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Abstract 

Coral reefs have emerged as one of the ecosystems most vulnerable to climate 

variation and change. While the contribution of climate warming to the loss of live 

coral cover has been well documented, the associated effects on fish have not. Such 

information is important as coral reef fish assemblages provide critical contributions 

to ecosystem function and services. This thesis assesses the medium to long term 

impacts of coral loss on fish assemblages in the western Indian Ocean. Feeding 

observations of corallivorous butterflyfish demonstrates that considerable feeding 

plasticity occurs among habitat types, but strong relationships exist between degree of 

specialisation and declines in abundance following coral loss. Furthermore, obligate 

corallivores are lost fairly rapidly following decline in coral cover, whereas 

facultative corallivores are sustained until the structure of the dead coral begins to 

erode. Surveys of benthic and fish assemblages in Mauritius spanning 11 years 

highlight small changes in both benthos and fish through time, but strong spatial 

trends associated with dredging and inter-specific competition. In Seychelles, 

although there was little change in biomass of fishery target species above size of first 

capture, size spectra analysis of the entire assemblage revealed a loss of smaller 

individuals (<30cm) and an increase in the larger individuals (>45cm). This 

represents a lag effect where fishery production cannot be assured for the long term. 

A targeted before (mid-1990s) – after (2005) sampling program of coral reef benthos 

and fish assemblages in 7 countries across the Indian Ocean demonstrated changes in 

size structure, diversity and trophic composition of the reef fish community have 

followed coral declines in both fished and protected areas. The thesis highlights the 

pivotal role that loss of reef structural complexity plays in the effects of bleaching on 



fish assemblages and that coral reef management needs to radically adapt to address 

climate change issues. 
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Chapter 1 

 

General introduction 

 

There exists an extensive literature on the effects of natural disturbances in structuring 

ecological communities. Indeed, many ecological theories, including the intermediate 

disturbance hypothesis (Connell 1978), have their foundations in research related to 

disturbance regimes. Such research and knowledge is well founded in the study of 

shallow coastal, marine habitats, with natural disturbances such as storms, rainfall, 

temperature anomalies and diseases, playing key roles in the structuring and dynamic 

nature of many of these habitats (Connell 1978; Dayton 1971; Sousa 1979; Thistle 

1981). 

 

Anthropogenic disturbances have also affected the structure and dynamics of shallow 

marine habitats for at least the past two centuries (Jackson et al. 2001; Pandolfi et al. 

2003), and the intensity and frequency of such disturbances are increasing 

exponentially. Indeed, anthropogenic stressors are becoming the dominant drivers of 

community structure in many systems (Hughes et al. 2003; Nyström et al. 2000; 

Polunin 2008). This is leading to concerns over the long-term persistence of a variety 

of ecosystems, including kelp forests (Steneck et al. 2002), seagrass beds (Duarte 

2002), mangrove forests (Alongi 2002) and coral reefs (McClanahan 2002). A range 

of anthropogenic disturbances threaten coastal ecosystems, including overfishing, 

nutrient input, sedimentation, land reclamation and dredging. However, climate 
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change is rapidly emerging as the most substantial threat for many ecosystems 

(Walther et al. 2002; Hughes et al. 2003; Hoegh-Guldberg et al. 2007; Polunin 2008). 

 

1.1 Climate warming and impacts on coral reef benthos 

Although the climate has been warmer in the past, the current rate of increase in 

global temperatures is unmatched in the last 1000 years (Houghton 2005) and likely in 

the last 420,000 years (Hoegh-Guldberg et al. 2007). Global atmospheric 

concentrations of carbon dioxide, methane and nitrous oxide now far exceed pre-

industrial values determined from ice cores (IPCC 2007). This has led to an average 

temperature increase of ocean sea surface water of 0.74°C over the last century, with 

projected increases in temperature of ~0.2°C per decade over the next two decades 

(IPCC 2007). Ecological communities respond to climate change in various ways, 

including range shifts, habitat modifications, invasions of new species, changes in 

trophic interactions, and changes in physiological performance (Perry et al. 2005; 

Walther et al. 2002; Munday et al. 2008; Polunin 2008). Although these changes are 

impacting many systems, coral reefs have emerged as one of the most vulnerable and 

threatened ecosystems to climate variability and change (Hoegh-Guldberg 1999; 

Hughes et al. 2003; Sheppard 2003; Hoegh-Guldberg et al. 2007). 

 

Coral reefs are impacted by climate change in a variety of ways. Warming climatic 

conditions are leading to an increase in the frequency and severity of hurricanes 

(Webster et al. 2005), which can have large impacts on reefs (Halford et al. 2004). 

Increased concentrations of dissolved CO2 are resulting in a more acidic ocean 

chemistry, which leads to slowed deposition of calcium carbonate skeletons (Kleypas 

et al. 1999). This is expected to slow extension rates and lead to weaker, less dense 
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carbonate skeletons of scleractinian corals (Hoegh-Guldberg et al. 2007). However, 

perhaps the greatest impact of climate change on coral reefs to date, and predicted to 

be a main determinant of change in the future, is ‘coral bleaching’. Scleractinian 

corals exhibit a restricted thermal tolerance, closely adapted to local temperature 

conditions. If temperatures rise above the normal summer maximum (i.e. threshold) 

for a given region, a breakdown of the symbiosis between the single-celled algae 

(zooxanthellae), that provide corals with most of their energy, and their coral hosts 

occurs; so called ‘coral bleaching’ (Brown 1997). The bleaching response involves a 

loss in colour of the symbionts and results from a reduction in the number of 

zooxanthellae, either through in situ degradation, expulsion from the host animal cell, 

or through detachment of the animal cell itself (Brown 1997; Douglas 2003). If 

temperatures remain above a threshold for several weeks, the coral is unable to meet 

nutritional requirements through feeding alone, cannot retrieve or maintain sufficient 

densities of zooxanthellae, and mortality can occur (Brown 1997; Hoegh-Guldberg 

1999, 2004).  

 

Such thermally-induced mortality events can occur over large spatial scales, whereby 

vast areas of live coral are mostly lost (Hoegh-Guldberg 1999; Hughes et al. 2003; 

Hoegh-Guldberg et al. 2007). Regional bleaching events occurred in 1979, 1982, 

1987, 1991 and 1994 (Hoegh-Guldberg 1999). However, by far the most spatially 

extensive and severe bleaching event to date, was caused by the 1998 El Niño event. 

All coral reef regions of the world were affected, resulting in the loss of 16% of the 

world’s coral cover (Wilkinson 2000). The severity of the event varied 

geographically, with the western Indian Ocean being one of the most severely 

impacted regions (Goreau et al. 2000), where the El Niño event interacted with the 
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warm portion of the Indian Ocean Dipole (Saji et al. 1999). Coral cover in this region 

declined by an average of 46%, with some locations, such as the inner Seychelles, 

Maldives and Chagos archipelago losing as much as 90% of shallow water coral cover 

(Goreau et al. 2000; Wilkinson 2000; Linden et al. 2002; Sheppard 2003). Subsequent 

bleaching events have occurred in the Pacific in 2000 and 2002 (Berkelmans et al. 

2004), mild events in the Indian Ocean in 2003 and 2005 (McClanahan et al. 2007a) 

and a severe event in the Caribbean in 2005 (Donner et al. 2007; Oxenford et al. 

2008). However, the 1998 event remains the most geographically extensive and 

severe on record (Hoegh-Guldberg 2004). 

 

The severity and spatial extent of bleaching events have been increasing (Hoegh-

Guldberg 1999). Initial attempts to predict future coral bleaching events indicated 

extremely bleak outlooks for the future persistence of coral reefs. Models of change in 

sea temperatures predicted coral bleaching on the scale of  the 1998 event would 

become a yearly phenomenon by 2040 (Hoegh-Guldburg 1999). Indeed, predictions 

of the ‘extinction’ of coral reefs between 2020 and 2040 have been made for the 

Indian Ocean (Sheppard 2003). These predictions are now thought to be a little 

pessimistic, due to the potential for corals and their symbionts to exhibit some degree 

of acclimatization and adaptation to warming (Hughes et al. 2003). Furthermore, 

empirical data and spatial modelling suggest predictable patterns in location specific 

bleaching stress (McClanahan et al. 2007b; Maina et al. 2008). However, recent 

models still suggest bleaching could be an annual or biannual event within 20-30 

years (Donner et al. 2005), and if acclimatization of corals and symbionts does occur, 

this will only reduce the impact of bleaching events until the second half of this 

century (Donner et al. 2007). With bleaching events becoming ever more frequent and 
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severe, the recovery interval between episodes is shrinking, further reducing the 

ability of reefs to rebound to coral dominated states. Coral bleaching appears 

increasingly to be the dominant threat to the future of coral reefs, and a major 

management and conservation concern. Targeted policies to manage reefs in the face 

of climate change will require a thorough understanding of the ecological responses 

and ramifications of climate induced coral mortality (Walther et al. 2002). 

 

Although coral bleaching can be devastating to a coral reef, the vulnerability of a 

given reef to bleaching can depend on background temperature variation 

(McClanahan & Maina 2003), water flow (Nakamura et al. 2003; McClanahan et al. 

2005) and water depth (Sheppard & Obura 2005). Furthermore, the bleaching 

response is highly species / genus specific (Baird & Marshall 1998; Marshall & Baird 

2000; McClanahan 2004; McClanahan et al. 2004, 2007a). Certain species of coral are 

extremely thermally sensitive, and are among the first to bleach and die during a 

temperature anomaly. These genera include Acropora, Pocillopora, Stylophora and 

Millepora (Marshall & Baird 2000; McClanahan et al. 2007a). Conversely, genera 

such as Galaxea, massive Porites and Psammocora tend to be fairly resistant to 

bleaching (Marshall & Baird 2000; McClanahan et al. 2007a), although they will still 

bleach under severe conditions. Although there is some variation, these genus specific 

patterns generally hold across regions in the Indo-Pacific (McClanahan et al. 2004, 

2007a). This means that reefs are not totally disappearing, but there is a reduction in 

coral cover and a change in composition from coral communities dominated by 

Acropora and other branching and physically complex genera to those dominated by 

Porites, Galaxea and other largely massive and encrusting coral functional forms 

(Hughes et al. 2003; McClanahan et al. 2007a). As the former types of corals provide 
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most of the 3-dimentional habitat that many other organisms depend on (Bellwood et 

al. 2004; Jones et al. 2004), the change is one toward a less desirable state.  

 

Following coral bleaching events, a large amount of space can become available on 

the coral reef benthos, which is rapidly colonised by epilithic and turfing algae (Diaz-

Pulido & McCook 2002). This algae may or may not develop into erect macroalgae 

depending on site specific nutrient loads (Hunter & Evans 1995; Fabricius et al. 2005) 

and herbivory (Smith et al. 2001; Mumby et al. 2006). If the bleaching event is severe, 

local herbivore stocks may be swamped by the amount of free space made available 

for algal growth (Williams et al. 2001) and the reef may progress on a trajectory 

toward erect macroalgal dominance and a stable change in state (Mumby et al. 

2007a). Conversely, if the spatial impacts of disturbance are smaller, herbivory is 

sufficient and spatial pockets of live coral remain, recovery back to a coral dominated 

state may be fairly rapid (Halford et al. 2004; Mumby et al. 2007a; Sheppard et al. 

2008).  

 

If a reef does not recover its coral cover, or if a large proportion of branching and 

plating corals died, dead reef structures may erode to coral rubble in the medium (5-

10 years) or longer-term (Sheppard et al. 2002; Graham et al. 2006). The mechanisms 

for this collapse of reef structure can include physical erosion (Scoffin 1993) and 

bioerosion (Hutchings 1986) and will be partly dependent on the original composition 

of the coral community (Done et al. 1996). The result is much reduced structural 

complexity of the reef matrix. If the resultant rubble is not consolidated or removed 

from the reef, it can become a hindrance to coral recovery (Fox et al. 2003; Victor 
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2008). Conversely this process of removing fragile dead reef structures can be critical 

to the recovery process in some situations (Bellwood et al. 2004).  

 

The changing composition and structure of benthic communities on reefs has now 

been studied at multiple spatial scales and is increasingly well understood (Gardner et 

al. 2003; Bruno & Selig 2007; Hughes et al. 2007a; McClanahan et al. 2007a). 

However, given the substantial changes occurring in coral reef benthos described 

above, there is a growing need to assess the secondary effects on other components of 

the ecosystem, which to date have received scarce attention (Walther et al. 2002; 

Wilson et al. 2006; Pratchett et al. 2008a, b). One of the most important groups to 

assess are the reef fish, because they provide crucial ecosystem functions on coral 

reefs (Bellwood et al. 2004; Mumby et al. 2007a), are the main focus of tourist 

attention (Williams & Polunin 2000), provide protein and other ecosystem services to 

the burgeoning human populations of many tropical countries (Russ 1991; Moberg & 

Folke 1999), represent over a quarter of all fish species (Spalding et al. 2001) and are 

the most species dense vertebrate communities on Earth (Jones et al. 2002). 

 

At the start of this PhD there was a limited amount of information on the impacts of 

bleaching, or disturbance in general, on fish. The majority of studies that had been 

conducted were limited in both time and space. Here I provide a review of what was 

known about these short-term responses of fish to coral loss. The thesis Discussion 

(Chapter 7) will update how that knowledge has been furthered in the previous 3 

years, both through the work of this thesis and the increase in studies assessing the 

topic in general. 
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1.2 Short-term impacts of bleaching on fish  

One of the key reasons why fish species may be vulnerable to the short-term impacts 

of coral loss is if they have a component of their life history that is specialised 

towards dependence on live coral. This can be through feeding requirements, habitat 

choice or settlement site. Currently, much more is known about the first two types of 

specialisation. Jones et al. (2004) estimated that, from a selection of 538 species of 

fish in 20 families, only ~11% were obligately associated with live coral for diet or 

shelter. Conversely ~65% of fish species they surveyed preferentially settled into live 

coral from the plankton. It is, however, unclear how much live coral larval fish need 

to successfully settle, and the impacts of feeding and habitat specialisation are much 

better understood.  

 

Obligate corallivores (those fish that will only feed on live coral polyps) have been 

shown to be among the first species to decline in abundance following disturbances 

such as crown-of-thorn starfish outbreaks (Sano et al. 1987) or hurricanes (Halford et 

al. 2004). This trend also holds true for the short term impacts of coral bleaching. A 

number of studies have reported declines in abundance of obligate coral feeding 

butterflyfish (Shibuno et al. 1999; Adjeroud et al. 2002; McClanahan et al. 2002; 

Sheppard et al. 2002; Spalding & Jarvis 2002; Sano 2004), the coral feeding filefish 

Oxymonacanthus longirostris (Shibuno et al. 1999; Kokita & Nakazono 2001; 

Spalding & Jarvis 2002; Sano 2004) and the coral feeding wrasse Labrichthys 

unilineatus (Sheppard et al. 2002; Sano 2004). Indeed, a meta-analysis of studies 

investigating the short-term impacts of coral loss on reef fish species abundance 

indicated consistent and significant declines in 7 of the 9 species of obligate 

corallivore studied (Figure 1.1).  
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Figure 1.1. Meta-analysis of short-term (<3 years) response of 55 fish species to 

declines in coral cover. Y-axis metric is change in species abundance divided by 

change in coral cover. Data from 17 studies are included in the analysis. Species level 

responses represent mean values, calculated from a minimum of four studies. Only 

studies reporting a 10% or greater decline in coral were included in the analysis. Data 

on a species was only included if 5 or more individuals were surveyed in before 

disturbance counts. Species names are highlighted if mean value with 95% confidence 

interval fails to intersect zero, indicating consistency of responses among locations. 

Figure adapted from Wilson et al. (2006)*. 

 

  

 

 
* Figure adapted from a review article by Wilson et al. (2006), on which the author of this thesis is 
second author. 
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Assessments of the initial impacts of coral loss, or where the extent of coral loss was 

not large, have suggested some sub-lethal responses to coral loss can occur in obligate 

corallivorous fish, prior to, or in the absence of, any decline in abundance. Pratchett et 

al. (2004) found the abundance of Chaetodon lunulatus did not decline in abundance 

following a reduction in coral cover from 33.4% to 15%. However, in response to the 

loss of their preferred corals, the fish responded by a shift in the types of corals they 

fed upon. This led to an overall reduction in the physiological condition of the fish as 

measured using hepatocyte vacuolation of the liver, which gives an indication of lipid 

stores (Pratchett et al. 2004). The authors concluded that such reduction in condition 

would likely reduce growth rates, reproductive potential and possibly lead to 

population declines (Pratchett et al. 2004). Kokita & Nakazono (2001) monitored a 

population of the filefish Oxymonacanthus longirostris through a mass coral 

bleaching event in Okinawa, Japan. During the course of the study the fish 

demonstrated reduced growth rates, reduced reproductive outputs and ultimately 

reductions in abundance (Kokita & Nakazono 2001). A further possible sublethal 

response in corallivores, which is likely related to a reduction in availability of 

preferred food sources, is a break-down of previously strong feeding territories 

(Tricas 1989a). Such a breakdown of rigid territorial behaviour was documented on a 

severely bleached reef in the inner Seychelles (Samways 2005). Both butterflyfish 

species studied, Chaetodon trifascialis and C. trifasciatus, increased feeding 

excursions beyond territory boundaries, which is likely to result in increased intra- 

and inter-specific competition (Samways 2005).  

  

Although the obligate corallivores are probably the best studied group of fish in terms 

of responses to disturbance, various key questions remain unanswered. For example, 
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it seems likely that the degree of feeding specialisation would be related to extend of 

decline following coral loss. However, although comparison between species that 

consistently display greatest declines (Figure 1.1) and which have more specialised 

diets (Pratchett 2005) indicates such patterns may exist, few studies have formally 

quantified such trends. This is because detailed information on degree of 

specialisation has been lacking until recently and still is for many species and / or 

coral reef regions. Furthermore, why some species are more specialised than others is 

very poorly understood (Pratchett 2005). It is also clear that while obligate 

corallivores may decline following live coral mortality, the response of facultative 

corallivores is likely to be much more variable (Wilson et al. 2006) and may be linked 

to other processes and changes in the reef system.  

  

Coral dwelling fish were the other group identified by the meta-analysis of Wilson et 

al. (2006) to show consistent declines in abundance following coral loss (Figure 1.1). 

All 7 species included in the analysis displayed declines in abundance following coral 

mortality, and 3 of those declines were consistent across all studies included in the 

analysis. Species of damselfish (Lindahl et al. 2001; Booth & Beretta 2002; Shibuno 

et al. 2002; Spalding & Jarvis 2002), gobies (Munday 2004) and hawkfish (Sheppard 

et al. 2002) are known to spend a large part of their post-settlement life in certain 

species or growth forms of live coral and all these species can exhibit declines in 

abundance following coral loss. Up to 40-50% of damselfish species are known to 

associate with live coral (Wilson et al. 2008a) and certain species, such as 

Plectroglyphidodon dickii, P. johnstonianus and Pomacentrus moluccensis, have 

particularly strong associations with certain types of coral and consistently decline 

following coral mortality (Figure 1.1; Wilson et al. 2006). The degree of 



 12

specialisation in coral dwelling gobies has been measured in Papua New Guinea 

(Munday et al. 1997) and the patterns of decline and threat of extinction to these fish 

is tightly related to this specialisation and initial population size (Munday 2004).  

  

The degree of settlement specialisation of reef fish is poorly understood. Jones et al. 

(2004) estimated that 65% of reef fish species require live coral at settlement and 

attributed substantial declines in fish species richness in Kimbe Bay, Papua New 

Guinea, to this requirement. However a study of damselfish indicated only species 

that dwell in live coral as adults, preferentially settle into this habitat (Öhman et al. 

1998). Furthermore, a study of a damselfish assemblage through a bleaching event on 

the Great Barrier Reef indicated that following coral mortality, recruitment declined 

most for those species that associate with live coral as adults (Booth & Beretta 2002). 

How much coral is required, whether certain species of coral are favoured and for 

how long fish require live coral are all unclear. A deeper understanding of the 

settlement requirements of a range of coral reef fish is clearly necessary. 

  

The planktivore trophic group included in underwater visual census counts is diverse 

and often includes species from the damselfish, fusilier, wrasse and bigeye families. It 

is also notable that several species of damselfish that dwell in live coral (Wilson et al. 

2006, 2008a), for example Chromis atripectoralis and Dacyllus carneus, feed on 

plankton (Froese & Pauly 2008). Many studies group these fish together with other 

planktivores that are not coral dwellers, thus resulting in a high diversity of responses 

to disturbance within this group. Spalding & Jarvis (2002) found that the response of 

planktivores 1 year after the 1998 bleaching event in the southern and granitic islands 

of the Seychelles was varied. Eleven of the 14 species sampled declined in abundance, 
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but only 1 of those species displayed a significant decline. A non-significant increase 

at 3 of 5 sites surveyed across the Chagos archipelago, 3 years after the 1998 

bleaching event, was driven by schooling fusilier species (Sheppard et al. 2002). 

However, this family is not benthic associated and is known to be highly variable in 

underwater visual surveys (Graham et al. 2003). Other studies have also generally 

shown no significant changes in planktivore abundance following coral mortality, but 

high variability at the species level, with declines usually associated with those 

species that dwell in live coral (Lindahl et al. 2001). 

  

Herbivores, or epilithic algal matrix feeders, have been promoted as a particularly 

important functional group on coral reefs (Bellwood et al. 2004). As corals and algae 

compete for space on coral reefs, herbivores are thought to be a key group that control 

algal growth and allow settlement and dominance of coral dominated states (Bellwood 

et al. 2004). Following coral mortality, the newly available space is rapidly colonised 

by epilithic and turfing algae, and may or may not develop into erect macroalgae 

depending on local nutrient loads and herbivore stocks (Diaz-Pulido & McCook 

2001). As the space, and therefore the algal resource, increases following a bleaching 

event, the expectation is that herbivores will increase in abundance and biomass to 

maintain the increased algal biomass in a cropped state (Sheppard et al. 2002). Some 

studies of the short-term impacts of bleaching on fish assemblages have reported 

increases in herbivore abundance and biomass (Shibuno et al. 1999; Lindahl et al. 

2001; McClanahan et al. 2002; Sheppard et al. 2002), while others have indicated no 

change (Riegl 2002; Sano 2004; Spalding & Jarvis 2002). When data from these 

studies were combined in a meta-analytical framework, there was an indication of 

increases in about half of the species, with declines in the other half, but a great deal 
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of variation between studies resulting in no consistent changes for any individual 

species (Figure 1.1). The short time following disturbance that the majority of these 

studies represent may limit the extent to which demographic changes can occur, and 

there is a need to understand changes in herbivore populations in response to coral 

mortality over greater temporal scales. Studies of other disturbances, that were 

conducted 5-7 years after coral loss, indicated little effect of increased turf algal cover 

on herbivore abundance (Hart et al. 1996), but identified faster growth rates and larger 

sizes of certain species (Hart & Russ 1996). 

 

Invertebrate feeding and mixed diet, or omnivorous, fish species may also be expected 

to respond positively to coral mortality, as a great amount of space is made available 

for benthic meso-invertebrates to inhabit. Although there are examples of increased 

dominance of this group of fish in the assemblage following disturbance (Riegl 2002), 

the majority of studies indicate no overall change in abundance through time (Lindahl 

et al. 2001; Sheppard et al. 2002; Spalding & Jarvis 2002; Sano 2004). Variation in 

response at the species level is high (Spalding & Jarvis 2002), with roughly half of the 

species displaying declines in abundance (several significantly), with other species 

increasing in abundance to the extent of some of the epilithic algal matrix feeders 

(Figure 1.1.; Wilson et al. 2006). 

  

Most piscivores on reefs are relatively large and not dependent on live coral for 

refuge. The most likely impact of a bleaching event on these fish would be through 

indirect trophic effects, such as a reduction in abundance of their prey. Such predator-

prey coupling on reefs may be weak at aggregated family levels (Jennings & Polunin 

1997), but stronger at the species level (Graham et al. 2003) or size based 
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aggregations (Dulvy et al. 2004). The short-term impacts of bleaching indicate no 

measurable impact on these piscivores (Riegl 2002; Sheppard et al. 2002; Spalding & 

Jarvis 2002), but the time-scales are likely too short to identify any trophic cascading 

impacts. Furthermore, medium-sized piscivores, such as rock cods, which are more 

dependent on habitat for ambush predation, are poorly surveyed in underwater visual 

census. The only piscivores to display declines in abundance following coral mortality 

are some species of small bodied hawkfish that dwell in live corals and feed on fish 

recruits and juveniles (Sheppard et al. 2002). 

  

At the assemblage level, the majority of short-term studies indicate very little impact 

in overall abundance and species richness of the fish assemblage following coral 

mortality (Riegl 2002; Sheppard et al. 2002; Spalding et al. 2002; Downing et al. 

2005; McClanahan 2006). This is probably because most changes are associated with 

declines of species dependent on live coral for food, shelter or settlement, which make 

up a relatively small proportion of the assemblage. However, there is some evidence 

for small decreases in both variables (Sano 2004) or increases in abundance, largely 

attributed to movement of herbivores in an experimental transplant experiment 

(Lindahl et al. 2001). A longer-term study in Papua New Guinea, of four focal 

families, indicated that fish species richness declined with substantial declines in coral 

cover, and attributed that decline to 65% of the fish assemblage requiring live coral at 

settlement (Jones et al. 2004). When multiple studies were examined in a meta-

analysis, small declines in coral cover actually resulted in increases in fish species 

richness, likely due to increased habitat heterogeneity, but larger declines (>20%) led 

to a 20-30% reduction in species richness (Wilson et al. 2006). 
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Apart from the loss of larval settlement sites (Jones et al. 2004), the longer-term 

impacts of bleaching leads to the erosion of the reef structural framework (Sheppard 

et al. 2002; Graham et al. 2006). A number of the studies of the short-term impacts of 

bleaching speculated that such erosion of 3-dimentional structure would greatly 

increase the impact of the bleaching event beyond those species directly dependent on 

live coral for key life history stages (Shibano et al. 1999; Lindahl et al. 2001; Riegl 

2002; Sheppard et al. 2002; Spalding & Jarvis 2002). The additional impacts of loss 

of structural complexity have been indicated from long-term studies of crown-of-

thorn starfish impacted reefs (Sano et al. 1987) or through experimental manipulation 

of the reef benthos (Lewis 1997; Syms & Jones 2000). To better understand the 

additional consequences of loss of structural complexity, Wilson et al. (2006) 

compared the impact of disturbances that resulted in loss of live coral, but maintained 

structural complexity (short-term impacts of bleaching and crown-of-thorns starfish 

outbreaks), to the impacts of disturbances that caused both the loss of live coral and 

structural complexity (storms and experimental manipulations). The decline in 

abundance was consistently greater for five functional groups of fish following the 

disturbances that included loss of structural complexity (Figure 1.2). These results are 

likely because the structural matrix of reefs is extremely important for small bodied 

fish (Munday & Jones 1998) and most reef fish associate with refuge holes at some 

stage in their life history to avoid predation (Hixon & Beets 1993; Dulvy et al. 2004). 

This analysis suggests that, if a reef does not recover its coral cover, the longer-term 

impacts of bleaching are likely to be far more severe and affect more functional 

groups than the short term impacts. 
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Figure 1.2. Meta-analysis of responses of fish functional groups to two types of 

disturbance. Y-axis metric is change in fish group abundance divided by change in 

coral cover. Biological disturbances represent those disturbances that reduce live coral 

cover, but do not impact the structural complexity of the benthos. Structural 

disturbances cause a reduction in both live coral cover and structural complexity. 

Error bars are 95% confidence intervals calculated from the data of ten or more 

studies. Adapted from Wilson et al. (2006)*. 

 

   

 

 

* Figure adapted from a review article by Wilson et al. (2006), on which the author of this thesis is 
second author. 
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Along with understanding the ecological ramifications of coral bleaching, it is 

important to understand the socio-economic impacts. Coral reefs provide a wealth of 

ecosystem goods and services to human societies (Moberg & Folke 1999), with one of 

the most tangible activities being fisheries (Pet-Soude 2000). As with the studies 

investigating the impacts of bleaching on fish in situ, the studies assessing impacts on 

fisheries have generally been conducted shortly after bleaching events have occurred 

(within 3 years), limiting the ability to detect long-term trends. Grandcourt and Cesar 

(2003) detected no negative trends in most of the principal target families of reef fish 

in the inner Seychelles up to 3 years following the 1998 bleaching event. There was a 

declining trend in Siganidae, however the decline began prior to 1998 and was not 

thought to be associated with the coral mortality. Kenyan fishery yields declined by 

8% following the 1998 bleaching event, however this was associated with a 17% 

increase in effort, making it difficult to ascribe any causality to the coral mortality 

event (McClanahan et al. 2002). This lack of short-term detectable impact on fisheries 

following coral bleaching has also been highlighted from other regions (Pet-Soude 

2000). Most reef-associated fisheries target larger fish in the assemblage, and so the 

impacts of coral mortality will likely take some time to affect these species and 

individuals. It is possible that a loss of structural complexity and prey fish abundance 

could ultimately impact fishery target species, but such understanding will require 

data over greater temporal scales and using various fishery dependant and 

independent approaches. 

  

The studies of the short-term impacts of bleaching on fish and fisheries indicate a 

number of research priorities. There is a great need to understand the impacts of 

bleaching on fish, fisheries and associated goods and services at much greater spatial 
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and temporal scales. The mechanisms of fish decline following coral mortality are not 

clear; they need to be refined within coral dependent and other groups. It seems likely 

that if the structural complexity of the reef collapses it will have greater impacts on 

the fish assemblage, but the dynamics of this are poorly understood. There is very 

limited knowledge of the importance of live coral as a fish settlement site. As 

herbivores are such an important functional group on reefs (Bellwood et al. 2004), it 

is important to understand how they will respond to the longer-term impacts of 

bleaching. Most studies to date have focussed on abundance, biomass and diversity 

metrics, whereas changes in the size structuring of the fish assemblage may provide 

important insights. As reefs are increasingly threatened by multiple disturbances 

(Nyström et al. 2000; Hughes et al. 2003; Wilson et al. 2006) it is important to 

understand the interactions among differing disturbances and coral bleaching. Perhaps 

one of the greatest research needs is to understand if local-scale management can 

protect reefs against such a global-scale problem (Knowlton & Jackson 2008). The 

information for this will come from a greater understanding of the impacts and 

mechanisms for change, but there is also a pressing need to assess the effectiveness of 

current management frameworks in protecting or promoting recovery from such 

disturbance. 

  

This thesis aims to address several of these unanswered questions, considering 

impacts on fishes at the species, functional, size and community levels, over both 

local and regional spatial scales. Chapter 2 improves understanding of the degree of 

specialisation of corallivorous butterflyfish in the Indian Ocean and assesses their 

associated patterns of decline. The chapter also investigates why certain coral prey are 

targeted more frequently by these fish. Chapter 3 uses obligate and facultative 



 20

corallivores to better understand the loss of live coral versus loss of structural 

complexity as driving mechanisms of decline in reef fish assemblages. The analysis 

also enhances understanding of the spatial and temporal patterns of decline and likely 

recovery trends of reef fish. Chapter 4 investigates the impacts of coral bleaching 

versus local impacts on a reef flat in Mauritius. The importance of local disturbances 

and the structuring processes of competition are elucidated. Chapter 5 reveals that a 

stable fish biomass above size at first capture in the Seychelles has resulted in no 

impacts on the fishery to date. However, large changes in the size structure of the fish 

assemblage suggest a lag effect whereby impacts on the fishery and the ecosystem as 

a whole are yet to be manifest. Finally, Chapter 6 analysed data from 66 sites, in 7 

Indian Ocean countries over a decade. Bayesian meta-analysis is used to assess 

changes in benthic composition and structure and associated reef fish assemblages. 

The study explicitly tests the ability of local management, in the form of no take 

areas, to reduce impacts and enhance recovery from large scale bleaching events. It 

also assesses the ability of herbivore stocks to increase in abundance to control algal 

cover. 
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Chapter 2 

 

Ecological versatility and the decline of coral feeding 

fishes following climate driven coral mortality1 

 

 

2.1 Abstract 

Coral reefs are under threat due to climate mediated coral mortality, which affects 

some reef coral genera more severely than others. The impact this has on coral reef 

fish is receiving increasing attention, with one focal area assessing impacts on fish 

that feed directly on live coral. It appears that the more specialised a species of 

corallivore, the more susceptible it is to coral declines. However data are sparse for 

the Indian Ocean, and little is known about why some corals are preferentially fed 

upon over others. Here I assess feeding specialisation in three species of coral feeding 

butterflyfish in the Chagos Archipelago, central Indian Ocean, assess the food quality 

of the coral genera they target and document patterns of decline in the Seychelles 

following a severe coral mortality event. Cheatodon trifascialis was the most 

specialised coral feeder, preferentially selecting for Acropora corals, however, when 

Acropora was scarce, individuals showed considerable feeding plasticity, particularly 

for the dominant Pocillopora corals. C. trifasciatus also preferentially fed on 

Acropora corals, but fed on a much more diverse suite of corals and also displayed 

some selectivity for Porites. C. auriga is a facultative corallivore and consumed 
                                                 
1  Published as: Graham NAJ (2007) Ecological versatility and the decline of coral feeding fishes 

following climate driven coral mortality. Marine Biology 153:119-127 
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~55% live coral, which lies within the wide range of coral dependence reported for 

this species. C:N ratio analysis indicated Lobophyllia and Acropora have the highest 

food quality, with Pocillopora having the lowest, which conforms with diet selection 

of corallivores and helps explain preferential feeding. Obligate specialist feeders 

displayed the greatest declines through coral mortality in the Seychelles with obligate 

generalists also declining substantially, but facultative feeders showing little change. 

Clearly a greater understanding of the species most vulnerable to disturbance, their 

habitat requirements and the functional roles they play will greatly assist biodiversity 

conservation in a changing climate. 

 

2.2 Introduction  

The decline of coral dominated reef systems and a change in coral composition from 

diverse and often Acropora dominated reefs, to less structurally complex encrusting 

and massive coral dominated reefs (McClanahan et al. 2007a) is being driven 

increasingly by coral bleaching, mediated by climate change (Hoegh-Guldberg 1999; 

Sheppard 2003). The impacts of coral decline on the wider ecosystem has received 

increasing attention, with the effects on fish being especially well investigated 

(reviewed by Wilson et al. 2006). While in the medium-term (5-10 years post 

disturbance) the diversity and abundance of a wide range of species can be affected 

(Jones et al. 2004; Garpe et al. 2006; Graham et al. 2006), in the short-term (< 3 years 

post disturbance), the impacts appear limited to species that specialise on coral for 

diet, recruitment or habitat purposes (Williams 1986; Kokita & Nakazono 2001; 

Wilson et al. 2006; Munday et al. 1997). However, even for specialised fish, the full 

effects can take some time to reach fruition (Pratchett et al. 2004), and seem to vary 
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according to the degree to which the fish are specialised (Munday 2004; Pratchett et 

al. 2006).   

 

Corallivorous fish can vary in their dependence on live coral and although the 

majority of species feed mainly on scleractinian corals (Hourigan et al. 1988), their 

diet may include hard corals, soft corals, gorgonians, sponges, algae, polychaetes and 

crustaceans (Pratchett 2005). Many feeding studies of corallivores have assessed hard 

coral as a single category (Reese 1975; Harmelin-Vivien & Bouchon-Navaro  1981, 

1983; Bouchon-Navaro 1986; Zekeria et al. 2002), however, other studies have 

partitioned feeding patterns at the scale of genera or species of coral, which enables 

the degree of specialisation to be elucidated (Cox 1994; Irons 1989; Pratchett 2005; 

Berumen et al. 2005). Assessing the degree of specialisation of species enables a 

continuum of ecological versatility to be assessed against resource availability or 

through disturbance (Munday 2000, 2004), or a greater number of broad categories of 

feeding or functional groups to be assessed (Pratchett et al. 2006).  

  

Although data on the extent of ecological versatility in coral feeding fish is increasing, 

we have little knowledge as to why some species are specialists, sometimes 

preferentially targeting only one species of coral, whilst other species feed on a far 

broader range of prey. Furthermore, although our understanding of the degree of 

feeding specialisation and resource partitioning among corallivores has greatly 

advanced in the Pacific (Pratchett 2005; Berumen et al. 2005) and this has enabled a 

better understanding of declines in corallivores following disturbances (Pratchett et al. 

2006) or switches in assemblage composition following reorganisation of benthic 

resources (Berumen & Pratchett 2006), whether these patterns and trends transcend 
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into the Indian Ocean is not clear. Indeed geographical variation in feeding 

preferences of corallivores has been reported for specialist feeders (Irons 1989) and 

faculatative coral feeders (Pratchett 2005; Harmelin-Vivien & Bouchon-Navaro 

1983), indicating a need to broaden the geographical extent of such studies. 

  

Here I assess, in the central Indian Ocean, the degree of specialisation in three species 

of coral feeding butterflyfishes representing specialist, generalist and facultative 

corallivores. I assess how this specialisation changes between habitats with differing 

dominance and diversity of corals available. To assess whether feeding selection is 

related to nutritional value, I assess the food quality of the four dominant corals 

selected by the fish. Finally, to assess the impact of coral loss on species with 

differing dependency on coral resources, patterns of temporal change in abundance of 

corallivores were examined through a major coral mortality event in the Seychelles. 

 

2.3 Methods 

2.3.1 Study sites 

The study was conducted at two locations: diet analysis and associated work was 

conducted at Diego Garcia atoll in the Chagos Archipelago, central Indian Ocean, 

while temporal change in corallivore density was assessed in the granitic islands of 

the Seychelles. Although it would have been preferable to conduct the feeding study 

and change in abundance through disturbance at the same location, the two locations 

have very similar coral communities. Indeed, in an assessment of coral species 

diversity across the entire Indian Ocean, Sheppard (1998) showed that Chagos, the 

granitic Seychelles and the Maldives clustered together into a distinct group in terms 

of species similarity and that the Seychelles and Chagos were particularly similar.  
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In Diego Garcia, two sites were selected for substrate assessment, corallivore density 

counts, feeding selectivity and coral food quality assessments. One reef (Diego East; 

7°14.359'S, 72°26.411'E) was in a sheltered bay in the north east corner of the atoll and, 

although hosting a fairly diverse coral assemblage, was dominated by Pocillopora. 

The second reef (Diego Central; 7°14.534'S, 72°24.636'E) was a large platform patch 

reef in the north central section of the atoll, which was less diverse and dominated by 

Acropora. Both reefs were between 1-3m depth and all observations were conducted 

on snorkel. Change in density of corallivores was assessed through a major bleaching 

event in the Seychelles. Data were collected in 1994 and 2005, spanning the 1998 

bleaching event. For full details of study sites see Jennings et al. (1995) and Graham 

et al. (2006). 

 

2.3.2 Substratum Availability 

To determine whether feeding preferences were influenced by the availability of 

potential food resources, substratum availability was quantified. At both Diego East 

and Diego Central the benthos along five randomly placed 10m transect lines was 

quantified using the line intercept method, whereby the distance of tape occupied by 

each substratum category was quantified. These data were converted into percent 

covers of each category and means plotted with standard errors per site. Differences in 

cover by genera were assessed using one-way ANOVA. Acropora cover had to be 

Log10 transformed to meet the assumptions of the test. 
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2.3.3 Feeding observations 

Feeding observations were conducted for three species of chaetodontid butterflyfish, 

one obligate specialist coral feeder, Chaetodon trifascialis, which is expected to 

consistently favour certain prey items, whether these items are common or rare, one 

obligate generalist coral feeder, C. trifasciatus, which is expected to feed on a wider 

variety of prey items, in closer proportions to those available in the environment and 

one facultative coral feeder, C. auriga, which is expected to feed on coral, but also 

injest other non-coral prey (Hourigan et al. 1988). The range and proportional 

consumption of various prey items targeted by each individual was recorded during 3 

minute observation periods (following Pratchett 2005). The majority of individuals 

continued to feed during observation, however observations were discontinued if the 

fishes were disturbed by the observer. No intra-specific aggressive interactions were 

noted during feeding observations. Coral prey were identified to the genus level (16 

genera were fed upon during the study), and other prey items included soft coral, 

sponge, epilithic algae, coralline algae and consolidated reef pavement. Reefs were 

surveyed in a zig zag pattern from one end to the other to try to ensure the same 

individual was not observed twice. All observations at both sites were made between 

10am and 2pm, with no bias for time between sites. Between 20 and 30 individuals 

were surveyed per species per site (Table 2.1).  
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Table 2.1. Bite rate and dietary composition of three species of butterflyfishes on two 

reefs with differing benthic composition in the Chagos Archipelago. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 n Mean No. of 
bites per 3 min 
observation 

% hard coral 
consumed 

No. of coral 
genera 
consumed 

Acropora dominated     
C. trifascialis 26 13.0 100% 1 
C. trifasciatus 26 16.7 97% 4 
Pocillopora dominated     
C. trifascialis 30 17.8 100% 4 
C. trifasciatus 27 14.4 97% 14 
C. auriga 20 6.5 55% 5 
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As data were collected on selection of resource units by individual animals, but 

resource availability was assessed at the population level, resource selection functions 

(Ŵi) were calculated following Manly et al. (1993) using the formula: 

Ŵi = ui+/(πiu++) 

where ui+ is the number of bites taken on food type i by all individuals, πi is the 

proportion of that food type in the population and u++ is the total number of bites taken 

on all substrate types by all individuals (Manly et al. 1993).  Bonferroni corrected 

95% confidence intervals were calculated such that any function where the mean and 

confidence intervals were higher than 1 indicated selection, and if lower than 1 

indicated avoidance. Data are presented as percent availability of resource verses 

percent number of bites for each area, with selection or avoidance indicated with a + 

or – symbol. Data are only presented for the four most common coral genera 

consumed (Acropora, Lobophyllia, Pocillopora and Porites) which represented 93% 

of corals consumed in Diego Central and 56% in Diego East. The non-coral 

substratum categories were combined and selectivity of this category also presented. 

 

2.3.4 Chaetodon density surveys 

The density of each of the three target butterflyfish and any other species of 

butterflyfish at the same locations as the benthic and feeding observations at both 

Diego East and Diego Central was quantified. The density of each species was 

recorded along 5 randomly placed 50*4m belt transects in each of the two study sites 

(following Berumen et al. 2005). Overall differences in the assemblages between the 

two study sites was assessed by MANOVA and differences at the species level using 

one-way ANOVA. 
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2.3.5 Coral food quality 

Eight samples of each of the four most commonly eaten coral genera (Acropora, 

Lobophyllia, Pocillopora and Porites) were taken at random from the field sites and 

dried on land. Every effort was made to ensure the most common species of each 

genera was consistently sampled. Once dried, the samples were ground with pestle 

and mortar and placed in plastic vials for transport. On return to the lab the corals 

were placed in an oven at 50°C to ensure they remained dry. Each sample was then 

further ground into a powder, before being decalcified using 5% HCL to remove the 

skeleton. This solution was then freeze dried and the resultant solid residue was 

ground into a powder and placed in glass vials. Carbon, hydrogen and nitrogen values 

were obtained by testing each sample on a Carlo Erba 1108 Elemental Analyser 

controlled with CE Eager 200 software, and weighed using a Mettler MT 5 

Microbalance (e.g. Wilson 2000). Two runs were performed on each sample and an 

average taken. C:N ratios were then calculated for each sample run. C:N ratio’s are a 

measure of food quality, a low value infers higher nitrogen to carbon, which indicates 

there is more protein present for growth (Purcell and Bellwood 2001; Wilson et al. 

2003). 

  

A one-way ANOVA was used to test for differences in C:N ratios among the four 

coral genera. The ANOVA was performed both with and without a clear outlier for 

the Acropora results, this data point displaying nearly double that of the median for 

the group. Normality of data was examined with histograms and normal probability 

plots of the residuals and homogeniety of variances were tested with Levene’s test. 
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2.3.6 Temporal change in coral feeding fish densities 

In both 1994 and 2005 the density of 134 species of diurnally active, non-cryptic reef 

fish were surveyed at 21 sites, spanning three different habitat types (carbonate 

fringing reefs, granitic rocky reefs with coral growth, and patch reef habitats on a 

sand, rubble or rock base), in the Seychelles, with sixteen 7m radius point counts at 

each site conducted at the bottom of the reef slope (for full details see Jennings et al. 

1995; Graham et al. 2006). In the present study, only the density data of corallivores 

are considered, which includes 13 species from the families Chaetodontidae, 

Monocanthidae and Labridae. Benthic data was also collected at each of the study 

sites, quantifying percent cover of different growth forms of live coral and other non-

coral benthic categories (Jennings et al. 1995; Graham et al. 2006).  

 

Density of the three species of chaetodontid for which feeding observations were 

made were analysed individually and all species were also assigned to three main 

feeding strategies based on the literature (McIlwain & Jones 1997; Allen et al. 1998; 

Kokita & Nakazono 2001; Pratchett 2005; www.fishbase.org). Three species were 

classified as obligate specialist coral feeders (Chaetodon trifascialis, Labrichthys 

unilineatus and Oxymonocanthus longirostris), four species as obligate generalist 

coral feeders (Chaetodon melannotus, C. meyeri, C. trifasciatus and C. zanzibarensis) 

and six species as facultative coral feeders (Chaetodon auriga, C. guttatissimus, C. 

kleinii, C. lineolatus, C. lunula and C. xanthocephalus). From the current literature, 

the similar findings of this study as compared to those in the Pacific and the clear 

patterns observed in the data, these groupings appear to be robust. 
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Change in density of the individual species and aggregated feeding groups was 

assessed with a two-factor crossed ANOVA design with factors year and habitat type, 

however as habitat alone was not significant for any comparison, the data are 

presented for year only. Normality of data was examined with histograms and normal 

probability plots of the residuals and homogeniety of variances were tested with 

Levene’s test. Aggregated level obligate generalists and specialist groups required 

log10 transformation to meet the assumptions of the test. 

 

2.4 Results 

2.4.1 Substratum Availability 

The two sites had similar live coral cover (55% Diego East and 52% Diego Central), 

but the dominance and diversity of coral genera varied greatly (Figure 2.1). Diego 

East was dominated by Pocillopora, with a mean cover of 34% compared to 2.2% for 

Diego Central (F1,9 = 21.23, P < 0.01). Conversely Diego Central was dominated 

predominately by Acropora colonies, with a mean cover of 49% compared to 4.4% in 

Diego East (F1,9 = 69.43, P < 0.001). Cover of other live coral genera and non-coral 

substrate did not vary significantly, however the richness of coral genera was greater 

for Diego East (Figure 2.1). 
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Figure 2.1. Benthic resource availability at Diego East and Diego Central, Chagos 

Archipelago. *** P<0.001, ** P<0.01. 
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2.4.2 Feeding observations 

The greatest bite rates in Diego Central were recorded for C. trifasciatus, whereas in 

Diego East, C. trifascialis had the highest rates and C. auriga had considerably lower 

bite rates than the other two species (Table 2.1). C. trifascialis took 100% of bites 

from live coral at both sites, while C. trifasciatus took 97% and C. auriga took 55% 

(Table 2.1). In the lower diversity site, Diego Central, C. trifascialis took all its bites 

from Acropora colonies, principally Acropora tenuis, the dominant species at the site, 

but also Acropora clathrata. C. trifasciatus took bites from four different genera at 

Diego Central. At Diego East C. trifascialis consumed four genera of coral, while C. 

trifasciatus consumed 14 genera and C. auriga consumed 5 genera, a considerable 

proportion of its bites from non-coral substrata (Table 2.1).  

 

Selectivity analysis shows that C. trifascialis is preferentially selecting Acropora and 

avoiding other available genera in Diego Central (Figure 2.2). C. trifasciatus displays 

a similar trend, however there is also evidence for selectivity on Porites spp. (Figure 

2.2). In Diego East C. trifascialis is preferentially selecting Acropora, but also taking 

a large proportion of bites on Pocillopora colonies. While C. trifasciatus appears to 

have a much more general diet, it is only selecting preferentially for Acropora. C. 

auriga appears to have a very general diet, and does not select for any resource in 

greater proportion to its availability (Figure 2.2).  
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Figure 2.2. Feeding selectivity of C. trifascialis, C. trifasciatus and C. auriga at 

Diego Central and Diego East, Chagos Archipelago. Data only presented for the four 

coral genera most preferentially consumed. Black bars indicate percent resource 

availability, open bars indicate percent feeding bites on that resource. + symbol 

indicates positive selectivity. 
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2.4.3 Corallivore density surveys 

The overall assemblage structure of corallivores between the two sites varied 

significantly in terms of density (MANOVA, Wilks = 0.017, F3,6 = 28.45, P < 0.01) 

(Figure 2.3). C. trifascialis had a greater density in Diego Central (F1,9 = 28.77, P < 

0.001) while C. trifasciatus and C. auriga had higher densities in Diego East (F1,9 = 

22.43, P < 0.001 and F1,9 = 6.94, P < 0.05 respectively). Although not significant, the 

remaining species all displayed higher densities in the more diverse Diego East site 

(Figure 2.3). 

 

2.4.4 Coral food quality 

The lowest C:N ratios, and therefore highest food quality, were for Acropora and 

Lobophyllia coral genera, while Pocillopora had the highest C:N ratio (Figure 2.4). 

ANOVA results indicate this difference is significant (F3,30 = 4.25, P < 0.05), with the 

only pairwise difference between Lobophyllia and Pocillopora (P < 0.01). However if 

the analysis is re-run with the clear outlier for Acropora (Figure 2.4) removed, the 

trend is considerably stronger (F3,29 = 7.86, P < 0.001), and Acropora is also different 

from Pocillopora in pairwise tests (P < 0.01). 
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Figure 2.3. Mean density of corallivores present in Diego Central and Diego East. 

*** P<0.001, ** P<0.01, * P<0.05. 
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Figure 2.4. Box and whisker plots of C:N ratios for four coral genera. Box indicates 

median value, lower and upper quartiles. Whiskers indicate range up to 1.5 times the 

box. Outliers indicated with an asterix. 
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2.4.5 Temporal change in coral feeding fish densities 

Between 1994 and 2005 total live coral cover declined by an average of 73% at the 

sites studied in the Seychelles, with complex branching and plating corals declining 

by 95% to a new base level of 1% cover across the study area (Graham et al. 2006, 

2007). Change in densities of the three focal Chaetodontids through this major 

bleaching event indicates the most specialist species (C. trifascialis) declined the most 

(F1,41 = 11.16, P < 0.01), followed by the generalist obligate coral feeder (C. 

trifasciatus) (F1,41 = 9.47, P < 0.01), while the facultative corallivore (C. auriga) did 

not show any decline (Figure 2.5). Habitat was not a significant factor for any of the 

species, however C. trifasciatus displayed a significant year*habitat interaction term, 

which was due to a greater decline in carbonate and patch reef habitats than granitic 

reef habitats (F2,41 = 3.36, P < 0.05). If all the corallivores in the assemblage are 

assigned to the above three feeding categories, the obligate specialist feeders show a 

98% decline (F1,41 = 120.11, P < 0.001), the obligate generalist coral feeders display a 

73% decline (F1,41 = 24.51, P < 0.001) and the facultative coral feeders show a 32% 

decline (F1,41 = 4.20, P = 0.048)(Figure 2.5). 
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Figure 2.5. Change in density of C. trifascialis, C. trifasciatus and C. auriga and 

obligate specialists, obligate generalists and facultative feeders in Seychelles before 

and after the 1998 bleaching event. 
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2.5 Discussion 

Here I have shown that although there may be greater feeding plasticity than 

previously documented in some species of corallivore, there are obvious differences 

between obligate specialist, obligate generalist and facultative feeders, which may in 

part be due to the quality of food. Similar to a previous study (Pratchett et al. 2006), 

the degree of specialisation is reflected in the extent of decline in density following 

mass coral bleaching. The obligate specialist feeders were severely impacted in this 

study, with a potential local extinction of Labrichthys unilineatus (Graham et al. 

2006). 

 

The number of bites taken per 3 minute observation varied among species and 

between the two study reef sites. Although bite rates of C. trifasciatus did not change 

markedly between reefs, C. trifascialis took a greater number of bites at Diego East 

(the Pocillopora dominated reef) than Diego Central (the Acropora dominated reef). 

Although the sample sizes were not large, this could reflect abundance of preferred 

resources, with greater feeding rates required when preferred corals are not in 

abundance (Bowen et al. 1995). C. trifascialis are known to defend their territories 

aggressively (Reese 1975, 1981), so it is interesting that feeding rates were higher at 

the site where a greater number of other species were present and thus potentially a 

greater number of aggressive interactions may be expected.  The lack of a difference 

in bite rates in C. trifasciatus was also noted before and after coral decline at Trunk 

Reef, Australia for C. lunulatus (closely related Pacific species) (Pratchett et al. 2004, 

but see Irons 1989). The lowest numbers of bites per observation were recorded for C. 

auriga, which again could reflect nutritional value of food items, this species often 

targeting polychaete worms and other invertebrates (Bouchon-Navaro 1986).  
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Both C. trifascialis and C. trifasciatus preyed on a greater number of coral genera in 

the more diverse Pocillopora dominated habitat, although C. trifasciatus was clearly 

the more generalist feeder and both species preferentially selected for Acropora 

corals. C. trifascialis is a highly specialised coral feeder, almost always selecting 

Acropora, often Acropora hyacinthis (Pratchett 2005, 2007), although the preferred 

species can vary geographically (Reese 1981). However, some plasticity in feeding 

has been observed when Acropora cover is very low (Irons 1989; Samways 2005), as 

is apparent in the current study. Feeding plasticity has also previously been 

documented between reefs of varying coral availability for C. baronessa and C. 

lunulatus at Lizard Island, Great Barrier Reef (Berumen et al. 2005). When preferred 

corals were not in abundance, the physiological condition of the fish, as measured by 

hepatocyte vacuolation in the liver, declined (Berumen et al. 2005). A decline in 

physiological condition was also noted for C. lunulatus following declines in cover of 

Acropora corals, which resulted in declines in abundance, but a shift in diet away 

from Acropora (Pratchett et al. 2004). It is possible that C. trifascialis may have lower 

fitness and fecundity in Diego East due to sub-optimal diet, however analyses such as 

those described above would be required to ascertain this. Interestingly, C. trifasciatus 

selected for Porites corals in Diego Central and took a greater proportion than 

available in Diego East, albeit taking very few bites from them overall. C. trifasciatus 

(now C. lunulatus) has been shown to feed primarily on poritid corals in Hawaii at 

sites where poritid and montiporid corals dominate (Cox 1994), suggesting that 

selectivity for Porites may be common in this species.  

 

In this study C. auriga individuals took ~55% of bites from live coral. There appears 

to be a great deal of biogeographic variation in the feeding patterns of this species, 
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with studies in Australia finding live coral made up just 4% of its diet (Pratchett 

2005), ~61% in French Polynesia (Harmelin-Vivien & Bouchon-Navaro 1983) and 

~29% in the Red Sea (Harmelin-Vivien & Bouchon-Navaro 1981; Bouchon-Navaro 

1986). The species is clearly a facultative coral feeder, but whether the variation in 

coral dependence is a spatial or temporal artefact is yet to be elucidated. 

  

As can be seen with Acropora in the Diego Central site, selection functions do not 

always perform well when data are aggregated. In this study data were collected on 

selection of resource units by individual animals, but resource availability was 

assessed at the population level. Although the selection function chosen largely 

accounts for this (Manly et al. 1993), there is still a problem with resources in low 

availability, particularly when they are clumped in distribution, and/or the animals are 

territorial. In such situations assessment of resource availability within the specific 

boundaries of an individual territory may produce clearer results (however there are 

inherent problems in assessing butterflyfish territory size, as described by Reese 

(1981)). For example the low cover of Lobophyllia in Diego East was clumped, but 

when it did occur in a fishes territory, they took the majority of their bites from it. 

This coral has the fleshiest polyp and so potentially offers the greatest nutritional 

return per bite effort. Although Lobophyllia was recorded in the random benthic line 

intercept transects, because it only occurred in the territory of several fish, the 

selection function did not indicate positive selection. 

  

There was an overall difference in species abundance between the two sites, with C. 

trifascialis having a significantly greater density in the Acropora dominated Diego 

Central, and all other species present being in greater density in the more diverse 
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Diego East. C. trifascialis is known to be very territorial and actively defend its 

territory from intruders (Reese 1975), suggesting that this species may dominate in 

such mono-specific Acropora rich areas (Pratchett 2005) inhibiting the presence of 

other species. Even competitively similar species can display inverse relationships in 

terms of abundance (Reese 1981). It has been suggested that competitively 

subordinate species may have a broader diet to avoid competition with more 

specialised aggressive species (Pratchett 2005). C. trifascialis lives as a solitary 

individual and defends a specific territory, whereas other species, such as C. 

trifasciatus and sometimes C. auriga occur in heterosexual pairs (Reese 1975, 1981). 

There is also variation in territory size, with C. trifascialis and C. trifasciatus utilising 

fairly small territories, whereas C. auriga forages over a wider area (Reese 1975). It 

appears C. trifascialis dominates over other species where Acropora is in abundance, 

as has been described in previous studies (Reese 1981; Pratchett 2005), and thus other 

species are in greater number on more diverse reefs, not dominated by Acropora, 

where coexistence is more likely achieved through partition of food resources 

(Zekeria et al. 2002). 

  

One possible explanation for differences in feeding specialisation could be variation 

in food quality. C:N analysis indicated that Lobophyllia and Acropora tissue has a 

lower C:N ratio, thus greater food quality, than Pocillopora corals. If this is the case it 

could help explain why many corallivores preferentially feed on Acropora corals 

(Pratchett 2005), i.e. selecting for protein rich resources (Bowen et al. 1995). It could 

also help explain why species in habitats with low availability of preferred corals have 

been shown to have reduced physiological condition (Pratchett et al. 2004; Berumen 

et al. 2005). However the latter studies assessed lipid stores in the liver which equate 
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to short-term energy needs more than the C:N ratios examined here, which give an 

indication of protein availability and energy for growth (Bowen et al. 1995). Whether 

the same corals found to have low C:N ratios in the present study also have high lipid 

content remains to be tested.  

 

Methodological variation in C:N ratios should be minimised when techniques are 

standardised within a study, so one would hope the results presented here are 

comparable. As only one species per genera was assessed in the current study, it is not 

clear how much variation there is within genera of corals compared to among them. 

This is clearly an area for future research. However, given that in the current study 

area, certain species of coral dominated within a genera, and it was these that were 

both preyed upon by the fish and assessed for C:N ratios, the results are robust for the 

purpose of feeding selectivity.  

 

It is clear from previous studies that coral tissue is a valuable food source (e.g. Bythell 

1988; Rotjan & Lewis 2005), with algal and related food sources likely being of less 

nutritional value (Wilson 2000; Rotjan & Lewis 2005, but see Wilson et al. 2003 for 

variation) and invertebrates, such as polychaete worms having higher nutritional value 

(Rotjan & Lewis 2005). The higher nutritional value of invertebrates such as 

polychaetes may help explain why the feeding rates of C. auriga are less than obligate 

coral feeders. There will obviously be other reasons why species preferentially choose 

certain coral prey, which may involve resource partitioning (Zekeria et al. 2002; but 

see Pratchett 2005), functional jaw morphology (Motta 1988), morphology of corals 

(Tricas 1989b) and presence of nematocysts (Gochfield 2004). It is likely that all 

these factors contribute to the final selectivity of fish. 
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Declines in density of corallivores between 1994 and 2005 in the Seychelles further 

highlight the importance of specialisation when assessing the vulnerability of fish to 

disturbance (Munday 2004; Pratchett et al. 2006; Wilson et al. 2006). In this study C. 

trifascialis and the aggregated obligate specialist feeders showed the greatest declines, 

followed by C. trifasciatus and the obligate generalists and C. auriga and the 

aggregated facultative feeders showed little change. This directly corresponds to 

predictions based on feeding selectivity, and the fact that Acropora, the preferred food 

of many specialists, is among the most vulnerable taxa of corals to coral bleaching 

and other disturbances such as crown-of-thorns starfish outbreaks and storms 

(McClanahan et al. 2004, 2007a; Wilson et al. 2006). Pratchett et al. (2006) also found 

obligate coral feeding butterflyfish declined on the Great Barrier Reef following 

extensive coral mortality, but facultative and non-coral feeders did not. This study 

furthers this knowledge by highlighting the distinction between obligate specialist and 

obligate generalist feeders, and also includes species from the monocanthid and labrid 

families. Declines in density of coral feeders in the Seychelles were greater in Marine 

Protected Areas than fished areas (Chapter 5 & Graham et al. 2007), suggesting this 

management option offered no insurance against the disturbance. Clearly when 

disturbances are so severe and spatially extensive, specialist species have little refuge. 

 

There is a growing literature highlighting the vulnerability of specialist fish to 

disturbance (reviewed by Wilson et al. 2006), suggesting that measures of feeding 

(Pratchett 2005) or habitat (Munday et al. 1997) specialisation will be important 

criterion to predict which species are vulnerable to extinction on reefs (see Munday 

2004). Indeed, in the Seychelles, where the 1998 coral bleaching event devastated 



 46

reefs, there is evidence of the local extinction of four specialist species (Graham et al. 

2006). Local extinction of coral specialists has also been documented from Papua 

New Guinea following extensive coral mortality (Jones et al. 2004; Munday 2004). If 

we are to manage and conserve biodiversity in a changing climate, a greater 

understanding of the species most vulnerable to disturbance, their habitat needs and 

the functional roles they offer to the rest of the ecosystem will be imperative. 

 

2.6 Acknowledgements 

The Chagos Research Expedition of 2006, funded largely by the FCO, London, and 

organised by Charles Sheppard enabled this work to take place. Funding for both 

work in Chagos and Seychelles was also received from the Leverhulme Trust, the 

Fisheries Society of the British Isles and the Western Indian Ocean Marine Science 

Association. Many thanks to Simon Jennings, Shaun Wilson, Jerker Tamelander and 

Bob Crawford for assistance in the field and for providing data. Thanks to John 

Bythell, Nick Polunin and Shaun Wilson for assistance in the lab, ideas and for 

critical evaluation of the manuscript. 

 

 

 

 

 

 

 



 47

Chapter 3 

 

Coral mortality versus structural collapse as drivers 

of corallivorous butterflyfish decline2 

 

 

3.1 Abstract 

Climate change is a key threat to biodiversity and ecosystem function. Understanding 

the spatial and temporal scales at which drivers of species decline operate and the 

attributes of species most vulnerable to decline is a key challenge to ecologists and 

conservationists. Coral reefs have emerged as one of the ecosystems most threatened 

by climate impacts, where both reef corals and associated fish assemblages can be 

severely altered. Here we assess the effects of coral loss versus structural complexity 

collapse on obligate and facultative coral feeding butterflyfishes. The abundance of 

the obligate coral feeding group declined markedly in response to live coral mortality 

(r2 = 0.48), which represents rapid declines, but showed no further loss once the 

physical matrix of the reef eroded. Conversely, the facultative feeding group showed 

no decline in response to live coral loss, reflecting their feeding versatility; however 

they did decline once the structure of the reef began to erode (r2 = 0.26). While coral 

dependant fishes are highly vulnerable to coral loss caused by climate-induced coral 

bleaching, the structural collapse of dead coral colonies may have significant, but 

                                                 
2 Submitted as: Graham NAJ, Wilson SK, Pratchett MS, Polunin NVC, Spalding MD (in review) Coral 
mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodiversity and 
Conservation. NAJ Graham collected and analysed data, interpreted results and wrote the paper. 
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more variable, impacts across a wide range of fishes. If conservation and mitigation 

planning are to be effective, there is a clear need to better understand the mechanisms 

of reef structural collapse and the dynamics of system recovery following large-scale 

disturbance. 

 

3.2 Introduction 

Climate change has emerged as one of the greatest threats to the world’s ecosystems 

(Walther et al. 2002) and the impacts this is having on biodiversity is of key concern 

(Thomas et al. 2004; Balmford et al. 2005). To enable suitable management and 

mitigation plans to be developed for species preservation, it is necessary to identify 

the key drivers of species decline, the temporal and spatial scales over which they 

operate and the attributes of individual species that render them more or less 

susceptible to environmental disturbance (Sala et al. 2000; Dulvy et al. 2003).  

 

One of the ecosystems most vulnerable to climate change effects are coral reefs 

(Hughes et al. 2003; Hoegh-Guldberg et al. 2007), which are suffering widespread 

loss of live coral due to coral bleaching; a decoupling of the symbiotic relationship 

between the energy providing dinoflagellates and the host corals (Brown 1997). 

Associated with this loss in coral cover is a considerable reorganisation of the coral 

genera present (McClanahan et al. 2007a) and ultimately, through biological and 

physical processes, a reduction in the structural complexity of the reef matrix 

(Sheppard et al. 2002; Graham et al. 2006). Understanding the impacts of such large-

scale disturbance to coral reef benthos on associated organisms is in its infancy 

(Pratchett et al. 2008b). It is clear that species richness and abundance of certain 

groups of fishes may decline following coral loss (Sano et al. 1987; Jones et al. 2004; 
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Garpe et al. 2006; Graham et al. 2006; Wilson et al. 2006), that specialist species are 

most vulnerable (Munday 2004; Pratchett et al. 2006; Wilson et al. 2008a) and that 

loss of recruitment habitat (Feary et al. 2007a) or structural complexity (Graham et al. 

2006, Chapter 5 & Graham et al. 2007a) may lead to long-term declines. However, an 

unequivocal understanding of these drivers, which species they effect and the spatial 

and temporal scales over which they operate is clearly necessary. 

 

Corallivorous butterflyfish are an ideal group of fish to test these ideas as they display 

varying degrees of specialisation or versatility in dependence on live coral for food 

(Irons 1989; Cox 1994; Berumen et al. 2005; Pratchett 2005; Chapter 2 & Graham 

2007; Berumen & Pratchett 2008). The extent of feeding specialisation by 

butterflyfish has been shown to relate to vulnerability to disturbance, with more 

specialised obligate coral feeders declining substantially more following coral loss 

than versatile facultative coral feeders (Pratchett et al. 2006; Chapter 2 & Graham 

2007). Butterflyfish are also small bodied, with maximum total lengths typically <20 

cm, which has been highlighted as a key attribute of fish, making them vulnerable to 

collapse of the reef structural matrix (Graham et al. 2006; Chapter 5 & Graham et al. 

2007a; Pratchett et al. 2008a). Such collapse generally occurs some time (5-10 years) 

after the initial live coral loss  and so the associated impact on the fish assemblage is 

likely to be delayed compared to the impacts of live coral loss. 

 

Here we assess the impacts of loss of live coral cover versus loss of the structural 

complexity of reefs on obligate and facultative coral feeding butterflyfish. This study 

was conducted in the inner Seychelles, which was devastated during the 1998 

bleaching event, with a loss of >90% live coral cover (Sheppard 2003). By 2005 reefs 
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in the inner Seychelles were showing very little coral recovery and variable collapse 

of structural complexity (Graham et al. 2006). 

 

3.3 Methods 

The study was conducted in the inner islands of the Seychelles. Benthic and fish data 

were collected before (1994) and after (2005) the devastating 1998 bleaching event 

from 21 sites, comprising 3 different habitat types; carbonate fringing reefs, granitic 

rocky reefs with coral growth and patch reef habitats on a sand, rubble or rock base. 

At each site 16 randomly selected underwater point counts of 7m radius were 

surveyed along the bottom of the reef slope (5-13 m depth). S. Jennings collected all 

1994 data (Jennings et al. 2005) and N. Graham and S. Wilson collected 2005 data 

(Graham et al. 2006). Benthic cover of functional forms of hard corals, soft corals, 

macroalgae, sand, rock and rubble was estimated visually and checked for accuracy 

against the line-intercept method (Wilson et al. 2007). Structural complexity of the 

benthos was quantified at each site using a 6 point visual scale which captures 

complexity comparable to a range of other techniques (Wilson et al. 2007). All adult 

butterflyfishes (>5cm TL) within each 7m radius station were counted and recorded to 

species. All butterflyfishes were then categorised into obligate coral feeding or 

facultative coral feeding groups based on the literature (Harmelin-Vivien 1989a; 

Pratchett 2005; Chapter 2 & Graham 2007) and Fishbase (Froese & Pauly 

2007)(Table 3.1). Full details of survey techniques and a study map can be found in 

Jennings et al. (1995).  
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Table 3.1. Change in total butterflyfish species abundance within each habitat type 

(17,248m2) and change in species richness of facultative and obligate groups. 

 

 

  
Carbonate 

 
Granitic 

 
Patch reef 

 
Species Category 1994 2005 1994 2005 1994 2005 
 
Chaetodon melannotus Obligate 21 1 6 0 3 0 
Chaetodon meyeri Obligate 3 0 1 2 0 0 
Chaetodon trifascialis Obligate 31 0 15 9 24 0 
Chaetodon trifasciatus Obligate 139 8 43 34 70 27 
Chaetodon zanzibariensis Obligate 8 4 6 8 9 0 
        
Change in species richness Obligate -2 -1 -3 
 
Chaetodon auriga Facultative 19 26 24 29 32 6 
Chaetodon guttatisimus Facultative 2 0 8 12 10 4 
Chaetodon kleinii Facultative 3 4 9 4 15 9 
Chaetodon lineolatus Facultative 1 0 0 0 2 0 
Chaetodon lunula Facultative 9 4 6 7 10 6 
Chaetodon xanthocephalus Facultative 16 0 11 6 5 6 
        
Change in species richness 
 

Facultative 
 

-3 
 

0 
 

-1 
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To account for varying initial values (Côté et al. 2005), we calculated change in coral 

cover, structural complexity and abundance of butterflyfish between 1994 and 2005 

using the following equation:  

 

100]/)[(% ×−=Δ bba AAAdifference     (1) 

 

Where Ab and Aa were mean values at sites in 1994 and 2005 respectively. Because 

percent differences can have a strong right-tailed distribution, i.e. a maximum 

potential decline of 100%, but potentially limitless increases, we transformed data 

following Kaiser et al. (2006): 

 

/101])Δ[+(1= eY log        (2) 

 

The transformation approximately normalises the error distribution and stabilises its 

variance. The data are balanced around zero and a common maximum decline and 

increase of -4.6 and +4.6 is imposed (Kaiser et al. 2006).  

 

The relationship between loss of live coral cover and loss of structural complexity was 

assessed using correlation analysis. The influence of the change in live coral cover 

versus change in structural complexity on fish groups was assessed using analysis of 

covariance, where habitat type was a categorical predictor and change in coral cover 

or structural complexity a covariate. Data were tested for normality and homogeneity 

of variances by inspecting residual plots and Levene’s test respectively, and no 

transformations were necessary. 
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3.4 Results 

Declines in coral cover in the inner Seychelles as a result of the 1998 bleaching event 

were immediate and substantial (Sheppard 2003), whereas declines in reef structural 

complexity took much longer to become manifest. The reef began to erode in 2003 

(Engelhardt 2004) and by 2005 the 21 sites studied were in varying degrees of 

collapse (Graham et al. 2006). Changes in fish abundance observed during this study 

may be due to either the short-term effects of coral loss or longer-term effects of 

structural collapse. Importantly, there was no collinearity between the loss of live 

coral at each site and the reduction of structural complexity (r = 0.177, P = 0.443), 

ensuring that the two drivers could be assessed as independent variables. 

 

Obligate coral feeders show substantial declines at the species level, although slightly 

less severe in the granitic habitat (Table 3.1). Conversely, facultative feeders showed 

more moderate declines and considerable stability in the granitic reef habitat (Table 

3.1). Species richness followed similar trends, with generally greater and more 

consistent declines for obligate coral feeders (Table 3.1). The obligate corallivore 

group displayed strong patterns of decline associated with loss of live coral cover (r2 

= 0.48) whereas facultative corallivores showed no relationship (Table 3.2, Figure 

3.1). Conversely change in structural complexity did not explain any patterns of 

decline for obligate corallivores, but did explain declines in facultative corallivores (r2 

= 0.26) (Table 3.2, Figure 3.2). Habitat was only a significant factor for obligate 

corallivores in the structural complexity change model and this was due to a greater 

decline in abundance in carbonate reef habitats than granitic rocky reef habitats (Table 

3.2).  
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Table 3.2. Results of univariate analysis of covariance on densities of obligate and 

facultative corallivores for both the coral decline and structural complexity decline 

models. Values given are F ratios (probability results given in brackets. ** P < 0.01; * 

P < 0.05; ns = not significant. 

 
 
 
 Coral cover model 

 
Structural complexity model 

 
Fish group 

Habitat effect 
 

(2,17 df) 

Coral decline 
covariate 
(1,17 df) 

Habitat effect 
 

(2,17 df) 

Structural loss 
covariate 
(1,17 df) 

 
Obligate 
corallivores 

 
3.21 (ns) 

 
10.80 (**) 

 
4.88 (*) 

 
0.77 (ns) 

Facultative 
corallivores 

1.30 (ns) 0.09 (ns) 1.45 (ns) 6.28 (*) 
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Figure 3.1. Change in abundance of (a) obligate corallivores and (b) facultative 

corallivores in response to loss of live coral loss. Solid line represents significant 

trend. 
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Figure 3.2. Change in abundance of (a) obligate corallivores and (b) facultative 

corallivores in response to reduced reef structural complexity. Solid line represents 

significant trend. 
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3.5 Discussion 

We have shown that declines in obligate coral feeding butterflyfish are mainly 

associated with loss of live coral, whereas declines in facultative coral feeding 

butterflyfish are mainly associated with loss of structural complexity. This suggests 

that loss of obligate coral feeders are likely to be fairly rapid following extensive coral 

mortality, although some delays associated with feeding on sub-optimal prey may 

occur (Pratchett et al. 2004). In comparison, abundance change of obligate 

corallivores relative to loss of structure was more variable and non-significant. This is 

most likely because by the time reef structure starts to erode and collapse the majority 

of decline has already occurred.  

  

The failure to detect any relationship between change in abundance of facultative 

corallivores and change in coral cover highlights the high level of feeding versatility 

in these species, many of which satisfy their dietary requirements by feeding on algae 

and motile invertebrates (Harmelin-Vivien & Bouchon-Navaro 1981; Harmelin-

Vivien 1989a; Pratchett 2005). However facultative corallivores did decline in 

response to a reduction in structural complexity, reflecting their reliance on the shelter 

provided by the reef matrix. Small bodied species are known to be vulnerable to 

structural complexity loss (Graham et al. 2006) likely because they generally inhabit 

narrower niches and are more reliant on the reef matrix to avoid predators (Munday & 

Jones 1998). The weaker relationship and smaller decline in abundance and species 

richness of facultative feeders may be associated with variable collapse in structure 

among sites, or because the impacts of reduced structure are not as devastating as a 

complete loss of dietary resources (i.e. for obligate feeders). This suggests that 

facultative feeders, although escaping declines immediately following coral loss, may 
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decline in a longer time frame and from a different driver (structural loss). However, 

their loss is likely to be less substantial than that of obligate feeders (Pratchett et al. 

2006; Chapter 2 & Graham 2007).  

 

An alternative explanation for a delayed decline in facultative corallivores is that 

these species recruit to live coral, and high coral mortality eventually reduces 

replenishment rate of adult stocks (sensu Jones et al 2004). For facultative coral 

feeding butterflyfish this explanation seems unlikely, as most species recruit 

preferentially to non-coral habitats (Pratchett et al. 2008c). It is feasible, however, that 

a loss of fine scale habitat complexity has reduced refuge space for juvenile fish, 

which would contribute to long term declines in adult populations (Chapter 5 & 

Graham et al. 2007a).  

 

Our results suggest that obligate corallivores should be impacted more rapidly than 

facultative corallivores when subjected to disturbances such as coral bleaching, which 

result in rapid coral mortality, but delayed loss of habitat structural complexity. 

Furthermore, the spatial scales over which the impact is realised differ. Mass coral 

bleaching is generally devastating to coral cover over wide spatial scales (Hughes et 

al. 2003), although some depth refuge of live coral can occur (Sheppard & Obura 

2005). Conversely, the collapse of habitat structure can be spatially variable (Graham 

et al. 2006), which likely results in more patchy reductions in abundance of species 

effected by structural loss. Thus, the more specialised obligate coral feeding species 

are more vulnerable to population declines and local extinctions due to both more 

substantial responses to disturbance and because the disturbance is manifested more 

uniformly and is spatially extensive. 
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Although predicting and understanding effects of bleaching on live coral loss and re-

organisation has greatly increased (Sheppard 2003; Hoegh-Guldberg et al. 2007; 

McClanahan et al. 2007a, c), the same is not true for loss of structural complexity. 

The mechanisms for collapse of reef structural complexity following live coral 

mortality can include physical erosion (Scoffin 1993) and bioerosion (Hutchings 

1986) and will be partly dependant on the original composition of the coral 

community (Done et al. 1996). As collapse of this matrix appears to be a major 

determinant of secondary impacts on fish assemblages (Garpe et al. 2006; Graham et 

al. 2006; Chapter 5 & Graham et al. 2007a; Wilson et al. 2006), a greater 

understanding of the mechanisms behind differential collapse of reef structures 

following coral mortality and how this can be predicted will be of great benefit to 

conservation planning.  

 

The patterns of decline in obligate and facultative corallivores identified in this study 

beg the question as to the dynamics of any recovery in their populations following 

benthic recovery. One may hypothesize that the obligate feeders may recover more 

rapidly as live coral cover returns to a reef more rapidly than the structure it provides. 

However, if the declines observed for obligate feeders are great, an allee effect may 

operate whereby the broodstocks of adults are not sufficient to facilitate a rapid 

recovery. Conversely, although the structural complexity of the reef may take longer 

to regenerate, facultative feeders may more readily respond to any such recovery as 

their population decline is less severe and more variable. Previous studies have shown 

that recovery of fish species richness and abundance of some groups may track 

recovery of the benthos (Sano 2000; Halford et al. 2004), however for butterflyfish, if 
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the composition of corals that recover is different to the pre-disturbance composition, 

the resultant  assemblage of butterflyfish may also be radically different (Berumen & 

Pratchett 2006). With climate change leading to an altered and depauperate 

composition of corals on reefs (Hughes et al. 2003; McClanahan et al. 2007a), it is 

imperative to understand how fish groups will respond to such changes.  

 

Understanding the likely composition and functional capacity of fish assemblages on 

reefs in a changing climate is a key conservation question. Such information is 

imperative to inform biodiversity preservation and to understand the likely trajectories 

of coral reef ecosystems through continued and multiple disturbance regimes. Coral 

reefs provide a variety of critical goods and services to human societies (Moberg & 

Folke 1999) and so further understanding of the drivers of decline, the spatial and 

temporal scales over which they operate, and projections of how these services are 

likely to change, are key research priorities. 
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Chapter 4 

 

Anthropogenic stressors, inter-specific competition 

and ENSO effects on a Mauritian coral reef 3 

 

4.1 Abstract 

Much of the western Indian Ocean suffered widespread loss of live coral in 1998 and 

interest is now focused on the indirect effects of this coral loss on other components 

of the ecosystem, in particular fishes. However, it is just as important to identify 

changes in fish assemblages at locations that did not suffer coral mortality in order to 

understand local versus regional drivers. We surveyed benthic and fish communities 

on a reef flat in Mauritius five times between 1994 and 2005. The design allowed for 

comparison through time, along the coast and between inshore and offshore reef 

locations. The benthic community demonstrates a clear trend along the coast which is 

likely to be in response to a dredged water ski lane, but little change through time. 

Branching Acropora colonies dominate much of the live coral and best explain 

patterns in the fish assemblage (p<0.01). Few changes in overall fish species richness 

through time were identified, and observed changes were within fishery target 

families rather than species reliant on live coral. Departure from expected levels of 

taxonomic distinctness suggests degradation in the community associated with the 

                                                 
3  Published as: Graham NAJ, McClanahan TR, Letourneur Y, Galzin R (2007) Anthropogenic 

stressors, inter-specific competition and ENSO effects on a Mauritian coral reef. Environmental 
Biology of Fishes 78:57-69. NAJ Graham collected post-disturbance data, analysed and interpreted 
data and wrote the manuscript. 
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dredged ski lane. Non-metric multi-dimensional scaling of the fish assemblage 

demonstrates a similar pattern to that seen in the benthos; greater differences along the 

coast (Global R = 0.34) than through time (Global R = 0.17) and no trend between 

reef positions. SIMPER analysis identified two species of Stegastes as the main 

drivers of trends in the MDS plot and the most dominant of these, S. lividus, appears 

to be reducing species richness of the remaining fish community. The study highlights 

Mauritius as a regional refugia of thermally-sensitive corals and specialised fish, 

suggesting a need for careful management. 

 

4.2 Introduction 

Coral reefs globally are suffering increasingly frequent events of thermally induced 

bleaching and associated mortality (Hoegh-Guldberg 1999, Sheppard 2003). Loss of 

live coral cover at this scale is expected to affect other components of the ecosystem 

(Walther et al. 2002), and studies of such impacts are growing in number. Much 

attention is focused on likely ramifications for reef-associated fish assemblages. The 

majority of studies to date have been on the scale of a few months to years and 

indicate limited community change aside from species directly dependant on live 

coral or algae for food or shelter (Kokita and Nakazono 2001, Lindahl et al. 2001, 

Booth and Berretta 2002, Chabanet 2002, McClanahan et al. 2002, Sheppard et al. 

2002, Spalding & Jarvis 2002, Sano 2004), whereas the longer term effects may be 

much greater (Jones et al. 2004, Graham et al. 2006). This may be due to lag effect 

associated with changes in physiological condition of fish (Pratchett et al. 2004) and 

collapse of the physical structure of the reef matrix (Graham et al. 2006, Chapter 5 & 

Graham et el. 2007a). Understanding such effects and processes will clearly be 

essential for future use and management of affected reef systems. 
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When trying to understand the effects of bleaching on fish assemblages, it is just as 

important to assess change through the same time period at locations that did not 

suffer badly from bleaching, as it is to study sites where severe mortality occurred. 

This acts as a control for bleaching effects where other drivers in fish community 

dynamics can be identified in a region over the same time period. Ecological 

processes such as variable recruitment (Doherty & Williams 1988, Letourneur et al. 

1998a, Doherty et al. 2004), predation (Hixon 1991, Graham et al. 2003) or 

competitive interactions (Robertson 1996, Letourneur 2000, McClanahan 2000a) 

could be driven by natural processes and influence fish assemblages. They may also 

be driven by changes in habitat associated with effects such as eutrophication 

(McCook 1999), sedimentation (Rogers 1990), or fishing (Jennings at al. 1995, 

McClanahan & Graham 2005), or actions that may cause physical damage to the 

habitat (Brown et al. 1990, Adjeroud et al. 1998). Identifying such processes and 

collecting baseline data at a location that has escaped much of the thermal damage 

characterised at other sites, will provide information for future monitoring and 

management, particularly when future effects of bleaching at regional scales are 

expected to be significant (Sheppard 2003). 

 

The warm phase of the El Niño Southern Oscillation (ENSO) event of 1998 resulted 

in the greatest global bleaching event on record (Hoegh-Guldberg 1999) and was 

particularly devastating to the western Indian Ocean (WIO) (Goreau et al. 2000) 

where it interacted with the warm portion of the Indian Ocean dipole (Saji et al. 

1999). However, the effects varied greatly, with some locations, such as the Maldives 

and the inner Seychelles suffering 75-99% mortality, whereas other locations, such as 
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Réunion and South Africa suffering low to negligible damage (Goreau et al. 2000, 

Obura 2005). Bleaching in Maurtius was also minimal with less than 10% coral cover 

affected in 1998 (Moothien Pillay et al. 2002, Turner & Klaus 2005), and 24% in 

2004 (McClanahan et al. 2005). After these two events coral cover is still dominated 

by thermally sensitive genera such as Acropora and overall cover appears to have 

risen since a broad survey in 1992 (McClanahan et al. 2005).  

 

This study assesses changes in benthic and fish communities on a narrow reef flat in 

north-west Mauritius that escaped much of the bleaching mortality experienced by 

other locations in the WIO in 1998. Temporal and spatial trends through a period 

1994-2005, thus spanning the 1998, 2003 and 2004 bleaching events, are studied, 

aiming to identify any change in benthic and fish community structure. Alternative 

hypotheses are considered and, using a suite of multivariate tools, a case is built for 

the most plausible explanations for the observed trends.  

 

4.3 Methods 

4.3.1 Study site and sampling techniques 

Mauritius is located in the southwestern Indian Ocean, 200 km east of Réunion Island, 

and 800 km east of Madagascar, between latitudes 19.58 and 20.31ºS, and longitudes 

57.18 and 57.46ºE. The study was conducted in the northwest coast of the island 

(Figure 4.1), which is sheltered from the dominant southeast trade winds. The study 

site, Pointe aux Piments, is located 10 km north of the capital, Port-Louis, this part of 

the coast being developed with hotels. The fringing reef, dominated largely by 

branching Acropora corals, is approximately 250 m wide and 1-2 m deep along this 

section of the coast, and largely used for recreational purposes. Within the study area 
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a dredged water ski lane has been in active use since 1995 (Figure 1). Fishing pressure 

around Mauritius is high (~1600 t yr-1 from lagoons and reefs) and is thought to 

exceed maximum sustainable yields (Turner & Klaus 2005). 

 

Data were collected on benthic and fish communities at 10 stations over a 10 year 

period, where samples were collected in 1994, 1995, 1996, 1997 and 2005. The 

design allowed for comparison through time, along the coast and between inshore and 

offshore locations. Five transects (T1-T5) perpendicular to the shore, each had a 

landward (A) and seaward (B) sampling station, where a 50m transect tape was laid 

down parallel to the shore in a southerly orientation (Figure 1). The study site 

comprised approximately 1 km of shoreline, each transect being separated by 200-350 

m. Land sampling stations (A) were located 50 m from the shore, whereas sea stations 

(B) were ~200 m from the shore.  
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Figure 4.1. Map of the study site, indicating location in Mauritius, proximity of the 

ten sampling stations, direction of transects and location of dredged water ski lane. 

Adapted from Aderoud et al. 1998. 
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Full fish censuses were carried out by snorkel along 50*2m belt transects at each of 

the 10 sampling stations. Fish were identified to the species level (within 29 families) 

and abundance estimated. The discrete group sampling technique was used, whereby 

fish in different families and mobility groups were surveyed during different passes of 

the transect (4 in total) to account for varying behaviours (Harmelin-Vivien et al. 

1985). This process was repeated 3 times for each station and an average abundance 

for each species attained. A presence/absence survey was also conducted around each 

station area during a 30-minute timed swim. Although fish counts were conducted by 

three different observers over the 5 sampling years, all observers were highly 

experienced and inter-observer variation is expected to be minimal (Williams et al. 

2006, McClanahan et al. 2007d). After a fish census was complete the benthos along 

the same 50m transect line was quantified using the line intercept method (Loya 

1978), whereby the distance of tape occupied by the following substratum categories 

was quantified: live branching coral, live plating coral, live other coral and dead 

substratum. These data were converted into percent covers of each category for each 

of the 10 stations surveyed within each year. Data were collected during peak daylight 

hours. Surveys in 1994, 1996 and 2005 were during the Austral winter, whereas 

surveys in 1995 and 1997 were during the Austral summer, however analysis of 1994-

1997 data indicated little seasonal variation (Galzin, R. unpublished data). 

 

4.3.2 Data analysis 

Due to the multi-species nature of the data and the design of the survey, the most 

appropriate analyses were multivariate (Clarke & Warwick 2001a). To assess patterns 

in benthic data from all stations in all years we used correlation-based principle 

components analysis. Data were log(x+1) transformed to account for some right 
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skewness detected in draftsman’s plots and normalised. Eigenvectors were overlaid on 

the resultant plot to identify direction and contribution of the different variables to the 

patterns and to identify any correlation between variables. Percent total live coral was 

also quantified for each transect and landward and seaward sampling stations cross 

the 5-year period. Two-way ANOVAs were used to assess differences through time 

associated with both trends along and away from the shore.  Normality of data was 

examined with histograms and normal probability plots of the residuals. Homogeniety 

of variances were tested with Bartlett’s test. Where a significant difference was found, 

Tukey’s test identified those samples driving the differences.  

 

Presence / absence fish diversity data from timed swims was pooled to the year level 

to represent the reef as a whole. Overall species richness (S) and richness within key 

families was calculated for each year.  

 

We examined the taxonomic diversity of the fish assemblage for each station and 

year. Average taxonomic distinctness (AvTD) was calculated by assessing the degree 

to which species in a sample are taxonomically related, measuring the average path 

length between every pair of species based on a taxonomic tree (Clarke & Warwick 

1998). Variation in taxonomic distinctness (VarTD) was assessed by measuring the 

evenness to which the taxa were spread across the tree (Clarke & Warwick 2001b). 

Funnel plots were constructed for both variables with expected mean and 95% 

confidence limits constructed from a simulation distribution using random subsets of 

the master taxonomy list (constructed following Helfman et al. (1997)). Any departure 

from expected values could thus be identified, where low AvTD and low to normal 

VarTD indicates degraded locations (Clarke & Warwick 2001b). General patterns 



 69

related to our study design were tested using two-way crossed ANOVAs with the 

factors year and transect, as these were identified as the key sources of variation by 

Analysis of Similarities (ANOSIM).  

 

Fish assemblages within each station in each year were compared using non-metric 

multi-dimensional scaling (MDS) based on Bray-Curtis similarity measures. Species 

abundance data were square-root transformed to down weight abundant species. 

Differences between years, transects and reef position (A-B) were tested using 

ANOSIM, which is a non-parametric permutation procedure. After identification of 

which transects and years (the 2 significant factors) differed the most (ANOSIM pair-

wise test output), SIMPER analysis was run on the data matrix. SIMPER decomposes 

Bray-Curtis dissimilarities between all pairs of samples to identify those species that 

contribute most to differences (Clarke & Warwick 2001a).  

 

As SIMPER identified Stegastes lividus followed by Stegastes nigricans as the 

species contributing most to the significant trends in the MDS plot for both year and 

transects along the shore, bubble plots were used to overlay relative abundance of 

both of these species enabling identification of the trends they were contributing to. 

As these species are both highly aggressive and territorial (Randall et al. 1997, 

Letourneur 2000), the influence that their abundance has on species richness of the 

rest of the fish assemblage was tested using linear regression analysis. 

 

In order to link the benthic and fish data, bubble plots were used to overlay relative 

value of benthic variables on the fish species MDS plot. This allowed identification of 

any trends driven by the benthic variables. The BEST BIO-ENV routine was then run 
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using Spearman rank correlation between benthic Euclidean distance and fish species 

Bray-Curtis similarity matrices to identify the benthic variable or group of variables 

that best explained the patterns in the fish species MDS plot (Clarke & Warwick 

2001a). The significance of this result was tested using a permutation test. 

 

4.4 Results 

 The benthos at this location in Mauritius experienced very little change through the 

10-year study period. Principal Components Analysis indicates a trend along the shore 

line, from Transects 1 and 2 to Transects 4 and 5, but little change with time (Figure 

4.2). The main factors influencing this pattern along PC1 (~57% of variation) are 

higher cover of live branching and plating corals towards the southern end of the 

study site, or away from the ski lane, and higher cover of dead substratum towards the 

north (Figure 4.2). Percent cover of other live substratum (mainly massive corals) 

appears to be driving patterns along PC2, however this cover was often low. These 

trends are further highlighted by looking at overall percent live coral cover. The 

decline along the coast in a northerly direction is significant (F4,37 = 13.9, p<0.001), 

Tukey’s test indicating that T1 differs from T4 and T5, and T2 differs from T3, T4 

and T5, whereas no such trend is found through time (p = 0.70)(Figure 4.3a). The 

greater cover at near shore locations compared to seaward locations (A-B) in 1994 

was not nearly as great in subsequent years, and the overall difference between sites A 

and B and through time is not significant (p = 0.15 and p = 0.85)(Figure 4.3b).  
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Figure 4.2. Correlation-based Principal Components Analysis of log(χ + 1) 

transformed and normalised environmental data. 
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Figure 4.3. Percent cover of total live coral in (a) each year by transect and (b) each 

year by position from the shore. 
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The timed swim presence / absence surveys demonstrate remarkable stability in 

overall fish species richness through time (Table 4.1). Stability is consistent in nearly 

all the key families involved, including those dependant on live coral such as the 

chaetodontids. Notable declines in number of species are seen for lethrinids, lutjanids 

(though both were already in low number) and in particular serranids, all of which are 

common fishery target species (Table 4.1). 

 

Conversely, at the level of stations, a number of samples depart negatively from the 

expected values of AvTD, suggesting some samples may be taxonomically 

depauperate (Figure 4.4a). The only significant decline in the ANOVA model was for 

the factor year (F4,25 = 3.22, p = 0.03) and Tukey’s pair-wise comparisons indicates 

that this was influenced by lower values in 1997 versus 2005 (p = 0.03). Much less 

departure from expected values is noticed for VarTD (Figure 4.4b), however a weak 

significant difference is detected for the factor transect (F4,25 = 2.95, p = 0.04), which 

is driven by a difference between Transect 1 and 3 (p = 0.04). 

 

The fish species MDS plot indicates a very similar pattern to that found in the benthic 

PCA, some difference in years, but an overall trend along the coast from T1 and T2 to 

T4 and T5 (Figure 4.5a). Samples from T1 and T2 are located in the bottom left side 

of the plot for all years, with samples from more northerly transects located to the top 

and right of the plot. This pattern is highlighted by the ANOSIM results, with 

significant differences for Year and Transect, but not Position on the reef (Table 4.2). 

Pair-wise testing identified 1994 departing from all other years and 2005 from 1996 

and 1997. Pair-wise tests for Transect identified T1 departing from T4 and T5, and T2 

from T4 (Table 4.2). 



 74

Table 4.1. Reef fish species richness from presence / absence timed swim data at 

level of whole assemblage (S) and within selected families. 

 

 
  

1994 
 

 
1995 

 
1996 

 
1997 

 
2005 

 
Total species richness (S) 104 102 110 99 101 
Acanthuridae 7 9 8 8 7 
Balistidae 2 1 2 1 3 
Chaetodontidae 8 9 8 11 10 
Holocentridae 3 4 5 4 3 
Labridae 19 22 21 24 20 
Lethrinidae 3 3 2 2 2 
Lutjanidae 1 0 2 0 0 
Monacanthidae 4 5 5 3 5 
Mullidae 6 5 4 5 7 
Pomacentridae 13 13 12 12 14 
Scaridae 7 7 9 7 6 
Serranidae 7 3 4 4 1 
Siganidae 1 1 1 0 1 
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Figure 4.4. Funnel plots of (a) average taxonomic distinctness and (b) variation in 

taxonomic distinctness of each sampling station (belt transects) within each year with 

mean and 95% confidence limits from expected values using master taxonomy 

aggregation file. 
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Figure 4.5. (a) Non-metric Multi-Dimensional Scaling (MDS) plot of fish 

assemblages at each of the ten stations (belt transects) within each of the five sample 

years based on Bray-Curtis similarity measures. (b) Bubble plots for Stegastes lividus 

and (c) Stegastes nigricans over species MDS sample points indicating patterns driven 

by their presence. Abundance at each sample station given below station name (scale 

of bubbles: 0-20). Bubble plots for cover of (d) branching coral, (e) dead substrate and 

(f) plating coral indication which patterns in the species MDS are driven by these 

benthic variables. Percent cover at each station given below station name (scale of 

bubbles: 0-100%). 
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Table 4.2. Analysis of Similarity (ANOSIM) outputs for the fish sampling stations. 

Global and pair-wise test results given for each of the three factors in the design.   

 

 
 
Factor 
 

 
Global R 

 
Significance

 
Pair-wise test 
 

Year 0.167 P<0.01 1994 diff to all, 
2005 diff to 1996 & 1997 

Transect 0.335 P<0.01 T1 diff to T4 & T5 
T2 diff to T4 

Position 0.022 ns  
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SIMPER analysis, for the two years and transects that differed the greatest from one 

another, highlighted that Stegastes lividus followed by S. nigricans were contributing 

by far the greatest to the observed differences (Table 4.3). Pomacentrids and more 

mobile scarids, acanthurids and wrasses make up the majority of the remaining 

species contributing 60% of the differences (Table 4.3). The trends driven by S. 

lividus and S. nigricans are highlighted by the bubble plots (Figure 4.5b and c), the 

former being more dominant in the southerly sites that have greater live coral cover 

(Figure 4.3a), whereas the latter is more dominant in the northerly sites. Furthermore, 

and likely exacerbating the patterns, is that the abundance of S. lividus but not S. 

nigricans is negatively correlated with overall fish species richness, though the trend 

is not consistently significant among all years (Figure 4.6).  

 

Bubble plots overlaying percent cover of benthic variables on the fish species MDS 

further highlight these trends; samples to the bottom left of the plot being dominated 

more by live branching and plating corals (Figure 4.5d and f), whereas samples to the 

right of the plot have a greater cover of dead substratum (Figure 4.5e). Rank 

correlation of benthic variables to the fish species data indicates that the best single 

and significant (BioEnv Rho statistic: p<0.01) benthic variable driving the patterns in 

the fish data is the percent cover of live branching coral (r = 0.36). 
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Table 4.3. SIMPER outputs for greatest pair-wise differences in year and transect 

identified by ANOSIM.  Species that contributed 60% of the overall difference are 

listed in descending order of most contribution.  

 

 

Year (1994 & 2005) Transect (T1 & T4) 
Species % Contribution Species % Contribution 
Stegastes lividus 10.64 Stegastes lividus 12.03 
Stegastes nigricans 10.07 Stegastes nigricans 10.84 
Dascyllus aruanus 4.77 Scarus psittacus 6.56 
Chromis viridis 4.21 Dascyllus aruanus 4.78 
Chlorurus sordidus 4.18 Chlorurus sordidus 3.92 
Ctenochaetus striatus 4.15 Scarus scaber 3.36 
Halichoeres scapularis 2.78 Ctenochaetus striatus 3.26 
Stegastes limbatus 2.65 Chromis viridis 3.18 
Scarus scaber 2.55 Halichoeres scapularis 2.79 
Acanthurus triostegus 2.41 Calotomus spinidens 2.69 
Gomphosus caeruleus 2.03 Thalassoma hardwickii 2.36 
Zebrasoma scopas 2.02 Stegastes limbatus 1.91 
Acanthurus nigrofuscus 1.95 Stethojulis bandanensis 1.76 
Stethojulis bandanensis 1.86 Epinephelus merra 1.68 
Chrysiptera unimaculata 1.82   
Oxymonacanthus longirostris 1.79   
Parupeneus macronema 1.43   
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Figure 4.6. Regressions of Stegastes lividus density against fish species richness per 

station (belt transects) overall and for each year separately. R2 and regression analysis 

results given on plots. 
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4.5 Discussion 

Coral and fish communities appear to have experienced very little change over 10 

years at this location in Mauritius, in contrast to other studied sites in the western 

Indian Ocean (Lindahl et al. 2001, McClanahan et al. 2002, Sheppard et al. 2002, 

Graham et al. 2006, Chapter 6 & Graham et al. 2008). Indeed the dominant trend at 

the study location appears to be along the coast, rather than through time. This 

suggests that the benthic community has changed very little through the 1998 ENSO 

event and the more minor 2003 and 2004 bleaching events. Unfortunately, reefs were 

not sampled between 1997 and 2005, which raises the question as to what happened 

during this sampling hiatus. The 1998 ENSO event resulted in less than 10% of coral 

colonies bleaching in Mauritius (Moothien Pillay et al. 2002). The 2003 bleaching 

event was most evident on the southwest of the island and a cyclone was implicated in 

the recovery of bleached corals (Turner & Klaus 2005, Ahamada et al. 2004). In 2004, 

24% of corals bleached (McClanahan et al. 2005), however recovery was again high 

(Ahamada et al. 2004) and coral cover was higher than surveys conducted in 1992 

(McClanahan et al. 2005). Although we can not discount the possibility of rapid re-

colonisation and recovery of the reef with the predominant fast growing Acropora 

colonies, the above studies and the remarkably similar cover estimates through time 

suggest a minor influence from bleaching events. Furthermore, Acropora is one of the 

most susceptible genera to thermal stress in the region (McClanahan et al. 2001, 2004) 

and has experienced large declines in many other locations (Goreau et al. 2000, 

McClanahan 2000b, McClanahan et al. 2001, Sheppard et al. 2002). Indeed, 

branching and plating corals now make up less than 1% of the benthos in the inner 

Seychelles, a decline of over 95% (Graham et al. 2006). Study and protection of this 

apparent refugia of sensitive, habitat forming corals in Mauritius is important given 
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predictions of further widespread degradation of the region in coming decades 

(Sheppard 2003). 

 

The observed trend in benthic composition along the coast within the study location is 

most likely due to the dredged water ski lane that has fragmented the reef flat in this 

section, likely still results in increased sediment loads and is subject to high 

recreational use. The disparity between near shore and sea (A-B) stations that was 

quite apparent and a dominant driver of trends in 1994 (Adjeroud et al. 1998) is not as 

great on a temporal scale. Given the dominance of the reef flat by fast growing 

branching Acropora corals, it is possible that this may be due to some recovery 

following completion of the ski lane (1993-1994).  

 

Although overall species richness of the reef fish assemblage has remained stable 

through this time period, the richness is fairly low compared to studies in nearby 

islands such as Réunion (Letourneur 1996a), Madagascar (Harmelin-Vivien 1989b) 

and Mayotte (Letourneur 1996b, Chabanet 2002). This is likely due to the surveys 

being restricted to the reef flat and because the reef is narrow along this section of the 

coast (Adjeroud et al. 1998), although reef flats of a similar width in Réunion had 

higher species richness (Letourneur 1996a). It could also be due to anthropogenic 

stress on the system through past dredging of the water ski lane and ongoing effects of 

fishing and recreational use. Indeed, many samples depart from expected values of 

taxonomic distinctness, and common fishery target species, in the families Lutjanidae, 

Lethrinidae and Serranidae, are missing. The years driving the main difference in 

taxonomic distinctness were 1997 and 2005, with 1997 having lower values. Although 

coral cover was lowest in this year, the magnitude was small and it is hard to ascribe 
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causation to this trend. Indeed, the stability of species richness from the presence / 

absence survey within families that often feed on (Chaetodontidae) or dwell in 

(Pomacentridae) live coral indicates that these patterns are likely not driven by ENSO 

effects on the benthos, in contrast to other locations in the region (Spalding & Jarvis 

2002, Graham et al. 2006). As samples from all years demonstrated departure from 

expected values, it is more likely that long-term effects are causing the trends. 

 

The overall pattern in the fish community from MDS analysis is remarkably similar to 

that for the benthos, with the greatest differences identified along the coast (Global R 

= 0.34) as opposed to time (Global R = 0.17). This lends further support to our 

conclusion that the ecosystem has remained stable through the ENSO event and other 

factors are likely responsible for the observed changes. The heavy fishing pressure in 

Mauritius (Turner & Klaus 2005) and the apparent loss of diversity in key fishery 

target groups, of which many species are piscivores, may be driving trends related to 

predation pressure. Studies of predator control on reefs indicate trends both at the 

level of single species (Graham et al. 2003), aggregated by size class (Dulvy et al. 

2004), and evidence suggesting there is a direct relationship between gape size of the 

predator and size of prey (Mumby et al. 2006). Recruitment has also been shown to 

drive variation in fish assemblages on reefs (Doherty & Williams 1988), particularly 

following mass-events (Letourneur et al. 1998a). Given the time between surveys and 

the narrow spatial scale over which the study has been conducted, variable 

recruitment could influence the small temporal patterns detected, but is unlikely to be 

driving the larger trends along the coast. Given that the availability of habitat types 

has not altered a great deal, competition for resources among fish species may be 

expected to have remained stable through this time period. However changes in 
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certain dominant species, such as Stegastes, could well be causing changes in the rest 

of the assemblage.  

 

The coastline adjacent to the study site has experienced rapid development for tourism 

in the last 10-15 years, and this is likely to be exerting stress on the reef ecosystem. 

Along the 1-km stretch of coast, two large hotel complexes actively use the reef for 

water sports activities. High use of reefs for snorkelling and diving can have 

detrimental effects (Hawkins et al. 1999, Zakai & Chadwick-Furman 2002). In this 

case, however, the greatest effect is likely to be from the dredged water ski lane 

through the middle of the reef flat. Increased pollution, sedimentation and changes in 

current regimes are all likely to be effecting both the coral and fish assemblages, and 

may be partly responsible for the changes through time. However, the greatest effects 

of the ski lane appear to be along the coast in the survey area. 

 

Both the benthic and fish communities display the strongest patterns along the coast 

from Transects 1 and 2 to Transects 4 and 5, with greater live coral to the south end of 

the study site away from the dredged area. Branching coral is likely to be causing the 

observed patterns in the fish assemblages given that it was best at predicting the 

patterns in the fish assemblage structure and because it provides important three-

dimensional structure (Bellwood et al. 2004). Furthermore, this habitat is critical at 

the early life history stage when fish settle from the plankton; 65% settling directly 

into live coral (Jones et al. 2004).   

 

The two species of Stegastes were influencing the greatest difference along the coast 

and through time in the MDS plots. Although the preferred habitat of both species is 
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branching coral (Randall et al. 1997), it appears that Stegastes lividus dominates the 

area of the reef where branching coral is most abundant. This may be explained by S. 

lividus growing to a larger maximum size than S. nigricans (Randall et al. 1997); size 

of individual correlating to size of territory and dominance over more favourable 

habitats in this genus (Robertson 1996, Letourneur 2000). If the relationship between 

S. lividus abundance and overall fish species richness is causal, this one species of 

small reef fish appears to account for a large portion of the variation in fish species 

richness; benthic variables and Stegastes nigricans demonstrates no measurable 

control. Although the competitive dominance of larger species of Stegastes over 

abundance of other Stegastes species in the same area has been identified (Robertson 

1996), and the influence of territorial pomacentrids on behaviour and foraging of 

individual species of other reef fish is well documented (e.g. Jones 2005), we believe 

this influence on the species richness of an entire fish community has not been 

demonstrated before. 

 

Dominance of space by branching coral and Stegastes lividus clearly contributes to 

the patterns in the MDS plot but not necessarily in the direction one may expect from 

previous positive relationships between coral cover and fish species richness (Bell & 

Galzin 1984). Areas of high cover of live branching coral in Mauritius are dominated 

by large numbers of S. lividus and their territorial behaviour may actually reduce 

species richness, such that the relationship between coral cover and fish species 

richness is negative. Consequently, mono-specific stands of branching coral result in 

an ecosystem that is more susceptible to competitive dominance by fewer species 

(Almany 2004). Indeed, dominance of a reef by one main taxa of coral will not 

necessarily promote high species diversity, rather a range of different taxa and habitat 
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types is expected to provide more niches and a more diverse ecosystem (Almany 

2004). This will be particularly true for small-bodied species of reef fish that are 

closely reliant on habitat for shelter and food and are often specialised (Munday & 

Jones 1998).   

 

The western Indian Ocean has suffered the greatest effects from coral bleaching in the 

Indo-Pacific (Goreau et al. 2000) and future bleaching is predicted to result in the 

‘extinction’ of these reefs in coming decades (Sheppard 2003).  However, various 

locations in the southern western Indian Ocean, including Mauritius, currently seem to 

be a refuge from coral bleaching, demonstrating “protection” from serious thermal 

stress (Obura 2005) and host high coverage of thermally sensitive corals that still 

support specialist fish species. This study has demonstrated minimal community 

change through time on a coral reef in Mauritius, and identified other factors likely to 

be driving trends. Such data and future monitoring in these areas of bleaching refugia 

will be important to understand natural variation in fish communities and associated 

management implications.  
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Chapter 5 

 

Lag effects in the impacts of mass coral bleaching on 

coral reef fish, fisheries, and ecosystems4 

 

 

5.1 Abstract 

Recent coral bleaching episodes have led to wide-scale loss of reef corals and raised 

concerns over the effectiveness of existing conservation and management efforts. The 

1998 bleaching event was most severe in the western Indian Ocean where coral 

declined by up to 90% in some locations. Using fisheries-independent data, we 

assessed the long-term impacts of this event in the Seychelles on fishery target 

species, the overall size structure of the fish assemblage, and the effectiveness of two 

marine protected areas (MPAs) in offering resilience to fish communities. Fishery-

target species above size retained in fish traps showed little change in biomass 

between 1994 and 2005, indicating no current effect on fishery yields. Biomass 

remained higher in MPAs, indicating they are still effective in protecting fish stocks. 

However, the size structure of the fish communities, as described with size-spectra, 

changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and 

an increase in larger fish (>45 cm). We believe this represents a time-lag response, 

due to fish that were lost to natural mortality and fishing no longer being replaced by 
                                                 
4 Published as: Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM 

(2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and 
ecosystems. Conservation Biology 21:1291-1300. NAJ Graham collected post-disturbance data, 
analysed and interpreted data and wrote the paper. 
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juveniles following the bleaching event. This effect is expected to be greater in terms 

of fisheries productivity and, because congruent patterns are observed for herbivores, 

suggests no long-term resilience in the MPAs. Corallivores and planktivores declined 

strikingly in numerical abundance, particularly in MPAs, which was associated with a 

similar pattern of decline in their preferred corals. We suggest that climate-mediated 

disturbances, such as coral bleaching, be at the fore of conservation planning for coral 

reefs. 

 

5.2 Introduction 

Coral reefs and their associated communities are threatened by anthropogenic and 

natural disturbances including overharvesting, sedimentation, pollution, disease, and 

warming waters (Hughes et al. 2003; Bellwood et al. 2004; Wilson et al. 2006). 

Although multiple stressors often act in synergy, climate-driven coral bleaching has 

emerged as one of the greatest threats to coral reef ecosystems (Hughes et al. 2003; 

Sheppard 2003). The 1998 bleaching event was the most severe on record, and in the 

most heavily affected region, the western Indian Ocean, coral cover declined by up to 

90% (Sheppard 2003). Recovery from such severe disturbances is likely to be slow 

and affect other reef associated organisms. 

  

The short-term effects of bleaching on fish are mainly manifest in species that 

specialize on live coral for diet, shelter, or recruitment habitat (reviewed by Wilson et 

al. 2006). In the medium- to long-term, declines in coral feeders can continue 

(Pratchett et al. 2006), but the greatest impacts occur if the physical matrix of the reef 

collapses, reducing overall species richness (Garpe et al. 2006; Glynn 2006, Graham 

et al. 2006). The medium to long-term impacts of bleaching on the size structure of 
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fish populations and assemblages are currently unknown (Wilson et al. 2006). These 

impacts are important because they determine the future viability of populations and 

assemblages and thus interact with fisheries management and conservation measures 

that may have been proposed or implemented prior to a bleaching event.  

 

Assessments of the impacts of mass bleaching on fisheries and associated 

socioeconomic factors are currently limited to fisheries-dependant data and are 

considered small in relation to the direct impacts of fishing (McClanahan et al. 2002; 

Grandcourt & Cesar 2003). However, such assessments have all been made within 5 

years of bleaching events. Because loss in structural complexity of the reef 

framework, which can take over 5 years (Wilson et al. 2006), is likely to affect small 

individuals and because these may take some time to recruit to the fishery, a lag effect 

may exist before the full impact of coral bleaching on reef fisheries is realised.  

 

To conserve and manage reefs in the face of unpredictable disturbance, scientists and 

managers are increasingly proposing that no-take marine protected areas (MPAs) can 

increase resilience of the reef ecosystem (Hughes et al. 2003; Bellwood et al. 2004). 

Although it is clear that MPAs cannot prevent coral bleaching, the expected 

ecological communities in MPAs (e.g. a greater biomass, density and size of 

herbivorous fishes in regions where herbivores are fished) should promote coral 

recovery, thus providing spatial resilience in the form of populations that can reseed 

depleted areas (Hughes et al. 2003). There is some evidence of an initial build-up of 

fish biomass in MPAs even during habitat degradation (Hawkins et al. 2006), 

however both abundance and diversity may subsequently decline (Jones et al. 2004) 

and it is unclear how the size-structure of the fish assemblage may respond.   
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Using fisheries-independent data collected across the inner granitic islands of the 

Seychelles, we assessed the medium to long-term effects of mass coral bleaching on 

target reef fish above size retained in fish traps; overall size structure of the whole 

assemblage and particular feeding groups; and effectiveness of existing no-take MPAs 

in offering spatial resilience to the disturbance. 

 

5.3 Methods 

5.3.1 Study sites 

The inner granitic islands of the Seychelles lie on the Mahé Plateau, a shallow, 

extensive, submarine platform that reaches mean depths of 44-65 m. The fringing 

reefs of the islands are typically shallow; the reef slope terminates at 6-13 m (Jennings 

et al. 1995). The 1998 bleaching event reduced live coral cover from 27 to 3%, an 

overall reduction of approximately 90%. Furthermore, coral mortality extended 

throughout the depth range of the coral reefs in this area. Recovery has been 

extremely slow, with collapse in the physical complexity of the reefs accelerating 

since 2003 (Engelhardt 2004) and mean coral cover attaining only 7.5% by 2005 

(Graham et al. 2006). Other than climate-mediated bleaching mortality of corals, 

Seychelles reefs have experienced relatively little change in other stressors over the 

study period (Graham et al. 2006). 

  

We conducted reef surveys in seven areas, around Mahé, Praslin and associated 

islands, which included most of the shallow fringing reef around the inner islands (for 

map see Jennings et al. 1995). Five fished areas were subject to similar levels of 

fishing intensity, whereas the other two areas were long-standing MPAs. Sainte Anne 
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Marine National Park was gazetted by the Government of Seychelles in 1973 as it is 

suitably located for tourist use, whereas Cousin Island Special Reserve was 

established by Birdlife International who bought the island in 1968 to protect an 

endangered species of bird (Jennings et al. 1996). Both MPAs are within the same 

geographic area as the other sites and have similar bathymetry and habitat types. 

There are significant differences in the diversity and biomass of fish between the two 

MPAs and the five fished areas but not within the MPAs or fished areas per se 

(Jennings et al. 1995). Spatial studies of MPA effects are expected to reflect the 

outcome of temporal studies (Russ et al. 2005); therefore, we believe that the higher 

levels of diversity and biomass in the MPAs reflect the effect of protection from 

fishing. Studies conducted within other reef systems have also highlighted the 

disproportionate effect of small amounts of fishing on fish communities and the more 

subtle impacts of further increases in fishing effort (Jennings & Polunin 1997; 

Hawkins & Roberts 2004). For these reasons, we assessed the interaction between 

bleaching impacts and management by comparing the two MPAs with the five fished 

areas before and after coral bleaching in 1998. 

 

5.3.2 Assessment of fish assemblage and benthic community structure 

We surveyed 21 sites, covering over 50,000 m2 of coral reef habitat, at the same time 

of year in 1994 and 2005. Three sites were surveyed in each of the seven areas of 

coast described above, to include one site in each of three statistically different habitat 

types (Jennings et al. 1995); carbonate fringing reefs, granitic rocky reefs with coral 

growth and patch reef habitats on a sand, rubble or rock base. At each site 16 replicate 

7 m radius point counts were completed using underwater visual census along the 

base of the reef slope. This technique maximised area coverage and replication, yet 
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allowed for detailed searching for territorial species so that it provided a quantitative 

estimate of the number of fish of varying sizes and behaviour. We separated replicates 

by a random number of fin kicks with the proviso that each count was separated by a 

minimum of 15 m; thus a ~ 0.5-km stretch of reef was covered at each site.  

 

The numerical abundance and size of 134 species of reef-associated, diurnally-active, 

noncryptic fish (>8 cm) was estimated within each count area. The time taken to 

complete a count varied depending on the number and diversity of fish present. Size 

estimation of fish was to the nearest centimetre, validated by estimating the lengths of 

a random selection of PVC pipes before the first count at each site. Length estimates 

were not consistently shorter or longer than actual lengths in both 1994 and 2005, 

with a mean error of 8 to 35 cm pipes of 3.1% and 2.2% respectively. Fish counts in 

1994 were conducted by S.J. and in 2005 by N.A.J.G. Although small errors can exist 

among observers (Thompson & Mapstone 1997), bias among experienced divers has 

been shown to be the smallest component of variation in fish counts (Williams et al. 

2006; McClanahan et al. 2007d). We converted data on fish counts to biomass with 

published length-weight relationships (Letourneur et al. 1998b; Froese & Pauly 2006). 

Species were assigned to feeding groups (herbivores, piscivores and mixed diet 

feeders; species consuming animal and plant material or fish and invertebrates) based 

on dietary literature and Froese and Pauly (2006).  

 

After a fish count was complete, we assessed the benthic composition and structural 

complexity of the count area. Percent cover of benthic categories (live branching, 

plating, massive, corymbose and encrusting coral, soft coral, macroalgae, rock, 

rubble, sand and dead branching coral) was estimated visually and found to be 
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accurate when assessed against the line-intercept method (no significant difference, 

MANOVA F6,35 = 0.56, P = 0.76)(Wilson et al. 2007). We assessed structural 

complexity of the benthos with a 6 point visual scale and tested the accuracy of this 

method with the linear verses contour chain method; the two methods were highly 

correlated (linear regression r = 0.85 P < 0.001)(Wilson et al. 2007). 

 

5.3.3 Establishment of fishery target species and size of first capture 

Fish species that are targeted by the local artisanal fishery were assigned to three 

groups: primary targets, important targets, and occasional targets (Grandcourt 1999). 

There is a strong relationship between body depth of retained fish and the maximum 

width of trap meshes (Munro et al. 2003). In Seychelles the minimum hexagonal mesh 

diameter that is legal is 4 cm, but fishers often use trap meshes larger than this and 

fish are able to squeeze through meshes smaller than their specific body depth 

(Robichaud et al. 1999). We calculated size at first capture from length frequency data 

of 5651 trap-caught fish between January 1992 and June 1994 (SFA, unpublished 

data). Ninety-five percent of fish in the sample had a body depth of over 6.0 cm. Data 

on target fish species from the 1994 and 2005 reef surveys were filtered to exclude 

individuals with a body depth of < 6 cm for species level and aggregated feeding 

group analyses to assess the impact of the bleaching event on the dominant inshore 

trap fishery. 

 

5.3.4 Data analysis 

Along with structural complexity, we categorized live corals into two groups; (1) 

complex; branching, plating, and corymbose functional forms, which offer the most 

structure for other organisms to live in (Jones et al. 2004) and are generally the 
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favoured corals for diet and habitat specialists (Munday 2004; Pratchett 2005) and (2) 

simple; massive and encrusting functional forms which offer limited structure for 

other organisms to live in (Jones et al. 2004). We assessed differences between years, 

habitat types, and management status (fished versus protected) with three-way crossed 

fixed-effects orthogonal analysis of variances (ANOVAs). Homogeniety of variances 

was assessed with Levene’s test, and normality of the data was assessed with 

histograms and normal probability plots of the residuals. Counts of complex corals 

were square root transformed to meet assumptions. Tukeys post-hoc test was used to 

identify where differences occurred among habitats. 

  

Changes in the biomass of individual species and aggregated feeding groups of 

fishery targets above size at first capture were also assessed with the same ANOVA 

design. At the species level, we used log transformation to meet the assumption of 

homogeneity of variances for a number of species. Ten species that still failed to meet 

assumptions could not be analysed (Table 5.1). 

  

The overall size structure of the assemblage at each site (including size below first 

capture) was described using the slope of the abundance-size relationships of the 

assemblage (Dulvy et al. 2004; Graham et al. 2005). Slopes of the size spectra were 

calculated from linear regressions of log10 (x + 1) numbers per size class (5 cm) on the 

rescaled log10 midpoint of each length class. Centring the independent variable 

provides values of mid-point height (community abundance) that are comparable 

among spectra. A steepening of the slope can be the result of a decrease in the number 

of large fish, an increase in the number of small fish, or both. Change in the slope and 
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midpoint height of the size spectra were assessed with the same ANOVA design 

described above. 

  

To assess what was driving the observed trends in slopes of the size spectra, changes 

in the numerical abundance of fishes in individual size bins of 5 cm between 1994 and 

2005 were assessed for the entire assemblage and for five key feeding groups: mixed 

diet feeders, piscivores, herbivores, corallivores and planktivores. To partition any 

effects of marine protection and habitat type, we plotted data separately by 

management status and within this by habitat type.  

 

5.4 Results 

Structural complexity of the benthos declined between years (F1,30 = 19.94, p < 0.001), 

but did not vary with habitat or protection (Figure 5.1a). The cover of live complex 

corals fell by over 95% (Figure 5.1b)(F1,30 = 100.22, p < 0.001), with the greatest 

reductions on carbonate habitats (significant interaction: F2,30 = 3.71, p < 0.05) and 

greater reductions on reefs in MPAs than fished areas (F1,30 = 7.30, p < 0.05). The 

greater impact in MPAs resulted from a higher initial cover of complex corals within 

MPAs in 1994, which declined to a similar base level (<1%) in 2005, irrespective of 

whether the site was in an MPA or fished. Cover of simple corals remained relatively 

stable between 1994 and 2005, with no significant factors in the model (Figure 5.1c). 
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Figure 5.1. Change in (a) structural complexity, (b) complex corals (coral cover) and 

(c) simple corals (coral cover) between 1994 and 2005 for three habitat types 

(carbonate, granite, patch) and two management scenarios (fished, protected). 
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The biomass of individual target fish species above size at first capture showed 

variable trends between years; some increased, some decreased, and over 70% did not 

change significantly (Table 5.1). The entire target assemblage and mixed diet feeders 

showed greater biomass in MPAs than in fished areas (F1,30 = 28.29, p < 0.001 and 

F1,30 = 14.44, p = 0.001 respectively), but no trends between years or among habitat 

types (Figure 5.2a, b). Piscivore biomass did not differ among habitats, but differed 

between years (F1,30 = 4.69, p < 0.05) and with protection (F1,30 = 16.65, p < 0.001). A 

significant year-protection interaction term (F1,30 = 5.49, P < 0.05) showed that the 

main change between years was associated with a decreased biomass in MPAs 

(Figure 5.2c). Herbivore biomass was greater in 2005 (F1,30 = 4.67, p < 0.05) and in 

MPAs (F1,30 = 11.65, p = 0.002) and had no interaction or habitat effect (Figure 5.2d). 

These results indicate that although there were some small changes between years for 

certain groups, MPAs continued to support a higher biomass of targeted reef fish than 

fished areas (Figure 5.2). 
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Table 5.1. Change in biomass and results of univariate three-factor crossed analysis 

of variance for primary, important and occasional target fish species above size at first 

capture.a  

 

Species 

Size at 
first 

capture 
Biomass 
(g) 1994 

Biomass 
(g) 2005 ∆ 

Year 
(1,30 df) 

Habitat 
(2,30 df) 

Protection 
(1,30 df) 

        
Primary Targets        
Aprion virescens 25.5cm 4141 3497 - 0.75 2.01 11.30*** 
Cephalopholis leopardus b 20.1cm 100 0 - 2.10 0.65 0.17 
Chlorurus sordidus  19.2cm 7073 7369 + 0.11 0.75 0.03 
Lutjanus bohar b 18.9cm 966 1308 + 1.63 1.74 1.83 
Scarus ghobban 16.7cm 1137 2708 + 4.79* 2.73 6.93* 
Scarus rubroviolaceus b 18.7cm 871 5079 + 4.16* 0.35 0.32 
Siganus sutor b 15.4cm 338 0 - 2.79 1.12 0.56 
        
Important targets        
Acanthurus tennentii b 15.3cm 332 2307 + 1.06 0.34 0.08 
Anyperodon leucogrammicus b 24.2cm 287 37 - 3.64 0.27 0.09 
Calotomus carolinus b 16.0cm 79 1211 + 3.78 0.03 2.67 
Cephalopholis argus b 20.9cm 3063 988 - 9.44** 0.32 1.32 
Cephalopholis miniata 21.4cm 75 259 + 2.50 1.39 0.03 
Cetoscarus bicolour b 17.3cm 410 0 - 15.45*** 0.20 4.14 
Cheilinus fasciatus b 19.0cm 219 66 - 4.95* 0.13 0.05 
Cheilinus trilobatus 17.7cm 1963 1281 - 1.67 0.55 2.91 
Chlorurus gibbus 17.5cm 1282 1138 - 0.07 2.59 0.96 
Ctenochaetus striatus 13.8cm 3703 1035 - 6.57* 0.25 5.24* 
Epinephelus fasciatus 22.3cm 59 159 + 1.46 0.18 0.07 
Epinephelus merra b 22.1cm 58 32 - 0.27 2.36 2.00 
Leptoscarus vaigiensis 21.8cm 77 478 + 1.45 4.01* 0.70 
Lethrinus enigmaticus 16.7cm 13 52 + 0.52 0.96 0.36 
Lethrinus harak 18.4cm 2594 2659 + 0.03 0.67 2.90 
Lethrinus lentjan f 16.7cm 27 93 + 3.03 3.36*, c 7.61** 
Lethrinus mahsena 15.9cm 119 68 - 0.70 0.18 0.02 
Lethrinus nebulosus b 17.2cm 139 734 + 8.43** 1.62 3.52 
Lethrinus obsoletus b 18.3cm 1381 421 - 4.20* 0.08 12.71*** 
Lethrinus olivaceus b 20.8cm 70 254 + 0.92 0.11 1.64 
Lutjanus fulviflamma b 20.2cm 1206 692 - 1.31 3.19 5.45* 
Lutjanus gibbus b 16.2cm 1257 684 - 0.28 1.07 0.31 
Lutjanus kasmira 18.5cm 29 9 - 0.02 1.07 0.02 
Lutjanus rivulatus 16.1cm 133 51 - 0.00 0.31 0.00 
Macolor niger g 16.6cm 478 158 - 3.93 4.02*, c 0.09 
Monotaxis grandoculis 15.7cm 325 723 + 0.93 0.43 0.07 
Mulloidichthys flavolineatus b 25.5cm 366 31 - 1.82 0.26 3.43 
Parupeneus barberinus b 21.9cm 1200 529 - 0.64 1.05 1.57 
Parupeneus ciliatus b 21.8cm 1006 797 - 0.37 0.43 0.11 
Parupeneus cyclostomus b 22.7cm 196 50 - 1.69 1.13 0.00 
Parupeneus macronemus 21.4cm 410 139 - 2.46 1.52 0.10 
Parupeneus rubescens b 20.2cm 17 25 + 0.24 0.40 1.57 
Plectorhinchus orientalis 20.8cm 823 610 - 0.70 1.21 1.44 
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Plectorhinchus schotaf b 18.7cm 397 721 + 0.14 0.06 0.14 
Scarus caudofasciatus 17.2cm 117 642 + 1.92 1.07 0.19 
Scarus falcipinnis b 17.4cm 200 291 + 0.01 0.49 0.50 
Scarus frenatus h 19.1cm 1882 660 - 15.66*** 1.17 13.57*** 
Scarus globiceps 18.3cm 189 667 + 0.74 0.34 0.07 
Scarus niger i, j 17.6cm 3692 5583 + 3.67 2.45 3.16 
Scarus prasiognathos 17.8cm 1080 4357 + 5.43* 2.54 0.46 
Scarus psittacus 19.4cm 574 840 + 0.42 0.75 3.72 
Scarus scaber b 19.4cm 784 192 - 4.92* 4.90**, d 0.02 
Scarus tricolour 20.5cm 570 338 - 0.47 0.70 4.50* 
Scarus viridifucatus 17.5cm 48 42 - 0.00 0.15 1.10 
Siganus argenteus b 18.1cm 1482 3238 + 2.63ns 0.33 3.46 
Siganus puelloides b, h 16.4cm 2114 922 - 17.93*** 0.84 1.78 
Siganus stellatus k 14.9cm 477 589 + 0.09 4.33* 9.82** 
        
Occasional targets        
Acanthurus leucosternon 12.1cm 886 393 - 0.45 1.96 0.43 
Acanthurus lineatus b 14.1cm 247 278 + 0.28 3.43*, e 1.69 
Acanthurus nigrofuscus 15.1cm 511 484 - 0.06 0.43 0.02 
Aethaloperca rogaa b 17.3cm 210 784 + 0.61 0.35 4.68* 
Chlorurus atrilunula b 18.4cm 731 2187 + 4.01 1.37 1.40 
Ctenochaetus binotatus 13.2cm 20 42 + 0.40 0.24 0.72 
Ctenochaetus strigosus b 12.8cm 1045 382 - 7.51** 1.41 3.01 
Epinephelus caeruleopunctatus 23.2cm 110 227 + 2.51 1.60 2.07 
Hipposcarus harid b 18.9cm 3621 3160 - 2.91 0.31 2.38 
Scolopsis frenatus b, h 20.7cm 2922 2303 - 7.70** 1.22 0.76 

 
a Values given for year, habitat and protection are F ratios. Probability results: *** p < 0.001; ** p < 0.01; * p 
< 0.05; no asterisk, not significant. Cephalopholis urodeta, Diagramma pictum, Epinephelus hexagonatus, E. spilotoceps, E. 
tukula, Lethrinus rubrioperculatus, L. argentimaculatus, Lutjanus monostigma, Oxycheilinus diagrammus and Paracanthurus hepatus 
were not analysed as assumptions could not be met due to too many zero’s in counts. 
b Log10 transformation necessary,  
c Tukey’s output: Co>Gr, d Tukey’s output: (Co=Gr)>Pa, e Tukey’s output:Gr>(Co=Pa),  
f Significant year*habitat interaction due to higher biomass in carbonate reefs in 2005, but lower biomass in 
granite and patch reefs,  
g Significant year*habitat interaction due to a greater biomass in granite reefs than carbonate and patch reefs 
in 1994, but similar in 2005.  
h Significant year*protection interaction due to a greater decline in biomass in protected than fished areas 
between years,  
i Significant three-way interaction due to greater changes in carbonate reefs than granite and patch reefs for 
both year and protection,  
j Levene’s test could only be passed at 0.036, so significance was set at 0.03 for this species.  
 k Significnat three-way interaction due to a greater biomass in granite and patch reefs than carbonate reefs in 
protected areas, particularly in 2005.  
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Figure 5.2. Change in biomass of fishery target species above size at first capture 

between 1994 and 2005 for (a) whole fishery target species assemblage, (b) mixed 

diet feeders, (c) piscivores, and (d) herbivores in three habitat types (carbonate, 

granite, patch) and under two types of management (fished, protected). 
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The slope of the size spectra became less steep from 1994 to 2005 in all but one fished 

granite site (Figure 5.3a). This trend between years (F1,30 = 18.90, p < 0.001) did not 

vary among habitats and was not affected by management status (Figure 5.3b). The 

height of the size spectra did not differ between years or among habitats; however, 

there was an effect of management status (F1,30 = 17.53, p < 0.001) that showed a 

greater abundance of fish in MPAs. 

 

The decreasing steepness of the size spectra slope was a result of a relative decline in 

smaller fish (<30 cm) and increase in larger fish (>45 cm) in the assemblage. This 

trend was consistent for both fished areas and MPAs (Figure 5.4a). Different size 

classes in the mixed diet group showed various trends, and there was no common 

pattern apparent (Figure 5.4b). The piscivores also responded variably; however, 

medium size classes (20-50 cm) tended to decline, especially in MPAs (Figure 5.4c). 

The herbivores declined in smaller size classes (<30 cm) and increased in larger size 

classes (>40 cm) in both fished areas and MPAs (Figure 5.4d). Corallivores and 

planktivores consistently and markedly declined, which was greatest in MPAs (Figure 

5.4e, f). Although there was some variation, particularly for the mixed diet feeders 

and piscivores, the trends were generally similar among habitat types. 
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Figure 5.3. (a) Change in the slope of size spectra of the fish assemblage for 

individual survey sites. Sites falling above the 1:1 trend line had a lower slope value 

in 2005. (b) Mean change in slope of size spectra of the fish assemblage by habitat 

type (carbonate, granite, patch) and management status (fished, protected). 
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Figure 5.4. Change in log abundance of individual size classes of fish for (a) the 

entire assemblage, (b) mixed diet feeders, (c) piscivores, (d) herbivores, (e) 

corallivores, and (f) planktivores by habitat type (carbonate, granite, patch). Plots in 

left hand column are fished sites, plots in right hand column are protected sites. Size 

of first capture range indicated on plot (a) for fishery target species. Maximum size 

detected indicated with vertical dashed line on plots (e) and (f). 
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5.5 Discussion 

We document an impending recruitment failure to reef-fishery size classes in the 

Seychelles following a major coral bleaching event. This is because the decline in 

juvenile abundance (<30 cm) in the assemblage will ultimately lead to declines in 

adult abundance, as is consistently shown in fisheries (Hilborn & Walters 1992). 

Although our data predict this effect will happen, the lack of time series data and 

knowledge of the growth trajectories of individual species prevent us from projecting 

the likely time-span over which this effect will impact larger size classes. Our data 

also highlight a potential decline in the resilience of coral communities within MPAs 

due to the decline in smaller size classes of herbivorous fishes in these management 

areas.  

 

There were only minor changes in the biomass of target species available to the 

Seychelles artisanal trap fishery following the 1998 mass bleaching event. However, 

these small changes belie apparent system-wide failures of recruitment to fished size 

classes that are expected to have long-term impacts on the viability of populations, 

assemblages, and the fishery. Our results suggest that the current biomass and reef 

fishery are maintained primarily by the growth of fishes that had already recruited to 

the reefs at the time of the bleaching event, and/or before topographic structure was 

reduced, and have now grown sufficiently to reach fishable size. This corroborates 

other evidence for there being no short-term change in yield associated with mass 

bleaching (McClanahan et al. 2002; Grandcourt & Cesar 2003). 

  

The surveyed MPAs still supported a higher biomass of target species above size of 

first capture than fished areas. The greater size-spectra height in the Seychelles MPAs 
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is consistent with the expected effects of reduced fishing mortality on abundance 

(McClanahan & Graham 2005). However, the reduction in slope of the size spectra 

was consistent across all but one site and similar for both the fished areas and MPAs 

suggesting the same drivers are affecting the size distribution of fish in these areas 

and are unrelated to fishing pressure. 

  

Plotting each individual size class bin by its change in numerical abundance 

highlights that the change in the slope of the size spectra was driven by both an 

increase in large individuals (>45 cm) and a decrease in smaller individuals (<30 cm). 

Because fishing pressure has not changed, the most likely drivers for the increase in 

larger-bodied fishes are increased growth and/or survivorship. The decline in smaller-

bodied individuals could be driven by various processes. We consider consistently 

high mortality of small and juvenile fish in the years since the bleaching event the 

most likely explanation, based on the expectation that the larger fishes have retained 

their abundance and have good feeding conditions, and that many smaller species and 

individuals are most dependent on refuge availability and live coral (Munday & Jones 

1998; Dulvy et al. 2004; Graham et al. 2006). Furthermore, the diversity and 

numerical abundance of fish 10-30cm in length was correlated with structural 

complexity in 2005 (Wilson et al. 2007) and showed marked decline between 1994 

and 2005 following a loss in structure. While the existence of several years of high 

larval supply prior to the bleaching event and several years of poor larval supply post-

bleaching could also account for the patterns we observed, the latter possibly as a 

result of reduced live coral as a settlement cue, we consider this unlikely when the 

effects are manifest for all species and at a large spatial scale. Based on the size-based 
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analyses, we predict a time lag effect whereby the full effects of the bleaching on the 

fringing-reef fishery species and the fish assemblage as a whole are yet to be realised.  

 

The MPAs seem to offer no long-term resilience to the populations and assemblages. 

Although the MPAs may meet short-term conservation objectives by reducing fishing 

mortality on larger fish, future replacement by small fish may be insufficient to 

maintain abundance over the long-term. The collapse of the physical structure of 

Seychelles reefs accelerated as recently as 2003 (Engelhardt 2004), so the longer-term 

consequences of this process are yet to manifest in larger size classes. The lag effect 

of reduced replenishment will likely be longer in MPAs than in fished areas because 

mortality rates are likely to be lower and age structures of the populations therefore 

extended. However, greater predator biomass inside the MPAs could result in higher 

rates of predation mortality on smaller individuals (Graham et al. 2003; Mumby et al. 

2006), ultimately increasing the severity of the lag impact.  

  

The effects on assemblage productivity and hence on fishery yield are expected to be 

even more substantial than the effects on biomass because the production to biomass 

(P/B) ratios of smaller individuals and species are higher. Therefore a community of a 

given biomass that is dominated by larger species will be relatively less productive 

(Kerr & Dickie 2001). The observed changes in the size-spectra therefore suggest that 

total production will fall faster than biomass, owing to a decline in abundance of 

smaller fish and smaller size classes. 

 

The responses of mixed diet feeders and piscivores varied among size classes. Some 

of the families that make up these groups, for example lethrinids and lutjanids, are 
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generalist in their juvenile habitat use and often associate with soft-bottom habitats 

(Dorenbosch et al. 2005). Therefore, they may not be as reliant on the reef structure 

for predator evasion. Within the piscivores there was a decline in the number of fishes 

in medium size classes (20-50 cm), which was most pronounced in the MPAs. The 

consistent nature of this decline among habitats suggests a deterministic driver. 

Piscivores on coral reefs tend to select prey according to their gape size (Mumby et al. 

2006) and reef fish predator-prey dynamics are highly size structured (Dulvy et al. 

2004), so it is likely that the substantial decline in smaller size classes of the 

assemblage, which was most evident for the MPAs, may have reduced prey 

availability for medium-sized Piscivores and thus caused an indirect decline in their 

numbers. 

  

Of the indirect effects of bleaching that we have identified, one of the most significant 

for the reef ecosystem as a whole is likely to be the substantial decline in smaller size 

classes of herbivorous fishes in both fished and protected areas. The surveyed 

assemblage consisted mainly of surgeonfishes (Acanthuridae) and parrotfishes 

(Scaridae), but also some rabbitfishes (Siganidae) and two species of damselfishes 

(Pomacentridae). Separate plots of the changes in size classes over time of 

acanthurids, scarids, or species that span a large number of size classes showed the 

same patterns of reduction in small size classes. Many of these species use the reef for 

habitat as juveniles (Dorenbosch et al. 2005), and because the trend was consistent 

among habitats and management strategies, it is likely that habitat degradation, which 

leads to greater competition and predation (Hixon & Jones 2005), is the cause of 

decline in smaller sizes. Acanthurids can live over 25 years and scarids live 5-20 years 

(Choat & Robertson 2002), so individuals currently contributing to the increase in 
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numerical abundance of large size classes likely recruited prior to the 1998 bleaching 

event or the collapse of the reef framework in 2003 (Engelhardt 2004). When 

disturbances are extensive and occur over large spatial scales, increased abundance of 

large herbivores can result from faster growth rates (Hart & Russ 1996) and 

potentially higher survivorship associated with greater food abundance. However, 

fewer fish in smaller size classes are surviving to replace adults, and a subsequent 

decline in overall biomass of herbivores seems likely. Herbivores are common targets 

of the trap fishery in the Seychelles (Grandcourt 1999), and yields have remained 

stable through the bleaching event (Grandcourt & Cesar 2003), despite the increase in 

larger fish we identified. This is consistent because the decline in small-sized fish 

extends up to 30 cm, resulting in no substantial increase in biomass above size at first 

capture.  

 

Herbivores are important to the resilience of coral reefs because they control algae 

and promote coral recovery (Bellwood et al. 2004; Mumby et al. 2006). Our results 

suggest that mass bleaching and the loss of structural complexity may ultimately lead 

to a reduction in the abundance of herbivores, including larger size classes, and as 

such, resilience of reefs may decline over the long-term. Because the trend is also 

apparent in the sampled MPAs, our data suggest the MPAs offer no long-term refuge 

from the impacts of coral bleaching. 

  

What are the consequences for reef fisheries? In Seychelles 50-60% of trap fishing 

effort occurs close to the shore and within the depth range of the data collected in this 

study (T.D., unpublished data), suggesting that a future decline in biomass of target 

species will affect the trap fisheries. However, given that a substantial portion of trap 
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fishing grounds lie on deeper shoals and submerged reefs of the Mahé Plateau, there is 

potential for a degree of spatial mobility in the fishery if declines in target-species 

biomass are restricted to the shallow fringing reefs. If other locations suffer coral 

mortality and collapse on the scale of the Seychelles, target species assemblages will 

likely respond in the same way. In locations where the topography does not allow for 

a diversity of demersal fishery habitats and depths and the entire demersal fishery is 

restricted to the inshore reef (e.g. Fiji; Jennings & Polunin 1997), the long-term 

impacts of bleaching on fishers could be more substantial. 

  

The corallivores and planktivores demonstrated very large and consistent declines 

between years. Corallivores are well known to suffer declines and even local 

extinctions as a result of mass mortality of corals (Graham et al. 2006; Wilson et al. 

2006; Pratchett et al. 2006, Chapter 2 & Graham 2007). The planktivores in our study 

were principally coral dwelling damselfish, which suffer large declines through coral 

mortality (Wilson et al. 2006). Furthermore, both groups have small body size, 

suggesting they are more reliant on the reef matrix to avoid predation (Munday & 

Jones 1998). The decline in both cases was greatest in the MPAs. Corallivore numbers 

declined from a mean of 31.7 to 5.3/site in fished areas and from 74.5 to 2.7/site in 

MPAs. Similarly, planktivore numbers declined from a mean of 90.3 to 44.4/site in 

fished areas and from 279.8 to 11.2/site in MPAs. These declines are associated with 

the greater cover of the complex coral category in the MPAs prior to the bleaching 

event, which is the preferred habitat of many specialist fish (Munday 2004; Pratchett 

2005). The result is a subsequent homogenization of the MPAs and fished areas in 

terms of benthic cover and composition, and the numerical abundance of small 

specialized fish species post-bleaching.  
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In recent decades conservation of marine resources on coral reefs has focused on the 

use of MPAs. Previous studies have highlighted that reef fish diversity and abundance 

can be compromised in MPAs following coral mortality (Jones et al. 2004), and here 

we provide evidence that the size structure of fish assemblages are subject to the same 

long-term effects in MPAs and fished areas. Because future bleaching events seem 

inevitable (Sheppard 2003), the implementation of methods to ameliorate climate-

mediated disturbance should be treated as a priority in conservation and management 

plans for coral reefs. We recognise that some areas are less susceptible to climate-

induced disturbance and some show greater recovery and therefore support the notion 

that MPAs should increasingly be sited in areas of resistance or resilience to bleaching 

to build up spatial resilience in the system (West & Salm 2003). In Seychelles the 

reefs north of Praslin and south of Mahé, and the granitic habitats in general are 

currently displaying the most recovery and the most stable fish populations (Graham 

et al. 2006) and would be suitable locations for future MPAs. Marine protected areas 

are not the only management tool available, however, and it is important to manage 

areas outside MPAs to minimise other stressors, such as overfishing and nutrient 

enrichment, to create conditions where a recovery may be possible if brood stocks are 

available. 
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Chapter 6 

 

Climate Warming, Marine Protected Areas and the 

Ocean-Scale Integrity of Coral Reef Ecosystems5 

 

 

6.1 Abstract 

Coral reefs have emerged as one of the ecosystems most vulnerable to climate 

variation and change. While the contribution of a warming climate to the loss of live 

coral cover has been well documented across large spatial and temporal scales, the 

associated effects on fish have not. Here, we respond to recent and repeated calls to 

assess the importance of local management in conserving coral reefs in the context of 

global climate change. Such information is important, as coral reef fish assemblages 

are the most species dense vertebrate communities on earth, contributing critical 

ecosystem functions and providing crucial ecosystem services to human societies in 

tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on 

coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 

66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis 

we show that changes in the size structure, diversity and trophic composition of the 

reef fish community have followed coral declines. Although the ocean scale integrity 

                                                 
5 Published as: Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Polunin NVC, Jennings S, 
Chabanet P, Clark S, Spalding MD, Letourneur Y, Bigot L, Galzin R, Öhman MC, Garpe KC, Edwards 
AJ, Sheppard CRC (2008) Climate warming, marine protected areas and the ocean-scale integrity of 
coral reef ecosystems. PLoS ONE 3(8): e3039. doi:10.1371/journal.pone.0003039. NAJ Graham 
collected data from 3 of the locations, coordinated collaborations and data compilation, analysed the 
data with MA MacNeil, interpreted the results and wrote the manuscript. 
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of these coral reef ecosystems has been lost, it is positive to see the effects are 

spatially variable at multiple scales, with impacts and vulnerability affected by 

geography but not management regime. Existing no-take marine protected areas still 

support high biomass of fish, however they had no positive affect on the ecosystem 

response to large-scale disturbance. This suggests a need for future conservation and 

management efforts to identify and protect regional refugia, which should be 

integrated into existing management frameworks and combined with policies to 

improve system-wide resilience to climate variation and change. 

 

6.2 Introduction 

Coral reefs are one of the ecosystems most threatened by climate variability and 

change (Walther et al. 2002; Hughes et al. 2003; Hoegh-Guldberg et al. 2007). Reef 

corals, the building blocks of carbonate reefs, have a restricted thermal tolerance, 

resulting in ‘bleaching’ events (loss of symbiotic algae) when sea surface 

temperatures rise above a given threshold (Brown 1997). This has contributed to 

widespread loss of live coral cover (Goreau et al. 2000; Gardner et al. 2003; Bellwood 

et al. 2004; Bruno & Selig 2007), the restructuring of benthic community composition 

(McClanahan et al. 2007a) and has resulted in dire predictions for the future 

persistence of coral-dominated ecosystems within decadal time scales (Hoegh-

Guldberg 1999; Sheppard 2003). There is now a need to understand resultant large-

scale implications for other components of the ecosystem, which, to date, have 

received limited attention or been the focus of local studies (Jones et al. 2004; 

Graham et al. 2006; Pratchett et al. 2008a). Assessing ecosystem trends and patterns 

at regional scales is necessary if informed management choices are to be made that 

will mitigate the effects of large-scale climate disturbance. Importantly, there is a 
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need to test key paradigms, such as the ability of no-take areas (NTAs) to enhance 

recovery from climate change impacts (Hughes et al. 2003), and the potential for 

herbivorous fish to increase in abundance following coral mortality and functionally 

compensate for increased algal coverage (Wilson et al. 2006). 

 

At large scales, remote pristine areas may have a greater capacity to absorb climate 

impacts and maintain a coral dominated and diverse ecosystem (Sandin et al. 2008). 

However, most coral reef NTAs are small and embedded in heavily fished and 

degraded environments (Bellwood et al. 2004; McClanahan et al. 2007e). Assessing 

the importance of local management for conserving coral reefs in the context of 

global change has been identified as a key research challenge for coral reef scientists 

(Knowlton & Jackson 2008). Although there are expectations that NTAs will promote 

resilience and faster recovery from climate disturbance (Worm et al. 2006), site-

specific studies suggest this may not be the case (Jones et al. 2004; Chapter 5 & 

Graham et al. 2007a; McClanahan 2008), and the effectiveness of such management 

needs to be assessed across regional spatial scales. 

 

Grazing by herbivores, by creating space for invertebrate larval settlement, is thought 

to be key to maintaining reefs in a coral dominated state (Hughes 1994; Bellwood et 

al. 2004; Mumby et al. 2006). However, it is increasingly evident that the majority of 

herbivorous fish in the Indo-Pacific will crop turf algae, but feed less on or avoid erect 

macroalgae once it has developed (Bellwood et al. 2006a; Ledlie et al. 2007). 

Following large-scale disturbances that open up large amounts of space on reefs, such 

as mass coral bleaching, herbivores may become swamped by the biomass of the new 

algal resource (Williams et al. 2001) and reefs can progress on a trajectory to 
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macroalgal dominance (Mumby et al. 2007a). It is therefore important to assess 

whether herbivorous reef fish increase in abundance following large-scale coral loss 

and thus have the ability to prevent reefs from becoming dominated by erect 

macroalgae. 

 

Coral mortality through climate induced bleaching was particularly severe in the 

Indian Ocean in 1998, with ~45% of coral cover lost across the region (Hoegh-

Guldberg 2004), although the effects were spatially variable (Goreau et al. 2000; 

McClanahan 2007a). We assess the longer-term effects of this event in fished areas 

and NTAs across 7 countries, 66 sites and 26 degrees of latitude. Specifically, we 

conducted a targeted research program whereby the original investigators who 

collected comprehensive benthic and fish assemblage data from Maldives, Chagos, 

Seychelles, Kenya, Tanzania, Mauritius, and Réunion in the mid-1990s repeated their 

surveys post-bleaching, in 2005. We use continuous model Bayesian meta-analysis to 

quantify effects of changes in live coral cover and physical complexity of reefs on the 

diversity, size structure, trophic structure and abundance of reef fish. The Bayesian 

approach not only structures the inherent uncertainty in monitoring data from multiple 

sources, but also allows belief statements to be made regarding future change (Clark 

2005). With ever more frequent bleaching events predicted (Sheppard 2003), 

quantitative predictions regarding how fish will respond to future declines in coral 

cover over large spatial scales are needed to guide regional conservation planning, 

adaptation and mitigation strategies. 
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6.3 Methods 

We identified all field studies that had comprehensively surveyed reef fish 

assemblages and associated benthic composition and structure from the western 

Indian Ocean region from 1990 to before the 1998 coral bleaching event (majority 

1994-95). This resulted in eight separate large-scale studies (across seven countries). 

Original investigators returned to their study locations in 2005 to repeat the surveys, 

using field protocols identical to those used in the original surveys. The protocols 

were standardised within, rather than among study locations as it is more robust to 

quantify effect sizes in this way and then standardise when comparing among studies. 

Where the original investigator could not return, an experienced surveyor from the 

team repeated the work. An associated field study workshop for the project, which 

involved many of the researchers from the region, found experienced observer bias to 

be a very small component of the variation in fish counts (McClanahan et al. 2007d). 

All reef surveys were conducted on the reef flat or shallow reef slope. The abundance 

of all diurnally active, non-cryptic, reef-associated fish was assessed during each 

survey, however methods varied among study locations from point counts of differing 

dimensions to belt transects of differing dimensions. Replication also varied from 3 to 

16. This resulted in a survey area per site of ~200m2 to ~2500m2. Benthic 

quantification also varied in spatial scale and from visual estimates to line intercept 

transects, but the results are expected to be comparable (Wilson et al. 2007). 

Estimates of change in live coral cover were calculated and plotted on a map by 

country and management strategy and at a more aggregated level with 95% 

confidence limits. Measures of structural complexity also varied and included visual 

assessments of reef topography, the linear versus contour method and measures of 

reef height. However these measures were found to be strongly correlated (Wilson et 
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al. 2007) and these correlation coefficients were used to standardise them to a 

common scale. The relationship between percent change in coral cover and percent 

change in structural complexity was assessed by correlation analysis. The presence of 

variation in field methods is routine in meta-analytical studies, and thus the choice of 

effect size calculation and variance weighting is integral to the comparability of study 

results (Côté et al. 2005). 

 

6.3.1 Effect size 

Meta-analysis frequently employs unitless effect size metrics to standardize the 

information present among accumulated studies. The potential to observe changes in a 

before and after comparison can be greatly influenced by initial values at a given 

location; sites with larger initial values have a greater scope to reveal change than 

those with low values (Côté et al. 2005). To achieve a comparable metric at all 

locations and to account for initial cover / values, we calculated effect sizes as the 

percent change between the mid 1990s and 2005 (Kaiser et al. 2006); 

 

 100]/)[(% ,,, ×−=Δ ibibia AAAdifference  (1) 

 

where Ab and Aa were mean values at sites in the mid 1990’s and 2005 respectively. 

We did not account for study duration (Côté et al. 2005) as we made the informed 

assumption that the greatest changes occurred in 1998 and our measures in the mid-

1990’s are an appropriate estimate of pre-bleaching conditions. Furthermore as 

sampling date was standardised for post-1998 surveys, any incorporation of duration 

could unduly bias effect sizes based on pre-disturbance study dates. Finally, we are 

estimating a magnitude of change, rather than a rate of change. See Côté et al. (2005) 
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for use of rate of change metrics. We calculated individual effect sizes for change in 

coral cover, structural complexity, fish species richness, and fish density in four 

functional groups for which data were available at the majority of sites (obligate 

corallivores, herbivores, planktivores, and mixed-diet fishes assigned using regional 

fish identification guides, published literature and http://www.fishbase.org), for four 

size classes of fish species (maximum attainable size <20 cm, 21-40 cm, 41-60 cm, 

and >60 cm) and for the same four functional groups listed above within the <20 cm 

maximum attainable size category. Herbivores include all those species that feed on 

algae and or detrital aggregates from the epilithic algal matrix. Because percent-

change losses have a strongly right-tailed distribution, i.e. a maximum potential 

decline of 100%, but a potentially limitless increase, we transformed all of the ΔT 

values to be balanced around zero following Kaiser et al. (2006): 

 

 ΔT=loge(1+[Δ/101]).  (2) 

 

This transformation prevents overestimates of increases and underestimates of 

declines, where a maximum potential decline has a value of -4.6 and a maximum 

increase +4.6. The transformation approximately normalises the error distribution and 

stabilises its variance (Kaiser et al. 2006). Raw data were available for many of the 

original studies, allowing us to estimate average effect-sizes at some locations. 

Because data were collected from the same sites but not the same transects, we 

estimated effect-size means and variances at these sites using non-parametric 

bootstrapping of the before and after observations (R=9999) (Efron & Tibshirani 

1993) with (1) and (2), by randomly matching before-after pairs at each iteration. This 
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generated sample means and expected variance ranges for many, but not all, of the 

study locations. 

 

6.3.2 Bayesian meta-analysis 

We evaluated evidence for a regional relationship between coral cover and reef fish 

using an area-variance weighting scheme implemented in a Bayesian meta-analysis 

framework. The use of area surveyed as a weighting scheme in coral reef meta-

analyses has become widespread because actual variance will depend on individual 

measurement size and replication (Côté et al. 2005). The Bayesian approach allowed 

us to model the hierarchical structure of the data, estimate the magnitude of regional-

scale effects, and to specify a level of uncertainty about individual study estimates. By 

sharing information among studies, this approach maximized the strength of 

inferences made across the entire range of meta-data used, allowing us to make 

probability statements about the likelihood of reef fish declines given potential future 

changes in coral conditions. Although we tested five different ecologically 

meaningful response trajectories (asymptotic, quadratic, logistic, linear and 

exponential), we found no model-based evidence for non-linear responses based on 

Bayesian Information Criterion (BIC) scores among candidate models. We therefore 

quantified the regional fish community response between the mid 1990s and 2005 

using a null model (intercept-only; M0) and exchangeable linear model (Mc) of coral 

effect size βcoral , 

 

 Δ f , j
T ~ N(θ f , j ,σ jf

2 ), (3) 

 Δ c, j
T ~ N(θc, j ,σ jc

2 ), (4) 
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  (5) 

  θ f , j ~ N(β0 + βcoral (θc, j ),σθ
2), (6) 

 

where ΔT
f,j  is the study point estimate of the fish effect size θf,j  from the jth study; ΔT

c,j  

is the study point estimate of coral effect size θc, j  in the jth study; σ j
2 is the study fish 

or coral variance that is assumed known; σ j*
2  is the maximum of the known (bootstrap 

estimated) site-level variances for fish or coral among the studies used; areamax is the 

maximum reef area surveyed; σ j b
2  is the bootstrap-estimated site-level variance for 

sites where raw data was available; and σ
2
θ is the estimated regional variance. The 

area-weighted σ
2
j ’s were likely to be conservative because they were scaled down 

from the largest known study variance, expressing an equal or greater level of 

uncertainty than any of the known sample variances, thus weighting the variance 

based on the area of reef surveyed. 

 

This continuous meta-analysis model was fully-specified by non-informative prior 

distributions for the estimated parameters, 

 

 β0 ~ N(0,1000) (7) 

 σθ
2 ~ U(0,1000)  (8) 

 βcoral ~ N(0,1000)  (9) 
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In addition to the coral effects model, we included a NTA model to estimate the 

effects of fishery protection on changes in coral and fish metrics. This protection 

model (Mcp) included a modification of equation (6) to include a dummy variable 

(status) that allowed the slopes (βprotection) and intercepts (βprot 0) of the coral 

relationship to vary between NTAs and fished areas: 

  

θ f , j ~ N(β0 + βprot 0(status) + βcoral (θc, j ) + βcoral (θc, j ) *β protection (status),σθ
2).              (10) 

 

Priors for all slopes and intercepts were as specified by equation (9). We implemented 

both regional models using the PyMC Markov-Chain Monte Carlo (MCMC) toolkit 

for the Python programming language. Meta-analytical models were run for 20 000 

iterations with a 10 000 iteration burn-in period. We evaluated model convergence 

using Geweke’s method (Efron & Tibshirani 1993). Model goodness-of-fit (GOF) 

was assessed using the deviance simulation methods in PyMC, where ideal models 

yield GOF values near 0.5, providing evidence of equivalence between simulated and 

observed deviance (Gelman et al. 2004). Our Bayesian meta-analyses had GOF scores 

between 0.46 and 0.50 for all fish metrics, confirming good model fits for estimating 

effect-size relationships, and model convergence was deemed adequate in every 

instance (Gelman et al. 2004). Site-level posterior distributions shrunk towards the 

regional mean, where the extreme high- and low-value effect sizes had a reduced 

effect on the overall estimates. Relative evidence for each model was evaluated using 

the Bayesian Information Criterion (BIC) (Schwartz 1978) and the uncertainty 

surrounding each posterior parameter estimate. 
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From the area of highest posterior density in the posterior distribution of each model 

parameter we obtained Bayesian credible intervals (CI) that defined a 95% probability 

of a given parameter lying within the CI range. During each MCMC simulation we 

also sampled from the full conditional of the model and data to construct predictive 

intervals (PI) that defined a 95% probability of future observations being within the PI 

range. The PI interval values allowed us to make probability statements about the 

response of fish assemblage groups to future coral depletion. 

 

6.4 Results 

Change in hard coral cover across the region between the mid 1990s and 2005 varied 

geographically (Figure 6.1). The changes reported here represent the combined effects 

of coral loss in 1998 and any subsequent recovery to 2005. The greatest declines were 

apparent through the low latitude island states of Maldives, Chagos, and Seychelles. 

Kenyan and Tanzanian nationally protected sites experienced moderate declines, 

while Mauritius and Réunion sustained the smallest declines, and coral cover 

increased in Kenyan and Tanzanian fished sites (Figure 6.1). Assessing change in 

coral cover at relevant scales, that consider location, management and habitat type, 

indicates that 10 of our 19 study locations exhibit declines that depart significantly 

from zero (Figure 6.2A). The study incorporated nine no-take areas (NTAs) across 

four countries (two in Seychelles, four in Kenya, two in Tanzania and the long-term 

de-facto protection of reefs of the Chagos archipelago (Sheppard 2000)). A greater 

proportion of NTAs (71 %) than fished (42 %) locations showed significant declines 

in coral cover over the study period. Based on bootstrapped 95% confidence limits, 

there was no evidence to suggest the percent change in coral cover differed between 

NTAs and fished areas, and in some cases declines were significantly greater in NTAs 
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(Figure 6.2A). Importantly, the NTAs had greater starting coral covers than adjacent 

fished areas, which, as NTAs and fished areas declined to similar final covers (Table 

6.1)(with the exception of some of the less impacted Tanzanian sites), meant the 

NTAs had further to fall. 

 

It is clear that the impacts of the 1998 bleaching event were highly variable across the 

region, and provide a continuum against which to test secondary consequences, such 

as the effects of coral loss on fish assemblages. Recent developments in assessing the 

effects of coral disturbance on fish have highlighted the importance of eroding 

structural complexity in driving responses (Garpe et al. 2006; Graham et al. 2006), 

which, as erosion of coral structures can take 5-10 years, explains the much smaller 

impacts on fish shortly after coral mortality (Wilson et al. 2006). Structural 

complexity was quantified at 50 of our 66 sites. Importantly, there was a strong 

correlation between loss in coral cover and loss in structural complexity across the 

region (r = 0.77, P<0.001, Figure 6.2B). The strong collinearity in the two measures 

precludes independent assessment of variables, and therefore the effects of changing 

coral cover on fish identified in the Bayesian meta-analyses are likely to result from a 

combination of loss in coral cover and structural complexity. 
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Figure 6.1. Change in coral cover at sites across the western Indian Ocean. Green and 

red symbols represent increases and decreases in coral cover respectively. Symbols 

with solid borders are sites in NTAs; Seychelles data include two NTAs, Kenya 

includes four, Tanzania two and the Chagos archipelago is a de-facto NTA. Data 

represent 66 sites across the region. Numbers in key (size of bubble) are percent 

changes between mid 1990s and 2005. Map produced using ESRI data and ArcGIS 9. 
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Figure 6.2. Change in coral cover and reef structural complexity. (A) Change in live 

coral cover at meaningful biogeographical aggregations and by management strategy. 

Three habitat types in Seychelles each replicated in the two NTAs. Kenyan protected 

represents four NTAs. Bootstrapped 95% confidence intervals indicate whether mean 

change departs significantly from zero. Locations ordered by magnitude of coral 

decline. (B) Correlation between change in live coral cover and change in structural 

complexity across the region. ● Mafia Island, ◊ Seychelles, ▲ Chagos, ■ Maldives, ♦ 

Kenya, ∆ Tanzania. 
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Table 6.1. Mean coral cover before (mid-1990s) and after (2005) the 1998 bleaching 

event across the Indian Ocean. Sites aggregated at representative geographic scales 

that consider location, management and habitat type. Three habitat types in Seychelles 

each replicated in the two NTAs. Kenyan protected represents four NTAs. Number of 

sites per location given in brackets. Note, Tanzania, Mafia Island, received no-take 

status in 2000. 

 

 

Location 
% Coral Cover mid-

1990s ± SE % Coral Cover 2005 ± SE 
 
Maldives, North Male (3) 15.5 7.5 10.9 3.2 
Maldives, South Male (2) 43.9 3.6 8.0 1.2 
Chagos (9) 31.2 4.0 22.8 2.9 
Seychelles Carbonate Reefs (5) 34.6 2.7 5.6 3.1 
Seychelles Carbonate Protected (2) 44.9 4.8 5.1 4.5 
Seychelles Granite Reefs (5) 14.8 2.0 8.2 2.3 
Seychelles Granite Protected (2) 30.9 7.6 7.5 6.4 
Seychelles Patch Reefs (5) 20.0 1.5 10.9 5.1 
Seychelles Patch Protected (2) 46.4 7.8 3.6 3.0 
Kenya Fished (4) 18.9 5.2 20.0 4.0 
Kenya Protected (4) 34.8 4.5 26.8 8.1 
Tanzania Dar (4) 42.6 11.9 70.0 3.2 
Tanzania Tanga (4) 23.9 7.5 27.8 6.8 
Tanzania Zanzibar (2) 48.5 3.8 48.3 3.3 
Tanzania Zanzibar Protected (2) 62.7 11.1 61.5 2.4 
Tanzania, Mafia Island, Protected (2) 33.0 N/A 0.1 N/A 
Reunion Flat (2) 42.5 24.3 37.0 10.9 
Reunion Slope (2) 42.0 5.0 28.4 4.5 
Mauritius (5) 45.3 9.5 41.1 6.7 
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Coral loss predicted declines in reef-fish species richness, and abundance of obligate 

corallivores, planktivores and fishes < 20 cm throughout the western Indian Ocean 

(Table 6.2). We tested five possible trajectory descriptors in each case, but only found 

evidence for linear fits between coral decline and change in groupings of the fish 

community. Trends in species richness were significant, but weak, and largely driven 

by the Seychelles and Mafia Island (Figure 6.3A). There was substantial evidence for 

a 1:1 relationship between changes in obligate corallivore abundance and percent 

coral cover (Figure 6.3B). From these results we estimate, given any future 50% 

decline in coral cover, there is a 76% probability of equivalent declines in obligate 

corallivores at any given site in the western Indian Ocean. The relationship between 

change in diurnal planktivore abundance and coral cover was relatively strong; given 

a future 50% decline in coral cover, we estimate a 68% probability of observing 

declines in planktivore abundance (Figure 6.3E). We found no relationship between a 

loss of coral and change in abundance of herbivore and mixed diet feeder groups 

(Figure 6.3C,D).  
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Figure 6.3. Change in fish groups in response to coral decline. Continuous model 
Bayesian meta-analysis of relationships between decline in coral cover and change in 
(A) species richness of fish assemblages, and (B) abundance of obligate corallivores, 
(C) herbivores, (D) mixed diet feeders, (E) planktivores. Scale as converted to percent 
change indicated in top right panel. Linear trend lines only presented where 
significant model fits were recorded. Green symbols indicate sites in NTAs, blue 
symbols indicate sites in fished areas. Inner dashed line represents 95% credible 
interval on the regression and outer dashed line represents the 95% prediction 
interval. ● Mafia Island, ◊ Seychelles, ▲ Chagos, ■ Maldives, ♦ Kenya, ∆ Tanzania, 
□ Réunion, ○ Mauritius. Movement of points along the x-axis among panels reflects 
model-structured uncertainty present among studies.  
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When species were grouped by their maximum attainable size, a clear trend was 

apparent for species <20 cm total length, but no relationship was observed for 21-40 

cm, 41-60 cm or >60 cm groupings (Figure 6.4A; Table 6.2). Given a future 50% 

decline in coral cover, we estimate a 52% probability of observing declines in the 

abundance of fish species with maximum body lengths <20cm. Within this size class, 

planktivores make up a considerable portion of the abundance (44%), and herbivores 

and mixed diet feeders also contribute substantially (28% and 20% respectively), but 

corallivores have limited input (8%) (Figure 6.4B). Separate analyses of trophic 

groups within the <20cm size category highlights that, along with obligate 

corallivores and planktivores, there was also evidence of declines in herbivores (Table 

6.2).  

 

We only found weak evidence for differences between NTAs and fished areas for 

change in diurnal planktivore abundance and small-bodied herbivore abundance 

(<20cm) (Table 6.3). In both cases the negative relationship between fish abundance 

and coral decline was greater for the NTAs, however there was equal support for 

model Mc with no differences between types of management (Table 6.3). Importantly, 

irrespective of body size and trophic categorization, NTAs provided no clear benefits 

for any of the fish groups in terms of their change in response to coral decline. 
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Figure 6.4. Change in small bodied fish in response to coral decline. (A) Continuous 

model Bayesian meta-analysis of relationship between decline in coral cover and 

change in fish <20 cm maximum attainable size. Green symbols indicate sites in 

NTAs, blue symbols indicate sites in fished areas. Inner dashed line represents 95% 

credible interval on the regression and outer dashed line represents the 95% prediction 

interval. ● Mafia Island, ◊ Seychelles, ▲ Chagos, ■ Maldives, ♦ Kenya, ∆ Tanzania, 

□ Réunion, ○ Mauritius. (B) Percent contribution of five trophic groups to the starting 

(mid-1990’s) abundance of fish <20 cm maximum attainable body length across the 

region. Black = planktivores, dark grey = piscivores (barely present on plot; 0.05%), 

white = Mixed diet feeders, grey = herbivores, light grey = obligate corallivores. 
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Table 6.3. Model-selection results for continuous model Bayesian meta-analysis in 

the western Indian Ocean using the Bayesian Information Criterion (BIC). Models 

include a null model of no relationship (M0), a model including a relationship 

between changes in coral cover and reef fish metrics (Mc), and a fish-coral model that 

allows for differences between protected and unprotected sites (Mcp). Models 

highlighted in bold have the greatest support, given the data; models with BIC 

differences of <2 are considered to have equal support. 

 

 

 
 
 

 

 

 

 

 

 

 

Metric M0 Mc Mcp 
 
Species richness 

 
17.53 

 
1.64 

 
6.35 

Obligate corallivores 282.90 248.38 256.38 
Herbivores 145.83 149.61 157.35 
Mixed-diet feeders 83.64 87.40 91.90 
Planktivores 237.66 205.27 204.30 
<20 cm 165.25 138.72 140.60 
21-40 cm 146.91 150.00 158.17 
41-60 cm 231.69 231.35 235.95 
>61 cm 261.85 266.02 272.32 
<20 cm obligate corallivores 275.96 238.91 246.80 
<20 cm herbivores 230.91 214.86 216.53 
<20 cm mixed diet feeders 94.93 99.11 106.16 
<20 cm planktivores 237.76 218.23 222.13 
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6.5 Discussion 

We have identified spatially variable declines in coral cover, reef structural 

complexity, fish species richness and the abundance of various feeding and size 

groups of reef fish across the Indian Ocean following the 1998 bleaching event. These 

changes are substantial for some groups, and indicate little insurance offered by 

current small-scale NTA management across the region. The spatial patterns present 

in our data provide important information for future conservation planning and 

generic lessons for managing whole coral reef ecosystems in a changing climate.  

 

There was little difference in the decline of coral cover between NTAs and fished 

areas across the Indian Ocean, with some evidence for greater declines within NTAs. 

This result is likely due to NTAs often being sited in areas where the cover of 

Acropora and other thermally-sensitive and branching coral species is high (Chapter 5 

& Graham et al. 2007a), or may be because fishing gears reduce cover of these coral 

species in fished areas. Our analysis also indicated little difference between NTAs and 

fished areas for those fish groups that declined in response to coral loss. The only 

indication of a differential response was the greater decline in NTAs for planktivores 

and small bodied herbivores. Large, remote and pristine areas seem to be resilient to a 

wide range of disturbances (Sandin et al. 2008), which has led to calls to assess the 

effectiveness of NTAs in conserving coral reefs through climate disturbance 

(Knowlton & Jackson 2008). One clear difference to these remote areas is that NTAs 

on reefs are typically small and surrounded by much larger areas that are modified by 

exploitation (Bellwood et al. 2004; McClanahan et al. 2007e). As we do not have 

repeat temporal data since the initial coral loss in 1998, we can not explicitly infer 

recovery rates from our data, however the NTAs we studied show no evidence of 
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being more resistant to declines in coral and fish groups following coral bleaching and 

it seems likely that, over this time scale, recovery rates are no different between 

NTAs and fished areas, as has been shown for some of the NTAs where temporal data 

were available (McClanahan 2008).  

 

We detected declines in fish species richness across the western Indian Ocean in 

response to loss of live coral cover. Although only a small proportion of species are 

heavily coral dependent, most species are reliant on the reef matrix at some stage in 

their life history, and change in species richness was likely due to loss in the physical 

structure of the reef, rather than live coral (Garpe et al. 2006; Graham et al. 2006; 

Wilson et al. 2006; Pratchett et al. 2008a). The variability in loss of structural 

complexity may explain why the trend for species richness was not stronger, with 

locations such as Chagos, where recovery of coral has been rapid, potentially 

retaining structural complexity in the interim. Although loss of structural complexity 

was the most likely driver of the region-wide decline in species richness, some studies 

have highlighted that live coral can be an important settlement cue for larval fish 

(Jones et al. 2004; Feary et al. 2007a) and the nature of this relationship is an 

important area for future research. 

 

Although previous studies have identified obligate corallivores as a functional group 

vulnerable to declines in coral cover (Wilson et al. 2006; Pratchett et al. 2008a), this 

is the first study to demonstrate declines over such a large spatial scale. We have also 

identified a 1:1 linear relationship between coral loss and obligate corallivore decline, 

suggesting their survival on the reef is tightly linked to coral cover and changes in 

obligate corallivore abundance should be easy to predict based on changes to benthic 
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cover. The diurnal planktivores in the study were largely small-bodied species from 

the damselfish family (>90% contribution to group) that are often closely associated 

with the reef matrix (Munday & Jones 1998; Wilson et al. 2008a). Their decline is 

most likely due to predation vulnerability, linked to loss of coral and structural 

collapse (Garpe et al. 2006; Graham et al. 2006). Planktivores and corallivores 

showed the strongest relationships of all groups to declining coral cover and are likely 

to be the groups most threatened from the predicted ongoing decline in global reef 

health (Wilson et al. 2006; Pratchett et al. 2008a).  

 

Although herbivores are hypothesized to increase in abundance following coral 

decline owing to a greater availability of algal resources, previous studies have 

reported high variation in this relationship and have often been conducted shortly 

after disturbances, limiting their ability to detect demographic changes (Wilson et al. 

2006). Here we tested this hypothesis across large spatial and temporal scales where 

the assemblage had a moderate time to respond. Herbivores are thought to be a key 

functional group, responsible for the resilience of reef systems by controlling algal 

growth (Bellwood et al. 2004; Mumby et al. 2006; Hughes et al. 2007a) and 

ultimately allowing settlement of new coral recruits (Mumby et al. 2007b). However, 

our data show that the proliferation of algae that follows extensive coral mortality 

(Diaz-Pulido & McCook 2002; Jones et al. 2004; Aronson & Precht 2006; Graham et 

al. 2006) was unlikely to be controlled by a corresponding increase in herbivorous 

fish abundance. Changes to size structure and biomass of herbivore stocks cannot be 

ruled out and may initially encourage increased consumption and control of algae. 

However, studies from Seychelles suggest such changes may be indicative of future 

declines in herbivore abundance and biomass due to a loss of refuge from predators, 
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leading to reduced recruitment to adult size classes (Chapter 5 & Graham et al. 

2007a). 

 

The mixed diet feeding group also showed no response to declining coral cover. This 

group of fish includes species from families such as Lethrinidae, Mullidae, 

Lutjanidae, and Labridae, many of which are habitat generalists, foraging and 

recruiting to non-coral reef habitats such as seagrass (Dorenbosch et al. 2005). 

Species in these groups also tend to forage over fairly large spatial scales, indicating a 

lack of reliance on specific habitat types. Due to this decoupling of reliance on reef 

habitat and the potential benefits they may glean from increased food resources, this 

may be the group that will be sustained in the long term, although a large amount of 

variation can be expected at the species level (Wilson et al. 2006), leading to changes 

in community composition.  

 

Small-bodied fish are known to be more reliant on the reef matrix, inhabit narrower 

niches, and be more vulnerable to predation (Munday & Jones 1998; Wilson et al. 

2008a). Our analyses highlight the vulnerability of small-bodied species to coral and 

structural complexity loss. Within this size category, obligate corallivore and 

planktivore groups showed strong declines. Interestingly, there was also a reduction in 

abundance of small-bodied herbivores. Although herbivore abundance may not be 

declining overall (Figure 6.3C), the reduction of these small-bodied species is of 

concern as they perform important functional roles on coral reefs (Ceccarelli et al. 

2001). Small mixed diet feeders again showed no trend, demonstrating the resistance 

of species with generalist life history traits to coral loss. 
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There are some obvious limitations in our data, such as the timeframe between 

surveys and the influence of any change in management / fishing pressure. In most 

cases management and fishing pressure have not changed greatly over the ten years 

studied. The one main exception is Mombasa Marine National Park, Kenya, where 

species richness and fish density have increased owing to management action 

(McClanahan et al. 2007e). Although such effects may have a slight influence on the 

results, the relationship between reef fish and change in coral cover (and its 

association with loss in physical structure) is a strong signal within the regional data 

and is consistent with current ecological understanding of disturbance effects on coral 

reefs (Wilson et al. 2006; Pratchett et al. 2008a). A potential problem when 

conducting meta-analyses is publication bias, whereby data sets are not located or 

included in the analyses (Gurevitch & Hedges 1999). This is not a problem in the 

current study as we conducted a targeted research program where all comprehensive 

studies from the mid 1990’s were repeated as part of the study itself. Finally, the 

study design does not consider the impact of disturbances after the 1998 coral 

bleaching event. However, the December 2004 tsunami is thought to have had 

negligible effects on coral reefs in the western Indian Ocean (Wilkinson et al. 2005). 

Furthermore, any other ensuing disturbances are just as likely to have influenced 

NTAs as fished areas and reflect increasing disturbance frequencies occurring on 

coral reefs globally (Hughes et al. 2003; Bellwood et al. 2004). 

 

Our analyses highlight great geographic variation in the impact of coral bleaching 

across the region, with the Seychelles suffering the greatest in terms of coral loss and 

associated effects on fish, and the Mascarene Islands (Réunion and Mauritius) 

suffering the least. These trends could be due to several factors: 1) Prevailing currents 
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and variation in temperatures have been identified as key determinants of coral 

mortality in the region, likely reducing mortality in the Mascarene Islands in 

particular (Sheppard 2003; McClanahan et al. 2007b). 2) Well connected reef systems 

are expected to contain the pockets of refugia required for landscape-scale recovery 

(Nyström & Folke 2001). This is evident when comparing recovery of the well 

connected mainland reefs of Kenya and Tanzania and the geographically extensive 

Chagos and Maldives to the geographically small and isolated inner Seychelles. 3) 

The inner Seychelles is a shallow continental shelf basin, with most fringing reefs 

extending to only 7-9m depth. This 'bathtub effect' likely led to extensive mortality in 

1998 and precluded any depth refuge below which corals could survive. Where live 

coral extends to 40-50m depth, such as in the atolls of Chagos or the islands of 

Réunion and Mauritius, a depth refuge of broodstock may encourage faster recovery 

of corals at shallower depths (Sheppard & Obura 2005). 4) Finally, the atolls surveyed 

in Chagos are uninhabited and off limits to reef fishing. The lack of multiple 

anthropogenic stresses that most other reef systems endure may have helped promote 

recovery from the disturbance (Knowlton & Jackson 2008; Sandin et al. 2008).  

 

The 1998 bleaching event had, and is still having, extensive effects across the western 

Indian Ocean. Although ocean-scale coral reef integrity has been lost, it is positive to 

see that effects were spatially variable and that in some locations the indirect effects 

on fish assemblages and likely implications for human society have been small. 

Geography seems to be a key determinant in the ability of reefs to absorb and recover 

from such large-scale disturbances and this should be considered for other regions 

likely to suffer similar large-scale disturbances in the future. Although there was no 

evidence that existing NTAs are promoting recovery of coral, these NTAs are still 
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supporting a greater biomass of fishery stocks (Chapter 5 & Graham et al. 2007a; 

McClanahan et al. 2007e), indicating long-term fisheries management should not be 

compromised. There is, however, a need for new NTAs, incorporated into existing 

networks that protect source reefs resilient to large-scale disturbance, and areas likely 

to retain their physical structure. This will help sustain the upstream spawning stocks 

of corals and specialised fish species required for landscape-scale recovery. Such 

management is likely to be unsuccessful in isolation, and improved management of 

entire reef systems, reducing the stresses and pressures to areas outside NTAs will be 

necessary to maximise the capacity for systems to recover from large scale and 

ongoing disturbance. 
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Chapter 7 

 

General discussion 

 

There has been burgeoning research interest in the impacts of coral bleaching on coral 

reef fish assemblages over the past 3 years with the knowledge of which species, 

groups and size classes decline and understanding of the mechanisms behind those 

declines greatly improving. Thorough reviews of these advances are scheduled for 

publication in 2008 (Pratchett et al. 2008a, b), including one which also considers the 

direct impacts of increasing water temperature and changing chemistry on crucial life 

history and developmental stages of coral reef fish (Munday et al. 2008). This present 

chapter aims to 1) discuss the current state of knowledge on the topic including the 

novel contributions of this thesis, 2) propose a conceptual model of the short- and 

long-term impacts of bleaching on fish assemblages and 3) provide directions for 

future management and research priorities in this field of study. 

 

7.1 Current state of knowledge 

The importance of ecological specialisation in driving declines in fish abundance is 

still an important research topic and has advanced considerably. One of the main 

advances has been an improved resolution of the degree of specialisation in various 

groups of coral feeding and dwelling fish. Finer resolution of the feeding preferences 

of a fairly comprehensive selection of Pacific butterflyfish (Pratchett 2005) has been 

extended to include some Indian Ocean species (Chapter 2 & Graham 2007). Potential 

reasons why some species are highly specialised in targeting specific species of coral 
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have been elucidated, highlighting the high food quality of preferred coral prey 

(Chapter 2 & Graham 2007). This information on species-specific feeding 

specialisation has proved extremely powerful in predicting patterns of decline in 

abundance following coral mortality, with much greater and more rapid declines, and 

some local extinctions, occurring for those species that are highly specialised in their 

dietary requirements (Pratchett et al. 2006; Chapter 2 & Graham 2007; Chapter 3). 

Associated with these differing degrees of species specific levels of dietary 

specialisation or versatility and differing preferences in types of coral prey, it is 

apparent that if reefs recover a different assemblage of corals post-disturbance, the 

associated suite of corallivorous fish may also change (Berumen & Pratchett 2006). 

Coral cover and butterflyfish abundance returned to pre-disturbance levels on a reef in 

Moorea, however Pocillopora corals now dominated the benthic cover, rather than 

Acropora, and the butterflyfish assemblage had shifted from specialist feeders of 

Acropora to more generalist feeders that will ingest Pocillopora (Berumen & 

Pratchett 2006). 

 

On the Great Barrier Reef 53% of juvenile damselfish dwell in live coral, preferring 

plating growth forms, whereas 40% of adult damselfish inhabited live coral and 

preferred branching corals (Wilson et al. 2008a). Coral associated juvenile damselfish 

had narrower niche breadths than adult conspecifics, indicating that early life history 

stages may be most vulnerable to coral loss. Furthermore, niche breadth, which 

incorporates proportional use and availability of resources, explained 74% of the 

variation in damselfish response to coral decline indicating that, similar to coral 

feeders, coral dwellers with greater specialisation are most vulnerable to declines 

following coral mortality (Wilson et al. 2008a). Such vulnerability of early life history 
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stages and greater impacts on coral associated specialists was also shown in an 

experimental manipulation where coral colonies were degraded to varying degrees 

(Feary et al. 2007b). Coral dwelling specialists also appear to be more likely to remain 

in coral colonies as they degrade and less likely to successfully migrate to alternative 

live colonies following mortality of a host colony, than habitat dwelling generalists 

(Feary 2007). It is clear from the above studies of coral feeding and dwelling fish, and 

from other community composition studies (Bellwood et al. 2006b), that there is a 

general shift in fish communities away from coral specialists to species with more 

generalist life history characteristics. 

 

The importance of live coral for coral reef fish settlement has been further 

investigated. In aquarium choice experiments, fish generally settled in the habitats 

that adult conspecifics inhabit, but several species preferentially settled into live or 

partially degraded coral heads, when adults do not dwell in live coral (Feary et al. 

2007a). In associated field manipulations, a greater abundance and diversity of fish 

settled into live coral habitats, but this was driven by relatively few, abundant species 

that associate with live coral throughout their life history. The community 

composition of coral reef fish recruits changed after experimental degradation of 

habitat from coral associated to algal associated species (Feary et al. 2007a). A study 

of reef fish recruits in Mafia Island, Tanzania, after the 1998 bleaching event found 

that 46% of recruits used live coral habitat disproportionately compared to availability 

of this substrate (Garpe & Öhman 2007). Although a number of these species, 

particularly abundant taxa, also used live coral as adults, a proportion of them did not. 

A study of butterflyfish habitat use as juveniles versus adults indicated that juveniles 

of obligate coral feeding fish inhabited the same live coral habitats that adult 
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conspecifics feed upon, likely due to essential dietary requirements. Conversely, 

juveniles of facultative coral feeders utilised distinct habitats, not always associated 

with either live coral or adult conspecifics (Pratchett et al. 2008c). However, the use 

of live coral as habitat by the juveniles was in higher proportion to the use of live 

coral for diet in adults, particularly for facultative feeders (Wilson et al. 2009). These 

studies and others (e.g. Jones et al. 2004; Wilson et al. 2008a) further suggest that the 

early life history stages of reef fish are likely to be the most vulnerable to coral loss.   

 

Knowledge of the drivers of change in fish assemblages following coral bleaching has 

advanced. Chapter 3 highlights that loss of live coral and the loss of structural 

complexity can be de-coupled and that these different attributes of a degrading 

benthos can influence different components of the fish assemblage. The impacts of 

declines in coral cover are likely to be more immediate and spatially extensive, and 

principally affect fish that specialise on live coral. Conversely the loss of structural 

complexity can take longer to occur, can be more patchy in distribution and impact 

other small bodied species that are not so dependent on live coral, so have survived 

the initial impacts of bleaching (Chapter 3). Indeed, it is now becoming evident that 

the long-term impacts of coral loss, when the structural complexity of the reef 

degrades, are far greater than the initial impacts of live coral loss (Figure 7.1; Garpe et 

al. 2006; Graham et al. 2006). Such loss in structural complexity results in losses in 

species richness, taxonomic distinctness, the trophic composition and abundance of a 

wide range of trophic groups (Garpe et al. 2006; Graham et al. 2006; Pratchett et al. 

2008a), many of which are not impacted by the short-term impacts of bleaching 

(Chapter 1; Wilson et al. 2006). As more structure is lost, larger bodied fish species 

may be lost from the system, including species that represent key functional groups on 
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coral reefs (Graham et al. 2006). Furthermore, the size structure of the fish 

assemblage can change substantially with a reduction of individuals with smaller 

body-size (<35cm) and trophic cascading effects, indicating lag effects and potentially 

much greater impacts on the system as a whole in the long term (Chapter 5 & Graham 

et al. 2007a). Clearly the loss of structural complexity is a major mechanism driving 

the longer-term impacts of coral bleaching on fish assemblages. 

 

There have been small advances in understanding the interaction among different 

kinds of disturbances. When bleaching impacts have been relatively limited in 

severity, site specific local stressors can dominate structuring of benthic and fish 

assemblages. This was shown in Mauritius where the 1998 bleaching event caused 

~10% coral mortality and the impacts of fishing and habitat damage through dredging 

resulted in stronger trends in the benthic and associated fish assemblage data (Chapter 

4 & Graham et al. 2007b).  Conversely, in the Lau Islands of Fiji, where there have 

been reductions in fishing effort in recent years, the combined impacts of coral 

bleaching and crown-of-thorns starfish outbreaks on the benthos are causing greater 

changes to the fish assemblage than fishing pressure (Wilson et al. 2008b). Both 

fishing and habitat degradation did exert changes in the fish assemblage, however, 

and as these are two of the main drivers of change in fish assemblages globally, 

further studies of the interaction and dominant drivers of the two impacts are 

necessary. Indeed, although some studies have attributed coral loss to multiple 

impacts (e.g. Jones et al. 2004; Munday 2004; Wilson et al. 2008b), few studies have 

successfully partitioned the impacts of multiple disturbances or assessed how stressors 

interact or where synergies in impacts may occur (Wilson et al. 2006, 2008b).  
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Figure 7.1. Reef plan view photographs indicating A. the short-term impacts of 

bleaching, where live coral is lost, but structural complexity is maintained and fish 

diversity can remain high, and B. a longer-term scenario of bleaching, where the 

structure has eroded into a rubble bank, and reef fish diversity and abundance have 

declined. 
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The scale at which many of the above trends have been assessed has recently been 

dramatically increased (Chapter 6 & Graham et al. 2008). Although reviews of the 

topic have combined information from disparate studies within meta-analytical 

frameworks (Wilson et al. 2006; Pratchett et al. 2008a), Chapter 6 was the first study 

to explicitly collect and analyse data over a spatial scale beyond individual level reef 

or country case studies. This assessment across such a broad spatial and temporal 

scale enabled predictive statements regarding future change, identified a 1:1 trend 

between loss of coral and declining obligate corallivore abundance and provided 

conclusive evidence of which trophic and size groups of fish respond to coral 

bleaching impacts on the benthos (Chapter 6 & Graham et al. 2008). Most groups 

previously identified as being vulnerable to coral loss, also displayed declines at this 

regional scale and the study highlighted that the invertebrate and mixed diet feeding 

fish may be the group that are least effected and most stable on reefs through climate 

change (Chapter 6 & Graham et al. 2008). 

 

As herbivores are thought to be a key functional group (Bellwood et al. 2004), 

controlling algal growth and facilitating coral recruitment and recovery processes 

(Mumby et al. 2007b), it is important to understand how they respond to coral 

bleaching events. The short-term studies of coral bleaching indicated that herbivores 

may show increases in abundance following coral loss, but these responses were 

variable among studies (Wilson et al. 2006). Longer-term studies have shown that 

herbivore abundance and biomass do not continue to increase and control algae 

following large scale bleaching events (Garpe et al. 2006; Chapter 5 & Graham et al. 

2007a). This lack of response of herbivore abundance has been shown at regional 

scales, with small bodied herbivores actually declining (Chapter 6 & Graham et al. 
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2008). Furthermore, changes to the size structure of the herbivore stock indicate that 

longer-term declines in herbivore biomass as a whole seem likely (Chapter 5 & 

Graham et al. 2007a). These negative impacts on herbivore stocks appear to be related 

to collapse of the structural matrix of the reef framework and suggest that important 

functional roles on reefs may decline in the long-term if coral does not recover and 

the reef framework erodes.   

 

Similar to the short-term impacts of bleaching on fish ecology, the short-term impacts 

of coral bleaching on associated fisheries are negligible based on fisheries dependent 

creel surveys (Grandcourt & Cesar 2003; McClanahan et al. 2002). The lack of a 

change in the biomass of target species above size of first capture was confirmed 

using fisheries independent underwater visual census data in the inner Seychelles 7 

years after the 1998 bleaching event (Chapter 5 & Graham et al. 2007a). However, 

large changes in the size structure of the assemblage indicate that the current stability 

in the fishery is bolstered by an increase in large herbivorous individuals, and that 

substantial reductions in smaller size classes belie a forthcoming decline in fishery 

yields (Chapter 5 & Graham et al. 2007a). As larger individuals are removed from the 

system through fisheries extraction and natural mortality, there are fewer individuals 

surviving to recruit into fishery size classes (Chapter 5 & Graham et al. 2007a). The 

most likely driver of these changes in size structure is the loss of refuge space for 

smaller size classes provided by reef structural complexity. An assessment of the 

percentage contributions of both species and individuals caught in artisanal fisheries 

in Kenya and Papua New Guinea indicates that although 5% or less of species caught 

are live coral dependent, over 60% are dependent on reef habitat complexity 

(Pratchett et al. 2008a). This suggests that if bleaching-associated reductions in 
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habitat complexity (Garpe et al. 2006; Graham et al. 2006, Chapter 5 & Graham et al. 

2007a; Wilson et al. 2008b) do become widespread as predicted, the long-term 

ramifications for coral reef associated fisheries may be substantial. The aquarium fish 

trade is a rapidly growing fishery on coral reefs, with a value of US$90-300 million a 

year (Sadovy & Vincent 2002). Most of the species in the aquarium trade are small 

bodied and trade statistics indicate that although only approximately 15% of these 

species are coral dependent, 80% associate with reef habitat structure (Pratchett et al. 

2008a). However, the value per fish for coral dependent species dwarfs that of 

structurally associated species (Pratchett et al. 2008a) and so the impacts of coral 

bleaching on this industry could also be substantial. 

 

7.2 Conceptual models 

From this now fairly comprehensive body of work we can develop conceptual models 

of how a functioning reef ecosystem (Figure 7.2A; a simplistic model based on 

impacts of coral bleaching) changes in the short- and medium-term after coral 

bleaching. In the short-term, reduced coral cover, but stable structural complexity, 

lead to declines in corallivores and planktivores (as a number of species are coral 

dwellers). The decline in coral is associated with an increased cover of the epilithic 

algal matrix (EAM), which in turn leads to a small, but variable increase in EAM 

feeding fish (Wilson et al. 2006; Figure 7.2B). If resilience is high, coral and fish 

assemblages may then recover to pre-disturbance compositions (e.g. Halford et al. 

2004), or may recover, but shift in both benthic and fish assemblage composition (e.g. 

Berumen & Pratchett 2006). However, if the system does not return to coral 

dominance, the impacts can become much greater (Figure 7.2C). The reduced cover 

of coral and increased cover of EAM can become stable due to positive feedback 
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mechanisms maintaining the system in an unfavourable state (Bellwood et al. 2004; 

Mumby et al. 2007a). The structural complexity of the reef matrix can decline with a 

corresponding increase in rubble (Sheppard et al. 2002; Graham et al. 2006). This loss 

of complexity leads to a decline in most fish groups including EAM feeders (Garpe et 

al. 2006; Graham et al. 2006; Chapter 5 & Graham et al. 2007a). The impact of coral 

loss on those species that require live coral at settlement will also become manifest 

(Jones et al. 2004; Feary et al. 2007a; Garpe & Öhman 2007). Corallivores and 

planktivores further decline, due to lagged population declines partly associated with 

reduced physiological condition (Pratchett et al. 2004, 2006), and partly due to the 

loss of structural complexity (Chapter 3). Invertivores remain largely unchanged due 

to the interplay between the positive effects of increased dietary resources associated 

with rubble areas and the negative effects of structural complexity loss (Chapter 5 & 

Graham et al. 2007a; Chapter 6 & Graham et al. 2008; MacNeil et al. 2008; Wilson et 

al. 2008b). Piscivores begin to decline due to the trophic cascading effects of reduced 

food in the form of smaller size classes of fish (Chapter 5 & Graham et al. 2007a). 

Recovery potential is linked to feedback mechanisms, such as frequency and severity 

of disturbances (e.g. storms, bleaching, crown-of-thorns starfish outbreaks) that will 

further decrease coral and structural complexity (Birkeland 2004), and the impacts of 

physical isolation and external refugia that will largely determine the supply of larvae 

needed for settlement and recovery (Ayre & Hughes 2004; Graham et al. 2006). 

These extrinsic factors in combination with intrinsic factors such as macroalgae cover, 

which will potentially be mediated by herbivores (Mumby et al. 2006; Hughes et al. 

2007a), although once established is less likely to be controlled (Bellwood et al. 

2006a; Ledlie et al. 2006), and the extent and severity of the initial coral mortality 

(Mumby et al. 2007a), will determine if the system has the capacity to recover.  
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Figure 7.2A. Conceptual representation of an undisturbed functioning reef ecosystem. 

Arrows indicate main direction of flows in resources, contribution to habitat attributes 

or competition between EAM and coral. EAM = epilithic algal matrix. 
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Figure 7.2B. Conceptual representation of the short-term impacts of coral bleaching 

to a reef ecosystem. Diagonal hatching in boxes represents increases in cover or 

abundance. Dashed lines represent original size of box to indicate extent of decline in 

cover or abundance. 
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Figure 7.2C. Conceptual representation of the medium-term impacts of coral 

bleaching to a reef ecosystem. Diagonal hatching in boxes represents increases in 

cover or abundance. Dashed lines represent original size of box to indicate extent of 

decline in measured component or abundance. Shaded box represents extrinsic 

feedback mechanisms that influence recovery potential, which include larval supply 

and settlement. 
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7.3 Management and Research directions 

With clear evidence growing for the longer-term impacts of coral bleaching on the 

ecosystem as a whole and likely consequences for coral reef fisheries, there is a clear 

need to assess the role of management to help reduce impacts and promote recovery 

(Knowlton & Jackson 2008). Review papers have presented the expectations that 

marine protected areas (MPAs) should protect important functional processes on coral 

reefs and help promote recovery of coral cover (e.g. Worm et al. 2006). However, 

there is growing empirical evidence that the same species and groups are impacted in 

MPAs as fished areas following coral bleaching events and that the impacts inside 

MPAs can sometimes be greater (Jones et al. 2004; Chapter 5 & Graham et al. 2007a). 

Indeed, across multiple locations the impacts of bleaching on the benthos and 

associated fish groups can be equal or greater in MPAs than fished areas, and the rates 

of recovery indistinguishable (Chapter 6 & Graham et al. 2008; McClanahan 2008). 

MPAs are often sited in areas of high coral cover, especially areas with charismatic 

branching and plating coral growth forms. This results in a thermally sensitive 

assemblage, which often declines in cover to become similar in composition and 

cover to fished areas after bleaching (Chapter 5 & Graham et al. 2007a; Chapter 6 & 

Graham et al. 2008). As small bodied fish preferentially utilise these habitats 

(Bellwood et al. 2004; Jones et al. 2004), the impacts on fish can also be large 

(Chapter 5 & Graham et al. 2007a; Chapter 6 & Graham et al. 2008). After such a loss 

in coral cover, fish abundance and structural complexity, it appears small MPAs are 

largely indistinguishable from fished areas, other than by a larger biomass of fishery 

target species (Chapter 5 & Graham et al. 2007a; McClanahan et al. 2007e), and do 

not appear to maintain the capacity to recover more rapidly (Chapter 6 & Graham et 

al. 2008; McClanahan 2008). 
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The boundaries of MPAs can not prevent the impacts of disturbances such as 

bleaching, nutrient loading, storms and sedimentation (Hughes et al. 2003; Bellwood 

et al. 2004; Nyström 2006; Mora 2008). Building a large network of MPAs that 

covers a much larger area of coral reef in each country may help build some of the 

brood stocks and connectivity necessary for recovery and resilience (Hughes et al. 

2003), however, aside from examples from wealthy nations such as Australia, such 

targets are not possible or necessarily appropriate for many developing world 

situations (McClanahan et al. 2008). There is therefore a growing recognition of the 

need to build the resilience of the system as a whole (Nyström & Folke 2001; 

Bellwood et al. 2004; Nyström 2006; Hughes et al. 2007b; Chapter 6 & Graham et al. 

2008). Most MPAs in coral reef environments are small and embedded in a much 

larger area that is exploited and often degraded. Building the resilience of the system 

as a whole will involve reducing the range of threats that act upon the whole system, 

such as nutrient and sediment inputs from land, overfishing, use of destructive fishing 

practices and land reclamation activities. Special attention to those areas that either 

escape from or recover rapidly from bleaching events, should enable future protected 

areas to be sited in locations likely to provide brood stocks to impacted regions (West 

& Salm 2003; Chapter 5 & Graham et al. 2007a; Chapter 6 & Graham et al. 2008). 

Managing and protecting the functional diversity of organisms on reefs and, in 

particular, key functional groups, such as some herbivores, will be necessary to 

promote continued functioning of the system and assist recovery processes (Bellwood 

et al. 2004; Nystrom 2006; Mumby et al. 2007a; Chapter 6 & Graham et al. 2008). At 

a larger scale, some areas and regions seem to escape bleaching events (McClanahan 

et al. 2007a, b; Maina et al. 2008; Chapter 6 & Graham et al. 2008) and the geography 
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of some locations, such as the presence of deep water reefs that escape the impacts of 

warm water that typically impact shallower areas (Sheppard & Obura 2005; Chapter 

6), results in much greater recovery potential. These areas should be conservation 

priorities, requiring a scaling up of conservation efforts to incorporate regional 

patterns into cross boundary policy initiatives. Ultimately, all these initiatives will fail 

if the local social and economic setting is not incorporated into conservation action 

(Hughes et al. 2005). There is a need to understand what promotes resilience in the 

socio-ecological systems that typify coral reef areas, and develop strategies that are 

most appropriate given the local social conditions and capacity to adapt and change, 

and the vulnerability of the environment to climate change and other threats 

(McClanahan et al. 2008). Such understanding and recommendations are in their 

infancy, but warrant a great deal of research funding and attention over coming 

decades.  

 

Aside from conservation and management orientated research, many fundamental 

ecological questions remain unanswered. Although the understanding of the impacts 

of coral bleaching and climate change on reefs has greatly advanced in recent years 

(Hoegh-Guldberg et al. 2007; Pratchett et al. 2008a), there are still many research 

gaps. Some of the most apparent for fish relate to the direct impacts of a warming 

environment on behaviour, range, physiology, reproduction and other key life history 

stages (Munday et al. 2008). More studies of the interactions between and potential 

synergies of multiple disturbances are necessary. The impacts of changing habitat on 

functional composition, functional diversity, response diversity and redundancy 

(Elmqvist et al. 2003; Nyström 2006) of reef fish is poorly quantified. How these 

attributes of a fish community are impacted and more importantly how they can be 
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maintained are fundamental unanswered research questions. Understanding the patch 

dynamics and temporal variation in recovery processes from disturbances is another 

emerging research area (Arthur et al. 2006) that warrants further attention. The use of 

reef restoration techniques and artificial reefs has been well studied (Edwards & 

Gomez 2007) and is met with scepticism by many, but with the role of structural 

complexity becoming so apparent and reefs on a general downward trajectory, 

research into direct active management techniques should also receive greater 

attention. As it is generally accepted that most reefs will exist in a less complex and 

more depauperate state, how ecological processes, such as predation, competition and 

herbivory will change and adapt is also a key research question. This also needs to be 

scaled up to understand how the ecosystem goods and services returned from coral 

reefs will change, and what can be expected under differing emissions scenarios. 

Stabilising the rate of climate warming is a major priority for coral reefs, but it is clear 

that major changes beyond those already identified are likely to occur in coming 

decades. 
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Abstract Coral reefs are under threat due to climate-

mediated coral mortality, which affects some reef coral

genera more severely than others. The impact this has on

coral reef fish is receiving increasing attention, with one

focal area assessing impacts on fish that feed directly on live

coral. It appears that the more specialised a species of

corallivore, the more susceptible it is to coral declines.

However data are sparse for the Indian Ocean, and little is

known about why some corals are preferentially fed upon

over others. Here I assess feeding specialisation in three

species of coral feeding butterflyfish in the Chagos Archi-

pelago, central Indian Ocean, assess the food quality of the

coral genera they target and document patterns of decline in

the Seychelles following a severe coral mortality event.

Cheatodon trifascialis was the most specialised coral feeder,

preferentially selecting for Acropora corals, however, when

Acropora was scarce, individuals showed considerable

feeding plasticity, particularly for the dominant Pocillopora

corals. C. trifasciatus also preferentially fed on Acropora

corals, but fed on a much more diverse suite of corals and also

displayed some selectivity for Porites. C. auriga is a facul-

tative corallivore and consumed*55% live coral, which lies

within the wide range of coral dependence reported for this

species. C:N ratio analysis indicated Lobophyllia and

Acropora have the highest food quality, with Pocillopora

having the lowest, which conforms with diet selection of

corallivores and helps explain preferential feeding. Obligate

specialist feeders displayed the greatest declines through

coral mortality in the Seychelles with obligate generalists

also declining substantially, but facultative feeders showing

little change. Clearly a greater understanding of the species

most vulnerable to disturbance, their habitat requirements

and the functional roles they play will greatly assist bio-

diversity conservation in a changing climate.

Introduction

The decline of coral dominated reef systems and a change

in coral composition from diverse and often Acropora

dominated reefs, to less structurally complex encrusting

and massive coral dominated reefs (McClanahan et al.

2007) is being driven increasingly by coral bleaching,

mediated by climate change (Hoegh-Guldberg 1999;

Sheppard 2003). The impacts of coral decline on the wider

ecosystem has received increasing attention, with the

effects on fish being especially well investigated [reviewed

by Wilson et al. (2006)]. While in the medium-term

(5–10 years post disturbance) the diversity and abundance

of a wide range of species can be affected (Jones et al.

2004; Garpe et al. 2006; Graham et al. 2006), in the short-

term (\3 years post disturbance), the impacts appear lim-

ited to species that specialise on coral for diet, recruitment

or habitat purposes (Williams 1986; Kokita and Nakazono

2001; Wilson et al. 2006; Munday et al. 1997). However,

even for specialised fish, the full effects can take some time

to reach fruition (Pratchett et al. 2004), and seem to vary

according to the degree to which the fish are specialised

(Munday 2004; Pratchett et al. 2006).

Corallivorous fish can vary in their dependence on live

coral and although the majority of species feed mainly on

scleractinian corals (Hourigan et al. 1988), their diet may

Communicated by A. Atkinson.

N. A. J. Graham (&)

School of Marine Science and Technology,

Newcastle University, Newcastle-upon-Tyne,

NE1 7RU, UK

e-mail: n.a.j.graham@ncl.ac.uk

123

Mar Biol (2007) 153:119–127

DOI 10.1007/s00227-007-0786-x



include hard corals, soft corals, gorgonians, sponges, algae,

polychaetes and crustaceans (Pratchett 2005). Many feed-

ing studies of corallivores have assessed hard coral as a

single category (Reese 1975; Harmelin-Vivien and Bou-

chon-Navaro 1981, 1983; Bouchon-Navaro 1986; Zekeria

et al. 2002), however, other studies have partitioned feed-

ing patterns at the scale of genera or species of coral, which

enables the degree of specialisation to be elucidated (Cox

1994; Irons 1989; Pratchett 2005; Berumen et al. 2005).

Assessing the degree of specialisation of species enables a

continuum of ecological versatility to be assessed against

resource availability or through disturbance (Munday 2000,

2004), or a greater number of broad categories of feeding

or functional groups to be assessed (Pratchett et al. 2006).

Although data on the extent of ecological versatility in

coral feeding fish is increasing, we have little knowledge as

to why some species are specialists, sometimes preferen-

tially targeting only one species of coral, whilst other

species feed on a far broader range of prey. Furthermore,

although our understanding of the degree of feeding spe-

cialisation and resource partitioning among corallivores has

greatly advanced in the Pacific (Pratchett 2005; Berumen

et al. 2005) and this has enabled a better understanding of

declines in corallivores following disturbances (Pratchett

et al. 2006) or switches in assemblage composition fol-

lowing reorganisation of benthic resources (Berumen and

Pratchett 2006), whether these patterns and trends transcend

into the Indian Ocean is not clear. Indeed geographical

variation in feeding preferences of corallivores has been

reported for specialist feeders (Irons 1989) and facultative

coral feeders (Pratchett 2005; Harmelin-Vivien and

Bouchon-Navaro 1983), indicating a need to broaden the

geographical extent of such studies.

Here I assess, in the central Indian Ocean, the degree of

specialisation in three species of coral feeding butterfly-

fishes representing specialist, generalist and facultative

corallivores. I assess how this specialisation changes

between habitats with differing dominance and diversity of

corals available. To assess whether feeding selection is

related to nutritional value, I assess the food quality of the

four dominant corals selected by the fish. Finally, to assess

the impact of coral loss on species with differing depen-

dency on coral resources, patterns of temporal change in

abundance of corallivores were examined through a major

coral mortality event in the Seychelles.

Materials and methods

Study sites

The study was conducted at two locations: diet analysis and

associated work was conducted at Diego Garcia atoll in the

Chagos Archipelago, central Indian Ocean, while temporal

change in corallivore density was assessed in the granitic

islands of the Seychelles. Although it would have been

preferable to conduct the feeding study and change in

abundance through disturbance at the same location, the

two locations have very similar coral communities. Indeed,

in an assessment of coral species diversity across the entire

Indian Ocean, Sheppard (1998) showed that Chagos, the

granitic Seychelles and the Maldives clustered together

into a distinct group in terms of species similarity and that

the Seychelles and Chagos were particularly similar.

In Diego Garcia, two sites were selected for substrate

assessment, corallivore density counts, feeding selectivity

and coral food quality assessments. One reef (Diego east;

7�14.3590S, 72�26.4110E) was in a sheltered bay in the

northeast corner of the atoll and, although hosting a fairly

diverse coral assemblage, was dominated by Pocillopora.

The second reef (Diego central; 7�14.5340S, 72�24.6360E)

was a large platform patch reef in the north central section

of the atoll, which was less diverse and dominated by

Acropora. Both reefs were between 1 and 3 m depth and all

observations were conducted on snorkel. Change in density

of corallivores was assessed through a major bleaching

event in the Seychelles. Data were collected in 1994 and

2005, spanning the 1998-bleaching event. For full details

of study sites see Jennings et al. (1995) and Graham et al.

(2006).

Substratum availability

To determine whether feeding preferences were influenced

by the availability of potential food resources, substratum

availability was quantified. At both Diego east and Diego

central the benthos along five randomly placed 10 m

transect lines was quantified using the line intercept

method, whereby the distance of tape occupied by each

substrate category was quantified. These data were con-

verted into percent covers of each category and means

plotted with standard errors per site. Differences in cover

by genera were assessed using one-way ANOVA. Acro-

pora cover had to be Log10 transformed to meet the

assumptions of the test.

Feeding observations

Feeding observations were conducted for three species

of chaetodontid butterflyfish, one obligate specialist coral

feeder, Chaetodon trifascialis, which is expected to con-

sistently favour certain prey items, whether these items

are common or rare, one obligate generalist coral feeder,

C. trifasciatus, which is expected to feed on a wider variety
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of prey items, in closer proportions to those available in the

environment and one facultative coral feeder, C. auriga,

which is expected to feed on coral, but also ingest other

non-coral prey (Hourigan et al. 1988). The range and

proportional consumption of various prey items targeted by

each individual was recorded during 3 min observation

periods (following Pratchett 2005). The majority of indi-

viduals continued to feed during observation, however

observations were discontinued if the observer disturbed

the fishes. No intra-specific aggressive interactions were

noted during feeding observations. Coral preys were

identified to the genus level (16 genera were fed upon

during the study), and other prey items included soft coral,

sponge, epilithic algae, coralline algae and consolidated

reef pavement. Reefs were surveyed in a zigzag pattern

from one end to the other to try to ensure the same indi-

vidual was not observed twice. All observations at both

sites were made between 10 am and 2 pm, with no bias for

time between sites. Between 20 and 30 individuals were

surveyed per species per site (Table 1).

As data were collected on selection of resource units by

individual animals, but resource availability was assessed

at the population level, resource selection functions (Ŵi)

were calculated following Manly et al. (1993) using the

formula:

Ŵi ¼ uiþ=ðpiuþþÞ

where ui+ is the number of bites taken on food type i by all

individuals, pi is the proportion of that food type in the

population and u++ is the total number of bites taken on all

substrate types by all individuals (Manly et al. 1993).

Bonferroni corrected 95% confidence intervals were cal-

culated such that any function where the mean and

confidence intervals were higher than one indicated selec-

tion, and if lower than one indicated avoidance. Data are

presented as percent availability of resource verses percent

number of bites for each area, with selection or avoidance

indicated with a + or – symbol. Data are only presented for

the four most common coral genera consumed (Acropora,

Lobophyllia, Pocillopora and Porites) which represented

93% of corals consumed in Diego central and 56% in

Diego east. The non-coral substratum categories were

combined and selectivity of this category also presented.

Chaetodon density surveys

The density of each of the three target butterflyfish and any

other species of butterflyfish at the same locations as the

benthic and feeding observations at both Diego east and

Diego central was quantified. The density of each species

was recorded along five randomly placed 50 · 4 m belt

transects in each of the two study sites (following Berumen

et al. 2005). Overall differences in the assemblages between

the two study sites was assessed by MANOVA and differ-

ences at the species level using one-way ANOVA.

Coral food quality

Eight samples of each of the four most commonly eaten

coral genera (Acropora, Lobophyllia, Pocillopora and

Porites) were taken at random from the field sites and dried

on land. Every effort was made to ensure the most common

species of each genera was consistently sampled. Once

dried the samples were ground with pestle and mortar and

placed in plastic vials for transport. On return to the lab the

corals were placed in an oven at 50�C to ensure they

remained dry. Each sample was then further ground into a

powder, before being decalcified to remove the skeleton

using 5% HCL. This solution was then freeze-dried and the

resultant substance was ground into a powder and placed in

glass vials. Carbon, hydrogen and nitrogen values were

obtained by testing each sample on a Carlo Erba 1108

elemental analyser controlled with CE Eager 200 software,

and weighed using a Mettler MT 5 Microbalance (Wilson

2000). Two runs were performed on each sample and an

average taken. C:N ratios were then calculated for each

sample run. C:N ratio’s are a measure of food quality, a

low value infers higher nitrogen to carbon, which indicates

there is more protein present for growth (Purcell and

Bellwood 2001; Wilson et al. 2003).

A one-way ANOVA was used to test for differences in

C:N ratios among the four coral genera. The ANOVA was

performed both with and without a clear outlier for the

Acropora results, this data point displaying nearly double

that of the median for the group. Normality of data was

examined with histograms and normal probability plots of

the residuals and homogeneity of variances were tested

with Levene’s test.

Table 1 Bite rate and dietary composition of three species of but-

terflyfishes on two reefs with differing benthic composition in the

Chagos Archipelago

n Mean no.

of bites

per 3 min

observation

Hard coral

consumed

(%)

No. of coral

genera

consumed

Diego central

C. trifascialis 26 13.0 100 1

C. trifasciatus 26 16.7 97 4

Diego east

C. trifascialis 30 17.8 100 4

C. trifasciatus 27 14.4 97 14

C. auriga 20 6.5 55 5
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Temporal change in coral feeding fish densities

In both 1994 and 2005 the density of 134 species of

diurnally active, non-cryptic reef fish were surveyed at 21

sites, spanning three different habitat types (carbonate

fringing reefs, granitic rocky reefs with coral growth, and

patch reef habitats on a sand, rubble or rock base), in the

Seychelles, with sixteen 7 m radius point counts at each

site conducted at the bottom of the reef slope [for full

details see Jennings et al. (1995); Graham et al. (2006)]. In

the present study, only the density data of corallivores are

considered, which includes 13 species from the families

Chaetodontidae, Monocanthidae and Labridae. Benthic

data was also collected at each of the study sites, quanti-

fying percent cover of different growth forms of live coral

and other non-coral benthic categories (Jennings et al.

1995; Graham et al. 2006).

Density of the three species of chaetodontid for which

feeding observations were made were analysed individually

and all species were also assigned to three main feeding

strategies based on the literature (McIlwain and Jones 1997;

Allen et al. 1998; Kokita and Nakazono 2001; Pratchett

2005; http://www.fishbase.org). Three species were clas-

sified as obligate specialist coral feeders (Chaetodon

trifascialis, Labrichthys unilineatus and Oxymonocanthus

longirostris), four species as obligate generalist coral

feeders (Chaetodon melannotus, C. meyeri, C. trifasciatus

and C. zanzibarensis) and six species as facultative coral

feeders (Chaetodon auriga, C. guttatissimus, C. kleinii,

C. lineolatus, C. lunula and C. xanthocephalus). From the

current literature, the similar feeding observations of this

study as compared to those in the Pacific and the clear

patterns observed in the data, these groupings appear to be

robust.

Change in density of the individual species and aggre-

gated feeding groups were assessed with a two-factor

crossed ANOVA design with factors year and habitat type,

however as habitat alone was not significant for any

comparison, the data are presented for year only. Normality

of data was examined with histograms and normal proba-

bility plots of the residuals and homogeneity of variances

were tested with Levene’s test. Aggregated level obligate

generalists and specialist groups required log10 transfor-

mation to meet the assumptions of the test.

Results

Substratum availability

The two sites had similar live coral cover (55% Diego east

and 52% Diego central), but the dominance and diversity

of coral genera varied greatly (Fig. 1). Diego east was

dominated by Pocillopora, with a mean cover of 34%

compared to 2.2% for Diego central (F1,9 = 21.23,

P \ 0.01). Conversely Diego central was dominated pre-

dominately by Acropora colonies, with a mean cover of

49% compared to 4.4% in Diego east (F1,9 = 69.43,

P \ 0.001). Cover of other live coral genera and non-coral

substrate did not vary significantly, however the richness of

coral genera was greater for Diego east (Fig. 1).

Feeding observations

The greatest bite rates in Diego central were recorded for

C. trifasciatus, whereas in Diego east, C. trifascialis had the

highest rates and C. auriga had considerably lower bite rates

than the other two species (Table 1). C. trifascialis took

100% of bites from live coral at both sites, while C. trifas-

ciatus took 97% and C. auriga took 55% (Table 1). In the

lower diversity site, Diego central, C. trifascialis took all its

bites from Acropora colonies, principally Acropora tenuis,

the dominant species at the site, but also Acropora clathrata.

C. trifasciatus took bites from four different genera at Diego

central. At Diego east C. trifascialis consumed four genera

of coral, while C. trifasciatus consumed 14 genera and

C. auriga consumed five genera, a considerable portion of

its bites from non-coral substrata (Table 1).

Selectivity analysis shows that C. trifascialis is prefer-

entially selecting Acropora and avoiding other available

genera in Diego central (Fig. 2). C. trifasciatus displays a

similar trend, however there is also evidence for selectivity

on Porites spp. (Fig. 2). In Diego east C. trifascialis is

preferentially selecting Acropora, but also taking a large

proportion of bites on Pocillopora colonies. While C. tri-

fasciatus appears to have a much more general diet, it

is only selecting preferentially for Acropora. C. auriga

appears to have a very general diet, and does not select for

Fig. 1 Benthic resource availability at Diego east and Diego central,

Chagos Archipelago. *** P \ 0.001, ** P \ 0.01

122 Mar Biol (2007) 153:119–127

123



any resource in greater proportion to its availability

(Fig. 2).

Corallivore density surveys

The overall assemblage structure of corallivores between

the two sites varied significantly in terms of density

(MANOVA, Wilks = 0.017, F3,6 = 28.45, P \0.01) (Fig. 3).

C. trifascialis had a greater density in Diego central

(F1,9 = 28.77, P \ 0.001) while C. trifasciatus and C. au-

riga had higher densities in Diego east (F1,9 = 22.43,

P \ 0.001 and F1,9 = 6.94, P \ 0.05, respectively). Al-

though not significant, the remaining species all displayed

higher densities in the more diverse Diego east site

(Fig. 3).

Coral food quality

The lowest C:N ratios, and therefore highest food quality,

were for Acropora and Lobophyllia coral genera, while

Pocillopora had the highest C:N ratio (Fig. 4). ANOVA

results indicate this difference is significant (F3,30 = 4.25,

P \ 0.05), with the only pairwise difference between

Lobophyllia and Pocillopora (P \ 0.01). However if the

analysis is re-run with the clear outlier for Acropora

(Fig. 4) removed, the trend is considerably stronger

(F3,29 = 7.86, P \ 0.001), and Acropora is also different

from Pocillopora in pairwise tests (P \ 0.01).

Temporal change in coral feeding fish densities

Between 1994 and 2005 total live coral cover declined by

an average of 73% at the sites studied in the Seychelles,

with complex branching and plating corals declining by

95% to a new base level of 1% cover across the study area

(Graham et al. 2006, 2007). Change in densities of the

three focal Chaetodontids through this major bleaching

event indicates the most specialist species (C. trifascialis)

declined the most (F1,41 = 11.16, P \ 0.01), followed by

the generalist obligate coral feeder (C. trifasciatus)

(F1,41 = 9.47, P \ 0.01), while the facultative corallivore

(C. auriga) did not show any decline (Fig. 5). Habitat was

not a significant factor for any of the species, however

C. trifasciatus displayed a significant year · habitat inter-

action term, which was due to a greater decline in

carbonate and patch reef habitats than granitic reef habitats

(F2,41 = 3.36, P \ 0.05). If all the corallivores in the

assemblage are assigned to the above three feeding cate-

gories, the obligate specialist feeders show a 98% decline

(F1,41 = 120.11, P \ 0.001), the obligate generalist coral

feeders display a 73% decline (F1,41 = 24.51, P \ 0.001)

and the facultative coral feeders show a 32% decline

(F1,41 = 4.20, P = 0.048) (Fig. 5).

Fig. 2 Feeding selectivity

of C. trifascialis, C. trifasciatus
and C. auriga at Diego central

and Diego east, Chagos

Archipelago. Data only

presented for the four coral

genera most preferentially

consumed. Black bars indicate

percent resource availability,

open bars indicate percent

feeding bites on that resource.

Plus symbol indicates positive

selectivity
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Discussion and conclusions

Here I have shown that although there may be greater

feeding plasticity than previously documented in some

species of corallivore, there are obvious differences

between obligate specialist, obligate generalist and facul-

tative feeders, which may in part be due to the quality of

food. Similar to a previous study (Pratchett et al. 2006), the

degree of specialisation is reflected in the extent of decline

in density following mass coral bleaching. The obligate

specialist feeders were severely impacted in this study,

with a potential local extinction of Labrichthys unilineatus

(Graham et al. 2006).

The number of bites taken per 3 min observation varied

among species and between the two study reef sites.

Although bite rates of C. trifasciatus did not change

markedly between reefs, C. trifascialis took a greater

number of bites at Diego east (the Pocillopora dominated

reef) than Diego central (the Acropora dominated reef).

Although the sample sizes were not large, this could reflect

abundance of preferred resources, with greater feeding

rates required when preferred corals are not in abundance

(Bowen et al. 1995). C. trifascialis are known to defend

their territories aggressively (Reese 1975, 1981), so it is

interesting that feeding rates were higher at the site where a

greater number of other species were present and thus

potentially a greater number of aggressive interactions may

be expected. The lack of a difference in bite rates in

C. trifasciatus was also noted before and after coral decline

at trunk reef, Australia for C. lunulatus (closely related

Pacific species) (Pratchett et al. 2004, but see Irons 1989).

The lowest numbers of bites per observation were recorded

for C. auriga, which again could reflect nutritional value of

food items, this species often targeting polychaete worms

and other invertebrates (Bouchon-Navaro 1986).

Both C. trifascialis and C. trifasciatus preyed on a

greater number of coral genera in the more diverse Pocil-

lopora dominated habitat, although C. trifasciatus was

clearly the more generalist feeder and both species pref-

erentially selected for Acropora corals. C. trifascialis is a

highly specialised coral feeder, almost always selecting

Acropora, often Acropora hyacinthis (Pratchett 2005,

2007), though the preferred species can vary geographi-

cally (Reese 1981). However, some plasticity in feeding

has been observed when Acropora cover is very low (Irons

1989; Samways 2005), as is apparent in the current study.

Feeding plasticity has also previously been documented

Fig. 3 Mean density of corallivores present in Diego central and

Diego east. *** P \ 0.001, ** P \ 0.01, * P \ 0.05

Fig. 4 Box and whisker plots of C:N ratios for four coral genera. Box
indicates median value, lower and upper quartiles. Whiskers indicate

range up to 1.5 times the box. Outliers indicated with an asterisk

Fig. 5 Change in density of C. trifascialis, C. trifasciatus and

C. auriga and obligate specialists, obligate generalists and facultative

feeders in Seychelles before and after the 1998 bleaching event
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between reefs of varying coral availability for C. baronessa

and C. lunulatus at Lizard Island, Great Barrier Reef

(Berumen et al. 2005). When preferred corals were not in

abundance, the physiological condition of the fish, as

measured by hepatocyte vacuolation in the liver, declined

(Berumen et al. 2005). A decline in physiological condition

was also noted for C. lunulatus following declines in cover

of Acropora corals, which resulted in declines in abun-

dance, but a shift in diet away from Acropora (Pratchett

et al. 2004). It is possible that C. trifascialis may have

lower fitness and fecundity in Diego east due to sub-opti-

mal diet, however analyses such as those described above

would be required to ascertain this. Interestingly, C. tri-

fasciatus selected for Porites corals in Diego central and

took a greater proportion than available in Diego east,

albeit taking very few bites from them overall. C. trifas-

ciatus (now C. lunulatus) has been shown to feed primarily

on poritid corals in Hawaii at sites where poritid and

montiporid corals dominate (Cox 1994), suggesting that

selectivity for Porites may be common in this species.

In this study C. auriga individuals took *55% of bites

from live coral. There appears to be a great deal of

biogeographic variation in the feeding patterns of this

species, with studies in Australia finding live coral made up

just 4% of its diet (Pratchett 2005), *61% in French

Polynesia (Harmelin-Vivien and Bouchon-Navaro 1983)

and *29% in the Red Sea (Harmelin-Vivien and Bouchon-

Navaro 1981; Bouchon-Navaro 1986). The species is

clearly a facultative coral feeder, but whether the variation

in coral dependence is a spatial or temporal artefact is yet

to be elucidated.

As can be seen with Acropora in the Diego central site,

selection functions do not always perform well when data

are aggregated. In this study data were collected on

selection of resource units by individual animals, but

resource availability was assessed at the population level.

Although the selection function chosen largely accounts for

this (Manly et al. 1993), there is still a problem with

resources in low availability, particularly when they are

clumped in distribution, and/or the animals are territorial.

In such situations assessment of resource availability

within the specific boundaries of an individual territory

may produce clearer results (however there are inherent

problems in assessing butterflyfish territory size, as

described by Reese (1981)). For example the low cover of

Lobophyllia in Diego east was clumped, but when it did

occur in a fishes territory, they took the majority of their

bites from it. This coral has the fleshiest polyp and so

potentially offers the greatest nutritional return per bite

effort. Although Lobophyllia was recorded in the random

benthic line intercept transects, because it only occurred in

the territory of several fish, the selection function did not

indicate positive selection.

There was an overall difference in species abundance

between the two sites, with C. trifascialis having a sig-

nificantly greater density in the Acropora dominated Diego

central, and all other species present being in greater

density in the more diverse Diego east. C. trifascialis is

known to be very territorial and actively defend its territory

from intruders (Reese 1975), suggesting that this species

may dominate in such mono-specific Acropora rich areas

(Pratchett 2005) inhibiting the presence of other species.

Even competitively similar species can display inverse

relationships in terms of abundance (Reese 1981). It has

been suggested that competitively subordinate species may

have a broader diet to avoid competition with more spec-

ialised aggressive species (Pratchett 2005). C. trifascialis

lives as a solitary individual and defends a specific terri-

tory, whereas other species, such as C. trifasciatus and

sometimes C. auriga occur in heterosexual pairs (Reese

1975, 1981). There is also variation in territory size, with

C. trifascialis and C. trifasciatus utilising fairly small

territories, whereas C. auriga forages over a wider area

(Reese 1975). It appears C. trifascialis dominates over

other species where Acropora is in abundance, as has been

described in previous studies (Reese 1981; Pratchett 2005),

and thus other species are in greater number on more

diverse reefs, not dominated by Acropora, where coexis-

tence is more likely achieved through partition of food

resources (Zekeria et al. 2002).

One possible explanation for differences in feeding

specialisation could be variation in food quality. C:N

analysis indicated that Lobophyllia and Acropora tissue has

a lower C:N ratio, thus greater food quality, than Pocillo-

pora corals. If this is the case it could help explain why

many corallivores preferentially feed on Acropora corals

(Pratchett 2005), i.e. selecting for protein rich resources

(Bowen et al. 1995). It could also help explain why species

in habitats with low availability of preferred corals have

been shown to have reduced physiological condition

(Pratchett et al. 2004; Berumen et al. 2005). However the

latter studies assessed lipid stores in the liver which equate

to short-term energy needs more than the C:N ratios

examined here, which give an indication of protein avail-

ability and energy for growth (Bowen et al. 1995). Whether

the same corals found to have low C:N ratios in the present

study also have high lipid content remains to be tested.

Methodological variation in C:N ratios should be

minimised when techniques are standardised within a

study, so one would hope the results presented here are

comparable. As only one species per genera was assessed

in the current study, it is not clear how much variation there

is within genera of corals compared to among them. This is

clearly an area for future research. However, given that in

the current study area, certain species of coral dominated

within a genera, and it was these that were both preyed
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upon by the fish and assessed for C:N ratios, the results are

robust for the purpose of feeding selectivity.

It is clear from previous studies that coral tissue is a

valuable food source (Bythell 1988; Rotjan and Lewis

2005), with algal and related food sources likely being of

less nutritional value (Wilson 2000; Rotjan and Lewis

2005, but see Wilson et al. 2003 for variation) and inver-

tebrates, such as polychaete worms having higher

nutritional value (Rotjan and Lewis 2005). The higher

nutritional value of invertebrates such as polychaetes may

help explain why the feeding rates of C. auriga are less

than obligate coral feeders. There will obviously be other

reasons why species preferentially choose certain coral

prey, which may involve resource partitioning (Zekeria

et al. 2002; but see Pratchett 2005), functional jaw mor-

phology (Motta 1988), morphology of corals (Tricas 1989)

and presence of nematocysts (Gochfield 2004). It is likely

that all these factors contribute to the final selectivity of

fish.

Declines in density of corallivores between 1994 and

2005 in the Seychelles further highlight the importance of

specialisation when assessing the vulnerability of fish to

disturbance (Munday 2004; Pratchett et al. 2006; Wilson

et al. 2006). In this study C. trifascialis and the aggregated

obligate specialist feeders showed the greatest declines,

followed by C. trifasciatus and the obligate generalists and

C. auriga and the aggregated facultative feeders showed

little change. This directly corresponds to predictions based

on feeding selectivity, and the fact that Acropora, the

preferred food of many specialists, is among the most

vulnerable taxa of corals to coral bleaching and other dis-

turbances such as crown-of-thorns starfish outbreaks and

storms (McClanahan et al. 2004, 2007; Wilson et al. 2006).

Pratchett et al. (2006) also found obligate coral feeding

butterflyfish declined on the Great Barrier Reef following

extensive coral mortality, but facultative and non-coral

feeders did not. This study furthers this knowledge by

highlighting the distinction between obligate specialist and

obligate generalist feeders, and also includes species from

the monocanthid and labrid families. Declines in density of

coral feeders in the Seychelles were greater in marine

protected areas than fished areas (Graham et al. 2007),

suggesting this management option offered no insurance

against the disturbance. Clearly when disturbances are so

severe and spatially extensive, specialist species have little

refuge.

There is a growing literature highlighting the vulnera-

bility of specialist fish to disturbance (reviewed by Wilson

et al. 2006), suggesting that measures of feeding (Pratchett

2005) or habitat (Munday et al. 1997) specialisation will be

important criterion to predict which species are vulnerable

to extinction on reefs (Munday 2004). Indeed, in the Sey-

chelles, where the 1998 coral bleaching event devastated

reefs, there is evidence of the local extinction of four

specialist species (Graham et al. 2006). Local extinction of

coral specialists has also been documented from Papua

New Guinea following extensive coral mortality (Jones

et al. 2004; Munday 2004). If we are to manage and

conserve biodiversity in a changing climate, a greater

understanding of the species most vulnerable to distur-

bance, their habitat needs and the functional roles they

offer to the rest of the ecosystem will be imperative.
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Abstract Much of the western Indian Ocean

suffered widespread loss of live coral in 1998

and interest is now focussed on the indirect

effects of this coral loss on other components of

the ecosystem, in particular fishes. However, it

is just as important to identify changes in fish

assemblages at locations that did not suffer

coral mortality to understand local versus

regional drivers. We surveyed benthic and fish

communities on a reef flat in Mauritius five

times between 1994 and 2005. The design

allowed for comparison through time, along the

coast and between inshore and offshore reef

locations. The benthic community demonstrates

a clear trend along the coast, likely in response

to a dredged water ski lane, but little change

through time. Branching Acropora colonies

dominate much of the live coral and best

explain patterns in the fish assemblage

(P < 0.01). Few changes in overall fish species

richness through time were identified, and

observed changes were within fishery target

families rather than species reliant on live coral.

Departure from expected levels of taxonomic

distinctness suggests degradation in the com-

munity associated with the dredged ski lane.

Non-metric multi-dimensional scaling of the fish

assemblage demonstrates a similar pattern to

that seen in the benthos; greater differences

along the coast (Global R = 0.34) than through

time (Global R = 0.17) and no trend between

reef positions. SIMPER analysis identified two

species of Stegastes as the main drivers of trends

in the MDS plot and the most dominant of

these, S. lividus, appears to be reducing species

richness of the remaining fish community. The

study highlights Mauritius as a regional refugia

of thermally-sensitive corals and specialised fish,

suggesting a need for careful management.
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Introduction

Coral reefs globally are suffering increasingly

frequent events of thermally induced bleaching

and associated mortality (Hoegh-Guldberg 1999;

Sheppard 2003). Loss of live coral cover at this

scale is expected to affect other components of

the ecosystem (Walther et al. 2002), and studies

of such impacts are growing in number. Much

attention is focussed on likely ramifications for

reef-associated fish assemblages. The majority of

studies to date have been on the scale of a few

months to years and indicate limited community

change aside from species directly dependant on

live coral or algae for food or shelter (Kokita and

Nakazono 2001; Lindahl et al. 2001; Booth and

Berretta 2002; Chabanet 2002, McClanahan et al.

2002; Sheppard et al. 2002; Spalding and Jarvis

2002; Sano 2004), whereas the longer term effects

may be much greater (Jones et al. 2004; Garpe

et al. in press; Graham et al. 2006). This may be

due to lag effects associated with changes in

physiological condition of fish (Pratchett et al.

2004) and collapse of the physical structure of the

reef matrix (Garpe et al. in press; Graham et al.

2006). Understanding such effects and processes

will clearly be essential for future use and man-

agement of affected reef systems.

When trying to understand the effects of

bleaching on fish assemblages, it is just as

important to assess change through the same time

period at locations that did not suffer badly from

bleaching, as it is to study sites where severe

mortality occurred. This acts as a control for

bleaching effects where other drivers in fish

community dynamics can be identified in a region

over the same time period. Ecological processes

such as variable recruitment (Doherty and Wil-

liams 1988; Letourneur et al. 1998; Doherty et al.

2004), predation (Hixon 1991; Graham et al.

2003) or competitive interactions (Robertson

1996; Letourneur 2000; McClanahan 2000a) could

be driven by natural processes and influence fish

assemblages. They may also be driven by changes

in habitat associated with effects such as eutro-

phication (McCook 1999), sedimentation (Rogers

1990), or fishing (Jennings et al. 1995; McClana-

han and Graham 2005), or actions that may cause

physical damage to the habitat (Brown et al. 1990;

Adjeroud et al. 1998). Identifying such processes

and collecting baseline data at a location that has

escaped much of the thermal damage character-

ised at other sites will provide information for

future monitoring and management, particularly

when future effects of bleaching at regional scales

are expected to be significant (Sheppard 2003).

The warm phase of the El Niño Southern

Oscillation (ENSO) event of 1998 resulted in the

greatest global bleaching event on record (Hoe-

gh-Guldberg 1999) and was particularly devas-

tating to the western Indian Ocean (WIO)

(Goreau et al. 2000) where it interacted with the

warm portion of the Indian Ocean dipole (Saji

et al. 1999). However, the effects varied greatly,

with some locations, such as the Maldives and the

inner Seychelles suffering 75–99% mortality,

whereas other locations, such as Réunion and

South Africa suffering low to negligible damage

(Goreau et al. 2000; Obura 2005). Bleaching in

Maurtius was also minimal with less than 10%

coral cover effected in 1998 (Moothien Pillay

et al. 2002; Turner and Klaus 2005), and 24% in

2004 (McClanahan et al. 2005). Post these two

events coral cover is still dominated by thermally

sensitive genus’ such as Acropora and overall

cover appears to have risen since a broad survey

in 1992 (McClanahan et al. 2005).

This study assesses changes in benthic and fish

communities on a narrow reef flat in north-west

Mauritius that escaped much of the bleaching

mortality experienced by other locations in the

WIO in 1998. Temporal and spatial trends

through a period 1994–2005, thus spanning the

1998, 2003 and 2004 bleaching events, are studied,

aiming to identify any change in benthic and fish

community structure. Alternative hypotheses are

considered and, using a suite of multivariate tools,

a case is built for the most plausible explanations

for the observed trends.

Materials and methods

Study site and sampling techniques

Mauritius is located in the southwestern Indian

Ocean, 200 km east of Réunion Island, and

800 km east of Madagascar, between latitudes

58 Environ Biol Fish (2007) 78:57–69
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19.58 and 20.31�S, and longitudes 57.18 and

57.46�E. The study was conducted in the north-

west coast of the island (Fig. 1), which is sheltered

from the dominant southeast trade winds. The

study site, Pointe aux Piments, is located 10 km

north of the capital, Port-Louis, this part of the

coast developed with hotels. The fringing reef,

dominated largely by branching Acropora corals,

is approximately 250 m wide and 1–2 m deep

along this section of the coast, and largely used for

recreational purposes by hotel guests. Within the

study area a dredged water ski lane has been in

active use since 1995 (Fig. 1). Fishing pressure

around Mauritius is high (~1600 t yr–1 from

lagoons and reefs) and is thought to exceed max-

imum sustainable yields (Turner and Klaus 2005).

Data were collected on benthic and fish com-

munities at ten stations over a 10 year period,

where samples were collected in 1994, 1995, 1996,

1997 and 2005. The design allowed for compari-

son through time, along the coast and between

inshore and offshore reef locations. Five transects

(T1–T5) perpendicular to the shore, each had a

landward (A) and seaward (B) sampling station,

where a 50 m transect tape was laid down parallel

to the shore in a southerly orientation (Fig. 1).

The study site comprised approximately 1 km of

shoreline, each transect being separated by 200–

350 m. Land sampling stations (A) were located

50 m from the shore, whereas sea stations (B)

were ~200 m from the shore.

Full fish censuses were carried out by snorkel

along 50*2 m belt transects at each of the ten

sampling stations. Fish were identified to the

species level (within 29 families) and abundance

estimated. The discrete group sampling technique

was used, whereby fish in different families and

mobility groups were surveyed during different

passes of the transect (four in total) to account for

varying behaviours (Harmelin-Vivien et al. 1985).

This process was repeated 3 times for each station

and an average abundance for each species

attained. A presence/absence survey was also

conducted around each station area during a

Water s ki 
lane

Stud y si te

Water s ki 
lane

Water s ki 
lane

Stud y si te

Water s ki 
lane

Stud y si te

Water s ki 
lane

Water ski 
lane

Study site

Open ocean LandReef flat

Fig. 1 Map of the study
site, indicating location in
Mauritius, proximity of
the ten sampling stations,
direction of transects and
location of dredged water
ski lane. Adapted from
Adjeroud et al. 1998
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30-min timed swim. Although fish counts were

conducted by three different observers over the

five sampling years, all observers were highly

experienced and observer variation is expected to

be minimal (Williams et al. 2006; McClanahan

et al. in review). After a fish census was complete

the benthos along the same 50 m transect line was

quantified using the line intercept method (Loya

1978), whereby the distance of tape occupied by

the following substratum categories was quanti-

fied: live branching coral, live plating coral, live

other coral and dead substratum. These data were

converted into percent covers of each category

for each of the ten stations surveyed within each

year. Data were collected during peak daylight

hours. Surveys in 1994, 1996 and 2005 were during

the Austral winter, whereas surveys in 1995 and

1997 were during the Austral summer, however

analysis of 1994–1997 data indicated little sea-

sonal variation (R. Galzin unpublished data).

Data analysis

Due to the multi-species nature of the data and

the design of the survey, the most appropriate

analyses were multivariate (Clarke and Warwick

2001a). To assess patterns in benthic data from all

stations in all years we used correlation-based

principle components analysis. Data were

log(x + 1) transformed to account for some right

skewness detected in draftsman’s plots and nor-

malised. Eigenvectors were overlaid on the

resultant plot to identify direction and contribu-

tion of the different variables to the patterns and

to identify any correlation between variables.

Percent total live coral was also quantified for

each transect and landward and seaward sampling

stations across the 5-year period. Two-way

ANOVA’s were used to assess differences

through time associated with both trends along

and away from the shore. Normality of data was

examined with histograms and normal probability

plots of the residuals. Homogeniety of variances

were tested with Bartlett’s test. Where a signifi-

cant difference was found, Tukey’s test identified

those samples driving the differences.

Presence/absence fish diversity data from

timed swims was pooled to the year level to rep-

resent the reef as a whole. Overall species rich-

ness (S) and richness within key families was

calculated for each year.

We examined the taxonomic diversity of the

fish assemblage for each station and year. Aver-

age taxonomic distinctness (AvTD) was calcu-

lated by assessing the degree to which species in a

sample are taxonomically related, measuring the

average path length between every pair of species

based on a taxonomic tree (Clarke and Warwick

1998). Variation in taxonomic distinctness

(VarTD) was assessed by measuring the evenness

to which the taxa were spread across the tree

(Clarke and Warwick 2001b). Funnel plots were

constructed for both variables with expected

mean and 95% confidence limits constructed

from a simulation distribution using random

subsets of the master taxonomy list (constructed

following Helfman et al. (1997)). Any departure

from expected values could thus be identified,

where low AvTD and low to normal VarTD

indicates degraded locations (Clarke and War-

wick 2001b). General patterns related to our

study design were tested using two-way crossed

ANOVAs with the factors year and transect, as

these were identified as the key sources of varia-

tion by Analysis of Similarities (ANOSIM).

Fish assemblages within each station in each

year were compared using non-metric multi-

dimensional scaling (MDS) based on Bray–Curtis

similarity measures. Species abundance data were

square-root transformed to down weight abun-

dant species. Differences between years, transects

and reef position (A–B) were tested using

ANOSIM, which is a non-parametric permutation

procedure. After identification of which transects

and years (the 2 significant factors) differed the

most (ANOSIM pairwise test output), SIMPER

analysis was run on the data matrix. SIMPER

decomposes Bray–Curtis dissimilarities between

all pairs of samples to identify those species that

contribute most to differences (Clarke and War-

wick 2001a).

As SIMPER identified Stegastes lividus fol-

lowed by Stegastes nigricans as the species con-

tributing most to the significant trends in the

MDS plot for both year and transects along the

shore, bubble plots were used to overlay relative

abundance of both of these species enabling

identification of the trends they were contributing

60 Environ Biol Fish (2007) 78:57–69
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to. As these species are both highly aggressive

and territorial (Randall et al. 1997; Letourneur

2000), the influence that their abundance has on

species richness of the rest of the fish assemblage

was tested using linear regression analysis.

To link the benthic and fish data, bubble plots

were used to overlay relative value of benthic

variables on the fish species MDS plot. This

allowed identification of any trends driven by the

benthic variables. The BEST BIO-ENV routine

was then run using Spearman rank correlation

between benthic Euclidean distance and fish

species Bray–Curtis similarity matrices to identify

the benthic variable or group of variables that

best explained the patterns in the fish species

MDS plot (Clarke and Warwick 2001a). The sig-

nificance of this result was tested using a permu-

tation test.

Results

The benthos at this location in Mauritius experi-

enced very little change through the 10-year study

period. Principal Components Analysis indicates

a trend along the shore line, from Transects 1 and

2 to Transects 4 and 5, but little change with time

(Fig. 2). The main factors influencing this pattern

along PC1 (~57% of variation) are higher cover

of live branching and plating corals towards the

southern end of the study site, or away from the

ski lane, and higher cover of dead substratum

towards the north (Fig. 2). Percent cover of other

live substratum (mainly massive corals) appears

to be driving patterns along PC2, however this

cover was often low. These trends are further

highlighted by looking at overall percent live

coral cover. The decline along the coast in a

northerly direction is significant (F4,37 = 13.9,

P < 0.001), Tukey’s test indicating that T1 differs

from T4 and T5, and T2 differs from T3, T4 and

T5, whereas no such trend is found through time

(P = 0.70) (Fig. 3a). The greater cover at near

shore locations compared to seaward locations

(A–B) in 1994 was not nearly as great in sub-

sequent years, and the overall difference between

sites A and B and through time is not significant

(P = 0.15 and P = 0.85) (Fig. 3b).

The timed swim presence/absence surveys

demonstrate remarkable stability in overall fish

species richness through time (Table 1). Stability

is consistent in nearly all the key families in-

volved, including those dependant on live coral

such as the chaetodontids. Notable declines in

number of species are seen for lethrinids, lutja-

nids (though both were already in low number)

and in particular serranids, all of which are com-

mon fishery target species (Table 1).

Conversely, at the level of stations, a number

of samples depart negatively from the expected
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values of AvTD, suggesting some samples may be

taxonomically depauperate (Fig. 4a). The only

significant decline in the ANOVA model was for

the factor year (F4,25 = 3.22, P = 0.03) and Tu-

key’s pairwise comparisons indicate that this was

influenced by lower values in 1997 versus 2005

(P = 0.03). Much less departure from expected

values is noticed for VarTD (Fig. 4b), however a

weak significant difference is detected for the

factor transect (F4,25 = 2.95, P = 0.04), which is

driven by a difference between Transect 1 and 3

(P = 0.04).

The fish species MDS plot indicates a very

similar pattern to that found in the benthic PCA,

some difference in years, but an overall trend

along the coast from T1 and T2 to T4 and T5

(Fig. 5a). Samples from T1 and T2 are located in

the bottom left side of the plot for all years, with

samples from more northerly transects located to

the top and right of the plot. This pattern is

highlighted by the ANOSIM results, with signifi-

cant differences for Year and Transect, but not

Position on the reef (Table 2). Pairwise testing

identified 1994 departing from all other years and

2005 from 1996 and 1997. Pairwise tests for

Transect identified T1 departing from T4 and T5,

and T2 from T4 (Table 2).

SIMPER analysis, for the 2 years and transects

that differed the greatest from one another,

highlighted that Stegastes lividus followed by

S. nigricans were contributing by far the greatest

to the observed differences (Table 3). Poma-

centrids and more mobile scarids, acanthurids and

wrasses make up the majority of the remaining

species contributing 60% of the differences

(Table 3). The trends driven by S. lividus and S.

nigricans are highlighted by the bubble plots

(Fig. 5b, c), the former being more dominant in

the southerly sites that have greater live coral

cover (Fig. 3a), whereas the latter is more domi-

nant in the northerly sites. Furthermore, and

likely exacerbating the patterns, is that the

abundance of S. lividus but not S. nigricans is

negatively correlated with overall fish species

richness, though the trend is not consistently sig-

nificant between years (Fig. 6).

Bubble plots overlaying percent cover of ben-

thic variables on the fish species MDS further

highlight these trends; samples to the bottom left

of the plot being dominated more by live

branching and plating corals (Fig. 5d, f), whereas

samples to the right of the plot have a greater

cover of dead substratum (Fig. 5e). Rank corre-

lation of benthic variables to the fish species data

indicates that the best single and significant

(BioEnv Rho statistic: P < 0.01) benthic variable

Fig. 3 Percent cover of total live coral in (a) each year by
transect and (b) each year by position from the shore

Table 1 Reef fish species richness from presence/absence
timed swim data at level of whole assemblage (S) and
within selected families

1994 1995 1996 1997 2005

Total species
richness (S)

104 102 110 99 101

Acanthuridae 7 9 8 8 7
Balistidae 2 1 2 1 3
Chaetodontidae 8 9 8 11 10
Holocentridae 3 4 5 4 3
Labridae 19 22 21 24 20
Lethrinidae 3 3 2 2 2
Lutjanidae 1 0 2 0 0
Monacanthidae 4 5 5 3 5
Mullidae 6 5 4 5 7
Pomacentridae 13 13 12 12 14
Scaridae 7 7 9 7 6
Serranidae 7 3 4 4 1
Siganidae 1 1 1 0 1
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driving the patterns in the fish data is the percent

cover of live branching coral (r = 0.36).

Discussion

Coral and fish communities appear to have

experienced very little change over 10 years at

this location in Mauritius, in contrast to other

studied sites in the western Indian Ocean (Lin-

dahl et al. 2001; McClanahan et al. 2002, Shepp-

ard et al. 2002; Graham et al. 2006). Indeed the

dominant trend at the study location appears to

be along the coast, rather than through time. This

suggests that the benthic community has changed

very little through the 1998 ENSO event and the

more minor 2003 and 2004 bleaching events.

Unfortunately, reefs were not sampled between

1997 and 2005, which raises the question as to

what happened during this sampling hiatus. The

1998 ENSO event resulted in less than 10% of

coral colonies bleaching in Mauritius (Moothien

Pillay et al. 2002). The 2003 bleaching event was

most evident on the southwest of the island and a

cyclone was implicated in the recovery of

bleached corals (Ahamada et al. 2004; Turner and

Klaus 2005). In 2004, 24% of corals bleached

(McClanahan et al. 2005), however recovery was

again high (Ahamada et al. 2004) and coral cover

was higher than surveys conducted in 1992

(McClanahan et al. 2005). Although we can not

discount the possibility of rapid re-colonisation

and recovery of the reef with the predominant

fast growing Acropora colonies, the above studies

and the remarkably similar cover estimates

through time suggest a minor influence from

bleaching events. Furthermore, Acropora is one

of the most susceptible genera to thermal stress in

the region (McClanahan et al. 2001, 2004) and has

experienced large declines in many other loca-

tions (Goreau et al. 2000; McClanahan 2000b;

McClanahan et al. 2001; Sheppard et al. 2002).

Indeed, branching and plating corals now make

up less than 1% of the benthos in the inner Sey-

chelles, a decline of over 95% (Graham et al.

2006). Study and protection of this apparent

refugia of sensitive, habitat forming corals in

Mauritius is important given predictions of fur-

ther widespread degradation of the region in

coming decades (Sheppard 2003).
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The observed trend in benthic composition

along the coast within the study location is most

likely due to the dredged water ski lane that has

fragmented the reef flat in this section, likely still

results in increased sediment loads and is subject

to high recreational use. The disparity between

near shore and sea (A–B) stations that was quite

apparent and a dominant driver of trends in 1994

(Adjeroud et al. 1998) is not as great on a tem-

poral scale. Given the dominance of the reef flat

by fast growing branching Acropora corals, it is

possible that this may be due to some recovery

following completion of the ski lane (1993–1994).

Although overall species richness of the reef

fish assemblage has remained stable through this

time period, the richness is fairly low compared to

studies in nearby islands such as Réunion (Le-

tourneur 1996a), Madagascar (Harmelin-Vivien
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Fig. 5 Non-metric Multi-Dimensional Scaling (MDS) plot
of fish assemblages at each of the ten stations (belt
transects) within each of the five sample years based on
Bray-Curtis similarity measures (a). Bubble plots for
Stegastes lividus (b) and Stegastes nigricans (c) over species
MDS sample points indicating patterns driven by their

presence. Abundance at each sample given below station
name (scale of bubbles: 0–20). Bubble plots for cover of
branching coral (d), dead substrate (e) and plating coral (f)
indicating which patterns in the species MDS are driven by
these benthic variables. Percent cover at each station given
below station name (scale of bubbles: 0–100%)
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1989) and Mayotte (Letourneur 1996b; Chabanet

2002). This is likely due to the surveys being re-

stricted to the reef flat and because the reef is

narrow along this section of the coast (Adjeroud

et al. 1998), although reef flats of a similar width

in Réunion had higher species richness (Letour-

neur 1996a). It could also be due to anthropo-

genic stress on the system through past dredging

of the water ski lane and ongoing effects of fishing

and recreational use. Indeed, many samples de-

part from expected values of taxonomic distinct-

ness, and common fishery target species, in the

families Lutjanidae, Lethrinidae and Serranidae,

are missing. The years driving the main difference

in taxonomic distinctness were 1997 and 2005,

with 1997 having lower values. Although coral

cover was lowest in this year, the magnitude was

small and it is hard to ascribe causation to this

trend. Indeed, the stability of species richness

from the presence/absence survey within families

that often feed on (Chaetodontidae) or dwell in

(Pomacentridae) live coral indicates that these

patterns are likely not driven by ENSO effects on

the benthos, in contrast to other locations in the

region (Spalding and Jarvis 2002; Graham et al.

2006). As samples from all years demonstrated

departure from expected values, it is more likely

that long-term effects are causing the trends.

The overall pattern in the fish community from

MDS analysis is remarkably similar to that for the

benthos, with the greatest differences identified

along the coast (Global R = 0.34) as apposed to

time (Global R = 0.17). This lends further sup-

port to our conclusion that the ecosystem has

remained stable through the ENSO event and

other factors are likely responsible for the

observed changes. The heavy fishing pressure in

Mauritius (Turner and Klaus 2005) and the

apparent loss of diversity in key fishery target

groups, of which many species are piscivores, may

be driving trends related to predation pressure.

Studies of predator control on reefs indicate

Table 3 SIMPER outputs for greatest pairwise differences in year and transect identified by ANOSIM

Year (1994 and 2005) Transect (T1 and T4)

Species % Contribution Species % Contribution

Stegastes lividus 10.64 Stegastes lividus 12.03
Stegastes nigricans 10.07 Stegastes nigricans 10.84
Dascyllus aruanus 4.77 Scarus psittacus 6.56
Chromis viridis 4.21 Dascyllus aruanus 4.78
Chlorurus sordidus 4.18 Chlorurus sordidus 3.92
Ctenochaetus striatus 4.15 Scarus scaber 3.36
Halichoeres scapularis 2.78 Ctenochaetus striatus 3.26
Stegastes limbatus 2.65 Chromis viridis 3.18
Scarus scaber 2.55 Halichoeres scapularis 2.79
Acanthurus triostegus 2.41 Calotomus spinidens 2.69
Gomphosus caeruleus 2.03 Thalassoma hardwickii 2.36
Zebrasoma scopas 2.02 Stegastes limbatus 1.91
Acanthurus nigrofuscus 1.95 Stethojulis bandanensis 1.76
Stethojulis bandanensis 1.86 Epinephelus merra 1.68
Chrysiptera unimaculata 1.82
Oxymonacanthus longirostris 1.79
Parupeneus macronema 1.43

Species that contributed 60% of the overall difference are listed in descending order of most contribution

Table 2 Analysis of Similarity (ANOSIM) outputs for the fish sampling stations

Factor Global R Significance Pairwise test

Year 0.17 P < 0.01 1994 diff to all, 2005 diff to 1996 and 1997
Transect 0.34 P < 0.01 T1 diff to T4 and T5 T2 diff to T4
Position 0.02 ns

Global and pairwise test results given for each of the three factors in the design
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trends both at the level of single species (Graham

et al. 2003), aggregated by size class (Dulvy et al.

2004), and evidence suggesting there is a direct

relationship between gape size of the predator

and size of prey (Mumby et al. 2006). Recruit-

ment has also been shown to drive variation in

fish assemblages on reefs (Doherty and Williams

1988), particularly following mass-events (Le-

tourneur et al. 1998). Given the time between

surveys and the narrow spatial scale over which

the study has been conducted, variable recruit-

ment could influence the small temporal patterns

detected, but is unlikely to be driving the larger

trends along the coast. Given that the availability

of habitat types has not altered a great deal,

competition for resources among fish species may

be expected to have remained stable through this

time period. However changes in certain domi-

nant species, such as Stegastes, could well be

causing changes in the rest of the assemblage.

The coastline adjacent to the study site has

experienced rapid development for tourism in the
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last 10–15 years, and this is likely exerting stress

on the reef ecosystem. Along the 1-km stretch of

coast, two large hotel complexes actively use the

reef for water sports activities. High use of reefs

for snorkelling and diving can have detrimental

effects (Hawkins et al. 1999; Zakai and Chad-

wick-Furman 2002). In this case, however, the

greatest effect is likely to be from the dredged

water ski lane through the middle of the reef flat.

Increased pollution, sedimentation and changes

in current regimes are all likely to be effecting

both the coral and fish assemblages, and may be

partly responsible for the changes through time.

However, the greatest effects of the ski lane

appear to be along the coast in the survey area.

Both the benthic and fish communities display

the strongest patterns along the coast from

Transects 1 and 2 to Transects 4 and 5, with

greater live coral to the south end of the study site

away from the dredged area. Branching coral is

likely to be causing the observed patterns in

the fish assemblages given that it was best at

predicting the patterns in the fish assemblage

structure and because it provides important

three-dimensional structure (Bellwood et al.

2004). Furthermore, this habitat is critical at the

early life history stage when fish settle from the

plankton; 65% settling directly into live coral

(Jones et al. 2004).

The two species of Stegastes were influencing

the greatest difference along the coast and

through time in the MDS plots. Although the

preferred habitat of both species’ is branching

coral (Randall et al. 1997), it appears that Steg-

astes lividus is dominating the area of the reef

where branching coral is most abundant. This

may be explained by S. lividus growing to a larger

maximum size than S. nigricans (Randall et al.

1997); size of individual correlating to size of

territory and dominance over more favourable

habitats in this genera (Robertson 1996; Letour-

neur 2000). If the relationship between S. lividus

abundance and overall fish species richness is

causal, this one species of small reef fish appears

to be accounting for a large portion of the varia-

tion in fish species richness; benthic variables and

Stegastes nigricans demonstrating no measurable

control. Although the competitive dominance of

larger species of Stegastes over abundance of

other Stegastes species in the same area has been

identified (Robertson 1996), and the influence of

territorial pomacentrids on behaviour and forag-

ing of individual species of other reef fish is well

documented (e.g. Jones 2005), we believe this

influence on the species richness of an entire fish

community has not been demonstrated before.

Dominance of space by branching coral and

Stegastes lividus is clearly contributing to the pat-

terns in the MDS plot, but not necessarily in the

direction one may expect from previous positive

relationships between coral cover and fish species

richness (e.g. Bell and Galzin 1984). Areas of high

cover of live branching coral in Mauritius are

dominated by large numbers of S. lividus and their

territorial behaviour may actually reduce species

richness, such that the relationship between coral

cover and fish species richness is negative. Conse-

quently, mono-specific stands of branching coral

are resulting in an ecosystem more susceptible to

competitive dominance by fewer species (Almany

2004). Indeed, dominance of a reef by one main

taxa of coral will not necessarily promote high

species diversity, rather a range of different taxa

and habitat types is expected to provide more

niches and a more diverse ecosystem (Almany

2004). This will be particularly true for small-

bodied species of reef fish that are closely reliant

on habitat for shelter and food and are often

specialised (Munday and Jones 1998).

The western Indian Ocean has suffered the

greatest effects from coral bleaching in the Indo-

Pacific (Goreau et al. 2000) and future bleaching

is predicted to result in the ‘extinction’ of these

reefs in coming decades (Sheppard 2003). How-

ever, various locations in the southern western

Indian Ocean, including Mauritius, currently

seem to be a refuge from coral bleaching, dem-

onstrating ‘‘protection’’ from serious thermal

stress (Obura 2005) and host high coverage of

thermally sensitive corals that still support spe-

cialist fish species. This study has demonstrated

minimal community change through time on a

coral reef in Mauritius, and identified other fac-

tors likely to be driving trends. Such data and

future monitoring in these areas of bleaching

refugia will be important to understand natural

variation in fish communities and associated

management implications.
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Lag Effects in the Impacts of Mass Coral Bleaching on
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Abstract: Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over
the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe
in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent
data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size
structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish
communities. The biomass of fished species above the size retained in fish traps changed little between 1994
and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they
were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described
with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm)
and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef
structural complexity brought about because fishes are being lost through natural mortality and fishing, and
are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and,
because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term
resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in
MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest
that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral
reefs.

Keywords: climate change, coral bleaching, coral reef ecosystems, coral reef fishes, coral reef resilience, marine
protected areas, size spectra analysis

Efectos a Largo Plazo de los Impactos del Blanqueado Masivo de Corales sobre Peces de Arrecifes Coralinos,
Pesqueŕıas y Ecosistemas

Resumen: Episodios recientes de blanqueado de corales han llevado a la pérdida extensiva de arrecifes de
coral y han incrementado la preocupación sobre la efectividad de los esfuerzos actuales de conservación y
manejo. El evento de blanqueado de 1998 fue más severo en el occidente del Océano Índico, donde el coral
declinó hasta en 90% en algunas localidades. Utilizando datos independientes de pesqueŕıas, evaluamos los
impactos a largo plazo de este evento sobre especies importantes para las pesqueŕıas en las Seychelles, sobre la
estructura de tallas en el ensamble de peces y sobre la efectividad de dos áreas marinas protegidas (AMPs) en la
protección de las comunidades de peces. La biomasa de peces capturados por arriba de la talla retenida en las
trampas de peces cambió poco entre 1994 y 2005, lo que indica que no hay efectos actuales sobre la producción
de las pesqueŕıas. La biomasa fue mayor en las AMPs, lo que indica que fueron eficientes en la protección de
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los peces. Sin embargo, la estructura de tallas de las comunidades de peces, descritas con el análisis del espectro
de tallas, cambió tanto en las áreas con pesca como en las AMPs, con una declinación en peces pequeños (<30
cm) y un incremento en peces más grandes (>45 cm). Pensamos que esto representa una respuesta a largo
plazo porque se están perdiendo peces debido a la mortalidad natural y no están siendo reemplazados por
juveniles. Se espera que este efecto sea mayor en términos de la productividad de las pesqueŕıas y, debido a que
se observan patrones congruentes para herbı́voros, sugiere que las AMPs no ofrecen resiliencia a largo plazo
contra los eventos de blanqueado de arrecifes de coral. La abundancia de coraĺıvoros y plankt́ıvoros declinó
marcadamente, particularmente en AMPs, y esta declinación se asoció con un patrón de declinación similar
en sus arrecifes preferidos. Sugerimos que las perturbaciones debido al clima, como el blanqueado de corales,
estén en primer plano en la planificación de la conservación de arrecifes de coral.

Palabras Clave: análisis de espectro de tallas, áreas marinas protegidas, blanqueado de corales, cambio climático,
ecosistemas coralinos, peces de arrecifes coralinos, resiliencia de arrecifes coralinos

Introduction

Coral reefs and their associated communities are threat-
ened by anthropogenic and natural disturbances, includ-
ing overharvesting, sedimentation, pollution, disease, and
warming waters (Hughes et al. 2003; Bellwood et al. 2004;
Wilson et al. 2006). Although multiple stressors often act
in synergy, climate-driven coral bleaching has emerged
as one of the greatest threats to coral reef ecosystems
(Hughes et al. 2003; Sheppard 2003). The 1998 bleaching
event was the largest on record, and in the most heavily
affected region, the western Indian Ocean, coral cover
declined by up to 90% (Sheppard 2003). Recovery from
such severe disturbances is likely to be slow and affect
other reef-associated organisms.

The short-term effects of bleaching on fish are mainly
manifest in species that specialize on live coral for diet,
shelter, or recruitment habitat (reviewed by Wilson et
al. 2006). In the medium to long term declines in coral
feeders can continue (Pratchett et al. 2006), but the great-
est impacts occur if the physical matrix of the reef col-
lapses, reducing overall species richness (Garpe et al.
2006; Glynn 2006; Graham et al. 2006). The medium to
long-term impacts of bleaching on the size structure of
fish populations and assemblages are currently unknown
(Wilson et al. 2006). These impacts are important because
they determine the future viability of populations and as-
semblages and thus interact with fisheries management
and conservation measures that may have been proposed
or implemented prior to a bleaching event.

Assessments of the impacts of mass bleaching on fish-
eries and associated socioeconomic factors are currently
limited to fisheries-dependant data and are considered
small in relation to the direct impacts of fishing (McClana-
han et al. 2002; Grandcourt & Cesar 2003). Nevertheless,
such assessments have all been made within 5 years of
bleaching events. Because loss in structural complexity
of the reef framework, which can take over 5 years (Wil-
son et al. 2006), is likely to affect small individuals and
because these may take some time to recruit to the fish-

ery, a lag effect may exist before the full impact of coral
bleaching on reef fisheries is realized.

To conserve and manage reefs in the face of un-
predictable disturbance, scientists and managers are in-
creasingly proposing that no-take marine protected ar-
eas (MPAs) can increase resilience of the reef ecosystem
(Hughes et al. 2003; Bellwood et al. 2004). Although it
is clear that MPAs cannot prevent coral bleaching, the
expected ecological communities in MPAs (e.g., a greater
biomass, density, and size of herbivorous fishes in regions
where herbivores are fished) should promote coral re-
covery, thus providing spatial resilience in the form of
populations that can reseed depleted areas (Hughes et
al. 2003). There is some evidence of an initial build up
of fish biomass in MPAs even during habitat degradation
(Hawkins et al. 2006); however, both abundance and di-
versity may subsequently decline (Jones et al. 2004), and
it is unclear how the size-structure of the fish assemblage
may respond.

Using fisheries-independent data collected across the
inner granitic islands of the Seychelles, we assessed the
medium to long-term effects of mass coral bleaching on
target reef fish above the size retained in fish traps, over-
all size structure of the whole assemblage and particular
feeding groups, and effectiveness of existing no-take MPAs
in offering spatial resilience to the disturbance.

Methods

Study Sites

The inner granitic islands of the Seychelles lie on the
Mahé Plateau, a shallow, extensive, submarine platform
that reaches mean depths of 44–65 m. The fringing reefs
of the islands are typically shallow; the reef slope termi-
nates at 6–13 m ( Jennings et al. 1995). The 1998 bleaching
event reduced live coral cover from 27% to 3%, an overall
reduction of approximately 90%. Furthermore, coral mor-
tality extended throughout the depth range of the coral

Conservation Biology
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reefs in this area. Recovery has been extremely slow, with
collapse in the physical complexity of the reefs accelerat-
ing since 2003 (Engelhardt 2004), and mean coral cover
attaining only 7.5% by 2005 (Graham et al. 2006). Other
than climate-mediated bleaching mortality of corals, Sey-
chelles reefs experienced relatively little change in other
stressors over the study period (Graham et al. 2006).

We conducted reef surveys in seven areas, around
Mahé, Praslin, and associated islands, that included most
of the shallow fringing reef around the inner islands (for
map see Jennings et al. 1995). Five fished areas were sub-
ject to similar levels of fishing intensity, whereas the other
two areas were long-standing MPAs. Sainte Anne Marine
National Park was gazetted by the Government of Sey-
chelles in 1973 because it is suitably located for tourist
use. Cousin Island Special Reserve was established by
Birdlife International, who bought the island in 1968 to
protect an endangered bird ( Jennings et al. 1996). Both
MPAs are within the same geographic area as the other
sites and have similar bathymetry and habitat types. There
are significant differences in the diversity and biomass of
fish between the two MPAs and the five fished areas but
not within the MPAs or fished areas per se ( Jennings et al.
1995). Spatial studies of MPA effects are expected to re-
flect the outcome of temporal studies (Russ et al. 2005);
therefore, we believe that the higher levels of diversity
and biomass in the MPAs reflect the effect of protection
from fishing. Studies conducted within other reef systems
highlight the disproportionate effect of small amounts of
fishing on fish communities and the more subtle impacts
of further increases in fishing effort ( Jennings & Polunin
1997; Hawkins & Roberts 2004). For these reasons we
assessed the interaction between bleaching impacts and
management by comparing the two MPAs with the five
fished areas before and after coral bleaching in 1998.

Assessment of Fish Assemblage and Benthic
Community Structure

We surveyed 21 sites, covering over 50,000 m2 of coral
reef habitat, at the same time of year in 1994 and 2005.
Three sites were surveyed in each of the seven areas so
that one site in each of three different habitat types ( Jen-
nings et al. 1995) would be included: carbonate fringing
reefs; granitic rocky reefs with coral growth; and patch
reef habitats on sand, rubble, or rock base. At each site 16
replicate 7-m radius point counts were completed with
underwater visual censuses along the base of the reef
slope. This technique maximized area coverage and repli-
cation, yet allowed for detailed searching for territorial
species so that it provided a quantitative estimate of the
number of fish of varying sizes and behavior. We sepa-
rated replicates by a random number of fin kicks with the
proviso that each count was separated by a minimum of
15 m; thus, an approximately 0.5-km stretch of reef was
covered at each site.

The number and size of 134 species of reef-associated,
diurnally active, noncryptic fish (>8 cm) were estimated
within each count area. The time taken to complete a
count varied depending on the number and diversity of
fish present. Size estimation of fish was to the nearest
centimeter, validated by estimating the lengths of a ran-
dom selection of PVC pipes before the first count at each
site. Length estimates were not consistently shorter or
longer than actual lengths in both 1994 and 2005, with
a mean error of 8- to 35-cm pipes of 3.1% and 2.2%, re-
spectively. Fish counts in 1994 were conducted by S.J.
and in 2005 by N.A.J.G. Although small errors can ex-
ist among observers (Thompson & Mapstone 1997), bias
among experienced divers is the smallest component of
variation in fish counts (Williams et al. 2006; McClana-
han et al. 2007). We converted data on fish counts to
biomass with published length-weight relationships (Le-
tourneur et al. 1998; Froese & Pauly 2006). Species were
assigned to feeding groups (herbivores, piscivores, coral-
livores, planktivores, and mixed-diet feeders [i.e., species
consuming animal and plant material or fish and inverte-
brates]) based on dietary literature and Froese and Pauly
(2006).

After a fish count was complete, we assessed the ben-
thic composition and structural complexity of the count
area. Percent cover of benthic categories (live branching,
plating, massive, corymbose and encrusting coral, soft
coral, macroalgae, rock, rubble, sand, and dead branch-
ing coral) was estimated visually and was accurate when
assessed against the line-intercept method (no significant
difference, multivariate analysis of variance (MANOVA)
F6,35 = 0.56, p = 0.76; Wilson et al. 2007). We assessed
structural complexity of the benthos with a six-point vi-
sual scale and tested the accuracy of this method with
the linear versus contour chain method. The two meth-
ods were highly correlated (linear regression r = 0.85,
p < 0.001; Wilson et al. 2007).

Establishment of Fishery Target Species and Size
of First Capture

Fish species that are targeted by the local artisanal fish-
ery were assigned to three groups: primary targets, im-
portant targets, and occasional targets following Grand-
court (1999). There is a strong relationship between body
depth of retained fish and the maximum width of trap
meshes (Munro et al. 2003). In Seychelles the minimum
legal hexagonal mesh diameter is 4 cm, but fishers of-
ten use trap meshes larger than this, and fish are able to
squeeze through meshes smaller than their specific body
depth (Robichaud et al. 1999). We calculated size at first
capture from length frequency data of 5651 trap-caught
fish between January 1992 and June 1994 (S.F.A., unpub-
lished data). Ninety-five percent of fish in the sample had
a body depth of over 6.0 cm. Data on target fish species
from the 1994 and 2005 reef surveys were filtered to
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exclude individuals with a body depth of <6 cm for
species level and aggregated feeding group analyses to
assess the impact of the bleaching event on the dominant
inshore trap fishery.

Data Analysis

Along with structural complexity, we categorized live
corals into two groups: (1) complex corals that have
branching, plating, or corymbose functional forms,
which offer the most structure for other organisms to live
in (Jones et al. 2004) and are generally the favored corals
for diet and habitat specialists (Munday 2004; Pratchett
2005) and (2) simple corals that have massive and en-
crusting functional forms, which offer limited structure
for other organisms to live within (Jones et al. 2004).
We assessed differences between years, habitat types,
and management status (fished vs. protected) with three-
way, crossed fixed-effects orthogonal analysis of variances
(ANOVAs). We assessed homogeneity of variances with
Levene’s test and normality of the data with histograms
and normal probability plots of the residuals. Counts of
complex corals were square-root transformed to meet
assumptions. We used Tukey’s post hoc test to identify
where differences occurred among habitats.

Changes in the biomass of individual species and aggre-
gated feeding groups of fishery targets above size at first
capture were also assessed with the same ANOVA design.
At the species level we used log transformation to meet
the assumption of homogeneity of variances for a num-
ber of species. Ten species that failed to meet assumptions
were not analyzed (see Supplementary Material).

The overall size structure of the assemblage at each site
(including size below first capture) was described with
the slope of the abundance-size relationships of the as-
semblage (Dulvy et al. 2004; Graham et al. 2005). Slopes
of the size spectra were calculated from linear regres-
sions of log10 (x + 1) numbers per size class (5 cm) on
the rescaled log10 midpoint of each length class. Cen-
tering the independent variable provides values of mid-
point height (community abundance) that are compara-
ble among spectra. A steepening of the slope can be the
result of a decrease in the number of large fish, an in-
crease in the number of small fish, or both. Change in
the slope and midpoint height of the size spectra were
assessed with the same ANOVA design described above.

To assess what was driving the observed trends in
slopes of the size spectra, changes in the numerical abun-
dance of fishes in individual size bins of 5 cm between
1994 and 2005 were assessed for the entire assemblage
and for five key feeding groups: mixed-diet feeders, pisci-
vores, herbivores, corallivores, and planktivores. To parti-
tion any effects of marine protection and habitat type, we
plotted data separately by management status and within
this by habitat type.

Results

Structural complexity of the benthos declined between
years (F1,30 = 19.94, p < 0.001), but did not vary with
habitat or protection (Fig. 1a). The cover of live complex
corals fell by over 95% (Fig. 1b; F1,30 = 100.22, p < 0.001),
with the greatest reductions on carbonate habitats (sig-
nificant interaction: F2,30 = 3.71, p < 0.05) and greater
reductions on reefs in MPAs than in fished areas (F1,30 =
7.30, p < 0.05). The greater impact in MPAs resulted from
a higher initial cover of complex corals within MPAs in
1994, which declined to a similar base level (<1%) in
2005, irrespective of whether the site was in an MPA or
fished. Cover of simple corals remained relatively stable

Figure 1. Change in (a) structural complexity, (b)
complex corals (coral cover), and (c) simple corals
(coral cover) between 1994 and 2005 for three habitat
types (carbonate, granite, patch) and two
management scenarios ( fished, protected).
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Figure 2. Change in biomass of fishery target species above size at first capture between 1994 and 2005 for (a)
entire assemblage of fishery target species, (b) mixed-diet feeders, (c) piscivores, and (d) herbivores in three habitat
types (carbonate, granite, patch) and under two types of management ( fished, protected).

between 1994 and 2005, with no significant factors in the
model (Fig. 1c).

The biomass of individual target fish species above size
at first capture varied between years; some increased,
some decreased, and over 70% did not change signifi-
cantly (see Supplementary Material). The entire target as-
semblage and mixed-diet feeders showed greater biomass
in MPAs than in fished areas (F1,30 = 28.29, p < 0.001 and
F1,30 = 14.44, p = 0.001, respectively), but no trends be-
tween years or among habitat types (Fig. 2a-b). Piscivore
biomass did not differ among habitats, but differed be-
tween years (F1,30 = 4.69, p < 0.05) and with protection
(F1,30 = 16.65, p < 0.001). A significant year-protection
interaction term (F1,30 = 5.49, P < 0.05) showed that
the main change between years was associated with a
decreased biomass in MPAs (Fig. 2c). Herbivore biomass
was greater in 2005 (F1,30 = 4.67, p < 0.05) and in MPAs
(F1,30 = 11.65, p = 0.002), and had no interaction or habi-
tat effect (Fig. 2d). These results indicate that although
there were some small changes between years for certain
groups, MPAs continued to support a higher biomass of
targeted reef fish than fished areas (Fig. 2).

The slope of the size spectra became less steep from
1994 to 2005 in all but one fished granite site (Fig. 3a).
This trend between years (F1,30 = 18.90, p < 0.001) did
not vary among habitats and was not affected by man-
agement status (Fig. 3b). The height of the size spectra
did not differ between years or among habitats; however,
there was an effect of management status (F1,30 = 17.53,
p < 0.001) that showed a greater abundance of fish in
MPAs.

The decreasing steepness of the size spectra slope was
a result of a relative decline in smaller fish (<30 cm)
and increase in larger fish (>45 cm) in the assemblage.
This trend was consistent for both fished areas and MPAs

Figure 3. (a) Change in the slope of size spectra of the
fish assemblage for individual survey sites. Sites falling
above the 1:1 trend line had a lower slope value in
2005. (b) Mean change in slope of size spectra of the
fish assemblage by habitat type (carbonate, granite,
patch) and management status ( fished, protected).
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Figure 4. Change in log
abundance of individual
size classes of fish for (a)
the entire assemblage, (b)
mixed-diet feeders, (c)
piscivores, (d) herbivores,
(e) corallivores, and ( f )
planktivores by habitat type
(carbonate, granite, patch).
Plots in the left-hand
column are fished sites, and
plots in right-hand column
are protected sites. Size of
first capture range indicated
on plot (a) for fishery target
species. Maximum size
detected indicated with
vertical dashed line on plots
(e) and ( f ).

(Fig. 4a). Different size classes in the mixed-diet group
showed various trends, and there was no common pattern
apparent (Fig. 4b). The piscivores also responded vari-
ably; however, medium size classes (20–50 cm) tended to
decline, especially in MPAs (Fig. 4c). The herbivores de-
clined in smaller size classes (<30 cm) and increased in
larger size classes (>40 cm) in both fished areas and MPAs
(Fig. 4d). Corallivores and planktivores consistently and
markedly declined, with the greatest decline in the MPAs
(Fig. 4e-f). Although there was some variation, particu-
larly for the mixed-diet feeders and piscivores, the trends
were generally similar among habitat types.

Discussion

Based on our results an impending recruitment failure to
reef-fishery size classes is likely in the Seychelles follow-
ing a major coral bleaching event. Our results show a de-
cline in juvenile abundance (<30 cm) in the reef-fishery
assemblage that will ultimately lead to declines in adult
abundance, as has been shown consistently in fisheries
(Hilborn & Walters 1992). Although our data predict this
effect will happen, the lack of time-series data and knowl-
edge of the growth trajectories of individual species pre-
vent us from projecting the likely time span over which
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larger size classes will be affected. Our data also highlight
a potential decline in the resilience of MPAs due to the de-
cline in smaller size classes of herbivorous fishes in these
management areas.

There were only minor changes in the biomass of target
species available to the Seychelles artisanal trap fishery
following the 1998 mass bleaching event. Nevertheless,
these small changes belie apparent system-wide failures
of recruitment to fished size classes that are expected to
have long-term impacts on the viability of populations,
assemblages, and the fishery. Our results suggest that the
current biomass and reef fishery are maintained primarily
by the growth of fishes that had already recruited to the
reefs at the time of the bleaching event, and/or before
topographic structure was reduced, and have now grown
sufficiently to reach fishable size. This corroborates other
evidence that shows there is no short-term change in yield
associated with mass bleaching (McClanahan et al. 2002;
Grandcourt & Cesar 2003).

The surveyed MPAs supported a higher biomass of tar-
get species above size of first capture than fished areas.
The greater size-spectra height in the Seychelles MPAs is
consistent with the expected effects of reduced fishing
mortality on abundance (McClanahan & Graham 2005).
Nevertheless, the reduction in slope of the size spectra
was consistent across all but one site and similar for both
the fished areas and MPAs, which suggests that the same
drivers are affecting the size distribution of fish in these
areas and that they are unrelated to fishing pressure.

Plotting each individual size class bin by its change in
numerical abundance highlights that the change in the
slope of the size spectra was driven by both an increase
in large individuals (>45 cm) and a decrease in smaller
individuals (<30 cm). Because fishing pressure has not
changed, the most likely drivers for the increase in larger-
bodied fishes are increased growth and/or survivorship.
The decline in smaller-bodied individuals could be driven
by various processes. We consider consistently high mor-
tality of small and juvenile fish following the years because
the bleaching event the most likely explanation, based
on the expectation that the larger fishes have retained
their abundance and have good feeding conditions, and
that many smaller species and individuals are most de-
pendent on refuge availability and live coral (Munday &
Jones 1998; Dulvy et al. 2004; Graham et al. 2006). Fur-
thermore, the diversity and numerical abundance of fish
10–30 cm in length was correlated with structural com-
plexity in 2005 (Wilson et al. 2007) and showed marked
decline between 1994 and 2005 following a loss in struc-
ture. Although the existence of several years of high larval
supply prior to the bleaching event and several years of
poor larval supply after bleaching could also account for
the patterns we observed, the latter possibly as a result of
reduced live coral as a settlement cue, we consider this
unlikely when the effects are manifest for all species and
at a large spatial scale. Based on the size-based analyses,

we predict a time lag effect, whereby the full effects of
the bleaching event on the fringing-reef fishery species
and the fish assemblage as a whole are yet to be realized.

The MPAs seem to offer no long-term resilience to the
populations and assemblages. Although the MPAs may
meet short-term conservation objectives by reducing fish-
ing mortality on larger fish, future replacement by small
fish may be insufficient to maintain abundance over the
long term. The collapse of the physical structure of Sey-
chelles reefs accelerated as recently as 2003 (Engelhardt
2004), so the longer-term consequences of this process
are yet to manifest in larger size classes. The lag effect
of reduced replenishment will likely be longer in MPAs
than in fished areas because mortality rates are likely to
be lower and therefore age structures of the populations
will be extended. Nevertheless, greater predator biomass
inside the MPAs could result in higher rates of predation
on smaller individuals (Graham et al. 2003; Mumby et al.
2006), ultimately increasing the severity of the lag effect.

The effects on assemblage productivity and hence on
fishery yield are expected to be even more substan-
tial than the effects on biomass because the production
to biomass ratios of smaller individuals and species are
higher. Therefore a community of a given biomass that is
dominated by larger species will be relatively less produc-
tive (Kerr & Dickie 2001). The observed changes in the
size-spectra therefore suggest that total production will
fall faster than biomass, owing to a decline in abundance
of smaller fish and smaller size classes.

The responses of mixed-diet feeders and piscivores var-
ied among size classes. Some of the families that make
up these groups, for example, lethrinids and lutjanids,
are generalist in their juvenile habitat use and often asso-
ciate with soft-bottom habitats (Dorenbosch et al. 2005).
Therefore, they may not be as reliant on the reef struc-
ture for predator evasion. Within the piscivores there was
a decline in the number of fishes in medium size classes
(20–50 cm), which was most pronounced in the MPAs.
The consistent nature of this decline among habitats sug-
gests a deterministic driver. Piscivores on coral reefs tend
to select prey according to their gape size (Mumby et al.
2006), and reef fish predator–prey dynamics are highly
size structured (Dulvy et al. 2004). Thus, it is likely that
the substantial decline in smaller size classes of the as-
semblage, which was most evident in the MPAs, may have
reduced prey availability for medium-sized piscivores and
thus caused an indirect decline in their numbers.

Of the indirect effects of bleaching that we have iden-
tified, one of the most significant for the reef ecosystem
as a whole is likely to be the substantial decline in smaller
size classes of herbivorous fishes in both fished and pro-
tected areas. The surveyed assemblage consisted mainly
of surgeonfishes (Acanthuridae) and parrotfishes (Scari-
dae), but also contained some rabbitfishes (Siganidae)
and two species of damselfishes (Pomacentridae). Sep-
arate plots of the changes in size classes over time of
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acanthurids, scarids, or species that span a large number
of size classes showed the same patterns of reduction
in small size classes. Many of these species use the reef
for habitat as juveniles (Dorenbosch et al. 2005), and be-
cause the trend was consistent among habitats and man-
agement strategies, it is likely that habitat degradation,
which leads to greater competition and predation (Hixon
& Jones 2005), is the cause of decline in smaller sizes.

Acanthurids can live over 25 years and scarids live 5–20
years (Choat & Robertson 2002), so individuals currently
contributing to the increase in numerical abundance of
large size classes likely recruited prior to the 1998 bleach-
ing event or the collapse of the reef framework in 2003
(Engelhardt 2004). When disturbances are extensive and
occur over large spatial scales, increased abundance of
large herbivores can result from faster growth rates (Hart
& Russ 1996) and potentially higher survivorship associ-
ated with greater food abundance. Nevertheless, fewer
fish in smaller size classes are surviving to replace adults,
and a subsequent decline in overall biomass of herbivores
seems likely. Herbivores are common targets of the trap
fishery in the Seychelles (Grandcourt 1999), and yields
have remained stable throughout the bleaching event
(Grandcourt & Cesar 2003), despite the increase in larger
fish we identified. Yields were stable despite increases
in larger fish because the decline in small-sized fish ex-
tended up to 30 cm, resulting in no substantial increase
in biomass above size at first capture.

Herbivores are important to the resilience of coral reefs
because they control algae and promote coral recovery
(Bellwood et al. 2004; Mumby et al. 2006). Our results
suggest that mass bleaching and the loss of structural
complexity may ultimately lead to a reduction in the abun-
dance of herbivores, including larger size classes and thus,
resilience of reefs may decline over the long term. Be-
cause the trend is also apparent in the sampled MPAs, our
data suggest the MPAs offer no long-term refuge from the
impacts of coral bleaching.

What are the consequences for reef fisheries? In Sey-
chelles 50–60% of trap fishing effort occurs close to the
shore and within the depth range of the data collected in
this study (T.D., unpublished data), which suggests that
a future decline in biomass of target species will affect
the trap fisheries. Nevertheless, given that a substantial
portion of trap fishing grounds lie on deeper shoals and
submerged reefs of the Mahé Plateau, there is potential
for a degree of spatial mobility in the fishery if declines in
target-species biomass are restricted to the shallow fring-
ing reefs. If other locations suffer coral mortality and col-
lapse on the scale of the Seychelles, target-species assem-
blages will likely respond in the same way. In locations
where the topography does not allow for a diversity of de-
mersal fishery habitats and depths and the entire demersal
fishery is restricted to the inshore reef (e.g., Fiji; Jennings
& Polunin 1997), the long-term impacts of bleaching on
fishers could be more substantial.

The corallivores and planktivores demonstrated very
large and consistent declines between years. Declines
in corallivores, and even local extinctions, as a result of
mass mortality of corals have been documented previ-
ously (Graham et al. 2006; Pratchett et al. 2006; Wilson
et al. 2006). The planktivores in our study were prin-
cipally coral-dwelling damselfish, which suffer large de-
clines through coral mortality (Wilson et al. 2006). Fur-
thermore, both groups have small body size, suggesting
they are more reliant on the reef matrix to avoid preda-
tion (Munday & Jones 1998). The decline in both cases
was greatest in the MPAs. Corallivore numbers declined
from a mean of 31.7 to 5.3/site in fished areas and from
74.5 to 2.7/site in MPAs. Similarly, planktivore numbers
declined from a mean of 90.3 to 44.4/site in fished areas
and from 279.8 to 11.2/site in MPAs. These declines are
associated with the greater cover of the complex coral
category in the MPAs prior to the bleaching event, which
is the preferred habitat of many specialist fish (Munday
2004; Pratchett 2005). The result is a subsequent homog-
enization of the MPAs and fished areas in terms of benthic
cover and composition and the numerical abundance of
small specialized fish species after bleaching.

In recent decades conservation of marine resources on
coral reefs has focused on the use of MPAs. Results of pre-
vious studies show that reef fish diversity and abundance
can be compromised in MPAs following coral mortality
(Jones et al. 2004). Here we provide evidence that the
size structure of fish assemblages is subject to the same
long-term effects in MPAs and fished areas. Because fu-
ture bleaching events seem inevitable (Sheppard 2003),
the implementation of methods to ameliorate climate-
mediated disturbance should be treated as a priority in
conservation and management plans for coral reefs. We
recognize that some areas are less susceptible to climate-
induced disturbance and some show greater recovery and
therefore support the notion that MPAs should increas-
ingly be sited in areas of resistance or resilience to bleach-
ing to build up spatial resilience in the system (West &
Salm 2003). In Seychelles the reefs north of Praslin and
south of Mahé, and the granitic habitats in general are cur-
rently displaying the most recovery and the most stable
fish populations (Engelhardt 2004; Graham et al. 2006),
and would be suitable locations for future MPAs. Marine
protected areas are not the only management tool avail-
able, however, and it is important to manage areas outside
MPAs to minimize other stressors, such as overfishing and
nutrient enrichment, to create conditions where a recov-
ery may be possible if brood stocks are available.
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Supplementary Material 
 
Table S1. Change in biomass and results of univariate three-factor crossed analysis of 
variance for primary, important, and occasional target fish species above size at first 
capture.a  
 

Species 

Size at 
first 
capture 

Biomass 
(g) 1994 

Biomass 
(g) 2005 ∆ 

Year 
(1,30 df) 

Habitat 
(2,30 df) 

Protection 
(1,30 df) 

        
Primary Targets        
Aprion virescens 25.5cm 4141 3497 - 0.75 2.01 11.30*** 
Cephalopholis leopardus b 20.1cm 100 0 - 2.10 0.65 0.17 
Chlorurus sordidus  19.2cm 7073 7369 + 0.11 0.75 0.03 
Lutjanus bohar b 18.9cm 966 1308 + 1.63 1.74 1.83 
Scarus ghobban 16.7cm 1137 2708 + 4.79* 2.73 6.93* 
Scarus rubroviolaceus b 18.7cm 871 5079 + 4.16* 0.35 0.32 
Siganus sutor b 15.4cm 338 0 - 2.79 1.12 0.56 
        
Important targets        
Acanthurus tennentii b 15.3cm 332 2307 + 1.06 0.34 0.08 
Anyperodon leucogrammicus b 24.2cm 287 37 - 3.64 0.27 0.09 
Calotomus carolinus b 16.0cm 79 1211 + 3.78 0.03 2.67 
Cephalopholis argus b 20.9cm 3063 988 - 9.44** 0.32 1.32 
Cephalopholis miniata 21.4cm 75 259 + 2.50 1.39 0.03 
Cetoscarus bicolour b 17.3cm 410 0 - 15.45*** 0.20 4.14 
Cheilinus fasciatus b 19.0cm 219 66 - 4.95* 0.13 0.05 
Cheilinus trilobatus 17.7cm 1963 1281 - 1.67 0.55 2.91 
Chlorurus gibbus 17.5cm 1282 1138 - 0.07 2.59 0.96 
Ctenochaetus striatus 13.8cm 3703 1035 - 6.57* 0.25 5.24* 
Epinephelus fasciatus 22.3cm 59 159 + 1.46 0.18 0.07 
Epinephelus merra b 22.1cm 58 32 - 0.27 2.36 2.00 
Leptoscarus vaigiensis 21.8cm 77 478 + 1.45 4.01* 0.70 
Lethrinus enigmaticus 16.7cm 13 52 + 0.52 0.96 0.36 
Lethrinus harak 18.4cm 2594 2659 + 0.03 0.67 2.90 
Lethrinus lentjan f 16.7cm 27 93 + 3.03 3.36*, c 7.61** 
Lethrinus mahsena 15.9cm 119 68 - 0.70 0.18 0.02 
Lethrinus nebulosus b 17.2cm 139 734 + 8.43** 1.62 3.52 
Lethrinus obsoletus b 18.3cm 1381 421 - 4.20* 0.08 12.71*** 
Lethrinus olivaceus b 20.8cm 70 254 + 0.92 0.11 1.64 
Lutjanus fulviflamma b 20.2cm 1206 692 - 1.31 3.19 5.45* 
Lutjanus gibbus b 16.2cm 1257 684 - 0.28 1.07 0.31 
Lutjanus kasmira 18.5cm 29 9 - 0.02 1.07 0.02 
Lutjanus rivulatus 16.1cm 133 51 - 0.00 0.31 0.00 
Macolor niger g 16.6cm 478 158 - 3.93 4.02*, c 0.09 
Monotaxis grandoculis 15.7cm 325 723 + 0.93 0.43 0.07 
Mulloidichthys flavolineatus b 25.5cm 366 31 - 1.82 0.26 3.43 
Parupeneus barberinus b 21.9cm 1200 529 - 0.64 1.05 1.57 
Parupeneus ciliatus b 21.8cm 1006 797 - 0.37 0.43 0.11 
Parupeneus cyclostomus b 22.7cm 196 50 - 1.69 1.13 0.00 
Parupeneus macronemus 21.4cm 410 139 - 2.46 1.52 0.10 
Parupeneus rubescens b 20.2cm 17 25 + 0.24 0.40 1.57 
Plectorhinchus orientalis 20.8cm 823 610 - 0.70 1.21 1.44 
Plectorhinchus schotaf b 18.7cm 397 721 + 0.14 0.06 0.14 
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Scarus caudofasciatus 17.2cm 117 642 + 1.92 1.07 0.19 
Scarus falcipinnis b 17.4cm 200 291 + 0.01 0.49 0.50 
Scarus frenatus h 19.1cm 1882 660 - 15.66*** 1.17 13.57*** 
Scarus globiceps 18.3cm 189 667 + 0.74 0.34 0.07 
Scarus niger i, j 17.6cm 3692 5583 + 3.67 2.45 3.16 
Scarus prasiognathos 17.8cm 1080 4357 + 5.43* 2.54 0.46 
Scarus psittacus 19.4cm 574 840 + 0.42 0.75 3.72 
Scarus scaber b 19.4cm 784 192 - 4.92* 4.90**, d 0.02 
Scarus tricolour 20.5cm 570 338 - 0.47 0.70 4.50* 
Scarus viridifucatus 17.5cm 48 42 - 0.00 0.15 1.10 
Siganus argenteus b 18.1cm 1482 3238 + 2.63ns 0.33 3.46 
Siganus puelloides b, h 16.4cm 2114 922 - 17.93*** 0.84 1.78 
Siganus stellatus k 14.9cm 477 589 + 0.09 4.33* 9.82** 
        
Occasional targets        
Acanthurus leucosternon 12.1cm 886 393 - 0.45 1.96 0.43 
Acanthurus lineatus b 14.1cm 247 278 + 0.28 3.43*, e 1.69 
Acanthurus nigrofuscus 15.1cm 511 484 - 0.06 0.43 0.02 
Aethaloperca rogaa b 17.3cm 210 784 + 0.61 0.35 4.68* 
Chlorurus atrilunula b 18.4cm 731 2187 + 4.01 1.37 1.40 
Ctenochaetus binotatus 13.2cm 20 42 + 0.40 0.24 0.72 
Ctenochaetus strigosus b 12.8cm 1045 382 - 7.51** 1.41 3.01 
Epinephelus caeruleopunctatus 23.2cm 110 227 + 2.51 1.60 2.07 
Hipposcarus harid b 18.9cm 3621 3160 - 2.91 0.31 2.38 
Scolopsis frenatus b, h 20.7cm 2922 2303 - 7.70** 1.22 0.76 

 
a Values given for year, habitat and protection are F ratios. Probability results: *** p < 0.001; ** p < 0.01; * p 
< 0.05; no asterisk, not significant. Cephalopholis urodeta, Diagramma pictum, Epinephelus hexagonatus, E. spilotoceps, E. 
tukula, Lethrinus rubrioperculatus, L. argentimaculatus, Lutjanus monostigma, Oxycheilinus diagrammus and Paracanthurus hepatus 
were not analysed as assumptions could not be met due to too many zero’s in counts. 
b Log10 transformation necessary,  
c Tukey’s output: Co>Gr, d Tukey’s output: (Co=Gr)>Pa, e Tukey’s output:Gr>(Co=Pa),  
f Significant year*habitat interaction due to higher biomass in carbonate reefs in 2005, but lower biomass in 
granite and patch reefs,  
g Significant year*habitat interaction due to a greater biomass in granite reefs than carbonate and patch reefs 
in 1994, but similar in 2005.  
h Significant year*protection interaction due to a greater decline in biomass in protected than fished areas 
between years,  
i Significant three-way interaction due to greater changes in carbonate reefs than granite and patch reefs for 
both year and protection,  
j Levene’s test could only be passed at 0.036, so significance was set at 0.03 for this species.  
 k Significnat three-way interaction due to a greater biomass in granite and patch reefs than carbonate reefs in 
protected areas, particularly in 2005.  
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Abstract

Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
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still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
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Introduction

Coral reefs are one of the ecosystems most threatened by

climate variability and change [1–3]. Reef corals, the building

blocks of carbonate reefs, have a restricted thermal tolerance,

resulting in ‘bleaching’ events (loss of symbiotic algae) when sea

surface temperatures rise above a given threshold [4]. This has

contributed to widespread loss of live coral cover [5–8], the

restructuring of benthic community composition [9] and has

resulted in dire predictions for the future persistence of coral-

dominated ecosystems within decadal time scales [10,11]. There is

now a need to understand resultant large-scale implications for

other components of the ecosystem, which, to date, have received

limited attention or been the focus of local studies [12–14].

Assessing ecosystem trends and patterns at regional scales is

necessary if informed management choices are to be made that

will mitigate the effects of large-scale climate disturbance.

Importantly, there is a need to test key paradigms, such as the

ability of no-take areas (NTAs) to enhance recovery from climate

change impacts [2], and the potential for herbivorous fish to

increase in abundance following coral mortality and functionally

compensate for increased algal coverage [15].

At large scales, remote pristine areas may have a greater

capacity to absorb climate impacts and maintain a coral

dominated and diverse ecosystem [16]. However, most coral reef

NTAs are small and embedded in heavily fished and degraded

PLoS ONE | www.plosone.org 1 August 2008 | Volume 3 | Issue 8 | e3039



environments [8,17]. Assessing the importance of local manage-

ment for conserving coral reefs in the context of global change has

been identified as a key research challenge for coral reef scientists

[18]. Although there are expectations that NTAs will promote

resilience and faster recovery from climate disturbance [19], site-

specific studies suggest this may not be the case [12,20,21], and the

effectiveness of such management needs to be assessed across

regional spatial scales.

Grazing by herbivores, by creating space for invertebrate larval

settlement, is thought to be key to maintaining reefs in a coral

dominated state [22,8,23]. However, it is increasingly evident that

the majority of herbivorous fish in the Indo-Pacific will crop turf

algae, but feed less on or avoid erect macroalgae once it has

developed [24,25]. Following large-scale disturbances that open up

large amounts of space on reefs, such as mass coral bleaching,

herbivores may become swamped by the biomass of the new algal

resource [26] and reefs can progress on a trajectory to macroalgal

dominance [27]. It is therefore important to assess whether

herbivorous reef fish increase in abundance following large-scale

coral loss and thus have the ability to prevent reefs from becoming

dominated by erect macroalgae.

Coral mortality through climate induced bleaching was partic-

ularly severe in the Indian Ocean in 1998, with ,45% of coral

cover lost across the region [28], although the effects were spatially

variable [7,9]. We assess the longer-term effects of this event in

fished areas and NTAs across 7 countries, 66 sites and 26 degrees of

latitude. Specifically, we conducted a targeted research program

whereby the original investigators who collected comprehensive

benthic and fish assemblage data from Maldives, Chagos,

Seychelles, Kenya, Tanzania, Mauritius, and Réunion in the mid-

1990s repeated their surveys post-bleaching, in 2005. We use

continuous model Bayesian meta-analysis to quantify effects of

changes in live coral cover and physical complexity of reefs on the

diversity, size structure, trophic structure and abundance of reef fish.

The Bayesian approach not only structures the inherent uncertainty

in monitoring data from multiple sources, but also allows belief

statements to be made regarding future change [29]. With ever

more frequent bleaching events predicted [11], quantitative

predictions regarding how fish will respond to future declines in

coral cover over large spatial scales are needed to guide regional

conservation planning, adaptation and mitigation strategies.

Results

Change in hard coral cover across the region between the mid

1990s and 2005 varied geographically (Figure 1). The changes

reported here represent the combined effects of coral loss in 1998

and any subsequent recovery to 2005. The greatest declines were

apparent through the low latitude island states of Maldives,

Chagos, and Seychelles. Kenyan and Tanzanian nationally

protected sites experienced moderate declines, while Mauritius

and Réunion sustained the smallest declines, and coral cover

increased in Kenyan and Tanzanian fished sites (Figure 1).

Assessing change in coral cover at relevant scales, that consider

location, management and habitat type, indicates that 10 of our 19

study locations exhibit declines that depart significantly from zero

(Figure 2A). The study incorporated nine no-take areas (NTAs)

across four countries (two in Seychelles, four in Kenya, two in

Tanzania and the long-term de-facto protection of reefs of the

Chagos archipelago [30]). A greater proportion of NTAs (71%)

than fished (42%) locations showed significant declines in coral

cover over the study period. Based on bootstrapped 95%

confidence limits, there was no evidence to suggest the percent

change in coral cover differed between NTAs and fished areas,

and in some cases declines were significantly greater in NTAs

(Figure 2A). Importantly, the NTAs had greater starting coral

covers than adjacent fished areas, which, as NTAs and fished areas

declined to similar final covers (Table 1)(with the exception of

some of the less impacted Tanzanian sites), meant the NTAs had

further to fall.

It is clear that the impacts of the 1998 bleaching event were

highly variable across the region, and provide a continuum against

which to test secondary consequences, such as the effects of coral

loss on fish assemblages. Recent developments in assessing the

effects of coral disturbance on fish have highlighted the

importance of eroding structural complexity in driving responses

[13,31], which, as erosion of coral structures can take 5–10 years,

explains the much smaller impacts on fish shortly after coral

mortality [15]. Structural complexity was quantified at 50 of our

66 sites. Importantly, there was a strong correlation between loss

in coral cover and loss in structural complexity across the region

(r = 0.77, P,0.001, Figure 2B). The strong collinearity in the two

measures precludes independent assessment of variables, and

therefore the effects of changing coral cover on fish identified in

the Bayesian meta-analyses are likely to result from a combination

of loss in coral cover and structural complexity.

Coral loss predicted declines in reef-fish species richness, and

abundance of obligate corallivores, planktivores and fishes

,20 cm throughout the western Indian Ocean (Table 2). We

tested five possible trajectory descriptors in each case, but only

found evidence for linear fits between coral decline and change in

groupings of the fish community. Trends in species richness were

significant, but weak, and largely driven by the Seychelles and

Mafia Island (Figure 3A). There was substantial evidence for a 1:1

relationship between changes in obligate corallivore abundance

and percent coral cover (Figure 3B). From these results we

estimate, given any future 50% decline in coral cover, there is a

76% probability of equivalent declines in obligate corallivores at

any given site in the western Indian Ocean. The relationship

between change in diurnal planktivore abundance and coral cover

was relatively strong; given a future 50% decline in coral cover, we

estimate a 68% probability of observing declines in planktivore

abundance (Figure 3E). We found no relationship between a loss of

coral and change in abundance of herbivore and mixed diet feeder

groups (Figure 3C,D).

When species were grouped by their maximum attainable size, a

clear trend was apparent for species ,20 cm total length, but no

relationship was observed for 21–40 cm, 41–60 cm or .60 cm

groupings (Figure 4A; Table 2). Given a future 50% decline in coral

cover, we estimate a 52% probability of observing declines in the

abundance of fish species with maximum body lengths ,20 cm.

Within this size class, planktivores make up a considerable portion

of the abundance (44%), and herbivores and mixed diet feeders also

contribute substantially (28% and 20% respectively), but coralli-

vores have limited input (8%) (Figure 4B). Separate analyses of

trophic groups within the ,20 cm size category highlights that,

along with obligate corallivores and planktivores, there was also

evidence of declines in herbivores (Table 2).

We only found weak evidence for differences between NTAs

and fished areas for change in diurnal planktivore abundance and

small-bodied herbivore abundance (,20 cm) (Table 3). In both

cases the negative relationship between fish abundance and coral

decline was greater for the NTAs, however there was equal

support for model Mc with no differences between types of

management (Table 3). Importantly, irrespective of body size and

trophic categorization, NTAs provided no clear benefits for any of

the fish groups in terms of their change in response to coral

decline.

Ocean-Scale Reef Integrity
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Figure 1. Change in coral cover at sites across the western Indian Ocean. Green and red symbols represent increases and decreases in coral
cover respectively. Symbols with solid borders are sites in NTAs; Seychelles data include two NTAs, Kenya includes four, Tanzania two and the Chagos
archipelago is a de-facto NTA. Data represent 66 sites across the region. Numbers in key (size of bubble) are percent changes between mid 1990s and
2005. Map produced using ESRI data and ArcGIS 9.
doi:10.1371/journal.pone.0003039.g001

Figure 2. Change in coral cover and reef structural complexity. (A) Change in live coral cover at meaningful biogeographical aggregations
and by management strategy. Three habitat types in Seychelles each replicated in the two NTAs. Kenyan protected represents four NTAs.
Bootstrapped 95% confidence intervals indicate whether mean change departs significantly from zero. Locations ordered by magnitude of coral
decline. (B) Correlation between change in live coral cover and change in structural complexity across the region. N Mafia Island, e Seychelles, m
Chagos, & Maldives, ¤ Kenya, n Tanzania.
doi:10.1371/journal.pone.0003039.g002

Ocean-Scale Reef Integrity
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Discussion

We have identified spatially variable declines in coral cover, reef

structural complexity, fish species richness and the abundance of

various feeding and size groups of reef fish across the Indian

Ocean following the 1998 bleaching event. These changes are

substantial for some groups, and indicate little insurance offered by

current small-scale NTA management across the region. The

spatial patterns present in our data provide important information

for future conservation planning and generic lessons for managing

whole coral reef ecosystems in a changing climate.

There was little difference in the decline of coral cover between

NTAs and fished areas across the Indian Ocean, with some

evidence for greater declines within NTAs. This result is likely due

to NTAs often being sited in areas where the cover of Acropora and

other thermally-sensitive and branching coral species is high [20], or

may be because fishing gears reduce cover of these coral species in

fished areas. Our analysis also indicated little difference between

NTAs and fished areas for those fish groups that declined in

response to coral loss. The only indication of a differential response

was the greater decline in NTAs for planktivores and small bodied

herbivores. Large, remote and pristine areas seem to be resilient to a

wide range of disturbances [16], which has led to calls to assess the

effectiveness of NTAs in conserving coral reefs through climate

disturbance [18]. One clear difference to these remote areas is that

NTAs on reefs are typically small and surrounded by much larger

areas that are modified by exploitation [8,17]. As we do not have

repeat temporal data since the initial coral loss in 1998, we can not

explicitly infer recovery rates from our data, however the NTAs we

studied show no evidence of being more resistant to declines in coral

and fish groups following coral bleaching and it seems likely that,

over this time scale, recovery rates are no different between NTAs

and fished areas, as has been shown for some of the NTAs where

temporal data were available [21].

We detected declines in fish species richness across the western

Indian Ocean in response to loss of live coral cover. Although only

Table 1. Mean coral cover before (mid-1990s) and after
(2005) the 1998 bleaching event across the Indian Ocean.

Location

% Coral
Cover
mid-1990s 6SE

% Coral
Cover
2005 6SE

Maldives, North Male (3) 15.5 7.5 10.9 3.2

Maldives, South Male (2) 43.9 3.6 8.0 1.2

Chagos Protected (9) 31.2 4.0 22.8 2.9

Seychelles Carbonate Reefs (5) 34.6 2.7 5.6 3.1

Seychelles Carbonate Protected (2) 44.9 4.8 5.1 4.5

Seychelles Granite Reefs (5) 14.8 2.0 8.2 2.3

Seychelles Granite Protected (2) 30.9 7.6 7.5 6.4

Seychelles Patch Reefs (5) 20.0 1.5 10.9 5.1

Seychelles Patch Protected (2) 46.4 7.8 3.6 3.0

Kenya Fished (4) 18.9 5.2 20.0 4.0

Kenya Protected (4) 34.8 4.5 26.8 8.1

Tanzania Dar (4) 42.6 11.9 70.0 3.2

Tanzania Tanga (4) 23.9 7.5 27.8 6.8

Tanzania Zanzibar (2) 48.5 3.8 48.3 3.3

Tanzania Zanzibar Protected (2) 62.7 11.1 61.5 2.4

Tanzania, Mafia Island, Protected (2) 33.0 N/A 0.1 N/A

Reunion Flat (2) 42.5 24.3 37.0 10.9

Reunion Slope (2) 42.0 5.0 28.4 4.5

Mauritius (5) 45.3 9.5 41.1 6.7

Sites aggregated at representative geographic scales that consider location,
management and habitat type. Three habitat types in Seychelles each
replicated in the two NTAs. Kenyan protected represents four NTAs. Number of
sites per location given in brackets. Note, Tanzania, Mafia Island, received no-
take status in 2000.
doi:10.1371/journal.pone.0003039.t001

Table 2. Continuous model Bayesian meta-analysis parameter estimates from the best-fitting models (see Table 3) for reef fish
metrics in the western Indian Ocean.

Metric Model b̂0 (intercept) b̂coral (slope) b̂protected (intercept) b̂protected (slope)

Species richness Mc 0.00 (0.03) [20.07, 0.06] 0.10 (0.02) [0.06, 0.14] - -

Obligate corallivores Mc 20.26 (0.21) [20.66, 0.16] 1.05 (0.14) [0.77, 1.30] - -

Herbivores M0 20.28 (0.08) [20.45, 20.12] - - -

Mixed-diet feeders M0 20.18 (0.06) [20.28, 0.08] - - -

Planktivores Mcp 20.42 (0.16) [20.74, 20.10] 0.52 (0.16) [0.28, 0.77] 1.02 (0.35) [0.35, 1.69] 0.61 (0.24) [0.10, 1.07]

Planktivores Mc 20.15 (0.15) [20.44, 0.14] 0.68 (0.10) [0.48, 0.87] - -

,20 cm Mc 20.17 (0.09) [20.35, 0.00] 0.37 (0.06) [0.28, 0.49] - -

21–40 cm M0 20.21 (0.09) [20.40, 20.05] - - -

41–60 cm M0 20.59 (0.17) [20.91, 20.26] - - -

.61 cm M0 20.37 (0.21) [20.77, 0.04] - - -

,20 cm obligate corallivores Mc 20.39 (0.19) [20.77, 20.00] 0.94 (0.13) [0.69, 1.19] - -

,20 cm herbivores Mc 20.19 (0.16) [20.51, 0.13] 0.50 (0.10) [0.29, 0.71] - -

,20 cm herbivores Mcp 20.28 (0.18) [20.65, 0.08] 0.24 (0.14) [20.05, 0.53] 0.37 (0.35) [20.33, 1.06] 0.53 (0.21) [0.12, 0.95]

,20 cm mixed diet feeders M0 20.46 (0.06) [20.58, 20.34] - - -

,20 cm planktivores Mc 20.10 (0.16) [20.43, 0.23] 0.57 (0.110 [0.35, 0.78] - -

Estimates for groups with equivalent model fits are provided for both models. Values in parentheses are standard deviations; values in square brackets are 95% credible
intervals.
doi:10.1371/journal.pone.0003039.t002
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a small proportion of species are heavily coral dependent, most

species are reliant on the reef matrix at some stage in their life

history, and change in species richness was likely due to loss in the

physical structure of the reef, rather than live coral [13–15,31].

The variability in loss of structural complexity may explain why

the trend for species richness was not stronger, with locations such

as Chagos, where recovery of coral has been rapid, potentially

retaining structural complexity in the interim. Although loss of

structural complexity was the most likely driver of the region-wide

decline in species richness, some studies have highlighted that live

coral can be an important settlement cue for larval fish [12,32] and

the nature of this relationship is an important area for future

research.

Although previous studies have identified obligate corallivores

as a functional group vulnerable to declines in coral cover [14,15],

this is the first study to demonstrate declines over such a large

spatial scale. We have also identified a 1:1 linear relationship

between coral loss and obligate corallivore decline, suggesting their

survival on the reef is tightly linked to coral cover and changes in

obligate corallivore abundance should be easy to predict based on

changes to benthic cover. The diurnal planktivores in the study

were largely small-bodied species from the damselfish family

Figure 3. Change in fish groups in response to coral decline. Continuous model Bayesian meta-analysis of relationships between decline in
coral cover and change in (A) species richness of fish assemblages, and (B) abundance of obligate corallivores, (C) herbivores, (D) mixed diet feeders,
(E) planktivores. Scale as converted to percent change indicated in top right panel. Linear trend lines only presented where significant model fits were
recorded. Green symbols indicate sites in NTAs, blue symbols indicate sites in fished areas. Inner dashed line represents 95% credible interval on the
regression and outer dashed line represents the 95% prediction interval. N Mafia Island, e Seychelles, m Chagos, & Maldives, ¤ Kenya, n Tanzania, %
Réunion, # Mauritius. Movement of points along the x-axis among panels reflects model-structured uncertainty present among studies.
doi:10.1371/journal.pone.0003039.g003
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(.90% contribution to group) that are often closely associated

with the reef matrix [33,34]. Their decline is most likely due to

predation vulnerability, linked to loss of coral and structural

collapse [13,31]. Planktivores and corallivores showed the

strongest relationships of all groups to declining coral cover and

are likely to be the groups most threatened from the predicted

ongoing decline in global reef health [14,15].

Although herbivores are hypothesized to increase in abundance

following coral decline due to a greater availability of algal

resources, previous studies have reported high variation in this

relationship and have often been conducted shortly after

disturbances, limiting their ability to detect demographic changes

[15]. Here we tested this hypothesis across large spatial and

temporal scales where the assemblage had a moderate time to

respond. Herbivores are thought to be a key functional group,

responsible for the resilience of reef systems by controlling algal

growth [8,23,35] and ultimately allowing settlement of new coral

recruits [36]. However, our data show that the proliferation of

algae that follows extensive coral mortality [12,13,37,38] was

unlikely to be controlled by a corresponding increase in

herbivorous fish abundance. Changes to size structure and

biomass of herbivore stocks cannot be ruled out and may initially

encourage increased consumption and control of algae. However,

studies from Seychelles suggest such changes may be indicative of

future declines in herbivore abundance and biomass due to a loss

of refuge from predators, leading to reduced recruitment to adult

size classes [20].

The mixed diet feeding group also showed no response to

declining coral cover. This group of fish includes species from

families such as Lethrinidae, Mullidae, Lutjanidae, and Labridae,

many of which are habitat generalists, foraging and recruiting to

non-coral reef habitats such as seagrass [39]. Species in these

groups also tend to forage over fairly large spatial scales, indicating

a lack of reliance on specific habitat types. Due to this decoupling

of reliance on reef habitat and the potential benefits they may

glean from increased food resources, this may be the group that

will be sustained in the long term, although a large amount of

variation can be expected at the species level [15], leading to

changes in community composition.

Small-bodied fish are known to be more reliant on the reef

matrix, inhabit narrower niches, and be more vulnerable to

predation [33,34]. Our analyses highlight the vulnerability of

small-bodied species to coral and structural complexity loss.

Within this size category, obligate corallivore and planktivore

groups showed strong declines. Interestingly, there was also a

reduction in abundance of small-bodied herbivores. Although

herbivore abundance may not be declining overall (Figure 3C), the

reduction of these small-bodied species is of concern as they

perform important functional roles on coral reefs [40]. Small

mixed diet feeders again showed no trend, demonstrating the

resistance of species with generalist life history traits to coral loss.

There are some obvious limitations in our data, such as the

timeframe between surveys and the influence of any change in

management / fishing pressure. In most cases management and

fishing pressure have not changed greatly over the ten years

studied. The one main exception is Mombasa Marine National

Park, Kenya, where species richness and fish density have

increased owing to management action [17]. Although such

effects may have a slight influence on the results, the relationship

between reef fish and change in coral cover (and its association

with loss in physical structure) is a strong signal within the regional

data and is consistent with current ecological understanding of

disturbance effects on coral reefs [14,15]. A potential problem

when conducting meta-analyses is publication bias, whereby data

sets are not located or included in the analyses [41]. This is not a

problem in the current study as we conducted a targeted research

program where all comprehensive studies from the mid 1990’s

were repeated as part of the study itself. Finally, the study design

Figure 4. Change in small bodied fish in response to coral
decline. (A) Continuous model Bayesian meta-analysis of relationship
between decline in coral cover and change in fish ,20 cm maximum
attainable size. Green symbols indicate sites in NTAs, blue symbols
indicate sites in fished areas. Inner dashed line represents 95% credible
interval on the regression and outer dashed line represents the 95%
prediction interval. N Mafia Island, e Seychelles, m Chagos, & Maldives,
¤ Kenya, n Tanzania, % Réunion, # Mauritius. (B) Percent contribution
of five trophic groups to the starting (mid-1990’s) abundance of fish
,20 cm maximum attainable body length across the region. Black = -
planktivores, dark grey = piscivores (barely present on plot; 0.05%),
white = Mixed diet feeders, grey = herbivores, light grey = obligate
corallivores.
doi:10.1371/journal.pone.0003039.g004

Table 3. Model-selection results for continuous model
Bayesian meta-analysis in the western Indian Ocean using the
Bayesian Information Criterion (BIC).

Metric M0 Mc Mcp

Species richness 17.53 1.64 6.35

Obligate corallivores 282.90 248.38 256.38

Herbivores 145.83 149.61 157.35

Mixed-diet feeders 83.64 87.40 91.90

Planktivores 237.66 205.27 204.30

,20 cm 165.25 138.72 140.60

21–40 cm 146.91 150.00 158.17

41–60 cm 231.69 231.35 235.95

.61 cm 261.85 266.02 272.32

,20 cm obligate corallivores 275.96 238.91 246.80

,20 cm herbivores 230.91 214.86 216.53

,20 cm mixed diet feeders 94.93 99.11 106.16

,20 cm planktivores 237.76 218.23 222.13

Models include a null model of no relationship (M0), a model including a
relationship between changes in coral cover and reef fish metrics (Mc), and a
fish-coral model that allows for differences between protected and unprotected
sites (Mcp). Models highlighted in bold have the greatest support, given the
data; models with BIC differences of ,2 are considered to have equal support.
doi:10.1371/journal.pone.0003039.t003
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does not consider the impact of disturbances after the 1998 coral

bleaching event. However, the December 2004 tsunami is thought

to have had negligible effects on coral reefs in the western Indian

Ocean [42]. Furthermore, any other ensuing disturbances are just

as likely to have influenced NTAs as fished areas and reflect

increasing disturbance frequencies occurring on coral reefs

globally [2,8].

Our analyses highlight great geographic variation in the impact

of coral bleaching across the region, with the Seychelles suffering

the greatest in terms of coral loss and associated effects on fish, and

the Mascarene Islands (Réunion and Mauritius) suffering the least.

These trends could be due to several factors: 1) Prevailing currents

and variation in temperatures have been identified as key

determinants of coral mortality in the region, likely reducing

mortality in the Mascarene Islands in particular [11,43]. 2) Well

connected reef systems are expected to contain the pockets of

refugia required for landscape-scale recovery [44]. This is evident

when comparing recovery of the well connected mainland reefs of

Kenya and Tanzania and the geographically extensive Chagos

and Maldives to the geographically small and isolated inner

Seychelles. 3) The inner Seychelles is a shallow continental shelf

basin, with most fringing reefs extending to only 7–9 m depth.

This ‘bathtub effect’ likely led to extensive mortality in 1998 and

precluded any depth refuge below which corals could survive.

Where live coral extends to 40–50 m depth, such as in the atolls of

Chagos or the islands of Réunion and Mauritius, a depth refuge of

broodstock may encourage faster recovery of corals at shallower

depths [45]. 4) Finally, the atolls surveyed in Chagos are

uninhabited and off limits to reef fishing. The lack of multiple

anthropogenic stresses that most other reef systems endure may

have helped promote recovery from the disturbance [16,18].

The 1998 bleaching event had, and is still having, extensive

effects across the western Indian Ocean. Although ocean-scale

coral reef integrity has been lost, it is positive to see that effects

were spatially variable and that in some locations the indirect

effects on fish assemblages and likely implications for human

society have been small. Geography seems to be a key determinant

in the ability of reefs to absorb and recover from such large-scale

disturbances and this should be considered for other regions likely

to suffer similar large-scale disturbances in the future. Although

there was no evidence that existing NTAs are promoting recovery

of coral, these NTAs are still supporting a greater biomass of

fishery stocks [17,20], indicating long-term fisheries management

should not be compromised. There is, however, a need for new

NTAs, incorporated into existing networks that protect source

reefs resilient to large-scale disturbance, and areas likely to retain

their physical structure. This will help sustain the upstream

spawning stocks of corals and specialised fish species required for

landscape-scale recovery. Such management is likely to be

unsuccessful in isolation, and improved management of entire

reef systems, reducing the stresses and pressures to areas outside

NTAs will be necessary to maximise the capacity for systems to

recover from large scale and ongoing disturbance.

Materials and Methods

We identified all field studies that had comprehensively

surveyed reef fish assemblages and associated benthic composition

and structure from the western Indian Ocean region from 1990 to

before the 1998 coral bleaching event (majority 1994–95). This

resulted in eight separate large-scale studies (across seven

countries). Original investigators returned to their study locations

in 2005 to repeat the surveys, using field protocols identical to

those used in the original surveys. The protocols were standardised

within, rather than among study locations as it is more robust to

quantify effect sizes in this way and then standardise when

comparing among studies. Where the original investigator could

not return, an experienced surveyor from the team repeated the

work. An associated field study workshop for the project, which

involved many of the researchers from the region, found

experienced observer bias to be a very small component of the

variation in fish counts [46]. All reef surveys were conducted on

the reef flat or shallow reef slope. The abundance of all diurnally

active, non-cryptic, reef-associated fish was assessed during each

survey, however methods varied among study locations from point

counts of differing dimensions to belt transects of differing

dimensions. Replication also varied from 3 to 16. This resulted

in a survey area per site of ,200 m2 to ,2500 m2. Benthic

quantification also varied in spatial scale and from visual estimates

to line intercept transects, but the results are expected to be

comparable [47]. Estimates of change in live coral cover were

calculated and plotted on a map by country and management

strategy and at a more aggregated level with 95% confidence

limits. Measures of structural complexity also varied and included

visual assessments of reef topography, the linear versus contour

method and measures of reef height. However these measures

were found to be strongly correlated [47] and these correlation

coefficients were used to standardise them to a common scale. The

relationship between percent change in coral cover and percent

change in structural complexity was assessed by correlation

analysis. The presence of variation in field methods is routine in

meta-analytical studies, and thus the choice of effect size

calculation and variance weighting is integral to the comparability

of study results [48].

Effect size
Meta-analysis frequently employs unitless effect size metrics to

standardize the information present among accumulated studies.

The potential to observe changes in a before and after comparison

can be greatly influenced by initial values at a given location; sites

with larger initial values have a greater scope to reveal change

than those with low values [48]. To achieve a comparable metric

at all locations and to account for initial cover / values, we

calculated effect sizes as the percent change between the mid

1990s and 2005 [49];

%differenceD~ Aa,i{Ab,ið Þ=Ab,i½ �|100 ð1Þ

where Ab and Aa were mean values at sites in the mid 1990’s and

2005 respectively. We did not account for study duration [48] as

we made the informed assumption that the greatest changes

occurred in 1998 and our measures in the mid-1990’s are an

appropriate estimate of pre-bleaching conditions. Furthermore as

sampling date was standardised for post-1998 surveys, any

incorporation of duration could unduly bias effect sizes based on

pre-disturbance study dates. Finally, we are estimating a

magnitude of change, rather than a rate of change, which would

require a different effect size metric [48]. We calculated individual

effect sizes for change in coral cover, structural complexity, fish

species richness, and fish density in four functional groups for

which data were available at the majority of sites (obligate

corallivores, herbivores, planktivores, and mixed-diet fishes

assigned using regional fish identification guides, published

literature and http://www.fishbase.org), for four size classes of

fish species (maximum attainable size ,20 cm, 21–40 cm, 41–

60 cm, and .60 cm) and for the same four functional groups

listed above within the ,20 cm maximum attainable size

category. Herbivores include all those species that feed on algae
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and or detrital aggregates from the epilithic algal matrix. Because

percent-change losses have a strongly right-tailed distribution, i.e.

a maximum potential decline of 100%, but a potentially limitless

increase, we transformed all of the DT values to be balanced

around zero following Kaiser et al. [49]:

DT~loge 1z D=101½ �ð Þ: ð2Þ

This transformation prevents overestimates of increases and

underestimates of declines, where a maximum potential decline

has a value of 24.6 and a maximum increase +4.6. The

transformation approximately normalises the error distribution

and stabilises its variance [49]. Raw data were available for many

of the original studies, allowing us to estimate average effect-sizes

at some locations. Because data were collected from the same sites

but not the same transects, we estimated effect-size means and

variances at these sites using non-parametric bootstrapping of the

before and after observations (R = 9999) [50] with (1) and (2), by

randomly matching before-after pairs at each iteration. This

generated sample means and expected variance ranges for many,

but not all, of the study locations.

Bayesian meta-analysis
We evaluated evidence for a regional relationship between reef

fish and coral cover using an area-variance weighting scheme

implemented in a Bayesian meta-analysis framework. The use of

area surveyed as a weighting scheme in coral reef meta-analyses

has become widespread because actual variance will depend on

individual measurement size and replication [48]. The Bayesian

approach allowed us to model the hierarchical structure of the

data, estimate the magnitude of regional-scale effects, and to

specify a level of uncertainty about individual study estimates. By

sharing information among studies, this approach maximized the

strength of inferences made across the entire range of meta-data

used, allowing us to make probability statements about the

likelihood of reef fish declines given potential future changes in

coral conditions. Although we tested five different ecologically

meaningful response trajectories (asymptotic, quadratic, logistic,

linear and exponential), we found no model-based evidence for

non-linear responses based on Bayesian Information Criterion

(BIC) scores among candidate models. We therefore quantified the

regional fish community response between the mid 1990s and

2005 using a null model (intercept-only; M0) and exchangeable

linear model (Mc) of coral effect size bcoral,

DT
f ,j*N hf ,j ,s

2
jf

� �
, ð3Þ

DT
c,j*N hc,j ,s

2
jc

� �
, ð4Þ

s2
j ~

log areamaxð Þ
log areajð Þ

� �
s2

j1, if original data unavailable

log areamaxð Þ
log areajð Þ

� �
s2

jb , if original data available

8>>><
>>>:

9>>>=
>>>;
ð5Þ

hf ,j*N b0zbcoral hc,j

� �
,s2

h

� �
, ð6Þ

where DT
f ,j is the study point estimate of the fish effect size hf,j from

the jth study; DT
c,j is the study point estimate of coral effect size hc,j in

the jth study; s2
j is the study fish or coral variance that is assumed

known; s2
j1 is the maximum of the known (bootstrap estimated)

site-level variances for fish or coral among the studies used; areamax

is the maximum reef area surveyed; s2
jb is the bootstrap-estimated

site-level variance for sites where raw data was available; and s2
h is

the estimated regional variance. The area-weighted s2
j

;
s were

likely to be conservative because they were scaled down from the

largest known study variance, expressing an equal or greater level

of uncertainty than any of the known sample variances, thus

weighting the variance based on the area of reef surveyed.

This continuous meta-analysis model was fully-specified by non-

informative prior distributions for the estimated parameters,

b0*N 0,1000ð Þ ð7Þ

s2
h*U 0,1000ð Þ ð8Þ

bcoral*N 0,1000ð Þ ð9Þ

In addition to the coral effects model, we included a NTA model

to estimate the effects of fishery protection on changes in coral and

fish metrics. This protection model (Mcp) included a modification

of equation (6) to include a dummy variable (status) that allowed

the slopes (bprotection) and intercepts (bprot 0) of the coral relationship

to vary between NTAs and fished areas:

hf ,j*N b0zbprot 0 statusð Þzbcoral hc,j

� ��
zbcoral hc,j

� �
� bprotection statusð Þ,s2

h

�
:

ð10Þ

Priors for all slopes and intercepts were as specified by equation (9).

We implemented both regional models using the PyMC Markov-

Chain Monte Carlo (MCMC) toolkit for the Python programming

language. Meta-analytical models were run for 20 000 iterations

with a 10 000 iteration burn-in period. We evaluated model

convergence using Geweke’s method [50]. Model goodness-of-fit

(GOF) was assessed using the deviance simulation methods in

PyMC, where ideal models yield GOF values near 0.5, providing

evidence of equivalence between simulated and observed deviance

[51]. Our Bayesian meta-analyses had GOF scores between 0.46

and 0.50 for all fish metrics, confirming good model fits for

estimating effect-size relationships, and model convergence was

deemed adequate in every instance [51]. Site-level posterior

distributions shrunk towards the regional mean, where the

extreme high- and low-value effect sizes had a reduced effect on

the overall estimates. Relative evidence for each model was

evaluated using the Bayesian Information Criterion (BIC) [52] and

the uncertainty surrounding each posterior parameter estimate.

From the area of highest posterior density in the posterior

distribution of each model parameter we obtained Bayesian

credible intervals (CI) that defined a 95% probability of a given

parameter lying within the CI range. During each MCMC

simulation we also sampled from the full conditional of the model

and data to construct predictive intervals (PI) that defined a 95%

probability of future observations being within the PI range. The

PI interval values allowed us to make probability statements

about the response of fish assemblage groups to future coral

depletion.
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