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Abstract 

There are strong drives to find a viable alternative to the use of petroleum as a transport 

fuel. Bioethanol presents an attractive option, but the long-term costs of producing this 

fuel from corn starch are now apparent. Second generation biofuels, derived from 

cellulosic plant cell walls, are a more acceptable alternative. A limiting factor in the 

economical utilisation of plant biomass is efficient saccharification of carbohydrates. The 

process is slowed by the chemical complexity of the substrate, notably the recalcitrant 

double substitution structures in arabinan and arabinoxylan.  

Reflecting this complex chemistry, microorganisms that degrade the wall synthesise an 

array of glycoside hydrolases. Several such organisms contain a large number of genes 

encoding family 43 (GH43) glycoside hydrolases. To better understand the biological 

rationale behind the expansion in this family, the biochemical properties of the GH43 

enzymes of a human gut symbiont, Bacteroides thetaiotaomicron, were investigated. 

Through cloning experiments, soluble protein was obtained for 25 enzymes. Activity 

screens uncovered several enzymes with a weak xylanase activity, three arabinoxylan-

specific arabinofuranosidases, two endo-arabinanases and a novel arabinofuranosidase 

with specificity for α-1,2 side chains of singly and doubly substituted backbone residues. 

The crystal structure of a close homologue of the novel arabinofuranosidase is reported 

here. These data show how B. thetaiotaomicron deploys a combination of endo-acting 

and side chain-cleaving hydrolases to metabolise arabinan polysaccharides.  

Two GH43 enzymes (designated AXHd3s) have been found to target the double 

substitution structure in arabinoxylan. The crystal structure of the Humicola insolens 

AXHd3 was sought to understand this specificity, and is presented in complex with 

reaction products. Structural and mutagenic data were used to identify the mechanism 

by which the enzyme houses the O3-linked arabinofuranose in the active site, while 

exploiting the O2 appended arabinofuranose and asymmetrical xylan backbone as 

specificity determinants. Analysis of these data showed that orientation of the backbone, 

mediated by interactions with a conserved Tryptophan, positions the O3 arabinose into 

the active site. Modification of the rim of the active site pocket generated an AXHd3 

variant that displayed both endo-xylanase and AXHd3 arabinofuranosidase activities. 

The introduction of additional catalytic functions into a biotechnologically relevant 

glycoside hydrolase provides a platform for evolving further, industrially significant, 

activities into the AXHd3 scaffold.  
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CHAPTER ONE 

General Introduction 

The plant cell wall is the most significant source of renewable carbon in the 

biosphere (Coughlan, 1985), with annual synthesis in the order of 1011 tonnes, 

representing an energy equivalent of 640 billion tonnes of oil (Gong et al., 1999). As 

petrol prices are once again making headline news in the UK and the price of a 

barrel of oil is returning to $100 per barrel, there is a financial drive to find 

alternatives to this costly fuel, the value of which has a wide ranging impact upon 

individuals and upon our whole economy. Additionally, the environmental costs of 

intensive fossil fuel burning are at the centre of heated debates over global warming 

and the causes of the freak weather patterns being observed worldwide, with floods, 

droughts and harsh winters affecting communities and economies. 

While the use of petroleum products as transport fuel is not the only area of heavy 

fossil fuel use, it may represent the simplest conversion to more sustainable fuels. 

The investment required to convert a nation‟s power supply to renewable resources 

is huge, but a typical car engine can be converted to run on bioethanol for ~ $600 

(around £370, $1 buys £0.62 February 2011) and rising petrol prices may convince 

customers that this is a worthwhile one-time expenditure. Efforts, particularly in the 

USA, have so far focussed on developing bioethanol derived from corn starch as a 

viable alternative to petrol. In 2007, corn fields expanded by 15 % to meet the 

demands of the bioethanol industry (Martinelli and Filoso, 2008). However, in recent 

years the full impact of corn ethanol has become apparent. Taking corn for fuel 

deprives the food and feed markets and we have seen prices rise steeply as a result. 

Furthermore, it is now clear that corn ethanol is not as environmentally 

advantageous as it seemed (Hill et al., 2006). Although the fuel itself does burn more 

cleanly than petrol, the production of corn ethanol has many adverse impacts upon 

the environment, including the release of carbon from converted agricultural land, 

and the large volumes of water required to produce the fuel (Gerbens-Leenes et al., 

2009; Martinelli and Filoso, 2008). Overall, using bioethanol derived from corn offers 
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only a very modest saving in greenhouse gas emissions compared to the use of 

petroleum fuel (Sheehan, 2009). 

So-called second generation biofuels, derived from cellulosic plant biomass 

represent a more environmentally acceptable alternative (Sheehan, 2009). This 

biomass can be derived from bioenergy-specific crops grown on waste land, 

agricultural by-products and even household waste, which largely consists of plant 

biomass, as the paper and cardboard portion of municipal solid waste (MSW) can be 

30-60 %. Land conversion is therefore not required to obtain the raw material (Lal, 

2008). Cellulose, and other polysaccharides of the plant cell wall, can be fermented 

to ethanol using processes and infrastructure very similar to those currently used for 

corn. However, due to the complexity and recalcitrance of its structure, the plant cell 

wall is very resistant to chemical and biological hydrolysis (Himmel et al., 1999). The 

major limiting factor in the economical utilisation of the plant cell wall for fuel is 

efficient saccharification of the carbohydrate components of the wall. It is therefore 

essential that we possess a detailed knowledge of the structure of the plant cell wall 

and of the enzymes which hydrolyse it, in order to inform future efforts to utilise 

lignocellulosic plant biomass. This chapter aims to review current knowledge of the 

structure and components of the plant cell wall, as well as the enzymes which 

hydrolyse the wall. A discussion will also be made of the relevance of plant 

polysaccharides to human health and industry. 

1.1 The plant cell wall 

 1.1.1 Structure of the plant cell wall 

Many diverse methods are now employed to probe the structure of the plant cell wall. 

Atomic force microscopy (AFM) can provide a close look at the wall; this is often 

supplemented by probing the cell wall with antibodies, carbohydrate binding modules 

(CBMs) and inactivated enzymes (Adams et al., 2004; Knox, 2008; Verhertbruggen 

et al., 2009). 

The structures of the polysaccharides found within the plant cell wall will be 

discussed below (Section 1.1.2). A model structure for the plant cell wall is shown in 

Figure 1.1. The plant cell wall provides the mechanical properties that enable the 
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plant to deal with tensile and compressive forces which result from upright growth on 

land. The cell wall also regulates cell expansion and adhesion (Knox, 2008). The 

importance of the cell wall to healthy plant growth and development is underlined by 

the fact that plants dedicate around 10 % of their genomes to proteins involved in 

construction and rearrangement of the wall during growth. For instance, the poplar 

genome encodes around 1600 carbohydrate active enzymes (cazymes) (McCann 

and Carpita, 2008). The plant cell wall, represented as a static network of polymers 

in early models, is in fact a highly dynamic organelle. Plant cells continue to divide 

throughout the whole lifetime of a plant, while retaining many characteristics of a 

young cell. The thickness of the wall (0.1 – 1 μm in cross-section) must be 

maintained even as modifications to the wall allow the cell to elongate or divide, as a 

turgor pressure of hundreds of mega Pascals is exerted (Perez et al., 2003). This 

flexibility is achieved by reorganisation of the molecular components of the wall via 

rearrangement, cleavage and cross-linking of polysaccharide structures. 

After a cell divides, a layer called the middle lamella is deposited. This layer is 

comprised almost wholly of pectin. The early cell wall has surface markers which 

indicate the future development of the cell and signal the location of the cell within 

the plant (Carpita and Gibeaut, 1993). The middle lamella is then supplanted by the 

primary cell wall which is pectocellulosic and contains some proteins and 

hemicelluloses (Perez et al., 2003). Eventually, if a cell differentiates and requires 

additional structural support, a secondary cell wall will be laid down. The primary 

wall, which surrounds dividing cells, is chemically and structurally very distinct from 

the secondary wall, which provides a cell with its differentiated, functional form 

(Carpita and Gibeaut, 1993). Thus, physical and chemical differences between the 

layers of the cell wall reflect different functions within the plant tissue. 
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Figure 1.1 Model structure of the cell wall of a differentiated plant cell. 

A: the schematic shows how the layers of the cell wall build as a cell develops and differentiates. The 

cell is the white space at the centre of the schematic. The first layer deposited is the lamella (blue). 

Subsequent layers are deposited sequentially within the previous layer. Based on a figure at 

www.ccrc.uga.edu.  

B: the primary cell wall comprises cellulose microfibrils (light blue) coated with hemicellulose (purple). 

Hemicellulose and pectin (green) cross-link these fibrils. 

C: the secondary cell wall is made of cellulose microfibrils (light blue) coated in hemicellulose (purple). 

Hemicelluloses also cross-link the microfibrils. The network is embedded with lignin. Some proteins 

are also present. 
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  1.1.1.i The primary cell wall 

The primary cell wall is found in cells of all higher plants (Mohnen, 2008a), and 

comprises up to 30 % cellulose. The role of the primary wall, which surrounds 

growing cells (Figure 1.1),  is to generate and constrain turgor pressure from within 

the cell, providing structural support to the plant (Knox, 2008). In Type I primary 

walls, cellulose cross-links with xyloglucan (XG) and this matrix interacts closely with 

pectins and some proteins. Cellulose microfibrils are 5 – 15 nm wide and spaced 20 

– 40 nm apart (Carpita and Gibeaut, 1993). 

In Type II primary walls, which are found in grass species, xyloglucan is replaced 

with glucuronoarabinoxylans (GAX) which cross-link cellulose in a network of 

hydrogen-bonds (McCann and Carpita, 2008). As these grass cells mature, 

phenylpropanoids are substituted into the primary cell wall, via ether and ester 

linkages initiating from arabinose substitutions in GAX (McCann and Carpita, 2008). 

Pectic polymers, the most structurally complex plant cell wall polysaccharides, are 

abundant in all primary cell walls (Knox, 2008). Areas which are especially rich in 

pectin include growing or dividing cells, soft plant tissues, cell corners and junctions 

between cells which possess secondary walls (Mohnen, 2008a). The diverse 

structural features of the pectins correlate with stages of cell development, as 

processes such as cell expansion require significant remodelling of the wall. The 

primary walls of dicots, grasses and woods comprise approximately 35 %, 10 % and 

5 % pectin, respectively. Pectin is thought to have evolved as plants adapted to 

upright growth on land, when the forces of gravity became more significant and 

lignified secondary walls became common, as the pectin „glue‟ provides the cell wall 

with much strength (Matsunaga et al., 2004). 

1.1.1.ii The secondary cell wall 

As an organ develops, species-specific patterns of cell types differentiate and some 

will develop secondary cell walls (Figure 1.1). The secondary wall is deposited upon 

maturity and differentiation of cells such as those of the xylem, phloem and transfer 

cells, which are richly abundant in forest crops. The secondary wall typically 

comprises 60-98 % cellulose, along with large amounts of xylan, some lignin and 



[6] 

 

sometimes a minor amount of pectin (McCann and Carpita, 2008). The secondary 

wall is very strong and has a set of hemicelluloses distinct from those in the primary 

wall. It may comprise up to 30 % lignin by mass in some species (Scheller and 

Ulvskov, 2010). This allows the wall to resist compressive stress. Secondary walls 

are structurally and functionally diverse at a molecular level, likely reflecting the 

mechanisms of development of different cell types (Knox, 2008). 

 1.1.2 Plant cell wall polysaccharides 

Polysaccharides, as the major components of all plant cell walls, serve several 

important functions. They limit porosity, transduce environmental signals into cells 

and cement cells together at adhesion points and the middle lamella (Perez et al., 

2003). The major classes of plant cell wall polysaccharide are cellulose, 

hemicellulose and pectin; these are discussed in turn below. 

  1.1.2.i Cellulose 

Cellulose is a major component of the plant cell wall, and represents the most 

abundant biosynthesised polymer on Earth. The primary structure of cellulose is a β-

1,4 linked glucan chain, where successive residues are rotated 180° to form a flat 

ribbon with cellobiose as the repeating unit (Mohnen et al., 2008b, Figure 1.2). 

Glucan chains of between 500 and 14,000 glucose residues hydrogen-bond to form 

microfibrils, insoluble structures comprising approximately thirty-six parallel chains 

(Mohnen et al., 2008b). This network of inter- and intra-molecular hydrogen-bonds 

between hydroxyl groups leads to crystallisation as microfibrils form even larger 

fibrils (Park et al., 2010). The crystalline microfibril is very large compared to the 

individual glycan chains from which it is built. A degree of polymerisation (d.p.) in the 

glucan chain of 2000 corresponds to around 1 μm of length. As primary wall 

cellulose fibrils are frequently observed to be much longer than this, it is likely that 

glucan chains begin and end at different points in the microfibril (Carpita and 

Gibeaut, 1993; Mohnen et al., 2008b).  

Cellulose microfibrils provide rigidity and resistance to tensile and compressive 

forces. They are tethered together in the primary cell wall by extensive interactions 

with hemicelluloses, primarily xyloglucan (XG) but also lower amounts of mannans. 
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The cellulose-XG framework accounts for around 50 % of the mass of the primary 

cell wall (Carpita and Gibeaut, 1993). This interconnected network is in turn 

embedded within a matrix of pectic polymers. The importance of cellulose as a 

central scaffold of the plant cell wall is underpinned by the observation that mutants 

deficient in secondary wall cellulose show very irregular deposition of other wall 

components (Turner and Somerville, 1997). 

 

Figure 1.2 Cellobiose is the foundational unit of cellulose microfibrils. 

The repeating unit of the cellulose chain is β-1,4-linked cellobiose. Intramolecular hydrogen bonds 

form between these cellobiose residues and hold the crystalline form of cellulose together. Glucan 

chains hydrogen-bond to each other and form microfibrils, which crystallise in the wall. 

  1.1.2.ii Hemicelluloses 

A more appropriate name for this class of plant cell wall polysaccharide is „cross-

linking glycans‟. Nonetheless, the term hemicellulose, referring to polysaccharides of 

the plant cell wall which are neither cellulose nor pectin, persists in the literature and 

so is utilised in this report. A broad definition of hemicelluloses is polysaccharides 

with a β-1,4 linked backbone in the equatorial configuration (Scheller and Ulvskov, 

2010, Figure 1.3). Hemicelluloses can be extracted from the wall by alkali treatment 

and prominent examples include xylans and xyloglucan, which are discussed below, 

as well as mannans, glucomannans and some mixed linkage glycans. 

Hemicelluloses are found in all terrestrial plants but the structure and abundance of 

the polymers within the plant cell wall varies by cell type and plant species. These 
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polysaccharides, particularly xyloglucan, interact with cellulose microfibrils to give 

strength to the wall.  

 

Figure 1.3 Hemicelluloses have a β-1,4-linked equatorial configuration. 

The schematic (A) shows pyranose sugars in the 
4
C1 conformation bonded in the equatorial 

configuration followed by hemicellulosic polysaccharides. Polymers with the alternative axial 

configuration at C4 (B) include galactan, a pectic polysaccharide. 

Xyloglucan (XG) 

Xyloglucan is found in all land plants and is the most abundant hemicellulose of the 

primary wall of non-grass species. It localises at points of cell adhesion after 

cytokinesis. The backbone structure of β-1,4 linked glucopyranosyl residues is 

heavily and specifically substituted (Figure 1.4). A code is used to indicate 

substitution of backbone glucose units: X residues are substituted with xylose, F 

residues are substituted with xylose, galactose and fucose, and L residues are 

substituted with xylose and an additional galactose, which is replaced by arabinose 

in S residues (Scheller and Ulvskov, 2010). These branches occur in specific 

patterns. For instance, XXFG is an important signalling molecule which counteracts 

cell expansion induced by auxin (Fry et al., 1993). Analysis of the sequences of 

these substitutions shows that a major divide among vascular plants is whether the 

predominant core repeat of XG is XXGG or XXXG (Scheller and Ulvskov, 2010). 

These side chains, together with the helical nature of the XG backbone, prevent self-

aggregation. Broadly speaking, less extensively branched XG is less soluble and is 

found in expanding cells. Xyloglucan functions as a „tethering glycan‟ in the primary 

cell wall by close association with cellulose microfibrils. Possible mechanisms for this 
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association are an extensive network of hydrogen bonds or by the XG being trapped 

by the microfibrils during crystallisation, due to close proximity in the cell wall 

(Scheller and Ulvskov, 2010). The tightly inter-connected cellulose-XG network is 

required to loosen to allow the plant cell to grow; this is achieved by enzymatic 

modification of XG in combination with internal osmotic pressure, which pushes 

microfibrils apart. 

 

Figure 1.4 The structure of xyloglucan. 

The hemicellulose xyloglucan has a backbone of β-1,4 linked glucopyranose residues. 75 % of these 

are substituted at the O6 position with a xylose residue, which may be additionally substituted with 

galactose or other sugars. 

Glcp = glucopyranose. Fucp = fucopyranose. Xylp = xylopyranose. Galp = galactopyranose. Araf = 

arabinofuranose. 

Xylans 

Xylans are built on a backbone of β-1,4 linked xylopyranosyl residues (Figure 1.5). 

Glucuronoxylans (GX), which also include glucuronic acid and 4-O-methyl- 
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glucuronic acid, are the dominant non-cellulose polysaccharide in many dicot 

secondary cell walls (Scheller and Ulvskov, 2010). Xylans are also the major non-

cellulosic polysaccharide in the primary wall of grasses, where backbone xylose 

residues are heavily substituted with arabinose (arabinoxylan (AX) or 

glucuronoarabinoxylan (GAX)) at O2, O3 or both. The pattern of arabinose 

substitution, and most common linkage type, varies by species (Scheller and 

Ulvskov, 2010) and is believed to vary even within a single species (Adams et al., 

2004; Izydorczyk and Biliaderis, 1995). Substitution patterns have been studied by 

AFM in conjunction with probing by inactivated enzymes; the binding of a 

catalytically inactive GH11 xylanase, which requires three unsubstituted xylose 

residues to bind, changes significantly after arabinoxylan treatment with 

arabinofuranosidases (Adams et al., 2004).  

Xylans do not possess repeated structures of side chain decoration, as seen in XG. 

Other than the single residue substitutions described above, the polysaccharide is 

generally considered to be linear, with varying degrees of acetylation, usually at O3 

of xylose residues (Scheller and Ulvskov, 2010). It is likely that „smooth‟ regions of 

two to five xylose residues occur between substituted stretches (Chanliaud et al., 

1995; Dervilly et al., 2000). Strengthening the inter-connected nature of the wall, 

arabinoxylans can be cross-linked via 5-5‟-diferulic acid bridges connecting 

arabinose side chains (Lempereur et al., 1997). Ferulic esters can be oxidatively 

cross-linked between GAX molecules and also with lignin (discussed below), 

providing a covalent association between lignin and the hemicellulose domain, 

increasing the complexity and strength of the plant cell wall to increase cellular 

defence against attack by pathogens or herbivores, and also increasing resistance to 

saccharification by industrial enzymes (Scheller and Ulvskov, 2010). Xylan is a major 

load-bearing structure of the secondary cell wall, as demonstrated by deficient 

mutants, which have collapsed xylem vessels and associated defects in growth and 

fertility (Scheller and Ulvskov, 2010). 
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Figure 1.5 The structure of arabinoxylan. 

The hemicellulose xylan is built on a backbone of β-1,4 linked xylopyranose residues. A proportion of 

these residues are decorated at O2, O3 or both with α-L-arabinofuranose residues. The arabinose 

linkages are highly flexible. There may also be substitution with glucuronic acid, and some degree of 

acetylation. 

  1.1.2.iii Pectins 

Pectins are complex, acidic heteropolysaccharides found in the primary cell walls of 

growing plants with roles in growth, morphology, development and defence 

(Mohnen, 2008a). Galacturonic acid contributes around 70 % of all pectin, by mass. 

Pectin comprises three domains (Figure 1.6): homogalacturonan (HG), 

rhamnogalacturonan I (RG I) and rhamnogalacturonan II (RG II). The pectic matrix 

provides an environment for deposition and extension of the cellulose-glycan 

network (Perez et al., 2003, Figure 1.6). The lack of a pectic network in the 

secondary cell wall is a significant feature, as it causes this layer to be more rigid 

and much less capable of extension and modification than the primary wall. The 

distribution of the three domains within pectin is not known. Around fifty transferase 

enzymes are required to build the carbohydrate portions of pectin (Perez et al., 

2003) if the „one linkage – one enzyme‟ theory holds true (Mohnen et al., 2008b). 

Additional enzymes are required for modifications such as acetylation and methyl 

esterification, as well as those which transport nucleotide sugars to the site of pectin 

biosynthesis, the Golgi lumen (Mohnen, 2008a). The different pectic polysaccharides 

are covalently linked via their backbones (Figure 1.6) and may also be covalently 
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linked to xyloglucan and hemicelluloses, principally xylan. Xylan chains with a 

degree of polymerisation (d.p.) of up to seven may be connected at O3 to HG, and 

xylobiose may be located on RG I (Mohnen, 2008a). These interactions between 

layers of the cell wall further enhance the strength of the whole structure. 

 

Figure 1.6 The primary structure of pectin. 

The schematic represents the canonical primary structure of pectin, with the homogalacturonan (HG) 

backbone interspersed with decorated regions of rhamnogalacturonan I (RG I) and occasionally 

substituted with four conserved side chains to make rhamnogalacturonan II (RG II). This model 

assumes that the three domains are covalently linked. Also shown are the locations of ferulic acid 

cross-links between arabinan chains (which can also link to hemicelluloses) and the site of RG II 

dimerisation by borate diol-ester formation at an apiose residue in side chain B. Figure adapted from 

(Perez et al., 2003). Me = methylated. Ac = acetylated. GalA = galacturonic acid. Gal = galactose. 
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Rha = rhamnose. Ara = arabinose. GlcA = glucuronic acid. Fuc = fucose. Xyl = xylose. Api = apiose. 

Dha, KDO = rare sugars. 

Homogalacturonan (HG) 

Around 65 % of pectin is in the form of homogalacturonan (Mohnen, 2008a). HG 

comprises a linear backbone of α-1,4 linked galacturonic acid residues. Some 

carboxyl groups are acetylated or methyl-esterified at C6 and the degree of these 

substitutions is important in pectin matrix interactions (Perez et al., 2003). The HG 

chain is covalently attached to RG I (Figure 1.6), which is built on a backbone of a 

repeating disaccharide: α-L-rhamnosyl residues are 1,2 linked to α-D-galacturonosyl 

residues. The HG backbone is helical in structure and these helices can associate 

via interactions with calcium ions (Perez et al., 2003). Overall, regions of HG of up to 

100 residues are interspersed with shorter RG I regions. While an HG chain 

proceeds in a single direction, the presence of alternating rhamnose residues in RG I 

slightly alters the direction of the pectin chain  (Perez et al., 2003, Figure 1.6).  

Rhamnogalacturonan I (RG I) 

RG I makes up 20 – 35 % of pectin in the primary cell wall and is branched in a 

manner which is dependent upon cell type and developmental stage (Mohnen, 

2008a). 20 – 80 % of backbone rhamnosyl residues have linear or branched side 

chains; the reason for this variation in degree of substitution is not well understood 

(Mohnen, 2008a). Side chains of RG I include arabinan, galactan and 

arabinogalactan (Perez et al., 2003) and may have a d.p. of up to forty-seven 

(Mohnen, 2008a). These oligomeric side chains are flexible and mobile. It is possible 

that they maintain pores in the cell wall via interactions with water molecules. 

There are multiple defined forms of arabinogalactan, with subtle structural 

differences. Type I arabinogalactan (AG) comprises a β-1,4 linked backbone of 

galactopyranose residues, with arabinofuranosyl substitutions on certain backbone 

residues. There is species-dependent variation in this structure. Recent examination 

of a Type I AG from potato has shown that 0.6 % of galactopyranose residues in the 

polysaccharide backbone are β-1,3 linked, and a Type I AG isolated from soy has 

some α1,5 linked arabinofuranose residues in the backbone (Hinz et al., 2005). Type 
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I AG is linked to RG I regions of pectin, as described above, and there may be 

covalent associations with some other polysaccharides (Hinz et al., 2005).  

Type II AGs are more widespread in plants. In addition to the RG I side chains, these 

structures are found in arabinogalactan proteins (AGPs) and in some excreted gums 

(Hinz et al., 2005). They are built on a backbone of β-1,3 linked galactopyranose 

residues and can be substituted with galactose, arabinose, rhamnose and others. 

Other RG I branches are α-1,5 arabinan chains, which can also exist as free 

polymers in the primary wall, not connected to any pectic domain. The backbone 

structure of arabinan, which is helical, is decorated with additional arabinose 

residues at O2, O3 or both positions of backbone residues (Verhertbruggen et al., 

2009). Arabinan contributes to important wall properties such as porosity and 

flexibility, particularly the flexibility of guard cells which control gas exchange and 

water loss by maintaining pores known as stomata (Verhertbruggen et al., 2009). 

Branched arabinan chains can cross-link through ferulic acid linkages attached at O5 

of arabinofuranosyl residues (Levigne et al., 2004). These ferulic esters can form 

dimers to cross-link polysaccharides and in some cell walls arabinan is in close 

association with cellulose, further strengthening the connections between the layers 

of the cell wall (Vignon et al., 2004; Zykwinska et al., 2008; Zykwinska et al., 2005). 

Rhamnogalacturonan II (RG II) 

The third domain of pectin is RG II, a region of HG with four specific and highly 

conserved side-chains (Figure 1.6). While HG and RG I are relatively 

heterogeneous, RG II is notable for an apparently absolute conservation of structure. 

Undoubtedly the most complex plant polysaccharide, the structure of RG II is 

identical in all land plants analysed to date (Perez et al., 2003). This high 

conservation indicates a major role in higher plants. A single stretch of RG II, which 

constitutes approximately 10 % of pectin in the primary cell wall, typically has a 

molecular weight of 5 – 10 kDa (Perez et al., 2003). RG II can be released from 

primary cell walls by treatment with an endo-α-1,4-polygalacturonanase. This 

polymer is found widely in primary cell walls but is thought to be largely absent from 

the pectin-rich middle lamella. Although it accounts for only around 5 % by mass of 

the primary wall, RG II is a source of frustration to saccharification processes, as it 
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resists degradation by all known pectinolytic enzymes (Perez et al., 2003). By 

providing such strong resistance to enzymatic attack, RG II represents a cell wall 

structure that will be stable for the lifetime of the plant. This contrasts with the time-

dependent chain pairings of HG chains which stabilise pectin as a gel when the cell 

wall is required to expand (Perez et al., 2003). 

As Figure 1.6 shows, the RG II monomer is very well characterised. It comprises an 

HG backbone of seven to nine galacturonosyl residues and four oligomeric side 

chains. These side chains comprise twelve sugars connected by over twenty 

linkages, and are acetylated and methyl esterified at certain points. The general 

three-dimensional shape of the monomer (mRG II) is a flat disc with a diameter of 

approximately 37 Å and a thickness of approximately 17 Å (Pellerin et al., 1996; 

Perez et al., 2003). The B side chain (Figure 1.6) in particular is highly flexible. In the 

plant cell wall, two mRG II monomers will dimerise via a 1:2 borate:diol ester cross-

linkage (Ishii et al., 1999; Kobayashi et al., 1996).  Dimerisation covalently connects 

two mRG II monomers and their associated HG chains (Ishii et al., 2001). The 

dimerising cross-link connects the apiose sugar residues in side chain B (Figure 1.6). 

Mutation of this residue via genetic manipulation of the available complement of 

glycosyltransferases leads to reduced dimer formation and a phenotype of dwarfism 

(Mohnen, 2008a). 

As most of the boron within the plant cell is not present in a bioavailable form, due to 

the formation of the RG II-boron dimer (dRG IIB), it is thought that a function of RG II 

may be to control the supply of boron to the rest of the plant. Boron deficiency leads 

to disorganised cell expansion and abnormal cell walls, presumably due to inefficient 

dimerisation of RG II (O'Neill et al., 1996). It has been demonstrated that dimer 

formation determines cell wall thickness and that absence of the dimer causes 

growth defects (Perez et al., 2003). Experiments have shown that dimer formation is 

pH-dependent in vitro; the dimer forms between pH 2.2 and 4.5 but is stable above 

pH 4. A specific putative role for the borate:diol ester cross-linkage is as a load-

bearing structure which gives rigidity to the wall. During auxin-induced cellular 

expansion, this linkage would be hydrolysed by a decrease in wall pH, leading to a 

breakage of the dRG IIB dimer, and relaxation of the wall (O'Neill et al., 1996). This 

fits with the relatively low abundance of RG II in the cell wall of dicots and monocots, 
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which suggests that a purely structural role is unlikely to be the primary function of 

the polymer. The acid-labile nature of the dimerising linkage makes the dRG IIB 

structure dynamic. In addition, as a component of the pectic matrix, RG II helps to 

regulate the rate of growth and the passage of enzymes into the cell (O'Neill et al., 

1996; Thompson, 2005). 

 1.1.3 Non-carbohydrate components of the plant cell wall 

Lignin is an extremely heterogeneous hydrophobic aromatic polymer found in the 

secondary plant cell wall, where the impenetrable nature of this molecule confers 

properties of rigidity, waterproofing and defence against attack. Lignin provides 

structural support to allow upright growth and vertical transport of water and nutrients 

in the xylem and phloem vessels (Davin and Lewis, 2005). The compound is 

particularly important in water transport, as its hydrophobicity contrasts with the 

largely hydrophilic nature of the polysaccharide components of the plant cell wall. 

Ferulic acid cross-links are thought to covalently connect lignin to hemicelluloses, 

further strengthening the matrix and preventing water absorption (Davin and Lewis, 

2005). Lignin is also deposited at wound sites, presumably to resist cellular invasion 

by pathogens. Lignin is synthesised on the cell wall as phenylpropanoid monomers 

randomly polymerise after export from the cytoplasm. These monomeric units 

connect via ether linkages, which are very difficult to break. The monomers are 

radicals and as such are toxic to the cell (Boerjan et al., 2003; Liu et al., 2011). 

Lignin impacts different uses of plant material in different ways. Highly lignified wood 

is very durable and long-lasting, so makes an ideal building material. Conversely, 

this same durability and recalcitrance hinder paper production and biomass 

saccharification. Lignin is a major component of insoluble dietary fibre, which is 

metabolically inert but which is an essential part of the human diet as it absorbs 

water throughout the digestive system, a process which eases waste elimination 

(Asp, 1987). 

In addition to lignin and the carbohydrate structures described above, a major 

component of the plant cell wall, which is overlooked in some models of the wall, is 

protein. It is estimated that there may be up to several hundred proteins in the wall 

(Showalter, 2001a). Proteins tend to be specific to a certain tissue type, such as the 
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reproductive gametes (Wu et al., 2001) and while most have a largely structural 

function, it is becoming clear that many may have active roles in processes such as 

cell elongation and extension. Most are rich in glycine, proline or hydroxyproline 

(Ringli et al., 2001; Wu et al., 2001). The largest class of plant cell wall proteins are 

the hydroxyproline-rich glycoproteins, including extensins and arabinogalactan-

proteins (AGPs).  

Extensins, as the name suggests, have long been thought to have a role in 

extension and elongation of the cell wall. The extensins are abundant and dynamic 

proteins which self-assemble into a cross-linked network in the immature cell wall 

due to the amphipathic nature of their structure (Lamport, 1965). Recent evidence 

suggests a role for extensins in loosening of the cell wall during cell division or 

elongation; this view is supported by the observation that some extensins may have 

protease activity (Showalter, 2001a).  

AGPs are also highly abundant in the plant cell wall and are believed to participate in 

plant growth and development (Showalter, 2001b). AGPs are heavily glycosylated at 

specific sequences; the protein component represents only 2 – 10 % of total mass 

(McNeil et al., 1984). The carbohydrate portion of AGPs is largely comprised of 

galactose, arabinose, rhamnose, mannose and uronic acids, with an overall structure 

very similar to Type II arabinogalactans (Section 1.1.2.iii). Some are attached to the 

plasma membrane, while others are released to the cell wall, from which they may 

be secreted to the extracellular environment, indicating a possible role in cell 

signalling events. A putative structural role for AGPs as a „cushion‟ between the 

plasma membrane and the plant cell wall has been proposed (Showalter, 2001b). 

1.2 Glycoside hydrolases 

The half-life for spontaneous hydrolysis of the glucose-glucose bond in cellulose and 

starch is in the region of five million years. Glycoside hydrolases are enzymes which 

catalyse the hydrolysis of the glycosidic bond by general acid-base assisted catalysis 

which requires a proton donor and a nucleophile or base (Davies and Henrissat, 

1995). The enzyme-catalysed reaction proceeds via one of two possible 

mechanisms, which are discussed below. These enzymes accelerate hydrolysis up 

to 1017 fold faster than the spontaneous reaction (Zechel and Withers, 2000). 
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 1.2.1 Family classification and enzyme structure 

Selective hydrolysis of glycosidic bonds by living organisms is a vital step in the 

processes of energy uptake, cell wall expansion and production of signalling 

molecules (Davies and Henrissat, 1995). For this reason, glycoside hydrolases have 

evolved which are generally highly specific for sugars, linkages and polysaccharides, 

although all of these enzymes catalyse the same reaction: hydrolysis of a glycosidic 

bond. Specificity is driven by tertiary structure. This observation led to an attempt to 

improve enzyme classification, organising glycoside hydrolases by structure and 

hence, to an extent, by substrate specificity. A direct relationship was discovered 

between primary sequence and protein fold, revealed by hydrophobic cluster 

analysis (HCA) of enzyme sequences. This technique has shown that a structural 

fold can be displayed by very divergent primary sequences (Callebaut et al., 1997). 

HCA is a powerful method of predicting protein structure from the primary amino acid 

sequence, throughout which hydrophobic residues are distributed in a specific 

manner (Callebaut et al., 1997). Structure prediction by HCA is achieved through the 

production of a „two-dimensional‟ representation of the primary sequence, which is 

displayed as an extended α-helix. The HCA method has developed from the 

observation that hydrophobic residues cluster when the sequence is represented in 

this way and that these hydrophobic clusters correspond significantly to elements of 

secondary structure, particularly α-helices and β-strands (Henrissat et al., 1995).  

Hydrophobic clusters are identified by the „hydrophobic alphabet‟ VILFMYW, as 

these residues are typically buried within a protein. A minimum „connectivity 

distance‟ is also utilised in HCA and is defined as the minimum number of hydrophilic 

residues which should be present between clusters (Eudes et al., 2007). These 

clusters are important to protein structure as folding is driven by the requirement to 

bury hydrophobic regions in globular proteins, and create a hydrophilic protein 

surface. Thus, the protein folding process begins with hydrophobic clusters 

(Woodcock et al., 1992). Drawing on this relationship between sequence and 

structure, HCA allows reliable predictions of tertiary structure, and also permits a 

comparison of the size, shape and orientation of hydrophobic clusters within 

divergent protein sequences (Callebaut et al., 1997; Woodcock et al., 1992). 
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A project using the HCA method was undertaken to classify glycoside hydrolases by 

sequence similarity and structure (Henrissat, 1991). Structural regions surrounding 

the catalytic residues can be used to define conserved motifs, and these can be 

used to predict the location and role of the catalytic residues in structural 

homologues identified by HCA (Henrissat et al., 1995). Enzyme sequences which 

align over an entire domain are classified into a single GH family (Henrissat et al., 

1995). As the method is sufficiently powerful to reveal structural similarities even 

when primary sequence identity is very low, predictions of structure and, in some 

instances, function can be made even when sequence similarity is barely detectable 

by conventional methods of sequence analysis (Callebaut et al., 1997). An early 

success of the project was the classification of 21 cellulase genes into six sub-

families with shared structural fold, as identified by HCA of primary sequence 

(Henrissat et al., 1989). Within a family, glycoside hydrolases share a common 

structural fold, catalytic residues and catalytic mechanism. These classifications are 

shown in the publicly accessible Carbohydrate Active Enzymes (CAZy) database 

(http://www.cazy.org/, (Cantarel et al., 2009)).  

At the time of writing, there are 124 families of glycoside hydrolases, encompassing 

more than one thousand enzyme sequences. Many families appear to exhibit one or 

a very few activities, exemplified by families GH10 and GH11, where only xylanases 

have been reported. The high degree of structural similarity within families predicts a 

limited range of specificities, but polyspecific families do exist, such as family 43. 

Within these families, the acquisition of new substrate specificities is a common 

evolutionary event (Henrissat, 1991). Families with low sequence similarity which 

share a common fold, catalytic apparatus and catalytic mechanism are grouped into 

clans. There are currently fourteen clans (A-N). The families within a clan, similar to 

members within a family, likely have common ancestry, leading to significant 

similarities in structure, including conservation of catalytic residues and mechanism 

(Henrissat and Bairoch, 1996).  
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Figure 1.7 Three structural types of active site found in glycoside hydrolases. 

A: the pocket topology binds a single sugar residue, as in exo-acting enzymes and side-chain 

cleaving hydrolases. Taken from an Aspergillus awamori GH5 glucoamylase (PDB code 1AGM) 

(Aleshin et al., 1994). 

B: endo-acting enzymes may have a cleft topology. The polysaccharide will lie relatively flat within this 

cleft. Taken from the Thermobifida fusca GH6 endoglucanase Cel6A (PDB code 1TML) (Spezio et al., 

1993). 

C: certain processive cellulases possess a tunnel topology, allowing the substrate to be cleaved and 

product to be released without the need to release the substrate. Taken from a Mycobacterium 

tuberculosis GH6 endoglucanase (PDB code 1UOZ) (Varrot et al., 2005). 
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Figure 1.7 shows the three general topologies of the catalytic domains of glycoside 

hydrolases. The pocket topology (Figure 1.7) is found in enzymes targeting 

monosaccharides, such as β-galactosidases, and exo acting enzymes which target 

polysaccharides. The shallow active site depression accommodates a single sugar 

residue. The cleft topology (Figure 1.7) is a more open structure which can bind 

several sugar residues. Enzymes with this structure are usually endo acting 

polysaccharidases, such as xylanases. The tunnel topography has developed from 

the cleft, part of which is covered by a long loop (Figure 1.7). The substrate polymer 

is threaded through the tunnel. This allows the enzyme to release the product of 

hydrolysis while maintaining tight binding to the substrate, resulting in a processive 

mode of action (Davies and Henrissat, 1995). Most enzymes with the tunnel 

topography are cellulases, perhaps reflecting the need to prevent the substrate 

glucan chain from re-annealing to the cellulose microfibril. This processive type of 

activity may require an accompanying endo activity, from the same enzyme or a 

second, cooperative enzyme, to cleave the cellulose fibril, creating a chain end for 

the tunnel to bind (Davies and Henrissat, 1995). 

 1.2.2 Catalytic mechanisms 

Glycoside hydrolases function via one of two possible catalytic mechanisms. The 

retaining mechanism results in a net retention of stereochemistry at the anomeric 

carbon of the glycon sugar, while the inverting mechanism leads to a net inversion of 

anomeric configuration. Both mechanisms require, generally, two carboxylic acids in 

the active site and proceed via a transition state with significant oxocarbenium 

character (Kelly et al., 1987, McCarter and Withers, 1994). Both mechanisms also 

require the formation of a transition state with significant positive charge, which is 

delocalised between the anomeric carbon and the endocyclic oxygen as the C1-O5 

bond acquires partial double bond character (Karaveg et al., 2005). This requires 

that the pyranose sugar ring is distorted from the low free-energy 4C1 chair 

conformation (Figure 1.8) to bring C5, O5, C1 and C2 into a shared plane. Four 

possible conformations satisfy this requirement for co-planarity: the 2,5B and B2,5 boat 

conformations and the 4H3 and 3H4 conformations (Figure 1.8). A large body of 

evidence, taken from crystal structures of enzymes with trapped intermediates 

shows that these conformations are employed by GH families (Barnett et al., 2010; 
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Ducros et al., 2002; Karaveg et al., 2005; Vocadlo and Davies, 2008; Zhu et al., 

2010b). It is believed that substrate distortion in this manner helps to lower the 

energy barrier of the hydrolysis reaction by moving the substrate closer to the 

structure of the transition state and drawing the glycosidic oxygen into a more 

favourable position for protonation (Davies and Henrissat, 1995; Zechel and Withers, 

2000). Substrate distortion is generally driven by enzyme-substrate interactions at 

the +1 subsite. 

 

Figure 1.8  Interconversions between pyranose sugar ring conformations. 

The partial map of pyranose sugar ring conformations shows the low free energy 
4
C1 chair and 

various boat (B) and half-chair (H) conformations which have been shown by x-ray crystallography to 

be employed by glycoside hydrolases in catalysis. The endocyclic ring oxygen is shown by the O in 

each structure. The boat and chair conformers shown have a structure in which C-5, O-5, C-1, and C-

2 are co-planar. Reproduced from (Karaveg et al., 2005). 

The inverting mechanism of glycoside hydrolases (Figure 1.9) involves direct 

displacement of the leaving group by a water molecule. A general base activates a 

water molecule and subsequently a general acid protonates the leaving group 

(aglycon). As shown in Figure 1.9, the charged general base activates a water 

molecule, which launches a nucleophilic attack on the anomeric carbon. The 

glycosidic oxygen is then protonated by the general acid, and the aglycon departs 

(McCarter and Withers, 1994). The acid and base are spaced ~ 10 Å apart to allow 

space for a water molecule. This single nucleophilic substitution yields a product with 

opposite stereochemistry to the substrate. 
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Figure 1.9 The inverting and retaining mechanisms of glycoside hydrolases.  

The generalised sugars shown are in the 
4
C1 conformation. 

A: the inverting mechanism of glycoside hydrolases proceeds via a single displacement step and 

results in a product with the opposite anomeric configuration from the substrate. 

B: the retaining mechanism generates a product with the same configuration as the substrate and 

proceeds via a double displacement mechanism. 

C: the two mechanisms of glycoside hydrolases result in either an overall inversion or overall retention 

of anomeric configuration. 

The retaining mechanism differs in that it proceeds via a double displacement 

mechanism which includes a covalent glycosyl-enzyme intermediate (Figure 1.9). 

The two catalytic amino acids function as a general acid/base and a nucleophile. The 

nucleophile directly attacks the anomeric carbon, leading to the formation of a 

covalent intermediate while the acid/base protonates the glycosidic oxygen and thus 

assists leaving group departure (Figure 1.9). The glycosyl-enzyme is hydrolysed by 

water activated through proton extraction by the catalytic acid/base, leading to a 

second nucleophilic substitution at the anomeric carbon. The glycosidic oxygen is 

protonated and the aglycon departs. The two carboxylate residues are ~ 5.5 Å apart. 

This double displacement mechanism gives rise to a product with the same 

stereochemistry as the substrate (McCarter and Withers, 1994), Figure 1.9). 

 1.2.3 Carbohydrate binding modules 

The inaccessibility of insoluble polysaccharides within the complex interlocking 

matrices of the plant cell wall reduces the efficiency of many glycoside hydrolases. 
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For this reason, many of these enzymes are appended to one or more carbohydrate 

binding modules (CBMs) in order to promote enzyme-substrate association.  

CBMs are classified in the CAZy database in a similar manner to that used for 

enzymes. CBMs have been described which bind a wide variety of ligands and 

perform several possible functions by which they facilitate enzyme catalysed 

hydrolysis of the glycosidic bond (Boraston et al., 2004). Firstly, the sugar binding 

activity of CBMs assists enzyme catalysis by concentrating the enzyme on the 

surface of the polysaccharide substrate, leading to more rapid degradation. These 

CBMs do not always bind to the target substrate of their associated enzyme; for 

instance, there are CBMs which bind crystalline polysaccharides, principally 

cellulose, which can be appended to enzymes with a variety of specificities 

(Boraston et al., 2004). In some cases, it is thought that a CBM may directly disrupt 

the structure of a polysaccharide, thereby facilitating enzyme access by increasing 

the availability of the substrate. However, the extent to which this phenomenon can 

be generalised is unclear (Boraston et al., 2004). 

1.3 Glycoside hydrolase family 43 

 1.3.1 Structural features and mechanism 

The first structure of a GH43 enzyme was the Cellvibrio japonicus α-L-arabinanase 

CjArb43A (Nurizzo et al., 2002). The enzyme hydrolyses linear arabinan into 

arabinotriose in a chain-end exo fashion, but also has some weak endo activity, 

suggesting a processive mode of action following initial cleavage within the chain. 

The crystal structure of the enzyme was solved to 1.9 Å and revealed a five-bladed 

β-propeller structure which had not previously been seen in an enzyme. The 

propeller is built from five β-sheets, which are highly twisted and arranged radially 

around the central axis (Nurizzo et al., 2002). The propeller is strengthened by 

hydrogen bonds between the first and fifth blades. The axial cavity forms a pocket 

which is filled with water and is situated at the centre of a long V-shaped cleft which 

extends over the surface of the enzyme (Nurizzo et al., 2002) Figure 1.10). This long 

depression, which has a right-angled cleft to accommodate the twisted arabinan 

chain, provides six sugar binding sites.  
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Figure 1.10 The canonical GH43 structure of CjArb43A. 

A: the crystal structure of CjArb43A reveals a five-bladed β-propeller with a central cavity housing 

three catalytic residues, shown in stick form and coloured red. 

B: the active site, and catalytic residues, of CjArb43A lie within a curved cleft over the surface of the 

protein, shown here in complex with arabinohexaose. 

The glycosidic bond is cleaved between sugars at subsites -1 and +1, according to 

the naming system of Davies and colleagues (Davies et al., 1997), and the CjArb43A 

subsites extend from -3 to +3. The active site (-1 subsite) houses a constellation of 

acidic amino acids (Asp38, Asp158 and Glu221). The Glu221 is adjacent to the 

glycosidic bond between arabinofuranosyl residues at -1 and +1, ideally positioned to 

act as the catalytic acid. Asp38 is 6 Å from the anomeric carbon of the sugar residue 

at -1, where it functions as the catalytic base by activating a water molecule. The 

distance between the catalytic acid and base is ~ 7.2 Å, less than previously 

described for inverting enzymes. At the time of publication, the function of Asp158 

was uncertain (Nurizzo et al., 2002), but the residue was thought to be involved in 

pKa modulation of the catalytic acid. 

Subsequent crystal structures and alignments have shown that all GH43s possess 

this triad of carboxylate residues in the active site (Pons et al., 2004). The structure 

of XynB3, a β-xylosidase from Geobacillus stearothermophilus revealed the pKa 

modulating role of the additional Aspartate (Brux et al., 2006). The enzyme 
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comprises the canonical GH43 β-propeller and an additional C-terminal β-sandwich 

domain. The active site of the enzyme has a pocket topology, within which are found 

a triad of catalytic residues: Asp15, Asp128 and Glu187. These residues point to the 

centre of the axial cavity, as described for the C. japonicus arabinanase. The 

structure of XynB3 was solved in complex with xylobiose, which shed light on the 

role of each of these amino acids. 

Asp15 is perfectly situated to act as catalytic base and activate a water molecule in 

the inverting single displacement mechanism. The residue is located 5.2 Å from the 

anomeric carbon of the xylose at the -1 subsite (glycon sugar, Figure 1.11). Glu187, 

the catalytic acid, is positioned ~ 2.6 Å from the glycosidic oxygen, suitable for 

protonation of the departing aglycon sugar (+1 subsite). Asp15 and Glu187 are 

nearly perpendicular, forming a 100 ° angle with the anomeric carbon of the glycon 

sugar (Brux et al., 2006). The distance between Asp15 and Glu187 is ~ 7.5 Å. 

 

Figure 1.11 The crystal structure of XynB3 in complex with xylobiose reveals the role of the 

second Aspartate in five-bladed β-propeller glycoside hydrolases. 

A: cartoon representation shows that the Geobacillus stearothermophilus comprises the β-propeller 

module and an additional β-sandwich module. The catalytic residues are coloured red and shown in 

stick form. 

B: the catalytic triad is shown in stick form with xylobiose. All three amino acids make direct contacts 

with the xylose at -1, including Asp128; these contacts are indicated by dashed blue lines. Asp128 is 

also within range (3.6 Å – shown by the dashed red line) of the catalytic acid (Glu187) to modulate the 

pKa of that residue and orient it correctly with respect to the substrate.  
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The third catalytic residue, Asp128, is situated ~ 4 Å from Glu187. The pKa of 

Glutamate is generally 4.07, but needs to be much higher to function as the catalytic 

acid; the proximity of Asp128 raises this pKa to 7.1 and also orients the acid 

correctly relative to the substrate (Brux et al., 2006). Structures of the enzyme in 

complex with xylobiose showed that Asp128 also has a role in substrate binding and 

transition state stabilisation, making multiple hydrogen bonds with the -1 xylose. This 

explains the invariance of the second active site Aspartate in five-bladed β-propeller 

glycoside hydrolases (Families 43 and 62 in Clan F and Families 32 and 68 in Clan 

J). Mutation of this residue has shown that it is essential for activity in many GH43 

enzymes (Alhasid et al., 2009; McKee et al., 2011; Shallom et al., 2005). Crystal 

structures of mutant forms of XynB3 show that in the absence of Asp128 the general 

acid rotates to an unfavourable position; the general base is apparently unaffected 

(Brux et al., 2006).  

 1.3.2 Major activities 

Glycoside hydrolase family 43 (GH43) is polyspecific. Activities identified to date 

include α-L-arabinofuranosidase, β-D-xylosidase, β-D-galactosidase, arabinanase 

and xylanase. As of early 2011, twenty crystal structures have been deposited for 

this family. All share the same β-propeller structure for the catalytic module, and the 

triad of catalytic residues is conserved in all active enzymes. Such a wide variety of 

activities within a single family of enzymes may not be common, but nor is it 

surprising; the stereochemical similarities between substrates means that often only 

a small structural change can lead to the acquisition of a new specificity (Henrissat, 

1991).  

 1.3.3 Familial expansion 

A notable feature of family GH43 is the extent to which it is expanded over other 

families in very many microbial species, derived from a wide variety of habitats. 

Figure 1.12 shows the family distribution of the complement of glycoside hydrolases 

encoded by the genomes of six bacterial species, and gives brief notes on each 

species. It is clear that the expansion of the family is not limited to one similar group 

of species, or to one natural environment. A hypothesis is that this expansion in a 

family of enzymes with multiple specificities improves the totality of degradation of 
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carbohydrate material, as a range of enzymes with highly varied hydrolytic activities 

seems useful in matching the wide range of linkages within the plant cell wall. 

 

Figure 1.12 Glycoside hydrolase family distribution in six bacterial species. 

The pie charts show that family GH43 is expanded in several different species from many different 

habitats. The size of the segments reflects the number of glycoside hydrolases encoded in each 

family, according to the CAZy database. Families with zero members are not shown. 

1.4 Symbiotic microbiota of the human gut 

The average adult human body is built of approximately 10 billion (1010) cells. The 

gut microbiota of an individual can represent ~ 1.5 kg of aggregate biomass (Xu and 

Gordon, 2003b), reaching cell densities of 1011 - 1012 in the gut, the highest recorded 

for any ecosystem (Ley et al., 2006). This means that there can be as many as ten 

times more microbial cells residing within the gut of a healthy individual than all of 
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the somatic and germline cells which comprise the body of the individual. The 

„metagenome‟ of this microbial community includes approximately one hundred 

times more genes than the human genome. These staggering numbers contribute to 

an emerging picture of the extent to which our lives are interconnected with an 

invisible ecosystem within us. 

Underlining the importance of the gut microbiota to human health and development 

is the intensity of research currently focussing on this area, occurring in academic, 

clinical and industrial institutions. A recent National Institute of Health (NIH) initiative 

is the Human Microbiome Project (http://commonfund.nih.gov/hmp/, Fujimara et al., 

2010). This project is studying the extent to which changes to the microbiota are 

associated with health and disease, and are making developments in many areas, 

including metagenomics (Lazarevic et al., 2009). These provide a broad genetic 

perspective of a microbial community using genetic material extracted from an 

environmental sample (the metagenome). These and other efforts are beginning to 

provide a picture of the symbiotic relationship between humans and the intestinal 

bacterial ecosystem, and the benefits it brings to both partners. 

 1.4.1 Colonisation of the gut 

Colonisation of the sterile post-natal gastro-intestinal (GI) tract begins very soon after 

birth. Bacteria are acquired from the mother and then from the surrounding 

environment. The colony stabilises after around one month, or six months if birth was 

achieved by Caesarean section, perhaps hinting at one mode of mother to baby 

transmission (Ley et al., 2006). Initially, Escherichia coli and Streptococcus species 

dominate; these create a reducing environment for species of Bacteroides, 

Bifidobacterium, Clostridium and Ruminococcus, obligate anaerobes which dominate 

the community for most of our lives. In general, both cell density and biodiversity 

increase as the digestive system proceeds from the small intestine (~ 103 organisms 

per millilitre of lumen contents) to the colon (~ 1011 organisms per gram of contents). 

This host-bacterial symbiosis is well established and has been observed in animal 

species. In fact, it is hypothesised that bacteria may have been helping to shape 

eukaryotic evolution in this way for around 109 years (Xu and Gordon, 2003b). The 

symbiotic relationship between gut microbiota and their host is most often studied 
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using gnotobiotic germ-free mice colonised with a specific bacterial species during or 

after post-natal gut development and fed from birth on a strictly controlled diet (Xu 

and Gordon, 2003b).  

 1.4.2 Species distribution of gut microflora 

The adult human GI tract is populated by bacteria, archaea and some eukaryotes. 

The bacterial portion of the community is particularly abundant, representing a dense 

and diverse ecosystem (Backhed et al., 2005). There are a set of requirements 

which must be met to qualify for residency in the human intestine. To be a member 

of the gut microbiota, a species must possess a suite of glycoside hydrolases 

targeted to the available carbohydrates and be able to attach to surfaces where 

appropriate nutrient sources are abundant. The genetic ability to mutate quickly and 

adaptively is important, and rapid growth is vital to avoid the loss of a whole cell 

lineage by washout (Ley et al., 2006). 

While there are generally in the region of five hundred bacterial species within the 

gut, 99 % of all cells are from just 30 – 40 anaerobic species. There are 

representatives of only eight divisions of bacteria, compared with over twenty found 

in soil. The population is more diverse at the level of species (Backhed et al., 2005). 

Variation between individuals in the precise make-up of the gut microflora is high, but 

one person‟s intestinal community remains remarkably constant over their lifetime. 

This suggests that there are mechanisms to suppress blooms of sub-populations, or 

conditions which favour cooperativity (Backhed et al., 2005). The stability of the gut 

ecosystem depends upon the ability of its members to diversify their responses to a 

fluctuating environment (Chang et al., 2004). The prominent sources of nutrition in 

the gut are undigested plant polysaccharides and glycoproteins, and host glycans 

associated with the epithelium (Xu et al., 2007). The food web in the gut must remain 

stable to ensure the longevity of the community, so species are often able to adapt to 

changes in the range of carbohydrates which are available in the gut. This 

adaptability is often ensured by functional redundancy encoded in the genomes of 

species (Xu et al., 2007). A good example is Bacteroides thetaiotaomicron, whose 

genome codes for 981 proteins involved in polysaccharide metabolism (Xu et al., 

2007). 
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  1.4.2.i Microbiota of the infant gut 

As discussed earlier, the human gut is initially colonised by species such as E. coli, 

which create a reducing environment which is later dominated by anaerobic bacterial 

species. In infants, the dominant species are Bifidobacteria. These are gram positive 

staining anaerobic microorganisms which can represent up to 90 % dry weight of 

faecal matter from breast-fed babies but make up only 3 – 6 % of adult faeces. This 

is likely because some species, particularly Bifidobacterium infantis, can ferment 

oligosaccharides found in human milk. In young babies, these bacteria are important 

in regulating microbial homeostasis in the budding gut community, and modulate the 

response of the immature immune system to non-pathogenic species of bacteria 

(Gronlund et al., 2007). B. infantis is the dominant species in the GI tracts of new-

born babies and is also found abundantly in yoghurt and other fermented dairy 

products, reflecting the primary metabolic targets of the species. This species, as 

well as Bifidobacterium adolescentis, the gut population of which is stable from birth 

until late adulthood, have been added as probiotics to dairy products, and have been 

shown to be capable of inducing dramatic reductions in the symptoms of irritable 

bowel syndrome (IBS). These reductions may be mediated via the anti-inflammatory 

properties of these bacteria (Brenner and Chey, 2009; Whorwell, 2009). The use of 

probiotics in diet modification is discussed in greater detail below. 

  1.4.2.ii Microbiota of the adult gut 

As we age, and our diet changes, the primary source of carbohydrate available to 

the gut microbiota shifts from human milk oligosaccharides to plant polysaccharides, 

as we begin to consume fruits, vegetables and so on. This leads to a shift in the gut 

population away from species of Bifidobacteria, as new metabolic niches develop 

due to the new variety of carbohydrate nutrition available. The species which take 

over are more adapted to a wide variety of polysaccharides, and are dominated by 

Bacteroides species of bacteria, which comprise around 30 % of all gut bacteria and 

have been found at densities of 1010 – 1011 cells per gram of human faecal matter. 

Bacteroides is a genus of gram-negative, rod-shaped obligate anaerobes. These 

glycophiles can utilise simple sugars when available. However, most simple sugars 

do not occur at significant levels in the large intestine as the host absorbs all but ~ 2 
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% of these in the small intestine (Sonnenburg et al., 2010). The main energy source 

for Bacteroides in the gut is therefore plant polysaccharides from the diet for which 

humans do not possess appropriate degradative enzymes. The bacteria can ferment 

carbohydrates and transform bile acids and other steroids. 

The dominant Bacteroides species in the gut is Bacteroides vulgatus which mainly 

utilises starch. A more versatile user of polysaccharides is B. thetaiotaomicron, 

whose proteome provides the structural means to specifically endocytose and 

hydrolyse polysaccharides indigestible by the host, systems which work in concert 

with an extensive environmental sensing network of outer membrane proteins 

(Reeves et al., 1997). These carbohydrate binding and hydrolysing enzymes allow B. 

thetaiotaomicron to adaptively forage for glycans in the gut, which stabilises the 

intestinal food web and prolongs the community as a whole (Sonnenburg et al., 

2005). The mechanisms by which B. thetaiotaomicron performs these vital tasks are 

discussed in greater detail below. Briefly, a series of cell-associated enzymes 

hydrolyse polysaccharides to monosaccharides and oligosaccharides, which are 

translocated into the periplasm, where they are subjected to further hydrolysis, with 

the terminal products transported into the cytoplasm and further metabolised.  

 1.4.3 Human – microbe symbiosis in the gut 

The gut microbiota can be considered a single discrete entity, a multi-functional 

organ with differentiated cell lineages working cooperatively to provide metabolic 

capabilities not provided by the human genome, including digestion of plant 

polysaccharides, transformation of bile acids and synthesis of some vitamins, such 

as Vitamin K (Xu and Gordon, 2003b). These cell lineages can be considered 

cooperative, as competition is minimised by the development of metabolic niches 

within the intestine.  

The primary function served by the gut microbiota is to ferment otherwise indigestible 

energy substrates from our diet. The 6.3 Mb genome of B. thetaiotaomicron codes 

for 256 glycoside hydrolases and 16 pectate lyases. In contrast, the 2.85 Gb genome 

of Homo sapiens codes for just 95 glycoside hydrolases; we are particularly deficient 

in enzymes which can degrade xylan and arabinose-containing pectic 

polysaccharides, major components of soluble fibre (Backhed et al., 2005). 
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Bacterial degradation of recalcitrant plant polysaccharides provides the human host 

with carbon and energy, while the bacteria are provided with a rich glycan diet and a 

protected anoxic environment (Backhed et al., 2005). It is now becoming clear that 

the symbiosis brings us many other health-promoting benefits. For instance, these 

cells train our immune system to respond only to pathogenic species, a tolerance 

which develops in infancy. The bacteria also have a role in regulation of gut 

development. 

 1.4.4 Effects on human health and fitness 

Many of the benefits to humans of the gut microbiota are related to utilisation of 

dietary material. Germ-free rodents, whose GI tracts are sterile, are required to 

consume approximately 30 % more calories to maintain the same weight as properly 

colonised mice (Sears, 2005). Importantly, our gut bacteria can ferment short chain 

fatty acids (SCFAs) including acetic acid, propionic acid and butyric acid (Guarner 

and Malagelada, 2003). This allows these materials to be utilised as an energy 

source for humans, providing as much as 10 % of our daily caloric intake, and aids 

absorption of cations such as Ca2+, Mg2+ and Fe2+. Furthermore, fermentation of 

SCFAs lowers gut pH, which broadly favours non-pathogenic species of bacteria 

(Beaugerie and Petit, 2004).  

Our symbiotic partners in the gut also aid digestion by directly influencing the 

functionality of the intestine. There is evidence that certain species have a role in 

turnover and differentiation of epithelial cells, possibly mediated by making changes 

to glycan cell surface markers (O'Hara and Shanahan, 2006). 

The gut microbiota can protect us from disease by out-competing pathogenic 

species for nutrition and attachment sites. This is known as a barrier effect (Guarner 

and Malagelada, 2003; Ohland and Macnaughton, 2010). Competition prevents 

colonisation by yeast and bacterial species such as Clostridium difficile, which can 

cause intestinal disease and diarrhoea, and which often strikes patients who are 

compromised when „friendly‟ gut bacteria are knocked down by broad-spectrum 

antibiotics (Beaugerie and Petit, 2004; O'Keefe, 2010). Working in concert with this 

barrier function, the gut bacteria are thought to stimulate lymphoid tissue associated 

with the mucosal epithelium of the intestine to produce antibodies. 
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Many of these commensal species of bacteria can themselves be pathogenic in 

certain circumstances. For example, perforation of the gut by injury or surgery can 

allow members of the microbiota to invade the rest of the body, which can be 

potentially fatal (Goldstein et al., 2009; Simmon et al., 2008). 

1.5 Pectin utilisation by gut microorganisms 

Pectin (see Section 1.1.2.iii, Figure 1.6) is a major component of the plant cell wall 

and of soluble dietary fibre, a viscous composite material which also comprises 

arabinoxylans and cellulose. Pectin is not digestible by humans, as we lack the 

glycoside hydrolases and lyases required to degrade these polysaccharides 

(www.cazy.org). However, members of the gut microbiota can degrade pectin, 

fermenting the sugars released into short chain fatty acids (SCFAs) (Nofrarías et al., 

2007). 

 1.5.1 Bacteroides thetaiotaomicron 

Bacteroides thetaiotaomicron is a major component of the adult intestinal microbiota 

and is studied as a model gut symbiont. It degrades plant polysaccharides which are 

indigestible by the host and is implicated in processes such as stimulation of gut 

angiogenesis. B. thetaiotaomicron becomes dominant in the gut after a dietary 

switch is made from mother‟s milk to a diet rich in plant material, which is abundant 

with indigestible polysaccharides (Xu and Gordon, 2003b). 

Unlike other species, B. thetaiotaomicron does not possess adhesive organelles 

(Figure 1.13); this lack could be detrimental in a fluctuating environment such as the 

gut where localisation close to a nutrient source is vital for success. Food acquisition 

is instead achieved by binding of glycan-specific outer membrane proteins to 

polysaccharides. Attachment in this way can prevent wash out, and increases the 

efficiency of glycan harvesting. 
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Figure 1.13 Electron micrograph of Bacteroides thetaiotaomicron 

A highly magnified view of a Bacteroides thetaiotaomicron cell, showing the tightly woven 

polysaccharide capsule. The composition of this capsule is coordinated with the glycans available as 

carbon source. Reproduced from (Martens et al., 2009c). 

Another way in which B. thetaiotaomicron maintains dominance in the gut ecosystem 

is by adapting its response to changes in the dietary intake of the host. As mentioned 

above, the ability to adapt to these changes is encoded in bacterial genomes which 

are often functionally redundant. The variety of glycoside hydrolases encoded by B. 

thetaiotaomicron is high even compared to other Bacteroides species, making it an 

important generalist (Xu et al., 2007). Analysis of the CAZy database reveals that the 

B. thetaiotaomicron genome codes for 256 glycoside hydrolases, 16 pectate lyases 

and 20 carbohydrate esterases (www.cazy.org). This totals 292 enzymes which can 

degrade carbohydrates, 64 of which are annotated as targeting xylan and pectin, for 

which there are no suitable human enzymes (Sonnenburg et al., 2005), although the 

fact that B. thetaiotaomicron is unable to grow on xylan points to a problem with this 

form of gene annotation. More than half of the cazymes provided by this bacterium 

are predicted to be extracellular or periplasmic, ensuring access to glycan substrates 

(Sonnenburg et al., 2005). Such a large number of enzymes would appear to 

suggest some redundancy in the B. thetaiotaomicron genome, but subtle differences 
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in substrate specificity and cellular location provide a complex suite of enzymes 

which enable degradation of the highly complex plant cell wall (Xu and Gordon, 

2003b). In addition, B. thetaiotaomicron possesses 1035 proteins involved in 

membrane transport and 1813 which constitute carbohydrate-specific environmental 

sensing complexes, which are discussed below. These allow the bacterium to 

display adaptive foraging, switching its primary source of nutrition from plant 

polysaccharides to host glycans in times of scarcity (Sonnenburg et al., 2005).  

 1.5.2 Polysaccharide utilisation loci 

When B. thetaiotaomicron is grown on starch, a suite of outer membrane proteins is 

expressed which are essential for utilisation of the polysaccharide and mid-sized 

oligosaccharides derived from the polymer. These proteins are encoded by a single 

operon which has been termed the Starch Utilisation System (Sus) (Figure 1.14). 

The Sus proteins are glycoside hydrolases, transcriptional regulators and proteins 

which bind and translocate carbohydrates (Reeves et al., 1997). Transcription of the 

genes in the Sus operon is induced by growth on starch or maltose.  

 

Figure 1.14 The Starch Utilisation System. 

The elements of the Sus are encoded by a single operon in the B. thetaiotaomicron genome, shown 

here as a schematic. Glycoside hydrolases are shown in green; SusA and SusG are neopullulanases 

and SusB is an α-glucosidase. Members of the substrate binding complex (SucC-F) are shown in 

blue. SusE and SusF have been shown not to be essential members of this complex (Reeves et al., 

1997). The regulatory element SusR is constitutively expressed and is shown in red in the schematic. 

The SusC/D complex of the Sus operon binds starch and maltooligosaccharides (Xu 

and Gordon, 2003b). SusC and its homologues are similar to TonB-dependent β-

barrel outer-membrane receptor proteins which sense and transmit environmental 

signals by high-affinity binding and energy-dependent uptake of substrates (Kadner 

et al., 2003). SusC homologues bind specific elements of carbohydrate substrates 

and are involved in transport of these glycans into the periplasmic space (Xu et al., 

2007). SusD homologues are outer membrane proteins that are attached to a co-
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expressed SusC partner (Xu et al., 2007). The B. thetaiotaomicron genome reflects 

the species‟ capacity to target a wide range of substrates, coding for 163 paralogues 

of SusC and SusD (Sonnenburg et al., 2005), which bind a variety of carbohydrate 

targets, increasing efficiency of glycan harvesting via nutrient attachment.  

The B. thetaiotaomicron genome codes for at least eighty-eight Sus-like systems 

which target specific carbohydrates. These systems include transcriptional regulatory 

elements, carbohydrate binding and translocating outer-membrane proteins and 

glycoside hydrolases, all targeted to the same glycan. These operons, known as 

Polysaccharide Utilisation Loci (PUL), represent around 18 % of the B. 

thetaiotaomicron genome.  

These PUL operons encode the elements required to regulate transcription of the 

carbohydrate binding and hydrolysis proteins, and are all broadly similar to the Sus 

system illustrated in Figure 1.14, with the appropriate complements of degradative 

enzymes and carbohydrate binding complexes. The PUL system is tightly regulated 

to match the nutrient glycans available in the gut. The B. thetaiotaomicron genome 

includes an unprecedented expansion of two transcriptional regulatory elements, 

which are often included within a PUL operon, physically linking the modulators of 

expression with the carbohydrate metabolising proteins (Xu and Gordon, 2003b). 

First of these elements are hybrid two component systems (HTCS). A single HTCS 

protein performs the functions of both a sensor kinase and a response regulator, and 

most have a DNA binding domain. HTCS proteins regulate transcription by binding 

specific glycans in the environment and transducing the signal to regulate gene 

expression (Sonnenburg et al., 2006). The second regulatory element common in B. 

thetaiotaomicron is ECF ζ and anti-ζ factors, which are part of the RNA polymerase 

complex. The receipt of an appropriate carbohydrate signal causes the ECF ζ to 

dissociate from its respective membrane-bound anti-ζ (Brooks and Buchanan, 

2008). This initiates expression of binding and hydrolysing proteins specific to the 

carbohydrate which induced expression (Xu and Gordon, 2003b). For instance, the 

regulatory element (SusR) in the original Sus system binds maltose and larger 

oligosaccharides to activate expression of enzymes which degrade starch. Figure 

1.15 shows a schematic of this positive feedback model of PUL regulation (Martens 

et al., 2009c). 
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The PULs are important because the glycan binding targets of the HTCS proteins 

and associated SusC/D complexes determine the substrates which B. 

thetaiotaomicron can use for growth. The bacteria can grow on a variety of pectic 

polysaccharides as sole carbon source, including homogalacturonan, galactan and 

arabinan. The Sus proteins often bind elements of these polymers. This system of 

matching the expression of substrate-specific glycoside hydrolases and SusC/D 

translocation complexes with the available range of carbohydrates allows B. 

thetaiotaomicron to graze efficiently on nutrients, and to adapt flexibly to changes in 

the environment (Xu and Gordon, 2003b).  

 1.5.3 Adaptive glycan foraging 

As mentioned above, B. thetaiotaomicron is able to forage for glycans in an adaptive 

manner. When plant polysaccharides are scarce, this species can switch to host 

glycans as a primary nutrient source. This adaptability has been demonstrated in 

gnotobiotic mice. Germ-free mice were fed either a polysaccharide-rich diet or a diet 

of simple sugars, and were colonised with B. thetaiotaomicron at seven weeks old 

(Sonnenburg et al., 2005). Electron microscopy showed that B. thetaiotaomicron 

cells assemble on food particles and are found embedded in the mucosal lining of 

the intestine, as attachment is required to remain close to an adequate source of 

nutrition. As expected, genes coding for outer-membrane carbohydrate binding 

proteins (SusC and SusD) and associated glycoside hydrolases were upregulated in 

all mice, indicating high expression of elements required for carbohydrate transport 

and metabolism (Sonnenburg et al., 2005). 
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A: in the “off” position, constitutive expression of an ECF-ζ factor results in a low level of PUL 

expression which is repressed by the anti-ζ factor via physical interaction with ECF-ζ and SusC. A 

complex carbohydrate (polysaccharide) is hydrolysed to a simpler oligosaccharide, which binds SusC. 

Binding of a specific glycan switches the system to the “on” position. The glycan is transduced by the 

SusC/D complex. A signal is transmitted which causes the anti-ζ factor to release repression of 

expression of the remaining PUL components. Propagation of the signal results in ECF-ζ activation 

and increased expression of the operon, including glycoside hydrolases.  
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B: the HTCS is attached to the inner membrane, with domains facing both the periplasm and the 

cytoplasm. The periplasmic sensor domain recognises a specific glycan, and this signal is transmitted 

to regulatory elements including a DNA binding module. Expression of the PUL is upregulated. 

Figure 1.15 Substrate-dependent regulation of the expression of PUL components.  

These schematic diagrams of a hypothetical PUL model how the regulatory element is activated by 

the binding of a carbohydrate signal from the environment to induce expression of other PUL 

components. Figure is adapted from (Martens et al., 2009c) and (Sonnenburg et al., 2006). Panel A 

shows the two states observed for a fictional PUL under the control of an ECF-ζ factor. Panel B 

illustrates the mode of action of an HTCS. Carbohydrates are indicated by green hexagons. 

Analysis of caecal contents before and after colonisation with B. thetaiotaomicron 

revealed a marked reduction in the abundance of hexose sugars, as these were 

selectively metabolised by the bacteria. In addition, host expression of a major 
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glucose uptake protein increased upon colonisation, as more monosaccharide was 

liberated from the polysaccharide-rich diet and was utilised by the host (Sonnenburg 

et al., 2005). GeneChip analysis of the caecal contents of mice which were fed 

simple sugars prior to colonisation showed that there was no significant expression 

of glycoside hydrolases which target pectin-like polysaccharides, such as 

arabinanases, arabinofuranosidases and pectate lyases. There was little difference 

in cell density compared with those mice fed on a polysaccharide-rich diet, indicating 

that these bacteria had adapted to the dietary change. Instead, there was 

upregulation of hexosaminidases, fucosidases and sialidases, which can target N-

linked glycans on the surface of host epithelial cells, indicating that the bacteria in 

these mice were primarily harvesting host glycans (Sonnenburg et al., 2005). The 

epithelial mucus provides a constant endogenous source of glycans, upon which B. 

thetaiotaomicron can rely in times of scarcity of plant polysaccharides. Species 

which show this kind of adaptive foraging allow the gut population of an individual to 

remain constant even when there are significant dietary fluctuations, by allowing the 

metabolic activity of the community to change (Sonnenburg et al., 2005).  

1.6 Applications of plant cell wall components and degradative enzymes 

 1.6.1 Probiotic diet 

Gut bacteria are a focus of research into health management via changes to diet in 

two main areas: prebiotics and probiotics. Prebiotics are small oligosaccharides 

which generally serve to promote the growth of specific desirable species. Probiotics 

are live microorganisms found indigenously in the human gut which are introduced 

into foods to attempt to manipulate the composition and therefore the functionality of 

the bacterial gut community (Vanderhoof, 2008). In theory, providing the gut 

community with a greater capacity to degrade dietary carbohydrates can in turn 

improve the digestive health of humans. Much recent research has focussed on 

bacterial members of the gut community and their potential for use as probiotic 

dietary supplements. Dairy products including bacterial probiotics, most commonly 

Bifidobacteria, are now commonplace in supermarkets, are heavily promoted in the 

media and are readily available in stores without a prescription. Despite this, a lot of 

the research supporting specific claims for these products is based on trials on very 
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few individuals, lacks properly randomised control experiments and is often 

performed, or funded, by companies with a vested interest in a specific outcome 

(Brenner et al., 2009). Systematic reviews are available which have assessed a 

series of publications using tools such as meta-analyses to give a more reliable view 

on the efficacy of using gut bacterial species as probiotics. B. infantis has been 

shown by such reviews to be genuinely effective in reducing the symptoms of IBS, 

which is often triggered by dairy products (Brenner et al., 2009). Another very 

common probiotic is Bifidobacterium bifidum, which comprises only 2 % of the gut 

Bifidobacteria community where it occupies the niche of fermenting 

galactooligosaccharides, the indigestible carbohydrate portion of milk products. 

Some strains of this species have been shown to reduce the damaging effects of 

Coeliac disease, possibly via direct interaction with the immune system (Palma et al., 

2010).  

 1.6.2 Biofuels 

As discussed at the beginning of this chapter, efforts are underway to commercialise 

bioethanol transport fuel produced from lignocellulosic biomass, as this is more 

sustainable and environmentally benign than ethanol derived from corn. Typical 

„energy crops‟ which will be used to generate second generation biofuels are 

renewable, sustainable feedstocks, the use of which will not impact the provision of 

food to humans or of feed for livestock. Examples are grasses such as sorghum and 

switchgrass, and fast-growing trees such as poplar and willow (Lal, 2008; McCann 

and Carpita, 2008).  

Currently, raw biomass from energy crops is pre-treated with extreme conditions of 

acidity, alkalinity, temperature and/or pressure (Kim et al., 2009; Yang and Wyman, 

2009; Zhu et al., 2010a). It is hoped that these chemical and physical methods of 

pre-treatment will be supplemented and eventually supplanted by enzymatic 

saccharification. Glycoside hydrolases exist which break down specific elements of 

the plant cell wall, expressed by microorganisms which take nutrition from the wall. A 

diverse range of yeast, bacteria and fungi possess the enzymes required to break 

down the highly complex plant cell wall and ferment the resulting monosaccharides 

into ethanol. Harnessing these enzymes for industrial processes is a focus of much 
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research, as the high cost and inefficiency of biomass saccharification is currently a 

major bottle-neck preventing the large-scale commercialisation of lignocellulosic 

bioethanol fuel (Hill et al., 2006). One cost-effective option being sought is to 

consolidate the saccharification and fermentation of biomass to ethanol in a „one-pot‟ 

conversion strategy (Elkins et al., 2010). This would be a highly cost-effective and 

efficient process, but no single organism has so far been discovered with a complete 

repertoire of necessary enzymes. An artificial ecosystem, resembling that found in 

the human intestine, may be capable of very extensive degradation of plant biomass, 

if supplemented with fermentative species. Alternatively, microorganisms could be 

re-engineered with the capacity for general hydrolysis of biomass with simultaneous 

production of combustible fuel (Elkins et al., 2010).  

1.7 Objectives of this study 

 1.7.1 Understanding the expansion of glycoside hydrolase family 43 

As discussed in this chapter, in the human gut symbiont B. thetaiotaomicron, 

versatility of polysaccharide use is ensured by the apparent redundancy of a suite of 

256 glycoside hydrolases. Some of these enzymes are unique to this species, while 

certain classes and families of enzymes are expanded more significantly than can be 

adequately explained by the suite of glycans available in the gut. For example, the B. 

thetaiotaomicron genome encodes thirty-two GH2 enzymes, which are often β-

galactosidases, compared to just one or two expressed by strains of Bifidobacterium 

longum, which metabolises lactose (Xu and Gordon, 2003b). Similarly, B. 

thetaiotaomicron shows expansion in glycoside hydrolase family 43. This family is 

also expanded in many other bacterial species, including the soil saprophyte 

Cellvibrio japonicus. As family GH43 is polyspecific, it is hypothesised that the 

expansion in this family in B. thetaiotaomicron is matched by a variety of substrate 

specificities, allowing the bacterium to achieve more complete degradation of the 

plant cell wall. Many of these enzymes are annotated with activities in the database, 

and include putative arabinanases, arabinofuranosidases and xylosidases. Proper 

biochemical characterisation of the enzymes is required to gain a more accurate 

picture of the metabolic capability of the species. To this end, a project was 

undertaken to characterise all GH43 enzymes encoded by the genome of B. 
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thetaiotaomicron. The primary aim of this project was to characterise the biochemical 

activity of this repertoire of enzymes to improve our understanding of expansion in 

family GH43. Specifically, cloning experiments were performed with the aim of 

obtaining soluble protein for the enzymes, which were subjected to activity assays to 

determine the substrate for each enzyme. Sequences of the enzymes were also 

submitted to phylogenetic analysis. These experiments are discussed in Chapter 

Three of this thesis and in the light of these new data, a potential evolutionary history 

for family GH43 is considered. 

 1.7.2 Structure – function analysis of an industrially important GH43 

Humicola insolens is a fungal organism of the Ascomycetes phylum. It is a source of 

industrially significant cellulases and possesses a single identified GH43 enzyme, 

which has been described by scientists at Novozymes in Denmark. The enzyme has 

a highly specific activity on arabinoxylan: it selectively cleaves the α1,3 linked 

arabinofuranose from backbone xylopyranose residues which are doubly substituted 

at O2 and O3 (Sorensen et al., 2006). As presented in this thesis, a project was 

undertaken which aimed to understand the nature of the tight specificity of this 

unusual enzyme, and the molecular basis for specificity against a 

pseudosymmetrical substrate. Chapter Four presents crystal structures of this 

enzyme in complex with substrates which illustrate the mode of specificity. Kinetic 

analysis and mutagenesis studies have identified those amino acids which are 

important in coordinating this specific activity against arabinoxylan and arabinan. In 

addition, it is demonstrated that a minor structural modification of the active site of 

the enzyme introduces the capacity for degradation of the xylan backbone while 

retaining wildtype arabinofuranosidase activity. 
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CHAPTER TWO 

Materials and methods 

2.1 Bioinformatics and Sequence Analysis 

 2.1.1 Computation of protein properties 

Glycoside hydrolases are classified into families on the CAZy database 

(http://www.cazy.org/; Cantarel et al., 2009; Henrissat, 1991) and GenBank 

accession numbers from the CAZy website were used to obtain protein and DNA 

sequences from NCBI (http://www.ncbi.nlm.nih.gov/pubmed/). Molar extinction 

coefficients and precise molecular weights for proteins were calculated from the 

primary structure using the ProtParam calculator on the Expasy molecular biology 

server (http://www.expasy.ch/tools/protparam.html; Gasteiger et al., 2005).  

Protein sequences were input into the servers at SignalP and LipoP at 

http://www.cbs.dtu.dk/services/SignalP/ and http://www.cbs.dtu.dk/services/LipoP/ 

(Emanuelsson et al., 2007). SignalP predicts the presence and location of signal 

peptide cleavage sites in amino acid sequences, and LipoP produces predictions for 

lipoproteins. Cleavage sites given by these online algorithms were used to determine 

start sites for cloning recombinant proteins geared for soluble expression in the 

cytoplasm of Escherichia coli cells. PSortB was also utilised 

(http://www.psort.org/psortb/; Zhao et al., 2010). PSortB is a subcellular localisation 

prediction tool which analyses protein motifs and signal peptide sequences to give 

probability scores for localisation to five cellular compartments (cytoplasmic, 

cytoplasmic membrane, periplasm, outer membrane and extracellular). 

 2.1.2 Alignment and phylogenetic analysis of protein sequences  

Homologues of protein sequences were identified by alignment against the NCBI 

protein database using the blastp server 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Proteins&PROGRAM=blastp). 

Gene sequences were analysed by alignment against the NCBI genome database at 

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html.  
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Alignments of protein sequences was undertaken using ClustalW 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html; Thompson et al., 1994). Alignment 

outputs from ClustalW were used with the PhyML software 

(http://atgc.lirmm.fr/phyml/; Guindon and Gascuel, 2003) to generate phylogenetic 

trees which were viewed and edited using Mega4 (http://www.megasoftware.net/; 

Kumar et al., 2008; Tamura et al., 2007). 

2.2 Molecular Biology 

All solutions were prepared using water as the solvent unless otherwise specified. 

High quality H2O was produced by a Millipore Milli-RO 10 Plus Water Purification 

System. 

 2.2.1 Bacterial strains and plasmids 

All Escherichia coli strains utilised in this study are described in Table 2.1. Plasmids 

used in cloning experiments are outlined in Table 2.2.    
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Cell strain Description Purpose Reference 

One Shot™ TOP10 F´mcrA Δ(mrrCB-hsdRMS-mrr) Φ80lacZΔM15 ΔlacX74 deoR recA1 

araD139 Δ(ara-eu)7697 galU galK rspL endA1 nupG 

Plasmid DNA ligation Invitrogen 

XL1-blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´proAB 

lacIqZΔM15 Tn10(Tetr)] 

Plasmid DNA replication (Bullock et al., 1987) 

BL21 (DE3) F- dcm ompT hsdS(rB- mB-) gal l(DE3) Protein expression (Studier and Moffatt, 1986) 

Tuner™ (DE3) F– ompT hsdSB (rB
– mB

–) gal dcm lacY1 (DE3) Protein expression Novagen 

B834 F– ompT hsdSB (rB
– mB

–) gal dcm met (DE3) Selenomethionine 

protein expression 

Novagen 

Table 2.1 Cell strains utilised in this study. 
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Plasmid Size 

(bp) 

Antibiotic 

resistance 

phenotype 

Genotype Source 

mini-

pRSETA 

2895 AmpR T7, lac, lacIq Modified version of pRSETA (Invitrogen) 

mini-

pRGST 

3522 AmpR T7, lac, lacIq mini-pRSETA modified to include GST 

from pGEX (GE Healthcare) 

pET21(a) 5443 AmpR T7, lac, lacIq Novagen 

pGEX 4968 AmpR T7, lac, lacIq GE Healthcare 

Table 2.2 Predominant plasmid vectors utilised in this study.  

GST = glutathione-S-transferase. Multiple cloning regions of plasmids utilised in this study are given 

in Appendix A. 

 

 2.2.2 Media and growth conditions for bacteria 

Unless otherwise stated in protein expression protocols, Escherichia coli strains 

were cultured at 37 °C in liquid Luria-Bertani (LB) broth medium (1 % (w/v) Bacto© 

Tryptone, 1 % (w/v) NaCl and 0.5 % (w/v) yeast extract, pH 7.2). Conical flasks with 

a volume twice that of the culture were used to provide sufficient aeration during 

rotary shaking at 180 rpm. Media were autoclaved at 120 °C for 30 minutes prior to 

addition of appropriate antibiotic and subsequent inoculation with bacteria. 

A media kit from Molecular Dimensions™ was used (SelenoMethionine Medium 

Complete, comprising base medium, nutrient mix and selenomethionine solution) to 

express selenomethionine derivatives of proteins for crystallographic experiments. 

For the preparation of solid media plates, bacteriological agar was added to media at 

2 % (w/v) prior to autoclaving. Appropriate antibiotics were added before pouring 

plates. The plates were dried at room temperature for approximately 30 minutes 

before being stored at 4 °C for a maximum of four weeks. 
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 2.2.3 Selective media 

Plasmids used in this study coded for resistance to the antibiotic ampicillin (Table 

2.2). A stock solution of ampicillin was prepared at 50 mg ml-1 in water and 

appropriate volumes were added to autoclaved media that had been cooled to below 

55 °C to give a final working concentration of 50 µg ml-1.  

Isopropylthio-β-D-galactoside (IPTG) was added to strains containing lacIq either on 

plasmids or in the genome for induction of transcription of recombinant genes 

controlled by lacO. A stock solution of 1 M IPTG was prepared in water and added to 

liquid media to a final concentration of 0.2 mM, unless otherwise stated. 

 2.2.4 Storage of DNA and bacteria 

Glycerol stocks of each E. coli strain, containing 25 % glycerol (v/v), were stored at   

-80 °C and re-streaked approximately every thirty days onto solid agar media 

containing appropriate antibiotics where required. Bacterial colonies on agar plates 

were stored at 4 °C and discarded after no more than two weeks. Plasmids were 

stored at -20 °C in EB Buffer (10 mM Tris/HCl Buffer, pH 8.5). 

 2.2.5 Sterilisation 

All media, buffers, and certain polysaccharide substrates were sterilised by 

autoclaving using an Amsco Renaissance Remanufactured 3021 Gravity Steam 

Steriliser (Steris). 

 2.2.6 Centrifugation 

Bacterial cells from 5-15 ml cultures were harvested at 4 °C in 50 ml universal 

containers by centrifugation at 4400-5000 rpm for 6-10 minutes in an Eppendorf 

5702 bench centrifuge with swing-out rotor. Cells from larger cultures, of 100-1000 

ml, were harvested at 4 °C by centrifugation at 5000 rpm for 10 minutes in 500 ml 

centrifuge pots (Nalgene) using a Beckman Avanti centrifuge with a JA-10 rotor. 

Small samples were harvested in 1.5 ml Eppendorf tubes by centrifugation at up to 

15,000 rpm using an Eppendorf 5424 bench top centrifuge. 
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 2.2.7 Plating bacteria 

A glass spreader was sterilised by immersion in 100 % (v/v) ethanol followed by 

passage through a Bunsen burner flame to burn off the ethanol. The sterile spreader 

was used to spread bacterial suspensions of 100 µl onto the surface of agar plates, 

which were incubated inverted overnight (16 hours) at 37 °C in a stationary 

incubator. 

 2.2.8 Production of chemically competent Escherichia coli 

In a variation of the procedure described by Cohen et al., 1972, E. coli cells were 

made competent for the uptake of plasmid DNA using calcium and magnesium 

chlorides. A 1 ml aliquot of a 10 ml overnight culture of cells was inoculated into 100 

ml of sterile non-selective LB media in a 1 litre conical flask. The culture was 

incubated with shaking (180 rpm) at 37 °C until log phase growth was reached, as 

evidenced by an absorbance at 600 nm of 0.4. A shaking incubator (Innova® Shaker 

Series I26, New Brunswick Scientific) was utilised for growing cultures. The cells 

were rested on ice for 10 minutes then harvested at 4 °C by centrifugation at 5000 

rpm for 5 minutes. The medium was decanted and cells were gently resuspended by 

inversion in 8 ml of ice cold 100 mM MgCl2. After harvesting again in the same way 

the cells were similarly resuspended in 4 ml of ice cold 100 mM CaCl2. After two 

hours on ice the cells were competent for transformation with plasmid DNA. Sterile 

glycerol was added to 25 % (v/v) and cells were stored in 100 µl aliquots at -80 °C. 

Each fresh batch of competent cells was immediately tested for competency by 

transformation with plasmid DNA. 

 2.2.9 Transformation of competent E. coli 

A 100 µl aliquot of the desired strain of competent cell was gently thawed on ice after 

which 2-5 µl of plasmid DNA were added. In cloning experiments, where cells were 

transformed with newly ligated DNA, cells were then incubated on ice for a further 30 

minutes. The suspension was then heat shocked by incubation in a water bath at 42 

°C for two minutes and immediately returned to ice for a further five minutes. For 

cloning experiments, 500 µl of non-selective LB were added and the cells were 

incubated with shaking at 37 °C for one hour. Transformations were then plated 
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directly onto LB agar containing 50 µg ml-1 ampicillin before inversion and incubation 

at 37 °C for 16 hours. 

 2.2.10 Small scale plasmid preparation 

For plasmid preparations, DNA was transformed into E. coli XL1-blue or TOP10 cells 

(Table 2.1). A streak of colonies from the plate was inoculated into 5 ml selective LB 

and incubated with shaking at 37 °C overnight. Overnight 5 ml cultures were 

harvested by centrifugation at 5000 rpm for 8 minutes, and the supernatant 

decanted. Plasmid extraction and purification was performed using a Qiagen® 

QIAspin Prep kit as described in the manufacturer‟s instructions. 

 2.2.11 Restriction digestion of DNA 

Restriction enzymes used in this study were purchased from Fermentas and New 

England BioLabs. Digestion of DNA by these enzymes was performed in appropriate 

reaction buffers following the manufacturer‟s instructions. The required amount of 

DNA (plasmid or PCR product) in EB buffer was mixed with the appropriate volume 

of reaction buffer. Endonuclease enzyme was added at 5-10 units per µg DNA and 

the digest incubated in a 37 °C water bath for 90-120 minutes, or just 20 minutes for 

rapid digest enzymes. One unit of enzyme is defined as the amount of enzyme 

required to cleave 1 µg of DNA in one hour at 37 °C. 

 2.2.12 Agarose gel electrophoresis of DNA 

The electrophoresis of DNA molecules was carried out according to the method of 

Meyers et al., 1975 using submerged horizontal gels, and was used to determine the 

size (base pairs) of linear DNA molecules. Linear double stranded DNA molecules 

migrate through gel matrices at a rate that is inversely proportional to the Log10 of the 

size of the nucleic acid. Therefore, the sizes of DNA fragments were determined by 

comparing electrophoretic mobility with that of standards of known sizes. 

Gels were prepared with 0.8 % agarose in 1 X TBE buffer (10.8 g L-1 Tris base, 5.5 g 

L-1 Boric acid, 40 ml L-1 0.5 M EDTA pH 8.0) and boiled using a microwave oven until 

fully dissolved. After cooling to approximately 50 °C, 0.5 µg ml-1 ethidium bromide 

was added to allow visualisation of DNA and the gel was cast by pouring into a 
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sealed gel tray (BioRad). Once set, the gel was overlaid with 50 ml 1 X TBE buffer. 

Samples were prepared for electrophoresis by addition of loading buffer (0.25 % w/v 

Xylene cyanol FF, 50 % v/v glycerol in 10 X TBE) and transfer into the wells of the 

gel. DNA was electrophoresed at 140 V, ~60 mA for approximately 45 minutes. 

Standard DNA samples (GeneRuler™ 1 kb ladder, Fermentas) totalling 4 µl were 

also loaded and electrophoresed to determine the size of DNA fragments in the 

samples. In addition, band size and intensity of the standard samples was used to 

estimate concentration of DNA samples.  

DNA concentration was also determined by spectrophotometry. The absorption of 

appropriately diluted DNA, between 200 nM and 400 nM, was measured in quartz 

cuvettes using a Varian CARY 100 Bio spectrophotometer (Agilent Technologies, 

USA). Double-stranded DNA at 50 µg ml-1 gives an A260 reading of 1.0. For single-

stranded DNA and oligonucleotides, this absorbance reading indicates a 

concentration of 33 µg ml-1.  

 2.2.13 Visualisation of agarose gels 

Following electrophoresis, the agarose gel was removed from the apparatus and 

visualised using an AlphaImager system (Cell Biosciences). Photographs were 

printed using thermal paper. 

 2.2.14 Purification of DNA fragments 

PCR products were purified using QIAquick PCR Purification Kit (Qiagen) according 

to the manufacturer‟s instructions. Restriction digested vector and insert DNA 

fragments were purified in the same way or alternatively were isolated from agarose 

gels by excision of the required band from the gel on a UV illuminating light box with 

a clean scalpel blade. Purification of DNA from agarose was performed using the 

Qiagen Gel Extraction Kit, a modification of the previously described PCR 

purification protocol. 
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 2.2.15 Ligation of insert and vector DNA 

Following restriction digestion with appropriate endonucleases, insert and expression 

vector DNA molecules with compatible cohesive („sticky‟) ends were mixed at an 

approximate molar ratio of 3:1. A typical ligation was performed in a 200 µl 

Eppendorf tube as outlined in Table 2.3. Each reaction was mixed gently and 

incubated at room temperature for 30 minutes. 

100 ng (1 µl) Vector DNA 

300 ng (2-3 µl) Insert DNA 

4 µl 5 X Ligation buffer (400 mM Tris-HCl, 100 mM MgCl2, 100 mM DTT, 5 mM ATP) 

1 µl T4 DNA ligase (Fermentas) (5 U µl-1) 

Up to 11 µl Sterile water  

20 µl Total volume 

Table 2.3 Reaction mix for insert-vector ligation. 

 2.2.16 Polymerase Chain Reaction 

The polymerase chain reaction (PCR) (Mullis and Faloona, 1987) was used to 

amplify specific DNA fragments from a bacterial genome. Primers were produced 

using automated MWG Oligo-2000 synthesiser technology and purified by HPSF® 

(MWG-Biotech AG, Germany) or by the in-house DNA synthesis machines at 

Integrated DNA Technologies (IDT,USA) and purified by Rapid HPLC™, followed by 

desalting to remove small molecule impurities. Primers were analysed by MALDI-

TOF by the respective manufacturer prior to dispatch.  

The standard PCR protocol requires two oligonucleotide primers, one 

complementary to each strand of the DNA molecule at sites that flank the region to 

be amplified. A thermostable DNA polymerase catalyses the synthesis of the 

complementary DNA strand using dNTPs provided in the reaction mix. Primers were 

designed such that complementary sequences were 15-18 base pairs in length and 

had a G/C content of approximately 40 %. Ideally primers ended (3‟) in a relatively 
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G/C rich-region to improve annealing. Restriction sites were added to the 5‟-ends of 

primers, as well as any additional bases required to keep the complementary 

sequence in frame. In addition, the non-palindromic sequence GTCGCC was 

included at the extreme 5‟-end to ensure restriction enzymes cleaved their target 

sequences in the PCR products. Annealing temperatures (i.e. melting points, TM) 

were calculated using the OligoCalc server using Equation 2.1 

(http://www.basic.northwestern.edu/biotools/oligocalc.html). PCR reactions were 

prepared in 200 µl Eppendorf tubes as described in Tables 2.4 and 2.5. 

Equation 2.1 TM= 64.9 +41*(yG+zC-16.4)/(wA+xT+yG+zC) 

where w, x, y and z are the numbers of the bases A, T, G and C respectively.  

2.5 µl KOD buffer (10 X)  

2.5 µl dNTP mix (2.5 mM each) 

1 µl Template genomic DNA (50-100 ng µl-1) 

0.5 µl KOD DNA polymerase (10 U µl-1 ) 

2.5 µl Forward primer (~100 pmol µl-1) 

2.5 µl Reverse primer (~100 pmol µl-1) 

13.5 µl PCR-grade H2O 

Table 2.4 Reaction mix for standard PCR reactions. 

A master mix (typically 20 X or 10 X) of components was generally prepared and dispensed between 

aliquots. KOD reaction buffer (10 X) comprises 1.2 M Tris-HCl, 15 mM MgSO4, 100 mM KCl, 60 mM 

(NH4)2SO4, 1 % Triton-100 and 1 mg ml
-1

 BSA. 
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5 µl iProof HF buffer (5 X) 

0.5 µl dNTP mix (2.5 mM each) 

0.5 µl Template genomic DNA (~250 ng) 

0.2 µl iProof DNA polymerase (0.2 U µl-1) 

4 µl Forward primer (2.5 µM) 

4 µl Reverse primer (2.5 µM) 

10.8 µl PCR-grade H2O 

Table 2.5 Reaction mix for PCR reactions utilising the iProof system (BioRad). 

The iProof system requires significantly shorter reaction times in the thermo cycle. iProof high fidelity 

(HF) buffer includes 7.5 mM MgCl2 in the 5 X stock.  

Two PCR machines were used in this study. Broadly speaking, for cloning 

experiments a PX2 (Hybaid) was used and for mutagenesis (Section 2.2.17, below) 

an Eppendorf Mastercycler was utilised. The standard thermo cycle for amplification 

of a DNA fragment is given in Tables 2.6 and 2.7. The precise duration and 

temperature of specific steps in the thermo cycle were varied to improve yield of 

PCR product. After thermo cycling was complete a 4 µl aliquot of each reaction was 

analysed by electrophoresis (Section 2.2.12). 

1 cycle 95 °C 2 minutes 

 94 °C 1 minute 

40 cycles Lowest TM of primer pair – 5°  1 minute 

 68 °C 2 minutes 

1 cycle 68 °C 5 minutes 

Hold 4 °C 

Table 2.6 Thermo cycling reaction protocol for a typical PCR for cloning. 
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1 cycle 98 °C 30 seconds 

 98 °C 30 seconds 

40 cycles Lowest TM of primer pair + 3°  15 seconds 

 72 °C 30 seconds 

1 cycle 72° 1 minute 

Hold 4 °C 

Table 2.7 Thermo cycling protocol for an iProof reaction, with considerably shorter reaction 

times. 

 2.2.17 QuikChange site directed mutagenesis 

Mutagenesis of single amino acids was carried out using a QuickChange™ Site-

Directed Mutagenesis kit from Stratagene, following the manufacturer‟s instructions. 

The method uses double-stranded recombinant plasmid DNA as template and two 

oligonucleotide primers (Integrated DNA Technologies, USA) containing the desired 

codon mutation flanked on either side by 15-18 nucleotides. The primers are fully 

complementary to each other. The polymerase enzyme used in site-directed 

mutagenesis is a high fidelity archaeal enzyme called PfuPol. Reactions were 

prepared in 200 µl Eppendorf tubes as outlined in Table 2.8. Table 2.9 gives the 

mutagenic PCR thermo cycle. 
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5 µl Reaction buffer (10 X) 

5 µl Plasmid DNA template (50 – 500 ng) 

5 µl Forward primer (~1.2 µg) 

5 µl Reverse primer (~1.2 µg) 

1 µl dNTP mix (2.5 mM each) 

1 µl Pfu Ultra HF DNA polymerase (2.5 U µl-1) 

28 µl PCR-grade H2O 

Table 2.8 Reaction mix for QuikChange mutagenesis PCR. 

Reaction buffer comprises 200 mM Tris-HCl, 100 mM KCl, 100 mM (NH4)2SO4, 20 mM MgSO4, 1 % 

Triton-100 and 1 mg m l
-1

 BSA. 

1cycle 95 °C 30 seconds 

 95 °C 30 seconds 

18 cycles 55 °C 1 minute 

 68 °C 6 minutes    

1 cycle 68 °C 10 minutes   

HOLD 4 °C 

Table 2.9 Thermo cycle protocol for QuikChange mutagenesis PCR  

After thermo cycling, 1 µl of the endonuclease Dpn1 (New England BioLabs) was 

added to each reaction. After mixing by vortex, the reactions were incubated at 37 °C 

in a water bath for one hour to digest parental (non-mutated) DNA which is 

methylated. Dpn1 treatment leaves amplified DNA (carrying the mutation) 

undigested as it is not methylated. The DNA was then transformed into competent 

TOP10 cells using the protocol for freshly ligated plasmids outlined in Section 2.2.9.  
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 2.2.18 Automated DNA sequencing 

DNA sequencing employed the Value Read service from MWG Biotech (Germany) 

or the Custom Sequencing Service from Macrogen (USA). Approximately 10 µg of 

plasmid DNA in a 1.5 ml Eppendorf tube were shipped directly to the respective 

company for sequencing with primers listed in Table 2.10.  

Plasmid  Forward primer Reverse primer 

pET plasmids T7 

TAATACGACTCACTATAGGG 

T7 term 

CTAGTTATTGCTCAGCGGT 

pGEX  pGEX 5‟ 

GGGCTGGCAAGCCACGTTTGGTG 

pGEX 3‟ 

CCGGGAGCTGCATGTGTCAGAGG 

Table 2.10 Primers used in automated sequencing reactions. 

 2.2.19 Gene expression of recombinant protein in E. coli 

The following protocol was used for over-expression of all proteins unless otherwise 

stated. A streak of E. coli colonies transformed with the appropriate plasmid was 

inoculated into 10-15 ml selective LB media and grown with rotary shaking (180 rpm) 

at 37 °C for 16 hours. This culture was inoculated directly into one litre of selective 

LB in a two litre conical flask which was incubated with aeration (180 rpm) at 37 °C 

until absorbance at 600 nm reached 0.6 (A600 = 0.6), indicating log phase growth. 

The incubator was then cooled to 16 °C and after one hour IPTG was added under 

sterile conditions to a final concentration of 0.2 mM; cultures were maintained at this 

temperature for a further 16 hours. Cells were harvested by centrifugation at 5000 

rpm for 10 minutes at 4 °C. After the supernatant was decanted the cell pellet was 

re-suspended in 30 ml of Talon buffer (20 mM Tris/HCl buffer pH 8.0 containing 300 

mM NaCl) per litre of original culture.  

The methionine auxotrophic strain of E. coli B834 (Table 2.1) was used to express a 

selenomethionine-containing form of proteins intended for crystallographic analysis. 

Plasmid DNA encoding the protein was transformed into B834 cells (section 2.2.9); a 

streak of these colonies was inoculated into 10 ml selective LB and grown with 
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aeration (180 rpm) at 37 °C for 16 hours. The culture was then inoculated into 100 ml 

selective LB in a 500 ml conical flask and incubated with aeration (180 rpm) at 37 °C 

until A600nm = 0.2. Cells were harvested by centrifugation at 4400 rpm for five minutes 

and re-suspended in 5 ml of SelenoMet Medium Base™ (Molecular Dimensions). 

This step was repeated three times to ensure the removal of all LB media. The re-

suspended pellet was inoculated into one litre of SelenoMet Medium Base™ in a two 

litre conical flask and 50 ml of filtered (0.4 µm) SelenoMet™ Nutrient Mix was added 

to the culture along with 4 ml of a SelenoMethionine Solution (10 mg ml-1). 

 2.2.20 Fractionation of E. coli cells 

Cell suspensions (Section 2.2.19) were lysed by sonication for 2 minutes on ice 

using a sonic dismembrator set at low intensity (~ 40 watts) and 0.5 second cycling. 

Lysed cell suspensions were transferred to a 50 ml centrifuge tube (Nalgene) and 

cell debris pelleted by centrifugation at 17,000 rpm for 30 minutes at 4 °C. The 

supernatant (cell-free extract, CFE) was retained for subsequent purification (Section 

2.2.21). In expression trials the pellet containing cell debris was re-suspended in 10 

ml Talon buffer by pipetting.  

 2.2.21 Purification of recombinant proteins 

  2.2.21.i Immobilised metal ion affinity chromatography 

Proteins derived from recombinant forms of the vectors pRSETA and pET21(a) 

contain a stretch of six Histidine residues at the N- or C-terminus (His6), respectively. 

Immobilised metal ion affinity chromatography (IMAC) was used to purify 

recombinant proteins by selecting for the electron-rich residues in the His6 tag. 

These residues interact with the electropositive transition metals cobalt and nickel, 

which were bound to a solid chromatographic matrix. This interaction can be 

dissociated with imidazole, which mimics and out-competes the Histidine side chain 

in the His6 tag for binding to the column. The metal affinity matrix used was Talon™ 

Fast Flow (Clontech Laboratories Inc.) in which the His6 tags interact with cobalt, or a 

His select HF Nickel Affinity gel matrix (Sigma Aldrich, USA) in which the His6 tags 

interact with nickel. Subsequent to every use, the nickel resin was regenerated by 

successive washing with ~ 3 column volumes of 6 M guanidine hydrochloride, water, 
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0.5 M EDTA, water,  10 mg ml-1 NiSO4 and water, followed by storage in 20 % 

ethanol. 

  2.2.21.ii Ion exchange chromatography (IEC) 

Proteins without a His6 tag, or with an inaccessible tag, were purified from cell free 

extract by ion exchange chromatography (IEC) using an ÄKTA Purifier Core System 

with a flow of 1 ml min-1, connected to an AEC HiPrep™ IEX FF anion exchange 

column (GE Healthcare). A Frac-920 fraction collector (GE Healthcare) was used to 

collect 1 ml fractions during the run.  

As required, an ÄKTA Purifier system with a flow of 3 ml min-1 connected to a Q12 

anion exchange column (BioRad) was used to carry out a secondary purification step 

after IMAC purification or IEC from cell free extract.  

Prior to loading onto the column, protein fractions were dialysed into 10 mM Tris/HCl 

pH 8.0; protein was then loaded onto the equilibrated column which was washed 

with 4 column volumes of 10 mM Tris/HCl buffer pH 8.0 (Buffer A) to remove 

unbound protein, before elution with a linear 0-150 mM NaCl gradient in Buffer A. 

Protein elution was detected by UV absorbance and 1 ml fractions collected above a 

threshold of 50 mAU at 280 nm using a Biofrac fraction collector (BioRad). Each 

fraction was analysed by SDS-PAGE (Section 2.2.22) and those containing 

significant pure protein were dialysed against four litres of an appropriate buffer. 

  2.2.21.iii Gel filtration fast performance liquid chromatography (FPLC) 

Using the ÄKTA Purifier system described above, connected to a Superdex 200 gel 

filtration column, a final round of purification was carried out to improve homogeneity 

of protein samples when required. The protein was dialysed into Buffer A and 

concentrated to <3 ml, then loaded onto the column using a 2 ml static loop. The 

protein was eluted from the column using Buffer A containing 200 mM NaCl (Buffer 

B). Fractions (1 ml) were collected and analysed by SDS-PAGE (Section 2.2.22); 

subsequently pure fractions were pooled and concentrated for further analysis. 



[62] 

 

Ve/V0

L
o

g
1

0
 (

M
r)

1.4 1.5 1.6 1.7 1.8 1.9 2.0
4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

BSA

Carbonic anhydrase

Cytochrome C

 

Figure 2.1 Calibration of the gel filtration column. 

Calibration was performed using three proteins of known molecular weight (Mr): Bovine serum 

albumin (BSA, 66 kDa), Carbonic anhydrase (29 kDa) and Cytochrome C (12.4 kDa). Ve = elution 

volume of the protein. V0 = volume of the column. 

 2.2.22 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE) 

Analysis of over-expressed proteins was carried out using SDS-PAGE according to 

the method of Laemmli, 1970. Gels were used to analyse the size, relative purity and 

quantity of protein. Gels of 12.5 % (v/v) polyacrylamide were typically used in 

conjunction with the XCell SureLock® Mini-Cell CE apparatus produced by 

Invitrogen, USA. Plastic disposable gel cassettes, 1.0 mm thickness (Invitrogen, 

USA) were used in producing the gels according to the reaction mixtures given in 

Tables 2.11 and 2.12. The resolving gel was poured into the plates then covered 

with water to maintain a level surface and allowed to polymerise at room 

temperature. After the water was removed the stacking gel was poured on top of the 

resolving gel. A 12-well comb was embedded into the stacking layer which was then 

allowed to polymerise at room temperature. 
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1.75 ml dH2O 

4.7 ml 0.75 M Tris/HCl pH 8.8 with 0.2 % SDS  

2.9 ml 40 % polyacrylamide 

45 µl 10 % APS 

15 µl TEMED 

Table 2.11 Reaction mix for resolving layer of SDS-PAGE gels.  

Typically, gels were made in bulk and this reaction mix was expanded to make 9 or 18 gels together. 

APS = ammonium persulphate. TEMED = Tetramethylethylenediamine. 

1.5 ml dH2O 

1.9 ml 0.25 M Tris/HCl pH 6.8 with 0.2 % SDS 

0.38 ml 40 % polyacrylamide 

30 µl 10 % APS 

10 µl TEMED 

Table 2.12 Reaction mix for stacking layer of SDS-PAGE gels.  

Typically, gels were made in bulk and this reaction mix was expanded to make 9 or 18 gels together. 

After they were set, gels were kept moist at 4 °C for long term storage. In preparation 

for use, the combs were removed and the gels placed in the electrophoresis tank 

and covered with running buffer (Table 2.13). Protein samples were prepared for 

loading by mixing 40 µl of sample and 20 µl of loading buffer (Table 2.14) and boiling 

for three minutes. 
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30.3 g Tris base 

144 g Glycine 

10 g SDS 

to 1 litre H2O 

Table 2.13 Reaction mix for 10 X stock of SDS running buffer (Laemmli buffer). 

10  % (w/v) SDS 

5 ml 0.25 M Tris/HCl pH 8.8 with 0.2 % SDS 

25  % (w/v) Glycerol 

2.5 ml β-mercaptoethanol 

0.1  % Bromophenol blue dye 

Table 2.14 Reaction mix for running buffer used with samples for SDS-PAGE. 

After electrophoresis, the gel was stained by soaking in Coomassie Blue Stain (0.4 

% (w/v) Coomassie Brilliant Blue, 10 % (v/v) glacial acetic acid, 40 % (v/v) methanol) 

for 1-2 hours at room temperature with gentle shaking. The gel was destained by 

soaking in a solution comprising 40 % (v/v) methanol and 10 % (v/v) glacial acetic 

acid until the blue background faded sufficiently for all protein bands to be visible. 

The gel was recorded using a digital camera or using the transilluminating box of an 

AlphaImager system. The molecular weights (Mr) of proteins separated by SDS-

PAGE were estimated by comparing their electrophoretic mobility with protein 

standards of known Mr (Appendix A). 

 2.2.23 Quantification of purified protein 

Concentration of pure protein was determined according to the methods of Gill and 

Hippel, 1989 and Pace et al., 1995. Protein was diluted in water and A280 and A320 

determined by scanning from 200 to 400 nm using a Varian CARY 100 Bio 

spectrophotometer (Agilent Technologies). Final absorbance was calculated by 

subtracting A320 from A280 and protein concentration determined according to 
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Equation 2.2. Molar extinction coefficients were calculated using the ProtParam 

calculator on the Expasy molecular biology server (Section 2.1.1). 

Equation 2.2 A = ε C l D 

where   A = A280 - A320 

  ε = molar extinction coefficient of protein at 280 nm 

  C = molar concentration of sample 

  l = length of light path in spectrophotometer 

  D = dilution factor 

 2.2.24 Concentrating protein 

Protein solutions were concentrated after filtration through a 0.2 µm membrane using 

20 ml or 2 ml Vivaspin™ centrifugal concentrators (VivaScience) with cut-off filters of 

5, 10 or 30 kDa molecular weight, as appropriate to the protein in question. 

Centrifugation was performed at 4400 rpm using an Eppendorf 5702 bench 

centrifuge with swing-out rotor.  

2.3 Biochemistry 

2.3.1 Preparation of polysaccharide substrates and ligands 

  2.3.1.i Water-soluble polysaccharides 

Unless otherwise stated, all of the polysaccharides used in this study were dissolved 

at appropriate concentrations in water, as were monosaccharides and 

oligosaccharides. Polysaccharides were generally dissolved slowly with continuous 

mixing by magnetic stir bar and moderate heating. Highly concentrated solutions, in 

the region of 40 mg ml-1 for wheat arabinoxylan, and solutions which would require 

long term storage or were known to be unstable, such as sugar beet arabinan, were 

autoclaved (Section 2.2.5).  
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  2.3.1.ii Enzymatic digestion of polysaccharides 

For use in applications pertaining to NMR and crystallography, enzymatic digestion 

of wheat arabinoxylan was performed to produce a mixture of 

arabinoxylooligosaccharides (AXOS). 1 g of Arabinoxylan (Megazyme) was 

dissolved in 40 ml of 50 mM sodium phosphate buffer pH 7.0 to which was added 2 

ml BSA (1mg ml-1 final) and 1 ml GH10 xylanase (50 nM final). The reaction was 

incubated for 1 hour and mixed by frequent inversion. Aliquots of 250 µl were taken 

every five minutes, boiled for 10 minutes and analysed by TLC and HPLC (diluted 1 

in 100) to monitor the course of the reaction and to ascertain when digestion was 

complete. 

  2.3.1.iii Partial acid hydrolysis of polysaccharides 

To generate a mixture of oligosaccharides from water-soluble polysaccharide for use 

in enzyme assays and NMR experiments, sugars were subjected to partial acid 

hydrolysis. To a starting solution at 20 mg ml-1 was added hydrochloric acid (HCl) to 

a final concentration of 50 mM, 0.5 M or 1 M. The mixture was heated to 100 °C and 

maintained at this temperature for 15 minutes, followed by cooling to room 

temperature. The mixture was held at room temperature for a further 20 minutes. To 

neutralise the solution, sodium hydroxide (NaOH) was added to a final molarity 

matching that of the acid. Samples were then analysed by HPLC (Section 2.3.3). 

  2.3.1.iv Ethanol precipitation 

When short oligosaccharides were generated from polysaccharides by acid- or 

enzyme-catalysed hydrolysis, remaining large polymers were removed by ethanol 

precipitation. Ethanol was added to solutions to a final concentration of 65-80 %. The 

solution was mixed carefully and incubated at 4 °C for 2-16 hours. Centrifugation at 

10,000 rpm removed precipitated material. Following vacuum drying to remove 

ethanol from the soluble fraction, the pellet was dried and concentrated by 

lyophilisation.  
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  2.3.1.v Concentrating purified sugars by lyophilisation 

Oligosaccharide and polysaccharide sugars were frozen to -80 °C and lyophilised in 

a freeze drier at -60 °C. Freeze dried fractions were resuspended in a small volume 

of water or, for use in NMR, in deuterium oxide (D2O). 

  2.3.1.vi Oligosaccharide size exclusion chromatography 

Digested products of wheat arabinoxylan (Section 2.3.1.ii) were separated by size 

exclusion chromatography using P2 Bio-gel (Bio-Rad) matrix packed in a Glass 

Econo-Column (2.5 cm X 80 cm, total volume 500 ml, BioRad) by gravity flow at 0.2 

ml min-1 in degassed water. The column was equilibrated with three column volumes 

(CVs) of water. The mix of AXOS was concentrated by lyophilisation (Section 

2.3.1.v) and resuspended in 2 ml of water, and this was loaded directly onto the 

column bed. The column was run by gravity flow for a further 2 column volumes, with 

water as the eluting buffer. The standard dead volume of a P2 column is ~40 % (400 

ml), after which 5 ml fractions were collected continuously using a Frac-920 fraction 

collector (GE Healthcare). A 10 µl aliquot of each fraction was tested for sugar 

content by TLC (Section 2.3.2) and subsequent rounds of HPLC (Section 2.3.3) 

identified fractions of interest, which were pooled and concentrated for further 

analysis. 

2.3.2 Thin layer chromatography (TLC) 

An aluminium-backed silica TLC plate (Silicagel 20 X 20, Merck VWR) was cut to the 

desired size and a line drawn 1 cm from the bottom of the plate. Samples were 

spotted in 2 µl volumes separated by a minimum of 8 mm to prevent cross-

contamination. To identify products of poly- and oligosaccharide degradation, size 

marker standards were run in parallel on TLC plates. Monosaccharide standards 

were spotted at 20 mM, and polysaccharide standards typically at 2 mg ml-1.  For 

assays of xylanase activity, a „ladder‟ of xylooligosaccharides was used as a 

standard, comprising xylose, xylobiose, xylotriose, xylotetraose, xylopentaose and 

xylohexaose (Sigma) at 20 mM, 10 mM, 7 mM, 4 mM, 3 mM and 2 mM, respectively. 

Enzyme reactions were spotted multiple times, with drying in between, to give an 

approximate final concentration of products matching that of the standards. Running 
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buffer (50 % (v/v) n-butanol, 25 % (v/v) acetic acid) was poured into a glass 

chromatography tank to a height of less than 1 cm. The tank was covered tightly to 

allow vapours to equilibrate, which required around two hours incubation. The TLC 

plate was placed into the tank and samples allowed to migrate until the buffer 

reached approximately 1 cm from the top of the plate. The plate was removed and 

dried thoroughly using a hairdryer under a fume hood. After drying, an optional 

second run allowing the buffer to reach the very top of the plate gave better 

resolution for some complex mixtures of oligosaccharides. When the plate was 

completely dry, an orcinol sulphuric acid reagent (3 % (v/v) sulphuric acid, 75 % (v/v) 

ethanol, 0.1 % (w/v) orcinol monohydrate) was used to stain sugars. The plate was 

immersed in the developing solution for a few seconds, dried carefully and heated to 

at least 70 °C for 5-10 minutes, or until sugar spots were revealed.  

TLC plates were also used to quickly detect the presence of sugars in a sample, 

when identification was not important. In this case, 10 µl volumes of sample were 

spotted onto a plate which was immediately developed as described above. 

 2.3.3 High pressure liquid chromatography (HPLC) 

Products of hydrolysis reactions of polysaccharides and oligosaccharides were 

analysed using analytical CARBOPAC™ PA-100 or PA-200 anion exchange 

columns (Dionex) equipped with a CARBOPAC™ PA-10 guard column (Dionex). 

The fully automated system (LC25 chromatography oven, GP40 gradient pump, 

ED40 electrochemical detector and AS40 autosampler) had a loop size of 10 µl, 

used a flow rate of 1.0 ml min-1 at room temperature with a pressure ~ 2300 psi. 

Sugars were detected by pulsed amperometric detection (PAD). The PAD settings 

were E1 = +0.05, E2 = +0.6 and E3 = -0.6.  

Elution conditions were 0-15 minutes 18 mM NaOH, 15-65 minutes 66 mM NaOH 

with 0-250 mM sodium acetate linear gradient. After each run the column was 

washed with 300 mM sodium hydroxide for ten minutes then equilibrated with 18 mM 

sodium hydroxide for ten minutes. 

Appropriate monosaccharides were included as standards in separate HPLC runs at 

a concentration of 10-100 µM. Reaction products were identified by co-migration with 
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these standards. Before loading onto the column, polysaccharide hydrolysis 

reactions were centrifuged to remove precipitated material and diluted as required to 

bring sugar concentrations to within the range quoted for the standards. Data were 

collected and manipulated using Chromeleon™ Chromatography Management 

System (Dionex) via a Chromeleon™ server (Dionex). Final graphs as presented in 

this thesis were prepared using Prism v5 (GraphPad). 

 2.3.4 Enzyme assays 

Unless otherwise stated, all enzyme assays were performed at 37 °C in buffer at pH 

7.0. Assays for kinetic analysis were always performed in triplicate. One set of 

Eppendorf pipettes was used throughout each assay to minimise error. Graphs were 

plotted in GraphPad Prism v5, which was used to calculate slopes and error values. 

The non-linear regression function in Prism was used to determine parameters (KM 

and kcat) of Michaelis-Menten kinetics. 

  2.3.4.i Aryl glycoside hydrolysis assays 

The 4-nitrophenyl (4NP) sugar substrates used in initial enzyme assays were as 

follows: 4NP β-D-galactopyranoside, 4NP-β-D-glucopyranoside, 4NP-β-D-

xylopyranoside, 4NP-α-L-arabinofuranoside and 4NP-α-L-arabinopyranoside 

(Sigma). The appearance of a yellow colour indicates enzyme catalysed hydrolysis 

of the substrate. A 20 mM stock was prepared in water and stored at -20 °C until 

use. In a 1.5 ml Eppendorf tube reactions were performed in 50 mM sodium 

phosphate buffer, pH 7.0, in the presence of bovine serum albumin (BSA) at 1 mg 

ml-1.  Enzyme concentration for these assays was typically 200 nM. In negative 

control reactions the volume of enzyme was replaced with additional buffer. 

Reactions were incubated in a 37 °C water bath for 30 minutes, or several hours if 

no colour change was apparent. 

4NP-α-L-arabinofuranoside was used in kinetic analysis of enzymes concentrations 

ranging from 0.1 mM – 8 mM. Reactions were prepared in glass cuvettes, pre-

warmed to 37 °C in a Varian CARY 100 Bio UV/vis spectrophotometer. A fresh stock 

of the substrate was prepared at 10-20 mM and stored on ice until use. BSA and 

buffer stock concentrations were 10 mg ml-1 and 500 mM, respectively. The final 
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volume of reactions was 500 µl. Table 2.15 details reaction components. 4NP-α-L-

arabinofuranoside undergoes spontaneous cleavage at 37 °C, so reactions were 

monitored for 5 minutes before the addition of enzyme at appropriate concentration. 

The release of 4-nitrophenolate (4NP) from the substrate was measured at an 

absorbance of 400 nm (Figure 2.2). Under the conditions outlined here, the 

extinction coefficient (ε) of 4NP at pH 7.0 was 2000. Kinetic parameters Km and kcat 

were then determined. 

pNP volume  Χ 10 25 50 100 125 150 200 250 

Buffer  50 50 50 50 50 50 50 50 50 

BSA 50 50 50 50 50 50 50 50 50 

Water 350- χ 340 325 300 250 225 200 150 100 

Enzyme 50 50 50 50 50 50 50 50 50 

pNP concentration (mM) - 0.2 0.5 1 2 2.5 3 4 5 

Table 2.15 Reaction components for enzyme assay of pNP activity, using a substrate 

concentration of 10 mM. 

Typical enzyme concentrations in 4NP kinetic assays were 50 nM – 50 µM. All quoted volumes are 

units of µl. 
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Figure 2.2 4NP standard curve at 37 °C. 
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  2.3.4.ii 3,5-Dinitrosalicylic acid reducing sugar assay (DNSA) 

Rates of hydrolysis of polysaccharide substrates were measured by the increase in 

reducing sugars over time. A reducing sugar in solution has an open chain with an 

aldehyde or ketone group, allowing the sugar to act as a reducing agent. Monomeric 

aldose sugars such as glucose can be reduced directly, while ketose sugars such as 

fructose can act as reducing agents if the functional group is converted to an 

aldehyde via tautomeric shift. In addition, the free anomeric carbon at the end of a 

polysaccharide chain can act as a weak reducing agent as it exists in equilibrium 

between cyclic and open chain forms. When an enzyme cleaves a glycosidic bond a 

new reducing end is formed. The concentration of reducing ends can be determined 

using the DNSA assay, described by Miller, 1959. 3,5-dinitrosalicylic acid (2-hydroxy-

3,5-dinitrobenzoic acid) reacts with reducing sugars to form 3-amino-5-nitrosalicylic 

acid.  

Time points (500 µl) of an enzyme reaction were taken and added to an equal 

volume of DNSA reagent (1 % (w/v) DNSA, 0.2 % (v/v) phenol, 1 % (w/v) NaOH, 

0.002 % (w/v) glucose and 0.05 % (w/v) NaSO3) to terminate the reaction. Glucose is 

included in the mixture to raise the overall reducing sugar concentration to within a 

range detectable by DNSA assay. The tube was then boiled for 20 minutes to initiate 

the colour change indicative of the presence of reducing sugars. Tubes were then 

placed on ice for 10 minutes, equilibrated to room temperature and centrifuged 

briefly to remove precipitated material. Absorbance was read at 575 nm. A standard 

curve of 0-1000 µg ml-1 monosaccharide in the presence of 10 mg ml-1 

polysaccharide was used to quantify the reducing sugar released during the reaction 

(Figure 2.3). 
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Figure 2.3 Reducing sugar standard curves for arabinose and xylose. 

A: standard curve for xylose in the presence and absence of 10 mg ml
-1

 oat spelt xylan. 

B: standard curve for arabinose in the presence and absence of 10 mg ml
-1

 sugar beet arabinan and 

linear arabinan. 

  2.3.4.iii Galactose/arabinose dehydrogenase assay 

A linked assay was used to quantify release of galactose or arabinose from 

polysaccharide. The enzyme galactose dehydrogenase catalyses the reaction shown 
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in Equation 2.3, but has relaxed specificity at C5 and thus can accommodate 

arabinose. 

Equation 2.3 D-galactose + NAD+  D-galactono-1,4-lactone + NADH + H+ 

The formation of NADH in the presence of NAD by galactose dehydrogenase was 

measured by absorbance at A340. The molar extinction coefficient (ε) used to 

determine NADH concentration was 6223. Reactions were prepared in quartz 

cuvettes pre-warmed to 37 °C as shown in Table 2.16. The reaction was monitored 

for five minutes prior to the addition of enzyme to ensure a stable baseline and to 

account for any free arabinose or galactose in the starting solution. 

Substrate volume χ  10 25 50 100 250 

Galactose dehydrogenase (500 U ml-1) 5  5 5 5 5 5 

NAD+ (1 mM) 50 50 50 50 50 50 

BSA (10 mg ml-1) 50 50 50 50 50 50 

Buffer (500 mM) 50 50 50 50 50 50 

Water 295 – χ  285 270 245 195 145 

Substrate concentration (mg ml-1) - 0.2 0.5 1 2 5 

Table 2.16 Components of the galactose dehydrogenase linked enzyme assay. 

Enzyme concentration in galactose dehydrogenase kinetic assays was typically 50 nM – 50 µM. Stock 

substrate concentration was usually 10 mg ml
-1

. All quoted volumes are in units of µl. 

 2.3.5 Nuclear Magnetic Resonance (NMR) Spectroscopy 

Prior to analysis by NMR samples were lyophilised and resuspended in 100-300 µl 

D2O to minimise the water peak in the spectra. 1H-NMR spectra were recorded with 

a Varian Inova NMR spectrometer operating at 600 MHz and with a sample 

temperature of 298 K. Two-dimensional spectra were recorded using standard 

Varian pulse programs. Chemical shifts were measured relative to internal acetone 

-C software (Universidad 

de Santiago de Compostela, Spain). NMR was performed and interpreted by Maria 
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Peña of the York lab at the Complex Carbohydrate Research Centre in Athens, 

Georgia, USA. 

2.4 Crystallography 

In order to solve the crystal structures presented in this study, a single wavelength 

anomalous dispersion method at a wavelength optimised for the anomalous ƒ‟‟ 

signal of selenium was used where molecular replacement was not possible. A 

derivative form of protein containing selenomethionine was purified (Section 2.2.2, 

2.2.19) for the heavy metal experiment.  

Prior to refinement, 5 % of observations were set aside for cross-validation analysis 

and were used to monitor refinement strategies. The programmes iMosflm, Scala 

and Refmac5 (Murshudov et al., 1997) were obtained as part of the CCP4 software 

package (Project, 1994). The ShelxC/D/E software was used to locate heavy atoms 

and calculate phases from these sites (Sheldrick, 2008). Models were completed 

with manual correction in Coot (Emsley et al., 2010) in conjunction with refinement in 

Refmac5. Crystal structures were studied using PyMol (Delano Scientific), which was 

also used to generate figures for this thesis. 

 2.4.1 Preparation of protein samples 

  2.4.1.i Native form 

Through purification by IMAC, IEC and gel filtration (Section 2.2.21), proteins 

destined for crystallisation were generated in a highly pure and homogeneous form, 

as assessed by SDS-PAGE. Proteins were concentrated to at least 25 mg ml-1 for 

initial screening of crystallographic conditions and buffer exchanged into molecular 

biology grade water (Sigma). Where appropriate, oligosaccharide ligand was added 

to the required concentration for screening of co-crystallisation conditions. 

Immediately prior to the establishment of crystallisation screens (Section 2.4.2) 

proteins and ligands were centrifuged at 13,000 rpm for five minutes to remove 

precipitated material. 
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  2.4.1.ii Selenomethionine derivative 

The protein was over-expressed and the cell pellet re-suspended in 15 ml of Talon 

buffer containing 2 mM β-mercaptoethanol to maintain the selenium metal in a 

reduced oxidation state. Cell free extract was prepared (Section 2.2.20) and 

selenomethionine derived protein purified as for native protein except that all buffers 

contained 10 mM β-mercaptoethanol as a reducing agent. Protein was concentrated 

to at least 15 mg ml-1 for initial screening and extensively buffer exchanged into 

molecular biology grade water containing 10 mM DL-Dithiothreitol (DTT, Sigma) as 

the reducing agent.  

 2.4.2 Sparse matrix screen of crystallisation conditions 

Preliminary crystallisation conditions were determined using commercial screens of 

48 or 96 conditions each. The screens PEG/Ion™, Crystal Screen™ 1 and Crystal 

Screen™ 2 were obtained from Hampton Research. The PACT, Classics and 

JCSG+ screens were obtained from Qiagen. Conditions for these screens are 

available online (www.qiagen.com). Initial screens were performed at the highest 

possible concentration, aiming for precipitation in approximately 50 % of conditions. 

Hanging drops (Section 2.4.3.ii) were established with a varying ratio (2:1 or 1:1) of 

protein to crystallography reagent (mother liquor). Where appropriate, ligand was 

included in drops at 10 mM for co-crystallisation trials. Conditions producing the best 

crystals in terms of size and morphology were optimised in subsequent screens by 

manipulating the original commercial conditions. Factors which were optimised 

include protein concentration, salt, precipitant and buffer concentration, buffer pH 

and incubation temperature. 

 2.4.3 Growth of crystals 

Initial crystal screens of 96 conditions were established using the sitting drop vapour 

diffusion method and subsequent optimisation screens were established using 

hanging drop vapour diffusion. 
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  2.4.3.i Sitting drop vapour diffusion 

Sitting drop sparse matrix screens of 96 commercial conditions were established 

using a Mosquito™ (TTP Labtech) nanolitre pipetting robot, or by hand using 

automated pipettes. 96 well crystallisation plates were obtained from Greiner and 

sealed with sealing film with contact adhesive (EasyXtal Sealing Tapes, Qiagen). A 

100 µl volume of crystallisation mother liquor was dispensed into each well and 100 

nl of protein was dispensed onto each crystallisation shelf (Figure 2.4) from the 

robot‟s four sample reservoirs. 100 nl of each mother liquor was then added to each 

crystallisation shelf. Plates were incubated at 20 °C in a temperature-controlled 

cabinet. Trays were monitored daily for the appearance of crystals using a Leica MZ-

6 crystallisation microscope with colour change filter lens.  

 

 

Figure 2.4 Sitting drop vapour diffusion method of crystallisation.  

Protein and mother liquor are dispensed onto a crystallisation shelf which sits above the well of 

mother liquor. The well is sealed and diffusion between the drop and reservoir occurs. 

  2.4.3.ii Hanging drop vapour diffusion 

For the hanging drop vapour diffusion method, 1-2 µl of protein (or protein/ligand 

mix) were mixed with 1-2 µl of crystallising mother liquor on a siliconised cover slip 

(18 X 18 mm No.2, Scientific laboratory supplies). 24-well plates (Qiagen) were 
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prepared by applying High Vacuum Grease (Dow Corning) to the rim of each well 

using a 1 ml Gilson pipette tip. Then, 500 µl of mother liquor, mixed to homogeneity, 

was dispensed into each well. Cover slips were set up with drops of protein and 

mother liquor, then immediately inverted and sealed above the well containing the 

corresponding mother liquor by firmly pressing the cover slip against the vacuum 

grease (Figure 2.5). Plates were incubated at 20 °C or 4 °C in the incubator 

described above. Drops were viewed using the same microscope, monitored daily 

for crystal growth.  

 

 

Figure 2.5 Hanging drop vapour diffusion method of crystallisation. 

The drop of protein and mother liquor is suspended above the mother liquor reservoir, hanging from 

the sealing cover slip, attached by surface tension. The use of vacuum grease seals the well so that 

diffusion can take place. 

2.4.4 Crystal soaks 

To obtain a ligand-bound protein complex in crystal form, crystals were fished using 

a magnetic wand and loop (Hampton) and first soaked into fresh mother liquor to 

check crystal stability. If the crystals were stable, a small amount of pre-prepared 

ligand (oligosaccharide) was dissolved into mother liquor at near-saturation. A drop 

(5-10 µl) of this ligand solution was dispensed onto a cover slip. A fished crystal was 

transferred into this drop, which was immediately inverted and placed over an empty 
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well in a glass tray with shallow wells. Crystals were soaked at room temperature for 

between one minute and two hours before being snap frozen in liquid nitrogen. 

2.4.5 Collection of X-ray diffraction data 

Single three-dimensional crystals were harvested on rayon fibre loops and flash 

frozen in liquid nitrogen with cryoprotectant comprising mother liquor and 15-25 % 

glycerol (v/v) to prevent the formation of water ice crystals. Potentially useful crystals 

were screened on an in-house source (Rigaku rotating RU-200 X-ray generator with 

a Cu 1.5418 Å target operating at 50 kV and 100 mA with focussing X-ray optics 

from Osmics), using a Rigaku RAXIS-IV image plate detector. Typically two images 

per crystal at 0 ° and 90 ° with an oscillation range of 0.5 ° per image to a maximum 

resolution of 2.2 Å were collected and indexed using DENZO (Otwinowski and Minor, 

1997) to assess the diffraction potential of the crystal and to determine space group.  

 2.4.6 Structure solution 

  2.4.6.i Single-wavelength anomalous dispersion  

Full datasets were collected on a native and a selenomethionine form of the protein. 

Diffraction images were indexed using iMosflm, a programme which determines 

crystal orientation and cell parameters, and suggests a likely space group by finding 

spots in X-ray diffraction images (Leslie 1999, Battye et al., 2011). iMosflm 

generates reflection lists and integrates images. The output .mtz file, containing 

integrated intensities and the refined crystal orientation, was input into Scala, which 

scales and merges intensities (Evans 2005). The logfile generated by the Scala job 

contains data reduction statistic required for structure deposition, including the 

redundancy, systematic absences, I/sigI and Rsymm. Scala was used to output both a 

scaled and an unmerged .mtz file. 

For the heavy atom dataset, the unmerged intensities, converted to scalepack 

format, were input directly into the ShelxC/D/E programme (Sheldrick 2008). ShelxC 

checks and scales data and checks for the anomalous signal. This programme also 

determines the appropriate resolution cut-off for useful anomalous signal. ShelxD 

then performs a Patterson search for heavy atoms, looking for Patterson correlations 
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between F+ and F- paired reflections with a high anomalous difference. Finally, 

ShelxE phases the heavy atom sites and uses density modification to determine the 

remaining phases. Two maps are generates, one for each enantiomorph of the 

structure; visual inspection of the connectivity of the maps was used to confirm the 

correct handedness of the solution. Phases were output in .phs format, and were 

converted to an .mtz file using the phs2mtz script. The programme CAD was used to 

add the phases output by Shelx to the scaled native dataset, bringing the solution up 

to the full resolution of the native dataset. 

The CCP4 programme Buccaneer (Cowtan, 2006) was used to build the protein 

model from experimental phases (CAD .mtz file) and a user-provided sequence file 

in fasta format. Buccaneer performs statistical chain tracing by identifying the 

positions of Cα atoms in the density. Five internal cycles of model building and 

refinement were performed. Table 2.17 describes the ten-stage model building 

process utilised by Buccaneer. Finally the model was refined using Refmac5 

(Section 2.4.7). 

1 Find Cα by searching electron density 

2 Grow chain fragments by adding to identified Cα atoms 

3 Join fragments 

4 Link N and C termini of chain fragments by adding loops 

5 Assign sequence (side chains) to Cα backbone 

6 Correcting sequence 

7 Remove residues with poor density 

8 Build non-crystallographic symmetry (NCS) elements 

9 Prune clashes 

10 Rebuild side-chain atoms and carbonyl oxygen atoms 

Table 2.17 Model-building process of the Buccaneer programme. 
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Figure 2.6 Flow chart for structure solution of selenomethionine-derivative protein. 
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The flow chart describes the process for solution of the structure of a selenomethionine-derived 

protein using the heavy selenium atoms in single wavelength anomalous dispersion. 

  2.4.6.ii Molecular replacement 

 

Figure 2.7 Flow chart for structure solution of ligand-bound proteins by molecular 

replacement. 
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The flow chart describes the process for solution of the structure of a native protein using molecular 

replacement. 

After indexing in iMosflm and scaling in Scala, as described above (Section 2.4.6.i), 

scaled and merged intensities (.mtz file) were submitted to the CCP4 Phaser 

programme (McCoy et al., 2007) along with a sequence file in fasta format and the 

coordinates of a model structure for molecular replacement. The model coordinates 

were prepared to contain a single protein chain and no waters or ligands. Phaser 

reads the .mtz file to check and correct the data for anisotropy. Cell contents are 

analysed by Matthews calculations. The experimental data is then compared with the 

model structure, which is moved to align with the experimental cell contents. First, 

Phaser performs a fast rotation function, which generates multiple solutions, each 

given a Z score. The top solutions are then submitted to a fast translation function. 

After analysis of crystal packing and refinement of the solution, experimental phases 

are output in an .mtz file, along with coordinates of the solution. The structure and 

initial density were inspected visually in Coot, prior to refinement in Refmac5 

(Section 2.4.7). 

 2.4.7 Structure refinement 

A structure obtained by molecular replacement was typically submitted to five initial 

rounds of refinement in Refmac5 prior to close visual inspection and manual 

modification of the coordinates (Murshudov et al., 1997). Refmac5 performs rigid 

body, restrained and unrestrained refinement of a structure against X-ray data. 

Model parameters are adjusted using a maximum likelihood function to match 

experimental data. The programme outputs a refined .mtz electron density map and 

refined structural coordinates (.pdb file). 

The starting mtz file was always used in refinement to avoid model bias. Any 

necessary amino acid changes (for example, replacing Selenomethionine with 

Methionine) were performed in Coot (Emsley et al., 2010), and this was followed by 

one or two rounds of restrained refinement. After this, the structure was hydrated 

using Arp/wArp‟s Solvate function (Langer et al., 2008). Manual refinement and 

building of missing amino acids was undertaken in Coot, followed by more rounds of 

restrained refinement in Refmac5. Any ligands were introduced at this point. Sugar 
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structures were imported from the library in Coot or downloaded from the Glycam 

Biomolecule Builder and Oligosaccharide Library 

(http://glycam.ccrc.uga.edu/CCRC/biombuilder/biomb_index.jsp). Final statistics to 

assess the quality of structures were obtained by submitting pdb files to the 

Molprobity server (http://molprobity.biochem.duke.edu/, Vincent et al., 2010). 

 2.4.8 Visualisation of structures 

The software programmes Coot (Emsley et al., 2010) and PyMol (Delano Scientific) 

were used to view and analyse crystal structures. PyMol was also used to prepare 

figures presented in this thesis. 
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CHAPTER THREE 

Family 43 glycoside hydrolases of Bacteroides 

thetaiotaomicron 

The plant cell wall is a chemically complex composite structure that is an important 

biological and industrial substrate. Reflecting this diverse chemistry, microorganisms 

that degrade the plant cell wall synthesise an elaborate array of degradative 

enzymes, primarily glycoside hydrolases, which display complementary activities. 

Recent genomic data has shown that several organisms that utilise the plant cell wall 

as an important nutrient source have the genetic potential to synthesise a large 

number of glycoside hydrolase family 43 (GH43) enzymes. These organisms hail 

from many different phyla, show distinct metabolic capacities and are found in very 

varied habitats. Diverse examples include Sorangium cellulosum, a gram-negative 

cellulose-degrading proteobacterium found in soils all over the world (Lampky, 

1971), Saccharophagus degradans, another gram-negative proteobacterium which is 

able to degrade a wide range of complex polysaccharides (Ekborg et al., 2005), and 

many bacterial symbionts of the human digestive tract. While some GH families have 

quite limited specificities (for instance, GH92 enzymes are α-mannosidases (Zhu et 

al., 2010b)), GH43 enzymes have demonstrated activities against a broad range of 

substrates, with characterised enzymes to date comprising β-xylosidases, α-L-

arabinofuranosidases, arabinanases, β-galactosidases and, recently, a xylanase 

(Zhao et al., 2010). This broad range of activities is hypothesised to be one factor 

that has led to the great expansion of GH43 in many microbial species. 

One particular microorganism showing expansion in GH43 is Bacteroides 

thetaiotaomicron, a gram-negative bacterium which resides in the distal intestine of 

humans, where it is a dominant microbial species (Xu and Gordon, 2003b). B. 

thetaiotaomicron specialises in the hydrolysis of pectic and host polysaccharides, but 

is unable to utilise the major plant cell wall polysaccharides cellulose and xylan.  

According to the CAZy database, the 6.2 Mb B. thetaiotaomicron genome codes for 

enzymes from 42 GH families. As Figure 3.1 shows, some of these families contain a 
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large number of members, exemplified by GH2 (32 members), GH43 (31 members) 

and GH92 (23 members).  

Within the B. thetaiotaomicron genome there is a recurring organisational motif, 

where multiple genes encoding glycoside hydrolases, carbohydrate binding proteins 

and other proteins are physically linked and whose transcription is induced by a 

specific carbohydrate structure (Reeves et al., 1997). These regions are termed 

Polysaccharide Utilisation Loci (PULs) and are unique to Bacteroides species. 

In order to test the prediction that the expansion of GH43 in B. thetaiotaomicron 

reflects a diverse range of plant cell wall targets for these enzymes, experiments 

were undertaken to characterise this family of enzymes, with the expectation of 

discovering novel specificities, to better understand the evolutionary drivers that 

have led to the GH43 expansion. To this end, a sister project was also undertaken to 

characterise the GH43s from Cellvibrio japonicus, a saprophytic soil-dwelling 

organism capable of hydrolysing all major plant cell wall polysaccharides that shows 

a similar pattern of expansion of GH families (Figure 3.1, (Cartmell, 2010)). 

 

Figure 3.1 Expansion of GH family 43 in two bacterial species. 

Pie charts show the distribution of glycoside hydrolases between families in Bacteroides 

thetaiotaomicron and Cellvibrio japonicus. Larger segments represent families with more members. 

Families with zero members are not shown. Data taken from www.cazy.org. In both species, GH43 is 

one of the most significantly expanded families. 

The plant cell wall represents the largest source of recyclable carbon in the 

biosphere, a significant potential source of raw materials for the production of novel 
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synthetic chemicals and, importantly, the transport fuel bioethanol (Pauly and 

Keegstra, 2010). An important bottleneck in the economic utilisation of the plant cell 

wall is the saccharification of wall components, currently undertaken by expensive or 

environmentally hazardous pre-treatment processes. Enzymatic degradation of the 

wall is therefore an important research target, and the discovery of novel glycoside 

hydrolases is a significant first step towards making petroleum alternatives 

economically viable.  

Enzyme screening projects can often uncover novel, useful enzyme activities which 

were not readily apparent from sequence analysis and alignment. The screening 

project described in this chapter aimed to clone, express and biochemically 

characterise the GH43 enzymes encoded by the genome of B. thetaiotaomicron. The 

findings presented in this chapter showcase an attempt to understand an apparent 

redundancy in the „cazome‟ of B. thetaiotaomicron by fully characterising the 

bacterium‟s consortium of GH43 enzymes, building upon clues afforded by genomic 

analysis and induction studies of the PULs. Through analysis of the genome and 

gene sequences in conjunction with newly acquired knowledge of enzyme activities, 

certain degradative pathways have become apparent, and a novel specificity has 

been found, which is presented with the crystal structure of a close homologue from 

C. japonicus. Phylogenetic analyses of protein sequences are presented and 

discussed in the light of activities described here, and a possible evolutionary history 

of family GH43 is also discussed. 

3. RESULTS 

3.1 Bioinformatics 

 3.1.1 Genomic organisation 

  3.1.1.i Polysaccharide Utilisation Loci 

Polysaccharide Utilisation Loci (PULs) are found throughout the B. thetaiotaomicron 

genome and all have the same general composition. A regulatory protein, which is 

often a hybrid two component system (HTCS) polypeptide, senses a specific 

carbohydrate structure and initiates transcription of the PUL. HTCS proteins 
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incorporate all elements found in classical two-component environment sensing 

signal transducing systems in one single polypeptide (Sonnenburg et al., 2006). 

PULs also contain two binding proteins, SusC and SusD, which bind carbohydrates 

targeted for translocation through the membrane (Reeves et al., 1997; Shipman et 

al., 2000). SusC is an integral membrane protein, while SusD is thought to be 

anchored to the membrane through interactions with SusC. These components can 

be identified by sequence analysis but a third carbohydrate binding partner, SusE, 

shows no homology to any known proteins and can only be identified, when present 

at all, by its location immediately downstream of SusD. SusE is thought to be part of 

the carbohydrate binding complex, increasing the affinity of the protein assembly for 

the appropriate ligand. Figure 3.2 outlines the typical organisation of the components 

of a PUL. 

In addition to the binding proteins, one or more glycoside hydrolases are also 

present. Table 3.1 details those PULs which include GH43s, the carbohydrates 

which induce expression of these PULs, other GHs present and the number of 

SusC/D carbohydrate binding complexes present. 

  3.1.1.ii Other GH43 sequences 

For the 27 GH43s which reside in PULs, the inducing carbohydrate served as a 

starting point in activity assays for the enzymes, but four GH43s are not located in 

PUL operons. These are Bt2959, Bt3655, Bt3656 and Bt4185.  
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Figure 3.2 Typical cellular organisation of a Polysaccharide Utilisation Locus. 

The schematic outlines the typical cellular organisation of the components of a Polysaccharide 

Utilisation Locus. A complex of Sus binding proteins (SusCDE) are bound to the outer membrane of 

the cell, with carbohydrate binding surfaces pointing into the extracellular space. Glycoside hydrolase 

enzymes (GH) encoded by the PUL operon may be extracellular (EC), trans-membrane (TM) or 

periplasmic (PP). These generate shorter glycans from the inducing polysaccharide, which are 

translocated into the periplasm, where binding causes the HTCS to induce high-level expression of 

the PUL. 
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PUL ORF Limits Inducer GH43 

ORFs 

Other GHs Binding proteins Other proteins 

2 0139-0146 n.d. 0145 GH88 SusCD  

5 0262-0290 AG 0264 

0265 

GH35/CBM32 HTCS SusCD 

SusE 

 

7 0348-0369 sbA  

pGal 

0360 

0367 

0369 

2 x GH51 HTCS  

2 x SusCD 

 SusE 

Arabinose isomerase  

Aldose epimerase  

Xylulose kinase 

13 0977-1030 RG II 1021 PL1 GH28 GH79 2 x SusCD  

23 1768-1781 n.d. 1781 2 x GH2 GH95 

2 x GH3 GH92  

SusCD SusE  

24  1871-1878 n.d. 1873 GH3 GH92 GH97 -  

26 2103-2113 n.d. 2112 2 x GH92 SusCD SusE  

39  2851-2923 n.d. 2852 GH2 GH3 GH36 HTCS SusCD 

SusE 

 

40 2892-2897 n.d. 2895 GH93 HTCS SusCD 

SusE 

 

41  2898-2910 n.d. 2898 

2900 

- SusCD SusE  

42 2912-2923 n.d. 2912 - SusCD SusE  

49  3092-3109 n.d. 3094 

3108 

GH2 GH51 HTCS SusCD 

SusE 

Sulphatases 
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PUL ORF Limits Inducer GH43 

ORFs 

Other GHs Binding proteins Other proteins 

59 3461-3507 n.d. 3467 GH76 HTCS  

4 x SusCD SusE 

Sulphatases 

60  3515-3532 n.d. 3515 

3516 

2 x GH76  

2 x GH92 

SusCD  

64 3662-3672 n.d. 3662 

3663 

GH29 GH97 SusCD  

65 3674-3687 AG 3675 

3683 

3685 

- HTCS SusCD 

SusE 

 

74 4069-4096 n.d. 4095 2 x GH92 2 x SusCD SusE  

77 4145-4183 n.d. 4152 2 x PL9 PL11  

3 x GH2 GH27  

4 x GH28  GH35 

2 x HTCS  

2 x SusCD 

 

Table 3.1 Components of those PULs which include GH43s. 

The B. thetaiotaomicron genome codes for over 100 PULs, of which 18 contain GH43 enzymes. The metabolic components of these are summarised in the 

table.  The limits of the PULs refer to gene locus numbers in the format Btxxxx. The predicted substrate for several of the PULs is host and/or residual dietary 

glycans. The inducing polysaccharide („Inducer‟) for certain of the PULs is known. These are coded in the table as follows; AG: arabinogalactan, sbA: sugar 

beet arabinan, pGal: pectic galactan, RGII: rhamnogalacturonan II.   n.d. = not determined.
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3.2 Cloning and Expression 

GH43 genes were amplified using the polymerase chain reaction (PCR) and the 

resultant DNA cloned in to appropriate expression vectors by ligation of 

complementary „sticky ends‟, generated by restriction endonuclease enzymes. 

 3.2.1 Preliminary predictions of characteristics 

Prior to cloning, nucleotide and amino acid sequences of the B. thetaiotaomicron 

GH43 enzymes were submitted to several forms of analysis, using the tools outlined 

in Chapter Two, Section 2.1. Table 3.2 gives the size (base pairs) of each gene, any 

internal restriction endonuclease recognition sites, predicted protein size, the nature 

of any signal peptides, and cleavage points for the generation of the mature protein. 

 3.2.2 Cloning and expression of GH43s 

Primers were designed to clone the GH43 genes into the vectors mini-pRSETA and 

mini-pRGST (Appendix A). All primers (forward and reverse) began with the non-

palindromic GC-rich sequence GTCGCC at the 5‟ end to promote annealing. This 

was followed by the appropriate six base restriction site, with additional bases to 

either side of this sequence to ensure the following sequence was in the correct 

frame for cloning. Following the restriction site, typically 18-21 bases of the gene 

sequence were included, ideally culminating in a GC-rich area („GC clamp‟) which 

helps promote correct binding at the 3‟ end of the sequence. mini-pRSETA encodes 

an N-terminal His6 tag while mini-pRGST encodes an N-terminal glutathione-S-

transferase fusion protein, which can improve expression and protein solubility. 

These plasmids were chosen as they contain the same multiple cloning sites (MCS) 

so that the same pair of PCR primers could be used to clone a gene into both 

vectors. For some genes, internal restriction sites meant that these plasmids were 

not appropriate; these genes were therefore cloned into pET21(a) which carries a C-

terminal His6 tag, or pGEX which provides an N-terminal GST tag (Appendix A). 

Figure 3.3 shows an example of an agarose gel analysis of several PCR reactions. 

Following amplification, PCR products were purified and submitted to restriction 

digestion with appropriate endonuclease enzymes. The plasmid vector was digested 
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concurrently, and both were purified and assessed for purity and concentration by 

agarose gel electrophoresis. Vector and insert were ligated and transformed into 

Top10 cells. If colonies were obtained, then 3 – 5 were inoculated separately into 5 

ml of LB containing the appropriate antibiotic for overnight growth at 37 °C. Plasmid 

DNA was extracted from the resultant cultures by miniprep and a small portion (5 µl) 

submitted to restriction digestion by the endonuclease enzymes used in cloning. 

These reactions were subjected to agarose gel electrophoresis to check for the 

presence of DNA inserts (Figure 3.4). Plasmids showing the presence of insert were 

sent for automated sequencing by MWG or Macrogen. If no insert was found for a 

particular gene, additional colonies were screened before the cloning experiment 

was repeated. 

 

Figure 3.3 PCR amplification of seventeen genes. 

Example of a typical agarose gel electrophoretic run to analyse a PCR experiment aiming to amplify 

seventeen GH43 genes from the B. thetaiotaomicron genome. Amplification in this case was 

successful for all but three genes (Bt3656, Bt4095 and Bt0265), which were obtained at a later date in 

optimised PCR experiments. Size markers shown are derived from Hyperladder I (BioLine) and 

indicate the size in base pairs (b.p.) of DNA fragments. 
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Figure 3.4 Screening plasmid DNA for inserts. 

Restriction digestion of plasmid DNA extracted from Top10 cells was used to identify successful 

cloning experiments by the presence of an insert of the correct size. In each lane, the larger band 

corresponds to the vector and the smaller band (where present) corresponds to the cloned gene as 

an insert in the vector. The two vectors shown for each gene (mini-pRGST and mini-pRSETA) are 

slightly different sizes. Those plasmids showing inserts of the correct size were submitted for 

automated sequencing. Additional colonies were screened for genes where the initial plasmids 

extracted contained no inserts. 
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GH43 Gene size 

(bp) 

Relevant internal 

restriction sites 

Signal peptide Cleavage site Protein size 

(kDa) 

0145 1038 None None - 46.9 

0264 1749 HindIII SpI 30-31 FAT-QSK  62.0 

0265 1482 HindIII SpI 18-19 IFS-QNT 54.6 

0360 1926 None SpII 19-20 LAA-CSD 71.6 

0367 1542 NcoI SpII 25-26 FVS-CTS 58.7 

0369 966 NdeI SpI 21-22 LSA-QND 36.4 

1021 852 NcoI None - 32.6 

1781 2040 BamHI EcoRI NdeI None - 77.6 

1873 984 EcoRI SpII 21-22 IVS-CSN 34.1 

2112 1038 EcoRI HindIII NcoI SpII 17-18 LSC-QSS 39.0 

2852 1545 HindIII SpI 20-21 AGA-QTK 56.1 

2895 993 None SpII 20-21 FTC-CGE 34.1 

2898 984 NcoI NdeI SpI 22-23 VNS-STV 37.5 

2900 978 EcoRI HindIII SpI 19-20 LMA-EDP 36.5 

2912 4635 EcoRI NdeI SpI 20-21 VYG-QEH 172.8 

2959 1383 EcoRI HindIII SpI 22-23 ARK-TEK 52.0 

3094 1131 NcoI NdeI SpI 23-24 ASA-QAY 40.4 

3108 990 None SpI 23-24 KTA-KEE 38.0 

3467 1098 None SpII 17-18 NIS-CNS 41.7 

3515 1170 NcoI SpII 36-37 GVS-CQH 40.6 
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GH43 Gene size 

(bp) 

Relevant internal 

restriction sites 

Signal peptide Cleavage site Protein size 

(kDa) 

3516 1914 HindIII NdeI SpI 20-21 ISA-QNK 69.4 

3655 972 NcoI SpI 22-23 GYS-QQS 36.9 

3656 2436 None SpI 19-20 AYS-QEY 92.7 

3662 1386 EcoRI NcoI NdeI SpI 21-22 VKA-QHN 52.5 

3663 1362 HindIII NcoI None - 52.3 

3675 1002 EcoRI SpI 23-24 VTA-QNK 34.9 

3683 1896 BamHI SpI 21-22 IFA-QDD 72.4 

3685 1068 NcoI SpI 21-22 MRA-QKN 38.2 

4095 1539 HindIII NcoI SpI 19-20  MVA-QEQ 56.1 

4152 2961 EcoRI NdeI None - 113.3 

4185 1677 EcoRI SpI 20-21 AVA-QKN 60.4 

Table 3.2 Sequence analysis of B. thetaiotaomicron GH43s undertaken prior to cloning experiments. 

Characteristics of the GH43 genes and proteins were established prior to cloning, and are summarised in the table. Gene sequences were analysed for 

internal recognition sites for the most commonly used restriction enzymes: BamHI, EcoRI, HindIII, NcoI, NdeI and XhoI. Protein sizes were predicted using 

the ProtParam programme at the ExPasy server. 

Signal peptides were detected by the LipoP prediction tool. SpI = signal peptide. SpII = lipoprotein signal peptide. 
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Those plasmids which contained the gene of interest in the correct reading frame 

and with no mutations were transformed into Tuner and BL21 cell strains for small-

scale expression trials. 

A streak of colonies was inoculated into 10 ml of selective LB and grown at 37 °C 

until an absorbance at 600 nm of 0.6. At this point, protein expression was induced 

by addition of IPTG to 0.2 mM; cultures were subsequently incubated at 37 °C for 4 

hours or at 16 °C overnight, to assess the effects of temperature upon protein 

expression. Cells were harvested by centrifugation and resuspended in 1 ml of Talon 

buffer (20 mM Tris/HCl buffer pH 8.0 with 300 mM NaCl). A 40 µl sample of this 

whole cell fraction was retained for analysis by SDS-PAGE. Following sonication, the 

suspension was again centrifuged to separate soluble and insoluble fractions; 

samples (40 µl) of both of these were retained for later analysis. A scaled-down 

version of the protocol for protein purification by immobilised metal affinity 

chromatography (IMAC) described in Chapter Two, Section 2.2.21 was used to 

purify these small samples. Again 40 µl of the fraction eluted with imidazole was 

retained for analysis by SDS-PAGE. 

Figure 3.5 shows a typical SDS-PAGE of a small-scale expression trial. Figure 3.6 

shows the same protein scaled up to large-scale expression in a 1 litre culture. Table 

3.3 summarises successful cloning experiments, including primers and plasmids 

used, and grades expression of each enzyme. While correctly sequenced clones 

were obtained for all 31 genes, only 27 expressed protein in E. coli. Of these, 25 

gave soluble protein, while Bt2898 and Bt4152 could not be solubilised and thus 

were not pursued. Three proteins (Bt3675, Bt1873 and Bt2912) when expressed with 

a His6 tag could not be purified by IMAC due to processing or burial of the tag, and 

so were purified by ion exchange chromatography. Certain genes were cloned into 

multiple plasmids in an attempt to improve purification. As an example of the multiple 

cloning experiments which were performed for some genes, Figure 3.7 charts the 

cloning, expression and purification profiles of Bt3675.  
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Figure 3.5 Small scale expression trial of Bt3094-pRSETA.  

Small-scale expression trial of Bt3094 in Tuner cells with post-induction growth at 37 °C and 16 °C. A 

band corresponding to the over-expressed protein (~41 kDa) is visible in cell-free extract (CFE), 

soluble fraction (Sol) and the eluted fraction. The protein is not significantly present in the insoluble 

fraction (Insol). M1 and M2 are molecular weight ladders. Sizes of standards in M1 are shown in the 

gel. Those in M2 are of sizes 24, 45, 66, 97.4, 116 and 205 kDa, beginning at the bottom of the gel. 

 

Figure 3.6 Large scale expression of Bt3094-pRSETA. 

Bt3094 expression scaled up to a 1 litre culture of Tuner cells. M1 and M2 are protein standards as 

described for Figure 3.5. Over-expressed protein primarily eluted in 100 mM fractions of imidazole. 

Flow: flow-through from IMAC column. Wash: wash-through from column. 
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Figure 3.7 Expression profiles of Bt3675. 

Bt3675 was cloned into several plasmids to attempt to obtain pure, soluble protein. 
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A: plasmid pRSETA gives mainly insoluble protein. M1 and M2 size markers are as described above. 

Attempts to purify the soluble obtained with growth at 16 °C by IMAC were not successful, as the 

protein failed to adhere to the column (not shown). 

B: plasmid pRGST gives a low yield of soluble Bt3675 fused to GST. This purification gel shows that 

there is extensive degradation and loss of the fusion tag. Protein which has lost its tag becomes 

insoluble (not shown). The majority of protein (3675-GST and GST alone) elutes in 5 mM glutathione. 

C: reduced growth time of Tuner cells transformed with the pGEX construct leads to reduced 

expression but also allows reduces processing of the fusion tag. A small amount of soluble protein 

can be purified by affinity chromatography.  

D: plasmid pET21(a) gives a reasonable yield of poorly soluble protein which appears to be roughly 

27 kDa, smaller than expected for Bt3675, possibly caused by processing due to the presence of a C-

terminal His6 tag. The small amount of soluble protein obtained from the pET21(a) construct again 

could not be purified by IMAC. The protein was purified by ion exchange chromatography and the 

pure protein quickly became insoluble. 
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Gene Vector Forward primer Reverse primer Restriction sites Expression 

profile 

Affinity 

purification 

BT0145 pRSETA 

ctccag ggatcc 

atgataaagaccagagatccg 

ctccag gaattc 

tcatttagttacccggaaccagtc 

BamH1, EcoR1 n.e. n.a. 

BT0145 pRGST 

ctccag ggatcc 

atgataaagaccagagatccg 

ctccag gaattc 

tcatttagttacccggaaccagtc 

BamH1, EcoR1 + + 

BT0264 pRSETA 

ctccag ggatcc 

caaccagctttcgcaactcaatcg 

ctccag gaattc 

ttattgtggttttccgtaagcagcaaattc 

BamH1, EcoR1 ++ ++ 

BT0265 pRSETA 

ctccag ggatcc 

caaaacacccagatcagtccg  

ctccag gaattc 

ttattgggctttcatctgttttagattattagc  

BamH1, EcoR1 ++++ ++++ 

BT0360 pRSETA 

ctccag ggatcc gcgtgc 

agcgacgacgatgaaaactcc 

ctccag gaattc 

ttggagtttcttcccccaatatgtc 

BamH1, EcoR1 + + 

BT0367 pET21a 

ctccag ggatcc aattcttgg 

gatgataattatttatcag 

ctccag gaattc tttgattctttttccccagac BamH1, EcoR1 +++ +++ 

BT0369 pRSETA 

ctccag ggatcc 

cagaatgacactacttttgtagc 

ctccag gaattc 

ttgtacgccttccgttgtcatctgaatgcg 

BamH1, EcoR1 ++++ ++++ 

BT1021 pRSETA 

ctccag ggatcc 

atgttcacttcatttcatgagccg 

ctccag gaattc ttatttcttcttgctttcttccag c BamH1, EcoR1 Insol n.a. 
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Gene Vector Forward primer Reverse primer Restriction sites Expression 

profile 

Affinity 

purification 

BT1021 pRGST 

ctccag ggatcc 

atgttcacttcatttcatgagccg 

ctccag gaattc ttatttcttcttgctttcttccag c BamH1, EcoR1 ++ ++ 

BT1781 pET21a 

ctccag cc aagctt g 

gacggctcgggccgtggttggc 

ctccag c ctcgag gg tta 

tttagtttgcttcaccatttttatagtgc 

HindIII, Xho1 n.e. n.a. 

BT1873 pET21a 

ctccag gccatgg cc 

aatgatgatggacagacttcc 

ctccag gaagctt cc 

attcagagctacaaattttccatc 

Nco1,  HindIII ++ n.p. 

BT2112 pRSETA 

ctccag ggatcc 

gacacatcacacaagtatacagc 

ctccag c ctcgag gg 

gaattcgtatgtatcaggtgaccagc 

BamHI, XhoI ++ ++ 

BT2852 pRSETA 

ctccag ggatcc 

caaacaaagaatgtgacatgg 

ctccag gaattc 

tcagttaaagtcgtaagtgaaccag 

BamH1, EcoR1 ++ ++ 

BT2895 pRSETA 

ctccag ggatcc 

gagagtgcaacagatgacgag  

ctccag gaattc 

ttacttcagaactctcggcttaattacag  

BamH1, EcoR1 +++ +++ 

BT2895 pRGST 

ctccag ggatcc 

gagagtgcaacagatgacgag  

ctccag gaattc 

ttacttcagaactctcggcttaattacag  

BamH1, EcoR1 + + 

BT2898 pRSETA 

ctccag ggatcc 

agtacagtggataaaggtgataacaatgc 

ctccag gaattc tta 

ctttataactttcggtttaataacc 

BamH1, EcoR1 n.e. n.a. 
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Gene Vector Forward primer Reverse primer Restriction sites Expression 

profile 

Affinity 

purification 

BT2898 pRGST ctccag ggatcc 

agtacagtggataaaggtgataacaatgc 

ctccag gaattc tta 

ctttataactttcggtttaataacc 

BamH1, EcoR1 Insol n.a. 

BT2900 pRSETA 

ctccag ggatcc gaa 

gatcccgctaagacttataagaacc 

ctccag c ctcgag gg 

aaaatgaggtttggggg 

BamHI, XhoI ++ ++ 

BT2912 pET21a 

ctccag gccatgg cc 

caagaacatgatggtgattatac 

ctccag gaagctt cc 

ttttaattctatcttctttgcaaaaac 

Nco1,  HindIII + n.p. 

BT2959 pRSETA 

ctccag ggatcc 

cggaaaacggaaaaagtagtaaataacg 

ctccag c ctcgag gg 

cagttttacaatatcagtaatgg 

BamHI, XhoI +++ +++ 

BT3094 pRSETA 

ctccag ggatcc 

caagcatatggaactgctgatac 

ctccag gaattc 

tcattttgcctgataattgtgattagg 

BamH1, EcoR1 ++++ ++++ 

BT3094 pRGST 

ctccag ggatcc 

caagcatatggaactgctgatac 

ctccag gaattc 

tcattttgcctgataattgtgattagg 

BamH1, EcoR1 +++ +++ 

BT3108 pRSETA 

ctccag ggatcc 

atgaaaacactcatccaatttttattggcg 

ctccag gaattc 

gaaaatgttatcaagccaatgtggaaa 

BamH1, EcoR1 +++ +++ 

BT3467 pRSETA 

ctccag ggatcc 

ggaaaaaaagaagatgttgaaaaag 

ctccag gaattc 

ttgatttggaactgtgccagatgg 

BamH1, EcoR1 + + 
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Gene Vector Forward primer Reverse primer Restriction sites Expression 

profile 

Affinity 

purification 

BT3467 pRGST 

ctccag ggatcc 

ggaaaaaaagaagatgttgaaaaag 

ctccag gaattc 

ttgatttggaactgtgccagatgg 

BamH1, EcoR1 + + 

BT3515 pRSETA 

ctccag ggatcc 

cagcataagaaggctacaacagag 

ctccag gaattc 

ttagttctgttttttatgaataggggaacc 

BamH1, EcoR1 ++ ++ 

BT3515 pRGST 

ctccag ggatcc 

cagcataagaaggctacaacagag 

ctccag gaattc 

ttagttctgttttttatgaataggggaacc 

BamH1, EcoR1 + + 

BT3516 pRSETA 

ctccag ggatcc 

caaaacaaaagtaagcttccg 

ctccat gaattc ttatctgaagtccggagcagc BamH1, EcoR1 + + 

BT3516 pRGST 

ctccag ggatcc 

caaaacaaaagtaagcttccg 

ctccat gaattc ttatctgaagtccggagcagc BamH1, EcoR1 + + 

BT3655 pET21a 

ctccag ggatcc 

tacctgtttgtctatttcaccgg 

ctccat gaattc 

catcttgtcgggctttccgtaggcc 

BamH1, EcoR1 ++ ++ 

BT3656 pET21a 

ctccag ggatcc 

attcgcaagaatacccgaaagtc 

ctccat gaattc 

tttcctgttttcccaatgacttctcag 

BamH1, EcoR1 ++ ++ 

BT3662 pRSETA 

ctccag ggatcc 

cacaataatccttttggcaatgc 

ctccag cc aagctt g tta 

ataaatattccattcccagataccg 

BamH1, HindIII n.e. n.a. 
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Gene Vector Forward primer Reverse primer Restriction sites Expression 

profile 

Affinity 

purification 

BT3662 pET21a 

ctccag gagctc 

cacaataatccttttggcaatgc 

ctccag ac ctcgag a 

ttaataaatattccattcccagatac 

SacI, XhoI n.e. n.a. 

BT3662 pRGST 

ctccag ggatcc 

cacaataatccttttggcaatgc 

ctccag cc aagctt g tta 

ataaatattccattcccagataccg 

BamH1, HindIII n.e. n.a. 

BT3663 pRSETA 

ctccag ggatcc 

agacagatcagtgaagaaatgaactgg 

ctccag gaattc tta 

atataaataaataaactcatcc 

BamH1, EcoR1 n.e. n.a. 

BT3663 pET21a 

ctccag gagctc atggtgatca 

tacattccaa gg 

ctccag ac ctcgag a 

ttaatataaataaataaactcatcc 

SacI, XhoI n.e. n.a. 

BT3663 pRGST 

ctccag ggatcc 

agacagatcagtgaagaaatgaactgg 

ctccag gaattc tta 

atataaataaataaactcatcc 

BamH1, EcoR1 n.e. n.a. 

BT3675 pET21a 

ctccag gccatgg cc 

cagaataagaaatccggcaatcc 

ctccag gaagctt cc 

tggtgtagggattacctgtttg 

Nco1,  HindIII Insol n.a. 

BT3675 pRSETA 

ctcacg gaattc 

cagaataagaaatccggcaatcc 

ctcacg gaattc tggtgtagggattacctgtttg  Largely insol n.p. 

BT3675 pRGST 

ctcacg gaattc 

cagaataagaaatccggcaatcc 

ctcacg gaattc tggtgtagggattacctgtttg  ++ ++ 



[105] 

 

Gene Vector Forward primer Reverse primer Restriction sites Expression 

profile 

Affinity 

purification 

BT3683 pET21a 

ctcacg gaattc 

caggacgactggcaacttgtttgg 

ctcacg actcgagca  

atcaaaattccacctatccatcc 

EcoRI, XhoI n.e. n.a. 

BT3683 pRSETA 

ctccag ggatcc 

caggacgactggcaacttgtttgg 

ctccag ggatcc 

atcaaaattccacctatccatcc 

BamH1, EcoR1 n.e. n.a. 

BT3683 pRGST 

ctccag ggatcc 

caggacgactggcaacttgtttgg 

ctccag ggatcc 

atcaaaattccacctatccatcc 

BamH1, EcoR1 n.e. n.a. 

BT3685 pRSETA 

ctccag ggatcc 

cagaagaatagttatattattcccgggaag 

ctccag gaattc 

ctattttttctgtttgtcagatttcttgtatttgtc 

BamH1, EcoR1 + + 

BT3685 pRGST 

ctccag ggatcc 

cagaagaatagttatattattcccgggaag 

ctccag gaattc 

ctattttttctgtttgtcagatttcttgtatttgtc 

BamH1, EcoR1 n.e. n.a. 

BT4095 pRSETA 

ctccag ggatcc 

caagaacaaaactacttcacaaatcc  

ctccag gaattc 

ttattttaaattcttcattttaaaataagaaaactc  

BamH1, EcoR1 ++ ++ 

BT4152 pRSETA ctccag ggatcc 

ctgcatcttgcctacagttatgatggg 

ctccag cc aagctt g tta 

cattgaaaacaccagtactcctgcgg 

BamH1, HindIII n.e. n.a. 

BT4152 pRGST ctccag ggatcc 

ctgcatcttgcctacagttatgatggg 

ctccag cc aagctt g tta 

cattgaaaacaccagtactcctgcgg 

BamH1, HindIII Insol n.a. 



[106] 

 

Gene Vector Forward primer Reverse primer Restriction sites Expression 

profile 

Affinity 

purification 

BT4185 pET21a 

ctccag gccatgg cc 

cagaaaaactatgtatccgaagtatgg 

ctccag gaagctt cc 

tttccttgtaattcggaaccagtc 

Nco1,  HindIII + + 

Table 3.3 Primers utilised in cloning experiments and expression success of each cloned construct. 

The table summarises cloning experiments undertaken for the B. thetaiotaomicron GH43s. No soluble protein was obtained for Bt1781, Bt2898, Bt3662, 

Bt3663, Bt3683 or Bt4152. n.e. = not expressed. n.p. = could not be purified. Insol = no soluble protein obtained. n.a. = not applicable.
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3.3 Activity screen 

Pure soluble protein was submitted to a hierarchy of activity screens, the results of 

which will be discussed in turn in subsequent sections of this chapter. Activity 

screens began by incubating a high concentration of protein with a range of isolated 

plant polysaccharides overnight at 37°C and with a range of artificial coloured 

substrates for 1-2 hours. Table 3.4 summarises results of this initial screen by 

grading activity of each enzyme against each substrate. Activities identified in this 

initial screen were investigated more closely in subsequent rounds of 

experimentation, which are discussed below. 

First, regardless of the availability of PUL induction data, all enzymes were incubated 

overnight at ~100 nM with a range of polysaccharides (sugar beet arabinan, linear 

arabinan, arabinogalactan, wheat arabinoxylan, rye arabinoxylan, oat spelt xylan and 

rhamnogalacturonan (Megazyme and Sigma)) at 2 mg ml-1. These reactions were 

analysed by TLC; Figure 3.8 shows results of this screen for Bt2852. For those 

enzymes where carbohydrate induction data was available (see Section 3.6 

Discussion, below), this served as a focal point for activity screens. For instance, 

Bt0360, Bt0367 and Bt0369 are part of a PUL which is induced by sugar beet 

arabinan and pectic galactan so they were incubated overnight with these substrates 

at 37 °C. Figure 3.9 shows TLC analysis of products of these reactions. This TLC 

screen showed that three enzymes (Bt0360, Bt0367 and Bt0369) have activity 

against sugar beet arabinan, two of which (Bt0360 and Bt0367) are also active 

against linear arabinan. Bt3675 expressed with a His6 tag released two products 

from arabinogalactan. In addition, 11 enzymes released a range of products from all 

xylan substrates. 

The next aspect of the initial screen was incubation with five aryl glycoside 

substrates: 4NP-β-D-galactopyranoside, 4NP-β-D-glucopyranoside, 4NP-β-D-

xylopyranoside, 4NP-α-L-arabinofuranoside and 4NP-α-L-arabinopyranoside 

(Sigma). Pure enzyme (~ 100 nM) was incubated with the substrates (1 mM) for 2 

hours. A control reaction was performed concurrently, where the substrate was 

incubated with buffer and no enzyme. A positive result was indicated by the 
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appearance of a yellow colour in the enzyme reaction. Positive results against 4NP-

α-L-arabinofuranoside were obtained for Bt0369, Bt2852, Bt3094 and Bt3655.  

Following this initial screen, activities identified by TLC were further explored by 

HPLC analysis to identify reaction products. Typically, substrate at 2 mg ml-1 was 

incubated with pure enzyme at ~ 50 nM in 50 mM sodium phosphate buffer, pH 7.0. 

Samples were taken at frequent time points and were analysed by HPLC to track the 

progress of the reaction.  

Finally, where appropriate, polysaccharide and aryl glycoside assays were analysed 

kinetically. Assays against aryl glycoside substrates could be monitored directly at 

A400nm. For enzymes which released arabinose or galactose from a polysaccharide, 

the galactose dehydrogenase linked assay was utilised (Chapter Two, Section 

2.3.4.iv). A reducing sugar assay with DNSA reagent was used to assay the 

reactions of enzymes which cleave internal linkages in polysaccharide backbones. 

 

Figure 3.8 Polysaccharide screen of Bt2852 activity, analysed by TLC. 

TLC plate shows results of initial activity screen for Bt2852. The enzyme was incubated overnight with 

a range of substrates. A range of products were generated from each xylan substrate: wheat 
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arabinoxylan (wAX), rye arabinoxylan (rAX) and oat spelt xylan (osX). No products were generated 

from Bt2852 incubation with linear arabinan (linA) and sugar beet arabinan (sbA). A size marker 

ladder of arabinooligosaccharides (A1-6) was included on the TLC plate. The ladder comprised 

oligomers of d.p. 1-6. Alongside enzyme reactions (E) were spotted control samples (C), where the 

polysaccharide was incubated at 37 °C in the same buffer but without enzyme. 

 

 

Figure 3.9 TLC analysis of three enzymes upregulated by sugar beet arabinan and pectic 

galactan. 

Bt0360 (a), Bt0367 (b) and Bt0369 (c) were each incubated overnight with sugar beet arabinan and 

pectic galactan. Control reactions (ctrl) of each reaction were performed, where the polysaccharide 

was incubated in buffer but without enzyme. Standards were also run on the TLC plate. These were 

arabinose (Ara) and a ladder of arabinooligosaccharides: arabinobiose, arabinotriose and 

arabinotetraose (A2-4). From this initial screen, Bt0360 and Bt0367 appear to release a range of 

products from sugar beet arabinan, while Bt0369 releases arabinose from sugar beet arabinan. These 

results were later confirmed by HPLC (discussed below). None of the enzymes are active on pectic 

galactan.
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Enzyme Wheat arabinoxylan* Galactan RG I Sugar beet arabinan Linear arabinan Arabinogalactan 4NPA 4NPX 4NPGal 

BT0145 - - - - - - - - - 

BT0264 - - - - - - - - - 

BT0265 - - - - - - - - - 

BT0360 - - - ++ + - - - - 

BT0367 - - - + ++ - - - - 

BT0369 - - - +++ - - +++ - - 

BT1021 +/- - - - - - - - - 

BT1873 - - - - - - - - - 

BT2112 +/- - - - - - - - - 

BT2852 ++/- - - - - - ++ - - 

BT2895 +/- - - - - - - - - 

BT2900 +/- - - - - - - - - 



[111] 

 

Enzyme Wheat arabinoxylan* Galactan RG I Sugar beet arabinan Linear arabinan Arabinogalactan 4NPA 4NPX 4NPGal 

BT2912 - - - - - - - - - 

BT2959 - - - - - - - - - 

BT3094 +/- - - - - - + - - 

BT3108 +/- - - - - - - - - 

BT3467 - - - - - - - - - 

BT3515 - - - - - - - - - 

BT3516 - - - - - - - - - 

BT3655 +/- - - - - - ++ - - 

BT3656 +/- - - - - - - - - 

BT3675** - - - - - + - - - 

BT3685 - - - - - - - - - 

BT4095 +/- - - - - - - - - 

BT4185 +/- - - - - - - - - 
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Table 3.4 Summary of results of activity screen on all soluble GH43s. 

The table summarises results of the initial activity screen for all GH43s obtained in a pure, soluble form. 4NPA = 4NP-α-L-arabinofuranoside. 4NPX = 4NP-β-D-

xylopyranoside. 4NP-β-D-galactopyranoside. RG I = rhamnogalacturonan I. 

*Enzymes were assayed against three xylan substrates: wheat arabinoxylan, rye arabinoxylan and oat spelt xylan. These have decreasing levels of 

arabinofuranose decoration. GH43s showing weak xylanase activity (+/-) were active on all three of these substrates. The notation ++/- for Bt2852 indicates that, 

while still displaying only weak xylanase activity, this enzyme was more active on the xylan substrates than others showing the same activity. 

**Bt3675 polysaccharide assays were performed using cell-free extract of the protein with a His6 tag, as soluble protein could not be adequately purified (Figure 

3.7). All assays were performed alongside cell-free extract of cells transformed with pET21(a) plasmid to check for background E. coli activity. Bt3675-His6 cell free 

extract released two products from arabinogalactan; this was not observed for the control reaction.  
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3.4 Activities identified  

 3.4.1 Weak xylanases 

As demonstrated by TLC and HPLC, 11 of the enzymes showed very similar profiles 

of degradation of multiple xylan substrates (wheat arabinoxylan, rye arabinoxylan, 

oat spelt xylan and birchwood xylan) which vary in extent of arabinofuranosyl 

substitution. Figures 3.10 and 3.11 show HPLC analysis of the degradation of wheat 

arabinoxylan and the less extensively arabinofuranosylated birchwood xylan by 

Bt2852. Other enzymes displaying the same xylanase activity were much less active 

than Bt2852, making it difficult to identify any products (examples are shown in 

Appendix B). Arabinose is a significant early product in the Bt2852 reaction, followed 

by oligosaccharides of various sizes. Two other enzymes (Bt3094 and Bt3655) also 

show arabinose release, but it is harder to identify individual peaks in these HPLC 

traces than for Bt2852. This activity is very low when compared with a classical 

GH10 xylanase (Figure 3.10); the rate of catalysis is significantly slower and final 

degradation products display a greater size range which could indicate that specific, 

rare bonds are cleaved, or that the xylanase action is a side activity. If a rare bond 

were cleaved, then a product profile established early in the reaction would not 

change as time progresses. Hydrolysis by the enzymes described here is likely to 

simply be very slow hydrolysis as products continue to be generated throughout 

incubation. As Figures 3.10 and 3.11 show, the profile of products generated by 

Bt2852 stabilises at ~ 24 hours for wheat arabinoxylan and ~ 16 hours for birchwood 

xylan. 
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Figure 3.10 Bt2852 degradation of wheat arabinoxylan by Bt2852 and a GH10. 

A: HPLC analysis of degradation of wheat arabinoxylan by Bt2852. Enzyme at 2 μM was incubated 

with substrate at 2 mg ml
-1

.  Arabinose (ara) is a significant product. Oligosaccharides begin to appear 
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after several hours of incubation. The decorated nature of the polysaccharide meant that these 

products could not be accurately identified. 

B: HPLC analysis of degradation of wheat arabinoxylan by the xylanase CjXyn10C (Pell et al., 

2004b). Enzyme was incubated at 50 nM with 2 mg ml
-1

 of substrate. The product profile is much 

better defined than for Bt2852, and the reaction proceeded much more quickly. X2 = xylobiose. X3 = 

xylotriose. AXs = arabinoxylooligosaccharides. 

 

Figure 3.11 Bt2852 degradation of birchwood xylan. 

HPLC analysis of degradation of birchwood xylan by Bt2852. Enzyme at 2 μM was incubated with 

substrate at 2 mg ml
-1

.  Again, arabinose (ara) is a significant product. Oligosaccharides begin to 

appear after several hours of incubation. The major products do appear to be smaller than those 

generated from wheat arabinoxylan, suggesting that they are undecorated xylooligosaccharides. This 

may be reflective of the increased accessibility of the less decorated xylan backbone. 
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 3.4.2 Arabinofuranosidases 

Three of the weak xylanases from B. thetaiotaomicron also display activity against 

4NP-α-L-arabinofuranoside. These are Bt2852, Bt3094 and Bt3655. Table 3.5 gives 

kinetic parameters for these activities. As Figures 3.10 and 3.11 show, Bt2852 

releases arabinose from arabinoxylans with varying degrees of substitution and the 

initial activity screen (Figure 3.8) showed that this enzyme is not active on arabinan 

substrates. Thus, Bt2852 can be defined as an arabinoxylan specific 

arabinofuranosidase (AXH) which also has the capacity to hydrolyse the xylan 

backbone. HPLC of arabinoxylan degradation showed that Bt3655 and Bt3094 also 

release arabinose from this substrate, although all products are produced to a lesser 

degree than in reactions containing Bt2852. It is likely that these enzymes can also 

be classified as AXHs, although they are less efficient enzymes than Bt2852. This 

AXH activity could not be explored kinetically for any of the three enzymes as the 

rate of arabinose release was too slow. As Bt2852 seems to release an 

approximately equivalent amount of arabinose from both wheat arabinoxylan and 

birchwood xylan, it can be inferred that the enzyme does not cleave arabinose 

residues from doubly substituted backbone xylose; data presented in Chapter Four 

shows that the double substitution is essentially absent from birchwood xylan. 

Enzyme KM (mM) kcat (min-1) kcat/KM (min-1 M-1) 

Bt2852 0.36 ± 0.02 155.5 ± 19.2 4.32 x 105 

Bt3094 2.32 ± 0.24 14.56 ± 6.14 6.28 x 103 

Bt3655 0.97 ± 0.11 101.3 ± 3.4 1.04 x 105 

Table 3.5 Kinetic analysis of three α-L-arabinofuranosidases. 

Kinetic parameters for three GH43 arabinofuranosidases as determined by continuous assay 

performed in triplicate.  All of these enzymes also showed xylanase activity against three substrates in 

TLC and subsequence HPLC analyses. Errors shown are standard errors of the mean (SEM).  
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3.5 Arabinan utilisation by Bacteroides thetaiotaomicron: PUL 7 

In this study, PUL 7 has been studied especially closely, as it contains three GH43 

enzymes. Figure 3.12 shows a schematic of the operon. As well as the three GH43s 

(Bt0360, Bt0367 and Bt0369) the locus codes for two GH51 enzymes, one hybrid 

two component system (HTCS) and two SusC-SusD pairs. Other metabolic enzymes 

are also encoded, which are not shown in the figure. GeneChip experiments have 

shown that PUL 7 is upregulated by sugar beet arabinan and pectic galactan. In 

these experiments, carried out by Prof. Eric C Martens at the University of Michigan, 

USA, B. thetaiotaomicron is grown on a specific carbohydrate and the level of 

expression of genes is compared with that during growth on glucose. The GeneChip 

method can only quantify up to a 50-fold increase, so anything above this value 

gives the same maximum signal. However, qPCR experiments performed in 

Newcastle by Dr Elisabeth C Lowe show that PUL 7 is activated to a much greater 

extent by arabinan and arabinooligosaccharides than by galactan. Figure 3.9 shows 

initial screening results of the PUL 7 GH43s; the screen revealed two arabinanases 

and one arabinofuranosidase, with no enzyme showing activity against pectic 

galactan. These data, along with the qPCR results, show that PUL 7 is an arabinan 

degradative locus. 

 

Figure 3.12 Schematic of the PUL 7 operon. 

Genetic elements of the PUL 7 operon are represented by arrows. Only those genes encoding 

elements of the carbohydrate binding complex (blue), regulators of PUL expression (red) and 

enzymes involved in carbohydrate metabolism (green) are shown. Not shown are an arabinose 

isomerase, an aldose epimerase and a xylulose kinase. 

 3.5.1 Endo-acting arabinanases 

As was indicated by the initial TLC screen (Figure 3.9), both Bt0360 and Bt0367 

show endo-arabinanase activity against linear and sugar beet arabinan. Consistent 

with other arabinanases, neither showed any activity on 4NP-α-L-arabinofuranoside. 

Further analysis by HPLC confirmed that both enzymes generate a range of 
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products from both substrates (Figures 3.13 and 3.14). The decorated nature of 

sugar beet arabinan prevented accurate identification of reaction products by co-

migration with oligosaccharide standards. The major products for Bt0360 are 

observed in the HPLC trace at approximate retention times of 35, 18, 9 and 5 

minutes. For Bt0367, the major products elute at approximately the same times, 

although peak size is considerably smaller. Mass spectrometric analysis of sugar 

beet arabinan products generated by Bt0360 (Figure 3.15) shows that products 

range in size from 2 – 11 pentose residues. These sizes will likely include both 

backbone and side chain residues. 

Kinetic analysis of reducing sugar release by these enzymes was undertaken by the 

DNSA assay, which was hampered in some cases by inhibition above ~ 8 mg ml-1, 

possibly due to substrate aggregation at high concentrations. For this reason, only 

the linear portion of the Michaelis-Menten curve could be accurately measured. 

Values were therefore obtained for the kcat/KM ratio, but not the individual values of 

kcat and KM. Standard curves of arabinose in the presence of appropriate 

polysaccharide (10 mg ml-1) were used to determine the concentration of reducing 

sugars in these assays. Table 3.6 gives kcat/KM (min-1 mg-1 ml) for the reactions, 

which show that the enzymes differ in specificity; Bt0360 shows preference for 

branched arabinan while Bt0367 displays higher activity against linear arabinan.  

Enzyme Sugar beet arabinan Linear arabinan 

Bt0360 508.50 ± 56.88 57.82 ± 10.22 

Bt0367 52.39 ± 3.24 323.91 ± 21.79 

Table 3.6 Kinetic analysis of the endo-arabinanases of PUL 7. 

Values of kcat/KM for Bt0360 and Bt0367 against sugar beet arabinan and linear arabinan. Units are 

min
-1

 mg 
-1

 ml. The reactions were performed in triplicate. Errors shown are standard errors of the 

mean (SEM). Individual values for kcat and KM are not available due to substrate inhibition or a KM in 

excess of the limit of practical solubility of the substrate. 
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Figure 3.13 Degradation of sugar beet arabinan by endo-arabinanase Bt0360. 

HPLC analysis of degradation of sugar beet arabinan by Bt0360, an endo-arabinanase encoded by 

PUL 7.  Enzyme was incubated at a concentration of 5 μM with substrate at 10 mg ml
-1

. A range of 

products is generated over 24 hours. 

 

 



[120] 

 

 

 

Figure 3.14 Degradation of sugar beet arabinan by endo-arabinanase Bt0367. 

HPLC analysis of degradation of sugar beet arabinan by Bt0367, an endo-arabinanase encoded by 

PUL 7. The enzyme was again incubated at a concentration of 5 μM with substrate at 10 mg ml
-1

. A 

range of products is generated over 24 hours, although degradation is less extensive than with 

Bt0360. 
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Figure 3.15 Mass spectrometry analysis of degradation of sugar beet arabinan by endo-

arabinanase Bt0360. 

Analysis of degradation of sugar beet arabinan by Bt0360 was undertaken by mass spectrometry 

(MS), performed by Dr R Naran at the Complex Carbohydrate Research Centre in Athens, Georgia. 

The substitution patterns of these oligosaccharides are not clear from these data. 

 3.5.2 Arabinofuranosidase de-branching enzyme 

Bt0369, which is found in PUL 7 alongside the endo-arabinanases described above, 

displayed high activity against 4NP-α-L-arabinofuranoside (4NP-Af) and sugar beet 

arabinan, releasing monomeric arabinose as the sole product from the 

polysaccharide (Figure 3.16), while showing no activity against any other plant cell 

wall polysaccharides such as linear arabinan, xylans or pectins. Kinetic analysis 

against sugar beet arabinan, linear α-L-1,5-arabinooligosaccharides and 4NP-Af 

(Chapter Two, Section 2.3.4) showed that the enzyme was ~ 105 -fold more active 

against branched arabinan than against linear oligosaccharides. Although Bt0369 

displayed similar activity for arabinan and 4NP-Af, the enzyme exhibited greater 

affinity for the polysaccharide. Table 3.7 summarises the kinetic parameters for 

Bt0369. 
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Substrate KM (mM) kcat (min-1) kcat/KM (min-1 M-1) 

Sugar beet arabinan 2.1 x 10-2 ± 1.36 x 10-3 2681 ± 246 1.28 x 107 

4NP-α-L-arabinofuranoside 8.03 ± 2.35 40150 ± 7272.5 5.00 x 106 

Arabinotriose 17.78 ± 5.79 16.03 ± 2.39 9.02 x 102  

Arabinoheptaose n.d. n.d. 3.61 x 103 ± 3.2 x 102 

Table 3.7 Kinetic parameters for Bt0369 hydrolysis of four substrates.  

Assays were performed in triplicate. Errors shown are standard errors of the mean. Effective substrate 

concentration in units of M was obtained from concentration of polysaccharide (mg ml
-1

) by submitting 

the polysaccharides to complete degradation by Bt0369. The final absorbance was used to calculate 

the concentration of target arabinose residues in 1 mg of polysaccharide.  

n.d.= not determined: individual values of kcat and KM were not determined when KM was too high to 

accurately measure rate beyond the linear portion of the Michaelis-Menten curve. 

 

Figure 3.16 Reaction products of Bt0369 incubated with sugar beet arabinan. 

HPLC analysis of sugar beet arabinan incubated with Bt0369 for 2 hours shows that arabinose is 

released as the only product, which was identified by co-migration with monomeric arabinose 

obtained from Sigma-Aldrich. 
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Sugar beet arabinan has an α-1,5 linked L-arabinofuranose backbone. 

Approximately 60 % of backbone residues are substituted with α-1,3-L-

arabinofuranose side chains. Some backbone residues are doubly substituted with 

both α-1,2 and α-1,3 side chains, while a small proportion of single α-1,2-L-

arabinofuranose side chains are also present (Swamy and Salimath, 1991). The high 

activity of Bt0369 against sugar beet arabinan and comparatively very low activity 

against α-1,5 arabinooligosaccharides suggested that the enzyme hydrolyses the 

polysaccharide side chains. As ~ 60 % of backbone residues in arabinan are 

believed to be substituted at O3, the α-1,3 side chains predicted to be present in 1 

mg of sugar beet arabinan represent ~ 0.4 mg of arabinose (i.e. 40 % of total mass 

of polysaccharide), while the amount of arabinose released by Bt0369 from 1 mg of 

sugar beet arabinan is only 0.045 mg (i.e. 4.5 % of total mass). This was determined 

by measuring total arabinose released by the enzyme during a one hour incubation; 

the reaction was monitored to accurately identify the endpoint. This discrepancy 

suggests that Bt0369 is hydrolysing the rare α-1,2-L-arabinofuranose side chains, or 

the α-1,3 side chains within a specific structural context. 

To test this hypothesis, the specificity of Bt0369 for sugar beet arabinan was probed 

by Nuclear Magnetic Resonance spectroscopy, performed and interpreted by Maria 

Peña at the Complex Carbohydrate Research Centre in Athens, Georgia (USA). To 

simplify the spectra, arabinooligosaccharides were generated by partial acid 

hydrolysis of sugar beet arabinan, followed by size exclusion chromatography to 

remove polysaccharide and large oligosaccharides and concentration by 

lyophilisation. Bt0369 was incubated with arabinooligosaccharides at 2 mg ml-1 

overnight at 37 °C. Water was removed from the samples by lyophilisation. 

Immediately prior to NMR analysis, samples were resuspended by M. Peña in a 

small volume of D2O.  

Chemical shifts for the spectra are given in Appendix E, where the NMR spectra are 

also shown. The identities of these peaks were identified by M. Peña during this 

project. Interpretation of the NMR data revealed that the signals for the O2-linked 

arabinose side chain, in both the single and double substitution, are lost or reduced 

after enzyme treatment (Appendix E). Signals corresponding to α-1,3 and α-1,5 

linked arabinose residues did not disappear. These data demonstrate that the 
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enzyme targets the O2-linked arabinose side chains of arabinan in the context of 

single and double substitutions, a plasticity not previously observed for other 

arabinofuranosidases. 

The specificity of the enzyme for the O2 linkage to backbone arabinose residues that 

carry two substitutions (at O2 and O3) was further examined through synergy 

experiments with HiAXHd3. This is an arabinofuranosidase that exclusively targets 

O3 linkages in double substitutions of arabinan and arabinoxylan (Chapter Four; 

Sorensen, Jorgenen et al. 2006). Arabinan which had been pre-treated with Bt0369 

was not hydrolysed by HiAXHd3, as no double substitutions were present. Bt0369, 

however, was able to release arabinose residues from arabinan pre-treated with 

HiAXHd3. These results are consistent with the NMR data in showing that Bt0369 

targets O2 linkages in backbone arabinose residues that are singly and doubly 

substituted.  

 3.5.3 Other PUL 7 components 

In addition to the GH43s described above, PUL 7 encodes two GH51 enzymes, 

Bt0348 and Bt0368 (Figure 3.12). GH51s are invariably non-specific α-L-

arabinofuranosidases (Beylot et al., 2001b; Hovel et al., 2003; Taylor et al., 2006). 

Attempts were made to clone these enzymes to provide a more complete picture of 

the degradative action of the PUL; Table B.1 in Appendix B details the primers and 

plasmids used in cloning experiments, as well as the results of expression trials. 

Soluble protein was not obtained for either enzyme. One clone (Bt0348-pET21) was 

lethal to E. coli (Figure 3.17).   

Dr E C Lowe of the Bolam laboratory at Newcastle University is currently engaged in 

an on-going project to characterise the binding proteins of PUL 7. Data gathered so 

far show that the HTCS binds arabinoheptaose as its smallest unit. No binding 

information is so far available for the Sus proteins.  
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Figure 3.17 Lethality of Bt0348-pET21 to XL1-blue strain E. coli. 

Presence of the insert slows initial growth until the point marked by the star (4 hours), when A600 

drops sharply. Subsequent growth is extremely slow, but final absorbance after overnight growth is 

equivalent to the control culture. Minipreps were performed on samples of the Bt0348-pET21 culture 

every hour; the plasmid is not found in cells sampled after 4 hours, indicating that the cells have 

rejected the plasmid. 

3.6 Discussion 

3.6.1 Metabolism of arabinose-containing polysaccharides 

In B. thetaiotaomicron, genes encoding enzymes of related function are clustered 

into polysaccharide utilisation loci (PULs) (Bjursell et al., 2006). PUL 7, which is 

upregulated by sugar beet arabinan and orchestrates the metabolism of this 

polysaccharide, contains three GH43 and two GH51 enzymes (E C Martens 

personal communication). As part of this project, the GH43s from this PUL were 

cloned, and soluble protein was obtained for all of the enzymes. Activity screens 

revealed that Bt0360 and Bt0367 are endo-arabinanases, while Bt0369 is a novel α-

1,2-L-arabinofuranosidase de-branching enzyme. Soluble protein could not be 

obtained for the GH51s. 

  3.6.1.i Two endo-arabinanases target different regions of arabinan 

The GH43 endo-arabinanases Bt0360 and Bt0367 display a preference for 

decorated and linear arabinan, respectively. These enzymes share 28 % sequence 
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identity. The catalytic efficiencies of both enzymes are low compared to other 

arabinanases. kcat/KM (min-1 mg-1 ml) for preferred substrate is 509 for Bt0360 and 

324 for Bt0367. Classical arabinanases, such as BsArb43A and CjArb43A, hydrolyse 

linear arabinan with kcat/KM values of 6.0 x 106 min-1 mM-1 and 8.3 x 104 min-1 mg-1 

ml, respectively (Proctor et al., 2005). The evolutionary rationale behind these low 

activities is consistent with data from Dr E C Lowe at Newcastle University which 

shows that the HTCS of PUL 7 binds arabinooligosaccharides with a minimum d.p. 

of seven. Thus, restricting the degradation of arabinan before it reaches the 

regulatory element ensures that expression of the PUL is switched on in the 

presence of the appropriate carbohydrate. More efficient arabinanases would 

produce smaller oligosaccharides, and thus the PUL would not be activated. This is 

an example of the finely tuned nature of the carbohydrate utilisation systems 

possessed by B. thetaiotaomicron which have allowed the bacteria to thrive in the 

human intestinal community. The cooperative action of the arabinanase enzymes 

and the carbohydrate binding proteins to bring large oligosaccharides into the 

periplasm ensures that most hydrolysis and metabolism occurs within the cell, 

preventing utilisation of the substrate by other bacteria.  

Of these arabinanases, Bt0360 in particular is interesting as it shows a clear 

preference for branched arabinan, while all other arabinanases characterised to date 

are hindered by the presence of side chains, as occurs in Bt0367. The differing 

specificity of the enzymes is intriguing, and may be caused by different topologies 

around the active site. Attempts to crystallise the proteins were not successful so 

structures are not available, but both were submitted to the Swiss-Model workspace, 

a powerful automated comparative protein modelling server at ExPasy (Arnold et al., 

2006; Schwede et al., 2003).  No sufficiently homologous structures are available in 

the protein database for either B. thetaiotaomicron GH43, so reliable structure 

models were not obtained. 

As no structural models could be produced, the protein sequences of the endo-

arabinanases were analysed for clues as to the nature of the differences in 

specificity. As shown in Figure 3.18, in the mature protein (lacking signal peptide) 

both enzymes feature stretches of amino acids which do not correlate with the GH43 

domain. It is possible that these regions of sequence produce structural features 
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which contribute to the differences in specificity between Bt0360 and Bt0367. Figure 

3.18 shows schematics of the modular organisation of the endo-arabinanases and of 

the canonical GH43 CjArb43A arabinanase as a control, and shows the unidentified 

regions of sequence annotated as 0360-NTD, 0360-CTD and 0367-CTD. These 

protein sequences were analysed for conserved protein domains by a BLAST 

search. 

 

Figure 3.18 Schematic of the modular sequences of three GH43 enzymes. 

A: CjArb43A. This classical GH43 arabinanase comprises solely the β-propeller domain found in all 

members of the family. Residues 1-32 form the signal peptide, which is absent in the mature protein. 

B: Bt0360. Residues 1-28 comprise the signal peptide, which is cleaved to produce the mature 

lipoprotein. The GH43 catalytic domain comprises residues 163-529. Two other significant regions of 

sequence are also present: 0360-NTD comprises residues 28-163, while 0360-CTD covers residues 

529-641. 

C: Bt0367. The signal peptide here is composed of residues 1-37. The β-propeller includes residues 

62-372, leaving a significant stretch (0367-CTD) at the end of the sequence, comprising residues 373-

513. 

SP: signal peptide. GH43: canonical GH43 β-propeller fold. Areas shaded green are unidentified 

modules.  

The Blast search revealed that the C-terminal insertions of both enzymes (0360-CT 

and 0367-CT) align with various other GH43s, including arabinofuranosidases, 

xylosidases and arabinanases. These regions of sequence are therefore not likely to 

contribute to the differences in specificity between these endo-arabinanases. 

Sequence 0360-NT, the N-terminal insertion of Bt0360, showed similarity with 

several GH43s including three putative endo-arabinanases (from Prevotella copri, 

Gramella forsetii and Prevotella oris) but the alignment also highlighted several 
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Fibronectin Type III (Fn3) domains. The Fn3 domain is typically around 100 amino 

acids long and forms a 7-bladed β-sandwich structure. The Fn3 domain is very 

common in animal proteins but is also found in bacteria, where it is exclusively 

located in extracellular or membrane-bound glycoside hydrolases (Little et al., 1994). 

The distribution of Fn3s in bacterial species is very broad and is taken as an 

example of inter-kingdom transfer of genetic material. Rather than hailing from a 

common ancestor it is thought that bacterial species acquire the Fn3 gene from an 

animal source, likely by transformation. In the human gut, bacteria such as B. 

thetaiotaomicron are likely to encounter large amounts of eukaryotic DNA, from host 

cells and dietary material such as meat. The presence of Fn3 exclusively in 

glycoside hydrolases is likely due to selective retention of the module in these 

sequences when Fn3 is scattered through the genome. This implies that there is a 

selective advantage conferred by Fn3. Putative roles for Fn3 in carbohydrate active 

enzymes include direct binding and modification of polysaccharides; evidence of this 

has been taken from the observation that one or more of the fibronectin units in Fn3 

can bind to heparin and that an Fn3-like repeat in the Clostridium thermocellum 

cellobiohydrolase CbhA directly modifies the surface of cellulose, facilitating 

hydrolysis (Kataeva et al., 2002). Furthermore, an Fn3 module was recently shown 

to be critical for binding to chitin (Martin-Garcia et al., 2010). 

If Bt0360 does contain a β-sandwich structure or Fn3-type module which is absent in 

Bt0367, this may contribute topologically to the active site or polysaccharide binding 

cleft; other arabinanases comprise solely the GH43 β-propeller domain and are 

inhibited by arabinose side chains in arabinan, as is Bt0367 (Proctor et al., 2005). 

The Fn3 module may directly bind to arabinan and facilitate hydrolysis of the 

backbone by improving enzyme access to substrate for Bt0360. In this manner, the 

differences in specificity shown by Bt0360 and Bt0367 may not be conferred by 

modifications to the GH43 catalytic domain tailoring the enzymes to more and less 

decorated regions of the arabinan backbone, respectively, but by a separate module 

assisting catalysis by Bt0360, possibly by binding more tightly to certain regions of 

the polysaccharide, or associated cell wall components. Alternatively, the presence 

of an additional non-catalytic module may have directly altered the structure of the 
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active site of Bt0360, creating a pocket adjacent to the active site which can 

accommodate arabinose side chains on the polysaccharide. 

  3.6.1.ii A novel α-1,2-L-arabinofuranosidase 

As part of PUL 7, these endo-arabinanases act in consort with the arabinan-specific 

arabinofuranosidase Bt0369. Bt0369 has been shown by NMR (Figures 3.17 and 

3.18) to selectively cleave O2-linked arabinose side chains. Kinetic analysis shows 

the enzyme also has reduced activity against linear α-1,5 linked 

arabinooligosaccharides, so there may be some cleavage of terminal backbone 

residues following removal of these side chains. NMR and synergy experiments with 

HiAXHd3, which is specific for doubly substituted arabinose side chains in 

arabinoxylan and arabinan, showed that Bt0369 can cleave the O2 side chain in both 

single and double substitutions. 

A sister project undertaken by PhD student Alan Cartmell had the similar aim of 

characterising all GH43s expressed by the soil saprophyte Cellvibrio japonicus. One 

enzyme described by this research, CjAbf43A, shares 65 % sequence identity with 

Bt0369 and was shown by 2D NMR, again performed by Maria Peña, to exhibit the 

same specificity as Bt0369 for the O2-linked arabinose side chain in sugar beet 

arabinan, with tolerance for this linkage in both single and double substitutions. The 

crystal structure of a catalytic mutant of CjAbf43A was solved to 1.8 Å. The structure 

of CjAbf43A reveals a five bladed β-propeller fold, Figure 3.19, typical of GH43 

enzymes (Nurizzo et al., 2002). Similar to many arabinan-specific enzymes (Alhasid 

et al., 2009; Nurizzo et al., 2002; Proctor et al., 2005), the enzyme comprises only 

this catalytic domain, and does not possess the C-terminal β-sandwich domain 

observed in xylan-specific arabinofuranosidases (Vandermarliere et al., 2009). 

The propeller is built by a 5-fold repeat of „blades‟: four antiparallel β-strands 

comprising a β-sheet. The blades are radially arranged from the centre of the 

propeller. For the ligand structure, CjAbf43A was crystallised with arabinotetraose 

(Megazyme) but the structure revealed good density for an α-1,5 arabinotriose 

molecule with an α-1,3 linked arabinofuranose side chain on the middle arabinose 

(32-Ara-Ara3).  
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Figure 3.19 Cartoon representation of CjAbf43A. 

The structure of CjAbf43A is coloured to show the N-terminus (blue) and C-terminus (red). A single 

domain, the β-propeller, is visible. The triad of catalytic residues (Asp21, Asp148 and Glu195) is 

shown in stick form, coloured red; these are located at the heart of the domain. Figure modelled on 

Nurizzo et al., 2002. 

The pseudosymmetry of arabinofuranosides makes it difficult to confidently orient the 

ligand as oligosaccharide chains built in either direction fit equally well into density. 

The sole criterion used to delineate orientation in this case is the requirement for the 

O2-linked side chain to sit in the active site. The surface representation of CjAbf43A, 

Figure 3.20, reveals a deep active site pocket in the centre of a highly curved cleft. 

The rim of the pocket abuts onto a shelf-like structure that accommodates the O3-

linked arabinose side chain, demonstrating the structural basis for the enzyme‟s 

tolerance for α-1,2-L-arabinofuranose side chains in both single and double 

substitutions. The α-1,5-linked trisaccharide and, by inference, the arabinan 

backbone, lies in the central region of the curved surface which is thereby identified 

as the polysaccharide backbone binding cleft. This pocket contains three acidic 
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residues, Asp21, Asp148 and Glu195, which were identified by sequence alignments 

and structural analysis as the triad of catalytic residues found in GH43 enzymes.  

 

Figure 3.20 Surface representations of CjAbf43A in complex with ligand.  

A: surface representation of the enzyme in complex with ligand shows that the substrate is bound in 

the active site pocket, which houses the catalytic residues (shown in red). Also visible is the curved 

arabinan binding cleft, which forms a V-shape over the surface of the protein to accommodate the 

twisted conformation of the arabinan backbone (green). The O3-linked arabinose side chain which 

lies in the pocket adjacent to the active site is shown in yellow. Oxygen atoms within the carbohydrate 

are yellow. 
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B: a closer look at the active site of the ligand-bound complex shows that the α-1,5 backbone (green 

arabinotriose in this ligand) lies within the cleft while an O3-linked arabinose side chain (yellow) points 

into the depression adjacent to the active site pocket. The orientation of the central backbone sugar 

shows how an O2-linked side chain will point directly into the active site pocket, marked out by the red 

coloured catalytic residues. The ligand is coloured as for panel A. 

The subsite topology of CjAbf43A is defined as follows: the scissile bond is between 

the O2-linked arabinose decoration at -1 and the backbone arabinose at +1, using 

the nomenclature system developed by Davies and colleagues (Davies et al., 1997). 

Subsites extending towards the reducing end of the arabinan backbone (from the +1 

subsite) are defined as +2R, +3R etc., while subsites extending to the non-reducing 

end of the polymer are designated +2NR, +3NR and so forth. The subsite 

accommodating the arabinose linked O3 to the +1 subsite is defined as the +2NR* 

subsite. Thus, the bound ligand occupies subsites +2NR, +2NR*, +1 and +2R 

(Figure 3.20). Based on the topology of the enzyme, the substrate binding cleft is 

unlikely to extend distally to the +2R subsite, although the enzyme is likely to contain 

at least one additional non-reducing subsite (+3NR). 

An analysis of the ligand bound structure shows that the enzyme makes several 

contacts with the substrate. The +2R arabinose is positioned between Phe46 and 

Trp144. The indole nitrogen of this Tryptophan residue forms a hydrogen bond with 

the +2R arabinose, and mutagenesis studies have shown that this contact is 

important for catalysis. The position of Trp144 in the polysaccharide binding cleft 

suggests that it is important for substrate backbone binding. Phe214 makes 

hydrophobic contacts with C5 of the sugars at +2NR and +2NR*. In addition, Asn165 

makes several important contacts with the substrate. Oδ1 of Asn165 hydrogen 

bonds with +2NR sugar, while Nδ2 makes polar contacts with the endocyclic ring 

oxygen of the +1 arabinose and with the glycosidic oxygen linking the +1 and +2NR 

sugars (Figure 3.21). If the ligand is flipped so that the O3 linked side chain points 

into the active site, this residue is unable to make a hydrogen bond with the 

glycosidic oxygen between the sugars at +2NR and +1. This indicates that Asn165 is 

particularly important for orienting the substrate to bring the O2-linked arabinose into 

the active site, consistent with data from mutagenesis studies performed by Dr A 

Cartmell which showed that the mutant N165A has very low activity against sugar 

beet arabinan but retains near wildtype activity against 4NP-α-L-arabinofuranoside. 
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Figure 3.21 Asn165 makes critical substrate contacts for specificity. 

In CjAbf43A specificity is determined by ligand contacts made by Asn165 with the endocyclic ring 

oxygen of the +1 arabinose, and with the glycosidic oxygen connecting arabinose residues +1 and 

+2NR. 

Due to their high sequence identity and shared specificity for α-1,2 linked arabinose 

side chains in sugar beet arabinan, it was expected that Bt0369 and CjAbf43A would 

also show great structural similarity. Attempts to crystallise Bt0369 were not 

successful, but the protein sequence was submitted to the Swiss-Model workspace 

at ExPasy (Arnold et al., 2006; Schwede et al., 2003) and a model structure of 

Bt0369 was obtained by threading onto the crystal structure of CjAbf43A. Automated 

validation of the homology model was undertaken by ANOLEA (Atomic Non-Local 

Environment Assessment), which is a tool used to perform energy calculations on 

protein chains and assess structure models (Melo and Feytmans, 1998). As Figure 

3.22 shows the ANOLEA of the Bt0369 model was very favourable, due to the high 

similarity between the target and homology model (66 % identity). Figure 3.23 shows 

that the model comprises a single domain that displays the five-bladed β-propeller 

common to all GH43 enzymes.  
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Validation of the model was also undertaken by analysis of the structure in PyMol 

and comparison with the CjAbf43A crystal structure. The residues Asp42, Asp169 

and Glu215 were identified as the catalytic apparatus in Bt0369 by sequence 

alignment, and the homology model structure places these residues within a pocket 

topology which lies within the polysaccharide binding cleft (Figure 3.24). This is the 

active site of the enzyme, and is adjacent to a second depression, which 

accommodates the second arabinose (O3-linked) of the double substitution. These 

structural features correlate very well with those observed in the crystal structure of 

CjAbf43A, indicating that the two enzymes employ highly similar strategies for 

substrate binding and catalysis.  

A comparison of the crystal structure of CjAbf43A with the homology model of 

Bt0369 reveals that the nature of specificity in both enzymes is determined in much 

the same way (Figure 3.24). The critical Asn165 in the C. japonicus enzyme overlays 

exactly with Asn186 in the B. thetaiotaomicron model. Similarly, Phe214 and Trp144 

in CjAbf43A have counterparts in Bt0369 (Phe234 and Trp165, respectively).  
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Figure 3.22 ANOLEA energy assessment of structural model of Bt0369. 

Automated assessment of the homology model structure of Bt0369, generated by threading the 

Bt0369 sequence onto the crystal structure of CjAbf43A is very favourable. Green areas indicate 

areas of sequence where the predicted structure has favourable calculated free energy, while red 

areas have unfavourable energy calculations. 
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Figure 3.23 Homology model structure of Bt0369, generated by threading onto the crystal 

structure of CjAbf43A. 

A: cartoon representation of the Bt0369 model shows a single domain, the canonical GH43 β-

propeller. The three catalytic residues are shown in stick form and coloured red at the heart of the 

propeller. 

B: surface representation of the model of the enzyme shows a V-shaped cleft over the surface of the 

protein, centring on a pocket structure which contains the catalytic residues (red). This pocket is 

adjacent to a second pocket structure, as is seen in the crystal structure of CjAbf43A. 
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Figure 3.24 Comparing the crystal structure of CjAbf43A with the homology model of Bt0369.  

A: surface representation of the active site of the Bt0369 homology model overlaid with the branched 

ligand from the CjAbf43A crystal structure. As seen for the C. japonicus enzyme (Figure 3.20), the 



[138] 

 

backbone of the ligand lies in the V-shaped cleft while the O3-linked side chain (yellow) points into the 

pocket adjacent to the active site, which is marked out by the red catalytic residues. 

B: an overlay of the key residues coordinating substrate binding and specificity shows good alignment 

between the crystal structure of CjAbf43A and the homology model of Bt0369. Only the non-critical 

Phe46 is not exactly conserved. 

Generally, there is a paucity of information on enzymes that hydrolyse the double 

substitution in arabinan. The double substitution is inhibitory to most α-L-

arabinofuranosidases, which are specific for singly substituted arabinose decorations 

(Beylot et al., 2001b). Thus, the hydrolysis of one of the linkages in these double 

substitutions must be a key early feature of arabinan metabolism, in order to create 

the single substitution side-chains which are accessible to other exo-acting enzymes. 

Removal of these side-chains may increase substrate access for endo-acting 

enzymes. Indeed, the only other published enzyme known to hydrolyse such 

structures is the GH43 arabinofuranosidase BaAXHd3 from the colonic bacterium 

Bifidobacterium adolescentis (Lambertus et al., 2005); a highly similar enzyme is 

explored in greater detail in Chapter Four of this thesis. AXHd3, however, displays 

broader specificity than Bt3069 or CjAbf43A as it hydrolyses double substitutions in 

both arabinoxylan and arabinan, although it will not hydrolyse singly substituted 

arabinose.  Such an activity is not required by B. thetaiotaomicron as the bacterium 

does not metabolise xylan. By contrast C. japonicus has an extensive xylan 

degrading apparatus (Pell et al., 2004b), and thus likely contains an additional 

arabinofuranosidase that targets xylose residues decorated at O2 and O3.    

While the utility of the specificity of Bt0369 and CjAbf43A in removing the hindrance 

of the double substitution is clear, it is intriguing that the enzyme discriminates 

between the two linkages in the structure, and specifically that it removes the O2-

linked component, rather than the O3. Single α-1,3 arabinose side chains are 

common in arabinan, while single α-1,2 side chains are very rare (Swamy and 

Salimath, 1991). An enzyme which could remove O3-linked arabinose side chains 

from both single and double substitutions would release much more arabinose from 

the polysaccharide than the enzyme presented here. The lack of functionally 

significant contacts with the +2NR* arabinose means that the double substitution is 

not a requirement for hydrolysis, and an enzyme which targeted O3 side chains may 
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be diverted from removal of the double substitutions by an abundance of the single 

linkages. The evolutionary rationale behind the selection of the O2 may be that it 

limits cleavage of single substitutions, maintaining a catalytic focus on the double 

substitution. It should be emphasised, however, that until the specificity of the two 

PUL 7 GH51 enzymes is established, the biological significance of the activity 

displayed by Bt0369 remains uncertain. 

The crystal structure of CjAbf43A, the C. japonicus homologue of Bt0369, reveals 

the nature of specificity for O2-linked arabinose side chains and also gives insight 

into why the enzyme is tailored exclusively for de-branching activity on arabinan and 

not arabinoxylan, unlike AXHd3 enzymes. As shown in Figure 3.25, the specificity of 

CjAbf43A for sugar beet arabinan is due to the surface topography of the enzyme. 

Phe46, Trp144 and Phe214 contribute to the formation of a curved surface cleft 

around the -1 pocket. This topology is complementary to the extended helical 

structure of the α-1,5-L-arabinofuranose backbone of sugar beet arabinan explaining 

why the enzyme targets this polysaccharide. The enzyme is unable to hydrolyse 

arabinoxylan, which also contains α-1,2-L-arabinofuranose side chains,  as the 

xylose backbone, which has a 3 fold screw axis, would make steric clashes with the 

curved surface of the substrate binding cleft. Conversely, the GH43 arabinoxylan-

specific arabinofuranosidase, BsAXHm2,3 (Vandermarliere et al., 2009), which 

cleaves only singly substituted side chains,  is unable to hydrolyse arabinan, despite 

structural conservation with CjAbf43A at the -1 subsite, as the arabinan backbone 

cannot be accommodated by the linear substrate binding cleft that houses the xylan 

backbone, Figure 3.25. Thus, it is the architecture of the surface substrate binding 

cleft, curved in CjAbf43A and linear in BsAXHm2,3, that dictates the specificity of 

these enzymes. Aside from Phe214, residues that line the substrate binding cleft of 

CjAbf43A distal to the +1 subsite (which plays a key role in providing the binding 

energy required for substrate distortion in the active site) bind weakly to the arabinan 

backbone. This is consistent with the requirement for the polysaccharide backbone 

to dissociate prior to the release of arabinose from the active site pocket.  
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Figure 3.25 Comparison of crystal structures of CjAbf43A and BsAXH. 

A: an overlay of CjAbf43A with xylotetraose from the BsAXH structure shows xylan is occluded from 

the active site by a major clash with the surface of the enzyme. The ligand is shown in blue while the 

catalytic residues of C. japonicus enzyme are highlighted in red. The arabinan-binding cleft proceeds 

in the direction indicated by the yellow shading. 

B: likewise, an overlay of BsAXH with arabinotriose from a CjAbf43A structure shows how arabinan is 

excluded from the linear substrate binding cleft of this enzyme. The ligand is shown in cyan while the 

catalytic residues are highlighted red. The xylan-binding cleft of the B. subtilis enzyme is coloured 

purple. 

  3.6.1.iii Cooperativity of GH43s in arabinan metabolism 

Based on an analysis of signal peptides, the endo-arabinanases of PUL 7 are 

predicted to be outer membrane-bound proteins; this is consistent with their role in 

the initial hydrolysis of polysaccharide arabinan. Prediction tools are unable to give a 

confident assessment of the cellular location of the arabinofuranosidase Bt0369, but 

an analysis of the enzyme activities described for the enzymes of PUL 7 indicates 

that it may function in the periplasm. A putative metabolic pathway for PUL 7 is 

shown in Figure 3.26 and proceeds as follows. 

The endo-arabinanases Bt0360 and Bt0367 degrade arabinan to 

arabinooligosaccharides that are either linear or contain arabinose substitutions. The 

resulting oligosaccharides, with presumably varying branching patterns, are then 
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taken up into the cell by two membrane-bound protein complexes comprising 

homologues of SusC and SusD. It is quite unusual for a single PUL to include two 

SusC/D pairs. This may reflect a need to accommodate a diverse range of products 

generated by the outer membrane arabinanases.  

 

Figure 3.26 Putative cellular pathway for the components of PUL 7. 

Schematic shows the putative cellular organisation of the components of the arabinan-metabolising 

PUL 7. The GH43s Bt0360 and Bt0367 are membrane-bound endo-arabinanases. GH43 Bt0369 is an 

α-1,2-L-arabinofuranosidase and is thought to be periplasmic. Bt0348 and Bt0368 are GH51 α-L-

arabinofuranosidases of unknown specificity; they are located in the periplasm. One hybrid two 

component system (HTCS) resides within the inner membrane. Two SusC-D complexes are present 

in the outer membrane. 
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The α-1,2-L-arabinofuranosidase Bt0369 represents a „pre-treatment‟ stage of 

arabinan processing, converting all the doubly substituted arabinose into single O3 

decorations, as well as removing all single O2 arabinose side chains, so that 

branched arabinooligosaccharides can be stripped of side chains prior to binding to 

the activating HTCS. In the periplasm are two GH51 enzymes encoded by PUL 7, 

which are predicted to be α-L-arabinofuranosidases. At least one of the two 

periplasmic GH51 arabinofuranosidases is likely to remove the single O3-arabinose 

decorations to generate linear oligomers, a feature typical of enzymes in this family 

(Beylot et al., 2001a). It is possible that the other GH51 enzyme converts the linear 

oligosaccharides into arabinose, although no GH51 enzyme has been reported to 

display α-1,5-exo-arabinanase activity.  Together, the three arabinofuranosidases 

generate linear arabinooligosaccharides which bind and activate the HTCS, leading 

to high-level expression of PUL 7 components. It is likely the outer membrane 

arabinanases and Sus binding proteins are expressed at a basal level, to generate 

the substrate required to switch on the HTCS, which upregulates expression of all 

PUL components in a positive feedback network designed to optimise arabinan 

utilisation. 

This chapter reports on the capacity of the large number of GH43 enzymes produced 

by the colonic human symbiont B. thetaiotaomicron to hydrolyse arabinose-

containing polysaccharides. A sister project with similar aims led to very similar 

findings, showing that the soil saprophyte C. japonicus has many GH43 enzymes 

with a weak xylanase activity and some with well-defined activities against arabinan 

(McKee et al 2011). While C. japonicus does not possess the organisational PUL 

system, genomic locations of many of the GH43 genes, in concert with newly 

described activity data have provided insight into carbohydrate-based metabolic 

pathways, most notably the arabinan degradative pathway. 

In C. japonicus the α-1,2-L-arabinofuranosidase CjAbf43A, a homologue of Bt0369, 

converts the double substitutions into single O3 linked decorations, which are then 

removed by an extracellular, membrane associated GH51 arabinofuranosidase 

(Beylot et al., 2001a). The linear arabinan generated is then hydrolysed exclusively 

to arabinotriose by an endo-processive arabinanase (McKie et al., 1997). The 

trisaccharide is metabolised, likely in the periplasm, by a GH43 α-1,5-exo-
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arabinanase that displays a moderate preference for arabinotriose. The arabinobiose 

generated is transported into the cytoplasm, where it is hydrolysed by a second 

GH43 α-1,5-exo-arabinanase that appears to display a preference for the 

disaccharide.  

As described above and illustrated in Figure 3.26, a different pathway is followed by 

the proteins of PUL 7 in B. thetaiotaomicron. The membrane-bound endo-

arabinanases Bt0360 and Bt0367 respectively cleave those regions of the 

polysaccharide backbone which are relatively more and less decorated. The α-1,2-L-

arabinofuranosidase Bt0369, which is predicted to be a periplasmic enzyme, then 

works in concert with two GH51 enzymes to remove side-chains and generate linear 

arabinooligosaccharides. 

As discussed previously, the double substitution found in arabinan is inhibitory to 

most α-L-arabinofuranosidases which are specific for singly substituted arabinose 

decorations. Thus, the hydrolysis of one of the linkages in these double substitutions 

is an early feature of arabinan metabolism which increases substrate access for 

downstream enzymes. Indeed, it is interesting that while C. japonicus and B. 

thetaiotaomicron have adopted different strategies to hydrolyse the arabinan 

backbone, the two bacteria utilise the same debranching activity to cleave double 

substitutions, a critical early stage of the degradative hierarchy.  

3.6.2 Expansion of glycoside hydrolase family 43 

In total, soluble protein was obtained for twenty-five of the thirty-one GH43 enzymes 

encoded by the B. thetaiotaomicron genome. Each was subjected to activity screens, 

the results of which are summarised in Table 3.4. A sister project obtained soluble 

protein for eleven of the thirteen GH43s expressed by Cellvibrio japonicus. 

In summary, ten of the B. thetaiotaomicron GH43s expressed in a soluble form in E. 

coli showed no measurable activity against any of the polysaccharide or aryl 

glycosides tested. Eleven showed a weak endo-xylanase activity against xylan 

polysaccharides with a variety of arabinofuranosyl branching patterns (wheat 

arabinoxylan, rye arabinoxylan, oat spelt xylan and birchwood xylan). Three of these 

enzymes (Bt2852, Bt3094 and Bt3655) also showed activity against 4NP-α-L-
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arabinofuranoside and arabinose appears to be a significant product in arabinoxylan 

degradation by these GH43s (Figures 3.10 and 3.11). Two of the GH43s (Bt0360 

and Bt0367) were shown to be endo-arabinanases while Bt0369, and a homologue 

from C. japonicus, display a novel α-1,2-L-arabinofuranosidase activity. 

  3.6.2.i Phylogenetic analysis of GH43s 

The B. thetaiotaomicron and C. japonicus GH43 proteins were subjected to 

phylogenetic analysis. An alignment of all of the sequences was performed using 

ClustalW. The analysis incorporated selected enzymes from other organisms with 

known activities. These were:  

- HiAXHd3 and BaAXHd3, which cleave α1,3 linked arabinose residues 

from double substitutions in arabinan and arabinoxylan (Lambertus et al., 

2005) 

- GsXynB3, a β-xylosidase (Brux et al., 2006) 

- BsAXHm2,3, an arabinoxylan-specific arabinofuranosidase which cleaves 

the single substitution (Vandermarliere et al., 2009) 

- SAVAraF43A, an exo α-1,5-L-arabinofuranosidase (Fujimoto et al., 2010) 

- BsArb43A (Proctor et al., 2005) and GsAbnB (Alhasid et al., 2009), endo-

acting arabinanases 

- CjArb43A, an endo processive-arabinanase (Nurizzo et al., 2002) 

- PpXyn43A (Gosalbes et al., 1991) and UXOrf66 (Zhao et al., 2010), which 

display xylanase activity. 

Most of these published enzymes are very well characterised, many with crystal 

structures in complex with one or more ligands.  An exception is PpXyn43A, until 

recently the only published GH43 xylanase (Gosalbes et al., 1991). This activity was 

demonstrated by zymography, a highly sensitive but non-quantitative electrophoretic 

technique for detecting enzyme activity which utilises a modified version of the 

protocol for SDS-PAGE, incorporating substrate in the polyacrylamide gel. The 

zymogram showed a very faint halo, indicating weak xylanase activity. The enzyme 

was also shown to have activity against 4NP-α-L-arabinofuranoside. The xylanase 

UXOrf66, from an uncultured bacterium, was identified by metagenome screening 

(Zhao et al., 2010). Evidence for xylanase activity in this case is more compelling, as 
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it is derived from comprehensive analysis by reducing sugar (DNSA) assay. The 

enzyme also shows lesser activity on 4NP-α-L-arabinofuranoside and 

carboxymethyl-cellulose. 

The phylogeny, presented in Figure 3.27, shows that newly described GH43s 

displaying endo-arabinanase and α-1,5-exo-arabinanase activity are in clades with 

previously described enzymes that exhibit similar activities. By contrast, and 

consistent with their novel activity, the well characterised α-L-1,2-

arabinofuranosidases CjAbf43A and Bt0369 formed a clade that contains no other 

enzymes with known catalytic properties. As one particular amino acid (Asn165 in 

CjAbf43A and Asn186 in Bt0369) has proven to be a critical determinant of this 

specificity, as discussed above, it should be possible to identify other enzymes with 

this specificity by the presence of this residue. Indeed, a Clustal alignment of the top 

30 homologues of Bt0369, as identified by Blast search, reveals that all possess this 

Asparagine residue. It is likely that at least some of these enzymes share the same 

specificity for O2-linked arabinose side chains in arabinan. 

As B. thetaiotaomicron is unable to grow on xylan (Cooper et al., 1985; Tannock, 

1977), and the genome of the bacterium does not encode GH10 or GH11 xylanases, 

it is interesting that so many GH43 enzymes with apparent xylanase action have 

been retained. It may be that for at least some of these enzymes, particularly where 

the xylan degradation is the only activity identified, that the correct substrate has 

simply not been identified in this study. In this case, the unidentified activity is 

presumed to be the primary function of the enzyme, with the xylanase action a weak 

side activity. 
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Figure 3.27 Phylogenetic tree of GH43 proteins. 

Those enzymes highlighted with boxes, for example CjArb43A, are previously published examples of 

activities. Enzymes are colour coded according to activity, as shown in the figure. Enzymes described 

in this project largely cluster with previously characterised examples of the same activity. The novel α-

1,2-L-arabinofuranosidases are highlighted with a red box; they are in a clade with no other enzymes. 
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Interestingly, the many enzymes displaying “trace” xylanase activity are not clustered 

into a specific region of the phylogenetic tree, suggesting that this minor activity may 

be a generic feature of GH43. Until recently, a GH43 from Paenibacillus polymyxa 

was the only published xylanase from the family. The evidence for this activity is 

rather weak, based on a faint band on zymogram, and may reflect the trace xylanase 

activity commonly seen in GH43, as a second look reveals that this study shows 

accord with the results presented in this chapter. The publication identifies 

PpXyn43A as a novel type of xylanase with some arabinofuranosidase activity. 

Despite the limitations of the methodological approach to this work, it does have 

resonance with dual activity GH43s identified in the work presented in this chapter, 

particularly the enzyme Bt2852 (Figures 3.10 and 3.11), which is capable of 

degradation of the xylan backbone and removal of arabinose side chains. It seems 

likely that PpXyn43A should be classified similarly to Bt2852, as an 

arabinofuranosidase with weak xylanase activity.  

The apparently wide-spread weak xylanase activity in the family is interesting. One 

might speculate that an ancestral GH43 enzyme displayed significant xylanase 

activity, the capacity for which is retained in the family-wide β-propeller fold. Over 

time, cell wall degrading organisms acquired GH10 and/or GH11 xylanase enzymes 

(Gilbert, 2010; Gilbert et al., 2008; Henrissat et al., 1995; Tull and Withers, 1994; 

Wicki et al., 2007), which are much more efficient and operate via different substrate 

binding modes and catalytic mechanisms to the GH43s. Thus, as new specificities 

were introduced into the GH43 fold by the development of pocket and cleft 

topologies, the endogenous capacity to hydrolyse xylan in an efficient manner was 

lost. Bt2852 in particular provides an interesting example of this, as an enzyme 

which weakly hydrolyses the xylan backbone while displaying moderate 

arabinofuranosidase activity against artificial substrates (4NP-α-L-arabinofuranoside) 

and against xylan polysaccharides (Figures 3.10 and 3.11). Bt2852 is defined as an 

arabinoxylan-specific arabinofuranosidase (AXH) of unknown specificity for 

arabinose substitution with vestigial xylanase activity. As discussed earlier, the GH43 

PpXyn43A is likely highly similar in action to Bt2852, although the nature of the 

arabinofuranosidase activity is unclear as it was only demonstrated on 4NP-α-L-

arabinofuranoside, and not on any arabinose-containing polysaccharides. This 
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theory is explored again in later chapters, as a single mutation to the active site 

pocket of an arabinoxylan-specific arabinofuranosidase is shown to introduce endo-

xylanase activity while retaining wild-type specificity. 

A crystal structure of a weak xylanase (with no apparent additional activities), Bt2895 

(PDB 3KST, unpublished), was deposited in November 2010. As Figure 3.28 shows, 

the protein comprises solely the canonical GH43 β-propeller domain, at the heart of 

which is a shallow cleft that houses an active site pocket containing the three 

catalytic residues. The shallow nature of this cleft, assumed to be the site of 

polysaccharide binding, may explain the weak activity of the enzyme. However, this 

apparent cleft does not overlay with xylotetraose taken from the crystal structure of 

BsAXHm2,3; the ligand in fact lies perpendicular to the cleft. The unexpected 

orientation of the substrate binding cleft in Bt2895 may explain the very weak nature 

of the activity of this enzyme. 

 

Figure 3.28 Crystal structure of Bt2895. 

A: cartoon representation of Bt2895 ramped from blue (N-terminus) to red (C-terminus) with the 

catalytic residues shown in stick form and coloured red. The molecule does appear to be stabilised by 

„molecular velcro‟, as blades from the first and fifth blade of the β-propeller interact closely. 
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B: surface representation of the protein with catalytic residues highlighted in red shows a shallow 

active site pocket. A surface cleft, highlighted in yellow, is also apparent. This would appear to be a 

polysaccharide binding cleft. However, when xylotetraose taken from the crystal structure of 

BsAXHm2,3 is overlaid with Bt2895, a significant clash is observed. 

  3.6.2.ii Inactive enzymes 

It should be noted that ten of the twenty-five recombinant proteins from B. 

thetaiotaomicron obtained in soluble form displayed no biologically significant 

enzyme activity in the screens described in this chapter. It is possible that, through 

redundancy, there was no requirement for the bacterium to retain functional forms of 

these enzymes. Alignment of these enzymes showed that six lack one or more of the 

catalytic residues (Bt3467, Bt3515, Bt1873, Bt0264, Bt2959 and Bt3685); this 

provides support for the view that they are not catalytically active. This view is further 

illustrated by the structure of Bt2959 (PDB 3NQH, unpublished, deposited June 

2010), which shows that the protein lacks the canonical catalytic base. In addition, a 

long loop from the non-catalytic module in the β-propeller completely blocks the 

putative active site of Bt2959 (Figure 3.29). Analysis of this structure seems to 

confirm biochemical data to suggest that this is not an active enzyme. As Bt2959 is 

not found in a PUL in the B. thetaiotaomicron genome, it is unlikely that the protein 

has a biological role as a glycoside hydrolase, or that it is even expressed by B. 

thetaiotaomicron in nature. Why the gene persists in the genome is unclear. It seems 

likely that other GH43s lacking activity and catalytic residues may also not be 

biologically active. However, it is also possible that for those enzymes which do 

possess the expected catalytic residues, which display no apparent activity (Bt0145, 

Bt0265, Bt2912 and Bt3516), the appropriate substrate was simply not evaluated in 

this study.   

 



[150] 

 

 

 

 

Figure 3.29 Crystal structure of Bt2959. 

A: the cartoon representation shows that Bt2959 comprises the β-propeller module and a secondary 

β-sandwich type module. Amino acids shown in stick form (coloured red) are candidates for the 

general acid and pKa modulator; no general base is apparent in the active site.  

B: a surface representation shows that the active site of the β-propeller domain (blue) is blocked by a 

loop projecting from the β-sandwich domain (green).    
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C: a cartoon representation of the β-propeller domain of Bt2959 shows how the catalytic base is 

pushed away from the active site by a loop, shown in red. 

A closer look at the sequences of those GH43s which apparently lack the catalytic 

base by sequence alignment suggests that for some, the relevant Aspartate may be 

present but is in a sub-optimal location for catalysis due to the insertion of a ten 

amino acid loop (Figure 3.29). This loop is seen in five GH43s: Bt2959, Bt0265, 

Bt3683, Bt2112 and Bt3685, and is quite highly conserved, as all contain the amino 

acid sequence INAHG. All but Bt3683 were expressed in soluble form and assayed 

against polysaccharides. Only Bt2112 showed any activity, and this enzyme was one 

of the weakest xylanases. This would suggest that this loop disrupts the critical 

catalytic base, forcing it into a very unfavourable conformation, which has the effect 

of inactivating the enzyme. 

The expansion of GH43 enzymes in microorganisms from very varied habitats points 

to a complex array of specificities within this family. Through the analysis of GH43s 

from B. thetaiotaomicron and C. japonicus some definable activities have been 

described, but a function could not be assigned for many of the proteins. This may 

partly reflect the loss in activity in these proteins due to functional redundancy. It is 

also possible, however, that the function of active enzymes could not be assigned as 

the substrates for these biocatalysts were not used, or the activities of these GH43s 

are only apparent when they are acting in synergy with other degradative enzymes.  

Despite the problems in assigning functions to all the GH43 proteins, the data 

presented here indicate that the main chain of arabinan, a target substrate for 

numerous GH43 enzymes, is degraded by an endo and exo mechanism in the gut 

symbiont and soil saprophyte, respectively. Although distinct, the mechanisms of 

arabinan degradation in the two bacteria display an element of convergence; both B. 

thetaiotaomicron and C. japonicus remove O2-linked arabinose decorations, in the 

context of single or double substitutions, through the action of an arabinan-specific 

-1,2-arabinofuranosidase, an activity that has not previously been reported. The 

biological rationale for such an activity likely reflects the capacity of the enzyme to 

convert double substitutions into single decorations, which will then be accessible to 

the GH51 arabinofuranosidases, which are expressed by these bacteria. The crystal 

structure of CjAbf43A reveals several topological features, such as a curved 
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substrate binding cleft, a shelf-like structure adjacent to the active site, and the 

targeting of the only asymmetric oxygen in arabinan, which confer the specificity 

displayed by the enzyme. The arabinan- -1,2-arabinofuranosidase activity 

identified here will add to the toolbox of biocatalysts and probes required to 

deconstruct and understand the molecular architecture of plant cell walls. 
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CHAPTER FOUR 

Structure and specificity of the Humicola insolens GH43 α-L-

arabinofuranosidase, HiAXHd3 

The complexity and recalcitrance of the plant cell wall is demonstrated by the 

structure of xylan polysaccharides (Mohnen, 2008a), which are components of the 

hemicellulosic portion of the wall. Xylan consists of a β-1,4-xylopyranose backbone 

that is heavily decorated. L-arabinofuranose residues can decorate backbone xylose 

residues at one or both of the available hydroxyls (Viëtor et al., 1994). Such a 

complex substrate requires a consortium of enzymes for complete degradation, 

beginning with de-branching enzymes, particularly arabinofuranosidases, and 

culminating in cleavage of the backbone by endo-acting xylanases. A similar 

situation applies in the case of the pectic polysaccharide arabinan where, again, 

removal of the α-1,2- and α-1,3-linked arabinose side chains by 

arabinofuranosidases is required before endo-acting arabinanases can efficiently 

hydrolyse the arabinan backbone, which comprises α-1,5-L-arabinofuranose units 

(Gilbert, 2010).  

The majority of arabinofuranosidases are found in glycoside hydrolase (GH) families 

GH43, GH51, GH54 and GH62 (Henrissat and Bairoch, 1996). The GH51 and GH54 

enzymes display specificity for single arabinose decorations (i.e. O2 or O3 linked) in 

both arabinan and xylan (Beylot et al., 2001b). GH62 arabinofuranosidases, which 

are specific for arabinoxylans, also hydrolyse single O2 or O3 linked arabinose 

residues (Beylot et al., 2001b) (Kellett et al., 1990).  

The GH43 arabinofuranosidases which have been evaluated against polysaccharide 

substrates (see Chapter Three) target single arabinose units (linked O2 or O3) in 

arabinoxylans (designated AXHm2,3 (Vandermarliere et al., 2009)), or, more rarely, 

release O3 linked arabinosyl residues that are components of double substitutions 

(xylose residues decorated at both O2 and O3 with arabinose); these enzymes are 

defined as AXHd3 (Sorensen et al., 2006) . 
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Figure 4.1 The pseudosymmetrical substrates of AXHd3 enzymes. 

A: xylopyranosyl backbone residue of arabinoxylan, doubly substituted with two arabinofuranosyl 

residues at positions O2 and O3. This represents the „core‟ substrate of AXHd3 enzymes. The α-1,2 

and α-1,3 linkages are highly flexible, so the orientation of the arabinose residues is not fixed. Figure 

generated using the Glycam Biomolecule Builder (www.glycam.org; Kirschner et al., 2008). 

B: the backbones of xylan (green) and arabinan (cyan) polysaccharides adopt very different structural 

conformations. Xylotetraose is taken from the crystal structure of BsAXHm2,3 (PDB code 3C7E, 

(Vandermarliere et al., 2009)). Arabinohexaose is taken from the crystal structure of CjAbf43A (PDB 

code 1GYD (Nurizzo et al., 2002)). 

The double substitution remains a significant enzymatic challenge to efficient 

saccharification of plant cell wall polymers. Arabinofuranosidases able to remove 

single arabinose substitutions from xylan are numerous, while only two enzymes, 

both from GH43, are known to display AXHd3 activity. Both are highly specific and 

remove only the O3 linked arabinose from xylan. These enzymes are found in the 

gastrointestinal bacterium Bifidobacterium adolescentis (BaAXHd3 (Lambertus et al., 

2005, Laere et al., 1997)) and the thermophilic fungus Humicola insolens (HiAXHd3 
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(Sorensen et al., 2006)). BaAXHd3 has also been shown to release arabinose from 

arabinan (Lambertus et al., 2005), although it is unclear whether it retains specificity 

for double substitutions against this substrate. Sugar beet arabinan consists of an α-

1,5 linked L-arabinofuranose backbone that is ~60  % monosubstituted with α-1,3-L-

arabinofuranose side chains and, less frequently, with single α-1,2-L-arabinofuranose 

(Ragauskas et al., 2006). Some backbone residues are doubly substituted with both 

α-1,2 and α-1,3 side chains (Caffall and Mohnen, 2009). The core substrate for 

AXHd3 enzymes is essentially symmetrical (Figure 4.1), particularly so when 

considering the flexibility of the arabinose moieties, so the nature of the specificity of 

these enzymes is intriguing. 

AXHd3 arabinofuranosidases are potentially of biotechnological significance as the 

hydrolysis of doubly substituted xylose residues is a critical first step in the 

deconstruction of arabinoxylans.  Removal of the double substitution potentiates the 

action of other arabinofuranosidases, and complete de-branching of the 

polysaccharide allows for efficient backbone degradation by endo-acting enzymes. 

The clear utility of this unusual enzyme prompted a closer examination of the nature 

of specificity of HiAXHd3 through structural analysis, site-directed mutagenesis and 

biochemical study. The primary aim of the project described in this chapter was to 

understand the molecular basis for selection for the O3-linked arabinose in the 

pseudosymmetrical double-substitution structure. 

This chapter will present evidence for the specificity of HiAXHd3 against 

arabinoxylan and arabinan, with kinetic analysis of both activities. Biochemical 

analysis proceeded via a similar to that described for the GH43 enzymes of B. 

thetaiotaomicron in the previous chapter, beginning with overnight incubation with 

polysaccharide analysed by TLC and HPLC. Kinetic analysis was then undertaken 

using the galactose dehydrogenase-linked assay, to measure release of arabinose. 

To investigate the structural basis for the unusual specificity displayed by AXHd3 

enzymes, the crystal structure of HiAXHd3 was determined with and without 

appropriate ligands. The nature of specificity was examined through mutagenesis 

studies, which also led to an exploration of possible mechanisms by which novel 

substrate specificities can be introduced into HiAXHd3. 
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4. RESULTS 

4.1 Wild type activity 

The GH43 arabinofuranosidase HiAXHd3 was previously shown to hydrolyse α-L-

1,3-arabinofuranose residues from the backbone xylose units of arabinoxylan, which 

were substituted at both O2 and O3 (Sorensen et al., 2006). To explore the 

biochemical properties of the enzyme in more detail the gene encoding HiAXHd3 

was synthesised by Blue Heron Biotechnology Inc. (USA) and inserted into the 

Escherichia  coli expression vector pET21(a) at the NcoI and XhoI restriction sites. In 

the original research on HiAXHd3 (Sorensen et al., 2006) the protein was expressed 

without tags in Aspergillus oryzae (Kauppinen et al., 1995). The E. coli derived 

HiAXHd3 construct utilised here carried a C-terminal His6-tag. The protein was 

purified to electrophoretic homogeneity by immobilised metal ion affinity 

chromatography (IMAC) (see Chapter Two, Section 2.2.21). Figure 4.2 shows a 

typical SDS-PAGE gel of the purification of the enzyme. The protein size was ~ 59 

kDa, consistent with the predicted molecular weight, and was the only major peptide 

following purification. 

An initial activity screen (Figure 4.3) indicated that HiAXHd3 released arabinose as 

the sole product from both wheat arabinoxylan and sugar beet arabinan, as had 

been shown for the corresponding Bifidobacter AXHd3 (Lambertus et al., 2005). To 

explore the specificity of this activity, samples were prepared for 1D and 2D NMR. 

NMR spectra of polysaccharides are very complex due to the high number of 

constituent monosaccharides and linkage types. The spectrum for arabinoxylan, 

which consists of two different sugar components (arabinose and xylose) was 

complicated by the presence of reducing end xylose residues from contaminating 

oligosaccharides of various lengths. Peaks for these reducing ends masked other 

peaks corresponding to arabinose side chains. These oligosaccharides were 

therefore removed by ethanol precipitation prior to analysis. Following removal of the 

reducing end peaks, the spectrum for arabinoxylan was clear and simple to interpret. 

Conversely, arabinan generates spectra which are difficult to interpret, as many 

different peaks overlap. Thus, it was not possible to determine the bond(s) cleaved 

by HiAXHd3 in arabinan as the NMR spectra of the polysaccharide were too 
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complex. This polymer was therefore subjected to partial acid hydrolysis 

(approximately 25 % of bonds were cleaved), and the oligosaccharides generated 

were enriched for substrates of HiAXHd3 by ethanol precipitation and subsequent 

concentration by lyophilisation. 

 

Figure 4.2 SDS-PAGE analysis of HiAXHd3 expression and purification. 

SDS-PAGE gel showing typical level of expression and elution profile of HiAXHd3 expressed in E. 

coli. Protein was expressed in Tuner cells with initial growth at 37 °C followed by induction and 

overnight growth at 16 °C. M1 and M2 are size markers of peptides of known sizes (kDa). Sizes of 

standards in M1 are shown on the gel. Those in M2 are of sizes 24, 45, 66, 97.4, 116 and 205 kDa, 

beginning at the bottom of the gel. The bulk of the protein eluted in 100 mM imidazole fractions. 

As for those experiments described in Chapter Three, NMR analysis of HiAXHd3 

was performed and interpreted by Maria Peña at the CCRC. For analysis by NMR, 

HiAXHd3 was incubated with wheat arabinoxylan or arabinooligosaccharides 

generated from arabinan. Substrate at 2 mg ml-1 was incubated with enzyme at 100 

nM at 37 °C for 16 hours; control reactions without enzyme were also prepared. 

Water was removed from the samples, after incubation, by lyophilisation. 

Immediately prior to NMR analysis, samples were resuspended in a small volume of 

D2O by M. Peña.  
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Consistent with HiAxHd3 expressed from Aspergillus, NMR analysis showed that the 

E. coli form of the enzyme released arabinose from doubly substituted xylose 

residues in wheat arabinoxylan, Appendix E. The signals corresponding to the 

anomeric protons of α-L-arabinose residues linked at the O2 and O3 position to 

doubly substituted xylose residues  are present in the spectrum of arabinoxylan prior 

to enzyme treatment, but were absent after the polysaccharide was incubated with 

HiAXHd3. A signal diagnostic for an α-L-arabinose linked at the O2 position to singly 

substituted xylose residues, was only present in the spectrum of arabinoxylan after 

treatment with HiAXHd3. These results indicate that xylosyl residues decorated at 

O2 with arabinose were not present in untreated arabinoxylan but were generated by 

enzymatic hydrolysis of the α-L-arabinose residue linked at O3 to double substituted 

xylose units. 

1D-NMR analysis of the arabinooligosaccharide samples was difficult to interpret due 

to the complexity of the spectra, so 2D-NMR was performed to aid with assignation 

of peak identities. Analysis of the spectrum of the arabinan oligosaccharides after 

incubation with HiAXHd3 (Appendix E) showed that the signal diagnostic of the 

doubly substituted residues disappeared. However, signals corresponding to the α-

1,5 linked L-arabinofuranose residues substituted at O2 were more intense after 

treatment with the HiAXHd3 enzyme. Signals for the α-1,5 linked L-arabinofuranose 

residues substituted at O3 remained unchanged after enzyme treatment. These data 

showed the signals corresponding to the anomeric protons of arabinose units that 

were substituted at both -L-arabinose residues 

attached to O2 of 2,3,5 linked arabinose (backbone arabinose units that are doubly 

substituted), were lost after enzyme treatment. There was increased intensity of the 

signals corresponding to the anomer -L-arabinose residues that have a 

single O2 substitution, and arabinose units linked O2 to the arabinan backbone. 

These data show that Hi -1,3-arabinose linkages 

in arabinose moieties that are substituted at both O2 and O3. It is likely, therefore, 

that the Bifidobacterium AXHd3 will also target the 1,3 linkage in backbone 

arabinose units that are doubly substituted. 
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Figure 4.3 HPLC showing products generated by HiAXHd3 incubation with wheat arabinoxylan 

and sugar beet arabinan. 

HPLC chromatograms confirm activity of HiAXHd3 against two substrates. These traces show that 

one product, arabinose, is released from wheat arabinoxylan and sugar beet arabinan upon 

incubation with HiAXHd3. The reaction product was identified by co-migration with arabinose 

(Megazyme). 
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A continuous arabinose detection assay (galactose dehydrogenase assay, see 

Chapter Two, Section 2.3.4) was used to determine the kinetics of HiAXHd3 action 

against a range of polysaccharide substrates. Consistent with the NMR data, the 

enzyme showed no act -L-1,5-arabinose 

backbone is not decorated. The data, Table 4.2, showed that the enzyme was highly 

active against wheat arabinoxylan and indeed its KM is around 10-fold lower than 

other enzymes that deconstruct arabinoxylans (xylanases and arabinofuranosidases 

active against monosubstituted arabinose residues (Beylot et al., 2001a)). Kinetic 

analysis of HiAXHd3 activity against sugar beet arabinan is also presented. The 

catalytic efficiency (kcat/KM) for arabinoxylan is ~3.7 times that for arabinan. 

Substrate kcat (min-1) KM (M) kcat/KM (min-1 M-1) 

Wheat arabinoxylan 1.0 x 104 ± 1.3 x 103 3.5 x 10-4 1.4 x 10-4 2.9 x 107 

Sugar beet arabinan 1.7 x 103 ± 1.1 x 102 1.3 x 10-4 ± 2.5 x 10-5 1.4 x 107 

Table 4.2 Kinetic analysis of wildtype HiAXHd3 against wheat arabinoxylan and sugar beet 

arabinan. 

Reactions were performed in triplicate to obtain Standard Error of the Mean (SEM). Effective 

substrate concentration in units of M was obtained from concentration of polysaccharide (mg ml
-1

) by 

submitting the polysaccharides to complete degradation by HiAXHd3. The final absorbance was used 

to calculate the concentration of target arabinose residues (O3-linked arabinose in the double 

substitution) in 1 mg of polysaccharide. Wheat arabinoxylan contains 4.61 x 10
-4

 moles of target 

arabinose per milligram. Sugar beet arabinan contains 1.84 x 10
-4

 moles of target arabinose per 

milligram. 

4.2 Wildtype structure 

Non-tagged HiAXHd3 was expressed in Aspergillus and deglycosylated by 

Novozymes. The protein was exchanged into water and concentrated to 15 mg ml-1.  

Four preliminary crystal screens were set up and incubated at 20 °C. Crystals grew 

in several conditions within one week in the Qiagen PACT screen and were 

optimised by manipulation of mother liquor components. All crystals were of a long 

three-dimensional needle shape (Figure 4.4). Optimum growth was found in 22 % 

PEG-1500 and 1 M MMT buffer (pH 7.0). A full dataset was collected on an in-house 
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generator at Newcastle University to a resolution of 1.6 Å. The crystal indexed to 

space group P1 21 1.   

 

 

 

 

 

 

Figure 4.4 Crystals of deglycosylated untagged wildtype HiAXHd3 expressed in an Aspergillus 

system.  

Crystals shown were grown in 22 % PEG-1500 and 1 M MMT buffer (pH 7.0). Maximum growth was 

obtained within one week of incubation at 20 °C. 

As no suitable homologous search model was available for molecular replacement, a 

heavy atom technique was employed to solve the structure of HiAXHd3. A 

selenomethionine derivative protein was expressed in E. coli strain B834, a 

methionine auxotroph. Cells were incubated at 37 °C prior to induction and overnight 

growth at 16 °C. Expression of the selenomethionine derivative was roughly 

comparable to wildtype expression in Tuner cells and Figure 4.5 shows that IMAC 

purification was successful. Purity and homogeneity were further improved by 

subsequent anion exchange chromatography and gel filtration (Figure 4.5) using an 

FPLC system (see Chapter Two, Section 2.2.21). After pooling all pure fractions, the 

protein was exchanged into molecular biology grade water (Sigma) and concentrated 

to 20 mg ml-1. The protein was placed in three 96-condition crystallisation screens 

(Qiagen) and incubated at 20 °C. Precipitation could be observed in some conditions 

after three-four days, and crystals began to appear within a week in several 

conditions. Optimal growth was obtained in 20-22 % PEG-3350, 0.1 M Bis-Tris (pH 

6.5) and 2 M ammonium sulphate. 
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The crystal structure of HiAXHd3 was solved using selenomethionine single 

wavelength anomalous dispersion data obtained at the Diamond Light Source 

synchrotron to a resolution of 1.85 Å, in harness with native data to 1.6 Å (see 

experimental statistics in Table 4.3). The selenomethionine structure was solved 

according to the method described in Chapter Two, Section 2.4.6.i. The crystals 

were in the P1 21 1 space group and contained two molecules in the asymmetric 

unit. The ShelxCDE suite of programmes (Sheldrick, 2008) was used to detect the 

anomalous signals of the selenium-containing residues, and these signals were used 

to calculate structure phases. After phase extension and improvement, the protein 

structure was built using the Buccaneer programme (Cowtan, 2006). The structure 

had final Rwork and Rfree values of 16.47 % and 20.95 %, respectively. The structure 

consisted of 525 amino acids and 1064 water molecules. The N-terminal residue 

Gln27 was disordered, displaying no electron density and thus was not included in 

the final model.  HiAXHd3 consists of two distinct domains that are linked by a 

flexible linker sequence, Val329 to Gly338. The linker was disordered in crystal, 

yielding weak density for the side chains, leading to somewhat higher B values for 

these residues. The two domains in HiAXHd3 make extensive interactions. 
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Figure 4.5 SDS-PAGE analysis of expression and purification of selenomethionine HiAXHd3 

and subsequent crystallisation of the protein. 

Gels showing typical expression/purification profile (A) and subsequent gel filtration (B) of the 

selenomethionine derivative of HiAXHd3, expressed in E. coli cells, strain B834. 

C: crystals of the His-tagged selenomethionine protein were typically thin needles, smaller than seen 

for the non-tagged native protein. 

The N-terminal domain, consisting of residues 27-328 in the full length protein, 

displays a five-bladed β-propeller fold, typical of GH43 enzymes. It has a cylindrical 

shape with a diameter and height of ~45 Å. The HiAXHd3 propeller is based upon a 

5-fold repeat of blades that adopt the classical “W” topology of four anti-parallel β-

strands that comprise a β-sheet. The blades are radially arranged from the centre of 

the propeller. Within each blade, particularly in the 5th blade, the β-strands are highly 
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twisted with respect to their neighbours, resulting in an angle of approximately 90 o 

between the first and last β-strand of each blade. The N-terminal domain contains a 

single disulphide bond between Cys163, in the loop connecting blades 2 and 3 and 

Cys125 in blade 2. In some proteins that display a five-bladed β-propeller fold, the 

fifth blade consists of strands from the N and C terminus, closing the β-propeller in 

what is termed „molecular velcro‟, which appears to provide considerable 

stabilisation to the fold (Neer and Smith, 1996). This is not present in HiAXHd3, 

where the fifth strand comprises only β-strands from the C-terminal sequence of the 

domain, so that the propeller fold is not „closed‟ by the fifth blade. The N- and C-

terminal blades of the enzyme are, however, in close association and stability is 

provided by strong hydrogen bonds between Arg47 in blade 1 and Asp280 in blade 

5. In addition, a small anti-parallel β-sheet consisting of the N- and C-termini, which 

is distinct from the β-propeller structure, is likely to also stabilise the overall fold of 

the domain. For this small β-sheet, the N-terminal β-propeller domain donates 

residues 30-33 to form one strand, while the second strand comprises residues 324-

326, which lie immediately upstream of the inter-domain loop (Figure 4.6). 

The C-terminal domain, extending from residues 339-558 in the full length enzyme, 

displays a canonical β-sandwich fold. The convex β-sheet consists of β-strands in 

the order β-1, β-2, β-12, β-4, β-9 and β-10, while the order of the β-strands in the 

concave β-sheet is β-3, β-11, β-5, β-6, β-7 and β-8. A solvent-exposed shallow cleft 

is presented at the interface between the two domains, Figure 4.7. The N-terminal β-

propeller domain provides the bulk of the cleft, primarily blades 4 and 5 and their 

associated loops. One of the faces of the cleft, however, is presented by 

components of the C-terminal domain; the loop connecting β-strands 9 and 10, and 

the central region of the extended loop that joins β-strands 10 and 11 (Figure 4.7).  
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Figure 4.6 Representations of the structure of selenomethionine HiAXHd3.  

A: electron density fit in a representative region of the structure. The figure displays the weighted 

maximum likelihood Fobs – Fcalc map in blue mesh. The map is contoured to 1.0 ζ. 

B: surface representation of the enzyme coloured to indicate the separation between the catalytic 

domain (blue) and the C-terminal domain of unknown function (red). 

C: cartoon representation of the secondary structure of HiAXHd3. The β-propeller fold of the catalytic 

domain (N-terminal, coloured blue to green) and the β-sandwich fold (C-terminal, coloured yellow to 

red) are visible. 
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Figure 4.7 Structural representations of HiAXHd3, focussing on the region of the active site.  

A: surface representation of the enzyme. The polysaccharide binding cleft (viewed side-on) is built 

from the N-terminal (blue) and C-terminal (red) modules of the protein. 

B: cartoon representation of the enzyme with Tris in the active site highlights the locations of the 

catalytic residues within the β-propeller. The catalytic residues are shown in stick form and coloured 

red. 

C: surface representation of the active site of HiAXHd3 shows the two layered pocket structure of the 

active site. The active site of the pocket, which houses a Tris molecule, is indicated by the yellow 

residues, while the secondary pocket is shown by the magenta residues.  
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In the central region of the cleft is a heart shaped depression that consists of a shelf-

like structure abutted to a relatively shallow pocket, Figure 4.7. Strong density for a 

single molecule of Tris, the buffer used in crystallisation, is present within this pocket 

in both molecules in the asymmetric unit (Figure 4.7). The pocket houses a 

constellation of carboxylate residues (Asp42, Asp166 and Glu215) which are 

invariant within GH43, and have been shown to comprise the catalytic amino acids in 

several members of the family (Brux et al., 2006; Nurizzo et al., 2002; Proctor et al., 

2005). Asp42 is the general base and Glu215 is the general acid. Asp166 is believed 

to play a role in modulating the pKa of the general acid and orienting the catalytic 

residue and substrate to facilitate catalysis. To confirm the identity of the catalytic 

residues, which were also pinpointed by sequence alignments with previously 

characterised enzymes, all three amino acids were mutated to Alanine by site-

directed mutagenesis. All mutants were inactive against wheat arabinoxylan and 

sugar beet arabinan, supporting the view that these three acidic residues comprise 

the catalytic apparatus of HiAXHd3. 

4.3 Ligand crystallography 

To further explore the mechanism of substrate recognition in HiAXHd3, the crystal 

structure of the enzyme in complex with an appropriate substrate was sought. An 

oligosaccharide ligand was generated by partial digestion of wheat arabinoxylan with 

the GH10 xylanase CjXyn10A (Harris et al., 1996). Figure 4.8 comprises HPLC 

chromatograms showing the product profile of this reaction. 

Arabinoxylooligosaccharide (AXOS) substrates for HiAXHd3 were identified by 

adding the enzyme to a small amount of the saccharide mixture and observing shifts 

in the HPLC peaks (Figure 4.8). The figure shows that GH10 degradation of the 

polysaccharide yields a range of peaks, including one at ~22 minutes retention time. 

Upon subsequent addition of HiAXHd3, this peak shifts to ~15 minutes, and this is 

accompanied by the appearance of a peak at ~3 minutes, identified as arabinose by 

co-migration with a standard. Thus, it would seem that the product which elutes at 22 

minutes is a target for hydrolysis by HiAXHd3. After long-chain polysaccharide was 

removed by ethanol precipitation (65 %), the desired product was purified by size 

exclusion chromatography on a P2 biogel column. Figures C.1 and C.2 in Appendix 

C show the results of this purification as analysed by TLC. Fractions were tested for 
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HiAXHd3 substrate by incubation with the GH43 enzyme followed by an arabinose 

detection assay (arabinose/galactose dehydrogenase). Fractions containing the 

appropriate AXOS substrate were those where HiAXHd3 released arabinose; these 

were pooled and concentrated by lyophilisation. 

To obtain a substrate-bound form of the enzyme in crystal, inactive forms of the 

protein were generated by site-directed mutagenesis. The mutants D42A and E215C 

were provided by Novozymes, again expressed in a non-tagged form in the 

Aspergillus system. Both mutants were exchanged into water and concentrated to 10 

mg ml-1. A crystal screen was set up for both proteins focussing on twelve conditions 

from the PACT screen which gave good results for the non-tagged unliganded 

wildtype protein (PACT 17, 29, 30, 31, 39, 40, 52, 53, 54, 63, 64, 65). The screens 

were set up in duplicate, with protein in the presence and absence of 

oligosaccharide ligand, respectively. No crystals grew for either mutant in the 

presence of ligand, suggesting that the oligosaccharides disrupted the formation of 

crystal contacts or altered protein solubility in the mother liquor. Observation of the 

wildtype structure indicated that solvent channels within the crystal lattice would 

permit entry of ligand. Therefore, as good quality crystals of small size were 

observed in all conditions without ligand, the conditions that gave the best crystals 

were optimised for use in ligand soaks. Optimum growth for D42A was found in 22.5 

% PEG-4000, 0.1 M HEPES buffer (pH 7.5) and 0.1 M sodium chloride. Optimum 

growth for E215C was found in 20 % PEG-4000, 0.1 M HEPES buffer (pH 7.5) and 

0.2 M sodium chloride.  
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Figure 4.8 HPLC chromatograms detailing the production and identification of a suitable AXOS 

ligand for HiAXHd3. 

Wheat arabinoxylan was degraded by GH10, generating a range of products of various sizes (red). 

Subsequent treatment with HiAXHd3 (blue) generated a large amount of arabinose (~3 minutes). An 

overlay of these profiles reveals that one red peak (at ~22 minutes) is not present in the blue profile, 

indicating that this is an AXOS which contains the double substitution targeted by HiAXHd3. This peak 

is indicated in the figure by a green arrow. Subsequent purification techniques were employed to 

isolate this product. 

In preparation for ligand soaking, the stability of crystals was tested by fishing and 

transferring to an „alternative mother liquor‟ of 27 % PEG-3350 and 0.1 M HEPES 

buffer (pH 7.5). Crystals tested in this way were very stable, remaining unchanged 

for the duration of the incubation period (fifteen minutes to two hours). For ligand 

soaks, a few milligrams of the purified AXOS were resuspended in as little mother 

liquor as possible. A 4 µl aliquot of this mixture was dispensed into a soaking tray 
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well, into which a fished crystal was placed. Crystals were monitored for stability 

under a microscope and were soaked for between fifteen minutes and two hours. 

Finally, crystals were fished with cryoprotectant containing ligand and snap frozen in 

liquid nitrogen. Datasets for soaked crystals were collected at the SER-CAT 

synchrotron; all were of resolution between 1.6 and 1.9 Å.  

In total, four datasets were collected on crystals soaked for 15 minutes, 30 minutes, 

one hour and two hours. All ligand-soak datasets indexed to space group P1 21 1, 

as did the wildtype crystals. Using the selenomethionine structure as the search 

model, these structures were solved by molecular replacement using the Phaser 

programme in CCP4. After extension of the electron density by several rounds of 

refinement in Refmac, density for sugar was found in the active site of only one 

crystal (see experimental statistics in Table 4.3). In D42A crystals that had been 

soaked with the ligand for 2 hours, clear electron density corresponding to xylotriose 

with a single arabinose side chain (Figure 4.9), linked O2 to the xylose at Xyl-2 (Xyl-

1 is the reducing end xylose, Xyl-3 is the non-reducing end xylose), was observed in 

the active site of both molecules in the asymmetric unit. Extremely weak electron 

density extending beyond the reducing and non-reducing end of the xylotriose 

molecule was observed, indicating that the ligand consists of a decorated 

xylopentaose unit, although the terminal residues could not be appropriately refined 

as xylopyranosides. The disordered structure of the terminal xylose molecules 

suggests that interactions of these sugar units with the enzyme are very weak. The 

backbone structure of the ligand is therefore defined as xylotriose.  
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  SelMet HiAXHd3 HiAXHd3/Araf-Xyl3 HiAXHd3/Araf2-Xyl 

 Space group P21 P21 P21 

 Wavelength 0.98 1.00 1.54 

 Unit cell a = 65.3 

b = 78.3 

c = 95.8 

α = 90.0 

β = 103.1 

γ = 90.0 

a = 65.4 

b = 52.9 

c = 146.9 

α = 90.0 

β = 101.7 

γ = 90.0 

a = 64.9 

b = 53.1 

c = 148.1 

α = 90.0 

β = 101.5 

γ = 90.0 

 Resolution 47.7-1.9 143.8-1.4 144.1-2.6 

 No. observations 139366 (20370) 426983 (61153) 82432 (12635) 

 No. unique observations 19083 (2731) 177611 (25617) 30444 (4418) 

 Multiplicity 7.3 (7.5) 2.4 (2.4) 2.7 (2.9) 

 Anomalous multiplicity 3.7 (3.8)   

 Completeness 100.0 (100.0) 99.2 (98.3) 98.5 (99.0) 

 Anomalous 

completeness 

99.6 (99.6)   

 Average I/sigma I 23.5 (11.4) 16.2 (9.8) 11.5 (7.3) 

 Rsym 0.072 (0.158) 0.084 (0.172) 0.074 (0.137) 

Refinement     

 No. reflections 80208 167521 28911 

 Rcryst 16.47 % 18.41 % 18.34 % 

 Rfree 20.95 % 21.83 % 27.83 % 

 No. atoms 9098 9306 8914 

Rmsd     

 Bond lengths 0.011 0.028 0.012 

 Bond angles 1.332 2.318 1.481 

Ramachandran     

 Favoured 95.46 % 95.73 % 94.27 % 

 Allowed 100.00 % 99.90 % 99.40 % 

B-factors     

 Wilson B 18.053 11.231 6.786 

 Main chain 16.321 8.356 6.207 

 Side chains and waters 19.576 13.615 7.306 

Table 4.3 Experimental statistics for three structure solutions of HiAXHd3. 
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Figure 4.9 Structure representations of the high resolution HiAXHd3/Araf-Xyl3 structure.  

A: surface representation of the enzyme-substrate complex show the O2-linked arabinose in the 

+2NR* pocket adjacent to the active site. The arabinose at +2NR* is coloured yellow to distinguish it 

from the green xylose residues of the ligand. Oxygen atoms in the ligand are coloured red. The 

catalytic residues of the enzyme are shown in red.  
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B: view of the electron density surrounding the oligosaccharide ligand. The figure shows the weighted 

2Fobs – 2Fcalc map (blue mesh) generated by refinements with the oligosaccharide included. The 

map is contoured to 1 ζ. Ligand subsites are identified on the figure. Oxygen atoms in the ligand are 

coloured red. 

A nomenclature system for identifying ligand subsites in glycoside hydrolases is 

widely used and is adapted from the system of Davies and colleagues (Davies et al., 

1997). According to this nomenclature, subsites are labelled –n to +n, where –n is at 

the non-reducing end of the substrate and +n is at the reducing end. Cleavage 

occurs between subsites -1 and +1. Using this nomenclature to identify the subsites 

in HiAXHd3 that bind to substrate, xylotriose occupies subsites +2NR to +2R with the 

arabinose positioned at subsite +2NR*, Figure 4.9. No arabinose moiety was 

observed in the active site (-1 subsite). The xylan chain is pseudo-symmetrical and 

fits equally well into electron density in the two opposite orientations. The orientation 

assigned was based on three criteria: the observed hydrogen bonds to solvent and 

protein from endocyclic O5 atoms (whose equivalent would be C5 in the reverse 

orientation), the behaviour of the crystallographic temperature factors after 

refinement, which showed discrepancies at C5 and O5 in the reverse orientation, 

and the requirement for O3 to be pointing into the active site (-1 subsite). The 

observed ligand represents one of the reaction products of HiAXHd3 action on wheat 

arabinoxylan, the other being free arabinose. The trapping of the reaction products in 

crystal, rather than substrate, likely reflects trace activity displayed by the mutant 

which was not observed in the spectroscopic assay over thirty minutes, but which 

was sufficient for hydrolysis to occur during a two hour incubation with highly 

concentrated substrate (ligand). However, as the ligand was not formally 

characterised prior to crystal soaking, by methods such as NMR or mass 

spectrometry, it may be that the oligosaccharide did comprise only the O2-linked 

arabinose, and that binding to this sugar residue was sufficient to allow the singly 

substituted substrate to bind the active site. 

More information about the specificity of HiAXHd3 would be obtained from a 

structure featuring an arabinose residue in the -1 subsite, so a second ligand 

structure was sought. The soaking method described above was employed with 

crystals of E215C but significantly shorter soak times were used, to minimise the 
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chance of hydrolysis. Although several crystals were soaked, again only one showed 

sugar in the active site. This structure was solved by molecular replacement using a 

dataset collected on an in-house generator at the University of Georgia to a 

resolution of 2.8 Å (Figure 4.10; see experimental statistics in Table 4.3). In crystals 

of E215C that had been soaked for 5 minutes, a xylose was located at the +1 

subsite, which was decorated with an α-L-arabinose at O2 that again was situated at 

the +2NR* subsite. Weak density was observed for an additional xylose residue at 

each end of the ligand, but this could not be properly refined. The full ligand is likely 

xylotriose with the double arabinose substitution, but weak interactions between the 

enzyme and the xylan backbone mean that the terminal xylose residues are 

disordered in the crystal structure. The ligand density was visible for only one of the 

two molecules in the asymmetric unit. An arabinose was also observed in the -1 

subsite of the E215C mutant, which is orientated to make an α-1,3-linkage with the 

xylose at +1, however, the distance between the two sugars is too long to represent 

a covalent bond, Figure 4.10 The saccharide observed in this structure represents 

the two reaction products generated by HiAXHd3. Together, the structures of the two 

enzyme variants in complex with the reaction products provide insight into how 

HiAXHd3 recognises its substrate. 
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Figure 4.10 Structure representations of the low resolution HiAXHd3/Araf2-Xyl structure.  

A: surface representations of the complex showing the arabinose residues buried in the pocket while 

the xylose (+1 subsite) stands proud of the protein surface. Catalytic residues are coloured red. The 

O2-linked arabinose is coloured yellow while the O3-linked arabinose (-1) in the active site is coloured 

blue. Oxygen atoms in the ligand are coloured red. 
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B: electron density surrounding the ligand. The figure shows the weighted 2Fobs – Fcalc map (blue 

mesh) generated by refinements with the oligosaccharide included. The map is contoured to 1 ζ. 

Ligand subsites are identified in the figure. Oxygen atoms in the ligand are coloured red. 

4.4 Mutagenesis studies  

Based on analysis of structures of HiAXHd3 with bound reaction products, several 

amino acids were identified as being potentially important in the specificity of the 

enzyme for arabinose bound at O3 in the context of a double substitution. The sugar 

at the -1 subsite (O3-linked arabinose) interacts with the catalytic residues Asp42, 

Asp166 and Glu215, as well as Arg296 and Gln272. The O2 arabinose at the +2NR* 

subsite makes polar contacts with the residues Arg296, His271 and Asp290 while 

Phe288 lies on the floor of the O2 binding pocket. In addition, Trp525 and Tyr165 

interact with the xylan backbone. These amino acids were each mutated to Alanine 

to assess the effects of the mutations on catalysis and specificity. As the hydroxyl 

group of Tyr165 makes a polar contact with the endocyclic oxygen of the xylose at 

the +2NR subsite, while the bulk of the phenolic side chain forms a wall of the active 

site pocket, this residue was also mutated to Phenylalanine (Y165F) and Tryptophan 

(Y165W) in order to disrupt substrate binding but maintain the structural integrity of 

the pocket. Figure 4.11 shows the locations of these residues.  

Each mutant was assessed by continuous arabinose release assay for activity 

against wheat arabinoxylan and sugar beet arabinan. Table 4.4 summarises the 

effects of each mutation on enzyme activity. Mutation of any residue of the catalytic 

triad completely inactivated the enzyme, as did mutation of the active site residues 

Arg296, Gln272 and Asp290. Mutation of the residues His271 and Phe288, located 

at the +2NR* subsite, led to a reduction in kcat with little or no change in KM. Mutation 

of the residues Tyr165 or Trp525, which contact the xylan backbone, again led to a 

reduced kcat with little or no change in KM. 
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Figure 4.11 Enzyme-substrate contacts in HiAXHd3.  

A: the cyan residues (Asp290 and His271) makes contact with the O2-linked arabinose (+2NR* 

subsite). The purple resides (Trp525 and Tyr165) contact the xylan backbone of the substrate. The 

O2 arabinose is shown in yellow while the xylotriose backbone is in green. 
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B: four residues make polar contacts with the O3-linked arabinose (-1 subsite). This arabinose is 

shown in blue while the amino acids (catalytic residues Asp42, Asp166 and Glu215, and Arg296) are 

shown in red. 

C: the schematic shows all contacts between the enzyme and substrate. The O3-linked arabinose (-1 

subsite is shown in magenta while the O2-linked arabinose (+2NR* subsite) is green. Hydrogen bonds 

are not shown to scale. 

It is possible that mutation of those residues with key roles in substrate specificity 

could lead to an altered specificity, or increased catalytic flexibility, perhaps allowing 

the enzyme to remove either O2 or O3 linked arabinose within the double 

substitution. Thus, the specificity of the mutants against wheat arabinoxylan was 

analysed by NMR. While it is likely that Arg296 and Asp290, as they bind to the O2-

linked arabinose, are important in specificity determination, the effects of their 

mutation could not be assessed, as neither mutant (R296A and D290A) was active. 

All mutants making contact with the arabinose residues displayed wildtype specificity 

and only W525A showed any change in specificity (Figure 4.12). Trp525 appears to 

be important in coordination of the xylan backbone via a stacking interaction and 

hydrogen bond with the endocyclic oxygen of the xylose at +2R (see Figure 4.9 for 

ligand subsite nomenclature). This mutant was shown by 1D NMR to cleave the O2 

linked arabinose from the double substitution (Figure 4.12). In the spectra for 

arabinoxylan incubated with wildtype enzyme, peaks corresponding to the single O2 

and O3-linked arabinose side chains are roughly equal in size (ratio 1:0.84), as 

cleavage of the double substitution has generated single O2 substitutions which are 

approximately as numerous as the pre-existing single O3 substitution. In the spectra 

for arabinoxylan incubated with the W525A mutant, the same profile is observed but 

the ratio of peak size for the single substitutions is around 1:0.47. This indicates that 

random cleavage of either arabinose residues in the double substitution by the 

mutant has produced both single O3 and O2 substitutions. Due to the large size of 

the peak for O3 linked arabinose in single substitutions, it could not be ruled out that 

W525A can also cleave the O3 from the double substitution. Thus, it appears that 

loss of backbone coordination by Trp525 allows the substrate (double substitution) to 

bind in either orientation, pointing either the O2 or the O3 linked arabinose into the 

active site (-1 subsite).  
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In short, the double substitution substrate of HiAXHd3 is oriented so that the O3-

linked arabinose points into the active site of the enzyme by interactions with the 

xylan backbone. In addition to Trp525, the residue Tyr165 also hydrogen bonds to 

the backbone. It is intriguing therefore that this Tyrosine appears not to be important 

to specificity. To better understand why Trp525 is important to specificity while 

Tyr165 is not, the structure of ligand-bound HiAXHd3 was analysed when the 

orientation of the ligand is flipped 180 °, so that the O2-linked arabinose points into 

the active site (Figure 4.13). Tyr165 is within range to form a hydrogen bond with the 

endocyclic oxygen of a xylose residue in both orientations of the ligand, indicating 

that this residue does not assist the enzyme in discriminating between the arabinose 

residues in the double substitution. Conversely, Trp525 makes a weak hydrogen 

bond to a xylose residue when the O3-linked arabinose is in the active site. In the 

other orientation Trp525 is too distant to the xylose to make any polar contact. The 

requirement for Trp525 to form a hydrogen bond is therefore the likely mechanism by 

which wildtype HiAXHd3 maintains specificity for the O3-linked arabinose of the 

double substitution. Loss of this hydrogen bond in the W525A mutant permits the 

substrate to enter the active site in either orientation. 
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Figure 4.12 1D NMR of HiAXHd3 wildtype and W525A variant wheat arabinoxylan reaction 

products.  

In the schematic, linkages within the polysaccharide (A-D) are labelled to correspond with peaks in 

the NMR spectra. The spectra represent assays performed using ethanol precipitated polysaccharide 

(Figure 4.4). Peaks corresponding to the anomeric protons of α-L-Araf residues C and B are present 

in the spectrum of arabinoxylan prior to enzyme treatment, but are absent after incubation. A peak 

corresponding to residue D is present only after treatment with HiAXHd3.  
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Figure 4.13 Trp525 and Tyr165 hydrogen bond to the xylan backbone. 

A: when the substrate is in the correct orientation to bring the O3-linked arabinose of the double 

substitution into the active site, both Trp525 and Tyr165 are within range to make a hydrogen bond 

with the endocyclic oxygen of a xylose residue. 

B: when the ligand is flipped horizontally so that the O2-linked arabinose points into the active site, 

Trp525 is no longer sufficiently close to hydrogen bond to the substrate. 
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  Wheat arabinoxylan Sugar beet arabinan 

 Subsite kcat  (min
-1

) KM (M) kcat/KM (min
-1

 M
-1

) kcat   (min
-1

) KM (M) kcat/KM      (min
-1

 M
-1

) 

Wildtype  1.0 x 10
4
 ± 1.3 x 10

3
 3.5 x 10

-4 
1.4 x 10

-4
 2.9 x 10

7 
 1.7 x 10

3 
± 1.1 x 10

2
 1.3 x 10

-4 
± 2.5 x 10

-5
 1.4 x 10

7 
 

D42A 

-1  

Inactive Inactive 

D166A Inactive Inactive 

E215A Inactive Inactive 

Q272A Inactive Inactive 

R296A Inactive Inactive 

H271A 

+2NR* 

11.0 ± 2.4 3.9 x 10
-4 

± 2.7 x 10
-4

 2.9 x 10
4
 3.2 ± 1.0 2.8 x 10

-4 
± 3.2 x 10

-5
 1.2 x 10

4
 

F288A 25.7 ± 2.7 1.9 x 10
-4 

± 6.7 x 10
-5

 1.3 x 10
5
 15.5 ± 2.4 1.1 x 10

-4 
± 7.7 x 10

-5
 1.4 x 10

5
 

T231A 17.7 ± 2.8 8.1 x 10
-5 

± 5.3 x 10
-5

 2.2 x 10
5
 4.7 ± 1.1 2.3 x 10

-5 
± 3.7 x 10

-6
 2.0 x 10

5
 

D290A Inactive Inactive 

W525A 

b.b. 

25.4 ± 6.6 1.9 x 10
-4 

± 1.7 x 10
-4

 1.4 x 10
5
 40.4 ± 4.8 1.2 x 10

-3 
± 3.6 x 10

-4
 3.4 x 10

4
 

Y165A 38.5 ± 8.0 2.1 x 10
-4 

± 2.0 x 10
-4

 1.8 x 10
5
 3.0 ± 0.8 6.2 x 10

-5 
± 5.7 x 10

-6
 4.8 x 10

4
 

Y165F n.d. n.d. 2.87 x 10
3
 ± 9.16 x 10

2
 Inactive 

Y165W 16.6 ± 2.5 2.6 x 10
-5

 ±
 
4.1 x 10

-6
 1.1 x 10

6
 n.d. n.d. 2.07 x 10

3 
± 3.4 x 10

2
 

Table 4.4 Alanine mutants of HiAXHd3 were tested by continuous arabinose release assay. 

n.d. = not determined due to high KM. b.b. = backbone.
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4.5 Engineering novel specificity  

NMR analysis of the HiAXHd3 mutant Y165A against wheat arabinoxylan confirmed 

retention of wildtype arabinofuranosidase specificity, albeit at reduced catalytic 

efficiency, but also revealed an abundance of peaks corresponding to reducing end 

xylose, which had not been observed with the wildtype enzyme. This observation 

prompted further analysis of the mutant. Initial TLC showed that the mutant released 

arabinose from arabinoxylan, as expected, but also generated a range of 

oligosaccharides from arabinoxylan (Appendix D). Incubation with sugar beet 

arabinan produced arabinose as the only product, and incubation with linear 

arabinan yielded no products, indicating that the Y165A mutation introduces the 

capacity for endo-type xylanase activity, but not arabinanase activity (Appendix D).  

To explore in greater detail how this single mutation has influenced the activity of the 

enzyme, the reaction products generated from wheat arabinoxylan were analysed by 

HPLC (Figure 4.14). Following the release of arabinose from the double substitution, 

several oligosaccharide products are produced during incubation. To explore 

whether the newly introduced xylanase activity is dependent upon the arabinose 

substitutions, the capacity of Y165A to hydrolyse birchwood xylan was assessed. 

This polysaccharide contains very limited arabinose substitution, and the lack of 

activity of wildtype HiAXHd3 against this substrate, as shown by spectroscopic 

assay, shows that the double substitution is essentially absent. The data, Figure 

4.18, revealed a large number of reaction products that were identified as 

xylooligosaccharides based on their co-migration with appropriate standards. A small 

amount of arabinose was observed by HPLC for the mutant and wildtype (not 

shown) enzymes, but this was significantly reduced compared to arabinose release 

from arabinoxylan (Figures 4.17 and 4.18). The xylooligosaccharides had a degree 

of polymerisation (d.p.) of three or greater, although some xylobiose was observed 

as the reaction neared completion. The capacity of Y165A to hydrolyse 

xylooligosaccharides was investigated by HPLC. TLC experiments (Appendix D) and 

subsequent HPLC showed that while the enzyme variant displayed no activity 

against oligosaccharides with a d.p. of 2-4 (xylobiose, xylotriose and xylotetraose), 

xylopentaose was converted to xylotriose and xylobiose (Figure 4.15), while 

xylohexaose was cleaved exclusively into xylotriose (Figure 4.16). This indicates that 
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the enzyme has six subsites for xylan, of which five are critical. These HPLC data 

were used to calculate the catalytic efficiency of Y165A using substrate depletion 

(Table 4.5). For determination of depletion of substrate, enzyme was incubated with 

substrate (xylopentaose or xylohexaose) and samples were taken throughout the 

duration of the reaction. Each sample was analysed by HPLC and peak area of the 

substrate was recorded.  A progress curve was generated for each reaction by 

plotting the amount of product remaining (peak area) over the time measured. A 

linear rate was obtained. This method assumes that the substrate concentration is 

below the KM of the enzyme; this was proven by performing the experiment with 

each substrate at three concentrations (0 μM, 30 μM and 60 μM) to ensure a true 

linear relationship between rate of hydrolysis and substrate concentration. 

Degradation of birchwood xylan by Y165A was assessed kinetically by reducing 

sugar assays (DNSA, see Chapter Two Section 2.3.4) using a standard curve of 

xylose. Table 4.5 summarises kinetic parameters for all assays undertaken for the 

Y165A variant. These data demonstrate that the Y165A mutation confers xylanase 

activity on HiAXHd3, while the enzyme retains its arabinofuranosidase function, 

albeit at a significantly reduced level.   

 kcat KM kcat/KM 

Wheat arabinoxylan arabinose release 38.5 ± 3.1 min
-1

 2.1 x 10
-4 

M ± 7.5 x 10
-5

 M 1.8 x 10
5 
min

-1 
M

-1
 

Sugar beet arabinan arabinose release 2.9 ± 0.4 min
-1

 6.1 x 10
-5 

± 2.5 x 10
-5 

M 4.8 x 10
4 
min

-1
 M

-1
 

Birchwood xylan reducing sugar 15.8 ± 3.7 min
-1

 3.5 ± 2.7 mg ml
-1

 4.5 min
-1

 mg
-1

 ml 

Xylohexaose substrate depletion n.d. n.d. 3.5 x 10
4
 min

-1
 M

-1
 

Xylopentaose substrate depletion n.d. n.d. 1.3 x 10
3
 min

-1
 M

-1
 

Table 4.5 Kinetic analysis of Y165A. 

HiAXHd3 variant Y165A was analysed by assays for continuous arabinose release, reducing sugar 

release and depletion of oligosaccharide substrate. n.d. = not determined 
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Figure 4.14 Reaction products generated by the HiAXHd3 Y165A variant from wheat 

arabinoxylan were analysed by HPLC.  

Product profile demonstrated in time points taken over 20 hours (overnight incubation). The primary 

product visible in early time points is arabinose (ara). Other products increase during incubation. Due 

to the decorated nature of the polysaccharide substrate, appropriate standards were not available for 

this experiment, so peaks could not be accurately identified. The arabinose peak is much larger than 

indicated in this figure (~ 1000 nC), as the spectra were cut off at 250 nC to improve resolution of 

other peaks. 
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Figure 4.15 Reaction products generated by the HiAXHd3 Y165A variant from birchwood xylan 

were analysed by HPLC.  

Product profile is demonstrated by time points taken over 20 hours (overnight incubation). Very little 

arabinose is produced during incubation due to the rarity of the double substitution in this 

polysaccharide. Reaction products were identified by co-migration with xylooligosaccharide standards 

(Megazyme). Peak labels X2-X6 correspond to xylobiose, xylotriose, xylotetraose, xylopentaose and 

xylohexaose, respectively. Oligosaccharides of degree of polymerisation (d.p.) 3-6 increase over time. 

After four hours, xylotriose (X3) is the dominant product and a small peak corresponding to xylobiose 

(X2) is observed. After overnight (o/n) incubation, X2 and X3 are the dominant products. A peak for 

arabinose is present, but is significantly smaller than observed for wheat arabinoxylan (Figure 4.14). 

 

 

 

 

 

 

 



[187] 

 

 

Figure 4.16 Reaction products generated from xylopentaose by Y165A were analysed by 

HPLC. 

Xylopentaose (X5) (Megazyme) was contaminated with smaller xylooligosaccharides. X5 was 

incubated with Y165A for up to 20 hours with time points taken throughout. There is no observed 

change to the xylotetraose (X4) peak, a decrease in the X5 peak and increases to the xylotriose (X3) 

and xylobiose (X2) peaks, indicating that Y165A cleaves X5 into X3 and X2. Substrate at 30 μM was 

incubated with enzyme at 10 μM. This experiment was also performed with substrate at 60 μM (not 

shown). 
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Figure 4.17 Reaction products generated from xylohexaose by Y165A were analysed by HPLC. 

Xylohexaose (X6) (Megazyme) was consistently found to be contaminated with smaller 

xylooligosaccharides. Y165A was incubated with X6 for 30 minutes, with time points taken throughout. 

Analysis of the peak areas shows no change to the xylotetraose (X4) peak and, towards the end of 

the reaction, a very slight decrease in the xylopentaose (X5) peak. The xylohexaose (X6) peak 

decreases while the xylotriose (X3) peak increases. This indicates the Y165A cleaves X6 into two 

molecules of X3. The slight decrease in the X5 peak is matched by the appearance of a very tiny peak 

in a region corresponding to xylobiose. This indicates the contaminating X5 is again being cleaved 

into X3 and X2. Substrate at 30 μM was incubated with enzyme at 10 μM. This experiment was also 

performed with substrate at 60 μM (not shown). 

4.6 Structure of the Y165A mutant 

To fully understand the nature of the newly engineered xylanase activity of the 

Y165A variant of HiAXHd3, a structure was sought in complex with an appropriate 

ligand. Inactive forms of the enzyme were generated by individually mutating Asp42, 

Asp166 and Glu215 to Alanine. These mutants were shown to be inactive by 

continuous arabinose release assay with wheat arabinoxylan and by TLC analysis of 

reaction with birchwood xylan. These data also confirm that the original active site of 
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wildtype HiAXHd3 catalyses the hydrolysis of both the xylan backbone and 

arabinose side chains in Y165A. 

Each mutant was expressed in E. coli Tuner cells and purified first by IMAC and then 

by gel filtration to increase homogeneity. After buffer exchange into water, the 

mutants Y165A/D42A, Y165A/D166A and Y165A/E215A were concentrated to 25, 

15 and 20 mg ml-1, respectively. Each mutant was placed in the full 96-condition 

PACT screen and in addition was set up in larger volume in six conditions which 

gave good crystals with the His-tagged selenomethionine wildtype protein (PACT 39, 

40, 53, 29, 30 and 24). This second screen was set up in duplicate, in the absence 

and presence of 10 mM xylotetraose. As with the wildtype, the presence of ligand in 

crystallising conditions prevented crystal growth, but Y165A/D42A showed good 

crystal growth in many PACT conditions, including several which showed a cubic 

morphology not observed for the wildtype protein. Optimum crystal growth was 

observed in 20 % PEG-6000, 0.1 M MES buffer (pH 6.0) with 0.01M zinc chloride 

and 20 % PEG-3350, 0.1 M Bis-Tris propane (pH 8.5) with 0.2 M sodium fluoride 

(Figure 4.18). After two further weeks of incubation, Y165A/E215A showed good 

growth of crystals in both the cubic form and the original needle form of the wildtype 

protein in this second condition, but these crystals did not diffract. 

A cubic crystal of Y165A/D42A from the PEG-3350 condition was taken to the Ser-

CAT synchrotron (South-East Regional Collaborative Access Team, operated by the 

University of Georgia) and data was collected at 1.8 Å. The data indexed to P21, as 

did the wildtype crystals. Using the selenomethionine wildtype structure as the 

search model, the structure was solved (Figure 4.19, see experimental statistics in 

Table 4.7). Strong density for a single molecule of the buffer Bis-Tris propane was 

observed in the active site cleft. As shown in Figure 4.19, the loss of the side chain 

of Tyr165 has transformed the tight „heart-shaped‟ pocket of the wildtype protein into 

an open cleft, which can accommodate a xylan chain. The Bis-Tris propane molecule 

occupies the active site and points along the cleft, nestled within the active site 

architecture. 
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Figure 4.18 Cubic crystals of the HiAXHd3 Y165A variant during progressive stages of 

optimisation.  

Growth conditions for the crystals shown were as follows. 

A: 0.01 M zinc chloride, 0.1 M MES pH 6.0, 20 % PEG-6000.  

B: 0.2 M sodium fluoride, 0.1 M Bis-Tris propane pH 8.5, 20 % PEG-3350. 

C: 0.3 M sodium fluoride, 0.1 M Bis-Tris propane pH 6.0, 27 % PEG-3350. 

To improve our understanding of the novel activity of Y165A, structures were sought 

with substrate bound to the enzyme variant. Crystals of Y165A/D42A and 

Y165A/E215A were soaked in a variety of ligands. A few milligrams of ligand were 

dissolved in 10 µl of appropriate mother liquor, and this was further diluted 1 in 10 in 

additional mother liquor. Crystals were fished into a drop of this final solution and 

incubated for around ten hours at 20 °C. After soaking, crystals were transferred to a 

cryoprotectant mother liquor containing appropriate ligand and frozen. In total, two 

crystals were obtained soaked with xylohexaose, four with xylotetraose, three with 
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AXOS (generated in Section 4.2) and three with arabinohexaose. All were taken to 

the synchrotron. Both xylohexaose crystals were damaged or were split crystals, but 

full datasets were collected for at least one crystal for the other ligands. Crystals of 

the Y165A/E215A mutant did not diffract. Structures were solved by molecular 

replacement, using the earlier structure of Y165A as the search model, but none 

contained ligand. All crystals grown in the presence of Bis-Tris propane had strong 

density for the buffer in their active site. 

 

Figure 4.19 Surface representations of the structure of HiAXHd3 variant Y165A in complex with 

Bis-Tris propane (BTP). 

A: view from directly above the cleft, showing the active site and newly opened cleft above it. Catalytic 

residues are shown in red while the mutated residue Ala165 is in yellow. A molecule of Tris is shown 

in green in the active site. 

B: view from the side of the protein, looking into the cleft towards the active site. 
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4.7 Further mutagenesis of the Y165A mutant 

Based on analysis of the structure of Y165A, several residues were identified as 

being potentially significant to the newly identified xylanase activity. The residues 

His271 and Phe288 were previously shown to be important in wildtype activity so 

were again mutated to Alanine in the Y165A variant to assess their significance for 

the newly acquired xylanase activity. His271 makes polar contact with the O2 

arabinose at the +2NR* subsite, while Phe288 lines the O2 binding pocket. In 

addition, four residues (Asn183, Pro233, Phe269 and Phe482) were selected for 

mutation as they appear to form part of the wall of the cleft. Figure 4.20 illustrates the 

locations of these residues. Each was mutated in turn to Alanine, and the effects of 

these mutations was assessed by continuous arabinose release assay, HPLC 

analysis against wheat arabinoxylan and birchwood xylan, and reducing sugar 

release from birchwood xylan. Table 4.6 shows kinetic parameters for these double 

mutants. Comparing the double mutants with the Y165A variant, Y165A/F269A had 

the least significant impact on any activity. Y165A/F288A had a moderate impact on 

all activities, as did Y165A/P233A. The double mutant Y165A/H271A showed no 

measurable arabinofuranosidase activity against arabinan or arabinoxylan, but 

retained xylanase levels similar to the Y165A variant. The mutants Y165A/N183A 

and Y165A/F492A both led to significant increases in kcat for the xylanase activity, 

with Y165A/F492A also improving arabinofuranosidase activity on both arabinoxylan 

and arabinan. 

It should be noted that when studying Y165A, and other mutants containing this 

mutation, xylanase activity was only observed when these proteins were purified 

using Nickel columns that had gone through the guanidine EDTA regeneration 

process. 
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Figure 4.20 Structure representation of HiAXHd3 variant Y165A indicating those residues 

selected for mutation.  

A: a transparent rendering of the active site of Y165A shows those residues close to the ligand 

binding site which were selected for mutagenesis. Bis-Tris propane is shown in green. The catalytic 

residues are shown in red, Ala165 is yellow, and the residues which were mutated are shown in cyan. 

B: surface representation showing the xylan binding cleft of Y165A in the context of the whole 

enzyme. The walls of the cleft are marked out by the residues shown in purple. Ala165 is shown in 

yellow and the catalytic residues are shown in red. 
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 Wheat arabinoxylan arabinose release Sugar beet arabinan arabinose release Birchwood xylan reducing sugar release 

 kcat (min
-1

) KM (M) kcat/KM (min
-1 

M
-1

) kcat (min
-1

) KM (M) kcat/KM (min
-1 

M
-1

) kcat (min
-1

) KM (mg ml
-1

) kcat/KM (min
-1

 mg
-1

 ml) 

Wildtype 1.0 x 10
4
 ± 

1.3 x 10
3
 

3.5 x 10
-4 

± 

1.4 x 10
-4

 

2.9 x 10
7
 1.7 x 10

3 
± 

1.1 x 10
2
 

1.3 x 10
-4 

± 

2.6 x 10
-5

 

1.4 x 10
7
 - - - 

Y165A 38.4 ± 3.1 2.1 x 10
-4 

± 

1.9 x 10
-4

 

1.8 x 10
5
 2.9 ± 0.8 6.2 x 10

-5 
± 

5.7 x 10
-6

 

4.8 x 10
4
 15.8 ± 3.7 3.5 ± 2.7 4.5 

Y165A 

/N183A 

26.3 ± 1.5 9.9 x 10
-5

 ± 

2.9 x 10
-5

 

2.6 x 10
5
 12.5 ± 2.0 7.1 x 10

-4
 ± 

3.2 x 10
-4

 

1.8 x 10
4
 78.4 ± 15.8 2.2 ± 1.7 35.5 

Y165A 

/H271A 

- - - - - - 11.6 ± 2.6 0.9 ± 0.7 13.5 

Y165A 

/P233A 

5.0 ± 0.8 3.0 x 10
-4

 ± 

1.7 x 10
-4

 

1.6 x 10
4
 1.7 ± 0.3 8.3 x 10

-4
 ± 

4.0 x 10
-4

 

2.0 x 10
3
 30.2 ± 8.2 6.8 ± 4.7 4.4 

Y165A 

/F492A 

121.5 ± 40.3 4.9 x 10
-4

 ± 

2.4 x 10
-4

 

2.5 x 10
5
 50.4 ± 10.6 9.4 x 10

-4
 ± 

4.5 x 10
-4

 

5.4 x 10
4
 98.0 ± 20.8 5.4 ± 3.3 18.1 

Y165A 

/F288A 

11.8 ± 1.8 1.9 x 10
-3

 ± 

7.4 x 10
-4

 

6.3 x 10
3
 2.2 ±0.7 7.2 x 10

-4
 ± 

5.8 x 10
-4

 

3.1 x 10
3
 26.8 ± 4.5 4.0 ± 2.1 6.7 

Y165A 

/F269A 

16.6 ± 1.7 2.7 x 10
-4

 ± 

9.3 x 10
-5

 

6.1 x 10
4
 2.2 ± 0.2 2.3 x 10

-4
 ± 

6.2 x 10
-5

 

9.4 x 10
3
 16.8 ± 4.0 4.2 ± 1.8 4.0 

Table 4.6 Kinetic analysis of double mutants of HiAXHd3. 

Mutants of HiAXHd3 variant Y165A were analysed by continuous arabinose release assay and reducing sugar assay. Kinetic parameters for wildtype and 

Y165A are included for comparison. – indicates no measurable activity. 
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  Y165A Bis-Tris propane 

 Space group P21 

 Wavelength 1.00 

 Unit cell a = 65.3 

b = 77.9 

c = 95.2 

α = 90.0 

β = 102.7 

γ = 90.0 

   

 Resolution (Å) 92.8-1.8 

 No. observations 195734 (35142) 

 No. unique observations 36699 (5137) 

 Multiplicity 6.4 (6.6) 

 Completeness 99.6 (99.4) 

 Average I/sigma I 21.4 (9.8) 

 Rsym 0.092 (0.174) 

Refinement   

 No. reflections 84542 

 Rcryst 15.74 % 

 Rfree 20.84 % 

 No. atoms 9022 

Rmsd   

 Bond lengths 0.024 

 Bond angles 2.027 

Ramachandran   

 Favoured 94.80 % 

 Allowed 99.8 % 

B-factors   

 Wilson B 15.24 

 Main chain 11.07 

 Side chains and waters 31.79 

 

Table 4.7 Experimental statistics for the solution and refinement of the crystal structure of the 

HiAXHd3 Y165A variant in complex with Bis-Tris propane. 
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4.8 Discussion 

This chapter describes the crystal structure and function of an unusual 

arabinofuranosidase that displays absolute specificity for the O3 linked arabinose 

side chain of doubly substituted (O2 and O3) backbone xylopyranose (in xylan) or 

arabinofuranose (in arabinan) residues. Table 4.2 gives kinetic parameters for the 

wildtype activity of the enzyme against wheat arabinoxylan and sugar beet arabinan. 

The catalytic efficiency (kcat/KM) for arabinoxylan is ~ 3.7 times that for arabinan. 

Thus, the enzyme would seem to be tailored for arabinoxylan. While the „core 

substrate‟ of the double substitution is highly similar in both substrates, the 

backbones are very different (Figure 4.1). Arabinoxylan adopts a largely linear 

conformation while arabinan displays a helical structure (Janaswamy and 

Chandrasekaran, 2005; Yui et al., 1995). These differences may be significant to the 

disparity in rates against these two substrates due to a relative lack of contacts 

between the arabinan backbone and the enzyme.  

 4.8.1 Specificity of wildtype HiAXHd3 

Analysis of reaction products by NMR showed that the wildtype enzyme shows the 

same specificity for the O3 arabinose attached to doubly substituted backbone 

residues in both arabinoxylan and arabinan. As arabinofuranose side chains can 

rotate around the glycosidic linkage, and the exocyclic C5 is also free to rotate, it is 

difficult to understand how the enzyme is able to select a specific linkage within the 

double substitution, a pseudosymmetrical target (Figure 4.1). It is possible that 

interactions with the backbone polysaccharide orient the O3 linked arabinofuranose 

towards the -1 subsite. Structures were sought of the enzyme in complex with 

substrate to shed light on this problem. 

 4.8.2 Structural analysis and mutagenesis of HiAXHd3 

The structures presented in this chapter show that, in contrast to the narrow active 

site pockets of exo-acting GH43 enzymes that target single substitutions, HiAXHd3 

features a much wider active site pocket containing a shelf like structure. Despite 

containing many of the residues that are conserved in the active site of GH43 

arabinofuranosidases acting on monosubstitutions, HiAXHd3 is highly specific for the 
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double substitution. It is possible that the spatially restricted active site of mono-

acting GH43 arabinofuranosidases creates a micro environment that is optimised for 

binding and hydrolysis of arabinose side chains. In HiAXHd3, however, the wider 

active site allows more rapid solvent exchange and limits the formation of such micro 

environments, causing the enzyme to rely on the additional binding energy provided 

by the O2 side chain.  

The structures of the wildtype protein in complex with ligand revealed the nature of 

the tight specificity displayed by HiAXHd3. These structures identified Arg296, 

His271 and Asp290 as the residues that interact with the O2 arabinose, while Trp525 

and Tyr165 interact with the xylan backbone (Figure 4.21). As shown in the lower 

resolution ligand structure with arabinose at the -1 subsite, Arg296 also makes a 

polar contact with the O3 arabinose, which is appropriately positioned to make 

contacts with the catalytic apparatus of the enzyme. 

In the E215C-ligand complex (HiAXHd3/Araf2-Xyl) an arabinofuranose residue is 

located at the -1 subsite, in addition to a xylose at +1, which is linked through O2 to 

an arabinose positioned at the +2-NR* subsite. The structure, however, is of low 

resolution (2.7 Ǻ) and the electron density for the -1 arabinose is weak (Figure 4.10). 

The arabinose is clearly in a furanose conformation and the exocyclic C5 is evident. 

As arabinose equilibrates towards the pyranose conformation in solution, it would 

appear that the -1 sugar is held in its furanose structure through interactions with the 

enzyme. This structure shows that the -1 arabinose makes several interactions with 

the enzyme: O2 makes hydrogen bonds with the backbone nitrogen of Ala108 and 

of Arg296, while the extensive inte

augmented with hydrophobic interactions, notably a highly conserved Tryptophan 

(Trp107 in HiAXHd3), which provides a hydrophobic platform at the -1 subsite.  The 

importance of the conserved active site residues in substrate binding is confirmed by 

mutagenesis studies. The mutants D290A, Q272A and R296A, in addition to mutants 

of the three catalytic amino acids, display no measurable activity, Table 4.3. 
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Figure 4.21 Polar contacts observed between HiAXHd3 and its substrate. 

Catalytic residues are shown in red in each figure, while other residues of interest are coloured cyan. 

Substrate contacts with the catalytic residues are not shown. 

A: -1 subsite. Arg296 makes contacts with both the -1 and +2NR* arabinose residues, while Gln272 

contacts the active site (-1) arabinose.  

B: +2NR* subsite. His271, Arg296 and Asp290 make polar contacts with the O2 linked arabinose.   

C: Tyr165 and Trp525 coordinate the substrate via interactions with the backbone. Tyr165 makes a 

direct polar contact, while the orientation of Trp525 indicates a stacking interaction with the +2NR 

xylose and its distance from the substrate suggests a hydrogen bond with the endocyclic oxygen. 
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The sugar at the -1 site in this structure does not appear to display the envelope (E) 

conformation typical of arabinofuranose residues and is too distant from the +1 

xylose to make a covalent bond, suggesting that the glycosidic bond was cleaved 

during crystal soaking. The sugar appears to be perpendicular to the arabinose and 

xylose residues seen in the -1 subsite of other GH43 enzymes (Brux et al., 2006; 

Fujimoto et al., 2010; Nurizzo et al., 2002; Vandermarliere et al., 2009). Nonetheless 

the -1 arabinose does make polar interactions with residues that are conserved 

across the GH43 landscape, and have been shown to play an important role in 

substrate recognition in two arabinanases, an arabinofuranosidase and a xylosidase 

(Brux et al., 2006; Fujimoto et al., 2010; Nurizzo et al., 2002; Proctor et al., 2005). 

Thus, the arabinose in the active site of HiAXHd3 does appear to be in the correct 

conformation in this structure. The unexpected orientation of the sugar is likely due 

to the lack of a covalent bond with the -1 arabinose and the +1 xylose. 

In the D42A mutant structure (HiAXHd3/Araf-Xyl3) the xylotriose ligand makes 

relatively few interactions with the enzyme, which likely aids product departure, as 

the cleaved arabinose cannot be released from the active site until the xylose 

polymer dissociates from the enzyme. The absence of the active site arabinose in 

the crystal structure may reflect more on the nature of the ligand than on the activity 

of the enzyme. It was initially hypothesised that the arabinose is absent due to 

cleavage of the ligand during the prolonged duration of the crystal soak, but it may 

be that the ligand initially comprised only the monosubstitution, as the 

oligosaccharide was not characterised by methods such as mass spectrometry prior 

to use in crystallography. Multiple interactions with the O2 arabinose (discussed 

below) could be sufficient to bind such a monosubstituted ligand.  

The structures show that Glu215 is in an ideal position to function as the catalytic 

acid, donating a proton to the scissile glycosidic oxygen, as the O3 of the +1 xylose 

Glutamate. The elevated pKa required of a 

catalytic acid is afforded by a hydrogen bond with Asp166, and the Glutamate side 

chain also makes polar contacts with Tyr165 and Asn183, which may assist in 

orienting the residue. The hydrophobic environment of Glu215, provided by the 

methyl side chains of Thr113 and Thr231, and the aliphatic ring of Pro233, may also 
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encourage the Glutamate to retain its hydrogen. Indeed, mutation of Thr231 to 

Alanine leads to a reduction in kcat/KM of around 230.  

The structures and mutagenesis studies presented in this chapter confirm that the 

O2-linked arabinofuranose is a critical specificity determinant. The structure of both 

ligand complexes reveals an arabinose nestled onto the shelf-like structure 

extending from the active site pocket. This sugar makes several polar contacts with 

the enzyme. Asp290 makes bidentate hydrogen bonds with O5 and O3, His271 

drogen 

bond with O3 (Figure 4.21). The extensive interactions between the O2 linked 

arabinose and HiAXHd3 explain why the furanose sugar is a critical specificity 

determinant. The importance of these polar interactions is underlined by the 

observation that the mutants R296A and D290A are completely inactive, while the 

H271A mutation causes a 940-fold decrease in kcat, although it had no obvious effect 

on KM, Table 4.4.  

In addition to contacts with the arabinose residues, the enzyme makes some direct 

contacts with the xylan backbone of the substrate. The xylose at the +2NR subsite 

makes a single interaction with the enzyme, a hydrogen bond between the 

endocyclic oxygen and the -OH of Tyr165. The xylose at the +2R subsite makes a 

hydrophobic contact with Trp525, which is a component of the C-terminal β-

sandwich domain; a polar contact is formed between Nδ1 of the indole ring and the 

endocyclic oxygen of the +2R xylose. 

The importance of Tyr165 and Trp525 in substrate recognition is underlined by the ~ 

200-fold decrease in catalytic efficiency when the W525A or Y165A mutations are 

introduced into HiAXHd3, Table 4.4. It should be noted however, that the two 

mutations effect kcat but do not significantly alter KM. This would suggest that Trp525 

and Tyr165 play a more important role in binding the transition state than the 

substrate in its ground state conformation. The Y165A mutation, however, may also 

have a significant effect on the function of the catalytic acid, due to a loss of the 

interactions with Glu215 described above and this could contribute to the observed 

decrease in enzyme activity displayed by the HiAXHd3 variant.  
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Mutation of Tyr165 to residues other than Alanine had unexpected effects on activity. 

The mutant Y165F was intended to eradicate contacts between the –OH group and 

the xylan backbone while preserving the pocket architecture; Y165W was also 

expected to preserve overall structure while disrupting specific contacts. Both 

mutations were therefore predicted to be less deleterious to activity than Y165A, 

which removes direct substrate contacts and disrupts the pocket architecture. 

However, kcat/KM for Y165W is around six times greater than for Y165A against 

wheat arabinoxylan, but is significantly lower than for the Alanine substitution against 

sugar beet arabinan. The large increase in KM against arabinan (too high to 

determine) contributes to the decrease in activity of the Y165W mutant. It is likely 

that the introduced Tryptophan clashes with the arabinan backbone. 

Conversely, Y165F displays a very high KM for arabinoxylan, with a catalytic 

efficiency ~ 64-fold less than for Y165A, and displayed no detectable activity against 

sugar beet arabinan (Table 4.4). This would suggest that the ability of the Y165F 

mutant to interact with the polysaccharide backbone is impaired for the linear xylan 

and completely lost for the twisted arabinan chain. It is therefore likely that the OH of 

Tyr165 plays an important role in binding both arabinoxylan and arabinan.  

4.8.3 Comparison of HiAXHd3 structure with similar enzymes 

The crystal structures of HiAXHd3 presented in this chapter were compared with 

other GH43 structures. An overlay with the arabinanases CjArb43A (Nurizzo et al., 

2002) and BsArb43A, and the arabinoxylan-specific arabinofuranosidase 

BsAXHm2,3 (Vandermarliere et al., 2009) shows structural conservation of the 

catalytic residues (Figure 4.22). Structural comparison of HiAXHd3 with the PDB 

database, using DaliLite v.3 (http://ekhidna.biocenter.helsinki.fi/dali_server/start), 

revealed that the closest structural homologue to the arabinofuranosidase was the 

GH43 -xylosidase XynB3 from Geobacillus stearothermophilus  ((Brux et al., 2006) 

PDB code 2exk) with a Z-score of 35.5, rmsd of 2.6 Ǻ over 470 aligned Cα atoms 

and a sequence identity of 26  %.   When using just the catalytic domain or the C-

terminal β-sandwich domain as the search structure, the closest homolog was again 

the Geobacillus β-xylosidase. The closest structural homolog to HiAXHd3 that 

displayed exclusively arabinofuranosidase activity was with the Bacillus subtilis 
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GH43 enzyme BsAXHm2,3, an AXH enzyme that removes arabinose side chains 

exclusively from xylan ((Vandermarliere et al., 2009) PDB code 3c7e). The structural 

comparison of the two catalytic domains had a Z-score of 25.4, rmsd of 2.7 Ǻ over 

268 aligned Cα atoms and a sequence identity of 20  %.  

 

Figure 4.22 Overlay of catalytic residues in multiple crystal structures. 

Structural overlay shows conservation of catalytic residues between HiAXHd3 (green), BsArb43A 

(cyan), BsAXHm2,3 (yellow) and CjArb43A (magenta). 

  4.8.3.i Structural conservation at the active site in arabinanases, 

xylosidases and arabinofuranosidase of family GH43 

In addition to arabinofuranosidases GH43 also contains xylosidases, several of 

which have been shown to display limited arabinofuranosidase activity. By 

comparing the active site (-1 subsite) of the Geobacillus GH43 xylosidase, XynB3, 

with endo and endo-processive arabinanases, it has been suggested that four 

residues (His249, Arg288, Phe32 and Leu265) which are invariant in characterised 

GH43 xylosidases but are not conserved in the arabinanases, confer specificity for 

xylopyranose in preference to arabinofuranose at the -1 subsite. Recent structures 

including that of HiAXHd3, however, show that all of the active site residues that 

interact with substrate in its ground state conformation are conserved in both 
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xylosidases and arabinofuranosidases, Figure 4.23.  It is possible therefore, that 

specificity within the active site of these exo-acting enzymes is mediated through 

different interactions with the oxocarbenium transition state. In a GH51 

arabinofuranosidase, the arabinose in the active site was shown to be distorted from 

its E3 ground state conformation into a 4E conformation at the transition state. In 

xylanases the active site xylopyranose residue is distorted from their relaxed 4C1 

conformation into either a 4H3 or 2,5B structure at the transition state, in GH10 and 

GH11 xylanases, respectively (Notenboom et al., 1998; Pell et al., 2004a; Sidhu et 

al., 1999). It is possible, therefore, that the active site of GH43 xylosidases and 

arabinofuranosidases may, initially, bind the ground state sugar through the same 

interactions, but then utilise additional interactions to distort the arabinofuranose and 

xylopyranose residues into their respective transition states.  

Comparing HiAXHd3 with the GenBank database showed that in the 50 proteins that 

display the closest sequence identity (e values of e-181 to e-60 with sequence identities 

varying from 60 to 31 %), the five key specificity determinants (Tyr165, His271, 

Asp290, Arg296 and Trp525) are highly conserved; Arg296 is invariant while Tyr165, 

His271, Asp290 and Trp525 are conserved in 94  %, 84  %, 92  % and 90  % of the 

proteins, respectively. It is likely that the majority, if not all, of these enzymes are 

AXHd3s, particularly when one considers that there is a lack of conservation of 

His271 and Trp525 in the only other confirmed AXHd3 (Lambertus et al., 2005). The 

recent report of the structure of an exo-α1,5-arabinofuranosidase also reveals a 

constricted deep active site pocket that could be described as a funnel (Fujimoto et 

al., 2010). The -1 subsite displays substantial conservation in the GH43 

arabinofuranosidases, although in HiAXHd3 a conserved Histidine is replaced with 

the critical Gln272.  In fact, all the conserved residues interact with the 

arabinofuranose in the active site of HiAXHd3, as described above.  
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Figure 4.23 Overlays of active site residues of HiAXHd3 and other enzymes show a high level 

of conservation.  

A: an overlay of the active site of HiAXHd3 (green) and other arabinofuranosidases reveals 

conservation of the active site residues. The arabinoxylan-specific arabinofuranosidase BsAXHm2,3, 

which targets single substitutions, is shown in cyan (Vandermarliere et al., 2009). Yellow residues are 

derived from an exo-1,5-α-L-arabinofuranosidase from Streptomyces avermitilis (Fujimoto et al., 

2010). 

B: an overlay of HiAXHd3 (green) with those of two xylosidase enzymes again reveals structural 

similarity at the active site. Residues in cyan are derived from a Selenomonas ruminantium β-

xylosidase (Brunzelle et al., 2008). Yellow residues belong to a β-xylosidase  from Geobacillus 

stearothermophilus (Brux et al., 2006). 

C: an overlay of HiAXHd3 (green) with the active sites of two arabinanase enzymes reveals some key 

structural differences. Yellow residues are derived from CjArb43A (Proctor et al., 2005), while 

residues in cyan are taken from the α-1,5-L-arabinanase GsAbnB (Alhasid et al., 2009). The major 
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differences can be observed in the lack of alignment with HiAXHd3 residues Phe37, Arg296 and 

Phe288. 

Figure 4.23C highlights those residues which differentiate arabinofuranosidases and 

xylosidases from arabinanases. Arg296 has been shown to be critical for activity in 

HiAXHd3, but it has no equivalent in the arabinanase enzymes shown in the figure. 

Likewise, the Humicola residues Phe288 and Phe59 do not align with the 

arabinanase active site. It seems likely that loss of these residues, particularly the 

binding energy conferred by Arg296, causes a different set of substrate interactions 

to be required in arabinanase enzymes to compensate for the loss of this energy. 

Thus, in arabinanase enzymes, the loss of substrate contacts in the active site has 

led to the development of a set of interactions with a more extensive region of the 

polysaccharide backbone, thereby introducing different specificity. 

Given the degree of conservation in the -1 subsite of GH43 arabinofuranosidases, it 

is perhaps surprising that HiAXHd3 displays no activity against single O3 linked 

arabinofuranose decorations. It is evident that the additional binding energy provided 

by the interaction of the O2 linked arabinose with several amino acids is critical for 

catalysis to occur. In the GH43 arabinofuranosidases that attack monosubstitutions, 

the binding pocket is much tighter than in HiAXHd3. For example, in BsAXHm2,3 the 

+2NR* pocket is occluded by Asn288, while in the arabinanase CjArb43A (Nurizzo et 

al., 2002) the extended loop that connects β-strands 2 and 3 in blade 4, which is 

much shorter in HiAXHd3, would make steric clashes with the O2 linked arabinose.  

In the Streptomyces avermitilis arabinofuranosidase SaAraf43A (Fujimoto et al, 

2010; PDB code 3AKF) the side chain and backbone of Thr216 occlude the O2-

linked arabinose binding site.  It is possible that the tighter pocket observed in 

BsAXHm2,3 and SaAraf43A creates a microenvironment that is more favourable for 

substrate binding than in HiAXHd3. It is also likely that there is less solvent 

exchange and thus the release of water molecules upon substrate binding may 

increase the affinity for arabinofuranose through enhanced entropic effects.  
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  4.8.3.ii Structural features around the active site of GH43 enzymes 

confer preference for polysaccharide backbone structures 

Validation of the structure of HiAXHd3 presented here is provided by overlays with 

other GH43 enzymes. The Bacillus subtilis GH43 enzyme BsAXHm2,3 that removes 

arabinose side chains exclusively from xylan (Vandermarliere et al., 2009, PDB code 

3c7e) was particularly useful in this regard. Comparisons with this and other 

structures reveal that while there is high conservation in the active site, it is the 

structural elements surrounding the catalytic centre that confer the differences in 

substrate specificity displayed by GH43 glycoside hydrolases.  In HiAXHd3 the 

xylotriose backbone, and by inference the xylan backbone, extends over β-blade 4 

and the loop connecting β-blades 2 and 3. The orientation of xylotetraose in the 

arabinoxylan-specific arabinofuranosidase BsAXHm2,3, and xylotriose in HiAXHd3, 

is very similar. By contrast, in the arabinan-specific enzymes CjArb43A, AbnB and 

SaAraf43A, the backbone chain is in a perpendicular orientation with respect to the 

xylooligosaccharide molecules in BsAXHm2,3 and HiAXHd3, Figure 4.24. This 

radical difference in the location of these polymers is due to the extension of β-strand 

1 in blade 3 and its associated loops in the three arabinanases, which would make 

steric clashes with the xylan chain.  The surface topologies of these enzymes are 

tailored towards the backbone conformations of their target substrates (Figure 4.24). 

The NMR data on W525A-mediated hydrolysis of arabinoxylan suggests that 

coordination of the polysaccharide backbone is important in orienting arabinose side 

chains into the active site of HiAXHd3. Xylan is a highly symmetrical molecule; only 

the endocyclic oxygen provides any asymmetry. In the arabinan backbone, 

arabinofuranose rings are also symmetrical, apart from the angle of the endocyclic 

oxygen, but the glycosidic oxygen and C5 will adopt different positions in the two 

orientations of the backbone. As described above, HiAXHd3 makes two polar 

contacts with the xylan pyranose ring; Tyr165 and Trp525 form hydrogen bonds with 

the endocyclic oxygen of the xylose at +2NR and +2R, respectively. By contrast, 

BsAXHm2,3 makes no polar contacts with the endocyclic oxygen of bound 

xylotetraose, and thus the tetrasaccharide can bind to the enzyme in either 

orientation (Vandermarliere et al., 2009). This explains why the Bacillus 

arabinofuranosidase is able to hydrolyse either O2 or O3 linked single arabinose 



[207] 

 

decorations, while HiAXHd3 is specific for only the O3 in the double substitution. It 

would, however, seem unlikely that polar residues that target the endocyclic oxygen 

of xylose residues in xylan so precisely would also make hydrogen bonds with the 

glycosidic oxygen of arabinan. Further investigation by crystallography is required to 

ascertain the nature of specificity in arabinan by probing for contacts with the 

backbone of this polymer; such experiments are included under recommendations 

for future work, discussed in Chapter Five of this thesis. 

 

Figure 4.24 Surface representations of two GH43s in complex with substrate illustrate the 

differences in binding to xylan and arabinan.  

A: BsAXHm2,3 in complex with xylotetraose, which adopts a linear conformation and binds along a 

straight cleft. This linear cleft would occlude a helical arabinan backbone. 

B: CjArb43A in complex with arabinohexaose, which twists around the active site in a cleft which turns 

over the surface of the protein. This curved cleft occludes the linear xylan backbone. 
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 4.8.4 A conserved aromatic residue is critical to specificity of HiAXHd3 

Considering all of the evidence presented here, the specificity displayed by HiAXHd3 

appears to be conferred by orienting the polysaccharide backbone, which is 

mediated by Trp525, located on a loop in the C-terminal β-sandwich domain.  

Trp525 is thus key to the specificity of HiAXHd3; the residue is predicted to make 

hydrophobic contacts with the +2R xylose and the arabinose appended at O2 of the 

+1 xylose, as well as a polar contact between Nδ1 of the indole ring and the 

endocyclic oxygen of the +2R xylose. NMR experiments have demonstrated that 

mutation of Trp525 to Alanine causes the enzyme to become much more flexible, 

able to cleave either the O2 or O3 linked arabinose in the double substitution. 

Interestingly, this residue is contributed not by the catalytic β-propeller domain but by 

a loop within the C-terminal β-sandwich domain (Figure 4.25). A recent study 

(Yoshida et al., 2010) which looked at GH43 sequences that include this β-sandwich 

module (termed the XX module) examined the role of the module in substrate 

binding and recognition in an AXH enzyme expressed by Fibrobacter succinogenes, 

which targets monosubstituted arabinofuranose side chains in arabinoxylan. Several 

conserved aromatic residues within the β-sandwich domain, which were thought to 

be critical for carbohydrate binding, were mutated to Alanine. Only one such mutant 

lost binding activity, indicating that a Tyrosine residue makes a significant 

contribution to ligand recognition. This Tyrosine (Tyr484) is contributed by a loop in 

the β-sandwich module equivalent to the loop containing Trp525 in HiAXHd3 (Figure 

4.25). Thus, this loop in the XX module of HiAXHd3 contributes directly to specificity 

by supplying a key residue that interacts with the substrate. 

 4.8.5 A conserved loop contributes topologically to specificity 

As described above, a key specificity determinant for HiAXHd3 is contributed by a 

loop in the β-sandwich module of the enzyme. The topology of this loop, which is 

conserved, also appears to influence specificity. The Geobacillus stearothermophilus 

β-xylosidase XynB3 (Brux et al., 2006) contains a loop in the XX domain which 

intrudes into the β-propeller in the vicinity of the active site pocket (Figure 4.25). This 

enzyme demonstrates an exo-type activity on xylooligosaccharide substrates and is 

also active on pNP-β-D-xylopyranoside. Enzyme activity is impaired against xylan 
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and longer oligosaccharides, and the authors suggest that the loop may restrict 

access of longer substrates to the active site. Indeed, analysis of the structure 

overlaid with xylotetraose shows that while the loop does not directly clash with the 

xylan backbone, it does contribute surface architecture to a tight pocket which 

excludes endo-type attack on xylan (Figure 4.25). A similar long loop is found in an 

α-L-arabinofuranosidase from Selenomonas ruminantium, SXA (Brunzelle et al., 

2008) which displays activity primarily on 4NP-β-D-xylopyranoside, although it is also 

active on 4NP-α-L-arabinofuranoside. As the equivalent loops in FSUAXH1 and 

HiAXHd3 are much shorter, it seems likely that the length of this loop is key to 

determining preference for substrate length; the short loops in these AXH enzymes 

correspond to activity on polysaccharide while steric clashes with the longer loops in 

XynB3 and SXA cause the enzymes to act on shorter, simpler substrates by 

inhibiting endo-type hydrolysis of polysaccharides. HiAXHd3 and FSUAXH1 cleave 

doubly and singly substituted arabinofuranose residues from arabinoxylan, 

respectively. As shown in Figure 4.25, an overlay of the FSUAXH1 homology model 

with the HiAXHd3 ligand shows how the conserved loop from the β-sandwich module 

excludes the double substitution; the O3-linked arabinose is positioned in the active 

site of FSUAXH1 while the O2-linked arabinose clashes with the protein surface. As 

the loop is much shorter in HiAXHd3, this clash does not occur. Thus, this loop 

structure contributes topologically to specificity in GH43 enzymes by influencing the 

length and decorated nature of the substrate. 
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Figure 4.25 A loop in the β-sandwich module contributes a key aromatic residue. 
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Analysis of several GH43 structures which include a conserved loop in the β-sandwich domain gives 

insight into the role of the loop in determining specificity. 

A: in HiAXHd3 the critical specificity determinant Trp525 is contributed by a short loop in the β-

sandwich. The β-propeller is blue while the β-sandwich is cyan. Trp525 and the associated loop are 

shown in yellow, while the catalytic residues are shown in red. 

B: in XynB3 shows that the equivalent loop (yellow) is much longer and extends further into the active 

site. The β-propeller is magenta while the β-sandwich is green. The catalytic residues are in blue. 

C: a homology model of FSUAXH1 shows that the loop (yellow) again extends towards the active site 

and contributes a critical Tyrosine. The β-propeller is shown in dark pink while the β-sandwich is blue. 

The catalytic residues are shown in cyan. 

D: a sequence alignment between HiAXHd3, FSUAXH1 and XynB3 show that the loops containing 

Trp525 and Tyr484 (marked with red boxes) align in the sequence but are different in length and do 

not share sequence similarity.  

E: XynB3 overlaid with xylotetraose shows how the loop contributes topologically to a tight pocket 

which excludes polysaccharides. The loop is shown in yellow and catalytic residues are red. The 

clash with the xylan backbone is circled. 

F: the FSUAXH1 homology model overlaid with the HiAXHd3 ligand shows how this loop excludes the 

double substitution; the O3-linked arabinose is in the active site while the O2-linked arabinose clashes 

with the protein surface. As the loop is much shorter in HiAXHd3, this clash does not occur. The loop 

is shown in yellow, and the catalytic residues are highlighted in red. The clash with the O2-linked 

arabinose is circled. 

 4.8.6 The C-terminal β-sandwich of AXH enzymes influences specificity 

A phylogenetic analysis of GH43s by Yoshida, Hespen et al. identified a cohort of 

enzymes from the family which all display β-xylosidase and /or arabinofuranosidase 

activity and contain the C-terminal β-sandwich module defined as XX (Yoshida et al., 

2010).  Truncation studies of a xylan-specific arabinofuranosidase from Fibrobacter 

succinogenes, FSUAXH1, confirmed that the XX module is important for activity, as 

removal of the module significantly impaired the activity of the enzyme. The XX 

module, although having no direct part in catalysis, was shown to be important in 

binding to arabinoxylan. Indeed, the work demonstrated the interdependence 

between the two modules in substrate binding, indicating that the interface between 
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the GH43 module and the XX module represents a new form of carbohydrate binding 

module.  

Structural analysis reveals that the β-sandwich domain can influence specificity via 

its orientation with respect to the catalytic GH43 module. In BsAXHm2,3, which 

cleaves monosubstituted arabinofuranose side chains from arabinoxylan, the C-

terminal domain is displaced relative to the HiAXHd3 domain (Figure 4.26). 

Conversely, in the Selenomonas β-xylosidase /arabinofuranosidase SrXyn43A (PDB 

code 3c2u) and the Geobacillus β-xylosidase, XynB3, the β-sandwich domain 

overlaps with the equivalent region of the H. insolens arabinofuranosidase. It is only 

in HiAXHd3 that a clear cleft, which accommodates a xylooligosaccharide, is evident 

between the two domains; Figure 4.26 shows how this cleft lies at the interface 

between the β-propeller and the β-sandwich. In BsAXHm2,3, this cleft is contributed 

solely by the β-propeller domain (Figure 4.26). In XynB3 and SrXyn43A the distal 

region of the extended active site pocket is, in part, contributed by the loop 

connecting β-strands 10 and 11 in the β-sandwich domain, again suggesting that this 

domain plays a role in substrate binding. 
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Figure 4.26 Orientation of the C-terminal β-sandwich domain leads to topological differences 

around the active site. 

Surface representations of HiAXHd3 (A) and BsAXHm2,3 (B) show how the change in orientation of 

the β-sandwich module leads to differences in active site architecture. The substrate binding cleft of 

HiAXHd3 (A) is located in the interface between the two domains, whereas the equivalent cleft in 

BsAXHm2,3 (B) is formed solely by the β-propeller domain. Catalytic residues are shown in red in 

both. The xylan binding clefts are indicated by xylotetraose, taken from the BsAXHm2,3 crystal 

structure. The ligand is shown in yellow in panel A and in green in panel B. 

 4.8.7 A single mutation, Y165A, introduces a novel activity to HiAXHd3 

Extensive mutagenesis of HiAXHd3 has been undertaken, as described above. Of 

particular note is the mutation Y165A, which not only reduced the 



[214] 

 

arabinofuranosidase activity of the enzyme but also introduced the capacity to 

hydrolyse internal linkages in the xylan backbone. Inspection of the Y165A mutant 

reveals that the removal of the phenolic ring disrupts the walls of the active site 

pocket. Figure 4.27 shows the change to active site architecture in the Y165A 

variant. The expansion in the active site pocket allows entry of a xylan backbone 

chain into the active site. The capacity to hydrolyse the glycosidic linkages in the 

backbone of a pyranose configured polysaccharide, and to remove furanose side 

chains from the same polysaccharide, has not previously been observed in nature, 

nor generated through rational design or forced protein evolution. The mechanism by 

which an enzyme can be converted into a glycoside hydrolase that displays both 

exo-acting arabinofuranosidase and endo-xylanase activities is intriguing, particularly 

as the same active site catalyses the two reactions. In HiAXHd3, the pocket is wider 

than other exo-acting GH43 enzymes and thus may be more amenable to 

modification such that it can accommodate the backbone sugar of a polysaccharide. 

Kinetic analysis of the Y165A mutant (Table 4.5) was performed against a variety of 

substrates. Substrate depletion assays showed that the catalytic efficiency of the 

xylanase activity of the enzyme was 28-fold greater against xylohexaose compared 

to xylopentaose, Table 4.5, with no measurable activity on shorter oligosaccharides, 

indicating that either the -3 or +3 subsite confers 1.96 kcal/mole of binding energy, 

calculated according to Equation 4.1. This correlates with reaction products 

generated by Y165A from the relatively undecorated birchwood xylan (Figure 4.15), 

which showed that the initial products had d.p. values greater than three, which were 

subsequently degraded to oligosaccharides as small as xylobiose. 

Equation 4.1  (R T ln kcat/KM )xylohexaose - (R T ln kcat/KM )xylopentaose 

where  R = ideal gas constant (8.314 J K-1 mol-1) 

  T = temperature (298 K) 

 4.8.8 Structural analysis and mutagenesis of the Y165A mutant 

The structure of the Y165A variant of HiAXHd3 shows that the removal of the 

phenolic side chain disrupts the face of the pocket directly below the glycosidic 

oxygen between the +1 and +2R xylose residues, Figure 4.27. This will enable the 
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xylan backbone to adopt a deeper position in the enzyme so that it can enter the 

active site and occupy the -1 subsite. As Y165A displays xylanase activity, and 

catalysis requires the original catalytic apparatus of the enzyme, it is likely that the 

xylose at the -1 subsite can make appropriate interactions with HiAXHd3 so that the 

sugar can distort into an oxocarbenium transition state conformation, enabling 

catalysis to proceed, albeit inefficiently.  

 

Figure 4.27 Comparison of wildtype and Y165A variant HiAXHd3. 

Surface representations of the active sites of wildtype (A) and Y165A variant (B) HiAXHd3 

demonstrate the expansion in the pocket topology caused by the loss of a single phenolic side chain, 

creating a much more open left in the mutant (B). Residue 165 is picked out in yellow in both 
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structures (Tyr165 in the wildtype, Ala165 in the mutant). The three catalytic residues are shown in 

red in both structures. Panel C shows a side-on view of the Y165A mutant cleft. 

Figure 4.28 shows a classical GH10 xylanase in complex with xylotetraose. This 

enzyme is a much more efficient xylanase than Y165A. Values of kcat/KM for a 

Cellvibrio japonicus GH10 xylanase against xylohexaose and xylopentaose are 1.0 x 

107 and 2.9 x 106 min-1 M-1, respectively.  For HiAXHd3-Y165A, these values are 3.5 

x 104 and 1.3 x 103 min-1 M-1, respectively. These differences may be due to the 

strategies of substrate binding employed by the two enzymes. Where xylan is 

predicted to lie relatively flat in the open cleft of Y165A, the polysaccharide bends to 

fit into the active site of the GH10 (Charnock et al., 1998; Pell et al., 2004b). In GH10 

enzymes, the -2 and +2 subsites in particular make many interactions which are 

absent in Y165A, which therefore needs to bind more extensively to the rest of the 

xylan chain. Kinetic analysis of the Y165A mutant has shown that binding to five 

subsites is required for activity (Table 4.5). The importance of the +2 subsite in the 

GH10 is underlined by the difference in kcat/KM
 of this enzyme against xylotetraose 

and xylotriose: hydrolysis of X4 is around 100 times faster than hydrolysis of X3 (8.5 

x 104 versus 7.3 x 102 kcat/KM).  

 

Figure 4.28 Comparison of the substrate binding clefts of Y165A and a GH10 xylanase. 



[217] 

 

Surface representations of the HiAXHd3 variant Y165A and a GH10 xylanase (Harris et al., 1996; Pell 

et al., 2004b) illustrate the differences in substrate binding. Catalytic residues are shown in red in both 

panels. 

A: crystal structure of HiAXHd3 mutant Y165A overlaid with xylotetraose from the crystal structure of 

BsAXHm2,3 shows how the polysaccharide lies along the shallow substrate binding cleft. It is inferred 

that for the xylanase activity of Y165A, the xylan backbone lies along this cleft.  

B: the GH10 in complex with xylotetraose shows that here, the polysaccharide points into the active 

site and is twisted into the cleft. 

To further explore catalysis of the xylanase and arabinofuranosidase reactions by 

the HiAXHd3 variant Y165A, six additional Alanine mutations were introduced into 

the Y165A mutant. Table 4.6 summarises the kinetic parameters obtained for each 

mutant. His271 was previously shown to be important for recognition of the O2 linked 

arabinose substitution, as mutation of this residue impaired catalytic efficiency by a 

reduction in kcat. The data show that the double mutant Y165A/H271A has lost its 

arabinofuranosidase activity but displays xylanase activity comparable to Y165A, 

although a greatly reduced KM suggests tighter binding to the xylan backbone. This 

demonstrates that while the same active site and catalytic machinery are responsible 

for each reaction, different residues are important in coordinating the two substrates.  

Other residues (Asn183, Pro233, Phe288 and Phe492) were proposed to form part 

of the wall of the newly exposed substrate cleft (Figure 4.29) and so were also 

mutated individually to Alanine to explore their role in this novel activity. Compared to 

the Y165A variant, arabinofuranosidase activity of the Y165A/F288A double mutant 

was relatively unchanged, while kcat/KM for the xylanase activity against birchwood 

xylan increased slightly. Pro233 was identified in wildtype structures as providing 

hydrophobic support to Glu215, aiding catalysis. The double mutant Y165A/P233A 

showed xylanase efficiency comparable to that of the Y165A variant, but 

arabinofuranosidase activity was reduced by ~10-fold. The different orientations of 

the target glycosidic bond in the substrates for these two activities may place 

different demands on the microenvironment of the O2 arabinose pocket, so that loss 

of Pro233 as an accessory residue impacts the two activities differently.  
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Of particular note are the double mutants Y165A/N183A and Y165A/F492A, both of 

which show a significant increase in xylanase activity compared to the original 

Y165A variant. While KM for all three enzymes is comparable, increases in kcat (5-fold 

for Y165A/N183A and 6-fold for Y165A/F492A) led to improved catalytic efficiency. 

Asn183 is located towards the reducing end of the substrate, around 4-5 Å from the 

non-reducing xylose in the HiAXHd3/Araf-Xyl3 structure. Phe492 is located at the 

floor of the cleft towards the non-reducing end of the ligand, approximately 6 Å from 

its nearest xylose in the xylotriose structure, but predicted to be much closer to a 

xylose in the full-length polymer. Structure models of these mutants (Figure 4.29) 

indicate that loss of these side chains simply opens the cleft even further, 

presumably allowing the xylooligosaccharide to nestle more deeply into the active 

site, improving the positioning of the glycosidic bond cleaved and facilitating 

generation of the transition state.  

It is interesting to note that the Y165A/F492A mutant increases arabinofuranosidase 

activity compared to the Y165A variant by 50 %. This is intriguing as Phe492 makes 

no contacts with either arabinose residue; the amino acid is located some 4 Å from 

the O2 arabinose and possibly contributes a small portion of the hydrophobic surface 

of the O2 binding pocket. Loss of the phenolic side chain of this Phenylalanine is 

thought to improve xylanase activity by providing greater space and thereby 

facilitating substrate binding, but this does not seem to explain the increased 

catalytic efficiency for the arabinofuranosidase activity. Compared to the single 

mutant Y165A, the double mutant Y165A/F492A appears to increase kcat for both 

arabinofuranosidase and xylanase activities, possibly as product departure is easier 

and faster when the side chain of Phe492 is absent.  
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Figure 4.29 Structural representation of those residues of the substrate binding cleft of Y165A 

selected for further mutagenesis. 

A: Surface representation of HiAXHd3 variant Y165A showing those residues selected for further 

study by mutagenesis. Catalytic residues are shown in red, while Ala165 is picked out in yellow. 

Residues highlighted magenta were mutated as they form part of the walls of the xylan-binding cleft. 

B: model of the Y165A-F492A double mutant. Phe492 is picked out in blue and lies at the base of the 

xylan cleft.  

C: model of the Y165A-N183A double mutant. Asn183 is picked out in blue at the top of the cleft. 

Introduction of the F492A mutation into the Y165A variant of HiAXHd3 leads to 

improvement in both wildtype and xylanase activities. Conversely, introducing the 

N183A mutation (to generate Y165A/N183A) leads to little change in 
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arabinofuranosidase activity but a marked increase in kcat for xylanase activity. 

Observation of the structure of HiAXHd3 and the Y165A mutant shows that Asn183 

hydrogen bonds to the catalytic acid Glu215 (Figure 4.30). It is predicted that this 

hydrogen bond helps to orient the acid correctly for wildtype arabinofuranosidase 

activity. The scissile bond for xylanase activity is likely to be in a different position 

than for arabinofuranosidase activity, so that Glu215 is not optimally placed for 

cleavage of the backbone. When this hydrogen bond is lost by mutating Asn183 to 

Alanine the acid shifts to a more favourable position for hydrolysis of the backbone. 

This has resonance with the view that loss of Pro233, which provides hydrophobic 

support to Glu215, reduces arabinofuranosidase activity of the Y165A mutant while 

xylanase activity is relatively unchanged, suggesting that interaction with Pro233 is 

more important for the catalytic acid in cleavage of the arabinose side chain than for 

hydrolysis of the backbone. 

 

Figure 4.30 Asn183 and Pro233 support Glu215, the catalytic acid. 

Catalytic residues are shown in red while Asn183 and Pro233 are in cyan. The hydrogen bond 

between Asn183 and Glu215 (red dashed line) is predicted to assist in orienting the catalytic acid for 

arabinofuranosidase activity. Loss of this hydrogen bond in the N183/Y165A double mutant allows the 

acidic residue to move to a position more favourable for xylanase activity. Pro233 is in position to 
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provide hydrophobic support to Glu215. Loss of this side chain impairs arabinofuranosidase activity 

but has little effect on xylanase activity. 

The Y165A mutation of HiAXHd3 significantly alters the activity of a highly specific 

enzyme. The observation that an additional catalytic activity can be introduced into a 

glycoside hydrolase gives insight into the catalytic activity displayed by GH43 family 

enzymes. In a way, the Y165A mutation does not in fact introduce a novel activity but 

rather reveals a pre-existing activity, which may be considered a „default‟ for the 

GH43 family. The open cleft of the Y165A variant is present in the wildtype enzyme, 

but its floor contains a heart-shaped pocket which can be considered a secondary 

layer of architecture which is built on top of the typical GH43 fold that confers a low-

level endo-xylanase activity. This view has resonance with findings discussed in 

Chapter Three of this thesis, where many GH43 enzymes from a human gut 

symbiont and, in a sister project, from a soil saprophyte displayed similar weak endo-

xylanase activity.  

The GH43 family is expanded in many microorganisms derived from varied habitats, 

and the family includes examples of many activities. Each new structure contributes 

to our understanding of the family, and the structure of HiAXHd3 and its variant 

provide significant insight. The flexibility of Y165A in substrate recognition is 

consistent with the range of activities displayed by GH43 enzymes that include exo, 

endo and endo-processive modes of action against pyranose and furanose 

substrates where the stereochemistry at C4 varies. The capacity to introduce a novel 

specificity into HiAXHd3 through a single amino acid substitution indicates that the 5-

-propeller fold, displayed by GH43 enzymes, provides a structural scaffold 

that can be harnessed to bind a range of different sugars and catalyse the hydrolysis 

of glycosidic bonds through distinct modes of action.  

As discussed above it is possible that the active site of GH43 xylosidases and 

arabinofuranosidases may, initially, bind the ground state sugar through the same 

interactions, but then utilise additional interactions to distort the arabinofuranose and 

xylopyranose residues into their respective transition states. Thus, while the active 

site of HiAXHd3 is likely capable of binding either arabinofuranose or xylopyranose 

residues in their ground state conformations, the limited xylanase activity displayed 



[222] 

 

by the Y165A mutant may reflect its limited capacity to distort the sugar into its 

preferred transition state conformer.  

 4.8.9 Conclusion 

The structure of this biotechnologically relevant arabinofuranosidase, in harness with 

the observation that additional catalytic functions can be introduced into this enzyme, 

provides a platform for evolving further, industrially significant, activities into 

HiAXHd3 and other members of GH43. Additional discussion of the potential 

technological and economic implications of this finding, as well as recommendations 

for future work, is presented in Chapter Five of this thesis.  
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CHAPTER FIVE 

General Discussion 

This Chapter presents a summary of the work presented in this thesis regarding two 

major projects undertaken throughout the course of this study. An assessment of the 

family 43 glycoside hydrolases of the human gut symbiont Bacteroides 

thetaiotaomicron sheds some light on the biological rationale behind the expansion 

often seen in this family, and gives insight into a possible evolutionary history of the 

family. Structure-function analysis of a highly specific GH43 enzyme from the fungus 

Humicola insolens shows how tight specificity for a polysaccharide substrate is 

driven by multiple structural features and that a novel specificity can be engineered 

into an enzyme of this family.  

5.1 GH43 enzymes of Bacteroides thetaiotaomicron 

 5.1.1 Conclusions 

Chapter Three of this thesis details efforts to characterise all glycoside hydrolase 

family 43 (GH43) enzymes expressed by the human gut symbiont Bacteroides 

thetaiotaomicron, in an attempt to understand the biological rationale behind the 

common expansion in this family. Soluble protein was obtained for 25 of the 31 

GH43 enzymes and each was subjected to an activity screen, testing for hydrolysis 

of polysaccharides and artificial aryl glycosides (Chapter Three, Section 3.3).  

The activity screens of these enzymes were informed, where possible, by data on 

the upregulation of operons encoding GH43s when B. thetaiotaomicron is grown in 

the presence of a specific carbohydrate. These operons, known as Polysaccharide 

Utilisation Loci (PULs), allow a consortium of cooperative metabolic enzymes to be 

co-expressed in the presence of an appropriate substrate.  

  5.1.1.i Arabinan metabolism by GH43 enzymes 

The most thoroughly described PUL is induced by sugar beet arabinan and codes for 

three GH43s (Section 3.5). Two of these GH43s (Bt0360 and Bt0367) are endo-
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arabinanases (Section 3.5.1) with differing specificities for branched and linear 

regions of arabinan. Bt0367 is similar to most published arabinanases in that it is 

inhibited by arabinose side chains in the polymer, but Bt0360 is unusual as it is more 

active on branched polysaccharide (Table 3.6). 

These arabinanases work in conjunction with Bt0369, an α-L-arabinofuranosidase 

with novel specificity for O2-linked side chains, which can be tolerated in the context 

of both single and double substitutions of the backbone. Cleavage of the double 

substitution removes a structure which is inhibitory to most arabinofuranosidases, 

allowing a more complete degradation of arabinan, but it is perhaps surprising that 

the O2-linked arabinose is removed. The amount of arabinose liberated from 

arabinan by Bt0369 is low, as this side chain is very rare outside of the double 

substitution. An enzyme which cleaved O3-linked side chains would release more 

arabinose, but may also be diverted from removal of the double substitutions by an 

abundance of the single substitutions. Thus, the evolutionary rationale behind the 

selection of the α-1,2-linked side chain may be that it limits cleavage of single 

substitutions, allowing the enzyme to maintain a catalytic focus on the double 

substitution. Downstream GH51 arabinofuranosidases are likely to remove the α-1,3-

linked side chains which remain. 

The crystal structure of a close homologue of Bt0369, which displays the same 

specificity, was solved in complex with ligands by Dr A Cartmell of the Gilbert 

laboratory (CCRC and Newcastle University). The structure of this enzyme, 

CjAbf43A, reveals a five bladed β-propeller fold, Figure 3.19, as the sole domain of 

the enzyme. The structure of the ligand complex (Figure 3.20) reveals the nature of 

the specificity of the enzyme for the O2-linked side chain and the tolerance shown by 

the enzyme for the double substitution. The surface representation of CjAbf43A, 

Figure 3.20, reveals a deep pocket in the centre of a highly curved cleft. The rim of 

the pocket abuts onto a shelf-like structure that accommodates the O3-linked 

arabinose side chain of the double substitution. The O2 of the central arabinose 

which participates in the target glycosidic bond points directly into the active site 

pocket. The orientation of this cleft is adapted to the twisted structure of the arabinan 

chain and excludes the linear xylan backbone, as demonstrated in overlays with an 

arabinoxylan-specific arabinofuranosidase. 
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These arabinan-active GH43s of B. thetaiotaomicron are hypothesised to function 

cooperatively in a degradative pathway which generates oligosaccharides from 

sugar beet arabinan (Section 3.6.1.iii, Figure 3.26). The arabinanases Bt0360 and 

Bt0367 cleave the arabinan backbone, generating oligosaccharides which are linear 

or decorated with arabinofuranose side chains. These short oligomers are taken into 

the cell by two SusC/D carbohydrate binding complexes. Subsequently Bt0369, the 

α-1,2-L-arabinofuranosidase, functions as a de-branching enzyme and strips O2-

linked side chains from arabinan, thereby removing all instances of the double 

substitution structure which is inhibitory to the vast majority of arabinofuranosidases. 

Finally, in the periplasm these oligosaccharides are subjected to final metabolism by 

as yet uncharacterised enzymes. 

Arabinan degradation in C. japonicus proceeds via a different pathway which 

nonetheless shows convergence with the B. thetaiotaomicron system in the use of a 

highly specific α-1,2-L-arabinofuranosidase in degradation. Following removal of 

double substitutions by CjAbf43A, an extracellular GH51 arabinofuranosidase 

removes the remaining single O3-linked side chains. The resulting linear backbone is 

then cleaved exclusively to arabinotriose by an endo-processive arabinanase (McKie 

et al., 1997). The trisaccharide is metabolised by two GH43 α-1,5-exo-arabinanases. 

  5.1.1.ii A weak xylanase activity is displayed by many GH43 enzymes 

The activity screen of soluble B. thetaiotaomicron GH43s revealed that eleven show 

weak endo-xylanase activity against xylans with a variety of arabinofuranosyl 

branching patterns (wheat arabinoxylan, rye arabinoxylan, oat spelt xylan and 

birchwood xylan). Three of these enzymes (Bt2852, Bt3094 and Bt3655) also 

showed activity against 4NP-α-L-arabinofuranoside and arabinose appears to be a 

significant product in arabinoxylan degradation by these xylanases (Figures 3.10 and 

3.11). It is likely that these enzymes, particularly the most active, Bt2852, are 

arabinoxylan-specific arabinofuranosidases (AXH) of unknown specificity. The 

amount of arabinose released from birchwood xylan is comparable to that released 

from wheat arabinoxylan; this is in stark contrast with the double-substitution specific 

HiAXHd3 (Chapter Four), which liberates an almost negligible amount of arabinose 

from birchwood xylan, suggesting that the double substitution is extremely rare in 
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birchwood xylan. This indicates that Bt2852 is cleaving singly substituted arabinose 

side chains. 

The arabinofuranosidase activity displayed by Bt2852 appears to be more efficient 

than the xylanase action of the enzyme, which is likely a side activity. Other GH43s 

displaying xylanase action without complementary arabinofuranosidase activity may 

appear to be weakly acting as they hydrolyse a rare bond within the polysaccharide 

backbone. However, the enzymes do not appear to discriminate between the xylan 

substrates tested, which differ greatly in degrees of decoration. Therefore it seems 

likely that the xylanase function is a side activity. These enzymes may not be 

biologically active, or it may simply be that the correct substrate was not evaluated in 

this study. If so, it is difficult to envision what these correct substrates may be. 

  5.1.1.iii Phylogenetic analysis of family GH43 

The GH43s of B. thetaiotaomicron and C. japonicus were submitted to phylogenetic 

analysis together with previously characterised examples from the family (Section 

3.6.2.i, Figure 3.27). Newly described GH43s displaying endo-arabinanase and α-

1,5-exo-arabinanase activity are in clades with previously described enzymes that 

exhibit similar activities. By contrast, and consistent with their novel activity, the well 

characterised α-L-1,2-arabinofuranosidases CjAbf43A and Bt0369 formed a clade 

that contains no other enzymes with known catalytic properties. The many enzymes 

displaying “trace” xylanase activity are not clustered into a specific region of the 

family tree, suggesting that this minor activity may be a generic feature of GH43. 

5.1.2 Future work  

While many GH43 enzymes from B. thetaiotaomicron have been characterised in 

this study, relatively few have demonstrated novel activities. One particularly 

interesting enzyme characterised here is Bt0360, an endo-arabinanase which shows 

preference for branched arabinan structures. This sets Bt0360 apart from other 

characterised arabinanases, which are inhibited by side chains, as is Bt0367. The 

nature of the different specificity of Bt0360 is intriguing. Attempts to obtain crystal 

structures and homology models were unsuccessful, but sequence analysis 

indicates that this enzyme may possess an additional N-terminal module not seen in 
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other arabinanase enzymes (Figure 3.18). If so, this structural feature may contribute 

to the unusual action of the enzyme. More intensive crystallisation trials may be 

fruitful and yield an informative crystal structure. Another useful experiment would be 

the characterisation of the reaction products generated from sugar beet arabinan by 

Bt0360. Mass spectrometry on permethylated samples of reaction products would 

provide details on the decorated structures of the arabinooligosaccharides. In this 

way, we could learn whether the enzyme cleaves the arabinan backbone in a 

specific structural context, or if it is merely sufficiently tolerant of side chains that a 

randomised mixture of variously decorated products is generated. Of relevance to 

this work is an on-going project in the Bolam laboratory at Newcastle University 

aiming to characterise the binding proteins (SusCD complexes) of the arabinan PUL. 

Another interesting GH43 identified in this study which may warrant closer 

examination is Bt2852, which has been defined as an arabinoxylan-specific 

arabinofuranosidase with background xylanase activity, as the enzyme has activity 

on 4NP-α-L-arabinofuranoside and releases arabinose from arabinoxylan but not 

arabinan, as well as a weak endo-xylanase activity. NMR experiments similar to 

those described for HiAXHd3 in Chapter Four could elucidate the specificity of the 

arabinofuranosidase activity of the enzyme. In addition, a crystal structure of the 

enzyme in complex with ligand (a xylooligosaccharide or a branched 

arabinoxylooligosaccharide) could be very informative to our hypothesis that the 

GH43 fold carries the capacity for xylanase action. However, Bt2852 is only a weakly 

active enzyme, and many more efficient arabinofuranosidases and xylanases have 

been described, so the value of the labour required for these efforts may be 

questionable. 

Similarly, the enzyme Bt3675 could be said to warrant further examination. This 

enzyme proved highly problematic in terms of expression and purification of soluble 

protein (Figure 3.7) but an activity screen using impure cell-free extract of over-

expressed Bt3675 indicated that the enzyme was active on 4NP-β-D-

galactopyranoside and released two products from arabinogalactan, a 

monosaccharide and a second, larger product. This could be an interesting activity 

but was not pursued due to the difficulty of working with the enzyme. According to 

the CAZy database (Cantarel et al., 2009), family GH43 contains exo-β-1,3-
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galactanases (Ichinose et al., 2005; Kotake et al., 2009) and at least one β-

galactosidase (Beloqui et al., 2010); Bt3675 is likely to belong to one of these 

classifications. Indeed, the gene for Bt3675 is found on the B. thetaiotaomicron 

genome in a PUL which is upregulated in the presence of arabinogalactan. The only 

other enzymes present in this PUL are the GH43s Bt3683 and the non-functional 

Bt3685, which lacks catalytic residues (Section 3.6.2.ii). Bt3683 is a bimodular GH43 

linked to a GH16 module, a family that includes β-galactosidases (Tempel et al., 

2005). In this study, soluble protein was not obtained for Bt3683, but one can 

imagine cooperativity between this enzyme and Bt3675 in the hydrolysis of 

arabinogalactan.  

Those enzymes whose substrate has not been identified in this study remain a 

puzzle. The search for substrates is complicated when one considers that the activity 

of enzymes which work synergistically in biology, as is quite likely for the 

components of the PULs of B. thetaiotaomicron, may only be apparent when 

assayed in biologically realistic conditions, such as in the presence of other 

appropriate enzymes. One possible avenue of exploration is the hydrolysis of 

complex glycans. GeneChip data indicate that four of the PULs containing GH43s 

(Table 3.1) are upregulated when B. thetaiotaomicron is grown in the presence of N-

linked glycans. In the gut, the bacteria would certainly be exposed to such structures, 

from dietary intake of eukaryotic tissue (meat and plant material) and attached to 

host cells of the intestine. Bacterial gut symbionts are hypothesised to play a role in 

the rapid turnover of epithelial cells in the digestive tract (Martens et al., 2008; 

Sonnenburg et al., 2005) and this may be mediated by hydrolysis of surface glycans. 

B. thetaiotaomicron has been shown to be capable of turning to host glycans in times 

of scarcity of other nutrient sources (Sonnenburg et al., 2005). However, the 

structure and composition of human glycans do not represent a substrate for GH43. 

Complex N-linked plant glycans contain a β-linked xylopyranose residue and as such 

may be hydrolysed by members of family GH43, as there are characterised β-

xylosidases within this family.  
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5.1.3 Implications 

The major finding of the work presented in Chapter Three is an understanding of the 

metabolism of arabinan by B. thetaiotaomicron by description of the enzymes of PUL 

7, which function as a cooperative system. GeneChip and carbohydrate binding data 

show that the hybrid two component system that regulates transcription of the PUL 

binds arabinan, thus the enzyme activities described in this study are likely to be 

biologically significant and give insight into the functioning of the metabolic PUL 

system as a whole. 

Additionally, the work presented here gives insight into the GH43 family. By 

demonstrating that a weak xylanase activity is found in distantly related sequences 

from varied bacterial species, credence is given to an evolutionary theory of family 

GH43. The data suggest that an early member of the family displayed a biologically 

significant xylanase activity. It is hypothesised that this was rendered redundant by 

the acquisition of more efficient xylanases (GH10 and GH11) which resulted in GH43 

enzymes developing additional structural features to alter the function of these 

proteins or, in some instances, biological relevance was lost. The presence in B. 

thetaiotaomicron of multiple inactive enzymes which appear not to possess catalytic 

machinery supports this. The phylogenetic analysis shown in Chapter Three (Figure 

3.27) also suggests that it is likely that weak xylanases will be found in other 

bacterial species, including Cellvibrio japonicus.  

The weak xylanase Bt2852 has been designated as an arabinoxylan-specific 

arabinofuranosidase; the potential implications of this dual function are interesting. 

Complete degradation of arabinoxylan is a convoluted process, traditionally requiring 

a consortium of glycoside hydrolases from multiple families to remove all side chains 

and efficiently hydrolyse the backbone. Arabinoxylan is a highly abundant polymer in 

the plant cell wall, which is increasingly viewed as an important raw material for the 

production of chemicals and transport fuel. However, the polysaccharide is complex, 

and degradation requires enzymes including, but not limited to, 

arabinofuranosidases and xylanases. The complexity of the process to saccharify 

arabinoxylan, particularly the requirement for multiple enzymes to be produced, is 

one factor which hampers the economic utilisation of the plant cell wall. The 
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economic viability of the process would be increased if fewer enzymes could be 

used. Thus, a glycoside hydrolase such as Bt2852 with demonstrable dual 

degradative functions against arabinoxylan is an attractive proposition. However, the 

enzyme is very slow, which clearly reduces its utility. Nonetheless, knowledge of this 

enzyme may inform future experiments in protein engineering which aim to produce 

similar dual function enzymes for uses in the biofuel and bioprocessing sectors. 

5.2 HiAXHd3, a fungal arabinofuranosidase 

 5.2.1 Conclusions 

  5.2.1.i Specificity of the wildtype enzyme 

In Chapter Four of this thesis, work is presented which describes the structure and 

specificity of HiAXHd3, a fungal arabinofuranosidase of industrial significance. The 

enzyme had previously been shown to be specific for α1,3 linked arabinose side 

chains found in the double substitution of arabinoxylan (Sorensen et al., 2006). The 

protein has now been shown to possess the same specificity for arabinan; kinetic 

analysis has shown that rates are roughly comparable against both substrates. NMR 

experiments demonstrated specificity for the O3-linked arabinose in the double 

substitution in arabinan and arabinoxylan.  

Crystal structures were sought to better understand the specificity displayed by 

HiAXHd3. The structure of the enzyme shows that the protein comprises two 

modules linked by a short flexible loop (Chapter Four, Figure 4.9). The N-terminal 

module is the canonical β-propeller common to all GH43s, while at the C-terminal is 

a β-sandwich module not seen in all GH43s but which is common for arabinoxylan-

specific arabinofuranosidases (Vandermarliere et al., 2009; Yoshida et al., 2010). 

Analysis of the surface structure of the enzyme shows that the active site (containing 

the three catalytic residues Asp42, Asp166 and Glu215) is a pocket in the surface, 

adjacent to which is a second depression. Together, these features make a heart-

shaped pocket, which accommodates the double substitution of the substrate. 

Another notable feature is a substrate binding cleft that accommodates xylan and 

likely arabinan, which extends over the protein and is formed at the interface 

between the β-propeller and β-sandwich modules.  
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The structure of HiAXHd3 in complex with xylotriose, in which the central xylose has 

an O2-linked arabinose, showed that the side chain points into the pocket structure 

adjacent to the active site (defined as the +2NR* subsite). This structure provides 

information on enzyme contacts with the O2 arabinose and on the orientation and 

interactions of the xylan backbone, which are inferred from the positioning of the 

xylotriose ligand. The structure of a second protein-ligand complex has density for a 

single xylose residue (+1 subsite) linked α-1,2 to an arabinose in the pocket adjacent 

to the active site, and an arabinofuranose is also present in the active site (-1 

subsite) that is not covalently linked to the +1 xylose.  

These structures give insight into the nature of the specificity of HiAXHd3. Arg296 

makes direct polar contacts with both arabinose residues, while Gln272 contacts the 

O3-linked arabinose at the -1 subsite. His271 makes a polar contact with the O2-

linked arabinose, which is also coordinated by hydrophobic contacts with Phe288 

and Thr231, residues which line the O2 binding pocket (+2NR*). The xylan backbone 

is positioned in the substrate binding cleft by polar contact between the endocyclic 

oxygen of the xylose at subsite +2NR and Tyr165. In addition, Trp525, which 

belongs to the β-sandwich module, makes stacking interactions and a weak 

hydrogen bond with the xylose at +2R (Figure 4.13). 

Each of these residues has been mutated to Alanine. NMR analysis of the activity of 

these mutants has shown that only the W525A mutation leads to a change in 

specificity. This mutant is able to cleave either the O2 or O3 linked arabinose from 

the double substitution, indicating that coordination of the polysaccharide by Trp525 

is critical for orientation of the backbone such that the α-1,3 linked arabinose sits in 

the active site. Specificity is likely aided by interactions with the O3-linked arabinose; 

mutation of Arg296 or Gln272, which contact the -1 arabinose directly, is lethal to the 

enzyme.  

Removal of the double substitution by HiAXHd3 is likely an early step in degradation 

of arabinoxylan by H. insolens. Removal of the α-1,3-linked component of the double 

substitution leaves a roughly equal mix of singly substituted O2 and O3-linked 

arabinose side chains. The organism possesses a GH51 α-L-arabinofuranosidase 

which shows synergy with HiAXHd3 and has the capacity to catalyse removal of α-
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1,2 and α-1,3-linked singly substituted side chains (Sorensen et al., 2006). This 

flexible, synergistic GH51 is also seen in Bifidobacterium adolescentis, which 

expresses the only other characterised AXHd3 enzyme. The stages involved in the 

subsequent metabolism of de-branched arabinoxylan are currently unclear, as the H. 

insolens genome has yet to be fully sequenced. According to the CAZy database 

(www.cazy.org), H. insolens possesses xylanases from families GH10 and GH11 

(Dalboge and Heldt-Hansen, 1994). These enzymes will degrade xylan into shorter 

oligosaccharides, which may be metabolised by other downstream enzymes. More 

information is available on the metabolic capacity of B. adolescentis, due to a fully 

sequenced genome and several characterised enzymes. B. adolescentis is able to 

grow on arabinoxylooligosaccharides as the sole nutrient source due to the 

combined degradative action of BaAXHd3, the synergistic GH51, and a GH8 

reducing end xylose-releasing exo-oligoxylanase (Lambertus et al., 2005). Thus, B. 

adolescentis can utilise oligosaccharides generated from arabinoxylan but does not 

appear to have the capacity to degrade the polysaccharide backbone. Other bacteria 

found in the gut, such as Bacteroides ovatus, do have this capacity (Cooper et al., 

1985; Weaver et al., 1992), suggesting that B. adolescentis utilises oligosaccharides 

released by other commensal species. The xylanase enzymes so far identified in H. 

insolens indicate that the fungus does not display this dependency upon another 

species. Nonetheless, H. insolens and B. adolescentis do display convergence as 

they remove arabinose decorations from xylooligosaccharides via the same 

mechanism. 

  5.2.1.ii A single mutation introduces dual functionality to HiAXHd3 

In mutagenesis studies of HiAXHd3, one mutation in particular gave very interesting 

results. The mutant Y165A retained specificity for the O3-linked arabinose of the 

double substitution, albeit at reduced catalytic efficiency, but also gained xylanase 

activity. Kinetic analysis of the mutant (Section 4.5) showed that it possesses six 

subsites for xylanase activity, of which five are critical. Further mutagenesis studies 

confirmed that the same catalytic apparatus (Asp42, Asp166 and Glu215) is 

responsible for both the arabinofuranosidase and xylanase activities of the Y165A 

variant of HiAXHd3. 
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Structural analysis of Y165A shows that the heart-shaped pocket of the wildtype 

enzyme has been altered to reveal an open cleft topology (Figure 4.27). Removal of 

the phenolic side chain of Tyr165 disrupts the face of the pocket directly below the 

glycosidic oxygen between the +1 and +2NR xylose residues. Subsequent 

mutagenesis studies revealed that introducing the mutations N183A and F492A into 

the Y165A variant significantly increase xylanase activity (Table 4.6). The 

Y165A/F492A mutant in particular is of interest, as it displays greater xylanase and 

arabinofuranosidase activity than the single Y165A mutant. Furthermore, it is 

possible to convert the enzyme to only display xylanase activity: the Y165A/H271A 

mutant released no arabinose from arabinoxylan but showed xylanase activity 

roughly comparable to the Y165A single mutant. 

5.2.2 Future work  

The crystal structures, kinetic analysis, mutagenesis and NMR experiments detailed 

in Chapter Four give insight into the mechanisms underlying the specificity displayed 

by HiAXHd3. Nonetheless, gaps in our understanding do persist, which warrant 

further examination.  

Mutagenesis studies, coupled with NMR experiments and structural data, have 

demonstrated that Trp525 is critical to specificity in arabinoxylan. The same 

information is not available for HiAXHd3 activity on arabinan; contacts with this 

polysaccharide are likely to be different than for xylan, as the backbone adopts a 

very different conformation (Figure 4.1). A crystal structure is required to determine 

whether Trp525 makes the same vital interactions with this polysaccharide. For this 

reason, a structure of HiAXHd3 in complex with a decorated arabinooligosaccharide 

is currently being sought by members of the Gilbert laboratory at Newcastle 

University. This structure should also shed light on why mutations of Tyr165 (Y165F 

and Y165W) seem to affect arabinofuranosidase activity differently on arabinoxylan 

and arabinan (Table 4.4).  

A crystal structure is also currently being pursued of HiAXHd3 variant Y165A in 

complex with a xylooligosaccharide. Attempts to date have been hampered by the 

presence of Bis-Tris propane in the active site of the protein. With crystals of the 

wildtype enzyme, a molecule of Tris was present in the active site, but this was 
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displaced in some crystals by ligand during soaking experiments. However, the Bis-

Tris propane found in the Y165A active site was not displaced by ligand in soaking 

experiments. Attempts will therefore be made to crystallise Y165A in the absence of 

any Tris buffers.  

Mutagenesis of the Y165A variant has revealed two additional mutations (N183A 

and F492A) which have increased xylanase activity while retaining 

arabinofuranosidase activity. Despite this, while the mutant demonstrates an exciting 

dual function, it remains only a weakly active enzyme. Further efforts to improve 

activity could be undertaken by error-prone PCR to introduce random changes to the 

cleft structure of the enzyme. In addition, a triple mutant of Y165A/N183A/F492A 

should show the improvements displayed by both double mutants (Y165A/N183A 

and Y165A/F492A). 

5.2.3 Implications 

Comparing HiAXHd3 with the GenBank database showed that in the 50 proteins that 

display the closest sequence identity, the five key specificity determinants (Tyr165, 

His271, Asp290, Arg296 and Trp525) are highly conserved; Arg296 is invariant while 

Tyr165, His271, Asp290 and Trp525 are conserved in 94 %, 84 %, 92 % and 90 % 

of the proteins, respectively. It is likely that the majority, if not all, of these enzymes 

are AXHd3s, particularly when one considers that there is a lack of conservation of 

His271 and Trp525 in the only other confirmed AXHd3 (Lambertus et al., 2005). 

The Y165A mutation of HiAXHd3 shows that a glycoside hydrolase from family 

GH43 with very tight specificity for an arabinose residue in an unusual structural 

context (the double substitution) can be altered to display xylanase activity while 

retaining wildtype specificity. As was discussed above, arabinoxylan is potentially a 

very important industrial raw material, but economic utilisation of this polysaccharide 

is hindered by the production costs involved in producing the consortium of enzymes 

required for complete saccharification. The double substitution in particular has long 

been problematic, as most arabinofuranosidase enzymes are inhibited by this 

structure. For this reason, wildtype HiAXHd3 is of industrial significance as the first 

stage in arabinoxylan degradation, as removal of the double substitution permits 

other arabinofuranosidases to hydrolyse the remaining single substitutions, after 
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which xylanases can hydrolyse the backbone. The use of a dual function enzyme 

such as Y165A reduces costs involved in enzyme production and so can facilitate 

the economic utilisation of the plant cell wall. The enzyme is weakly acting, but 

activity could potentially be improved (Section 5.2.2). In addition, the Y165A mutant 

serves as proof of concept that a GH43 can be engineered quite easily to perform a 

dual function. 
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APPENDIX A 

Materials and suppliers 

A.1 Protein standards 

Sigma low and high molecular weight standards: 

Low molecular weight protein standards Molecular weight (kDa) 

Albumin, bovine 66 

Albumin, egg 45 

Glyceraldehyde-3-P dehydrogenase 36 

Carbonic anhydrase, bovine 29 

Trypsinogen, bovine 24 

Pancreas trypsin inhibitor, soybean 20 

α-lactalbumin, bovine milk 14.2 

Table A.1 Sigma low molecular weight standards 

 

High molecular weight protein standards Molecular weight (kDa) 

Myosin, rabbit muscle 205 

Β-galactosidase, E. coli 116 

Glyceraldehyde-3-P dehydrogenase 97.4 

Albumin, bovine 66 

Albumin, egg 45 

Carbonic anhydrase, bovine  29 

Table A.2 Sigma high molecular weight standards 
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A.2 Vector maps 

 A.2.1 pET21a-d cloning/expression region 

 

A.2.2 pET32a-c cloning/expression region 

 

A.2.3 pET14b cloning/expression region 
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A.2.4 pGEX cloning/expression region 

 

 

A.2.5 mini- pRSETA cloning/expression region 

 
 

A.2.6 mini-pRGST cloning/expression region 

Amino acid sequence of the glutathione-S-transferase fusion protein: 

SPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYY

IDGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFE

TLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLD

AFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLVPR 
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APPENDIX B 

Supplemental data – Chapter Three 

B.1 Polysaccharide activity screens 

All GH43s obtained in a soluble form were submitted to a screen for polysaccharide 

activity, analysed by TLC. Several of these enzymes displayed a weak endo-

xylanase activity. 

B.1.1 Weakly acting xylanases – TLC 

  B.1.1.i Bt0265 polysaccharide screen 

 

C = control reaction. E = enzyme reaction. A1-6 = arabinooligosaccharide standards. 

linA = linear arabinan. sbA = sugar beet arabinan. wAX = wheat arabinoxylan. rAX = 

rye arabinoxylan. osX = oat spelt xylan. 
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  B.1.1.ii Bt4095 polysaccharide screen 

 

sbA = sugar beet arabinan. wAX = wheat arabinoxylan. rAX = rye arabinoxylan. XG 

= xyloglucan. AG = arabinogalactan. RGI = rhamnogalacturonan I. 

Ara = arabinose standard. Gal = galactose standard. 
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B.1.2 Weakly acting xylanases – HPLC 

  B.1.2.i Bt3467 degradation of birchwood xylan 
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B.2 PUL 7 cloning experiments 

B.2.1 Bt0348 and Bt0368 are GH51 enzymes encoded by the PUL 7 operon 

Gene Plasmid Forward primer Reverse primer Restriction 

enzymes 

Outcome 

0348 pET21(a) ctcgtc ggatcc 

caaaagagtgctaccatcactgtac 

ctcgtc caagcttgc 

ctgtaactctaaagtaacaattgacttagccgg 

BamHI HindIII Lethal to E. coli 

(Figure 3.17) 

0348 pGEX ctcgtc gtggatccc 

caaaagagtgctaccatcactgtacatgc 

ctcgtc actcgagcg 

ttactgtaactctaaagtaacaattgac 

BamHI XhoI No expression 

0348 pRGST ctcgtc ggatcc 

caaaagagtgctaccatcactgtacatgc 

ctcgtc cgaagcttg 

ttactgtaactctaaagtaacaattgac 

BamHI HindIII No expression 

0348 pET14(b) ctccag catatg caaaagagtgctaccatcac ctccag ctcgag 

ttactgtaactctaaagtaacaattgac 

Nde1 Xho1 Some insoluble 

protein 

0348 pET32(a) ctccag ggatcc caaaagagtgctaccatcac ctccag actcgagca 

ttactgtaactctaaagtaacaattgac 

BamHI XhoI No expression 

0368 pET21(a) ctcg ggatcc 

caaaccaatgaaatggtgatccagac 

ctcg caagcttgc 

ttttttcgtgaatttataaactgcaaacgtgttcgg 

BamHI HindIII No expression 

0368 pGEX ctcgtc gtggatccc 

caaaccaatgaaatggtgatccagactaagaag 

ctcgtc actcgagcg 

ttattttttcgtgaatttataaactg 

BamHI XhoI Only GST 

expressed 

0368 pRGST ctcgtc ggatcc 

caaaccaatgaaatggtgatccagactaagaag 

ctcgtc cgaagcttg 

ttattttttcgtgaatttataaactg 

BamHI HindIII No expression 
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Gene Plasmid Forward primer Reverse primer Restriction 

enzymes 

Outcome 

0368 pET14(b) ctccag ctcgag caaaccaatgaaatggtgatcc ctccag gctgagcaa 

ttattttttcgtgaatttataaactgc 

XhoI Bpu11021 No expression 

0368 pET32(a) ctccag ggatcc caaaccaatgaaatggtgatcc ctccag actcgagca 

ttattttttcgtgaatttataaactgc 

BamHI XhoI No expression 

Table B.1 Plasmids, primers and restriction enzymes used in GH51 cloning experiments.  

Neither Bt0348 nor B0368 was obtained in a soluble form. 
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B.3 Example kinetics 

B.3.1 Endo-arabinanases 
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APPENDIX C 

Purification of an arabinoxylooligosaccharide 

C.1 Purification of a ligand for crystallisation with HiAXHd3 

An oligosaccharide ligand was generated for crystallisation with HiAXHd3 by partial 

digestion of wheat arabinoxylan with a GH10 xylanase (Chapter Four, Section 4.3). 

Reaction products were purified by size exclusion chromatography. 5 ml fractions 

were collected and assayed for HiAXHd3 activity to determine the location of a 

suitable substrate for the enzyme. 

 

Figure C.1 TLC analysis of fractions collected from a P2 biogel column 

Fractions were collected from the column after 150 ml of water had flowed through. 10 μl of each 

fraction was spotted onto a TLC plate, which was dried and stained to check for the presence of 

sugar. Significant sugar is present in fractions 14 – 63. Some sugar is still visible up to fraction 74. 
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Figure C.2 TLC analysis of purified arabinoxylooligosaccharides 

Fractions which had been identified as containing significant amounts of sugar were analysed by TLC 

as a quick assessment of the success of purification. There is a clear pattern through the fractions, 

with larger oligosaccharides eluting in earlier fractions, indicating that products have been 

successfully separated by size.  

SM = starting material. This is the original mixture of arabinoxylooligosaccharides which was loaded 

onto the column. 
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APPENDIX D 

Supplemental data – Chapter Four 

D.1 Example kinetics 

 D.1.1 Wildtype HiAXHd3 

 

 D.1.2 Mutant HiAXHd3 
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 D.1.3 HiAXHd3 Y165A variant 

 

 D.1.4 Double mutants of HiAXHd3 

  D.1.4.i Y165A/N183A 
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  D.1.4.ii Y165A/F492A 

 

  D.1.4.iii Y165A/P233A 
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D.2 Mutant Y165A activity screen 

The Y165A mutant of HiAXHd3 (Chapter Four, Section 4.5) was screened for activity 

on several substrates by TLC. The positive results presented here were confirmed 

by subsequent HPLC. These data show that the Y165A mutant releases arabinose 

from wheat arabinoxylan and sugar beet arabinan, as does the wildtype enzyme. In 

addition, the mutant releases a range of products from arabinoxylan and 

xylooligosaccharides with a degree of polymerisation greater than four.  

 D.2.1 Polysaccharide screening 

 

Figure D.1 TLC screen of activity against wheat arabinoxylan. 

Wheat arabinoxylan (2 mg ml
-1

) was incubated for four hours with wildtype and mutant HiAXHd3, and 

classical xylanases from families GH10 and GH11 (HiAXHd3 wildtype (WT), GH10 and GH11 at 50 

nM, HiAXHd3 mutant Y165A at 10 μM). A control reaction (Ctrl) was also performed, where the 

substrate was incubated in buffer with no enzyme. No product is released during the control reaction. 

Both wildtype and mutant HiAXHd3 release arabinose from the substrate, although the mutant 

releases less of the sugar. The mutant also releases small amounts of other products, indicating 

some degree of xylanase activity. Degradation by the GH10 and GH11 xylanases is more significant. 
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Figure D.2 TLC screen of activity against sugar beet and linear arabinan. 

Substrate (2 mg ml
-1

) was incubated for four hours with wildtype and mutant HiAXHd3, and the 

arabinanase BsArb43A (HiAXHd3 wildtype (WT) and BsArb43A at 50 nM, HiAXHd3 mutant Y165A at 

10 μM). A control reaction (Ctrl) was also performed, where the substrate was incubated in buffer with 

no enzyme. No product is released during the control reactions. Both wildtype and mutant HiAXHd3 

release arabinose from the sugar beet arabinan (sbA), although the mutant releases less of the sugar. 

Neither enzyme hydrolyses linear arabinan (linA). The previously characterised arabinanase releases 

oligosaccharides from both substrates. This shows that the Y165A mutant does not possess 

arabinanase activity. 
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 D.2.2 Oligosaccharide screening 

 

Figure D.3 TLC screen of activity against xylotetraose. 

Xylotetraose (10 mM) was incubated for four hours with wildtype and mutant HiAXHd3, and classical 

xylanases from families GH10 and GH11 (HiAXHd3 wildtype (WT), GH10 and GH11 at 50 nM, 

HiAXHd3 mutant Y165A at 10 μM). A control reaction (Ctrl) was also performed, where the substrate 

was incubated in buffer with no enzyme. No product is released during the control reaction. Neither 

wildtype nor mutant HiAXHd3 hydrolyses xylotetraose, indicating that Y165A is active on longer 

substrates. The GH10 and GH11 xylanases release a range of products. 
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Figure D.4 TLC screen of activity against xylotetraose and xylohexaose. 

Xylopentaose (X5) and xylohexaose (X6) (10 mM) were incubated for four hours with Y165A mutant 

HiAXHd3(10 μM). A control reaction (Ctrl) was also performed, where the substrate was incubated in 

buffer with no enzyme. The substrates are impure, but there is a clear difference in both assays 

between the control samples and the enzyme reactions. This indicates that Y165A has xylanase 

activity on xylooligosaccharides with a degree of polymerisation of five or greater. 
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APPENDIX E 

NMR Spectra 

 

Figure E.1 1D-NMR analysis of arabinooligosaccharides incubated with Bt0369. 

Linkages are identified in the schematic of arabinan by single letter codes; these correspond to the 

appropriately labelled peak in the spectrum. The spectrum is highly complex. Peaks F and E 

correspond to O2-linked arabinose in single and double substitutions, respectively. Peaks B and A 

correspond to backbone residues which are decorated with an O2-linked arabinose in a single and 

double substitution, respectively. Peaks F, E, B and A are present in the control reaction but are lost 

during incubation with the enzyme (peak A is somewhat obscured by overlap with the free arabinose 

peak produced during incubation). It is logical that loss of the O2-linked arabinose in the double 

substitution would lead to an increase in singly substituted O3-linked arabinose (peak G and 

corresponding backbone peak C) and loss of the signal for doubly substituted O3 arabinose (peak D). 

However, peaks D and G overlap and the high abundance of the single O3 substitution in the starting 

mixture makes this difficult to observe in a 1D spectrum. 
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Figure E.2 2D gHSQc spectrum showing arabinooligosaccharides incubated with Bt0369. 

Cross-peaks corresponding to O2-linked arabinose in single and double substitutions are circled in 

the Control spectrum. These are lost during incubation with the enzyme. Peaks corresponding to O3-

linked arabinose remain after enzyme treatment. 

 

Figure E.3 1D NMR spectra of wheat arabinoxylan before and after incubation with HiAXHd3.  
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1D NMR of HiAXHd3 wheat arabinoxylan reaction products. In the schematic, linkages within the 

polysaccharide (A-D) are labelled to correspond with peaks in the NMR spectra. Peaks corresponding 

to the anomeric protons of -L-arabinofuranose residues linked at the O2 (C) and O3 (B) position to 

doubly substituted xylose residues are present in the spectrum of arabinoxylan prior to enzyme 

treatment, but are absent after incubation. A peak corresponding to the anomeric proton of -L- 

arabinofuranose linked at the O2 (D) position to single substituted xylose residues, is visible only in 

the spectrum of arabinoxylan after treatment with HiAXHd3, having been generated by enzymatic 

cleavage of arabinose residues at position B. A small peak for single O2 (D) substitutions is likely 

present in the control spectrum but is obscured by other peaks. 

 

Figure E.4 1D NMR spectra of sugar beet arabinan before and after incubation with HiAXHd3. 

1D NMR of HiAXHd3 sugar beet arabinan reaction products. In the schematic, linkages within the 

polysaccharide (A-G) are labelled to correspond with peaks in the NMR spectra. As described in the 

text, arabinooligosaccharides generated by partial acid hydrolysis of arabinan were used as substrate 

in this experiment. Peaks corresponding to the anomeric protons of arabinose units that were 

substituted at both O2 and O3, and the respective-L- arabinofuranose residues attached to O2 of 

2,3,5 linked arabinose (backbone arabinose units that are doubly substituted), were lost after enzyme 

treatment. Intensity of the signals corresponding to the anomeric protons of -L- arabinofuranose 

residues that contain a single O2 substitution and arabinose units linked O2 to the arabinan backbone 

increased. 
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Figure E.5 gHSQC spectra of arabinooligosaccharides before and after incubation with 

HiAXHd3. 

2D NMR (gHSQC) of HiAXHd3 arabinooligosaccharide reaction products. Peaks corresponding to the 

anomeric protons of arabinose units that were substituted at both O2 and O3, and the respective-L- 

arabinofuranose residues attached to O2 of 2,3,5 linked arabinose (backbone arabinose units that are 

double substituted), were lost after enzyme treatment. Intensity of the signals corresponding to the 

anomeric protons of -L- arabinofuranose residues that contain a single O2 substitution and 

arabinose units linked O2 to the arabinan backbone increased, as these were generated by cleavage 

of the O3-linked arabinose in the double substitution. 

  H1 H2 H3 H4 H5   C1 C2 C3 C4 C5 

                

-L-Araf -(1→3) 5.157 4.137 3.959 4.034 3.835, 3.721  107.7 81.6 77.1 84.6 61.7 

-L-Araf -(1→2)           F 5.186 4.130 3.966 4.065 3.828,3.719  107.7 n.a. n.a. n.a. n.a. 

-L-Araf -(1→2)          E 5.180 4.132 3.963 4.08 3.833, 3.718  107.5 81.6 77.1 84.6 61.7 

-5)--L-Araf -(1→5) 5.085 4.129 4.03 4.217 3.892, 3.798  108.8 81.6 77.1 83.0 67.2 

-5)--L-Araf -(1→5) 5.095 4.131 4.01 4.26 n.a.  108.8 81.6 77.3 n.d. n.d. 

-3,5)--L-Araf -(1→5)        C 5.118 4.292 4.094 4.307 3.947, 3.840  108.0 79.8 83.0 82.3 67.1 

-3,5)--L-Araf -(1→5)        C 5.112 4.291 4.037 4.218 3.891, 3.806   108.0 79.7 82.7 83.8 67.0 

-2,5)--L-Araf -(1→5)       B 5.209 4.170 4.16 4.097 3.955, 3.885  107.0 87.6 75.9 n.a. 67 

-2,3,5)--L-Araf -(1→5)    A 5.254 4.314 4.255 4.3 3.9, 3.8   107.0 85.6 80.8 81.66 67 

free -L-Ara                

-L-Arap 4.507 3.504 3.650 3.934 3.890, 3.671  97.4 72.5 73.2 69.2 67.1 

-L-Arap 5.230 3.810 3.872 3.999 4.018, 3.641  93.1 69.0 69.2 69.4 63.1 

-L-Araf 5.241 4.031 3.98 4.11 3.790, 3.687  101.7 82.0 76.1 83.6 61.7 

-L-Araf 5.293 4.085 4.04 3.834 3.8, 3.659  95.9 76.9 74.8 81.9 61.8 

Table E.1 Chemical shifts of sugar beet arabinan components. 


