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ABSTRACT 

 

This work assesses two numerical approaches that are most commonly used nowadays 

for large-scale flood simulation. For this purpose, two different numerical models are 

developed, i.e. a finite volume Godunov-type model that solves the fully 2D shallow 

water equations and a simplified model that is based on the zero-inertia formula.  

 

The fully 2D model employs an explicit finite volume Godunov-type scheme to solve a 

pre-balanced formulation of the 2D shallow water equations (SWEs). The interface 

fluxes are calculated by an HLLC approximate Riemann solver with the local Riemann 

problems defined by the Riemann states that are reconstructed using a depth-positivity-

preserving approach. The second order accuracy is achieved using a Runge-Kutta 

integrated method in time and a slope limited linear reconstruction (MUSCL) scheme in 

space. For the explicit scheme, the adaptive time step controlled by the Courant-

Friedrichs-Lewy (CFL) criterion is implemented to maintain the computational stability. 

After being validated against several theoretical benchmark tests, this fully 2D model is 

applied to simulate different types of flood waves, including rapidly-varying dam 

breaks, slow-evolving inundations and coastal applications. In all of the tests, the 

numerical results are found to agree well with the analytical solutions, laboratory 

measurements, previously published predictions and field data whenever available. 

Closely related to the reliability of the numerical solutions, the effects of the mesh 

resolution and the numerical accuracy are also investigated in this work. The flood 

extent, water depth and arrival time are found to be sensitive to the change of the mesh 

resolution. However, the sensitive response of the numerical accuracy is only restricted 

to those simple analytical tests but not found in any of the realistic simulations.    

 

A new zero-inertia model is developed for predicting slow-varying flood inundations, 

where the governing equation is solved by an explicit finite volume scheme 

implemented with a depth-positivity-preserving condition. The new zero-inertia model 

is validated against analytical tests and a realistic flood inundation event in 

Thamesmead, England. The numerical results present good agreement with the 

analytical solutions and predictions produced by the aforementioned fully 2D shallow 

flow model. The mass conservation is strictly maintained throughout the computations. 

However, the computational cost is found to be much more expensive than the fully 2D 

model due to the use of much smaller time step in maintaining numerical stability.  
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Chapter 1 Introduction and Background 

1.1 Introduction 

 

The birthplaces of humanity are mostly near to rivers. Rivers and alluvial plain are an 

important part of the ecosystem and provide several essential functions for human use. 

Rivers provide not only drinking water but also water for irrigation, livestock farming, 

fishing, hydropower, traffic and industry. Furthermore, they play a significant role in 

sediment transportation, flora and fauna habitat, and influence the stability of ecosystem. 

However, rivers can also bring flood disasters to humanity. The possible reason of flood 

disasters can be sustained rainfalls, rapid snow melt, suddenly collapsed flooding 

defence (e.g. dam/dyke), tsunami, hurricane and severe storm in the coastal area, etc. 

These flood events could cost heavy casualties and huge economic and environment 

losses. 

 

Human activities have brought significant changes and pressures to the natural 

environment causing increases of natural disasters. Increased population density brings 

pressure on the supply of clean drinking water and food. And the spatial distribution of 

water resources is changed by humanity. Moreover, deforestation and urbanization are 

increasing, especially in the developing countries, in order to obtain economic and 

agriculture development. These changes of land-use lead to degradation of land cover 

and reduce the storage capacity of water. Therefore, these man-made influence factors 

lead to climate change causing a series of increasing problems, e.g. alternation of 

precipitation and evaporation, snowmelt and ice-melt, severe storm, hurricane and 

tsunami. All these problems may increase flooding disasters.  

 

Amongst the natural disasters like landslides, volcanic eruptions, drought, tsunami and 

earthquakes, the risk of flooding has evidently increased in the world wide in the recent 

year (e.g. Milly et al. 2002; Brissette et al. 2003; Kundzewicz et al. 2005; Teng et al. 

2006; Chang et al. 2009). In 1998, China experienced a devastating flood event in the 

Yangtze River basin from June to August, in which over 4,100 people died, over 10 

million acres of farmland were inundated, more than 4.3 million buildings were 

destroyed and 20 million people were made homeless. The total economic                       
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loss was over 150 billion Yuan. In October 2000, the south east England was attacked 

by extremely heavy rainfalls which consequently led to the worst flooding inundation in 

40 years. The consequences of this flood disaster involved destroyed structures and 

roads, traffic and power interruption, damaged farmland, crops and livestock, with a 

total economic loss of more than 100 million pounds. In July 2005, a devastating flood 

happened in Maharashtra and Mumbai, India. It took away over 1000 lives of people 

and caused more than 3.5 million US dollars of economic losses. In 2007, the southern 

and central China was hit by a severe flood that caused 700 people died and more than 

$ 7 million damages. An extreme flooding inundation attacked England and Wales in 

June and July 2007 resulting in 13 people dead and about 48,000 houses damaged, 

which also caused the local resources to the limit. After that, Sir Michael Pitt reviewed 

the 2007 flood event and reported the causes and consequences of flood events in Pitt 

(2007), in which Sir Michael Pitt made recommendations on the flood risk management 

to minimise the effect of floods on the individual and communities. In 2008, a 1-in-115 

year flood event happened in Morpeth, UK, affecting approximately 1,000 properties. 

Due to the heavy precipitation, a 1-in-100 year flood attacked America‟s Midwest in 

June 2008 affecting seven states and causing over $ 20 billion damages. Last year (2010) 

also saw severe flood disasters in several countries and regions, e.g. northeast and 

southwest of China, Madeira, central European, north eastern Brazil, etc. The risk based 

analysis has been undertaken to reduce the huge casualties, physical damages and 

economic losses related to these flood events.  

 

Flood risk management has been established to provide a well designed plan to warn, 

prevent, monitor and control flood risks, which in turn needs a reliable flood risk 

assessment. In a flood risk assessment framework, an efficient and reliable hydraulic 

model is an essential component to provide the hydraulic characteristics, especially for 

the complex floodplain topography. The hydraulic model can be adopted to simulate 

potential flood events, in order to provide important flood information, e.g. flood extent, 

water depth, velocity and arriving time. The predicted information can be used for flood 

mapping, land use planning, flood defence designing and evacuation planning in order 

to reduce flood damages in the frequently flooding area.  

 

Compared with the physical model, the computer model presents advantages in lower 

cost, flexibility, efficiency and accuracy. Many hydraulic modellers and other relevant 

scientists have contributed on the development of the hydraulic modelling. With the 
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rapid development of computer technology and computational techniques, now this is 

generally achieved by numerical simulation. The majority of flood flow can be 

considered as shallow flow, including the floods happening in the river, near-shore 

floods in the coastal area and dam-break induced floods. The feature of shallow flow is 

the horizontal length scale is much greater than the vertical length scale. In this case, the 

vertical flow acceleration can be neglected. The shallow water equations are 

implemented to solve the shallow flow hydrodynamics, based on the principles of mass 

and momentum conservation. The basic assumption of the shallow water equations is 

that the vertical velocity is very small, compared with the horizontal velocity. 

Consequently, the vertical pressure field can be considered as hydrostatic. The shallow 

flow model has been widely used for flood simulation (e.g. Zhao et al. 1996; Mingham 

and Causon 1998; Caleffi et al. 2003; Liang et al. 2004; Mignot et al. 2006; Liang et al. 

2007; Delis et al. 2008; Liang and Borthwick 2009). In this study, a novel numerical 

solver of shallow water equations is developed to simulate the complex hydrodynamics 

over the natural domain topography. And a new but simple numerical model is 

developed to solve the flow hydrodynamics over slow-varying floodplain, based on the 

simplified shallow water equation. These two numerical models are compared and 

validated against the realistic flood event. In the future, the proposed models can be 

implemented for the flood risk assessment of the real-world flood disasters. 

1.2 Objectives 

 

This thesis aims to implement a robust numerical scheme for solving the fully 2D 

shallow water equations for modelling complicated hydraulic phenomena and test it for 

different types of flood simulations. It is also intended to compare its performance with 

alternative flood modelling approaches. For this purpose, a new finite volume zero-

inertia model is developed and validated. Hence this work needs to achieve the 

following objectives,   

 

 Develop a fully 2D shallow flow model to solve the flux term and the source 

term well-balanced shallow water equations using a finite volume Godunov-type 

scheme and implement a non-negative depth preserving method to deal with the 

wet-dry fronts over complex topography; 
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 Validate and apply the fully 2D shallow flow model for different types of flood 

modelling including dam-break and coastal flood inundation; 

 Investigate the effects of the grid scale and the numerical accuracy on flood 

modelling; 

 Develop an explicit finite volume free-limited numerical scheme for solving the 

simplified shallow water equation (zero-inertia equation) and test it for flood 

modelling; 

 Compare the performance of the two models in flood simulations. 

 

The proposed fully 2D shallow flow model is expected to be able to accurately solve 

complicated hydrodynamic problems in different flow regimes including subcritical 

flow, transcritical flow, supercritical flow and shock-like flow discontinuities, and 

effectively resolve the repeating wetting-drying problem over complex domain 

topography. Therefore, the proposed numerical model can be employed in the realistic 

applications, which could provide useful information for the flood prevention and 

defence design and also offer a guide for evacuation in a flood event. The zero-inertia 

model is proposed to be efficient and capable of reproducing reliably the slow varying 

flood flows happening over gentle-sloped floodplains. In this work, the efficiency of the 

zero-inertia model is examined and compared with the fully 2D shallow flow model.   

1.3 Outline  

 

The next chapter presents a literature review of the numerical approaches to solve fully 

2D shallow water equations and zero-inertia equation. Chapter 3 describes a finite 

volume Godunov-type scheme for solving the well-balanced 2D shallow water 

equations, incorporating a non-negative reconstruction method and a local bed elevation 

modification approach to resolve the wet-dry front problem. The HLLC approximate 

Riemann solver is employed to evaluate the interface fluxes. The higher order accuracy 

is achieved by implementing the Runge-Kutta time integration method in time and the 

MUSCL scheme in space. The numerical model is validated and applied to dam-break 

flooding simulation on the realistic and experimental cases in Chapter 4. Chapter 5 

validates the fully 2D shallow flow model against coastal wave run-up simulation in the 

analytical and experimental cases. The investigation of the scale effect and numerical 
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accuracy is carried out based on the analytical and realistic cases in Chapter 6. The zero-

inertia equation is derived from fully 2D shallow water equations and then solved by an 

explicit finite volume method in Chapter 7. An effective non-negative approach (in term 

of water depth) is implemented to capture the wet-dry interface over complex domain 

topography. The zero-inertia model is validated against the idealised flooding 

inundation event at Thamesmead area. The numerical results and computational cost are 

compared with the fully 2D simulation. Chapter 8 presents the conclusion, the 

recommendation and the possible future research. 
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Chapter 2 Literature Review 

This chapter reviews the development of researches on the numerical solutions of fully 

2D shallow water equations and zero-inertia equation in the last several decades. Fully 

2D shallow water equations (SWEs) have been widely used to solve shallow flow 

hydrodynamic problems of complex flood flows (e.g. Alcrudo and Garcia-Navarro 1993; 

Zhao et al. 1996; Anastasiou and Chan 1997; Hu et al. 1998; Zhou and Stansby 1999; 

Hubbard and Dodd 2002; Caleffi et al. 2003; Haider et al. 2003; Pan et al. 2006; Liang 

et al. 2007; Zhang et al. 2007; Gallegos et al. 2009; Liang 2010). The most challenging 

issues in the numerical solutions of shallow flow problems can be described as follows, 

 

 Accurately solve subcritical, supercritical and transcritical flows;  

 Accurately simulate the shock-like flow discontinuities;  

 Accurately simulate the steady and the unsteady flow; 

 Capability to deal with the complex domain topography;  

 Effectively handle the repeat wetting and drying problems;  

 Represent high roughness value along the flood route.  

 

Herein the review studies different methods solving these most challenging flow 

hydrodynamic problems in the real-world application of 2D shallow flow model, and 

presents the advantages and the disadvantages of these numerical approaches. Then a 

new fully 2D shallow flow model will be proposed to solve all the most challenging 

issues in a single code based on this review.  

 

The zero-inertia equation (ZIE) is simplified from fully 2D shallow water equations by 

eliminating the dynamic terms of momentum equations. The assumption is based on the 

balance of the friction and gravity forces. Due to the mathematical simplicity, the zero-

inertia model is popular for the urban flooding simulation in recent years (e.g. Bates and 

de Roo 2000; Bradbrook et al. 2004; Yu and Lane 2006a).  The review presents the 

developments and the achievements of zero-inertia model, and also shows the 

encountered problems in the research in recent several decades. Then a new numerical 

scheme is proposed to solve the zero-inertia equation.  
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2.1 Fully 2D Shallow Flow Model 

 

The research on seeking solutions of fully 2D shallow water equations has lasted for 

more than one century. The first instance was done by deriving analytical solutions of 

certain simple idealised cases (e.g. Ritter 1892; Dressler 1952; Whitham 1955). With 

the fast development of electronic computers in the latter half of the 20
th

 century, 

numerical solutions have been intensively sought for different types of shallow flow 

simulations (e.g. Kutija 1993; Tchamen and Kahawita 1998; Zoppou and Roberts 2003; 

Rogers et al. 2001; Zhou et al. 2001; Liang et al. 2004; Horritt 2004; Sanders 2008; 

Wright et al. 2008; Liang and Borthwick 2009; Lee and Wright 2010). In general, the 

numerical models based on the 2D shallow water equations have been widely used in 

simulating flood inundation (e.g. Jha et al. 2000; Zoppou and Roberts 2000; Sheu and 

Fang 2001; Yoon and Kang 2004; Mignot et al. 2006; Marche et al. 2007; Liang et al. 

2008; Liang and Marche 2009; Franchello 2010).  

 

Numerical models based on different numerical approaches have been widely reported 

for flood inundation simulations, e.g. finite difference method (FDM) (e.g. Miyata 1986; 

Casulli 1990; Fennema and Chaudhry 1990; Wang et al. 2000; Liang et al. 2007), finite 

volume method (FVM) (e.g. Bellos et al. 1991; Alcrudo and García-Navarro 1993; 

Zhao et al. 1996; Anastasiou and Chan 1997; Hu et al. 1998; Caleffi et al. 2003; Wang 

et al. 2003; Horritt 2004; Lai et al. 2005; Nguyen et al. 2006) and finite element method 

(FEM) (e.g. Akanbi and Katopodes 1988; Leclerc et al. 1990; Tisdale et al. 1998; 

Tucciarelli and Termini 2000; Burg et al. 2001; Schwanenberg and Harms 2004).  

 

Compared with FDM and FEM, the finite volume method presents attractive advantages 

and merits, which have been discussed by Tan (1992), Zhao et al. (1994), Zhao et al. 

(1996) and Ferziger and Peric (1999).  

 

 The finite volume method is a discretization method based on the integral form 

of the conservation laws. Hence, the mass and momentum can be maintained 

strictly; 

 The finite volume method is the simplest method to be operated maintaining the 

conservation laws in the numerical simulation, especially for the hyperbolic 
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conservation laws of the 2D shallow water equations. In the finite volume 

method, the local conservation is achieved in each discretized cells;  

 The finite volume method and the finite element method can be easily 

formulated for the unstructured grid system for the arbitrary geometries. 

However, the computational cost of the finite volume method is much less than 

the finite element method because the size of matrix in the finite element method 

consumes lot of computational time at every time step; 

 Shock-capturing schemes can be easily constructed in conservative form, due to 

the application of the integral form of conservation equation. 

 

In the application of dam-break flow, the shock wave happens and generates the 

Riemann problem. The Riemann problem is a special initial value problem, which 

consists of piecewise constant states with a single jump discontinuity. It naturally occurs 

in finite volume method due to the discreteness of the grid. Armed with automatic 

shock-capturing, a Godunov-type scheme can be easily implemented with the finite 

volume method to solve the Riemann problem because the finite volume method is 

based on the conservative form of shallow water equations. In the original Godunov-

type scheme, the wave propagation information at the discontinuity can be solved to 

give the local exact solution, which is considered as the exact Riemann solver 

(Godunov 1959). However, the exact Riemann solver consumes much computational 

cost due to the mathematical complexity. In contrast, the approximate Riemann solver 

provides a simpler and more efficient solution of the Riemann problem, such as, Roe‟s 

scheme (Roe 1981), Osher‟s scheme (Osher 1981), HLL scheme (Harten et al.1983), 

and HLLC scheme (Toro et al. 1994).  

 

Toro (2001) presented the approximate Riemann solver in the application of shallow 

flow models. A linear Riemann solver is attractive to be used due to its simplicity and 

efficiency. However, it is also limited by some shortcomings. First, the linearized 

Riemann solver may gives spurious oscillation when dealing with the transcritical flow. 

Second, the negative water depth could be calculated in the strong rarefaction waves. 

Furthermore, the linear Riemann solver has difficulty to deal with the strong wave 

interaction. However, the Roe‟s Riemann solver (Roe 1981), known as sophisticated 

linear Riemann solver, presents satisfactory performance on solving the Riemann 

problem. 
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The non-linear Riemann solvers present advantages on solving the aforementioned 

problems in the linear Riemann solvers. However, it also appears some drawbacks due 

to the simplification. In this case, the number of wave families in the exact Riemann 

solver may be decreased in the solution of Riemann problems in order to gain the 

simplification. And the simplification may cost much numerical dissipation. The HLL 

Riemann solver developed by Harten et al. (1983) belongs to this category, in which 

only two wave families are involved in the wave structure. Hence the HLL Riemann 

solver can only be implemented for 1D case for accurate simulations. The HLLC 

Riemann solver (Toro et al. 1994) was developed to complete the missing wave 

families in the HLL Riemann solver, in order to overcome the drawback of the 

simplification. The HLLC Riemann solver has been successfully adopted to solve the 

Riemann problems for 2D shallow flow modelling (e.g. Fraccarollo and Toro 1995; 

Liang et al. 2004). Erduran et al. (2002) investigated and compared the accuracy, 

applicability, efficiency and stability of different Riemann solvers in the finite volume 

shallow flow model, i.e. Osher, HLL, HLLC, flux difference scheme (i.e. Roe) and flux 

vector splitting. This study recommended that the HLLC Riemann solver is suitable for 

all kinds of applications.  

 

With the application of the HLLC Riemann solver to solve the interface fluxes, the 

Godunov-type finite volume scheme can be applied to handle different flow regimes 

(e.g. transcritical flow, subcritical flow and supercritical flow), steady and unsteady 

flow, as well as shock-like discontinuities. In the last two decades, research has been 

focused on developing Godunov-type schemes with capability to cope with complex 

domain topography and track moving wet-dry interface. 

 

For flow over complex topography, the aim is to have a Godunov-type scheme that 

preserves the solution of lake at rest. Such a scheme is defined as well-balanced 

(Greenberg and Leroux 1996) or satisfying C-property (Bermúdez and Vázquez 1994). 

Numerous well-balanced shallow flow models have been reported and it is impossible 

to give a complete account. Among those most notable techniques for obtaining well-

balanced solutions are the upwind discretization of bed slope source terms (e.g. 

Bermúdez and Vázquez 1994; García-Navarro and Vázquez-Cendón 2000), surface 

gradient method (Zhou et al. 2001), mathematical balancing (Rogers et al. 2003; Liang 

and Borthwick 2009) and hydrostatic reconstruction (Audusse et al. 2004).  
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Bermúdez and Vázquez (1994) developed the upwind scheme of the bed slope source 

term discretization for the hyperbolic system of shallow water equations to solve the 1D 

unsteady flow problems. Compared with point-wise methods, the upwind scheme 

presents more efficient and better performance on dealing with the channel flow with 

constant rectangular cross-section (Vázquez-Cendón 1994). Later, the upwind scheme 

was extended to maintain the conservation property in the hyperbolic 2D shallow water 

equations by Bermúdez et al. (1998). The upwind scheme was improved by Vázquez-

Cendón (1999) and García-Navarro and Vázquez-Cendón (2000) to solve a wider range 

of the flow problems. However, the improved upwind scheme is complex for 

implementation.  

 

Toro (1997) introduced a simple and straightforward method, i.e. fractional step method. 

It is performed on the inhomogeneous form of the SWEs, which is split into a 

homogenous equation and a set of ordinary differential equations. These equations are 

individually solved by a series of term-by-term splitting computation. However, the 

fraction step method shows poor performance in dealing with the quasi-steady or steady 

flow problems. LeVeque (1998) developed a new approach to balance the bed gradient 

terms with the flux terms, in which a Riemann problem is introduced at the centre of 

cells to address the source terms into the wave propagation algorithm. Compared the 

fractional step method, this method was successfully implemented to predict quasi-

steady flow. However, it met difficulties when dealing with the steady transcritical flow 

with a shock. 

 

An attempt of simple and accurate solution was carried out by Zhou et al. (2001) for the 

development of well-balanced scheme. Zhou et al. (2001) developed the surface 

gradient method (SGM) to solve the source terms by reconstructing the conservative 

variables at cell interfaces in MUSCL-type schemes. Several merits of the surface 

gradient method were mentioned by Zhou et al. (2001). First, all the source terms can 

be discretized by the simple centred method without special treatment. Second, the 

surface gradient method is suitable to solve the homogeneous form of the equations. 

Third, the water surface elevation can be accurately calculated for data reconstruction 

instead of water depth. Finally, the surface gradient method has been successfully 

implemented to solve the steady and unsteady flow. However, the surface gradient 

method has difficulty to solve the flow problems over a vertical step. Hence, an 

improved method called surface gradient method for steps (SGMs) was developed by 
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Zhou et al. (2002) by extending the surface gradient method to solve the shallow water 

equations, especially for complex bed topography with a vertical step. Then the 

SGM/SGMs were successfully implemented by Zhou et al. (2004) to solve the dam-

break cases in CADAM project.  

 

Hydrostatic reconstruction method (HRM) was developed by Audusse et al. (2004) to 

prevent the imbalance between flux and bed slope source terms, i.e. to reconstruct the 

interface variables according to the balance relationship between the hydrostatic 

pressure and the pressure caused by bed topographic gradient in the steady flow. Later, 

Audusse and Bristeau (2005) adopted the hydrostatic reconstruction method to 

reproduce complex hydrodynamics phenomena in the idealized and realistic cases with 

good performance. HRM was extended to higher order by Noelle et al. (2006), in order 

to study arbitrary order of accuracy in the finite volume scheme, in which the fourth and 

fifth order numerical results predicted by the new scheme presented expected 

convergence rates and high resolution of discontinuities. The hydrostatic reconstruction 

method (HRM) was compared with the surface gradient method (SGM) by Lai et al. 

(2010). The comparisons of the predictions demonstrate that both of HRM and SGM 

can be implemented to solve the steady flow problems. The SGM generates unphysical 

velocity in dealing with the 2D still flow over a symmetric hump. The spurious velocity 

field is induced by the central bed-slope discretization in the SGM. And the unphysical 

velocity can be decreased by increasing the mesh resolution. In contrast, HRM 

maintains the steady state without spurious velocity. Compared with SGM, HRM shows 

better computational stability, accuracy and efficiency in dealing with the shallow flow 

problems over irregular bed topography. However, the HRM was first developed to 

preserve the conservation property based on the kinetic homogeneous solver.  

 

A simple and efficient method was introduced by Lee and Wright (2010), in which the 

homogenous form of one-dimensional shallow water equations was modified to enable 

the source terms combined with the flux term. Then the combined flux terms can be 

directly solved by the same structure of numerical scheme. Several advantages of this 

simple method were demonstrated by the computational results in Lee and Wright 

(2010). First, this effective scheme maintains the balance of the flux and source terms in 

dealing with flow problems over irregular bed topography. Second, the physical 

hydrodynamics features are exactly represented in the computation. Third, higher-order 
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scheme can be developed straightforwardly without special treatment. Finally, this 

approach can be widely applied to different conservative numerical schemes.   

 

The aforementioned numerical methods use numerical reconstruction/modification to 

treat the imbalance between the flux and bed slope source terms. Another strategy to 

preserve the well-balanced property is the algebraic approach, i.e. mathematically 

rearranging the shallow water equations to achieve the equilibrium conditions (Roger et 

al. 2001; Roger et al. 2003). This mathematical balancing method was straightforwardly 

operated without implementing a reconstructed method. Hence, the computational cost 

can be saved. And the complex combination of the numerical schemes can be avoided. 

This reformulated shallow water equations can be called as pre-balanced shallow water 

equations. Liang and Marche (2009) and Liang and Borthwick (2009) demonstrated that 

the numerical scheme automatically maintains the conservation property by using the 

pre-balanced shallow water equations, without implementing special numerical 

approach to balance the source term. Hence, the merit of algebraic approach (Roger et 

al. 2003) is the strong capability to provide well balance between the flux and source 

terms without complicate numerical treatment.  

 

For applications involving wetting and drying, well-balanced and non-negative (in 

terms of water depth) scheme are desirable. It is not a trivial task to design a numerical 

model to reproduce the wetting and drying process as it is essentially a moving 

boundary problem where the wet-dry interface continuously and repeatedly evolves 

inside the computational domain. Negative water depth and unphysical high velocities 

are easily predicted near the wet-dry fronts and causes numerical instability.  

 

A traditional way to deal with this is to add small water depth in the dry cells to avoid 

direct calculation of wetting and drying (e.g. Wang 1987; Vincent et al. 2001; Lin et al. 

2003). Although this might be practically feasible, Toro (2001) pointed out that adding 

water mass, even though it is small, in dry-bed calculations is physically incorrect and 

may significantly influence the accuracy of the flow solution near the wet-dry front.  

 

In the framework of finite volume method, Zhao et al. (1994) developed a solution for 

the wetting and drying cycles between the shallow flow elements in the river basin, 

according to the hydraulic conditions. The cell faces are classed as land boundary and 

wet boundary. Three types of flow elements are classed as entirely dry element, 
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partially dry element and wet element, respectively for three different states (Zhao et al. 

1994) by considering two levels of the water depth tolerance (threshold depth) and two 

types of cell faces. With four land boundaries of a cell element, the entirely dry element 

is not considered in the computation for the present time step. The partially dry element 

is calculated only considering the mass flux calculation and neglecting the momentum 

exchange. When the flow element is wet, the mass and momentum fluxes are both 

calculated by the Riemann solver. The wet-dry solution is proved to be suitable for 

handling the wetting and drying processes in the river basin with complicated bed 

topography.    

 

A similar approach was presented by Sleigh et al. (1998) based on the contribution of 

Zhao et al. (1994), which mentioned the limitation of Zhao et al. (1994) approach is not 

easy to be quantified. The improved approach employs the same monitoring system to 

define the wet-dry state in the grid cells (entirely dry element, partially dry element and 

wet element). However, Sleigh et al. (1998) achieved the same results as Zhao et al. 

(1994) by modifying the fluxes at the cell face instead of removing dry cells from the 

updating calculation. The improved method is validated against a wide range of 1D and 

2D shallow flow problems, in which the wetting and drying procedure is accurately 

predicted. Hubbard and Dodd (2002) implement a similar method of Sleigh et al. (1998) 

to successfully reproduce the wetting and drying procedure and track the shoreline 

based on a hierarchical Cartesian Adaptive Mesh Refinement (AMR) algorithm. 

However, with different criterions, the simulations could show big differences in 

wetting and drying process. This kind of approach is developed based on the 

professional experience and the numerical results depend on the setting of the threshold 

parameters.  

 

Numerical models that directly solve the wet-dry interfaces have been reported in the 

family of the finite volume Godunov-type methods. The modified wave speed approach 

is introduced by Toro (1994), in which the wave speed estimates in the HLL 

approximate Riemann solver are modified for the dry front at the cell interface. This 

method has been implemented by Fraccarollo and Toro (1995) to reproduce an 

experimental dam-break case with an initial dry bed downstream of the dam. The 

numerical scheme is found to be able to provide satisfactory simulation of the main 

hydrodynamics features of the dam-break flow. Hu et al. (2000) introduced a simpler 

approach named minimum wet depth approach and compare it with the modified wave 
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speed approach. The new approach redefines the dry state as the water depth is below a 

water depth tolerance equalling to 10
-6 

m. In this case, the modification of the wave 

speed estimates can be avoided. This method is successfully implemented for the 

simulation of wave overtopping of coastal structures. 

                                                                                                                                    

Brufau et al. (2002) and (2004) introduced a local bed modification technique to handle 

wetting and drying for both steady (Brufau et al. 2002) and unsteady flows (Brufau et al. 

2004). Based on the physical law at the advancing front, the technique was implemented 

with the upwind discretization of bed slope terms for well-balancing. However, the 

model predicts negative water depth and an approach for controlling negative depth was 

implemented in Brufau et al. (2004) to eliminate the mass error. The method locally 

modifies the flow variables and may cause violation of the momentum conservation.  

 

Based on a well-balanced hydrostatic reconstruction technique, Audusse et al. (2004) 

presented a model properly simulates the wetting and drying and preserves the non-

negativity of water depth, in which there is no artificially setting of zero water depth and 

velocity. Marche et al. (2007) implemented the hydrostatic reconstruction method to 

deal with the wetting and drying processes over varying slope. The numerical 

simulations are validated against the analytical solutions with good agreement. 

Motivated by Audusse et al. (2004), Liang and Marche (2009) developed a non-

negative water depth method to reconstruction the flow variables at the wet-dry 

interface, in order to maintain the numerical stability. This method is proved to be 

effective and robust for a wide range of application, including moving shoreline over 

varying bed slope and dam-break over irregular bed topography. 

 

Another new wetting and drying algorithms is recently reported by Casulli (2009), 

which is derived from the governing differential equations to discrete the water surface 

elevation in order to maintain mass balance and produce wetting/drying process. The 

induced mildly nonlinear system provides rigorous mass conservation and maintains 

non-negative water depth even for the coarse mesh. The accurate wetting and drying 

process can be achieved for the dry area with exact zero water depth even with the large 

time step.                            

 

Inclusion of friction source terms to account for high value of roughness in the flow 

path is also essential in practical flooding simulations. The problem is normally 
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associated with wetting and drying. In the vicinity of wet-dry front, the vanishing water 

depth may exaggerate the friction force and cause the flow to reverse. This is physically 

meaningless and results in unstable solutions. Explicit numerical scheme for the friction 

term will cause instability in terms of vanishing water depth near the wet-dry front 

(Burguete et al. 2007; Burguete et al. 2008; Murillo et al. 2009).  

 

Implicit discretization of the friction source terms has been recognised to give more 

stable simulation with infinitesimal water depth (Brufau et al. 2002). Yoon and Kang 

(2004) and Burguete et al. (2008) suggest a fully implicit approach with a simple 

splitting technique to discretize the friction source term. However, Burguete et al. (2008) 

and Liang and Marche (2009) realised that an implicit discretization is not adequate to 

maintain stability of a numerical scheme when the frictional flow takes place in an 

initially dry domain with irregular bed profile. They suggested that the friction force 

should be bounded to prevent unphysical behaviour of the flow. 

2.2 Zero-inertia Model 

 

Due to the high computational cost associated with the fully 2D simulations, substantial 

efforts have been made to develop computationally more efficient flood models. One of 

the strategies is to simplify the governing equations, whilst endeavouring meanwhile to 

maintain a reasonable physical representation of flood waves. The zero-inertia models 

(ZIM) or diffusion-wave models (DWM) fall in this category. In the realistic application, 

a special case is that the flood flow happens over a gentle sloping floodplain with slow 

flow speed. In this case, the temporal and convective effect can be neglected. The fully 

2D shallow water equations can be simplified by neglecting the momentum dynamic 

terms to derive the zero-inertia equation. The researchers have developed several 

flooding flow models based on this concept (e.g., Bates and de Roo 2000; Bradbrook et 

al. 2004; Yu and Lane 2006a). The simplified governing equation and hydrodynamic 

feature leads to a simpler numerical solution of the zero-inertia equation that could 

potentially provide further computational efficiency.   

 

After it was introduced by Cunge et al. (1976), the diffusion-wave or zero-inertia 

concept has been used by many researchers to develop over-land flow models and a 

number of successful ZIMs or DWMs for flood simulations have also been reported and 
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become popular in literature. Extended from the LISFLOOD catchment model (De Roo 

et al. 1999), Bates and De Roo (2000) adopted the zero-inertia approach to develop their 

raster-based flood model (LISFLOOD-FP), in order to provide an accurate numerical 

tool for simulation of flooding extent, without considering the process of the flooding 

event. This explicit finite difference model implements a 1D kinematic wave 

approximation to represent the channel flow and a 2D diffusion wave approximation for 

the floodplain flow. The flux across each cell face is estimated by the analytical flow 

formulae Manning equation. Compared with the satellite-derived data and the air photo, 

the numerical simulation presented an obvious uncertainty on capturing realistic 

flooding extent. The best prediction matched less than 90 percentages of the real 

inundated area. However, the error may be caused in the segmentation of the satellite 

image. Further studies need to be carried out to improve the capability of capturing 

more accurate inundation extent. And the effect of the data resolution on the numerical 

accuracy should be investigated for the raster-based model. 

 

Later, the effect of the spatial resolution of 1D LISFLOOD-FP was studied by Horritt 

and Bates (2001b), in which the near channel floodplain storage (NCFS) scheme is 

implemented to deal with the problems at the conjunction of the narrow channel and the 

floodplain pixel. The research shows that the constant response to the changing scales is 

observed on the predicted inundation extent. While the NCFS-model presents more 

stable response to the flood wave travel time than the original LISFLOOD-FP. Hence, 

the near channel storage effect plays an important role of the model response to the 

changing scale, for which the shoreline location and flooding route can be seriously 

influenced. And the acceptable travel time and flooding area cannot be achieved at the 

same time. 

 

Later on, the computational performance of LISFLOOD-FP has been compared with a 

1D model (HEC-RAS) by Horritt and Bates (2002) and a 2D finite element shallow 

flow model (TELEMAC-2D) by Horritt and Bates (2001a) and Horritt and Bates (2002). 

HEC-RAS is developed by the US Army Corps of Engineers, based on the fully 1D St 

Venant equations for unsteady open channel flow. TELEMAC-2D (Galland et al. 1991; 

Hervouet and Van Haren 1996) employs a 2D finite element method to solve the fluvial 

flooding problems based on fully 2D shallow water equations. Horritt and Bates (2001a, 

2002) demonstrated that LISFLOOD-FP can reproduce a similar accuracy level of flood 

extent and flood wave travelling times, compared with the other two models, despite the 
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use of highly simplified equation and simple numerical method. And the lack of the 

inertia and advection terms may cause the differences between the predictions and the 

different responses to the friction parameterisations.  

 

To further improve the present LISFLOOD-FP model, Hunter et al. (2005) developed 

two methods to maintain the computational stability and improve the numerical 

efficiency for this explicit storage cell code. One is a user-free-parameter adaptive time 

step (ATS) method, which is mainly estimated by the water depth gradient. Then the 

ATS scheme is tested by the analytical solutions of the wave propagation over flat and 

complex topography. The comparison with the fixed-time-step code shows the ATS 

method significantly improves the computational accuracy and stability. The code is 

found to be sensitive to the floodplain friction for the application over the complex 

domain topography. An alternative approach of a flow limiter was also introduced by 

Hunter et al. (2005) to limit the maximum flux across the cell interface by considering 

the water depth difference, in order to maintain the stability at the cell interface. And the 

flow limiter is found to be sensitive to the time step and grid size. The grid size and the 

time step are controlled by the artificial factor. The selection of grid size and time step 

could significantly influence the flow limiter. Hence, the effect of the flow limiter is 

questioned and needs to be further investigated. 

 

Later, Hunter et al. (2006) realised the disadvantages of the flow limiter and suggest the 

ATS approach is a better solution to maintain the computational accuracy. Further 

studies are carried out to validate the ATS-based model for the realistic application. The 

ATS-based model provides better predictions than the original LISFLOOD-FP with 

fixed time step, however, it consumes much more computational time. Hunter et al. 

(2008) also revealed that the storage cell model is markedly more computational 

expensive, compared with the fully shallow flow model. Hence, a solution is 

recommended by Hunter et al. (2008) to improve the computational efficiency by 

including inertia terms and the important flow physical elements for particular case. 

According to this concept, Bates et al. (2010) introduced a new storage cell model with 

an inertia formulation to achieve the computational efficiency and stability, and 

reiterated that the reason of using a small time step is the lack of mass and dynamic 

terms. However, the core concept of zero-inertia model may be broken by the inertia 

formula in this new model.   
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Bradbrook et al. (2004) introduced another explicit model (JFLOW) based on the 

diffusion-wave concept for the flood inundation simulations. With a similar basic 

concept of LISFLOOD-FP, JFLOW shows two main differences with LISFLOOD-FP 

model (Bates and de Roo 2000), i.e. representation of channel and implementation of 

the wetting parameter. The wetting parameter is only operated in JFLOW to control the 

propagation of the wet front while LISFLOOD-FP only uses the drying parameter to 

trace the dry front. Furthermore, the transfer of flow between the channel and floodplain 

cells only happens where there is excess flow from the channel cells in JFLOW. 

However, LISFLOOD-FP enable the transfer happens to any floodplain cells where the 

channel passes by, by adopting a kinematic wave treatment of flow in the channel.  

 

Application of ZIMs/DWMs (Bradbrook et al. 2004) in urban flood prediction was also 

explored by Yu and Lane (2006a), in which the effect of mesh resolution was also 

investigated. The performance of predicted flood wave travel time and inundation extent 

is proved to be quite sensitive to the mesh resolution. The wet-dry treatment (i.e. 

wetting parameter) is found to reduce the model dependence of the roughness parameter, 

which can partly compensate for a coarser mesh resolution. However, the coarser 

resolution will weaken the effect of the roughness parameter on the flooding process. 

Hence, for the urban flood event modelling, a sub-grid-scale treatment is developed by 

Yu and Lane (2006b) for an explicit representation of small scale topographic variation 

to provide more effective effect of the structure element. 

2.3 Conclusions 

 

This chapter has reviewed the recent progress of researches on the numerical methods to 

solve the shallow flow hydrodynamics over complex domain topography and the zero-

inertia equation applied with a gentle-sloping floodplain. For the fully 2D shallow water 

model, much effort has been devoted to tackle the aforementioned challenges in the 

practical numerical flooding inundation model. But there is still a scope for further 

research in this area, especially in developing a single model that can resolve all the 

problems. Presented in 1D, the numerical scheme presented by Liang and Marche (2009) 

is such an attempt. The model solved the pre-balanced shallow water equation due to 

Liang and Borthwick (2009) using a non-negative (in terms of water depth) finite 

volume Godunov-type scheme for dry-bed applications over complex domain, 
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incorporated with the HLLC Riemann solver to calculate the interface flux. The friction 

source term was evaluated using a limited implicit scheme. Therefore this work aims to 

extend the Liang and Marche‟s model into 2D and improve it for practical flooding 

inundation model.  

 

Zero-inertia model or diffusion-wave model has been intensively investigated for the 

realistic flooding simulation over slow-varying floodplain for the last decades. In this 

work, concerning the merit of the finite volume method, i.e. mass conservation, the 

zero-inertia equation is going to be solved by using an explicit finite volume method, 

incorporated with a positive water depth method to deal with the wetting and drying 

problems. With this non-negative water depth method, the flux could be automatically 

controlled. This model seems to be able to provide a limiter-free solution of the zero-

inertia equation.  

 

In the next chapter, the fully 2D shallow flow model is presented to solve the complex 

hydrodynamics phenomena over irregular boundary geometry and bed topography, 

including tidal wave flow, hydraulic jump, shock-like discontinuous problems and 

steady transcritical flow. Further investigation and application of the presented fully 2D 

shallow flow model will be carried out in the later chapters. In the following chapter, 

the new positivity-preserving zero-inertia model will be represented and validated 

against an idealistic flooding event at Thamesmead, UK.  
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Chapter 3 Development of a Fully 2D Shallow Flow Model 

Objectives 

 

 Develop a novel well-balanced fully 2D shallow flow model to solve different 

flow regimes and shock-like discontinuities over non-uniform domain 

topographies;    

 Validate the model against different benchmark tests. 

 

Introduction 

 

In recent years, research on shallow flow modelling has been mainly focused on 

developing models for simulating real-world problems. This in turns requires a model to 

be able to capture complex flow hydrodynamics such as shock-like discontinuities, 

achieve well-balanced solution and handle wetting and drying over complex domain 

topographies.  In this chapter, these challenging issues are resolved in a single code. A 

pre-balanced formulation of shallow water equations (SWEs) is first derived, which 

automatically maintains well-balanced solution for wet-bed applications. The pre-

balanced SWEs are then solved by using a finite volume Godunov-type scheme 

implemented with an HLLC approximate Riemann solver for flux calculation. The 

higher order accuracy is achieved using a second-order Runge-Kutta time integration 

method together with the slope limited linear reconstruction (MUSCL) scheme in space. 

For wetting and drying over complex domain topography, a depth-positivity-preserving 

approach is devised to reconstruct the flow variables at the cell interfaces for flux 

calculation. The friction source term is evaluated using a splitting point-implicit scheme. 

The proposed model is validated against several analytical test cases, including tidal 

wave over an irregular bed profile, oblique hydraulic jump, shock reflection against a 

circle cylinder, shock diffraction at the throat of the hourglass channel, steady 

transcritical flows over a hump and oscillation flow in a frictional/frictionless parabolic 

bowl.       



21 

 

3.1 Fully 2D Shallow Water Equations 

 

The 2D SWEs have been used in simulating different types of shallow flow 

hydrodynamics for a long time (e.g. see Toro (2001) for a review). In a matrix form, the 

hyperbolic SWEs are generally written as 

            s
gfq
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
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yxt
, (3.1) 

where q is the vector containing the conserved flow variables, f and g denotes the flux 

vectors in the x and y-direction, respectively, s is the source term vector, t is the time 

and x and y are the Cartesian coordinates. The vectors are given by 
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where zb is the bed elevation above datum, h is the water depth, u and v are the depth-

averaged velocity components in the x and y-direction, g is the acceleration due to 

gravity, ρ is the water density, –
x

zb




and –

y

zb




are the bed slope in the Cartesian 

directions and τbx and τby denote the bed friction stresses, which can be calculated by the 

following formulae 

             
22 vuuC fbx    and 

22 vuvC fby   , (3.3) 

in which the bed roughness coefficient Cf can be evaluated by 
3/12 hgnC f   and n is 

the Manning coefficient. When h < 1.0 × 10
–6

, Cf is directly set to zero (a cell is 

assumed to be dry when h < 1.0 × 10
–6

).  

 

The above formulation of shallow water equations has been widely used. In the x-

direction, the pressure difference and the force induced by the bed gradient can be 
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represented by the terms
x

z
gh

x

hg b











2

2
. In a control volume as shown in Figure 3.1, 

the pressure forces and the effect of bed slope are expressed as 

            bb zhgghghFPP   2
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121
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1
, (3.4) 

where P1 and P2 are the pressure force, Fb is the force acting on the fluid by the sloping 

bed, h1 and h2 are the water depth at the west and east faces of the control volume; ρ is 

the constant water density; h  is the mean water depth across the control volume; Δzb is 

the difference of bed elevation at the west and east faces of the control volume. After 

being divided by Δx and ρ and assuming that Δx is infinitely close to 0, the above 

expression can be rewritten as 
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2

2
, (3.5) 

which is the same as the aforementioned pressure terms in the SWEs (3.1) – (3.2).  

 

 

Figure 3.1 Deriving the pre-balanced SWEs: the control volume. 

 

In a motionless lake with h ≠ 0, u = 0 and v = 0, the pressure related expression (3.5) 

should equal to zero, i.e. 0
2

2












x

z
gh

x

hg b

 
. However, directly discretizing the 

above SWEs cannot maintain the solution of lake at rest at the discrete level (e.g. Roger 

et al. 2003), i.e. the discretized formulation of (3.5) does not equal zero. The imbalance 

may numerically drive the original motionless lake into motion if no special numerical 

technique is implemented (Rogers et al. 2003), which is physically incorrect. Herein the 
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aim is to derive a new set of SWEs that can automatically balance the flux and source 

terms and give zero value to (3.5) at the discrete level so that well-balanced solution can 

be achieved regardless of the numerical method being used. In equation (3.5), replacing 

the water depth h by h = η – zb leads to 
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,     (3.6) 

where η is defined as the water level as shown in Figure 3.2. The vector 

terms of the SWEs (3.2) can now be rewritten as 
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(3.7) 

 

 

Figure 3.2 Sketch of the bed topography for the shallow water equations. 

 

In a still lake, η is a constant for the whole domain and 0F , 0




x


, u = 0, v = 0. The 

momentum in x-direction in equation (3.7) leads to  
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In this work, a Godunov-type scheme is implemented to solve the shallow water 

equations, incorporated with the HLLC approximate Riemann solver to estimate the 
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interface fluxes. Herein, the left term of (3.8) (
x

zg b
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 )2(

2

2 
) can be approximated by 

fluxes through the east (fE) and west (fW) cell faces of the current cell as
 x

ff WE



 )(
, in 

which fE and fW can be calculated by 
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Hence,
 W( ) bE bWE
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. And the discretized form of the right side term in 

(3.8) is
 

x

zz
g bWbE




-  . Therefore, (3.8) can be automatically balanced in the 

motionless steady state. The momentum in y-direction of (3.7) can be derived in a 

similar way. Therefore, the set of shallow water equations in (3.1) and (3.7) can provide 

mathematically well-balanced flux and source terms in the numerical computation. The 

present shallow water equations can be called pre-balanced shallow water equations. 

 

The hyperbolic property of the pre-balanced shallow water equations (3.1) and (3.7) can 

be confirmed by finding the eigenstructure of the flux Jacobian. The flux Jacobian is 

obtained by 
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in which F (=fnx + gny) is the combined flux vector; nx and ny are the unit vector 

components in the x and y-direction; c (= gh ) is the wave celerity. The eigenvalues 

associated with (3.8) are given by  

            cvnuncvnunvnun yxyxyx  321   ,  ,  , (3.11) 

The eigenvalues are real and distinct for wet-bed application (h ≠ 0), which proves the 

hyperbolic property of the present SWEs. More details about this new formulation of 

shallow water equations and its property can be found in Liang and Borthwick (2009).  
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3.2 Numerical Scheme  

3.2.1 Godunov-type finite volume scheme 

 

In the context of a finite volume scheme, the following time-marching formula may be 

used to discretized equation (3.1) and update the flow variables to a new time step: 
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where the superscript k represents the present time level, subscripts i and j are the cell 

indices and ∆t, ∆x and ∆y are the time step and cell size in the x and y-directions, 

respectively. Combined with a second-order Runge-Kutta method, (3.12) may be 

rewritten as
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where Ki,j is the Runge-Kutta coefficient defined as 
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and the intermediate flow variables *

, jiq  is calculated by  

              )( ,,,

*

,

k

jiji

k

jiji t qKqq  ,  (3.15) 

)( ,,

k

jiji qK  and )( *

,, jiji qK  must be calculated in two consecutive steps, which in turn 

requires correct evaluation of the interface fluxes (fi+1/2, j, fi–1/2, j, gi, j+1/2 and gi, j–1/2) and 

source terms (si,j) in each step. The interface fluxes are calculated by HLLC 

approximate Riemann solver that is introduced in the following section. 

3.2.2 Calculation of the flux terms  

 

In a Godunov-type framework, the interface fluxes are obtained by solving local 

Riemann problems defined at cell interfaces. Taking fi+1/2, j as an example, the fluxes 

may be expressed as ),( ,21,21,21

R

ji

L

jiji   qqFf , i.e. the solutions to the local Riemann 

problem defined by the left and right Riemann states (
L

ji ,21q  and 
R

ji ,21q ) on either side 

of the cell interface  (i + ½, j). The Riemann states are obtained from the face values 
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that are reconstructed from the cell-centred flow variables. Herein the MUSCL 

(Monotone Upstream-centred Schemes for Conservation Laws) slope limited linear 

reconstruction (van Leer, 1979) is adopted to rebuild the face values in order to achieve 

2
nd

-order accuracy in space. At the left hand side of the cell interface (i + ½, j), 
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(3.16) 

where ψ is a slope limited function calculated at cell (i, j) for the specific flow variable 

under consideration. In order to evaluate ψ, flow data are required at the considering cell 

and its upwind and downwind neighbours. The minmod limiter is used in this work for 

better numerical stability (e.g. Hirsch 1990; Liang et al. 2004; Liang and Borthwick 

2009). The face values at the right hand side of the cell interface (i + ½, j) are calculated 

by 

            )(
2

,,1,1,21 jijiji

R

ji 


   ,  

            )(
2

,,1,1,21 jijiji

R

ji hhhh  


, 

            )(
2

, ,1 ,1 ,21 jixjixjix

R

jix qqqq  


, 

           )(
2

, ,1 ,1 ,21 jiyjiyjiy

R

jiy qqqq  


, 

            
R

ji

R

ji

R

jib hz ,21,21,21   , 

(3.17) 

Herein ψ is evaluated based on the flow information in cell (i + 1, j) and its two direct 

neighbours. The corresponding velocity components are then obtained by: 
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(3.18) 

Instead of calculating by the above formulae, the velocity components directly equal 

zero when h < 1.0 × 10
–6

. It should be noted that the above slope limited linear 

reconstruction applies only to those wet cells away from the wet-dry interface. In a dry 

cell or a wet cell next to a dry cell, face values are assumed to be piece-wise constant, 
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i.e. the same as those at the cell centre. This essentially reduces the second-order 

accurate scheme to become first-order, which is as expected because, near to flow 

discontinuity (e.g. wet-dry interface, shock), the accuracy of the high-order scheme 

automatically reduces to first-order due to the slope limiting process. 

 

Riemann states are then obtained from the above linear reconstructed face values to 

define the local Riemann problems. The first but important step is to define a single bed 

elevation at the cell interface (i + ½, j): 
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This is also used by Audusse et al. (2004) in the context of hydrostatic reconstruction. 

The Riemann states of water depth are then defined as: 
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The Riemann states of the other flow variables are evaluated as follows: 
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(3.21) 

Obviously, the above reconstruction gives non-negative water depth and the Riemann 

problem is locally defined on a horizontal bed. By carefully selecting a Riemann solver, 

the above numerical treatment leads to an overall numerical scheme preserving non-

negative (water depth) solutions (Marche et al. 2007). 

 

 

                    (a)                                  (b)                                   (c) 

Figure 3.3 Three possible dry-bed configurations in numerical computation. 

 

It is obvious that the above reconstruction of Riemann states does not affect the well-

balanced property of the pre-balanced shallow water equations when applying to a wet-

bed case. Dry-bed calculation may be generalised into the three cases as illustrated in 
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Figure 3.3. The case in Figure 3.3 (a) essentially represents a dry-bed dam-break flow 

onto a horizontal bed and it can be exactly reproduced by the Riemann states in (3.21). 

Figure 3.3 (b) shows a case in which the dam-break wave propagates onto an initially 

dry and downward step. If the step size is large enough, excessive external force created 

by the slope source term can drag too much water to the dry cell and cause negative 

mass in the upstream cell. The aforementioned reconstruction of Riemann states actually 

converts this case locally into Case (a) and thus removes the associated instability 

problem. Case (c) in Figure 3.3 demonstrates a flow hitting a wall and must be taken 

care of in order not to violate the well-balancing property. 

 

 

Figure 3.4 Well-balanced scheme for dry-bed applications: local bed modification. 

 

In the current finite volume Godunov-type framework, the discretized version of Case 

(c) is sketched in Figure 3.4, where a wet cell (i, j) shares a common edge (i + ½, j) with 

a dry cell (i + 1, j) on the right at the discrete level and the bed elevation of the dry cell is 

higher than the actual water level. At the cell interface (i + ½, j), the aforementioned 

reconstruction procedure leads to
R
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ji z ,21 ,21,21   . This means that the stage component of the Riemann states 

(surface level) takes the values of the bed elevation (ground surface) jibz ,21   instead of 

the actual water surface. Assume a case of lake at rest with u = 0, v = 0 and η ≡ constant 

in the wet region. If no action is taken, the momentum flux through the interface under 

consideration is computed based on jib

R

ji

L

ji z ,21 ,21,21    (higher than the actual 
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water level η ≡ constant). The flux cannot be balanced by that across the cell interface (i 

– ½, j), calculated against the actual water level η ≡ constant. This creates a spurious net 

momentum flux into cell (i, j) and thus drive the still water into motion, which leads to 

the violation of the well-balancing property. In order to cure this, a simple local bed 

modification method is implemented. The difference between the actual and fake water 

surfaces may be calculated at cell interface (i + ½, j) by 

             )(   ,0max ,21,21 

L

jijibzz    ,   (3.22) 

as indicated in Figure 3.4. Then the bed elevation and the stage component of Riemann 

states are locally and instantaneously modified by subtracting ∆z from the original 

values 
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Now we have    jib

R

ji

L

ji z ,21 ,21,21  and no spurious flux is calculated for the 

case of lake at rest, which brings back the well-balancing. 

 

Now the Riemann states obtained in (3.21) and (3.23) can be employed by a proper 

Riemann solver to calculate the interface fluxes (fi+1/2, j). The HLLC approximate 

Riemann solver is chosen in this work because it is easy to implement for applications 

involving wetting and drying and automatically satisfies entropy conditions (Toro 2001). 

The structure of the HLLC Riemann solver is shown in Figure 3.5.  

 

 

Figure 3.5 The HLLC Riemann solver structure. 
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Taking the east interface flux as an example, ji ,2/1f  can be calculated by the following 

formula: 
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where Lf and Rf are the left and right flux vectors and L*f and R*f  are the left and right 

part flux vectors at the middle region in a local Riemann problem. L*f and R*f  can 

evaluated as follows 
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in which vL and vR are the left and right tangential velocity components in a local 

Riemann problem, *1f and *2f are the first and second entries of the flux vector f in the 

middle region that are evaluated by the following HLL formula proposed by Harten et 

al. (1983) 
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In equation (3.26), SL, SM and SR are the estimates of the left, middle and right wave 

speeds. Suggested by Fraccarollo and Toro (1995), SL and SR can be computed by the 

following formulae:  
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As Toro (2001) suggested, the middle wave speed SM can be calculated by 
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(3.31) 

Then the fluxes across the east interface of cell (i, j) can be calculated by (3.24). The 

Riemann states and the corresponding fluxes (fi–1/2, j, gi, j+1/2, gi, j–1/2) on the other cell 

interfaces are computed in an identical way. 

3.2.3 Calculation of the source terms  

 

In order to update the flow variables to a new time step, the source terms must also be 

evaluated in a compatible way in order to maintain the well-balanced solutions with non-

negative water depth. Due to the use of the pre-balanced shallow water equations (3.1) 

and (3.7), the bed slope source terms can be simply calculated by a central-differencing 

scheme at the cell centre. The x-direction slope source term is discretized as 
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where 2)( ,21,21

L

ji

R

ji    . Herein the stage Riemann states and face value of bed 

elevation are those obtained after considering the local bed modification in (3.23). The 

y-direction slope source term is discretized in a similar way. It should be emphasised 

that, based on the pre-balanced shallow water equations (3.1) and (3.7), this simple slope 

term discretization combining with the aforementioned non-negative reconstructing 

technique provides a robust well-balanced scheme for different types of shallow flow 

hydrodynamics over complex topography. An important advantage of the current 

numerical scheme is that there is no need of any clipping tricks, like those used by 

Brufau et al. (2004) and Liang and Borthwick (2009), to modify the flow variables when 

a wet-dry interface is present. As a consequence, the absolute mass conservation is 

guaranteed and this is one of the most important features a flood modelling tool should 

have. 

 

When modelling realistic flood events, bed friction is an important force influencing the 

flow evolution. It is also a main parameter for calibrating a flood model. Therefore it 

should be included explicitly in the numerical model. However, inclusion of the bed 

friction terms in a numerical scheme is not a trivial task, especially when the application 
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is involving wetting and drying. Due to the presence of water depth in the denominator 

of the friction terms, the friction force could be exaggerated and become large enough 

to reverse the flow when the water depth is vanishing near the wet-dry front. This is 

physically incorrect and causes numerical instability. For better stability, this work uses 

a splitting point-implicit scheme (Bussing and Murman 1988; Fiedler and Ramirez 

2000) to evaluate the friction component of the source terms and the following ordinary 

differential equation (ODE) is solved: 
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, (3.33) 

where  T       0 fyfxf SSS  with  bxfxS   and  byfyS  . In the x-direction, the 

friction term may be isolated and expanded using a Taylor series as (Fiedler and 

Ramirez 2000): 
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where k

x

k

xx qqq  1 . Ignoring the higher-order terms and substituting it into the x-

direction entry of (3.33), the following time marching formula can be obtained for qx: 
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where  k
xfxx qStD 1  is the coefficient derived for a point implicit scheme in the 

x-direction and Fx is the friction source term including the implicit coefficient. 

 

As mentioned previously, inclusion of friction terms may affect the stability of the 

numerical scheme when flow computation is performed near to the wet-dry front with 

disappearing water depth. Liang and Marche (2009) derived a limiting value for Fx by 

considering 01  k

x

k

x qq , i.e. the maximum effect of friction force is to stop the fluid: 
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In implementing this, the value of Fx is replaced by the above critical one when it is 

computed beyond the limit. Similar treatment can be applied to the y-direction equation. 
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3.2.4 CFL criterion 

 

The current second-order finite volume scheme is overall explicit and its numerical 

stability is controlled by the Courant-Friedrichs-Lewy (CFL) criterion. A proper time 

step (Δt) can be decided by the following formula:  
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where Δxi,j and Δyi,j are the dimensions of cell (i, j) in the x- and y-direction; ui,j and vi,j 

are the depth-averaged velocity components at the cell centre and C is the Courant 

number (0 < C ≤ 1). In the computation, the Courant number is normally set to be 0.5. 

3.2.5 Boundary condition 

 

In this work, slip and transmissive open boundary conditions are applied to the test 

cases. In the context of a Cartesian grid, the boundary conditions can be imposed in the 

x-direction as follows.  

 

1) slip boundary 

            IBIBIB vvuuhh     ,   , , (3.38) 

2) open boundary 

            IBIBIB vvuuhh     ,   , , (3.39) 

where u and v are the depth-averaged velocity components in normal and tangential 

directions to the boundary; subscripts B and I denote the positions at the boundary 

(ghost) and inner boundary cells, respectively.  

 

In practice, the geometry of the computational domain is complicated and the boundary 

curves may not be aligned with the edges of a Cartesian cell. Liang and Borthwick 

(2008) recommend a new simple local boundary modification method to cope with this 

kind of non-aligned boundaries.  

 

The Cartesian grid is separated by the non-aligned boundary into two different areas, 

which are defined as the solid area and the fluid area. The cells with the centre in the 
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solid area are defined as the solid cell, which are not included in the computation. The 

other cells in the computational domain are the fluid cells. And the fluid cells with at 

least one solid neighbour are called boundary fluid cells. The values of flow variables in 

a ghost cell can be calculated from those in the neighbouring boundary fluid cells, using 

the local boundary modification method. Herein, the local boundary modification 

method is presented by an example shown in Figure 3.6, in which the shadow part is the 

solid area; the green line is the curved boundary; C is the boundary fluid cell under 

consideration; G is the ghost cell; O' is the midpoint at the interface of C and G, i.e. the 

boundary point without using a special boundary treatment.   

 

 

Figure 3.6 Sketch of the local boundary modification method. 

 

The first step is to find the new boundary point O, which is the nearest seeding point to 

O' along the curved boundary. θ is the angel between the tangential direction at point O 

and the x-direction. Then the boundary point O' is assumed to be moved to O. This shift 

produces small error, which has no influence on the overall computational accuracy 

(Liang and Borthwick 2008). The tangential and normal directions of O' are assumed to 

be the same as those of O. Then the velocity is decompounded at the tangential and 

normal directions. For the slip boundary condition in equation (3.38), the velocity 

components can be described as 

          
Normal direction:    

Tangential direction:
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The above equations can be rearranged as  
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where uG, uC, vG and vC are the velocity components in x- and y-directions at the ghost 

cell and the boundary fluid cell, respectively. θ can be estimated analytically. 

 

First, a series of seeding points is generated to represent the curved boundary. This step 

is carried out after the Cartesian grid generation. Then the local tangential and normal 

direction of O can be determined from two neighbour seeding points. Therefore, θ can 

be calculated by  
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in which xs and ys are the coordinates of the seeding points; i is the index of O. Fine 

resolution of seeding points is required for good representation of the boundary curve 

and accurate calculation of θ. Then the values of θ are stored for the computation. 

Hence, the computational expense can be decreased during the entire simulation.  

3.3 Case Studies  

3.3.1 Tidal wave flow 

 

 

Figure 3.7 Tidal wave flow: the bed topography of the irregular bed. 
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The first test is to reproduce a tidal wave flow over an irregular bed topography, which 

was presented at a workshop on dam-break simulations (Goutal and Maurel 1997). The 

same test problem is also studied by Zhou et al. (2001). Here it is used to validate the 

capability of the present model on dealing with the complex bed topography. This is a 

one-dimensional problem with bed topography shown in Figure 3.7 and bed elevation 

defined zb(x) in Table 3.1. For this 2D model, the channel is 1500 m long and horizontal 

in y-direction with 150 m width. The channel is assumed to be frictionless. 

 

x      0    50    100    150    250    300    350    400    425    435    450    475    500    505 

bz     0     0      2.5      5        5        3        5        5       7.5      8        9        9       9.1      9 

x   530  550   565    575    600    650    700    750    800    820    900    950   1000 1500 

bz     9     6      5.5     5.5      5        4        3        3       2.3      2      1.2     0.4       0        0 

Table 3.1 Bed elevation at point x for irregular bed 

 

The analytical solution of the water depth and the velocity component in x-direction is 

given as below: 
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The initial and boundary conditions are given as follows, 
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A uniform grid of 150 × 15 cells is implemented with Δx = 10 m, Δy = 10 m. Initially, it 

has still water surface with 16 m high. Slip boundary conditions are imposed at the 

northern and southern boundary walls. The eastern and western ends of this channel are 

supposed to be inflow and outflow boundaries, respectively. h(0,t) and u(0,t) are given 

as the inflow boundary conditions while u(L,t) is used to define the outflow boundary. 

This work is proposed to predict the evolution of the tidal wave for 10800 s.  

 

 

Figure 3.8 Tidal wave flow: comparison of water surface elevation and the analytical 

solution at t = 10800 s. 

 

 

Figure 3.9 Tidal wave flow: comparison of velocity and the analytical solution at t = 

10800 s. 
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The comparison of the numerical prediction of water surface elevation with the 

analytical solution at t = 10800 s is shown in Figure 3.8. Close agreement is achieved. 

Figure 3.9 illustrates the predicted velocity, which also agrees well with the theoretical 

solution. These results indicate that the present fully 2D shallow flow model has the 

capability to handle complex bed topography.  

3.3.2 Oblique hydraulic jump 

 

In this case, an oblique hydraulic jump happens in an open channel when a supercritical 

flow interacts with an inclined contraction wall. The computational domain is a 40 m × 

30 m frictionless floodplain with a flat bed. The supercritical flow comes into the 

computational domain from the western boundary, which is the inflow boundary. The 

inflow water depth and velocity component in x-direction are set to be 1 m and 8.57 m/s 

respectively. At the southern end of the channel, there is an inward deflection of 8.95 
о
 

to the x-direction, starting at x = 10 m. Theoretically, the jump should occur from x = 10 

m, covering a domain with an inward angle of 30
o
 to the x-direction. Then the water 

depth increases from 1 m to 1.5 m across the jump. 

 

 

Figure 3.10 Oblique hydraulic jump: the sample computational grid (80×60). 

 

In this case, the local boundary modification method (Liang and Borthwick 2008) is 

implemented here to deal with the southern non-aligned boundary. And the numerical 

predictions with/without modification are compared. An example of computational 
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mesh consists of 80 × 60 cells shown in Figure 3.10, in which the modified boundary is 

shown as red line. And the blue grid defines the inner part of the computational domain 

while the yellow cells are the solid part behind the oblique wall. The southern and 

northern boundary walls are assumed to be slip boundaries. The eastern boundary is set 

to be open boundary. The west end of the domain is set to be inflow boundary with a 

fixed velocity u = 8.57 m/s and a fixed water depth h = 1 m.  

 

      

(a) 80 ×60     

 

(b) 160×120 

Figure 3.11 Oblique hydraulic jump: water depth contours. 

 

Simulations are first carried out on two different meshes (80 × 60, 160 × 120) with the 

local boundary modification method activated. Figure 3.11 shows the contour lines of 
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water depth, where the analytical position of jump is indicated the red dash line. 

Obviously, the position of jump is accurately predicted and Figure 3.11 (b) gives better 

converged solution as the result of using higher-resolution grid. Hence, the mesh of 160 

× 120 cells is employed for the following simulations and comparisons. 

 

 

Figure 3.12 Oblique hydraulic jump: the convergence history (LBMM – local boundary 

modification method). 

 

A global relative error (er) of water depth of the current and previous time steps is 

defined, in order to evaluate the influence of the local boundary modification method on 

the convergence time of this steady flow, as below,   
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where ,

k

i jh and 1

,

k

i jh   are water depth at cell (i, j) calculated in the present and previous 

time step, respectively. When er < 1.0 ×10
-8

, the state is assumed to be steady. The 

converged time is predicted approximate 14 s by the numerical scheme with the local 

boundary modification. A much longer converged time is produced as 27.5 s without 

using the local boundary modification method approach illustrated in Figure 3.12. 

Obviously, the local boundary modification presents computational efficiency in the 

application with non-aligned boundary. 
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(a) With the local boundary modification method 

 

(b) Without using the local boundary modification method 

Figure 3.13 Oblique hydraulic jump: velocity field near to the inclined wall. 

 

The velocity vectors corresponding to the simulation in Figure 3.11 (b) are presented in 

Figure 3.13 ((a) prediction with the local boundary modification method; (b) prediction 

without the local boundary modification method) near to the inclined wall. Due to the 

application of the local boundary modification method, the predicted velocity vectors 

are parallel to the inclined boundary without decreasing in magnitude, which is 

physically correct as shown in Figure 3.13 (a). Compared with the predictions in Figure 

3.13 (b), the effectiveness of the local boundary modification method has been proved 

in predicting the velocity vectors along the inclined boundary.  

 

Figure 3.14 (a) presents the 3D view of water surface which describes the accurate 

water depth of 1.5 m near to the inclined wall with smooth and steady edge, contributed 

by the simple local boundary modification method. In Figure 3.14 (b), the unphysical 

behaviour happens near to the boundary caused by the staircase approximation, which is 
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adopted for the non-aligned boundary in the Cartesian grid system. A related discussion 

based on the oblique hydraulic jump case is operated by Roger et al. (2001) on the 

spurious behaviour near to the irregular boundary. 

 

 

(a) With the local boundary modification method 

 

(b) Without the local boundary modification method 

Figure 3.14 Oblique hydraulic jump: the 3D view of water. 

 

Overall, the oblique hydraulic jump has been accurately reproduced by the present 

Cartesian grid based finite volume Godunov-type scheme. The local boundary 

modification method (Liang and Borthwick 2008) is implemented to avoid the spurious 

behaviours near to the non-aligned boundary, which are caused by the staircase 
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approximation for the non-aligned boundary in Cartesian gird system. Furthermore, the 

comparison of the numerical simulations demonstrates that the local boundary 

modification method contributes to the computational efficiency as well.  

3.3.3 Shock reflection by a circular cylinder 

 

In this test, a shock reflection by a circular cylinder is reproduced, which is also studied 

by Causon et al. (2000) and Liang et al. (2007). The 5 m × 5 m horizontal and 

frictionless computational domain is approximated by a uniform grid with 200 × 200 

cells. A circular cylinder with a radius of R = 0.5 m is located at the centre of the 

domain. The Cartesian coordinate system originates at the domain centre. Four 

boundaries are all open. The local boundary modification method (Liang and Borthwick 

2008) is activated to represent the circular boundary of the cylinder. 

 

The shock evolution starts from the left edge of the circular cylinder travelling to the 

right, which are recognized as the left side (l) and the right side (r) respectively. The 

relationship of the two sides are given by Causon et al. (2000) in the following 

equations, 

           lr Lhh  , (3.52) 

             Lcucu lr  , (3.53) 

           lr vv  , (3.54) 

In the above equation, c (=
l

ghFrS ) defines the speed of the shock wave. Herein L is 

calculated by  

             
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in which lll ghuFr  is the Froude number of the flow before bore, FrS = 2.81 is the  

Froude number of the shock. Before the shock occurs, the still water depth is hl = 1.0 m. 

 

The case of shock reflection by the circular cylinder is investigated by Yang et al. 

(1987), which express the complex phenomena of the shock-shock interaction and the 

shock wave propagation after reflected by the circular cylinder. The evolution of the 

shock reflection is described here related to the 3D views of the shock interaction event 
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shown in Figure 3.15 and the contour lines presented in Figure 3.16. Theoretically, the 

bore occurs when the flow encounters the left edge of the circular cylinder from left to 

right. As shown in Figure 3.15 (a) - (c) and Figure 3.16 (a) - (d), the regular reflection 

happens as a two-shock system caused by the circular cylinder. The collision front 

propagates along the surface of the circular cylinder. The two-shock system is 

symmetric related to the x-axis in this case. As illustrated in Figure 3.15 (d) and Figure 

3.16 (e), the two-shock system changes into three-shock system after the two separated 

collision fronts hit each other. In other words, the regular reflection is transferred to the 

Mach reflection. The confluence point is changed from the cylinder surface to the triple 

point of the three shocks, where a slipstream arises. A vortex is forming due to the 

dynamic effect of the slipstream, which is accurately predicted and presented in Figure 

3.15 (f) and Figure 3.16 (g). The interacted shock wave propagates away from the 

circular cylinder to the right end of the computational domain. Some complex 

interactions occur in this stage shown in Figure 3.15 (g) and Figure 3.16 (h). The 

capability of the present shock-capturing Godunov-type scheme on capturing the 

complex shock interaction has been verified by the accurate numerical simulation of the 

shock reflection by the circular cylinder. 

 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 
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Figure 3.15 Shock reflection by a circular cylinder: the 3D surface view at different 

times: at (a) t = 0.05 s; (b) t = 0.1 s; (c) t = 0.15 s; (d) t = 0.2 s; (e) t = 0.25 s; (f) t = 0.3 s; 

(g) t = 0.35 s. 

 

 

(a) 

 

 

(b) 
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(c) 

 

 

 

(d) 
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(e) 

 

 

 

(f) 
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(f) 

 

 

(h) 

Figure 3.16 Shock reflection by a circular cylinder: the shock wave depth contours at 

different times: (a) at t = 0.025 s; (b) t = 0.05 s; (c) t = 0.1 s; (d) t = 0.15 s; (e) t = 0.2 s; 

(f) t = 0.25 s; (g) t = 0.3 s; (h) t = 0.35 s.  
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3.3.4 Shock diffraction in an hourglass channel 

 

 

Figure 3.17 Shock diffraction in an hourglass channel: geometry of the contraction-

expansion channel. 

 

This case is employed to verify the performance of the present model on reproducing 

the shock propagation at river estuary. The channel is flat and frictionless shown in 

Figure 3.17. The whole computational domain is 5.4 × 3.0 m
2
, with a 0.5 m wide throat 

part. The origin of the coordinate system is located at the starting point of the centre line 

in the x-direction. The hourglass channel is symmetrical against the x-axis. The northern 

wall of the channel begins with a 1 m straight line, followed by two connected cosine 

curves at the throat part, and ends with a 1.4 m straight line. Herein the irregular 

boundary of the computational domain can be calculated by 
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Initially, the flow in the hourglass channel is separated into two parts defined by a 

vertical line x = 1 m, which can be recognized as pre-bore part (x < 1 m) and post-bore 

part (x > 1 m). The initial flow variables in the pre-bore part is h = 1 m; u = 0 m/s; v = 0 

m/s. The initial flow variables in the post-bore part can be calculated using the bore 

wave relations described in (3.52)-(3.55). Herein, Frs = 3. In this model, the northern 
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and southern walls are set to be slip boundaries while the western and eastern walls are 

assumed to be transmissive boundaries. The local bed modification method is used to 

define the hourglass channel wall. A mesh of 540 × 300 grid cells is implemented here 

for computation. 

 

Figure 3.18 illustrates the water depth contours of the bore diffraction in an hourglass 

channel at t = 0.067 s, t = 0.11 s, t = 0.125 s, t = 0.15 s, t = 0.19 s, t = 0.31 s, t = 0.36 s 

and t = 0.4 s. Theoretically, the evolution of the shock wave interaction can be 

described as follows, corresponding to Figure 3.18, The incident flow begins from left 

to right, i.e. from pre-bore part to post-bores part. Firstly, the incident flow is reflected 

by the contractive part of the hourglass channel as the regular reflection system 

including two shocks. And then the two-shock system is changed into three-shock 

system as Mach reflection system when the shock wave arrives at the throat of the 

hourglass channel. After that, the Mach reflection travels to the right side of throat, 

which leads to the Mach stems. Then a secondary shock wave is raised by the Mach 

stems travelling to the expanding part of the hourglass channel. A repeated reflection of 

the shock wave happens in the channel against the wall. Two Mach discs encounter and 

interact at the throat part. The incident shock wave is reflected and then the reflected 

shock wave travels to upstream and changes into a planar shock wave. In this study, the 

computational results accurately present the bore wave generation, propagation and 

interaction.  
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Figure 3.18 Shock diffraction in an hourglass channel: the depth contours of the bore 

diffraction in a contraction-expansion channel at a sequence of moments: at t = 0.067 s; 

t = 0.11 s; t = 0.125 s; t = 0.15 s; t = 0.19 s; t = 0.31 s; t = 0.36 s; t = 0.4 s. 

3.3.5 Steady transcritical flow over a hump  

 

This case is considered to test the performance of the current model in reproducing a 

steady transcritical flow over non-uniform topography. In a 25 m long frictionless 

channel, the bed topography is defined by 

           


 


otherwise

128 if
       

0

)10(05.02.0 2 xx
zb      , (3.57) 

The analytical solution is provided by Goutal and Maurel (1997). For a 2D simulation, 

the channel is assumed to be 5 m wide. The 25 m × 5 m computational domain is then 

decomposed by a 400 × 10 uniform grid. Initially, η = 0.33 m, qx = 0.18 m
2
/s and qy = 0 

are assumed throughout the domain. During the simulation, a constant unit discharge of 

0.18 m
2
/s is imposed at upstream end while the water depth is fixed to be 0.33 m at the 

downstream end as an outflow condition. Slip boundary conditions are used at the 

northern and southern boundary walls. 

 

A global of relative error (er) of water depth is employed here to investigate the 

convergence time as in equation (3.51). 
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Figure 3.19 Steady transcritical flow over a hump: time history of relative error.  

 

The time history of the convergence is illustrated in Figure 3.19. The maximum relative 

error happens at the beginning of computation around 0.052. And then it goes to steady 

state. The steady state of the transcritical flow is converged after 15,000 iterations. 

 

 

 

Figure 3.20 Steady transcritical flow over a hump: water surface elevation profile. 
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Figure 3.21 Steady transcritical flow over a hump: discharge comparison. 

 

Figure 3.20 presents the predicted water surface profile along the flow direction, 

compared with the analytical solution. A hydraulic jump is developed right after the 

hump, which is correctly captured by the numerical solution. Figure 3.21 illustrates the 

corresponding profile of discharge, where the constant discharge is preserved nicely 

apart from a small disturbance caused by the presence of hydraulic jump.  

 

 

Figure 3.22 Steady transcritical flow over a hump: Froude number comparison. 
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The Froude number is calculated along the centre line of the channel. The predicted 

Froude number close agree with the analytical solution shown in Figure 3.22, which 

increases from approximate 0.23 to about 2.78 because of the hydraulic jump. This test 

case demonstrates the good performance of the present shallow flow model in 

reproducing the steady transcritical flow with a hydraulic jump. 

3.3.6 Frictional flow in a parabolic bowl  

 

The classic analytical test of oscillatory flow in a parabolic bowl due to Thacker (1981) 

has been extended to include friction effect in a 1D manner by Sampson et al. (2006). 

Herein the analytical frictional flow is re-derived and extended to 2D in order to test the 

current model in dealing with bed roughness and repeatedly wetting and drying over 

non-uniform topography. Assuming that the origin of the Cartesian coordinate system is 

located at the domain centre, the 2D parabolic bed topography is defined by, 

           
222

0 /)(),( ayxhyxzb    , (3.58) 

where h0 and a are both constants. In such a container, the analytical solution of the 

frictional flow depends on the relationship between the bed friction parameter τ and a 

peak amplitude parameter
2

08 aghp  . For τ < p, the 2D theoretical solution of the 

flow is derived to be  
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and 
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where B is a constant and 222  ps . 

 

The computational domain is assumed to be 10000 m × 10000 m and discretized by a 

200 × 200 uniform grid. The constants are set to be h0 = 10 m, a = 3000 m, and B = 5 

m/s. At first, the friction parameter is set to zero (τ = 0) and the flow is expected to 
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indefinitely oscillate inside the bowl with a half-period equal to 672.8 s. For the 

frictional flow, τ = 0.002 s
-1

 is assumed. The bed friction parameter is related to the 

roughness coefficient via
22 vuhC f   . Simulations are run for four periods until t = 

5382.4 s for both cases, under the transmissive boundary conditions. 

 

 

(a) 

  

(b) 

Figure 3.23 Time histories of the velocity components at gauging point (1000, 0) for 

four-period simulations: (a) frictionless flow; (b) frictional flow. 

 

Numerical results are presented in Figure 3.23 and Figure 3.24 in terms of time histories 

of velocities at a (1000, 0) and water surface profile along the x-direction centreline at 

two different output times (t = 672.8 s and 5382.4 s). The numerical results are observed 
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to agree closely with the reference solutions. Compared with the frictionless flow, the 

friction effect on the flow is evident and causes the amplitude of flow oscillation to 

decrease throughout the simulation. The constantly moving wet-dry fronts are accurately 

trailed. A convergence study has been carried out according to the mesh setup in Table 

3.2, showing the overall second-order accuracy for the smooth solutions with wetting 

and drying and with/without friction effect.  

 

 

(a)                                                                   

 

(b) 

Figure 3.24 Water surface profile along the x-direction centreline after half of a period 

and four periods: (a) frictionless flow; (b) frictional flow. 
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M×N Frictionless Frictional 

Error Order Error Order 

20×20 5.1E-3 -- 1.2E-3 -- 

40×40 1.2E-3 1.9 4.9E-4 1.9 

80×80 3.0E-4 2.0 3.0E-4 2.0 

160×160 7.3E-5 2.0 7.3E-5 2.0 

320×320 1.7E-5 2.1 1.6E-5 2.1 

 

Table 3.2: L
2
-error and order of accuracy evaluated against numerical water level after 

half a period (t = 672.8 s). 

 

The above numerical predictions are observed to agree closely with the reference 

solutions. The effect of friction on the flow is evident and causes the amplitude of flow 

oscillation to decrease throughout the simulation. The wet-dry fronts are accurately and 

smoothly captured and no distortion of water surface is detected near the moving 

shoreline. Therefore, this test case is successfully simulated and essentially proves the 

robustness of the current model in handling complex shallow flow problems involving 

simultaneously non-uniform domain topography, moving wet-dry front and bed 

roughness, which in turn implies that it is readily applicable to real-world simulations. 

3.4 Conclusions  

 

This chapter has presented a novel fully 2D pre-balanced shallow flow model based on 

a uniform Cartesian grid. The pre-balanced fully 2D shallow water equations are solved 

using an explicit finite volume Godunov-type scheme, with the interface fluxes 

evaluated by the HLLC approximate Riemann solver. A non-negative water depth 

reconstruction approach, incorporated with a local bed modified method is adopted to 

treat the problems of wet-dry interface over the complex bed topography. The second-

order Runge-Kutta integrating method was applied to update the flow variables for the 

next time step, in order to achieve second order accuracy. The second order accuracy in 

space is achieved by implementing the MUSCL slope limiter. The friction source term 

is implicitly discretized and controlled by a limiter to maintain the computational 

stability.  
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The present numerical model has been validated against several benchmark cases to test 

the performance on handling the complex shallow flow problems. The case of tidal 

wave over irregular bed topography is used to verify the capability of the fully 2D 

shallow flow model on dealing with the irregular bed profile. Compared with the 

analytical solutions, close agreements are achieved. Then the numerical scheme is tested 

on a series of analytical cases, in which the shock-capturing Godunov-type scheme 

present excellent performance on capturing the shock-like continuities and reproducing 

different flow regimes, e.g. oblique hydraulic jump, shock reflection, shock diffraction 

and steady transcritical flow over a hump. The numerical predictions are found to agree 

well with analytical solutions. Then a moving shoreline problem of frictional flow in a 

parabolic bowl is investigated to verify the good performance of the present model in 

dealing with wet-dry problems, non-uniform domain topography and bed roughness. 

The smooth evolution of wetting and drying is accurately captured and traced without 

spurious oscillation and negative water depth at the wet-dry front. Overall, the present 

shallow flow model is proved to be a robust and reliable tool for handling the most 

challenging issues in the shallow flow modelling, i.e. handling different flow regimes, 

shock-like discontinuity, repeatedly wetting and drying problems over non-uniform 

domain topography and representing bed roughness.  
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Chapter 4 Dam Break Flood Simulation  

Objectives 

 

 Implement the fully 2D shallow flow model for simulating rapidly-varying dam-

break flows and verify its capability for capturing shock-like flow 

discontinuities and handling wetting and drying over complex domain 

topographies;  

 Demonstrate the accurate prediction of the water depth, flow velocity, flood 

route and arrival time in the experimental and real world examples of dam-break. 

 

Introduction 

 

Dams/dykes can serve as barriers to prevent water flow into a particular area or domain 

such as a city, village and farmland and provide protection from flooding for human 

communities. However, these hydraulic structures also pose a great threat to human‟s 

lives and properties. A dam-break event can lead to a devastating flood disaster that 

induces huge economic and human costs. For example, the Malpasset dam, located in 

the Reyran river valley in France, burst in December 1959 and caused more than 400 

casualties. Most recently, a dam failed near Piaui, a rural Brazilian city, in May 2009 

killed four people and affected thousands. In March 2009, a dam break occurred near 

Jakarta in Indonesia. 77 people died and more than 100 people went missing from the 

event. Therefore, it is essential to assess and manage the flood risk associated with dam 

breaks. This in turn requires us to reliably model the possible flooding events caused by 

dam breaks. Basically, a successful dam-break model should be able to  

 

1. Provide accurate solutions for different flow regimes including subcritical, 

supercritical, trans-critical flows as well as shock-like flow discontinuities; 

2. Effectively handle flow over complex domain topography with repeatedly 

wetting and drying; 

3. Represent high and variable roughness values along the flood route. 
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This chapter presents the application of the fully 2D shallow flow model described in 

Chapter 3 in modelling dam break induced flood inundation. Three test cases 

recommended by the European Commission funded Concerted Action on Dam Break 

Modelling (CADAM) project are considered, which are respectively the 1D dam-break 

flow over a triangular hump, laboratory-scale TOCE river dam break and the realistic 

Malpasset dam-break event through the Reyran river valley.  

4.1 Results  

4.1.1 Laboratory dam break over a triangular hump 

 

 

Figure 4.1 Dam break over a hump: experimental set up. 

 

The experimental setup for this dam-break test is sketched in Figure 4.1. In a 38 m long 

horizontal flume, the dam is located 15.5 m away from the upstream end. Behind the 

dam is a reservoir with a still water surface elevation of 0.75 m above the channel bed. 

In the downstream floodplain, a topographic structure featured as a symmetric triangular 

hump is installed with its top located 13 m away from the dam. The hump is 0.4 m high 

and has 3 m long normal and adverse slopes on both sides. A similar experiment was 

also carried out by the European Commission funded IMPACT project (Soares-Fraz o 

2007). During the simulation, the computational domain is approximated by a uniform 

grid of 25 cm resolution. For the 2D simulation, the flume is assumed to be 5 m wide 

but this value has no influence on the results as this is essentially a 1D test. A constant 

Manning coefficient n = 0.0125 s/m
1/3

 is used in the entire domain, as recommended by 



65 

 

CADAM. Reflective boundary conditions are used at the upstream end of the domain 

while a free outlet is imposed at the downstream end. The simulation lasts for 90 s. The 

adaptive time steps are kept as a constant during the simulation throughout the dam-

break flow progress in 90 s. The CPU time of the simulation is 42.84 s. 

 

The dam fails suddenly at t = 0 and a wall of the initial still water starts to rush onto the 

downstream dry floodplain driven by the unbalanced pressure. The dam-break flow 

propagates to the obstacle and arrives at the hump about t = 3 s. Meanwhile, a 

rarefaction wave is induced and propagates upstream from the initial location of the 

dam. After reaching the hump, the flood front runs up the sloping obstacle and overtops 

its peak.  A reflected wave is formed on the upstream side of the hump and starts to 

travel upstream. After hitting the upstream solid, another reflected shock wave is 

developed and propagates towards the hump. This wave-structure interaction leads to 

the change of the water depth and velocity at gauges and the repeat wetting-drying 

interface at the slope of the hump. The overtopping wave floods the dry bed 

downstream of the obstacle and then flows out of the domain from the downstream end.  
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Figure 4.2 Dam break over a hump: time histories of predicted water depth by the 

present shallow flow model (Northwest), simulated by Kesserwani and Liang (2010) 

(Northeast) and velocity (Southwest) at different gauges.  

 

Figure 4.2 (Northwest) compares the measured and predicted time histories of water 

depth recorded at the 7 gauges, which are located at 2 m, 4 m, 8 m, 10 m, 11 m, 13 m 

and 20 m downstream of the dam as shown in Figure 4.1. Compared with measured data, 

the arriving time and water depth are both reasonably well predicted at those gauges 

before and on the hump. The corresponding time histories of velocity are also presented 

in Figure 4.2 (Southwest). The velocity evolves according to changing trend of velocity 

at gauging point is predicted well matching the development of water depth, which 

indicates that the velocity of the flood wave is also correctly predicted. At the gauge 

after the hump (Gauge 7), the numerical water depth is observed to deviate from the 

experimental measurement, which is also reported by other researchers using different 

numerical schemes (e.g. Kesserwani and Liang 2010; Brufau et al. 2002). Herein, 

Figure 4.2 (Northeast) presents the predicted time history of water depth at gauges by 

Kesserwani and Liang (2010). The discrepancy is probably because the flow after the 

hump is highly complex and fully 3D and so the 2D hydrostatic shallow water equations 

are no longer valid for this situation. However, the current numerical model accurately 

predicts the arriving time which is a more important factor in dam-break simulation. 

Generally, the numerical predictions are satisfactory. The repeating wetting-drying 

process over the triangular hump is precisely captured. This essentially confirms the 

effectiveness of the current numerical scheme on handling wetting and drying, 

balancing the flux and source term gradients and reproducing the friction effects. 

4.1.2 Toce river dam break 

 

 

Figure 4.3 Toce River dam break: floodplain and location of gauge points. 
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The Toce River dam break has been simulated to validate the current numerical scheme 

on reproducing rapidly-varying flood wave propagating over a highly complex domain 

including natural features. The physical model was set up in ENEL (Italy) to reproduce 

in the laboratory the 5 km Toce River reach in the Northern Alps in Italy. As indicated 

in Figure 4.3, the 55 m × 13 m experimental facility scaled down the site at a ratio of 1: 

100 reproduced many details of the real topography, including river bed and an empty 

reservoir located roughly in the middle of the domain. The dam-break flow into the 

initial dry river reach is driven by a hydrograph provided from an upstream inflow tank. 

Therefore, the upstream boundary conditions are imposed according to the inflow 

hydrograph provided by CADAM and free outlet is assumed at the downstream end. A 

constant Manning coefficient of n = 0.0162 s/m
1/3 

is applied throughout whole 

computation domain. In order to verify the model predictions, gauges as indicated in 

Figure 4.3 were used to record time histories of the water surface elevation.  

 

The simulation was run for 180 s on a uniform grid of 5 cm resolution as provided by 

the original DEM. The computing time is 8555.84 s. Figure 4.4 illustrates the change of 

the adaptive time steps throughout the simulation in 180 s. Figure 4.5 presents the time 

evolution of the flood waves at different output times. Driven by the inflow hydrograph, 

the dam-break wave travels rapidly along the river to downstream. At t = 35 s, the flood 

wave has already reached the empty reservoir, which becomes a main obstacle in the 

way of flood. The water depth starts to increase in the upstream of the reservoir and a 

small amount of water overtops the surrounding dam and enters the reservoir. Due to 

the blocking effect, the main stream of the flood wave bends around the reservoir and 

continues to propagate downstream. At t = 65 s, the reservoir has been entirely flooded 

and the flood front has just reached the downstream end of the domain. Figure 4.5 (d) 

shows the final flood map at t = 180 s.  The velocity field of flood flow at t = 180 s is 

presented in Figure 4.6, in which (a) shows the velocity field in the whole 

computational domain and (b) presents the zoom-in view near the eastern end of the 

channel.  
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Figure 4.4 Toce River dam break: time history of the adaptive time step in 180 s. 

 

 

(a) t = 25 s 

 

 

(b) t = 35 s 

 

 

(c) t = 65 s 
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(d) t = 180 s 

Figure 4.5 Toce River dam break: flood routing. 

 

 

 

(a) 

 
 

 

(b) 

Figure 4.6 Toce River dam break: velocity field at t = 180 s (a) in the whole domain; (b) 

zoom-in view near the outlet. 
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Figure 4.7 Toce River dam break: time history of water depth at different gauge points. 

(Left – by the present model; right – by Prestininzi (2008)). 
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Figure 4.7 compares the numerical predictions with the experimental measurements and 

other published numerical simulations by Prestininzi (2008), in terms of time history of 

water surface elevation. The predictions by the present model are obviously much closer 

to the experimental data than the numerical simulations provided by Prestininzi (2008). 

The numerical predictions compare reasonably well with the experimental 

measurements. Obvious deviation from the laboratory measurements is observed for the 

water surface elevation at certain gauge points, e.g. G7. G7 is located outside of the 

reservoir at the valley where the main flood wave passes through. Slightly upstream of 

the G7 a breach is created on the reservoir dam so that a jet of flow rushes out and joins 

the main flood wave right upstream of G7. The flow travelling through G7 is therefore 

highly complex and turbulent and may not be adequately described by the hydrostatic 

shallow water equations. A similar discrepancy at G7 was also simulated by Prestininzi 

(2008) and Caleffi et al. (2003) using alternative numerical schemes shown in Figure 

4.7. Furthermore, measuring this highly turbulent flow may be associated with great 

uncertainty.  

 

Overall, successful handling this experimental but realistic dam-break test indicates the 

capability of the current model in modelling natural extreme flood hydrodynamics 

induced by dam breaks.  

4.1.3 Malpasset dam break 

 

The Malpasset dam on the Reyran river valley and its associated floodplain in southern 

France are shown in Figure 4.8. The Malpasset dam was a two-way curved arch dam, 

with a 66.5 m maximum height and a 223 m crest length, on the Reyran river valley in 

southern France. In December 1959, the dam collapsed unexpectedly and the flood 

wave rushed along the valley and down to the plain are in 20 minutes, where the city of 

Frejus is located. This flood event caused about $ 68 million economic losses and 400 

casualties. After the disastrous event, a police survey was undertaken to estimate the 

maximum water level at certain locations by tracing flow marks. Laboratory studies 

were carried out by Electicite de France (EDF) to measure the arrival time and 

maximum water level at gauge points near to those police surveying locations. In Figure 

4.8, „G‟ stands for the gauging points in the laboratory studies and „P‟ represents the 
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police survey points. The experimental measurements were found to agree quite well 

with the field data.  

 

 

Figure 4.8 Malpasset dam break: floodplain and location of gauges (G) and police 

survey points (P). 

 

This case has been used by many researchers as a case study to test their numerical 

models (e.g. Alcrudo and Gil 1999; Hervouet 2000; Valiani et al. 2002; Schwanenberg 

and Harms 2004; Liang et al. 2007). In this work, simulations are performed on an 

18000 m × 10000 m domain, which is approximated by a uniform mesh with 450 × 250 

cells (but those cells outside the region shown in Figure 4.8 are excluded from the flow 

computation). The broken dam is idealised as a straight breach across the narrow throat 

of the valley. During the simulation, a constant water level of 100 m is assumed in the 

upstream reservoir and the Manning coefficient is set to n = 0.033 s/m
1/3 

in the whole 

computational domain, as suggested by CADAM. The downstream floodplain is 

initially dry. All of the boundaries are assumed to be transmissive. The simulation is 

carried out for 1800 s flood event. The running time is 258.58 s. The time history of the 

adaptive time step is recorded in Figure 4.9. 

 



77 

 

 

Figure 4.9 Malpasset dam break: time history of the adaptive time step in 1800 s. 

 

Figure 4.10 presents the flood depth and extent at different output times. At t = 10 min 

after the dam breaks, the violent flow is observed to rapidly travel downstream along 

the narrow Reyran river valley. The flood front has reached the valley‟s mouth at t = 20 

min and is about to inundate the open-plan floodplain. At t = 30 min, the flood water 

has already inundated a wide area in the downstream floodplain and caused damages to 

the local villages. The velocity field at t = 30 min is presented in Figure 4.11, in which 

(a) is for the whole computational domain and (b) is the zoom-in view near the flood 

front. 

 

 

(a)  at t = 0 min 
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(b) at t = 5 min 

 

 

(c)  at t = 10 min 

 

 

(d) at t = 20 min 
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(e) at t = 30 min 

Figure 4.10 Malpasset dam break: numerical inundation map at different output times. 

 

 

(a) The whole domain 

 

(b) Zoom-in view near the flood front 
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Figure 4.11 Malpasset dam break: velocity field at t = 30 min: (a) the whole domain; (b) 

zoom-in view near the flood front.  

 

Figure 4.12 (left) compares the predicted maximum water depth with that obtained by 

police survey and close agreement is observed in all surveying points. The similar 

numerical simulations are predicted by Liang et al. (2007) shown in Figure 4.12 (right). 

Figure 4.13 and Figure 4.14 plot the numerical predictions and experimental 

measurements in terms of arriving time and maximum water depth in different gauge 

points. The arriving time is accurately predicted in all but the last gauge point. At Gauge 

9, the predicted flood front is delayed more than 100 s compared with the measured one. 

The discrepancy is also predicted by Alcrudo and Gil (1999) presented in Figure 4.13 

(right) using an alternative Godunov-type shallow flow model and the present 

prediction is observed to be slightly better. In terms of maximum water level, the 

numerical solutions compare reasonably well with those laboratory data in most of the 

gauge points. Small disagreements are found at Gauge 2 and Gauge 4 and again this is 

also predicted by Liang et al. (2007) illustrated in Figure 4.14 (right) and others (e.g. 

Alcrudo and Gil 1999; Hervouet 2000; Valiani et al. 2002). The present model 

generally predicts similar or better results than those reported in literature, due to the 

use of non-negative well-balanced algorithm. From the results, it confirms that the 

current shallow flow model is well-suited for practical dam-break modelling. 

 

  

Figure 4.12 Malpasset dam break: comparison of numerical and surveyed maximum 

water depth (left – by the present model; right – by Liang et al. (2007)). 
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Figure 4.13 Malpasset dam break: comparison of numerical and measured arrival time 

at different gauge points (left – by the present model; right – by Alcrudo and Gil 

(1999)). 

 

  

Figure 4.14 Malpasset dam break: comparison of numerical and experimental maximum 

water depth at different gauge points (left – by the present model; right – by Liang et al. 

(2007)). 

4.2 Conclusions 

 

In this chapter, the model has been tested against three benchmark dam-break cases 

suggested by CADAM, including the real-world case of Malpasset dam break. In all of 

the tests, the numerical predictions agree reasonably well with those experimental 

measurements or field data and are generally more accurate than those reported in the 

literature. This confirms the robustness of the model and its potential becoming a useful 

predictive tool in simulating dam breaks or other flood events, such as flash floods or 
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different types of flood inundation. Overall, the model has the following main 

advantages: 

 

 Due to the use of a shock-capturing Godunov-type scheme, the model is suitable 

for simulations in all of the flow regimes including shock-like flow 

discontinuities that generally associated with dam-break waves; 

 

 The model automatically provides well-balanced and non-negative (in terms of 

water depth) solutions for applications involving wetting and drying over 

complex domain topography and there is no need to modify any flow variable in 

order to maintain stability within the limit of the CFL criterion. 
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Chapter 5 Coastal Wave Run-up Applications 

Objectives 

 

 Improve and validate the fully 2D shallow flow model for application in coastal 

hydrodynamic modelling. 

 

Introduction 

 

Extreme coastal disasters, e.g. the storm surge, severe wind induced tidal wave or 

tsunami, may lead to damage of coastal defences, huge casualties and economic losses. 

In order to better manage coastal zones and protect human lives and properties, it is 

essential to accurately predict and better understand the coastal hydrodynamics and 

relevant processes, especially wave run-up as it may directly cause overtopping of flood 

defences. 

 

Wave run-up over a sloping beach or coastal defence is a complex process including 

wave transformation, reflection, breaking, hydraulic jump, etc. The nonlinear shallow 

water equations have been widely used for the wave run-up prediction (e.g. Dodd 1998; 

Hu et al. 2000; Hubbard and Dodd 2002; Delis et al. 2008; Liang et al. 2010) and 

Brocchini and Dodd (2008) provides a useful review. In this chapter, the 2D well-

balanced shallow flow model is improved for simulating the hydrodynamics associated 

with coastal wave run-ups and validated against several benchmark cases. For this 

purpose, fully transmissive (non-reflective) boundary conditions are investigated and 

implemented in the current model to take more accurate account of wave dynamics. 

5.1 Non-reflective Boundary Condition 

 

In hydrodynamic modelling, before a simulation is carried out, the first step is to define 

a problem domain where actual numerical computation takes place. Then an essential 

step is to correctly impose boundary conditions. In the coastal applications, the seaward 
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boundary conditions provide the inflow information and the incident wave propagates 

from the seaward boundary. When the incident wave arrives at the sloping beach or the 

coastal defence, the wave is reflected against the obstacle. The reflective wave 

propagates back to the seaward boundary. In this case, the reflective wave should be 

allowed to pass freely through the boundary or be absorbed. Otherwise, the reflective 

wave will interfere with the incident wave and introduce noises to the numerical 

solutions. Hence the seaward boundary must be able to generate the incident wave and 

meanwhile absorb the reflective wave. The aforementioned boundary conditions (refer 

to Chapter 3) cannot satisfy the requirements for the coastal applications and non-

reflective boundary conditions have to be implemented to absorb the reflective waves 

from inside the computational domain to the inflow boundary. Herein the approach used 

by Cienfuegos et al. (2007) is investigated, where the solution of boundary flow 

information is based on the outgoing (β
–
) and incoming (β

+
) Riemann invariants as 

shown in Figure 5.1.  

 

 

Figure 5.1 Non-reflective boundary conditions. 

 

In Figure 5.1, the original point of the coordinate system is located at the central point 

of the ghost cell (i = 0), where x = –Δx/2. Herein Δx is the grid size. In this work, the 

seaward boundary is assumed to be at the western boundary, where the non-reflective 

boundary is implemented. The centre of the first inner cell locates at x = Δx/2 (i = 1). 

The incoming and outgoing Riemann invariants β
+
 and β

–
 are respectively constant 

along the characteristic lines C
+
 (defined with cudtdx  / ) and C

–
 (defined 

with cudtdx  / ), respectively. In order to get the value of the outgoing Riemann 
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invariant β
–
 ( cu 2  with  ghc ), u

–
 and h

–
 must be calculated by linear 

interpolation and Newton‟s iteration method from the flow information at x = Δx/2. The 

incoming Riemann invariant β
+
 can be calculated as 

            00 /)(2 hgzhzg inin  ,  (5.1) 

where zin is the amplitude of the incident wave and h0 is the mean water depth. 

 

In this work, the assumption is that the seaward boundary is the western boundary along 

the y-direction. Hence the velocity component v is not under consideration. The 

boundary values of water depth hb´ and velocity ub´ are then calculated by 

            0.5( )bu      , (5.2) 

            
21

( )
16

bh
g

     , (5.3) 

which provides the boundary conditions for the Riemann solver. 

5.2 Results  

5.2.1 Sinusoidal wave reflected against a vertical wall 

 

The first test is to validate the aforementioned non-reflective boundary conditions. This 

classic benchmark case is about a regular sinusoidal wave reflection at a vertical solid 

wall, which was also considered by Hu et al. (2000). The computational domain is a 

1000 m long flat and frictionless uniform channel with a vertical wall at the eastern end. 

For 2D simulations, the width of the channel is set to be 25 m. A uniform mesh of 400 × 

10 cells is employed in this computation. The western end of the channel is imposed as 

the non-reflective inflow boundary powered by a regular wave. The other two 

boundaries are assumed to be slip. The still water depth is 10 m. The inlet regular 

sinusoidal wave is defined as 

            )
2

sin(5.0
T

t
Hzin


 , (5.4) 

where H = 0.04 m is the wave height and T = 20.193 s is the wave period. 
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Figure 5.2 Sinusoidal wave reflected against a vertical wall: reflective waves at t = 

1993.95 s and t = 2004.05 s. 

 

 

Figure 5.3 Sinusoidal wave reflected against a vertical wall: time history of water depth 

at x = 500 m. 

 

The incident flow of the sinusoidal wave propagates along the channel. After it is 

reflected against the solid wall, the wave height is doubled to be 0.08 m, theoretically. 

The non-reflective boundary is implemented at the inlet boundary to absorb the 

reflective wave in order to avoid the spurious oscillations due to the re-reflective wave 

near the inlet boundary. Without the disturbance of the reflective wave, the regular 

wave is accurately reproduced at t = 1993.95 s and t = 2004.05 s as illustrated in Figure 

5.2. The time history of the water surface elevation at x = 500 m is recorded in Figure 
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5.3, where amplitude of the reflected wave is maintained well without the spurious 

oscillation. Hence the effectiveness of the non-reflective boundary conditions is 

demonstrated. 

5.2.2 Surge reflection 

 

This test case is carried out along a flat and frictionless channel with a solid wall at the 

eastern end. In a channel of 10,000 m long and 250 m wide, a 10 m high surge wave 

propagates into the domain through the western inlet. Initially, the 5 m deep still water 

is assumed in the channel. A uniform grid with 400 × 10 cells is used in the computation. 

The analytical solution of this case is given by Chow (1959). Before the surge wave 

reaches the wall, the relationship between the water depth and velocity is given by the 

following equations. 

            )( 21111 hhchu  , (5.5) 

            
2

211
1

2

)(

h

hhgh
c


 , (5.6) 

in which c1 is the surge wave celerity; u1 is the inlet flow velocity; h1 is the water depth 

of the surge; u2 = 0 is the initial water velocity; h2 is the initial water depth. The surge 

wave with a height of 10 m travels along the channel before reaching the wall. In this 

idealized test, the front of the surge wave should keep vertical without dispersion. 

Figure 5.4 presents the numerical results t = 200 s in terms of water depth, where 

excellent agreement with the analytical solution is observed. 

 

After the surge wave is reflected from the solid wall, the water depth and velocity of the 

associated flow become h3 and u3 and the analytical solution of h3 and u3 are given by 

(Chow 1959) 

            )( 13211 hhchu  , (5.7) 

            1
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h
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c 


 , (5.8) 

where c2 is the reflective wave celerity. After the reflection, the theoretical height of the 

reflected surge wave increases to 16.854 m. The predicted water depth at t = 1000 s is 

compared with the analytical solution in Figure 5.5. The numerical simulation is again 
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found to agree well with the exact solution. Figure 5.6 and Figure 5.7 show the time 

histories of water depth and flow velocity at x = 5000 m and both match well the 

analytical solutions. 

 

 

Figure 5.4 Surge reflection: comparison of the analytical and predicted water depth at t 

= 200 s. 

 

 

Figure 5.5 Surge reflection: comparison of the predicted and analytical water depth at t 

= 1000 s. 
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Figure 5.6 Surge reflection: time history of the water depth at x = 5000 m. 

 

 

Figure 5.7 Surge reflection: time history of the flow velocity at x = 5000 m. 

5.2.3 Tidal flow in a channel with non-uniform topography 

 

This analytical test is to reproduce a tidal flow along a channel with varying topography, 

which was also studied by Zhou et al. (2001). The channel is 14 km long and 350 m 

wide with a frictionless bed defined by 

            















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4
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40
10)(

L

x

L

x
xzb  , (5.9) 
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The analytical solutions of water depth and velocity of the flow are given by Bermudez 

and Vazquez (1994): 

              

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



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


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A uniform computational mesh is created to contain 400 × 10 cells. h(0, t) and u(0, t) 

are given at the western end of the domain as the inflow boundary condition. While u(L, 

t) is used to define the outflow boundary at the eastern end of the channel. The north 

and south boundaries are set to be slip. 

 

The numerical predictions of the water level and velocity along the central line are 

recorded at t = 7552.13 s and compared with the analytical solutions in Figure 5.8 and 

Figure 5.9. The numerical predictions agree well with the analytical solutions and this 

demonstrates the capability of the present model on simulating flows over irregular bed 

topography.  

 

 

Figure 5.8 Tidal flow: comparing analytical and prediction water level at t = 7552.13 s. 
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Figure 5.9 Tidal flow: comparing analytical and predicted velocity at t = 7552.13 s. 

5.2.4 Shallow flow oscillation in a parabolic bowl 

 

 

Figure 5.10 Shallow flow oscillation in a parabolic bowl: the bed profile and the initial 

water surface elevation. 

 

This 2D analytical case is chosen to validate the capability of the fully 2D shallow flow 

model on capturing the moving shoreline. This case has been adopted by numerous 

researchers to validate their numerical models, including Balzano (1998). As shown in 

Figure 5.10, the topography of the parabolic bowl is defined by 
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
 , (5.12) 

where the origin of the coordinate system is at the domain centre, O indicates the still 

water level at the domain centre, h0 is the corresponding still water depth and a is the 

distance from O to the shoreline.  

 

The analytical solution of the water surface elevation was derived by Thacker (1981) 

and is given as 
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where r0 is the distance from the initial location of the shoreline to the domain centre. In 

this case, h0 = 20 m; a = 1500 m and r0 = 1200 m. 

 

The 4000 m × 4000 m frictionless computational domain is approximated by a uniform 

mesh of 400 × 400 cells. The initial water surface elevation is defined by equation (5.13) 

and (5.14) at t = 0. Open boundary conditions are implemented but the boundary 

settings do not have any influence on the numerical solution as the flow cannot reach 

the edge of the parabolic bowl in this case. Simulation is run to reproduce the flow 

oscillation for 4T (T is a period). The time history of the water surface elevation is 

recorded at two gauging points, i.e. G1 (0, 0) and G2 (500, 0).  

 

Figure 5.11 compares the numerical and analytical water level at two gauge points. The 

predictions match perfectly the analytical solutions. The central profiles along x-axis are 

presented in Figure 5.12 at t = T/4, T/2, 3T/4, T, 5T/4, 3T/2, (2+3/4)T and 4T. The 

moving shoreline has been almost exactly captured even after a four periods as shown in 

Figure 5.12 (h) for t = 4T. The capability of the current model in dealing with non-

uniform bed topography and repeating wetting and drying process has been confirmed.  
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(a) 

 

 

(b) 

Figure 5.11 Shallow flow oscillation in a parabolic bowl: time histories of the water 

surface elevation (a) at x = 0 and (b) at x = 500 m. 
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Figure 5.12 Shallow flow oscillation in a parabolic bowl: water surface profile at 

different output times. 

5.2.5 Solitary wave run-up along a sloping beach 

 

This classic benchmark test is about a solitary wave running up and down a sloping 

beach, which was experimentally and analytically studied by Synolakis (1987) and has 

been widely used as a benchmark to validate numerical models (e.g. Hu et al. 2000; 

Yamazaki et al. 2009). Both the analytical and experimental tests are considered in this 

work.  
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5.2.5.1 Analytical test 

 

As shown in Figure 5.13, the computational domain starts from a flat sea bed, which is 

then followed by a sloping beach with a slope of 1: 19.85. The whole domain is 100 m 

long and 10 m wide. The still water level intersects the beach at O, which is located at x 

= 80 m. The distance from O to the left hand side of the domain is defined as ξ. The toe 

of the beach is 19.85 m away from O (Xo). The solitary wave centres at Xc with a height 

of ho = 0.019 m. Xc can be calculated by 

            )05.0/1(arccosh
3

4

h

H
XoXc  , (5.15) 

The mean water depth H is 1 m. The detailed analytical solutions for this test may be 

found in Synolakis (1987) and Hu et al. (2000). The initial water surface and velocity of 

the wave are given by 

            
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H

g
xxu )()(  , (5.17) 

 

 

Figure 5.13 Analytical solitary wave run-up: definition of solitary wave and bed profile. 

 

The solitary wave propagates from left to right and then climbs up the sloping beach. 

The non-reflective boundary conditions are implemented at the western end of the 

domain while open boundary is assumed at the opposite side. The other boundary walls 
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are assumed to be slip. The computational domain is decomposed by a uniform grid of 

400 × 40 cells. 

 

  

(a) 

 

(b) 

Figure 5.14 Analytical solitary wave run-up: time history of the water level at (a) ξ = 

0.25 m and (b) ξ = 9.95 m. 

 

Figure 5.14 illustrates the time histories of the water surface elevation at ξ = 0.25 m and 

ξ = 9.95 m for a duration of 40 s and the numerical predictions compare reasonable well 

with the analytical solutions. In Figure 5.15, snapshots of the solitary wave run-up are 

captured at different dimensionless times t(g/H)
1/2

=30, t(g/H)
1/2

=50 and t(g/H)
1/2

=70. 
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Again the predicted wave profiles are found to agree very well with the analytical 

solutions and no spurious oscillation is detected at the wet-dry interface. 

 

 

 

(a) 

 

 

(b) 
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(c) 

Figure 5.15 Analytical solitary wave run-up: wave profiles at (a) t(g/h)
1/2

=30; (b) 

t(g/h)
1/2

=50 ; (c) t(g/h)
1/2

=70. 

5.2.5.2 Experimental test 

 

The experiment tests of solitary wave run-up on a sloping beach carried out by 

Synolakis (1987) have been adopted by numerous modellers to test their numerical 

models (e.g. Yamazaki et al. 2009). In this work, we consider a severe shallow wave 

event as Yamazaki et al. (2009) did, where the wave height is assumed to be 0.3 m. The 

Manning‟s n is set to be 0.01 s/m
1/3

. Other settings are the same as those in the 

analytical test. A uniform grid of 800 × 20 cells is applied.  

 

Figure 5.16 illustrates the predicted wave run-up profiles at t(g/h)
1/2

= 15, 25, 40, 50, 55, 

65, compared with the laboratory data and the predictions simulated by Yamazaki et al. 

(2009). The run-up process involves wave propagation, breaking, climbing, retreating 

and formation of a hydraulic jump. At the beginning, the solitary wave propagates from 

the original location to the sloping beach. The wave front arrives at the sloping beach 

about t(g/h)
1/2

= 15. The wave becomes steeper when the wave begins to climb up the 

sloping beach. Then the solitary wave breaks due to the shallow water effect at around 

t(g/h)
1/2

= 25. After breaking, the wave runs up along the sloping beach. At t(g/h)
1/2

= 40, 

the wave run-up reaches the maximum height with the associated momentum becoming 



101 

 

zero. After that, the wave begins to retreat at t(g/h)
1/2

= 50. Supercritical flow is 

developed when the wave retreats from the slope. When the supercritical flow joins the 

slower subcritical flow near the toe, a hydraulic jump forms, as shown in Figure 5.16 (e-

f) for t(g/h)
1/2

= 55 and t(g/h)
1/2

= 65. The numerical predictions generally agree very well 

with the experimental measurements. The present fully 2D shallow flow model 

accurately reproduces the important stages of wave run-up and run-down, e.g. wave 

breaking, wave running up and down and the formation of hydraulic jump. Both the 

analytical and experimental solitary wave run-up tests demonstrates that the current 

numerical scheme performs well in dealing with the complex coastal hydrodynamic 

phenomena, e.g. wave breaking, moving shoreline, hydraulic jump, etc. 

 

 

 

(a) t(g/H)
1/2 

= 15 

 

 

 

(b) t(g/H)
1/2 

= 25 
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(c) t(g/H)
1/2 

= 40 

 

 

 

(d) t(g/H)
1/2 

= 50 

 

 

 

(e) t(g/H)
1/2 

= 55 
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 (f) t(g/H)
1/2 

= 65 

Figure 5.16 Experimental solitary wave run-up: wave profiles at different output times, 

(up – by the present model, where o (red) stands for experimental data, ▬ (blue) 

represents numerical results and ▬ (black) denotes sea bed; down – by Yamazaki et al. 

(2009), where o (black) stands for experimental data, ▬▬ (blue and red) represents 

numerical results and ▬ (black) denotes sea bed). 

5.2.6 Experimental tsunami run-up with realistic domain features 

 

 

Figure 5.17 Tsunami run-up: domain topography. 
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A 7.8 magnitude of the earthquake took place at the offshore of the south-western 

Hokkaido Island, Japan, on 12 July 1993 triggered a tsunami disaster. In the event, the 

economic damage was recorded to be up to 600 million US dollars. 250 people were 

killed and more than half of the deaths were caused by the tsunami. The maximum wave 

run-up of 31.7 m in height at Monai Valley of Okushiri Island was one of the 

remarkable features associated with the event. A physical experiment of 1: 400 in scale 

was carried out by the Hydraulic Department of the Central Research Institute of 

Electric Power Industry in Abiko to reproduce the maximum tsunami run-up at the 

Monai area (Matsuyama and Tanaka 2001).  The experimental case is also studied by 

Franchello (2010). 

 

The laboratory model was built in a large wave flume of 3.4 m wide, 205 m long and 6 

m deep. The selected 5.488 m × 3.402 m computational domain focuses on the area 

with maximum observed run-up height, consisting of a pocket beach and two small 

valleys. The maximum run-up height happened at the south valley. The domain 

topography is presented in Figure 5.17 and Figure 5.18 where contours of the 

topography are plotted. Three gauge points located near to the small valley in the pocket 

beach are used to record the evolution of the water surface elevation and flow velocity 

around the pocket beach area. 

 

 

(a) 
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(b) 

Figure 5.18 Tsunami run-up: contour lines of the bed topography of (a) the whole 

computational domain; (b) the pocket beach and two small valleys. 

 

 

Figure 5.19 Tsunami run-up: the 22.5 s incident wave. 

 

A uniform grid with a resolution of 0.014 m is used for the simulation. The Manning 

coefficient n is set to be 0.01. The western end of the computational domain is used as 

the inflow boundary and implemented with non-reflective boundary conditions. The 

other three boundaries are set to be solid wall boundaries. The 22.5 s incident tsunami 

wave, as illustrated in Figure 19, was produced by a wave generator and propagated 

from the western side of the computational domain. The mean water depth is set to be 
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0.13535 m. The duration of the numerical prediction is 30 s. The CFL number is set to 

be 0.5.  

 

Figure 5.20 presents the evolution of the tsunami running-up and -down over the beach 

from t = 12 s to t = 22 s, in terms of water surface plots (left) and contours (right) at 

every second. The tsunami wave first hits the Muen Island, causes a shock wave to form 

and then propagates towards the beach. The wave front reaches the edge of the beach 

and runs up to the south valley. The maximum wave run-up height is recorded at about 

16 s. This remarkable peak run-up height may be caused by the particular land feature 

formed by the pocket beach and two small valleys. Then the flood wave travels from the 

location with maximum run-up height to the north along the beach. After reaching the 

maximum height, the flow retreats from the beach. Reflected waves are observed to 

travel to the upstream and interacted with the incident wave and shock. 
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Figure 5.20 Tsunami run-up: flood maps (left) and water surface contours (right) at 

different output times. 

 

The velocity field of the whole domain at t = 16 s when the maximum run-up height is 

achieved is presented in Figure 5.21 (a). The maximum wave run-up happens at the 

south valley. The velocity vectors near the two valleys are shown in Figure 5.21 (b), 

which implies the flow hydrodynamics of the propagating wave when the maximum 

wave run-up occurs. At t = 16 s, the wave front runs up along the south valley. After it 

reaches the maximum run-up height, the wave retreats from the south valley and travels 

to the north valley along the beach. The corresponding velocity field around the Muen 

Island is also illustrated at Figure 5.21(c). 

 

 

(a) In the whole domain 
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                  (b) Near the two valleys                    (c) Around the Muen Island  

Figure 5.21 Tsunami run-up: predicted velocity field (a) in the whole domain; (b) near 

the two valleys; (c) around the Muen Island. 

 

The predicted time histories of water surface elevation at the three gauging points are 

compared with the experimental measurements and the simulations predicted by 

Franchello (2010) in Figure 5.22. According to the inflow condition, the water surface 

elevation begins to decrease from 2.5 s. The experimental data presents a positive 

increase after 2.5 s. In contrast, the numerical prediction presents the smooth and still 

water surface until the tsunami wave arriving. The numerical arrival time and the peak 

water level agree closely with the experimental measurements. The peak water surface 

elevation simulated by the present model is much closer to the experimental data than 

the simulation provided by Franchello (2010). Successfully handling of this test case 

with extreme hydrodynamic conditions and realistic domain features reveals the 

capability of the present shallow flow model for practical coastal simulations.  
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Figure 5.22 Tsunami run-up: time histories of water level at three gauge points (left – 

by the present model; right – by Franchello (2010)). 

5.3 Conclusions 

 

This chapter validates a robust numerical tool for coastal hydrodynamic simulations.  

 

   Non-reflective boundary conditions have been used to improve the existing 

shallow flow model for coastal simulations. The non-reflective boundary may 

effectively absorb the wave reflected by the coastal defence, structure and 

sloping beach at the inlet boundary and ensures reliable predictions; 

   The improved numerical scheme is validated against several benchmark tests. 

The current fully 2D shallow flow model, implemented with non-negative 

Riemann solver, has been proved to be a powerful tool for a wide range of 

realistic coastal simulations. 
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Chapter 6 Effect of Spatial Resolution and Numerical Accuracy 

Objectives 

 

 Quantitatively investigate the effects of the spatial resolution and the order of 

accuracy of the numerical scheme on shallow flow modelling; 

 Advise the issues of optimum grid scale and numerical accuracy in providing 

reliable and efficient simulations.  

 

Introduction 

 

The grid scale and order of numerical accuracy may significantly influence the accuracy 

and efficiency in numerical computations. Different spatial resolutions could change the 

representation of the near-bank region of floodplain (e.g. Horritt and Bates 2001b). The 

induced change of bed topography could leads to significant impact on the 

computational accuracy of predicted water depth, water surface level, arriving time and 

flood extent. Theoretically, finer mesh resolution should provide better representation of 

the background topography and hence leads to more accurate numerical prediction. 

However, in large-scale real-world simulations, refined grid resolution increases 

significantly the number of computational nodes and may result in unbearable 

computational cost. Therefore, it is an important issue to investigate the effect of grid 

scale on computational accuracy and efficiency and hence to find out the optimum 

solution to the problem.  

 

In the present fully 2D shallow flow model, higher order numerical accuracy is achieved 

by using 2
nd

-order Runge-Kutta method in time and MUSCL (Monotone Upstream-

centred Schemes for Conservation Laws) slope limited linear reconstruction approach in 

space. The MUSCL scheme is adopted to reconstruct the face values of the flow 

variables at the interface, which also restricts the local slope of flow variables for stable 

simulations. Compared with a 1
st
-order scheme, a 2

nd
-order scheme demands higher 

computational time, especially for those realistic cases. Therefore the effect of 

numerical accuracy on the numerical predictions is also investigated, aiming to advise 

the balance between the computational efficiency and accuracy.  
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In this work, the quantitative methods of Root Mean Square Error (RMSE) and Fit 

Statistics (e.g. Aronica et al. 2002) are implemented to quantify the effects of grid scale 

and order of numerical accuracy. When assessing the scale effect, reference solutions 

are obtained on fine mesh and those coarse-mesh results are linearly interpolated into 

the fine mesh during the quantifying process.  

 

Three test cases are presented in this chapter. The first case is used to investigate the 

scale effect, which is a laboratory-scale dam-break flow over a triangular structure. An 

analytical case of the 2D oscillating flow in a frictional parabolic basin is implemented 

to evaluate the balance between the numerical accuracy and efficiency. Finally, the 

realistic Malpasset dam-break case is implemented to investigate the effects of these 

two influencing factors on the reliability of the numerical solution and the 

computational efficiency.  

6.1 Mathematical Methods 

 

The mathematic methods of Root Mean Square Error (RMSE) and Fit Statistics (F
1
 and 

F
2
) (Aronica et al. 2002) are employed to assess the effects of the spatial resolution and 

numerical order on solution accuracy and computational efficiency. In this study, water 

depth (h = η - zb) is taken as the considering factor. For the investigation of the scale 

effect, the prediction with the highest resolution is set to be the benchmark solution for 

the RMSE method and Fit statistics. In the computation, the lower resolution 

predictions are linearly interpolated into the higher resolution, in order to compare the 

predictions at the same grid size. In the study of the numerical order accuracy, the 

second order simulation or analytical solution is employed as a reference for the 

estimation of RMSE and Fit statistics (F
1
 and F

2
).  

 

The RMSE is calculated as 

            
n

hh

hhRMSE
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jiji

2

,
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 

 , 
(6.1) 

where n is the number of grid cells in the computational domain. hi,j is the water depth 

at the considering cell (i, j). ĥi,j  is the corresponding benchmark water depth. 
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When calculating fit statistics (F
1
 and F

2
), the critical water depth to define the wet-dry 

status is generally set to be 0.1 m (Aronica et al. 2002). The Fit Statistics F
1
 is used to 

indicate the performance of the model on predicting the wet-dry front (e.g. Aronica et al. 

2002). It presents the percentage of the cells, in the coincided wet-dry state with the 

benchmark. 
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where (i, j) is the index of the cells; B and C stand for the benchmark cell and the 

compared cell, respectively. The subscripts 0 means a cell is dry while 1 denotes a wet 

cell. In equation (6.2), 00

,

CB

jiP and 11

,

CB

jiP have two possible values 0 and 1. 1 is taken when 

the wet-dry state in B and C are matched. While 0 means the wet-dry state is opposite in 

B and C. F
1
 ranges from 0 to 1, in which 0 means that there is no fitted cell in the 

present comparison and  1 indicates that the wet-dry state in all of the compared cells is 

exactly that same as those benchmark cells. The value of F
1
 increases with the increase 

of the fit ratio. Hence, F
1
 stands for the ratio of the fitted cells against the total number 

of the grid cells.   

 

Another statistic method, F
2
, introduced by Horritt and Bates (2001b), is used to 

estimate the ratio between the numerical flooded area and the observed inundated area. 

Herein F
2
 is used to estimate the percentage of the coincided flood extent between the 

current prediction and the benchmark, which can be described by, 
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, (6.3) 

in which Wc and Wb stand for the number of inundated cells given by the present 

simulation and the benchmark solution, respectively. F
2
 can be specifically calculated 

using the following formula, 
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where 01

,

CB

jiP is 1 when the benchmark cell is wet and the present compared cell is dry; 

otherwise it is 0. 10

,

CB

jiP is 1 when the benchmark cell is dry and the compared cell is wet; 
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otherwise its value is 0. In equation (6.4), the numerator accounts for the coincided 

inundated area predicted by both sets of solutions. The denominator gives the sum of 

the flooding area defined by either the compared simulation or the benchmark. 

Therefore, F
2
 is a variable between 0 and 1. 0 represents the wet-dry state in the 

compared solution is totally different from the benchmark lattices while 1 represents 

that the predicted flooding extent is absolutely the same as that in the benchmark 

lattices.  

6.2 Case Studies and Discussions 

 

In this section, the effects of the grid resolution and numerical order of accuracy on 

computational accuracy and efficiency are investigated based on three test cases, i.e. a 

laboratory dam break over a triangular hump, an oscillation wave in a parabolic bowl 

and the realistic Malpasset dam break inundation. These three cases have been used to 

validate the fully 2D shallow flow model (in Chapter 3 and 4). The numerical 

simulations are found to agree well with the experimental measurements, analytical 

solutions and field records, respectively. In this chapter, the effects of grid resolution 

and numerical order of the numerical scheme on the flood extent and prediction of water 

depth and water surface elevation are investigated intensively.  

6.2.1 Dam-break flow over a triangular bump 

 

 

Figure 6.1 Dam-break flow over a triangular bump: bed profile. 
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This test case is adopted to estimate the scale effect on the simulation of a dam break 

flow over a triangular bump. The channel is 38 m long and 5 m wide with a reservoir at 

the upstream and the bed profile is given in Figure 6.1. Four grids with different 

resolution (level 1 Δx = 1 m, level 2 Δx = 0.5 m, level 3 Δx = 0.25 m, level 4 Δx = 0.125 

m) are investigated in this work. The finest resolution (Δx = 0.125 m) is taken as the 

benchmark in the analysis using the RMSE method and the fit statistics approaches. 

Seven gauge points are located along the channel to record the time history of the water 

depth. Herein, for „G2‟, „G‟ stands for the gauge point and „2‟ means the distance 

between the gauge point and the dam is 2 m. Other gauging points are defined in the 

same way.  

 

As shown in Figure 6.2 the time history of measured water depth are compared with the 

numerical predictions based on different grid resolutions at different gauges. Obviously, 

the numerical predictions diverge from the solution on the finest grid (Δx = 0.125 m) as 

the grid size increases, except Gauge 13.  The different comparison at G13 is caused by 

the location of this gauge point. Gauge 13 is at the peak of the triangular hump. When 

the grid is 38 × 5 (Δx = 1 m), Gauge 13 is right located at the central point of the control 

volume. In the current finite volume scheme, the values of the flow variables are stored 

at the central point of cell. When the resolution is chosen from Δx = 0.125 m, Δx = 0.25 

m and Δx = 0.5 m, the bed elevation of Gauge 13 is not right at the peak of the hump 

and lower than the real one. The recorded water depth is linearly interpolated by using 

the values in two neighbour cells, which may introduce extra source of error into the 

solution and hence lead to an inconsistent comparison. 
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Figure 6.2 Dam-break flow over a triangular bump: time history of the water depth at 

different gauges. 

 

 

Figure 6.3 Dam-break flow over a triangular bump: time histories of Fit statistics (F
1
)
 

for 90 s.  

 

 

Figure 6.4 Dam-break flow over a triangular bump: time histories of fit statistics (F
2
)
 
for 

90 s. 

 

Further investigation of the flood extent and the water depth in the entire domain is 

carried out by using fit statistics and RMSE methods. The numerical solutions from the 

level 1-3 simulations are interpolated onto the finest level 4 grid, and then compared 
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with the benchmark prediction (level 4). Figure 6.3 illustrates the general performances 

of the present model on the matching rate based on different resolutions, compared with 

the benchmark resolution.  F
1
 is used to estimate the fitted percentage of the coincided 

wet-dry state cell in the whole grid. Figure 6.4 illustrates the fit rate (F
2
) of the 

inundated area between the compared scales and the benchmark scale. Both sets of 

statistics confirm that the numerical solutions converge as the grid resolution increases.   

 

  

Figure 6.5 Dam-break flow over a triangular bump: time histories of the root mean 

square errors (RMSE) calculated against water depth for 90 s. 

 

Figure 6.5 compares the root mean square error of the water depth for different grid 

scale levels throughout the simulation time of 90 s. Again, the RMSE appears to 

obvious decreases with increasing mesh resolution. The predicted water depth presents a 

consistent response to the change of the grid scale throughout the process of simulation.  

6.2.2 Frictional flow in a parabolic bowl with planar surface 

 

This 2D analytical case, which has been used in Chapter 3 to validate the fully 2D 

shallow flow model, is used to quantify the effect of the accuracy order of the numerical 

scheme. The same initial and boundary conditions are implemented. Here the simulation 

is carried out in 7200 s using both the 1
st
 order and 2

nd
 order accurate schemes, 

respectively. Figure 6.6 presents the central profile along the x-direction at t = 0 s, t = 

720 s, t = 1440 s, t = 2160 s, t = 2880 s, t = 3600 s, t = 7200 s. The obvious deviation 
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from the analytical solutions happens in 1
st
 order simulation in the first 1440 s. After 

that, both the 1
st
 and 2

nd
 order simulations provide a good agreement with the analytical 

solution.  
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Figure 6.6 Frictional flow in a parabolic bowl with planar surface: central profiles of 

water surface along the x-axis at different times. 

 

 

 

(a)  
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(b) 

 

(c) 

Figure 6.7 Frictional flow in a parabolic bowl with planar surface: time histories of the 

water surface elevation in 7200 s at (a) G1 (x = 500 m); (b) G2 (x = 1000 m); (c) G3 (x 

= 1500 m). 

 

The comparisons are also made between the 1
st
 and 2

nd
 order predicted water surface 

elevation and the analytical solution at three gauges. The three gauge points are located 

at x = 500 m, x = 1000 m and x = 1500 m along the x-axis. The numerical time histories 

of water free surface level are plotted in Figure 6.7 and compared with the analytical 

solution. The 2
nd

 order predictions are found to agree better with the analytical solution 

while the 1
st
 order simulations present more obvious differences from the analytical 
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solution throughout the 7200 s. The difference between 1
st
 and 2

nd
 order simulations 

decreases with time as the flow approaches the motionless steady state due to the 

friction effect. Overall, the 2
nd

 order scheme appears to provide better performance.  

 

Further analysis is carried out using the fit statistics and the root mean square error 

method and the results are shown in Figure 6.8, Figure 6.9 and Figure 6.10, respectively. 

The 2
nd

 order simulation is first taken as the benchmark in the analysis of fit statistics 

(F
1
 and F

2
). Figure 6.8 illustrates the fit ratio (F

1
) between the 1

st
 order and 2

nd
 order in 

terms of wet-dry state in global cells. The lowest fit ratio is 92% at around t = 1200 s. 

The differences decrease with time when the motion of the flow is slowed down by the 

bed friction effect. Figure 6.9 shows the fit statistics F
2
 of flood extent between the 1

st
 

order and the 2
nd

 order throughout 7200 s. More than 87.9% of 1
st
 order prediction 

presents the same inundated state as the 2
nd

 order simulation. Obviously, the 2
nd

 order 

scheme provides better performance. Furthermore, quantitative investigation should be 

taken.  

 

 

Figure 6.8 Frictional flow in a parabolic bowl with planar surface: time history of fit 

statistics (F
1
) for 7200 s. 
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Figure 6.9 Frictional flow in a parabolic bowl with planar surface: time history of fit 

statistics (F
2
) for 7200 s. 

 

 

 
(a) 
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(b) 

Figure 6.10 Frictional flow in a parabolic bowl with planar surface: time histories of 

RMSE in terms of water depth for 7200 s: (a) use the 2
nd

 order prediction as the 

benchmark; (b) use the analytical solution as the benchmark. 

     

The evolution of RMSE throughout the simulation time of 7200 s is described in Figure 

6.10. The benchmark in Figure 6.10 (a) is the 2
nd

 order numerical prediction. In (a), the 

maximum root mean square error is 0.28 m at t = 1880 s for this comparison. While the 

analytical solution is taken as the benchmark in Figure 6.10 (b), the RMSE at t = 1880 s 

is 0.324 m for the 1
st
 order prediction and 0.08 m for the 2

nd
 order prediction. The 

improvement of using 2
nd

 order numerical scheme is evident. The comparison of the 

central profile shows obvious differences at t = 720 s and t = 1440 s in Figure 6.6, 

which are also obviously presented in Figure 6.8 - Figure 6.10. Furthermore, the 

computing time is 29.36 s for 1
st
 order simulation and 134.78 s for 2

nd
 order simulation. 

The 2
nd

 order scheme does not consume too much computational time for this particular 

case. Therefore, for this type of theoretical cases with simple topography and flow set-

up, higher-order scheme may produce more accurate numerical solutions under 

acceptable computational cost. However, whether this conclusion can be extended to 

large-scale simulations over realistic domain topographies is still not clear.  

6.2.3 Malpasset dam break  

 



128 

 

The case of Malpasset dam break is implemented here to investigate the effect of grid 

scale and the numerical order of accuracy in the realistic domain with complicated bed 

topography and irregular boundary. This realistic case has been validated and 

investigated in Chapter 4. In this work, the experimental measurements and police 

survey records are used to verify the numerical simulation and study the effects of 

spatial resolution and numerical order of accuracy on the solution reliability and 

computational efficiency.  

 

 

Figure 6.11 Malpasset dam break: plane view of the floodplain and location of Gauge 

points (G) and Police survey points (P). 

 

The computational domain fits in an 18000 m   10000 m rectangle region as shown in 

Figure 6.11, where „G‟ denotes the experimental gauge points and „P‟ presents the 

police survey locations. In this simulation, five uniform grids of different resolution 

have been adopted, which contain 90 × 50 cells (Δx = 200 m), 225125 cells (Δx = 80 

m), 450250 cells (Δx = 40 m), 900500 cells (Δx = 20 m) and 18001000 cells (Δx = 

10 m), respectively.   

 

The numerical predictions of the arrival time and the peak water surface elevation at 

gauges (G1 – G9) are firstly compared with the experimental measurements. Secondly, 

the maximum water level at gauging points (P1 – P9) is compared with the police 

survey records. When studying the scale effect, the numerical results are predicted using 

the 1
st
 order scheme for more efficient simulations.  
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6.2.3.1 Investigation of scale effect 

 

 

Figure 6.12 Malpasset dam break: the arrival time at different gauge points predicted on 

grids with different resolutions. 

 

Figure 6.12 illustrates the comparison of the arrival time between the experimental data 

and the numerical predictions predicted on grids of different size at different gauge 

points. The largest discrepancies of arrival times are predicted by spatial resolution (Δx 

= 200 m), which is even earlier at G7 and G8 than at G6. The big discrepancy happens 

when the resolution reach Δx = 80 m. It means a low-limit of the spatial resolution 

exists in the accurate simulation. The predictions of higher resolution present better 

performance at most gauges. However, lower resolutions give better prediction at some 

gauges, e.g. G2 and G7. Hence, the response of the predicted arriving time is not 

consistent with the change of spatial resolution. 

 

Figure 6.13 compares the maximum water levels predicted on different grids with the 

experimental data at different gauge points. The maximum errors still happens in the 

coarsest grid (Δx = 200 m), which reaches 43.75% of the experimental measurement 

happening at G9. The big error is not acceptable in the application. It means the 

numerical scheme cannot provide a right performance after the grid scale reaches a limit.  

The responses of predictions to the change of the grid resolution are not consistent at 

different gauging points. This finding means that higher resolution may not provide 

more accurate prediction in the real-world application. A similar conclusion is obtained 
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by comparing the predicted peak water levels with the police survey records at different 

gauges as shown in Figure 6.14.  

 

 

Figure 6.13 Malpasset dam break: the maximum water level at different gauge points 

predicted by grids with different resolutions. 

 

 

Figure 6.14 Malpasset dam break: the maximum water level predicted on different grid 

scales at the Police survey locations. 
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(a) t = 500 s 

 

     

    

(b) t = 1000 s 

 

    

    

(c) t = 2000 s 
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(d) t = 3000 s 

Figure 6.15 Malpasset dam break: the snapshots of flood map at different times 

predicted on different resolutions: Δx = 200 m (Northwest), Δx = 80 m (Northeast), Δx 

= 40 m (Southwest) and Δx = 20 m (Southeast). 

 

The flood extent predicted on different grid scales is investigated in Figure 6.15, where 

the results are due to Δx = 200 m (Northwest), Δx = 80 m (Northeast), Δx = 40 m 

(Southwest) and Δx = 20 m (Southeast), respectively. The snapshots of inundated area 

are captured and compared in Figure 6.15 at (a) t = 500 s, (b) t = 1000 s, (c) t = 2000 s 

and (d) t = 3000 s. In (a), the snapshots present a regular decreased spread speed with 

the increasing grid size. In (b), the coarsest grid (Δx = 200 m) presents faster evolution 

of the flood front than the finest grid. For the other resolutions, higher resolution 

produces faster evolution of flood extent. At t = 2000 s (c), the 40 m resolution predicts 

a similar flood extent and water depth with the 20 m resolution. The 80 m model 

provides a lower spread speed of the flood extent while the 200 m scale shows different 

prediction with a much larger flood extent reaching the seaside. In (d) t = 3000 s, the 

flood front arrives at the seaside. The 20 m and 40 m resolution predictions present the 

similar flood extent and water depth with slight difference. Compared with higher 

resolution predictions, the 80 m resolution prediction shows a slower propagation of 

flood extent and big discrepancy of water depth. Overall, the present model shows good 

performance on the grids (Δx = 40 m and Δx = 20 m). A slower evolution of the flood 

front is shown in the 80 m prediction. The 200 m simulation presents different 

predictions of flood extent and water depth. The above comparisons reveal that the    

predicted flood extent and water depth has regular response to the changing grid 
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resolution with a low-limit. Furthermore, the improvement of computational accuracy 

by increasing the resolution is regularly decreased. 

 

Further investigation of the scale effect is carried out by using the fit statistics and the 

root mean square error methods. The numerical results on grids (coarse 80 m, medium 

40 m, fine 20 m) are evaluated against the benchmark prediction on grid 10 m. In order 

to estimate the evolution of the fit statistics and the RMSE until the convergent time, a 

tolerance error is set to be 1.0 × 10
-6

. For this case, the results cannot converge until 

533734.98 s. The reason might be the complex bed topography and irregular 

computational domain. Considering the convergent time, the simulation in the first 5000 

s is estimated by fit statistics and RMSE method. In 5000 s, the trend of the changes of 

three curves has been shown clearly. 

 

The fit rate (F
1
) of the wet-dry state in the global cells is compared based on different 

scales in Figure 6.16. Figure 6.17 presents the fit ratio (F
2
) of flood extent between the 

comparing resolutions and the benchmark resolution. Obviously, the increasing 

resolution improves the fit rate with the benchmark prediction. The minimum fit ratio 

occurs on the 80 m simulation. It shows a regular response of predicted results to the 

increasing grid resolution.  

 

 

Figure 6.16 Malpasset dam break: Fit statistics (F
1
) history in 5000 s based on different 

grid scales. 
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Figure 6.17 Malpasset dam break: Fit statistics (F
2
) history in 5000 s based on different 

grid scales. 

 

 

Figure 6.18 Malpasset dam break: Root Mean Square Error (RMSE) history of the 

water depth in 5000 s based on different grid scales. 

 

RMSE of water depth is studied to examine the response of computed water depth to the 

changing grid scales illustrated in Figure 6.18. A regular change of RMSE corresponds 

to the increased grid resolution. Table 6.1 presents the corresponding computational 

expenses and RMSEs at 5000 s to different resolutions. As shown in Table 6.1, the 

optimum resolution is 40 m for the particular case in this study, which maintains both 

computational accuracy and efficiency. However, the balance between numerical 

accuracy and computational cost is still a big issue in the application of the realistic 
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flood simulation. It is difficult to decide a common criterion of the optimum grid 

resolution. 

 

Resolution RMSE at 5000 s Computational Time 

80 m 1.6875 m  105.2435 s 

40 m 0.9585 m 778.5783 s 

20 m 0.6805 m  6475.1264 s 

Table 6.1 The corresponding RMSE and computational time to different grid scales. 

6.2.3.2 Investigation of numerical order accuracy  

 

The investigation of the numerical order accuracy is studied by using fit statistics and 

RMSE method for the realistic flooding inundation case. In this work, the simulations 

are performed on 40 m grid resolution. The 2
nd

 order prediction is set to be benchmark. 

F
1
 keeps as a constant 1 with time throughout 5000 s simulation. The result means that 

the wet-dry state in the global cell of the 1
st 

order simulation is absolutely the same as 

that of the 2
nd

 order prediction. The fit rate F
2
 of the flood extent is also a constant as 1, 

which means that the performance of 1
st
 order scheme on predicting flood extent is the 

same as the 2
nd

 order scheme. 

 

 

Figure 6.19 Malpasset dam break: Root Mean Square Error (RMSE) history of the 

water depth in 5000 s. 
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Further investigation focus on the root mean square error of the predicted water depth 

illustrated in Figure 6.19. The maximum RMSE of the simulated water depth is less 

than 1.4 × 10
-3 

m. The RMSE can be neglected in the application of the realistic large-

scale flood simulation, in which the maximum water depth is up to 20 m. Furthermore, 

the computing times are 778.5783 s for 1
st
 order accuracy and 1659.4531 s for 2

nd
 order 

accuracy. From above comparisons, it is found that the 1
st
 order scheme can provide the 

same level of computational accuracy as the 2
nd

 order scheme, and is much more 

efficient than the 2
nd

 order prediction. Hence, the 1
st
 order scheme is more suitable for 

the realistic flooding inundation application. 

6.3 Conclusions  

 

The investigation of the effects of spatial resolution and the numerical order based on 

the aforementioned fully 2D shallow flow model in Chapter 3 has been presented. Three 

test cases are adopted to study the effect of the spatial resolution and the numerical 

order. Root Mean Square Error method and Fit statistics are implemented to evaluate 

the response of water depth and flood extent to the change of grid resolution and 

numerical order. The comparisons demonstrate that:  

 

 The numerical simulations of water depth, arriving time and flood extent are 

sensitive to the change of spatial resolution in the experimental and realistic 

cases. However, the responses of water depth, maximum water surface level and 

arriving time are not consistent with the change of grid resolution at some 

gauging points. The coarse mesh may provide better prediction at some gauges. 

In the realistic case, the effect of grid resolution on the numerical accuracy 

reaches a high-limit with increasing resolution. Furthermore, an unreliable result 

could be reproduced when the grid resolution decreases to a low-limit. However, 

a common criterion of a optimum grid resolution is difficult to be decided in the 

realistic applications;  

 

 The numerical order has different effects on the different applications. The 

numerical predictions of water depth and flood extent are sensitive to the 

numerical order in the analytical case, but not in the realistic case. For the 
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analytical case, the effect of 2
nd

 order scheme is significant in improving the 

numerical accuracy. And the 2
nd

 order scheme consumes an acceptable 

computational expense of 105.42 s. For the particular analytical case, the 2
nd

 

order scheme is a better choice. For the realistic flood simulation, the 1
st
 order 

model predicts the same flood extent as the 2
nd

 order code does.  The peak 

RMSE of water depth is less than 1.4 × 10
-3 

m. And the running time of the 2
nd

 

order scheme is 2.13 times of the 1
st
 order model. The advantage of the 

numerical accuracy cannot justify the loss of the numerical efficiency. Hence, 

the 1
st
 order scheme is recommended for the particular realistic flood simulation. 
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Chapter 7 Zero-inertia Model 

Objectives  

 

 Developed and validate a new zero-inertia model (simplified 2D shallow flow 

model); 

 Compared the performance of the new zero-inertia model with that of the 

aforementioned fully 2D shallow flow model in flood simulations. 

 

Introduction  

 

Flood modelling has, in the last decade, gone through a fruitful period of development, 

fostered by the availability of new datasets (including high resolution topographic data) 

and faster computing resources. Numerous computational tools suitable for realistic 

simulations have been reported (e.g. Hunter et al. 2005; Bates and De Roo 2000; Horritt 

and Bates 2002; Bradbrook et al. 2004; Yu and Lane 2006a; Liang et al. 2008). Among 

these, the models based on solution to the fully 2D shallow water equations represent 

the state-of-the-art in flood modelling and have begun to gain popularity (e.g. Mignot et 

al. 2006; Liang et al. 2008). However, due to the high computational cost associated 

with the fully 2D simulations, substantial efforts have been made to develop 

computationally more efficient flood models. One of the strategies is to simplify the 

governing equations and meanwhile endeavour to maintain a reasonable physical 

representation of flood waves. The zero-inertia models (ZIMs), or diffusion-wave 

models (DWMs), fall in this category. Based on the assumption of slow-varying flood 

waves, the ZIM governing equation can be derived from the fully 2D shallow water 

equations by neglecting the momentum dynamic terms (the three shallow water 

equations are simplified and finally combined into a single zero-inertia equation). Less 

violent flow and substantially simplified governing equation essentially mean that ZIMs 

can normally adopt simpler numerical methods and may have potential in providing 

more efficient numerical computation. 

 

After it was introduced by Cunge et al. (1976), the diffusion-wave concept has been 

used by many researchers to develop over-land flow models and a number of successful 
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ZIMs or DWMs for flood simulations have also been reported and become popular in 

literature. Bates and De Roo (2000) adopted the diffusion-wave approach to develop 

their raster-based flood model (LISFLOOD-FP), whose performance has been 

compared with a 1D model (HEC-RAS) by Horritt and Bates (2002) and a 2D finite 

element shallow flow model (TELEMAC-2D) by Horritt and Bates (2001) and (2002). 

They demonstrated that LISFLOOD-FP can reproduce flood extent to a reasonable high 

accuracy, despite the use of highly simplified equation and simple numerical method. 

Later on, Bradbrook et al. (2004) introduced another explicit model based on the 

diffusion-wave concept for the flood inundation simulations. Application of ZIM/DWM 

in urban flood prediction was exploited in Yu and Lane (2006a). Common to these 

models, flux limiters are often required in order to combat numerical instability and 

save computational time. However, as showed in Hunter et al. (2005) and Bates et al. 

(2010), a flux limiter may have an adverse effect on the solution quality. 

 

Therefore, this work presents an alternative ZIM for flood modelling based on a depth-

positivity-preserving condition that (a) does not require a flux-limiter to maintain stable 

numerical results and (b) facilitates simulations with wetting and drying over natural 

floodplains. After demonstrating its performance via two analytical test cases, the new 

model is applied to reproduce a flood inundation event in the 36 km
2
 Thamesmead 

floodplain near London, England. The numerical results are also compared with the 

aforementioned fully 2D shallow flow model.  

7.1 Zero-inertial Model 

 

ZIMs only consider the continuity equation from the depth-averaged shallow water 

system of equations, i.e. 

            0
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where t denotes time, x and y are the Cartesian coordinates, η is the water level, h = η - 

zb gives the water depth with zb being the bed level, Q
x
 and Q

y
 (m

2
/s) are the x and y 

components of the momentum flux , which are herein accounted using the Manning 

stage-discharge relationship, i.e. 
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where n is the Manning roughness coefficient.  

 

In this work, the zero inertia equation given by (7.1) is solved by an explicit finite 

volume method and the following formula is used to update the water level at cell (i, j) 

to a new time step: 
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where the superscript k indicates time level, Δt denotes the time step, 

x

jiQ ,,2/1 ,
x

jiQ ,,2/1 ,
y

jiQ 2/1,   and 
y

jiQ 2/1,   respectively represent the fluxes across the four 

cell interfaces. It is well-known that the finite volume method facilitates excellent mass 

conservation, which is an important property a numerical code should have for flood 

modelling. 

7.1.1 Depth-positivity-preserving condition 

 

At a cell interface (i+1/2, j) shared by cells (i, j) and (i+1, j), a single value for the bed 

elevation is defined as 

             
jibjibb zzz , ,1 ,maxˆ

 , (7.4) 

based on which the non-negative water depth is reconstructed, i.e. 

             bjiji zh ˆ,0maxˆ
,,      and   bjiji zh ˆ,0maxˆ

,1,1    , (7.5) 

 

The free-surface elevations at (i, j) and (i+1, j) are then accordingly reconstructed to be 

            bjiji zh ˆˆˆ
,,      and  bjiji zh ˆˆˆ

,1,1   , (7.6) 

 

The corresponding value of the water depth at the interface (i+1/2, j) is obtained by 

averaging those central values given in (7.5) 

             2ˆˆ
,1,,2/1 jijiji hhh   , (7.7) 
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Similar treatment can be done for the faces (i-1/2, j), (i, j+1/2), (i, j-1/2). It should be 

noted that local amendments (7.4)-(7.7) apply locally and temporary at the stage of 

interface flux calculation and does not produce violation in the mass conservation. 

7.1.2 Flux calculation 

 

Across the interface (i+1/2, j), the momentum flux is estimated by approximating (7.2) 

using the reconstructed the free-surface elevation (7.6) and non-negative water depth 

(7.7), namely 
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,,113/5
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x
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
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, (7.8) 

 

The fluxes
x

jiQ ,,2/1 ,
y

jiQ 2/1,   and 
y

jiQ 2/1,  across the other interfaces (i-1/2, j), (i, j+1/2) and 

(i, j-1/2) are estimated in a similar way, i.e.  
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Then the water level at cell (i, j) can then be updated to the next time step using (7.3). 

7.1.3 Time stepping and boundary conditions  

 

In the present ZIM, a fixed time step is employed. For the test cases considered in this 

work, two types of boundary conditions, i.e. open (transmissive) and closed (slip), are 

used. For open (transmissive) boundary conditions, the flow information at those ghost 

points is simply provided to give zero gradients of water surface and velocities across 

the boundary. Closed (slip) boundary conditions require zero normal velocity/flux at the 

boundary. 
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7.2 Results  

 

The current ZIM is first validated using two analytical benchmarks. And then the ZIM 

is finally used in forecasting a hypothetical flood inundation event. Results are 

compared with either analytical solutions or alternative numerical predictions produced 

by the aforementioned fully 2D shallow flow model in Chapter 3. All the simulations 

are run on a standard Pentium desktop PC. 

7.2.1 Open channel flow with flat bed 

 

This is a 1D analytical test case that has been investigated in Hunter et al. (2005) and 

Bates et al. (2010). With the assumption of a constant flow velocity and planar bed 

without slope, the analytical solution of water depth can be found by Hunter et al. 

(2005), 

           

7/3

32 ))((
3

7
),( 








 utxunAtxh , (7.14) 

Herein, u = 1 m/s is the flow velocity; n = 0.01 m
-1/3

s is Manning coefficient; A = 0.5 is 

a constant. The computational domain is assumed to be 5000 m long and 200 m wide 

and is discretized by a uniform grid with 100 × 4 cells. The initial condition and the 

inflow boundary condition can be directly calculated from (7.14), i.e. h(x,0) and h(0,t). 

Simulations are run up to t = 3600 s. 

 

 (a) 
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(b) 

Figure 7.1 Open channel flow with flat bed: (a) initial flow condition and the final free-

surface profile predicted by the ZIM; (b) a zoomed part of the solution. 

 

Simulations are performed with a fixed time step of 0.035 s. Figure 7.1 (a) presents the 

predicted results in terms of free-surface profiles, which match very well with the 

analytical solution (as show the zoomed portion in Figure 7.1 (b)). This can be also 

noted in Figure 7.2 showing the associated RMSEs of the predicted water depth and the 

analytical solution.  

 

  

Figure 7.2 Open channel flow with flat bed: the time history of the RMSE. 
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Finally, a grid convergence study is carried out with a fixed time step Δt = 0.035 s. 

Calculations are performed using respectively 200, 100, 50 and 25 computational cells 

in the flow direction. The longitudinal free-surface profiles (zoom-in view in Figure 7.3 

(a)) and their associated time history of RMSE (i.e. Figure 7.3 (b)) on different grids are 

plotted in Figure 7.3. The resolution of the current ZIM model is seen to improve with 

grid refinement in proportion with a reduction in the RMSE. 

 

 

(a) 

 

(b) 

Figure 7.3 Open channel flow with flat bed: a grid convergence study for the ZIM 

model: (a) the final free-surface; (b) the associated time histories of the RMSE. 
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7.2.2 Tidal flow over a beach with varying slope 

 

This test case is about a tidal flow moving over a beach with varying bed slope defined 

as 

            
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, (7.15) 

 

Assuming a period of T = 3600 s, the flow mimicking a tidal cycle is provided through 

           )2cos(75.00.1)(
T

t
th 

     

, (7.16) 

which is imposed at the eastern end of the domain as the inlet flow condition. The 500 

m × 50 m computational domain is approximated by a 50 × 5 uniform grid. Initially, the 

water body inside the domain is motionless with a surface elevation of 1.75 m. While 

the western boundary is closed, the southern and northern lateral walls are transmissive. 

A constant Manning coefficient of 0.03 is used for the entire domain.  
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Figure 7.4 Tidal flow over a beach with varying slope: free-surface profiles predicted by 

the ZIM and fully 2D shallow flow model (using a fixed time step of 0.0075 s) at 

different output times. 

 

A simulation is performed using the ZIM with a “fixed-time-step” of 0.0075 s. The 

associated free-surface profiles at several output times up to one period cycle are 

depicted in Figure 7.4 indicating very good agreement with the results provided by the 

aforementioned fully 2D finite volume Godunov-type shallow water model in Chapter 3. 

Figure 7.5 presents the associated time history of the RMSE of water depth predicted by 

the ZIM and the fully 2D shallow flow model. For now, it is worth bearing in mind that 

the required CPU time for the simulations is 185 s.  

 

 

Figure 7.5 Tidal flow over a beach with varying slope: the time history of the RMSE. 
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7.2.3 Thamesmead flood inundation  

 

 

Figure 7.6 Thamesmead flood inundation: floodplain (also being illustrated are the 

locations of the breach and 8 gauge points for recording time history of water surface 

elevation). 

 

 

Figure 7.7 Thamesmead flood inundation: inflow hydrograph. 

 

The limiter-free ZIM is applied to predict an idealised inundation event at Thamesmead, 

which is part of the Thames floodplain at the south bank of the River Thames in 

England. The selected 9000 m × 4000 m floodplain is represented by a processed 10 m 

bare-earth DTM shown in Figure 7.6. As shown in Figure 7.6, a 150 m long breach of 

the flood defence is centred at (545855 m, 181040 m) with the coordinates of the 

bottom left corner given as (543000 m, 178000 m). Also indicated in Figure 7.6 are 

eight gauge points for recording time histories of water surface elevation during the 
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simulation. The idealised hydrograph shown in Figure 7.7 is imposed at the breach to 

drive the flood event. The originally dry computational domain is discretized by a 450 × 

200 uniform grid and the roughness coefficient n = 0.035 is assumed to be constant in 

the whole computational domain. Transmissive boundary conditions are used for this 

simulation. A fixed time step is set to be 0.05 s.  

 

The simulation is carried out for a 10-hour flood event. Figure 7.8 shows the inundation 

maps at t = 1.5 hrs and t = 10 hrs produced by the current ZIM, compared with those 

predicted by the fully 2D Godunov-type shallow water model introduced in Chapter 3. 

The time histories of the water surface level at the eight selected gauging points are 

plotted in Figure 7.9 compared with those fully 2D results. The ZIM prediction follows 

closely with the fully 2D calculation, which is confirmed quantitatively by the RMSE 

illustrated in Figure 7.10, calculated against the two sets of solutions. The RMSE goes 

stable after t = 6 hrs which is smaller than 0.05 m.  

 

 

  

(a) 

  

(b) 

Figure 7.8 Thamesmead flood inundation: flood maps of the Thamesmead flood 

inundation predicted by the ZIM model (left) and the fully 2D model (right): (a) t = 1.5 

hrs; (b) t = 10 hrs. 
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Figure 7.9 Thamesmead flood inundation: time histories of water depth at eight 

different gauge points. 
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Figure 7.10 Thamesmead flood inundation: time history of RMSE calculated against the 

fully 2D solution. 

 

In order to confirm the mass conservation of the current finite volume ZIM, the total 

volume of water inside the computational domain is measured and plotted again the 

total volume of mass through the breach in Figure 7.11. For this case, since no outflow 

is induced, the inflow mass should be the same as those accumulated inside the domain. 

Evidently, excellent mass conservation property of the finite volume model is 

confirmed. 

 

 

Figure 7.11 Thamesmead flood inundation: mass conservation. 
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Figure 7.12 Thamesmead flood inundation: Fit-statistic (F
1
). 

 

 

Figure 7.13 Thamesmead flood inundation: Fit-statistic (F
2
). 

 

The Fit-Statistic (F
1
 and F

2
) method (refer to Chapter 6 for details) are employed here to 

further investigate the performance of the present zero-inertia model. F
1
 presents the 

fitted rate of cells with the same wet-dry state. F
2
 shows the percentage of matched 

flood extent predicted by the ZIM and the fully 2D shallow flow model. Herein the 

computed results of the fully 2D shallow flow model are taken as the benchmark. As 

shown in Figure 7.12 and Figure 7.13, F
1
 and F

2
 both convergence from t = 5.5 hrs. At t 

= 10 hrs, over 98.75% of the global cells predicted by ZIM presents the same wet-dry 

state as the fully 2D simulation. And the percentage of the matched flood extent is 
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nearly 88.75%. It also proves that the accuracy of ZIM converges to the fully 2D 

shallow flow model. 

  

In terms of computational time, the ZIM code necessitates around 8 hrs for this 

simulation while the fully 2D model only requires 16.4 min. This coincides with the 

findings reported in Hunter et al. (2008) and confirms that, for complex real-world 

flood simulations, a ZIM could be more expensive than a fully 2D shallow flow model.  

Hunter et al. (2008) compared the performance of six different models on simulating 

urban flood event, including fully 2D shallow flow model and zero-inertia model, in 

which the zero-inertia model took several times longer computational time than the 

fully 2D shallow flow model. As mentioned in Hunter et al. (2005), due to the lack of 

the inertia terms, careful time step has to be operated to avoid large inter-cell flux and 

spurious oscillations for the explicit zero-inertia model. This resulted in the increase of 

the computational cost. In order to maintain the computational stability, Hunter et al. 

(2005) investigated the governing equations and then developed an optimal time step 

for the explicit diffusion wave model (i.e. zero-inertia model), which is a quadratic 

function of grid size. However, the drawback of this approach is that the time step may 

tend to zero when the free surface gradient tends to zero. Hence, a water depth threshold 

has to be operated to avoid this particular situation. In order to obtain computational 

efficiency, Bates et al. (2010) included an inertia term to control flow velocities and 

inter-cell fluxes. Hence, the governing equation was changed from parabolic to 

hyperbolic, which has different stability condition. Therefore, a new adaptive time step 

was developed to control the computational stability and reduce the computational cost.  

7.3 Conclusions 

 

This work presents a zero-inertia model (ZIM) featured by a spatial depth-positivity-

preserving reconstruction for flux calculation, which is based on a finite volume 

formulation. After the two theoretical test cases of mono-directional flow over 

horizontal or varying-sloping bed, the following conclusions can be drawn. The ZIM 

produces a solution that agrees well analytical solution without needing a flux limiter.  

  

Based on the above findings, the present limiter-free ZIM is set up to simulate a realistic 

inundation event in the Thamesmead floodplain near London, UK. The numerical 
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predictions are compared very well with those produced by a fully 2D Godunov-type 

shallow flow model. Furthermore, mass conservation is monitored and confirmed in this 

case for the current finite volume ZIM. However, the ZIM is found to be 

computationally much more demanding than the fully 2D model and hence the potential 

of more efficient simulations is not justified for this type of simplified models. This 

confirms the conclusion indicated in Hunter et al. (2008).  
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Chapter 8 Conclusion and Future Work 

This thesis has presented a novel fully 2D shallow flow model to successfully solve 

different flow regimes, i.e. transcritical, subcritical, supercritical flow and shock-like 

flow, and also accurately predict the wet-dry interface over the complex domain 

topography. A zero-inertia equation, which is simplified from the fully 2D shallow 

water equations, has been solved by using a limiter-free explicit finite volume scheme, 

incorporated with the non-negative water depth reconstructed method, and validated 

against an idealised dam-break flooding inundation case. In this chapter, the conclusions 

of this study are presented including the advantages and limitations of the presented 

numerical models and the proposed future work based on the present research. 

8.1 Conclusions  

8.1.1 Fully 2D shallow flow model 

 

The well-balanced fully 2D shallow water equations have been solved by using a finite 

volume Godunov-type scheme. The HLLC Riemann solver is adopted to solve the 

interface fluxes. The second order accuracy is achieved by using Runge-Kutta time 

integration method and the MUSCL slope limiter in space. A non-negative water depth 

reconstruction approach is implemented here to deal with the wetting and drying 

interfaces, incorporated with a local bed elevation modification method. A limited 

implicit scheme is implemented to discretise the friction source term to avoid the 

spurious oscillation. For the explicit numerical scheme, the Courant-Friedrichs-Lewy 

(CFL) criterion is adopted to limit the time step in order to maintain the computational 

stability. A local boundary modification method is applied to deal with the non-aligned 

domain boundary or the obstacles and structures in the computational domain.  

 

The numerical model has been validated against several benchmark cases. The 

numerical model has presented accurate simulation of the tidal wave over the complex 

bed topography. Hydraulic jump corresponds closely to the theoretical solution, in 

which the velocity field is also predicted accurately. The numerical model is found to be 
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able to correctly simulate the different flow regimes, e.g. transcritical flow and shock-

like flow, and accurately capture the wet-dry interfaces over the complex bed 

topography. The reflection, interaction and transaction of the shock wave have been 

accurately reproduced in the applications. The numerical scheme is proved to be second 

order accurate based on an analytical solution. The fully 2D shallow flow model has 

been verified to be a reliable numerical tool for the flooding simulation of different flow 

regimes over complex domain topography.  

8.1.2 Dam-break simulation 

 

The realistic dam-break flood has been successfully predicted by the present model. For 

the dam-break violent flow, violent hydrodynamics features have been accurately 

captured in the experimental case and real-world case. The shock-like discontinuity has 

been correctly simulated by implementing the Godunov-type scheme, incorporated with 

the approximate HLLC Riemann solver. The well-balanced model has presented good 

performance on reproducing the dam-break flow over complex domain topography with 

repeatedly the wetting-drying problem. The unphysical oscillation at the wet-dry front 

has been avoided due to the application of the non-negative water depth reconstruction 

approach. The arriving time, water depth and flood velocity have been accurately 

simulated in the experimental and realistic dam-break cases. 

8.1.3 Coastal wave run-up simulation  

 

A non-reflective boundary condition is adopted here to absorb the reflective wave and 

let the incident wave in, in order to avoid the unphysical oscillations. The present model 

has been validated against analytical and experimental benchmark cases. The numerical 

prediction shows that complicated coastal phenomena, e.g. hydraulic jump, wave run-up, 

surge wave, have been correctly simulated. And moving shoreline and wave run-up 

have been accurately captured, compared with the analytical solution and the 

experimental measurement.     
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8.1.4 Effect of grid scale and numerical order 

 

The mesh resolution is an important influencing factor of the computational accuracy 

and efficiency. In this work, an experimental dam-beak case and a realistic Malpasset 

dam-break case are studied to investigate the effect of grid scale. The predictions of 

water depth, maximum water surface level, arriving time and flood extent are sensitive 

to the change of grid resolution. The results demonstrate that the mesh refinement 

improves the computational accuracy by sacrificing the numerical efficiency. However, 

the coarser mesh could provide better predictions at some gauges. The effect of mesh 

refinement reaches to a high-limit with increasing resolution. Therefore, it is hard to 

find a general standard for an optimum grid scale to balance accuracy and efficiency for 

complex real-world applications.  

 

The numerical order is proved to be an important factor influencing the computational 

efficiency and accuracy. For the particular analytical case, oscillation flow in the 

parabolic basin, the second order scheme improves computational accuracy and 

consumes acceptable computing time of 105.42 s. However, for the realistic Malpasset 

dam-break case, the first order scheme seems to be a better option. The 1
st
 order scheme 

provides the same prediction of the flood extent as that of the 2
nd

 order scheme. RMSE 

of water depth is less than 1.4 × 10
-3 

m, which can be neglected in the real-world flood 

event. However, the 2
nd

 order scheme cost much more computational expense as 2.13 

times of that of the 1
st
 order scheme. It implies that 1

st
 order scheme may provide a 

good and efficient performance in reproducing the real-world flood event over complex 

domain topography. 

8.1.5 Zero-inertia model 

 

The zero-inertia equation is derived from the fully 2D shallow water equations. Herein, 

the governing equation is simply solved by an explicit limiter-free finite volume method. 

The interface flux is calculated by the Manning‟s equation. A non-negative 

reconstruction method (in terms of water depth) is implemented to capture the wet-dry 

front and avoid the negative water depth.  
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Two theoretical cases are employed here to validate the present zero-inertia model. Due 

to the implementation of the positive-water-depth-preserving reconstructed method, 

wet-dry front is accurately captured without unphysical oscillation and negative water 

depth. Then the present positivity-preserving zero-inertia model is validated against a 

realistic flooding inundation event at Thamesmead, UK. The performance of ZIM is 

compared with the aforementioned fully 2D shallow flow model. The dam-break flow is 

successfully reproduced with correctly prediction of wetting and drying process without 

spurious oscillations. The mass conservation is confirmed due to the finite volume 

method, and proved by comparing the summation of inflow volume with the predicted 

water volume in the whole domain. The predicted arrival time and water depth of ZIM 

are close to those of the fully 2D shallow flow model at gauging points. The comparison 

between ZIM and fully 2D shallow flow model is also quantified using Root Mean 

Square Error (RMSE) mathematical method and Fit statistic approach (introduced in 

Chapter 6) in terms of water depth. The RMSE converges to 0.05 m after the cessation 

of inflow while the fit statistics of flood extent converges to 88.75%. However, ZIM is 

much more computational expensive than the fully 2D shallow flow model. Hunter et al. 

(2008) also found a similar conclusion that a ZIM/DWM could consume more 

computational cost than a fully 2D shallow flow solver, which may be caused by the 

lack of the dynamic terms. Therefore, the problem related to the computational 

efficiency could be an inherent problem of the zero-inertia model.  

8.2 Future Work and Recommendation 

8.2.1 Fully 2D shallow flow model 

 

This fully 2D shallow flow model has been verified to be a robust tool for reproducing 

complex shallow flow hydrodynamics features of the realistic flood events in rivers, 

lakes, reservoirs and coastal areas. In the real-world application, the flood flow can 

wash away bridges, embankments, coastal defences and dams causing landslide and 

dam/dyke-break, and also sweep off the sediment along river bed and floodplain. Hence 

the present flood model is proposed to combine with the sediment transport formulas in 

the future, in order to simulate the motion of the sediment in the flood flow. Then the 

numerical model can be implemented to predict arrival time, flood water depth, velocity, 
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flood route, inundated extent and sediment transport in the real-world flood event, e.g. 

flood in the Songhua River in Jilin province of China.  

 

The natural disaster, e.g. severe storm, extreme tidal wave and Tsunami, may happen in 

the coastal area, inducing huge economic loss and heavy casualties. The present novel 

numerical tool can be implemented to provide accurate prediction of arrival time, wave 

run-up and moving shoreline, and also to reproduce complex coastal phenomena, such 

as surge wave and hydraulic jump, etc. The numerical prediction can be used in coastal 

defence designing, Tsunami warning systems and coastal risk analysis to build a safe 

living environment in the coastal area.  

 

The present model is performed on a uniform Cartesian grid, in which the numerical 

schemes can be easily operated. The uniform-grid based model has been verified to be 

able to provide good performance in predicting realistic flooding inundation events over 

the complex domain topography. However, according to the investigation of the scale 

effect, the finer mesh could provide better prediction but is computational expensive. 

Further study can be carried out focusing on the sensitivity of input variables to the grid 

scale, in order to investigate the optimum spatial resolution for the realistic flood 

simulation. 

 

In order to obtain further computational efficiency, an adaptive Quadtree grid (e.g. 

Rogers et al. 2001; Liang et al. 2004) is proposed to be implemented on the present 

model in the future, which could save up to 6 times computing time compared with the 

uniform Cartesian grid. The adaptive Quadtree grid is a particular type of unstructured 

grid, which has the advantages of cheap computational cost, automatic generation, 

simple hierarchical data structure for mesh information storage and easy grid adaptation.   

8.2.2 Zero-inertia model 

 

In this work, the zero-inertia equation has been successfully solved and validated 

against the flooding inundation event at Thamesmead area. The numerical prediction 

has been compared well with the simulation of the fully 2D shallow flow model. 

However, the zero-inertia scheme is not as efficient as expected. In order to maintain the 

computational stability, a small time step is required for this explicit zero-inertia model 



162 

 

while it also causes increased numbers of iteration. Hunter et al. (2005) and Bates et al. 

(2010) reveal that the reason of less efficiency is the lack of the dynamic terms in the 

zero-inertia equation. And this problem has been solved by implementing an inertia 

formulation of the shallow water equations in Bates et al. (2010). The efficient 

performance of the modified zero-inertia model has been proved. To improve the 

computational efficiency, this new method is proposed to be adopted on the present 

zero-inertia model. However, the proposed model may still cost more computational 

expenses than the fully 2D shallow flow model.  
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