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Abstract 

 

Telomeres are specialised DNA-protein structures capping or protecting the 

chromosome ends from shortening, degradation and fusions. Telomere uncapping 

occurs when some of the proteins associated with telomeres lose their integrity. For 

example in yeast a point mutation in the gene encoding the telomere binding protein 

Cdc13 called cdc13-1, leads to conditional telomere uncapping at temperatures above 

26º C.  

In this thesis I have utilised the cdc13-1 model system to study repair after telomere 

uncapping. De-protection of the telomere triggers resection of the AC rich strand in 5’ 

to 3’ direction and formation of single stranded DNA (ssDNA). Checkpoint proteins 

are readily recruited to the damage and halt the cell cycle. However no ssDNA re-

synthesis has been observed in cdc13-1 cells with uncapped telomeres. Here I will 

show that the ssDNA damage in cdc13-1 cells recruits polymerase α, ε and δ and the 

clamp PCNA but in normal circumstances efficient repair is not observed. Only when 

telomeres are recapped the ssDNA could be re-synthesised and this depended on the 

polymerase δ subunit Pol32 but did not require the non-essential subunits Dpb3 and 

Dpb4 from polymerase ε.  

Interestingly, ssDNA re-synthesis at uncapped telomeres could be stimulated through 

mild osmotic pressure and required both polymerase δ and ε. Furthermore mild 

osmotic pressure could also rescue cells damaged with methyl methanesulfonate but 

not with UV light or hydroxyurea. 

 My data suggests that single stranded DNA re-synthesis may be specifically inhibited 

or compete with resection when telomeres are uncapped and that osmotic pressure 

stimulated re-synthesis by regulating polymerases α, ε and/or δ.  
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1 Introduction 
 

In 1938 Herman Muller first proposed the existence of a structure at the end of chro-

mosomes that he referred to as the “terminal gene” or telomere from the Greek words 

for “end” (telos) and “part” (meros). He was working on deletions and inversions fol-

lowing irradiations in Drosophila melanogaster but he never found such mutations at 

the very end of chromosomes. Muller suggested that the “terminal gene” must seal the 

chromosome end and prevent it from alterations. Later on in 1978 Elisabeth Black-

burn identified the repetitive telomeric sequence required to maintain linear chromo-

somes in the protozoa Tetrahymena and it soon became apparent that the telomere was 

conserved in many organisms including human (Greider, 1998).  

 

1.1 Telomere function 
 

Telomeres are specialised protein bound DNA repeats situated at eukaryotic chromo-

some ends that function in chromosome end protection. These structures carry out 

several essential functions that regulate cell fate. First of all telomeres “hide” the 

chromosome terminus from the DNA damage response. This became apparent when 

loss of telomere bound proteins led to checkpoint activation followed by repair 

through recombination or fusion leading to severe genomic instability (Deng & 

Chang, 2007). Thus it seems like unprotected telomeres are perceived by the cells as 

double strand breaks.  

The other crucial function of telomeres is to ensure telomere length maintenance. 

Normal telomere length is crucial for proliferation capacity and prevents chromosome 

shortening. Short telomeres either attract a special polymerase, called telomerase, to 

perform telomere elongation or trigger cell cycle arrest, preventing potential loss of 

genetic information. Severe telomere attrition triggers senescence – a process leading 

to permanent irreversible growth arrest. This arrest happens after a defined number of 

cell divisions and is also termed “the Hayflick limit” (Rodier & Campisi, 2011). 

Therefore telomeres also determine the cellular life span.  
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Another not well understood function of telomeres is chromosome end anchoring at 

the nuclear periphery in both mammalian and yeast cells (Hediger et al, 2002; 

Molenaar et al, 2003). Interestingly it has been shown that short telomeres and irrepa-

rable or slow repaired double strand breaks can be shuttled specifically to the nuclear 

pores, where recombination repair takes place (Lisby et al, 2010). 

 

1.2 Telomere organization 
 

Telomeric DNA is composed of tandem TG/AC repeats that can span from 300bp in 

the yeast Saccharomyces serevisiae to 10kb in human and up to 50kb in some rodents 

(Gatbonton et al, 2006; Kipling & Cooke, 1990; Wise et al, 2009). The very ends of 

telomeres have a single stranded stretch called the 3’ overhang. Because the overhang 

is rich in TG repeats, it can also be referred to as G tail or TG strand, while the oppo-

site strand is called 5’ strand or AC strand. In mammalian cells the telomeres loop 

back and the 3’ overhang invades the double strand providing a more closed confor-

mation of the telomere. This looping is mediated by the telomere binding protein 

TRF2 and could be involved in telomere protection and telomere length regulation 

(Greider, 1999). Yeast telomeres also loop and this is mediated by Sir proteins but it is 

not clear whether the 3’overhang also invades the DNA double strand (de Bruin et al, 

2001).  

Telomeres can form another structure, called G quadruplex, when four guanines form 

a square arrangement, stabilised by ligands such as K
+
. These structures are more sta-

ble than dsDNA and their formation at telomeres can inhibit telomerase – the special-

ised polymerase that extends telomeres using its own RNA moiety as template 

(Huppert, 2008). G-quadruplexes are also present at promoter regions where they par-

ticipate in gene transcription regulation (Balasubramanian et al, 2011). 

Another set of repetitive regions termed subtelomers is situated adjacent to telomeres. 

There are two types of subtelomeres: X and Y’ elements. The Y’ subtelomere is not 

present on all chromosomes and can be repeated up to four times, while all chromo-

somes contain the more structurally diverse X subtlomere. Recent studies show that 

Y’ subtelomeres exhibit high nucleosome density and are transcriptionally active, 

while X subtelomeres have virtually no histones but were bound by two telomere 

binding proteins Rap1 and Sir3. These proteins confer transcription repression at X 
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elements.(Zhu & Gustafsson, 2009) The human subtelomere organisation is very di-

verse and can span from 1kb to 300kb (Riethman et al, 2005). 

Recent studies show that telomeres are associated with non-coding telomeric repeat-

containing RNAs (TERRA) that may function in telomerase regulation. TERRA is 

more abundant at long telomeres and forced telomere transcription leads to telomere 

shortening (Luke et al, 2008; Schoeftner & Blasco, 2008). Transcription of this telo-

mere associated RNA starts at the subtelomeres and is present at all chromosomes. 

 

1.3 Telomere binding proteins 
 

Telomere binding proteins confer most of the functions of the telomere. Although 

there are subtle differences between the proteins associated with telomeric repeats 

from different organisms, most of them are functionally conserved. Telomeres contain 

both single stranded and double stranded binding proteins as well as proteins that do 

not bind DNA directly (Figure1). 

 

1.3.1 Cdc13, Stn1 and Ten1 or the CST complex 

 

Cdc13, Stn1 and Ten1 are essential telomere binding proteins that associate specifi-

cally to single stranded telomeric repeats via Cdc13 (Figure 1A). (Gao et al, 2007; 

Hughes et al, 2000). The main functions of the CST complex are to protect the telo-

mere form degradation and to ensure telomere replication by recruitment of telomer-

ase and polymerase α. 

Based on structural similarities it has been proposed that Cdc13, together with its es-

sential binding partners Stn1 and Ten1 form a RPA-like complex, termed CST com-

plex (Gao et al, 2007; Paschini et al, 2010). However, while RPA has low specificity 

for DNA and aids initiation of the DNA damage response after it binds ssDNA; CST 

shows specificity to single stranded TG repeats and is involved in telomere protection 

and telomerase recruitment. It is believed that the functional differences between RPA 

and CST are due to the different organisation of the OB-folds in Cdc13 and the addi-

tional domains in Stn1, compared to their RPA homologues Rpa1 and Rpa2 respec-

tively.  
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Although binding of Cdc13 to DNA is essential for cell viability, it is not sufficient 

for function, because a truncated Cdc13 that contains only the DNA binding domain 

(DBD) fails to grow above 27ºC (Hughes et al, 2000; Wang et al, 2000). Interestingly 

when Stn1 is fused to DBDcdc13, viability is restored but the strain enters senescence. 

Further fusion of Est1 to the Stn1-DBD cdc13 rescued the senescence phenotype 

(Pennock et al, 2001). This shows that Stn1 is sufficient for telomere protection and 

Est1 recruitment to telomeres is sufficient for telomere maintenance. Furthermore 

overexpression of Stn1 and Ten1 could completely bypass the requirement for Cdc13, 

perhaps due to better recruitment of Stn1 and Ten1 to telomeres (Petreaca et al, 2006).  

Cdc13 contains four OB-folds and a recruitment domain (RD). The OB3-fold exhibits 

strong, TG specific ssDNA binding, while the telomerase interacting OB1-fold has 

lower DNA binding affinity. Disruption of OB1 DNA binding but not OB3-fold led to 

telomere elongation, suggesting that OB1 association with DNA is required for te-

lomerase dependent telomere maintenance (Mitchell et al, 2010). Furthermore, in 

vitro experiments suggest that Cdc13 forms stable dimers in liquid via its N terminal. 

Cdc13 dimerization seemed to be important for recruitment of telomerase to telo-

meres in vivo, because mutants that could not form dimmers had longer telomeres 

(Mitchell et al, 2010). Interestingly point mutations in Ten1 and Stn1, led to telomere 

elongation, linking the CST complex to both positive and negative regulation of telo-

mere length.(Grandin et al, 2001).  

Recent studies also show that Cdc13 is phosphorylated in vivo probably through Mec1 

and/or Ten1 and Cdk1. It was proposed that such phosphorylation events might also 

be important for telomerase recruitment through Est1.(Gao et al, 2010; Li et al, 2009; 

Tseng et al, 2006).  

The capping function of the CST complex was confirmed in Ten1, Stn1 and Cdc13 

temperature sensitive mutants. These mutants accumulate single stranded DNA at el-

evated temperatures indicating a telomere capping defect (Booth et al, 2001; Petreaca 

et al, 2007; Xu et al, 2009). Interestingly while Cdc13 mutants generated ssDNA in 5’ 

to 3’ direction starting from the end on the telomere, some TEN1 and STN1 point mu-

tants had only internal ssDNA.  

Apart from recruiting Stn1, Ten1 and telomerase to telomeres, Cdc13 can also interact 

in vivo with the catalytic subunit of polymerase α Pol1, the silencing regulators Sir4 

and Zds2 and the component of U3 snoRNA Imp4, required for pre 18S rRNA pro-

cessing. (Hsu et al, 2004; Qi & Zakian, 2000).  
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Mutations in Pol1 or Cdc13 that disrupt the interaction between these two proteins did 

not compromise cellular growth but led to elongated telomeres, suggesting that this 

interaction is only required for telomerase regulation but not for viability(Qi & 

Zakian, 2000). Stn1 also interacts with Polymerase α through the B subunit Pol12 

(Puglisi et al, 2008). Previousely it was shown that addition of TG repeats by telomer-

ase requires polymerase α and δ, suggesting that telomerase activity on the TG strand 

is coupled to AC strand synthesis and that the CST complex could aid telomere elon-

gation by recruiting any of those enzymes (Diede & Gottschling, 1999). 

The mammalian homologue of Cdc13 is also a 3’ overhang binding protein, called 

Pot1 (Figure 1B). Pot1 is recruited to telomeres through its DNA binding domain and 

through an additional interaction with the mammalian telomere binding protein TPP1 

and their interaction is essential for telomerase recruitment (Wang et al, 2007).  

Mammalian cells also have a CST complex; however it does not contain POT1 but 

instead is formed by Ctc1, human Stn1 and human Ten1. Interestingly this complex 

does not bind with high specificity to TG repeats and was associated with only a frac-

tion of the telomeres (Miyake et al, 2009). CST does not play an essential role at te-

lomeres but similarly to yeast Stn1, loss of human Stn1 also lead to single stranded 

DNA accumulation at telomeres (Miyake et al, 2009).  

 

1.3.2 Rap1 and binding partners 

 

Rap1 is an essential double stranded DNA binding protein that recruits at least two 

sets of proteins to the telomere: the Rif complex (Rif1 and Rif2) that control telomere 

length and the Sir complex (Sir3, Sir4 and Sir2), required to establish silencing of the 

DNA around the telomere (Figure 1A). The protein interactions of Rap1 are mediated 

through its C terminal while the N-terminal is required for DNA binding (Feeser & 

Wolberger, 2008). Interestingly, a C-terminal deletion is viable, showing that Rap1 

has other essential functions beside the ones conferred by its well known binding 

partners. Therefore it seems like the N-terminus may contain the essential function of 

Rap1. Apart for binding telomeres, Rap1 also acts as a transcription activator or si-

lencer for ribosomal genes and mating type loci HML and HMR (Kurtz & Shore, 

1991; Shore & Nasmyth, 1987). Rap1 controls about 5% of all promoters in yeast, 

including genes involved in glycolysis (Pina et al, 2003). Perhaps the essential func-
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tion of Rap1 lies in transcription control, while at telomeres Rap1 functions only as a 

scaffold for tethering other proteins. 

Human Rap1 can not bind DNA directly, instead it interacts with the telomere binding 

protein TRF2 and inhibits homologous recombination (HR) between sister telomeres 

(Figure 1B) (Kabir et al, 2010). Interestingly loss of human Rap1 leads to recombina-

tion without triggering any checkpoint response. Human Rap1 also plays a role in 

transcription regulation similar to yeast (Kabir et al, 2010). 

 

1.3.2.1 Rif1 and Rif2 

 

Both Rif1 and Rif2 proteins are non essential and function as negative regulators of 

telomere length because deleting any of them leads to telomere elongation. Moreover 

it seems like the Rif complex competes for Rap1 binding with the Sir complex, be-

cause telomere silencing was enhanced in cells lacking Rif (Wotton & Shore, 1997). 

It has been suggested that telomere length regulation is achieved through a protein 

counting mechanism, where the amount of bound Rap1, Rif1 and Rif2 along the te-

lomere can determine when an elongation event will occur (Barinaga, 1997; Marcand 

et al, 1997). Namely when a telomere is short, less Rap1 and therefore also less Rif1 

and Rif2 would be present, decreasing the negative telomerase regulation effect con-

ferred by those proteins and telomeres will be extended. Furthermore when the telo-

mere reaches a certain length, correlating to a certain amount of bound 

Rap1/Rif1/Rif2, telomerase is halted allowing precise telomere length regulation.  

Recently our group has also shown that Rif1 is specifically recruited at uncapped te-

lomeres that accumulate ssDNA independently from Rap1, where it inhibits check-

point binding (personal communication with Yuan Xue). In humans, Rif1 is not asso-

ciated to healthy telomeres, but is recruited only following telomere damage, suggest-

ing that Rif1 may have lost its telomere capping function in evolution, but kept its role 

at DNA damage sites (Silverman et al, 2004). In contrast Rif2 has no known mamma-

lian homologue. Nevertheless yeast Rif2 is required to inhibit non-homologous end 

joining (NHEJ) at telomeres, whereas Rif1 is not (Marcand et al, 2008). 
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1.3.2.2 Sir proteins 

 

The Sir proteins associated to telomeres and subtelomeres are Sir2, Sir3 and Sir4 

(Figure 1A). Sir2 is a NAD
+
 dependent deacetylase required for deacetylation of his-

tones 3 and 4 (Landry et al, 2000). This reaction leads to recruitment of Sir3 and Sir4 

to chromation. As a result the chromatin is condensed and prohibits transcription. 

Therefore the role of the Sir complex is to mediate chromatin silencing at certain re-

gions. In yeast these are the mating type loci, rDNA repeats and regions close to the 

telomere. The ability of the Sir proteins to repress the transcription of genes near the 

telomeres is referred to as telomere positioning effect (TPE) (Sandell & Zakian, 

1992).  

Deregulation of the Sir complex leads to increased recombination, chromosome insta-

bility and decrease in the life span of yeast (Gottlieb & Esposito, 1989; Kaeberlein et 

al, 1999; Palladino et al, 1993). The Sir proteins or sirtuins, as they are known in 

higher eukaryotes, are structurally and functionally conserved throughout evolution 

(McGuinness et al, 2011). 

 

1.3.3 yKu70/yKu80 heterodimer 

 

The single stranded-double stranded junction at telomeres is bound by the heterodi-

mer yKu70/yKu80, which is required for telomerase recruitment, telomere silencing, 

anchoring and protection from degradation (Figure 1A).  

YKu deleted cells have short telomeres but long 3’ overhands can be observed 

throughout the cell cycle. In contrast wild type cells have detectable overhangs only 

during S phase (Gravel et al, 1998). Furthermore an interaction between the RNA 

component of telomerase and yKu has been confirmed and distortion of this interac-

tion was responsible for telomere shortening (Stellwagen et al, 2003). All together 

these findings infer that yKu contributes to telomere maintenance by mediating te-

lomerase recruitment similar to Cdc13. 

YKu also inhibits Exo1 dependent shortening of the telomere because yku80∆ exo1∆ 

mutants have longer telomeres than yku80∆ alone and a substantial reduction in over-

hang length was observed in the absence of EXO1 (Bertuch & Lundblad, 2004). The 

telomere silencing function of yKu is mediated through yKu dependent loading of the 
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silencing protein Sir4 onto Rap1. This is required presumably because the Rif and Sir 

complexes compete for Rap1 binding sites (Mishra & Shore, 1999). Furthermore yKu 

can also mediate telomere anchoring independent of Sir, although the functional con-

sequences of this anchoring are not well understood (Hediger et al, 2002). 

Apart from its function at the telomere the yKu heterodimer is also involved in double 

strand break (DSB) repair, where it binds the broken end and mediates NHEJ 

(Bertuch & Lundblad, 2003). Furthermore the functions of yKu, or Ku as referred in 

mammalian systems, seem to be conserved in different species (de Lange, 2002). 

Mammalian Ku binds directly to TG repeats or via interaction with the dsDNA bind-

ing proteins TRF1 and TRF2 (Figure 1B) (Bianchi & de Lange, 1999; Hsu et al, 2000; 

Song et al, 2000). 
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Figure 1 Structure of yeast (A) and human (B) telomeres 
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1.4 Telomerase and telomere replication 
 

During linear chromosome replication a RNA primer is required to initiate synthesis 

at both strands. The RNA primer is then removed from the very end of the chromo-

somes, leading to a short gap or 3’ overhang that cannot be filled by the replication 

machinery. This problem is known as “the end replication problem” and as a conse-

quence chromosomes shorten after each round of replication (Levy et al, 1992). Cells 

have developed strategies for coping with this issue by evolving a specialised chro-

mosome end or telomere. 

As mentioned before telomeres aid chromosome stability in two ways. First, they en-

sure that no important genetic information can be lost by providing a buffer of non 

coding repeats that can be lost during each cell division without affecting the rest of 

the genome. Second, when the telomeres reach a critically short length they can signal 

the cells to either halt the cell cycle or initiate a round of telomere elongation, ensur-

ing continuous genomic stability. Telomere elongation is carried out by a reverse tran-

scriptase, called telomerase, which utilises a RNA template to add TG repeats to the 3’ 

overhang. This way telomeres can be extended and maintain constant length. Yeast 

telomerase is composed of four subunits coded by the following genes: TLC1, EST1, 

EST2 and EST3 (Lendvay et al, 1996; Lundblad & Szostak, 1989).  

EST2 encodes the catalytic subunit of yeast telomerase, known as TERT (telomerase 

reverse transcriptase) in mammalian cells and together with its RNA component 

TLC1 is required for in vitro enzymatic activity of telomerase (Counter et al, 1997). 

Est1 aids telomerase recruitment to telomeres by providing a physical link between 

Cdc13 and telomerase (Evans & Lundblad, 2002; Qi & Zakian, 2000; Tuzon et al, 

2011). Est3 is a GTPase essential for in vivo telomerase activity but its exact function 

remains elusive (Shubernetskaya et al, 2011). 

Interestingly telomerase only extends short telomeres during late S phase (Bianchi & 

Shore, 2007). This is probably due to Rif1 and Rif2 dependent regulation of telomere 

accessibility or frequency of telomerase association to telomere (Teixeira et al, 2004). 

When the telomere is long Rif1 and Rif2 confer a non-extendable telomere structure 

and telomere replication starts in late S phase but Est1 and Est2 are not recruited, alt-

hough Cdc13 and the yKu complex are present (Bianchi & Shore, 2007). 
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The current model for telomere replication suggests that when the telomere is short, 

Tel1 is associated to it throughout the cell cycle, presumably “marking” it for elonga-

tion. Firing of the origin of replication closest to the telomere happens earlier in S 

phase, possibly providing more time for telomerase action (Bianchi & Shore, 2007). 

Then the 3’ overhang is resected by MRX (Mre11, Rad50, Xrs2) which may promote 

increased Cdc13 association to the telomere end (Tsukamoto et al, 2001). Telomerase 

is recruited through an interaction with Cdc13 and the yKu complex. Furthermore 

Tel1 might facilitate telomerase recruitment by phosphorylating Cdc13 (Tseng et al, 

2006). This leads to addition of TG repeats to the 3’ overhang. The CST complex re-

cruits Polymerase α, triggering dissociation of telomerase and synthesis of the RNA 

primer for lagging AC strand synthesis (Grossi et al, 2004; Puglisi et al, 2008; Qi & 

Zakian, 2000).  

Interestingly in vivo telomerase activity depends on DNA polymerase α/primase and 

DNA polymerase δ and no repeats can be added to telomeres in the absence of these 

enzymes, suggesting that lagging strand synthesis is coupled to telomere extension 

and that it requires at least DNA polymerase α/primase and δ (Diede & Gottschling, 

1999). 

 

1.4.1  Type I and type II survivors 

 

In the absence of telomerase (when either TLC1, EST1, EST2 or EST3 are deleted) 

yeast cells exhibit a senescence phenotype – decline in proliferation leading to cell 

cycle arrest, increased size and telomere shortening. However rarely some cells man-

age to escape the cell cycle arrest and continue to proliferate. These cells are called 

survivors and utilise homologous recombination (HR) to amplify telomeres or sub-

telomeres, thus providing telomere capping and preventing chromosome degradation 

(Lundblad & Blackburn, 1993). All survivors require Rad52 but depending on the 

amplified region they can be classified as type I or type II survivors. In type I survi-

vors the Y’ subtelomere is amplified, while the telomere remains short. These survi-

vors proliferate slowly and require the following HR genes for survival: RAD51, 

RAD54, RAD55 and RAD57 (Chen et al, 2001; Teng & Zakian, 1999). In contrast type 

II survivors amplify the G-rich telomeric repeats, acquiring a very long heterogeneous 

telomere. These cells grow as fast as wild type and require the MRX complex along 

with RAD59, SRS2, SGS1 and TID1 for survival. Type II survivors are RAD51 inde-
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pendent and constitute only 10% of survivors in yeast (Chen et al, 2001; Teng & 

Zakian, 1999).  

Human stem cells express telomerase and can proliferate indefinitely. However te-

lomerase is down regulated in somatic cells leading to cellular senescence after a lim-

ited amount of cell divisions (Rodier & Campisi, 2011). In 90% of human cancer te-

lomerase is upregulated, allowing proliferation of the malignant cells (Shay & 

Bacchetti, 1997). Interestingly, 10% of human cancers maintain their telomeres 

through a telomerase-independent mechanism called alternative lengthening of telo-

meres (ALT). Similar to yeast survivors in these cancers telomeres are maintained by 

homologous recombination (Cesare & Reddel, 2010). 

 

1.5 Telomere uncapping 
 

Telomere uncapping happens when telomeres lose their ability to protect the chromo-

some end either due to telomere shortening or loss of telomere binding proteins. This 

leads to either NHEJ dependent telomere fusions or to generation of ssDNA due to 

nucleolytic degradation of the AC strand. Telomere uncapping has been used to study 

the function of the telomeres and provides insights into telomere homeostasis as a 

whole unit as well as the specific functions of telomere binding proteins 

Some hallmarks of uncapped telomeres can also be seen in cancers. For example te-

lomere fusions are known to be responsible for chromosomal loss and large deletions 

in a number of different tumours (Lin et al, 2010; Sawyer et al, 1994; Sawyer et al, 

2003). Decreased levels of telomere protecting proteins such as TRF1, TRF2 and 

POT1 have been found in lung cancer (Lin et al, 2005). Hence, telomere dysfunction 

could be one of the events leading to carcinogenesis. 

Two approaches can be used to achieve telomere uncapping in yeast – deletion of te-

lomerase components or inactivation of a telomere binding protein such as Cdc13. 

 

1.5.1  The cdc13-1 model system 

 

One of the well studied telomere uncapping model systems in yeast is the cdc13-1 

mutant. In this system a P371S point mutation in Cdc13 triggers 5’ to 3’ resection of 
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the telomere, checkpoint activation and cell cycle arrest in G2/M phase (Garvik et al, 

1995). More importantly the cdc13-1 mutation is temperature sensitive, providing an 

excellent opportunity for studying telomere uncapping under controlled experimental 

conditions. When cdc13-1 cells are grown below 26º C no telomere capping pheno-

type is observed. These temperatures are called permissive because the cells prolifer-

ate as well as wild type. Above 26º C the mutants fail to grow, therefore such tem-

peratures are non-permissive or restrictive for cdc13-1. This way conditional telomere 

uncapping could be achieved depending on the temperature at which the cells are 

grown. 

When cdc13-1 cells are grown at restrictive temperatures, telomere capping is com-

promised leading to an exonucleolytic attack on the chromosome ends (Figure 2). 

Degradation or resection happens in 5’ to 3’ direction on the AC rich strand and is 

mainly dependent on Exo1 because almost no ssDNA was generated in cdc13-1 

exo1∆ cells (Booth et al, 2001; Zubko et al, 2004). However there are other yet uni-

dentified exonucleases contributing to resection (Zubko et al, 2004). During telomere 

replication and DSB repair the MRX complex (Mre11, Rad50, Xrs2) is responsible 

for 5’ to 3’ resection, while during telomere uncapping in cdc13-1, MRX confers a 

protective function at the telomere by inhibiting generation of ssDNA (Foster et al, 

2006; Tsukamoto et al, 2001). AC strand resection is not limited to telomeres but con-

tinues in subtelomeres and single gene loci up to 14,500bp from the chromosome end 

at 36º C (Zubko et al, 2004). Recent studies show that the resection in cdc13-1 cells is 

controlled by the helicase activity of Pif1 because pif1Δ exo1Δ cdc13-1 and pif1Δ 

cdc13-1 mutants accumulate less ssDNA and have reduced temperature sensitivity 

(Dewar & Lydall, 2010). 

Interestingly ssDNA accumulation at uncapped telomeres can only occur, at the G2/M 

phase after completion of DNA replication and requires cyclin dependent kinase Cdk1 

activity (Vodenicharov & Wellinger, 2006).  

The single stranded DNA produced at uncapped telomeres triggers a strong check-

point response (Garvik et al, 1995). This happens when RPA coated ssDNA is recog-

nised by two checkpoint sensor branches. One is composed of the kinase Mec1 (yeast 

homologues of human ATR) and the other involves a PCNA-like clamp composed of 

Rad17, Mec3 and Ddc1 (Figure 2). This clamp is homologous to the mammalian 9-1-

1 complex (Rad9, Rad1, Hus1). The yeast ATM kinase Tel1 plays very little role in 

Cdc13 dependent telomere uncapping because cdc13-1 tel1∆ cells exhibit normal 
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checkpoint activation (Morin et al, 2008). The checkpoint sensors are loaded onto the 

ssDNA independent of each other. Mec1 is recruited through the RPA binding protein 

Ddc2, while the clamp is assembled at the single stranded double stranded junction by 

a clamp loader composed of Rad24,Rfc2, Rfc3, Rfc4, and Rfc5 or briefly Rad24 Rfc 

complex (Kondo et al, 2001; Majka et al, 2006). After the sensors have recognised the 

ssDNA damage, a phosphorylation cascade is triggered and the signal is transduced 

downstream to the mediator Rad9 (Figure 2) (Vialard et al, 1998). Deletion of pro-

teins form the two sensing branches leads to partial downstream kinase phosphoryla-

tion, showing that both are required for full checkpoint activity (Jia et al, 2004; Morin 

et al, 2008). Two pathways downstream of Rad9 regulate G2/M cell cycle arrest in 

cdc13-1 cells (Figure 2). These are Chk1/Pds1 and Rad53/Dun1. Chk1 phosphorylates 

the anaphase inhibitor Pds1, which leads to Pds1 stabilisation and blockage of the 

cdc-fourteen early anaphase release pathway (FEAR), responsible for anaphase entry 

(Blankley & Lydall, 2004; Liang & Wang, 2007). On the other hand Rad53 inhibits 

the mitotic exit network (MEN) as shown by complete arrest in cdc13-1 rad53∆, 

when the cells were MEN but not FEAR deficient (Liang & Wang, 2007). Thus the 

checkpoint provides two blocks, one in anaphase entry and one in mitotic exit (Figure 

2).  

Apart from triggering cell cycle arrest, the cdc13-1 checkpoint is also important for 

ssDNA modulation. The Rad24 Rfc clamp loader and the yeast 9-1-1 clamp stimulate 

resection at uncapped telomeres while Rad9 inhibits exonucleases. This became ap-

parent from ssDNA measurements showing that cdc13-1 rad9∆ cells accumulate 30kb 

ssDNA, while deletion of clamp loader or clamp subunits in cdc13-1 dramatically re-

duced ssDNA at 36º C (Jia et al, 2004; Zubko et al, 2004).  
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Figure 2 Schematic representation of the checkpoint response following resec-

tion at uncapped telomeres in cdc13-1  
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1.5.2  Telomere uncapping in POT1 deficient cells 

 

Loss of POT1 in mammalian cells also leads to telomere uncapping. Knockdown of 

POT1 with siRNA in human cancer cell lines triggers apoptosis or senescence and 

chromosome fusions (Veldman et al, 2004). Complete POT1 knock out in chicken 

cells leads to long 3’ overhangs, ATR/ATM dependent checkpoint activation and G2 

arrest. The long 3’ overhangs observed probably result from AC strand degradation 

because the overall telomere length did not increase after POT1 removal. No increase 

in chromosome fusions was observed in POT1 deficient cells but instead some survi-

vors exhibited dramatic chromosomal instability due to defects in chromosomal seg-

regation. (Churikov et al, 2006). 

Mice harbour two POT1 genes called POT1a and POT1b. Interestingly POT1a is es-

sential, while POT1b is not, suggesting that both genes may have different functions 

at telomeres (He et al, 2009; Wu et al, 2006). Deactivation of POT1a in mouse em-

bryonic fibroblasts leads to increased 3’ overhang length, DNA damage response at 

the telomeres and early onset of cellular senescence. When p53 was deleted simulta-

neously with POT1a, increased homologous recombination at telomeres was observed 

together with chromosomal instability due to chromosomal fusions and breaks (Wu et 

al, 2006). 

POT1b deficient mice exhibited an ATR dependent checkpoint response in highly pro-

liferative tissues, which caused increased apoptosis, whereas non-proliferating tissues 

were not affected. Liver and kidney cells from POT1b deficient mice had long 3’ 

overhangs but telomere length was constant. However after passaging POT1b
-/-

 mouse 

embryonic fibroblasts exhibited telomere shortening and telomere-telomere fusions 

(He et al, 2009) 

All these findings confirm that yeast Cdc13 and mammalian POT1 exhibit striking 

functional similarities and that the cellular responses in cdc13-1 and POT1 deficient 

cells are very similar.  
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1.6 . DNA repair mechanisms 
 

Damage to the DNA can have deleterious consequences for the cells because it threat-

ens the integrity of the genome. Hence throughout evolution cells have developed ro-

bust DNA repair mechanisms that ensure genomic stability throughout the cell cycle. 

Furthermore different types of damage are specifically recognised and repaired by dif-

ferent DNA repair machineries. For the purpose of this thesis only double strand break 

repair, post replication repair and nucleotide excision repair will be briefly reviewed.  

 

1.6.1  Double strand break repair 

 

DNA double strand breaks (DSB) generated by ionising radiation, chemicals and reac-

tive oxygen species pose a particularly immense threat to cells because they can cause 

chromosome loss, translocations and malignancy. Two pathways are responsible for 

DSB repair: homologous recombination (HR) and non-homologous end joining 

(NHEJ). During NHEJ the break is simply aligned and ligated, thus this pathway can 

introduce errors, while in HR the break site is first processed to create single stranded 

overhangs that can search for regions of homology in the genome (Figure 3 and 4). 

After homology is established the healthy region is used as a template for error free 

DSB repair. The choice of repair pathway at a particular DSB depends on the phase of 

the cell cycle and the type of cell (Shrivastav et al, 2008). During G1 and early S 

phase, NHEJ is the more predominant choice for repair, while HR is utilised in late S 

and G2. Furthermore DSB resection generating 3’ overhangs at the break is essential 

for HR but not required in NHEJ (Lamarche et al, 2010). The DSB repair machinery 

is very well conserved from yeast to human and utilises almost identical factors. 

In yeast NHEJ is aided by the yKu70/yKu80 complex and MRX complex that bind to 

the DSB ends and the DNA ligase IV required for re-joining of the broken ends as re-

viewed in Figure 3 and (Daley et al, 2005). YKu forms a ring structure that can slide 

onto the DNA end, while MRX seems to encircle yKu. MRX is presumably responsi-

ble for bringing the two broken ends close to each other through its Rad50 subunit. 

However NHEJ occurs also in the absence of MRX, suggesting that there might be 

another mechanism for aligning.  
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Once bound to the broken ends MRX and yKu recruit the NHEJ specific DNA ligase 

VI together with its binding partners Lif1 and Nej1. It is known that Lif1 is required 

for ligase IV stability but the function of Nej1 is not well understood. After ligase VI 

is recruited a ligation reaction might be attempted one at a time at each DNA strand. If 

this fails the broken ends need to be processed further to create a suitable substrate for 

ligation. This is achieved with the help of the NHEJ specific DNA polymerase Pol4 

and the flap endonuclease Rad27.  

In the current model of yeast HR the DSB has to be processed to form 3’ overhangs 

that are later coated with proteins from the RAD52 epistasis group required for ho-

mology search and strand invasion (Aylon & Kupiec, 2004). Then the homologous 

region is utilised as template for repair by polymerase α/primase, δ and ε, followed by 

ligation (Figure 4). The DSB is processed in 5’ to 3’ direction by different nucleases. 

MRX and Sae2 initiate resection but Exo1, Dna2 and the helicase Sgs1 are required 

for generating a suitably long ssDNA overhang for loading of the HR machinery 

(Mimitou & Symington, 2008; Zhu et al, 2008). Then Rad52 aids the loading and nu-

cleation of Rad51. This is required because RPA coated ssDNA inhibits Rad51 bind-

ing. The Rad51 nucleofilaments are stabilised by Rad55 and Rad57 and a search for 

homology throughout the genome is initiated. 

Once homology is established resection of the DSB is terminated and Rad54 mediates 

strand invasion of the Rad51 nucleofilaments presumably through chromatin remodel-

ling. Then at least polymerase δ and ε are required to copy the invaded template. In 

some cases HR might also require polymerase α/primase (Lydeard et al, 2007). Re-

cently it has also been shown that almost all replication factors are assembled at an 

induced DSB showing that DNA repair is remarkably similar to DNA replication 

(Lydeard et al, 2010b). Furthermore Rad51 filament removal by Srs2 is crucial be-

cause repair can not be completed without filament removal. When only one of the 

broken strands shares homology with the genome, only one strand is able to search for 

homology. This type of repair is called break induced replication and is one of the 

possible mechanisms for telomere replication in the absence of telomerase.  



32 

 

DSB creation

Recruitment of MRX and yKu70/80
and alignment

Ku70/80

MRX
MRX

Recruitment of Dnl4/Lif1and Pol IV
Processing of the break

MRX
MRXLig4

Lif1

Ligation

Non Homologous End Joining

 

Figure 3 Basic model of non-homologous end joining (NHEJ)  
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Figure 4 Model of homologous recombination (HR) based on (Aylon & Kupiec, 

2004) 
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1.6.2  Post replication repair 

 

Post replication repair (PRR) is required to fill up single stranded gaps in the DNA 

immediately after DNA synthesis. Such gaps arise when the DNA replication forks 

stall due to naturally occurring barriers in the genome or due to irresolvable DNA le-

sions, such as abasic sites and UV induced pyrimidine dimers present at the DNA 

template (Labib & Hodgson, 2007). Replication fork stalling is also observed upon 

hydoxyurea poisoning that causes depletion of nucleotides. Hence hydroxyurea has 

been used extensively to study replication fork stalling under experimental conditions. 

Post replication repair involves polymerases that can fill up the ssDNA, bypassing the 

DNA lesions either in an error prone or error free manner (Andersen et al, 2008; 

Broomfield et al, 2001). Regulation of PRR depends on ubiquitination of the sliding 

clamp PCNA required for processivity of replicative polymerases. The E2 ubiquitin 

conjugating enzyme Rad6 and E3 ubiquitin ligase Rad18 are responsible for mon-

oubiquitination of PCNA on Lysine 164. This reaction requires PCNA to be bound to 

the stalled replication fork and stimulates error prone translesion synthesis that can 

bypass pyrimidine dimers and abasic sites.  

The main polymerases involved in translesion synthesis are polymerases ζ and η en-

coded by REV1 and REV3/REV7 respectively. Polymerase ζ can insert dCMPs oppo-

site abasic sites and contributes to 60-80% of abasic site bypass. Interestingly rev1∆ 

cells display no mutagenesis activity, showing that error prone translesion synthesis in 

these mutants is impeded. Since Rev1 interacts with all other translesion polymerases 

it may function as scaffold for assembly of the translesion repair machinery. Polymer-

ase η can correctly insert AA opposite some thymine-thymine dimmers, thus it is the 

only error free translesion polymerase. Polymerase κ and ι are the other known trans-

lesion polymerases but their function is less well understood.  

Monoubiquitinated PCNA could be further polyubiqiotinated by Mms2/Ubc13/Rad5, 

presumably stimulating the error free branch of PRR. Although the mechanism of er-

ror free PRR has not yet been established, it has been suggested that this branch may 

use the newly synthesised sister chromosome as template.  
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1.6.3  Nucleotide excision repair 

 

Nucleotide excision repair (NER) is responsible for repairing UV induced pyrimidine 

dimers and photoproducts as well as chemical adducts and DNA crosslinks. Highly 

transcribed genes are repaired faster than the rest of the genome mainly due to a dif-

ference in damage recognition (Waters et al, 2009). Damage at these genes is recog-

nised by the stalling of the transcription RNA polymerase II which signals NER. Re-

pair in the rest of genome the requires Rad16, Rad7 and Abf1 (Liu et al, 2010). Bind-

ing and cleavage around the region is accomplished by several nucleotide excision 

factors, indicated as NEF1-4 (Prakash & Prakash, 2000).  

NEF1 is composed of the DNA damage recognising protein Rad14 and the ssDNA 

endonuclease Rad1/Rad10. Upon damage detection the Rad1/Rad10 complex cleaves 

the modified strand on both sites around the lesion.  NEF2 is composed of Rad4 and 

Rad23, NEF3 comprises Rad2 and the transcription factor TFIIH. The last factor is 

NEF4 and it contains Rad7 and Rad16 but is not required for incision. Instead NEF4 

co-operates with NEF2 in recognition, binding and cleavage of lesions.  

After the damage strand is cleaved a ~20 oligonucleotide ssDNA gap is created which 

is then filled up by polymerase ε and δ with the aid of the clamp PCNA. Consequently 

the leftover nicks are ligated by DNA ligase I, encoded in yeast by the gene CDC9 

(Liu et al, 2010).  

Some unique regions like the centromere and the telomere are more difficult to repair. 

In G1 and G2/M arrested cells centromeric thymidine dimers are not repaired, howev-

er there is disruption to the centromere binding proteins. It appeared as if these dimers 

could only be repaired during DNA replication (Capiaghi et al, 2004). Similarly si-

lenced regions around the telomere also inhibited repair of UV induced lesions, while 

other heterochromatic regions in the DNA did not (Rochette & Brash, 2010; Waters et 

al, 2009). 
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1.7  Aims 
 

As described above controlled telomere uncapping can be induced in cdc13-1 and this 

is followed by generation of single stranded DNA damage and a well defined 

checkpoint response (Lydall, 2009). Similarly, loss of POT1 (the mammalian 

homologue of Cdc13) also leads to increased ssDNA levels and checkpoint activation 

in mouse and chicken (Churikov & Price, 2008; Hockemeyer et al, 2005; Wu et al, 

2006). Telomere uncapping provides insights into how cells deal with a potential 

dysfunctional telomere.  

Although checkpoint activation following DNA damage is usually required to induce 

repair, no study focused on any potential ssDNA re-synthesis at uncapped telomeres 

has been conducted so far. Interestingly, cdc13-1 cells maintain high viability for a 

long period of time at restrictive temperatures and if subjected to rounds of telomere 

damage, followed by periods of rest, the cells continue to form colonies (Blankley & 

Lydall, 2004). Similarly even when POT1 was removed, chicken cells could maintain 

viability for at least 24h and reintroduction of POT1 also rescued some of the cells 

(Churikov et al, 2006). Therefore cells lacking telomere protection may have an 

intrinsic re-synthesis mechanism that becomes apparent after capping is restored. This 

proposed mechanism would then fill up the single stranded gaps, allowing cells to re-

enter the cell cycle.  

The aim of this thesis is to identify any potential ssDNA re-synthesis mechanism 

present at uncapped telomeres by utilising cdc13-1 as a model system. This will be 

achieved through measurements of ssDNA dynamics and BrdU incorporation at sites 

of damage close to the telomere. Proteins involved in this process will be identified 

through their interaction with the DNA damage.  

Although this ssDNA re-synthesis might be normally only observed after capping is 

restored, specific conditions may stimulate it at dysfunctional telomeres. The 

existence of such factors will be investigated and discussed in a global perspective. 

The specific questions that I would like to address are: 

Can natural ssDNA re-synthesis happen in cdc13-1 cells after telomere recapping and 

what factors govern this process? 

What factors can further stimulate re-synthesis at dysfunctional telomeres in yeast and 

what genetic pathways are required? 
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Are factors controlling re-synthesis at uncapped telomeres also responsible for other 

types of DNA damage? 
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2 Materials and methods 
 

2.1 Yeast strains and plasmids 
 

All yeast strains used in this thesis were in the W303 background (ade2-1 trp1-1 

can1-100 leu2-3,112 his3-11,15 ura3 GAL+ psi+ ssd1-d2 RAD5). To generate 

deletion mutants, genes were knocked out using a pFA6a-kanMX6 vector carrying the 

E.coli kan
r
 gene for G418 resistance as described below. Tagging was performed with 

pFA6a-3HA-natMX6 vector and overexpression with pFA6a-kanMX6-PGAL1 or 

pFA6a-kanMX6-PGAL1-GST (Hentges et al, 2005; Longtine et al, 1998). Strains 

LMY746, 493, 784 and 785 resulted from crossing. LMY746 was created from 

crossing CLY152 (MATa 3xHA-CDC17 HIS3) with LMY205 (Lee et al, 2010). 

LMY493 was created by mating TAY73(MATa ubr1Δ::GAL::UBR1::LEU2 

DPB2::6xMYC::kanMX6) with LMY205 and then swapping the kanMX6 cassette 

with URA3 (Kesti et al, 2004). LMY784 and LMY785 were created by mating E3368 

(MATalpha URA3::GPD–TK (7x)) with LMY43 or LMY769 respectively (Lengronne 

et al, 2001). Strains are listed in Table 1 and can be found at Dr Laura Maringele yeast 

collection website under http://minch-moor.ncl.ac.uk/fmi/iwp/res/iwp_home.html 

 

2.2 Media for culturing cells 
 

Yeast media contained: 

10g BD Difco™ Yeast Extract  

20g BD Bacto™ Peptone  

20g BD Difco™ Bacto™ Agar  

Liquid media did not contain agar. After autoclaving the following chemicals were 

added: 

2% final concentration Dextrose or Raffinose 

0.005% final concentration adenine 

http://minch-moor.ncl.ac.uk/fmi/iwp/res/iwp_home.html
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Raffinose was used to repress the expression of genes placed under the GAL1 

promoter. 

 

Selective media contained: 

1.7g BD Difco™ Yeast Nitrogen Base 

5g ammonium sulphate (Sigma) 

20g BD Difco™ Bacto™ Agar  

1.3g amino acids, lacking URA, HIS, TRIP or LEU 

After autoclaving the following chemicals were added: 

2% final concentration Dextrose 

0.005% final concentration adenine 

For G418 resistance plates, 400μg/ml G418 (Formedium) was added to the yeast 

media. 
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Strain Genotype Reference 

DLY204 MATa cdc13-1int David Lydall 

LMY114 MATa cdc13-1 int kcs1:: kanMX6 cdc15-2 bar1::hisG This study 

LMY129 MATa cdc13-1 int ipk2:: kanMX6 cdc15-2 bar1::hisG This study 

LMY132 MATa cdc13-1 int ipk1:: kanMX6 cdc15-2 bar1::hisG This study 

LMY135 MATa cdc13-1 int ddp1:: kanMX6 cdc15-2 bar1::hisG This study 

LMY138 MATa cdc13-1 int plc1::kanMX6 cdc15-2 bar1::hisG This study 

LMY142 MATa cdc13-1 int vip1:: kanMX6 cdc15-2 bar1::hisG This study 

LMY180/305 MATa cdc13-1int  exo1::LEU2 David Lydall 

LMY198/199 MATa yku80::HIS3 yku70::LEU2 David Lydall 

LMY202 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3 GAL+ psi+ ssd1-d2 RAD5 David Lydall 

LMY205 MATalpha cdc13-1 int David Lydall 

LMY206 MATa cdc13-1 int cdc15-2 bar1::hisG David Lydall 

LMY207 MATalpha yku70::HIS3 David Lydall 

LMY208 MATaplha yku80::kanMX6 David Lydall 

LMY31 MATa cdc13-1 int rad52::kanMX6 cdc15-2 bar1::hisG This study 

LMY315 MATa vip1:: kanMX6 This study 

LMY316 MATa ddp1:: kanMX6 This study 

LMY319/318 MATa kcs1:: kanMX6 This study 

LMY321 MATa ipk2:: kanMX6 This study 

LMY323 MATa ipk1:: kanMX6 This study 

LMY324 MATa dpb4::kanMX6 This study 

LMY326 MATa pol32::kanMX6 This study 

LMY328 MATa dpb3::kanMX6 This study 

LMY330 MATa plc1::kanMX6 This study 

LMY336 MATa cdc13-1int  rad9::HIS3 David Lydall 

LMY420 Mat alpha cdc13-1  rif1::URA3 Yuan Xue 

LMY43 MATa cdc13-1 int dpb3::kanMX6 cdc15-2 bar1::hisG This study 

LMY45 MATa cdc13-1 int dpb4::kanMX6 cdc15-2 bar1::hisG This study 

LMY488 MATa msn2::kanMX6 David Lydall 

LMY489 MATa msn4::kanMX6 David Lydall 

LMY49 MATa cdc13-1 int pol32::kanMX6 cdc15-2 bar1::hisG This study 

LMY490 MATalpha cdc13-1int msn4:kanMX6 David Lydall 

LMY491 MATa msn2::HIS3 msn4::URA3 cdc13-1int David Lydall 

LMY492 MATalpha  msn4::kanMX6 cdc13-1int David Lydall 

LMY493 MATa cdc13-1int DPB2::6xMYC::URA3 This study 

LMY746 MATa cdc13-1 HIS3::HAx3::CDC17 This study 

LMY755 MATa cdc13-1 int rev3::kanMX6 This study 

LMY765 MATa cdc13-1int GAL1::PLC1 This study 

LMY768 MATa cdc13-1int GAL1::GST::IPK1 This study 

LMY769 MATa cdc13-1 int cdc15-2 bar1::hisG GAL1::GST::KCS1 This study 

LMY772 MATa cdc13-1 int POL3::HA::kanMX6 This study 

LMY780 MATa cdc13-1 int pol4::kanMX6 This study 

LMY784 MATa cdc13-1 int URA3::GPD-TK (7x) bar1::hisG This study 

LMY785 MATalpha cdc13-1 int URA3::GPD-TK (7x) GAL1::GST::KCS1 This study 

LMY800 MATa cdc13-1 int rad18::LEU2 David Lydall 

Table 1 Yeast strains used in this thesis 
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2.3 One step PCR based gene deletions 

 

Genes were knocked-out in one step by substitution of the wild type gene with a PCR 

fragment through homologous recombination. The PCR fragment contained the 

selective marker kan
r
, flanked by short sequences (40bp) homologous to the regions 

before and after the gene of interest. 

 

2.3.1 Designing primers and producing PCR fragments for gene 

knockout, tagging and overexpression 

 

Plasmid pFA6a-kanMX6 (or any other in case of tagging or overexpression) was used 

as a template to create a PCR fragment that contains the gene for G418 resistance. 

The forward primer was designed to anneal to the first 20 bp of kan
r
. It also contained 

40bp upstream of the start codon of the gene of interest .The reverse primer annealed 

to the last 20bp of the kan
r
 and had homology to 40 bp downstream the stop codon of 

the gene of interest.  

For tagging the forward primer was complementary to 40bp before the stop codon and 

the reverse was designed to have homology with 40bp downstream of the stop codon. 

 In the case of gene overexpression 300bp in front of the start codon were replaced by 

the overespression cassette, thus 40bp from the primers were homologous with the 

region 340bp upstream of the gene and 40bp upstream of the start codon. All primers 

were purchased from WMG | Operon. The PCR reaction was set up on ice and run as 

follows: 

 

Master Mix: 

39μl dH2O 

5μl 10 x Ex Taq Buffer - Takara Bio Inc. 

5μl dNTPs (2.5mM) – Takara Bio Inc. 

2μl plasmid (1.5ng/μl stock) 
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0.5μl Primer Mix (4μl dH2O + 1μl forward primer (200μM stock) + 1μl reverse   

primer (200μM stock) 

0.5μl Ex-Taq Polymerase (250Units) – Takara Bio Inc. 

 

PCR conditions: 

94ºC: 4 min (1 cycle) 

DNA melting:  95ºC: 30 sec. 

Primer annealing:  55ºC: 1 min.    35 cycles 

Elongation:  72ºC: 1.5 min. 

 

Afterwards, the 2μl PCR product was checked on 1% agarose gel for the expected 

size. 

 

2.3.2  Lithium acetate yeast cell transformation 

 

Yeast cells were pre-grown overnight and diluted in the morning to a final 

concentration of 5x10
6
cells/ml in 50ml of liquid YEPD. Afterwards, the culture was 

left to shake in the water bath at 21-23ºC until it reached a density of 2.10
7
 cells/ml. 

This amount of cells was sufficient for 10 transformations.  

The cells were harvested by centrifugation for 3 min. at 3000g and the supernatant 

was discarded. The pellet was vortexed in 25ml sterile water in order to wash excess 

YEPD and spun again for 3 min at 3000g. After that the water was discarded, the cells 

were resuspended in 1 ml of 1% lithium acetate and transferred to a 1.5ml eppendorf 

tube. The cells were harvested by centrifugation for 15 sec. at 16000g and the lithium 

acetate was aspirated. Then, the pellet was resuspended with 400μl 1% lithium acetate 

to a final volume of 500μl cell suspension and kept on ice until transformation. 

50μl of yeast were transferred into separate eppendorf tubes and spun for 15 sec. at 

16000g to pellet the cells. The supernatant was aspirated. Consequently, the 
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transformation mix was added to each tube containing yeast pellets in the following 

strict order: 

 

240μl 50% polyethylene glycol (PEG) 

36μl 10% lithium acetate 

50μl 2mg/ml sonicated salmon sperm DNA 

10μl PCR product 

 

The cells were mixed carefully with a pipette and incubated for 30 min. at room 

temperature. During this incubation the yeast cell wall would be degraded in order to 

allow DNA uptake. After that the samples were heat shocked at 42ºC for 20 min. to 

allow formation of pores in the plasma membrane of the cells. Then the cells were 

harvested for 15 sec. at 4000g and the supernatant was aspirated. The cells were 

resuspend in 200μl sterile water and left to recover overnight on solid YEPD plates. In 

the morning the plates were replica-plated on YEPD plates containing 200μg/ml 

active concentration of G418 and incubated at 21ºC. This way only the cells which 

integrated the kan
r
 formed colonies. 

 

2.3.3  PCR-based testing for gene deletion 

 

After colonies were formed they were tested for the presence of the wild type gene or 

kan
r
 to eliminate false positives. Testing was performed by PCR which could produce 

either a band correlating to the wild type gene or a band correlating to the kan
r
 gene. 

The forward primer was designed to anneal 75 bases upstream of the disrupted gene 

and to have approximately 60ºC melting temperature. Then two reverse primers were 

designed in order to distinguish between a kan
r
 and wild type gene. The kan

r
 reverse 

primer annealed 300bp downstream of the start codon and produced a 790bp 

fragment. The sequence of this primer was 

5’TCGCAGTGGTGAGTAACCATGCA3’. The wild type reverse primer was 

designed to anneal 500bp after the start codon of the wild type gene, yielding a 575bp 

fragment. Similarly primers were also designed to test tagging and overexpression. 
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Whole yeast cells were used as genomic DNA templates in a Hot Start PCR as 

follows: 

 

Master Mix: 

15μl dH2O 

2.5μl Hot Start Taq Buffer (Qiagen) 

2.5μl dNTPs (2.5mM) (Takara Bio Inc.) 

0.25μl MgCl2 (25mM stock) (Qiagen) 

0.5μl Primer Mix (4μl dH2O + 2μl Forward primer (200μM stock) + 1μl Wild type 

reverse primer (200μM stock) + 1μl Kan
r
 reverse primer (200μM stock)) 

0.25μl Hot Start Taq Polymerase (1000units) (Qiagen) 

1μl whole yeast cells diluted in dH2O 

 

PCR conditions: 

94ºC, 15 min (1 cycle) 

    DNA melting:  94ºC: 30 sec. 

35 cycles     Primer annealing: 56ºC: 20 sec. 

    Elongation:  72ºC: 30 sec. 

72ºC, 1min (1 cycle) 

 

Consequently, 6μl PCR product was checked on 1% agarose gel for the wild type or 

kan
r
 corresponding band. 

 

2.4 Generation of yeast strains by mating and random 

spore analysis 

 

Haploid yeast cells with different sexes (MATa and MATalpha) were mated on solid 

YEPD plates by spreading the cells on top of each other. After two days at 23ºC, the 
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cells were transferred to selective plates for diploid screening. The diploid should 

contain markers from both parents. Afterwards, the diploids were incubated on the 

wheel at 23ºC in 2ml 1% potassium acetate, pH 7.6 supplemented with amino acids 

for 2-3 days, until spores in asci were seen under the microscope. Then the cells were 

washed twice with sterile water by centrifugation for 15 sec. at 16000g and finally 

combined with 0.5ml 1mg/ml zymolyase and 10μl of 98% 2-β mercaptoethanol 

(Sigma). The cells were incubated on the wheel at 30ºC overnight to lyse the haploid 

cells and free the spores from the ascus.  

On the next morning 5ml 1.5% igepal CA-630 detergent was added to the lysed 

spores followed by incubation on ice for 15min. Afterwards the spores were sonicated 

on a Sanyo MSE Soniprep 150 sonicator for 30 sec. at amplitude 5 microns for a total 

of three times with 2 min incubation periods on ice-water between cycles. The cells 

were spun at 1200g for 10min, resuspended in 5ml 1.5% igepal CA-630 detergent and 

again sonicated for three cycles as describet above.  

Finally the spores were spun at 1200g for 10min and resuspended in sterile water. The 

spores were counted by a hemocytometer, diluted to 1000 spores/ml and 200μl were 

inoculated on selective plate. After the spores gave rise to single colonies, the colonies 

were inoculated and replica plated on relevant selective plates. The plates were scored 

after 2-3 days to select for haploid colonies with the desired genetic background. The 

mating type of the haploids could be further identified by replica plating onto solid 

YEPD plates pre-coated with LMY192 (MATa ade1 arg4 aro2 his7 lys5 met4 ura2) 

and LMY193 (MATalpha ade1 arg4 aro2 his7 lys5 met4 ura2). On the next day the 

mating plates were replica plated on selective media. Only strains that have mated 

form colonies in these conditions. 

 

2.5 Spot test 
 

Strains were tested for growth at different temperatures in order to evaluate 

temperature sensitivity. Cell cultures were picked form plates and diluted to 3.10
7
 

cells/ml in a 96-well plate. Then a 5 fold serial dilution was performed and the cells 

were inoculated on plates with a metal replicator. The plates were imaged on the 

Fujifilm LAS-3000 imaging system 2 to 4 days after incubation.  
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2.6 UP-DOWN assay 
 

Cells containing the cdc13-1 mutation were diluted to 4.10
7
 cells/ml and spotted on 

agar plates as in the spot test. For wild type cells only 1.10
7
 cells/ml were seeded to 

avoid overgrowing at high temperatures. The cells were incubated either at 21º C, and 

35º C or in an incubator programmed to cycle between 21º C and 35º C every 4 hours 

for a total of 3 cycles. After the cycles finished the plates were left at 21º C until 

colony formation. The plates were photographed on the Fujifilm LAS-3000 imaging 

system. 

 

2.7  Liquid culture growth assay 
 

Growth was also assessed in liquid culture by inoculation of 2.10
5
 cell/ml cells and 

incubation on the wheel at the required temperature. Every day the culture was 

counted and re-diluted to 2.10
5
 cells/ml. The growth was plotted on a log10 scale with 

Sigma Plot. 

 

2.8  Scoring of G2/M arrested cells 
 

To monitor cell cycle arrest, pellets from 1-2x10
7
 cells were collected in 70% (v/v) 

Ethanol. Prior to analysis the pellets were washed with distilled water, stained with 

0.2μg/ml 4‘6‘-diamidino-2 phenylindole (DAPI) from Sigma and sonicated for 3-4 

sec. at amplitude 5 microns. The stained cells were scored under a fluorescent 

microscope as four cell types representing four stages from the cell cycle. Single cells 

with one nucleus were regarded as cells in G1; budded cells with a bud 50% smaller 

than the mother cell and with one nucleus represented cells committed to or in S 

phase; budded cells with a bud greater than 50% of the mother cell with the nucleus in 

one cell or a nucleus positioned between the mother cell and the bud were considered 

cells in G2/M phase; cell with two nuclei separated between the mother and daughter 

cells were scored as late M phase. From every sample, 300 cells were counted and the 

percentage of cells in different cell phases was calculated. 
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2.9  QAOS assay  

 

Quantitative Amplification Of Single-stranded DNA (QAOS) was performed to 

quantify the amount of ssDNA generated at a particular locus close to the telomere 

(Booth et al, 2001). After sample collection DNA was extracted with a modified 

Qiagen protocol (see below for description). Then the DNA was quantified and 

equalised by qPCR, relative to standards with known amounts of DNA (40ng, 20ng, 

10ng, 2ng and 0.2ng DNA). The standards were prepared from wild type cells.  

Afterwards ssDNA was detected in specific qPCR conditions with TaqMan probes 

(Figure 5). In the first part of the PCR the temperature increased gradually from 40º C 

to 72º C. During this stage the tagging primer could only anneal to ssDNA but not to 

dsDNA. When the temperature gradually rose the polymerase extended this primer, 

creating a tagged PCR fragment. In the second stage of the PCR this extended PCR 

fragment was bound by the probe and the forward and tag primers. Hence only the 

sequence to which the probe was bound would be amplified.  

The probe was labelled with a fluorescent molecule on the 5’ (either VIC or FAM) 

and with a TAMRA quencher on the 3’ end. Due to the proximity of the two 

molecules no light was emitted from the probe as a whole. During every round of 

amplification the polymerase synthesised a new PCR fragment and destroyed the 

bound probe through its exonuclease activity. This released the fluorescent dye from 

the quencher and produced light that corresponded to one round of amplification.  

Standards with known amounts of ssDNA were used to quantify the signal. These 

standards were made by boiling 20mg DNA and mixing dsDNA with ssDNA up to 

51.2%, 12.8% and 3.2%  ssDNA. An example of a typical QAOS measurement of the 

standards shows that the CT difference is around 2 as expected (Figure 5B). 

To confirm that QAOS  shows accumulation of ssDNA, wild type and cdc13-1 cells 

were grown for 2 hours at the restrictive temperature 36° C. No ssDNA was detected 

in wild type cells at two loci close to the telomere, while cdc13-1 cells accumulated 

around 10% ssDNA (Figure 5C).  
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Figure 5 The theory of QAOS 

A. Scheme depicting the principle of quantitative amplification of ssDNA 

(QAOS) 

B. Amplification plot and Standard curve of the 51.2%, 12.8% and 3.2% 

standards in a typical run measuring ssDNA 

C. Single stranded DNA formation in cdc13-1 (LMY206) and wild type 

(LMY202) at 36° C at Y’600 and YER188W
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2.9.1 Genomic DNA extraction 

 

Cells were inoculated overnight at 23ºC in the water bath. In the morning the culture 

was diluted to 2.10
7
 cells/ml and left to shake at indicated temperatures. 30ml samples 

were taken at various time points and promptly mixed with 300μl 10% sodium azide 

and 3ml 0.5M EDTA, pH 8.5 on ice. The cells were centrifuged for 2 min at 1000g, 

4ºC and the supernatant was discarded. Afterwards, the pellet was resuspended in 1ml 

ice cold water, transferred to an Eppendorf tube and spun again at 16000g for 5 sec. 

Excess water was aspirated and the pellet was frozen at -80ºC until extraction. 

All extraction steps were performed on ice or at 4ºC in an Sorvall Biofuge PrimoR 

centrifuge (Thermo scientific), unless otherwise stated. The frozen cell pellets were 

thawed on ice and resuspended in 1ml NIB buffer. The samples were spun for 7 sec at 

16000g and the supernatant was aspirated. The pellet was resuspended in 600μl NIB 

buffer and transferred to 2 ml Sarstedt screw cap tubes. 1.5ml ice cold, acid pre-

washed 0.6mm glass beads were poured into the tubes. Approximately 200μl liquid 

was left to cover the beads.  

The samples were shaken on Precellys24 lysis and homogenization ribolyser (Bertin 

technologies) 6-7 times for 5sec at 5500 power to break the cell wall of the yeast 

cells. The tubes were put in ice water between rounds of breakage for 2min. 

Consequently, the bottoms of the tubes were punctured with a needle and placed in a 

1.5ml Eppendorf tube with cut off bottom and cap. Both tubes were fixed into a 15ml 

Falcon tube and centrifuged 3 times at 1000g for 2 min. Between the spins the beads 

were washed with 1ml NIB buffer. This step allows the crushed cells to accumulate at 

the bottom of the Falcon tube free of beads. 

 The Sarstedt and the eppendorf tubes were removed and the 15ml Falcon tube was 

spun for 20min at 6500g to pellet the cell debris and nuclei. The supernatant was 

discarder and the pellet was carefully resuspended in 2ml G2 buffer containing 

200μg/ml RNAse A. The samples were incubated at 37ºC for 30min. Consequently, 

55μl of 20mg/ml Proteinase K was added and incubation continued for 1h at 37ºC.  

The samples were spun at 6500g for 10min and in the meantime 20g Qiagen columns 

were equilibrated with 1ml QBT buffer. The supernatant of the samples was combined 

with 2ml QTB buffer, applied on the columns and left to flow through. Then, the 
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columns were washed 3 times with 1ml of QC buffer. After washing 15ml Falcon 

tubes were placed under the columns to collect the genomic DNA.  

The DNA was eluted with 2ml QF buffer, pre-warmed at 50ºC. Consequently, the 

DNA was precipitated with 0.7 volumes Isopropanol at ambient temperature. The 

samples were spun at 7700g for 20min and the supernatant was carefully discarded. 

The DNA pellet was washed with 1ml 70% Ethanol at ambient temperature and 

centrifuged at 7700g for another 20min. 

The supernatant was carefully discarded and the tubes were air dried for 5min at room 

temperature. Eventually, 400μl TE was added to each sample and the tubes were left 

to roll on a wheel at 25ºC for 2 days. 

 

2.9.2 Real-Time PCR measurements of ssDNA 

 

All DNA samples were measured in triplicates and dH2O was run as negative control. 

The quantity of the isolated genomic DNA was measured at the PAC2 locus with a 

Step One™ Real-Time PCR (Applied Biosystems) prior to ssDNA measurement. The 

probe had a VIC fluorescent reporter and a TAMRA quencher. As standards 20, 10 

and 2 ng/10μl genomic DNA were used. The samples were loaded on 96 well plates 

and sealed with a transparent film. The Master Mix for 12wells was prepared as 

follows: 

 

Master Mix: 

124µl dH2O 

32µl 10 x Ex Taq Buffer (TaKaRa) 

24µl dNTPs (2.5mM stock) (TaKaRa) 

3.2µl primer (300nM final concentration) 

3.2μl probe (200nM final concentration) 

1.5µl ExTaq Polymerase (250 Units) (TaKaRa) 

 

10µl DNA sample was mixed with 15µl Master Mix and run at the following 

conditions: 
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PCR conditions: 

Pre-cycling phase: 95ºC, 5 min (one cycle) 

 

95ºC, 0.15 min  40 cycles 

63ºC, 1min 

 

Afterwards, the samples were diluted to 20ng/μl and run for a second time with the 

same PCR conditions. A dilution coefficient was established from the second run in 

order to minimise dilution errors: 

 

 

quantityDNA
tcoefficiendilution

20
  

 

 

The diluted DNA samples were next measured for ssDNA quantity at the Y' repeats of 

the telomere, 600bp from the end of the right arm of chromosome V, locus Y’ 600. 

Measurements were also performed at the YER188W locus, 8500bp or PAC2, 

411,500bp from the end of the right arm of chromosome V. The Tagging primer was 

designed to have homology with the TG strand and a Tag sequence with no homology 

to the yeast genome  

 

Master Mix: 

124µl dH2O 

32µl 10 x Ex Taq Buffer (TaKaRa) 

24µl dNTPs (2.5mM stock) (TaKaRa) 

3.2μl tagging primer (30nM final concentration) 

3.2µl tag primer/reverse or forward primer (300nM final concentration) 

3.2μl probe (200nM final concentration) 
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1.5µl ExTaq Polymerase (250 Units) (TaKaRa) 

 

10µl DNA sample was mixed with 15µl Master Mix and run at the following 

conditions: 

 

PCR conditions: 

 

Tagging primer annealing:  40ºC, 5min 

Tagging primer elongation: 4% RAMP 

     72ºC, 5min 

DNA melting:   94ºC, 5min 

 

95ºC, 0.15min              40cycles 

67ºC, 1min 

 

Eventually, the measured ssDNA quantity was multiplied with the dilution coefficient 

and plotted with Sigma Plot. The standard deviation was used for the error bars. At 

least two independent experiments were performed, however only one example is 

shown in each figure.  

 

 

2.9.3 Buffers 
 

Genomic DNA extraction buffers G2, QTB, QC and QF were prepared according to 

Qiagen’s booklet. The NIB buffer contained 170ml Glycerol, 10.46g MOPS, 14.72g 

Potassium Acetate, 2ml 1M MgCl2, 0.55ml 0.9M Spermidine (0.9M stock was kept at 

-80ºC) and 52mg powder Spermine. The reagents were dissolved in 700ml 18.2mQ 

dH2O. 

The pH was adjusted to 7.2 and the volume to 1 litre. Afterwards, the buffer was filter 

sterilized. 
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Table 2 Primers for qPCR 

 

 

2.10  Western blotting 

 

2.10.1 TCA extraction of proteins 
 

Freshly grown yeast cells were diluted to 2.10
7
 cell/ml in the morning and 10ml 

culture was collected at each time point for TCA protein extraction. The cells were 

harvested at 1600g, dissolved in 200μl 10%TCA and combined with 0.5mm acid-

washed glass beads from Sigma in 2 ml Sarstedt screw cap tubes. Then the cells were 

crushed in a Precellys24 lysis and homogenization ribolyser (Bertin technologies) 3 

times for 10 sec at 6500 power. This cycle was repeated for a total of 3 times. In 

between the cycles the samples were incubated on ice for 5min. Consequently, the 

bottoms of the tubes were punctured with a needle and placed in a collection 1.5ml 

tube with cut off cap. Both tubes were fixed into a 15ml Falcon tube and centrifuged 2 

times at 1000g for 2 min. Between the spins the beads were washed with 100μl 10% 

TCA. Afterwards, the collection tube was spun at 16000g and the pellet was dissolved 

in 2xLaemmli buffer from Sigma. In cases where the Leammli buffer turned yellow 

due to change of pH, the colour was restored by drops of 1M Tris Base, pH 8.5 . 

Finally the protein extracts were boiled for 5min at 95º C and stored at -80ºC. 

Primer Sequence Target 

Forward AATAACGAATTGAGCTATGACACCAA PAC2 

Reverse AGCTTACTCATATCGATTTCATACGACTT PAC2 

Probe VIC - CTGCCGCGTTGGTCAAGCCTCAT – TAMRA  PAC2 

Tag GATCTCGAGCTCGATATCGGATCCATT PAC2 

Tagging GATCTCGAGCTCGATATCGGATCCATTTCATACGAC PAC2 

Forward CCGAAATGTTTTATTGCAGAACAGCCCTAT Y'600 

Reverse GAGATCAGCTTGCGCTGGGAGTTACC Y'600  

Probe FAM - AC GGAATGCCGTCCAATGCGGCACTTTAGA –TAMRA Y'600 

Tag TGCCCTCGCATCGCTCTCACA Y'600 TG 

Tagging TGCCCTCGCATCGCTCTCACAGCCCTATCAG Y'600 TG 

Tag ATGCCCGCACCGCCTCATTG Y'600 AC 

Tagging ATGCCCGCACCGCCTCATTGCGCTGGGA Y'600 AC 

Reverse AACGTACAGGTTACGATCGCGTCATTTTA YER188W 

Probe FAM-TAGCCGTTATCATCGGGCCCAAAACCGTATTCATTG-TAMRA YER188W 

Tag AAGGAGCGCAGCGCCTGTACCA YER188W 

Tagging AAGGAGCGCAGCGCCTGTACCATAGCGTGAT YER188W 
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2.10.2 SDS-PAGE, blotting and detection 

 

Proteins extracted with 10% TCA were first separated on 6.5% gels run at 95V for 

30min and at 120V for approximately 1h 30min. Then the gel was transferred onto a 

Nitrocellulose membrane (Amersham) at 300mA for 1 h. Blocking was performed 

with 5% milk - TBST for 1h. Primary antibodies (1:200 dilution) and secondary 

antibodies (1:2000 dilution) were diluted in 5% milk – TBST. Incubation with 

primary antibody was performed on a shaker overnight at 4ºC, while secondary 

antibody was applied for 1h at room temperature. Washes with TBST were performed 

3 times for 10min after primary and secondary antibody incubation. Detection was 

performed with ECL Western Blotting detection reagents and the membrane was 

imaged on the Fugijilm LAS-3000 imaging system.   

 

2.10.3 Buffers 

 

Running buffer stocks and Transfer buffer stocks were ordered from BioRad. 150ml 

Methanol was supplemented to 1xTransfer buffer prior use. 10xTBST stock contained 

12.11g Tris base, 29.22g NaCl and 10ml Tween 20 per litre. The pH was adjusted to 

7.5. The stock was diluted 1:10. 

 

2.11 Chromatin Immunoprecipitation (ChIP) 
 

ChIP was performed as previousely described (Aparicio et al, 2004). Liquid cultures 

grown overnight were diluted in the morning to 2.10
7
 cell/ml and 40ml samples were 

collected for each time point.  

The proteins were crosslinked to DNA in vivo by adding 1% final concentration 

formaldehyde to the sample and incubation at ambient temperature with gentle 

shaking for 15min. Cross-linking was stopped by 6ml 2.5M glycine for 5 min and the 

cells were harvested by centrifugation at 1600g for 5min. Afterwards the pellet was 

washed twice with ice cold TBS, pH7.5 and every time the cells were spun at 1600g 

for 5min. Finally, the cells were resuspended in ice cold FA lysis buffer (50mM 

HEPES, pH 7.5 with KOH, 150mM NaCl, 1mM EDTA, pH 7.6, 1% Triton-X, 0.1% 
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sodium deoxycholate) and spun one last time at 1600g for 5min. The pellets were 

frozen at -80ºC.  

 In the morning the cell pellets were defrosted on ice and resuspended in 1ml FA lysis 

buffer containing a final concentration of 2mM phenylmethylsulfonyl fluoride 

(PMSF). Then the cells were transferred to 2 ml Sarstedt screw cap tubes and spun for 

7sec. at 14000g. The pellet was dissolved in 600μl FA lysis buffer containing PMSF 

and 0.5mm acid-washed glass beads were added up to 0.75ml of the tube. Then the 

cells were crushed in a Precellys24 lysis and homogenization ribolyser (Bertin 

technologies) 3 times for 10 sec at 6500 power. This cycle was repeated for a total of 

3 times. In between the cycles the samples were incubated on ice for 5min. 

Consequently, the bottoms of the tubes were punctured with a needle and placed in a 

collection 1.5ml tube with cut off cap. Both tubes were fixed into a 15ml Falcon tube 

and centrifuged 2 times at 1000g for 2 min. Between the spins the beads were washed 

with 200μl FA lysis buffer containing PMSF. The collection tubes were spun at 

16000g for 15min at 4ºC and the supernatant was discarded.  

The pellet was resuspended in FA lysis buffer and sonicated on a Sanyo MSE 

Soniprep 150 sonicator for 15 sec. at 7 amplitude microns for a total of 5 times with 2 

min incubation periods on ice-water between cycles. Following that the sonicated 

sample was spun at 16000g for 30min at 4ºC and the supernatant was combined with 

3ml FA lysis buffer, yielding 4ml sonicated sample for immunoprecipitation.  

For each sample 80μl were aliquated for Input, 800μl were used for the 

Immunoprecipitate (IP) and 800μl were used as a control for the background. The 

Input aliquots were frozen at -80ºC. The IP and Background sonicated samples were 

combined with primary antibody (indicated in the figure legends) or non-specific 

donkey anti-goat secondary antibody respectively. The primary antibody 

concentration required for each protein was established empirically by a serial 

dilution starting with 1μg total antibody. For most proteins tested 3μg specific 

antibody was sufficient for immunoprecipitation. The donkey anti-goat secondary 

antibody concentration (sc-2020 Santa Cruz) was the same as the established primary 

antibody concentration, namely 3μg.  

The IP and Background samples were rolled in an end over end rotator. In the mean 

time tubes with 50μl protein G dynabeads (Invitrogen) were washed three times with 

250μl FA lysis buffer for 10min on the end to end rotator. After washing the beads 

were combined with the IP and Background samples and left to roll on the end over 
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end rotator overnight. On the next day the beads were washed 5 times for 3 min with 

700μl FA lysis buffer. Then the FA lysis buffer was aspirated with a pipette, the beads 

were resuspended in100μl ChIP elution buffer (50mM Tris-HCl pH7.6, 10mM EDTA, 

pH7.6 and 1% SDS) and incubated for 10min at 65ºC. This step reversed the 

crosslinking between the proteins and the DNA. Afterwards the samples were treated 

with Proteinase K to degrade unwanted proteins as follows: 

 

For each Input sample: 100μl TE, 100μl ChIP elution buffer and 20 μl Proteinase K 

(20mg/ml stock) 

For each IP and Background sample: 80 μl TE and 20 μl Proteinase K (20mg/ml 

stock) 

 

All samples were incubated in a water bath at 37ºC for 2h and then transferred to a 

heat block at 62ºC. Incubation at 62ºC was performed overnight to allow removal of 

formaldehyde form the DNA. In the morning the DNA was column purified with a 

Qiagen PCR purification Kit. Afterwards qPCR was performed to detect enrichment 

of immunoprecipitated DNA at Y’ 600 subtelomeric locus and YER188W locus. 

Measurements were also performed at PAC2 or ERG26 loci close to the centromere 

where no enrichment is expected. The following formula was utilised to obtain the 

percentage of DNA enrichment at the locus of interest: 


































 100100 x

Input

Background
x

Input

IP
enrichmentDNA  

Whenever values were subtracted the corresponding standard deviations were added 

up with the following formula: 

 

22 BackgroundSDInputSDSD   

 

 Or in the cases where for example the DNA enrichment at PAC2 was subtracted from 

Y’ 600:  
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22 2600' PACSDYSDSD   

 

The qPCR utilised was the same one for quantifying DNA in the QAOS protocol and 

the same forward and reverse primers and probes were used for the loci of interest. At 

least two independent experiments were performed but only one representative graph 

was shown in each figure. 

 

 

 

 

2.12  BrdU-IP 
 

Immunoprecipitation of BrdU labelled DNA was performed in strains containing the 

URA3::GPD-TK (7x) cassette. The cells were grown in the dark in the presence of 

200μg/ml 5-bromo-2'-deoxyuridine (BrdU) form Sigma and 30ml samples were 

collected. The samples were treated with 300μl 10% sodium azide and 3ml 0.5M 

EDTA, pH8.5 and spun down for 3min at 1500g. The pellets were stored at -80ºC 

until the BrdU labelled DNA was extracted with phenol-chloroform. The BrdU-IP 

protocol is based on the ChIP protocol and only the DNA extraction step and the 

reverse crosslinking step were modified.  

2.12.1 Phenol-chloroform DNA extraction. 
 

Phenol-Chloroform extraction was performed as in (Dewar & Lydall, 2010). Cell 

pellets were resuspended in 1ml lysis buffer (2% Triton-X, 1% SDS, 100mM NaCl, 

10mM Tris-HCL pH8, 50mM EDTA pH8) and transferred to Starsted tubes. Then the 

samples were spun down for 7sec in a bench top centrifuge and the supernatant was 

aspirated. The washed pellets were resuspended in 400μl lysis buffer and 600mg acid 

washed glass beads (Sigma) were added to each tube. In a fume hood 400μl 

phenol:chloroform:isoamyl alcohol (25:24:1, saturated with 10 mM Tris pH 8.0, 1 

mM EDTA, Sigma) was added to the tubes. After that the cells were crushed in a 

Precellys24 lysis and homogenization ribolyser (Bertin technologies) 3 times for 30 

sec at 5500 power. This cycle was repeated for a total of 3 times. In between the 
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cycles the samples were incubated on ice for 2min. 400μl of TE was added to the 

homogenates and spun for 5min at 14000g in a pre-chilled bench top centrifuge. The 

aqueous was transferred to 2ml phase lock light gel tubes (5 Prime) and 700μl 

phenol:chloroform:isoamyl alcohol was added. The samples were spun at 14000g for 

5min again and the aqueous phase was poored into a 2ml tube. 

 The isolated DNA was precipitated for 5min with 1ml 100% ethanol and pelleted for 

3min at 14000g. The pellets were air-dried for 5min and RNA was degraded with 

TE/RNAse (0.0075mg/ml RNAse in TE) for 30min at 37º C. 26μl 3M sodium acetate, 

pH 5.2 was added and after briefly vortexing the samples, the DNA was again 

precipitated with 1ml 100% ethanol for 15min. The DNA was pelleted for 1min at 

14000g and air-dried for 30min in a fume hood.  Finally the DNA was resuspended in 

700μl TE by incubation at 37º C for 30min. 

2.12.2 Immunoprecipitation of BrdU labelled DNA 
 

The DNA was sheared in a Sanyo MSE Soniprep 150 sonicator for 10sec at amplitude 

7microns for a total of 4 times. In between the samples were kept in ice-water.  This 

produced 500bp fragments similarly to the chromatin fragments in the ChIP protocol. 

Afterwards 700μ DNA was resuspended in 3ml FA lysis buffer and 80μl was used for 

Input. For the IP sample 800μl DNA was probed with 3ng anti-BrdU antibody (DB 

Biosciences) and for background 800μl were incubated with 3ng anti-goat antibody 

(SantaCruz). The G dynabeads (Invitrogen) were washed 3 times with 250μ FA lysis 

buffer and combined with IP or background. The tubes were rolled in an end over end 

rotator at 4º C overnight. 

 In the morning the beads were washed 6 times with 700μl FA lysis buffer and the 

bound DNA fragments were eluted in 100μl elution buffer at 65º C for 10min. No 

RNAse treatment and no reverse crosslinking at 62º C were required. After that all 

samples, including the Input samples were purified with the Qiagen PCR purification 

kit and measured by qPCR in the same way as for ChIP. At least two independent 

experiments were performed but only one representative graph was shown in each 

figure. 

 

2.13  Southern Blotting 
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Samples collected for Southern blotting were extracted with phenol-chloroform as in 

the BrdU-IP assay. The samples were measured with the nanodrop, diluted to 27ng/μl 

and restricted for 3h at 37º C with XbaI (New England Biolabs) in 1x Buffer 2 

supplemented with 1xBSA. Afterwards 5μ restricted DNA was loaded on 0.5xTBE 

gel and ran overnight at 25V. The DIG molecular weight marker VII (Roche). In the 

morning the gel was washed for twice for 10min with 0.25M HCl to depurinate the 

DNA, followed by denaturation in 1.5M NaCl, 0.5M NaOH twice for 20min and 

finally neutralised with 1M ammonium acetate twice for 20min. The DNA was 

gravity transferred for 2 days on a Hydrobond N+ (Amersham) in a sandwich as 

follows: 

 

 

500g weight 

gel 

membrane 

2 sheets watmann 3mm paper 

15cm white paper towels 

 

Afterwards the membrane was washed briefly in 2xSSC buffer (300mM NaCl, 30mM 

trisodium citrate, pH7) and cross-linked with 1200J/m
2
 UV on a Stratalinker. Then the 

membrane was pre treated with 15ml DIG easy hybridisation fluid (Roche) at 37º C 

for 40min. After incubation a digoxigenin (DIG) labelled probe specific for TG 

repeats was applied in 1:1000 dilution and hybridised with the cross-linked DNA 

overnight. The probe was synthesised by PCR from a template TG sequence on a 

plasmid with the PCR DIG probe synthesis kit (Roche) as follows: 

 

PCR mix: 

 

28μl dH2O 

5μl PCR buffer 

5μl PCR DIG mix 
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10μl primer mix containing  

10μM forward (TGCAGGAATTTGGATCACACACTACAC) and  

10μM reverse (GCCGGGTAAGGAGTGACAGCG) primers 

0.75μl enzyme mix 

1.25μl plasmid pDL912 1:200 dilution (from David Lydall) 

 

PCR conditions: 

 

95º C, 3min (1 cycle) 

95º C, 30sec 

60ºC, 30sec               33 cycles 

72º C, 1min  

 

The probe was boiled at 95º C for 5min and put on ice-water to denature prior 

application.  

After overnight hybridisation with the probe the membrane was washed 2x5min with 

50ml 65ºC pre-warmed HOT buffer (0.5xSSC, 0.1% SDS) followed by 2x100ml 

washes for 15min. Then the membrane was rinsed with 1xWashing buffer (Roche) 

and blocked in 1xDIG blocking solution (Roche) for 30min. Subsequently the labled 

probe was detected for 30min with an anti-DIG-alkaline phosphatase conjugated 

antibody (Roche) that recognises digoxigenin, 1:10000 dilution. Then the membrane 

was washed twice with 1xWashing buffer, incubated with 1xDetection solution 

(Roche) and incubated for 5min with CDP-star reagent (New England Biolabs). 

Finally the  signal was detected with the Fugifilm LAS-3000 imaging system. 
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3 Damaged telomeres can “heal” themselves 

when capping is restored 
 

If cdc13-1 cells really utilise an intrinsic ssDNA re-synthesis mechanism to survive 

after capping is restored several consequences can be expected. First, polymerases 

would be recruited to the damage sites, second ssDNA would gradually decrease and 

third BrdU would be incorporated at the repaired loci. Furthermore  polymerase 

subunits might be essential for this repair This hypothesis will be discussed in the 

following chapter.  

 

3.1  ssDNA damage is re-synthesised after capping is re-

stored 
 

To understand whether damaged telomeres can be re-synthesised after telomere 

capping is restored ssDNA production in cdc13-1 cells was quantified by the QAOS 

assay. The cells were grown at the non permissive temperature 36º C for 150min to 

induce uncapping, returned to 23º C and samples were collected every 30min (Figure 

6D). To ensure that fluctuations in ssDNA were not caused by cells re-entering the 

cell cycle, the spindle poison nocodazole was applied to the culture after the 

temperature was decreased to maintain G2/M phase arrest (Figure 6D). Arrest was 

monitored by DAPI staining of the nucleus, which allows differentiation between 

phases of the cell cycle (Figure 6C).  

QAOS was performed at two loci close to the telomere (Y’ 600 and YER188W) and 

one centromeric locus (PAC2) on the right arm of chromosome V (Figure 6A): Y’600 

is situated in the Y’ subtelomere, while the open reading frame YER188W is 8500bp 

away from the chromosome end. After 150min at restrictive temperature cdc13-1 

accumulated ssDNA close to the telomere (Y’600 and YER188W loci, 0min time 

point) but not at centromere (PAC2 locus, 0min time point) as expected (Figure 6B). 

The resection progressed in 5’ to 3’ direction, because no ssDNA accumulated at the 

AC rich strand (Figure 6B, Y’600 grey circles). Interestingly when capping was 

restored by growing the cells at permissive temperatures the ssDNA gradually 
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decreased within one hour and then remained constant. The centromeric ssDNA 

remained below 1% throughout the experiment (Figure 6B, PAC2). Loss of ssDNA 

happened even though 75% of the cells were arrested in G2/M phase with a nucleus in 

between mother and daughter cells (Figure 6C).  

To demonstrate directly that damaged telomeres in cdc13-1 mutants undergo ssDNA 

re-synthesis, I conducted a 5-bromo-2'-deoxyuridine (BrdU) incorporation assay. 

BrdU is a thymidine homologue that can be incorporated into the newly synthesised 

DNA during DNA synthesis and has been used to study S phase in yeast and human 

(Lengronne et al, 2001; Maya-Mendoza et al, 2010).  

Yeast lacks the enzyme thymidine kinase required for converting deoxythymidine to 

deoxythymidine monophosphate (dTMP) and instead synthesises dTMPs de novo 

from dUMP. Therefore yeast can not utilise thymidine homologues from the media. 

However, when the Herpes simplex thymidine kinase (7TK+) is knocked into the 

yeast genome, BrdU can be converted to BrdUMP and incorporated into DNA. A 

yeast strain carrying seven copies of the thymidine kinase under the GPD promoter at 

the URA3 locus on chromosome V was created by Schwob’s group. This strain could 

incorporate BrdU into DNA without loss of viability and delay in the cell cycle 

(Lengronne et al, 2001). I crossed this strain with cdc13-1 and tested how BrdU was 

incorporated to validate the system. 

Cdc13-1 7TK+ cells were arrested in G1 with alpha factor and incubated with 

200µg/ml BrdU for one hour (Figure 7A). Additionally G1 cells were released form 

the alpha factor arrest and passed through S phase in the presence of BrdU. BrdU 

incorporation was detected by BrdU-IP with an anti-BrdU antibody at one 

subtelomeric locus Y’ 600 and one centromeric locus PAC2 on the right arm of 

chromosome V. No BrdU incorporation was observed in G1 phase either at Y’ 600 or 

PAC2 (Figure 7A). In contrast the cells that went through S phase had incorporated 

more than 20% BrdU. This data confirms that the strain was behaving as expected, 

namely DNA synthesis was observed only during S phase but not in G1.  

I also tested if BrdU would be incorporated in cdc13-1 cells arrested at G2/M phase at 

restrictive temperatures. The cells were grown at 27º C for 3 hours and BrdU was 

applied for one more hour before sample collection (Figure 7A). Interestingly, cdc13-

1 showed around 5% BrdU incorporation at Y’ 600 and PAC2 loci even though 91% of 

the cells were arrested in G2/M (Figure 7A). This suggests that cdc13-1 cells may 

have global DNA damage that is actively repaired during G2/M arrest. It is likely that 
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the observed incorporation is due to post replication repair, which is responsible to fill 

up any left over ssDNA from replication. A recent publication shows that post 

replication repair can happen in G2/M and requires traslesion synthesis (Daigaku et 

al, 2010).  

After I have validated the BrdU system in cdc13-1 cells, I wanted to investigate 

whether cells with uncapped telomeres synthesise DNA after capping is restored. 

Cdc13-1 7TK+ yeast cells were grown at the non permissive temperature 36º C for 

150min to induce uncapping, then returned to 23º C and treated with BrdU (Figure 

7B). Nocodazole was applied to the culture to keep the cells in G2/M phase.  

There was almost three fold increase in BrdU incorporation at Y’600 30min after the 

cells were returned to permissive temperatures and no further increase was observed 

at later time points (Figure 7B, Y’600). At YER188W BrdU incorporation was slower, 

reaching maximum values after 60min (3.5h time point) (Figure 7B, YER188W). 

BrdU was specifically incorporated at Y’600 and YER188W because the signal at 

PAC2 was lower and did not increase with time (Figure 7B). Thus cdc13-1 cells re-

synthesise ssDNA regions close to the chromosome end when they are returned to 

permissive temperatures and this can happen even when the cells are arrested in G2/M 

phase.  
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Figure 6 Single stranded DNA production in cdc13-1 during telomere recapping 

A. Schematic representation showing the right arm of chromosome V with indicated loci of interest 

and their distance from the chromosome end. 

B.  Cdc13-1 (LMY206) cells were cultured for 150min at 36º C (restrictive temperature), then 

returned to 23º C (permissive temperature) and treated with 1.5µg/ml nocodazole to keep the 

cells in G2/M phase. White circles show QAOS measurements of ssDNA at Y’ 600, YER188W 

and PAC2 loci after cdc13-1 cells were returned to permissive temperatures. Error bars indicate 

the standard deviation. The experiment was repeated three times. T-test between 0min and 

60min time points indicates p=0.0953 for Y’600 and p=0.0002 for YER188W. 

C. Percentage of cdc13-1 cells in the different cell as scored by DAPI staining of the nucleus 

D. Scheme showing the experimental design 
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Figure 7 BrdU incorporation in cdc13-1 during telomere recapping  

A. Cdc13-1 7TK+ (LMY784) cells were arrested in G1 with 33nM alpha factor and treated 

with 200µg/ml BrdU (indicated as G1) or the cells were left to go through S phase in the 

presence of BrdU (grey bar). Another culture was grown at 27º C for 3 hours and then 

treated with BrdU (black bar). Samples were collected 1 hour after BrdU was 

supplemented. The BrdU labelled DNA was extracted with phenol-chloroform, sheared 

by sonication and combined with anti BrdU antibody. The bound fragments were pulled 

down with dynabeads and measured for BrdU enrichment at Y’600 and PAC2 relative to 

the total DNA by qPCR. Error bars represent the standard deviation. This experiment was 

repeated three times. 

B. Cdc13-1 7TK+ cells were grown at 36º C 150min, treated with 200µg/ml BrdU and 

1.5µl/ml nocodazole and returned to 23º C. Samples were collected every 30min and 

BrdU enrichment detected with anti BrdU antibody was measured at Y’600, YER188W 

and PAC2 by qPCR as in A. Error bars represent the standard deviation between three 

qPCR measurements of the same sample. The experiment was repeated two times. The 

unpaired t-test was performed with GraphPad. 
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3.2 Polymerase δ and ε associate with ssDNA during re-

synthesis 
 

After I have shown that ssDNA is re-synthesised following telomere recapping I 

wanted to understand which polymerases perform this re-synthesis. In an UP-DOWN 

assay serially diluted cdc13-1 cells were inoculated on agar plates and cycled between 

4h incubation at restrictive temperatures (35°C), followed by 4h incubation at 

permissive temperature (23°C). After 3 cycles the cells are kept at 23°C until colony 

formation (Figure 8A). Since the cells re-synthesise their ssDNA when returned to 

permissive temperatures this assay could identify genes required for ssDNA repair at 

uncapped telomeres. 

Several ways for re-synthesis of ssDNA in G2/M can be envisioned. First, HR is 

likely to operate in cdc13-1 because the cells arrest in G2/M, the predominant cell 

cycle phase in which HR is active. Furthermore immortalised cdc13-1 yeast forms 

Rad52 dependent survivors (Zubko & Lydall, 2006). RAD52 and non essential 

subunits of polymerase ε (DPB3 and DPB4) and polymerase δ (POL32) all of which 

are involved in HR were knocked out in the cdc13-1 background. Second, PRR is also 

active in G2/M, thus  RAD18, responsible for translesion synthesis control was also 

tested for contribution to ssDNA repair at uncapped telomeres (Daigaku et al, 2010). 

Deletion of the checkpoint gene RAD9, known to be essential for cdc13-1 survival 

through the UP-DOWN assay was used as a control (Blankley & Lydall, 2004). 

Rad9Δ cdc13-1 cells fail to form colonies after the UP-DOWN assay because the cells 

have a defective checkpoint arrest, allowing them to proliferate during ssDNA 

accumulation. This leads to rapid cell death due to loss of essential genes. 

 Interestingly the POL32 subunit of polymerase δ seemed to be required for cdc13-1 

survival because cdc13-1 pol32∆ cells formed less colonies in the UP-DOWN assay 

(Figure 8A). This has also been confirmed in a recent paper looking at genes required 

from cdc13-1 survival (Addinall et al, 2011). It is known that POL32 plays a role in 

recombination-dependent survivor formation presumably because it is required to 

establish a full replication fork in the absence of an origin of replication (Lydeard et 

al, 2007). However POL32 seems to act independently of HR in cdc13-1 cells 

because rad52∆ cdc13-1 double mutants survived in the UP-DOWN assay as well as 



67 

 

cdc13-1 only (Figure 8A). The DPB3 and DPB4 subunits of polymerase ε and PRR 

did not seem to play a role in cdc13-1 survival. 

Since POL32 was required in cdc13-1 with uncapped telomeres, I wanted to 

understand if polymerase δ was recruited to the ssDNA damage after capping is 

restored and thus mediate repair. Polymerase ε was used as a control because dpb3∆ 

cdc13-1 and dpb4∆ cdc13-1 survived the UP-DOWN assay. Furthermore I also tested 

Rap1 as a control for a protein usually associated with telomeres. The cells were first 

grown in liquid culture at the non permissive temperature 36ºC for 2.5h. Then the 

culture was returned to 23ºC and nocodazole was applied after the temperature was 

decreased to ensure that recruitment happens during G2/M and not because the cells 

re-entered another cell cycle (as in Figure 6D). Chromatin was isolated from cdc13-1 

cells and the catalytic subunit of polymerase δ, Pol3; the catalytic subunit of 

polymerase ε, Pol2 and the telomere binding protein Rap1 were immunoprecipitated. 

ERG26, situated close to the centromere, where no DNA damage is present in cdc13-1 

cells, was used as a control locus where no specific polymerase binding is expected 

(Figure 9). 

Interestingly, Pol3 and Pol2, were recruited even at restrictive temperature to both loci 

close to the telomere but not near the centromere at ERG26 (Figure 9A and B). Pol3 

binding at Y’ 600 remained constant with a modest increase at 3.5h, while at 

YER188W it increased 30min (3h time point) after return to permissive temperature 

and then continued to decline (Figure 9A). Pol2 binding at Y’ 600 decreased gradually 

over the time course reaching more than 2 fold difference (Figure 9B Y’ 600). At 

YER188W Pol2 binding reached a more than 2 fold decrease in the first 30min (3h 

time point) and remained low for the rest of the time course (Figure 9B YER188W).  

The binding of Rap1 at Y’600 remained constant throughout the experiment, except 

for a small increase at 4h that could indicate recapping of the telomere (Figure 9C, 

Y’600). Very little association of Rap1 was found at YER188W and ERG26, 

confirming that Rap1 is only binding at repetitive loci close to the telomere ever when 

telomeres are uncapped (Figure 9C) 

This data shows that Pol3 and Pol2 are recruited specifically to ssDNA damage even 

at restrictive temperatures when telomeres were uncapped (Figure 9A and B 2.5h time 

point). After recapping the binding of these proteins decreased gradually, correlating 

with ssDNA decrease and BrdU incorporation but Pol2 remained associated for longer 

(Figure 6B and 9). 
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Figure 8 UP-DOWN assay with indicated yeast strains  

Yeast strains indicated on the right were serially diluted, spotted on agar plates and incubated 

at indicated temperatures for 4-5 days. The UP-DOWN plate was incubated for 4h at 21º C 

followed by 4h at 35º C. This was repeated three times and then the plates were returned at 

21º C until day 5. Every strain was tested multiple times and behaved similarly compared to 

wild type.  
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Figure 9 Pol3, Pol2 and Rap1 recruitment during cdc13-1 telomere recapping 

A. Recruitment of Pol3 at Y’ 600, YER188W and ERG26 (1kb away from the 

centromere of chromosome 7) as measured by ChIP. Cdc13-1 POL3::HA (LMY772) 

cells were cultured for 2.5h at 36º C (restrictive temperature), then returned to 23º C 

(permissive temperature) and treated with 1.5µg/ml nocodazole to keep the cells in 

G2/M phase. Pol3 was immunoprecipitated with 3ng monoclonal anti-HA antibody 

(11867423001, Roche). Error bars represent the sum of the standard deviations of the 

IP and background samples between three qPCR measurements. The experiment was 

repeated two times. 

B. Recruitment of Pol2 in LMY772 at Y’ 600, YER188W and ERG26 as in B. 

Pol2 was immunoprecipitated with 3ng polyclonal anti-Pol2antibody (sc-6753, Santa 

Cruz). The experiment was repeated three times. 

C. Recruitment of Rap1 in LMY772 at Y’ 600, YER188W and ERG26 as in B. 

Rap1 was immunoprecipitated with 3ng polyclonal anti-Rap1 antibody (sc-6663, 

Santa Cruz). The experiment was repeated once, but the same result was obtained 

from Yuan Xue and Michael Rushton in independent experiments. 
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3.3 DNA polymerases are recruited to ssDNA damage at te-

lomeres 
 

In my previous experiments I have seen that polymerase subunits were recruited to 

telomeres even when the telomeres were uncapped (Figure 9, time point 2.5h). 

Therefore I wanted to investigate polymerase recruitment during accumulation of 

telomere damage. Cdc13-1 mutants were cultured overnight at 23 ºC and shifted to 

the non permissive temperature 27 ºC for 480min. Samples for QAOS, DAPI staining 

and ChIP were collected every 160min. As expected cdc13-1 cells gradually 

accumulated up to 10% ssDNA at both loci close to the chromosome end but not near 

the centromere at PAC2, where ssDNA was around 1% (Figure 10A). No ssDNA was 

observed on the AC strand (Figure 10A, Y’600 grey circles) DAPI staining revealed 

that at 0min, when the telomeres were still functional, the cells were in all stages of 

the cell cycle, confirming that proliferation was not compromised at the permissive 

temperature (Figure 10B). After 160min at the non-permissive temperature, over 69% 

of the cells were already arrested in G2/M phase (nucleus between mother and 

daughter cells), reaching over 85% by 8 hours (Figure 10B).  

The ChIP measurements at PAC2 locus near the cetromere were subtracted from Y’ 

600 and YER188W to allow better interpretation of the binding close to chromosome 

ends. This way the specific binding of proteins to Y’600 and YER188W above 

background could be visualised (Figure 10 and 11). At 0min, the catalytic subunit of 

Polymerase α, Pol1 associated near chromosome ends and this association was 3 

times higher at Y’ 600 than at YER188W (Figure 10C). Pol1 interacts with Cdc13 as 

well as with cdc13-1 and this interaction might be required for the synthesis of the AC 

strand after telomerase elongation (Qi & Zakian, 2000). Therefore the higher 

association of Pol1 with Y’600 at 0min could be mediated through it’s interaction with 

cdc13-1.When the cells were grown at restrictive temperature, binding of Pol1 

increased more than three fold at both loci close to the telomere, while it stayed below 

0.5% at PAC2 (Figure 10C). 

 The catalytic subunit of polymerase δ and its clamp PCNA behaved similarly close to 

the telomere. No telomere specific association was observed at 0min, but after 

uncapping binding increased with time (Figure 10D and E). The association of Pol3 

but not PCNA decreased after onset of G2/M arrest at PAC2. This decrease was not 
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due to damage, because no accumulation of ssDNA was observed at that locus. Since 

polymerase δ is extensively involved in DNA replication it is likely that the binding 

close to the centromere is due to cells in S phase (Budd & Campbell, 1993). When the 

cells arrested in G2/M the binding decreased at PAC2 but increased close to the 

telomere, where ssDNA accumulated (Figure 10D). 

Binding of three different subunits from polymerase ε Pol2, Dpb11 and Dpb2 

increased upon telomere uncapping close to the telomere, but remained constant near 

the centromere (Figure 11A, B and C). Furthermore the telomere binding protein 

Rap1 decreased binding at Y’600, while no increased association was observed at 

YER188W or PAC2 (Figure 11D). This finding is in agreement with Rap1 binding 

only to telomeric repeats and shows that upon uncapping Rap1 dissociates from 

telomeres probably due to loss of the double stranded DNA binding sequence required 

from Rap1 recruitment to telomeres.  

Taken together my data suggests that different polymerase subunits associate 

specifically to loci that accumulate ssDNA. Furthermore this effect was observed in 

cells arrested at G2/M phase and can not be explained by association during DNA 

replication, because only around 6% of the cells were budding at 320 and 480min 

(Figure 10B). 
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Figure 10 Accumulation of ssDNA and recruitment of Pol1, Pol3 and PCNA af-

ter telomere uncapping (text continues on next page) 

A. QAOS measurement of ssDNA at Y’ 600, YER188W and PAC2 loci. Error bars 

show the standard deviation between three replicates from the same sample. LMY 206 

was grown overnight at 23° C and diluted to 2.10
7
 cells/ml in the morning. Afterwards 

the temperature was shifted to 27° C and samples were collected every 160min The 

experiment was performed four times. 

B. Percentile distribution of cells in different stages of the cell cycle as scored by 

DAPI staining 
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C. Chromatin immunoprecipitation of Pol1 in cdc13-1 POL1::HA cells 

(LMY746). Pol1 associated DNA was pulled down with 3ng monoclonal anti-HA 

(11867423001, Roche). The ChIP data at PAC2 was subtracted from Y’ 600 and 

YER188W signal to show the specific association of the Pol1 to these loci, relative to 

the PAC2 background. Error bars represent the sum of the standard deviations of the 

IP and background samples between three qPCR measurements. Small error bars may 

not be visible on some bars. The experiment was repeated twice. 

D. ChIP of Pol3 in cdc13-1 POL3::HA cells (LMY772). Pol3 associated DNA 

was pulled down with 3ng monoclonal anti-HA (11867423001, Roche). The 

experiment was repeated twice. 

E. ChIP of PCNA in cdc13-1 cells (LMY205). PCNA associated DNA was pulled 

down with 6ng monoclonal anti-PCNA antibody (NB500-106, Novus Biological). 

The experiment was repeated three times. 
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Figure 11 Recruitment of Pol2, Dpb11, Dpb2 and PCNA after telomere uncap-

ping 

A. Chromatin immunoprecipitation of Pol2 in cdc13-1 Dpb2::MYC cells 

(LMY493). Pol2 associated DNA was pulled down with anti-Pol2 antibody (sc-6753, 

Santa Cruz). The ChIP data at PAC2 was subtracted from Y’ 600 and YER188W signal 

to show the specific association of the Pol2 to these loci, relative to the PAC2 

background. Error bars represent the sum of the standard deviations of the IP and 

background samples between three qPCR measurements. Small error bars may not be 

visible on some bars. The experiment has been repeated three times. 

B. Same as in A. but for Dpb11. Dpb11 associated DNA was pulled down with 

3ng polyclonal anti-Dpb11 antibody (sc-12007, Santa Cruz). The experiment has been 

repeated three times. 

C. Same as in A. but for Dpb2. Dpb2 associated DNA was pulled down with 3ng 

monoclonal anti-MYC antibody (Sc-40, Santa Cruz). The experiment has been 

repeated three times. 

D. Same as in A. but LMY772 was used instead and Rap1 associated DNA was 

pulled down with 3ng polyclonal anti-Rap1 antibody (sc-6663, Santa Cruz). The 
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experiment was repeated once, but the same result was obtained from Yuan Xue and 

Michael Rushton in independent experiments. 
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3.4 Discussion 
 

Although telomeres are prone to DNA damage there is currently no data showing 

telomere repair under normal circumstances in the literature. In yeast and mammals 

intact telomeres seem to inhibit HR and NHEJ to prevent recombination, telomere 

fusion and genomic instability (Marcand et al, 2008; Tong et al, 2011). Moreover cells 

seem to also tolerate telomere damage since healthy mammalian telomeres are 

hypersensitive to UV irradiation but the pyrimidine dimmers are not repaired (Kruk et 

al, 1995; Rochette & Brash, 2010).  

 In this chapter I have shown that following telomere uncapping polymerases are also 

specifically recruited to ssDNA and yeast can use a DNA re-synthesis strategy after 

telomere recapping (Figure 12). When telomere uncapping was restored the cells 

gradually lost the ssDNA and re-synthesised the missing 5’ strand most probably by 

using polymerase α, ε and δ (Figure12C). 

How is ssDNA re-synthesised in cdc13-1 cells?  

During HR repair of an induced HO cut polymerase α/primase complex and 

polymerase δ are essential for initiation and elongation of the primer and polymerase ε 

is required for further extension of the newly synthesized DNA (Lydeard et al, 2007). 

However cdc13-1 rad52∆ cells, defective in HR could form colonies in an UP-

DOWN assay, confirming that RAD52 is not required for cdc13-1 survival in the 

presence of DNA damage (Figure 8). Instead polymerase α, δ and ε were recruited to 

ssDNA damage and possibly participate in DNA re-synthesis after recapping of the 

telomere.  

In the case of polymerase ε, although DPB3 and DPB4 were not required for cdc13-1 

survival the catalytic subunit Pol2 as well as the essential subunits Dpb2 and Dpb11 

were clearly associated with ssDNA and may still participate in repair. Therefore is 

seems like polymerase ε might not require Dbp3 and Dpb4 for DNA synthesis in vivo. 

Polymerase ε is also involved in the S phase checkpoint because POL2 mutants 

activate damage specific gene transcription during G1 but not in S phase (Navas et al, 

1996). Thus, another reason for Pol2 association could be due to a checkpoint 

function. The DPB11 subunit of polymerase ε can stimulate Mec1 activation in vitro 

in conjugation with the 9-1-1 complex (Navadgi-Patil & Burgers, 2008). Furthermore 
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Dpb11-Pol2 interaction is crucial for assembly of the replication complex, suggesting 

that the checkpoint function of polymerase ε might be mediated through DPB11 only 

(Masumoto et al, 2000). It is not clear whether polymerase ε is involved in checkpoint 

activation and/or in repair at uncapped telomeres, however it is known that Dpb11 

participates in the checkpoint response to UV damage in G2/M arrested cells with 

nocodazole (Puddu et al, 2011).  

Polymerase δ appeared to stay associated with the DNA longer, showing that it may 

have a different role than polymerase ε (Figure 9). The decrease in ssDNA measured 

by QAOS does not necessarily mean that repair has been completed. The assay can 

only show whether a certain locus is single stranded or double stranded at each time 

point. Therefore many ssDNA gaps undetected by QAOS might exist and re-synthesis 

could still be happening even when ssDNA measurements by QAOS are low. This 

means that polymerase δ may still be extending Okazaki fragments. Furthermore 

during lagging strand replication polymerase δ is also important for the creation of a 

ligatable nick and thus could be associated for longer to aid ligation (Jin et al, 2003). 

During telomere replication telomerase adds TG repeats to the 3’ overhang leading to 

a longer ssDNA stretch. This is then re-filled by the DNA replication machinery. 

Polymerase α/primase creates short RNA-DNA primers that are then extended by 

polymerase δ and later ligated by the yeast ligase Cdc9 (Waga & Stillman, 1998). 

Polymerase ε is not essential for telomere replication but could be important when the 

overhangs are longer similarly to DSB repair (Budd & Campbell, 1993; Lydeard et al, 

2007). Therefore it seems like after recapping, the resected strand is just filled up by 

DNA synthesis machinery using the 3’ overhang as template. However ssDNA re-

filling at uncapped telomeres is more complicated because the overhang is much 

longer and would require several priming sites as shown by recruitment of Pol1 not 

only at Y’600 but also at 8500bp away from the telomere. The primers are then 

extended by at least polymerase δ and/or ε (Figure 12C). 

 Why is ssDNA re-synthesis in cdc13-1 at restrictive temperatures not sufficient? 

Perhaps the most striking finding was that polymerases were recruited specifically to 

damaged loci although this did not seem to lead to successful re-synthesis because the 

cells continued to accumulate ssDNA (Figure10). Repair was only observed when the 

cells were returned to permissive temperatures, which restores the cdc13-1 defect. At 

least two models to explain this effect can be envisioned: a deliberate DNA re-



78 

 

synthesis block or a constant competition between resection and re-synthesis at 

uncapped telomeres (Figure 12A and B). 

If synthesis is specifically inhibited the cells must poses a telomere uncapping 

“sensor”, which would be only active during uncapping (Figure 12A). Therefore DNA 

repair could take place only when the cells were returned to permissive temperatures 

and proper capping by cdc13-1 was restored. The literature suggests that cdc13-1 

exhibits reduced interaction with Stn1 at restrictive temperatures (Wang et al, 2000). 

Therefore Stn1 binding to Cdc13 might function as the “sensor” for uncapped 

telomeres. Stn1 could influence DNA synthesis by regulating primer formation 

through its interaction with the Pol12 subunit of DNA polymerase α/primase. 

However it is not clear how Stn1 which is supposedly bound to the very end of 

telomeres would also regulate repair 14kb away at YER188W locus. The exonuclease 

Exo1 can inhibit DSB repair at an induced HO cut, although the mechanism for this 

inhibition is not clear (Lydeard et al, 2010a). Therefore the checkpoint response itself 

is also a candidate for ssDNA re-synthesis inhibition at telomeres. Because ChIP can 

only confirm association with chromatin it is not clear whether recruited polymerase 

subunits are active or if they are assembled correctly. Therefore it is not clear whether 

the “sensor” inhibits synthesis or assembly. 

 In the second model competition between DNA resection and repair occurs (Figure 

12B). It is clear that the cdc13-1 defect leads to accessibility of nucleases to the 5’ 

end. Therefore even if polymerases re-synthesise part of the DNA it can be attacked 

again by exonucleases and this would continue until the telomere is capped and 

Cdc13 can protect the 5’ end. Once capping is restored the primer most proximal to 

the telomere end would be elongated. The newly synthesised DNA would not be 

attacked by nucleases and full repair of the ssDNA would be possible (Figure 12B).   

An alternative explanation for the lack of repair at uncapped telomeres is that not all 

factors required for ssDNA re-synthesis are available at uncapped telomeres.  ChIP 

can only confirm recruitment of a protein in close proximity to the DNA but can not 

confirm correct loading or activity. A large number of other proteins usually required 

for DNA replication are also required for DSB repair (Lydeard et al, 2010b). At an 

HO induced cut, repair could occur in the presence of the DNA replication licensing 

factor Cdt1 but did not require the pre-replicative complex. All other replication 

factors were essential for DSB repair, including the helicase Mcm2-7, the DNA 

synthesis initiation factors Cdc45, Dpb11, Sld3, Mcm10, Ctf4, Cdc7 and the GINS 
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complex (Lydeard et al, 2010b). Since uncapped telomeres are similar to DSBs, 

similar requirements for DNA re-synthesis may apply at uncapped telomeres. Thus it 

is possible that re-synthesis is absent or not efficient due to the lack of some of those 

factors. ChIP targeting all those proteins might reveal if some are missing and only 

recruited after recapping. Nevertheless, primers might have been synthesised at 

uncapped telomeres because PCNA can only be loaded on the primer/template 

junction (Tsurimoto & Stillman, 1991).  
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Figure 12 Models explaining how cells deal with ssDNA at uncapped telomeres 

and after recapping 
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4 Extracellular salt facilitates repair at un-

capped telomeres requires polymerases δ and ε  
 

In chapter III, I have shown that single-stranded DNA resulting from conditional 

telomere uncapping could be re-synthesised. This re-synthesis was only detectable 

after recapping but does not exclude re-synthesis during DNA damage accumulation. 

Therefore I hypothesise that some factors may stimulate ssDNA damage repair and 

rescue the lethal phenotype of cdc13-1 cells with uncapped telomeres. These may 

include intracellular regulatory pathways that regulate repair. However our laboratory 

has previously discovered that some extracellular factors may contribute to cdc13-1 

rescue, such as inorganic salts e.g. NaCl, KCl, MgCl2 and CaCl2 (Maringele 

unpublished data). This finding provides a potential link between environmental 

conditions and intracellular responses to DNA damage because cdc13-1 cells were 

able to grow at restrictive temperatures in the presence of small amounts of inorganic 

slats. In this chapter I investigated if and how salt could induce ssDNA re-synthesis. 

For simplicity only NaCl was used in further experiments. There were several reasons 

for choosing NaCl instead of any other salt: 

a.  To avoid complications arising from cations participating in crucial signalling 

pathways. For example Ca
2+

 is a major intracellular signal mediator and its 

concentrations in the cells can control different stress response pathways (Araki et al, 

2009; Denis & Cyert, 2002). 

b. NaCl is abundant in the environment of uni- and multicellular organisms.  

c. Different types of cells have different environmental requirements. In is not 

clear what is the natural NaCl concentration surrounding yeast in the wild. However, 

the concentration of NaCl in yeast media was only 20mM, compared to 150mM in 

human serum (Table 3). Therefore it is interesting to know how environmental 

changes could affect cellular responses and in particular DNA repair.  

I decided to supplement NaCl to yeast media up to 170mM or 450mM NaCl and 

study the influence of these NaCl concentrations on telomere uncapping. Yeast media 

originally contained 20mM NaCl and cells grown in normal media were considered 

untreated. 
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Cation content in cell media, human serum and sea water 

Cation YEPD D-MEM Serum Sea Water* 

Na
+
 ~20mM 55mM ~150mM ~430mM 

K
+
 9mM 2.8mM 5mM 9mM 

Mg
2+

 0.3mM 0.17mM 1mM 106mM 

Ca
2+

 0.05mM 0.64mM 1.44mM 18.5mM 

Table 3 Cation concentrations in YEDP, D-MEM, human serum and sea water.  

The values presented for YEPD and D-MEM were obtained from the manufacturer 

BD Biosciences and Invitrogen respectively. Human serum is according to (Kramer & 

Tisdall, 1922) and sea water is according to (Crenshaw, 1972) 

*North Pacific Ocean 

 

4.1 Extracellular NaCl prevents G2/M arrest in cdc13-1 

cells and protects the telomere 
 

To understand whether extracellular salts can influence cells with damaged telomeres 

three independent cdc13-1 strains were spotted on agar plates containing different 

amounts of NaCl (20mM, 170mM and 450mM NaCl). At the permissive temperatures 

21 ºC and 25 ºC cdc13-1 cells grew as well as wild type regardless of NaCl 

concentration in the media (Figure 13). As a result of telomere uncapping at the non-

permissive temperature 27 ºC, the mutants were not growing in normal conditions 

while wild type continued to grow well. Intriguingly, when further NaCl was 

supplemented to the media cdc13-1 cells were rescued in a dose dependent manner. A 

total of 170mM NaCl allowed colony formation after 125 fold dilution, while 450mM 

NaCl produced a fully growing dilution series, similar to wild type. This effect was 

not observed at 28 ºC, where cdc13-1 failed to grow even with the highest tested 

concentration of NaCl.  

To further understand what could be the biological significance of this mild effect, 

2x10
5
 cdc13-1 cells/ml were propagated in liquid culture for 5 days at 27º C (Figure 

14A). Every day the culture was counted and diluted back to the initial concentration 
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to establish the growth rate. The advantage of propagation in liquid media over the 

spot test lies in the ability to distinguish between proliferating cells and cells that do 

not cycle but increase in size.  

Propagation of cdc13-1 in liquid culture showed that during the first 3 days, the non-

treated cells proliferated very slowly, indicating cell cycle arrest (Figure 14A). After 

that the cells escaped and started to grow rapidly reaching up to 1x10
8
 cells/ml at day 

4. This rapid growth could be due to formation of survivors. In contrast 170mM NaCl 

led to a 3 fold increase in the population doublings at day 2. At days 4 these cells also 

started to grow rapidly, similar to the non treated control. Hence, salt may delay cell 

cycle arrest because the cells treated with 170mM NaCl only slowed down 

proliferation at day 3. The cells propagated on 450mM NaCl continued to grow 

slowly after day 2 but no apparent cell cycle arrest was observed (Figure 14A). This 

data shows that NaCl allows proliferation of cdc13-1 cells with uncapped telomeres 

and although this effect is mild it could significantly influence the survival of cells. 

Under higher concentration of NaCl in the media the cells coped better in restrictive 

conditions.  

Since propagation of cdc13-1 showed that the number of cells suddenly increases 

after day 3 it is possible that survivors may have formed. To test this hypothesis 

cdc13-1 was again propagated in liquid culture for 5 days at 27 °C in the presence of 

different amounts of NaCl. A telomere blot was prepared to elucidate the changes in 

telomeres (Figure 14B). Interestingly the telomeres of the non-treated cells shortened 

gradually with every day. 170mM NaCl seemed to delay shortening because there was 

no change in telomere length at day 1 and 2. Furthermore, no shortening was observed 

at 430mM NaCl throughout the experiment. These results were confirmed in three 

independent cdc13-1 strains, although only one example is shown in Figure 14B. 

Another interesting finding was that an additional restriction band indicated with a 

black arrow was observed only in the non treated sample at day 5 suggesting that 

cdc13-1 could indeed form survivors at restrictive temperatures. On the contrary NaCl 

treated samples did not have additional restriction bands indicating that NaCl could 

delay survivor formation possibly by exhibiting telomere protection. The shortening 

of the telomere during telomere uncapping in cdc13-1 cells suggests that the mutant is 

either defective in telomerase recruitment or the TG strand is degraded.  
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Figure 13 Cdc13-1 proliferation on salt at different temperatures 

Three independent cdc13-1 strains were diluted 6 times in 5 fold increments and 

spotted on agar plates containing 20, 170 or 450mM NaCl. The plates were grown for 

3 days at the indicated temperatures and photographed. 20mM NaCl was the 

concentration of NaCl in commercial yeast media. 
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Figure 14 Growth in liquid culture and telomere length in cdc13-1 at restrictive 

temperatures 

A. Three independent cdc13-1 strains (LMY206, 204 and 205) were inoculated in 

liquid culture to 2x10
5
 cells/ml and propagated for 5 days at 27 ºC. Every day the cells 

were counted and diluted to the initial concentration. The number of cells was plotted 

on a logarithmic scale. Error bars represent the standard deviation between the 

number of cells in three independent cdc13-1 strains.  

B. Samples for southern blotting were collected daily as in A, the DNA was 

extracted and equalised with the Nanodrop. Afterwards the DNA was cut with Xho1 

and the membrane was probed with a TG sequence specific probe. Marker size is 

indicated on the left. The black arrow highlights a new restriction band at 20mM 

NaCl, day 5. 

C. Quantification of telomere length in three independent cdc13-1 strains 

(LMY204, LMY206 and LMY205). The same experiment as in B was performed. 

Error bars show the standard deviation.  
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4.2 Extracellular NaCl impairs ssDNA accumulation at un-

capped telomeres 
 

 Since cdc13-1 cells arrest due to accumulated ssDNA at non-permissive temperatures 

following telomere uncapping it is plausible that NaCl could influence ssDNA 

generation. To test this hypothesis ssDNA was measured by QAOS in cdc13-1 cells at 

27 ºC in liquid media (Figure 15). Fresh overnight culture was diluted in the morning 

and the temperature was shifted from 23º C to 27ºC. The culture was split in three and 

either left untreated (20mM NaCl) or supplied with a final concentration of 170mM or 

450mM NaCl. Samples were collected every 80min for QAOS and for DAPI staining 

to allow monitoring of the cell cycle.  

The untreated cells accumulated over 10% ssDNA at Y'600 and around 7% at 

YER188W on the TG rich strand during the time course (Figure 15B).Only around 1% 

ssDNA was measured on the AC rich strand at Y'600 locus, confirming that 

degradation in cdc13-1 progresses in 5’ to 3’ direction (Booth et al, 2001; Zubko et al, 

2004). When NaCl was supplemented, less ssDNA accumulated at Y'600 – 5% and 

only around 3% was found at YER188W (Figure 15B). No apparent difference in the 

ssDNA could be observed between samples treated with 170mM or 450mM NaCl. 

However, 160min after telomere uncapping over 70% of the non treated cells were 

arrested in G2/M phase compared to around 40% on 170mM NaCl and only 23% on 

450mM NaCl (Figure 15C). This trend remained throughout the time course and 

indicates that even very small differences in ssDNA may influence commitment to 

cell cycle arrest.  

NaCl could abrogate the production of ssDNA by inhibiting the exonuclease Exo1, 

responsible for resection, by protecting the telomere form degradation or by inducing 

ssDNA re-resynthesis. Deletion of EXO1 did not seem to abolish the ability of NaCl 

to rescue the growth of cdc13-1, indicating that salt was acting independent of 

resection (Figure 15D).  

Next I used BrdU incorporation to understand if the ssDNA could be repaired on salt. 

Telomere uncapping was induced at 27º C for 6 hours in cdc13-1 7TK+ strains and 

BrdU was added to allow metabolization of the thymidine homologue prior NaCl 

addition. 30min later (6.5h time point) 170mM NaCl final concentration was supplied 
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to part of the culture (Figure 16A). The PAC2 signal was subtracted from Y’600 and 

YER188W to show specific incorporation at loci with ssDNA. 

 The cells remained completely arrested in G2/M phase during the time course (Figure 

16B). BrdU incorporation was clearly observed at Y’600 locus, after treatment with 

NaCl (Figure 16B). Incorporation was also observed at YER188W but it was only 

marginally greater than the background. I have suggested in chapter III that BrdU 

incorporation during G2/M phase could be due to post replication repair. Deletion of 

Rad18 could reduce any PRR background and allow for a better observation of BrdU 

incorporation. Nevertheless, these experiments confirm that NaCl induces re-synthesis 

at uncapped telomeres.  
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Figure 15 Single stranded DNA accumulation in cdc13-1 on NaCl and exo1Δ 

cdc13-1 growth 

A. Schematic representation of the right arm of chromosome V with indicated 

loci of interest.  

B.  QAOS measurements showing accumulation of ssDNA in cdc13-1 cells 

(LMY206) at Y'600 TG rich strand or AC rich strand and YER188W. The cells were 

grown overnight at 23 ºC and diluted to 2x10
7
 cells/ml in the morning. Salt was 

supplemented to 2 parts of the culture (170mM or 450mM NaCl) and the temperature 

was shifted to 27 ºC for 560min. The cells were counted every 160min and diluted 

where necessary. Samples for QAOS were collected every 80min. The error bars 

indicate the standard deviation between three measurements from the same sample. 

Where not visible, the error bars are behind the symbol.  The experiment was 

performed two times. 

C. DAPI staining showing the fraction of cells in G2/M phase. The samples were 

treated the same way as in B. 

D. Five fold dilution series of exo1∆ cdc13-1 cells propagated at 28º C on solid 

plates supplemented with indicated amounts of NaCl. 

 

 

28ºC

170mM NaCl 450mM NaCl20mM NaCl
Wild type (LMY202)

exo1Δ cdc13-1 (LMY180)

exo1Δ cdc13-1 (LMY305)

D

28ºC

170mM NaCl 450mM NaCl20mM NaCl
Wild type (LMY202)

exo1Δ cdc13-1 (LMY180)

exo1Δ cdc13-1 (LMY305)

D



89 

 

PAC2

6.5 7.0 7.5 8.06.5 7.0 7.5 8.06.5 7.0 7.5 8.0

0

25

50 20mM NaCl

170mM NaCl

YER188W - PAC2

6.5 7.0 7.5 8.06.5 7.0 7.5 8.06.5 7.0 7.5 8.0

0

1

2 20mM NaCl

170mM NaCl

Time (h) at 27   C Time (h) at 27   C Time (h) at 27   C

Y'600 - PAC2

6.5 7.0 7.5 8.06.5 7.0 7.5 8.06.5 7.0 7.5 8.0

0.0

2.5

5.0 20mM NaCl

170mM NaCl

B
rd

U
 (

%
)

B
DAPI staining

Time (h) at 27   C

6.5 7.0 7.5 8.0

C
e
lls

 i
n
 G

2
/M

 p
h
a
s
e
 (

%
)

0

25

50

75

100

20mM NaCl

170mM NaCl

A

 

Figure 16 BrdU incorporation in cdc13-1 cells supplemented with NaCl 

A. BrdU incorporation in cdc13-1 (LMY784) at Y’600, YER188W and PAC2. The 

cells were grown at 27º C for 6h and 200µg/ml BrdU was added to the culture to 

allow sufficient uptake. After 30min (6.5h time point), the culture was split in two and 

170mM NaCl final concentration was supplemented to half of the culture. The 

experiment was repeated four times. 

B. DAPI staining showing the fraction of cells in G2/M phase. The samples were 

treated the same way as in D. 
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4.3  NaCl facilitated ssDNA re-synthesis requires non essen-

tial polymerase ε and polymerase δ subunits but is HR inde-

pendent 

 

 I have previously shown that subunits of polymerase ε and polymerase δ are recruited 

to ssDNA damage during telomere uncapping and that after capping is restored the 

binding decreased, correlating with a decrease in ssDNA and increase in BrdU 

incorporation. Therefore it is likely that ssDNA re-synthesis at uncapped telomeres is 

performed by those polymerases. Deletion of DPB3, DPB4 and POL32 leads to at 

least 50% decrease in the activity of the respective polymerase in vitro (Araki et al, 

1991; Gerik et al, 1998; Ohya et al, 2000). If full polymerase activity is required for 

cdc13-1 proliferation at 27º C on NaCl, deletion of those subunits should abolish the 

ability of NaCl to rescue cdc13-1 growth at non-permissive temperatures. All double 

mutants were inoculated on agar plates supplemented with different amounts of NaCl 

(Figure 17). The spot test revealed that DPB3, DPB4 and POL32 seemed to be 

required for the NaCl effect at 27º C since the double mutants were not rescued as 

well as cdc13-1 on 170mM and 450mM NaCl (Figure 17). Because dpb3Δ cdc13-1, 

dpb4Δ cdc13-1 and pol32Δ cdc13-1 grew as well as wild type at 25º C, the lack of 

growth at 27º C can not be explained with increased temperature sensitivity in the 

double mutants. This data infers that NaCl facilitated polymerase ε and δ dependent 

ssDNA re-synthesis in cells with damaged telomeres. 

 Pol32 participates also in traslesion synthesis where it aids polymerase ζ (Auerbach 

& Demple, 2010). To avoid any confusion between the conventional polymerases and 

the translesion synthesis pathway, polymerase ζ catalytic subunit REV3 was also 

deleted in cdc13-1. Furthermore polymerase IV and the homologous recombination 

gene RAD52 were also tested as other possible mechanisms for NaCl facilitated 

ssDNA repair at uncapped telomere. Polymerase IV is encoded by the POL4 gene and 

is usually involved in NHEJ (Tseng & Tomkinson, 2004). In contrast to the subunits 

of replication polymerase, polymerase ζ and IV and HR were not involved because 

the double mutants were rescued by salt as well as cdc13-1 (Figure 17). 

To provide more evidence for polymerase ε involvement in ssDNA re-synthesis on 

NaCl, ssDNA was measured in cdc13-1 and dpb3 cdc13-1 mutants (Figure 18). Fresh 
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overnight cultures were diluted in the morning and one part was treated with 170mM 

NaCl final concentration (Figure 18 red rhombi), while the untreated control 

contained only 20mM NaCl found normally in commercial yeast media (Figure 18 

white circles). Then the temperature was shifted to 27º C to induce telomere 

uncapping and ssDNA production. 170mM final concentration NaCl was also added 

to part of the untreated cells, 400min after telomere uncapping. This allowed 

visualising how salt influences already accumulated ssDNA (Figure 18, orange 

triangles).  

On 20mM NaCl cdc13-1 cells accumulated up to 7 % ssDNA at Y' 600 and around 

6% at YER188W, while the cells with 170mM NaCl accumulated less that 3% ssDNA 

(Figure 18A, Y’ 600 TG strand and YER188W). When NaCl was supplied to cells with 

uncapped telomeres (400min time point), ssDNA dropped within 80min and stayed at 

the same level as the culture treated with NaCl from the begining at both loci (Figure 

18A, Y’ 600 TG strand and YER188W). No ssDNA was accumulated on the AC strand 

(Figure 18A, Y’600 AC strand). Furthermore, the drop of ssDNA can not be explained 

by cells re-entering the cell cycle because DAPI staining showed that the cells 

remained in G2/M phase after addition of NaCl at 400min (Figure 18C). Instead DNA 

re-synthesis seems to occur prior to release from the cell cycle arrest. This data further 

emphasises that ssDNA re-synthesis at uncapped telomeres occurs in cdc13-1 cells 

cultured in the presence of higher salt. 

 On the contrary, in the dpb3Δ cdc13-1 double mutant, ssDNA accumulated 

throughout the experiment up to around 6 % at both loci, independent of treatment 

with NaCl or addition of NaCl at 400min (Figure 18B). The double mutant also 

arrested with the same dynamics regardless of treatment with salt (Figure 18D). Thus 

NaCl facilitated ssDNA re-synthesis during G2/M phase requires the DNA replication 

polymerases. 



92 

 

 

Wild type (LMY202)

cdc13-1 (LMY204)

dpb3Δ cdc13-1 (LMY43)

dpb4Δ cdc13-1 (LMY45)

pol32Δ cdc13-1 (LMY49)

pol4Δ cdc13-1 (LMY780)

rev3Δ cdc13-1 (LMY755)

rad52Δ cdc13-1 (LMY31)

Wild type (LMY202)

cdc13-1 (LMY204)

dpb3Δ cdc13-1 (LMY43)

dpb4Δ cdc13-1 (LMY45)

pol32Δ cdc13-1 (LMY49)

pol4Δ cdc13-1 (LMY780)

rev3Δ cdc13-1 (LMY755)

rad52Δ cdc13-1 (LMY31)

25º C

27º C

20mM NaCl 170mM NaCl 450mM NaCl

A

Wild type (LMY202)

cdc13-1 (LMY204)

dpb3Δ cdc13-1 (LMY43)

dpb4Δ cdc13-1 (LMY45)

pol32Δ cdc13-1 (LMY49)

pol4Δ cdc13-1 (LMY780)

rev3Δ cdc13-1 (LMY755)

rad52Δ cdc13-1 (LMY31)

Wild type (LMY202)

cdc13-1 (LMY204)

dpb3Δ cdc13-1 (LMY43)

dpb4Δ cdc13-1 (LMY45)

pol32Δ cdc13-1 (LMY49)

pol4Δ cdc13-1 (LMY780)

rev3Δ cdc13-1 (LMY755)

rad52Δ cdc13-1 (LMY31)

25º C

27º C

20mM NaCl 170mM NaCl 450mM NaCl

Wild type (LMY202)

cdc13-1 (LMY204)

dpb3Δ cdc13-1 (LMY43)

dpb4Δ cdc13-1 (LMY45)

pol32Δ cdc13-1 (LMY49)

pol4Δ cdc13-1 (LMY780)

rev3Δ cdc13-1 (LMY755)

rad52Δ cdc13-1 (LMY31)

Wild type (LMY202)

cdc13-1 (LMY204)

dpb3Δ cdc13-1 (LMY43)

dpb4Δ cdc13-1 (LMY45)

pol32Δ cdc13-1 (LMY49)

pol4Δ cdc13-1 (LMY780)

rev3Δ cdc13-1 (LMY755)

rad52Δ cdc13-1 (LMY31)

25º C

27º C

20mM NaCl 170mM NaCl 450mM NaCl

A

 

Figure 17 Cdc13-1 growth on salt in the absence of DNA polymerase subunits 

and Rad52 

DPB3, DPB4, POL32, POL4, REV3 and RAD52 were knocked out from cdc13-1 and 

5 fold dilution increments were spotted on agar plates supplemented with indicated 

amounts of NaCl. The plates were grown for 3-4 days at 25º C and 27º C temperatures 

prior photographing. All strains were tested multiple times and behaved similarly 

when compared to wild type.  
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Figure 18 SsDNA dynamics in cdc13-1 and dpb3∆ cdc13-1 cells 

A. QAOS assay in cdc13-1(LMY206) at Y'600 TG, AC strand and YER188W 

propagated im media containing 20mM (white circles) or 170mM NaCl (red rombi). 

170mM NaCl was also supplemented to cells grown for 400min at 27° C in normal 

salt conditions (orange triangles). In QAOS, error bars indicate the standard deviation 

between three measurements from the same sample. Where error bars are not visible, 

they are behind the symbol. The experiment was repeated twice.  

B. Same as B. but for dpb3∆ cdc13-1(LMY43). 

C. DAPI staining showing the fraction of cdc13-1 cells in G2/M phase 

D. DAPI staining showing the fraction of dpb3Δ cdc13-1 cells in G2/M phase 
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4.4 NaCl facilitates ssDNA re-synthesis in cdc13-1 inde-

pendently of Hog1 pathway  
 

NaCl poses a threat to cells because it leads to loss of turgor and poisons metabolic 

processes. Cells have developed two strategies to deal with these problems. First, Ca 

2+
 is increased in the cytosol, inducing expression of the P-type Na

+
-ATPase that 

ensures Na
+
 export and prevents ion toxicity. This response lasts for only few minutes 

(Park et al, 2001). Second, the HOG signalling pathway is activated to produce 

glycerol and restore turgor by changing the mRNA stability of many yeast genes 

(Romero-Santacreu et al, 2009). To understand whether ssDNA repair at telomeres is 

just an effect of osmotic stress, cdc13-1 cells were treated with the sugar alcohol 

sorbitol. Sorbitol is used as osmotic stress inducer instead of NaCl because it activates 

HOG without exhibiting ion toxicity. To create the same pressure on the cells as 

170mM and 450mM NaCl, sorbitol was supplemented in a 1:1.4 ratio. This means 

that for every mol NaCl, 1.4 mols sorbitol were required. Thus 210mM and 602mM 

final concentration sorbitol were supplied in the media. 

 The spot test revealed that Sorbitol, similarly to NaCl could rescue the growth of 

cdc13-1 in a dose dependent manner up to 27 ºC (Figure 19A). To understand if mild 

osmotic stress can activate Hog1, cdc13-1 cells were treated with 170mM and 

450mM NaCl and phosphorylation of Hog1 was monitored with a previously 

validated anti phospho-p38 antibody (Figure 19B) (Marques et al, 2006). Cells treated 

with 0.8M NaCl were used as positive control, while untreated cells were used as 

negative control. The total Hog1 protein was detected with an anti-Hog1 antibody. No 

Hog1 phosphorylation was detected in the cells treated with 170mM NaCl 10min after 

NaCl addition. Therefore, no Hog1 phosphorylation occurs at this concentration, or it 

occurs earlier than 10min. The cells treated with 450mM NaCl showed a 

phosphorylation band only at 10 and 20min, after which no signal was detected 

(Figure 19B). Hence, Hog1 phosphorylation is brief and transient and it is 

questionable if the prolonged repair observed at the telomere is directly under Hog1 

control.  

To reinforce this idea two important Hog1 dependent transcription factors MSN2 and 

MSN4, that act downstream of the kinase were knocked out in cdc13-1 either 

independently (msn2∆ cdc13-1, msn4∆ cdc13-1) or together (msn2∆ msn4∆ cdc13-1). 

Deletion of none of those transcription factors had any effect on the ability of NaCl to 
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rescue cdc13-1 at non-permissive temperatures (Figure 19C). Although NaCl is acting 

through osmotic stress, the signal does not appear to be transmitted through the Hog1 

pathway.  
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Figure 19 The role of osmolarity in cdc13-1 with uncapped telomeres 

A. Three independent cdc13-1 strains were diluted in 5 fold dilution increments and 

spotted on agar plates supplemented with indicated amounts of sorbitol. The plates 

were grown for 3-4 days at different temperatures prior photographing. 

 B. Western blotting against phosphorylated and total Hog1 protein. The proteins were 

separated on 10% gel. Phosphorylation of Hog1 was assessed at different salt 

concentrations. Total Hog1 was detected with Hog1 (yC-20) goat polyclonal IgG (sc-

6815), while phosphorylated Hog1 was visualised with a phospho-p38 MAPK 

(Thr180/Tyr182) antibody (9211S, NEB). P38 is the mammalian homologue of Hog1 

and this antibody has been used previously to detect phosphorylated Hog1. The 

experiment was performed once, but similar data has been published multiple times in 

the literature.  

C. Same as A. but with MSN2 and MSN4 single or double mutants 
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4.5 Inositol polyphosphate signalling is important for cdc13-

1survival 
 

Since I have shown that the HOG signalling pathway is unlikely to control NaCl 

induced telomere repair I asked what other pathways could be mediating this effect. A 

search in the literature revealed another pathway that could be activated upon osmotic 

stress – the inositol polyphosphate (IP) signalling pathway (Figure 20).  

Briefly IP signalling starts when the cell membrane bound phosphatidylinositol 4,5-

bisphosphate (PIP2) is hydrolised by phospholipase C (Plc1) to membrane bound 

giacylglycerol (DAG) and soluble inositol 1,4,5-triphosphate (IP3) (Figure 20). IP3 is 

then free to diffuse to the nucleus where it is converted to inositol 1,3,4,5,6 – 

pentakisphosphate (IP5) by the kinase Ipk2 in two subsequent phosphorylation 

reactions. IP5 can have two distinct fates. It is either converted to the inositol 

pyrophosphate PP-IP4 by the kinase Kcs1 or to IP6 through Ipk1-dependent 

phosphorylation. Vip1 and Kcs1 then convert IP6 to different IP7 and IP8 inositol 

pyrophosphates (Figure 20). Furthermore dephosphorylation of some inositol 

polyphosphates is governed by the phosphatise Ddp1. Mammalian cells utilise the 

same pathway for pyrophosphate production as yeast but the initial phosphorylation 

steps converting IP3 to IP5 may be conducted by an alternative set of reactions 

(Figure 20). Inositol isoforms that contain phosphates on more than one carbons in the 

inositol ring are called inositol polyphosphates (PIP2, IP3, IP4, IP5 and IP6), while if 

another phosphate group is attached to an already phosphorylated carbon, the inositol 

isoform is called inositol pyrophosphate (PP-IP4, IP7 and IP8).  

 The IP pathway controls various aspects of cell biology including cell death, DNA 

repair, heat shock and osmotic stress responses in both yeast and mammalian cells 

(Bennett et al, 2006). In yeast telomere length and vesicular trafficking were also 

affected in kcs1∆ mutants. Deletion of genes involved in IP signalling alters the 

inositol polyphosphate profile in cells as shown in Table 4. 

 The IP pathway might provide the connection between NaCl and DNA repair in 

cdc13-1 because a low activity polymerase α isoform can hydrolyse PIP which leads 

to increase in DNA binding and synthesis (Sylvia et al, 1988). Furthermore IP 

signalling was present in cells under hyper-osmotic and hypo-osmotic stress and 

during hyper-osmotic shock, accumulation of inositol polyphosphates was HOG 

independent (Dove et al, 1997; Perera et al, 2004).  
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To test whether NaCl could signal through the IP pathway all major genes of the 

patway were knocked out in wild type or in combination with cdc13-1 (Figure 21). 

The single mutants were also tested for NaCl and sorbitol sensitivity by spot test, 

because it was reported that PLC1, IPK1 and KCS1 deletions might be salt sensitive 

but unaffected by osmotic changes (Abe & Minegishi, 2008; Dubois et al, 2002). 

Indeed higher concentrations of NaCl impeded the growth of plc1∆ and ipk2∆ and 

sorbitol could rescue this growth defect (Figure 21A). Kcs1∆ and ipk2∆ were less salt 

sensitive and 170mM NaCl had no effect on their growth (Figure 21A). All other 

single mutants grew as well as wild type at any salt or sorbitol concentration.  

When PLC1, IPK1 and KCS1 were deleted in cdc13-1 they failed to grow above 25º 

C (Figure 21B). Interestingly neither NaCl nor sorbitol could fully rescue their 

growth. Only 602mM sorbitol allowed partial rescue of the cells. On the other hand 

IPK1, DDP1 and VIP1 had the opposite phenotype when combined with cdc13-1. 

Deletion of IPK1 allowed cdc13-1 to grow slightly better at 27º C while ddp1∆ 

cdc13-1 and vip1∆ cdc13-1 behaved like cdc13-1 single mutant (Figure 21B). NaCl 

and sorbitol could rescue these double mutants as well as cdc13-1.  

 It is difficult to draw a definitive conclusion on the role of PLC1, IPK2 and KCS1 in 

NaCl facilitated re-synthesis at the telomere because of the salt sensitivity of the cells 

and because sorbitol could rescue their growth partially. However, KCS1 was the least 

salt sensitive and was not rescued by 170mM or 210mM sorbitol providing limited 

evidence that it might be involved in DNA repair  

Interestingly plc1∆, ipk2∆ and kcs1∆ can not synthesise inositol pyrophosphates and 

this seems to correlate with the poor growth and lack of rescue by NaCl in the double 

mutants indicating that these molecules might be required for cdc13-1 viability 

(Figure 21B and Table 4). Deletion of IPK1 increases PP-IP4 and IP8 production, 

confirming that these compounds are important for cells with damaged telomeres 

(Figure 21B and Table 4). Furthermore PLC1, PIK2 or KCS1 deletion leads to slight 

telomere elongation and IPK1 deletion to slight telomere shortening (York et al, 

2005). However, this did not seem to be the reason why the cells were not rescued by 

NaCl, because deletion of RIF1 in cdc13-1 cells which also leads to telomere 

elongation and temperature sensitivity at 25º C was rescued by salt (Figure 21C) 

(Anbalagan et al, 2011).  

To better understand whether inositol polyphosphate signalling is required for ssDNA 

repair at uncapped telomeres, the least NaCl sensitive mutant kcs1∆ cdc13-1 was 
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grown at restrictive temperature at different NaCl concentrations and ssDNA was 

measured by QAOS (Figure 22). NaCl could still prevent ssDNA accumulation at 

Y’600 and YER188W at the early time points, however later on at 560min similar 

amounts of ssDNA were found in treated and non-treated samples (Figure 22A). No 

accumulation of ssDNA was found on the AC strand, confirming that resection was 

progressing in 5’ to 3’ direction as expected. Even though NaCl seemed to impair 

ssDNA accumulation, kcs1∆ cdc13-1 cells arrested faster than cdc13-1 (compare 

Figure 22B and Figure 15C). For example at 320min the difference between ssDNA 

in NaCl treated and untreated cells was biggest at both loci Y’600 and YER188W 

(Figure 22A). Yet over 80% of the cells were in G2/M phase, suggesting that KCS1 

may not play a role in NaCl induced ssDNA re-synthesis. Instead lack of KCS1 may 

increase the sensitivity to uncapped telomeres (Figure 22B). 

 It is known that inositol pyrophosphates produced by KCS can inhibit Tel1 and/or 

Mec1, therefore kcs1∆ cdc13-1 mutants may have a more active checkpoint leading to 

earlier cell cycle arrest and death (Saiardi et al, 2005). Furthermore, Mec1 has been 

linked to cdc13-1 apoptosis after telomere uncapping due to increased ROS and 

caspase activity (Qi et al, 2003). Therefore kcs1Δ cdc13-1 cells might grow poorly at 

25º C because they are more sensitive to ssDNA and due to increased apoptosis. 
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Figure 20 Scheme showing the current understanding of the inositol 

polyphosphate (IP) signalling pathway 
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 IP3 IP4 IP5 IP6 PP-IP4 IP7 IP8 Reference 

wild type - - - + - + + (Saiardi et al, 2005) 

plc1∆ - - - - - - - (York et al, 1999) 

ipk2∆ + - - - - - - (Odom et al, 2000; Perera et al, 2004) 

kcs1∆ - - - + - - - (Saiardi et al, 2002; York et al, 2005) 

ddp1∆ - - - + - + - (York et al, 2005) 

ipk1∆ - + + - + - + (Perera et al, 2004; York et al, 1999) 

vip1∆ - - - + - + + (Onnebo & Saiardi, 2009) 

Table 4 Inositol polyphosphate profile in different IP signalling mutants.  

The plus sign indicates presence and the minus sign represents absence of the 

respective inositol isoform. IP3, IP4, IP5 and IP6 are inositol polyphosphates, while 

PP-IP4, IP7 and IP8 are inositol pyrophosphates 
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Figure 21 Growth of inositol polyphosphate mutants and rif1Δ cdc13-1 on NaCl 

and sorbitol 

A. PLC1, IPK2, KCS1, IPK1, DDP1 and VIP1 were knocked out in wild type, 

the strains were diluted in 5 fold increments and spotted on agar plates supplemented 

with indicated amounts of NaCl or Sorbitol. The plates were grown for 3-4 days at 

different temperatures prior photographing. 

B. Same as A but for double mutants with cdc13-1 

C. Same as A but for rif1∆ cdc13-1 

Two biological replicates were tested for each strain and behaved similarly to wild 

type. 



103 

 

Time (min) at 27  C

0 80 160240320400480560

C
e

lls
 i
n

 G
2

/M
 p

h
a

s
e

 (
%

) 

0

20

40

60

80

100

Time (min) at 27  C

0 80 1602403204004805600 80 1602403204004805600 80 1602403204004805600 80 160240320400480560

0

5

10

15

 k
c
s
1
  c

d
c
1
3

-1
  

Time (min) at 27  C

0 80 1602403204004805600 80 1602403204004805600 80 1602403204004805600 80 160240320400480560

 s
s
D

N
A

 (
%

)

0

5

10

15

20mM NaCl

170mM NaCl

450mM NaCl

Time (min) at 27  C

0 80 1602403204004805600 80 1602403204004805600 80 1602403204004805600 80 160240320400480560

0

5

10

1520mM NaCl

170mM NaCl

450mM NaCl

20mM NaCl

170mM NaCl

450mM NaCl

20mM NaCl

170mM NaCl

450mM NaCl

 k
c
s
1
  c

d
c
1
3
-1

  

Y' 600 TG strand YER188W Y' 600 AC strand

DAPI staining

A

B

 

Figure 22 Single stranded DNA accumulation in kcs1Δ cdc13-1 on NaCl 

A. QAOS measurements of ssDNA in kcs1∆ cdc13-1 (LMY114) cells at 

YER188W, Y’600 TG strand and AC strand. The cells were grown at 27º C for 560min 

at indicated NaCl concentrations. Error bars represent the standard deviation between 

three qPCR measurements of the same sample. Wherever not visible, error bars are 

behind the symbol. The experiment was repeated three times. 

B. DAPI staining showing the fraction of cells in G2/M phase. The samples 

were treated the same way as in A. 
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4.6 KCS1 overexpression suppresses cdc13-1 temperature 

sensitivity 
 

 To further investigate what is the role of inositol pyrophosphates at uncapped 

telomeres, PCL1, IPK2 and KCS1 were put under the GAL1 promoter to test how their 

overexpression would influence cdc13-1 growth (Figure 23). Gene expression from 

the GAL1 promoter is suppressed on glucose or raffinose media and induced upon 

addition of galactose. The GAL1::PLC1 cdc13-1, GAL1::GST::IPK2::cdc13-1 and 

GAL1::GST::KCS1 cdc13-1 strains were created by substituting 300bp upstream of 

the start codon with a GAL1 or GAL1::GST cassette. Correct substitution was tested 

by PCR and overexpression was confirmed in the GST tagged strains by Western 

blotting (data for IPK2 is not shown).  

When GAL1::PLC1 cdc13-1 was propagated on dextrose, no colonies were formed at 

25º C, similarly to a plc1∆ cdc13-1 deletion (Figure 23A). However 

GAL1::GST::KCS1 cdc13-1 and GAL1::GST::IPK1 cdc13-1 formed colonies up to 

27º C, suggesting that endogenous KCS1 and IPK1 could be expressed despite 

deleting 300bp upstream of the respective start codon. Previous attempts to 

overexpress KCS1 on a plasmid under the GAL10 promoter also yielded a wild type 

phenotype and it was proposed that the GAL10 promoter might be slightly leaky 

(York et al, 2005). Although no KCS1 or IPK1 band was detected by Western blotting 

on raffinose, it is possible that a very low level of expression under GAL1 is also 

responsible for the wild type phenotype on raffinose (Figure 14E and G and data not 

shown). Hence, cells must be able to synthesise sufficient inositol polyphosphates 

even in the presence of limited amounts of IP kinases.  

Galactose increased the temperature resistance of cdc13-1 to 27º C and all tested 

strains formed colonies at that temperature (Figure 23A). Only overexpressed KCS1 

could rescue cdc13-1 growth up to 29º C, while PLC1 and IPK1 overexpression did 

not seem to influence cdc13-1 temperature sensitivity (Figure 23A and B). This 

clearly shows that KCS1 overexpression reduces the temperature sensitivity of cdc13-

1 independently of IP signalling.  
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When PLC1, KCS1 and IPK1 were overexpressed on salt, cdc13-1 cells were able to 

form more colonies at 170mM and 430mM NaCl than at 20mM NaCl, confirming that 

IP signalling improves cdc13-1 growth in a separate pathway than NaCl (Figure 23B). 

Nevertheless, KCS1 overexpression may induce partial ssDNA repair independently 

of NaCl. To test this BrdU incorporation assay was performed in GAL1::GST::KCS1 

cdc13-1 7TK+ cells (Figure 24A).  

Telomeres were uncapped at 29º C in raffinose for 6.5 hours and then KCS1 

overexpression was induced by supplementing 2% galactose (Figure 24A and C). No 

convincing BrdU incorporation was observed specifically at Y’600 or YER188W, 

showing that KCS1 overexpression rescues cdc13-1 growth independently of ssDNA. 

Interestingly DAPI staining revealed that although no BrdU incorporation was 

observed a small fraction of cells (around 10%) escaped G2/M arrest at 8h, correlating 

with the strongest expression of KCS1 (Figure 24A,B and C). This can again be 

explained by the genetic interaction between KCS1 and MEC1. If inositol 

pyrophosphates produced by Kcs1 are inhibiting Mec1, then KCS1 overexpression 

could down regulate checkpoints and allow escape in the presence of ssDNA damage.  

Finally, I wanted to understand whether KCS1 is specifically recruited to damaged 

telomeres where it may regulate checkpoints directly. ChIP revealed that 

overexpressed KCS1 did not appear to associate to Y’600 or ERG26 (Figure 24D and 

E). Thus KCS1 might not directly regulate checkpoints. 
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Figure 23 The effect of KCS1 overexpression on cdc13-1 survival 

A.  PLC1, KCS1 and IPK1 were overexpressed under the GAL1 promoter and 

grown either on dextrose or galactose at indicated temperatures.  

B. Same as A. but the cells were grown at 29º C and at different amounts of NaCl 

as indicated on the right.  

Two biological replicates were tested for each strain and behaved similarly to wild 

type. 
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Figure 24 BrdU incorporation and recruitment of overexpressed KCS1 to dam-

aged telomeres 

A. BrdU incorporation in GAL1::GST::KCS1 cdc13-1 7TK+ (LMY785). The 

cells were grown in raffinose for 6.5hours and then 2% galactose was supplied to 

induce expression. BrdU incorporation was measured at Y’600, YER188W and PAC2. 

The error bars indicate the standard deviation between three measurements from the 

same sample. Where not visible, the error bars are behind the symbol. The experiment 

was repeated twice. 

B. DAPI staining showing the fraction of cells in G2/M phase. The samples were 

treated the same way as in A. 

C. Western blotting confirming overexpression of KCS1 on galactose. KCS1 was 

detected with an anti-GST antibody on a 6.5% gel. The samples were treated the same 

way as in A. 

D. Recruitment of overexpressed KCS1 to uncapped telomeres by ChIP. LMY785 was 

grown in raffinose for 4hours at 28º C and KCS1 overexpression was induced with 

2% galactose. ChIP measurements were performed at Y’600 and ERG26. The 

experiment was repeated twice. 
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E. KCS1 overexression was monitored by Western blotting. The samples tested are 

the same as in D.
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4.7 Discussion 
 

In this chapter I have shown that relatively small amounts of NaCl can enhance the 

growth of cdc13-1 at restrictive temperatures. This had a profound effect on long term 

survival. NaCl facilitated polymerase δ and ε dependent ssDNA re-synthesis at 

chromosome ends. More importantly, re-synthesis was taking place at restrictive 

temperatures, while the cells were arrested in G2/M. This ssDNA re-synthesis seemed 

to be the consequence of osmotic stress because sorbitol could also rescue cdc13-1.  

What are the functions of polymerase ε and δ during ssDNA re-synthesis at 

uncapped telomeres on NaCl? 

NaCl facilitated ssDNA re-synthesis at uncapped telomeres required the non-essential 

subunits DPB3/DPB4 and POL32 for polymerase ε and polymerase δ. More 

importantly ssDNA decrease on NaCl required full polymerase ε activity because the 

dpb3∆ cdc13-1 double mutant accumulated ssDNA regardless of NaCl treatment 

(Figure 18). In contrast neither DPB3 nor DPB4 were required for cdc13-1 survival 

during the UP-DOWN assay (Figure 8), showing that repair following recapping did 

not need these subunits. 

Two possibilities can explain these differences. First, polymerase ε might participate 

only in the checkpoint response during recapping, as suggested in the discussion of 

chapter III. At uncapped telomeres, however NaCl could stimulate polymerase ε 

activity and aid ssDNA re-synthesis. This would explain why DPB3 and DPB4 are 

only important for NaCl facilitated ssDNA re-synthesis at uncapped telomeres but not 

after recapping. 

Second, both polymerase ε and polymerase δ may be participating in re-syntheses 

after recapping as well as upon increased NaCl at uncapped telomeres. However when 

telomeres are recapped DPB3 and DPB4 might not be essential, the same way as they 

are not required during normal replication. An uncapped telomere might be more 

difficult to repair and full activity of polymerase ε might be required. For example 

Rap1 bound to telomeres naturally pauses the replication fork (Makovets et al, 2004). 

If the ssDNA at uncapped telomeres or any proteins associated with it are a barrier for 

repair, full polymerase activity might be required to overcome this barrier at uncapped 

telomeres but not after recapping.  
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Finally competition between 5’ to 3’ degradation at uncapped telomeres may exist as 

suggested in chapter III (Figure 12B). NaCl would then favour enhanced activity in 

polymerase ε and/or δ and lead to successful repair at uncapped telomeres. 

How is NaCl regulating ssDNA repair? 

I have shown that ssDNA repair can be induced in hyperosmotic conditions at 

uncapped telomeres. However, this repair did not seem to be mediated through the 

HOG signalling cascade because deletion of the transcription activators MSN2 and 

MSN4 did not abolish the increased proliferation in cdc13-1 cells on NaCl.  

A recent high throughput study involving latest state of the art mass spectrometry 

shows that apart from fold changes in protein levels, 400mM NaCl can also induce 

changes in the phosphorylation of many proteins, including proteins not connected 

previously to the HOG pathway (Soufi et al, 2009). Hence, NaCl can induce many 

other pathways, apart from HOG and IP signalling and provided new insights in 

osmotic stress regulation.  

The phosphorylation data in this study provided evidence for two ways in which 

polymerase α can be regulated, by Ser-209 phosphorylation in Pol1 and de-

phosphorylation of Pol12 at several residues (Soufi et al, 2009). This finding was very 

interesting because Pol12 de-phosphorylation in yeast has been linked to correct 

loading of polymerase α/primase during DNA replication (Foiani et al, 1995). 

Moreover, Pol12 seemed to be phosphorylated during replication stalling and G2/M 

arrest following nocodazole treatment. No studies on Pol1 phosphorylation were 

conducted in yeast but in mammalian cells the conserved Ser-209 is phosphorylated in 

a CDK-dependent manner during S phase (Schub et al, 2001). The mammalian Pol12 

was also phosphorylated but in this case both phosphorylation events on Pol1 and 

Pol12 were required for the in vitro activity of polymerase α/primase. Furthermore, 

the Ser-209 phosphorylation in yeast might not be conferred by CDK1 as in human, 

because NaCl down regulated the activity of  the yeast CDK1, through 

phosphorylation of the inhibitory tyrosine residue 19 (Soufi et al, 2009). This shows 

some differences between yeast and mammalian polymerase α/ primase regulation. 

NaCl could also regulate polymerase δ by inducing phosphorylation on two residues 

in the non-essential subunit Pol32 (Chi et al, 2007; Soufi et al, 2009). However, no 

functional information about this phosphorylation sites is available in yeast. 

Mammalian Pol32 is phosphorylated during early S phase and this could contribute to 
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assembly of the replication machinery and polymerase δ activity (Lemmens et al, 

2008). No other subunits of replicative polymerases were phosphorylated during 

osmotic stress (Soufi et al, 2009).  

Polymerase ε might not be regulated directly by NaCl, however the binding partner of 

Pol2 called Mrc1 is strongly phosphorylated on NaCl (Soufi et al, 2009). Interestingly 

the interaction between Pol2 and Mrc1 is important for polymerase ε stability and 

DNA replication (Lou et al, 2008). Mrc1 and Pol2 interact with each other via their C 

and N terminal. When Mrc1 is phosphorylated by Mec1 and/or Rad53 following 

replication stalling the interaction via the N terminal is lost, leading to polymerase ε 

destabilisation at the replication fork (Lou et al, 2008). Therefore it is possible that at 

uncapped telomeres Mrc1 is phosphorylated and polymerase ε is unstable. Osmotic 

stress, however, dephosphorylates Mrc1 and thus could contribute to ssDNA repair.  

Lastly, the PRR gene Rev1 encoding polymerase η was dephosphorylated strongly on 

400mM NaCl (Soufi et al, 2009). The literature suggests that Rev1 phosphorylation 

by Mec1 might be essential for its function in translesion synthesis during DNA 

damage (Sabbioneda et al, 2007). Therefore, it seems like NaCl could also influence 

the DNA re-synthesis pathway choice by down regulating Rev1 

 It is also not clear whether NaCl would produce the same phosphorylation pattern 

when the cells are in G2/M phase, since the osmotic stress screen was performed in 

freely proliferating cells (Soufi et al, 2009). During DNA damage some proteins 

might already be phosphorylated or de-phosphorylated and it is difficult to predict 

how NaCl would affect their modification. Nevertheless there are at least three 

possible ways for NaCl to induce polymerase ε and δ dependent repair at uncapped 

telomeres. First, through phosphorylation or de-phosphorylation of polymerase 

α/primase subunits Pol1 and Pol12. Second, through phosphorylation of the 

polymerase δ subunit Pol32; and third through de-phosphorylation of Mrc1. Further 

experiments would have to be conducted to confirm whether NaCl regulates any of 

those modifications at uncapped telomeres. 

NaCl and telomere length regulation at uncapped telomeres 

I found that cdc13-1 cells experience telomere shortening when propagated at 

restrictive temperatures (Figure 14). Furthermore this was also apparent in cells that 

have escaped cell cycle arrest (Figure 14B, day 3-5). It is not clear whether this was 

due to lack of telomerase recruitment or degradation of the TG rich strand. It has been 
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suggested that only cdc13-2 has a telomerase recruitment defect, while cdc13-1 

conferred only dysfunctional telomere capping and the interaction of Est1 with Cdc13 

was not affected in the cdc13-1 mutant (Nugent et al, 1996). However actual 

propagation of cdc13-1 cells at any restrictive temperature has not been published. 

 It is possible that Cdc13-1 is indeed proficient in telomerase recruitment and the 

telomere loss is due to TG strand degradation at restrictive temperatures. 

 At 27º C cdc13-1 managed to propagate for 3 days, exhibiting a senescence 

phenotype, before escape and formation of survivors (Figure 14). During this time 

telomeres clearly shortened, which correlated with slow growth, but continued to 

shorten even after survivors appeared. Interestingly 170mM NaCl could delay 

telomere shortening with two days, while the cells grown in 450mM NaCl did not 

seem to loose their telomere for at least 5 days and no reduction in growth was 

observed (Figure 14).  

The ability of NaCl to prevent telomere shortening might be RAD52 independent, as 

RAD52 deletion did not abolish NaCl induced growth at restrictive temperatures in 

cdc13-1 (Figure 17). Further experiments would have to be conducted to understand 

why telomeres shorten at restrictive temperatures in cdc13-1 cells. For example 

deletion of different checkpoints and EXO1 could show if shortening is due to a 

certain checkpoint or due to resection. 

What is the role of inositol pyrophosphates in cdc13-1 with damaged telomeres? 

In this chapter I have shown that KCS1 but not any other kinases involved in IP 

signalling is important for cdc13-1 survival. This was not due to induction of ssDNA 

re-synthesis (Figure 24) but instead could be due to Mec1 regulation through inositol 

pyrophosphates (Saiardi et al, 2005). 

 Overexpressing KCS1 allowed cdc13-1 cells to escape G2/M arrest in the absence of 

ssDNA repair, meaning that KCS1 might be involved in checkpoint adaptation to 

DNA damage. Following DNA damage and checkpoint activation cells remain 

arrested until repair is conducted. However sometimes yeast and mammalian cells 

escape the checkpoint arrest and continue to proliferate in the presence of DNA 

damage (Syljuasen, 2007). This process is possible only after the checkpoint is down 

regulated, hence the cells have adapted to the checkpoint signal.  
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Several proteins have been involved in adaptation such as the casein kinase II, 

responsible for completion of anaphase, Yku70 and the Rad53 interacting 

phosphatases Ptc2 and Ptc3 (Lee et al, 1998; Leroy et al, 2003; Toczyski et al, 1997). 

If KCS1 is indeed a checkpoint adaptation gene, overexpressing KCS1 might down 

regulate the checkpoint through inhibiting Mec1.  

Kcs1 was not recruited to uncapped telomeres, suggesting that the inositol 

pyrophosphates produced by Kcs1 are more likely to regulate checkpoints. Recent 

studies show that IP7 can further pyrophosphorylate proteins already phosphorylated 

by casein kinase II, a kinase implicated in adaptation (Bhandari et al, 2007). 

Pyrophosphorylation is a novel post translational protein modification where a 

pyrophosphoinositol can directly give away its phosphate to an already 

phosphorylated protein, creating a high energy di-phosphate or pyrophosphate. 

Proteins modified by IP7 are more resistant to dephosphorylation but their biological 

significance is not clear. It is not clear whether IP7 synthesised by Kcs1 could target 

Mec1 for pyrophosphorylation and thus lead to Mec1 inactivation. Nevertheless, 

inositol pyrophosphates seem to be extensively involved not only in telomere length 

regulation as shown before but also in telomere uncapping (Saiardi et al, 2005). 
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5 The role of NaCl at other DNA damage types 
 

I have shown that uncapped telomeres can be repaired by polymerase α, δ and ε in the 

presence of NaCl (Chapter IV). Another important question is whether this effect is 

telomere specific. To test this hypothesis I used the yku70∆ and/or yku80∆ telomere 

uncapping system where ssDNA is also created at telomeres to confirm that the results 

in the previous chapters are not cdc13-1 specific. 

I also wanted to understand if repair can happen at any ssDNA damage, not 

necessarily associated with telomeres. Single stranded DNA is produced in cells after 

different types of DNA damage. For example 3’ overhangs are found at DSBs or after 

processing of pyrimidine dimers and DNA alkylation; rising the possibility that NaCl 

facilitated repair could contribute to other types of DNA damage (Daley & Wilson, 

2005; Giannattasio et al, 2010; Pascucci et al, 2005). The involvement of the NaCl 

induced repair in global DNA damage response can be tested by utilising the DNA 

damaging agents hydroxyurea (HU), methyl methanesulfonate (MMS) and ultra violet 

(UV) light.  

5.1 The effect of NaCl is cdc13-1 independent 
 

Telomere uncapping can also happen in yeast lacking the telomere binding yKu 

heterodomer. Loss of either YKU70 or YKU80 leads to short telomeres, temperature 

sensitivity at 37º C and Exo1 dependent ssDNA accumulation. However yku70∆ cells 

accumulate less ssDNA than cdc13-1 and require only Mec1, Rad9 and Chk1 for 

G2/M arrest (Maringele & Lydall, 2002). Nevertheless, this system allows a more 

comprehensive interpretation of the data because uncapping is due to complete loss of 

a telomere protecting complex and not a single point mutation.  

Serial dilution of yku70∆ and yku80∆ cells revealed that NaCl can rescues the growth 

defect of yku70, yku80 or yku70/80 double mutants in a dose dependent manner, 

similarly to cdc13-1 (Figure 25). Therefore the effect of NaCl seems to be specific to 

the ssDNA damage produced after telomere uncapping, rather than dependent on the 

model system or the downstream checkpoint activity. 
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20mM NaCl 170mM NaCl 450mM NaCl

21º C

37º C

Wild type (LMY202)

yku80Δ (LMY208)

yku70Δ (LMY207)

yku70Δ yku80Δ (LMY198)

yku70Δ yku80Δ (LMY199)

Wild type (LMY202)

yku80Δ (LMY208)

yku70Δ (LMY207)

yku70Δ yku80Δ (LMY198)

yku70Δ yku80Δ (LMY199)
 

Figure 25 Growth of yku70Δ and/or yku80Δ mutants on NaCl 

A 5 fold dilution series of yku70Δ, yku80Δ and yku70Δ yku80Δ mutants was grown at 

indicated amounts of NaCl at the permissive temperature 21º C and the restrictive 

temperature 37º C. The plates were incubated for 3-4 days prior photographing. The 

strains behaved the same in different experiments when compared to wild type. 
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5.2 NaCl plays no role in UV and hydroxyurea induced 

DNA damage but rescues MMS treated cells 
 

After I confirmed that the effect of NaCl is not cdc13-1 speficific, I wanted to 

understand if salt can also influence cells with  ssDNA lesions produced during UV 

damage, double strand breaks and at stalled replication forks (Figure 26 and 27).  

UV light can be absorbed by double bonds in pyrimidines (thymidine or cytosine). 

This opens the bond and a reaction with neighbouring molecules is feasible, leading to 

the production of pyrimidine dimers (Goodsell, 2001). Such lesions can be repaired 

through post replication repair and nucleotide excision repair (Broomfield et al, 2001; 

Giannattasio et al, 2010).  

Following UV irradiation nucleotide excision repair (NER) creates short ssDNA gaps 

that can be further processed by Exo1 to longer gaps (Giannattasio et al, 2010). 

Furthermore this processing happened when the short ssDNA gaps created by NER 

could not be repaired, leading to checkpoint activation. UV DNA damage repair 

requires also HR and PRR, suggesting that pyrimidine dimer can be processed to 

double strand breaks (Chang et al, 2002).  

In contrast hydroxyurea (HU) blocks DNA synthesis by decreasing the availability of 

dNTPs (Koc et al, 2004). Presumably this leads to replication fork stalling and arrest 

in S phase. Only HR and PRR genes are sensitive to HU treatment, thus NER is not 

required for repair after replication fork stalling (Chang et al, 2002).  

The third DNA damaging agent I tested was the DNA alkylating drug methyl 

methanesulfonate (MMS). MMS can methylate adenine and guanine, producing N
7
-

ethylguanine and N
3
-ethyladenine in vitro and in vivo (Beranek, 1990). Repair of 

methylated adenine leads to creation of ssDNA in vivo (Wong & Dewey, 1981). 

However, no DSBs could be detected by pulse field gel electrophoresis in mammalian 

and yeast cells but it is known that even a single DSB is sufficient to completely arrest 

the cell cycle (Lundin et al, 2005; Lydeard et al, 2007). 

I tested whether NaCl could rescue cells damaged with UV and HU (Figure 26). 

RAD52 deletion was used as a control, since this mutant is sensitive to many DNA 
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damaging agents. I further wanted to understand if DPB3, DPB4 and POL32 are also 

required for NaCl on UV and/or HU agents. Finally, since KCS1 may play a role in 

adaptation to DNA damage, sensitivity to DNA damage was also assessed in the 

kcs1Δ mutant.  

Only POL32 was sensitive to UV light (Figure 26A) and this has been shown 

previously (Chang et al, 2002). NaCl could not rescue cells damaged by UV light 

(Figure 26A). Similarly NaCl could not rescue HU treated cells as well, instead salt 

reduced further the viability of the damaged cells (Figure 26B).  

Interestingly the kcs1Δ mutant was more HU sensitive than wild type, indicating that 

inositol pyrophosphates might play a role in replication fork stalling (Figure 26B). In 

contrast kcs1Δ cells were more resistant to MMS treatment that wild type cells and 

formed colonies at 0.016% MMS even in the least diluted spot (Figure 27). These 

mutants remained salt sensitive, as can be seen by the poor growth of kcs1Δ at 

450mM NaCl (Figure 26 and 27). More importantly, NaCl managed to improve the 

growth of wild type, dpb3Δ, dpb4Δ and pol32Δ on MMS, showing that salt might 

indeed play a role in certain types of global DNA repair (Figure 27). 
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Figure 26 Growth of wild type, rad52Δ, dpb3Δ, dpb4Δ, pol32Δ and kcs1Δ cells in 

the presence of NaCl and the DNA damaging drugs MMS and HU 

A. Indicated strains were diluted in 5 fold increments and spotted on agar plates 

supplemented with 20mM, 170mM or 450mM NaCl. Then the plates were placed un-

der UV light until they received 90J/m
2
 or 120J/m

2
 UV. The plates were grown for 3 

days at 25º C prior photographing 

B. Agar plates were supplemented with a combination of NaCl and 120mM or 

150mM hydroxyurea (HU). Then the indicated strains were grown on the plates for 3 

days at 25º C prior photographing 

The strains behaved similarly between independent experiments and across biological 

replicates. 
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Figure 27 Growth of wild type, rad52Δ, dpb3Δ, dpb4Δ, pol32Δ and kcs1Δ cells in 

the presence of NaCl and the DNA damaging drug MMS 

Agar plates were supplemented with a combination of NaCl and 0.01% or 0.016% 

methyl methanesulfonate (MMS). Then the indicated strains were diluted in 5 fold 

increments and grown on the plates for 3 days at 25º C prior photographing. 

The strains behaved similarly between independent experiments and across biological 

replicates. 
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5.3 Discussion 
 

In this chapter I have confirmed that NaCl can rescue cells with other telomere 

capping defects and cells undergoing certain types of DNA damage. This is probably 

a consequence of NaCl induced ssDNA repair as seen in cdc13-1 cells with uncapped 

telomeres because ssDNA can arise in yku70Δ yku80Δ cells and after MMS treatment. 

However I can not exclude a different mechanism, especially in the case of MMS 

because ssDNA can be created during UV and HU damage as well. Yet NaCl could 

not rescue cells threated with such DNA damaging agents. 

 It is possible that NaCl can only induce repair at certain types of ssDNA damage and 

this would indicate that the damage after UV, HU and MMS treatment is 

fundamentally different. Indeed there are subtle differences between the genes 

required for survival after damage with those agents. For example MMS requires four 

genes which are not sensitive to either UV or HU. These are the chromatin assembly 

protein Cac2, the 3-methyl-adenine DNA glycosylase Mag1 important for initiation of 

BER, the PRR polymerase ζ catalytic subunit Rev3 and the endonuclease Slx4 

required for DNA processing during repair (Chang et al, 2002).  

Furthermore while MMS and UV damaged cells arrest in G2/M phase, similarly to 

cdc13-1 with uncapped telomeres, HU treated cells are blocked in S phase. Therefore 

it is likely that different DNA damages induce different ssDNA intermediates and 

NaCl can only resolve some of them 

One of the most intriguing findings was that NaCl did not require either DPB3/DPB4 

or POL32 for rescuing MMS treated cells, while POL32 was required for repair at 

uncapped telomeres. Therefore the mechanism through which NaCl allowed 

proliferation on MMS might be different than the one at uncapped telomeres. It is also 

possible that these non essential subunits are not required for NaCl induced repair. For 

example only Pol32 was important for cdc13-1 survival after recapping but both 

Dbp3/Dpb4 and Pol32 were required for NaCl induced repair at uncapped telomeres, 

showing that the same type of damage requires different subunits depending on 

capping. Hence, NaCl facilitated ssDNA repair at other loci might be still depend on 

polymerase ε and δ but not on their non-essential subunits. 
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Another interesting finding in this chapter is that NaCl reduced the viability of cells 

growing on HU but not on UV. This could be explained in two ways. 

 First, NaCl can induce further damage to HU treated cells that overwhelms the repair 

pathways. Second, NaCl could further enhance the activity of HU. 

 Although the exact mechanism of HU activity is not known, HU treated cells have 

reduced dNTP pools and this leads to replication fork stalling (Koc et al, 2004). 

Interestingly NaCl treatment strongly phosphorylates the yeast ribonucleotide 

reductase (RNR) required for synthesis of dNTPs in vivo (Soufi et al, 2009). Such 

phosphorylation has been previously identified in other high-throughput 

phosphorylation studies but the function is not clear (Albuquerque et al, 2008). If 

NaCl induced phosphorylation of RNR further reduces dNTP levels, this could 

explain why the cells grew less on media with HU and 430mM NaCl. 

Finally one of the gene deletions I tested behaved fundamentally different upon 

different DNA damage. Deletion of KCS1 had no effect on cell viability under UV 

damage but was slightly more sensitive to HU (Figure 26). In contrast loss of KCS1 

was beneficial for cells treated with MMS because the kcs1Δ mutant grew much better 

than wild type (Figure 27). Yet again KCS1 managed to surprise with the variability of 

responses following loss or overexpression of this gene. 

 The ability of KCS1 to rescue cells on MMS was probably not mediated through 

Mec1, because this checkpoint should be more active in the kcs1Δ mutant. Therefore 

it seems like KCS1 may regulate cell viability in distinct ways depending on the type 

of DNA damage and further experiments should be conducted to understand the exact 

function of this gene. A recent publication shows that kcs1Δ is also growing better 

than wild type in the presence of H2O2 (Onnebo & Saiardi, 2009). KCS1 was 

important for mediating sensitivity to H2O2 and this chemical specifically inhibited 

the activity of KCS1 (Onnebo & Saiardi, 2009). Hence KCS1 might also be mediating 

sensitivity to MMS. Most probably the inositol pyrophosphates synthesised by KCS1 

are the culprits behind the diverse responses observed through KCS1 deregulation. 

 Inositol pyrophosphates are an emerging group of very interesting molecules that are 

involved in various aspects of cellular biology. These molecules can bind proteins 

directly and pyrophosphorylate phosphoproteins. The specificity of their targets and 

the biological outcome of those activities remain elusive (Alcazar-Roman & Wente, 

2008; Bhandari et al, 2007).  
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Interestingly mice lacking the KCS1 homologue IP6K2 exhibit resistance to ionizing 

radiation but had increased incidence of cancer after administration of the tumorigenic 

drug 4-nitro quinolone 1-oxide that causes DNA lesions repaired by NER (Morrison 

et al, 2009). Thus inositol pyrophosphates exhibit differential functions in different 

DNA damage in mammals as well as in yeast. Moreover deregulation of IP signalling 

might either cause or prevent cancer and the molecular mechanisms governing these 

responses should be elucidated in the future. 
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6 Single stranded DNA re-synthesis and 

significance for cellular biology  

 

Until now telomere uncapping that leads to resection has been perceived as a terminal 

event that inevitably leads to prolonged cell cycle arrest, cell death or formation of 

HR dependent survivors. Although telomere resection clearly leads to checkpoint 

activation, no consequent ssDNA re-synthesis had been described before.  

In this thesis found evidence for targeted ssDNA re-synthesis following telomere 

uncapping. When telomeres become uncapped and ssDNA is created by 

exonucleolytic activity, checkpoints are recruited to halt the cell cycle.  However, 

DNA repair proteins are also recruited; including subunits form polymerases α, ε and 

δ and their clamp PCNA. Under uncapping conditions re-synthesis remained 

unsuccessful because it was prohibited by an unknown telomere uncapping sensor or 

because it was competing with resection. Only when capping was restored re-

synthesis of the resected AC strand became apparent. More importantly, I found a way 

to stimulate this intrinsic ssDNA repair by applying mild osmotic stress on the cells. 

Interestingly osmotic pressure facilitated repair might also occur in cells damaged 

with MMS. This suggests that NaCl induces the activity of one or several polymerases 

involved in repair at the telomere or during recovery form DNA alkylation.  

Why does ssDNA re-synthesis exist? 

SsDNA re-synthesis could simply be tightly coupled to normal checkpoint activation. 

Usually checkpoints are important to guide the repair machinery to damage sites and 

may even actively participate in DNA synthesis (Kai & Wang, 2003; Szyjka et al, 

2008). Furthermore some polymerase subunits are also checkpoint sensors, showing 

that checkpoint and repair are closely collaborating in ensuring normal cell survival 

(Navadgi-Patil & Burgers, 2008; Navas et al, 1996). Hence, it is very likely that DNA 

polymerases are naturally recruited to DNA damage together with checkpoint 

proteins. 

 This may be beneficial for telomeres because if any capping protein becomes 

transiently damaged or can not associate to telomeres due to mutations, this may 
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induce telomere resection and arrest the cell cycle. If repair proteins were deliberately 

excluded from telomeres, as in the case of short telomeres, no repair would occur 

even if telomere capping is restored at a later point. This would be devastating for 

cells undergoing protein damage, for example when cells have increased ROS.  

On the other hand if ssDNA at telomeres was always repaired following checkpoint 

activation, this would allow proliferation of cells that may have permanent telomeric 

protein damage or loss, for example due to mutations in the genes encoding these 

proteins. This by itself might cause severe chromosomal instability. Perhaps instead 

cells have developed a sensor that distinguishes between a capped and uncapped 

telomere that can regulate when ssDNA can be repaired at the telomeres or they 

ensure arrest through competition between re-synthesis and resection. 

 The fact that osmotic stress also induced ssDNA re-synthesis is probably telomere 

independent because NaCl could also rescue MMS treated cells. Hence, salt probably 

stimulates one or several polymerases per se. High osmotic stress induces double 

stranded breaks on chromosomes, thus activation of DNA polymerases and repair may 

have evolved as a mechanism to defend cellular integrity (Dmitrieva et al, 2005; Kultz 

& Chakravarty, 2001). 

Importance for mammalian telomere biology 

 NaCl induced repair might be active in some tissues undergoing osmotic stress. For 

example human kidney cells can tolerate up to 500mM NaCl without any loss of 

viability, in the presence of DSBs (Kultz & Chakravarty, 2001). These cells are 

usually cultured in 300mM NaCl and can proliferate freely in those conditions despite 

having DSBs, suggesting that such salt concentrations might promote repair in the 

kidney (Kultz & Chakravarty, 2001; Zhang et al, 2002). 

NaCl facilitated rescue of damaged cells could be beneficial for some cells that have 

not been damaged substantially but may also allow proliferation of cells with 

accumulated mutations, leading to increased cancer risk. Indeed there are some 

reports in the literature that link high NaCl diet with stomach cancer (Peleteiro et al, 

2011; Tsugane et al, 2004). Furthermore, patients experiencing osmotic pressure like 

diabetics or patients with high blood pressure have increased risk to develop certain 

cancers (Chow et al, 2000; Coughlin et al, 2004; La Vecchia et al, 1994). However it 

is not possible to predict if any of those correlations between hyperosmotic conditions 

and cancer are due to osmolality-driven proliferation of precancerous cells. 
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Overall my results answered the questions outlined in my aims and brought some new 

insights into telomere uncapping, ssDNA re-synthesis and repair. I have shown that 

resected telomeres can be repaired naturally after recapping by re-synthetizing the lost 

AC strand. This repair could be stimulated even when telomeres were uncapped by 

mild osmotic stress. Salt-mediated ssDNA repair was not only limited to telomeres 

but also important for some other types of DNA damage.  
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