3 (Figure 3.19a) and MI-63 (Figure 3.20a) MYCN-amplified 

neuroblastoma cell lines underwent more growth inhibition compared to non-amplified 

cell lines with a significant difference in mean GI50s as shown in the scatter plots 

(Figure 3.19b and 3.20b) (p<0.001 for Nutlin-3 and p<0.05 for MI-63).  Overall a more 

varied response to the antagonists was seen in the non-amplified cell lines compared to 

MYCN-amplified cell lines.  Interestingly, and despite being p53 wildtype the SKNRA 

cell line was most resistant to both Nutlin-3 and MI-63 (discussed in Chapter 5.4).   

MYCN-only amplified cell lines were more sensitive to Nutlin-3 mediated growth 

inhibition compared to neuroblastoma cell lines co-amplified for MYCN and MDM2 

(p=0.0095)  (Figure 3.19c) and although this difference did not reach statistical 

significance, the same trend was observed for MI-63 (p = 0.0667) (Figure 3.20c).  A 

number of cell lines in this panel had impaired p14
ARF 

function; PER-108 (methylated) 

and GIMEN (methylated), SHEP (homozygous deletion) and LAN-6 (homozygous 

deletion) (Carr et al., 2006).  There appeared to be a varied response to MDM2-p53 

antagonist mediated growth inhibition with no evidence that p14
ARF 

status affects the 

response to these compounds (figure 3.19a and 3.20a).  

3.4.12 p53 mutant cells lines are resistant to MDM2-p53 antagonists 

regardless of MYCN status 

Two MYCN-amplified neuroblastoma cell lines, (SKNBe2C (Be2C) and IGRN91), a 

non-MYCN-amplified neuroblastoma cell line (SKNAS) and a non-MYCN-amplified 

PNET cell line (NB100), all mutant for p53, were investigated for their sensitivity to 

Nutlin-3 and MI-63.  As shown in Figure 3.21, p53 mutant cell lines were highly 

resistant to these compounds regardless of MYCN status. 50% growth inhibition was not 
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achieved in these cell lines with the highest concentrations of Nutlin-3 (20µM) and MI-

63 (10µM) used to generate GI50 values in the other p53 wildtype cell lines tested.   

3.4.13 MYCN-amplified neuroblastoma cell lines are more sensitive to 

MDM2-p53 antagonist mediated apoptosis compared to non-MYCN-

amplified neuroblastoma cell lines  

As a marker of apoptosis, caspase 3/7 activity following Nutlin-3 or MI-63 treatment 

was determined in the same panel of neuroblastoma cell lines that were assessed for 

growth inhibition.  In response to 5µM Nutlin-3 (Figure 3.22a) and 2.5µM MI-63 

(Figure 3.23a), MYCN-amplified neuroblastoma cell lines showed higher mean caspase 

3/7 activity compared to non-MYCN-amplified cell lines (Nutlin-3, p=0.0343; MI-63 

p=0.0111) (Figure 3.22b and 3.23b).  Interestingly, despite no obvious resistance to 

growth inhibition, p14
ARF

 impaired cell lines, particularly those that are not MYCN-

amplified, were especially resistant to MDM2-p53 antagonist mediated activation of 

caspase 3/7 activity (Nutlin-3, p = 0.0093; MI-63 p = 0.0078), which was comparable to 

that of p53 mutant cell lines (Figure 3.22a and 3.23a).  The sub population of non-

MYCN amplified cells in Figure 3.22b and 3.23b with very low caspase activity are 

infact 3 of the 4 p14
ARF

 impaired cell lines; LAN6, SHEP and GIMEN, in addition to 

the p14ARF normal, p53 wildtype SKNRA cell line. 

In addition the MYCN and MDM2 co-amplified cell lines displayed increased caspase 

3/7 activity compared to other cell lines, and this was significant for MI-63 (Nutlin-3, p 

= 0.0998; MI-63, p = 0.0169) (Figure 3.22d and 3.23d).  They did not however, have 

significantly increased caspase activity compared to MYCN-amplified only cell lines (p 

= 0.48 for Nutlin-3, p=0.11 for MI-63, Mann-Whitney test).  These MYCN and MDM2 

co-amplified cell lines have previously been reported to express high levels of p14
ARF

 

mRNA and protein (Carr et al., 2006).   
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Figure 3.18. Concentration dependent growth inhibition curves for the panel of 
MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines used to generate 
GI50 values. 
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Table 3.2. Summary of GI50 values for Nutlin-3 and MI-63 in 18 p53 wild-type 
neuroblastoma cell lines of varying MYCN and MDM2 amplification status, and the 
Tet21N conditional MYCN expression system. amp - amplified, non-amp – non-
amplified. 

 

 

 

 

 

 

 

 

 

Cell Line MYCN status MDM2 status GI50 (µM) 
  Nutlin-3 MI-63 

NGP amp amp 2.53 ± 0.43 1.21 ± 0.04 
LS amp amp 2.95 ± 0.12 0.98 ± 0.06 
NB1691 amp amp 2.80 ± 0.17 0.87 ± 0.22 
TR14 amp amp 2.91 ± 0.28 1.09 ± 0.25 
IMR32 amp non-amp 2.53 ± 0.20 1.00 ± 0.29 
NBLW amp non-amp 0.74 ± 0.07 0.85 ± 0.21 
SMSKCNR amp non-amp 1.18 ± 0.08 0.74 ± 0.05 
LAN5 amp non-amp 1.52 ± 0.21 0.90 ± 0.16 
PER108 amp non-amp 1.64 ± 0.29 0.85 ± 0.09 
CHLA136 amp non-amp 0.64 ± 0.12 0.83 ± 0.03 
SHSY5Y non-amp non-amp 3.85 ± 0.98 2.01 ± 0.73 
GIMEN non-amp non-amp 4.61 ± 0.99 1.81 ± 0.45 
SJNB1 non-amp non-amp 4.32 ± 0.10 1.27 ± 0.20 
NB69 non-amp non-amp 1.77 ± 0.12 0.72 ± 0.06 
LAN6 non-amp non-amp 2.97 ± 0.75 2.28 ± 0.62 
SKNRA non-amp non-amp 9.85 ± 0.61 4.63 ± 0.79 
SHEP non-amp non-amp 3.92 ± 0.61 0.86 ± 0.14 
NBLS non-amp non-amp 3.08 ± 0.68 1.25 ± 0.24 
MYCN + 
(Tet21N) 

 non-amp 3.33 ± 0.74 1.08 ± 0.14 

MYCN – 
(Tet21N) 

 non-amp 13.76 ± 2.57 6.56 ± 1.18 
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Figure 3.19. Comparison of GI50 values in MYCN-amplified compared to non-MYCN-
amplified cell lines following Nutlin-3 treatment. a) GI50 values in a panel of p53 
wildtype neuroblastoma cell lines with MYCN-amplification, MDM2-amplification and 
p14ARF impairment. b) Scatter plot of MYCN-amplified vs. non-MYCN-amplified cell 
lines (p<0.05, Mann-Whitney test). c) Scatter plot of MYCN and MDM2 co-amplified 
cell lines compared to MYCN-amplified cell lines (p = 0.0095, Mann-Whitney test). 
 
 
 

 

 

a) 

b) c) 

 



162 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Comparison of GI50 values in MYCN-amplified compared to non-MYCN-
amplified cell lines following MI-63 treatment. a) GI50 values in a panel of p53 
wildtype neuroblastoma cell lines with MYCN-amplification, MDM2-amplification and 
p14ARF impairment. b) Scatter plot of MYCN-amplified vs. non-MYCN-amplified cell 
lines (p < 0.05, Mann-Whitney test). c) Scatter plot of MYCN and MDM2 co-amplified 
cell lines compared to MYCN-only amplified cell lines (p = 0.0667, Mann-Whitney test). 
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Figure 3.21. p53 mutant cells lines are resistant to MDM2-p53 antagonists mediated 
growth inhibition regardless of MYCN status.  p53 mutant cell lines were treated 
with a) Nutlin-3 (up to 20µM) and b) MI-63 (up to 10µM) for 72 hours and did not 
reach 50% growth inhibition to obtain a GI50 value.  *NB100 is a PNET cell line 
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Figure 3.22. Caspase 3/7 activity in a panel of neuroblastoma cell lines following 
Nutlin-3 treatment. a) Caspase activity in panel of cell lines. b) scatter plot of MYCN-
amplified vs. non-MYCN-amplified (p = 0.0343, Mann-Whitney test). c) scatter plot of 
p14ARF impaired vs. p14ARF normal (p = 0.0093, Mann-Whitney test). d) scatter plot of 
MYCN and MDM2 co-amplified vs. p53 wt cell lines (p = 0.0998, Mann-Whitney test). 
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Figure 3.23. Caspase 3/7 activity in a panel of neuroblastoma cell lines following MI-
63 treatment. a) Caspase activity in panel of cell lines b) scatter plot of MYCN-
amplified vs. non-MYCN-amplified (p = 0.0111, Mann-Whitney test). c) scatter plot of 
p14ARF impaired vs. p14ARF normal (p = 0.0078, Mann-Whitney test) d) scatter plot of 
MYCN and MDM2 co-amplified vs. p53 wt cell lines (p = 0.0168, Mann-Whitney test). 
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3.4.14 Investigating the relationship between cell type, growth 

inhibition and caspase activity 

As shown in Figure 3.24, N-type neuroblastoma cell lines had increased caspase 3/7 

activity and GI50 values compared to S-type neuroblastoma cell lines.  The outliers in 

the N-type cells that had low caspase activity were the p14
ARF

 impaired cell lines: 

LAN6 and PER108 (discussed in Chapter 5), and the S-type cell that underwent high 

levels of apoptosis was the NBLS cell line.  There was a clear divide in the mixed N/S 

type cells where the cell lines that were predominantly N-type (NB69 and NBLW) 

underwent high levels of apoptosis and growth inhibition compared to cell lines that 

were predominantly S-type (GIMEN and SJNB1). 

3.4.15 Irradiation induced apoptosis in MYCN-amplified cells is 

dependent on p53 expression  

To determine whether higher levels of apoptosis in MYCN-amplified neuroblastoma cell 

lines is dependent on higher levels of p53 in the presence of MYCN, MYCN-amplified 

NGP cells were treated with MYCN and/or p53 siRNA or SCR siRNA prior to 

irradiation induced DNA damage.  It has been previously shown that NGP cells undergo 

high levels of apoptosis following irradiation (Tweddle et al., 2001b).  Apoptosis was 

determined by analysis of expression of the apoptosis mediator PUMA and cleavage of 

caspase-3 and PARP (Figure 3.25a) together with quantification of caspase 3/7 activity 

(Figure 3.25b).  Twenty-four hours after irradiation, inhibition of MYCN or p53 led to 

decreased caspase 3/7 activity compared with SCR siRNA.  Furthermore dual inhibition 

of MYCN and p53 led to a slightly greater reduction in caspase 3/7 activity than MYCN 

or p53 alone and also resulted in a greater reduction in cleavage of caspase-3 and 

decreased expression of PUMA.  This suggests that increased levels of apoptosis are 

observed when both p53 and MYCN are present, and that irradiation induced apoptosis 

in MYCN-amplified cell lines is at least partly dependent on p53 expression.  
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Figure 3.24. N-type neuroblastoma cells have increased caspase 3/7 activity and 
decreased growth inhibition following Nutlin-3 and MI-63 treatment compared to S-
type neuroblastoma cells.  Caspase activity values and GI50 values are those as shown 
in Figures 19-23.  For statistical analysis, the N/S type cells were grouped into N and S 
depending on which was their dominant cell type (NB69, N>S, SJNB1 S>N, GIMEN S>N, 
NBLW N>S).  p values were calculated using Mann-Whitney tests. 
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Figure 3.25. Irradiation induced apoptosis in MYCN-amplified cell lines is dependent 
on p53.  NGP cells were treated with MYCN, p53, MYCN and p53 or SCR siRNA for 48 
hours prior to irradiation-induced DNA damage and harvested 24 hours later.  
Expression of apoptotic markers was determined by a) Western blot and b) caspase 
3/7 activity. 
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3.5 Discussion 

Neuroblastoma accounts for 15% of childhood cancer related deaths (Maris and 

Matthay, 1999).  MYCN-amplification is a powerful and reliable biomarker of poor 

prognosis in neuroblastoma and is used to stratify patients into a high risk group 

requiring intensive treatment.  However, current therapies are insufficient for these 

patients, resulting in high mortality rates, a high incidence of relapse and treatment 

related toxicity (Matthay et al., 1999).   

3.5.1 MYCN and the p53/MDM2/p14
ARF

 network 

MYCN plays roles in the contradictory pathways of promoting both cell survival (Lutz 

et al., 1996) and sensitizing cells to apoptosis (van Noesel et al., 2003; Fulda et al., 

2000), but in neuroblastoma abnormalities within the apoptotic pathways can occur in 

association with MYCN-amplification (Hogarty, 2003).  p53, the major tumour 

suppressor in the cell, is generally wild-type and active at diagnosis and patients 

respond well to initial therapy.  However, high risk patients often relapse and although 

p53 mutations are still relatively rare (~15% of cases), p53 function is often inactivated 

through disruption of the p53/MDM2/p14
ARF

 network, of which MYCN is a central 

modulator (Figure 3.26), resulting in chemoresistant disease (Carr-Wilkinson et al., 

2010).  A number of studies have shown that pathways downstream of p53 are intact in 

neuroblastoma and that p53 can induce apoptotic responses (Van Maerken et al., 2011; 

Hogarty, 2003; Tweddle et al., 2003; Hosoi et al., 1994; Vogan et al., 1993).  It has been 

previously reported that the negative regulator of p53, MDM2, is the critical oncogene 

product by which MYCN-amplified neuroblastomas acquire a more aggressive 

behaviour (Slack and Shohet, 2005), and that MYCN and MDM2 work together to 

inhibit apoptosis (Wang et al., 2006; Alt et al., 2003).  There are a number of 

mechanisms by which MDM2 might contribute to the aggressive phenotype of MYCN-

amplified neuroblastoma.  MDM2 has been reported to be a direct transcriptional target 

of MYCN and therefore MYCN-driven expression of MDM2 may contribute to p53 

inactivation in neuroblastoma (Slack et al., 2005a).  MDM2 is co-amplified with MYCN 

in about 6% of neuroblastomas but more frequently the negative regulator of MDM2, 

p14
ARF

 is inactivated through methylation or deletion, and has been reported to occur in  

29% of tumours,  resulting in hyperactive MDM2 (Carr-Wilkinson et al., 2010; Corvi et 

al., 1995b).  In addition, we have recently reported that p53 is a direct transcriptional 

target of MYCN, and that p53 induction by MYCN may be an important contributory 

mechanism by which MYCN sensitizes cells to apoptosis (Chen et al., 2010b).   
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In this chapter, the effect of MYCN on the response to the MDM2-p53 antagonists 

Nutlin-3 and the more potent MI-63 was investigated.  MI-63 has not been previously 

investigated in neuroblastoma.  Three independent methods show that MYCN-

amplification and expression sensitizes neuroblastoma cell lines to MDM2-p53 

antagonists.   

 

 

 

 

 

 

 

 

Figure 3.26.  MYCN is a central modulator in the p53/MDM2/p14ARF network. 

 

3.5.2 The Tet21N cell line and response to MDM2-p53 antagonists 

SHEP cells (described in Chapter 2.2) were used to generate a synthetic inducible 

system on the basis of the tetracycline repressor of E coli, to reversibly express MYCN 

in SHEP cells, which have barely detectable endogenous MYCN.  This cell line allows 

the role of the MYCN protein in the biology of neuroblastoma to be investigated and 

has previously been used in many studies.  MYCN induction has been shown to 

increase DNA synthesis and the proliferation rate (Lutz et al., 1996), MYCN(+) Tet21N 

cells are more sensitive to cytotoxic drugs (Fulda et al., 2000), and MYCN(+) cells were 

previously shown to have lower IC50 values following Nutlin-3 treatment compared to 

MYCN(-) cells (Barbieri et al., 2006).   

SHEP Tet21N MYCN regulatable cells were used to assess the effect of manipulation 

of MYCN where tetracycline removal results in induction of MYCN expression.  Data 

in this chapter has shown that both Nutlin-3 and MI-63 are more effective at inducing 

growth inhibition and apoptosis in MYCN(+) compared to MYCN(-) cells, as shown by 
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growth inhibition assays, clonogenic survival curves, caspase 3/7 activity, sub G1 DNA 

content and induction of the p53 transcriptional target and apoptotic marker PUMA.  

The increase in baseline p53 on MYCN induction is consistent with previous studies in 

our group (Chen et al., 2010b; Bell et al., 2006). 

3.5.2.1 SHEP cells do not undergo high levels of apoptosis following MDM2-p53 

antagonist treatment 

The Tet21N SHEP cell line has previously been reported to be very chemoresistant 

compared to SHSY5Y, both of which were derived from SKNSH cells (Rodriguez-

Lopez et al., 2001; Tweddle et al., 2001b; Jasty et al., 1998).  The Tet21N SHEP cell 

line was quite resistant to the apoptotic effects of MDM2-p53 antagonists, resulting in 

little caspase 3/7 activation at MI-63 concentrations less than 10µM and up to 20µM 

Nutlin-3.  In other responsive neuroblastoma cell lines, 10µM Nutlin-3 or MI-63 was a 

maximum concentration used and was sufficient to detect high levels of apoptosis.  In 

the panel of cell lines, just 2.5µM MI-63 and 5µM Nutlin-3 was sufficient to induce 

caspase 3/7 activity and to observe a difference in caspase activities between MYCN-

amplified and non-MYCN-amplified cell lines.  In SHEP cells, sub G1 DNA was looked 

at and again a concentration of 20µM had to be used to see sufficient induction of 

apoptosis at 24, 48 and 72 hours.  Surprisingly, just 2.5µM of Nutlin-3 or MI-63 was 

sufficient to induce cell cycle arrest in both MYCN(+) and MYCN(-) cells.  This 

suggests that these cells have an intact cell cycle control mechanism, but since they 

undergo low levels of apoptosis upon MDM2-p53 antagonist treatment, suggests that 

they have defective apoptotic pathways in response to MDM2-p53 antagonists.  Like 

SHEP Tet21N cells, the original SHEP cells were also resistant to MDM2-p53 

antagonists.  Previous studies, however, have shown that SHEP cells are suitable for 

investigating drug induced apoptosis following Paclitaxel treatment (Janssen et al., 

2007), Betulinic acid and doxorubicin treatment (Fulda and Debatin, 2005), mannitol 

treatment (Kim and Feldman, 2002), and treatment with resveratrol (Fulda and Debatin, 

2004), suggesting that the cells have intact apoptotic pathways but have a poor 

apoptotic response to MDM2-p53 antagonists.  In support of this data, Van Maerken et 

al reported that despite an increase in caspase activity and sub G1 DNA following 

Nutlin-3 treatment in the related SKNSH and SHSY5Y cells, no increase was observed 

in SHEP cells, but the cells underwent a pronounced cell cycle arrest, as has been 

observed in this study in Tet21N cells (Van Maerken et al., 2011).  Despite SKNSH, the 

original cells SHEP cells were derived from, being caspase 8 deficient (Rebbaa et al., 
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2001), a major pathway by which cytotoxic drugs act, SHEP cells were used as a 

positive control for intact caspase 8 in another study (Braun et al., 2010), suggesting 

SHEP cells have intact caspase 8 and therefore this does not contribute to the resistance 

to induction of apoptosis.  Another feature of SHEP cells are that they are 

homozygously deleted for p14
ARF 

and this may be a mechanism by which SHEP cells 

are resistant to apoptosis, particularly as LAN6 and GIMEN non-MYCN-amplified cells 

are p14
ARF 

impaired and are also particularly resistant to Nutlin-3 and MI-63 mediated 

caspase activation.  Like Tet21N cells and SHEP cells, LAN6 and GIMEN cells were 

not resistant to MDM2-p53 antagonist mediated growth inhibition.  The effects of 

p14
ARF

 on the response to MDM2-p53 antagonists in neuroblastoma cell lines is 

investigated in more depth in Chapter 5.  

3.5.2.2 Differences in colony formation between MYCN(+) and MYCN(-) Tet21N 

cells 

The appearance of the colonies formed from MYCN(+) cells in both untreated controls 

and following 24 hours treatment with Nutlin-3 or MI-63, followed by a further 14 days 

incubation, differed from those formed by MYCN(-) cells.  The MYCN(+) colonies 

were larger and stained darker, suggesting increased cell density in each colony 

compared to MYCN(-) cells.  This agrees with published data within our group 

suggesting that MYCN(+) cells have a faster doubling time compared to MYCN(-) cells 

(Bell et al., 2006).  Since the appearance of colonies formed from DMSO only treated 

cells had an appearance comparable to colonies formed from treated cells, this also 

suggests that surviving cells either initially underwent a reversible growth arrest, or that 

the surviving population of cells did not growth arrest, despite seeing a growth arrest by 

FACs analysis following 24 hours MDM2-p53 antagonist treatment, and p21
WAF1

 

induction at 24 hours post treatment.  

3.5.2.3 Tet21N cells and control Tet21 cells 

 Tet21 Vector only cells were used to control for tetracycline.  To eliminate tetracycline 

as a possible reason for the differences observed in colony appearance in Tet21N cells 

clonogenic assays were performed with Tet21 cells.  Surprisingly, compared to Tet21N 

cells (MYCN+ or MYCN-), Tet21 cells formed much larger flatter colonies.  Also the 

GI50 value generated for Tet21 cells (MYCN-) was similar to the GI50 value for Tet21N 

(MYCN+) cells, where a GI50 value similar to MYCN(-) Tet21N cells would have been 

expected.  This data suggests that there is something fundamentally different between 

these two cell lines, or that the addition of the transfected plasmids and MYCN 
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promoter within Tet21N cells has a greater effect than expected on the cell, and results 

with the Tet21 control should be used with caution for clonogenic assays. 

3.5.3 MYCN knockdown and response to MDM2-p53 antagonists 

RNA interference allows the effect of manipulating expression of a single gene to be 

investigated.  siRNA was used to knockdown MYCN in 5 MYCN-amplified 

neuroblastoma cell lines, and the effect of MDM2-p53 antagonists on the p53 response, 

apoptosis and the cell cycle investigated.   All cell lines that were used had a strong p53 

and apoptotic response to MDM2-p53 antagonists.   

3.5.3.1 MYCN knockdown alone 

MYCN knockdown alone resulted in varying effects on MDM2 and p21
WAF1

, and either 

a decrease or no change in p53 despite both p53 and MDM2 having been reported as a 

direct transcriptional target of MYCN (Chen et al., 2010b; Slack et al., 2005a).  

Previous data shows that knockdown of MYCN results in decreased p53 at 

transcriptional and protein levels, as well as p53 transcriptional targets MDM2 and 

PUMA (Chen et al., 2010b).  In this study, although similar effects have been found, it 

is highly variable.  However, p53 as a direct transcriptional target of MYCN supports 

the hypothesis that MYCN knockdown may decrease the p53 response to MDM2-p53 

antagonists due to decreased transcriptional activity.  

3.5.3.2 MYCN knockdown and MDM2-p53 antagonist treatment 

Following siRNA-mediated knockdown of MYCN in two MYCN-amplified and three 

MYCN and MDM2 co-amplified neuroblastoma cell lines, Nutlin-3 and MI-63 treatment 

resulted in a decreased p53 response and reduction in the levels of apoptosis in all cases.  

Western analysis was performed in all cell lines and the apoptotic markers PUMA, 

cleaved caspase 3 and cleaved PARP detected as markers of apoptosis.  Interestingly, in 

NGP cells levels of PUMA did not alter following MYCN knockdown, but caspase 3 

and PARP cleavage decreased, and similar effects were seen in IMR32 cells.  This may 

suggest aberrant p53-PUMA signalling in these cell lines, but other pathways by which 

Nutlin-3 and MI-63 induce apoptosis are intact.   

3.5.4 Response to MDM2-p53 antagonists in a panel of neuroblastoma 

cell lines 

Finally, growth inhibition assays and caspase 3/7 activity assays were performed in a 

panel of 18 p53 wildtype and 3 p53 mutant neuroblastoma cell lines, to assess the 
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effects of Nutlin-3 and MI-63 in MYCN-amplified compared to non-MYCN-amplified 

cell lines. Both Nutlin-3 and MI-63 were more effective at inducing growth inhibition 

and apoptosis in MYCN-amplified cells, and the effect was dependent on wildtype p53, 

consistent with a number of reports showing that these compounds require wildtype p53, 

as expected if their action is target-specific (Van Maerken et al., 2006; Vassilev et al., 

2004).  Whereas all wild-type p53 MYCN-amplified cell lines investigated were 

responsive to MDM2-p53 antagonists, the response of non-amplified cell lines was 

more variable.  This is unsurprising as MYCN-amplification is directly responsible for 

transformation; non-amplified cases are likely to have a variety of other genetic 

abnormalities or defects in apoptotic pathways that may not be present in MYCN-

amplified tumours.   

3.5.5 Comparison to published data 

Our data differs from previous findings that report no correlation between MYCN status 

and response to Nutlin-3 (Barbieri et al., 2006; Van Maerken et al., 2006).  Van 

Maerken et al. tested a limited panel of 7 p53 wildtype cell lines (3 MYCN-amplified), 

and found no significant difference in the cell viability response or apoptotic response to 

Nutlin-3 in MYCN-amplified compared to non-MYCN amplified cell lines (Van 

Maerken et al., 2006).  In another study IC50 values for Nutlin-3 in 2 MYCN regulatable 

cell lines were determined and whilst in agreement with our extensive observations that 

there was increased sensitivity in MYCN(+) compared to MYCN(-) Tet21N cells, it was 

reported that there was no difference in IC50s for MYCN(+/-) MYCN3 cells, although 

when used in conjunction with cisplatin the IC50 for Nutlin-3 was lower in MYCN+ 

MYCN3 cells (Barbieri et al., 2006).  To test the effect of MYCN on sensitivity to 

MDM2-p53 antagonists in this study, several methods were used and a total of 22 cell 

lines to investigate the influence on cell growth and cell death, and similar results were 

found using two structurally unrelated MDM2-p53 antagonists.  Furthermore, previous 

studies with Tet21N cells have reported that MYCN(+) cells were more sensitive to 

apoptosis from cytotoxic drugs than MYCN(-) cells (Paffhausen et al., 2007; Fulda et 

al., 2000), and a recent study reports that MYCN sensitizes neuroblastoma cell lines to 

the apoptotic effects of bleomycin (Petroni et al., 2011). These studies are all in 

agreement with the data presented in this chapter showing that MYCN sensitises cells to 

apoptosis.   
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3.5.6 p14
ARF

 and the response to MDM2-p53 antagonists 

p14
ARF

 is often inactivated in neuroblastoma (Carr-Wilkinson et al., 2010), is expressed 

at higher levels in MYCN and MDM2 co-amplified cell lines compared to MYCN-

amplified non-MDM2 amplified cell lines (Carr et al., 2006), and may inhibit MYCN 

transcriptional activity (Amente et al., 2007).  There is also evidence that p14
ARF

 is 

induced by MYCC, and therefore MYCN may function in a similar way (Zindy et al., 

1998).  Interestingly the 3 non-MYCN-amplified p14
ARF

 impaired cell lines were 

especially resistant to Nutlin-3 and MI-63 mediated apoptosis, supporting recent 

findings showing that silencing of p14
ARF

 results in decreased susceptibility to undergo 

apoptosis and overexpression of p14
ARF

 results in a stronger caspase 3/7 response (Van 

Maerken et al., 2011).  The effect of p14
ARF

 is investigated further and discussed in 

more detail in Chapter 5. 

3.5.7  MDM2-amplification and the response to MDM2-p53 antagonists 

In this study, MYCN and MDM2 co-amplified neuroblastoma cell lines had reduced 

sensitivity to Nutlin-3 mediated growth inhibition, and a similar trend with MI-63, 

compared to MYCN-only amplified cell lines.  However, there was increased levels of 

caspase 3/7 activity in these cell lines compared to MYCN-amplified and non-amplified 

cell lines, consistent with previous reports that increased levels or amplification of 

MDM2 increases Nutlin-3 induced apoptosis as shown in liposarcomas and AML 

(Müller CR, 2007; Kojima et al., 2005).  However, MYCN and MDM2 co-amplified cell 

lines have previously been reported to have increased p14
ARF

 mRNA and protein 

expression (Carr et al., 2006), and it may be this increase in p14
ARF

 that is sensitizing 

these cell lines to increased caspase activity.  The data presented in this chapter 

indicates that MDM2 co-amplification may increase the resistance of MYCN-amplified 

neuroblastomas to Nutlin-3 mediated growth inhibition but may sensitise to apoptosis.  

The effect of MDM2 on the response to MDM2-p53 antagonists is explored further in 

Chapter 4.   

3.5.8 Variation in response to MDM2-p53 antagonists in panel of cell 

lines 

3.5.9 The effect of MDM2-p53 antagonists on MYCN expression 

Interestingly, MYCN levels decreased dramatically in MYCN(+) Tet21N cells when 

treated with MI-63 (and to a lesser extent with Nutlin-3), and in NGP cells when treated 
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with both Nutlin-3 and MI-63.  A previous report has shown a decrease in MYCN in 

Tet21N MYCN(+) cells following 2µM Nutlin-3 treatment (Peirce and Findley, 2009a).   

MYCN levels remained unchanged in LS cells, and decreased slightly in LAN5 and 

TR14 cells.  Interestingly, NGP and Tet21N cells were the only cell lines to G1 arrest 

following Nutlin-3 and MI-63 treatment, and Bell et al. previously found that MYCN 

expression was linked with a failure of neuroblastoma cell lines to G1 arrest in response 

to DNA damage.  Our results suggests that this may also be true of MDM2-p53 

antagonists, whereby cell lines that have reduced MYCN expression following Nutlin-3 

treatment G1 arrest, and those that still have high MYCN protein levels do not.  

However, knockdown of MYCN in other MYCN-amplified cell lines such as IMR32 

does not lead to a G1 arrest following irradiation (Bell et al., 2006).  However, the 

mechanism for Nutlin-3 reducing MYCN expression in these cell lines is unknown.   

3.5.10 Irradiation induced apoptosis in MYCN-amplified cell lines is 

dependent on p53   

The mechanisms by which members of the MYC family induce apoptosis are not fully 

understood (reviewed in (Adhikary and Eilers, 2005)).  There is evidence that MYCN-

amplified tumours may circumvent MYCN-driven apoptosis by selecting for cells with 

aberrations within the p53/MDM2/p14
ARF

 pathway and analysis of neuroblastoma cell 

lines reported to date with aberrations in the p53/MDM2/p14
ARF

 pathway show that 25 

of 34 (74%) cell lines are MYCN-amplified and predominantly established following 

previous therapy at relapse (Chen et al., 2010b; Carr et al., 2006).   Possible 

mechanisms of MYC driven apoptosis is through p14
ARF

-mediated expression, 

stabilisation and activity of p53 through inhibition of MDM2, and also p53 is a direct 

transcriptional target of MYCN (Chen et al., 2010b).  In this study, it has been found 

that dual knockdown of MYCN and p53 results in decreased levels of caspase 3 and 

PARP cleavage, decreased levels of the p53-dependent apoptotic mediator PUMA, and 

decreased levels of caspase 3 activity.   This suggests that increased levels of apoptosis 

are observed when both p53 and MYCN are present, and that irradiation induced 

apoptosis in MYCN-amplified cell lines may be dependent on p53.  Levels of apoptosis 

were also significantly reduced following knockdown of either MYCN alone or p53 

alone, suggesting that individually, these proteins also have a significant impact on the 

ability for the cells to undergo apoptosis following DNA damage.  It would be 

interesting to see if MDM2-p53 antagonists produced similar results.   
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3.5.11 p53 and mTOR 

Interestingly, p53 has been shown to inhibit the mTOR pathway which is involved in 

senescence (Demidenko et al., 2010), and there is evidence that  p53 induced cell cycle 

arrest is reversible as long as mTOR is also inhibited, suggesting that induction of 

senescence, reversible cell cycle arrest and cell death in response to Nutlin-3 may be 

determined by the status of mTOR (Korotchkina et al., 2010).  The activation status of 

mTOR may therefore be important in determining the response to MDM2-p53 

antagonists in neuroblastoma. 

3.5.12 Conclusions and Future Work 

The observations in this study support reports that both MDM2 and p53 are induced by 

MYCN, that MDM2 is a critical oncogene product by which MYCN-amplified 

neuroblastomas acquire a more aggressive phenotype and that MYCN sensitizes cells to 

p53-mediated apoptosis.  Under normal circumstances, both p53 and MYCN induce 

MDM2, but upon MDM2 inhibition MYCN-mediated transcription of p53 allows p53 

to accumulate and increases activity.  In addition there is evidence that both p53 and 

MYCC inhibit anti-apoptotic factors such as the Bcl-2 and Bcl-x, another mechanism by 

which amplification of MYCN may promote apoptosis together with p53 if, as is likely, 

this is also true of MYCN (Chipuk and Green, 2006; van Noesel and Versteeg, 2004).   

In conclusion, these studies present several lines of evidence that MYCN sensitizes 

neuroblastoma cell lines to MDM2-p53 antagonists through p53-dependent growth 

inhibition and apoptosis, and may provide a promising therapeutic approach for patients 

with high-risk MYCN-amplified neuroblastoma with wild-type p53.  Previous studies 

show that MYCN-amplification sensitizes cells to chemotherapeutic drugs and that 

Nutlin-3 induces senescence in normal cells that might actually protect the cell against 

cytotoxic drugs (Efeyan et al., 2007; Fulda et al., 2000).  Furthermore Nutlin-3 

synergises with chemotherapy in neuroblastoma cells (Barbieri et al., 2006) suggesting 

that patients with MYCN-amplified tumours may be particularly responsive to MDM2-

p53 antagonists in combination with chemotherapeutic drugs. To confirm the sensitivity 

MYCN-amplification confers to MDM2-p53 antagonists in neuroblastoma, further 

studies should be carried out in mouse models, such as the MYCN transgenic mouse 

model or xenograft studies with MYCN-amplified and non-MYCN-amplified cell lines. 
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Chapter 4.  The effect of MDM2 and MDMX in neuroblastoma cell 

lines on the response to MDM2-p53 antagonists 
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4.1 Introduction 

The major negative regulator of p53 is MDM2, an E3 ubiquitin ligase that promotes 

ubiquitination and relocalisation of p53 to the cytoplasm where it is degraded by the 

proteosome, and also inhibits p53 transcriptional activity by binding the transactivation 

domain within the N-terminal region of p53 (Zhang and Xiong, 2001).  MDM2 is also a 

direct transcriptional target of p53, forming an autoregulatory negative-feedback loop.  

MDMX, another negative regulator of p53, shares high amino acid sequence and 

structural homology to MDM2 (Shvarts et al., 1997; Shvarts et al., 1996).  However, 

whereas MDM2 targets p53 for proteosomal degradation, MDMX has neither E3 

ubiquitin ligase activity nor a nuclear localisation signal despite possessing a RING 

domain (Stad et al., 2001; Shvarts et al., 1996).  Despite their similarities, neither 

protein can substitute for the loss of the other; MDMX null mice die in utero in a p53-

dependent manner, but can be rescued upon p53 knockout (Parant et al., 2001), and 

MDM2 knockout is lethal during early embryogenesis in mice as a result of hyperactive 

p53, but can also be rescued by p53 knockout (Montes de Oca Luna et al., 1995).   

4.1.1 MDMX and the p53/MDM2 pathway 

p53 regulation by MDMX is not fully understood but there is growing evidence that it is 

complex, and that there is complicated interplay between MDM2 and MDMX.  MDMX 

binds to the p53 transactivation domain, repressing transcriptional activity (Toledo and 

Wahl, 2006), and can act alone to repress p53 transcription (Marine et al., 2007) or as a 

heterodimer with MDM2 through the C-terminal RING domain to enhance 

ubiquitination of p53 (Stad et al., 2001; Sharp et al., 1999).  MDM2 and MDMX were  

found to exist in cells mainly as a heterocomplex (Kawai et al., 2007).  There is 

evidence that MDM2 is relatively ineffective as an E3 ubiquitin ligase when not in 

complex with MDMX (Kawai et al., 2007; Poyurovsky et al., 2007; Uldrijan et al., 

2007), and that the MDM2-MDMX heterodimer is a more effective E3 ubiquitin ligase 

for p53 than MDM2 alone, promoting MDM2-mediated degradation of p53 (Linares et 

al., 2003; Gu et al., 2002). An MDM2-MDMX complex is required for control of p53 

activity in vivo (Huang et al., 2011).  This data is in line with neither being able to 

substitute for the other, nor both embryonic lethal phenotypes being rescued by p53 

knockout. 
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In addition, MDMX is relatively stable compared to MDM2 and there is evidence that 

MDMX promotes MDM2 stabilisation (Pereg et al., 2005).   

Following cellular stress, MDM2 undergoes autodegradation, and promotes 

ubiquitination and subsequent degradation of MDMX (de Graaf et al., 2003; Kawai et 

al., 2003a; Pan and Chen, 2003; Fang et al., 2000).   As activated p53 transactivates 

MDM2, increased MDM2 degrades MDMX more efficiently allowing full p53 

activation.  Overexpression of MDMX may prevent MDM2 from degrading p53 due to 

competition for p53 binding. 

4.1.2 MDMX and response to MDM2-p53 antagonists 

The MDM2-p53 antagonists used in this study, Nutlin-3 and MI-63, do not disrupt the 

MDMX-p53 interaction (Popowicz et al., 2010).  Previously, MDMX has been shown 

to affect the efficiency of MDM2 inhibitors.  The cellular activity of MDM2 inhibitors 

is decreased by MDMX, and Nutlin-3 does not induce apoptosis in cancer cells that 

express high levels of MDMX (Hu et al., 2006; Patton et al., 2006; Wade et al., 2006).   

MDMX siRNA or a peptide that disrupts the interaction of p53 with MDM2 or MDMX 

(pDI) increases p53 activation, inhibits tumour growth and sensitises MCF-7 cells to 

apoptosis (Hu et al., 2007a; Wade et al., 2006). Furthermore, a number of studies have 

shown that inhibition of MDMX enhances the response to MDM2-p53 antagonists.  A 

new compound, a benzofluroxan derivative, repressed the MDMX promoter in breast 

cancer cells, activating p53 and inducing apoptosis, and acted additively with Nutlin-3 

(Wang et al., 2011).  This effect was less efficient in cells with low MDMX expression.  

The Hsp90 inhibitor 17AAG destabilises MDMX, but in addition to a range of 

signalling proteins including Bcr-Abl, Her2, Akt, and Raf-1, and induces apoptosis 

(Vaseva et al., 2011), and MDMX overexpression in CLL resulted in a poor response to 

Nutlin-3 (Bo et al., 2010).  

4.1.3 MDMX expression in neuroblastoma and other cancer types 

MDMX overexpression in cancer is mainly caused by aberrant transcription (Gilkes et 

al., 2008) and MDM2 and MDMX expression has an inverse relationship in cancer cells 

(Danovi et al., 2004).  MDMX is overexpressed in many cancers, including 18-19% of 

lung and colon cancers (Danovi et al., 2004), 50% of head and neck squamous 

carcinomas (Valentin-Vega et al., 2007) and 65% of retinoblastomas (Laurie et al., 

2006), and many human cancer cell lines have been shown to overexpress MDMX 
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(Ramos et al., 2001).  Inactivation of p53 by ectopically overexpressed MDMX has 

been found to be oncogenic (Marine et al., 2006). 

MDMX expression has not been explored previously in neuroblastoma and as previous 

studies have indicated that MDMX removal may be necessary to fully activate the p53 

response in other cancer types, the effect of MDMX expression in neuroblastoma on the 

response to two MDM2-p53 antagonists, Nutlin-3 and MI-63 is investigated in this 

study.  

4.1.4 MDM2-amplification in neuroblastoma and other cancer types, 

and response to MDM2-p53 antagonists 

Amplification of MDM2 is reported in over 10% of 8000 human cancers from various 

sites (reviewed in (Toledo and Wahl, 2006)), and is amplified in a high proportion of 

sarcomas (20%) with wildtype p53 (Momand, 1998; Oliner et al., 1992).  In 

neuroblastoma, a study by Carr-Wilkinson et al found MDM2-amplification in 17% of 

cell lines all established at relapse and with co-amplification of MYCN, and 13% of 

tumours both at diagnosis and relapse, with and without MYCN-co-amplification (Carr-

Wilkinson et al., 2010; Carr et al., 2006).  Corvi et al. reported MDM2-amplification 

only in the presence of MYCN-amplification in 15% of cell lines established at relapse, 

and just 1 of 25 MYCN-amplified tumours, from which the LS cell line was derived 

(Corvi et al., 1995b).  There was a lack of MDM2-amplification in 11 tumours in one 

study, and 15 neuroblastomas in another (Moll et al., 1995; Waber et al., 1993).  

Previous reports suggest that in various cancer types amplification or overexpression of 

MDM2 sensitizes cells to MDM2-p53 antagonists (Gu et al., 2008b; Tovar et al., 2006; 

Kojima et al., 2005) whilst other groups report no effect (Liu et al., 2009; Kojima et al., 

2006; Van Maerken et al., 2006). Early studies suggest that MDM2-p53 antagonists 

may be particularly effective in sarcomas because MDM2 is frequently amplified in 

these tumours (Vassilev, 2007; Freedman et al., 1999; Momand, 1998; Florenes et al., 

1994).  In a panel of 18 neuroblastoma cell lines, MYCN-amplified neuroblastomas 

were found to be more sensitive to MDM2-p53 binding antagonists than non-amplified 

cell lines, but within the MYCN-amplified set, the cell lines co-amplified for MYCN and 

MDM2 had a higher average GI50 value for Nutlin-3 and MI-63 than the subset with 

MYCN-amplification alone (Chapter 3, and (Gamble et al., 2011a)).   In addition, there 

was increased caspase 3/7 activity in MDM2-amplified neuroblastoma cell lines 

following Nutlin-3 and MI-63 treatment compared to other neuroblastoma cell lines.   
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In this chapter, the effect of MDM2-p53 antagonists and the effect of MDM2-

amplification in neuroblastoma is investigated further, and also the effects of MDM2-

p53 antagonists in MDM2-amplified neuroblastoma cell lines is compared to that in 

MDM2-amplified sarcoma cell lines, since MDM2-amplification occurs so frequently in 

sarcomas, and MDM2-amplified sarcoma cell lines were available for comparison.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



185 

 

4.2 Aims and Hypotheses 

 

Hypotheses:  

 MDM2 knockdown does not alter the apoptotic response to MDM2-p53 

antagonists in neuroblastoma 

 High levels of MDMX expression impairs the ability of MDM2-p53 antagonists 

to fully activate the p53 response in neuroblastoma  

Aims: 

1. To examine the effect of MDM2 knockdown on the apoptotic response to 

MDM2-p53 antagonists in MYCN and MDM2 co-amplified neuroblastoma 

cell lines. 

2. To examine MDMX expression in a panel of neuroblastoma cell lines and to 

investigate the relationship between MDMX expression, and levels of 

caspase activation and growth inhibition following MDM2-p53 antagonist 

treatment. 

3. To assess the effects of MDMX knockdown in 3 neuroblastoma cell lines on 

induction of the p53 response, and apoptosis. 

4. To investigate the relationship between MYCN and MDMX. 

5. To karyotype and characterise MDM2-amplified non-neuroblastoma cell 

lines. 

6. To assess differences in growth inhibition in MDM2-amplified 

neuroblastoma cell lines compared to MDM2-amplified sarcoma cell lines. 
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4.3 Specific Materials and Methods 

4.3.1 siRNA mediated knockdown of MDM2 

4.3.1.1 Optimisation of MDM2 knockdown 

siRNA transfection was performed as described in Chapter 2.3.  Initially, MDM2 was 

knocked down in NGP cells to assess the effectiveness of 3 siRNAs generated by 

Eurogentec.  The sequences of the 3 siRNA are displayed in Table 2.2.  Four 

concentrations of siRNA were chosen to test; 40, 60, 80 and 100nM. As shown in 

Figure 4.1a, maximum levels of knockdown were achieved using siRNA 3 at 

concentrations of 40nM and 60nM.  To further optimise knockdown a time course was 

carried out at 24, 48 and 72 hour using 40nM and 60nM siRNA 3 (Figure 4.1b).  The 

optimal levels of knockdown were achieved at either 24 hours with 40nM siRNA (90%) 

or 48 hours with 60nM siRNA (89%).  40nM at 24 hour was chosen so that a lower 

concentration of Lipofectamine® Reagent (Invitrogen) could be used. 

siRNA was then tested in the LS cell line, where again the optimal knockdown was 

achieved at 24 hour with 40nM siRNA (76%) (Figure 4.1c).   

4.3.1.2 MDM2 knockdown for Western blot and caspase assay 

4x10
5
 cells were seeded in 6-well plates for Western blot analysis and left for 24 hours 

to adhere.  Cells were treated with siRNA, and either harvested at 24 hours, media 

replaced with RPMI 1640 and harvested after 48 hours.  For MDM2-p53 antagonist 

treatment studies, cells were treated with 0, 5 or 10µM Nutlin-3 or MI-63 in 2ml of 

media, following 24 hour knockdown.     

For caspase 3/7 activity assays, cells were seeded in 96-well plates at a density of 5000 

cells/well, and then treated as for Western analysis.  Instead of harvesting cells, caspase 

assays were performed as described in Chapter 2.7.   
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Figure 4.1.  Optimisation of MDM2 knockdown in NGP and LS cells.  a) 3 siRNAs were 
tested at 24 hours in NGP cells. b) The optimal concentrations of siRNA were tested at 
24 and 48 hours in NGP cells. c) 40nM and 60nM siRNA 3 was tested in LS cells.  The 
percentage expression is relative to actin, and was estimated by densitometry.  siRNA 
sequences are shown in Table 2.2. 
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4.3.2 siRNA-mediated knockdown of MDMX 

4.3.2.1 Optimisation of MDMX knockdown 

MDMX knockdown was optimised in NGP and LS cell lines.  MDMX siRNA 

sequences are shown in Table 2.2.  As shown in Figure 4.2a siRNA 3 generated the 

highest levels of knockdown in NGP cells.  siRNA 3 was further optimised in NGP and 

LS cells at 24, 48 and 72 hours (Figure 4.2b and 4.2c).  Greatest levels of knockdown 

were achieved using 40nM siRNA at 24 hours in NGP (79.58%) and LS (88.52%) cells.  

MDMX was knocked down in LAN5 cells, and an initial test of 40nM for 24 hours 

achieved high levels of knockdown.  

4.3.2.2 MDMX knockdown for Western blot and caspase assay 

4x10
5
 cells were seeded in 6-well plates for Western blot analysis (2-wells per treatment) 

or for FACs analysis (1 well per treatment) and left for 24 hours to adhere.  Cells were 

treated with siRNA, and either harvested at 24 hours or media replaced with RPMI 1640 

and harvested after 48 hours.  For MDM2-p53 antagonist studies, cells were treated 

with 0, 5 or 10µM Nutlin-3 or MI-63 in 2ml of media following MDMX knockdown at 

the optimal time point (24 hours).     

Cells were seeded at a density of 5000 cells/well for caspase 3/7 activity assays and then 

treated as for Western analysis.  Instead of harvesting cells, caspase assays were carried 

out as described in Chapter 2.7.  
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Figure 4.2. Optimisation of MDMX knockdown in NGP and LS cells.  a)  siRNAs 1-3 
were tested at 24 hours with 40, 60, 80 and 100nM siRNA in NGP cells, and levels of 
knockdown determined by Western blot analysis and densitometry.  The optimal 
concentration of 40nM siRNA 3 was tested at 24, 48 and 72 hours in b) NGP cells, and c) 
LS cells.  siRNA sequences are shown in Table 2.2. 
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4.3.3 Tet21N time-course for MYCN and MDMX protein and mRNA 

expression  

The relationship between MYCN and MDMX was investigated in the Tet21N cells.  A 

time-course was performed to look at the effect on MDMX mRNA and protein 

following MYCN induction or MYCN removal.  Protein was harvested at 0, 2, 6, 8, 24, 

48 and 72 hours for MYCN(+) to MYCN(-) (tetracycline addition), and at 0, 24. 48, 72, 

96 and 120 hours for MYCN(-) to MYCN(+) (tetracycline removal).  mRNA was 

collected at early time points for both tetracycline addition and removal as if MDMX 

was a transcriptional target of MYCN, the effect on MYCN mRNA would occur before 

the effect on protein could be observed.  mRNA samples were collected at 0, 2, 4, 12, 

24, 48 and 72 hours for both MYCN(+) to MYCN(-) and MYCN(-) to MYCN(+) time 

courses.   

4.3.3.1 Seeding of Tet21N cells for RNA and protein extraction 

Cells were seeded for protein and RNA extraction simultaneously.  Tet21N cells were 

grown in 6-well plates (2 wells per time point for protein, and 1 well per time point for 

mRNA) at a density of 2x10
4
cells/well until 48 hours, then 1x10

4
cells/well 72 hour 

onwards.  24 hours after seeding, tetracycline was either added (to remove MYCN 

expression) or removed from cells (to induce MYCN expression) and protein or RNA 

extracted at the specified time-point. Protein was extracted as previously described 

(Chapter 2.4.2).   For RNA extraction, 300µl of RLT buffer was added to the well to 

lyse the cells, and cells gently scraped, placed in a microfuge tube (Eppendorf) and 

stored at -80°C until use.   

4.3.3.2 Western analysis of Tet21N cells 

Western blotting was performed as previously described (Chapter 2.4), and membranes 

probed for MYCN and MDMX.  Vector only Tet21 cells were used as controls, and 

samples harvested at 48 hours run alongside time-course samples. 

4.3.3.3 RNA extraction and determination of concentration 

Lysed cells were defrosted on ice, and the RNeasy® Mini kit (Qiagen, Crawley, UK) 

was used to extract total cellular RNA, according to the manufacturer’s protocol for 

‘Purification of total RNA from Animal Cells using Spin Technology’.  Samples were 

homogenised by passing through a 23-gauge syringe 7 times, and RNA was eluted in 

50µl of RNase-free water.  The NanoDrop
TM

 ND-1000 Spectrophotometer (NanoDrop 
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Technologies, Inc., Wilmington, DE, USA) was used to determine concentration and to 

assess the quality of the RNA.  1.2µl of sample was applied to the NanoDrop and 

absorbance measured at 260 and 280nm.  The purity of the RNA was determined by the 

260nm:280nm ratio, which should be between 1.9 and 2.1 for good quality RNA.   

4.3.3.4 Reverse transcription to generate cDNA 

cDNA was generated from the RNA samples using the TaqMan® Reverse 

Transcription Kit (Applied Biosystems).  1µg of RNA (made up in 19.25µl RNase-free 

water) was reverse transcribed for each sample in a total volume of 50µl (30.75µl 

reaction mix shown in Table 4.1).  Thermal reaction conditions using a programmable 

heating block were as follows: 

25°C for 10 minutes 

48°C for 30 minutes 

95°C for 5 minutes 

4°C hold (short-term storage) 

cDNA was then stored at -20°C up to 1 month. 

Reagent Volume per reaction 
(µl) 

10x RT buffer 5 

MgCl2 11 

dNTPs 10 

Random Hexamers 2.5 

RNAase inhibitors 1 

RT Multiscribe 1.25 

Table 4.1. Reverse transcription PCR reagents. 
 

4.3.3.5 Quantitative Reverse-Transcription Polymerase Chain 

Reaction   

4.3.3.5.1 Principles of quantitative PCR 

PCR is a technique used to amplify a DNA target sequence, and with real-time 

technology, the levels of the DNA target sequence can be quantified.  With standard 

PCR, the reaction product is measured at the end, but real-time quantitative PCR allows 

for the detection of PCR amplification during the early phases of the reaction and the 

product is measured as the reaction progresses and the product accumulates.  The higher 



194 

 

the starting level of the target sequence, the fewer cycles at which a significant level is 

reached.   

There are 3 steps to a PCR reaction;  

1. Denaturation at 95°C.  Double stranded DNA is melted to single strands for 

replication.  

2. Primer annealing.  Primers complementary to the two strands at specific sequences 

flanking the target DNA anneal to the target DNA when the reaction is cooled to 60°C.   

Primers are in large excess preventing the two original strands of DNA reannealing.   

3. Elongation.  A thermostable DNA polymerase elongates the primer, producing a 

complementary strand of DNA.  This process is repeated again and again, amplifying 

target DNA.   

The Taqman
TM

 (Applied Biosystems) system was used, which involves a fluorogenic 

labelled probe that binds to the target sequence downstream of the primer, which is 

designed with a high energy (has a high energy transfer efficiency when excited) 

reporter dye (fluorescein) at the 5’ end, and a low energy quencher molecule (TAMRA) 

at the 3’ end.  When the probe is intact and excited by a light source, the emission from 

the reporter dye is suppressed by the quencher dye due to the close proximity of the two, 

and energy is transferred from high to low through fluorescence resonance energy 

transfer (FRET), reducing the level of fluorescence from the reporter dye.  AmpliTaq 

Gold® DNA polymerase has 5’exo-nuclease activity.  As the DNA polymerase extends 

the primer, it encounters and digests the probe, releasing the reporter dye from the 

quencher and increasing the distance between the two, causing the transfer of energy to 

stop.  The fluorescent emission of the reporter dye increases, and this increase is 

captured by the detection instrument within the 7900 HT Real-Time PCR system 

(Applied Biosystems), which detects fluorescence emissions at 500-600nm.   

When the fluorescence signal reporter increases to a detectable level, it is captured and 

displayed as an amplification plot and the threshold line is the level of detection at 

which a reaction reaches fluorescence intensity above background.  The threshold line is 

set in the exponential phase of amplification for the most accurate reading and the cycle 

at which the sample reaches this level is called the cycle Threshold (Ct).   

4.3.3.5.2 Real-time PCR protocol 

The primers and probes used were inventoried TaqMan® Gene Expression Assays 

(Applied Biosystems); MDMX, Hs00159092.m1; MYCN, Hs00232074_m1; 18S 
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ribosomal RNA, Hs0.928985_g1.  All results were normalised to 18S ribosomal RNA 

control.  Relative quantification using the standard curve method was used to determine 

expression levels of target genes within samples.  A standard curve was included on all 

plates, generated from a sample with high levels of the target gene (in this case 

tetracycline(-) Tet21N cells at 0 hours, with high levels of MYCN) and prepared as 

follows:  

Standard 1 – neat 

Standard 2 – 1/10 dilution 

Standard 3 – 1/100 dilution 

Standard 4 – 1/1000 dilution 

Standard 5 – 1/10000 dilution 

MasterMixes were prepared as shown in Table 4.2, for use in 384 well plates with a 

final volume of 10µl per well and each sample set up in triplicate (2.5µl cDNA, and 

7.5µl MasterMix per well).  A total of 22 samples were set up for each set of primers 

and probes (6 standards, 7 time points for two experiments (MYCN(+) to MYCN(-), 

and MYCN(-) to MYCN(+) at 0, 2, 4, 12, 24, 48, and 72 hours), and no template control 

(NTC)). 

 

Table 4.2. Quantitative real-time PCR reaction reagents per primer/probe set. 
 

Once plates were set up, they were spun at 1500rpm for 1 minute in a 4K15 centrifuge 

(Sigma) to remove any air bubbles, and run on a 7900 HT RT PCR system (Applied 

Biosystems), with SDS software (Applied Biosystems).  Thermal cycling conditions are 

as shown in Figure 4.3, and fluorescence emissions at 500-600nM wavelength were 

detected.   

 

 

Reagent Volume per 
reaction (µl) 

Volume for 22 
samples (µl) 

Volume for 
triplicate 

reactions (µl) 

Volume + 12% 
(µl) 

MasterMix (x2) 5 110 330 369.6 

Primers and Probes 
(x20) 

0.5 11 33 37.0 

Nuclease-free water 2 44 132 147.8 
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Figure 4.3. Thermal cycling programme for quantitative real-time PCR. 

 

4.3.3.5.3 Analysis of real-time PCR results 

SDS 2.2 software (Applied Biosystems) was used to analyse real-time PCR results.  

Amplification plots were generated for each well (magnitude of signal, ΔRn (the 

fluorescence emission intensity of the reporter dye divided by the fluorescence emission 

intensity of the passive reference dye), against cycle number) and a standard curve 

generated as shown in Figure 4.4.  Unknown values were calculated relative to the 

standard curve.  Ct values are the number of cycles required to meet the threshold level 

of expression.  The mean quantities were then normalised to mean 18S ribosomal RNA 

quantities for each time point, and graphs plotted using GraphPad Prism software.   
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Figure 4.4. a) amplification plots for MYCN standards, generated by SDS software.  
Threshold level is indicated in green.  b) Standard curve for MYCN. 
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4.3.4 Growth inhibition assays 

The cell density was determined as previously described in Section 2.6.1.   Growth 

inhibition curves, SRB assays and GI50 values were calculated as described in Section 

2.6.  All neuroblastoma cell lines were seeded at the densities specified in Table 3.1, 

and sarcoma cell lines at the following number of cells per well in 96-well plates:  

SJSA-1 - 2500, RH18 - 4000, MHM - 3000, T449 - 5000, T778 - 3000. 

4.3.5 Fluorescence in situ hybridisation (FISH) 

4.3.5.1 Principles of FISH 

FISH is a cytogenetic technique used to detect the presence of specific nucleic acid 

sequences on chromosomes by hybridisation using fluorescent labelled DNA probes.  

The probes bind to parts of the chromosome with high sequence similarity, and 

hybridisation results in duplex formation of sequences present in the test material and 

the specific gene probe.  Fluorescence microscopy is then used to visualise the location 

and copy number per cell of the probes. 

4.3.5.2 ZytoLight® System 

The ZytoLight SPEC MDM2/CEN 12 Dual Color Probe Kit (ZytoVision Gmbh, 

Bremerhaven, Germany) is designed for the detection of MDM2, and chromosome 12 

centromeric alpha-satellite sequences by FISH.  The probe is a mixture of an orange 

fluorochrome direct labelled CEN 12 probe, specific for the alpha satellite centromeric 

region of chromosome 12 (D12Z3) (ZyOrange: excitation at 547nm and emission at 

572nm), and a green fluorochrome direct labelled SPEC MDM2 probe, hybridising 

distal and proximal to the human MDM2 gene in chromosomal region 12q14.3-12q15 

(ZyGreen: excitation at 503nm and emission at 528nm).  Duplex formation of the 

fluorescence-labelled probes can be visualised using fluorescence microscopy.  In a 

normal diploid cell interphase nucleus, two orange and two green signals are expected.  

In a cell with amplification of the MDM2 gene locus as double minutes (DMs) or 

homogeneously staining regions (HSRs), multiple copies of the green signal or green 

signal clusters will be observed as shown in Figure 4.5. 

4.3.5.3 Protocol 

Cytospins of the cell lines were created, and the methods carried out according to the 

ZytoLight SPEC MDM2/CEN 12 Dual Color Probe Kit protocol. The pre-treatment 
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step was not required as cells were not paraffin embedded.  For the denaturation and 

hybridisation step, 10µl of probe was pipetted onto the slide, and cells gently covered 

with a coverslip ensuring no air bubbles.  The coverslip was then sealed with rubber 

cement, and placed on a 75°C hotplate for 10 minutes to allow denaturation.  Slides 

were then transferred to a humidity chamber and probes allowed to hybridise overnight 

at 37°C.  The coverslip was removed by submerging in 1x wash buffer A at 37°C for 3 

minutes, and then washed in the same buffer for 2x 5 minutes at 37°C.  Slides were 

incubated in 70%, 90% and 100% ethanol for 1 minute each (protected from light), and 

30µl of DAPI/Antifade-Solution added, and cells covered again with a coverslip.  After 

15 minutes, excess DAPI/Antifade-Solution was removed and slides stored in the dark. 

A fluorescence detection microscope (Olympus BX61) and Cytovision software version 

7.1 (Molecular Devices) was then used to visualise copies of MDM2 and the 

centromeric region of chromosome 12.   

 

 

 

 

 

 

 

Figure 4.5. a) FISH showing amplification of MDM2 gene (green) and CEN 12 (orange). 
b) A normal interphase cell showing 2 copies of MDM2 (green) and 2 copies CEN 12 
(orange). (http://www.zytovision.com/Manuals/zytolightmanuals.html). 
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4.4 Results 

4.4.1 siRNA-mediated knockdown of MDM2 results in induction of p53 

and p21
WAF1

 protein expression, and increased caspase 3/7 activity 

Two MYCN and MDM2 co-amplified neuroblastoma cell lines (NGP and LS) were used 

to assess the effect of knocking down MDM2 expression on the p53 response.   As 

shown in Figure 4.6a, knockdown of MDM2 alone resulted in induction of p53 and the 

p53 transcriptional target p21
WAF1

 at both 24 and 48 hours.  Caspase 3/7 activity also 

increased 24 hours following MDM2 knockdown (Figure 4.6b).  This increase in p53, 

p21
WAF1

 and caspase activity following MDM2 knockdown supports a role for MDM2 

inhibitors as a therapeutic approach in neuroblastoma.  

4.4.2 MDM2 knockdown does not affect the p53 or apoptotic response 

to Nutlin-3 and MI-63  

There are conflicting reports about the effect of MDM2 overexpression or amplification 

on the response to MDM2-p53 antagonists in different cancer cell types.  To test the 

effect of MDM2-amplification in neuroblastoma on the response to Nutlin-3 and MI-63, 

MDM2 was knocked down in NGP and LS cells, followed by treatment with Nutlin-3 

and MI-63.  As shown in Figure 4.7,  5µM and 10µM  Nutlin-3 or MI-63 treatment 

results in an induction of p53 and p53 phosphorylation at serine 15, and p21
WAF1

 and 

induction of the p53 target gene and apoptotic marker PUMA, and caspase 3 and PARP 

cleavage (SCR siRNA control).   Induction of apoptosis is also observed with a dose-

dependent increase in caspase 3/7 activity following Nutlin-3 and MI-63 treatment as 

shown in Figure 4.8 (SCR siRNA control).   

Following MDM2 knockdown, despite a clear suppression of the induction of MDM2 

protein levels by siMDM2, there is no evidence of an altered response to MDM2-p53 in 

terms of p53 induction, and apoptotic markers as shown in Figure 4.7 for both NGP and 

LS cell lines, and there is no significant difference in the levels of caspase 3/7 activity 

compared to SCR control (Figure 4.8).  Interestingly, in NGP cells p21
WAF1

 and PUMA 

protein levels decreased after Nutlin-3 and MI-63 treatment following MDM2 

knockdown, but increased in LS cells (Figure 4.7).  The only consistent change is 

increased phosphorylated p53 at serine 15 following MDM2 knockdown and 5µM 

Nutlin-3 treatment compared to SCR control in both cell lines.   
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These results suggest that the initial MDM2 protein levels at the start of treatment are 

not important in determining the growth inhibitory or apoptotic signalling response to 

MDM2-p53 antagonists.  Increased caspase 3/7 activity previously detected in MDM2-

amplified cell lines following treatment with MDM2-p53 antagonists is likely to be due 

to increased p14
ARF

 expression (Chapter 3.4.13), as p14
ARF

 impairment or knockdown 

results in a desensitisation to MDM2-p53 antagonist mediated apoptosis as shown in 

Chapter 5.   Results are also consistent with no difference in sensitivity to MDM2-p53 

antagonists between MYCN/MDM2 co-amplified cell lines compared with MYCN-

amplified cell lines.  Therefore there are two lines of evidence showing that MDM2 

levels do not affect response to MDM2-p53 antagonists in neuroblastoma.    
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Figure 4.6.  MDM2 knockdown in 2 MYCN and MDM2 co-amplified neuroblastoma 
cell lines (NGP and LS).  a) MDM2 knockdown induces p53 and p21WAF1 at 24 and 48 
hours. Actin was used as a loading control. b) caspase 3/7 activity increases 24 hours 
after MDM2 knockdown.   
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Figure 4.7.  MDM2 knockdown in NGP and LS cells followed by Nutlin-3 or MI-63 
treatment results in no obvious change in the induction of p53 and p53 
transcriptional targets or levels of apoptotic markers compared to control.  Actin was 
used as a loading control. (n=2 NGP, n=1 LS) 
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Figure 4.8.  No difference in caspase 3/7 activity was observed following MDM2 
knockdown compared to SCR control following a) Nutlin-3 or b) MI-63 treatment 
(NGP; Nutlin-3 p = 0.16, MI-63 p = 0.25.  LS; Nutlin-3 p = 0.79, MI-63 p = 0.67, 2-way 
ANOVA).   
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4.4.3 MDMX expression varies across neuroblastoma cell lines but 

correlates with the extent of caspase 3/7 activity following MDM2-p53 

antagonist treatment 

MDMX protein expression levels were determined in a panel of 21 neuroblastoma cell 

lines (including MYCN(+) and MYCN(-) Tet21N cells).  As shown in Figure 4.9a, 

MDMX protein expression is variable across 21 neuroblastoma cell lines and does not 

appear to have any relationship with MYCN-amplification status.  MDM2-amplified cell 

lines have low MDMX expression levels compared to MYCN-amplified cell lines, 

supporting a role for MDM2 in the ubiquitination and subsequent degradation of 

MDMX.  The caspase 3/7 activity and GI50 values following MDM2-p53 antagonist 

treatment in the panel of 21 cell lines previously determined in Chapter 3.4.11-13, was 

examined for any correlation with MDMX protein expression (quantitative values 

determined using densitometry).  As shown in Figure 4.9b, apart from three cell lines 

which fell into an obvious separate group (NBLW, NBLS and NB69), and not including 

the low MDMX expressing MDM2-amplified cell lines or p53 mutant cell lines, the 

remaining 12 of 15 cell lines, including Tet21N, have a highly significant positive 

correlation between caspase 3/7 activity and MDMX protein expression for both Nutlin-

3 (p = 0.0001, r
2 

= 0.78) and MI-63 (p < 0.0001, r
2 

= 0.88).  Interestingly, cell lines with 

high MDMX expression show high induction of caspase 3/7 activity, but not growth 

inhibition in the SRB assay (as shown in Figure 4.9c).  This implies that these cells did 

not show a cell cycle arrest response and suggests that a high level of MDMX 

expression is associated with defective cell cycle arrest.  However, there was an inverse 

correlation between caspase 3/7 activity and GI50 values, which was significant for 

Nutlin-3 (p=0.015), but not MI-63 (p = 0.076).  A lot of weight cannot be attributed to 

this since both had low r
2 

values, a measure of how well the regression line 

approximates the real data points (‘goodness of fit’) (Figure 4.9d).    

4.4.4 N-type neuroblastoma cells have increased MDMX protein 

expression compared to S-type cells  

In Figure 4.9a, SHSY5Y cells have high levels of MDMX protein but interestingly, 

SHEP cells do not, despite both being derived from the SKNSH cell line.  SHSY5Y is 

an N-type clone of SKNSH, whereas SHEP is an S-type clone. As shown in Figure 4.10, 

grouping the neuroblastoma cell lines into N- and S-type reveals that S-type 

neuroblastoma cells have lower overall MDMX expression (determined from 
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densitometric analysis of MDMX in Figure 4.9a) compared to N-type cells, with N/S 

mixed cell lines falling in the middle.  (p=0.0047, S- and N/S-type vs. N type).  This 

suggests that MDMX expression may differ according to differentiation status in 

neuroblastoma.  Again MDM2-amplified cell lines were excluded from the analysis as 

they have low MDMX expression as a result of MDM2-mediated degradation. 

4.4.5 Knockdown of MDMX results in induction of p53 and p21
WAF1

 

and increased caspase 3/7 activity 

The MDM2-p53 antagonists Nutlin-3 and MI-63 are not active against MDMX despite 

strong sequence and structural homology between MDM2 and MDMX.   Knockdown of 

MDMX in two MYCN and MDM2 co-amplified cell lines (LS and NGP), and one 

MYCN-amplified cell line (LAN5)  resulted in a strong activation of the p53 response, 

resulting in induction of  p53,  p53 phosphorylation at serine 15, and induction of the 

p53 target gene p21
WAF1

 (Figure 4.11a).  MDM2 levels decreased slightly, supporting a 

role for MDMX in the stabilisation of MDM2, as previously published (Pereg et al., 

2005).  An increase in caspase 3/7 activity was also observed following MDMX 

knockdown (Figure 4.11b), and to a greater extent than that seen upon MDM2 

knockdown at 24 hours (Figure 4.6b).  Since MDMX is also a negative regulator of p53, 

this data suggests that MDMX removal may be necessary to fully activate p53 in 

response to MDM2-p53 antagonists in neuroblastoma.   

4.4.6 siRNA-mediated knockdown of MDMX results in decreased 

MDM2-p53 antagonist-mediated apoptosis 

Interestingly, despite induction of p53 and caspase 3/7 activity following MDMX 

knockdown alone, knockdown of MDMX followed by MDM2-p53 antagonist treatment 

resulted in decreased apoptosis.  MDMX was knocked down for 24 hours in NGP, LS 

and LAN5 cells followed by treatment with 5µM or 10µM Nutlin-3 or MI-63.  In NGP 

and LS cells, no effect on p53 and p21
WAF1

 protein levels or p53 phosphorylation was 

observed compared to the SCR control (Figure 4.12).  As shown in Figure 4.13, no 

alteration in cell cycle distribution was observed following MDMX knockdown 

compared to SCR control after Nutlin-3 or MI-63 treatment in NGP and LS cells with 

NGP cells G1 arresting, and LS cells not (similar to the effects seen upon MYCN 

knockdown in Chapter 3.4).  This is consistent with the unchanged p21
WAF1

 levels.  

However, LAN5 cells, which are MYCN-amplified but not MDM2-amplified and have 

the highest MDMX protein levels (Figure 4.9a), had a reduced p53 response following 
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MDMX knockdown and MDM2-p53 antagonist treatment (Figure 4.12), suggesting that 

MDMX may be more important in non-MDM2-amplified cell lines.   In all cases PUMA 

and cleaved caspase 3 levels decreased whether an effect on p53 was observed or not 

(Figure 4.12), and in support of these results, caspase 3/7 activity assays showed a 

significant and pronounced reduction in caspase 3/7 activity following 24 hours Nutlin-

3 or MI-63 treatment (Figure 4.14) (LS; Nutlin-3 p = 0.0024, MI-63 p = < 0.001, NGP; 

Nutlin-3 p < 0.001, MI-63 p < 0.001, LAN5; Nutlin-3 p = 0.0004, MI-63 p = 0.0024).  

Since these results contradict published reports in other cancer cell types, caspase 

activity was checked at 12 hours and no difference in caspase activity was seen between 

SCR and siMDMX treated cells (Figure 4.15).   Again, in all 3 cell lines, MDM2 levels 

decreased following MDMX knockdown (Figure 4.12).   Since it had previously been 

observed that MDM2 levels do not affect the response to MDM2-p53 antagonists (refer 

to Section 4.4.2), it cannot be the destabilisation of MDM2 that is causing the 

unexpected resistance to these compounds following MDMX knockdown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

c) 
  

  

b) 



209 

 

 

 

 

 

 

 

 
 
 
Figure 4.9. Neuroblastoma cell lines have variable MDMX protein expression which 
correlates with caspase 3/7 activity but not growth inhibition. a) MDMX expression in 
a panel of neuroblastoma cell lines alongside their MYCN, MDM2 and p53 status.  
Be2C and IGNR91 p53 mutant cell lines are MYCN-amplified.   Actin was used as a 
loading control.  b) Caspase 3/7 activity following 24 hours Nutlin-3 (5µM) or MI-63 
(2.5µM) treatment correlates with MDMX protein expression, with the exception of 3 
cell lines; NBLW, NB69 and NBLS. 95% confidence intervals are displayed. (Nutlin-3, p =  
0.0001, r2 = 0.78;  MI-63; p < 0.0001, r2 = 0.88). c) GI50 values were calculated following 
72 hour treatment, and do not correlate with MDMX protein expression (Nutlin-3, p =  
0.75, r2 = 0.0085;  MI-63; p = 0.971, r2 = 0.0001). d) There is a weak inverse correlation 
between Nutlin-3 induced caspase 3/7 activity and GI50 (p=0.015, Pearson correlation), 
and whilst not significant (p=0.076, Pearson correlation), there is also a trend towards 
a correlation with MI-63. 
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Figure 4.10. MDMX protein expression levels may be influenced by neuroblastoma 
cell type.  (S – substrate-adherent, N – neurite-bearing, N/S – mixture of N and S 
type).  p = 0.0047 (unpaired t-test).  MDM2-amplified and p53 mutant cell lines are 
excluded from analysis. 
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Figure 4.11. MDMX knockdown induces a p53 response and apoptosis in 3 
neuroblastoma cell lines; LS, NGP (MYCN and MDM2 co-amplified) and LAN5 (MYCN-
amplified). a) Knockdown of MDMX results in induction of p53, p53 phosphorylation 
and induction of the p53 transcriptional target p21WAF1.   b) Caspase 3/7 activity is 
increased after MDMX knockdown compared to SCR control at 24 and 48 hours in all 
cell lines, except LS where an increase is seen at 24 hours only.    
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Figure 4.12. LS, NGP and LAN5 cells were treated with Nutlin-3 or MI-63 following 
MDMX knockdown (or SCR control). A decrease in apoptotic markers PUMA and 
cleaved caspase 3 was observed in all 3 cell lines following MDMX knockdown 
compared to SCR control.  p53 responsive proteins were not affected in MDM2-
amplified cell lines but were in the non-MDM2 amplified high MDMX expressing LAN5 
cell line.  Actin was used as a loading control. 
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Figure 4.13. MDMX knockdown in a) NGP and b) LS cells resulted in no change to the 
proportion of cells in the various phases of the cell cycle compared to SCR control 
consistent with unaltered p21WAF1 protein levels.  NGP cells continued to G1 arrest, 
whereas LS cells did not G1 arrest.    
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Figure 4.14. Caspase 3/7 activity decreased after MDMX knockdown compared to SCR control at 24 hours in all 3 cell lines following Nutlin-3 or 
MI-63 treatment (LS, Nutlin-3 p = 0.0024, MI-63 p < 0.001; NGP, Nutlin-3 p < 0.001, MI-63 p < 0.001;  LAN5, Nutlin-3 p = 0.0004, MI-63 p = 0.0024.  
2-way ANOVA).   
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Figure 4.15.  There was no effect on caspase 3/7 activity following MDMX 
knockdown after 12 hours Nutlin-3 treatment compared to SCR control. 
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4.4.7 MDMX expression may be indirectly regulated by MYCN  

Using the tetracycline regulatable cell line Tet21N, there was a clear causal link 

between MYCN and MDMX protein expression (Figure 4.16a), with a decrease in 

MYCN occurring at >2 hours following tetracycline addition, and a reduction in 

MDMX >24 hours.  MYCN expression returned to maximal levels following 

tetracycline removal between 24 and 48 hours, whereas MDMX protein levels returned 

to maximal levels between 72 and 96 hours.  Vector only cells were used as a control, 

and interestingly, whilst they did not express either MYCN in the presence or absence 

of tetracycline, they did express MDMX.  Under normal conditions, MDMX has a 

relatively long half-life, but is dramatically reduced in the presence of MDM2.  The 

half-life of MDMX in Tet21N cells is not known, so mRNA levels were looked at to 

determine if the effect was at the transcriptional or post-transcriptional level.  Following 

tetracycline addition, MYCN mRNA levels were very low by 8 hours, whereas MDMX 

levels decreased by 12 hours but not dramatically.  Following tetracycline removal, 

MYCN levels were at a maximum at 24 hours, but MDMX mRNA levels did not alter 

(Figure 4.16b).  This suggests that MYCN is not a direct transcriptional regulator of the 

MDMX gene.   

Despite a relationship between MYCN and MDMX in the Tet21N cell line, there was 

no correlation between MYCN and MDMX protein expression levels across a panel of 

21 cell lines (Figure 4.16c), and in the 4 cell lines tested, no decrease was seen in 

MDMX expression up to 72 hours after MYCN knockdown by siRNA (Figure 4.16d).  

In fact, MDMX levels increased following 72 hours MYCN knockdown in NGP and 

NB1691 cells.  

4.4.8 Knockdown of MDMX in MYCN-regulatable Tet21N cells 

To further investigate the relationship between MYCN and MDMX in Tet21N cells, in 

which a correlation between MYCN and MDMX protein expression levels was seen, 

MDMX was knocked down in this cell line.  MDMX knockdown, as shown in Figure 

4.17a, resulted in increased p53 in both MYCN(+) and MYCN(-) cells, and little effect 

on induction of apoptotic markers or phosphorylated p53.  However, this cell line does 

not undergo high levels of apoptosis (Chapter 3.1.4).  MYCN(+) cells G1 arrested 

following MDMX knockdown but since MYCN(-) cells are already G1 arrested, an 

effect due to MDMX knockdown was difficult to determine (Figure 17b).  This data 
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suggests that knockdown of MDMX has similar effects in MYCN(+) and MYCN(-) 

cells on induction of p53 and the p53 response. 
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Figure 4.16. The relationship between MDMX and MYCN expression in 
neuroblastoma.  The effect of MYCN induction (tetracycline removal) or MYCN 
removal (tetracycline addition) on a)  MDMX protein expression (alongside vector only 
control), and b) MDMX mRNA levels.  c) Comparison between MYCN and MDMX 
protein expression in a panel of 21 neuroblastoma cell lines (p=0.75, Pearson 
correlation). d) siRNA mediated knockdown of MYCN in 4 neuroblastoma cell lines 
(IMR32, LAN5, NGP and NB1691) did not affect MDMX protein expression.   
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Figure 4.17. MDMX knockdown in Tet21N cells. a) MDMX knockdown in MYCN 
regulatable Tet21N cells did not show a difference in induction of p53 or apoptosis 
related markers between MYCN(+) and MYCN(-) cells. b) MDMX knockdown in MYCN(+) 
cells induced a G1 arrest, and an increase in the proportion of cells in G1 was also 
observed in MYCN(-) cells.     
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4.4.9 Karyotyping of 4 MDM2-amplified sarcoma cell lines 

A number of non-neuroblastoma cell lines were obtained to assess the effect of MDM2-

amplification on the response to MDM2-p53 antagonists in neuroblastoma compared to 

other cell lines.  All the cell lines obtained were derived from sarcomas.  FISH analysis 

was used to confirm MDM2-amplification in RH18, MHM, T449 and T778 sarcoma 

cell lines (Figure 4.18).  MDM2-amplified LS neuroblastoma cells were used as a 

positive control, and non-MDM2-amplified LAN5 cells used as a negative control.  As 

seen with the LAN5 cells, in non-MDM2-amplified cells, equal copies of MDM2 (green) 

and chromosome 12 (red) signals are detected.   G-banding was used to karyotype the 

cell lines, and the karyotypes and details of these cell lines are shown in Table 4.3.  

Karyotyping and FISH of metaphase spreads was performed by Dr Nick Bown, Institute 

of Human Genetics, Newcastle University.  Figures 19-22 show karyograms for each 

cell line, alongside FISH analysis of metaphase spreads in which amplification by DMs 

is shown by a dispersed pattern, and HSRs is shown by clustering.   

4.4.9.1 RH18  

RH18 is a rhabdomyosarcoma cell line established from a patient at diagnosis before 

any treatment  (Houghton et al., 1982).  Analysis shows a complex near-triploid 

karyotype with multiple structural rearrangements including many marker 

chromosomes (a structurally abnormal chromosome in which no part can be identified) 

of unclear origin.  Three metaphases were analysed (one of which is shown in Figure 

4.19a), and showed variations amongst cells, with several clonal rearrangements.  A 

composite karyotype is shown in Table 4.3.  FISH analysis shows MDM2-amplification 

(Figure 19b), but unusually both DMs and HSRs were seen in metaphase spreads, and 

DMs in interphase spreads. DMs are visible in a significant minority of metaphases and 

these also hybridise MDM2.  Most metaphases show a very small HSR on 12p, but a 

minority show a large MDM2 HSR on an unknown chromosome.  Three chromosome 

12 centromeres were detected in all FISH analyses  (Figure 4.18 and 19b), and multiple 

copies of MDM2. 

4.4.9.2 MHM 

MHM is an osteosarcoma cell line derived from a patient at relapse following 

chemotherapy (Müller CR, 2007).  Analysis shows a complex hypertriploid karyotype, 

with multiple structural rearrangements and many marker chromosomes of unclear 

origin.  Three metaphases were analysed (one of which is shown in Figure 4.20a) and 

showed variations amongst cells, along with several clonal rearrangements.  The 
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karyotype given in Table 4.3 is a composite karyotype.  DMs were present in some 

metaphases.  FISH analysis, shown in Figure 20b showed MDM2-amplification was 

localised to a HSR, but the chromosomal site could not be identified.  Normal 

chromosome 12 with native MDM2 signals was also present.  Interestingly, the MDM2 

probe did not hybridise to the DM, suggesting a second gene may be amplified in this 

cell line.  In Figure 4.18, FISH analysis shows many copies of MDM2 compared to the 

copies of chromosome 12, which varied amongst cells.  

4.4.9.3 T449 

T449 is derived from a primary well differentiated liposarcoma (Pedeutour et al., 1999).  

Analysis shows a complex near-diploid karyotype with multiple structural 

rearrangements including many marker chromosomes of unclear origin, and several 

large HSRs (Figure 21a). Three metaphases were analysed, and in two metaphases, one 

of the HSRs appeared to be incorporated into chromosome 17.  The metaphases showed 

variations between cells and several clonal rearrangements. A composite karyotype is 

shown in Table 4.3  FISH analysis showed MDM2-amplification localised to HSRs, and 

normal chromosomes 12 with native MDM2 signal were present (Figure 21b).  In 

Figure 4.18, FISH analysis showed 4 or 2 copies of chromosome 12, and many copies 

of MDM2. 

4.4.9.4 T778 

T778 is paired with T449, and is from the well differentiated liposarcoma at relapse.  At 

the time of writing, it was unknown whether this cell line is following chemotherapy or 

surgery only.  Analysis shows a complex hypertriploid karyotype with multiple 

structural rearrangements with many marker chromosomes of unclear origin.  Three 

metaphases were analysed and a composite karyotype shown in Table 4.3.  These 

metaphases showed variation between cells and several clonal rearrangements (Figure 

22a).  T778 cells have a hypertriploid karyotype with multiple structural rearrangements 

(some of which cannot be characterised by G-banded analysis).  There was no visible 

evidence of translocation t(12;16) with FUS-CHOP gene fusion, which is a recurrent 

rearrangement in liposarcoma.  There is a fairly large metacentric chromosome 

(centromere of unknown origin) with a likely HSR on both sides, present in two copies 

in one of the cells, and there is likely to be a further HSR in a large submetacentric 

chromosome.  FISH analysis shows 4 centromeres for chromosome 12 and 5 MDM2 

HSRs (Figure 22b).  In Figure 4.18, FISH analysis showed 3 copies of chromosome 12, 

and multiple copies of MDM2.    
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Table 4.3.  Karyotypes of 4 sarcoma cell lines, and the mechanism of MDM2-
amplification (double minutes (DMs) or homogeneously staining regions (HSRs)). 
T449 and T778 are paired cell lines, with T449 established at diagnosis, and T778 at 
relapse (unknown at the time of writing whether T778 was after chemotherapy or 
surgery). 
 

 

 

 

 

 

 

 

 

Cell Line Cancer Type Karyotype MDM2 
amplification 

RH18 
(Houghton 
et al., 1982) 

Rhabdomyosarcoma 61,XX,-1,+2,-3,add(3)(q21),add(6) 
(q21),-6,+7,+7,-10,-10,-11,add(11) 
(p15),-12,-12,hsr(12p),-13,-13,-17,-
18,-19,-19,+20,add(20)(q13),21,+4mar 

Large and 
small MDM2 
HSRs 
DM pattern 
in interphase 
nucleus 
(Figure 4.18) 

MHM 
(Müller CR, 
2007) 
  

Osteosarcoma 74<3n>X,-1,add(1)(q1?)x2,-2,-3,-4,add 
(4)(q1?),del(4)(q2?),-5,add(5)(p1?),-6, 
-7,-8,-9,add(9)(p1?),-10,add(11)(q14-
21)x3,-12,hsr(12),-13,-15,-15,-16,+17,-
18,-19,-21,-21,add(21)(p10),+23mar 

1x MDM2 
HSR 
DM not 
MDM2 
(Figure 4.19) 

 

T449 
(paired) 
(Pedeutour 
et al., 1999) 

Liposarcoma 47~51,X,hsr(17)(?p10),-11,-19,+10-
15mar 

HSR 
(Figure 4.20) 

T778 
(paired) 
(Pedeutour 
et al., 1999) 

Liposarcoma 76~79<3n>,add(X)(p2?),add(1)(p1?),a
dd(1)(q1?),-7,+10,+11,add(11)(p1?),-
13,-14,+19,+19,-22,+11-13mar 
Chromosome with HSR of unclear 
origin 

HSR  
(Figure 4.21) 
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Figure 4.18. FISH of sarcoma cell lines.  LAN5 was used as a non-MDM2-amplified 
control, and LS as a MDM2-amplified control.  
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Figure 4.19.  RH18 cell line. a) Karyogram of RH18 cell line. b) FISH analysis of a 
interphase cell, showing HSR pattern of amplification, c) FISH analysis of a metaphase 
spread showing HSR in metaphase, and DM in interphase nucleus.  Images generated 
by Dr Nick Bown. 
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Figure 4.20. MHM cell line. a) Karyogram of MHM cell line. b) FISH analysis of a 
metaphase spread, showing an HSR for MDM2.  Image generated by Dr Nick Bown. 
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Figure 4.21. T449 cell line. a) Karyogram of T449 cell line b) FISH analysis of metaphase 
spread showing HSRs.  Image generated by Dr Nick Bown. 
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Figure 4.22. T778 cell line. a) Karyogram of T778 cell line b) FISH analysis of metaphase 
spread showing HSRs. Image generated by Nick Bown. 
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4.4.10 Comparison of GI50 values in MDM2-amplified neuroblastoma 

cell lines and MDM2-amplified sarcoma cell lines, following MDM2-

p53 antagonist treatment 

MDM2, MDMX, and p53 expression across the MDM2-amplified neuroblastoma and 

sarcoma cell lines are shown in Figure 4.23a.  IMR32 was used as a non-MDM2-

amplified control.  GI50 values were determined and are shown in Table 4.4.  As shown 

in Figure 4.23b and 4.23c, the neuroblastoma cell lines have significantly higher median 

GI50 values compared to the sarcoma cell lines (p = 0.016 for Nutlin-3; p = 0.027 for 

MI-63).  As shown in Figure 4.23a, MDM2 and MDMX levels are similar across the 

MDM2-amplified cell lines, but the 4 MDM2-amplified neuroblastoma cell lines are co-

amplified for MYCN and have high levels of MYCN protein expression.  

 

 

 

 

 

 

 

Table 4.4.  GI50 values in the panel of MDM2-amplified cell lines.  
 

 

 

 

 

 

 

 

Cell Line GI50 (µM) 
Nutlin-3 MI-63 

NGP 2.53 ± 0.43 1.21 ± 0.04 
LS 2.95 ± 0.12 0.98 ± 0.06 
NB1691 2.80 ± 0.17 0.87 ± 0.22 
TR14 2.91 ± 0.28 1.09 ± 0.25 
SJSA-1 1.60 ± 0.12 0.90 ± 0.06 
RH18 2.18 ± 0.35 0.75 ± 0.05 
MHM 2.22 ± 0.10 0.99 ± 0.13  
T449 1.37 ± 0.10 0.61 ± 0.04 
T778 1.36 ± 0.05 0.55 ± 0.03 
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Figure 4.23. MDM2-amplification in neuroblastoma compared to sarcoma cell lines. a) 
Western blot of MDM2-amplified neuroblastoma and sarcoma cell lines. Median GI50 

values of MDM2-amplified neuroblastomas are higher than those for MDM2-amplified 
sarcomas following b) Nutlin-3 and c) MI-63 treatment) (Nutlin-3, p = 0.016; MI-63, p = 
0.027; Mann-Whitney test). 

 

 

 

 
 

a) 

b) 

c) 



233 

 

4.5 Discussion 

Despite the use of intense multimodal therapies, high risk neuroblastoma still has a 5 

year survival rate of less than 40%, outlining an urgent need for new therapies. Unlike 

other cancer types, the majority of neuroblastomas have wildtype p53 at both diagnosis 

(>98%) and relapse (85%), and therefore therapies aimed at reactivating p53 might be 

ideal for this tumour type.  Here the effect of MDM2 and MDMX on the response to 

MDM2-p53 antagonists in neuroblastoma cell lines was investigated.  A number of 

studies have shown that pathways downstream of p53 are intact in neuroblastoma and 

that p53 can induce apoptotic responses (Hogarty, 2003; Tweddle et al., 2003; Hosoi et 

al., 1994; Vogan et al., 1993).   

4.5.1 The effect of MDM2 on the apoptotic response to MDM2-p53 

antagonists 

Previous reports suggest that in various cancer types amplification or overexpression of 

MDM2 sensitizes cells to MDM2-p53 antagonists (Gu et al., 2008b; Tovar et al., 2006; 

Kojima et al., 2005), whilst other groups report no effect (Liu et al., 2009; Kojima et al., 

2006; Van Maerken et al., 2006). However, these studies have only compared a small 

number of cell lines and have not addressed this question systematically with a 

significant number of cell lines in a given cancer type. In neuroblastoma, work 

described in Chapter 3 on a panel of 18 cell lines showed MYCN-amplified 

neuroblastoma to be more sensitive to MDM2-p53 binding antagonists than non-

amplified cell lines, but that within the MYCN-amplified set, the MDM2- and MYCN-

co-amplified cell lines had a higher average GI50 value for Nutlin-3 and MI-63 than the 

subset with MYCN-amplification alone.   In the study presented in this chapter, MDM2 

knockdown in two MDM2-amplified cell lines did not alter the sensitivity of these cells 

to Nutlin-3 or MI-63 mediated p53 activation or apoptosis.  In Chapter 3, increased 

caspase 3/7 activity was identified in MDM2-amplified neuroblastoma cell lines 

following Nutlin-3 and MI-63 treatment compared to other neuroblastoma cell lines 

(Gamble et al., 2011a), and although the average caspase activity was higher in MDM2 

amplified cell lines compared to MYCN and MDM2 co-amplified cell lines, the 

difference was not significant.  Since knockdown of MDM2 did not alter sensitivity to 

apoptosis, it may be that this is a result of the increased p14
ARF

 in these cell lines (Carr 

et al., 2006),  as in other studies within this thesis, p14
ARF

 was found to be important in 

determining the response to MDM2-p53 antagonists (Chapter 5).   
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4.5.2 MDMX and the response to MDM2-p53 antagonists 

As previous studies have shown that MDMX removal may be necessary to fully activate 

the p53 response in various cancer types, the effect of MDMX expression in 

neuroblastoma on the response to two MDM2-p53 antagonists, Nutlin-3 and MI-63, 

both of which have much greater affinity for MDM2 over MDMX, was investigated.   

MDMX is a paralogue of MDM2 and is also a negative regulator of p53, but unlike 

MDM2 its transcription is not driven by p53 and does not appear to be so tightly 

regulated.  In previous studies in various cancer types, MDMX overexpression 

decreases the sensitivity to MDM2-p53 antagonists, promoting tumour formation, and 

suggesting that MDMX removal may be necessary to fully activate the p53 response by 

MDM2-p53 antagonist treatment (Hu et al., 2006; Marine et al., 2006; Patton et al., 

2006; Wade et al., 2006).  Many cancer cell lines have been shown to overexpress 

MDMX (Ramos et al., 2001).  MDMX expression has not been previously explored in 

neuroblastoma, and shown here is that MDMX protein expression is highly variable 

across a panel of 21 cell lines, regardless of MYCN status, but appears to be expressed at 

lower levels in MDM2-amplified cell lines. The effect of MDMX expression in 

neuroblastoma on the response to MDM2-p53 antagonists was explored and 

interestingly, and in contradiction to previous reports in other tumour types, siRNA-

mediated MDMX knockdown resulted in decreased levels of apoptosis following 

Nutlin-3 and MI-63 treatment.  Furthermore, MDMX protein expression positively 

correlated with increased caspase 3/7 activity in response to MDM2-p53 antagonists.  

However, there was no correlation between MDMX expression and GI50 values, despite 

a weak inverse correlation between GI50 values and caspase 3/7 activity across the cell 

lines.  Since the SRB growth inhibition assays take into consideration both cell cycle 

arrest and apoptosis, this may suggest that the cell lines with high MDMX expression 

(which show high induction of caspase activity) did not arrest and that high MDMX 

expression may therefore be associated with defective cell cycle arrest.   

The unexpected effect of MDMX on the response to MDM2-p53 antagonists in 

neuroblastoma highlights the requirement for better understanding of the functions and 

mechanisms of MDMX action.  Interestingly, siRNA-mediated knockdown of MDMX  

and MDM2-p53 antagonist treatment had a much greater effect on the expression of p53 

and p53 related proteins in the cell line without MDM2-amplification, suggesting that 

MDMX may play a more important role in cells that have lower levels of MDM2.  
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4.5.3 MDMX expression is linked with cell type 

It was found that the two cell lines derived from SKNSH cells, SHEP (a substrate-

adherent S-type) and SHSY5Y (a neurite-bearing N-type) had very different MDMX 

protein expression patterns, with high levels of MDMX in SHSY5Y cells, and barely 

detectable MDMX in SHEP cells.  On further investigation, it was found that N-type 

neuroblastoma cells had a significantly higher median MDMX expression compared to 

S-type and N/S-type cells.  Cells lines consisting of a mixture of N and S type cells had 

a median MDMX expression in-between the two.  This may be why neuroblastoma cell 

lines with increased MDMX expression are more sensitive to MDM2-p53 antagonist 

mediated apoptosis, as N-type neuroblastomas have been found to be more sensitive to 

chemotherapy than S-type cells which are relatively resistant, and in response to DNA-

damage, N-type cells preferably undergo apoptosis whereas S-type cells undergo 

senescence (Isaacs et al., 2001; Rodriguez-Lopez et al., 2001).  

4.5.4 MDMX and the cell cycle response 

To determine if high MDMX expression was associated with a cell cycle arrest, MDMX 

was knocked down and the effect on the cell cycle response investigated.  Following 

MDMX knockdown and MDM2-p53 antagonist treatment in a cell line that normally G1 

arrested in response to MDM2-p53 antagonists (NGP), and in a cell line that did not G1 

arrest in response to MDM2-p53 antagonists (LS), no alteration on the cell cycle 

distribution was observed.  This is consistent with cell cycle data presented in Chapter 5 

(Figure 5.13), where the panel of 21 neuroblastoma cell lines were investigated for their 

cell cycle response to Nutlin-3.  The cell lines that underwent a G1 arrest in response to 

Nutlin-3 were NGP, TR14, PER-108, GIMEN, SKNRA, SHEP and NBLS.  All of these 

cell lines had varying levels of MDMX protein expression; SKNRA had high levels, 

NGP and PER-108 had intermediate levels, and TR14, GIMEN, SHEP and NBLS had 

low levels. These results suggest no relationship between MDMX expression and the 

ability of a neuroblastoma cell line to G1 arrest.   

A possible explanation for the lack of relationship between GI50 values and MDMX 

protein levels, but the increased caspase activity correlating with MDMX expression, is 

that high MDMX expression is associated with N-type cells, and low MDMX 

expression with S-type cells.  In response to irradiation, N-type cells have been shown 

to undergo apoptosis, but fail to G1 arrest (Carr-Wilkinson et al., 2011; Mergui et al., 

2008; Berthold et al., 2005).  It may therefore be the cell type that dictates the apoptotic 
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or cell cycle response to MDM2-p53 antagonists.  Cell cycle response and cell type is 

investigated in Chapter 5.4. 

4.5.5 A possible relationship between MYCN and MDMX 

It was found that MDMX expression in neuroblastoma may be indirectly related to 

MYCN expression, and it was previously shown that MYCN-amplification or expression 

sensitizes neuroblastoma cell lines to MDM2-p53 antagonists (Chapter 3 and (Gamble 

et al., 2011a)).  In the Tet21N MYCN regulatable cell line, MYCN protein expression 

was associated with MDMX protein expression, with MYCN induction or removal 

corresponding with MDMX expression levels.  However, the same effect was not 

observed at the mRNA level, suggesting an indirect mechanism of regulation.   

However, upon MYCN knockdown in 4 MYCN-amplified neuroblastoma cell lines, 

either no change or an increase in MDMX expression (at 72 hours) was observed and 

therefore any link between MYCN and MDMX may be cell line specific. 

4.5.6 Degradation of MDMX upon MDM2-p53 antagonist treatment 

In agreement with previous reports, a reduction in MDMX protein upon MDM2-p53 

antagonist treatment was observed, which may be a result of p53-dependent 

upregulation of MDM2, known to ubiquitinate and degrade MDMX following DNA 

damage (Xia et al., 2008; Patton et al., 2006; Wade et al., 2006).  This also suggests that 

the ubiquitin ligase activity of MDM2 and proteosomal targeting of MDM2-MDMX 

heterodimers is not affected by Nutlin-3 and indeed may be promoted when p53 is 

prevented from binding to MDM2.  Additionally, MDMX is a substrate for caspase 3, 

and is degraded during apoptosis, and may provide an alternative explanation for 

MDMX degradation upon MDM2-p53 antagonist treatment (Gentiletti et al., 2002).  It 

was also found that MDM2-amplified cell lines had low MDMX protein expression 

compared to MYCN-only amplified cell lines, suggesting that MDM2 may also promote 

MDMX degradation in the absence of DNA damage.  These cell lines have increased 

p14
ARF

 expression, and p14
ARF

 has been shown to promote MDM2-mediated 

ubiquitination of MDMX, and may be the reason these cell lines have low MDMX 

expression (Pan and Chen, 2003).   

4.5.7 MDMX and p14
ARF

 

Within the p53-MDM2/MDMX-p14
ARF 

network, there are also links reported between 

MDMX and p14
ARF

.  There is evidence that p14
ARF

 promotes MDMX ubiquitination by 

MDM2 (Pan and Chen, 2003).  p14
ARF

 binding of MDM2 can regulate its ability to 
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ubiquitinate both p53 and MDMX, as p14
ARF

 stimulates MDMX ubiquitination by 

MDM2 through the N-terminal domain that normally inhibits MDM2 ubiquitination of 

p53 (Pan and Chen, 2003; Midgley et al., 2000).   There are also some p53-independent 

functions of MDMX such as an ability to inhibit E2F1 transactivation, suggesting 

MDMX may repress E2F1 regulated genes such as p14
ARF 

(Wunderlich et al., 2004).  

These further functions of p14
ARF

 and MDMX highlight the complexity of this network, 

and the need for increased understanding. 

4.5.8 MDM2-amplified neuroblastoma compared to MDM2-amplified 

sarcoma 

MDM2 is amplified in 13% of neuroblastoma tumours, and up to 20% of sarcomas 

(Carr-Wilkinson et al., 2010; Momand et al., 1998; Oliner et al., 1992).  Since it was 

found that knockdown of MDM2 results in an unaltered response to MDM2-p53 

antagonists in MDM2-amplified neuroblastoma cell lines, and since early studies 

suggest that MDM2-p53 antagonists may be particularly effective in sarcomas  

(Vassilev, 2007; Freedman et al., 1999; Momand et al., 1998; Florenes et al., 1994), the 

effect of MDM2-p53 antagonist mediated growth inhibition in MDM2-amplified 

neuroblastoma cell lines compared to MDM2-amplified sarcomas was investigated.  It 

was found that MDM2-amplified neuroblastomas had significantly higher mean GI50 

values compared to sarcomas, consistent with MDM2-amplification possibly having a 

sensitising effect in sarcomas and not in neuroblastomas.  This may be a result of 

MYCN co-amplification in the MDM2-amplified neuroblastoma cell lines, which is not 

present in the sarcoma cell lines, but this is unlikely as I previously reported that 

MYCN-amplification sensitises neuroblastomas to the effects of MDM2-p53 antagonists 

(Gamble et al., 2011a).  This data suggests that the effect of MDM2-amplification on 

response to MDM2-p53 antagonists is cancer-type specific and would need to be 

assessed for individual cancer types.  It would be interesting to see if MDM2-amplified 

sarcomas respond in the same way as non-MDM2-amplified sarcomas to MDM2-p53 

antagonists. 

4.5.9 Conclusions and Future Work 

In conclusion, in this chapter it has been shown that a) MDM2 levels do not affect the 

p53 or apoptotic response to MDM2-p53 antagonists in neuroblastoma, b) that MDM2-

p53 antagonists induce higher levels of apoptosis in neuroblastoma cell lines expressing 

high levels of MDMX, and that knockdown of MDMX desensitizes cells to their 
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apoptotic effect and c) MDM2-amplified neuroblastoma cell lines are less sensitive to 

MDM2-p53 antagonist mediated growth inhibition compared to MDM2-amplified 

sarcoma cell lines.   

The status of MDMX and MDM2 in the p53-MDM2/MDMX-p14
ARF

 network may 

therefore be important in determining the response to MDM2-p53 antagonists, and the 

effects of increased MDMX expression should be investigated further in pre-clinical 

models.  
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Chapter 5.  p14
ARF

 expression in neuroblastoma and the response to 

MDM2-p53 antagonists 
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5.1 Introduction 

This chapter focuses on the role of p14
ARF

 in the p53/MDM2/MYCN network, and the 

effect of p14
ARF

 expression on the response to MDM2-p53 antagonists.  p14
ARF

 is a 

tumour suppressor gene located at 9p21-22 and plays a role in regulating cell 

proliferation, and in cancer development.  p14
ARF

 is an upstream regulator of p53.  It 

directly interacts with MDM2 to suppress MDM2 ubiquitin ligase activity, and also 

sequesters MDM2 in the nucleolus preventing interaction of MDM2 with p53, leading 

to p53 stabilisation and accumulation (Gallagher et al., 2006; Zhang and Xiong, 2001; 

Honda and Yasuda, 1999).  p53 can be activated through induction of p14
ARF 

which is 

expressed in response to aberrant proliferative signals and activated oncogenes such as 

MYCC (Zindy et al., 1998), E2F (de Stanchina et al., 1998), and Ras (Palmero et al., 

1998), and through its activity on p53, activates pathways involved in tumour 

suppression and cell cycle control.   There is also evidence that p53 downregulates 

p14
ARF

 expression, creating a negative feedback loop between p53, MDM2 and p14
ARF

 

(Robertson and Jones, 1998).    

However, p14
ARF 

has both p53-dependent and p53-independent functions and interacts 

with several proteins involved in proliferation, the ATM/ATR/CHK signalling pathway 

and transcription factors in the retinoblastoma pathway.  It plays roles in inducing p53-

independent G2 arrest, to delay M-phase progression and can induce G1 arrest in cells 

lacking functional p53 and Rb (Eymin et al., 2003; Yarbrough et al., 2002; Martelli et 

al., 2001).  Weber et al demonstrated that in mice lacking both p19
ARF

 and p53, the 

resulting primary tumours are multiple and of a wider spectrum than mice null for either 

gene alone (Weber et al., 2000).  They also showed that mice lacking p53, MDM2 and 

p19
ARF

 develop tumours with a wider spectrum and a higher frequency than mice 

lacking just p53 and MDM2, or mice lacking just p53 alone.  This indicates that p14
ARF

 

has important MDM2 and p53-independent functions (Weber et al., 2000).  Mice 

lacking p19
ARF

, but expressing functional p16
INK4a

 are viable but develop tumours early 

in life (Kamijo et al., 1997). 

5.1.1 p14
ARF

 overexpression in MYCN and MDM2 co-amplified 

neuroblastoma cell lines  

A study by Carr et al. showed that when p53 is inactivated by MDM2-amplification, 

levels of p14
ARF

 mRNA and protein are higher in neuroblastoma cell lines which are co-

amplified for MYCN, compared to non-MDM2-amplified cell lines (Carr et al., 2006).  
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Two non-neuroblastoma cell lines, with either MDM2-amplification (SJSA-1) or 

MDM2-gain (JAR), also expressed decreased levels of p14
ARF

 mRNA and protein 

compared to MDM2-amplified neuroblastoma cells.  MDM2 is reportedly a direct 

transcriptional target of MYCN in neuroblastoma (Slack et al., 2005a) and because 

MYCN is co-amplified in the neuroblastoma cell lines, it is possible that MDM2 and 

MYCN have a co-operative effect on p14
ARF

. 

In this chapter the mechanism of increased p14
ARF

 expression in MYCN and MDM2 co-

amplified neuroblastoma cell lines is investigated using knockdown studies, and p14
ARF

 

protein expression in an increased number of MDM2-amplified non-neuroblastoma cell 

lines is examined. 

5.1.2 p14
ARF

 inactivation in neuroblastoma 

Neuroblastoma cell lines, particularly those established after treatment, have been found 

to have alternate mechanisms of p53 functional inactivation such as MDM2-

amplification and p14
ARF 

inactivation (reviewed by (Tweddle et al., 2003)).  Mice null 

for p19
ARF

, the mouse homologue of p14
ARF

, are highly tumour prone, developing a 

wide spectrum of tumours, suggesting an important role in carcinogenesis for p14
ARF

 

(Kamijo et al., 1997).   p14
ARF 

methylation or deletion occurs frequently in 

neuroblastoma, and inactivation of p14
ARF

 can increase levels of MDM2, which results 

in decreased p53 activation.  

DNA promoter methylation is particularly common in tumour suppressor and DNA 

repair genes (Das and Singal, 2004).  In a study by Carr-Wilkinson et al., p14
ARF

 was 

inactivated in 29% of neuroblastoma tumours (Carr-Wilkinson et al., 2010).   This was 

associated with stage 4 disease, and 9 of 12 patients died of disease.  In the same study, 

methylation was detected in 7% (3/41) of tumours at both diagnosis and relapse, 

compared to another study where p14
ARF

 methylation was detected in 14% (6/44) of 

diagnostic tumours (Gonzalez-Gomez et al., 2003).  Homozygous deletion of p14
ARF 

was reported at a frequency of 22% in neuroblastoma tumour samples in the study by 

Carr-Wilkinson et al, which is higher than previously reported, with 9% (4/46) of cell 

lines p14
ARF

 deleted in a study by Thompson et al, and none in a study of tumour 

samples by Omura-Minamisawa et al (Omura-Minamisawa et al., 2001; Thompson et 

al., 2001).  Two other studies looked for homozygous deletion of p16
INK4a

 in 

neuroblastoma, which is usually associated with p14
ARF

 co-deletion.  In the first study, 1 

of 19 neuroblastoma cell lines were homozygously deleted for p16
INK4a

 (Bassi et al., 
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2004), and in the other study no cases were found in patient samples (Diccianni et al., 

1996).  

5.1.3 p14
ARF

 inactivation in cell lines used in this study 

Four cell lines inactivated for p14
ARF

 were used in this study.  Two are methylated for 

p14
ARF

; GIMEN and PER-108 (Carr et al., 2006), and two are homozygously deleted 

for p14
ARF

; SHEP and LAN6 (Carr et al., 2006; Thompson et al., 2001).    GIMEN and 

PER-108 are derived from relapsed tumours and are methylated at the p14
ARF

 gene 

promoter, independently of p16
INK4a

 (Carr et al., 2006).   Homozygous deletion of exon 

1β was detected in LAN6 and SHEP cells, and in both these cell lines p16
INK4a

 is also 

deleted.  Interestingly, in SHEP cells, 1 copy of the 190kb region was deleted in only 66% 

of cells, but since there was no genomic DNA PCR product a smaller 9p deletion 

affecting the p14
ARF

 locus may be present in the remainder (Carr et al., 2006).   

5.1.4 p14
ARF

 and chemoresistance 

Previous studies using mouse models found that CDKN2A mutations resulted in 

chemoresistance to cyclophosphamide (Schmitt et al., 1999).   Homozygously deleted 

LAN6 cells were found to be resistant to melphalan, carboplatin and etoposide 

(Keshelava et al., 2001), and SHEP cells were resistant to irradiation and adenoviral 

therapy compared to the related SHSY5Y and SKNSH cell lines (Van Maerken et al., 

2009b; Makin et al., 2001).  Loss of p19
ARF

, the mouse homologue of p14
ARF

, limited 

sensitivity to imatinib, a tyrosine kinase inhibitor (Ohgaki et al., 1993).   Interestingly, 

restoration of p14
ARF

 expression in methylated GIMEN cells did not alter the sensitivity 

of this cell line to cisplatin (Carr et al., 2006). 

5.1.5 p14
ARF

 and response to Nutlin-3 in neuroblastoma  

One study has previously investigated the effect of p14
ARF

 on the response to Nutlin-3 

in neuroblastoma.  Van Maerken et al. found that despite having wildtype p53, LAN6 

and SHEP cells were relatively resistant to nutlin-3 and in fact IC50 values were 

comparable to those cells with mutant p53 (Van Maerken et al., 2011).  Despite being 

closely related to SKNSH and SHSY5Y cells, SHEP cells were especially resistant to 

apoptosis from Nutlin-3, but did undergo a G1 arrest suggesting intact checkpoint 

control mechanisms.  The homozygous deletion of the CDKN2A gene in SHEP cells is 

not present in SKNSH and SHSY5Y cells (Van Maerken et al., 2011) and is proposed 

as the mechanism by which SHEP cells gain resistance to Nutlin-3.  However, induced 

overexpression of the CDKN2A gene in SHEP cells did not restore sensitivity to Nutlin-
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3 (Van Maerken et al., 2011).  Knockdown of the CDKN2A gene in IMR32 and NGP 

cells resulted in a moderate reduction in sensitivity to Nutlin-3, and CDKN2A 

overexpression in modified tetracycline regulatable IMR32 cells resulted in a reduction 

in cell viability and increased apoptosis (Van Maerken et al., 2011). This effect was a 

result of p14
ARF

 deletion, and not p16
INK4a

 deletion. The status of p14
ARF

 may therefore 

be particularly important and clinically relevant in neuroblastoma.  
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5.2 Hypotheses and Aims 

 

Hypotheses:  

 Increased p14
ARF

 expression in MYCN and MDM2 co-amplified neuroblastoma 

cell lines is a co-operative effect of MYCN and MDM2. 

 p14
ARF

 knockdown or impairment through methylation or homozygous deletion 

results in decreased apoptosis following MDM2-p53 antagonist treatment. 

Aims: 

1. To investigate the mechanism of increased p14
ARF

 expression in MYCN- and 

MDM2-co-amplified neuroblastoma cell lines using siRNA to knockdown 

MYCN and/or MDM2. 

2. To determine mRNA and protein levels of p14
ARF

 in MDM2-amplified 

neuroblastomas and MDM2-amplified non-neuroblastoma cell lines. 

3. To examine levels of apoptosis following MDM2-p53 antagonist treatment 

in p14
ARF

 impaired neuroblastoma cell lines, and in neuroblastoma cell lines 

expressing high levels of p14
ARF

. 

4. To determine the cell cycle response to MDM2-p53 antagonists in a panel of 

neuroblastoma cell lines, and to investigate the extent of G1 arrest in 

response to Nutlin-3. 

5. To investigate the effect of p14
ARF

 knockdown on the p53 response and 

apoptosis in the presence and absence of MDM2-p53 antagonist treatment.   
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5.3 Specific Materials and Methods 

5.3.1 Investigating increased levels of p14
ARF

 in MYCN and MDM2 co-

amplified neuroblastoma cell lines 

MDM2 and/or MYCN was knocked down using siRNA in MYCN and MDM2 co-

amplified NGP, LS, NB1691 and TR14 cells as described in Chapter 2.3.  The effect on 

p14
ARF

, p53 and p21
WAF1

 was determined using Western blotting. 

5.3.1.1 MDM2 knockdown 

MDM2 knockdown in NGP and LS cells was previously optimised and is described in 

Chapter 4.3.1.  Concentrations of 40nM were used, and optimal knockdown was at 24 

hours.   This concentration was tested in TR14 cells, and high levels of knockdown 

were achieved.  MDM2 knockdown required further optimisation in NB1691 cells, and 

as shown in Figure 5.1, optimal knockdown was again at a 40nM concentration but at 

48 hours, where 100% knockdown was achieved when quantified using densitometry 

and normalised to actin (as described in Chapter 2.4.10).   

 

 

 

 

 

 

Figure 5.1.  Optimisation of MDM2 knockdown in NB1691 cells at 24 and 48 hours.  
 

 

 

 

 

 

 



246 

 

5.3.1.2 MYCN knockdown  

MYCN knockdown was previously optimised in NGP, TR14 and LS cells as described 

in Chapter 3.3.2.  As shown in Figure 5.2, an optimal MYCN knockdown of 83% was 

achieved in NB1691 cells at 30nM siRNA treatment for 48 hours. 

 

 

 

 

 

 

 

 

Figure 5.2. MYCN knockdown in NB1691 cells at 24 and 48 hours. 
 

5.3.1.3 Double knockdown of MYCN and MDM2 

Double knockdown of MYCN and MDM2 was optimised as shown in Figure 5.3 for the 

4 cell lines.  Concentrations shown are final concentrations from combining equal 

concentrations of MYCN and MDM2 siRNA.  Optimal knockdown was as follows; 

NGP 80nM at 48 hours (66% MDM2 knockdown, 94% MYCN knockdown), LS 40nM 

at 48 hours (84% MDM2 knockdown, 81% MYCN knockdown), NB1691 40nM at 48 

hours (79% MDM2 knockdown, 100% MYCN knockdown) and TR14 40nM at 48 

hours (97% MDM2 knockdown, 92% MYCN knockdown).   
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Figure 5.3. Double knockdown of MYCN and MDM2 in 4 MYCN and MDM2 co-
amplified cell lines. 
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5.3.2 p14
ARF

 knockdown   

p14
ARF

 knockdown was performed using the method and siRNA sequence described in 

Chapter 2.3.  p14
ARF 

was knocked down in LS, NB1691 and NGP cells.  These cells 

express high levels of p14
ARF

, so p14
ARF

 protein is detectable by Western blot.  As 

shown in Figure 5.4, 3 concentrations of siRNA were tested at 24 and 48 hours.  

Optimal knockdown was achieved in NGP cells at 40nM for 48 hours (70%), in LS 

cells at 40nM for 24 hours (95%) and in NB1691 cells at 40nM for 24 hours (96%).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  Optimisation of p14ARF knockdown in NGP, LS and NB1691 cells.  
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5.3.3 Immunofluorescence 

5.3.3.1 Preparation of cells  

Cells were seeded at a density of 4x10
5 

cells/well in 6-well plates containing coverslips 

for 48 hours.  Media was then aspirated off and cells washed with cold PBS.  Cells were 

fixed in 4% paraformaldehyde (pH 7.4) for 10 minutes at room temperature, which was 

then replaced with ice cold methanol to permeabilise cells for a further 15 minutes.  

Methanol was removed and cells washed for 3 x 5 minutes in PBS.   

5.3.3.2 Antibody Detection 

Coverslips were gently removed from the 6-well plate and placed in a petri dish, with 

the cell layer facing up.  Damp paper towel was placed around the edges of the petri 

dish to prevent evaporation.  To block non-specific antibody binding, 200µl of 3% BSA 

(dissolved in PBS) was added to the coverslip, and incubated for 30 minutes at room 

temperature.  The primary p14
ARF

 antibody used was p14 ARF (ARF 4C6/4): sc-53392 

(Santra Cruz).  HeLa cells were used as a positive control, as the use of this antibody in 

immunofluorescence has been previously published in these cells.  The blocking 

solution was replaced with a 1:200 dilution of either the primary antibody in 3% BSA 

and 1% Triton-X, or just 3% BSA and 1% Triton-X as the no primary control, and 

incubated overnight at 4°C.  Cells were then washed in PBS for  3x 10 minutes, and 

secondary antibody, Goat-anti mouse (Dako), added at a concentration of 1:200 for 1 

hour at room temperature.  Cells were again washed in PBS for 3x 10 minutes, mounted 

with VECTASHIELD HardSet Mounting Medium with DAPI (Vector Labs), and left to 

dry. 

5.3.3.3 Fluorescent microscopy 

Images were captured using a Nikon Eclipse E600 microscope, with NIS-elements F 3.0 

(Nikon) software. 

5.3.4 Flow cytometry 

The panel of 21 neuroblastoma cell lines were treated with 10µM Nutlin-3 or DMSO, 

and samples harvested at 24, 48, 72 and 96 hours.  FACs was performed and analysed 

as previously described (Chapter 2.5).  The sub G1 peak was determined at each time 

point, and cell cycle analysis carried out at 24 hours.  The degree of G1 arrest was 

determined using the ratio of cell numbers in G1 and S phases of the cell cycle, and 

compared to DMSO control.  An increase in the G1:S ratio indicates a G1 arrest. 

http://www.vectorlabs.com/products.details.asp?prodID=1484&locID=13956
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5.4 Results 

5.4.1 Investigation of the increased p14
ARF

 levels in MYCN and MDM2 

co-amplified neuroblastoma cell lines 

Carr et al. previously found that both p14
ARF 

mRNA and protein levels are increased in 

MYCN and MDM2 co-amplified neuroblastoma cell lines compared to MYCN-only 

amplified neuroblastoma cell lines, non-amplified neuroblastoma cell lines, and also 

non-neuroblastoma MDM2-amplified cell lines (Carr et al., 2006).  Only two MDM2-

amplified non-neuroblastoma cell lines were tested in this previous study; SJSA-1 and 

JAR.   Here siRNA was used to knockdown MDM2 and/or MYCN in the 4 MYCN and 

MDM2 co-amplified, high p14
ARF 

expressing neuroblastoma cell lines.  

5.4.1.1 The effect of MDM2 knockdown on p14
ARF

 and activation of p53 

First of all, to assess the effect that MDM2-amplification has on p14
ARF

 protein levels, 

MDM2 was knocked down using siRNA in the 4 cell lines, and samples collected 24 

and 48 hours later.  As shown in Figure 5.5, high levels of MDM2 knockdown were 

achieved in the 4 MYCN and MDM2 co-amplified cell lines NGP, TR14, NB1691 and 

LS.  The effect on p14
ARF

 protein expression was highly variable, ranging from 0-48% 

reduction following 24 hours knockdown across the cell lines, and 20-42% reduction 

following 48 hours knockdown.  This indicates that whilst knockdown of MDM2 is 

having some effect on p14
ARF

, other factors may be involved. 

As expected and consistent with what we have already reported, knockdown of MDM2 

results in increased p53 and p21
WAF1

 protein levels at both 24 and 48 hours (Figure 5.5). 

MDM2 is a negative regulator of p53, and therefore p53 is released from this negative 

control, allowing levels to increase (due to decreased degradation) and for activity to 

increase (due to decreased MDM2-mediated repression of transcription).  This is 

reflected in the increased induction of the p53 transcriptional target, p21
WAF1

 observed 

following MDM2 knockdown.  

5.4.1.2 The effect of MYCN knockdown on p14
ARF

 and activation of p53 

MYCN was knocked down to determine if there was an effect on p14
ARF

 and if so, 

whether or not it was greater than that after MDM2 knockdown.  As shown in Figure 

5.6, 24 hours following MYCN knockdown, a 0-42% reduction in p14
ARF

 was seen 

across the cell lines, but at 48 hours a greater reduction between 52% and 77% was 

observed across the cell lines.  This indicates that MYCN is contributing to the 
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overexpression of p14
ARF 

in these cells, and to a greater extent than MDM2, despite 

MYCN-amplification alone having no effect on p14
ARF

 levels.  

Interestingly, MYCN knockdown had little effect on p53, MDM2 and p21
WAF1

 protein 

levels (shown in Figure 3.11), despite both p53 and MDM2 being reported as direct 

transcriptional targets of MYCN (Chen et al., 2010b; Slack et al., 2005a).  p53 levels 

did decrease in TR14 cells, but not in the other 3 cell lines and the effect on MDM2 and 

p21
WAF1 

was variable.  

5.4.1.3 The effect of double knockdown of MYCN and MDM2 on p14
ARF

 and 

activation of p53 

Since both MDM2 and MYCN knockdown resulted in decreased p14
ARF

 levels, double 

knockdown should result in further reduction if amplification of both these proteins is 

contributing to the increased p14
ARF 

levels in the MYCN and MDM2 co-amplified cell 

lines.  As shown in Figure 5.7, after 48 hours knockdown of both MYCN and MDM2, 

the decrease in p14
ARF

 levels ranged from 65-92% across the cell lines, with the greater 

decreases in p14
ARF 

corresponding with the highest levels of knockdown.  This data 

suggests that MDM2 and MYCN amplification have a co-operative effect on the 

expression of p14
ARF 

.  Since MYCN knockdown had a more pronounced effect on 

p14
ARF

, it is interesting that p14
ARF

 is not increased upon MYCN-amplification alone.  

Following double knockdown, there is no effect on p53 except in TR14 cells where an 

increase is seen.  However, p21
WAF1

 expression increases in all 4 cell lines suggesting 

that p53 is activated (Figure 5.7).  This may suggest that MDM2 has a more dominating 

effect on p53 activation than MYCN, as is expected since MDM2 is the major negative 

regulator of p53.  However, following DNA damage, MYCC is directly recruited to the 

p21
WAF1

 promoter where it blocks p21
WAF1

 induction by p53 and promotes apoptosis 

(Seoane et al., 2002).  In addition, ectopic expression of MYCC has been shown to 

repress the p21
WAF1

 promoter (Gartel et al., 2001).  Evidence suggests that MYCN 

functions in a similar way.  Bell et al found that following irradiation, p21
WAF1

 was 

expressed at higher levels in non-MYCN-amplified neuroblastoma cell lines compared 

to MYCN-amplified cell lines, and the non-amplified cell lines G1 arrested whereas the 

MYCN-amplified cell lines did not (Bell et al., 2006).  Therefore in this study, 

knockdown of MYCN may result in increased expression of p21
WAF1

.  However, this 

was not observed after MYCN knockdown alone.  



252 

 

5.4.1.4 The effect of MDMX knockdown on p14
ARF

 and p53 activation 

Within the p53-MDM2/MDMX-p14
ARF 

network, there are reports of links between 

MDMX and p14
ARF

.  There is evidence that p14
ARF

 promotes MDMX ubiquitination 

through MDM2 (Pan and Chen, 2003).  p14
ARF

 binding of MDM2 can regulate its 

ability to ubiquitinate both p53 and MDMX as p14
ARF

 stimulates MDMX ubiquitination 

by MDM2 through the N-terminal domain that normally inhibits MDM2 ubiquitination 

of p53 (Pan and Chen, 2003; Midgley et al., 2000).   There are also some p53-

independent functions of MDMX such as an ability to inhibit E2F1 transactivation, 

suggesting MDMX may repress E2F1 regulated genes such as p14
ARF 

(Wunderlich et al., 

2004).  As shown in Figure 5.8, knockdown of MDMX in the 4 MYCN and MDM2 co-

amplified cell lines did not have an effect on p14
ARF

 protein levels.  However, only a 24 

hour time point was examined, so there may have been an effect at later time points, 

although following MDM2 and MYCN knockdown, an effect on p14
ARF 

was seen 

within 24 hours.   MDMX is unlikely to contribute to the overexpression of p14
ARF

 in 

these cell lines, and in addition it has previously been shown that these cells lines have 

low MDMX expression (Chapter 4).   

The effect on p53 was minimal; however there was induction of p21
WAF1

 indicating p53 

activation.  Previously pronounced effects on p53 and p21
WAF1 

have been observed 

following MDMX knockdown (Figure 4.11a).  

5.4.2 p14
ARF

 levels in MDM2-amplified cell lines 

Carr et al also looked at p14
ARF

 mRNA and protein expression in MDM2-amplified 

non-neuroblastoma cell lines and found that increased p14
ARF

 mRNA and protein 

expression did not occur in these cell lines (Carr et al., 2006).  We have since increased 

the number of MDM2-amplified non-neuroblastoma cell lines, all of which are sarcomas. 

As shown in Figure 5.9, both MDM2-amplified neuroblastomas and sarcomas have high 

and comparable levels of p14
ARF

 expression compared with non-MDM2-amplified cell 

lines.  This suggests that MDM2-amplification in the absence and presence of MYCN-

amplification results in increased p14
ARF

 expression, whereas MYCN-amplification 

alone does not.  Alternatively, it may be that p14
ARF

 expression is cancer type specific 

and it would be interesting to see what p14
ARF

 expression levels are in non-MDM2-

amplified sarcomas.   
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5.4.3 p14
ARF 

localisation in neuroblastoma cell lines 

Immunofluorescence was used to investigate p14
ARF

 localisation in the p14
ARF

 

overexpressing cell lines, NGP and LS.  HeLa cells were used as a positive control.  As 

shown in Figure 5.10, p14
ARF

 is localised in the nucleolus in NGP, LS and HeLa cells.  

Interestingly, whereas p14
ARF

 was detected in every HeLa cell, the majority of NGP and 

LS cells did not have levels of p14
ARF

that were detectable.  
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Figure 5.5.  MDM2 knockdown in 4 MYCN and MDM2 co-amplified neuroblastoma 
cell lines and the effect on p14ARF, p53 and p21WAF1.  a) NGP, b) TR14, c) NB1691, d) LS. 
Actin was used as a loading control.  Densitometry was used to generate bar charts 
from n=3 blots.  
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Figure 5.6. MYCN knockdown in 4 MYCN and MDM2 co-amplified neuroblastoma cell 
lines and the effect on p14ARF.  a) NGP, b) TR14, c) NB1691, d) LS. Actin was used as a 
loading control.  Densitometry was used to generate bar charts from n=3 blots. 
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Figure 5.7. Double knockdown of MYCN and MDM2 in 4 MYCN and MDM2 co-
amplified neuroblastoma cell lines, NGP, TR14, NB1691 and LS, and the effect on 
p14ARF, p53 and p21WAF1.  a) Western blots showing MYCN and MDM2 knockdown at 
48 hours and the effect on p53 and p21WAF1. Actin was used as a loading control.  b)  
Graphs generated from densitometry of the Western blots.  For NGP and TR14, n=3 at 
48 hours, and n=1 at 24 hours.  For NB1691 and LS, n=1 at 48 hours only.     
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Figure 5.8. Knockdown of MDMX in 4 MYCN and MDM2 co-amplified neuroblastoma 
cell lines, NGP, TR14, NB1691 and LS, and the effect on p14ARF, p53 and p21WAF1 at 24 
hours.  a) Western blots showing levels of MDMX knockdown and the effect on p14ARF, 
p53 and p21WAF1. Actin was used as a loading control.  b)  Graphs generated from 
densitometry of the blots (n=1).  
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Figure 5.9.  p14ARF expression levels in MDM2-amplified neuroblastoma and sarcoma 
cell lines, and non-MDM2-amplified neuroblastoma cell lines.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10.  p14ARF localisation in MDM2-amplified neuroblastoma cell lines NGP 
and LS.  High p14ARF expressing HeLa cells were used as a positive control. 
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5.4.4 Cell death and apoptosis in a panel of 21 neuroblastoma cell lines 

following Nutlin-3 treatment 

A panel of 21 neuroblastoma cell lines were treated with 10µM Nutlin-3 or DMSO and 

samples harvested for FACs analysis at 24, 48, 72 and 96 hours.  The panel of cell lines 

included 4 p14
ARF

 impaired cell lines: MYCN-amplified PER-108 (methylated), and 

non-MYCN-amplified SHEP (homozygous deletion), LAN6 (homozygous deletion) and 

GIMEN (methylated).  Cell cycle profiles for all the cell lines at 24, 48, 72 and 96 hours 

treatment are shown in Figure 5.11.  The sub G1 DNA fraction was determined for all 

samples, and the percentage increase from baseline sub G1 levels (from DMSO control) 

determined after Nutlin-3 treatment (Figure 5.12).  At the 24 hour time point, all 4 

p14
ARF

 impaired cell lines had very little sub G1 DNA following Nutlin-3 treatment.  At 

48 hours the MYCN-amplified PER-108 cell line had high levels of sub G1, whereas the 

non-MYCN amplified cells did not, and similar results were seen at 72 and 96 hours.  

SHEP cells were especially resistant to Nutlin-3 and had as little sub G1 fraction as p53 

mutant cells.  p53 mutant cell lines were resistant to Nutlin-3 treatment, and the cell 

cycle distribution had not changed by 96 hours showing no evidence of a cell cycle 

arrest.  Interestingly, the wildtype p53 SKNRA cell line was also very resistant to 

MDM2-p53 antagonist mediated cell death and the mechanism for this is unknown. 

Previously, the caspase 3/7 activities in this panel had been determined at 2.5µM MI-63 

and 5µM Nutlin-3 (Figure 3.22), and there was a significant reduction in caspase 3/7 

activity in p14
ARF

 impaired cell lines.  Despite seeing no difference in the sub G1 

population between p14
ARF 

overexpressing MDM2-amplified cell lines and the other cell 

lines (Figure 5.12), there was increased caspase 3/7 activity in these cell lines (Figure 

3.22).  Again the SKNRA cell line was resistant to MDM2-p53 antagonist mediated 

caspase activation.   

These data suggest that p14
ARF

 impaired cell lines undergo very little apoptosis 

following Nutlin-3 and MI-63 treatment, particularly those without MYCN-

amplification.   

5.4.5 Cell cycle analysis in a panel of 21 neuroblastoma cell lines 

following Nutlin-3 treatment 

p14
ARF

 impaired cell lines were analysed for their cell cycle response to MDM2-p53 

antagonists compared to cell lines with intact p14
ARF

.  Following 10µM Nutlin-3 

treatment, 3 of the 4 p14
ARF 

impaired cell lines (SHEP, PER-108 and GIMEN) 
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underwent a G1 arrest (Figure 5.13) indicating a strong G1/S checkpoint response, with 

the LAN6 cell line neither undergoing a G1 arrest nor apoptosis (at 24 hours).  Unlike 

p53 mutant cell lines, LAN6 did undergo increasing levels of apoptosis at later time 

points. GIMEN also showed an increase in the G2 peak (Figure 5.11).  p14
ARF

 

impairment might therefore protect cells against Nutlin-3 mediated apoptosis as the 

cells are more likely to G1 arrest.  The p53 wildtype SKNRA cell line is also 

particularly resistant to MDM2-p53 antagonist mediated apoptosis and this cell line 

shows a strong G1 arrest following Nutlin-3 treatment. 
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Figure 5.11.  Representative cell cycle profiles following 10µM Nutlin-3 treatment in 
a panel of neuroblastoma cell lines at 24, 48, 72 and 96 hours (n=3).  DMSO controls 
were used to place markers for the sub G1 fraction at each time point.  
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Figure 5.12. The sub G1 DNA fraction at 24, 48, 72 and 96 hours in a panel of 21 
neuroblastoma cell lines.  p14ARF impaired cell lines are highlighted in red, and p53 
mutant cell lines are white.    
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Figure 5.13.  G1/S ratios following 10µM Nutlin-3 treatment for 24 hours in a panel of 
21 neuroblastoma cell lines.  p14ARF impaired cell lines are indicated by arrows. 
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5.4.6 p14
ARF

 knockdown decreases caspase activity but does not affect 

p53 levels 

Since p14
ARF

 impaired cell lines have low levels of apoptosis following MDM2-p53 

antagonist treatment, it can be predicted that p14
ARF

 knockdown would result in reduced 

levels of apoptosis also.  p14
ARF

 was knocked down in NGP, NB1691 and LS cells, all 

of which have detectable p14
ARF

 by Western blot.  As shown in Figure 5.14a, following 

p14
ARF

 knockdown little or no effect was observed on p53 or MDM2 protein expression.  

However, as shown in Figure 14b, caspase 3/7 activity was decreased following p14
ARF

 

knockdown at both 24 and 48 hours.  This is expected as p14
ARF

 negatively regulates 

MDM2.  There is no increase in MDM2, but there is evidence that p14
ARF

 regulates 

MDM2 by removing it from its site of action in the nucleoplasm, into the nucleolus.  

Upon p14
ARF

 knockdown, MDM2 may relocate to the nucleolus where it inhibits p53, 

reducing levels of apoptosis.   

5.4.7 p14
ARF 

knockdown followed by p53-MDM2 antagonist treatment 

results in reduced apoptosis 

Knockdown of p14
ARF

 followed by MDM2-p53 antagonist treatment resulted in reduced 

levels of cleaved caspase 3 and cleaved PARP compared to SCR control (Figure 5.15; 

lanes 7-10 compared to 2-5).   Interestingly, no change in p53 induction and induction 

of p53 target genes, including the pro-apoptotic marker PUMA, was observed following 

p14
ARF

 knockdown, suggesting that p53-independent functions of p14
ARF

 may be 

involved.  In addition, Nutlin-3 and MI-63 appeared to reduce p14
ARF

 expression in 

NGP cells, but increased expression in LS cells.  In Chapter 3 it was found that MDM2-

p53 antagonists reduced MYCN expression, and MDMX expression in NGP cells 

compared to other cell lines. 

Following treatment with Nutlin-3 or MI-63, a decrease in caspase 3/7 activity was 

generally observed following p14
ARF

 knockdown compared to SCR control, although 

this was not statistically significant in all cases (Figure 5.16).  Surprisingly, in LS and 

NB1691 cells, the decrease in caspase activity was not as great following MDM2-p53 

antagonist treatment as p14
ARF

 knockdown alone, whereas in NGP cells the decrease 

was greater than p14
ARF

 knockdown alone.  This suggests that addition of Nutlin-3 or 

MI-63 is rescuing cells from p14
ARF

 knockdown mediated-apoptosis in some cell lines, 

but enhancing the effect in others. 
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Figure 5.14.  Knockdown of p14ARF in LS, NB1691 and NGP cells at 24 and 48 hours.  a) 
Western blot showing p14ARF knockdown, and the effect on MDM2 and p53.  Actin was 
used as a loading control.  b) The basal level of Caspase 3/7 activity was reduced by 
p14ARF knockdown. 
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Figure 5.15.  p14ARF knockdown followed by MDM2-p53 antagonist treatment (5µM 
and 10µM) in NGP and LS cells, compared to SCR control.  The effects on p53 and p53 
responsive genes, and apoptotic markers were detected.  Actin was used as a loading 
control. 
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Figure 5.16.  Caspase 3/7 activity in NGP, LS and NB1691 cells, following p14ARF 
knockdown and DMSO, Nutlin-3 or MI-63 treatment, compared to SCR control.    P 
values were generated using 2-tailed paired t-tests and are displayed where significant. 
NS – not significant. 
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5.5 Discussion 

p14
ARF

 inactivation frequently occurs in neuroblastoma and was found to be impaired 

through methylation or homozygous deletion in several studies (Carr-Wilkinson et al., 

2010; Caren et al., 2008; Gonzalez-Gomez et al., 2003; Thompson et al., 2001).   

Previous data suggests that p14
ARF

 may be an important determinant of response to 

MDM2-p53 antagonists and hence a potentially useful biomarker to use in combination 

with p53 status for identifying patients that are likely to respond to these agents.   

5.5.1 MYCN and MDM2 both contribute to the p14
ARF 

overexpression 

seen in MYCN and MDM2 co-amplified neuroblastoma cell lines  

p14
ARF

 has previously been found to be overexpressed in MYCN and MDM2 co-

amplified neuroblastoma cell lines (Figure 5.17).  Here the effect of siRNA-mediated 

knockdown of MDM2 or MYCN was investigated, or simultaneous knockdown of both 

MYCN and MDM2, on p14
ARF

 protein expression. Both MDM2 and MYCN 

knockdown lead to a decrease in p14
ARF 

expression, with a greater decrease effect seen 

following MYCN knockdown.  Double knockdown resulted in a further reduction in 

p14
ARF

 protein levels of up to 92%.  This suggests that co-amplification of MYCN and 

MDM2 has a co-operate effect on p14
ARF

 protein levels.  In support of this data, there is 

evidence that both MDM2 and MYCN independently affect p14
ARF

.   

First of all, MDM2-amplified non-neuroblastoma cell lines that are not amplified for 

MYCN also have levels of p14
ARF 

protein expression comparable to that of MDM2-

amplified neuroblastoma (Figure 5.9), despite Carr et al reporting no difference when 

just two cell lines were compared (Figure 5.17) (Carr et al., 2006).  p14
ARF

 forms part of 

the p53/MDM2/p14
ARF

 negative feedback loop, and is ubiquitously expressed and has 

increased levels in p53 null cells, suggesting that p53, when activated, downregulates 

and limits p14
ARF

 expression (Sharpless, 2005).  In support of this Carr et al found that 

p53 mutant Be2C had increased p14
ARF

 compared to the paired p53 wildtype Be1n at 

both the mRNA and protein level (Carr et al., 2006).  This situation is reflected in 

MDM2-amplified cell lines where p53 function is attenuated and is not downregulating 

p14
ARF 

expression.  However in the p53 mutant cell lines, the effect on p14
ARF

 is not as 

great as MDM2-amplification. 

Secondly, MYCC has been shown to activate the p14
ARF

 tumour suppressor, resulting in 

p53 activation and apoptosis through Bcl-XL and Bcl-2 dependent and independent 

pathways (Hosoi et al., 1994).  There are many similarities between MYCN and MYCC 
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and although it has not been investigated, it is possible that MYCN works in a similar 

way and may explain why MYCN-amplification results in p14
ARF

 induction.  However, 

in contrast to this, MYCC and MYCN amplification is usually associated with TWIST1 

overexpression, which has been shown to impair p14
ARF

 activity (Valsesia-Wittmann et 

al., 2004; Maestro et al., 1999).  Since MYCN-amplified cell lines do not have p14
ARF

 

levels comparable to MYCN and MDM2 co-amplified cell lines, and it is possible that 

MDM2 may interfere with this pathway in MYCN-amplified neuroblastoma resulting in 

increased p14
ARF

 expression.  Although MYCN-amplified neuroblastoma cell lines do 

not overexpress p14
ARF

 compared to MYCN- and MDM2-co-amplified cell lines, the 

original figure from Carr et al showing mRNA levels in the panel of neuroblastoma cell 

lines ((Carr et al., 2006), Figure 3a, and here reproduced as Figure 5.17) suggests that 

p14
ARF

 mRNA levels are increased in MYCN-amplified compared to non-amplified 

neuroblastoma cell lines, but this difference is not as obvious as the difference between 

MYCN- and MDM2-co-amplified compared to the other cell lines.  There is evidence 

that p14
ARF

 interacts with MYCN in vivo inhibiting MYCN-mediated transcriptional 

activation (Amente et al., 2007), and this is also true of MYCC (Amente et al., 2006).  If 

MYCN does activate p14
ARF

 this suggests a negative feedback loop between these two 

proteins.  In addition, MDM2 is a direct transcriptional target of MYCN, further linking 

MYCN with the p53/MDM2/p14
ARF 

network.   

Taken together this data suggests that MYCN and MDM2 co-amplification must have a 

co-operative effect on p14
ARF

, and that in this circumstance MYCN is a more dominant 

driver of p14
ARF

 expression than MDM2, but only in the presence of MDM2-

amplification.   

5.5.1.1 Limitations of using siRNA to investigate increased levels of p14
ARF 

expression  

When interpreting changes in the expression of a particular protein following 

knockdown of different genes in a number of cell lines, the level of knockdown should 

be taken into consideration.  The transfection efficiency of different cell lines varies, 

and levels of knockdown achieved with different siRNAs vary. Ideally, more than 1 

siRNA should be used. In this study, we sought to determine the effect on p14
ARF

 of 

MYCN, MDM2 and MYCN/MDM2 knockdown in 4 cell lines.  High levels of 

knockdown were achieved in each cell line with each siRNA, allowing easy comparison 

of p14
ARF

 levels in this case.  Following MDM2 knockdown, the greatest effect on 

p14
ARF

 is seen in NGP and LS cells which also have the highest levels of MDM2 

knockdown.   
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Figure 5.17.  p14ARF mRNA levels across a panel of neuroblastoma and non 
neuroblastoma cell lines, taken from (Carr et al., 2006).   
 

5.5.2 p14
ARF

 is located in the nucleolus but not expressed at detectable 

levels in every cell in MYCN and MDM2 co-amplified cell lines 

Immunofluorescence was used to determine localisation of p14
ARF

 in MYCN and MDM2 

co-amplified neuroblastoma cell lines.  p14
ARF

 was found to be localised in the 

nucleolus.  It would be interesting to see if MDM2 co-localised in the nucleolus with 

p14
ARF

, as relocalisation of MDM2 from the nucleoplasm to the nucleolus is the chief 

mechanism by which p14
ARF

 inhibits MDM2, in addition to binding and preventing 

interaction with p53 (Wang et al., 2001; Xirodimas et al., 2001).   It is likely that some 

MDM2 will be co-localised with p14
ARF

 and inactive in the nucleolus, but that MDM2 

levels are in such excess that the effect of increased p14
ARF

 on reactivating p53 is 

negligible.   

Interestingly, it was found that in NGP and LS cells, not all the cells had detectable 

levels of p14
ARF

 in the nucleolus, and p14
ARF

 was only detectable in about 10% of NGP 

and LS cells.   This was unexpected, as p14
ARF

 was present in every HeLa cell which 

was used as a positive control.  Previously, FISH in LS cells (Figure 4.18) showed 

MDM2-amplification in every cell, and if p14
ARF

 is overexpressed partly as a result of 

MDM2-amplification increased p14
ARF

 would be expected in every cell.  It is also a 

possibility that the antibody is not binding efficiently to p14
ARF

 in the nucleolus.  The 

cells had been fixed and permeabilised, but not denatured and if p14
ARF

 was bound to 
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another protein, such as MDM2 this may interfere with antibody binding.  This could be 

investigated further in Be2C cells which have higher levels of p14
ARF

 but are not 

amplified for MDM2. 

5.5.3 p14
ARF

 impaired cell lines are resistant to apoptosis but undergo a 

G1 arrest following Nutlin-3 treatment 

p19
ARF

 null mice are highly tumour prone (Kamijo et al., 1999).  Mice hemizygous for 

p19
ARF

 were generated by crossbreeding ARF null mice with Eµ-myc transgenic mice 

and intercrossing the offspring (Eischen et al., 1999).  These mice display progressive 

disease and 80% of tumours lose their wildtype p19
ARF 

allele.  This protein must 

therefore be important in tumour prevention.  Previously it has been shown that MDM2-

amplified, p14
ARF

 overexpressing cells have increased caspase 3/7 activity compared to 

other neuroblastoma cell lines.  Here it was shown that p14
ARF

 impaired cell lines are 

resistant to MDM2-p53 antagonist mediated apoptosis.  The four p14
ARF

 impaired cell 

lines; SHEP (homozygous deletion), LAN-6 (homozygous deletion), GIMEN 

(methylated) and PER-108 (methylated), had significantly decreased levels of caspase 

3/7 activity compared to p14
ARF

 wildtype cell lines, and also had a decreased sub G1 

fraction after 24 hours of Nutlin-3 treatment.  This resistance was lost in the PER-108 

cell line at 48 hours but was maintained in the other p14
ARF

 impaired cell lines through 

to 96 hours treatment.  PER-108 is the only p14
ARF

 impaired cell line that is amplified 

for MYCN.  However, MYCN-amplification is probably not responsible for the 

sensitivity to Nutlin-3 following 48 hours treatment.  Carr et al. have previously 

reported that methylation in GIMEN cells was associated with transcriptional silencing 

of p14
ARF

 and p53 function is compromised (Carr et al., 2006).  This was not the case 

with the PER-108 cells, where p14
ARF 

mRNA expression was comparable to that of its 

partner cell line PER-107, which has functional p14
ARF 

(Figure 5.17).  The PER-108 

cells may therefore have some heterogeneity, with some cells containing methylated 

p14
ARF

 and others expressing functional p14
ARF

.  Alternatively, it may be that the 

degree of methylation affects gene expression (Carr et al., 2006). 

Despite being resistant to apoptosis, 3 of the 4 p14
ARF

 impaired cell lines underwent a 

pronounced G1 arrest.  LAN6 cells did not arrest.  Due to the low levels of apoptosis 

observed in these cells following MDM2-p53 antagonist treatment, this G1 arrest may 

be protecting cells against apoptosis, and this should be investigated further to 

determine if the cell cycle arrest can be prevented.  Preventing the cell cycle arrest may 
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potentiate the  apoptotic effects of Nutlin-3, as treated cells would continue through the 

cell cycle and be unable to escape the pro-apoptotic effects of the MDM2-p53 

antagonists.  Cells may be G1 arresting instead of undergoing apoptosis, as occurs after 

DNA damage in some types of p53 wildtype cancer cells.   

The mTOR pathway plays a role in determining the outcome of p53-induced cell cycle 

arrest, and there is evidence that cell cycle arrest is reversible as long as mTOR is also 

inhibited (Korotchkina et al., 2010).   mTOR status in these p14
ARF

 impaired cell lines 

would therefore be interesting to determine. 

5.5.3.1 Limitations of flow cytometry to measure sub G1 DNA and cell cycle 

The sub G1 peak is a measure of fragmented DNA that separates into apoptotic nuclei, 

and has DNA content of less than a normal 2n cell, where n is the haploid complement.  

It is not an ideal method of investigating levels of apoptosis.  First of all it takes into 

account all types of cell death, not just apoptosis and should therefore be backed up by 

other methods such as caspase activity.  Secondly, it measures fragmented DNA within 

a cell, but cells undergoing apoptosis eventually break up, and if the DNA is not 

contained within a single cell the different fragments are measured individually.  The 

sub G1 peak is therefore not necessarily a measure of the number of dead or dying cells, 

but a measure of the amount of fragmented DNA within the cell suspension. In this 

study, basal levels of sub G1 DNA were also taken into account when making 

comparisons between cell lines, as levels vary across cell lines and notably MYCN-

amplified cell lines had higher levels of basal sub G1. 

When comparing flow cytometry results across a panel of cell lines, results should be 

interpreted with caution as some cell lines respond to Nutlin-3 more rapidly than others.  

No given time-point would give maximum levels of sub G1 for all the cell lines, so a 

number of time-points have been studied.  Similarly, some cell lines do not arrest at 24 

hours treatment but do at 48 hours, and yet some cell lines are still cycling at 96 hours.  

However, this is also a measure of how sensitive the cells are to the compounds and for 

this reason, a time-point of 24 hours was used for cell cycle analysis.   

5.5.4 Cell Type and p14
ARF

 status and the cell cycle response  

There does not appear to be a relationship between cell type and p14
ARF

 status;  PER-

108 and LAN6 p14
ARF

 impaired cell lines are N-type cells, SHEP is S-type, and 

GIMEN is predominantly S-type.  There also appears to be no relationship between cell 

cycle response and cell type.  The following cell lines underwent a G1 arrest in response 
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to Nutlin-3; NGP, TR14, PER108, GIMEN, SKNRA, SHEP and NBLS.  In response to 

MDM2-p53 antagonists, N-type cells did have increased apoptosis, as previously 

reported for irradiation treatment (Carr-Wilkinson et al., 2011; Mergui et al., 2008; Bell 

et al., 2006; Tweddle et al., 2001b; Isaacs et al., 1998).  However, in response to 

irradiation, N-type cells fail to undergo a G1 arrest.  NGP, TR14 and PER-108 cells are 

all N-type and therefore this is not true for Nutlin-3.  However, NGP and TR14 cells are 

MDM2-amplified, and PER-108 cells are p14
ARF

 impaired both of which result in 

overactive MDM2.  This increased MDM2 in these 3 cell lines may alter the cell type 

specific response, since none of the other N-type cells underwent a G1 arrest.  When 

compared with a previous study with some of these cell lines in response to irradiation 

(Bell et al., 2006), 5/6 of the cell lines that arrested in response to Nutlin-3 also arrested 

in response to irradiation, but many of the cell lines that did not arrest in response to 

Nutlin, did arrest in response to irradiation.  This suggests that activated p53 from 

irradiation and MDM2-p53 antagonists do not always initiate the same response, and 

this is likely to be cell type specific. 

5.5.5 The SKNRA cell line is resistant to apoptosis, but undergoes a G1 

arrest 

Interestingly the SKNRA cell line is especially resistant to MDM2-p53 antagonists, 

with low levels of induced apoptosis, comparable to p53 mutant cell lines and some of 

the p14
ARF

 impaired cell lines.  However, whereas p53 mutant cell lines did not G1 

arrest, following 24 hours of Nutlin-3 treatment SKNRA cells underwent a pronounced 

G1 arrest similar to p14
ARF

 impaired cell lines, suggesting p14
ARF

 may not be intact.  

However, this cell line has been previously investigated for p14
ARF

 impairment through 

methylation or deletion and also for p53 mutation, all of which were wildtype (Carr et 

al., 2006).  The cell line has not been investigated for CDKN2A mutation. CDKN2A 

mutations have not been previously reported in neuroblastoma, but do occur in other 

cancer types such as melanomas (Hayward, 2003), and p14
ARF

 mutations in mice 

induced chemoresistance in lymphomas (Schmitt et al., 1999).  Alternately, this cell line 

may be defective in the apoptotic pathway downstream of p53, but it should first be 

determined if p53 is activated.  It is also worth noting that this cell line is S-type, and S-

type cells are shown to be more chemoresistant than N-type cells (Carr-Wilkinson et al., 

2011; Mergui et al., 2008).  However this has not been investigated in relation to 

MDM2-p53 antagonist treatment, and in this study it does appear that N-type cells are 
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more sensitive to MDM2-p53 antagonist mediated apoptosis, but that cell type does not 

influence the ability of the cell to G1 arrest. 

5.5.6 p14
ARF

 knockdown and the effect of MDM2-p53 antagonists 

Van Maerken et al. previously found that p14
ARF 

knockdown results in decreased cell 

viability and apoptosis, and overexpression increased cell survival and apoptosis 

following MDM2-p53 antagonist treatment (Van Maerken et al., 2011).  Surprisingly, in 

the present study knockdown of p14
ARF 

alone did not affect p53 levels, but did result in 

decreased caspase 3/7 activation.  Since p14
ARF

 negatively regulates MDM2, an 

increase in MDM2 activity is expected upon p14
ARF

 knockdown which in turn will 

result in inhibition of p53 and decreased apoptosis.   

In the current study, p14
ARF

 knockdown followed by treatment with MDM2-p53 

antagonists again did not alter the p53 response with p53, phosphorylated p53, MDM2 

and PUMA expression levels comparable to those seen with the SCR control.   A 

decrease in the apoptotic markers caspase 3 and PARP cleavage was observed by 

Western blot, but no change in the apoptotic marker and p53 transcriptional target 

PUMA.   

Despite seeing a significant decrease in caspase activity upon p14
ARF

 knockdown alone, 

upon addition of MDM2-p53 antagonists there were variable effects on caspase 3/7 

activity.  In LS and NB1691 cells, MDM2-p53 antagonist treatment in cells knocked 

down for p14
ARF

 had reduced caspase 3/7 activity compared to cells with p14
ARF

 

knockdown alone.  However the opposite effect was seen in NGP cells.  This suggests 

that knockdown of p14
ARF

 is protecting from Nutlin-3/MI-63 mediated apoptosis in LS 

and NB1691 cells, but is co-operating with Nutlin-3/MI-63 in NGP cells to induce 

greater levels of apoptosis, indicating that the mechanisms by which p14
ARF

 work by are 

complicated and variable.  More cell lines need to be tested, including non-MDM2-

amplified cells, as this would eliminate any effect of MDM2-amplification.  The three 

cell lines tested in this study were MYCN and MDM2 co-amplified and were chosen 

because p14
ARF

 is overexpressed and protein expression is detectable by Western blot.  

Van Maerken et al have previously shown that non-MDM2-amplified IMR32 cells had 

decreased cell viability following p14
ARF

 knockdown, and increased caspase activity 

following stable p14
ARF

 overexpression (Van Maerken et al., 2011).   

Since p53 levels or activity did not change, shown by no change in the p53-

transcriptional target MDM2, following p14
ARF

 knockdown, p53-independent functions 
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of p14
ARF

 may be responsible for the decrease in caspase 3/7 activity, especially since 

PUMA (a p53 transcriptional target) levels did not change, but levels of caspase and 

PARP cleavage did following MDM2-p53 antagonist treatment.  p14
ARF

 interacts with 

proteins involved in  proliferation, the ATM/ATR/CHK signalling pathway and 

transcription factors in the retinoblastoma pathway, through which it may additionally 

affect cell cycle regulation and apoptosis if altered.  p19
ARF

 has also been shown to act 

independently of p53 in response to oncogenic signals to suppress cell proliferation.  

Reintroduction of p19
ARF

 into p53 and ARF null mice resulted in a G1 cell cycle arrest 

(Weber et al., 2000).   

5.5.7 Conclusions and future directions  

Here it has been shown that a) p14
ARF

 overexpression in MYCN and MDM2 co-

amplified cell lines is a result of co-amplification, and that each protein plays a role, b) 

that p14
ARF 

impaired cell lines undergo G1 arrest and show low levels of apoptosis 

following MDM2-p53 antagonist treatment, c) that despite p14
ARF 

knockdown resulting 

in decreased caspase 3/7 activity, the effect of subsequent MDM2-p53 antagonist 

treatment is ambiguous, and does not appear to alter p53 or p53 target gene protein 

expression. Van Maerken et al found that knockdown of p14
ARF

 resulted in a moderate 

reduction in the sensitivity of IMR32 and NGP cells to Nutlin-3, shown in cell viability 

assays, and apoptosis in NGP cells (Van Maerken et al., 2011). 

Despite p14
ARF

 knockdown having inconclusive results on apoptosis, there is a large 

amount of evidence to support the importance of p14
ARF

 in cancer prevention, and 

functional p14
ARF 

is important for the response to anticancer agents, such as MDM2-p53 

antagonists.  In neuroblastoma van Maerken et al. provided evidence of a co-

stimulatory effect of p14
ARF

 expression and Nutlin-3 response (Van Maerken et al., 

2011). This data together with our data from studying the p14
ARF

 impaired cell lines 

suggests that p14
ARF 

inactivation may limit the response to MDM2-p53 antagonists in 

neuroblastoma, and that further investigations are required, including in vivo studies.  

Since there is no effect on p53 and p53 targets, p53-independent induction of apoptosis 

may occur.  It has been shown that p14
ARF

 impaired cell lines undergo G1 arrest 

following Nutlin-3 treatment, so one would expect to see a G1 arrest following p14
ARF 

knockdown and MDM2-p53 antagonist treatment, and this should be confirmed using 

cell cycle studies.  In addition, experiments should be carried out to see if the cell cycle 

arrest observed in the p14
ARF 

impaired cell lines is reversible.  Long-term survival could 
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be determined using clonogenic survival assays, and arrested cells could be isolated and 

cultured to see if they divide.   The mTOR status may also be important in determining 

whether the G1 arrest in these cells is reversible, and should be determined for these cell 

lines.  The mutational status of p14
ARF

 should be investigated in the panel of 

neuroblastoma cell lines, particularly SKNRA to eliminate this as a mechanism of 

resistance to MDM2-p53 antagonists.  
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Chapter 6.   Identification of p53 mutations in 2 MYCN-amplified 

neuroblastoma cell lines 
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6.1 Introduction 

Two neuroblastoma cell lines, BCH-N-AD and BCH-N-NS were obtained from Dr 

Carmel McConville, University of Birmingham, to add to the panel of MYCN-amplified 

neuroblastoma cell lines already used in this study. However, these cell lines did not 

respond to MDM2-p53 antagonists, arousing suspicions that they may be mutant for 

p53.  In this chapter, the response of the 2 cells lines to Nutlin-3 and MI-63 was 

investigated and the sequencing of their p53 gene is described.  

6.1.1 p53 mutations in cancer 

            The p53 gene is located on the short arm of chromosome 17p13.1 and contains 11 exons, 

spanning 20kb (Mercer et al., 2007).  p53 plays a critical role in maintaining genomic 

stability and cancer prevention by preventing cells from accumulating mutations.  

Mutations can provide cells with growth advantages, leading to abnormal proliferation 

(Agarwal et al., 1998; Lane, 1992). p53 reacts to cellular stresses such as DNA damage 

and induces a number of anti-cancer responses including cell cycle arrest and apoptosis.  

Therefore inactivation of p53 results in the rapid accumulation of mutations as cells 

cannot respond to stress.  As a result, cells gain selective advantages such as a high 

tolerance to growth arrest and apoptosis (Petitjean et al., 2007; Levine, 1997).  The 

function of p53 and its mechanisms of action are described in more detail in Chapter 1.   

             p53 is mutated in over 50% of human cancers types, and is therefore the most 

commonly mutated gene in cancer (Levine, 1997).  In the remaining p53 wildtype 

cancers, it is thought that abnormalities in p53 regulatory proteins occur (Brown et al., 

2009). The importance of p53 is shown in p53-deficient mice, which have a 

significantly higher rate of tumour formation than wildtype mice.  Donehower et al 

reported that 74% of mice with homozygous mutation of the p53 gene developed 

tumours within 6 months, whereas only 2/96 heterozygous mice and no p53 wildtype 

mice developed tumours within 9 months (Donehower et al., 1992).   

            p53 is a 393 amino acid protein, and the 3 major domains are the acidic NH2-terminal 

transactivation domain containing a nuclear export signal (amino acids 1-44), a central 

sequence-specific DNA binding domain (DBD) (amino acids 102-292) and the COOH-

terminal oligomerisation domain (amino acids 325-359) (reviewed by (Joerger and 

Fersht, 2007)).  It also contains 3 nuclear localisation signals (amino acids 305-322, 

369-375, and 379-384) and a proline rich domain containing 5 PXXP motifs which 

allow for rapid protein protein interaction (Joerger and Fersht, 2007).  About 85% of 
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tumour associated p53 mutations occur within the central DBD (exons 5-8) and often 

result in an inability of p53 to recognise sequence-specific response elements within 

target promoters, inhibiting the ability of p53 to activate target genes (Joerger and 

Fersht, 2007; Ryan and Vousden, 2002; Hollstein et al., 1999; Hollstein et al., 1996).  

The mutations within the DBD are often contact or structural mutations, which often 

lead to destabilisation of p53 and/or a disruption of the proper conformation of the DBD, 

resulting in loss of sequence specific transactivation.  The sequence-specific DNA-

binding ability of p53 is also tightly linked to its pro-apoptotic activity (El-Deiry, 2003; 

Pietenpol et al., 1994), so mutations within this domain may result in a failure to induce 

apoptosis. Tumours with missense p53 mutations frequently have characteristically 

higher levels of basal p53 in cells, with a much longer half-life than wildtype p53.  This 

is because some mutant forms of p53 accumulate as a result of an inability to 

transactivate MDM2, or due to conformational change so cannot bind MDM2, and as a 

result are not degraded (Crawford et al., 1984).   

Cells with wildtype p53 function are usually chemoresponsive, but the inactivation of 

p53 is thought to contribute to chemoresistance (reviewed by (Tweddle et al., 2003)).  

Many cytotoxic agents act via p53-dependent pathways, and when p53 mutates, patients 

become resistant to therapy.  p53 mutations confer resistance of tumour cells to 

anticancer drugs by inhibiting p53-dependent pro-apoptotic pathways (Vogelstein et al., 

2000; Velculescu and El-Deiry, 1996; Vogelstein and Kinzler, 1992). 

6.1.2 p53 mutations and neuroblastoma 

p53 mutations are rare in neuroblastoma and only occur in about 15% of cases of 

refractory or relapsed disease and less than 2% of de novo tumours (Tweddle et al., 

2003; Hosoi et al., 1994). A study by Carr et al. revealed that 53% (9/17)  of 

neuroblastoma cell lines established from relapse tumour samples had inactive p53 

whereas no pre-treatment cell lines did (Carr et al., 2006).  However, surprisingly only 1 

of these cell lines studied was mutant for p53.  Another study found that p53 mutations 

occurred in neuroblastoma cell lines at a higher frequency of 26% (9/34) (Van Maerken 

et al., 2011). In the panel of cell lines used in this thesis, 14% (3/21) were mutant for 

p53 (IGNR91, SKNBe2C, SKNAS).  Tweddle et al demonstrated that the 

neuroblastoma cell line, SKNBE(1n), had functional and wild-type p53 at diagnosis but 

the corresponding cell line, SKNBE(2c), taken from the same patient at relapse 5 

months later after treatment with cytotoxic therapy, had inactive mutant p53 (Tweddle 

et al., 2001a).  However, some primary tumours and most relapsed tumours have 
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developed alternative mechanisms of inactivating p53 in neuroblastoma, contributing to 

chemoresistance (Carr-Wilkinson et al., 2010; Carr et al., 2006; Tweddle et al., 2003).   

The p53/MDM2/p14
ARF

 network plays a major role in tumourigenesis, as it is important 

in genetic stability and oncogene activation.  This pathway is defective in many 

neuroblastoma tumours, and often changes status in relapsed disease after cells have 

undergone cytotoxic therapies which frequently results in p53 inactivation (Carr-

Wilkinson et al., 2010; Carr et al., 2006; Tweddle et al., 2003).    These include p14
ARF

 

homozygous deletion or methylation, and MDM2-amplification which in cell lines 

occurs with MYCN-amplification (Carr et al., 2006).   In the cell lines used in this study, 

three have mutant p53, two have p14
ARF

 methylation, two have p14
ARF

 deletion and four 

have MDM2-amplification.  In primary neuroblastoma, one study found variable p14
ARF

 

expression, infrequent MDM2 overexpression and mutation of p53 in 3/40 cases 

(Omura-Minamisawa et al., 2001).  In a study by Carr-Wilkinson et al p53 mutation 

was found in 6 of 41 cases, and just one was at diagnosis, MDM2 was amplified in 3 of 

23 cases both at diagnosis and relapse, and p14
ARF

 was inactivated in 12 of 41 cases, 9 

at diagnosis and relapse, and 3 at relapse only (Carr-Wilkinson et al., 2010).  Unlike cell 

lines, there are reports of MDM2 or 12q amplification in the absence of MYCN-

amplification (Carr-Wilkinson et al., 2010; Su et al., 2004). 

As the inability of cancer cells to die or enter cell cycle arrest reduces the effectiveness 

of radiation and chemotoxic drugs, methods of restoring the p53 response are required 

in order to improve treatment response rates.  MDM2-p53 antagonists have been shown 

to activate p53 and induce apoptosis in neuroblastoma and other cancer types, providing 

wild-type p53 is present.   

Patients with high risk neuroblastoma relapse in >50% of cases, and relapsed disease, 

being very difficult to treat, carries a high mortality rate.  Treatment of these patients 

often involves using chemotherapeutic agents such as topotecan and irinotecan, and 

topoisomerase inhibitors in combination with cyclophosphamide to improve efficacy 

(Maris et al., 2007).   

Current therapy regimes are insufficient and patients with aggressive disease still have 

poor survival rates and suffer from dose-related toxicity (Laverdiere et al., 2005).  

Treatment for this disease is a challenge and new non-genotoxic approaches are needed 

(Friedman and Castleberry, 2007).  There is a requirement for tumour specific therapies 
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for patients with high risk disease.  A promising molecular target is inhibition of 

MDM2-p53 binding and is currently an intense area of research. 

6.1.3 p53 mutations and response to MDM2-p53 antagonists 

MDM2-p53 antagonists inhibit the MDM2-p53 interaction by mimicking p53, restoring 

the p53 pathway both in vitro and in vivo (Vassilev, 2004).  Nutlin-3 has previously 

been shown to be highly effective at reactivating p53 in p53 wildtype neuroblastoma 

cell lines (Van Maerken et al., 2006).  Many studies have shown that Nutlin-3 is not 

effective in cell lines or patient samples with mutant p53.  This has been shown in 

rhabdomyosarcomas (Miyachi et al., 2009), in patient CLL samples (Kojima et al., 2006) 

and in AML samples (Kojima et al., 2005) and in neuroblastoma cell lines (Van 

Maerken et al., 2006).   Interestingly, in neuroblastoma, whilst Nutlin-3 had no effect on 

p53 mutant cell lines, both Nutlin-3a and the inactive enantiomer 3b strongly increased 

the efficacy of vincristine in p53-mutated P-glycoprotein (P-gp) overexpressing cell 

lines.  This was as a result of Nutlin interfering with P-gp, and MRP-1, drug efflux, 

preventing the P-gp/MRP-1 chemotherapy drugs from being removed from the cell 

(Michaelis et al., 2009). 
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6.2 Hypotheses and Aims 

 

Hypothesis 

 The MYCN-amplified neuroblastoma cell lines BCH-N-AD and BCH-N-NS are 

p53 mutant 

Aims 

1. To determine the growth inhibitory and apoptotic response of BCH-N-AD and 

BCH-N-NS cells lines to the MDM2-p53 antagonists Nutlin-3 and MI-63. 

2. To sequence exons 4-9 of the p53 gene in BCH-N-AD and BCH-N-NS cell lines 

for p53 mutations. 

 

 

 

 

 

 

 

 

 



291 

 

6.3 Specific Materials and Methods 

6.3.1 Analysis of Nutlin-3 and MI-63 treatment in BCH-N-AD and 

BCH-N-NS cells 

Caspase activity was measured as previously described (Chapter 2.7) and GI50 values 

calculated as described in Chapter 2.6.  For Western analysis to look at activation of p53 

and p53 target genes, BCH-N-NS, BCH-N-AD and p53 wildtype NGP cells were 

treated with 5 or 10µM Nutlin-3 for 4 hours. 

6.3.2 DNA extraction for sequencing 

5x10
6  

BCH-N-AD, BCH-N-NS and LAN5 cells were spun down for 5 minutes at 

1200rpm.  DNeasy Blood and Tissue kit (Qiagen; cat no. 69504) was used to extract 

DNA which was eluted in 200µl of AE Buffer.   

6.3.3 PCR 

The mastermixes for exons 4, 5, 6, 7, and 8/9 were prepared as shown in Table 6.1. 

Primer sequences are shown in Table 6.2 and were stored at a stock concentration of 

10µM.  23µl of mastermix was added to 4 wells in a 96-well plate for each exon, and 

2µl of DNA (BCH-N-AD, BCH-N-NS, LAN5 (wildtype p53 positive control)) or 

nuclease-free water (negative control).  PCR conditions are displayed in Table 6.3. 

Reagent Volume per reaction (µl) MasterMix volume (µl) 

PCR Gold Buffer 2.5 12.5 

MgCl2 2.5 12.5 

dNTP’s 2.5 12.5 

Primer SN 1 5 

Primer ASN 1 5 

dH2O 13.25 66.25 

Amplitaq Gold 0.25 1.25 

Table 6.1. Reaction mix for PCR.  Mastermix was made up for each exon (4 reactions). 

Exon Sense/Antisense Sequence 

4 Sense 5’-GTTCTGGTAAGGACAAGGGT-3’ 

 Antisense 5’-ATACGGCCAGGCATTGAAGT-3’ 

5 Sense 5’-ATCTGTTCACTTGTGCCCTG-3’ 

 Antisense 5’-CAACCAGCCCTGTCGTCTCTC-3’ 

6 Sense 5’-GCCTCTGATTCCTCACTGAT-3’ 

 Antisense 5’-GGAGGGCCACTGACAACCA-3’ 

7 Sense 5’-AAGGCGCACTGGCCTCATCTT-3’ 

 Antisense 5’-CAGGGGTCAGCGGCAAGCAGA-3’ 

8/9 Sense 5’-TTTAAATGGGACAGGTAGGAC-3’ 
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Table 6.2. Sense and antisense primers for p53 exons 4-9. 
 

 Hotstart 14 cycles 26 cycles End 

Temperature (° C) 94 94 62* 72 94 55 72 72 
Time (minutes)  10 20 sec 1  1 20 sec 1 1 5 

Table 6.3. PCR cycling conditions. * decreases by 0.5°C each cycle 

6.3.4 Agarose gel 

2% Agarose gel was made up by adding 100ml of 0.5x TBE (see Appendix 1) and 2g of 

agarose (Genetic Analysis grade, Fisher Scientific), melted in a microwave oven until 

clear.  10µl of GelRed
TM

 Nucleic Acid Gel Stain (Biotium) was added, mixed and 

poured into the gel apparatus and allowed to set.  The gel was placed in the gel tank, 

filled with 0.5x TBE and 5µl of PCR product was mixed with 2µl of loading buffer (see 

Appendix 1) and samples loaded onto the gel.  Gel electrophoresis of the samples was 

carried out for 20-25 minutes at 130V. 

6.3.5 Purification of PCR product 

The band of the correct size on the gel was excised and the PureLink
TM

 PCR 

Purification kit (Invitrogen; cat no. K3100-02) was used to purify the PCR product, 

followed by elution of the PCR product in 30µl of nuclease-free water.  For PCR 

products that displayed more than one band on the agarose gel, 20µl of PCR product 

was loaded and gel extraction was carried out to purify the appropriate band using the 

QIAquick® Gel Extraction kit (Qiagen; cat no. 28706). 

6.3.6 Sequencing 

Samples were sent away for sequencing to DBS genomics (Durham University, School 

of Biological and Biomedical Sciences, Science Site, South Road, Durham, DH1 3LE) 

along with 3µM concentration of primers (2.88µl of primer, 6.12µl water).  Sequencing 

was performed using an Applied Biosystems 3730 Genetic Analyzer. 

6.3.7 Sequence Analysis 

DNASTAR software (DNASTAR, Inc.) was used for sequence analysis. Within 

DNASTAR, SeqMan was used to generate chromatograms, and MegAllign for 

comparison to standard sequences.  

 

 Antisense 5’-GCCCCAATTGCAGGTAAAACAG-3’ 
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6.4 Results 

6.4.1 Karyotype and origin of BCH-N-AD, and BCH-N-NS cells 

BCH-N-AD and BCH-N-NS cells were originally obtained from Dr Carmel McConville, 

School of Cancer Sciences, University of Birmingham, to add to the existing panel of 

MYCN-amplified cell lines used in this study.  The karyotype, short-tandem-repeats 

(STR) fingerprint and origin of these cells are displayed in Table 6.4.   The STR 

fingerprint is a method of DNA profiling, and uses highly polymorphic regions that 

have short repeated sequences of DNA.  The STR loci are targeted with sequence-

specific primers and amplified using PCR.  The resulting DNA fragments are separated 

using electrophoresis.  As shown in the karyotypes in Table 6.4, both cell lines have 

monosomy of chromosome 17, as do most of the other neuroblastoma cell lines with 

mutant p53.  BCH-N-AD also has a translocation involving chromosomes 3 and 17, and 

BCH-N-NS has translocations involving chromosome 17 and chromosome 1, and a 

translocation of chromosome 17 material to derivative chromosome 16. 

Cell line ID Karyotype STR fingerprint Origin 

BCH-N-AD 78-86XXY,-Y,+1,add(1)(p13)x2,der(1) 
dic(1)9q?44)del(1)(p?22),der(3)t(3;17) 
(p21;q21)x2,der(4)t(4;17)(p14;q21)x2,
-6,-10,-11,-12,-17,-17,-18,del(19)(p13) 
x2, idic(22)(q13)x2,50-100dmin[cp5] 

D13S317 – 10,11 

D16S539 – 11,12 

D5S818 – 9,12 

Bone marrow 
metastasis (relapse) 
from 4y old male; Post 
chemotherapy. 

MYCN amplified 

BCH-N-NS 43~45,XX,+1,del(1)(p36),der(1)t(1;17)(
p36;q?1),der(1)(7qter->q1::?17q25-> 
q?1::1p36->qter),idic(3)(p1),add(3) 
(q2),ins(7;?)(q11;?),-10,der(15;17) 
(q10;q10),der(16)t(16;17)(q24;q?1), 
dic(16;19)(p13;q1),-17,-17,+1~2mar 
,8~120dmin[cp7) /89~100,idem x2, 
inc[cp2] 

D13S317 – 10,13 

D16S539 - 12, 

D5S818 – 10,11 

Bone marrow 
metastasis from 2y old 
male at diagnosis (pre-
chemo); 

MYCN amplified 

Table 6.4. Karyotype and origin of BCH-N-AD and BCH-N-NS MYCN-amplified 
neuroblastoma cell lines. 
 

6.4.2  BCH-N-AD and BCH-N-NS have caspase 3/7 activity and growth 

inhibition values following MDM2-p53 antagonist treatment 

comparable to those of p53 mutant cell lines  

As shown in Figure 6.1, BCH-N-AD and BCH-N-NS have low caspase 3/7 activities of 

0.8759 ± 0.06391 and 1.123 ± 0.2239 respectively.  These values are comparable to 
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those of other p53 mutant neuroblastoma cell lines IGNR91, SKNAS and Be2C.  

Similarly, the levels of growth inhibition following 20µM Nutlin-3 (BCH-N-AD, 90.67% 

± 3.46%; BCH-N-NS, 89.21% ± 1.46%) and 10µM MI-63 (BCH-N-AD, 81.36% ± 

16.36%; BCH-N-NS, 77.79% ± 4.22%)  treatment were also comparable to those of 

other p53 mutant cell lines (Figure 6.2), with considerably less growth inhibition at 

these concentrations than seen for p53 wildtype cell lines.  These data indicate that 

BCH-N-AD and BCH-N-NS have a defective growth inhibitory and apoptotic response 

to Nutlin-3, strongly suggestive of a mutation within the p53 gene. 

 

 

 

 

 

 

 

 

 

Figure 6.1. Caspase 3/7 activity following 5µM Nutlin-3 treatment in BCH-N-AD and 
BCH-N-NS MYCN-amplified cell lines, compared to other MYCN-amplified cell lines 
and p53 mutant cell lines (5µM Nutlin-3, treated for 24 hours).  
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Figure 6.2.  Growth inhibition in BCH-N-AD and BCH-N-NS cells compared to other 
p53 mutant neuroblastoma cell lines (*PNET cell line), and the mean value of all the 
p53 wildtype cell lines from Figure 3.19 and 3.20 at 20µM Nutlin-3 and 10µM MI-63. 
 
 

6.4.3 BCH-N-NS and BCH-N-AD are resistant to Nutlin-3 mediated 

p53 activation 

A characteristic of p53 mutant cell lines following MDM2-p53 antagonist treatment is a 

lack of induction of p53 target genes.  BCH-N-AD, BCH-N-NS, and NGP cells (as a 

control for wildtype p53) were treated with 0, 5 or 10µM Nutlin-3 for 4 hours, and 

levels of p53 and induction of the well-characterised p53 transcriptional targets p21
WAF1

 

and MDM2 detected by Western blot.  As shown in Figure 6.3, NGP cells have 

increased p53, and increased levels of p53 target genes, p21
WAF1

 and MDM2. Despite 

seeing a small degree of p53 induction in BCH-N-AD and BCH-N-NS cells, there was 

no induction of p53 transcriptional targets, suggesting that these cell lines do not have 

functional p53.  These cell lines also have increased basal levels of p53 compared to 

NGP cells, another characteristic of p53 mutant cells.  Tumours with missense mutant 

p53 that results in full length protein cannot usually bind to DNA and upregulate 

MDM2, therefore p53 is not ubiquitinated or degraded and accumulates.  p53 may also 

undergo a conformational change that prevents binding to MDM2. 
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Figure 6.3.  BCH-N-AD and BCH-N-AD were treated with 0, 5 and 10µM of Nutlin-3 for 
4 hours and induction of p53 and p53 target genes (p21WAF1 and MDM2) detected by 
western blot.  NGP cells were used as a positive control for wildtype p53.  Actin was 
used as a loading control. (-, UT; 0, DMSO control.) 
 

6.4.4 BCH-N-NS is mutated at exon 7, codon 241. 

PCR was carried out with BCH-N-NS DNA with exon 7 primers, and the products 

analysed on a 2% agarose gel.  As shown in Figure 6.4, multiple bands/products were 

detected.  These were gel extracted and sent for sequencing  The chromatograms shown 

in Figure 6.5 show that compared to the wildtype sequence, BCH-N-NS cells have a 

single base change at codon 241, resulting in a change in amino acid from a serine 

(TCC) to a bulky phenylalanine (TTC).  This was confirmed in both sense and antisense 

sequences 

6.4.5 BCH-N-AD is mutated at exon 8, codon 277. 

PCR was carried out with BCH-N-AD DNA with exon 8/9 primers, and the products 

analysed on a 2% agarose gel, as shown in Figure 6.4.  A single clear band was detected 

so the PCR product was purified and sent for sequencing. The chromatograms shown in 

Figure 6.6  show that compared to the wildtype sequence, BCH-N-AD cells have a 

single base change at codon 277, resulting in an amino acid change from a cysteine 

(TGT) to a phenylalanine (TTT).  This is confirmed in both sense and antisense 

sequences. 
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Figure 6.4. PCR products for Exon 7 and Exon 8/9 in BCH-N-AD, BCH-N-NS, LAN5 
(positive control) and negative control (DNase-free water).  Exon 7 was gel extracted 
as there are multiple bands, exon8/9 DNA was purified before sending off for 
sequencing
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Figure 6.5. BCH-N-NS has a p53 mutation in exon 7, at codon 241. The TCC 
(serine)  TTC (phenylalanine) change is shown next to wildtype sequences in 
both sense and antisense directions. 
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Figure 6.6. BCH-N-AD p53 mutation in exon 8, at codon 277.  The TGT (cysteine) 
 TTT (phenylalanine) change is shown next to wildtype sequences in both 
sense and antisense directions.
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6.5 Discussion  

p53 mutations in neuroblastomas are relatively rare, occurring at a frequency of 14% in 

neuroblastoma cell lines used in this study so far, and at a frequency of 15% (5/41 

following chemotherapy, 1//41 at diagnosis) in a previous study of paired tumour 

samples from patients at diagnosis and relapse (Carr-Wilkinson et al., 2010).   

6.5.1 Identification of p53 mutations in BCH-N-AD and BCH-N-NS 

The wildtype p53 gene contains 11 exons that encode 393 amino acids.  p53 mutant cell 

lines used in this study are SKNBe2c, IGNR91 and SKNAS.  In SKNBe2c cells, there 

is a missense mutation in p53 codon 135 (shown in Figure 6.7), converting cysteine to 

phenylalanine.  In IGNR91 cells, a duplication of exons 7-8-9 adds 107 amino acids to a 

total of 500, and in SKNAS cells, a mutation due to alternative splicing downstream of 

exon 9 leads to a protein of 341 amino acids (Goldschneider et al., 2006) (Figure 6.7).  

In the newly identified p53 mutant BCH-N-AD and BCH-N-NS cell lines, homozygous 

point missense mutations were found in the DNA binding domain which according to 

the p53 mutation database (http://www-p53.iarc.fr/p53main.html) lead to a non—

functional protein.  The p53 mutation in the BCH-N-AD cell line occurred within the 

DNA binding domain in exon 8 at codon 277 (shown in Figure 6.7), resulting in a TGT 

 TTT change. This resulted in an amino acid substitution from cysteine to 

phenylalanine (Figure 6.8).  Codon 277 is an hotspot for p53 mutations, with 112 

mutations recorded in the p53 mutation database, 5.1% of which are in tumours derived 

from nerve tumour sites (http://www-p53.iarc.fr/p53main.html), and has been 

previously reported in neuroblastoma (Manhani et al., 1997), where it was also 

accompanied by MYCN-amplification.  The p53 mutation in the BCH-N-NS cell line 

occurred within the DNA binding domain in exon 7 at codon 241 (shown in Figure 6.7), 

resulting in a TCC  TTC change.  This resulted in an amino acid substitution from a 

serine to a phenylalanine.  Within the p53 mutation database, there are 246 mutations 

reported at this hotspot, but none of which are of neuronal origin and there are no 

previous reports of this mutation in neuroblastoma.   

In BCH-N-AD cells, the resulting amino acid change was from a cysteine to a 

phenylalanine (Figure 6.8), and in BCH-N-NS cells a serine was changed again to a 

phenylalanine.  Cysteine residues are small and slightly polar, and are usually critical to 

protein structure and function due to their ability to form disulphide bonds which 

http://www-p53.iarc.fr/p53main.html
http://www-p53.iarc.fr/p53main.html
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usually function to stabilise protein structure (Betts and Russell, 2003).  Serine is small 

and slightly polar, and contains a reactive hydroxyl group that can form hydrogen bonds.  

Phenylalanine is a large bulky hydrophobic amino acid.  It is relatively unreactive and 

rarely directly involved in protein function.   It is therefore likely that this mutation 

results in p53 protein destabilisation and conformational change in these cell lines as a 

result of addition of a bulky amino acid, and loss of critical bonds that hold the protein 

together (Betts and Russell, 2003).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Structure of p53 mRNA, and p53 proteins in p53 mutant neuroblastoma 
cell lines, including BCH-N-AD and BCH-N-NS. p53 mRNA is made up of 11 exons and 
the three functional domains within the 393 amino acid protein are the transactivation 
domain (TAD), the DNA-binding domain (DBD) and the oligomerisation domain (OgD).   
The p53 mutations in SKNBe2C, IGNR91 and SKNAS cell lines were previously reported.  
The p53 mutations in BCH-N-AD and BCH-N-NS were identified in this study.  Figure 
adapted from (Goldschneider et al., 2006). 
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6.5.2 The response of BCH-N-AD and BCH-N-NS cell lines to MDM2-

p53 antagonists 

p53 mutant cell lines are resistant to the effects of MDM2-p53 antagonists (Van 

Maerken et al., 2011; Vassilev, 2004).  The loss of function associated with p53 

mutation was indicated by high level nuclear accumulation of p53 protein in untreated 

cells and the failure of MDM2-p53 antagonists to induce a p53 response, apoptosis or 

growth inhibition.   

In comparison to NGP cells, both BCH-N-AD and BCH-N-NS have high basal levels of 

p53 due to a much longer half-life, as the p53 protein does not induce MDM2 

transcription and is not degraded (Crawford et al., 1984).  Upon MDM2-53 antagonist 

treatment, compared to NGP cells, neither BCH-N-AD not BCH-N-NS induce any p53 

target genes (Figure 6.3).  Caspase 3/7 activity is not induced and levels are comparable 

to the other p53 mutant cell lines used in this study.  Furthermore, growth inhibition 

assays at high concentrations of Nutlin-3 or MI-63 failed to achieve 50% growth 

inhibition, showing resistance comparable with other p53 mutant cell lines. 

6.5.3 BCH-N-NS is a diagnostic neuroblastoma cell line, and p53 

mutations are rare 

BCH-N-NS cells were established from a patient at diagnosis.  p53 mutations in 

neuroblastoma cell lines are very rare from diagnostic neuroblastoma and all the other 

p53 mutant cell lines used within this study (SKNBe2C, SKNAS, IGNR91 and BCH-N-

AD) were established at relapse.  Unfortunately, at present it is not known if the original 

tumour sample had a p53 mutation, as cell culture can select for p53 mutations.   

Follow-up studies are planned to sequence the corresponding primary tumour directly 

from a diagnostic sample. 
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Figure 6.8.  The amino acid changes for BCH-N-AD and BCH-N-NS.   
 

6.5.4 Treatment of p53 mutant cancers 

6.5.4.1 Restoration of p53 function in p53 mutant cancers 

Tumours with p53 mutations are usually resistant to conventional therapies, particularly 

those involving DNA damaging agents.  MDM2-p53 antagonists also rely on wildtype 

p53 and p53 mutated tumours would therefore be unresponsive.  In p53 mutated cell 

lines, restoration of p53 function is being investigated.  The p53 structure includes one 

zinc ion as an important cofactor that stabilises the second and third loops of the DBD, 

and is required for wildtype p53 function (Joerger and Fersht, 2008; Hainaut and Milner, 

1993).  p53 mutant proteins are prone to the loss of the Zn
2+

 atom that is bound to the 

wildtype core, and this results in the unfolding of p53 and loss of DNA binding (Butler 

and Loh, 2003).   Mutations that change the conformation of p53 can also result in loss 

of this zinc.  A study by Puca et al. showed that addition of zinc (100µM ZnCl2) 

modified the equilibrium between p53 mutant and wildtype conformations in some 

cancer cell lines, positively reactivating some of the most frequently p53 mutated 
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TCCTTC TGTTTT 



304 

 

residues (Puca et al., 2011).  This lead to reactivation of target genes in response to 

DNA damage and also inhibition of some pro-oncogenic functions such as interaction 

with p73 and inhibition of MDR1, resulting in drug sensitivity and inhibition of tumour 

growth. 

More recently, another strategy for p53 reactivation has been investigated, which 

involves suppressing glucosylceramide synthase (GCS), an enzyme involved in 

glycosylating ceramine, decreasing its pro-apoptotic activity in cancer cells (Liu et al., 

2011).  GCS silencing sensitised mutant p53 ovarian cancer cells (that were resistant to 

DNA-damage induced apoptosis) to doxorubicin, increasing the p53 response and 

apoptosis.  Therefore restoration of active ceramide co cells can resuscitate wildtype 

p53 function in p53 mutant cells.    

As of yet, nothing very convincing as a therapeutic has come out of investigations into 

restoring p53 activity in p53 mutant cells.  

6.5.4.2 p5- independent therapies  

p53 mutated tumours require p53-independent therapies, but most chemotherapeutic 

drugs function by inducing p53, as the majority of p53 mutated cancers response poorly 

to chemotherapy.  Paclitaxel, or taxol, is a mitotic inhibitor that is used in cancer 

chemotherapy and has p53-independent functions.  Paclitaxel stabilises microtubules 

and interferes with normal breakdown of microtubules during cell division.  Paclitaxel 

treated cells have defects in mitotic spindle assembly, chromosome segregation and cell 

division.    

Interestingly, a number of studies have reported anti-cancer effects of Nutlin-3 in p53 

mutant cell lines.  Nutlin-3 treatment potentiated the ability of doxorubicin to block cell 

proliferation and induce apoptosis in a p53 mutant cell line, as a result of TAp73 and 

E2F1 release from MDM2 (Peirce and Findley, 2009b).  In line with this, another study 

found that Nutlin increased cytotoxicity of carboplatin and doxorubicin in a series of 

p53 mutant cell lines in an E2F dependent manner (Ambrosini et al., 2007).  In addition 

both Nutlin-3a and the inactive enantiomer 3b strongly increased the efficacy of 

vincristine in p53-mutated P-gp or MRP-1 overexpressing cell lines.  This was as a 

result of Nutlin interfering with P-gp and MRP-1 drug efflux, preventing the P-

gp/MRP-1 from removing the chemotherapy drugs from the cell (Michaelis et al., 2009).  

In another study, nutllin in combination with doxorubicin or cisplatin in sarcomas 

reduced the IC50 of Nutlin in p53 mutant cell lines (Ohnstad et al., 2011). 
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7 MYCN and the p53-MDM2/MDMX-p14
ARF

 network in 

neuroblastoma and response to MDM2-p53 antagonists 

The studies presented in this thesis have focused on the use of MDM2-p53 antagonists 

for the treatment of neuroblastoma, and the effects of amplification, impairment or 

manipulation of MYCN and the components of the p53-MDM2/MDMX-p14
ARF

 

network.  A panel of 21 cell lines with varying status of this network and MYCN was 

investigated for their growth inhibitory and apoptotic response to two structurally 

different MDM2-p53 antagonists Nutlin-3 and MI-63.  In addition, siRNA-mediated 

knockdown and a MYCN-regulatable cell line was used to assess effects on p53 

activation, cell cycle and apoptosis. MYCN-amplification or induced expression 

sensitised neuroblastoma cell lines to MDM2-p53 antagonist-mediated apoptosis and 

growth inhibition (Chapter 3 and (Gamble et al., 2011a)).  Manipulation of MDM2 did 

not affect the apoptotic response to Nutlin-3 or MI-63 whereas MDMX expression 

correlated with caspase activity and was associated with cell type (Chapter 4 and 

(Gamble et al., 2011b), submitted).  p14
ARF 

knockdown resulted in a modest decrease in 

apoptosis following MDM2-p53 antagonist treatment, whilst p14
ARF

 impaired cell lines 

tended to G1 arrest following Nutlin-3 treatment, and were resistant to apoptosis 

(Chapter 5 and (Gamble et al., 2011b), submitted).  Consistent with previous studies and 

as expected if the action of MDM2-p53 antagonists is specific, p53 mutant cell lines 

were not responsive to these compounds.  

7.1 Nutlin-3 induces apoptosis in neuroblastoma 

A number of studies found that Nutlin-3 induces apoptosis in leukaemia cells, but only 

reversible cell cycle arrest in a wide array of solid tumours in both pre-clinical and 

clinical studies  (Demidenko et al., 2010; Saha et al., 2010; Huang et al., 2009; Vassilev, 

2007; Tovar et al., 2006).  In this study and others, the majority of neuroblastoma cells 

underwent apoptosis when treated with Nutlin-3, with some cell lines being more 

sensitive than others.  Previous studies have shown that in comparison to other cancers 

including CLL, multiple myeloma, lung cancer and osteosarcoma, neuroblastomas have 

much more rapid and robust levels of p53 induction and rates of apoptosis after 24-48 

hour treatment, and apoptosis was induced in all cell lines tested (Barbieri et al., 2006; 

Cao et al., 2006; Kojima et al., 2006; Stuhmer et al., 2005; Vassilev et al., 2004).   

p21
WAF1

 has been shown to affect induction of apoptosis (Abbas and Dutta, 2009), and 

may have a role in inhibiting apoptosis (Janicke et al., 2007; Gartel and Tyner, 2002).  
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HCT116 cells undergo cell cycle arrest following DNA damage, but when p21
WAF1

 is 

removed, undergo apoptosis (Chan et al., 2000; Bunz et al., 1999).  In other cancer 

types, upregulation of p21
WAF1

 was associated with altered expression of pro-apoptotic 

genes, and may explain why these tumours undergo a reversible cell cycle arrest in 

response to Nutlin, instead of apoptosis.  A recent study however, found that the 

increased p21
WAF1

 levels did not protect solid cancers against Nutlin induced apoptosis 

(Xia et al., 2011) and in this study, p21
WAF1

 was induced upon Nutlin-3 and MI-63 in a 

number of cell lines, all of which underwent apoptosis. Although not specifically tested 

in this study, data suggests that increased levels of p21
WAF1

 induction do not inhibit 

induction of apoptosis in neuroblastoma following MDM2-p53 antagonist treatment, 

and is not necessarily indicative of cell cycle arrest.  Previous studies have investigated 

the role of p21
WAF1

 following DNA damage in neuroblastoma.  Despite evidence of 

p21
WAF1

 induction, Tweddle et al found that following irradiation induced DNA damage, 

there was a lack of G1 arrest in the MYCN-amplified cell lines compared to non-

amplified cell lines, suggesting that MYCN amplification is associated with a defective 

G1 checkpoint (Bell et al., 2006; Tweddle et al., 2003).  However, the MYCN-amplified 

cells were shown to undergo increased levels of apoptosis compared to non-amplified 

cells (Bell et al., 2006).   Another study found that despite p21
WAF1

 induction in a 

MYCN-amplified cell line, cells continued cycling (McKenzie et al., 2003), and whilst 

CDK2 function was not attenuated, there was no formation of the p21
WAF1

-CDK2 

complex required to induce a G1 arrest.  This complex also did not form in 2 non-

MYCN-amplified cell lines, SJNB1 and NBLS.  In the present study, just 6 of the 21 cell 

lines G1 arrested in response to Nutlin-3, 3 of which were MYCN-amplified, and 3 of 

which were S-type non-MYCN-amplified cells (shown to arrest preferentially over 

apoptosis in response to irradiation). 

7.2 Targeting MYCN in neuroblastoma 

MYCN-amplification is a major negative prognostic marker occurring in 23-35% of 

neuroblastomas (Maris et al., 2007; Maris et al., 2000).   MYCN plays roles in 

proliferation, differentiation and apoptosis.  Expression is essential during normal 

neural crest development but is downregulated as the tissues terminally differentiate 

(Thomas et al., 2004).  Ectopic MYCN expression increases DNA synthesis and drives 

cell cycle progression, resulting in increased cell proliferation (Lutz et al., 1996).  In a 

transgenic mouse model, MYCN expression alone is necessary and sufficient for 

transformation (Weiss et al., 1997).  Induced MYCN expression in non-MYCN-
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amplified cell lines inhibited cell growth and induced the pro-apoptotic functions of 

MYCN and differentiation within neurones (Kang et al., 2006; Fulda et al., 2000; Nesbit 

et al., 1999).  A number of studies have shown that MYCN-amplification potently 

sensitises cells to TNF-related apoptosis-inducing ligand (TRAIL), chemotherapy and 

irradiation induced apoptosis (Petroni et al., 2011; Bell et al., 2006; Cui et al., 2005; 

Fulda and Debatin, 2004; Fulda et al., 2000; Cole and McMahon, 1999; Lutz et al., 

1998).  It appears that induction of MYCN increases the sensitivity to apoptotic stimuli, 

but also increases G1-S progression.  To provide a selective advantage for the tumour, 

defects in apoptotic pathways are proposed as a mechanism by which MYCN-amplified 

neuroblastoma cells circumvent MYCN-induced apoptosis (Hogarty, 2003). 

Both p53 and MDM2 have been identified as transcriptional targets of MYCN (Chen et 

al., 2010b; Slack et al., 2005a) , both of which were also identified in a ChIP-chip array 

study (Westermann et al., 2008).  However, whereas both p53 and MDM2 are expressed 

at higher levels in neuroblastomas that express high MYCN (He et al., 2011; Chen et al., 

2010b), induced expression of MYCN resulted in increased p53 expression but not 

MDM2 (He et al., 2011).   In addition Chen et al. found that the increased MDM2 

detected in the presence of MYCN decreased upon p53 knockdown suggesting that 

increased expression in these cell lines may be as a result of MYCN-driven p53 

expression and not MYCN-driven MDM2 expression (Chen et al., 2010b).  However, in 

the same study that MDM2 was confirmed as a transcriptional target of MYCN, 

decreased MYCN expression was associated with decreased MDM2 expression, 

stabilisation of p53 and apoptosis (Slack et al., 2005a). No studies have looked for an 

association between MYCN and MDM2 expression in neuroblastoma patient samples 

(partly because reliable antibodies to MDM2 are not available for IHC on paraffin 

sections), whilst MYCN-amplification is associated with enhanced p53 expression 

(Chen et al., 2010b).    

MDM2 is considered to be important for MYCN-driven tumourigenesis, to overcome 

the tumour suppressive functions of p53, and MDM2 deficiency has been shown to 

suppress MYCN-driven neuroblastoma in vivo (Chen et al., 2009). However, in a study 

by Carr-Wilkinson et al, MDM2-amplification was not associated with either stage or 

overall survival (Carr-Wilkinson et al., 2010).  However, inactivation of the negative 

regulator of MDM2, p14
ARF

 was associated with stage, but not survival.  MDM2 has 

been recently identified as a translational activator of MYCN, as cytoplasmic MDM2 

binds AU-rich elements of the MYCN 3’UTR (Gu et al., 2011) indicating yet another 
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negative feedback loop within the p53 network (He et al., 2011) as shown in Figure 7.1.  

This may be a mechanism by which MDM2 promotes MYCN-driven tumourigenesis, 

but may also support a tumour suppressive role for MDM2 as a result of MYCN-

induced p53.  This study suggests that MDM2 and MYCN are mutually regulated, and 

reciprocally regulate p53 in neuroblastoma (He et al., 2011).   

 

Figure 7.1. Targeting the MYCN/p53/MDM2/p14ARF network with MDM2-p53 
antagonist to enhance the pro-apoptotic function of MYCN through MDM2 inhibition 
and subsequent p53 activation.  Dashed lines indicate where the function has only 
been investigated for MYCC. 
 

7.2.1 Targeting the pro-apoptotic functions of MYCN 

In this study the use of MDM2-p53 antagonists in activating the p53-dependent pro-

apoptotic function of MYCN was investigated, indicated by blue arrows in Figure 7.1.  

In a panel of MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines, and 

in MYCN-inducible Tet21N cells, MYCN-amplification or induced expression 

sensitised to MDM2-p53 antagonist-mediated apoptosis and growth inhibition. In 

agreement, siRNA-mediated knockdown of MYCN resulted in resistance to MDM2-

p53 antagonist-mediated p53 activation and apoptosis.  These findings are in line with a 

study by Barbieri et al who found a trend towards an increased IC50 for Nutlin-3 in 

MYCN(+) compared to MYCN(-) Tet21Ns (Barbieri et al., 2006).  Similar to the results 

presented in this study, van Maerken et al, found that both MYCN-amplified and non-
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MYCN-amplified cell lines were responsive to Nutlin-3 treatment (Van Maerken et al., 

2006).  However, they did not find a significant association between MYCN-

amplification and sensitivity to Nutlin-3, reporting no significant difference in cell 

viability and caspase activity in a panel of 7 p53 wildtype cell lines (3 of which were 

MYCN-amplified) (Van Maerken et al., 2006).  This group however did not use any 

isogenic systems to investigate the effect of MYCN. 

7.2.2 Destabilising MYCN 

Using transgenic mouse models, it has been found that MYC-induced tumours remain 

dependent on MYC after they are established, and therefore strategies that interfere with 

MYC function are another therapeutic approach for the treatment of MYCN-amplified 

neuroblastomas.  Tumours that depend on MYCN might also depend on upstream 

regulatory functions or downstream target genes that are less essential for the growth of 

MYCN-independent tumours.   A number of kinases have been identified as potential 

targets that result in the destabilisation of MYCN and are shown in Figure 7.2.  

Potential targets include Aurora A kinase, phosphatidylinositol 3-kinase (PI3-kinase) 

and mTOR (Figure 7.2). 

7.2.2.1 Aurora A kinase (AurKA) inhibitors 

Aurora kinases are cell cycle regulated, and are important for transition through mitosis 

(Marumoto et al., 2005; Keen and Taylor, 2004).  AurKA binds to and stabilises MYCN 

independently of its kinase activity via inhibition of the E3 ubiquitin ligase, FBXW7, 

which is responsible for degrading MYCN in neuronal progenitor cells.  This interferes 

with cell-cycle exit in developing peripheral neurones (Otto et al., 2009; Sjostrom et al., 

2005; Yada et al., 2004).  AurKA is overexpressed in human neuroblastoma cell lines 

and is associated with poor clinical outcome and decreased progression free survival in 

patients.  194 genes that are expressed in a manner dependent on MYCN-amplification 

in neuroblastoma, or are direct target genes of MYC were analysed in a shRNA screen 

to identify synthetic lethal interactions (Otto et al., 2009).  AurKA was identified as a 

gene required for the growth of MYCN-amplified neuroblastoma cell lines.  Knockdown 

of AurKA inhibited cell proliferation and enhanced chemosensitivity in neuroblastoma 

cell lines that are dependent on high MYCN protein levels, but had no effect in those 

that are not  (Otto et al., 2009).  Small molecules have been developed that inhibit 

AurKA. In preclinical models, the AurKA inhibitor MLN8237 showed efficacy against 

neuroblastoma (Maris et al., 2010).  Recently, a highly selective and bioavailable 

AurKA and B inhibitor, CCT137690  has been tested in neuroblastoma and inhibited 
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growth of MYCN-amplified neuroblastoma cell lines, dramatically reducing tumour 

mass in MYCN-driven transgenic tumours (Faisal et al., 2011).  Aurora kinase 

inhibitors may therefore significantly enhance the treatment of MYCN-dependent 

neuroblastomas.   

7.2.2.2 Targeting the PI3K pathway 

Most primary neuroblastomas display activation of critical mediators involved in the 

PI3K/AKT/mTOR signalling pathway and this is associated with resistance to apoptosis 

(Boller et al., 2008; Johnsen et al., 2008; Opel et al., 2007).  PI3Ks function as signal 

transducers downstream of cell-surface receptors.  Both PI3K and mTOR are kinases 

involved in regulating cell growth, proliferation and translation, and play a role in 

phosphorylating AKT as shown in Figure 7.2, subsequently activating both mTOR and 

GSKβ.  MYCN is stabilised through PI3K signalling, and inhibition of this pathway 

represents a potential strategy to promote degradation of MYCN protein, resulting in 

loss of both MYCN-dependent proliferation and apoptosis. In neuroblastoma, studies 

have shown that inhibition of key molecules of this pathway have profound effects on 

the survival of neuroblastoma cells both in vitro and in vivo (Bender et al., 2011; Li et 

al., 2010; Johnsen et al., 2008; Opel et al., 2007; Chesler et al., 2006).  

The PI3K/mTOR inhibitor PI-103, and the PDK1 inhibitor OSU03012, impair 

neuroblastoma growth in vitro and downregulate cyclin D1 and MYCN protein levels 

(Segerstrom et al., 2011).  These compounds significantly inhibited the growth of 

MYCN-amplified neuroblastomas in nude-mice and were more effective in MYCN-

amplified cells.  Similar effects were found with the pan PI3K inhibitor LY294002 and 

the mTOR inhibitor rapamycin (Johnsen et al., 2008; Chesler et al., 2006).  In addition, 

inhibitors of PI3K/Akt and mTOR synergised with chemotherapeutic drugs 

(Doxorubicin, Etoposide, Topotecan, Cisplatin, Vincristine and Taxol) in 

neuroblastoma (Bender et al., 2011; Johnsen et al., 2008).    
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Figure 7.2. The PI3K/AKT/mTOR pathway, and Aurora kinase A and the interactions 
with MYCN.  Inhibitors that are currently being investigated for the treatment of 
cancer are displayed (Gustafson and Weiss, 2010). 
 

7.2.3 Advantages and disadvantages of these targets 

Both MDM2 inhibitors and inhibitors of the PI3K/AKT/mTOR network are being 

investigated in a number of cancer types, including neuroblastoma and both are 

potential promising new therapeutic approaches for the treatment of MYCN-amplified 

disease.  In addition, since these compounds are showing activity in preclinical early 

phase studies in various cancer types, their development is appealing to pharmaceutical 

companies.  

PI3K plays a role in a wide range of normal biological processes and organ systems, 

and is responsible for inhibiting a number of other kinases.  This raises concerns about 

the potential toxicities associated with inhibiting this pathway and until recently 

presented a major hurdle (Workman et al., 2006).  Several subunits of PI3K and AKT 
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exist making drug design difficult.  Conventional PI3K inhibitors such as wortmannin 

or LY294002 do not discriminate between different PI3K isoforms and are toxic to 

normal tissues. The toxicity of PI3K inhibitors can be overcome by the use of isoform-

specific PI3K inhibitors, which were well tolerated in mice for the treatment of systemic 

lupus erythematosus (Marone et al., 2008).  Most toxicities of mTOR inhibitors are mild 

to moderate in severity but can usually be managed clinically by dose modification and 

supportive measures (Sankhala et al., 2009).  A number of recent studies have reported 

no toxicity with new specific compounds, including the PI-103 PI3K/mTOR inhibitor 

(Fan et al., 2006), and combined PI3K/mTOR inhibitors (Mazzoletti et al., 2011).  

Another option is to target PDK1, as with OSU03012, for which only 1 isoform exits 

which is capable of activating all AKT isoforms (Garcia-Echeverria and Sellers, 2008).  

Nutlin-3 and other MDM2-p53 antagonists have shown no toxicity to normal cells 

despite inducing p53 (Shangary et al., 2008; Vassilev et al., 2004).  The MDM2-p53 

antagonist MI-147 resulted in no weight loss or toxicity to normal tissues in a mouse 

model (Yu et al., 2009), and MI-219 treatment induced p53 but no apoptosis in normal 

cells, and was selectively toxic to tumour tissues (Shangary et al., 2008).  This 

compound also completely inhibited tumour growth when used in combination with 

irinotecan.  

The disadvantage of MDM2-p53 antagonists is that they require wildtype p53 for their 

mechanism of action, and this study and many previous studies have found them to be 

inactive in mutant cells.  However, targeting the p53 pathway is particularly attractive in 

neuroblastoma as it is usually wildtype, even at relapse, and since MDM2 is proposed 

as a mechanism by which MYCN-amplified tumours induce tumourigenesis, inhibition 

of MDM2 may tip the balance from MYCN-mediated cell proliferation in favour of 

MYCN-induced cell death.  However, a recent study found that SJSA-1 osteosarcoma 

cells that were exposed to repeated Nutlin treatment acquired somatic mutations within 

p53, suggesting that Nutlin selects for p53-mutations (Aziz et al., 2011), and this has 

also been found in in-house studies both in the SJSA-1 cell lines and in the 

neuroblastoma cell lines NGP.  This suggests a requirement for p53-independent 

therapies, or therapies that result in complete eradication of the tumour.  The use of 

MDM2-p53 antagonists in combination with low doses of chemotherapeutic agents 

looks promising.  
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7.3 Nutlin-3 in combination with chemotherapeutic agents  

Previous studies have shown that MDM2-p53 antagonists synergise with 

chemotherapeutic drugs in various cancer types including neuroblastoma, and therefore 

MDM2-p53 antagonists may be useful as an adjuvant to chemotherapy.   

In neuroblastoma cell lines, response to genotoxic drugs has been reported to be 

significantly enhanced upon disruption of the MDM2-p53 interaction (Barbieri et al., 

2006).   Nutlin-3 combined with stress-inducing cisplatin significantly reduced cell 

growth compared to cisplatin alone, with an 8-10 fold change in IC50, and apoptosis 

occurred in all cell lines tested.  Petroni et al found that Nutlin-3 sensitised MYCN-

amplified neuroblastoma cell lines to the effect of the DNA damaging agent bleomycin 

(Petroni et al., 2011).  Doxorubicin enhanced the sensitivity to Nutlin-3 induced 

apoptosis, further decreasing cell viability, and was associated with increased MYCN 

expression indicating that MYCN-driven apoptosis is important in neuroblastoma 

(Peirce and Findley, 2009a).    

Modern chemotherapy for the treatment of high risk MYCN-amplified neuroblastoma 

subjects patients to a high genotoxic burden that often presents long-term complications 

and late side effects (Laverdiere et al., 2009).  Combining established therapy with 

MDM2-p53 inhibitors would allow much lower doses of genotoxic drugs to be used 

since the genotoxic damage itself would not be potentiated. 

7.4 Do Nutlin-3 and MI-63 cause a p53-mediated cell cycle arrest and 

induce DNA damage? 

It has been previously reported that in a panel of neuroblastoma cell lines, most of 

which were used in this study, MYCN-amplification was significantly associated with a 

failure to G1 arrest following irradiation-induced DNA damage (Bell et al., 2006).  In 

the present study, the changes in cell cycle distribution following Nutlin-3 and MI-63 

treatment was cell line dependent; 3 of 10 MYCN-amplified cell lines G1 arrested in 

response to MDM2-p53 antagonists, compared to 4 of 8 non-MYCN amplified cell lines.  

The cell cycle response of several MYCN-amplified cell lines were investigated in more 

depth, and it was found that NGP cells and Tet21N (MYCN+ and MYCN-) cells G1 

arrested at very low concentrations of MDM2-p53 antagonists, TR14 partially arrested, 

and LAN5 and IMR32 cells remained in the cell cycle with concentrations of up to 

10µM Nutlin-3 or MI-63.   In addition, siRNA-mediated knockdown of MYCN did not 

alter the cell cycle response of any of these cell lines to MDM2-p53 antagonists.  In cell 
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lines that did arrest (NGP and Tet21N), the proportion of cells in G2 increased at 

increasing concentrations of compound, particularly with the more potent MI-63.  The 

G1 checkpoint is p53-dependent and a G1 arrest is more commonly associated with p53 

activation.  Activation of G2, however, can be p53-dependent or p53-independent and 

G2 arrest can be activated in response to DNA damage (Xiao et al., 2003). 

p53 is activated following DNA damage through phosphorylation, preventing binding to 

MDM2 (Shieh et al., 1997).  There are conflicting reports about whether MDM2-p53 

antagonists induce phosphorylation of p53, and whether Nutlin-3 induces DNA damage.  

In this study, phosphorylation of p53 at serine 15 was observed, and a difference in p53 

phosphorylation depending on MYCN status.  Another group report serine 15 

phosphorylation of p53, but at very low levels compared to doxorubicin, supporting a 

non-genotoxic mode of p53 activation by Nutlin-3 (Drakos et al., 2007).  Two studies 

have focused on the DNA damage response following Nutlin-3 treatment (Valentine et 

al., 2011; Verma et al., 2010).  p53 was phosphorylated at key DNA-damage specific 

residues (serine 15, 20 and 37) following Nutlin-3 treatment and Nutlin-3 also induced 

CHK2 and ATM, required for DNA damage dependent phosphorylation and activation 

of p53.  The DNA damage response was however, not significantly high compared to 

the DNA damage response initiated by other agents.  The use of MDM2-p53 

antagonists is therefore attractive from a therapeutic point of view, as they do not cause 

DNA damage or toxicity in normal tissues (Shangary et al., 2008; Vassilev et al., 2004).  

The failure of MYCN-amplified cells to G1 arrest in response to irradiation therapy, but 

not following MDM2-p53 antagonist treatment, may be because unlike irradiation, 

MDM2-p53 antagonists do not induce DNA damage, activating p53 in a non-genotoxic 

manner. 

7.5 Explaining the variations in sensitivity to MDM2-p53 antagonists 

in neuroblastoma cell lines 

In the panel of 18 p53 wildtype neuroblastoma cell lines investigated for their response 

to MDM2-p53 antagonist initially in Chapter 3, and again in Chapters 4 and 5, the 

sensitivity to Nutlin-3 and MI-63 was highly variable.   

As shown in Chapter 3 (Figures 3.19-3.23), whilst MYCN-amplified cell lines were 

overall more sensitive to MDM2-p53 antagonist mediated growth inhibition and 

apoptosis, there were large variations in growth inhibitory and apoptotic responses, 
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particularly in non-MYCN amplified cell lines.  The SKNRA cell line was particularly 

resistant to both growth inhibition and apoptosis following MDM2-p53 antagonist 

treatment.  This may be a result of CDKN2A mutation, caspase activity impairment or 

cell type as discussed in Chapter 5.4, or it could be that this cell line has particularly 

high levels of ΔNp73.  ΔNp73 expression levels have not been investigated in this study, 

but the impact of overexpression is discussed in Section 7.7. It is possible that ΔNp73 

expression influences the response of other cell lines within this panel also.  Other 

particularly resistant cell lines were those impaired for p14
ARF

 (discussed in Section 

7.6.4) .  The PER108 cell line, which is also p14
ARF 

impaired may only have partial 

methylation of p14
ARF

 (Carr et al., 2006) and could explain why it is more sensitive than 

the other p14
ARF

 impaired cell lines to growth inhibition and apoptosis, but is also one 

of the least sensitive MYCN-amplified cell lines to MDM2-p53 antagonist mediated 

apoptosis.   

MDMX levels were also shown to impact on response to MDM2-p53 antagonists, and 

within this panel of cell lines, MDMX expression levels correlated with caspase 3/7 

activity following Nutlin-3 and MI-63 treatment (discussed in Section 7.6.1).  In 

addition, cell type has an influence on the response to MDM2-p53 antagonists, with N-

type cells displaying increased sensitivity, and S-type cells being more resistant to 

apoptosis (discussed in Section 7.6.2). 

7.6 The p53-MDM2/MDMX-p14
ARF

 network and response to MDM2-

p53 antagonists 

During the process of neuroblastoma development and progression, MYCN-

amplification is often associated with defects within the p53/MDM2/p14
ARF

 network 

(shown in Figure 7.1) (Carr-Wilkinson et al., 2010; Carr et al., 2006).  Functional 

change in this network is proposed as a mechanism by which MYCN-amplified 

neuroblastomas evade MYCN-driven p53-dependent apoptosis.  MDMX expression 

levels and influence on treatment response have not been previously investigated in 

neuroblastoma. 

7.6.1 MDMX and response to MDM2-p53 antagonists 

As described in Chapter 1.7, MDMX is a negative regulator of p53.  MDMX directly 

binds and inhibits p53 transcriptional function, and also forms a heterodimer with 

MDM2, stabilising MDM2 and promoting degradation of p53.  In addition, MDMX is 
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reportedly involved in the cytoplasmic tethering and subsequent inactivation of p53 in 

some cancer types (Ohtsubo et al., 2009).   

MDMX is overexpressed in up to 30% of cancers and in many cancer cell lines (Toledo 

and Wahl, 2007; Ramos et al., 2001).  Since MDMX expression levels have not been 

investigated in neuroblastoma, MDMX protein expression was determined in a panel of 

cell lines.  In contrast to MDM2, MDMX expression was highly variable and did not 

correlate with MYCN, p53 or p14
ARF

 status, and was expressed at low levels in MDM2-

amplified cell lines, consistent with a previous report suggesting that MDM2 and 

MDMX overexpression are mutually exclusive (Danovi et al., 2004), despite MDMX 

being required for the stabilisation of MDM2.  Interestingly, MYCN(+) Tet21N cells 

had increased MDMX protein levels compared to MYCN(-) cells, but not RNA levels, 

suggesting an indirect post-transcriptional method of regulation. However, in addition 

to a lack of correlation between MYCN and MDMX in a panel of cell lines, siRNA-

mediated knockdown of MYCN did not support this theory and therefore any link 

between MYCN and MDMX remains unclear.   

Nutlin-3 is ineffective at disrupting the MDMX-p53 interaction, despite the close 

sequence and structural similarities with MDM2 (Hu et al., 2006; Wade et al., 2006).  

As a negative regulator of p53, MDMX may continue to suppress p53 activity following 

MDM2-p53 antagonist treatment.  Previous studies have found that the cellular activity 

of MDM2-p53 inhibitors is decreased by MDMX, and Nutlin-3 does not induce 

apoptosis in cancer cells that express high levels of MDMX (Hu et al., 2006; Marine et 

al., 2006; Patton et al., 2006; Wade et al., 2006).  MDMX knockdown sensitised cells to 

Nutlin-3 induced apoptosis (Hu et al., 2006; Wade et al., 2006), and the resistance to 

Nutlin-3 was completely lost upon deletion of the C-terminal RING finger of MDMX 

where it binds MDM2 probably as a result of subsequent MDM2-mediated degradation 

(Patton et al., 2006).   Recently, an Hsp90 inhibitor that promotes MDMX degradation 

was found to dramatically enhance the apoptotic effects of Nutlin-3 both in vitro and in 

xenograft models (Vaseva et al., 2011), and a small molecule inhibitor of MDMX 

expression, XI-006, increased p53 activity and induced pro-apoptotic effects in an 

additive manner (Wang et al., 2011).  However, XI-006 was also active in p53 mutant 

cell lines suggesting the action is not specific. In addition, another small molecule 

MDMX inhibitor (SJ-172550) which binds reversibly to MDMX, killed retinoblastoma 

cells overexpressing MDMX (Reed et al., 2010), and small peptides that disrupt the 

MDMX- and MDM2-p53 interaction induced both p53 and apoptosis (Hu et al., 2007a).  
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In the present study, knockdown of MDMX alone induced high levels of p53 and p53-

responsive genes, and induced caspase 3/7 activity.  Together with the literature, this 

data suggests that removal of MDMX may be necessary for the efficient activation of 

the p53 response following MDM2-p53 antagonist treatment in neuroblastoma.  

However, in contrast to reports elsewhere with other cell types, MDMX knockdown in 

neuroblastoma cell lines in this present study resulted in decreased sensitivity to Nutlin-

3 and MI-63 mediated apoptosis, and MDMX protein expression positively correlated 

with treatment induced caspase 3/7 activity.  The cell line that expressed the highest 

levels of MDMX, LAN5, had reduced levels of p53 and p53 responsive genes following 

MDMX knockdown and MDM2-p53 antagonist treatment, whereas the other two 

MDM2-amplified cell lines did not.  However, apoptosis was induced at similar levels 

in all three cell lines.  The MDM2-amplified cell lines may be less dependent on 

MDMX for the activation of p53, and the effect seen on apoptosis may be independent 

of, or downstream of p53.  These results suggest that MDMX removal impairs the 

apoptotic response to MDM2-p53 antagonists in neuroblastoma, regardless of MDMX 

expression levels, and that tumour cells with high levels of MDMX are more sensitive 

to MDM2-p53 antagonist mediated apoptosis.   

MDMX was degraded at the protein level upon MDM2-p53 antagonist treatment, 

particularly with MI-63, in all 3 cell lines tested.  In the study by Hu et al, no MDMX 

degradation occurred in the U2OS cells in which the effect of MDMX knockdown and 

combined Nutlin-3 treatment was tested, and similarly in the MCF-7 cells used in the 

Wade et al. study (Hu et al., 2006; Wade et al., 2006).  Xia et al tested a random panel 

of solid cancer cell lines for the effect of Nutlin on MDMX expression and found that in 

the majority of cases MDMX was degraded, but in the few cell lines it was not, then it 

was a major suppressor of the apoptotic response (Xia et al., 2008).  This may explain 

the differences in response upon MDM2-p53 antagonist treatment and MDMX 

knockdown in this study compared to the previous two studies.  In neuroblastoma, when 

MDM2 is inhibited, the degradation of MDMX may be MDM2-dependent as MDM2 

levels increase and MDM2 promotes ubiquitination of MDMX. 

This data suggests that MDMX is not a major inhibitor of the p53 response, particularly 

apoptosis, in neuroblastoma, and that MDMX expression co-operates with MDM2-p53 

antagonists to induce apoptosis.   The link between MDMX and p53, and whether the 

primary role of MDMX is directly inhibiting p53 transactivation function, or stabilising 

MDM2, is not entirely clear.    
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7.6.2 Cell type and response to MDM2-p53 antagonists 

An alternative explanation for the MDMX associated sensitisation to apoptosis in 

neuroblastoma upon MDM2-p53 antagonist treatment is the strong association between 

MDMX expression and cell type.  Neuroblastomas comprise 3 cell types; N, S and I as 

described in Chapter 1.4.  N-type cells are more tumourigenic and are associated with 

increased apoptosis in response to DNA damage compared to S-type cells, which 

generally have increased p21
WAF1

 and are more likely to G1 arrest (Carr-Wilkinson et al., 

2011; Mergui et al., 2008; Isaacs et al., 1998).  Similarly, found in this study, in 

response to MDM2-p53 antagonists N-type cells were significantly associated with 

increased apoptosis compared to S-type cells.  However, despite seeing a link between 

S-type cells and cell cycle arrest following irradiation, there was no link following 

MDM2-p53 antagonist treatment, with 4 of each N and S cell type cell lines showing G1 

arrest (Figure 5.13). 

However, unlike irradiation, there was no link with S-type and cell cycle arrest 

following MDM2-p53 antagonist treatment, with 4 of each N and S cell type cell lines 

showing G1 arrest (Figure 5.13). It is likely that neuroblastoma cell type (and therefore 

differentiation status) influences MDMX expression levels and that N-type cells have 

increased MDMX expression.  Because of the contrast to previous reports, it may be 

that the response to MDM2-p53 antagonists is dominated by cell type rather than 

MDMX expression and that other proteins co-expressed in N-type cells are responsible 

for the sensitisation observed,  especially since MDMX knockdown alone activates p53.  

In addition, N-type MYCN-amplified neuroblastoma cells had increased sensitivity to 

the AurkA inhibitor MLN8054 (Shang et al., 2009). The studies in this thesis suggest 

that cell type may be important in determining the response to MDM2-p53 antagonists 

but the link between cell type, MDMX expression and response to MDM2-p53 

antagonist remains to be established.  

7.6.3 MDM2 and MDM2-p53 antagonists 

MDM2 is amplified in up to 13% of cases of neuroblastoma in one study, and usually 

occurs with MYCN-co-amplification (Carr-Wilkinson et al., 2010).  High levels of 

MDM2 expression can occur even in neuroblastomas without MDM2-amplification, and 

in some cases is associated with a single nucleotide polymorphism in the MDM2 gene 

promoter (Cattelani et al., 2008).  Previous reports have shown that in non-

neuroblastoma cell types, the effect of MDM2 on the response to MDM2-p53 
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antagonists is variable, and may be cancer or cell type specific (Liu et al., 2009; Gu et 

al., 2008b; Kojima et al., 2006; Tovar et al., 2006; Van Maerken et al., 2006; Kojima et 

al., 2005).  In this study, and in contrast to the effects seen upon MDMX knockdown, 

MDM2 knockdown in MDM2-amplified cell lines did not influence the apoptotic 

response to MDM2-p53 antagonists, and the effect on cell cycle remains to be 

investigated.  On the other hand, MDM2-amplified cell lines had increased caspase 3/7 

activity in response to MDM2-p53 antagonists.  Since MDM2 knockdown had little 

effect, this may be as a result of p14
ARF

 overexpression in these cell lines.     

The relationship between MDM2 expression and cell type was not investigated in this 

study.  The 4 MDM2-amplified cell lines were N-type, but in a previous study in non-

MDM2-amplified cell lines, high MDM2 expression was associated with S-type cells 

(Carr-Wilkinson et al., 2011).    

Interestingly, Nutlin-3 treatment has been reported to potentiate the ability of 

doxorubicin to block cell proliferation and induce apoptosis in a p53 mutant cell line, as 

a result of TAp73 and E2F1 release from MDM2, suggesting that the p53-independent 

effects of MDM2-p53 antagonists might be useful in p53 mutant cells for potentiating 

other agents (Peirce and Findley, 2009b).   

7.6.4 p14
ARF

 and MDM2-p53 antagonists 

p14
ARF

 is a key sensor of hyperproliferative signals generated by activated oncogenes, 

and in turn activates both p53-dependent and p53-independent pathways (Sherr, 2006).  

Within the p53 network, p14
ARF

 is a negative regulator of MDM2, is induced by p53 

and inhibits the function of MYCN as shown in Figure 7.1.  p19
ARF

 null mice are highly 

susceptible to tumour development (Kamijo et al., 1997), and previous studies have 

shown that CDKN2A mutations induce chemoresistance by disabling p53 (Schmitt et al., 

1999).  CDKN2A mutations may affect both p14
ARF

 and p16
INK4a

 as they are encoded by 

the same gene (as described in Chapter 1.13).  They are very common in melanoma 

(Kefford et al., 1999), but have not been reported in neuroblastoma.  However, p14
ARF 

is 

frequently inactivated through homozygous deletion or methylation in neuroblastoma 

(Caren et al., 2008; Thompson et al., 2001; Takita et al., 1997).  Methylation of p14
ARF 

occurred in 7-14% of neuroblastomas, and homozygous deletion (affecting both p14
ARF 

and p16
INK4a

) in up to 22% of cases (Carr-Wilkinson et al., 2010; Bassi et al., 2004; 

Omura-Minamisawa et al., 2001; Thompson et al., 2001; Diccianni et al., 1996).   

Despite MDM2 expression having been proposed as a mechanism by which MYCN-
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amplified neuroblastomas evade p53-dependent apoptosis, p19
ARF

 was lost in MYCN 

transgenic tumours with MDM2 haploinsufficiency (Chen et al., 2009).  This suggests 

that either loss of p14
ARF

, or increased expression of MDM2 may be required to disable 

the pro-apoptotic functions of MYCN.   

The data presented in this thesis is in agreement with previous reports by Van Maerken 

et al (Van Maerken et al., 2011; Van Maerken et al., 2006). Cell lines that were p14
ARF

 

impaired (SHEP and LAN6) were resistant to MDM2-p53 antagonist mediated 

apoptosis.  Interestingly, in this study, 3 of 4 of these cell lines were not amplified for 

MYCN, suggesting that the mechanism by which p14
ARF

 inactivation suppresses the p53 

response is not MYCN driven.   Also, 3/4 of these cell lines (one of which was MYCN-

amplified) underwent a pronounced G1 arrest following Nutlin-3 treatment, suggesting 

that p14
ARF

 impairment may protect against apoptosis.  It remains to be determined 

whether this arrest is reversible or not.  In this present study, p21
WAF1

 levels upon 

p14
ARF

 knockdown were not determined, and neither was the cell cycle response.  

Because of the low levels of p14
ARF

 expression in neuroblastoma cells, and because of 

the lack of specific p14
ARF

 antibodies for Western blotting, in the present study, p14
ARF

 

was only knocked down in 3 MDM2-amplified cell lines which overexpress p14
ARF

.  

Whilst p14
ARF 

knockdown alone resulted in decreased caspase activity, p53 and MDM2 

levels were not affected. Upon MDM2-p53 antagonist treatment, a decrease in the 

apoptotic markers cleaved caspase 3 and PARP cleavage was observed, suggesting that 

removal of p14
ARF

 impairs the apoptotic response, but again no change in p53 and p53 

responsive genes including PUMA, was observed.  This suggests that the apoptotic 

response may be p53-independent and may be due to p14
ARF

 knockdown having little 

effect on MDM2 due to MDM2-amplification in these cell lines. Interestingly caspase 

activity following p14
ARF

 knockdown and MDM2-p53 antagonist treatment did 

decrease compared to MDM2-p53 antagonist treatment alone, but not significantly, and 

therefore the effect of p14
ARF

 on the response to MDM2-p53 antagonists requires 

further investigation.  Van Maerken et al used both non-MDM2 amplified IMR32 cells, 

and MDM2-amplified NGP cells for siRNA-mediated knockdown of the CDKN2A gene 

(both p14
ARF

 and p16
INK4a

) (Van Maerken et al., 2011).   Cell viability following Nutlin-

3 treatment in both cell lines increased in response to the knockdown, suggesting that 

the MDM2-amplification in NGP cell lines is not altering the apoptotic response 

compared to non-MDM2 amplified IMR32 cells.  However, the effect on p53 

expression was not reported.  CDKN2A overexpression in IMR32 derived IMR5/75 
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(IMR-32 cells with inducible CDKN2A expression) cells resulted in a decreased IC50 for 

Nutlin, and increased caspase activity.  In agreement, the present study found increased 

caspase activity in response to MDM2-p53 antagonists in the p14
ARF

 overexpressing 

MDM2-amplified cell lines.  However, previous studies have found that p14
ARF

 

overexpression in SHEP cells did not restore sensitivity to MDM2-p53 antagonists 

showing cell type may also be important (Van Maerken et al., 2011), and that 

restoration of p14
ARF 

function in GIMEN cells did not restore sensitivity to IR (Carr et 

al., 2006).   

Taken together, this data indicate that p14
ARF 

has a stimulatory effect on the Nutlin-3 

response, and that p14
ARF

 may signal for an apoptotic response independently of p53, 

for example, by increasing protein synthesis or regulating pathways that cross talk with 

p53 signalling (Miao et al., 2010; Rocha et al., 2005).    

7.7 p73 and the response to MDM2-p53 antagonists in neuroblastoma  

Some of the results observed in this study were either unexpected or difficult to explain. 

For example, the NGP cell line behaved differently following MYCN knockdown and 

MDM2-p53 antagonist treatment compared to 4 other cell lines tested, and MDMX 

knockdown sensitised neuroblastoma cell lines to the effects of MDM2-p53 antagonists 

whereas in other cancer types MDMX knockdown has been shown to desensitise to 

Nutlin-3.  In addition, there were high degrees of variation in the 18 p53 wildtype cell 

lines investigated for their apoptotic and growth inhibitory response to MDM2-p53 

antagonists.    A possible explanation for these results may be aberrant expression of the 

p53 family member, p73 which was not investigated in the current study.   

Both p73 and p63 are similar to p53 in amino acid sequence and function, with the 

transactivating isoforms (TAp63/p73) able to induce cell cycle arrest and apoptosis.  

However, the truncated isoforms (ΔNp63/p73) are oncogenic, promoting cell 

proliferation.   Whilst p63 has been implicated in some cancer types, levels are very low 

in the central nervous system (Jacobs et al., 2005), and there are no studies reporting 

aberrant expression of p63, or a role for p63 in the development of neuroblastoma.  p73 

expression however, has been shown to be essential for neurogenesis.  In primary 

neuroblastomas, ΔNp73 is overexpressed in up to 30% of tumours, and correlates with a 

poor prognosis independently of all other neuroblastoma risk factors (Casciano et al., 

2002).  In addition, TAp73 but not ΔNp73 is bound by MDM2, blocking activity and 

relocalising TAp73 to the cytoplasm (Wang et al., 2001), and may impact particularly 
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on the response of MDM2-amplified neuroblastomas to MDM2-p53 antagonists.  

MDMX also binds p73 and inhibits p73 transactivation, but whether this is true for both 

p73 isoforms is unknown (Ongkeko et al., 1999).  ΔNp73 also inhibits the function of 

p53 and TAp73, suggesting that overexpression of ΔNp73 may decrease the activity of 

p53 and TAp73 released as a result of MDM2-p53 antagonist treatment.   

Nutlin-3 disrupts the MDM2-p73 interaction in addition to the MDM2-p53 interaction 

(Lau et al., 2008).  Nutlin-3 and several chemotherapeutic agents have also been shown 

to induce TAp73 in a p53 wildtype and p53-null cell lines in an E2F-dependent manner, 

which undergo apoptosis dependent on TAp73 (Peirce et al., 2009).    However, 

increased expression of ΔNp73 may downregulate TAp73, particularly since ΔNp73 is 

also a transcriptional target of both p53 and TAp73.  These data suggest that ΔNp73 

expression levels may be important in determining the response to MDM2-p53 

antagonists Nutlin-3 and MI-63, and may be responsible for the differences observed in 

the panel of neuroblastoma cell lines.  In addition, MYCN has been shown to decrease 

total p73 levels, and this may play a role in sensitising MYCN-amplified cell lines to 

apoptosis as a result of decreased ΔNp73.  

The expression levels of ΔNp73 should be investigated in the panel of neuroblastoma 

cell lines used in this study, to determine if there is any link between ΔNp73 expression 

and response to MDM2-p53 antagonists.  In addition, 1p36 status should be determined 

in the panel of cell lines as 1p36 LOH is a frequent event in neuroblastoma, and loss of 

p73 may explain why some cell lines are more sensitive than others, as a result of 

reduced ΔNp73.  ΔNp73 inhibitors in combination with MDM2-p53 antagonists could 

be potential therapeutic targets for the treatment of neuroblastoma.     
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7.8 Concluding remarks and future work 

The work in this thesis set out to investigate the effects of varying MYCN, p53, MDM2, 

MDMX and p14
ARF

 expression on the response to the MDM2-p53 antagonists Nutlin-3 

and MI-63 in neuroblastoma.  The major findings are: 

 MYCN sensitises neuroblastoma cell lines to MDM2-p53 antagonist mediated 

apoptosis. 

 MDMX expression is associated with cell type, with N-type cells having high 

MDMX expression and S-type low.  N-type and increased MDMX expression 

was associated with increased sensitivity to MDM2-p53 antagonist mediated 

apoptosis.   

 p14
ARF

 expression has a sensitising effect of neuroblastoma cell lines to MDM2-

p53 antagonists, and impairment results in a G1 arrest following Nutlin-3 

treatment which may be a protective effect responsible for the low levels of 

apoptosis induced in these cell lines. 

Several lines of evidence suggest that MYCN and the status of the p53-

MDM2/MDMX-p14
ARF

 pathway influence the response to MDM2-p53 antagonists, and 

if the results were to be confirmed in in vivo models, they may be useful as biomarkers 

for predicting response to MDM2 inhibitor treatment for neuroblastoma tumours. This 

could be tested in due course directly on patient samples if MDM2-p53 antagonists go 

into clinical trials on neuroblastoma patients, as seems likely. 

All of the data presented in this thesis comes from in vitro studies using cell lines.  In 

vivo models are required to confirm the findings in a preclinical setting.  This could 

involve the establishment of MYCN-amplified and non-amplified xenografts in 

immunodeficient nude mice to determine tumour volume index, tumour weight and 

tumour growth following MDM2-53 antagonist treatment after varying components of 

the p53-MDM2/MDMX-p14
ARF 

network.  MI-63 could not be used as it has poor oral 

bioavailability, but a number of related compounds such as MI-219 could be tested in 

addition to a Nutlin-3 related compound RG7112 which is currently in clinical trials for 

patients with solid tumours (http://clinicaltrials.gov/show/nct00559533).  Xenograft 

models using p14
ARF

 impaired cell lines would be useful in determining the long term in 

vivo effects of p14
ARF

 impairment and the G1 arrest observed following Nutlin-3 

treatment.  In addition, the MYCN transgenic mouse model could be used to assess the 

effect of MYCN on the sensitisation to Nutlin.  MYCN transgenic mice express varying 
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levels of MYCN, and MYCN overexpressing mice  can be interbred to produce mice 

with increased dosage of the MYCN transgene.  Since Nutlin-3 may select for p53 

mutants, the long-term effects of MDM2-p53 antagonist treatment needs to be assessed, 

and the possibility of combining MDM2-p53 antagonists with low doses of cytotoxic 

agents.  
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Appendix I – Buffers and Instrument Settings 

 

Cell Culture buffers 

 

Carnoy’s fixative 

1 part glacial acetic acid (BDH) 

3 parts methanol (Fisher Scientific, HPLC grade) 

 

Western Blotting buffers 

 

Laemmli (lysis)Buffer 

0.0625M Tris-HCl pH 6.8 

2% SDS (Sigma) 

10% Glycerol (Sigma) 

 

Laemmli Loading Buffer 

0.0625M Tris-HCl pH 6.8 

2% SDS (Sigma) 

10% Glycerol (Sigma) 

5% β-mercaptoethanol (Sigma) 

0.0025% Bromophenolblue (Biorad) 

 

Electrophoresis Buffer 

 16.15g Tris 

 72.05g Glycine 

 5g SDS 

 Made up to 5 litres with ddH2O 

 

Transfer Buffer 

 3.03g Tris 

 14.14g Glycine 

 200ml Methanol 

 Make up to 1 litre with ddH2O 

 

10x TBS Tween 

 180g NaCl 

 120g Tris 

 2 litres ddH2O 

 pH 7.5 with HCl 

 10ml Tween 20 (Sigma) 

 

Pierce assay plate set up: 

 

 
water 0.2mg/ml  0.6mg/ml 1.0mg/ml 1 3 5 7 9 11 13 15 

water 0.2mg/ml 0.6mg/ml 1.0mg/ml 1 3 5 7 9 11 13 15 

water 0.2mg/ml 0.6mg/ml 1.0mg/ml 1 3 5 7 9 11 13 15 

water 0.2mg/ml 0.6mg/ml 1.0mg/ml 1 3 5 7 9 11 13 15 

water 0.4mg/ml 0.8mg/ml 1.2mg/ml 2 4 6 8 10 12 14 16 

water  0.4mg/ml 0.8mg/ml 1.2mg/ml 2 4 6 8 10 12 14 16 

water  0.4mg/ml 0.8mg/ml 1.2mg/ml 2 4 6 8 10 12 14 16 

water 0.4mg/ml 0.8mg/ml 1.2mg/ml 2 4 6 8 10 12 14 16 

BSA Standards Unknowns 
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FACs instrument settings (for LAN5 cells): 

 

Parameter Detector Voltage Amp gain Mode 

P1 FSC E-1 4.26 Linear 

P2 SSC 350 1 Linear 

P3 FL1 150 1 Linear 

P4 FL2 408 1 Linear 

P5 FL3 150 1 Linear 

P6 FL2-A  1 Linear 

P7 FL2-W  2.15 Linear 

 

Agarose gel electrophoresis 

 

Loading buffer 

 800µl glycerol 

 0.2mg (0.05%) bromophenol blue 

 40µl 0.5M EDTA 

 Made up to 2ml with dH2O 

 

5x TBE buffer 

455mM Tris 

445mM Boric acid 

10mM EDTA 

Made up to 5L in distilled water 
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