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Abstract

A computer program is a text in a defined programming language; each

such program can be thought of as defining state transitions — that is, the

execution of a program in an initial state will result in a (or possibly one of

a set of) final state(s). A program specification defines properties that relate

initial and final states. For example, a specification might state that some

property will hold in the final state after the program has been executed, as

long as it was executed in an initial state where some other property held.

Defining the semantics of a programming language fixes the behaviour of

the language and gives meaning to programs that are written in the language.

One straightforward way of giving the semantics of a programming language

is using operational semantics, which describes a language in terms of the

effect execution has on the state: a program still defines state transitions,

but for an abstract state.

This thesis investigates the possibility of using the operational semantic

description of a programming language to reason about programs that are

written in that language. Programs are shown to be correct with respect to a

specification, which consists of a precondition and a postcondition. Natural

deduction proofs about a program are written to show that if it is executed

in a state that satisfies the precondition, then execution will result in a state

that relates to the initial state such that the postcondition is true of the two

states. The rules of an operational semantic description are used in the proof

to show the steps a program will take to reach a final state, and the effect

execution has on the state. This is contrasted with the use of axiomatic

semantics, observing that using operational semantics allows us to handle a

wider class of language features.

The acceptability of this approach will almost certainly depend on appro-

priate tool support. A prototype proof support tool is therefore developed

as a ‘proof of concept’, to assist a user in creating these kinds of proof. The

tool manages inference rules and semantic descriptions, and the layout of the

proof, but does not automate the proof process.
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Chapter 1

Introduction

Since the early days of electronic computers, people have been concerned

about the correctness of computer programs. In [GvN47], the authors show

that they are not only concerned about correctness of programs, but that

they believed that it is possible to reason about their correctness. Their

proposed approach was to introduce ‘assertion boxes’ at points in a program

that are separate from the program, and describe its effect. Turing also wrote

about the use of assertions to specify the effect of a computer program in

[Tur49]. Turing’s approach was to decorate ‘flow diagrams’ with assertions.

He saw these assertions as a way to reason about arcs within the flow of a

program so that the correctness of the program as a whole could be easily

established.

The main advances in this area came after Floyd’s paper, [Flo67], in

which he annotates flow charts with general assertions. The flow charts

represent the flow of control through a program, and the assertions, which

relate the values of variables, are placed at each connection in the flow chart,

and should hold whenever the connection is taken. The main contribution

of Floyd’s paper was not to present a way of proving programs correct, but

to provide a “basis for formal definitions of the meanings of programs in

appropriately defined programming languages, in such a way that a rigorous

standard is established for proofs about computer programs” [Flo67].

1
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Floyd’s paper influenced the work of Hoare, who in [Hoa69] makes the

move from flow diagrams to annotated program code. The assertions about

a program are written in the form of a ‘Hoare-triple’, in which the program

text itself is annotated with pre- and post-conditions. Hoare’s paper also

introduces an axiomatic approach to defining languages, in which a language

is defined in terms of axioms and inference rules, which can then be used to

reason about a program. The paper only covers basic language features and

subsequent papers attempted to extend Hoare’s work to cover additional fea-

tures of programming languages, most notably, Hoare and Wirth’s attempt

to provide an axiomatic semantics for a portion of Pascal in [HW73].

One of the limitations of the axiomatic approach is that for most used

programming languages a complete axiomatisation seems to be impractical

without the explicit design constraint that they should have an axiomatic

semantics1 [Jon03b]. There are certain language features for which it is diffi-

cult to give an axiomatic semantics, such as concurrency (see Section 3.2.3).

For some features of modern imperative languages, writing an axiomatisation

becomes difficult as their axiom requires more ‘machinery’ from the language,

resulting in an axiom that is more operational.

1.1 Thesis Hypotheses

This thesis examines the following hypotheses:

1. The operational semantics of a programming language can be used as

a basis for reasoning about programs written in the language — this

approach is applicable to a wider class of languages than that covered

by axiomatic semantics.

2. Although some setup is required when basing program reasoning on op-

erational semantics, this effort can be made acceptable with a suitable

support system.

1Turing [HMRC88] is an example of such a language.
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1.2 Thesis Contribution

The aim of this thesis is to investigate an alternative method of reason-

ing about programs, using an operational approach (see Section 3.4). More

specifically, it aims to use an operational semantic description of a language

to reason about programs that are written in that language.

Most features of modern imperative programming languages can be de-

scribed in an operational semantics. If it is possible to reason about a pro-

gram by using the operational semantics of the language it is written in, then

we will be able to reason about programs that are written in more complex

languages than we can using just axiomatic semantics.

The operational semantics of a language defines the execution of the lan-

guage in terms of the transitions it can make from an initial state to a final

state, and the effect execution has on the state. Using the operational se-

mantic rules of a language, we can show that if a program is executed in an

initial state, then it will reach a final state after execution in which a specific

property will hold, the property being part of the program’s specification.

As with Hoare logic, a program’s specification is represented as a precon-

dition and a postcondition. The precondition makes assertions that should

hold before the execution of the program, and the postcondition makes as-

sertions that should hold after execution is completed. Unlike Hoare logic, a

postcondition is an assertion over two states (initial and final) so it can relate

the final value of a variable to its original value before execution. To show

that a program meets its specification, natural deduction proofs are written

in which operational semantic rules are used as inference rules to justify steps

in the proof (see Section 3.4.4).

This thesis gives several examples of this operational semantics approach

to proving properties of programs, including an example that uses concur-

rency (see Chapter 4).

Since each step in the program will have a corresponding step in the

proof, these kinds of proofs may get quite long and detailed. Therefore the

acceptability of this approach will likely depend on a suitable support system
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(see Chapter 6). A suitable system should have an intuitive interface that

allows the user to work with the proof. The system should also be accessible

to novice users and so should not have a steep learning curve.

The type of system considered to be most suitable is a proof support tool

(see Chapter 5). Part of this thesis is to develop a prototype proof support

tool that will assist a user to reason about a program using operational se-

mantics (see Chapter 7). The tool is intended to be a user guided proof

system that allows the user to write natural deduction proofs that are dis-

played in as easy-to-read format. The user should not be restricted by the

tool to write a proof in a particular way, but should be free to complete lines

and justifications of the proof in any order. The tool will not try and au-

tomatically complete the proof, but will assist the user where possible. The

kind of assistance provided by the tool will be to manage the proof layout

including automatically numbering proof lines, and suggesting justifications

for proof steps. The tool should also have a proof library and rule library

that can be added to by the user, from which the tool will be able to make

suggestions for justifications to the user.

1.3 Related Work

Burstall and Honsell in [BH91] extend a natural deduction framework so that

it can be used to define a programming language in an operational semantics.

Their work however only defines programming languages, but does not go as

far as trying to verify programs written in the language.

There are various types of tools available that are intended to assist the

user to reason about programs. The Java Modelling Language (JML) [jml10]

allows the user to annotate program code with assertions such as invariants

and Hoare-like pre- and post- conditions, which can then be checked during

runtime.

Jinja is a comprehensive model of a Java-like programming language that

includes many of the core features of the Java language and covers both
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the source language and the virtual machine [Nip06]. It is designed to be

a realistic language while maintaining a comprehensible model. Jinja has a

big and small step operational semantics which are shown to be equivalent.

The small step semantics are need to be able to refer to intermediate states

during execution, allowing parallelism to be modelled. The development of

Jinja was carried out in Isabelle/HOL [PNW10].

Ott [SN10] is a tool for writing definitions of programming languages and

calculi, by specifying the syntax and semantics of the language. This defini-

tion can then be typeset in LATEX, or be used to generate formal definitions

of the language for Coq, HOL and Isabelle.

The tool that most closely meets the requirements outline in Chapter 6

is the Mural tool [JJLM91], although it is no longer available. Mural was a

support tool for writing and storing VDM specifications, but also included a

proof assistant that allowed the user to write Jones style [Jon90] proofs.

1.4 Overview

Following this introduction chapter, Chapter 2 reviews logical frameworks,

natural deduction proofs and inference rules, providing a logical basis for the

thesis.

Chapter 3 covers three main approaches to defining semantics of program-

ming languages – Axiomatic, Denotational and Operational – with a focus on

operational semantics, and also describes the approach used throughout this

thesis to defining the abstract syntax and context conditions of programming

languages.

Section 3.4.4 introduces and explains the use of operational semantics

to reason about programs, using a simple program as an example. Further

examples are given in Chapter 4, including an example of a concurrent array

search program (Section 4.4). Section 4.5 uses the same concurrent search

program to give an example of a Hoare style proof for comparison.

A review of formal verification tools is given in Chapter 5, providing a
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context for the proof support tool developed as part of this thesis.

Chapter 6 outlines the requirements and features of a proof support tool

for reasoning about programming languages using operational semantics, as

well as explaining the intended interaction between the user and tool when

writing a proof (see Section 6.4).

The development of the prototype proof support tool is described in Chap-

ter 7. The chapter first describes the formal model of the proof system as

written in the Vienna Development Method(VDM) [Jon90, Daw91] (see Sec-

tion 7.1), then the Java implementation of the prototype (see Section 7.2),

followed by how to use the prototype tool (see Section 7.3), and a discus-

sion of challenges encountered during the development of the prototype (see

Section 7.4).

The final chapter, Chapter 8, summarises the results of the thesis and

suggests areas for further work.



Chapter 2

Logic and Proof

Logic is said to be the study of reasoning [vD94]. In a natural language we

can write declarative statements, such as “the sky is blue”, that have a truth

value — that is, they are either true or false. We can also define our own

languages that are more formal than natural languages and use connectives

(such as and , or and not) to make more complex propositions.

It can be determined if a proposition is true or false by using truth tables.

The most basic parts of a proposition are simply true or false. The truth

value of more complex propositions can be determined using truth tables.

A truth table lists the possible values that a free variable might take in a

proposition, along with the truth value of the whole proposition for those

possible values. For example, the truth table for the logical sentance a ∨ b is

given in Figure 2.1.

a b a ∨ b
true true true
true false true
false true true
false false false

Figure 2.1: Truth table for a ∨ b

Truth tables can also be used to determine the truth value of more com-

7
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plex propositions, but the more connectors there are, the larger the table

becomes.

Instead of determining the truth value of a proposition using truth ta-

bles, we can also use a system of deriving conclusions from premises [vD94].

For each connective we can define derivation or inference rules, which are

explained further in Section 2.3. This approach is known as natural deduc-

tion and was introduced by Gentzen [Gen69]. This thesis follows this style

of deduction; the rest of this chapter explains how it works.

This chapter discusses logic, as well as axioms and inference rules and how

they are used in deductions. To be able to reason about programs using the

semantics of a programming language, we need to first have a formal language

in which assertions (typically about the states of program executions) can be

written, and a set of axioms and inference rules that show what inferences

are valid in our language [BFL+94].

There are many system of logic, each with varying degrees of complex-

ity and expressiveness. In this thesis we will be using first order predicate

calculus.

Section 2.1 describes deductions in an axiomatisation of a logic, and ex-

plains the way in which proofs are presented in this thesis. Section 2.5 covers

how a proof is built and the different reasoning techniques that might be

used. Section 2.6 explains the use of quantifiers.

2.1 Proof

A proof is intended to show that, from certain known properties, another

property must hold. We can think of a proof as a structured argument that

is intended to increase confidence that some property holds. Such proofs may

be formal or informal. We first look at formal proofs, in which each step is an

instance of an axiom, or is derived by a rule of inference from earlier proved

statements. Section 2.5 discusses how to construct a formal proof.

In [Fit52] a proof is defined as a “finite sequence of items such that each
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item of the sequence satisfies at least one of the following two conditions: (1)

It is an axiom of the system. (2) It is a direct consequence of preceding items

of the sequence”.

This thesis borrows its style of presenting proofs from [Jon90], which is

a form of natural deduction proof. As an example of this style of proof,

Figure 2.2 shows a proof for the and introduction rule.

from a, b
1 ¬¬a ¬¬-I(h1)
2 ¬¬b ¬¬-I(h2)
3 ¬(¬a ∨ ¬b) ¬∨-I(1, 2)

infer a ∧ b folding(3)

Figure 2.2: Proof of ∧-I.

The inference rules used in the proof in Figure 2.2, and in the rest of this

chapter, can be found in Appendix A.

The keyword from is used to indicate that we are working from the spec-

ified set of hypotheses, which are written next to the from. For convenience

in referring to hypotheses we label them ‘hn’, where n is the position of the

hypothesis in the list. So in Figure 2.2, the hypothesis a has the label h1.

The lines of the proof are numbered so that they can be referred to easily.

For convenience in reading the proof, the lines are numbered in ascending

numerical order starting from the first line of the proof and working down to

the last line.

The property that is to be proven to hold (the goal, or conclusion) is

written at the end of the proof and labelled with the keyword infer.

Looking at line 1 of the proof, the body of the line is the expression ¬¬a.

The justification of this line is made by referencing the inference rule ¬¬-I ,

as given to the right of the line body. Notice also that the reference to the

inference rule also has a parameter, which is may be a line number, but in

this case it is a reference to a hypothesis.
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Although there is no restriction on the ordering of lines in a proof, it

should be remembered that layout of the proof is intended to make a proof

easy to read. The proof will generally be read starting at the hypotheses and

then line by line to the conclusion, and should therefore be arranged so that

each line of the proof builds upon previous lines (or hypotheses), until the

conclusion can be inferred.

An informal proof has a much looser structure and steps can be made

with only an outline justification. Its aim is to show how a proof could be

constructed [Jon90], and it appeals to the reader’s intuition, rather than

relying on formal justifications from axioms and inference rules.

In the simplest case, an informal proof may be written in sentences, rather

than in a formal language. It may also be written in a more formal style,

but using informal (or no) justifications, and having missing steps. A single

step in an informal proof might represent several steps if the proof was made

formal, but still convey the essential meaning to the reader. We can think of

an informal proof as an outline for a formal proof, since it should be possible

to fill in the gaps to make the proof formal.

Since informal proofs rely on a reader’s intuition for interpretation, they

do not lend themselves to being machine read and checked.

2.2 Sequents

A sequent is a statement about logical expressions, stating that some conclu-

sion is derivable from some hypotheses. We write sequents using the ` symbol

(often called a turnstile) to separate hypotheses and conclusion [Jon90].

P ` R

The above sequent asserts that R can be deduced from P . So in all cases

where the hypothesis P is true, the conclusion R is also true.

It also possible to define sequent variables that are variables that are

bound throughout a sequent [BFL+94]. This is signified by a subscript on

the turnstile, as in the below sequent.
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a: A `a P(a)

Here, the variable a is bound throughout the sequent, meaning that any

occurrence of a, on either side of the turnstile, refers to the same variable.

The validity of a sequent can be checked using truth tables, or by writing

a natural deduction proof. The hypotheses and conclusion of a sequent relate

to the hypotheses and conclusion of a proof. The proof in Figure 2.2 written

as a sequent would give us a, b ` a ∧ b.

A sequent may be used in inference rules, as in Figure 2.3. Using such a

rule as a justification in a proof would require a nested or subordinate proof

[BFL+94], as explained in Section 2.5.1.

2.3 Inference Rules

As mentioned in Section 2.1, inference rules are used as justifications in

formal proofs. They describe what can be inferred from a set of knowns.

The form of an inference rule is to have a set of hypotheses (above the line)

and a conclusion (below the line), as shown in Figure 2.3. In this case the

hypotheses are separated by a semi-colon.

∧-subs-left
e1 ∧ e2; e1 ` e
e ∧ e2

Figure 2.3: ∧ substitution inference rule

The variables used in an inference rule are known as metavariables, and

are used to represent arbitrary expressions [BFL+94]. When a rule is used

to justify lines of a proof the metavariables are instantiated, that is they are

replaced by a term or expression.

Valid Rules

An inference rule whose validity is taken to be self-evident is known as an

axiom [BFL+94]. Axioms do not require to be proven and form the foun-
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dation of a system of inference. We can build on a set of axioms to create

more expressive inference rules. In the system used in this thesis, axioms

may have hypotheses.

Inference rules that are not axioms need to be shown to be valid by

constructing a proof showing that the conclusion can be reached from the

hypotheses, using axioms or other proven rules as justifications. These infer-

ence rules are known as derived rules, and can be used in the proofs of other

derived rules. A derived rule essentially acts as a shorthand for its proof, so

that in a proof we can just refer to the derived rules as the justification of a

step, rather than having to copy all of the steps from its proof [BFL+94].

Rule Application

Applying an inference rule as a justification to a line in a proof is essentially

a pattern matching exercise. The line being justified must match the conclu-

sion of the inference rule, and the hypotheses of the inference rule must be

matched against other lines in the proof.

Using the ¬¬ introduction rule (below) as an example, we will go through

how inference rules are instantiated and used in a proof.

¬¬-I
e
¬¬e

This rule states that for any known, we can infer its double negation.

It should be apparent that this rule is true or self-evident and therefore an

axiom. The term e in this inference rule is what is known as a free variable,

meaning that it is not bound to any particular value, and that it may be

substituted for a value. A substitution for e does not necessarily have to

be single term, it could substituted by an expression. For example, our

substitution for e could be the expression a ∧ b, giving us ¬¬(a ∧ b).

Looking back to the example proof for the ∧-I inference rule, in Figure 2.2,

we can see that the ¬¬-I rule was used as the justification for two lines in the

proof. In line 1 of the proof, selecting the inference rule ¬¬-I as a justification
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means that the body of the line must match the conclusion of the inference

rule. The justification also instantiates the rule so that e is now bound to

a. Since e is the only free variable, and appears in the conclusion and the

hypotheses, we are now required to match the hypothesis against a line of

the proof that consists of a. The justification in the proof uses h1, which

meets this requirement.

Introduction and Elimination

In a natural deduction system we define introduction and elimination infer-

ence rules for each of the connectives in our formal language [vD94, Pra06].

The not not introduction rule has just been introduced, which allows the

double negation of a term to be inferred. There also exists an elimination

rule that removes a term’s double negation.

¬¬-E
¬¬e
e

It is possible to combine these introduction and elimination rules into a

single bi-directional rule, that allows inference to be made in either direction.

To distinguish bi-directional rules from regular inference rules we use a double

horizontal.

¬¬-I/E
e

¬¬e

It is not always possible to combine introduction and elimination rules

into a single bi-directional rule. For example, there are actually two and

elimination rules (Figure 2.4), one for each of the terms to be eliminated.

2.4 Definitions

Simple propositions can be combined into a more complex logical expression

using logical operators or connectives such as ∧ (and), ∨ (or) and ¬ (not).
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∧-E-Left
a ∧ b
b

∧-E-Right
a ∧ b
a

Figure 2.4: ∧ Elimination rules

It is convenient to choose a minimal set of connectives and define others in

terms of the minimal ‘axiomatised’ set. For example, using not (¬) and or

(∨) as our minimal set we can define the operators and (∧), implication (⇒)

and equivalence (⇔), as shown in Figure 2.5.

a ∧ b
def
= ¬(¬a ∨ ¬b)

a ⇒ b
def
= ¬a ∨ b

a ⇔ b
def
= (a ⇒ b) ∧ (b ⇒ a)

Figure 2.5: Example Definitions

These are syntactic definitions1 that allow us to introduce new symbols

or constants. When we write a new definition we are stating that two ex-

pressions are semantically equivalent and can be interchanged.

Using a definition to rewrite an expression is known as folding or unfold-

ing. An expression written using operators that are part of an axiomatised

set can be folded to give an equivalent expression that contains defined op-

erators. The expression ¬(¬a ∨¬b) can be folded to a ∧ b, which in turn can

be unfolded back to ¬(¬a ∨ ¬b).

Definitions can be used in a proof to rewrite a line so that a particular rule

can be used. When using a definition in a proof we write folding or unfolding

as a justification, and a reference to the line that is being folded/unfolded.

1All definitions used can be found in Appendix A
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Examples can be seen in the proofs in Section 2.5.

2.5 Building a Proof

The layout of a proof is intended to make it easy to read and understand.

The obvious way to read a proof is to start from the hypotheses and work

down to the infer line. Since each line builds upon previous ones it should

be straightforward to follow the reasoning in the proof from the hypotheses

down to the goal.

When writing a proof on paper it is usual to write the hypotheses at the

top of the page, and the infer or conclusion line at the bottom of the page.

It is then possible to work downwards from the hypotheses until you can

infer the goal. This is known as forward reasoning. When working forward

in a proof we attempt to match existing lines and hypotheses against the

hypotheses of inference rules, allowing us to introduce a new line in the

proof that matches against the conclusion of the inference rule.

As an example of building a proof using forward reasoning we will use

the proof for the and elimination left inference rule. So, starting with the

hypothesis and conclusion from the rule gives us:

from a ∧ b
...

infer b

In another proof we might try to apply an and elimination rule, but that

isn’t an option here, since we are writing a proof of one of the and elimination

rules. We do know, however, that and is defined in terms of not and or, so

we can start by unfolding the hypothesis.
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from a ∧ b
1 ¬(¬a ∨ ¬b) unfolding(h1)

...
infer b

The form of this new line can be matched against the hypothesis of the

not or elimination inference rules. So, applying the left elimination rule will

leave us with a the expression ¬¬b.

from a ∧ b
1 ¬(¬a ∨ ¬b) unfolding(h1)
2 ¬¬b ¬-∨-E-Left(1)

infer b ¬¬-E(2)

The justification of the infer line uses the not not elimination rule to

remove the double negation from line 2 and completes the proof.

Backwards Reasoning

Sometimes it is more convenient to build a proof backwards, starting from

the goal, and working back to the hypotheses. When working backwards we

try to match a line of the proof against the conclusion of an inference rule.

Once a rule is selected it is added as a justification to the line, and additional

lines that match the hypotheses of the inference rule are inserted into the

proof.

As an example, we will use the proof for the and introduction inference

rule. Starting with two terms, a and b, we want to be able to infer their

conjunction.
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from a; b
...

infer a ∧ b

Looking at the proof outline it is difficult to know where to go from the

hypotheses. But looking at the conclusions we know that and can be written

in terms of not and or , by unfolding.

from a; b
...

α ¬(¬a ∨ ¬b)
infer a ∧ b folding(α)

We add a new line to the proof that when folded will give us the infer

line. This new line is labelled α, and will be numbered correctly once the

proof has been filled out.

Line α can be matched against the conclusion of the not or introduction

rule. This rule has two hypotheses, so we insert two new lines into the proof

that will match against the hypotheses. We also add the not or introduction

rule as a justification, along with references to the two new lines that have

been added, to show which lines match the rule hypotheses.

After adding the two new lines we can see that the lines can be eas-

ily justified from the proof hypotheses using the not not introduction rule,

completing the proof.
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from a; b
1 ¬¬a ¬¬-I(h1)
2 ¬¬b ¬¬-I(h2)
3 ¬(¬a ∨ ¬b) ¬-∨-I(1, 2)

infer a ∧ b folding(3)

Notice that in the completed proof the lines of the proof have been renum-

bered so that they are numbered in descending order. This makes for a better

presentation of the proof. Renumbering the lines of a proof also means that

the line references in justifications should be adjusted to correspond to the

appropriate line.

Middle-out Reasoning

When constructing a proof, the direction we work in is not important. We

can work forwards from the hypotheses, backwards from the goal or a mixture

of both. What is important is that the complete proof links the hypotheses

and the goal through a series of justified steps. As long as this final property

of the proof is met, the order in which these steps are added does not matter.

We might decide to start a proof by inserting a line “in the middle” of the

proof; a line that is not linked to the hypotheses or the goal, and essentially

becomes a sub-goal. We call this approach middle-out reasoning since we

are starting in the “middle” of the proof. This method of inserting unlinked

steps at any point of a proof was allowed in the Mural proof tool [JJLM91].

As with all of these approaches, the proof is only complete when all steps

are correctly justified and link the hypotheses to the conclusion.

2.5.1 Subordinate Proofs

A subordinate proof (or subproof ) is a proof that is nested within another

proof. A subproof has the same form as a proof, with a from line listing

hypotheses, an infer line stating the goal, and lines in between. Figure 2.6
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shows the proof for the inference rule and distributes over or, which contains

two subproofs on lines 3 and 4. Within the main proof a subproof is refer-

enced as a single line. The hypotheses and conclusion of the from and infer

lines of a proof are equivalent to a sequent. For example, line 3 in the proof

can be written as the sequent b ` (a ∧ b) ∨ (a ∧ c).

from a ∧ (b ∨ c)
1 a ∧-E-Right(h1)
2 b ∨ c ∧-E-Left(h1)
3 from b
3.1 a ∧ b ∧-I(1, 3.h1)

infer (a ∧ b) ∨ (a ∧ c) ∨-I-Right(3.1)
4 from c
4.1 a ∧ c ∧-I(1, 4.h1)

infer (a ∧ b) ∨ (a ∧ c) ∨-I-Left(4.1)
infer (a ∧ b) ∨ (a ∧ c) ∨-E(2,3,4)

Figure 2.6: Proof for ∧ distributes over ∨

The conclusion of the proof in Figure 2.6 is justified by the or elimina-

tion rule, which contains two sequents in its hypotheses (see Appendix A),

requiring the proof to contain two subproofs.

As long as the subproof is not too long, the proof remains readable and it

is convenient to have the subproof within the main proof. A subproof could

be removed from the body of the main proof and made into a stand alone

proof, and also made into an inference rule so that it can be referred to from

another proof.

2.5.2 Valid Proof

A proof is valid when each line has a valid justification. A justification is valid

if it refers only to preceding lines [BFL+94], and uses only proven inference

rules whose hypotheses match assertions on the line referred to, and whose
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conclusions match the body of the line being justified. An inference rule is

proven if it is an axiom or it has a valid proof that uses only axioms on other

proved inference rules.

For any justification in a proof it should be possible to trace dependance

on any inference rule to a set of axioms, via the proof of the inference rule.

2.6 Quantifiers

A proposition can be formed by using truth valued functions [Jon90]. For

example, the proposition is-prime(x ) has the value true in those cases where

x is a natural number that is a prime number, and false otherwise. So the

proposition is-prime(3) is true since 3 is a prime number.

When dealing with multiple values, we may want to discuss properties

that are common to some or all of the values. We could do this by combining

propositions using conjunctions or disjunctions. If we wanted to say that at

least one number in the set {2, 3, 4} is a prime number, we could write the

disjunction is-prime(2) ∨ is-prime(3) ∨ is-prime(4). Alternatively we could

write

∃x ∈ {2, 3, 4} · is-prime(x )

For larger sets of values it is obviously more convenient to use quantifiers,

rather than writing out a disjunction. When dealing with infinite sets the

use of quantifiers is essential. There are two types of quantifiers, existential

and universal.

Existential Quantifiers

An existential quantifier is used to describe a property that applies to some

of a set of values. This property might apply to only one of the values, or

it might apply to all of them, or somewhere in between. An existentially

quantified expression will evaluate to true as long as the property applies to

at least one of the values.
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The symbol for existential quantification (∃) is usually read as exists or

there exists. The below expression states that in the set {2, 3, 4} there exists

at least one value that satisfies the function is-prime.

∃x ∈ {2, 3, 4} · is-prime(x )

The expression consists of an existential quantifier symbol (∃), a bound

variable (x ), and a predicate (is-prime(x )). In the above example the variable

x is bound to the values {2,3,4}, and any occurrences of x in the predicate

will refer to the same x that is bound to these values.

It is possible for quantified expressions to bind more than one variable, as

in the below example which states that in the set of values bound to x there

exists a value that is also in the set of values bound to y . In other words,

there is a value that is common to both x and y .

∃x ∈ {1, 2, 3}, y ∈ {3, 4, 5} · y = x

Universal Quantifiers

The form of both kinds of quantified expressions is the same, but with a

different symbol. A quantified expression that uses the universal quantifier

symbol states that in a set of values, some property applies to all of the

values. The universal quantifier symbol is ∀, and is usually read as for all.

Taking the first example from the section on existential quantifiers and

replacing the symbol gives us:

∀x ∈ {2, 3, 4} · is-prime(x )

This expression states that for all the values in the set bound to x the

function is-prime is satisfied. Although a valid expression, it is actually a

false expression, since 4 is not a prime number.

The following quantified expression is a true expression that states that

in the set of values {2,4,6} all values either satisfy the function is-even, or

is-odd.
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∀x ∈ {2, 4, 6} · is-even(x ) ∨ is-odd(x )

It is possible to combine both types of quantified expressions into a single

expression as below.

∀x ∈ N · ∃y ∈ N · y = x + 1

This expression states that for all natural numbers, there exists a natural

number that is one greater. The order in which the quantifier and variable

pairings are placed is important, as illustrated by the below expression.

∃y ∈ N · ∀x ∈ N · y = x + 1

Writing the expression in this way actually makes the expression false,

since it says that there is a natural number that is one greater than every

other natural number.

Binding

A quantified expression binds a variable (or multiple variables) to a set of val-

ues. The scope of this binding is local to the expression, and a variable bound

in a quantified expression cannot be referenced outside of the expression.

x > 5 ∧ ∀x ∈ {1, . . . , 10} · x > 0

For example, the above expression is a conjunction of a relational ex-

pression and a quantified expression. The x in the relational expression is

a free variable and the x in the quantified expression is bound within the

expression.

Confusion can be avoided by using a different name for the variable that

is bound by the quantified expression.

x > 5 ∧ ∀y ∈ {1, . . . , 10} · y > 0

This expression is logically equivalent to the previous expression. Chang-

ing the name of the bound variable in the quantified expression does not

change its meaning, but it does make it clear that the variables are not the

same.
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Substitution and Variable Capture

Syntactic substitution is the process of replacing an occurrence of a free vari-

able in an expression with another variable or expression. For example, in

the below expression we substitute all free occurrences of x with 3.

(x = y + z )(3/x ) = (3 = y + z )

Bound variables are not affected by a substitution since substitution only

replaces the free variables in an expression. So in the following expression

the variable x bound by the quantified expression is unchanged by the sub-

stitution.

(x > 5 ∧ ∀x ∈ N · x > 0)(10/x ) = (10 > 5 ∧ ∀x ∈ N · x > 0)

Care needs to be taken with the substitution of variables in expressions

that contain bound variables to avoid variable capture. This occurs when a

variable substitution causes confusion between bound and free variables in

an expression. For example, substituting y for x in the below expression

will lead to confusion between the bound and free variable in the quantified

expression.

(y > 5 ∧ ∀x ∈ {1, . . . , 5} · x 6= y)(x/y)

This problem can be avoid by renaming the bound variable in the quan-

tified expression, as explained earlier, before performing the substitution.

2.6.1 Quantifiers and Proofs

We can form axioms and inference rules for quantifiers, allowing us to reason

about quantified expressions. As with other inference rules, we have intro-

duction and elimination rules for each of the quantifiers. Figure 2.7 shows

the introduction and elimination axioms for existential quantification.
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∃-E

∃x ∈ A · P(x )
y ∈ A,P(y) ` e
e

∃-I

a ∈ A
P(a)
∃x ∈ A · P(x )

Figure 2.7: Exists introduction and elimination axioms

We can write a universally quantified expression using the existential

quantifier, giving us the following definition

∀x ∈ A · P(x )
def
= ¬∃x ∈ A · ¬P(x )

Using this definition and other axioms, we can derive inference rules for

universal quantification. Figure 2.8 shows the proof of the forall elimination

inference rule.

from a ∈ A;∀x ∈ A · P(x )
1 ¬∃x ∈ A · ¬P(x ) unfolding(h2)
2 ¬¬P(a) ¬-∃-E(h1, 1)

infer P(a) ¬¬-E(2)

Figure 2.8: Proof of forall elimination rule

The example proof of a program in Section 4.3 uses inference rules for

quantified expressions.

2.7 Consistency and Completeness

A proposition is a ‘sentence’ of expression that has a true or false value. A

formal system is considered to be consistent if every proposition is either
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true or false, but not both [Heh84]. Consistency is essential since it makes

no sense for a proposition to be both true and false.

A formal system is complete if every proposition is either true or false.

This is not always essential since the system might not be descriptive enough

to evaluate the truth value of every proposition. An incomplete system may

still be useful if it can assign truth values to all of the propositions that we

are interested in.

2.8 Summary

This chapter discusses logical frameworks in general, focusing on first order

predicate calculus. It also covers inference rules and their use as justifications

in natural deductions proofs.

This provides a logical foundation for the types of proofs that are written

in this thesis using operational semantic rules as justifications. The next

chapter will introduce such a proof, and then Chapter 4 will give further

examples.



Chapter 3

Language Semantics

The semantics of a programming language describes the behaviour of the

language and gives meaning to programs written in the language. There

are three main approaches to defining a language semantics: operational,

denotational and axiomatic.

The operational approach focuses on how program statements are ex-

ecuted and shows the effect execution has on an abstract state. The op-

erational semantics of a program statement defines execution in terms of a

transition of the statement and an initial state to a final state. This approach

is covered in more detail in Section 3.4.

The denotational semantics of a language maps syntactic constructs to

mathematical objects such as functions over states, and describes the effect

that execution will have on a state. Denotational semantics are discussed in

Section 3.3.

The original focus of the operational and denotational approaches was

to provide a language definition that would be used as a basis for compiler

development. The axiomatic approach introduced by Hoare in [Hoa69] was

intended as a way of defining a language that would also allow programmers

to prove properties about programs, and to “discharge their responsibility

to write correct and efficient programs” [Hoa09]. The axiomatic approach

describes the semantics of a language by defining axioms and inference rules

26
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for each of the statements in the language [Sto77]. These can then be used

to prove properties of a program, specifically that a program is correct with

respect to a specification. A program’s specification is written as assertions

about the values that variables will have after the program has finished exe-

cuting, provided that certain stated conditions were met before execution.

This chapter, first of all, explains how programming languages are de-

scribed by defining an abstract syntax, context conditions and semantics for

the language. The definition of a simple sequential language, which we will

call Base, is used throughout the chapter to illustrate the approach taken

in this thesis to describe a programming language. The full language def-

inition can be found in Appendix B. The main focus of the chapter is on

the axiomatic, denotational and operational approaches to defining seman-

tics for programming languages, with a specific focus on how the semantic

descriptions can be used to reason about computer programs.

3.1 Describing Programming Languages

When specifying a programming language there are three main parts that are

of interest: abstract syntax, context conditions, and semantics. The abstract

syntax describes the structure of the various components of the language,

such as statements and expressions. The context conditions restrict the set

of programs allowed by an abstract syntax definition to only those programs

to which we will assign a meaning. The semantics of a language describes

its ‘meaning’, or what it means to execute a program that is written in that

language.

In this section we will look at the abstract syntax and context conditions

of the Base language (see Appendix B). This is a simple sequential language

that consists of If , While and Assignment statements. Multiple statements

are added to a program using the Sequential statement, which has a left and

right statement which are executed sequentially.
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3.1.1 Abstract Syntax

An abstract syntax defines the structure of a language, but not how to write

statements in the language. For example we define an If statement as having

a condition part, a then part and an else part, but we don’t define the key

words needed to write an unambiguous If statement. The key words used

to write a statement are part of the concrete syntax of a language, and are

used by the parser so that it can parse the text of a program. We are not

concerned with the concrete syntax definitions of the languages used in this

thesis.

When writing an abstract syntax for a language, the notation is borrowed

from the Vienna Development Method (VDM) [Jon90, Daw91]. Language

constructs can be specified using a VDM record, where the record fields rep-

resent the parts of the construct. Below is the abstract syntax definition for

an If statement in the Base language.

If :: test : Expr
th : Stmt
el : Stmt

The union type is used to group language constructs together. The ex-

ample below states that If , Assign, While and Seq are subsets of Stmt . So

in the definition of the If statement above, the th and el parts of the If

statement can be instantiated with any of the types in this union.

Stmt = If | Assign |While | Seq

To write context conditions and semantics we need to be able to instan-

tiate these VDM records. This can be done using the record constructor,

which we can think of as a function that takes the parts that make up a

record, and returns an instance of that record. For example, the constructor

for the If statement would have the following signature
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mk -If : Expr × Stmt × Stmt → If

and we write the construtor as below.

mk -If (test , th, el)

The abstract syntax definitions for the other statements in the language

are given in Figure 3.1. The full language definition is given in Appendix B.

Assign :: lhs : Id
rhs : Expr

Seq :: sl : Stmt
sr : Stmt

If :: test : Expr
th : Stmt
el : Stmt

While :: test : Expr
body : Stmt

Program :: vars : Id
m−→ Type

body : Stmt

Figure 3.1: Abstract Syntax.

The body of a Program consist of a single Stmt , which may be a Seq state-

ment which would allow the program to execute two statements sequentially.

Nesting the Seq statements will allow a program to contain more Stmts. The

vars field contains variable declarations, with variable names being mapped

to a type.

3.1.2 Context Conditions

An abstract syntax defines a context free grammar that does not prevent

programs that are considered to be invalid from being written. For example,
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the abstract syntax of our language allows us to write

mk -If (3,mk -Assign(i , 4),mk -Assign(i , 5))

which we don’t want to consider as a valid program1. This is an error of

types, since we only want the condition on an If statement to be a boolean

expression. A program that refers to an undeclared variable has no meaning

and we will also consider it to be invalid.

Context conditions are used to restrict the set of possible programs to only

those that we will assign meaning to, which we consider to be well-formed.

The usual way to write context conditions is as functions2 that determine

if a program is well-formed. Figure 3.2 shows the context conditions for a

program. The second line of the function contains the parameter list, in which

names are given to the parameters of the function using patterns [FL98]. A

pattern may simply be a name, or in this case a record pattern is used which

allows names to be given to the fields of the record.

A program consists of a single statement and a mapping of variable names

to types which specifies the variables that are declared in the program. This

mapping is referred to in this chapter as a ‘type map’.

The wf -Program function takes a program as its only parameter and

checks if the body of the program is a well-formed statement using the

wf -Stmt function, providing it with the program’s type map. A program is

therefore well-formed if its body is well-formed, with respect to its declared

variables.

Figure 3.3 shows part of the wf -Stmt function, along with its signature.

This function takes a Stmt and a type map, and returns true if the statement

is well-formed, or false otherwise.

1Some languages might just treat an integer as a boolean value, which could lead unex-
pected behaviour if the programmer wasn’t aware they had provided a integer expression
rather a boolean expression. To keep the definition of the Base language simple, it is
strict on variable and expression types, and won’t allow integer expressions where boolean
expressions are expected.

2The functions are written in a VDM syntax.
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wf -Program: Program → B
wf -Program(mk -Program(vars , body)) 4

wf -Stmt(body , vars)

Figure 3.2: Context Conditions for Program.

wf -Stmt : (Stmt × Id
m−→ Type)→ B

wf -Stmt(mk -If (test , th, el), tpm) 4

typeof (test , tpm) = Bool ∧
wf -Stmt(th, tpm) ∧
wf -Stmt(el , tpm)

Figure 3.3: Context Conditions for If statement.

The wf -Stmt function has multiple cases, one for each type of statement

in the language. The cases are distinguished by the record pattern used in the

parameter list of the function. The example in Figure 3.3 shows the case for

an If statement. An If statement is well-formed if its condition expression

will give a boolean result, and if the then and else parts of the statement are

both well-formed statements.

The context conditions for the other statements in the language are given

in Figure 3.4. The full language definition is given in Appendix B.

wf -Stmt : (Stmt × Id
m−→ Type)→ B

wf -Stmt(mk -Assign(lhs , rhs), tpm) 4

lhs ∈ tpm ∧
typeof (rhs , tpm) = Int

wf -Stmt(mk -Seq(sl , sr), tpm) 4

wf -Stmt(sl , tpm) ∧
wf -Stmt(sr , tpm)

wf -Stmt(mk -While(b, s), tpm) 4

typeof (b, tpm) = Bool ∧
wf -Stmt(s , tpm)

Figure 3.4: Context Conditions for Statements.

The typeof function is an auxiliary function used by wf -Stmt to find the
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type of an expression. This is determined by looking at the relations and

variables used in the expression. The definition for typeof can be found in

Appendix B.

3.2 Axiomatic Semantics

The axiomatic approach aims to describe the semantics of a programming

language in a way that allows proofs about programs to be easily constructed.

A proof of a program shows that the program (or part of a program) is correct

in the sense that it satisfies its specification.

Rather than describe the execution of a statement, axiomatic semantics

focuses on what effect the execution of a statement has on the values of state

variables, and what assertions can be made about them.

The specification of a program is usually written as a pair of assertions

about the values of certain variables before and after execution. These asser-

tions don’t generally state what a variable’s value will be, but will describe

the general properties of the variable’s value, and also how the variable relates

to other variables.

For simple languages it has become normal to present the axiomatic se-

mantics in terms of concrete syntax, and we follow this convention in this

chapter.

Hoare’s work was an extension of work by Floyd [Flo67] who annotated

flowcharts representing programs with assertions, and developed rules for

reasoning about the flowcharts with respect to the assertions [Win94]. Turing

had also used annotated flowcharts to reason about programs in [Tur49].

3.2.1 Hoare Logic

Hoare’s paper [Hoa69] introduced an axiomatic approach to giving a lan-

guage definition, and also Hoare logic for reasoning about programs using

the language definition. The approach was originally introduced for a simple

sequential language. The use of axiomatic semantics for sequential languages
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is discussed in Section 3.2.3, and Section 3.2.4 discusses work to apply the

approach to more complex languages.

Hoare’s paper introduced the notation known as the Hoare triple, which

states the relationship between a precondition P , a program S and a postcon-

dition Q .

{P} S {Q}

The Hoare triple states that in the cases where P holds before execution,

after S is executed, Q will hold. If S is executed in a state where P does not

hold, then we cannot be certain that Q will hold after execution.

Hoare logic originally only dealt with partial correctness, which does not

include termination, so we can only state that the property Q will hold if

the program terminates [NN07]. Work to include termination is discussed in

Section 3.2.3.

An axiomatic semantics of a language consists of axioms and inference

rules, usually with one axiom per primitive statement and one inference rule

per composite statement [BJ82]. The inference rules have the same form as

those introduced in Section 2.3, when hypotheses are above the line, and the

conclusion is below the line.

This section presents a standard set of inference rules for a simple sequen-

tial language, and explains their meaning.

Assignment

{P [E/x ]} x : = E {P}

Figure 3.5: Assignment Axiom.

The most basic axiom in Hoare logic is the axiom for the assignment

statement, shown in Figure 3.5. This simply states that if we want to know

that the property P holds after execution, then the property (with all free
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occurrences of x replace by E) should hold before execution. Or in other

words, the pre-condition comes from the post-condition by substituting E

for all free occurrences of x in P .

In some languages it may be difficult to write an axiom for assignment

that shows that other state variables are left unchanged by an assignment

to x . This is known as the frame problem. Difficulties in solving the frame

problem for Hoare logic inspired work on Separation logic [Rey02], which

restricts the state considered when reasoning about a program statement to

only those variables that are accessed by the program.

Sequential Composition

{P} S1 {Q}
{Q} S2 {R}
{P} S1 ; S2 {R}

Figure 3.6: Sequential composition rule.

This rule states that if the precondition P holds before execution, then R

will hold after execution, as long as there is a predicate Q that will hold after

the execution of S1, and if S2 is executed in a state where Q holds, provided

S2 terminates, the predicate R will hold in the final state.

Conditional

{P ∧ C} S1 {R}
{P ∧ ¬C} S2 {R}
{P} if C then S1 else S2 {R}

Figure 3.7: Conditional rule.

The conditional rule states that if the statement ‘if C then S1 else S2’ is

executed in a state where the precondition P holds and if the statement ter-

minates, then in the final state after execution, R will hold if two conditions
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are met. First, if the statement S1 is executed in a state where P holds, and

also where the condition C holds, then after execution the postcondition R

will hold. Second, if the statement S2 is executed in a state where P holds,

but C does not, then if S2 terminates, R will hold in the final state.

Consequence

P ′ ⇒ P
{P} S {Q}
Q ⇒ Q ′

{P ′} S {Q ′}

Figure 3.8: Consequence rule.

The consequence rule3 states that we can replace the precondition, a long

as the new precondition P ′ implies the old precondition P . We can also

replace the postcondition Q , as long as the new postcondition Q ′ can be

implied from Q . This means that we can strengthen the precondition P , and

weaken the postcondition Q [NN07].

Iteration

{P ∧ C} S {P}
{P} while C do S {P ∧ ¬C}

Figure 3.9: Iteration rule.

The iteration rule deals with while loop statements. This rule makes

use of a invariant P , which represents a property that must hold before and

after each execution of the body of the while statement, S. Provided that the

invariant P and the loop condition C both hold, and we can show that after

each execution of S the invariant P will hold, then we know that once the

3Also known as the Weakening rule
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loop terminates the invariant P will still hold, and the loop condition C will

no longer hold.

3.2.2 Example

This section presents an example of using Hoare logic to construct a proof of

a simple program. The example program, consisting of a single if statement,

simply takes the absolute value of x and stores it in the variable r . The

program works on the assumption that both x and r have been declared as

integer variables.

{true} if x < 0 then r : = −x else r : = x {r ≥ 0}

The pre-condition is just true, since there are no requirements on the

initial state for the execution of the program. The post-condition states that

in the final state, after execution, the value of r should be greater than or

equal to zero (since it should be the absolute value of x ).

Figure 3.10 goes through a proof of the example program, using Hoare

axioms and rules. The goal of the proof is the final line. Steps in the proof

are justified using the axioms given in Section 3.2.1, and may also refer to

other lines in the proof.

Extra space between lines 4 and 5 of the proof was added to show that

there are essentially two parts to the proof. Lines 1 to 4 deal with the

statement that is executed in the then part of the if statement (S1 in the

conditional rule, Figure 3.7). Lines 5 to 8 deal with the statement that is

executed in the else part of the if statement (S2 in the conditional rule).

The proof was written by working backwards from the if statement using

the conditional rule, to give lines 4 and 8. The program statement in line

4 is an assignment statement so the assignment axiom is used which gives

us line 1. Applying the assignment axiom gives us a different precondition

than the one we are looking for, so we strengthen the precondition in line

2 so that we can use the consequence rule on line 4. Line 3 is needed for

the third hypothesis of the consequence rule, which is the weakening of the
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1. {−x ≥ 0} r : = −x {r ≥ 0} Assignment Rule
2. true ∧ x < 0 ⇒ −x ≥ 0
3. r ≥ 0 ⇒ r ≥ 0
4. {true ∧ x < 0} r : = −x {r ≥ 0} Consequence(2,1,3)

5. {x ≥ 0} r : = x {r ≥ 0} Assignment Rule
6. true ∧ ¬ (x < 0) ⇒ {x ≥ 0}
7. r ≥ 0 ⇒ r ≥ 0
8. {true ∧ ¬ (x < 0)} r : = x {r ≥ 0} Consequence(6,5,7)

infer {true} if x < 0 then r : = −x else r : = x {r ≥ 0}
Conditional Rule(4,8)

Figure 3.10: Proof of program in Hoare logic.

postcondition, although in this case we just keep it the same. Lines 5 to 8

follow the same pattern as line 1 to 4, but for the else case of the if statement.

3.2.3 Assessment

There are a number of well known problems associated with reasoning about

programs using an axiomatic semantics. This section covers some of these

issues, along with work to overcome the problems.

A known problem with Hoare logic is when a location in memory is

pointed to by two variables. If the value of one of the variables is modi-

fied by an assign statement, then the value of the other variable will also be

updated since they point to the same location, which may be unexpected.

This is known as aliasing.

The example program below is used to illustrate this, and consists of a

single assignment statement, assigning a value to an array location.

{a[j ] = 2} a[i ]: = 5 {a[i ] = 5 ∧ a[j ] = 2}

Where the assignment axiom does not work for this program is when the

values of i and j are equal, meaning the expressions a[i ] and a[j ] point to the
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same array location. The postcondition of the program will not hold after

execution since the value pointed to by a[j ] had been changed.

Since the postcondition will only hold in the cases where i and j are not

equal, this needs to be added as an extra condition to the precondition.

In Hoare logic, preconditions and postconditions are predicates over only

one state (initial or final state). The precondition makes assertions about

the values of program variables in the initial state before execution. The

postcondition makes assertions about the values of program variables in the

final state after execution, and usually cannot refer to the original value

(before execution) of a variable. For example, the following program swaps

the values of the variables x and y .

r := x ; x := y ; y := r

For the postcondition of this program, we want to be able to say that

values of x and y have been swapped. This would give a post condition that

looks something like this

(old)x = (new)y ∧ (old)y = (new)x

This is not possible in traditional Hoare logic, since in the postcondition

we only have access to the final value of the variables. One solution for this

problem is the use of logical variables that are only used in the assertions

about a program, and not in the program itself. Their only purpose is to

remember the initial values of variables, and their values will not change

during execution since they are not used in the program [NN07]. For this

example, using logical variables would give

{x = n ∧ y = m} r := x ; x := y ; y := r {x = m ∧ y = n}

In VDM, postconditions are assertions over two states (initial and final),

so in the postcondition we are able to access the values of variables in the

initial state. For the above program, this gives
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{true} r := x ; x := y ; y := r {x = ↼−y ∧ y = ↼−x }

where ↼−x and ↼−y refer to the values of x and y in the initial state.

Since a precondition is a predicate of one state and a postcondition is a

predicate of two states, a postcondition of one statement cannot serve as a

precondition to the next statement, making a rule for sequential composition

more complicated. In fact, using postconditions of two states made a set of

proof rules which “were clumsy in comparison to those in [Hoa69]” [Jon03b].

We are unable to use Hoare logic to reason about concurrent programs,

since the logic would no longer be compositional [dRdBH+01]. The difficulty

with concurrent programs comes when parallel threads interfere with each

other, as it is difficult to know how the interference will affect an execut-

ing thread. In the below program consisting of two assignment statements

executed in parallel, we cannot determine what the value of x will be after

execution.

{x = 1} x : = x + 1 || x : = 5 {x = ?}

We can tell by inspection that the value of x after execution will either be

2, 5 or 6, depending on the granularity of the concurrency, and on how parallel

threads interact. For the above example we could write a postcondition such

as x ∈ {2, 5, 6}, but for other programs it might not be possible or desirable

to work out how the parallel threads interact. It is difficult to formalise this

in Hoare logic since we only reason about the initial and final states of a

program. To be able to reason about the interactions of concurrent threads

we also need to reason about intermediate states during execution.

In [Owi75], the interference freedom test is introduced which uses as-

sertions at intermediate points to reason about the interference of parallel

threads. If the execution of each thread preserves the assertions, then we can

reason about the program as a whole.

Another approach is the use of rely/guarantee conditions to make asser-

tions about interference [Jon81, Jon83]. As well as pre and postconditions,

a process is annotated by rely and guarantee conditions, as shown below.
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{P ,R} C {G ,Q}

The rely condition R records what assumptions can be made about in-

terference from other processes. The guarantee condition G states what in-

terference will be generated by the process [Jon03a]. So, in a state in which

the precondition holds, and if the interference from other processes meets the

rely condition R, then the execution of C will result in a final state in which

the postcondition Q holds, and any interference caused by C will respect the

guarantee condition G .

As mentioned earlier, Hoare logic traditionally deals only with partial

correctness, meaning the assertions we make about a program will only hold

if the program terminates. We refer to such assertions as partial correctness

properties [NN07]. A total correctness property is an assertion that states

that a program will terminate and some property will hold after termination.

It is possible to extend the Hoare axioms and rule to include total cor-

rectness, as shown in [NN07]. The Hoare triple is modified to give

{P} S {⇓ Q}

which states that if S is executed in a state where the precondition P holds,

then S is guaranteed to terminate, and Q will hold in the final state after

execution.

The while rule is modified to include a variant function which states that

the loop is well-founded and that it will terminate after a finite number of

iterations.

3.2.4 Programming Languages and Axiomatic Seman-

tics

There have been several attempts to give an axiomatic semantics for an

imperative programming language. Most attempts required certain features

to be restricted or removed from a language, and so were only able to give an

axiomatic semantic definition for a subset of the language. One early attempt
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was to give an axiomatic definition for Pascal [HW73], which defined axioms

and inference rules for most of the language except for features such as real

arithmetic and goto statements, and also did not allow side effects in the

evaluation of functions and the execution of statements.

The only complete language with an axiomatic semantics is the Turing

language [HMRC88]. Certain syntactic restrictions are imposed on the lan-

guage such as preventing aliasing of variables and eliminating side effects in

expressions. Also, the language definition does not include concurrency and

error handling.

3.3 Denotational Semantics

Denotational semantics is an approach to defining the meaning of a program-

ming language by giving it mathematical meaning and describing the effect

of execution, in terms of an association between initial and final states. The

denotational semantics of a language is defined by associating an appropri-

ate mathematical object with each syntactic construct of a language [NN07].

The mathematical object is called the denotation of the syntactic construct.

A “semantic valuation function” maps syntactic constructs in a language to

the abstract values which they denote. Semantic valuation functions are usu-

ally defined compositionally, so that composite terms are defined in terms of

the denotations of their sub-terms [Sto77].

Since execution of a program is described in terms of the effect it has,

rather than how it is executed, a language description will include a state

definition that relates variables names to values [BJ82]. For example,

σ: Id → Value

We can now define the denotations of program statements as a partial

function from state to state.

M : st → (Σ→ Σ)
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One of the main difficulties of denotational semantics is finding suitable

mathematical objects as denotations. For example, a looping statement re-

quires a fixed point that always exists and is unique [BJ82].

For simple language descriptions, a denotational and operational seman-

tics would be very similar, and proving properties about programs in a sim-

ple language should be quite straightforward using a denotational semantics.

The reason for not wanting to use denotational semantics to reason about

programs is the more complex mathematics that is required for certain lan-

guage features. For example, defining the passing of procedures requires do-

main theory [Sto77], and concurrency in a language requires power domains

[Plo76]. While this additional mathematics might be required to prove prop-

erties of a language itself, it is not necessary for most proofs that programs

written in the language satisfy their specifications.

We therefore choose to use operational semantics, which we describe be-

low.

3.4 Operational Semantics

Operational semantics was one of the earliest approaches to defining the

semantics of programming languages [Jon03c]. It is focused on the behaviour

of a program and defines the transitions that can be made by a program,

from an initial state to a final state. McCarthy introduced the idea of an

“abstract interpreter” which used a recursive function that takes a program

and starting state and returns (if possible) a final state [McC66]. One of the

difficulties with this approach is that the definitions tended to have too much

information in the state, resulting in a “grand state” which causes difficulties

in deducing properties about a language definition [BJ82, Jon03c].

Plotkin’s Århus notes [Plo81] introduce the inference rule style of present-

ing the operational semantics of a language. Structural operational semantics

still describes the semantics of a programming language in terms of ‘execu-

tion’ on an abstract machine, but avoids complexity in the configurations
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by the use of rules [Plo04]. The choice of which rule to apply to a program

abstracted away to the meta-level [Jon03c], making the choice implicit rather

than explicit in the semantic definition. This approach to defining semantics

also allows non-determinacy to be conveniently added to a language descrip-

tion, as discussed in Section 3.4.7.

This section covers the operational approach to defining language se-

mantics, and introduces operational semantics for the Base language. Sec-

tion 3.4.4 shows how the operational semantics of a language can be used to

reason about a program, with the use of a simple example. Further examples

are found in Chapter 4.

3.4.1 Semantic Objects

Semantic objects are additional structures that are needed to describe the

dynamic behaviour of a language, and are used to model parts of the system

such as the memory store.

The essence of an imperative programming language is that a program

written in the language will change some ‘state’. The representation of the

memory store, or state, will vary between languages, and it is an important

part of the description of the language, since operational semantics describes

execution in terms of the effect a statement has on the state.

For most languages the state is normally some (possibly indirect) asso-

ciation of variable names and values. The simple sequential language under

discussion in this chapter has a state definition that is a direct mapping of

variable names to integer values.

Σ = Id
m−→ Z

A more complex state definition could be made by introducing a sec-

ondary mapping which we will call an environment. The environment maps

variable identifiers to pointers, or references, then the state maps references

to values.
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Env = Id
m−→ Ref

Σ = Ref
m−→ Value

This definition allows for the possibility of having two variable identifiers

mapping to the same Ref, meaning both variables point to the exact same

Value, and if the value of one of the variables was changed, then so would

the value of the other.

3.4.2 Operational Semantic Rules

Plotkin-style rules [Plo81] are used to define operational semantics. Each rule

describes the execution of language statements in terms of abstract states;

describing how an initial state is changed to a final state. Figure 3.11 shows

an example of a semantic rule that describes how to execute an If statement

when the test evaluates to true.

If-T

(test , σ)
e−→ true,

(th, σ)
s−→ σ′

(mk -If (test , th, el), σ)
s−→ σ′

Figure 3.11: If-True semantic rule.

The arrows in the rule are semantic transition relations, which are anno-

tated with letters to distinguish them, with the letters corresponding to the

labels in a labelled transition system. The
s−→ relation defines statement

transitions, relating a program statement and a state to another state. The
e−→ relation defines the evaluation of expressions, relating expressions and a

state to a value (see Section 3.4.3).

We can think of each semantic rule as having certain conditions that must

be met before the rule can be applied, with the conclusion line stating the

result of execution. It is useful to read semantic rules, starting from the bot-

tom left, in a clockwise direction [Plo04]. So looking at Figure 3.11, starting

from the bottom left we can see that this rule applies to If statements. Then
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looking above the line, the rule has two conditions that need to be met before

the rule can be applied. Firstly the condition test must evaluate to true, then

the execution of the th part will result in some state σ′ (which might actually

be the same as σ). If these conditions are met, then the result of execution

in this case is a (possibly) modified state σ′. Exactly how the state might be

modified will depend on what is executed in the th part of the statement.

If we define one or more semantic rule that can be applied to the same

statement under the same conditions, but have different effects on the state,

then we cannot say for certain which rule will be applied in the execution

of the statement, since the choice of which rule to apply is implicit in the

semantic definition and is abstracted away to the meta-level [Jon03c]. This

makes the execution of the statement non-deterministic since we can not

know before execution which rule will be used in the execution of the state-

ment. For example, the If statement has two semantic rules, one for each

of the possible values of the statement’s condition. There will never be a

state in which both rules may be applied, since the condition will evaluate

to either true or false. We could introduce a new semantic rule for the If

statement that ignored the value of the If statement and always executed

the th part. If the condition of the If statement evaluates to false, then we

cannot say for certain which part of the If statement will be executed, since

we have two rules that may apply.

Introducing non-determinism into a language description can be useful

for statements such as the Guarded Do (see Section 4.3), or for modelling

concurrency (see Section 3.4.7).

The transition arrows can be viewed as infix relations, with the type of

the s arrow being defined as below.

s−→:P ((Stmt × Σ)× Σ)

The
s−→ transition arrow defines a relation between a configuration and

a state, where a configuration is a statement and a state. This definition
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for statement execution allows us to relate a program statement and all of

its possible starting states, to all of its possible final states. This allows us

to introduce non-determinism into our semantic definitions which is required

for describing concurrency in a language. It is however just as useful to use

such relations when defining sequential languages.

Figure 3.12 gives the full semantics for the statements of the Base lan-

guage. This language will be used in examples later in this chapter. A full

language description of Base is given in Appendix B.

3.4.3 Operational Semantics for Expressions

Discussion so far has been restricted to semantics for statements, but the

semantics of a language must also include a description of expression eval-

uation. As with the semantics for statements, the semantics for expression

evaluation is defined using Plotkin rules.

The abstract syntax for the expressions of the simple sequential language

is given in Figure 3.13.

As mentioned above, an expression and a state is related to a value by

a semantic transition relation. The definition for the relation used in the

example sequential language is given below.

e−→:P ((Expr × Σ)× Expr)

Variable names are of type Id , which is a subtype of Expr , so that vari-

able names can be used in expressions. A simple example of an expression

semantic rule is a rule for looking up the value of a variable, shown in Fig-

ure 3.14. The rule states that if we have an expression that is of type Id , then

it is evaluated by looking up its value in the state, so the value returned is

whatever value id maps to in the state σ. We know that id exists in the state

because the context conditions make sure that variables used in expressions

are declared (and so will be in the state).

In the language we have a RelExpr type, which is a relational expression,
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If-T

(test , σ)
e−→ true

(th, σ)
s−→ σ′

(mk -If (test , th, el), σ)
s−→ σ′

If-F

(test , σ)
e−→ false

(el , σ)
s−→ σ′

(mk -If (test , th, el), σ)
s−→ σ′

Assign
(rhs , σ)

e−→ v

(mk -Assign(lhs , rhs), σ)
s−→ σ † {lhs 7→ v}

Seq

(sl , σ)
s−→ σ′

(sr , σ′)
s−→ σ′′

(mk -Seq(sl , sr), σ)
s−→ σ′′

While-T

(test , σ)
e−→ true

(body , σ)
s−→ σ′

(mk -While(test , body), σ′)
s−→ σ′′

(mk -While(test , body), σ)
s−→ σ′′

While-F
(test , σ)

e−→ false

(mk -While(test , body), σ)
s−→ σ

Figure 3.12: Semantic rules for the Base language.

that is used to compare two expressions using some operator such as =, >,<

etc. Figure 3.15 shows the semantic rule for a RelExpr that uses the Equals

relation, which checks two expressions for equality.

The rule, first of all, evaluates the two expressions in the state σ to obtain

two values, v1 and v2. The result of evaluating the RelExpr then becomes

the result of comparing the two values v1 and v2 for equality.

Notice that in these example expression semantics the state is not modi-
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Expr = Id | Value | ArithExpr | RelExpr | UnaryExpr

Value = N

ArithExpr :: opd1 : Expr
op : Plus |Minus

opd2 : Expr

RelExpr :: opd1 : Expr
op : Equals | NotEquals | LT

opd2 : Expr

UnaryExpr :: opd : Expr
op : Minus

Figure 3.13: Abstract syntax for Expressions.

Id
id ∈ Id

(id , σ)
e−→ σ(id)

Figure 3.14: Semantic rule for Id .

Rel-Equals

(e1, σ)
e−→ v1

(e2, σ)
e−→ v2

(mk -RelExpr(e1,Equals, e2), σ)
e−→ v1 = v2

Figure 3.15: Semantic rule for an Equality relation.

fied, so there are no side effects to expression evaluation. There is no possible

way to modify the state with the above definition of
e−→. The expression

semantic rules can only access the state to look up variables.

We could of course define an expression semantics that allows side effects

by writing a different definition of the expression transition relation (which

we will label e ′) so that it can return a (possibly modified) state. An example

of a definition that would allow for side effects is as follows.
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e′
−→:P ((Expr × Σ)× (Expr × Σ))

Adding side effects to expression evaluation is necessary if we want to

be able to add procedure calls to an expression. The language definitions

used in this thesis only use simple expression semantics that don’t have side

effects.

3.4.4 Operational Semantics and Proofs

When writing a proof about a program, the purpose is to show that the pro-

gram meets its specification. As explained at the beginning of this chapter,

the operational semantic definition of a language defines the behaviour of the

language by defining the transitions that can be made by a program, and its

effect on an abstract state. Given a program, we can use the semantics of

the language to show that execution of the program in an initial state will

result in a final state in which the required property holds.

We see the semantic rules as being used in a proof in the same way

inference rules are used (see Section 2.3), to justify lines of the proof. By

applying the semantic rules to a program in a proof, we are stepping through

execution and showing how the initial state is changed by execution to give

us a final state. It should then be possible to show that the required property

holds in the final state.

As an example of using semantic rules in a proof we will use the same

program used in Section 3.2.2. This program consists of a single If statement

and simply takes the absolute value of x and stores it in the variable r . The

program is also surrounded by a precondition and post condition.

{true} if x < 0 then r : = −x else r : = x {r ≥ 0}

We continue to use the Base language for this example and for the proof

we will re-write the program in an abstract syntax.

{true} mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )) {r ≥ 0}
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The proof of the program is given in Figure 3.16 to show that the execu-

tion of the program in a state that satisfies the precondition will result in a

state that satisfies the postcondition.

In this example program and in the proof, expressions are written using

a concrete syntax rather than the abstract syntax, to make them easier to

read. For example, an expression written as x < 0 should actually be written

as mk -RelExpr(x , <, 0).

Since the value in r after execution should be the absolute value of x ,

then it should be greater than or equal to zero. The proof should show that

after the program has finished executing, the value of r in the final state will

be greater than or equal to zero.

From our definition of the language we know that the condition on the If

statement is a boolean expression that will evaluate to either true or false.

The result of the evaluated condition determines which branch of the If

statement is executed, which is determined by the value of x . We need to

show that whichever branch of the If statement is executed, our property

will still hold. Lines 3 and 4 of the proof are subproofs that show that the

proof holds for the cases where the condition on the If statement evaluates

to true and false respectively.

Semantic rules are used in the proof in the same way we would use an

inference rule, to justify lines in the proof. Line 3.3 is justified by application

of the Assign semantic rule. To use a semantic rule as a justification the

line of the proof must match the conclusion line of the semantic rule. The

line number given as a parameter to the justification refers to the line that

matches against the ‘hypothesis’ of the Assign rule. The semantic rules used

in this proof can be found in Figure 3.12 and in Appendix B, which gives the

whole language definition.

The proof doesn’t just use semantic rules for the justifications, it also uses

inference rules. Many of the inference rules used in this proof are given in

Appendix B, except for the or elimination and other rules of propositional

logic, which are found in Appendix A.
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from (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0) s−→ σf ,
x : Id , r : Id

1. x < 0 ∈ B
2. (x < 0, σ0) e−→ true ∨ (x < 0, σ0) e−→ false
3. from (x < 0, σ0) e−→ true
3.1 (x , σ0) e−→ σ0(x ) Id(h2)
3.2 (−x , σ0) e−→ −σ0(x ) UnaryExpr(3.1)
3.3 (mk -Assign(r ,−x ), σ0) s−→

σ0 † {r 7→ −σ0(x )} Assign(3.2)
3.4 (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0)

s−→ σ0 † {r 7→ −σ0(x )} if-T(3.h1, 3.3)
3.5 σf = σ0 † {r 7→ −σ0(x )} σ-Equiv(h1, 3.4)
3.6 σf (x ) = −σ0(x ) †-Equiv(3.5)
3.7 −σf (x ) = σ0(x )
3.8 σ0(x ) < 0 LT-T(3.h1)
3.9 −σf (x ) < 0

infer σf (r) ≥ 0
4. from (x < 0, σ0) e−→ false
4.1 (x , σ0) e−→ σ0(x ) Id
4.2 (mk -Assign(r , x ), σ0) s−→ σ0 † {r 7→ σ0(x )} Assign(4.1)
4.3 (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0)

s−→ σ0 † {r 7→ σ0(x )} if-F(4.h1, 4.2)
4.4 σf = σ0 † {r 7→ σ0(x )} σ-Equiv(h1, 4.3)
4.5 σf (r) = σ0(x ) †-Equiv(4.5)
4.6 σ0(x ) ≥ 0 LT-F(4.h1)

infer σf (r) ≥ 0 =-sub-left(4.5, 4.6)
infer σf (r) ≥ 0 ∨-E(2, 3, 4)

Figure 3.16: Proof of Absolute Value program.

3.4.5 Big Step, Small Step

When specifying an operational semantics it is possible to define the size

of the steps [Plo81] made by the semantic rules. We generally refer to an

operational semantic definition as being a big step or a small step semantics.

Plotkin’s work on Structural Operational semantics uses a small step

semantics [Plo04]. Kahn uses a big step semantics in [Kah87], which he calls

‘Natural Semantics’.

A big step means that the execution of a program statement will be de-

fined in a single semantic rule. For example, the semantic rule in Figure 3.11
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is an example of a semantic rule in a big step semantics and shows the exe-

cution of an If statement (in the case where the condition evaluates to true)

in a single step, taking the program text and an initial state to a final state.

With a small step semantics, the size of the steps made by the semantic

rules are smaller. A single semantic rule will generally only define a partial

execution of a program statement, so it won’t define the transition from an

initial state to a final state, but will define the transition to some intermediate

state. The transition relation for a small step semantics can be defined so that

it takes a program and an initial state and takes that to a modified program

text and a (possibly) modified state, as shown below. This transition relation

is labelled s ′, to distinguish it from the statement transition relation used for

the big step semantics earlier in the chapter.

s′
−→:P ((Stmt × Σ)× (Stmt × Σ))

The Base language used in this chapter has a big step semantics. To

illustrate the differences between big and small step semantics, we will look

at the semantics of the Assign and If statements in the Base language and

compare them to small step semantics of equivalent statements.

Figure 3.17 shows the semantic rule for Assign statement in the Base

language. The assignment statement is executed in a single step, giving a

final state. The execution of an assignment statement basically consists of

two tasks; 1) evaluate the expression, 2) assign value to variable. To define

assignment in a small step semantics these two tasks could be used as the

basis of the rules.

Assign
(e, σ)

e−→ v

(mk -Assign(id , e), σ)
s−→ σ † {id 7→ v}

Figure 3.17: Assign Statement - big step rule.

Figure 3.18 shows the how the semantics for assignment statement would
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be defined in a language with a small step semantics. In this definition the

semantics of Assign is separated into two rules; one rule for each of the tasks

described above.

The Assign-E rule in Figure 3.18 uses a nil statement to show that execu-

tion of the assignment statement is complete. The nil statement is also used

in the Parallel language (Appendix D) which has a small step semantics.

Assign-Eval

(e, σ)
e−→ e ′

(mk -Assign(id , e), σ)
s′
−→ (mk -Assign(id , e ′), σ)

Assign-E

n: Z
(mk -Assign(id , n), σ)

s′
−→ (nil, σ † {id 7→ n})

Figure 3.18: Assign Statement - Small step rules.

The first rule, Assign-Eval, evaluates the expression part of the assign

statement and returns a modified assignment statement where the expres-

sion part is replaced by the result of evaluation. Notice that if the expression

evaluation rules are also small step then the expression might only be par-

tially evaluated, meaning the Assign-Eval rule might be applied several times

before the expression is evaluated resulting in an actual value. Once the

expression has been evaluated to an integer4 then the Assign-E rule can be

applied to the assignment statement. This rule modifies the state, updating

the value of the variable id . Since this is the last step in the execution of the

assignment statement, the rule results in a nil statement, to show that there

is nothing left to execute.

Looking again at Figure 3.11 we can see that the execution of an If

statement in the Base language consists of two parts; the evaluation of the

condition, and the execution of the th or el parts. We could write our se-

mantics in such a way that a rule only does one thing at a time, giving us a

small step semantics.

4This language only allows integer variables
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If-Eval

(test , σ)
e−→ test ′

(mk -If (test , th, el), σ)
s′
−→ ((mk -If (test ′, th, el), σ)

If-T
(mk -If (true, th, el), σ)

s′
−→ (th, σ)

If-F
(mk -If (false, th, el), σ)

s′
−→ (el , σ)

Figure 3.19: Semantic rules for If in a small step.

Figure 3.19 shows the semantics for an If statement in a small step. The

evaluation of the condition may take a few applications of the If -Eval rule

(depending on how the expression semantics are defined) so we say that the

If statement will have a potentially modified test . Once the condition has

been replaced with a boolean value one of the other rules can then be applied.

Unlike the big step semantic rules, these rules do not actually execute the

then or else parts of the If statement, but only decide which part should be

executed. Both the If-T and If-F rules remove the If statement and leave the

th or el part to be executed.

The examples in Chapter 4 use languages that have large step semantics as

well as languages that have small step semantics, showing semantic descrip-

tions of either size step can be used to reason about programs. Section 3.4.7

explains that a small step semantics is necessary to describe concurrent lan-

guages, so being able to reason about programs using a small step semantics

is necessary for reasoning about concurrent programs.

3.4.6 Termination

We can see from the definition of the Base language that there is the potential

for writing non-terminating programs. The program while true do x : = x+1,

is a valid program in the simple sequential language used in this chapter, but
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it is not a desirable program to write since it will never reach a state in which

it can terminate.

From the semantics of the language in Figure 3.12, we can see that the

only place in the language where we have the potential for non-terminating

programs is in the While statement, due to the recursive call in the hypothe-

ses of the While-T semantic rule.

Potentially the context condition for the While statement could be mod-

ified to try to eliminate non-terminating programs. For example, we could

state that the condition on the While statement cannot be true. A more com-

plex condition could be added that states that any variables in the condition

of the While statement must appear on the left-hand side of an Assign state-

ment in the body of the While statement. This condition however, would

not be able to remove all non-terminating programs, and might also disallow

valid terminating While statements.

If we are going to reason about a program containing a While statement

in this language, then we need to be able to show that it will terminate.

Once we can show that the program terminates, we can then talk about the

state in which it will terminate.

3.4.7 Concurrency and Non-Determinism

In Section 3.4.2 we mentioned that using transition relations when defining

the semantics of a language allowed us to introduce non-determinism into

the language. This is useful because we need to use non-determinism in a

semantic definition to model concurrency. If a program has multiple threads

that are being executed concurrently, then the execution of these threads will

be interleaved in such a way that cannot be determined prior to execution,

and may be different each time they are executed.

Non-determinism is introduced into a language semantics by writing rules

such that two or more rules may be applied to a given configuration. The

choice of which rule to apply is not defined by the semantics, but is abstracted

away to the meta-level [Jon03c].
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A simple way to add concurrency to a language definition is to add a

parallel statement. The parallel statement used here as an example is taken

from the Parallel language which is a simple concurrent language, the defi-

nition of which is given in full in Appendix D. Section 4.4 gives an example

of reasoning about a parallel program using this language definition.

The parallel statement has a left and a right statement which are to be

executed concurrently. The definition of the parallel statement is given below.

Par :: left : Stmt
right : Stmt

The semantics of the Par statement is given in Figure 3.20. The non-

determinism comes in the definitions of the Par -L and Par -R semantic rules

which can both be applied to a parallel statement. The Par -L rule executes

the left statement, and the Par -R rule executes the right statement. The

rule Par -E is known as the parallel elimination rule, and is executed when

both the left and right statements have finished executing. It simply returns

a nil statement to indicate that the Par statement has completed execution.

Par-L

(left , σ)
s′
−→ (left ′, σ′)

(mk -Par(left , right), σ)
s′
−→ (mk -Par(left ′, right), σ′)

Par-R

(right , σ)
s′
−→ (right ′, σ′)

(mk -Par(left , right), σ)
s′
−→ (mk -Par(left , right ′), σ′)

Par-E
(mk -Par(nil,nil), σ)

s′
−→ (nil, σ)

Figure 3.20: Semantic rules for Parallel Statement.

Although the abstract syntax definition for the parallel statement only

has a single left and right Stmt , we can add multiple Stmts by using the Seq
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statement, which executes statements sequentially. This will allow us to have

two threads of execution, each sequentially executing multiple statements.

If we look at the semantic rules for the parallel statement in more detail,

we see that the left and the right side are not executed truly concurrently, but

each statement is executed one ‘piece’ at a time, with the execution of theses

pieces of both statements being interleaved in a non-deterministic way. We

refer to these ‘pieces’ as atomic actions, and the size of these atomic actions

is determined by the size of the steps in the semantic definition.

When we are dealing with a big step semantics we only have access to ini-

tial and final states. Using a small step semantics gives access to intermediate

states during execution, allowing us to model interference from concurrent

threads. For example, during the execution of an assign statement the value

of a variable may have been changed by another thread between the expres-

sion being evaluated and the result being stored, causing unexpected results.

Being able to access these intermediate states allows us to reason about such

interference of concurrent threads of execution.

Section 4.4 works through a proof of a parallel program that consists

of two parallel threads that search through an array, one working from the

start, and the other from the end of the array, and both working towards the

centre.

In [Col08, CJ07] a small step semantics is used to define a language that

allows for fine-grained concurrency, which is used to reason about interference

in concurrent programs.

3.5 Summary

This chapter started by explaining the use of abstract syntax and context

conditions in describing programming languages, and then moved on to the

main topic of the chapter, semantics of programming languages. As a back-

ground to the work of this thesis, the chapter has covered the three main

approaches of defining semantics for programming languages – axiomatic,
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denotational and operational semantics – with a focus on operational seman-

tics.

The section on operational semantics introduced an approach to reasoning

about a computer program using the operational semantics of the program-

ming language that it is written in. Chapter 4 gives more examples of using

operational semantic rules in proofs of a program, and subsequent chapters

argue that this method becomes more useful with appropriate tool support.



Chapter 4

Examples

This chapter presents examples of using operational semantics to reason

about a program, starting with a simple example and then moving on to

more complicated examples. Each example specifies a program with a pre-

condition and a postcondition, and gives a proof of the program using the

semantics of the language that the program is written in.

The examples in this chapter make use of two languages – Simple and

Parallel– each with different features to allow a good range of examples, and

both languages kept relatively simple so that the examples are not affected by

complex language details. It is worth explaining the features of the language

here before moving into the examples. The definitions of these languages

are not given in this chapter, but full language definitions are given in the

appendices.

The first language used in this chapter is the Simple language which

is a sequential languages based on the Base language introduced in Chap-

ter 3, with the addition of the Swap and Guarded Do statements and one-

dimensional arrays. The Swap statement swaps the values of two variables,

without needing to use an intermediate variable. The Guarded Do statement

is a looping statement that can have multiple guards, each with an attached

statement. For each execution of the loop a statement whose guard evalu-

ates to true will be non-deterministically selected and executed. The loop

59
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terminates when all guards evaluate to false. The language also contains the

standard statements such as Assign, If , and While. Statements are sequen-

tially composed using the Seq statement, which consists of a left and a right

statement. Seq statements can also be nested inside other Seq statements.

The assignment statement can be used to assign values to array locations

as well as to variables, and array locations can be used in expressions. The

state definition maps variable identifiers to an integer value or an array value.

The full language definition can be found in Appendix C.

Parallel is a simple concurrent language that provides concurrency though

a parallel statement that consists of two statements that are executed in

parallel. To allow concurrency and interference of concurrent threads to be

modelled, the language semantics are defined using a small-step, so that a

statement is not executed in a single step but in a series of small steps1.

The language also includes Assign, If , While, Swap and Seq statements

as well as one-dimensional arrays. To prevent interference from concurrent

threads during the evaluation of an expression and the storing of the result,

the Assign statement is defined using a big-step semantics so assignment is

atomic.

The Parallel language also contains a nil statement which shows that

a statement has completed execution. The execution of a statement in a

small-step semantics is done over a number of steps, each step resulting in

a slightly modified program text and a potentially modified state. When

the statement has finished executing it ends in a nil statement and a state.

Statements that contain nested statements, such as the If and Seq statements

do not result in a nil statement, but instead modify the program text so that

it consists of one of the nested statements. In the case of a Seq statement,

once the left statement results in a nil statement, the Seq-E rule removes

the Seq statement resulting in the program text consisting of just the right

statement.

1See Section 3.4.5 for more detail on big-step and small-step semantics.
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4.1 Variable Swap

For the first example the Simple language is used, as defined in Appendix C.

The example is of a program that swaps the values of the variables x and y ,

using the variable r as a temporary variable, working on the assumption that

all three variables have been declared previously. For this example it is also

important that the three variables are distinct variables, and not aliases of

the same variable. We know that the variables are distinct since the definition

of the language does not allow variable aliasing, since the state is modelled

as a mapping of Id to Value.

We would like to show that after execution of the program has completed,

the value of x is equal to the old value (before execution) of y , and the value

of y is equal to the old value of x . The precondition of the program is simply

true, since there are no restrictions on the values of the variables before

execution.

{true} r := x ; x := y ; y := r {x = ↼−y ∧ y = ↼−x }

In the postcondition we have access to the original values of variables from

the precondition since our postconditions are predicates over two states.

The program is written here in a concrete syntax to make it easier to

read, but the proof will only use abstract syntax.

Figure 4.1 shows the proof of the program. The first hypothesis of the

proof states that the program executed in an initial state, σ0, will result in

a final state, σf . The goal of the proof is to show that the postcondition of

the program will hold in this final state. The other hypotheses state that x ,

y and z are all of type Id , and are needed to use the Id semantic rule as a

justification. The type Id is a subtype of Expr . Expressions are evaluated

for a given state using the
e−→ relation. Evaluating an expression that is an

id consists of looking up the id in the state, to get its value. The Id semantic

rule has the condition that an Expr is of type Id so that the rule cannot be

applied to other Expr subtypes.
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We know that the variable will have been declared and therefore exist in

the state because of the context condition of the Assign statement.

Blank lines have been added to the proof to make it more readable, sep-

arating the proof into distinct parts. The most convenient way to read the

proof is to start at line 8, the line containing the whole program. This line

states that the execution of the program will result in a final state that is

the initial state, with updated values for certain variables. The lines above

(1-7) show how this updated state is reached, the lines below show how this

updated state is related to the final state and the proof goal.

from (mk -Seq(mk -Assign(r , x ),
mk -Seq(mk -Assign(x , y),mk -Assign(y , r))), σ0) s−→ σf ,

x : Id , y : Id , r : Id
1 (x , σ0) e−→ σ0(x ) Id(h2)
2 (mk -Assign(r , x ), σ0) s−→ σ0 † {r 7→ σ0(x )} Assign(1)

3 (y , σ0 † {r 7→ σ0(x )}) e−→ σ0(y) Id(h3)
4 (mk -Assign(x , y), σ0 † {r 7→ σ0(x )}) s−→

σ0 † {r 7→ σ0(x ), x 7→ σ0(y)} Assign(3)

5 (r , σ0 † {r 7→ σ0(x ), x 7→ σ0(y)}) e−→ σ0(x ) Id(h4)
6 (mk -Assign(y , r), σ0 † {r 7→ σ0(x ), x 7→ σ0(y)}) s−→

σ0 † {r 7→ σ0(x ), x 7→ σ0(y), y 7→ σ0(x )} Assign(5)

7 (mk -Seq(mk -Assign(x , y),mk -Assign(y , r)),
σ0 † {r 7→ σ0(x )} s−→
σ0 † {r 7→ σ0(x ), x 7→ σ0(y), y 7→ σ0(x )} Seq(4,6)

8 (mk -Seq(mk -Assign(r , x ),
mk -Seq(mk -Assign(x , y),mk -Assign(y , r))), σ0) s−→
σ0 † {r 7→ σ0(x ), x 7→ σ0(y), y 7→ σ0(x )} Seq(2,7)

9 σf = σ0 † {r 7→ σ0(x ), x 7→ σ0(y), y 7→ σ0(x )} σ-Equiv(h1, 8)
10 σf (x ) = σ0(y) †-Equiv(9)
11 σf (y) = σ0(x ) †-Equiv(9)

infer σf (x ) = σ0(y) ∧ σf (y) = σ0(x ) ∧-I(10,11)

Figure 4.1: Proof of Variable Swap program.

To write the proof we start with line 8, which states that the execution of

the whole program in σ0 will result in a new state that we called σ1 to start
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with. We than apply semantic rules to the program and work backwards to

where the state is updated so that we can see how the initial state is changed

to give us our initial state. The state σ1 is then replaced by updated state

in line 8.

We start with the outermost rule, since that will match against the conclu-

sion of the semantic rule. So we apply the Seq semantic rule as a justification

to line 8. From the semantic rule we can see that there are two parts to the

Seq statement that need evaluating, a left and a right statement, so we add

these statements as lines 2 and 7. Line 2 consists of an Assign statement

so we apply the Assign semantic rule as a justification. Line 2 gives us an

updated initial state which becomes the initial state for the execution of the

statement on line 7.

Once we have filled out the proof backwards from line 8, we know exactly

how the initial state is updated to reach a final state after the execution of

the program. Line 9 shows that this final state is the same as the final state

we called σf in the hypotheses. The rest of the proof shows that our post

condition holds in the final state.

σ-Equiv

(s , σ)
s−→ σ′

(s , σ)
s−→ σ′′

σ′ = σ′′

†-Equiv
σ′ = σ † {x1 7→ v1, . . . , xn 7→ vn}
σ′(xi) = vi

Figure 4.2: Additional inference rule.

Figure 4.2 show two inference rules that we used in the above proof

(lines 9-11), and that are also used in other proofs in this chapter.
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4.1.1 Variable Swap (Version 2)

This example is a variation on the first example, but instead on using a

temporary variable and multiple assignments, the Swap statement, that is

part of the Simple language, is used. The Swap statement switches the values

of two variables without the need for a temporary variable.

{true} mk -Swap(x , y) {x = ↼−y ∧ y = ↼−x }

The abstract syntax for Swap, shown below, consists of the Ids of the two

variables whose values are to be swapped.

Swap :: lhs : Id
rhs : Id

The context condition for the Swap statement states that both of the Ids

should be declared variables. The variable tpm is a mapping of all declared

variables to their declared types. Context conditions are explained in detail

in Section 3.1.2.

wf -Stmt(mk -Swap(lhs , rhs), tpm) 4

lhs ∈ dom tpm ∧
rhs ∈ dom tpm

The semantic rule for the Swap statement is shown in Figure 4.3. When

executing a Swap statement, first the values of both variables are obtained

from the state, then both variables are updated with the swapped values at

the same time.

Swap

(lhs , σ)
e−→ v1

(rhs , σ)
e−→ v2

(mk -Swap(lhs , rhs), σ)
s−→ σ † {lhs 7→ v2, rhs 7→ v1}

Figure 4.3: Semantic rule for Swap.
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Figure 4.4 shows the proof of the program. The first hypothesis of the

proof is that the program will execute in an initial state, σ0, and result in a

final state σf . The goal of the proof is to show that in this final state, the

postcondition will hold, as stated by the conclusion line of the proof.

from (mk -Swap(x , y), σ0) s−→ σf , x : Id , y : Id
1 (x , σ0) e−→ σ0(x ) Id(h2)
2 (y , σ0) e−→ σ0(y) Id(h3)
3 (mk -Swap(x , y), σ0) s−→ σ0 † {x 7→ σ0(y), y 7→ σ0(x )} Swap(1,2)

4 σf = σ0 † {x 7→ σ0(y), y 7→ σ0(x )} σ-Equiv(h1, 3)
5 σf (x ) = σ0(y) †-Equiv(4)
6 σf (y) = σ0(x ) †-Equiv(4)

infer σf (x ) = σ0(y) ∧ σf (y) = σ0(x ) ∧-I(5, 6)

Figure 4.4: Proof of Variable Swap program.

The introduction of the Swap statement makes the variable swap program

simpler than it was in the first version, and also makes the proof of the

program simpler.

As with the proof in the first example, this proof consists of two parts.

First, we use the semantic rules to show how the initial state is updated to

give the final state after execution (lines 1-3). Second, we relate the final

state to the goal of the proof (lines 4 to conclusion). The addition to the

language semantics resulted in the first part of the proof being simpler and

shorter, but the second part (lines 4 to conclusion) are mostly the same as

the second part of the first proof (lines 9 to conclusion), since this part does

not use semantic rules as justifications.

4.1.2 Variable Swap (Version 3)

For this example we use the same program as in the second version, but this

time we modify the Swap semantic rule so that the hypotheses are combined

with the conclusion line (see Figure 4.5). We are able to do this since the

Swap statement takes two Ids, and the type of the domain of the state is
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Id , so we can lookup values in the state using the Ids specified by the Swap

statement. The context condition of the Swap statement require the Ids to

be declared variables, so we will not have a problem of an Id not existing in

the domain of the state.

Swap
(mk -Swap(lhs , rhs), σ)

s−→ σ † {lhs 7→ σ(rhs), rhs 7→ σ(lhs)}

Figure 4.5: Alternative semantic rule for Swap.

The proof of the program is shown in Figure 4.6 and is now shorter, since

less proof lines are required to use the Swap semantic rule as a justification.

from (mk -Swap(x , y), σ0) s−→ σf

1 (mk -Swap(x , y), σ0) s−→ σ0 † {x 7→ σ0(y), y 7→ σ0(x )} Swap

2 σf = σ0 † {x 7→ σ0(y), y 7→ σ0(x )} σ-Equiv(h1, 1)
3 σf (x ) = σ0(y) †-Equiv(2)
4 σf (y) = σ0(x ) †-Equiv(2)

infer σf (x ) = σ0(y) ∧ σf (y) = σ0(x ) ∧-I(3, 4)

Figure 4.6: Proof of Variable Swap program.

As with the previous versions, the proof consists of two parts, showing how

the program will reach a final state from the program and the initial state,

and then showing that the postcondition holds in the final state. Again, the

second part of the proof (lines 2 to conclusion) is the same as in the previous

proof examples.

4.2 Aliasing Example

This example makes use of the Simple language, as defined in Appendix C.

The example program is a single statement that assigns the value 5 to the i -

th element in the array. The precondition states that the j -th element of the

array equals 2 before execution. The post condition states that the value of
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the j -th element should still have the value 2 (i.e. should not have changed)

after execution, and that the value of the i -th element should be 5.

We assume that the variables i and j have been declared and have been

assigned a value before execution of this statement.

{a[j ] = 2} a[i ]: = 5 {a[i ] = 5 ∧ a[j ] = 2}

The difficulty with this program comes when the values of i and j are

equal, so that when looking up elements in the array, i and j point to the

same element, which means that after execution, the value of the j -th element

will have been changed, so that the postcondition does not hold.

To overcome this difficulty we need to add an extra condition to the

precondition that states that i and j cannot be equal, giving us a precondition

of {i 6= j ∧ a[j ] = 2}.
The proof of the program is shown in Figure 4.7. The proof first shows

that execution will update the i -th value of the array, then shows that the

j -th element of the array remains unchanged.

from i 6= j , σ0(a)(j ) = 2, σ0(i) ∈ dom σ0(a), σ0(j ) ∈ dom σ0(a), i : Id , j : Id ,
(mk -Assign(mk -ArrayRef (a, i), 5), σ0) s−→ σf

1 (i , σ0) e−→ σ0(i) Id(h3)
2 (5, σ0) e−→ 5
3 (mk -Assign(mk -ArrayRef (a, i), 5), σ0) s−→

σ0 † {a 7→ σ0(a) † {σ0(i) 7→ 5}} Assign-Array(1,h3, 2)
4 σf = σ0 † {a 7→ σ0(a) † {σ0(i) 7→ 5}} σ-Equiv(h7, 3)
5 σf (a) = σ0(a) † {σ0(i) 7→ 5} †-Equiv(4)
6 σf (a)(i) = 5 5
7 σf (a)(j ) = 2 h1, h2, 5

infer σf (a)(j ) = 2 ∧ σf (a)(i) = 5 ∧-I(7, 6)

Figure 4.7: Proof of array assign program.

The third and fourth hypotheses state that the values of the variables i

and j are in the bounds of the array indices. Hypotheses five and six tell us

the types of the variables i and j .
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4.2.1 Aliasing Example - Extended

The simple definition of an array in the Simple language allows for the pos-

sibility of variable aliasing when dealing with the elements of the array. This

problem was avoided by adding the precondition that the variables i and j

should not contain the same values.

If the language used a more complicated representation for the state and

array, then this extra condition would not be enough to avoid the problem

of variable aliasing.

The following changes to the definition of the array language means that

variable names now point to an abstract location, and that location points

to a value. This means that more than one variable can point to the same

location, and therefore the same value, and any change to one of the vari-

ables will also change the value of the other variables that point to the same

location.

Env = Id
m−→ Loc | ArrayLoc

Σ = Loc
m−→ Value

ArrayLoc = N m−→ Loc

A variable can either point to a location (Loc) or an array location

(ArrayLoc). Locations can be mapped to values, and array location can be

mapped to arrays. An array is represented by a mapping of natural numbers

to locations, and the locations will point to values.

With this representation for the state and arrays, it is possible for an array

element and a variable to have a shared location, and for two array elements

to have shared locations. The problem with this is that an update to one of

the elements of the array may also alter the value of another element. Below

is an array that has two elements pointing to the same location.

{1 7→ α1, 2 7→ α2, 3 7→ α1, 4 7→ α4}
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Here the symbol α represents a location (Loc), and a subscript distin-

guishes different locations. If we execute our program and i has the value of

1, and j has the value of 3, then after execution the value of the j -th element

will have changed meaning the postcondition does not hold, even though i

and j had different values before execution.

To overcome this potential problem we need to modify our definition of

an array so that multiple elements cannot point to the same locations.

This example again shows how changes to a language definition can have

an affect on how we reason about a program.

4.3 Guarded Do

This example program is written in the Simple language as defined in Ap-

pendix C, and makes use of the Guarded Do statement. The Guarded Do

statement is a looping statement whose body consists of a number of guarded

statements. The execution of a Guarded Do consists of evaluating all of the

guards, and then non-deterministically executing one of the statements whose

guard evaluated to true, and then looping back round, evaluating all of the

guards again and then again executing one of the statements whose guard

evaluated to true. The statement terminates when all of the guards evaluate

to false.

The abstract syntax and semantic for the Guarded Do statement is dis-

played in Figure 4.8.

The example program using the Guarded Do statement, shown below,

swaps the values of the variables x , y and z so that their values are ordered

in ascending numerical order, with the smallest value in x and the largest

value in z .

do
x > y → x , y := y , x
y > z → y , z := z , y

od
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GDo :: body : Clause∗

Clause :: b : Expr
s : Statement

GDo-F
∀i ∈ inds cs · (cs(i).b, σ)

e−→ false

(mk -GDo(cs), σ)
s−→ σ

GDo-T

i ∈ inds cs

(cs(i).b, σ)
e−→ true

(cs(i).s , σ)
s−→ σ′

(mk -GDo(cs), σ′)
s−→ σ′′

(mk -GDo(cs), σ)
s−→ σ′′

Figure 4.8: Semantic rules for Guarded Do statement.

The postcondition of the program is that the values of the variables x , y

and z are arranged in ascending order.

{x ≤ y ∧ y ≤ z}

The proof of the program is shown in Figure 4.9. There are basically two

parts to this proof (lines 2 and 3). First, the subproof on line 2 deals with the

case where all of the guards evaluate to false, so we use the GDo-F semantic

rule to show that the state execution results in no change to the state, so

the final state is the same as the initial state. We then show that the post

condition holds in the final state.

The second part of the proof is the subproof on line 3. This shows that in

the case where at least one of the guards evaluates to true, we will eventually

reach a state where the guards all evaluate to false and the program will

terminate.
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from (mk -GDo([“x > y → x , y : = y , x”, “y > z → y , z : = z , y”], σ0)
s−→ σf

x : Id , yId , z : Id
0 cs = [“x > y → x , y : = y , x”, “y > z → y , z : = z , y”] def’n
1 (∃i ∈ inds cs · (cs(i).b, σ0) e−→ true) ∨

¬ (∃i ∈ inds cs · (cs(i).b, σ0) e−→ true)
2 from ¬ (∃i ∈ inds cs · (cs(i).b, σ0) e−→ true)
2.1 ∀i ∈ inds cs · (cs(i).b, σ0) e−→ false) deM(h2)
2.2 (mk -GDo(cs), σ0) s−→ σ0 GDo-F(2.1)
2.3 σf = σ0 σ-Equiv(h1, 2.2)

2.4 (mk -RelExpr(x ,GT , y), σ0) e−→ false ∀-E-set(0, 2.1)
2.5 σ0(x ) ≤ σ0(y) GT-F(2.4)
2.6 σf (x ) ≤ σf (y) =-sub-left(2.3, 2.5)

2.7 (mk -RelExpr(y ,GT , z ), σ0) e−→ false ∀-E-set(0, 2.1)
2.8 σ0(y) ≤ σ0(z ) GT-F(2.7)
2.9 σf (y) ≤ σf (z ) =-sub-left(2.3, 2.8)

infer σf (x ) ≤ σf (y) ∧ σf (y) ≤ σf (z ) ∧-I(2.6, 2.9)
3 from ∃i ∈ inds cs · (cs(i).b, σ0) e−→ true
3.1 from i ∈ inds cs · (cs(i).b, σ0) e−→ true
3.2 (cs(i).s, σ0) s−→ σ1

3.3 from [[W ]](σ0, σ1)
3.3.2 from (mk -GDo(cs), σ1) s−→ σ2

infer (mk -GDo(cs), σ0) s−→ σ2

GDo-T(3.h1, 3.3.h1, 3.3.2.h1)
3.3.3 σf = σ2 σ-Equiv(h1, 3.3.2)

infer (σf (x ) ≤ σf (y)) ∧ (σf (y) ≤ σf (z )) W-Indn(3.3.2)
infer (σf (x ) ≤ σf (y)) ∧ (σf (y) ≤ σf (z ))

infer (σf (x ) ≤ σf (y)) ∧ (σf (y) ≤ σf (z )) ∃-E(h3, 3.1)
infer (σf (x ) ≤ σf (y)) ∧ (σf (y) ≤ σf (z )) ∨-E(1,2,3)

Figure 4.9: Proof of Guarded Do program.

4.4 Parallel Array Search

The final example program is a concurrent program written in the Parallel

language as defined in Appendix D. The example is a search program that

looks through an array for an element that has some specific property. The

search is made parallel by using two threads that start at each end of the
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array and work towards the centre. Once one of the threads has found an

appropriate element in the array, it is able to communicate with the other

thread by setting the value of the variable r to the index of the element.

Once a thread sets r away from zero, the other thread will stop searching,

and the program will terminate.

The program has a precondition that states that at least one of the ele-

ments of the array must have the value 5, allowing us to simplify the program.

We do not need extra conditions in the program to prevent it from searching

out of the bounds of the array, since the threads start at the bounds and

work towards the middle of the array. Even if the execution of the threads

occurs in such a way that one thread searches the whole array by itself, it

will always find an element with the value 5, and terminate before it has the

chance to search out of bounds.

The example program is given below in a concrete syntax, along with the

pre and post conditions.
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{∃k ∈ {1, . . . , a.length} · a(k) = 5}
r := 0 ;
i := 1 ;
j := a.length ;
(

while a(i) 6= 5 ∧ r = 0
i + + ;
if a(i) = 5 then

r : = i
)
‖
(

while a(j ) 6= 5 ∧ r = 0
j −− ;
if a(j ) = 5 then

r : = j
)
{a(r) = 5}

Concurrency in the language is provided by the Par statement that con-

tains a left and a right Stmt , which are executed in parallel. To allow for

a finer interleaving in the execution of the left and right statements, the

semantics of the language are defined using a small step.

Section 3.4.7 explains how concurrency could be added to a language by

using a parallel statement, using the Par statement from this language as an

example. It is worth here explaining a bit more about how this statement

works, before going through the proof of the program. The semantic rules

for the Par statement are shown in Figure 4.10.

We can see from the semantic rules of Par that we have separate rules

for executing the left and right statements, both of which can be applied to

a Par statement, and the choice of which rule to apply is non-deterministic.

Since we are using a small step semantics, execution of a step is done in a

number of small steps, rather than all at once. So in the case of the Par

statement, the left and right statements are executed a bit at a time, in

an undetermined order. It is entirely possible for the left statement to be
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Par-L
(sl , σ)

s−→ (sl ′, σ′)

(mk -Par(sl , sr), σ)
s−→ (mk -Par(sl ′, sr), σ′)

Par-R
(sr , σ)

s−→ (sr ′, σ′)

(mk -Par(sl , sr), σ)
s−→ (mk -Par(sl , sr ′), σ′)

Par-E
(mk -Par(nil,nil), σ)

s−→ (nil, σ)

Figure 4.10: Semantic rules for Par statement.

executed until it is finished, and then for the right statement to be executed,

without any interleaving or statements.

When a statement has finished executing, we end up with a nil statement.

A parallel statement has finished executing when both the left and the right

statements consist of nil statements.

In this language, assignment is atomic, meaning the evaluation and the

assignment of the result are done in the same step, so that there can be

no interference from another process between the steps, causing unexpected

values to be stored.

In the proof of this program, we use a function M that takes an expression

and a state and returns the value of that expression in the given state. By

using this function we are stating that all of the free variables used in the

expression are part of the state. This allows us to write M (x , σ) instead of

σ(x ), which might not improve the clarity of a small expression such as this,

but makes the precondition expression easier to read than

∃k ∈ {σm(1), . . . , σm(a.length)} · σm(a)(k) = 5

The proof of this program makes use of several lemmas, which are worth

discussing before looking at the proof of the whole program. For convenience

when discussing the program, the left and right statements of the parallel
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statement are referred to as g and d respectively. We would have used l and

r for left and right statements, but we wanted to avoid confusion between r

meaning the right statement, and r meaning the variable identifier.

The precondition of the program states that there exists at least one

element in the array that has the value of 5. The program first of all initialises

the variables i , j and r , and we assume that the array a has been initialised

before this. Looking at the values of i and j we can see that after they have

been initialised they can be substituted into the precondition so we know

that

M (∃k ∈ {i , . . . , j} · a(k) = 5, σn)

will hold after the variables are initialised, and before the parallel statement

is executed.

This could be proved formally using the semantics of assignment, but

that would not illustrate anything beyond Section 4.1 above. Our interest in

this example lies in the parallel search part of the program.

Lemma 1

The first lemma states that if the property ∃k ∈ {i , . . . , j} ·a(k) = 5 holds in

σm , then any step in g that changes the value of the variable i , will preserve

the property, i.e ∃k ∈ {i , . . . , j} · a(k) = 5 holds in σn , where σn is the new

state, such that σm(i) 6= σn(i).

The proof of the lemma is shown in Figure 4.11. To save space a mix of

concrete and abstract syntax is used in the proof, with the outer statements

being written in an abstract syntax to show that they can be matched with

a semantic rule for a justification. Also, to aid readability, wg is used in the

proof to mean mk -While(a(i) 6= 5 ∧ r = 0, i + +).

The hypotheses of the proof state that if our property holds in an initial

state σm , and we execute the While statement in σm , we will reach one of

two possible configurations. We either reach a configuration where we have

the whole While to execute again (meaning we have completed one iteration
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of the loop) and a new state σn (which is different from σm), or we will reach

a configuration consisting of a nil statement and a state σn (meaning the

condition on the While statement evaluated to false, and the loop was not

executed). The conclusion of the proof states that our initial property will

still hold in the new state σn .

In proofs that involve small step semantics we use
s−→ ∗ to mean one

or more applications of the
s−→ transition relation. When using a big step

semantics, a statement or a whole program is executed in a single step, so

we can say that the execution of a statement in a state will give us a final

state. A small step semantics executes a statement or program a little bit at

a time, so we need to say that the execution of a statement in a state will

reach some configuration that we are interested in.

The difference in the size of the steps also results in differences in proof

layout. When using a small step semantics, we tend to work forward when

writing the proof, whereas the direction is more mixed when working with

big step semantics (See Section 6.4).

The proof in Figure 4.11 shows that the condition will hold for the two

possible values of the condition on the While loop. Either the condition will

evaluate to true and the loop will be executed once (line 2), or the condition

will evaluate to false and the loop will not be executed (line 3).

The simple case is when the condition on the loop evaluates to false and

the loop is not executed. This results in a nil statement and an unchanged

state, meaning the property will still hold.

Lemma 2

Lemma 1 only deals with the thread g , so we introduce Lemma 2 to show that

the same property holds for d as for g . Lemma 2 states that if the property

∃k ∈ {i , . . . , j} · a(k) = 5 holds in σm , then any step in d that changes the

value of the variable j , will preserve the property, i.e ∃k ∈ {i , . . . , j}·a(k) = 5

holds in σn , where σn is the new state, such that σm(j ) 6= σn(j ).

The proof of lemma 2 is not given here, but instead it is enough to say
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from (mk -While(a(i) 6= 5 ∧ r = 0, i + +), σm) s−→∗
(mk -While(a(i) 6= 5 ∧ r = 0, i + +), σn) ∨

(mk -While(a(i) 6= 5 ∧ r = 0, i + +), σm) s−→∗ (nil, σn),
M (∃k ∈ {i , . . . , j} · a(k) = 5, σm)

1 (a(i) 6= 5 ∧ r = 0, σm) e−→ true ∨ (a(i) 6= 5 ∧ r = 0, σm) e−→ false
2 from (a(i) 6= 5 ∧ r = 0, σm) e−→ true
2.1 (wg , σm) s−→ (mk -If (a(i) 6= 5 ∧ r = 0,

mk -Seq(i + +,wg),nil), σm) While-E
2.2 (mk -If (a(i) 6= 5 ∧ r = 0,mk -Seq(i + +,wg),nil), σm) s−→

(mk -If (true,mk -Seq(i + +,wg),nil), σm) If-Eval(2.h1)
2.3 (mk -If (true,mk -Seq(i + +,wg),nil), σm) s−→

(mk -Seq(i + +,wg), σm) If-T
2.4 (i + +, σm) e−→ [[+]](σm(i), 1)
2.5 (mk -Assign(i , i + 1), σn) s−→

(nil, σm † {i 7→ σm(i) + 1}) Assign(2.4)
2.6 (mk -Seq(i + +,wg), σm) s−→

(mk -Seq(nil,wg), σm † {i 7→ σm(i) + 1}) Seq-Step(2.5)
2.7 (mk -Seq(nil,wg), σm † {i 7→ σm(i) + 1}) s−→

(wg , σm † {i 7→ σm(i) + 1}) Seq-E
2.8 σn = σm † {i 7→ σm(i) + 1} (h1, 2.7)
2.9 σn(i) = σm(i) + 1 2.8
2.10 M (a(i) 6= 5, σm) 2.h1
2.11 M (∃k ∈ {i + 1, . . . , j} · a(k) = 5, σm) (h2, 2.10)

infer M (∃k ∈ {i , . . . , j} · a(k) = 5, σn) =-sub-left(2.9, 2.11)

3 from (a(i) 6= 5 ∧ r = 0, σm) e−→ false
3.1 (wg , σm) s−→ (mk -If (a(i) 6= 5 ∧ r = 0,

mk -Seq(i + +,wg),nil), σm) While-E
3.2 (mk -If (a(i) 6= 5 ∧ r = 0,mk -Seq(i + +,wg),nil), σm) s−→

(mk -If (false,mk -Seq(i + +,wg),nil), σm) If-Eval(3.h1)
3.3 (mk -If (false,mk -Seq(i + +,wg),nil), σm) s−→ (nil, σm) If-F
3.4 σn = σm

infer M (∃k ∈ {i , . . . , j} · a(k) = 5, σn) =-sub-left(3.4, h2)
infer M (∃k ∈ {i , . . . , j} · a(k) = 5, σn) ∨-E(1,2,3)

Figure 4.11: Proof of Lemma 1.

that since both threads g and d are similar, and lemma 2 is stating the same

property on d that lemma 1 does on g , then the proof for lemma 2 will be

very similar to the proof in for lemma 1 in Figure 4.11, the difference being

that d is decrementing the value of j with each execution of the While loop.

This would make line 2.10 of the proof look like
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M (∃k ∈ {j , . . . , j − 1} · a(k) = 5, σn)

From this we can infer the conclusion of the subproof, since line 2.9 would

state that M (a(i) 6= 5, σm).

Lemma 3

The postcondition of the program states that, after execution, the value of r

will be the index of an element in the array a that has the value of 5. So we

want to be sure that if the value of r is changed by either thread, then the

postcondition will hold for the new value of r . We again state this as two

lemmas, one for each of the threads g and d .

Lemma 3 states that any step of g that changes the value of σ0(r), ensures

that σf is such that M (a(r), σf ) = 5.

The only part of g that can modify the value of r is the Assign statement

that is part of the If statement. The proof of lemma 3 is shown in Figure 4.12

and states that the execution of the If statement will result in a state where,

if the value of r has been changed, it will have been changed to a value such

that a(r) = 5 holds.

This deals with the two cases that can arrive in the execution of the

If statement, that is when the condition evaluates to true or false. If the

condition evaluates to true, then the value of r is changed, so we show that

the change in r is such that our property holds. If the condition evaluates to

false, then we show that the value of r does not changes, and our property

still holds.

Lemma 4

Lemma 4 is similar to lemma 3, but for the other parallel thread, d . It states

that any step of d that changes the value of σ0(r), ensures that σf is such

that M (a(r), σf ) = 5. We don’t give the proof of it here, but it is enough

for us to say that a proof of lemma 4 would be almost identical to the proof

of lemma 3, the only difference being that the If statement in d uses the

variable j instead of i .
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from (mk -If (a(i) = 5,mk -Assign(r , i),nil), σ0) s−→∗ (nil, σf ), i : Id
1 (a(i) = 5, σ0) e−→ true ∨ (a(i) = 5, σ0) e−→ false
2 from (a(i) = 5, σ0) e−→ true
2.1 (mk -If (a(i) = 5,mk -Assign(r , i),nil), σ0) s−→

(mk -If (true,mk -Assign(r , i),nil), σ0) If-Eval(2.h1)
2.2 (mk -If (true,mk -Assign(r , i),nil), σ0) s−→

(mk -Assign(r , i), σ0) If-T
2.3 (i , σ0) e−→ σ0(i) Id(h2)
2.4 (mk -Assign(r , i), σ0) s−→ (nil, σ0 † {r 7→ σ0(i)}) Assign(2.3)
2.5 σf = σ0 † {r 7→ σ0(i)}
2.6 σ0(a)(σ0(i)) = 5 EQ-T(2.h1)
2.7 σf (r) = σ0(i) †-Equiv(2.5)
2.8 σf (a) = σ0(a) 2.5
2.9 σ0(a)(σf (r)) = 5 =-sub-left(2.7, 2.6)
2.10 σf (a)(σf (r)) = 5 =-sub-left(2.8, 2.6)

infer σ0(r) 6= σf (r)⇒ σf (a)(σf (r)) = 5 ⇒-I-L-vac(2.10)

3 from (a(i) = 5, σ0) e−→ false
3.1 (mk -If (a(i) = 5,mk -Assign(r , i),nil), σ0) s−→

(mk -If (false,mk -Assign(r , i),nil), σ0) If-Eval(3.h1)
3.2 (mk -If (false,mk -Assign(r , i),nil)σ0) s−→ (nil, σ0) If-F
3.3 σf = σ0 3.2, h1
3.4 σf (r) = σ0(r) 3.3
3.5 ¬(σf (r) 6= σ0(r)) 3.4

infer σ0(r) 6= σf (r)⇒ σf (a)(σf (r)) = 5 ⇒-I-R-vac(3.5)
infer σ0(r) 6= σf (r)⇒ σf (a)(σf (r)) = 5 ∨-E(1, 2, 3)

Figure 4.12: Proof of Lemma 3.

Lemmas 5 and 6

Lemmas 3 and 4 state that if r is changed, it will be changed to a value that

respects the postcondition of the program. We also need to show that the

value of r will be changed by one of the threads. Lemma 5 states that once

g has finished executing, the value of r in the final state will not be equal to

zero, or in other words, the value of r has changed.

If the thread g does all of the work and d does not do anything, then

because of the precondition on the program that states that there is an

element in the array with the value 5, g will find an element of the array that

meets the requirement, causing the While loop to exit and the If statement
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to write the index of the found element to r . The only way for the loop in

g to exit without finding a 5 in the array is if d has found a 5 in the array

and has changed the value of r . In which case the loop will exit, and d will

finish without modifying the value of r .

The proof of lemma 5 is given in Figure 4.13. To save space, wg is written

in the proof to mean mk -While(a(i) 6= 5 ∧ r = 0, i + +), and ifg to mean

mk -If (a(i) = 5,mk -Assign(r , i),nil).

It is possible for both g and d to find elements in the array that have

the value 52, which means that both threads will change the value of r . It

doesn’t matter which one gets to write to r first, either value will satisfy the

postcondition. This possibility is dealt with in the subproof on line 6.

From the hypothesis of line 6, we know that the value of r has changed,

so d must have found a 5 in the array, but we still need to show that g will

not change it back to zero. It is possible that g has also found a 5 in the

array, as well as d . Line 6.2 shows that if g hasn’t found a 5 in the array,

then it will not change the value of r , so it will still be not equal to zero.

Line 6.3 shows that if g has found a 5, then it will change r to a value that

is not equal to zero.

Lemma 6 states that once d has finished executing, the value of r in the

final state will not be equal to zero. The proof for lemma 6 will be similar

to the proof for lemma 5.

Lemma 7

The program will terminate when both of the while loops in the parallel

threads, g and d , have exited. For each loop, there are two conditions under

which they will exit. If one of the threads finds an element in the array that

contains the value 5, then it will exit the loop and set the value of r to the

index of the element that contains the value 5. Changing the value of r will

cause the while loop in the other thread to exit.

2These could be the same element or different ones, since the array may have multiple
elements with the value 5.
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from (mk -Seq(wg , ifg), σm) s−→∗ (nil, σn),
∃k ∈ {i , . . . , j} · a(k) = 5, i : Id

1 (mk -Seq(wg , ifg), σm) s−→∗ (mk -Seq(nil, ifg), σt)
2 (a(i) 6= 5 ∧ r = 0, σt)

e−→ false 1
3 (a(i) 6= 5, σt)

e−→ false ∨ (r = 0, σt)
e−→ false 2

4 (mk -Seq(nil, ifg), σt)
s−→ (ifg , σt) Seq-E

5 from (a(i) 6= 5, σt)
e−→ false

5.1 (a(i) = 5, σt)
e−→ true 5.h1

5.2 (ifg , σt)
s−→ (mk -If (true, r : = i ,nil), σt) If-Eval(5.1)

5.3 (mk -If (true, r : = i ,nil), σt)
s−→ (mk -Assign(r , i), σt) If-T

5.4 (i , σt)
e−→ σt(i) Id(h3)

5.5 (mk -Assign(r , i), σt)
s−→ (nil, σt † {r 7→ σt(i)}) Assign(5.4)

5.6 σn = σt † {r 7→ σt(i)} (h1, 5.5)
5.7 σt(i) > 0
5.8 σn(r) > 0 (5.6, 5.7)

infer σn(r) 6= 0 5.8
6 from (r = 0, σt)

e−→ false
6.1 (a(i) = 5, σt)

e−→ true ∨ (a(i) = 5, σ0) e−→ false
6.2 from (a(i) = 5, σt)

e−→ false
6.2.1 (ifg , σt)

s−→ (mk -If (false, r : = i ,nil), σt) If-Eval(6.2.h1)
6.2.2 (mk -If (false, r : = i ,nil), σt)

s−→ (nil, σt) If-F
6.2.3 σn = σt (h1, 6.2.2)

infer σn(r) 6= 0 (6.2.3, 6.h1)
6.3 from (a(i) = 5, σt)

e−→ true
6.3.1 (ifg , σt)

s−→ (mk -If (true, r : = i ,nil), σt) If-Eval(6.3.h1)
6.3.2 (mk -If (true, r : = i ,nil), σt)

s−→
(mk -Assign(r , i), σt) If-T

6.3.3 (i , σt)
e−→ σt(i) Id(h3)

6.3.4 (mk -Assign(r , i), σt)
s−→ (nil, σt † {r 7→ σt(i)}) Assign(6.3.3)

6.3.5 σn = σt † {r 7→ σt(i)} (h1, 6.3.4)
6.3.6 σt(i) > 0
6.3.7 σn(r) > 0 (6.3.6, 6.3.5)

infer σn(r) 6= 0 6.3.7
infer σn(r) 6= 0

infer σn(r) 6= 0

Figure 4.13: Proof of Lemma 5.

From the precondition of the program, we know that there exists an

element in the array that has the value of 5, so one or both of the threads

will find it.



CHAPTER 4. EXAMPLES 82

Proof of Program

Now all of the lemmas are worked out, they can be used in the proof of

the whole program, shown in Figure 4.14. As with the other proofs in this

section, the proof is not fully formalised.

from (mk -Seq(init ,mk -Par(g , d)), σ) s−→∗ (nil, σω)
M (∃k ∈ {1, . . . , a.length} · a(k) = 5, σ)

1 (init , σ) s−→∗ (nil, σ † {r 7→ 0, i 7→ 1, j 7→ a.length})
2 σ1 = σ † {r 7→ 0, i 7→ 1, j 7→ a.length}
3 M (∃k ∈ {i , . . . , j} · a(k) = 5, σ1) (h2, 2)

4 (mk -Seq(init ,mk -Par(g , d)), σ) s−→∗
(mk -Seq(nil,mk -Par(g , d)), σ1) Seq-Step∗(1)

5 (mk -Seq(nil,mk -Par(g , d)), σ1) s−→ (mk -Par(g , d), σ1) Seq-E

6 (mk -Par(g , d), σ1) s−→∗ (mk -Par(nil, d ′), σn) ∨
(mk -Par(g , d), σ1) s−→∗ (mk -Par(g ′,nil), σn) Lemma7

7 from (mk -Par(g , d), σ1) s−→∗ (mk -Par(nil, d ′), σn)
7.1 (g , σ1) s−→∗ (nil, σn) 7.h1
7.2 σn(r) 6= 0 Lemma5(7.1)
7.3 (ifg , σm) s−→∗ (nil, σn) 7.1
7.4 σm(r) 6= σn(r) ⇒ σn(a)(σn(r)) = 5 Lemma3(7.3)
7.5 σm(r) = 0 2
7.6 σm(r) 6= σn(r) 7.2, 7.5
7.7 M (a(r) = 5, σn) ⇒-E-L(7.4, 7.6)
7.8 (mk -Par(nil, d ′), σn) s−→∗ (mk -Par(nil,nil), σp)
7.9 (mk -Par(nil,nil), σp) s−→ (nil, σp) Par-E
7.10 σp = σω 7.9, h1

infer M (a(r) = 5, σω)

8 from (mk -Par(g , d), σ1) s−→∗ (mk -Par(g ′,nil), σn)
...

infer M (a(r) = 5, σω)
infer M (a(r) = 5, σω) ∨-E (6,7,8)

Figure 4.14: Proof of parallel array search program.

Lines 1 to 3 show that after the variables have been initialised, there

exists an element in the array between i and j that has the property that

we are looking for. Line 2 introduces σa as an abbreviation. It should be
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apparent that lines 1 and 3 could be expanded out and written formally using

the semantics for assignment and the = -sub rules, but this proof is informal

and the abbreviated lines can be easily understood.

Lines 4 and 5 use the semantics of the Seq statement to show that once

the variable initialisation part of the program has executed, we are left with

the Par statement to execute. Line 4 shows that init will reach nil after one

or more steps of the
s−→ transition relation. For the justification of this line

we show that the line is justified by one or more applications of the Seq-Step

semantic rule.

Line 6 states that after one or more steps of either or both of the Par-

L or Par-R semantic rules, either the left or the right statement will finish

executing and reach nil. The subproofs on lines 7 and 8 then show that in

either case, the program will reach a final state in which the postcondition

of the program will hold.

4.5 Parallel Array Search in Hoare logic

This section looks again at the parallel array search program and attempts

to use axiomatic reasoning, in contrast to the direct operational semantic

approach used in Section 4.4, so that the two approaches can be compared.

We quickly see that a proof using pure Hoare axioms is not possible and

present an argument that uses rely-guarantee reasoning.

The parallel array search program is repeated here in Figure 4.15 for

convenience. As in the previous section, the left and right parts of the parallel

statement are referred to as g and d respectively.

Inspection of either the g or d components makes it clear why false con-

clusions could be drawn from misuse of Hoare’s rules. For example, looking

at g in isolation it would be possible to prove that g would search through

the array from the start until it found an appropriate value, providing no

interference occurs. But we know that interference will occur and g and d

actually count on interference so that one can terminate early if the other
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{∃k ∈ {1, . . . , a.length} · a(k) = 5}
r := 0 ;
i := 1 ;
j := a.length ;
(

while a(i) 6= 5 ∧ r = 0
i + + ;
if a(i) = 5 then

r : = i
)
‖
(

while a(j ) 6= 5 ∧ r = 0
j −− ;
if a(j ) = 5 then

r : = j
)
{a(r) = 5}

Figure 4.15: Parallel array search program.

finds a 5 in the array first. However, if g was executed in an environment

that could change r to a value that did not point to a 5 in the array, then g

would terminate early but the value of r would be such that its postcondition

does not hold.

This reinforces the point that Hoare’s axioms were designed for sequential

programs, not concurrent programs. Early approaches to proving proper-

ties about sequential programs using axiomatic methods attempted to prove

properties about sequential components of the program in isolation, and then

either show that the parallel components do not interfere (sometimes called

“disjoint parallelism”) [Hoa75, Jon83], or check that the sequential proofs

are not interfered with by the other concurrent components. This latter ap-

proach was presented in its most worked out form by Susan Owicki and the

method is known as the Owkik/Gries method (see [Owi75, OG76]).

In the case of the program in Figure 4.15, g and d would each be treated
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as sequential programs and proofs would be written to show that g satisfies

its postcondition, post-g , and that d meets its postcondition, post-d . The

Owicki/Gries method then requires a final interference freedom (or “Einmis-

chungsfrei”) test to show non-interference.

The obvious proofs would fail this test and this is why Owicki’s method

is seen as non-compositional. It would then be necessary to re-do the earlier

sequential proofs, which might just be possible if “auxiliary variables” were

added.

We here take another approach and consider Jones’ rely-guarantee idea

which is broadly axiomatic but accepts the possibility of interference from

the beginning.

Rely-guarantee reasoning [Jon83] makes it possible to reason about inter-

ference in the development of concurrent programs by augmenting the pre

and post conditions introduced in Hoare logic with a rely-condition and a

guarantee-condition for each unit specified. These four assertions are associ-

ated with a program text as follows,

{P ,R} S {G ,Q}

where P is the pre-condition, R is the rely-condition, S is the program, G is

the guarantee-condition and Q is the post-condition.

Even for sequential programs, VDM always used relational post-conditions

that allow the required outcome to be stated as a relation between initial

and final states. Rely-guarantee reasoning is typically in a VDM framework,

meaning the post-condition of a program is a predicate over the initial and

final states of the program. Similarly, both rely and guarantee conditions

are predicates over two states (the initial and final states of a single step of

execution).

A program is assumed to be executed in an environment where it will

run concurrently with other programs, and will both cause and be subject

to interference. A rely-condition is the assumption that is made about the

environment in which a program is running, and describes the interference
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that the program is able to tolerate from the environment. The guarantee-

condition states the interference that the program will generate as part of

the environment, under the assumption that the pre-condition and the rely-

conditions are met. Both conditions should be reflexive and transitive to

reflect the fact that there might be zero or many steps.

When multiple programs are executed concurrently, the rely-condition of

each program must be met by the guarantee-condition of the other programs

that make up the environment.

Going back to the program in Figure 4.15, we can use rely-guarantee

reasoning to reason about the parallel execution of g and d . Figure 4.16

shows the specification3 of g and d , including rely and guarantee conditions.

The pre and post-conditions for g and d are the same as the pre and post-

conditions of the parallel statement.

g d

rd: a: N m−→ Z rd: a: N m−→ Z
wr: i : N wr: j : N

r : N r : N
pre: ∃k ∈ {i , . . . , j} · a(k) = 5 pre: ∃k ∈ {i , . . . , j} · a(k) = 5

rely: a = ↼−a ∧ i =
↼−
i ∧ rely: a = ↼−a ∧ j =

↼−
j ∧

(r 6= ↼−r ⇒ a(r) = 5) (r 6= ↼−r ⇒ a(r) = 5)
guar: r 6= ↼−r ⇒ a(r) = 5 guar: r 6= ↼−r ⇒ a(r) = 5
post: a(r) = 5 post: a(r) = 5

Figure 4.16: Specification of g and d .

When g and d are executed in parallel, d is the environment for g and g

is the environment for d .

Both g and d rely on a not being changed by the environment, and

neither will modify a. Both rely on the value of r not being changed to

an unexpected value (i.e. should only be changed to the value of an array

index whose element has the value of 5), and both guarantee not to change

the value of r to an unexpected value. The program g relies on i not being

changed by the environment, and d does not access i . The program d relies

3Written in a VDM style.
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on j not being changed by the environment, and g does not access j .

The relationship between the various conditions of the parallel programs

is formalised in the parallel composition rule4 (see Figure 4.17). Using this

inference rule, we can show that parallel statement, g ‖ d , meets its post-

condition.

{P ,R ∨G2} S1 {G1,Q1}
{P ,R ∨G1} S2 {G2,Q2}
G1 ∨G2 ⇒ G
P ∧Q1 ∧Q2 ∧ (R ∨G1 ∨G2)

∗ ⇒ Q
{P ,R} S1 ‖ S2 {G ,Q}

Figure 4.17: Rely-Guarantee rule for parallel composition.

Since we know that both sections of the parallel statement can handle

interference from the environment, and we know that there is at least one

element of the array a with the value of 5, we are able to show that g or

d will always find that value. Although the individual steps of this proof

are trivial, notice that this is only the case because of the respective rely

conditions precisely rule out any mischievous interference.

The rely-guarantee proof of the program can be made simpler by using

the “local” idea of [JP08]. The variables i and j are not shared variables and

so can be thought of as being local to their programs, making them effectively

hidden from the environment and therefore not subject to interference.

4.5.1 Comparison

The purpose of this section was to work through an example using Hoare

axioms, so that it could be compared to the direct operational semantic

approached as used on the example in Section 4.4. It was quickly shown,

however, that a traditional Hoare style approach would not work due to

the interference caused by the parallel execution of g and d . Instead the

program was shown to be correct using the rely-guarantee approach, which

4This version of the rule is borrowed from [Pie09]. Also used in [CJ07].
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is basically axiomatic, but Jones’ rely-guarantee idea is expressively weak in

that there are forms of concurrency about which it cannot reason. There

are extensions to the rely-guarantee approach such as Stoelen’s addition of

progress conditions in [Stø90], but even those have limitations. The approach

demonstrated in this chapter places an immediate path to formal reasoning

for any language that has an operational semantics.

4.6 Conclusion

From the examples in this chapter, we can see that when reasoning about a

program using operational semantics, the proof consists of two basic steps.

First, the operational semantic rules are used to show the effect that execu-

tion has on the initial state to give some final state. Next, we show that the

postcondition of the program holds in the final state. This is most apparent

in the variable swap example in Section 4.1, where lines 1-8 use the semantic

rules to reach a final state, then lines 9 to the conclusion show that the post-

condition holds in the final state. We can also see these steps in the proofs of

the lemmas in Section 4.4, where they are repeated in each of the subproofs.

The variable swap examples show how changes to the operational seman-

tic definition of a language can effect the proofs of a program in the language.

Three equivalent programs were shown, each of which used different semantic

definitions in their execution, resulting in different proofs for each program.

The difference was in the part of the proof where the semantics are used

to show the effect of execution on the state. In each proof there is very

little difference in the part of the proofs that relate the final state to the

postcondition of the program.

The last example (Section 4.4) uses a language that has a small step

semantic definition, whereas the other languages used in this chapter have

big step semantic definitions. From the proofs of the lemmas in the last

example, we can see differences in the structure of a proof of a program, that

stem from the size of the step.
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The use of the Seq statement in the example languages means that a

program is always a single statement, rather than a list of statements. In

the examples using a big step semantics, when we apply the semantic rules

to a program we start with the outer statement and work backwards until

we have applied semantic rules to all parts of the program (as illustrated

in Section 6.4). We can then show how the initial state is modified by the

execution of the program. Working backwards this way is due to the semantic

rule having hypotheses. The language used in Section 4.4 has a small step

semantics and many of the semantic rules have no hypotheses, resulting in

mostly using forward reasoning when writing a proof.

The proofs in the last example (Section 4.4) are longer than might have

been expected, and are good examples of where a proof support tool manag-

ing the proofs would be of assistance. Using the proof support tool for such

proofs will help the user by managing the proof layout and line numbers. It

is also clear that a certain degree of automation would be useful. Chapter 6

suggests that the tool might do more than just suggest possible rules to jus-

tify a line, but also suggest appropriate proof lines to use as parameters to

the justification, and if no appropriate lines exist, suggest lines to be added

to the proof.

Such automation in the proof support tool would be straightforward to

implement but would take care of what the user might consider to be the

tedious details. The area in which human intuition is really required is in

the choice of the lemmas and the structure of the proof. Having the proof

support tool assist as much as possible and automate justification selection

where possible, allows the user to focus on the more important or more

difficult details of the proof.

4.7 Summary

The examples in this chapter illustrate the use of semantics of a language to

reason about programs that are written in that language. These examples
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also show that the use of semantics to reason about a program is not only

restricted to simple sequential programs, but can also be used to reason about

programs that include more complex language features such as concurrency.

Later chapters describe the development of a prototype proof support tool

for writing proofs using operational semantics as justifications. Each of the

proofs of the examples in this chapter have been presented in the prototype

tool.



Chapter 5

Formal Verification Tools

Formal verification is the use of mathematical techniques to show that some

system performs or behaves as desired and will not reach some undesirable

state, and can be applied to both hardware and software systems. In terms

of software systems, formal verification techniques can be used to show that

a computer program meets it specification, and also that it will not behave

unexpectedly by, for example, indexing outside of an array.

The focus of this chapter is on the formal verification tools that are avail-

able, rather than on the mathematical techniques that they employ, with

specific focus on formal reasoning tools for proving that computer programs

satisfy their specifications.

5.1 Static and Runtime Verification

Static analysis involves the analysis of the source code of a program at com-

pile time. Any compilation process will do some checking in order to de-

termine if code can be generated from a source program. Such checks are

normally things like the conformance of variable use to declarations. Obvi-

ously any checks performed by a compiler have to be decidable. Although

compilers perform some static analysis on a program before it is compiled,

such as syntactic and type checks, they are not generally considered static

91
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analysis tools. Static analysis tools perform more extensive checks on the

source code of a program in an attempt to find sources of potential run-time

errors.

Static analysis tools are not able to prove the correctness of a program,

with respect to its specification, but can help to eliminate some sources of

bugs from a program. In only a few languages (Eiffel [Eif11]) are specifica-

tions part of the program text, so that programs can be shown to satisfy its

specification.

ESC/Java2 [esc11] is a static analysis tool that is referred to as an ex-

tended static checker. By including the specification of a program as JML

annotations (see below), ESC/Java2 is able to try to prove the correctness

of the program, with respect to its JML specification. The checking of the

source code is performed at compile time and is fully automatic.

ESC/Java2 is good at proving the absence of sources of potential run-

time exceptions, such as NullPointerException, and verifying relatively sim-

ple properties, but is not sound or complete.

Runtime Verification involves checking a program as it is running to en-

sure its behaviour is consistent with its specification.

The Java Modelling Language (JML) [jml10] is a language for annotating

Java programs with specifications in the form of Hoare style pre and post

conditions on methods, and invariants on variables. The annotations are

written in comments and so will be ignored by the standard Java compiler.

When compiled with the JML compiler, the JML annotations are converted

into runtime assertions that will cause run-time exceptions to be thrown

when the behaviour of the program does not match its specification.

5.2 Theorem Proving tools

A theorem prover is a program that attempts to automatically find a proof for

a given conjecture, in a specific logical framework. Since the heuristics used

in the proof search is not optimal for all problems [Bri10], user guidance may
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also be necessary. The degree of automation provided by theorem proving

tools also depends on the complexity of the logic used. There is a trade off

between the complexity and expressiveness of the logic used and the degree

of automation possible.

Theorem provers generally fall into two categories – automated or in-

teractive – depending on the degree of automation, and the degree of user

interaction required. For both categories of tools it is often not important

how a proof is found, but instead only important that it is found. Many

modern systems offer a mix of automatic and interactive proof, but their

emphasis varies.

5.2.1 Automated Theorem Proving Tools

Automated theorem proving (ATP) tools generally require little or no human

intervention to guide the proof search. Many ATP tools use first-order logic,

which is expressive enough to describe a wide range of problem, but also con-

strained enough to allow proof searching to be fully automated. ATPs are

able to solve a wide variety of non-trivial problems, however, the complexity

of many interesting problems cannot currently be solved within realistic re-

source limits. A key area of research is therefore developing more powerful

ATPs that can solve more complex problems with the same resource limits

[SS01]. Some ATPs save resources by not constructing a proof during its

search, and so are unable to produce a proof of a theorem, but instead are

able to provide assurance that a proof does exist. Other ATPs may pro-

vide a proof, or remember enough information from the search to be able to

construct a proof if required.

Prover9 [McC10] is an automated theorem prover for first-order and equa-

tional logic and is the successor to the Otter theorem prover.

The user provides a goal and a set of assumptions to Prover9, and the

system attempts to find a proof. If the system cannot prove a goal it will

either time-out or halt with a message that a proof cannot be found. Deter-

mining why the proof could not be found is not always straightforward. If
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Prover9 is able to find a proof for a theorem it can display the proof as a

sequence of steps, providing the rationale for each step.

Although Prover9 has a fully automatic mode, some difficult problems

may require user guidance.

Mace4 [McC10] is paired with Prover9, and can be run in parallel with

Prover9. It searches for finite models and attempts to find counter examples.

SPASS [SPA11] is a sound and complete automated theorem prover

for first-order logic with equality [HSW99], and is an implementation of a

saturation-based resolution and superposition calculus with simplification.

SPASS takes a user’s input file that includes a list of axioms and a list of

conjectures, and produces an output that states if a proof was found. When

running SPASS on the command line, an extra option can be used so that

the proof is displayed in the output.

Some systems use ATPs as plug-ins to a more complex environment. An

example of such a system is RODIN [rod10]. The RODIN tool is an open

tool platform for the rigorous development of dependable software systems.

The tool was built as an Eclipse plug-in, with the various components of the

tool also being plug-ins. The tool allows a user to build abstract models of

software and systems, and then to introduce refinements to produce more

detailed and less abstract models of the system.

The tool automatically generates proof obligations from the user’s model,

and attempts to satisfy those obligations automatically using a collection of

plug-in automated theorem provers. As the user continues to work on the

tool it will work in the background to find proofs of the proof obligations, and

will re-run any proofs that are affected by changes in the model. The theorem

provers underneath the Rodin tools (PP and ML) are actually legacy code

from the earlier Atelier-B effort. There is new work in place to map proof

obligations to Isabelle.

The proof perspective of the RODIN tool allows the user to inspect the

list of proof obligations for the current model and instantly tell which have

been successfully proven and which have not by a green or red icon displayed
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next to each item on the list. Where an obligation cannot be automatically

satisfied, the user can inspect the proof using the proof viewer, and can add

additional hypotheses, add witness values or apply rewrite rules to assist the

ATPs.

5.2.2 Interactive Theorem Proving Tools

Interactive (or semi-automated) theorem provers are a category of theorem

provers that require a greater degree of user interaction and guidance to assist

the tool in the search for a proof. The increased need for user interaction in

interactive theorem provers is due to the use of more expressive logics, such

as higher order logic, making automated proof searches more complex.

When proving a theorem in an interactive theorem prover, the user will

direct the system to the goals using commands, rules or tactics. The system

will ensure that rules are applied correctly and may automate what might

be considered the simple tedious steps of a proof.

Interactive theorem provers have been applied to a variety of problems

such as verification of deep mathematical theorems and software/hardware

verification. This section summarises three well known theorem proving sys-

tems – HOL, Isabelle and Coq.

HOL4 is an ML-based environment for constructing proofs in higher order

logic [SN08] and is the latest version of the HOL system developed by Gordon.

The logic implemented by HOL4 is based on Church’s Simple Type Theory

[Chu40]. The HOL system was originally intended for use in the specification

and verification of hardware designs, but also has applications in other areas,

including software verification.

HOL is an LCF1 style prover, meaning the system is built around a ‘logical

core’ or ‘kernel’ of primitive inference rules. The logic implemented in the

HOL kernel is kept intentionally small, with only a few simple axioms and

rules of inference. The metalanguage (ML) of the proof system can be used

to program more complex derived rules, which can be reduced by HOL to a

1LCF (Logic of Computable Functions) [GMW79] was on an early theorem prover.
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sequence of kernel inferences. This is a powerful way of retaining consistency.

In HOL4, a proof is guided by the user at a high-level using the proof

manager, with subsidiary proofs being passed to one of the automated rea-

soners provided. Tactics can be used to direct the proof construction by

reducing the theorem to a series of subgoals to be proved. Once the theorem

is proved then it can be stored in the current theory and can be used in

subsequent proofs. The system also provides a wide collection of theories

that can be used in proofs.

In his masters thesis, Sander Vermolen used HOL4 to automatically dis-

charge proof obligations generated from VDM models [VHL10].

Other systems implementing HOL are HOL Light [Har11] and Proof-

Power [Art11].

Isabelle [PNW10] is a generic framework for implementing logic formalisms

and interactive theorem proving. Isabelle is not based on a specific logic but

instead has a meta-logic in which other logics are represented, allowing the

system to be instantiated for different logics.

The meta-logic of Isabelle (Pure) is intuitionistic higher-order logic with

implication, universal quantifiers and equality [NP92]. A logic that is rep-

resented using the meta-logic is called an Object Logic. Isabelle comes with

several object logics that can be used as reasoning environments, the most de-

veloped being HOL. Isabelle/HOL is the specialisation of Isabelle for Higher

Order Logic (HOL), and is based on Church’s Simple Type Theory [Chu40].

The implementation of HOL in Isabelle defines implication, quantification

and equality directly in terms of the meta-logic. Using the polymorphic type

system, additional axioms are defined to form the logical core to the HOL

theory, and other other inference rules are derived using these axioms.

In Isabelle the proof that is currently being worked on is termed a goal. A

goal consists of a list of assumptions and a conclusions. Proof development

is highly interactive and both forward and backwards reasoning are allowed

and tactics are provided for both.

The standard user interaction with Isabelle is through the command line
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(terminal), with no proof support. A more user friendly option is to use

Proof General [Pro11] which is a generic interface for proof assistants based

on emacs.

Isabelle can be used with the Isar language2 which is an interpreted

language designed specifically for theory and proof development. It sits at

the top-level and provides proof support, and provides a more structured and

more readable proof output.

The Archive of Formal Proofs (AFP) is an online collection of proof

libraries and examples that have been mechanically checked with Isabelle

[WPN08]. Submissions to the archive are refereed.

It is also possible to run Isabelle fully automatically by using additional

scripts and tools, along with certain tactics which are run one at a time until

one succeeds or all fail [SBBT09].

One of the largest applications of Isabelle is the Bali Project [KNvO+11]

which was concerned with formalising aspects of the Java programming lan-

guage using Isabelle/HOL. The successor to this project was the VerifiCard

project [KNS+11] which formalised aspects of JavaCard, a subset of Java.

As an example of a deeper mathematical proof: Gödel’s proof of the relative

consistency of the axiom of choice has been mechanised using Isabelle/ZF

[Pau99].

Coq [LG] is a proof assistant that is designed to develop programs and

specifications and also to write formal proofs that a program meets its spec-

ification. The formal language of Coq is a Calculus of Constructions with

Inductive Definitions, a lambda calculus with a rich type system [Wie06].

The kernel of Coq is implemented using Objective Caml, using only stan-

dard features of the language to make it less likely for bugs in the OCaml

language to affect Coq. The kernel is also kept intentionally small in an

attempt to reduce the risk of implementation bugs.

Programs are usually represented by functions and simple programs can

be executed in Coq. It is possible to generate an executable program, in

2Intelligible semi-automated reasoning
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Objective Caml or Haskell, from a specification.

Proof development in Coq is user guided using a tactic language. To

construct a proof the user enters the statement to be proved, known as a

theorem. The user can then use tactics to decompose the proof goal by

introducing simpler subgoals. Once the proof is complete it is saved and can

be used in other proofs.

The user can interact with the system using the command line or using

one of the available user interfaces such as CoqIde, Pcoq or Proof General.

The expressiveness of the logic of Coq lends itself to formalisations of rich

mathematical theorems. User contributed proofs in Coq include a proof of

the four colour theorem, a proof of the three gap theorem, and a proof of

Buchberger’s algorithm.

5.3 Proof Support Tools

Proof checkers or proof support tools assist a user to construct a proof and

can be used to mechanically check a proof for correctness, with checks usually

being performed at the syntactic level. The user is responsible for finding

the proof of a conjecture, not the tool. Generally the layout of the proof is

intended to closely resemble how the proof would be written on paper.

5.3.1 Mural

The mural system was an interactive proof assistant developed in the 1980s

at Manchester University and Rutherford Appleton Laboratories [JJLM91].

The tool is no longer available but it is worth discussing since it has many

features that are of interest for the research set out in this thesis.

It is probably best to think of the mural project as an experiment in

the design of interaction modes for the theorem proving task. At the time

of its inception, almost all theorem provers were more or less built around

the LCF style of interaction: the proof task was split into ever smaller goals

until they could be discharged. The mural project attempted to change the
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mode of interaction. To a large extent, it was possible to envision and build

the advanced HCI of mural because of the advanced workstations that were

newly available in the late 1980s. Use of SmallTalk as an implementation

language was also a key decision that made building advanced windowing

features practical.

Using mural, a user could directly interact via an evolving natural de-

duction proof. The whole of a proof was potentially visible at the same time

(with clever features for hiding portions that were not the current focus of

the user’s attention). Proof construction was user guided in mural, so the

user was in control, and the tool would assist by checking the user’s proof

and helping to find rules that could be used as justifications for lines of the

proof. The interaction style was very flexible: a user could for example add

an unjustified line to the middle of a proof — but a proof was only considered

complete when the inserted line was linked to both hypotheses and goal. It

was also possible to justify a line in a proof based on some lemma, without

having to prove the lemma first.

Another aspect of the generailty of mural was its provision of a Logi-

cal Frame (see Chapter 3 of [JJLM91]). The tool could be tailored to any

(monotone) logic by providing its inference rules as data. In fact there were

instantiations for both classical logic and LPF

The tool was developed from a formal description and this was both main-

tained throughout the project and is published as Appendix C in [JJLM91].

Mural maintained a store of theories, which were representations of math-

ematical theories. At the trivial level, theories could contain derived logic

rules such as distribution of logical and over or; but the more useful role

of theories was to organise whole collections of useful lemmas about data

structures. The “rule” matching of mural spotted the derived rules from any

parent theory that would help a user progress a proof.

The description of mural as an interaction study concedes the fact that

a fully fledged TP system requires as many decision procedures as possible

(e.g. Pressburger arithmetic); mural did not even have a resolution procedure
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built in.

5.3.2 Jape

Jape is probably the tool that most closely resembles mural but its interaction

style was more restrictive that in mural.

Jape is another example of a proof support tool, which the creators of the

tool term a ‘proof calculator’. Jape aims to support the interactive develop-

ment of proofs in a formal logic, and makes the step-by-step development of

a proof easy for novices to use. The user interface presents the proofs in a

box-and-line style, adapted from Fitch [Fit52], so that the proof resembles

how it would look on paper. Jape is not committed to working in a particular

logic, but can use any user defined logic, as long as the logic is expressed as

inference rules in a two sided sequent calculus [BS99].

When working on a proof, the interaction style is restricted to forwards

or backwards reasoning. A proof is constructed working forwards from hy-

potheses or working backwards from a conclusion, using proof rules from a

library as justification, until the two ends of the proof match up and the

proof is complete. A rule is applied as a justification by selecting the lines

of the proof that match the hypotheses and conclusion of a rule. The rule

options presented to the user for forward and backward steps are not changed

according to the selected lines of the proof, but the tool will not allow the

user to incorrectly apply a rule as a justification.

5.4 Summary

This chapter has summarised the categories of formal verification tools that

are available, highlighting example tools for each.

In some of the tools discussed, it would be possible to encode an opera-

tional semantic description of a language. Nipkow has used Isabelle/HOL to

provide a formal operational semantics of Jinja, a Java-like language [Nip06].

Isabelle/HOL was used to machine check proofs about the language, includ-
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ing type safety of the semantics. Jape can be used to animate the operational

semantics of simple languages, as demonstrated in [SB98].

As discussed in Chapter 1, the acceptability of the approach to reasoning

about programs introduced in this thesis will likely depend on a suitable

support system. Although some of the tools covered in this chapter may be

suitable, most have restrictive user interfaces and can be very difficult for

novice users to use. For this approach to be accessible, the support system

should be intuitive and not have a steep learning curve. The type of system

considered to be most suitable for the purposes of this thesis is a proof

support tool as described in Section 5.3.

The decision was taken to develop a new proof support tool, rather than

using an existing tool. Using an existing tool has obvious advantages, but

trying to develop tools that either are no longer actively under development

(as is the case with Jape) or are no longer available (Mural) introduces diffi-

culties. Developing a proof support tool from scratch, for the specific purpose

of constructing natural deduction proofs using operational semantic, allows

the tool to be tailored to the specific requirements of this approach.

The following chapters outline the features and requirements of the proof

support tool, and describe its development. The tool is a Mural-like tool, in

that interface and interaction style are similar.



Chapter 6

Outline of a Proof Support Tool

A proof support tool is intended to assist a user to write proofs, usually in

a manner that reflects how the user would work on paper. The purpose of a

proof support tool is to remove the difficulties involved with writing proofs

by hand, allowing the user to concentrate on the content of the proof. The

types of support provided to the user is generally restricted to managing the

layout and formatting of the proof. Although proof support tools do not

generally assist the user to complete the proof, they are usually able to check

the correctness of the proof at the syntactic level.

As discussed in Section 5.4, the type of tool most suitable for the purposes

of this thesis is a proof support tool.

This chapter explains why a proof support tool is necessary, outlines the

requirements for the tool, and discusses what we consider to be important

features for the tool to have.

6.1 Description of Proof Support Tool

The main purpose of the proof support tool is to provide assistance to the

user as he writes a proof, rather than trying to do the proof for the user. With

this in mind, proof construction should be guided by the user, and assisted

by the tool, meaning the user is in control of how the proof is constructed,

102
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the order in which lines are added to the proof and how lines are justified.

The user should not be forced by the tool to work in a particular way

when writing a proof. Section 2.5 shows three approaches to building a proof,

and we would like the user to be able to construct a proof in any of these

ways, or in any other way. The process of building a proof should feel as

intuitive and unrestrictive in the tool as it would on paper.

The tool should assist the user by automatically formatting the user’s

proof as he is working on it, laying out the proof in the style that we use

(see Chapter 2). Included in the formatting of the proof is the numbering

of the proof lines — the tool should automatically number lines as they are

added to a proof, and renumber any lines below the added lines, so that

the lines stay numbered sequentially. The tool should also keep line number

references used in justifications consistent, so that if a line is renumbered,

any references to that line in justifications are also updated, to keep the

justifications correct and consistent.

As well as formatting the proof, the tool should also assist the user by

making suggestions, such as rules that can be used to justify a line of a proof,

but the user should be free to carry on and ignore the suggestions without

having to stop and accept or reject them.

The tool should provide the facility to store inference and semantic rules,

so that the user can have easy access to them. The tool will require access

to such a rule store to allow it to suggest rules to the user that can be used

to justify proof lines.

6.2 Features of Proof Support Tool

This section outlines the features considered to be the most important to

include in the proof support tool, many of which are listed in the paper

[HJ08].
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6.2.1 Proof Formatting

Numbering the lines in a proof is usually straightforward, but problems can

occur when a new line is inserted into the proof, requiring the lines below it

to be renumbered. When working on paper it can look quite messy crossing

out and changing line numbers. The main problem comes when updating

references to lines in the justifications. Failing to update a reference in a

justification will mean the justification becomes incorrect as it is pointing to

the wrong line of the proof. Allowing the tool automatically to number the

lines that are added to a proof should prevent this problem from occurring.

When a new line is inserted into a proof the tool will automatically renum-

ber the lines below, and pointers to those lines in justifications will also be

updated to keep them consistent.

When we are working on paper and we insert a line into a proof, we will

sometimes give the line a temporary line number that may be out of sequence

or include letters, rather than renumbering the lines below. When the proof

is complete we might then rewrite the proof neatly and renumber the lines

at the same time. As an alternative to automatic line numbering, we could

allow the user to manage the line numbers as he adds lines to the proof. Since

the user is able to add lines to a proof in any order he likes, he could use

a ‘temporary’ line number when he adds a line1, then when he has finished

a proof or subproof, have the tool renumber the lines so they are numbered

sequentially.

6.2.2 Proof Validation

As the user adds new lines to the proof, the tool should suggest rules that

may be used as a justification of the line. These suggested rules will have

conclusions that can be matched against the proof line. The appropriate rule

to use from the list of suggested rules will depend on the hypotheses of the

rule, so the user will need to select a rule and then specify which lines of the

1Or the tool could assign a temporary line number (which could actually be a letter)
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proof match against the hypotheses of the selected rule. The line will then

be justified by an appeal to the selected inference rule, with references to the

specified lines as parameters to the justification.

We could also make the tool do more extensive checking of rules that can

be used to justify a proof line, and find existing lines of the proof that can

be matched against the hypotheses of a rule as well as the conclusion. If the

tool is unable to match existing proof lines against the hypotheses of a rule

it could give the user the option of adding new lines to the proof that will

match against the hypotheses of the rule. If the user selects to add these

lines, then the tool could proceed to find justifications for these new proof

lines.

The tool should be able to check that a user’s proof is valid and proven.

A proof is valid if all lines of the proof have justifications that refer to rules

or definitions that exist in the rule library, and are applied correctly. A

proof is proven if it is valid and if all of the rules used in justifications are

either axioms or have proofs that are proven. If the user has an invalid

justification on a line, the tool should show the user that the justification

is invalid in a way that does not stop the user from continuing to work on

the proof. We don’t, for example, want the tool to make the user correct

the justification before he can continue working on the proof, but he should

be free to come back and correct it later. The checking of a proof could be

done in the background as the user works, as in the RODIN tool [rod10] (see

Section 6.3.2).

6.2.3 Proof Support

The tool should have the facility to store rules in a library so that the user

can have easy access to them. The rule library is also required so that the

tool has a store of rules that it can check against lines in a user’s proof and

suggest rules that can be used to justify lines. Since some inference rules

require proofs, the user should be able to check the proof of a rule and also

add a proof if the rule does not already have one. This rule library might get
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quite large, but the user shouldn’t have to search through the library for a

rule every time he wants to add a justification, since the tool should be able

to suggest an appropriate rule for a proof line.

The proofs that will be written with this tool may include subproofs,

so the tool should be able to handle subproofs, and even nested subproofs.

To increase the readability of long proofs with subproofs, the tool could

include a feature that allows the user to collapse a subproof so that only its

hypotheses and conclusion are visible. The user could expand the subproof

when necessary to view or edit the lines of the subproof.

Any proof that we write can also be written as a derived rule [BFL+94].

A derived rule acts as a shorthand for its proof, so we can use a derived rule

to justify a line, rather than having to add multiple lines that correspond to

the proof of the derived rule. This should be reflected in the tool, so that

any proof that the user writes can be used as a derived rule to justify steps

in other proofs.

Allowing the user to make use of existing proofs in this way means a large

proof can be reduced into a series of smaller proofs. A proof of a program

could be broken down into a number of smaller proofs that are used to justify

steps in a main proof of the program. This approach is used in the example

in Section 4.3.

6.3 Existing Tools

When specifying the requirements for the proof support tool, we looked at

several existing theorem proving and model checking tools to see how these

tools worked and to find features that would be useful for our tool. The tools

that are of most interest are mural and RODIN, since they have a number

of features that were needed in our proof support tool.

This section only describes the features of these tools that are of interest.

The tools are described in more detail in Chapter 5.
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6.3.1 Mural

Key features of mural [JJLM91] are described in Section 5.3. Mural was an

interactive proof assistant developed in the 1980s at Manchester University

and Rutherford Appleton Laboratories. Probably the most important single

feature of mural that current research has attempted to copy is the user

interaction style. It was clear from the beginning that something like the

natural deduction style of proof was mandatory and that its explicit use

as a medium for interaction was highly desirable. This way of thinking

about proofs based on structural operational semantic descriptions and their

incremental construction has pervaded the research reported in this thesis.

The idea in mural of constructing theories (of data types) would also

play a large part in a fully developed tool for operational semantic proofs

— in this latter case, the results might be general lemmas about program

constructs. In the extreme case, these could approximate to Floyd/Hoare

“axioms” to provide a proof style that comes close to the more common way

of reasoning about programs from axiomatic definitions — but of course, it is

central to the current research that for general programming languages such

rules would not capture the whole language and any “axiomatic” style rules

would have side conditions that showed when they could be applied.

It should have been possible to enter by hand into a mural-like “logical

frame” inference rules that would have been codifications of AS/CC/SOS.

Even had mural still been available, this would not have offered a very usable

system and it was a major part of the demonstration tool that is described in

this thesis to accept a more common representation of a language definition

and to use the operational semantic rules of the language as inference rules,

essentially tailoring the logical frame to the particular language. A system

that was not designed for this purpose would always require work-arounds

to acheive the desired results.

There is of course also the overriding practical issue that the tool is no

longer available! At the point at which the research reported in this thesis was

begun, the SmallTalk code was not available. Thanks to Dr Bicarregui the
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actual code has been recovered but no one has yet been able to do anything

with it. CBJ fears that the dependence on specific GUI methods in the

implementation of SmallTalk will make this venture uneconomical. In fact,

the author of this thesis worked on a reimplementation of from mural’s VDM-

SL model for a 3rd year undergraduate project. The implementation provides

a framework upon which a full working reimplementation of mural can be

built.

Even with the benefit of hindsight, it is unlikely that the effort spent on

resurrecting or reimplementing mural would have been cost-effective. That

effort might well have distracted the focus of the research away from the

provision of tools for easy inputting of language definitions.

It was the mural interaction style that was inspirational — getting the

code running again would not have paid off.

6.3.2 RODIN

Although RODIN is not a proof support tool, it has some interesting features.

The RODIN tool is described in more detail in Section 5.2.1.

RODIN automatically generates proof obligations from the user’s model,

and then attempts to satisfy those obligations automatically using a collec-

tion of plug-in proof checkers. The user can inspect the list of proof obliga-

tions for the current model and instantly tell which have been successfully

proven and which have not by a green or red icon displayed next to each

item on the list. The proof perspective of the RODIN tool allows the user

to inspect the proofs of the obligations, and where an obligation cannot be

automatically satisfied, the user can add additional hypotheses, add witness

values or apply rewrite rules to assist the proof checker. The proof of each

of the proof obligations can be viewed as a proof tree, which the user can

inspect and ‘prune’ if necessary. Pruning a proof tree at a particular point

removes everything below that point in the tree.

One of the features that we are interested in, with respect to our tool,

is how the RODIN tools performs checks on a user’s model as the user is
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working on it. The user does not have to click any buttons to have the

model checked. If the user modifies the model then the proof obligations

are automatically re-checked to make sure that they are still valid for the

changed model. We would like our proof support tool to be able to check a

user’s proof as they write it, make suggestions to the user and flag lines that

are incorrectly justified, all in the background without getting in the way.

The proof perspective is also a feature that is of interest, as the tool will

need display proofs in a way that will be convenient for the user.

6.4 Interaction Style

Section 2.5 outlines the reasoning approaches or directions (forwards, back-

wards and mixed) that might be taken when writing a proof, and illustrates

the approaches with examples. This section works through a simple proof to

show how a proof could be written using the tool, and tries to describe the

expected interaction between the user and a proof support tool when writ-

ing the proof. The example proof from Section 3.4.4 is used for this going

through the steps that the user has to take when writing the proof, and also

the steps that will be taken or suggested by the tool.

It is important that the proof support tool does not restrict the user

when writing the proof, but should allow the user to work in any way that is

convenient. The user should be able to work forward from the hypotheses or

backwards for the conclusion, or just add a line in the middle of the proof.

The first step for the user to take is to specify the hypotheses and con-

clusion of the proof, as below.

from (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0) s−→ σf

...
infer σf (r) ≥ 0 ??

The first hypothesis states that the execution of the program in an initial

state, σ0, will result in a final state σf . The conclusion of the proof states
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that the postcondition of the program will hold in the final state.

Lines of the proof that are unjustified are labelled with ‘??’ to show that

they require a justification but have not been justified yet.

We know that the part of the If statement that is executed is dependent

upon the value of its condition expression, so we start by stating that the

condition will evaluate to either true or false.

from (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0) s−→ σf

1. x < 0 : B ??
2. (x < 0, σ0) e−→ true ∨ (x < 0, σ0) e−→ false ??

infer σf (r) ≥ 0 ??

After adding line 2, the tool suggests that the or elimination rule be used

to justify the conclusion using the conjunction and two subproofs. When we

accept the suggestion, the tool then adds subproofs as lines 3 and 4, and

adds the justification to the conclusion.

from (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0) s−→ σf

1. x < 0 : B ??
2. (x < 0, σ0) e−→ true ∨ (x < 0, σ0) e−→ false ??
3. from (x < 0, σ0) e−→ true

...
infer σf (r) ≥ 0 ??

4. from (x < 0, σ0) e−→ false
...

infer σf (r) ≥ 0 ??
infer σf (r) ≥ 0 ∨-E(2, 3, 4)

We can now start to fill out the first subproof, line 3, for which we are

dealing with the case when the If statement’s condition evaluates to true, so

we can use the If-T rule. We add line 3.α to the sub proof, stating that the

whole If statement will go to some new state that we call σ1, and we justify

the line using the If-T rule, and using the hypothesis of the subproof on line

3 for the first parameter. We will now just concentrate on the subproof on
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line 3, rather than repeating the whole of the proof.

3. from (x < 0, σ0) e−→ true
3.α (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0)

s−→ σ1 if-T(3.h1, ??)
infer σf (r) ≥ 0 ??

We are using temporary line numbers for the subproof since we expect

that line 3.α will be in the middle part of the subproof, and we will be working

backwards from this line to the hypotheses. When working forwards it is

easy enough to have the lines automatically labelled sequentially, but when

working backwards it may be preferable to use temporary line numbers and

update them later, so that the line numbers are not automatically updated

every time a line is added.

Notice that there is a second parameter to the justification on line 3.α

that we have not filled in yet. This refers to the hypothesis of the If-T rule

that states that the ‘then’ part of the If statement will result in some new

state under the
s−→ transition relation. In the case of this If statement,

the ‘then’ part is an assignment statement, so we would expect the tool to

suggest a new line containing the ‘then’ part of the If statement and use the

Assign rule as a justification, and update the justification of line 3.α with a

reference to this new line.

3. from (x < 0, σ0) e−→ true
3.β (mk -Assign(r ,−x ), σ0) s−→ σ0 † {r 7→ −σ0(x )} Assign(??)
3.α (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0)

s−→ σ0 † {r 7→ −σ0(x )} if-T(3.h1, 3.β)
infer σf (r) ≥ 0 ??

The tool can continue to suggest new lines that can be used to correctly

apply a justification to a line, until we have reached a point where no more

extra lines need to be added, as shown below.
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from (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0) s−→ σf , x : Id
...

3. from (x < 0, σ0) e−→ true
3.δ (x , σ0) e−→ σ0(x ) Id(h2)
3.γ (−x , σ0) e−→ −σ0(x ) UnaryExpr(3.δ)
3.β (mk -Assign(r ,−x ), σ0) s−→

σ0 † {r 7→ −σ0(x )} Assign(3.γ)
3.α (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0)

s−→ σ0 † {r 7→ −σ0(x )} if-T(3.h1, 3.β)
infer σf (r) ≥ 0 ??

The justification of line 3.1, using the Id semantic rule, requires that we

know that x is of type Id (rather than an Expr), so we add an additional

hypothesis to the proof that states that x has the type Id .

At this point we will be working forwards from line 3.α, rather than

backwards, so we can ask the tool to renumber the lines of the subproof to

make them sequential and to replace the temporary line numbers that we

were using. When the lines are renumbered, the references in justifications

should also be updated by the tool with the appropriate line number to keep

the proof consistent.
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from (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0) s−→ σf ,
x : Id

1. x < 0 : B ??
2. (x < 0, σ0) e−→ true ∨ (x < 0, σ0) e−→ false ??
3. from (x < 0, σ0) e−→ true
3.1 (x , σ0) e−→ σ0(x ) Id(h2)
3.2 (−x , σ0) e−→ −σ0(x ) UnaryExpr(3.1)
3.3 (mk -Assign(r ,−x ), σ0) s−→

σ0 † {r 7→ −σ0(x )} Assign(3.2)
3.4 (mk -If (x < 0,mk -Assign(r ,−x ),mk -Assign(r , x )), σ0)

s−→ σ0 † {r 7→ −σ0(x )} if-T(3.h1, 3.3)
...

infer σf (r) ≥ 0 ??
4. from (x < 0, σ0) e−→ false

...
infer σf (r) ≥ 0 ??

infer σf (r) ≥ 0 ∨-E(2, 3, 4)

The next step in completing the proof would be to relate the final state

given in line 3.4 to the property that is stated in the goal of the subproof,

and then complete the subproof of line 4. The completed proof can be found

in Section 3.4.4.

6.5 Summary

This chapter outlines the features and goals of the prototype proof support

tool that is developed as part of this thesis.

The chapter also illustrates the kind of interaction expected between the

user and the tool when working on a proof.

The following chapter describes the development of the prototype proof

support tool.



Chapter 7

Proof Support Tool: A

Prototype

This chapter discusses the development of a prototype for a proof support tool

that allows the use of operational semantic rules in proofs about programs.

The intention of building a prototype proof support tool is to demonstrate

that appropriate tool support benefits the approach to reasoning about a

computer program using the operational semantics of a language.

The development of the prototype started with an abstract model of a

proof system (as described in Section 7.1) which was modelled using the

Vienna Development Method (VDM). This model was then used as the basis

for the prototype.

The code generation feature of the VDM toolbox [CSK10] was used to

produce a Java implementation of the model. The generated code provided

a framework for the construction of the prototype tool, and is described in

more detail in Section 7.2. The last step was to build a user interface and

link it to the generated Java code.

114
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7.1 VDM Model

The starting point in developing the proof support tool was to build a formal

model of a basic proof system that modelled inference rules and proofs, and

allowed for reasoning in propositional logic. The final model included support

for quantified expressions.

The purpose of the model is to specify the structure and required func-

tionality of the prototype proof support tool, that are independent of an

implementation. Using a modelling language like VDM allows us to make

precise descriptions about the desired behaviour and functionality of the tool

[FLM+05]. A VDM model allows invariants to be specified on types and in-

stance variables and pre- and post-conditions on operations and functions.

These allow the formalisation of constraints on the model that will need to be

followed in the implementation, and that can be be checked by the Toolbox.

Writing such constraints for the model also forces us to think about such

details at an early stage of the development cycle.

The model went through several iterations, starting as a very simple

model written in VDM-SL, and then was eventually translated into VDM++1,

which is an object oriented version of the language. The main purpose in

converting the model to VDM++ was to take advantage of the code genera-

tion feature of the Toolbox, and generate Java code directly from the model.

Converting the model to VDM++ also made it more readable, since opera-

tions were grouped into classes, rather than having a single operation that

had different cases to handle each class that could be passed to it.

This section describes the final version of the model, which was written in

VDM++, but here classes are represented as records instead to make it easier

to read. Record names relate to class names, and a record’s fields relate to

the instance variables of the class.

1The language definition for VDM-SL can be found in [LHB+96]. The VDM++ lan-
guage description can be found in [CSK05], and [FLM+05] gives a good overview of using
VDM++ in practical applications
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7.1.1 Forms

In the VDM model, the structure that is used to write expressions is a Form,

which is the parent-class for a number of classes.

Form = RelForm | Monad | Sequent | PHole | VSymb | BoolVal
| MapLit | Configuration | IntLit | LangForm | LangFormHole
| LookupForm | MapDefn | QForm | TypeDefn

Rather than explaining the structure of each of these classes, it would be

more instructive to show examples of the kind of expressions that can be

written with each of the subclasses.

RelForm a ∧ b
Monad ¬a
Sequent a, b ` c
PHole [1]
VSymb a
BoolVal true
MapLit {a 7→ b}
Configuration (s , σ)
IntLit 5
LookupForm m(a)

MapDefn a
m−→ b

QForm ∀x ∈ N · x > 5
TypeDefn Int | Bool

Many of these classes will contain Forms. For example, RelForm has a left-

hand side and a right-hand side which are both of type Form. In the example

used above, both sides consist of a VSymb, which is the class used to represent

a variable name.

The class PHole is used to represent a placeholder, and is explained in

Section 7.1.5. The classes LangForm and LangFormHole are both explained

in Section 7.2.4.
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7.1.2 Model of a Proof

The main focus of the VDM model of the proof system is to model the kind

of proofs in Section 2.1, which are identical to the style of [Jon90].

The proof class itself is minimal; it simply has a name2 and a goal.

Proof :: goal : Judgement
name : char+

A proof is modelled as a collection of Judgements, where each judgement

represents a ‘line’ in a proof. One of these judgements is selected as the

goal of the proof, and a pointer3 to it is stored in the goal field. The goal

judgement is the root of the proof and is linked to all of the other Judgements

in the proof.

Appendix F shows an example proof written as judgements, showing the

contents of each judgement field. The structure of a Judgement is shown

below.

Judgement :: hyps : Judgement∗

subJs : Judgement-set
concl : Form

just : Justification
parent : [Judgement ]
name : char+

All Judgements in the main body of a proof are subordinate to the goal

judgement, so will have references in the goal judgement’s subJs field. In the

case of a subproof, only the conclusion line of the subproof is subordinate to

the conclusion line of the main proof. The hypotheses and other lines in the

subproof are linked to the rest of the proof through the conclusion line of the

subproof.

2Notice that for the type of name, rather than a token which would be usual for a
VDM specification, a sequence of characters (char+) is used. This is so the name will be
of type String when the Java code is generated from the model (See Section 7.4.1).

3Further explanation about how pointers are used in the VDM model are given in
Section 7.4.1
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The Judgements of a proof form a doubly linked tree structure, with

the goal Judgement as the root. The references to parent and child nodes

are stored in the Judgement ’s subJs and parent fields. The parent field is

optional4 as the root node has no parent, and so will have a nil value in its

parent field.

Hypotheses are also subordinate to a goal judgement, but references to

hypotheses are stored in a goal Judgement ’s hyps field instead of in the SubJs

field. A judgement may link to hypotheses if it is a conclusion line, either of

the whole proof or of a subproof.

The body of the judgement, being an expression that represents the proof

line, is the concl field. A Form is the parent class for any expressions. There

are no restrictions on what can be a proof line (other than the Form must

be well-formed), but a proof line will require a justification.

Each Judgement in a formal proof requires a justification, which will be

stored in the just field. Justification are described in Section 7.1.3 below.

The name of a Judgement is used as an identifier when the Judgement

is being referred to, such as in a justification. The name is also used as the

line number of the Judgement when it is part of a proof.

7.1.3 Justifications

When constructing a formal proof, each line requires a justification. A jus-

tification should be attached to each judgement in a proof. The model uses

the following justifications.5

Justification = Hyp | RuleAppl | DefnAppl | EmptyJustif

4An optional type means it can take a value or a nil value
5Here Hyp and EmptyJustif are written as quote literals, but in the VDM++ model

they are actually classes since although they have no fields, they still have operations. Also,
in a VDM++ model this union type would instead be implemented using class inheritance,
so each of the four classes would be specified as being a subclass of Justification. This is
another reason why Hyp and EmptyJustif need to be classes.
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The justification field in a Judgement is not optional, so always requires

a justification. The default justification to use is an EmptyJustif , meaning

an empty justification, which is used when the judgement has not been jus-

tified yet. The justification field could be made optional and a nil used if

the judgement is unjustified, but using an EmptyJustif allows us to imple-

ment operations in the class, rather than trying to handle a nil entry in the

Judgement class. Also, hypotheses require no justification, so we want the

tool to be able to distinguish between a Judgement that has no justification,

and a Judgement that is a hypothesis and requires no justification.

To show that a Judgement is a hypothesis, we use Hyp. When a proof is

checked the tool will see a hypothesis as proven. A Judgement that has an

EmptyJustif as its justification is unproven.

The usual way for a line to be justified in a proof is by reference to an

inference rule. In the model this is called a justification by rule application.

The RuleAppl points to the inference rule that is being used as a justification,

and also the lines of the proof that the justification depends on.

RuleAppl :: rule : char+

theory : char+

dependsOn : Judgement∗

inv -RuleAppl(mk -RuleAppl(-, -, dep)) 4

∀i , j ∈ inds dep · i 6= j ⇒ dep(i) 6= dep(j )

The name of the rule being used as a justification is stored in the rule

field6, and the theory field stores the name of the theory (see Section 7.1.8)

to which the rule belongs.

The dependsOn field stores pointers to the judgements that match against

the hypotheses of the inference rule that is used as a justification. The

invariant on RuleAppl states that the dependancies should be unique.

Section 2.4 shows that syntactic definitions can be defined that allow an

6See Section 7.4.1 for discussion on why name is used to reference a rule, rather than
a pointer
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expression to be re-written by folding or unfolding it. In the model, a folded

or unfolded line is justified using a DefnAppl .

DefnAppl :: defn : char+

theory : char+

dependsOn : Judgement∗

inv -DefnAppl(mk -DefnAppl(-, -, dep)) 4 len dep = 1

The defn field stores the name of the definition being used as a justifica-

tion, and the theory field stores the name of the theory to which the definition

belongs.

The invariant on DefnAppl states that the number of Judgements that the

justification depends on should be exactly one, since a definition only takes

one parameter. This is equivalent to making the type of the dependsOn field

a single Judgement and having no invariant. This, however, would cause

some difficulty in the implementation of the parser (see Section 7.4.1).

7.1.4 Inference Rules

Inference rules are used in proofs to describe what can be inferred from a set

of knowns. They are explained in detail in Section 2.3. The main parts of

an inference rule are the hypotheses and conclusion.

Rule :: hyps : Form∗

concl : Form
proof : [Proof | Axiom | sos | as | cc]
name : char+

When an inference rule is used as a justification in a proof, lines of the

proof are matched against hypotheses of the inference rule. The hypotheses

of the inference rule are stored in a sequence since their order is important,

making it possible to check that justifications are valid.
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It can be determined if an inference rule is valid by referring to the proof

field. An inference rule that is taken to be self-evident is known as an Axiom,

and so its proof field will contain the Axiom quote literal, and it will be taken

to be valid and proven. Other inference rules require a proof to show that

they are valid. In which case, a pointer to a proof of the rule will be stored

in the proof field. An inference rule that has no proof will have nil in the

proof field (since it is an optional field), making the rule unproven.

We also write the abstract syntax, context conditions and semantic rules

of a programming language as inference rules (see Section 7.1.10). For these

we use the quote literals sos, as and cc in the proof field. Inference rules

with theses values in their proof field are taken to be valid and proven.

7.1.5 Placeholders and Binding

When we write an inference rule in our proof system, we define parts of the

rule to be placeholders, which are represented in the model as the PHole

class. These placeholders represent free variables and mark the points of the

rule that can be instantiated, or filled.

PHole :: id : char+

A PHole has an id to distinguish it from other PHoles7. Placeholders can

be instantiated by any class that is a subclass of Form (see Section 7.1.1).

Figure 7.1 shows the and introduction rule, with the variables marked as

placeholders.

In Figure 7.1 the placeholder [1] could either be instantiated by the vari-

able x , or by the expression y ∨z , or any other expression of type Form. The

instantiation of a placeholder should be consistent throughout the rule. So

both instances of the placeholder [1] should be instantiated with the same

expression.

7Athought the id in PHole is defined as a sequence of characters (a string), a number
is usually used for the placeholder id.
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∧-I

[1]
[2]
[1] ∧ [2]

Figure 7.1: ∧-Introduction rule, with placeholders.

The proof system used in this thesis uses inference rules as justifications

to conjectures in a proof. A justification by application of an inference rule is

essentially stating that the proof line is a valid instantiation of the conclusion

line of the inference rule, and the lines it depends on for the justification are

valid instantiations of the hypotheses of the inference rules.

A rule can only be added as a justification if the conclusion line of the rule

matches the line of the proof. But invalid justifications are not disallowed,

since only the conclusion of the rule is checked when the rule is selected. The

justification could be made to depend on other lines of the proof that do

not match the hypotheses of the rule. This approach is a little more flexible

than only allowing valid justifications to be added to a proof. The system is

however able to perform a more thorough check of a justification to determine

if it is valid, but this check is only performed when we want to check if the

proof is valid and complete, rather than as justifications are added.

To check the justification of a proof line we check that the proof line and

rule’s conclusion have the same form (both conjunctions or disjunctions etc.)

and build a mapping of PHoles to Forms that shows how the placeholders

should be filled. We then check the justification’s dependencies against the

rule’s hypothesis and add to the mapping. If at any point we come across a

contradictory mapping then we know that the line is not a valid instantiation

of the part of the rule.

To show how this works, an incomplete proof is used as an example, with

a line that uses the and introduction rule (see Figure 7.1) as a justification.
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from . . .
1 a ??
2 c ??
3 a ∧ b ∧-I(1,2)

...
infer . . .

To check that line 3 is justified correctly we first check that the form of

the line matches the form of the conclusion of the inference rule. Since they

are both conjunctions the line is a valid instantiation of the conclusion line of

the inference rule. The next step is to build a mapping of PHoles to Forms

from line 3 and the rule’s conclusion. This gives us the mapping below.

{[1] 7→ a, [2] 7→ b}

We repeat this for line 1 and the first hypothesis of the and introduction

rule, and get the following mapping.

{[1] 7→ a}

We then need to combine this with our first mapping. Since [1] is already

in our first mapping we check that they both map to the same term, which

they do. We can then repeat for line 2 and the next hypothesis of the inference

rule, which gives us the following mapping.

{[2] 7→ c}

The placeholder [2] already exists in the first mapping so we compare the

terms that they map to and find that they map to different terms. This means

we have found a conflict, so that line 2 cannot be used in the justification of

line 3, making the justification of line 3 invalid.
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7.1.6 Sequent

A sequent states that some conclusion is derivable from some hypothesis. A

sequent may also include sequent varaibles that are bound throughout the

sequent. Sequents are covered in Section 2.2. Below is the definition for a

sequent in the VDM model.

Sequent :: lhs : Form∗

rhs : Form
bindVars : VarSymb∗

The hypotheses of the sequent are contained in the lhs field, and the

conclusion in the rhs field. Sequent variables that are bound in the sequent

are stored in the bindVars field.

7.1.7 Quantified Expressions

This chapter does not go into any detail about how expressions are modelled,

apart from the brief overview of Forms in Section 7.1.1, where there is a brief

explanation of how quantified expressions are represented in the VDM model.

It is worth here discussing in more detail how the model represents quantified

expressions.

QSymb = UnivQ | ExistsQ

QForm :: symbol : QSymb
bindVars : VarSymb∗

bindTypes : Form∗

pred : Form

inv -QForm(mk -QForm(-, bv , bt , -)) 4 len bv = len bt

A quantified expression is represented in the model by QForm, and can

be can be a universally or existentially quantified expression, depending on

which QSymb it uses.
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Variables that are bound by the quantified expression are stored in the

bindVars and bindTypes fields. The bindVars field contains the names of

the variables that are bound by the expression; bindTypes contains the types

of the bound variables. In the bindTypes field, the type Form is used to

represent the type of the bound variable so that, for example, we can state

that the variable is in the domain of a mapping. Storing the variables and

types in two sequences (rather than a map) allows us to keep the order of the

list of bound variables, which is essential when instantiating the placeholders

in a quantified expression. The invariant on the datatype ensures that the

length of both sequences is always the same.

The pred field stores the predicate of the quantified expression. The

predicate may contain variables that are bound by the quantified expression,

as well as free variables.

7.1.8 Theory

A Theory is a collection of axioms, inference rules and definitions that are

related in some way [BFL+94].

Theory :: rules : Rule-set
proofs : Proof -set
defns : Defn-set
name : char+

A Theory in the model also includes a collection of proofs that are related

to the theory, by either being a proof of an inference rule or just mostly using

inference rules from the theory.

7.1.9 Library

A library is a convenient data structure for grouping all of the theories to-

gether.

Library :: theories : Theory-set
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7.1.10 Modelling a language

In the proof system that is being modelled we want to be able to write the

kinds of proofs introduced in Section 3.4.4, where we can reason about pro-

grams using operational semantics. To do this we need to have the language

specification, including the semantics, available to be used as justifications.

In an early model, once simple proofs had been modelled in propositional

logic, the model was extended, adding additional classes to allow language

descriptions to be added to the rule library, with semantic rules being differ-

ent from inference rules. The final model was greatly simplified by specifying

the language using standard inference rules (see Section 7.1.4), rather than

adding new classes and types to handle the language specification and justi-

fications using semantics.

The early sections in Chapter 3 cover the usual way of writing the abstract

syntax, context conditions and semantics for a language. For a language

specification to be useful to the model we need to write it as a collection of

inference rules. Below is a demonstration of how the abstract syntax, context

conditions and semantics for an If statement are written as inference rules.

Abstract Syntax

The usual way of writing an abstract syntax is to use the VDM record type.

For an If statement we would write

If :: test : Expr
th : Stmt
el : Stmt

This is quite straightforward to convert to an inference rule, shown below.

as-If

test ∈ Expr
th ∈ Stmt
el ∈ Stmt
mk -If (test , th, el) ∈ If

The definition becomes a rule about the types of the various parts of

the If statement. From the rule we can infer that if all of the parts of the
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If statement have the appropriate type, and they are combined using the

constructor, then we have an If statement.

Context Conditions

Context conditions are written as VDM functions that are able to determine

if a statement is valid or not. The language definition in Appendix B uses the

function wf -Stmt to determine if a statement is valid. The function takes a

statement and a mapping of declared variables and their types, and returns

true or false. Below we show the signature for the wf -Stmt function, and

the case that deals with an If statement.

wf -Stmt : Stmt × Id
m−→ Type → B

wf -Stmt(mk -IfStmt(test , th, el), tpm) 4

typeof (test , tpm) = Bool ∧
wf -Stmt(th, tpm) ∧
wf -Stmt(el , tpm)

The typeof function used in the wf -stmt function takes an expression and

a mapping of declared variables to their type (Id to Type), and returns the

type of the expression. This is determined by looking at the relations and

variables used in the expression. The language definition in Appendix B

includes the definition of the typeof function.

To write this context conditions as inference rules we introduce a new

type, wfStmt , which is a subtype of Stmt . A Stmt is also a wfStmt if it

is well -formed , meaning all of its component parts are also well-formed. A

separate rule is defined for each of the cases of the wf -Stmt function. The

above case of the wf -Stmt function would be written as an inference rule as

below.
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cc-If

tpm: Id
m−→ Type

tpm ` typeof (test): BoolTp
tpm ` th: wfStmt
tpm ` el : wfStmt
tpm ` mk -IfStmt(test , th, el): wfStmt

Comparing cc-IF rule with the equivalent function, we can see that the

pattern matching condition of the function forms part of the conclusion, and

the body of the function becomes the hypotheses.

The tpm variable used in the inference rule has the same type as the type

map used in the wf -Stmt function, and is used in the same way. The tpm

mapping comes from a Program and is a mapping of declared variable names

to their types. The contents of the type map has a bearing on whether a

statement is well-formed or not, since, for example, an assignment to an unde-

clared variable is not well-formed. So the context condition rule is essentially

stating that a statement is well-formed with respect to a given type-map.

The cc-If rule states that if the test part of the If statement is a boolean

expression, and the th and el parts are well-formed in the type map tpm,

then the whole If statement will be well-formed in tpm, and will therefore

be of type wfStmt .

Semantics

There was no need to change how semantic rules are written, as they are

already written as rules.

sos-If-t

(test , σ)
e−→ true

(th, σ)
s−→ σ′

(mk -IfStmt(test , th, el), σ)
s−→ σ′

It was, however, necessary to make additions to the model so that
s−→
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and
e−→ could be used as relation symbols.

7.2 Java Prototype

The section covers the development of the Java prototype of the proof sup-

port tool. The prototype includes the key features that were described in

Chapter 6.

We wanted to be able to make use of the formal model of the proof system

in the development of the prototype. The VDM Toolbox provides two ways of

doing this. The first is to use the dynamic link facility of the VDM Toolbox,

that allows VDM models to be linked to a Java or C++ program. Method

calls at the program level are translated to function or operation calls on the

model, with results being passed back to the program.

We decided not to use this method since the overhead involved in translat-

ing commands and passing them to the model, then passing the results back

to the program, would cause delays in the responsiveness of the interface.

Another approach is to use the code generation [CSK08] facility of the

Toolbox to generate Java code from the model. The advantage of this ap-

proach is that Java code can be generated directly from the model, compiled

and then run, without having to link between the model and a user interface.

We decided to use the second approach, to generate Java directly from

the VDM++model using the VDM Toolbox. We see this way as being more

convenient, and it should execute faster than using the dynamic link facility.

Generating Java from the model does not mean that the model is discarded

once the code is generated, but we can still use the model and make necessary

changes to it, and then generate the Java code again.

7.2.1 Java Code Generation

Using the Java code generation facility of the VDM Toolbox, it is possible to

convert the model to Java classes, once it has been syntax and type checked

without any errors. This process is quite straightforward — the Java code is
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generated with the click of a button, and the generated code mostly compiles

without any problems.

One of the reasons for converting the model to VDM++ from VDM-SL

was to be able to use the VDM Toolbox to generate Java code from the

model. A class in the VDM++ model becomes a class in the generated Java

code.

The Java code generated from the model gave a collection of classes8 that

provided a starting point for the prototype, providing the datatypes and

classes needed to represent inference rules, proofs etc. The next step was to

write a parser (see Section 7.2.2) that could read in a file and build abstract

syntax trees (ASTs) using the generated Java classes.

Using the code generation facility of the toolbox to generate Java code

from the VDM model has several advantages over writing the java classes

from scratch, one of them being the time that is saved by not having to

write a Java implementation of the model. Also, we did not have to worry

about any errors or inconsistencies that might have been introduced in a

hand written Java implementation.

If at any point in the implementation a change needs to be made to

the model, the required changes can be made to the VDM model, and then

the Java implementation can be instantly updated with the new changes by

re-generating the Java code from the updated model.

During the implementation of the prototype there were a few changes

that needed to be made to the model that were specifically for the benefit of

the generated Java code. Some of these issues are discussed in Section 7.4.1.

When a Java class is generated from a VDM model, the class uses other

classes that are in the VDM Java Library package provided by the VDM

Toolbox. The import statement is automatically added to the Java class.

Any other classes that are written that make use of the generated class may

also have to import this package and handle the custom exceptions added by

the VDM Toolbox.

8This collection of classes generated from the VDM++ model will be referred to as a
framework
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7.2.2 Parser

Once the framework of Java classes had been generated from the VDM model,

the next thing to do was build a parser to make use of the classes and

instantiate them with rules and proofs, etc.

The first thing to do was to decide on a concrete syntax to use, and then

write a file containing inference rules, definitions and proofs, to give some

test data to use when building a parser.

Using the scanner (or lexical analyser) generator JFlex [KRD10], a scan-

ner was created that could read all of the symbols used in the concrete syntax

of the file. Then the parser generator CUP [HFP+10] was used to make a

parser that could parse the file, and make use of the Java classes. The com-

pleted parser was able to read in rules, definitions and proofs from a file and

generate a Java AST that could then be used by a proof support tool.

As well as reading in from a file,the tool should be able to save any changes

or additions to the rules and proofs to file. To do this a method called output

was added to each class of the Java framework. When called on a class, this

method returns a string representation of the class, in a format that can be

read by the parser. The method call is passed down the abstract syntax tree,

so the returned value is actually a string representation of the class and its

child classes. For example, when output is called on a proof, the method

call will be passed on to the root judgement of the proof, and then on to

each of the judgements in the proof, and so on until the terminal nodes of

the abstract syntax tree are reached and values are passed back up the tree,

resulting in a string representing the whole proof.

File Format

It is worth explaining here a little about the “file format” used to store the

rules, definitions and proofs. This is only intended to be used by the tool to

store its library, to read the library in from and write the library to a file.

The file format is hidden from users so they don’t have to learn the syntax

to write a rule, since the user interface will provide a way to add rules and
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write proofs.

In the file, rules, definitions and proofs should be grouped together in a

theory, identified by the keyword theory, followed by the name of the theory.

A file may contain multiple theories, and everything that follows the name

of the theory is taken to be part of that theory, until the next use of the

theory keyword. A theory contains a list of rules, definitions and proofs, in

that order; or it may contain just rules or rules and definitions or rules and

proofs, as long as they are written in the appropriate order.

When saved to file, the or introduction left rule would look as follows

rule orIL, [2], [1] or [2], Axiom;

The keyword rule states that a rule is being defined, and is followed by

the name of the rule. Then the hypotheses, conclusion and justification are

given, all separated by commas. The or introduction left rule is an axiom,

so its justification has the keyword Axiom. If the rule was an inference rule

that required a proof, then the justification would be the name of the proof.

A semi-colon is used as a terminator to mark the end of the rule definition.

The numbers surrounded by square brackets are placeholders, and mark

the parts of the rule that can be instantiated by variables or expressions,

when the rule is used as a justification.

The layout of a proof in the file is quite similar to how it would be written

on paper. Below is the proof of the and introduction inference rule.

proof andIProof

from a | b

1 not not a by prop.notnotI(h1)

2 not not b by prop.notnotI(h2)

3 not ( not a or not b ) by prop.notorI(1, 2)

infer a and b by defn prop.defand(3)

;

A proof starts with the keyword proof, followed by the name of the proof.

Hypotheses are preceded by the keyword from, and separated by a vertical
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bar. The conclusion of the proof should be the last line and start with the

keyword infer. A line of the proof consists of a line number, the body of the

line, and a justification, all separated by white space.

A line justification can be justified by an inference rule or by a definition9.

Rule justifications start with the keyword by , then state the name of a theory,

then a dot, the name of the rule and then parameters in parentheses. A

definition justification has the same format, but has the additional keyword,

defn.

7.2.3 User Interface

Once theories, rules, proofs and definitions could be read from a file and

produce a Java AST, the next step was to start to build a user interface and

link it to the existing classes. The interface was written in Java, using the

components provided by the Swing and AWT libraries. The main reason for

choosing to use Java to build the user interface was due to the code generated

from the VDM model being Java, making it easier to integrate a Java user

interface with the Java classes from the VDM model.

Figure 7.2 shows a screen dump of the prototype’s user interface. The

user interface consists of the theory viewer and the proof builder. The theory

viewer displays the theory library and each theory can be expanded to show

rules, definitions and proofs that are part of that theory. Existing proofs

can be selected and viewed in the proof builder, allowing the user to work

on a proof. The proof builder part of the user interface was designed so it

would display a proof in the way they are written on paper (see Section 2.1),

but with some slight changes to make the proof easier to work with in the

proof builder. First of all, each hypothesis is displayed on a separate line,

and labelled (rather than having them all on the from line), and from and

infer are not used in the proof. Judgements are each displayed on a separate

line, and the convention is followed that hypotheses go at the top, and the

conclusion at the bottom of the proof. As a result of these changes, the proof

9Justification using a definition is referred to as folding or unfolding (see Section 2.4)
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Figure 7.2: User interface for the prototype.

layout looks more like that used by Fitch in [Fit52]. Section 7.3.3 explains

the specifics of how the tool can be used to build a proof.

7.2.4 The User’s Language

When writing a proof that contains a program, we will tend to write the

program in a concrete syntax to make it shorter and more readable. But this

gives the problem of how the tool should read this concrete syntax, since it

is for a user defined language, and we want the tool to be able to use any

language defined by the user. The solution here was to use a separate parser

that can be plugged-in to the tool that can parse the user’s language into a

standard format that the tool can understand and use.

To make the parser for this language compatible with the prototype a

Java interface class is provided that the abstract syntax trees generated by

the parser should implement. This interface, called UserLangObject, contains

several methods that must be implemented, and provide a way for the pro-
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totype tool to interact with the ASTs from the parser. These methods are

shown below.

public String concreteOut();

public String getId();

public Vector getParams();

public boolean equiv(UserLangObject f);

The method concreteOut returns a string representation of an object in

the concrete syntax of its language. This method is used when displaying

the object in a proof, or when saving a proof to file.

The getId method returns the name of the construct, so for an if state-

ment the returned string would be “If”.

The getParams method should return a list of any parameters the con-

struct might have. The names of the parameters will be returned as Strings

inside a Vector. For an If statement, the result might be {test , th, el}.
We want to be able to compare objects, so each class should implement

the equiv method and be able to compare itself for equality against other

UserLangObjects.

When writing some concrete syntax in a proof, the text should be written

in double quotes so that the parser knows that it is part of the user’s language,

and can pass the text to the appropriate parser, and get back an instance

of a class that implements the UserLangObject interface and is an abstract

syntax representation of the parsed text.

Modelling the User’s Language

A new class was added to the VDM model called UserLangObject , which

contains the above methods with the bodies of the methods being defined as

‘subclass responsibility’10. With the class having no instance variables and

no implemented operations, it was possible to designate it to be an interface

when generated as a Java class.

10This is similar to defining a Java method as abstract in an abstract class. The imple-
mentation of the method becomes the responsibility of a subclass
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This class is incorporated into the model using the LangForm class, which

is a subclass of Form, and represents any piece of code in the user’s language.

The LangForm class is essentially a ‘wrapper’ class that just contains an in-

stance of a UserLangObject , and provides operations to interact with the

UserLangObject , as well as implementing operations required by Form.

LangForm :: ast : UserLangObject

When specifying the semantics of a language, statements are added from

the user’s language to a semantic rule. To use the rule as a justification we

need to be able to specify placeholders as in Section 7.1.5. To allow the user

to do this a new class was added to the VDM model that allows a statement

in the user’s language to be written abstractly, and which can be instantiated

by a concrete representation of the statement.

A LangFormHole is a particular type of placeholder that can only be filled

by a LangForm. The LangFormHole class has a name, and a parameter list.

LangFormHole :: name : char+

params : VarSymb∗

A LangForm can only instantiate a LangFormHole if it has a matching

name and parameter list. The LangFormHole’s name is compared to the

returned value of the getId method called on the LangForm’s UserLangOb-

ject, to make sure the correct construct is filling the placeholder. Checking

the parameter list of the LangForm against the getParams method of the

LangForm’s ast field, ensures that the various parts of the construct also

match.

Since the type of params is a VarSymb, the parameters can be either a

VSymb or a PHole, allowing the parameters to be placeholders.
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7.3 Using the Tool

This section presents the process of using the proof support tool, from adding

a language description, to constructing a proof about a program.

7.3.1 Specifying a Language

Before semantic rules can be used as justification, they first must be added to

the tool. To add a language description to the tool the language description

must be written in the form of inference rules (as explained in Section 7.1.10),

which are added to the tool’s library in a new theory. This gives an abstract

definition of the language and allows the rules to be used as justifications in

a proof.

As discussed in Section 7.2.4, to be able to use the concrete syntax of a

user’s language in a proof, we need to be able to parse the text and make

use of the returned abstract syntax tree. This requires a parser for the user’s

language. To assist in making the parser for the user language, three tools

are used: Classgen [WD10], JFlex [KRD10] and CUP [HFP+10].

Classgen is a tool that allows users to write descriptions of classes by

specifying their global variables, methods and inheritance relations, and then

generate the Java classes from the description. This tool is used to generate

that Java classes of the abstract syntax tree of the language. The tools JFlex

and CUP are also used to create a parser for the user’s language. The parser

will make use of the Java classes generated by the Classgen tool to create an

abstract syntax representation of some parsed text.

7.3.2 Building a Theory

A Theory is a collection of axioms, inference rules, definitions and proofs that

are related in some way (see Section 7.1.8). In the prototype tool, all theories

are listed in the theory viewer, which uses a tree structure. Expanding a

theory shows three groups, Rules, Defns and Proofs.
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Inference rules, axioms and language rules are all grouped together in the

Rules part of the theory. The various types of rules can be distinguished by

the small icon that is displayed next to the name of the rule. For example,

any axioms in the list will have an icon displaying the letters ‘Ax’.

Selecting a rule in the list will display the rule in the rule viewer, just

below the theory viewer. The rule viewer will also show if the displayed rule

is proven or not11.

To add a new theory, users right-click on the root of the tree in the theory

viewer (labelled ‘Theories’), then select ‘Add Theory’; the tool will then ask

for a theory name. Once a name has been entered, an empty theory will be

created and added to the theory viewer.

Adding Rules

To add a rule to a theory, users right-click on the ‘Rules’ node in the theory

and select ‘Add New Rule’ from the menu. In the current version of the

prototype the user specifies the new rule by typing the text representation

of the rule, as used in the tool’s file format (see Section 7.2.2). The text is

passed to the parser and, if the text is syntactically correct, the returned rule

is saved to the selected theory.

It would be better if the user did not have to type the rule in this way,

and one of the ‘wish list’ (see Section 8.2) items is to improve the way a rule

is entered so that it is easier and more intuitive for the user.

Adding Definitions

The process of adding a definition is similar to adding a new rule. Users first

select the theory that the definition is to be added to, then right-click on the

‘Defns’ node and select ‘Add New Defn’ from the menu. An input dialog is

displayed, and the user types the text representation of the new definition,

11In the case of inference rules, they are proven if they have an associated proof that is
proven. Axioms, abstract syntax, context conditions and semantic rules are all taken to
be proven
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as used in the tool’s file format (see Section 7.2.2). When the user clicks

‘ok’ on the input dialog the text will be sent to the parser and, if the text is

syntactically correct, a definition will be returned and saved in the selected

theory.

As with the method of adding a new rule, ideally this should improved

so that no knowledge of the syntax of the tool’s file format is required.

Adding a Proof to a Rule

Inference rules that are not axioms are required to be proven, and may have

an attached proof. If an inference rule does not yet have a proof the user

may add a proof of the rule by right-clicking on the rule and selecting ‘Add

Rule Proof’. The tool will then create a new proof with the hypotheses and

conclusion of the rule, and add a pointer to the proof to the rule’s proof field.

Once the proof has been proven, then the rule is marked as proven.

7.3.3 Building a Proof in the Tool

The first thing to do when creating a proof is to add a new proof to a theory

in the library. This is done by right-clicking on the proofs node of a theory

and selecting “Add New Proof”. The tool will first ask for a name for the

proof, and then will ask for the proof goal, which is the conclusion line of the

proof. A proof consisting of just a conclusion will then be added to the list

of proofs and the proof can be viewed by double-clicking on the name of the

proof in the list.

So far the proof consists of just a conclusion, so the next step is to add

the hypotheses. This is done by right-clicking on the conclusion line of a

proof in the proof editor and selecting “Insert Hyp”. The conclusion line

must be selected since only conclusions can have hypotheses. Selecting the

conclusion line lets the tool know we are adding the hypothesis to the proof,

not to a subproof. When inserting a new hypothesis the user will first be

asked for a line number. There is no restriction on this, but the convention

should be followed of labelling hypotheses with a ‘h’, so the first hypothesis
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would be ‘h1’, and the next ‘h2’. The user will then be asked to add the

proof line, which will then be parsed and added to the proof as a hypothesis.

The justification will automatically be set to Hyp, meaning it is a hypothesis.

A new line is added to to the proof by right-clicking on the proof editor

and selecting “Insert line” from the menu. As with the hypothesis, the user

will be asked to provide the label and the body of the new line. The new line

will be added to the proof with an empty justification (which is displayed as

“??”).

A line number can be changed at any point in the proof, by right-clicking

on the line number and selecting “Renumber line”. The new line number

must not already be in use. Any references to the old line number in jus-

tifications are automatically updated in the displayed proof, since the justi-

fications refer to the object reference of a Judgment rather than the String

representation of its line number.

To add a justification to a line, users right-click on the justification part

of the line and in “Suggested Rules” sub menu a list of rules and definitions

that can be applied to the line will be shown, broken down into theories. The

tool decides if a rule can be applied by comparing the selected line against

the conclusion of the rule, and if they match, the rule will be added to the list

of suggested rules. The tool only allows the addition of a rule from the list

of suggestions. Once a rule has been selected the tool will then ask for the

line numbers of the lines that the justification depends on, one line number

for each of the hypotheses in the rule. These will be lines of the proof that

match against the hypotheses of the selected rule. The order in which the

line numbers are given is important, since the first line number will match

against the first hypothesis of the rule, etc.

When adding a justification to a line, the tool will not check the dependent

lines of the justification against the hypotheses of the rule. These are only

checked when the user uses the proof checker, as described below.

Due to restrictions in the Java Swing components used to implement the

proof viewer, a proof is not directly editable using the proof viewer. To edit a
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line of the proof the user must right-click on the line and select “Edit Line”,

which brings up a dialog box that allows the user to edit the text of the line.

Once the text has been edited it will then be re-parsed and the Judgement

will be updated.

A subproof can be easily added to a proof by first adding the conclusion

line of the subproof as a regular line. Users right-click on this new line

and select “Make line a subproof”. The tool will then ask the user for a

hypothesis, which will be added as a hypothesis to the selected line, and will

be labelled ‘x.h1’, where ‘x’ is the number of the selected line. Additional

hypotheses and lines can be added to the subproof by right-clicking on the

conclusion line of the subproof and selecting the appropriate option from the

menu.

Figure 7.3: Proof checker.

At any point during the proof construction, the user can check that the

proof is valid and identify lines of the proof that are either not justified, or

are incorrectly justified. This proof checker (see Figure 7.3) is found in the

‘Proof’ tab, in the same pane as the theory library. The user can check the
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proof that is currently in the proof viewer by clicking the ‘Check’ button.

Once the proof has been checked by the tool, then a list of line numbers will

be displayed along with either a red or a green icon. A line number that

has a green icon has a valid justification. A line number with a red icon has

either an invalid or empty justification.

7.4 Discussion

This section discusses some of the problems that were faced during the de-

velopment of the VDM model and the prototype proof support tool.

7.4.1 Model Compromises

During the development of the prototype some difficulties were encountered

that were due to the method of building the prototype; that is, writing a

VDM model and then generating Java from the model. While working on

the Java implementation of the prototype, some issues arose that required

small changes to the VDM model. They have been termed compromises since

the purpose in making the change to the model was for the benefit of the

generated Java code. The changes usually involved a slightly different way

of specifying something, and did not affect the integrity of the model.

Pointers and References

When writing a specification in VDM-SL it is common to specify a type that

acts as a pointer, then create a mapping of ‘pointers’ to ‘objects’12, the object

being an instance of a record type. This allows objects and pointers to be

modelled in a specification. For example, RuleId might be defined as a token

type and used as a pointer to a Rule, and elsewhere in the specification,

where the rules are stored, there would be a mapping of RuleId to Rule. The

12They are not actually objects, since VDM-SL is not object-oriented
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early model of the proof system13 used such Id types to act as pointers to

‘objects’.

If we are interested in generating Java code from a model, then writing

specifications using this kind of ‘pointer’ makes the generated code more

complicated. Since Java is an object-oriented language, objects have point-

ers14 and we don’t need to have this extra class that represents a pointer in

the specification.

The VDM++ language, unlike VDM-SL, is an object-oriented language,

and objects have references [FLM+05]. So in a VDM++ model, anytime we

refer to an instance of an object, we are using a reference to the instance,

rather than the instance itself.

When the model was converted from a VDM-SL to a VDM++ model,

most record types were converted to classes, meaning Id types were no longer

necessary, so they were removed from the model. This simplified the Java

code generated from from the model, since object references in the model

translate to object references in the Java code. For example, the collection

of rules becomes a set of Rule, which in Java becomes a HashSet.

Names and Identifiers

Many of the classes in the VDM++ model have a name field so that an

instance of a class can be distinguished from other instances and identified

by the user. The usual type to use for such an identifier in a VDM model is

the token type.

When Java code is generated from a model, a token type becomes an

Object type, which is not as useful as a String type would be (since strings

are generally used for names). Instead of using the token type for a class

name, char+ (non-empty sequence of characters) is used, which becomes a

String in the generated Java code.

13See Section 7.1
14Or references, to use the Java terminology
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Equality and toString

Many of the Java classes generated from the VDM model required extra

methods to integrate them with the prototype and parser. Since these meth-

ods were only required in the Java prototype, it did not make sense to add

them to the VDM model then generate the Java code, as this would only

have unnecessarily complicated the VDM model.

One method that was required in many of the classes was an equals

method that would override the default equals method of the class, allowing

us to write our own definitions for class equality.

Another method that was required was the output method, which is used

to output the user’s theory library to a file. The output method is called

on the Library class, which calls the output method on the classes that are

stored in the library. Each class returns a string that represents the class,

and that can be read by the parser to re-create the class (See Section 7.2.2).

When a Java class is regenerated from the model, any changes made to

the class file will be overwritten. To prevent this from happening, special

tags can added in comments before and after the addition methods. These

tags are read by the toolbox when it re-generates a Java class from a VDM++

class, and tell the toolbox not to remove the section of code from the class.

Without these tags the toolbox would just rebuild the Java class file from

scratch, ignoring any changes that had been made since it was last generated.

Class Inheritance

The VDM++ language supports multiple inheritance, and a class can be a

subclass of more than one superclass. Inheritance in Java, however, works

differently; a class can only have one superclass, but can also implement

multiple interfaces. The Toolbox only allows Java code to be generated if

the inheritance structure of the classes in the model meet the requirements of

inheritance in Java. Using the Toolbox, the user may choose to have classes

generated as Java interfaces. So a Java class can only be generated from a

VDM++ class if the class has at most one superclass that will be generated
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as a class, and any other superclasses are set to be generated as interfaces.

Since we wanted to generate Java code from the VDM++ model, we had

to restrict inheritance in the model so that a class only had one superclass.

This wasn’t a huge restriction, but it did require us to make some adjustments

to the inheritance structure of the model to allow Java code to be generated

from it.

Sequences and Vectors

A sequence in VDM is an ordered collection of elements of the same type.

When a Java class is generated from a VDM model, a sequence is represented

as a Vector object. The Java code generator does not make use of Java

generics, so the Vector just provides us with an ordered collection of elements

of type Object , which is a weaker type description than is given by the model.

If we have a Vector that we expect to contain Forms, if we want to call

any methods on an element in the Vector, then we need to first cast it to

a Form. If we cast an element to the wrong class then we will cause a

ClassCastException to be thrown. Using generics, we could add a restriction

to the Vector so that it can only contain Forms, or classes that inherit from

Form. Adding the restriction also means it is not necessary to cast the

elements of the Vector.

Not using generics to restrict collections should not cause any problems

since the Toolbox makes sure that the model is type correct before any Java

code is generated. Where a problem might occur is when other Java classes

are written that integrate with the generated code, as is the case with the

tool’s parser. In the example of the Vector , we should be aware of what type

of class we expect to be stored in the Vector , and care needs to be taken

in this code to make sure that we are adding the right type of classes to

the Vector (or any other collection that might be used), to avoid potential

exceptions being thrown.

In the parser, we make use of this weakening of the representation of a

sequence to our advantage, since any class can be added to a Vector . When



CHAPTER 7. PROOF SUPPORT TOOL: A PROTOTYPE 146

a proof is being parsed, the dependencies of the justifications are represented

as strings, but we want them to be references to instances of Judgements.

However, we have to parse the whole proof before we can create all of the

Judgements in the proof and have access to the reference to the Judgements.

So the parser will create the justification and provide an instance of a Vector

containing strings as the dependencies of the justification. Once the proof is

parsed, the parser will make another pass over the Judgements and replace

the strings in the dependency list of each justification with a reference to the

appropriate Judgement .

Instantiating justifications in this way means that a modification to the

VDM model was needed to benefit the Java implementation. In the model,

a DefnAppl can only have one Judgement as a dependency, but the type of

the dependsOn field is defined as a sequence of Judgements, and then an

invariant is used to restrict the length of the sequence to exactly one. If the

type of the field was a Judgement , then a Judgement must be provided when

an instance of DefnAppl is created in the Java implementation, and it would

not be possible to pass it a string. Making the type of the dependsOn field a

sequence in the VDM model means that it will be a Vector in the generated

Java code, allowing a string to be passed when an instance of DefnAppl is

created, and it can then be modified later by replacing the string with a

reference to the appropriate Judgement .

7.4.2 Other Challenges

One of the biggest challenges in the development of the VDM model and

the prototype was the problem of how to represent a user’s language in the

model, and how to allow the user to write statements in his language in

semantic rules and proofs, and have the tool understand it. The user should

be able to use the tool to write proofs about a program in any language that

he can write a description for, so the interface to the user’s language needs

to be general, so that different languages can be used.

The solution to this is outlined in Sections 7.2.4 and 7.3.1. It may be
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possible to extend the solution by writing an additional tool that makes

use of all the tools that are used here. So the user only has to write a

description of the language, and the tool would automatically generate the

parser, java classes and inference rules. This would certainly make defining

a new language for use with the tool easier, and could be added to the ‘wish

list’ (see Section 8.2).

7.5 Summary

This chapter covers the development of a prototype proof support tool for

reasoning about programs using operational semantics. The first stage of the

development was to produce a VDM++ model of a proof system. Using the

VDM toolbox, Java code was generated from the VDM++ model, providing

the basis for the Java prototype, to which a graphical user interface was

added.



Chapter 8

Conclusions

The purpose of this thesis is to investigate an alternative method of reason-

ing about computer programs, by using operational semantic descriptions

directly. This thesis also argues that such proofs would be benefited by

adequate tool support.

The specific goals of the thesis are stated in the thesis hypotheses in the

introduction to the thesis (Chapter 1), which are copied here for convenience.

1. The operational semantics of a programming language can be used as

a basis for reasoning about programs written in the language — this

approach is applicable to a wider class of languages than that covered

by axiomatic semantics.

2. Although some setup is required when basing program reasoning on op-

erational semantics, this effort can be made acceptable with a suitable

support system.

This chapter will review the achievements and contributions of this thesis,

and show how the thesis supports the thesis hypotheses.

148
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8.1 Main Contribution

The approach to using operational semantic rules in a natural deduction

proof of a program was introduced in Section 3.4.4, and expanded on with

further examples in Chapter 4. Three example programming languages1 are

used in this thesis to allow the examples to be diverse.

The examples provided in this thesis support the argument for reasoning

about programs directly with operational semantic descriptions, and show

that this method of reasoning about programs is not just restricted to simple

sequential programs, but can be applied to programs that use more complex

language features, including concurrency.

Section 4.4 uses the operational semantic approach to show that a simple

parallel program meets its specification. In Section 4.5, the same program

is used, but the example attempts to use an axiomatic approach, and shows

that it is not possible to prove the program correct due to the interference be-

tween the parallel threads. These sections therefore show that the operational

approach can be used for concurrent programs with interference, whereas a

strict Hoare style axiomatic approach is unable deal with interference.

In terms of the second hypothesis, one of the achievements of this thesis

is the development of a prototype proof support tool for reasoning about

computer programs using operational semantic descriptions. The user is

able to use the tool to specify a language and use the language definition in

proofs of programs written in that language. As well as a language definition,

additional setup is required in the form of a parser for the concrete syntax

of the user defined language (Sections 7.2.4 and 7.3.1). This is needed to

allow the user to write concrete syntax in a proof. Section 8.2 suggests that

only allowing an abstract syntax to be used in a proof would make language

definition and setup easier, but may make proofs longer and more difficult

to read.

The prototype tool was instantiated for each of the three languages used

in this thesis, allowing all of the proofs in the thesis to be checked in the

1Base(Appendix B), Simple(Appendix C) and Parallel(Appendix D).



CHAPTER 8. CONCLUSIONS 150

tool. The tool allows proofs, inference rules, language description, etc., to be

saved to file and then opened up later. The data is saved to file in a syntax

that is intended to be easy to read. Appendix E shows the three language

descriptions exported from the tool in this syntax, along with the examples

proofs from this thesis.

Early on the decision was made to develop a proof support tool, rather

than using an existing tool, or try to rebuild the Mural tool. It was hoped

that this would result in a tool that was more suited to the approach of using

operational semantic rules as inference rules in natural deduction proofs. As

mentioned in Section 5.4 the tools that were identified as being potentially

most suitable were Jape and Mural. Using an existing proof tool has obvi-

ous advantages, but also has its share of difficulties. Although Jape meets

many of the requirements outlined in Chapter 6, its interaction style is quite

restrictive and does not allow middle-out reasoning (see Section 2.5). Mural

had a less restrictive interaction style, allowing unjustified lines to be added

to the middle of a proof without linking it to existing lines, and only consid-

ered a proof complete when the inserted lines were linked to both hypothesis

and goal. The Mural tool is no longer available and the effort to rebuild it

may not have paid off (see Section 6.3.1). But Mural’s intereaction style did

provide inspiration for to proof support tool.

The tool is designed to be a generic proof support tool that can be instan-

tiated for different user defined languages. Once the user has provided the

language description to the tool, they are then able to use the semantic rules

of the language to prove properties about programs written in the language.

Chapter 6 outlines what are considered to be important features for the tool

to have.

The development of the prototype tool started with a VDM model of the

proof system. This allowed the structure and key features of the system, that

are independent of an implementation, to be modelled formally and defined

early in the development cycle. The final version of the model was more

general than initially expected. Rather than including special constructs for
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the various parts of a language description, the decision was made to instead

change how a language description was represented, so that the abstract

syntax and context conditions are written as rules. This resulted in the VDM

model only modelling inference rules and their use within natural deduction

proofs, with a language description being treated as a collection of inference

rules.

Using the VDM toolbox, Java classes were generated from the VDM

model, forming the basis of the Java implementation. If any changes were

required to the model during the development, the changes could be made

to the VDM model, and then the Java code re-generated from the model.

The generated Java code was never modified except to add additional Java

specific methods such as the .equals() method. This meant that the Java

implementation would always reflect the model. Choosing to work in this

way did introduce some challenges (see Section 7.4.1), but it also had many

advantages, such as the time saved in constructing an implementation of the

model and the assurance that generated classes would be a valid implemen-

tation of the VDM model.

The development of a proof support tool for reasoning about programs

using operational semantics was not as straightforward as the author initially

thought. However, the prototype tool does still demonstrate the usefulness

of tool support for this type of reasoning. The tool becomes especially use-

ful when dealing with large proofs such as the proof of the parallel search

program in Section 4.4.

This thesis also introduces a new approach to defining the context con-

ditions of a language, using rules rather than functions (see Section 7.1.10).

8.2 Further work

The proof support tool developed was a prototype that only contained the

essential features of a final version of the tool. The next step for this work

would be to implement a proof support tool that contained more of the
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features identified as being useful for the tool (see Section 6.2), as well as

other features identified during the implementation of the prototype as being

useful additions to the tool.

This ‘wish list’ is an explanation of features or possible extensions to the

tool that were not added due to the time constraints of this work, but could

be added in the future. The lack of these features in the prototype tool does

not affect the use of the tool, but once implemented, they would be a benefit

to the tool. Many of the features described here were identified during the

implementation of the prototype tool.

A feature listed in the requirements that was not implemented in the

prototype was the option to collapse a subproof so that only hypotheses and

conclusion are left visible. This would be as a useful feature to increase the

readability of the proof, especially on computers where screen size is limited.

This was available in Mural and would be a straightforward addition.

When the user adds a new line to a proof, the tool is able to suggest rules

that may be used to justify the line. Ideally, suggestions should be extended

further so that once the user selects a rule from the list of suggestions, the

tool also suggests adding new lines to the proof that match the hypotheses of

the selected rule, or suggests existing proof lines that match the hypotheses

of the selected rule.

If the user selects to have the tool add the new lines to the proof to

match the hypotheses of the selected rule, the tool will need to identify an

appropriate instantiation of placeholders in the inference rule to terms in the

proof. An instantiation of placeholders to variables or terms will be created

from the selected proof line and the conclusion line of the inference rule. If

a hypothesis contains a placeholder that is not included in the instantiation,

then the placeholder will be left in the new proof line, and the user will have

to fill it manually.

This feature could be implemented quite easily and it would likely be a

benefit to the user, and may also help the user to write proofs faster. The ex-

amples in Chapter 4 have shown us that a certain degree of automation would
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help the user focus on the more important details of the proof, while the tool

could assist by automatically completing what the user might consider the

tedious details of the proof.

The way a user specifies rules and definitions in the tool could also be im-

proved. At the moment, the user writes the rule or definition in the concrete

syntax of the tool’s parser, then the tool parses the text and adds the rule or

definition to the library. Adding a more usable way of specifying rules and

definitions would mean that the user is not required to learn the syntax of

the tool’s parser.

The way that the user specifies a language definition could be improved

so that the proof support tool can be used to write proofs about programs

written in that language. First, the user must provide the abstract syntax,

context conditions and operational semantic of the language, all written as

rules. Adding these rules to the rule library allows them to be used to justify

steps in a proof, and also allows the tool to suggest the rules as justifications.

Second, the user needs to define a concrete syntax for the language and write

a parser that can be used by the proof support tool. This will allow the user

to write program statements in a proof in a concrete syntax. The writing

of a parser is assisted by the use of the tools JFlex, CUP and Classgen.

The process of defining a language to be used in the proof support tool is

described in more detail in Sections 7.2.4 and 7.3.1.

This process could be improved by writing an addition to the tool that

allows the user to write a language specification, and then the tool auto-

matically generates the rules for the language, along with the parser for the

concrete syntax of the language. This would certainly make the process of

adding a language description to the tool a lot easier.

The difficulties involved in allowing the use of a concrete syntax in a proof

could be avoided by only allowing an abstract syntax to be used in proofs.

The user would then only have to provide the abstract syntax, context con-

ditions and operational semantics of a language as inference rule to the rule

library. The reason for not restricting the notation to abstract syntax in
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proofs is that allowing concrete syntax provides a shorthand for writing lan-

guage statements and makes proofs easier to read, and also easier to write2.

Providing a user with both of these options might also be a good solution.

Another extension to the tool could be to link the tool to existing auto-

mated theorem proving tools such as HOL or Isabelle. For simple conjectures

the user could select an option to have the tool send the conjecture to an

external theorem prover that would run in the background and attempt to

prove it. If successful, the conjecture would be labelled as being justified by

use of the external theorem prover.

Additionally, an option could be included for the user to export a proof

to an external theorem prover such as Spass, to see if it can be automatically

proven. This would involve a translation of the language description and the

proof into a form that would be understood by the external tool.

The prototype allows the user to save proof and rule data to file and

reload it later. Ideally, the tool could also have the facility to export proofs

and rules to LATEX.

An ambitious extension to the proof support tool could be to have the

tool “learn” proof strategies from the user (a similar idea is expressed in

[BGJ09]). As the user works on a proof, the tool would learn the approach

that the user takes to write proofs about different kinds of programs and

develop strategies that it can use to attempt to automatically write proofs.

2Keeping track of brackets when writing a long program statement in an abstract syntax
can become confusing.
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Appendix A

Inference Rules

A.1 Propositional Logic

Axioms

∨-I-left
e2

e1 ∨ e2

∨-I-right
e1

e1 ∨ e2

∨-E
e1 ∨ e2; e1 ` e; e2 ` e
e

¬¬-I
e
¬¬e

¬¬-E
¬¬e
e

¬-∨-I
¬e1;¬e2

¬(e1 ∨ e2)

¬-∨-E-left
¬(e1 ∨ e2)
¬e2
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¬-∨-E-right
¬(e1 ∨ e2)
¬e1

Definitions

a ∧ b
def
= ¬(¬a ∨ ¬b)

a ⇒ b
def
= ¬a ∨ b

a ⇔ b
def
= (a ⇒ b) ∧ (b ⇒ a)

Derived Rules

∧-I
e1; e2

e1 ∧ e2

∧-E-Left
a ∧ b
b

∧-E-Right
a ∧ b
a

∧-subs-left
e1 ∧ e2; e1 ` e
e ∧ e2

⇒-E-L
a ⇒ b; a
b

⇒-I-L-vac
b
a ⇒ b

⇒-I-L-vac
¬a
a ⇒ b
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A.2 Predicate Logic

Axioms

∃-E

∃x ∈ A · P(x )
y ∈ A,P(y) ` e
e

∃-I

a ∈ A
P(a)
∃x ∈ A · P(x )

¬-∃-E
a ∈ A;¬(∃x ∈ A · P(x ))
¬P(a)

Definitions

∀x ∈ A · P(x )
def
= ¬∃x ∈ A · ¬P(x )

A.3 Equality

Axioms

=-subs-left
e1 = e2; P(e2)
P(e1)

=-subs-right
e1 = e2; P(e1)
P(e2)



Appendix B

Base Language

This appendix contains the description of what is referred to as the Base Language
— a simple sequential language that has a simple state that maps variable names
to integer values.

B.1 Abstract Syntax

Program :: vars : Id m−→ Type
body : Stmt

Type = IntType

Stmt = If | Assign |While | Seq

Assign :: lhs : Id
rhs : Expr

Seq :: sl : Stmt
sr : Stmt

If :: test : Expr
th : Stmt
el : Stmt

While :: test : Expr
body : Stmt

Expr = Id | Value | ArithExpr | RelExpr | UnaryExpr

ArithExpr :: opd1 : Expr
op : Plus |Minus

opd2 : Expr
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RelExpr :: opd1 : Expr
op : Equals | NotEquals | LT | GT | LTEQ | GTEQ

opd2 : Expr

UnaryExpr :: opd : Expr
op : Minus

Value = Z | B

B.2 Context Conditions

wf -Program: Program → B
wf -Program(mk -Program(vars, body) 4

wf -Stmt(body , vars)

wf -Stmt : (Stmt × Id m−→ Type)→ B

wf -Stmt(mk -Assign(lhs, rhs), tpm) 4
lhs ∈ dom tpm ∧
typeof (rhs, tpm) = IntType

wf -Stmt(mk -Seq(sl , sr), tpm) 4
wf -Stmt(sl , tpm) ∧
wf -Stmt(sr , tpm)

wf -Stmt(mk -While(b, s), tpm) 4
typeof (b, tpm) = BoolType ∧
wf -Stmt(s, tpm)

typeof : Expr × Id m−→ Type → Int | Bool
typeof (e, tpm)4

cases e of
mk -ArithExpr(-, -, -)→ IntType

mk -RelExpr(-, -, -)→ BoolType
mk -UnaryExpr(-, -)→ IntType

e ∈ B→ BoolType
e ∈ Z→ IntType
e: Id→ tpm(e)

end
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B.3 Semantics

B.3.1 Semantic Objects

Σ = Id m−→ Z

B.3.2 Program Semantics

The program semantics initialises the declared variables and sets their values to
zero.

p−→:P (Program ×Done)

Program

σ = {id 7→ 0 | id ∈ dom vars}
(body , σ) s−→ σ′

(mk -Program(vars, body))
p−→ Done

B.3.3 Statement Semantics

s−→:P ((Stmt × Σ)× Σ)

If-T

(test , σ) e−→ true
(th, σ) s−→ σ′

(mk -If (test , th, el), σ) s−→ σ′

If-F

(test , σ) e−→ false
(el , σ) s−→ σ′

(mk -If (test , th, el), σ) s−→ σ′

Assign
(rhs, σ) e−→ v
(mk -Assign(lhs, rhs), σ) s−→ σ † {lhs 7→ v}

Seq

(sl , σ) s−→ σ′

(sr , σ′) s−→ σ′′

(mk -Seq(sl , sr), σ) s−→ σ′′
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While-T

(test , σ) e−→ true
(body , σ) s−→ σ′

(mk -While(test , body), σ′) s−→ σ′′

(mk -While(test , body), σ) s−→ σ′′

While-F
(test , σ) e−→ false
(mk -While(test , body), σ) s−→ σ

B.3.4 Expression Semantics

e−→:P ((Expr × Σ)×Value)

Arith-Plus

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), σ) e−→ v1 + v2

Arith-Minus

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Minus, e2), σ) e−→ v1-v2

Rel-Equals

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,Equals, e2), σ) e−→ v1 = v2

Rel-NotEquals

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,NotEquals, e2), σ) e−→ v1 6= v2

Rel-GT

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,GT, e2), σ) e−→ v1 > v2
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Rel-LT

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,LT, e2), σ) e−→ v1 < v2

Rel-GTEQ

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,GTEQ, e2), σ) e−→ v1 ≥ v2

Rel-LTEQ

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,LTEQ, e2), σ) e−→ v1 ≤ v2

sos-UnaryExpr
(e, σ) e−→ v
(mk -UnaryExpr(Minus, e), σ) e−→ −v

sos-id
id : Id
(id , σ) e−→ σ(id)

B.4 Inference Rules

σ-Equiv

(s, σ) s−→ σ′

(s, σ) s−→ σ′′

σ′ = σ′′

†-Equiv
σ′ = σ † {x1 7→ v1, . . . , xn 7→ vn}
σ′(xi) = vi

GT-F
(mk -RelExpr(x ,GT, y), σ) e−→ false
σ(x ) ≤ σ(y)

GT-T
(mk -RelExpr(x ,GT, y), σ) e−→ true
σ(x ) > σ(y)
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LT-F
(mk -RelExpr(x ,LT, y), σ) e−→ false
σ(x ) ≥ σ(y)

LT-T
(mk -RelExpr(x ,LT, y), σ) e−→ true
σ(x ) < σ(y)



Appendix C

Simple Language

C.1 Abstract Syntax

Program :: vars : Id m−→ Type
body : Stmt

Type = IntType | ArrayType

Stmt = If | Assign |While | Seq | Swap | GDo

Assign :: lhs : VarRef
rhs : Expr

Seq :: sl : Stmt
sr : Stmt

If :: test : Expr
th : Stmt
el : Stmt

While :: test : Expr
body : Stmt

Swap :: lhs : Id
rhs : Id

GDo :: body : Clause∗

Clause :: b : Expr
s : Statement

Expr = Value | ArithExpr | RelExpr | UnaryExpr | VarRef

VarRef = Id | ArrayRef

175
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ArrayRef :: array : Id
index : Expr

ArithExpr :: opd1 : Expr
op : Plus |Minus

opd2 : Expr

RelExpr :: opd1 : Expr
op : Equals | NotEquals | LT | GT | GTEQ | LTEQ

opd2 : Expr

UnaryExpr :: opd : Expr
op : Minus

Value = Z | B | ArrayValue

ArrayValue = N m−→ Z

C.2 Context Conditions

wf -Program: Program → B
wf -Program(mk -Program(vars, body) 4

wf -Stmt(body , vars)

wf -Stmt : (Stmt × Id m−→ Type)→ B

wf -Stmt(mk -Assign(lhs, rhs), tpm) 4
lhs ∈ dom tpm ∧
typeof (rhs, tpm) = IntType

wf -Stmt(mk -Seq(sl , sr), tpm) 4
wf -Stmt(sl , tpm) ∧
wf -Stmt(sr , tpm)

wf -Stmt(mk -While(b, s), tpm) 4
typeof (b, tpm) = BoolType ∧
wf -Stmt(s, tpm)

wf -Stmt(mk -Swap(lhs, rhs), tpm) 4
lhs ∈ dom tpm ∧
rhs ∈ dom tpm

CCs for GDo
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typeof : Expr × Id m−→ Type → Int | Bool
typeof (e, tpm)4

cases e of
mk -ArithExpr(-, -, -)→ IntType

mk -RelExpr(-, -, -)→ BoolType
mk -UnaryExpr(-, -)→ IntType

mk -ArrayRef (-, -)→ IntType
e ∈ B→ BoolType
e ∈ Z→ IntType
e: Id→ tpm(e)

end

C.3 Semantics

C.3.1 Semantic Objects

Σ = Id m−→ Z

C.3.2 Program Semantics

The program semantics initialises the declared variables and sets their values to
zero.

p−→:P (Program ×Done)

Program

σ = {id 7→ 0 | id ∈ dom vars}
(body , σ) s−→ σ′

(mk -Program(vars, body))
p−→ Done

C.3.3 Statement Semantics

s−→:P ((Stmt × Σ)× Σ)

If-T

(test , σ) e−→ true
(th, σ) s−→ σ′

(mk -If (test , th, el), σ) s−→ σ′
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If-F

(test , σ) e−→ false
(el , σ) s−→ σ′

(mk -If (test , th, el), σ) s−→ σ′

Assign
(rhs, σ) e−→ v
(mk -Assign(lhs, rhs), σ) s−→ σ † {lhs 7→ v}

Assign-Array

(i , σ) e−→ index
index ∈ dom σ(a)
(e, σ) e−→ v
(mk -Assign(mk -ArrayRef (a, i), e), σ) s−→ σ † {a 7→ σ(a) † {index 7→ v}}

Seq

(sl , σ) s−→ σ′

(sr , σ′) s−→ σ′′

(mk -Seq(sl , sr), σ) s−→ σ′′

While-T

(test , σ) e−→ true
(body , σ) s−→ σ′

(mk -While(test , body), σ′) s−→ σ′′

(mk -While(test , body), σ) s−→ σ′′

While-F
(test , σ) e−→ false
(mk -While(test , body), σ) s−→ σ

Swap

(lhs, σ) e−→ v1

(rhs, σ) e−→ v2

(mk -Swap(lhs, rhs), σ) s−→ σ † {lhs 7→ v2, rhs 7→ v1}

GDo-F
∀i ∈ inds cs · (cs(i).b, σ) e−→ false
(mk -GDo(cs), σ) s−→ σ
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GDo-T

i ∈ inds cs
(cs(i).b, σ) e−→ true
(cs(i).s, σ) s−→ σ′

(mk -GDo(cs), σ′) s−→ σ′′

(mk -GDo(cs), σ) s−→ σ′′

C.3.4 Expression Semantics

e−→:P ((Expr × Σ)×Value)

Arith-Plus

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), σ) e−→ v1 + v2

Arith-Minus

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Minus, e2), σ) e−→ v1-v2

Rel-Equals

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,Equals, e2), σ) e−→ v1 = v2

Rel-NotEquals

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,NotEquals, e2), σ) e−→ v1 6= v2

Rel-GT

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,GT, e2), σ) e−→ v1 > v2

Rel-LT

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,LT, e2), σ) e−→ v1 < v2
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Rel-GTEQ

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,GTEQ, e2), σ) e−→ v1 ≥ v2

Rel-LTEQ

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -RelExpr(e1,LTEQ, e2), σ) e−→ v1 ≤ v2

sos-UnaryExpr
(e, σ) e−→ v
(mk -UnaryExpr(Minus, e), σ) e−→ −v

ArrayRef

(i , σ) e−→ index
index ∈ dom σ(a)
(mk -ArrayRef (a, i), σ) e−→ σ(a)(index )

sos-id
id : Id
(id , σ) e−→ σ(id)

C.4 Inference Rules

σ-Equiv

(s, σ) s−→ σ′

(s, σ) s−→ σ′′

σ′ = σ′′

†-Equiv
σ′ = σ † {x1 7→ v1, . . . , xn 7→ vn}
σ′(xi) = vi

GT-F
(mk -RelExpr(x ,GT, y), σ) e−→ false
σ(x ) ≤ σ(y)

GT-T
(mk -RelExpr(x ,GT, y), σ) e−→ true
σ(x ) > σ(y)
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LT-F
(mk -RelExpr(x ,LT, y), σ) e−→ false
σ(x ) ≥ σ(y)

LT-T
(mk -RelExpr(x ,LT, y), σ) e−→ true
σ(x ) < σ(y)



Appendix D

Parallel Language

This appendix contains the full language description of the Parallel language. The
semantics of this language are defined in a small step semantics, so that we can
model the interference that occurs between parallel threads of execution.

This language includes a simple one-dimensional array that can only contain
integer values, just like the Array language.

The language includes an atomic assignment statement that evaluates an ex-
pression and then stores the result to the state in a single step, so it cannot be
interfered with by a parallel thread of execution. The semantics for this atomic
assignment statement is given in a big step semantics, since it should be executed
in a single step.

Concurrency is introduced into the language by the Par statement, which has
a left and a right statement that are executed in parallel.

D.1 Abstract Syntax

Program :: vars : Id m−→ Type
body : Stmt

Type = IntType | ArrayType

Stmt = If | Assign |While | Seq | Par | nil

Assign :: lhs : VarRef
rhs : Expr

Seq :: sl : Stmt
sr : Stmt

Par :: sl : Stmt
sr : Stmt

182
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If :: test : Expr
th : Stmt
el : Stmt

While :: test : Expr
body : Stmt

Expr = Value | ArithExpr | RelExpr | UnaryExpr | VarRef

VarRef = Id | ArrayRef

ArrayRef :: array : Id
index : Expr

ArithExpr :: opd1 : Expr
op : Plus |Minus

opd2 : Expr

RelExpr :: opd1 : Expr
op : Equals | NotEquals | LT | GT | GTEQ | LTEQ | AND | OR

opd2 : Expr

UnaryExpr :: opd : Expr
op : Minus — Len

Value = Z | B | ArrayValue

ArrayValue = N m−→ Z

D.2 Context Conditions

wf -Program: Program → B
wf -Program(mk -Program(vars, body) 4

wf -Stmt(body , vars)

wf -Stmt : (Stmt × Id m−→ Type)→ B

wf -Stmt(mk -Assign(lhs, rhs), tpm) 4
lhs ∈ dom tpm ∧
typeof (rhs, tpm) = Int

wf -Stmt(mk -Seq(sl , sr), tpm) 4
wf -Stmt(sl , tpm) ∧
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wf -Stmt(sr , tpm)

wf -Stmt(mk -Par(sl , sr), tpm) 4
wf -Stmt(sl , tpm) ∧
wf -Stmt(sr , tpm)

wf -Stmt(mk -While(b, s), tpm) 4
typeof (b, tpm) = Bool ∧
wf -Stmt(s, tpm)

typeof : Expr × Id m−→ Type → Int | Bool
typeof (e, tpm)4

cases e of
mk -ArithExpr(-, -, -)→ IntType

mk -RelExpr(-, -, -)→ BoolType
mk -UnaryExpr(-, -)→ IntType

e ∈ B→ BoolType
e ∈ Z→ IntType
e: Id→ tpm(e)

end

D.3 Semantics

D.3.1 Semantic Objects

Σ = Id m−→ Z | ArrayValue

D.3.2 Program Semantics

The program semantics initialises the variables that are of type Int, and sets their
values to zero. Variables of type ArrayType are not initialised.

p−→:P (Program ×Done)

Program

σ = {id 7→ 0 | id ∈ dom vars ∧ vars(id) = ArrayType}
(body , σ) s−→ (nil, σ′)
(mk -Program(vars, body))

p−→ Done
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D.3.3 Statement Semantics

s−→:P ((Stmt × Σ)× (Stmt × Σ))

Assign
(e, σ) e−→ v
(mk -Assign(id , e), σ) s−→ (nil, σ † {id 7→ v})

Assign-Array

(e, σ) e−→ v
(i , σ) e−→ index
(mk -Assign(mk -ArrayRef (a, i), e), σ) s−→ (nil, σ † {a 7→ σ(a) † {index 7→ v}})

Seq-Step
(sl , σ) s−→ (sl ′, σ′)
(mk -Seq(sl , sr), σ) s−→ (mk -Seq(sl ′, sr), σ′)

Seq-E
(mk -Seq(nil, sr), σ) s−→ (sr , σ)

Par-L
(sl , σ) s−→ (sl ′, σ′)
(mk -Par(sl , sr), σ) s−→ (mk -Par(sl ′, sr), σ′)

Par-R
(sr , σ) s−→ (sr ′, σ′)
(mk -Par(sl , sr), σ) s−→ (mk -Par(sl , sr ′), σ′)

Par-E
(mk -Par(nil,nil), σ) s−→ (nil, σ)

If-Eval
(test , σ) e−→ test ′

(mk -If (test , th, el), σ) s−→ (mk -If (test ′, th, el), σ)

If-T
(mk -If (true, th, el), σ) s−→ (th, σ)

If-F
(mk -If (false, th, el), σ) s−→ (el , σ)
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While-E
(mk -While(test , body), σ) s−→ (mk -If (test ,mk -Seq(body ,mk -While(test , body)),nil), σ)

nil
(nil, σ) s−→ (nil, σ)

D.3.4 Expression Semantics

e−→:P ((Expr × Σ)× Expr)

Arith-L
(e1, σ) e−→ e1′

(mk -ArithExpr(e1, op, e2), σ) e−→ mk -ArithExpr(e1′, op, e2)

Arith-R
(e2, σ) e−→ e2′

(mk -ArithExpr(e1, op, e2), σ) e−→ mk -ArithExpr(e1, op, e2′)

Arith-E

e1: Z
e2: Z
(mk -ArithExpr(e1, op, e2), σ) e−→ [[op]](e1, e2)

Rel-L
(e1, σ) e−→ e1′

(mk -RelExpr(e1, op, e2), σ) e−→ mk -RelExpr(e1′, op, e2)

Rel-R
(e2, σ) e−→ e2′

(mk -RelExpr(e1, op, e2), σ) e−→ mk -RelExpr(e1, op, e2′)

Rel-E

e1: Z
e2: Z
(mk -RelExpr(e1, op, e2), σ) e−→ [[op]](e1, e2)

Unary-Eval
(e, σ) e−→ (e ′, σ′)
(mk -UnaryExpr(op, e), σ) e−→ mk -UnaryExpr(op, e ′)
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Unary-E
e: Z
(mk -UnaryExpr(Minus, e), σ) e−→ −e

Unary-E
e: Z
(mk -UnaryExpr(Len, e), σ) e−→ e

ArrayRef
(i , σ) e−→ i ′

(mk -ArrayRef (a, i), σ) e−→ mk -ArrayRef (a, i ′)

ArrayRef-E

i : N
i ∈ dom σ(a)
(mk -ArrayRef (a, i), σ) e−→ σ(a)(index )

Id-E
id : Id
(id , σ) e−→ σ(id)
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{
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{
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=
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u
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]
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+
+
{
x
|
-
>
y
:
:
s
i
g
m
a
_
0
,
y
|
-
>
x
:
:
s
i
g
m
a
_
0
}
)

b
y
b
a
s
e
.
s
i
g
m
a
_
e
q
u
i
v
(
h
1
,
1
)

3
x
:
:
s
i
g
m
a
_
f
=
y
:
:
s
i
g
m
a
_
0

b
y
?
?

4
y
:
:
s
i
g
m
a
_
f
=
x
:
:
s
i
g
m
a
_
0

b
y
?
?

i
n
f
e
r

(
x
:
:
s
i
g
m
a
_
f
=
y
:
:
s
i
g
m
a
_
0
)
a
n
d
(
y
:
:
s
i
g
m
a
_
f
=
x
:
:
s
i
g
m
a
_
0
)

b
y
p
r
o
p
.
a
n
d
I
(
3
,
4
)

;



APPENDIX E. LANGUAGES IN THE PROOF TOOL 199
E

.3
P

a
ra

ll
e
l

L
a
n
g
u
a
g
e

/
*
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

*
-
-
P
a
r
a
l
l
e
l
L
a
n
g
u
a
g
e
-
-

*
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

*
/

t
h
e
o
r
y
p
a
r
~
;

/
/
A
b
s
t
r
a
c
t
S
y
n
t
a
x

r
u
l
e
a
s
P
r
o
g
r
a
m
,
[
v
a
r
s
]
i
n
m
a
p
o
f
{
I
d
}
{
T
y
p
e
}
|
[
b
o
d
y
]
i
n
S
t
m
t
,
m
k
h
_
P
r
o
g
r
a
m
(
[
v
a
r
s
]
,
[
b
o
d
y
]
)
i
n
P
r
o
g
r
a
m
,
A
S
;

r
u
l
e
a
s
I
f
,
[
t
e
s
t
]
i
n
E
x
p
r
|
[
t
h
]
i
n
S
t
m
t
|
[
e
l
]
i
n
S
t
m
t
,
m
k
h
_
I
f
S
t
m
t
(
[
t
e
s
t
]
,
[
t
h
]
,
[
e
l
]
)
i
n
I
f
S
t
m
t
,
A
S
;

r
u
l
e
a
s
W
h
i
l
e
,
[
b
]
i
n
E
x
p
r
|
[
b
o
d
y
]
i
n
S
t
m
t
,
m
k
h
_
W
h
i
l
e
S
t
m
t
(
[
b
]
,
[
b
o
d
y
]
)
i
n
W
h
i
l
e
S
t
m
t
,
A
S
;

r
u
l
e
a
s
S
e
q
,
[
l
s
]
i
n
S
t
m
t
|
[
r
s
]
i
n
S
t
m
t
,
m
k
h
_
S
e
q
S
t
m
t
(
[
l
s
]
,
[
r
s
]
)
i
n
S
e
q
S
t
m
t
,
A
S
;

r
u
l
e
a
s
P
a
r
,
[
l
s
]
i
n
S
t
m
t
|
[
r
s
]
i
n
S
t
m
t
,
m
k
h
_
P
a
r
S
t
m
t
(
[
l
s
]
,
[
r
s
]
)
i
n
P
a
r
S
t
m
t
,
A
S
;

r
u
l
e
a
s
A
s
s
i
g
n
,
[
l
h
s
]
i
n
I
d
|
[
r
h
s
]
i
n
S
t
m
t
,
m
k
h
_
A
s
s
i
g
n
S
t
m
t
(
[
l
h
s
]
,
[
r
h
s
]
)
i
n
A
s
s
i
g
n
S
t
m
t
,
A
S
;

r
u
l
e
a
s
I
n
t
_
T
y
p
e
,
_
,
<
I
n
t
T
y
p
e
>
i
n
T
y
p
e
,
A
S
;

r
u
l
e
a
s
A
r
r
a
y
_
T
y
p
e
,
_
,
<
A
r
r
a
y
T
y
p
e
>
i
n
T
y
p
e
,
A
S
;

r
u
l
e
a
s
I
f
_
S
t
m
t
,
[
s
]
i
n
I
f
S
t
m
t
,
[
s
]
i
n
S
t
m
t
,
A
S
;

r
u
l
e
a
s
W
h
i
l
e
_
S
t
m
t
,
[
s
]
i
n
W
h
i
l
e
S
t
m
t
,
[
s
]
i
n
S
t
m
t
,
A
S
;

r
u
l
e
a
s
S
e
q
_
S
t
m
t
,
[
s
]
i
n
S
e
q
S
t
m
t
,
[
s
]
i
n
S
t
m
t
,
A
S
;

r
u
l
e
a
s
P
a
r
_
S
t
m
t
,
[
s
]
i
n
P
a
r
S
t
m
t
,
[
s
]
i
n
S
t
m
t
,
A
S
;

r
u
l
e
a
s
A
s
s
i
g
n
_
S
t
m
t
,
[
s
]
i
n
A
s
s
i
g
n
S
t
m
t
,
[
s
]
i
n
S
t
m
t
,
A
S
;

r
u
l
e
a
s
N
i
l
_
S
t
m
t
,
[
s
]
i
n
N
i
l
,
[
s
]
i
n
S
t
m
t
,
A
S
;

r
u
l
e
a
s
I
d
_
I
,
_
,
[
i
]
i
n
I
d
,
A
S
;

r
u
l
e
a
s
_
V
a
l
u
e
_
I
d
,
[
e
]
i
n
I
d
,
[
e
]
i
n
V
a
r
R
e
f
,
A
S
;

r
u
l
e
a
s
_
V
a
l
u
e
_
A
r
r
a
y
R
e
f
,
[
e
]
i
n
A
r
r
a
y
R
e
f
,
[
e
]
i
n
V
a
r
R
e
f
,
A
S
;

r
u
l
e
a
s
_
E
x
p
r
_
A
r
i
t
h
,
[
e
]
i
n
A
r
i
t
h
E
x
p
r
,
[
e
]
i
n
E
x
p
r
,
A
S
;

r
u
l
e
a
s
_
E
x
p
r
_
R
e
l
,
[
e
]
i
n
R
e
l
E
x
p
r
,
[
e
]
i
n
E
x
p
r
,
A
S
;
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r
u
l
e
a
s
_
E
x
p
r
_
U
n
a
r
y
,
[
e
]
i
n
U
n
a
r
y
E
x
p
r
,
[
e
]
i
n
E
x
p
r
,
A
S
;

r
u
l
e
a
s
_
E
x
p
r
_
V
a
l
u
e
,
[
e
]
i
n
V
a
l
u
e
,
[
e
]
i
n
E
x
p
r
,
A
S
;

r
u
l
e
a
s
_
E
x
p
r
_
V
a
r
R
e
f
,
[
e
]
i
n
V
a
r
R
e
f
,
[
e
]
i
n
E
x
p
r
,
A
S
;

r
u
l
e
a
s
_
A
r
r
a
y
R
e
f
,
[
a
r
r
a
y
]
i
n
I
d
|
[
i
n
d
e
x
]
i
n
E
x
p
r
,
m
k
h
_
A
r
r
a
y
R
e
f
(
[
a
r
r
a
y
]
,
[
i
n
d
e
x
]
)
i
n
A
r
r
a
y
r
e
f
,
A
S
;

r
u
l
e
a
s
_
A
r
i
t
h
E
x
p
r
,
[
o
p
d
1
]
i
n
E
x
p
r
|
[
o
p
]
i
n
<
/
<
P
l
u
s
>
^
<
M
i
n
u
s
>
/
>
|
[
o
p
d
2
]
i
n
E
x
p
r
,

m
k
h
_
A
r
i
t
h
E
x
p
r
(
[
o
p
d
1
]
,
[
o
p
]
,
[
o
p
d
2
]
)
i
n
A
r
i
t
h
E
x
p
r
,
A
S
;

r
u
l
e
a
s
_
R
e
l
E
x
p
r
,
[
o
p
d
1
]
i
n
E
x
p
r
|

[
o
p
]
i
n
<
/
<
E
q
u
a
l
s
>
^
<
N
o
t
E
q
u
a
l
s
>
^
<
L
T
>
^
<
G
T
>
^
<
G
T
E
Q
>
^
<
L
T
E
Q
>
^
<
A
N
D
>
^
<
O
R
>
/
>
|

[
o
p
d
2
]
i
n
E
x
p
r
,
m
k
h
_
A
r
i
t
h
R
e
l
(
[
o
p
d
1
]
,
[
o
p
]
,
[
o
p
d
2
]
)
i
n
R
e
l
E
x
p
r
,
A
S
;

r
u
l
e
a
s
_
U
n
a
r
y
E
x
p
r
,
[
e
]
i
n
E
x
p
r
,
m
k
h
_
U
n
a
r
y
E
x
p
r
(
<
M
i
n
u
s
>
,
[
e
]
)
i
n
U
n
a
r
y
E
x
p
r
,
A
S
;

r
u
l
e
a
s
_
B
o
o
l
_
V
a
l
u
e
,
[
e
]
i
n
B
o
o
l
,
[
e
]
i
n
V
a
l
u
e
,
A
S
;

r
u
l
e
a
s
_
i
n
t
_
V
a
l
u
e
,
[
e
]
i
n
I
n
t
,
[
e
]
i
n
V
a
l
u
e
,
A
S
;

r
u
l
e
a
s
_
A
r
r
a
y
V
a
l
u
e
_
V
a
l
u
e
,
[
e
]
i
n
A
r
r
a
y
V
a
l
u
e
,
[
e
]
i
n
V
a
l
u
e
,
A
S
;

r
u
l
e
a
s
_
A
r
r
a
y
V
a
l
u
e
,
[
e
]
i
n
m
a
p
o
f
{
N
a
t
}
{
B
o
o
l
}
,
[
e
]
i
n
A
r
r
a
y
V
a
l
u
e
,
A
S
;

/
/
C
o
n
t
e
x
t
C
o
n
d
i
t
i
o
n
s

r
u
l
e
c
c
2
,
[
1
]
i
n
d
o
m
[
2
]
|
[
1
]
i
n
I
d
,
!
(
[
2
]
,
c
t
p
(
[
1
]
)
,
[
2
]
(
[
1
]
)
)
,
C
C
;

r
u
l
e
c
c
3
,
[
1
]
i
n
I
n
t
,
!
(
[
2
]
,
c
t
p
(
[
1
]
)
,
I
n
t
T
p
)
,
C
C
;

r
u
l
e
c
c
4
,
[
1
]
i
n
B
o
o
l
,
!
(
[
2
]
,
c
t
p
(
[
1
]
)
,
B
o
o
l
T
p
)
,
C
C
;

r
u
l
e
c
c
5
,
!
(
[
1
]
,
c
t
p
(
[
2
]
)
,
I
n
t
T
p
)
|
!
(
[
1
]
,
c
t
p
(
[
3
]
)
,
I
n
t
T
p
)
,

!
(
[
1
]
,
c
t
p
(
m
k
h
_
A
r
i
t
h
E
x
p
r
(
[
2
]
,
[
4
]
,
[
3
]
)
)
,
I
n
t
T
p
)
,
C
C
;

r
u
l
e
c
c
6
,
!
(
[
1
]
,
c
t
p
(
[
2
]
)
,
I
n
t
T
p
)
|
!
(
[
1
]
,
c
t
p
(
[
3
]
)
,
I
n
t
T
p
)
,

!
(
[
1
]
,
c
t
p
(
m
k
h
_
R
e
l
E
x
p
r
(
[
2
]
,
[
4
]
,
[
3
]
)
)
,
B
o
o
l
T
p
)
,
C
C
;

r
u
l
e
c
c
7
,
!
(
[
1
]
,
c
t
p
(
[
2
]
)
,
I
n
t
T
p
)
,
!
(
[
1
]
,
c
t
p
(
m
k
h
_
U
n
a
r
y
E
x
p
r
(
[
3
]
,
[
2
]
)
)
,
I
n
t
T
p
)
,
C
C
;

r
u
l
e
c
c
8
,
[
1
]
i
n
d
o
m
[
2
]
|
!
(
[
2
]
,
c
t
p
(
[
3
]
)
,
t
p
m
(
[
1
]
)
)
,
!
(
[
2
]
,
m
k
h
_
A
s
s
i
g
n
S
t
m
t
(
[
1
]
,
[
3
]
)
,
w
f
S
t
m
t
)
,
C
C
;

r
u
l
e
c
c
9
,
!
(
[
1
]
,
c
t
p
(
[
2
]
)
,
B
o
o
l
T
p
)
|
!
(
[
1
]
,
[
3
]
,
w
f
S
t
m
t
)
|

!
(
[
1
]
,
[
4
]
,
w
f
S
t
m
t
)
,
!
(
[
1
]
,
m
k
h
_
I
f
S
t
m
t
(
[
2
]
,
[
3
]
,
[
4
]
)
,
w
f
S
t
m
t
)
,
C
C
;

r
u
l
e
c
c
1
0
,
!
(
[
1
]
,
c
t
p
(
[
2
]
)
,
B
o
o
l
T
p
)
|
!
(
[
1
]
,
[
3
]
,
w
f
S
t
m
t
)
,
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!
(
[
1
]
,
m
k
h
_
W
h
i
l
e
S
t
m
t
(
[
2
]
,
[
3
]
)
,
w
f
S
t
m
t
)
,
C
C
;

r
u
l
e
c
c
1
1
,
!
(
[
1
]
,
[
2
]
,
w
f
S
t
m
t
)
|
!
(
[
1
]
,
[
3
]
,
w
f
S
t
m
t
)
,

!
(
[
1
]
,
m
k
h
_
S
e
q
S
t
m
t
(
[
2
]
,
[
3
]
)
,
w
f
S
t
m
t
)
,
C
C
;

/
/
S
e
m
a
n
t
i
c
O
b
j
e
c
t
s

r
u
l
e
s
e
m
_
S
t
a
t
e
,
[
s
]
i
n
m
a
p
o
f
{
I
d
}
{
V
a
l
u
e
}
,
[
s
]
i
n
S
i
g
m
a
,
S
O
S
;

/
/
S
O
S
R
u
l
e
s

r
u
l
e
s
o
s
_
a
s
s
i
g
n
,
(
[
e
]
,
[
s
i
g
m
a
]
)
-
e
-
>
[
v
]
,

(
m
k
h
_
A
s
s
i
g
n
S
t
m
t
(
[
i
d
]
,
[
e
]
)
,
[
s
i
g
m
a
]
)
-
s
-
>
(
"
n
i
l
"
,
[
s
i
g
m
a
]
+
+
{
[
i
d
]
|
-
>
[
v
]
}
)
,
S
O
S
;

r
u
l
e
s
o
s
_
a
s
s
i
g
n
_
a
r
r
a
y
,
(
[
e
]
,
[
s
i
g
m
a
]
)
-
e
-
>
[
v
]
|
(
[
i
]
,
[
s
i
g
m
a
]
)
-
e
-
>
[
i
n
d
e
x
]
,

(
m
k
h
_
A
s
s
i
g
n
S
t
m
t
(
m
k
h
_
A
r
r
a
y
R
e
f
(
[
a
]
,
[
i
]
)
,
[
e
]
)
,
[
s
i
g
m
a
]
)
-
s
-
>

(
"
n
i
l
"
,
[
s
i
g
m
a
]
+
+
{
[
a
]
|
-
>
[
a
]
:
:
[
s
i
g
m
a
]
+
+
{
[
i
n
d
e
x
]
|
-
>
[
v
]
}
}
)
,
S
O
S
;

r
u
l
e
s
o
s
_
s
e
q
_
s
t
e
p
,
(
[
s
l
]
,
[
s
i
g
m
a
]
)
-
s
-
>
(
[
s
l
’
]
,
[
s
i
g
m
a
’
]
)
,

(
m
k
h
_
S
e
q
S
t
m
t
(
[
s
l
]
,
[
s
r
]
)
,
[
s
i
g
m
a
]
)
-
s
-
>
(
m
k
h
_
S
e
q
S
t
m
t
(
[
s
l
’
]
,
[
s
r
]
)
,
[
s
i
g
m
a
’
]
)
,
S
O
S
;

r
u
l
e
s
o
s
_
s
e
q
_
E
,
_
,
(
m
k
h
_
S
e
q
S
t
m
t
(
"
n
i
l
"
,
[
s
r
]
)
,
[
s
i
g
m
a
]
)
-
s
-
>
(
[
s
r
]
,
[
s
i
g
m
a
]
)
,
S
O
S
;

r
u
l
e
s
o
s
_
p
a
r
_
L
,
(
[
s
l
]
,
[
s
i
g
m
a
]
)
-
s
-
>
(
[
s
l
’
]
,
[
s
i
g
m
a
’
]
)
,

(
m
k
h
_
P
a
r
S
t
m
t
(
[
s
l
]
,
[
s
r
]
)
,
[
s
i
g
m
a
]
)
-
s
-
>
(
m
k
h
_
P
a
r
S
t
m
t
(
[
s
l
’
]
,
[
s
r
]
)
,
[
s
i
g
m
a
’
]
)
,
S
O
S
;

r
u
l
e
s
o
s
_
p
a
r
_
R
,
(
[
s
r
]
,
[
s
i
g
m
a
]
)
-
s
-
>
(
[
s
r
’
]
,
[
s
i
g
m
a
’
]
)
,

(
m
k
h
_
P
a
r
S
t
m
t
(
[
s
l
]
,
[
s
r
]
)
,
[
s
i
g
m
a
]
)
-
s
-
>
(
m
k
h
_
P
a
r
S
t
m
t
(
[
s
l
]
,
[
s
r
’
]
)
,
[
s
i
g
m
a
’
]
)
,
S
O
S
;

r
u
l
e
s
o
s
_
p
a
r
_
E
,
_
,
(
m
k
h
_
P
a
r
S
t
m
t
(
"
n
i
l
"
,
"
n
i
l
"
)
,
[
s
i
g
m
a
]
)
-
s
-
>
(
"
n
i
l
"
,
[
s
i
g
m
a
]
)
,
S
O
S
;

r
u
l
e
s
o
s
_
I
f
_
E
v
a
l
,
(
[
t
e
s
t
]
,
[
s
i
g
m
a
]
)
-
e
-
>
t
e
s
t
’
,

(
m
k
h
_
I
f
S
t
m
t
(
[
t
e
s
t
]
,
[
t
h
]
,
[
e
l
]
)
,
[
s
i
g
m
a
]
)
-
s
-
>
(
m
k
h
_
I
f
S
t
m
t
(
[
t
e
s
t
’
]
,
[
t
h
]
,
[
e
l
]
)
,
[
s
i
g
m
a
]
)
,
S
O
S
;

r
u
l
e
s
o
s
_
I
f
_
T
,
_
,
(
m
k
h
_
I
f
S
t
m
t
(
"
t
r
u
e
"
,
[
t
h
]
,
[
e
l
]
)
,
[
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Appendix F

Proofs and Judgements

In the model of the proof system, a line of a proof is represented as a Judgement.
Figure F.2 takes the proof of and distributes over or and shows each Judgement
of the proof, and the values of each field of the judgements. The proof of and
distributes over or is given in Fig. F.1

from a ∧ (b ∨ c)
1 a ∧-E-Right(h1)
2 b ∨ c ∧-E-Left(h1)
3 from b
3.1 a ∧ b ∧-I(1, 3.h1)

infer (a ∧ b) ∨ (a ∧ c) ∨-I-Right(3.1)
4 from c
4.1 a ∧ c ∧-I(1, 4.h1)

infer (a ∧ b) ∨ (a ∧ c) ∨-I-Left(4.1)
infer (a ∧ b) ∨ (a ∧ c) ∨-E(2,3,4)

Figure F.1: Proof for ∧ distributes over ∨
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