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Abstract 

 

The aim of this study has been to gain a greater understanding of the accuracy and 

levels of uncertainty associated with extreme rainfall event estimates, whilst 

considering both stationary and non-stationary processes (climate change).    

This study started with the analysis and comparison of two extreme event 

fitting/estimation techniques:  Linear Moments (L-Moments) and Maximum 

Likelihood Estimation (MLE) for the estimation of Generalized Extreme Value 

(GEV) distribution parameters.  This thesis has found that MLE provides a number of 

advantages over L-Moments, especially when working with long or pooled data sets. 

These advantages include: 

 The generation of confidence limits; 

 Homogeneity testing; and, 

 Trend detection / simulation. 

However, the results of the analysis show that it is advisable to use L-Moments for 

single site analysis when the available data is less than 40 years in length.  In this 

situation, L-Moments were found to produce less uncertainty. 

Hosking and Wallis (1988) defined a method for the generation of synthetic data sets; 

this work has been reproduced and built upon as part of this thesis.  Using this method 

it has been possible to gain insight on: 

 Inter-site-dependence versus spatial separation (distance, km); 

 The effects of inter-site-dependence on pooling groups; 

 Regional correlation descriptors (level of dependence in a region); 

 Synthetic data generation for regions with varying levels of dependence; 

 Network Maximum (Netmax) Growth Curves; and, 

 The effective number of sites in a defined region/pooling group. 

This has been carried out using the „R‟ statistical software/programming environment. 

Dales and Reed (1989), proposed the use of Netmax data (the largest value for one 

year across the network or pooling group) to increase the accuracy at the tail of an 

extreme event distribution by theoretically extending the curve.  This hypothesis 

suggests that the separation between these two curves (the regional growth curve and 

the Netmax growth curve) is constant; allowing the Netmax curve to be translated and 

overlain on the regional growth curve.  This study has found that the separation varies 
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with return period, implying that spatial correlation reduces (events become more 

independent) with increased rarity (or return period).  However, these findings suggest 

complications with the use of Netmax data for the purpose of extending the regional 

growth curve. 

In addition to the work detailed above, a method of trend detection in annual 

maximum rainfall has been demonstrated using synthetic data.  Synthetic data has 

been used to enable control over the data, with this greater certainty and 

understanding in the results are achieved. 

The same analysis was repeated on observed annual maxima for 1, 5 and 10 day 

durations, revealing evidence of trends, with stronger signals at higher durations.  The 

trend was detected in the Location parameter, which relates to the mean.  When using 

Synthetic data to understand the sensitivity of this test, it was found that the Location 

parameter required the weakest trend to be detected. 

In summary this thesis has used synthetic data to gain a better understanding of: 

1. Distribution fitting techniques; 

2. Single site analysis; 

3. Regional Analysis; 

4. Spatial dependence; and, 

5. Trend Detection. 

 

All of the software that has been written as a result of this thesis to demonstrate the 

topics discussed, is included in Appendix 5, with explanations on the method of use.  

Should additional information be required, please contact Professor C. Kilsby at 

Newcastle University, who will forward on your enquiry. 
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1.0 - Introduction 

 

According to Thompson and Perry (1998), floods caused the highest percentage of 

deaths (26%) among all natural hazards evaluated around the world during the period 

1963 – 1992.  With a total of 32% they also have the leading position in total 

significant damage and the second position (32%, after droughts) in the total number 

of people affected.   

Climate model integrations predict increases in both frequency and intensity of heavy 

rainfall in the high latitudes of the Northern Hemisphere under enhanced greenhouse 

conditions (Jones and Reid, 2001; Palmer and Räisänen, 2002).  These projections are 

consistent with recent increases in rainfall intensity seen in the UK (Osborn et al., 

2000; Fowler and Kilsby, 2003a,b), Europe (Brunetti et al., 2000; Frei and Schär, 

2001) and worldwide (e.g. Karl and Knight, 1998; Iwashima and Yamamoto, 1993; 

Zhai et al., 1999), although it is not possible to relate one to the other as cause and 

effect (Fowler et al., 2004).   

It is important to determine whether these increases are due to natural variation, or 

whether they are part of a trend or change in the climate.  The impact of such changes 

is more wide reaching than the obvious increased risk of flooding to floodplain areas.  

This impact extends for example to structural calculations for bridges, dams and flood 

defences, to list just a few.  The proper estimation of design values requires that these 

data series from which the probability distribution parameters are to be estimated, 

come from independent and identically distributed (i.i.d) observations.  The proper 

assessment of risk factors for a designed structure requires that the statistical inference 

has also to be valid during the projected life span of the structure.  This requires the 

conditions (e.g. climate) under which the inferences are made, to remain constant in 

the future. 

Recent extreme rainfall events in the UK have characteristically been extended over 

several days, with unremarkable one-day totals (Fowler et al., 2004).  This study has 

revealed evidence of trends, with stronger signals at higher durations, meaning multi-

day events. 
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1.1 - Background 

 

For some time now, the Association of British Insurers has been considering the 

withdrawal of flood insurance from 10% of UK properties, worth some £200 billion, 

considered to have inadequate flood defences after 31
st
 December 2002, and there has 

been a similar insurance response to flood hazard globally (Crichton, 2002).  In 

addition to the existing, „known‟ or observed problem, hydrologists and engineers 

have the unenviable task of estimating the depths of extreme, rare rainfall and floods, 

whilst making provision for „climate change‟.  Calculating the rainfall depths, flood 

volumes and river flow rates, which lead to the associated defences / structures which 

must not fail during these extreme conditions, has been the motivation and inspiration 

for many analysis techniques and methods of extrapolation; for example Probable 

Maximum Precipitation (PMP) and the Probable Maximum Flood (PMF). 

Many structures are designed to withstand or pass a rare event, for example: drainage 

systems, bridges, dams and flood defences.  The „rare‟ design event may have a return 

period of 40 to 100-years for standard assets, or in excess of 1,000-years for key 

structures.  Often the design criteria are based on the acceptability of failure or the 

cost/benefit ratio.  For example, urban flood defences may be designed for the 50 year 

return period event, while a large class „A‟ reservoir will be designed for the 10,000-

year event.  To put that into context, a nuclear reactor is designed to withstand a 

seismic event with a return period of 10,000-years. 

The rarity of the event may be assessed using a long record.  This does not imply that 

it will be 50 years until the next 50 year event, but over a sufficiently long period of 

time this event will approximate to a 50 year recurrence interval.  This statement 

assumes that there is stationary underlying distribution to the data, and that any 

changes observed in the data, are natural fluctuations within an unchanging envelope 

of variability (Milly et al 2008).  “This is a foundational concept of hydrological 

analysis and engineering.  It implies that any variable (e.g., annual streamflow or 

annual flood peak) has a time-invariant (or 1-year–periodic) probability density 

function (pdf), whose properties can be estimated from the instrument record. Under 

stationarity, pdf estimation errors are acknowledged, but have been assumed to be 

reducible by additional observations, more efficient estimators, or increased regional  
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data. The pdfs, in turn, are used to evaluate and manage risks to water supplies, 

waterworks, and floodplains” (Milly et al 2008).  “In view of the magnitude and 

ubiquity of the hydroclimatic change apparently now under way, however, we assert 

that stationarity is dead and should no longer serve as a central, default assumption in 

water-resource risk assessment and planning. Finding a suitable successor is crucial 

for human adaptation to changing climate” (Milly et al 2008).   

This thesis will focus on the very extreme events required for the design of dam 

spillways, for example.  Currently, large (Class A) reservoirs are designed to pass a 

Probable Maximum Flood (PMF) or 10,000-year flood.  The question being asked by 

government organisations and insurance companies is: what will the precipitation 

depth of these events be like in the future, for example in 50 or 100-years time?  If the 

associated peak flow rate increases (in association with climatic changes), then the 

spillway must be modified to avoid damage to the reservoir and possible failure, but 

by how much must the spillway capacity be increased and by when? 

One way of making „predictions‟ is to use statistical analysis.  Using available rainfall 

data and extrapolating from this data, the probability of an event taking place can be 

calculated – for 179 rain gauges throughout Great Britain with data from 1960 to 

2000.  A map of the rain gauges (figure 1.2a) is included in section 1.2. 

This analysis will be expanded upon in the appropriate chapters, giving an explanation 

of each technique that has been reviewed. 

Using statistical analysis, it is possible to provide varying return period estimates, for 

example 100, 1,000 or 10,000-year return period events.  However, there are a 

number of problems associated with generating extreme rainfall estimates: 

1. Extreme events are by definition rare and available rainfall records are usually 

short; 

2. Incomplete data sets; 

3. Errors in the recorded data set and error filtration / correction that can remove 

real extreme events; 

4. Spatial dependence, when pooling sites in a region to effectively increase the 

length of the data set; and, 

5. The existence of trends in time series of rainfall. 

Of the 5 problems listed above, it is not possible to identify one of these as being the 

most significant, as clearly each has a significant impact on the accuracy of generating 
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extreme rainfall estimates.  The estimation of extreme rainfall in relation to reservoir 

risk assessment is conventionally carried out using the following techniques: 

 Probable Maximum Precipitation (PMP), see chapter 3 for an explanation of 

how this can be calculated. 

 Statistical analysis of available rainfall data to generate a non-exceedence 

probability of p=0.9999 or a 1 in 10,000-year estimate; put a slightly different 

way the probability of an event equalling or exceeding the 10,000-year event 

is p ≤ 0.0001. 

As stated in the abstract, this study has used synthetic data to gain a better 

understanding of: 

1. Distribution fitting techniques; 

2. Single site analysis; 

3. Regional Frequency Analysis (RFA); 

4. Spatial dependence; and, 

5. Trend detection. 

Synthetic data has the advantage of being from a known distribution, and the presence 

of a trend, for example, can be controlled and its impact observed.  Having control 

over the data enables conclusions to be drawn from the findings and this then greatly 

aids the interpretation is actual rainfall data when analysed. 

1.2 – Important information 

 

The reader should note the following:  unless stated otherwise, much of the work 

within this document is carried out using „synthetic data‟ generated from a known 

distribution, and not observed or recorded data.  The term „synthetic data‟ is used here 

to represent data generated using Monte Carlo simulation (random number generator).  

This approach has been chosen, so as to have prior knowledge of the desired or true 

result.  This allows analysis and conclusions to be drawn at each stage during this 

piece of research. 

1.2.1 - Data quality and coverage 

 
Where observed data has been used in this thesis, this is the same data set used by 

Fowler and Kilsby (2003a).  This in turn is based on an original data set from 1961 to 

1995, which was subsequently updated by Fowler and Kilsby (2003a) to extend the 
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records from 1961 to 2000.  The initial and subsequent data was extracted from the 

archives of the British Atmospheric Data Centre (BADC, www.badc.rl.ac.uk) (Fowler 

and Kilsby, 2003a, Osborn and Hulme, 2002), with selection criteria including the 

requirement for a reasonable spatial and temporal coverage of Great Britain, as well 

as record length and completeness (Osborn and Hulme).  All of the 110 stations 

selected for the initial period of 1961 to 1995 had complete or nearly complete data 

for this period. Sites were then added to this initial data set to ensure that each of the 

eight regions contained twenty or more stations.  Wigley et al. (1984) defined nine 

regions, but only eight have been used in this thesis.  However, all nine are illustrated 

in Figure 1.2b on the following page.  

0 150 30075
Km

Legend

Raingauge

 

Figure 1.2a: Map showing the location of the 179 rain gauges used in this thesis. 
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Figure 1.2b: Map showing the regions as defined by Wigley et al (1984).  The 

northern Irish region (and rain gauges contained within) has not been included in this 

thesis. 

 

Wigley (1984) reports that his analysis of rainfall data (1861–1970) points to strong 

geographical and topographical control, that results in England and Wales being 

divided into five coherent sub-regions and a further three in Scotland.  These were 

defined using a regression technique, that was developed to produce homogeneous 

area-average precipitation series for England and Wales using the longest site 

precipitation records available and maintaining even spatial coverage. 

1.3 – Aims 

 

Given the need for extreme rainfall estimates, i.e. greater than the 1 in 1,000-year 

return period event, this thesis aims to: 
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 Look at uses for extreme rainfall estimates, i.e. dam safety practice (reservoir 

design); 

 Better understand the methods for extreme value (rainfall) estimates that are in 

use today; 

o Understand the limitations of these methods. 

 Look at and understand alternative (not statistically based) methods of 

producing extreme value rainfall estimates – Probable Maximum Precipitation 

(PMP); 

 Look at current flood estimation techniques for the UK and Europe; 

 Carry out a comparison of two Generalised Extreme Value (GEV) distribution 

fitting techniques, for the stationary model (which assumes there is no 

[climatic] trend in the data); 

 Use a method for synthetic data generation, to look into and gain greater 

understanding on: 

o The Netmax concept and ln(Ne), where ln(Ne) is related to the 

effective number of sites in a pooling group based on varying 

(artificially introduced) intersite dependence; 

o A possible technique for homogeneity testing, which could be used to 

define pooling groups; 

 Generate a non-stationary model to represent and test for a trend in Annual 

Maxima rainfall – using synthetic data. 

 Apply this method to recorded annual maxima rainfall data for Great Britain. 

 

 

 

 

 

 

 

 

 

 

This workflow is summarised in the flow chart below. 
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1.4 - Thesis Overview 

 

Chapter 1, this chapter, introduces the problem and sets out the aims of this thesis. 

Chapters 2 and 3 look at the theory behind dam safety practice and introduce the flood 

estimation methods currently used within the UK and Europe.  Chapter 3 also looks at 

Probable Maximum Precipitation (PMP), which is one method of estimating the most 

extreme precipitation likely to fall at the site of interest.  Chapter 4 considers two 

distribution fitting techniques and demonstrates the strengths and weaknesses of each.  

Look at uses for extreme rainfall 

estimates 

Literature review 

Research current flood estimate 

techniques for the UK and 

Europe 

Test and compare methods for 

extreme value (rainfall) estimates 

that are in use today 

Research Probable Maximum 

Precipitation (PMP) 

Investigate and test Netmax 

principle and assumptions  

Calculate ln(Ne) the effective 

number of sites in a pooling 

group and test this by varying the 

intersite dependence 

Thesis objectives 

Explore and test a possible 

technique for homogeneity 

testing annual maxima rainfall 

data, which could be used to 

define pooling groups 

Generate a non-stationary model 

to represent and test for trends in 

annual maxima rainfall data 

Apply methods to recorded annual maxima rainfall data (instead of synthetic 

data) for Great Britain 
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For single site analysis, chapter 4.3 demonstrates that L-Moments (one of the two 

distribution fitting techniques) are the preferred choice for short time-series (less than 

40 years), typically meaning single site analysis.  Maximum Likelihood Estimates (the 

other distribution fitting technique) was shown to outperform L-Moments for longer 

time-series, or when using Regional Frequency Analysis (RFA), with a combined 

record length greater than 40 years. 

Regional Frequency Analysis (RFA) pools data from multiple sites.  This method is 

frequently used to increase the length of the series.  The main problem with this 

approach is spatial dependence (correlation) between sites.  This reduces the effective 

length of the pooled time-series; but by how much?  Chapter 5 answers these question 

using: 

Chapter 5.2 - A multivariate normal model has been used to model the dependence 

structure between sites and to observe the impact on confidence intervals for fixed 

quantile estimates; 

Chapter 5.6 - The same model was used to test the Network Maximum (Netmax) 

theory.  This theory assumes that the separation between the Netmax growth curve 

and the regional growth curve is proportional to the number of sites in the region; it 

also assumes that the separation is constant; and, 

Chapter 6.4 - Trend Detection:  Using the assumption that trends can be detected in 

Annual Maxima time series of rainfall and hence the Generalized Extreme Value 

(GEV) distribution. Tests were carried out by allowing the fitting of a time dependent 

covariate to each of the GEV parameters.  

1.4.1  Extreme rainfall variability – a wider context 

 
 

The variability of extreme rainfall including trends over the observed period and 

possible future changes is important for many applications ranging from water 

resources to flood risk management.  This thesis focuses on engineering design 

requirements and methods adopted by engineers and hydrologists but valuable 

information can be obtained from areas of study beyond this highly specialised area.  

This literature review has therefore covered the following areas of research that are 

considered to be particularly relevant: 

 Stationarity and trends in rainfall intensity 
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 Spatial dependence 

 

Stationarity and Trends in Rainfall Intensity 

Current techniques for the fitting of distributions to extreme event data typically rely 

upon an assumption of stationarity, meaning that there is no underlying trend in the 

data and that variations in the data are from natural fluctuations in the climate.  This is 

a foundational concept of hydrological analysis and engineering.  This assumption is 

increasingly questioned as there is a growing consensus amongst the scientific 

community that variations in observed data are not entirely due to natural variations 

but indicate the presence of an underlying trend: “In view of the magnitude and 

ubiquity of the hydroclimatic change apparently now under way, however, we assert 

that stationarity is dead and should no longer serve as a central, default assumption in 

water-resource risk assessment and planning” (Milly et al. 2008).   

 

Trends (usually increases) in rainfall intensity have been investigated in many parts of 

the world. They have been detected in UK data (Osborn et al., 2000; Fowler and 

Kilsby, 2003a,b, Ekström et al., 2005, Maraun et al., 2008), Europe (Brunetti et al., 

2000; Frei and Schär, 2001, Fowler et al., 2007) and worldwide (e.g. Karl and Knight, 

1998; Iwashima and Yamamoto, 1993; Zhai et al., 1999).  

 

Many authors have recognised the importance of extreme rainfall and the likelihood 

that climatic changes are occurring and that we need to be able to identify by how 

much they have already changed and by how much they may change in the future.  

For this reason, climatologists have explored various ways of: 

 Extracting,  

 Examining and, 

 Interpreting the data. 

 

Maraun et al. (2008) take the non-parametric method described by Osborn et al. 

(2000) where each daily rainfall is assigned to one of ten categories based on its 

amount. Each category makes up 10% of the total rainfall amount for this month.  The 

analysis (via trend fitting, principal component analysis and area averaging) is then 

carried out using these category time series. Particular attention is given to the 
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category containing the highest daily totals. This method disregards absolute 

precipitation values or an explicit analysis of the annual cycle, instead focusing on the 

precipitation intensity distribution (Maraun et al., 2008). Using this approach, 

seasonal trends have been detected in rainfall data across the UK. 

 

Engineers most often extract  annual maximum values from rain gauge records, and 

fit distributions to estimate rainfall events of the desired return period.  This approach 

is essentially the basis for this thesis, with the addition of spatial pooling to extend the 

observed data set. 

 

Where trends have been found in rainfall, it has been predicted that this will typically 

lead to an increase in rainfall intensity.  Groisman et al (1999) report that changes in 

mean precipitation totals tend to have the most influence on the heavy precipitation 

rates. This scenario gives changes in heavy rainfall which are comparable to those 

observed and are consistent with the greenhouse-gas-induced increases in heavy 

precipitation simulated by some climate models for the next century (Groisman et al, 

1999, Haylock et al, 2006, Hegerl et al, 2004).  

 

Spatial Dependence 

This thesis has investigated the impact of spatial dependence upon the quality of the 

data in a pooling group.  A pooling group is a selection of rain gauge sites that have 

been pooled to produce a larger dataset.  If the data is correlated to some extent, then 

the effective size of the pooled series is reduced.  A number of other studies have 

investigated spatial dependence (correlation between sites) at the daily time-step and 

have also shown the expected decline from high correlation of nearest neighbours to 

the low correlations of distant sites (Wilby et al., 2003, Osborn et al. 1997, Buishand 

and Brandsma, 2001).  They also show that the structure of the observed decay differs 

between regions, as found by this thesis. 

 

The objective of investigating spatial dependence was to understand the impact it had 

upon the effective size of the data set in a pooling group.  Large pooling groups are 

desirable as they can reduce the uncertainty in extreme event estimates by providing a 

larger sample of independent data.  A concept which will be explored later is that with 

very large pools of data, there could be a limiting distribution for the most extreme 



 14 

events. Wilson and Toumi (2005) investigate the possibility of a fundamental 

probability distribution for heavy rainfall and find that little is known about the 

physical limits of heavy rainfall.  From a physics standpoint, they propose a mean 

value for the shape parameter for an extreme value distribution for UK rainfall. If this 

value were to be used instead of empirically estimated values, radical changes in 

return period event estimates would be found. 
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2.0 - Dam Safety Practice 

 

2.1 – Introduction 

 

Although this study does not look exclusively at reservoir safety, reservoirs are one of 

the few structures that require such extreme estimates.  As such, additional research 

has been carried out to appreciate the association between extreme events and dam 

failure. 

At least 60 catastrophic dam failures (Wright, 1994) have occurred in the UK (Binnie 

and Partners, 1986) of which four are known to be due to over-topping.  Between one 

quarter and one third of all dam failures are due to overtopping, which is in turn due 

to inadequate spillway design (Gruner, 1963). 

 

2.2 - A Summary of the 1975 Reservoirs Act 

 

The Reservoirs Act of 1975, which replaced earlier similar legislation (The Reservoirs 

Safety Provisions Act 1930), was set up to promote the safety of large raised 

reservoirs. These are defined as retaining more than 25,000m
3
. This is approximately 

a football pitch 4.27m deep.  A small reservoir therefore, retains a volume of less than 

25,000m
3
. 

The volume is measured above the lowest point of naturally occurring ground level - 

i.e. the level to which the reservoir could drain if it were to fail. A natural depression 

does not count, unless the water could drain out by gravity.   

The regulations require that any reservoir within the scope of the Act may only be 

designed, or its construction supervised, by an engineer on the appropriate panel.  

Following construction, another panel engineer must inspect the reservoir within three 

years. During the life of the structure, a member of the Supervising Engineers panel 

must be retained to carry out regular inspections, typically every year.  An engineer 

from the appropriate panel must inspect at periods to be advised, but not less than 

every ten years or when requested by the supervising engineer. The inspecting 

engineer may instruct that work be carried out for the safety of the reservoir, and this 

instruction has the force of law. 
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The engineers that monitor the structure of the reservoir do everything they can to 

prevent any form of failure that might result in a serious incident.  However, the 

reservoir‟s construction is based upon a number of assumptions and operating rules.  

One of the assumptions would be that the reservoir is able to accommodate an 

extremely large inflow of water or to be able to pass or spill the same, without damage 

to the dam or spillway.  

2.3 - Causes of Failures or Major Incidents of UK Dams 

 

At least 60 catastrophic dam failures (Wright, 1994) have occurred in the United 

Kingdom, of which four were due to over topping.  The most recent major incident in 

the UK was at Ulley Reservoir in 2007. 

This high profile incident occurred at Ulley Reservoir in South Yorkshire.  A torrent 

of floodwater damaged a section of the masonry spillway and eroded part of the 

reservoir embankment.  A large multi-agency effort was needed to drain the reservoir 

and to make emergency repairs, preventing a possible collapse and major flooding 

downstream.   

Definitions: 

Failure: A major uncontrolled unintended release of retained water, or an event in 

which a dam becomes unfit to retain water safely due to a total loss of structural 

integrity [CIRIA C542, p 19]. 

Major incident: A serious occurrence that necessitates immediate remedial action 

and or drawdown and restriction on impoundment level to obviate a significant risk of 

subsequent progressive deterioration that could lead to a catastrophic failure and a 

major uncontrolled release of water [CIRIA C542, p 19]. 

A generic characterisation of major incidents and failures based on extensive study of 

UK dams would suggest (Moffat, 1982) that the primary mechanisms responsible for 

such events can be attributed as follows: 

 Seepage/internal erosion   c 35% (+/-5%) of events 

 Overtopping     c 30% (+/-5%) of events 

 Instability/overstress    c 15% of events 

 Settlement/deformation   c 10% of events 

 Other/uncertain    c 10% of events 

The above figures are taken from CIRIA C542, p 19. 
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The initiating mechanism for a specific incident or failure is frequently masked by a 

progression from one mechanism to others, for example: internal erosion can lead to 

local depression, which in turn could lead to overtopping by an extreme flood event 

[CIRIA C542, p 19]. 

This study is most interested in overtopping, which accounts for approximately 30% 

(±5%) of major incidents / failures.  When looking at these figures, it is important to 

note that some 85% of UK dams are earth-fill embankments [CIRIA C542, p 24]. 

Overtopping can be initiated by many mechanisms such as [CIRIA C542, p 22]: 

 Inadequate spill weir 

 Blockage of weir/spillway 

 Lack of freeboard 

 Local settlement 

 Excessive pumping into reservoir 

 Inappropriate design flood inflow 

 

The last mechanism listed is inappropriate design flood inflow.  This is of particular 

interest as the majority of UK dams have been designed to withstand either the 

Probable Maximum Flood (PMF) or the 10,000-year return period flood event.  If we 

take into consideration that the median age of dams in the UK is of the order of 105-

110 years [CIRIA C542, p 24] it understandable that questions are now being asked - 

questions such as how climate change might impact on these estimates and what this 

will mean for dam safety in the future. 

The overflow capacity of many reservoirs has been increased in recent years 

following the increases in recommended design floods.  Works to increase overflow 

capacity include the following: 

 Modification of the existing weir/channel/stilling basin; 

 Construction of new overflow works to replace or supplement the existing 

ones; 

 Construction of an auxiliary overflow with its crest at a level above top water 

level which operates infrequently; grass or reinforced grass is commonly used 

in such instances; 
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 Improvements to the crest and/or downstream face of a dam so that rare 

overtopping is tolerable in accordance with Floods and Reservoir Safety (ICE, 

1996); 

 Raising the crest level of the dam; 

 Constructing or raising a wave wall; and, 

 Lowering the top water level. 

 

In many instances a combination of some of the above works are used to provide the 

necessary overflow capacity [CIRIA C542, p 88]. 

Many recent small dams have been designed to overtop on rare occasions with flow 

passing over an engineered auxiliary overflow.  Older dams often show signs of 

frequent uncontrolled overtopping yet have functioned satisfactorily for many 

decades.  The behaviour under overtopping conditions depends on many factors and 

influences and their complex interaction, but it is evident that the vast majority have 

been able to withstand such flows without significant damage.  Furthermore, it 

appears that the instances of overtopping may, in some instances be more frequent 

than envisaged with some dams overtopping as often as annually [Reservoir Safety 

and the Environment, p 260]. 

2.4 - Design Flood Applied to Spillways Prior to Flood Studies Report: 

 

It would appear that with the state of knowledge in 1930 and for years afterwards, 

spillways were designed to pass a flood which the engineer, based on his own 

experience, considered to be a maximum for the catchment.  No doubt the engineer 

had his own empirical formula or method for assessing design floods.  On the whole, 

as these were used by engineers with considerable experience, they seem to have 

worked very well, possibly aided by additional freeboard and the fact that reservoirs 

are usually drawn down in the summer when thunderstorms are most likely [K. T. 

Bass, 1975].  

2.5 - Design Flood for Spillways in the Future 

 

Following the publication of the Flood Studies Report (FSR) and then the Flood 

Estimation Handbook (FEH), it is possible to make an estimate of floods having 
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return periods of up to 1 in 2,000 years.  Furthermore, estimates of the Probable 

Maximum Flood (PMF) based on Probable Maximum Precipitation (PMP) may be 

obtained.  Typically this is carried out using a rainfall-runoff method and calibrated 

using observed storm events.   

2.6 – Modelling un-gauged catchments / Continuous simulation 

 

River flood frequencies at un-gauged sites across Britain can be estimated using 

continuous simulation.  Rainfall - Runoff modelling is undertaken for a set of 

catchments for which flow data are available to allow calibration of model 

parameters.  These parameter values are then related to more widely obtainable 

„catchment property‟ data which are available across the zone of concern for which 

the final methodology is required. These catchment properties are used to define 

model parameters for un-gauged sites and the runoff model(s) then run for these sites 

to derive a flow time series from which flood characteristics and statistics can be 

drawn.  If, in addition, the runoff models can be driven by long rainfall time series 

(observed or generated), it is possible to extend estimation of floods to higher 

recurrence intervals than those warranted by calibration period data (Calver et al).  

The generated rainfall data can be derived using stochastic processes and therefore 

can simulate very large events, of which allowance can be made for future scenarios, 

such as increasing intensity and the inclusion of an underlying trend in the generation 

of the data.  A schematic is provided on the following page that outlines this process 

(figure 2.6). 
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Figure 2.6: Schematic representation of continuous simulation 
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3.0 - Current Flood Estimation Methods – UK and Europe 

 

As discussed in the Institute of Hydrology‟s 1999, Flood Estimation Handbook 

(Volumes: 1 and 2), there are a number of flood estimation methods in use within the 

UK and Europe. These methods are discussed within this chapter.  

3.1 - Introduction 

 

There are a number of limitations associated with rainfall run-off models. However, 

their advantage in comparison with river flow records is that rainfall records are 

usually longer and more numerous, further, there tend to be more rain gauges than 

river stage recorders.  The rainfall depths associated with a certain return period event 

need to be successfully estimated to aid many bridge, culvert, drainage and reservoir 

spillway calculations, although the methods used to achieve these estimations varies, 

having evolved over time. This chapter aims to introduce the reader to some of the 

techniques widely in use today.   

3.2 - Flood Estimation Hand book (FEH) 

 

The Flood Studies Report (FSR) has provided the “state of the art” method for flood 

and rainfall estimation in the UK for almost 25 years before 1999. However, during 

this time, the guidance document contained within the report was reviewed and 

revised. Difficulties then arose because not all users were aware of these revisions and 

the guidance lost its value.    

In 1999, the FEH handbook was introduced. This offered a more robust method, 

which contained datasets in a digital format. The documents and datasets contained 

within the handbook provide users with a cohesive set of procedures for flood 

frequency and rainfall estimations and makes the user aware of the uncertainty 

associated with estimation. 

The basis of the FEH rainfall frequency analysis is formed by Annual Maximum 

(AM) rainfall data.  AM are the largest rainfall observations at each site, for that year 

of record.  The key components of the analysis are: 

 the index variable,  Rmed (the median of the AM rainfall for a single site) and  
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 the growth curves (the distributions associated with AM rainfall that have been 

standardised by Rmed).   

The FORGEX (FOcused Regional Growth curve Extension) method was used to 

generate rainfall growth curves.  These growth curves as well as the Rmed values for 

durations ranging from 1hour to 8 days were mapped across a 1km grid.  Combining 

the Rmed values with the associated Growth curves allowed a Depth Duration 

Frequency (DDF) model to be produced.  An explanation of how to use this method is 

contained within Chapter 2 of the FEH.  All results in the FEH are given as fixed 

duration events and should be converted to sliding duration events using table 2.1, 

page 8, Volume 2 of the FEH. 

Catchment wide analysis is carried out by calculating a weighted average of point 

DDF values within the defined catchment.  The catchment average rainfall depth is 

then calculated by applying an areal reduction factor. This is based on the assumption 

that, especially for extreme storms, the rainfall is not uniform across the whole 

catchment.  The areal reduction factors are the same ones used in the FSR and can be 

found in figure 3.1, page 10, Volume 2 of the FEH. 

The FEH method for obtaining growth curves for annual maxima rainfall can be 

summarised as follows: 

 The median of the at-site annual maxima, Rmed, is used as the index variable; 

 Individual durations are treated separately in the construction of growth 

curves; 

 Annual maxima values are pooled from a network of gauges which expands 

with return period, giving preference to local data; 

 Shifted network maximum rainfalls account for inter-site-dependence in 

rainfall extremes; 

 The growth curve is then extended to provide a longer return period; 

 To avoid an explicit distributional assumption, the growth curve is comprised 

of linear segments on a Gumbel scale. 

 

FORGEX is an empirical, graphical method in that it plots points on a rainfall-return 

period scale and then fits a line through the points. This is in contrast to the 

approaches that fit assumed distributions using methods such as maximum likelihood 

or L-Moments. 
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3.2.1 - Pooling data  

 

Unlike the station year method, the FORGEX technique does not simply group sites 

and or concatenate their associated data series; instead each series of AM data is 

effectively plotted on a Gumbel reduced variate scale, so that data from different sites 

is superposed. 

3.2.2 - Gumbel reduced variate – Gringorten plotting position 

 

Annual maxima from individual records, with a minimum length of 10 years, are 

ranked and allocated plotting positions on a Gumbel reduced variate scale.  Following 

established practice (Shaw, 1994), the Gringorten plotting position formula is used: 

Equation 3.2.2.1:  
 
 12.0

44.0
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




N

i
iF  

Where F(i) is the non-exceedance probability, „i‟ the rank in increasing order, and N 

the number of annual maxima.  The Gumbel reduced variate „y‟ is defined by: 

Equation 3.2.2.2:  )lnln( Fy   

3.2.3 - Definition of y-slices 

 

For the FORGEX method and therefore FEH rainfall return period estimates in Great 

Britain, each rain gauge network in the hierarchy (based on separation from y the 

focal point) is associated with the definition of the growth within a particular y-slice.  

The y-slices have width 1.0 on the Gumbel reduced variate scale, and the first one 

ends at y=0.3665 which is the position of the median (T=2 years).  Pooled data points 

are plotted within the jth network to ensure that such data are used in preference to 

data from further-a-field. 

Larger networks include more long-record stations, and thus provide pooled data 

points that plot in y-slices that correspond to rarer events.  However, there are few 

sites in the UK with records longer than about 100-years.  This means that pooled 

points alone cannot define the growth curve beyond about the fifth y-slice. 
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3.2.4 - Network maximum points 

 

The network maximum (Netmax) series is defined as the annual maximum series of 

the largest standardised value recorded by the network of rain gauges.  There is one 

Netmax value for each year of record, across the selected network of rain gauges. 

Dales and Reed (1989) showed that the distribution of the network maximum from N 

independent and identically distributed (iid) Generalised Extreme Value (GEV) 

distributions lies exactly ln(N) to the left of the regional growth curve on a Gumbel 

reduced variate scale, and Reed and Stewart (1994) note that this result is not 

restricted to the GEV; Figure 5.6.1 – Illustration of the Netmax principle, as explained 

by Dales and Reed.   

In practice, because of inter-site dependence in annual maxima, the Netmax growth 

curve is found to lie a shorter distance to the left.  Dales and Reed label this distance 

ln(Ne) terming Ne the effective number of independent gauges. 

Thus spatial dependence can be assessed from the relationship between typical and 

network maximum growth curves.  Conversely, the fitting of the regional growth 

curve can be aided by information on spatial dependence.  If an estimate of Ne is 

available, the top part of the Netmax series can provide valuable information to guide 

the extension of the regional growth curve to long return periods.  Ne could of course 

simply be estimated from the separation between typical and Netmax growth curves, 

but a more reliable estimate would combine results from many growth curve analyses. 

3.2.5 - Fitting the Growth Curve 

 

The rainfall growth curve is represented by a concatenation of linear segments on the 

Gumbel reduced variate scale.  Because of the standardisation by the median, the 

growth curve is constrained to take the value 1.0 at a return period of 2 years.  Thus 

fitting the growth curve involves only determining the gradient of each segment.  The 

rules defining the segmentation of the growth curve are explained by Reed et al. 

(1999). 

The growth curve is fitted jointly to pooled and network maximum points by a least-

squares routine, which has been adapted to encourage smoothness, i.e. avoid large 

changes in gradient between adjacent segments. 
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3.2.6 - Confidence Limits for growth curves 

 

As discussed in Volume 2 of the FEH, an indication of the range of values in which 

the true growth rate is expected to lie is offered by confidence limits.  These indicate 

the degree of uncertainty in growth rates caused by the limitations of the sample size, 

but make no account for sources of error such as gauging inaccuracies.  The true 

growth rate could only be known if we had an infinitely long record of rainfall, in 

which case we could derive the underlying population of annual maxima (assuming 

no climate change). 

Confidence limits are achieved within FEH by the use of „bootstrapping‟.  This 

method is based on the generation of many re-samples selected from the original 

sample.  Using the FORGEX method, distributions are fitted to the re-sample.  This 

approach is repeated 199 times, with the 5
th

 and 195
th

 values are used to give the 95% 

confidence limits. 

3.2.7 - Trends in Data 

 

Volume 2 of the FEH also discusses that whilst several studies have examined trend 

in flood frequency, weather types or monthly and annual total rainfalls, there has been 

little investigation of trend in UK rainfall extremes.  Dales and Reed (1989) found no 

obvious trend in annual maximum 1-day rainfalls standardised by SAAR4170, where 

SAAR is the Site Annual Average Rainfall.  Their study was based on data from 1870 

to 1980, using a large number of gauges in England and Wales.  Others have found 

shifts in the frequency of heavy 1-day rainfalls in some areas.  For example Perry and 

Howells (1982) suggested that the frequency of heavy daily rainfall in south Wales 

has increased through this century. 

Volume 2 of the FEH then shows the mean 1-day annual maxima from 1900 to 1990 

for 38 rain gauges across the country, most years have close to 38 years of data.  

There is a substantial year-to-year variation in the mean, but no evidence of an overall 

trend. 
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3.2.8 - Regional Frequency Analysis 

 

Regional Frequency Analysis uses standardised annual maxima data from several 

sites within a region.  Spatial samples of data (the at site record) are joined or pooled 

in substitution of long temporal data sets, which do not exist in the region of interest.  

It is assumed that the data sets are homogeneous and independent.  This method of 

pooling data is referred to as the „station-year method‟.  However, due to inter-site-

dependence, the effective record length is less than the total number of annual 

maxima in the pooled data set.  The effective number of sites for this method is 

defined as Ne, which can be thought of as the effective number of independent sites 

that would generate a data set of the same length.  

3.3 - Distribution fitting techniques 

 

3.3.1 - Linear Moments (L-Moments) 

 

L-Moments are defined as linear combinations of expected values of order statistics of 

a variable and are estimated from samples using functions of weighted means of order 

statistics. The advantages of L-Moments over classical moments are:  

 Able to characterise a wider range of distributions;  

 More robust to the presence of outliers in the data when estimated from a 

sample; and, 

 They are less subject to bias in estimation and approximate their asymptotic 

normal distribution more closely  

[Hosking, 1990]. 
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Definitions of L-Moments, L-skewness and L-kurtosis: 

 

Given X a random variable with density function f and (X) < 1. 

L-Moments are defined as: 

L1  = E(X1:1) 

L2  = ½ E(X2:2 ¡X1:2) 

L3  = ⅓ E(X3:3 - 2X2:3 + X1:3) 

L4  = ¼ E(X4:4 - 3X3:4 + 3X2:4 - X1:4) 

Where:  

 L1 is a measure of location,  

 L2 is a measure of spread,  

 L3 and L4 are ratios that measure skewness and kurtosis, respectively, and 

 X(i:n) denotes the ith order statistic in a sample of size n.  

 

The ratios that measure L-skewness and L-kurtosis are: 
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where 3  is the measure of L-skewness and 4  is the measure of L-kurtosis.  

The L-Moments of a random variable X exists if X has finite mean. A distribution 

may be specified by its L-Moments even if some of its classical moments do not exist 

[Hosking, 1990].  

 

Estimation of L-Moments from a sample: 

 

L-Moments are estimated from samples using functions of weighted means of order 

statistics. The L-Moments and ratios of L-Moments are estimated by: 
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Where x is the sample mean. 

3.3.2 - Maximum Likelihood Estimation (MLE) 

 

Introduction: 

 

The maximum likelihood estimator (MLE) is currently one of the most common 

parameter estimation procedures.  The parameters are computed, either through exact 

formulas or numerical techniques.  Whichever technique is chosen, the objective is to 

maximize the likelihood function.  To understand the likelihood function, it is 

necessary to understand the concept of likelihood.  What follows is an example taken 

from the following website: http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_3.html 

  

If the probability of an event X dependent on model parameters p is written  

 

   P ( X | p ) 

 

then we would talk about the likelihood  

 

   L ( p | X ) = P ( X | p ) 

 

that is, the likelihood of the parameters given the data.  

The argument for using probability, only work for discrete data – where outcomes 

have a non-zero probability of occurring.  For continuous data we use L ( p | X ) = P ( 

X | p ), where P is the probability density. 

http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_3.html
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For most models, it has been shown that certain data are more probable than other 

data. The aim of maximum likelihood estimation is to find the parameter value(s) that 

makes the observed data most likely. This is because the likelihood of the parameters 

given the data is defined to be equal to the probability of the data given the parameters  

(N.B. technically, they are proportional to each other, but this does not affect the 

principle).  

If we were in the business of making predictions based on a set of solid assumptions, 

then we would be interested in probabilities - the probability of certain outcomes 

occurring or not occurring.  However, in the case of data analysis, we have already 

observed all the data: once they have been observed they are fixed, there is no 

'probabilistic' part to them anymore (the word data comes from the Latin word 

meaning 'given'). We are much more interested in the likelihood of the model 

parameters that underlie the fixed data.  

A simple example of MLE 

 
To re-iterate, the simple principle of maximum likelihood parameter estimation is: to 

find the parameter values that make the observed data most likely. Using a simple 

coin toss experiment, rather than assume that p is a certain value (0.5) we might wish 

to find the maximum likelihood estimate (MLE) of p, given a specific dataset.  

Beyond parameter estimation, the likelihood framework allows us to carry out tests of 

parameter values. For example, we might want to ask whether or not the estimated p 

differs significantly from 0.5 or not. This test is essentially asking: is there evidence 

that the coin is biased? We will see how such tests can be performed when we 

introduce the concept of a likelihood ratio test below.  

Say we toss a coin 100 times and observe 56 heads and 44 tails. Instead of assuming 

that p is 0.5, we want to find the MLE for p. Then we want to ask whether or not this 

value differs significantly from 0.50.  

How do we do this? We find the value for p that makes the observed data most likely.  

As mentioned, the observed data are now fixed. They will be constants that are 

plugged into our binomial probability model :-  

 n = 100 (total number of tosses)  

 h = 56 (total number of heads)  
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Imagine that p was 0.5. Plugging this value into our probability model as follows :-  

 

But what if p was 0.52 instead?  

 

So from this we can conclude that p is more likely to be 0.52 than 0.5. We can 

tabulate the likelihood for different parameter values to find the maximum likelihood 

estimate of p:  

                  p       L 

                  -------------- 

                  0.48    0.0222 

                  0.50    0.0389 

                  0.52    0.0581 

                  0.54    0.0739 

                  0.56    0.0801 

                  0.58    0.0738 

                  0.60    0.0576 

                  0.62    0.0378 

Table 3.3.2: Shows the likelihood for different parameter values 

 

If we graph these data across the full range of possible values for p we see the 

following likelihood surface, as illustrated in figure 3.3.2, overleaf. 
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Figure 3.3.2: Likelihood surface, showing maximum likelihood for a number of 

parameter estimates. 

 

We see that the maximum likelihood estimate for p seems to be around 0.56. In fact, it 

is exactly 0.56, and it is easy to see why this makes sense in this example. The best 

estimate for p from any one sample is clearly going to be the proportion of heads 

observed in that sample. (In a similar way, the best estimate for the population mean 

will always be the sample mean.)  

For such a simple case, one might not expect to use such a complicated method.  

However, if you use the simple frequency estimate
100

56




p , then you are using 

maximum likelihood estimation, even if it is unwittingly.   

However, not all problems are this simple.  This thesis goes on to examine more 

complicated models with a greater number of parameters, where it is often very 

difficult to make even reasonable guesses at the MLEs. The likelihood framework 

conceptually takes all of this in its stride however, and this is what makes it the work-

horse of many modern statistical methods.  It also has other good properties.  For 

example it has a limiting Normal distribution, which provides a general theory for 

deriving the uncertainty associated with the MLE. 
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3.4 – Probable Maximum Precipitation 

 
This section looks at the theory of Probable Maximum Precipitation (PMP), which is 

an alternative method of extreme rainfall estimation. 

3.4.1 - The Theory of Probable Maximum Precipitation (PMP) 

 

The world meteorological organization [WMO, 1986], defined PMP as: 

“theoretically the greatest depth of precipitation for a given duration that is 

physically possible over a given size storm area at a particular geographical location 

at a certain time of year, with no allowance made for long term climatic trends”. 

It is thus seen as a single deterministic number (governed by physical principles) that 

would never be exceeded.   

The theory of Probable Maximum Precipitation (PMP) started as maximum possible 

precipitation.  It was based around the concept that there are maximum physical limits 

for all of the elements which act together to produce rainfall [U.S. Department of 

Commerce, Washington D.C., 1960].  This method of peak rain fall estimation is 

frequently favoured by engineers who must design a structure to withstand a 

theoretical flood, referred to as the Probable Maximum Flood (PMF); one assumption 

being that the PMF is generated from PMP and that PMF can be calculated using a 

rainfall-run-off model which has been calibrated using a rain-gauge and stage recorder 

in the catchment.  Another reason why this method might be favoured over statistical 

alternatives, is that the availability of rainfall records is relatively scarce, especially in 

less developed countries; even when rainfall data is available it is unusual to have 

complete records exceeding three or four decades.  These two factors have made it 

very difficult to estimate rare or extreme rainfall events, which will ultimately 

generate large amounts of run-off and potentially floods.   

Structures such as reservoirs must be able to safely pass these flows; as however 

unlikely it is believed to be, the potential loss of life should it occur is obviously 

unacceptable.  For a long time, this method of flow estimation was seen as the safest 

way to minimize the risk of structural failure and hence protect the population which 

might be affected by such a failure.  This is obviously an attractive proposition, a 

method which produces the greatest possible rainfall and hence run-off, which is 

perceived to remove all risk of failure. 
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3.4.2 - The Problem with PMP estimates 

 

Unfortunately, however, there have been numerous occasions on which observed 

rainfalls have exceeded the PMP estimates.  PMP estimates have also been produced 

that are believed to be unrealistically high by many experienced hydrologists.   

These occurrences have led to a re-evaluation of PMP methodologies, of which there 

are many.  Some of the more common techniques used for estimating PMP are: 

 Storm Model Approach. 

 Maximisation and transposition of actual storms 

 The use of generalized data or maximised depth, duration and area data from 

storms; these are derived from thunderstorms or general storms. 

 Use of empirical formulae determined from maximum depth duration and area 

data, or from theory; 

 Statistical analyses of extreme rainfalls. 

 

Many of these techniques have undergone numerous revisions over the years because 

they have not adequately described or estimated PMP at locations other than those 

chosen for the validation / calibration.  Another reason why many of these techniques 

have been revised or modernised is the accessibility and power of modern computers.  

Computers have made it plausible to run more complicated PMP simulations as 

demonstrated by the Storm Model Approach and the Generalized Method of PMP 

estimation. 
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3.4.3. Storm Model Approach 

 

 

 

 

Figure 3.4.0: Schematic of precipitable water in a theoretical column of air. 

 

The amount of precipitable water, W (mm), in a column of air of height Z is defined 

as: 

  
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    Equation 3.4.0 

Where: 

q = specific humidity (or approximately the mixing ratio; in g kg
-1

). 

p = atmospheric pressure (hPa x 10
-2

). 

g = acceleration due to gravity, 9.81 m s
-2

. 

 

These techniques were developed approximately thirty years ago, yet efforts are being 

made to build on this foundation using computer-based approaches.  In addition to 

this, new sources of data have become available, particularly radar and satellite data 

which allow a much more detailed and accurate model to be built up.   

 

Z 

Precipitable water W (mm) 

in the column. 

Density of air a 

(kg m
-3

) 

Density of water w 

(kg m
-3

) 

Column of air, of 

height Z. 
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3.4.4 Maximisation and Transposition of actual storms 

 
PMP has historically been estimated in a variety of ways using techniques that 

maximise recorded storms.  When the storms maximised are only those that occur on 

the catchment under consideration, the method is called the “in-situ maximisation” 

method. When storms that occur in adjoining and geographically similar regions to 

the catchment area (figures 3.4.1 and 3.4.2) are also considered, the method is called 

the “transposition and maximisation method” [WMO,1986:].   

 

Figure 3.4.1: Map showing donor site and target site for an Extreme Event 
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Figure 3.4.2: Transposed rainfall data from a donor catchment. 

 

Location of rain gauge where an 

extreme storm was recorded. 

Site requiring PMP estimate. 
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Observations of recorded storms are transposed over the region or catchment of 

interest.  The rainfall is then maximised by using factors for orographic enhancement 

and other meteorological considerations, which are briefly described below.   

Hart [1982] shows that the physical basis for storm maximization is based on a simple 

two-parameter model of the storm derived as follows. A storm is considered to consist 

of a convergent mass flow at low levels that rises and diverges in an upper outflow 

layer. The water vapour budget equation associated with the storm can be written as: 

 

g

dp
qV

t

q
PE

P

 







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
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0

0
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     Equation 3.4.1 

Where: E is evaporation, P is precipitation, q is specific humidity, V is the horizontal 

wind vector, g is the acceleration due to gravity, p0 is the surface pressure, and the 

vertical integration is carried out over the depth of the atmosphere. For major storms it 

is assumed that the evaporation term E, the rate of water vapour storage term (δq/δt), 

and the moisture gradient in the vicinity of the storm are negligible. With these 

assumptions, Equation 3.4.1 can be rewritten as: 



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0

0

P

g
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VqP

       Equation 3.4.2 

That is, the rainfall is approximately equal to the vertically integrated product of the 

mass convergence and the specific humidity.  If the model is further simplified to 

comprise an inflow layer Δp1 and an outflow layer Δp2 with uniform flows, D1 and D2 

and specific humidities q1 and q2, the precipitation P reduces to: 







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g

DpqDpq
P 222111

      Equation 3.4.3 

From considerations of mass continuity, Δp1D1 = Δp2D2 and q1 >> q2, and hence the 

precipitation is approximated by: 

g

Dpq
P 111

       Equation 3.4.4 

To calculate the maximised precipitation, the product of the moisture inflow and mass 

convergence needs to be maximised.  The term q1Δp1 is the effective precipitable 

water (we) for a storm, and this can be maximised by using 24-hour persisting dew 

points to calculate the maximum effective precipitable water (wemax). The maximised 

precipitation is then calculated by adjusting the observed rainfall by a moisture 



 41 

adjustment factor wemax/we. However, as pointed out by Wiesner [1970], it is common 

practice to calculate the moisture adjustment factor from the actual precipitable water 

in a saturated atmospheric column and the maximised precipitable water wmax as given 

by the maximum 24-hour persisting dew points. The dew point uniquely defines the 

mixing ratio at cloud base and therefore the precipitable water in the saturated 

column. This indirect technique arises because there is usually no way of 

characterizing the extreme mass convergence, so the observed rainfall is taken as an 

implicit measure of this quantity. It is assumed that extreme precipitation storms have 

the highest efficiency. The maximised precipitation Pmax is thus calculated from the 

precipitable water w derived from the observed dew point, the maximised precipitable 

water wmax, and the observed rainfall P (normally in the form of depth-duration-area 

(DDA) curves) as: 

P
w

w
P 








 max

max

       Equation 3.4.5 

The maximised precipitation is then calculated by adjusting independently the 

assumptions used in the simple two-parameter conceptual model that is used for PMP 

calculations.  These assumptions are: 

1. The precipitation is linearly related to the precipitable water (i.e., P2 = (w2/w) * P); 

2. The precipitation efficiency of the storm does not change as the moisture available 

to the storm increases; 

3. Terrain modulates the distribution of the precipitation but does not affect the 

synoptic-scale dynamics of the storm.   

 

The relationship between the precipitable water and the precipitation (assumption 1) is 

particularly important since it is this relationship that underlies the foundations for 

both the moisture maximization and the storm transposition techniques currently 

employed in the GSAM (The Australian Bureau of Meteorology has developed three 

generalized methods that are applicable to the country (Australia): the generalized 

short duration method (GSDM), the generalized tropical storm method (GTSM), and 

the generalized south eastern Australia method (GSAM). The GSDM is applicable for 

small areas up to 1000 km
2
 and for time periods up to 6 hours. The GTSM and the 

GSAM are used for larger areas of the order of 10
4
 km

2
).   
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The report of the National Research Council [1988] also concludes that the scientific 

foundations of the traditional PMP procedures, such as moisture maximization and 

storm transposition, require detailed study.  The report points to numerical models as 

key tools for enhancing PMP procedures. 

The following steps are used to evaluate the assumptions detailed above:  

1. Use a numerical model of the atmosphere to simulate recent large storms. 

2. Compare the model results with the observed rainfall and storm development. 

3. Carry out sensitivity analyses to determine the maximum precipitation 

efficiency of the storms.  

4. Develop a hypothetical “worst case storm” that would allow a comparison 

between the model-generated DDA curves and the DDA curves calculated 

using the maximization relationship of the current generalized technique. 

There are a number of problems with this and similar methods:  

1. The assumption that the record is long enough to have captured a truly 

extreme event approaching some theoretical upper-limit, not just a large storm.  

2. The assumption that from a small number of rain gauges one happened to be 

located suitably to describe the storm when it reached its peak,  see figure 

3.4.3.  

3. A large percentage of extreme rainfall events occur over a relatively short 

duration (hours or less) and the majority of rain gauges record a 24 hour total. 

 

The location of the rain gauge may not be flawed but it is possible that it has not 

recorded the peak rainfall.  Should the rainfall distribution be uneven, that is, it is 

more intense at one location than at another, and the point of maximum intensity has 

not occurred over the rain gauge, then the design of the structure is flawed. 

 

 

 

 

 

 

 

 

Figure 3.4.3: Accumulation from a convective rainfall storm in the UK 

 

Location of 

Rain Gauge 
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Looking at figure 3.4.3 it is easy to appreciate point 2 above.  If the rain gauge is not 

in the ideal location, the recorded rainfall depth for the duration of the storm could 

vary from approximately 25mm to 150mm, assuming the rain gauge was located to 

capture the storm at all.  This may not be a significant problem for a large catchment, 

but for a small, „flashy‟ upland catchment, supplying a reservoir, this could have a 

significant impact. 

More recent developments have used radar data to improve the descriptions of the 

spatial structure of the storms and to capture the maximum rainfall intensity within the 

storm. 

 

Figure 3.4.4:  Radar image of a frontal weather system (November 2000, source: 

Hyrad) 

3.4.5 - Generalized Method 

 

More recently, a technique known as the “generalized method” has been developed to 

calculate PMP. This method uses rainfalls recorded over a large region and from a 

large database of storms. The storm database is generalized by separating out that 

portion of the rainfall attributable to regional meteorological conditions from that 

which may be considered to be due to site-specific (for example topography) 

characteristics. 

Both the maximisation and transposition method and the generalized method involve 

the classification of storms by calculating the corresponding storm efficiency (E), 

which is defined as the ratio of maximum observed rainfall to the amount of 

precipitable water in the representative air column during the storm [NERC, 1975]. 
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3.5 - Reservoir Flood Estimation, procedures and developments in other 

European countries; 10,000-year return period estimates 

 

3.5.1 - Introduction 

 

Having looked at the current flood estimation methods for the UK, an analysis of the 

methods applied by some European countries has been investigated.  The aim of this 

chapter is to gain a greater understanding of the approaches used, for a comparison to 

those used in the UK.  

Following some research, it was discovered that the Institute of Hydrology had carried 

out a review of reservoir flood estimation in a number of other countries.  Where the 

information was available, this details the requirements and the approaches used in the 

Finland, Sweden and Norway, as discussed in “Reservoir flood estimation: another 

look” by Reed & Field (1992). 

3.5.2 - Finland 

 

New legislation came into force on 1st August 1984 regarding dam safety.  This 

legislation applies to dams that are at least 3m in height or which pose a particular 

hazard.   

The Dam Safety Act recognises four categories of dam: 

Category P dams are those which in the case of an accident will endanger life or 

health, or cause serious damage to the environment or property. 

Category O dams are those which in the event of an accident will cause will cause 

only minimal danger. 

Category N dams are those which present an intermediate hazard. 

Category T dams are temporary structures. 

Table 3.5.2 shows the range of return periods associated with categories. 

Category Return period range 

P 5,000 to 10,000 years 

N 500 to 1,000 years 

O 100 to 500 years 

Table 3.5.2: Spillway design floods: Finnish practice. 
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Shorter return periods may be considered adequate for temporary dams. 

The basic recommended method for estimating the design flood is the extrapolation of 

a Gumbel distribution fitted to the annual maximum series of gauged floods. Many 

Finnish rivers are heavily regulated by reservoirs and lakes. During most years, 

snowmelt floods occur regularly, with April and May characteristically providing the 

annual maximum floods.  However, average flood growth-curves in Finland are no 

shallower than those in the UK (Gustard et al., 1989).  Thus, the recommendation by 

Loukola et al. (1985) to base spillway design floods on simple extrapolation of peak 

flow records at the dam site is extraordinary.  If followed, the guidance could lead to 

gross under- or over-estimation of design floods for a particular dam through over-

reliance on statistically very short data series. 

It is unclear how the peak flow estimate is converted to a hydrograph for the purpose 

of routing the design flood through the reservoir storage. 

3.5.3 – Sweden 

 

A distinctive feature of Sweden is the use of a unique 14-day design rainfall profile of 

unknown return period (possibly about 10,000-years).  Corrections are made for 

geographical region, catchment area and altitude.  The basis of the latter is unclear but 

other publications (e.g. Vedin and Eriksson, 1988) suggest that the adjustment derives 

from a „storm-centred‟ rather than a „fixed‟ areal reduction factor. 

3.5.4 – Norway 

 

On 1
st
 January 1981, new regulations came into force in Norway regarding permanent 

dams more than 4m in height or which impound more than 500,000 m
3
. These 

regulations require that flood calculations be performed for both the design flood and 

the Probable Maximum Flood (PMF).  The PMF sets the standard for dam safety, 

with the design flood setting the standard for normal spillway operations. A 1,000-

year return period is specified for the design flood, which is determined by some type 

of frequency analysis of peak flows (see below).  The PMF is calculated on the basis 

of Probable Maximum Precipitation (PMP) values and snow melt estimates, with 

allowance being made for reservoir routing.  
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Estimation of the 1,000-year flood: 

 

The guidelines (Vassdragsdirektorat, 1986) recommend that several statistical 

distributions be considered when seeking an estimate of the 1,000-year flood. 

If more than 50 years of annual maximum flood data are available, the mean annual 

flood (QBAR) is estimated from the observed series, while the growth factor 

(Q1000/QBAR) is taken from a two- or three-parameter G.E.V. distribution fitted to 

the observed series.  If only 30 to 50 years are available, a two-parameter distribution 

is to be used.  If fewer than 30 years of data are available, the Q1000/QBAR growth 

factor is based on regional analysis.   If fewer than 10 years of data are available, 

QBAR is estimated by correlation with other series in the region or by catchment 

characteristic formulae. 

In many cases, it is deemed appropriate to distinguish spring (largely snowmelt) and 

autumn (largely rainfall) floods.  The spring floods yield a high QBAR and large 

hydrograph volume, but have only moderate growth rates, meaning that the curvature 

of the growth curve is moderate.  In contrast, the autumn floods stem from shorter 

duration events of high intensity to which steeper growth curves apply. 

A rainfall-runoff approach to estimating the 1,000-year flood is not generally 

recommended.  This is because of the „joint probability problem‟ of choosing 

appropriate initial catchment wetness and snowmelt/snow accumulations to combine 

with a 1000-year precipitation event to produce the required 1000-year flood. 

Saelthun and Andersen (1986) describe what appears to be a fairly subjective method 

for converting statistically-derived estimated of the 1,000-year peak instantaneous 

and/or peak 1-day flow into a design hydrograph suitable for reservoir routing.  They 

caution against the practice of nesting 1,000-year flows of different durations within a 

single design hydrograph. 

3.5.4 – United States of America 

 

Approaches to reservoir spillway design flood estimation are more varied across the 

USA than they are in the United Kingdon (Reed & Field, 1994).  In part this arises 

from more diverse climatic and physiographic conditions; however, in part it may 

reflect the weaker institutionalism of reservoir flood estimation (Reed & Field, 1994).  

The interagency advisory committee on water data (1986) provides a useful summary 
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of US approaches to PMF and extreme flood estimation.  The report recognises five 

approaches: 

1. Extrapolation of flood frequency curves; 

2. Combination of frequency distributions of casual factors (e.g. antecedent 

reservoir level and storm rainfall); 

3. Regional approach to extrapolation (e.g. the station- year method); 

4. Palaeoflood analysis (e.g. inferring historical flood levels by the position and 

dating of sediments); and,  

5. Bayesian analysis (combining different sources of flood data, e.g. local, 

regional and historical). 

3.6 – Summary 

 

This chapter has described the techniques used by the Flood Estimation Handbook to 

produce and to measure extreme values.   

This chapter has also considered the theory of Probable Maximum Precipitation 

(PMP), which is an alternative method of extreme rainfall estimation. Estimates of 

PMP are regarded as approximations which depend upon the amount and quality of 

the data available for applying the various methods.  Further, as the WMO description 

of PMP states, there is no allowance for long term climatic trends.   

This statement appears to have more and more significance in the light of research 

showing approximately a 0.5°C increase in global temperature over the past 30 years.   

More alarmingly, it is forecast that this increase will continue and that over the next 

100-years the global mean temperature could increase by between 1 and 5.5°C 

(Intergovernmental Panel on Climate Change). 

Perhaps most significant is the fact that when a very large estimate is produced it is 

often ignored because „experts‟ believe it to be too large; however, PMP estimates 

have also been exceeded. 

This chapter has also introduced current flood estimation methods for the UK and a 

number of European countries.  It has introduced and explained some of the 

techniques described by and associated with the Flood Estimation handbook, which is 

in turn the accepted UK standard for flood estimation.  In addition to this there has 

been a technical description of two distribution fitting techniques.  The performance 
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of these distribution fitting techniques will be analysed in more detail in the next 

chapter; Chapter 4. 

The remainder of this study will then focus on statistical methods of extreme value 

estimation for the following reasons: 

 Statistical techniques associate probabilities with rainfall magnitude; and, 

 Uncertainty is addressed in the form of confidence intervals. 

 



 49 

 

 

 

 

 

 

 

 

 

Chapter 4 
 

 



 50 

This page is intentionally blank. 

 

 



 51 

4.0 – The Stationary Model 

 

4.1 - Introduction 

 

Using synthetic data, this chapter aims to gain a better understanding of: 

1. Two distribution fitting techniques: L-Moments and Maximum Likelihood 

Estimates (MLE) (introduced in chapter 3.3); and, 

2. The impact of spatial dependence upon pooling groups and therefore Regional 

Frequency Analysis. 

Currently, the majority of rainfall and flood estimates are carried out using the 

assumption that the data is stationary.  This chapter will continue to make this 

assumption. 

Stationary data sets can be defined as having statistical properties that do not change 

over time; more precisely, the probability distributions of the process are time-

invariant.  The mean, variance and covariance of the process are defined as follows: 

Mean:    ,tXEt   

Variance:        22 tXEXVart tt   , and 

Covariance:           rXsXEXXCovrs rsrs   ,, . 

Where: E denotes the expectation of a random process. 

A simple summary of stationary data sets then, is that the mean, variance and 

covariance of the distribution do not change with time. 

Following the approach of Matalas (1967) and Hosking and Wallis (1988), a spatially 

dependent, multi-variate model has been produced.  The model generates spatially 

dependent annual maximum data, and has been used to demonstrate, and gain a better 

understanding of the effects of inter-site correlation upon pooling groups.  The pooled 

annual maximum rainfall data (for each region within Great Britain as shown in 

Figure 1.2b) has then been fitted to, using the two techniques already described. 

The standard approach to the estimation of extremes in hydrology (for example flood 

and rainfall data) is to use annual maximum series.  The method of L-Moments was 

developed by Hosking (1990) for fitting extreme value (EV) distributions for flood 

frequency estimation and was adopted by the Flood Estimation Handbook (FEH). 

More recently, computational developments have led to the more widespread adoption 
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of Maximum Likelihood Estimation (MLE).  However, L-Moments are still widely 

used by the hydrological community.  This chapter shows that although there are good 

reasons for using L-Moments, there are also many advantages to using MLE. 

To carry out the comparison of L-Moments and MLE, synthetic data has been used, 

firstly for single site analysis and then for multi-site analysis.  The single site analysis 

has been achieved by using a random (normal) number generator to simulate (select) 

extreme events from a known distribution – this is the synthetic data.  The two 

distribution fitting techniques have been compared by looking at the fitted quantile 

estimates and comparing them with the known, true values.  The range of errors has 

been displayed in the form of confidence intervals from the generated data for each 

technique at chosen quantiles. 

A similar comparison has taken place for regional frequency analysis.  The data has 

been generated using a Multi-Variate Normal Random Number Generator.  This 

method uses either: 

1. Observed inter-site correlation from a known region; or, 

2. User defined inter-site correlation. 

 

It is possible therefore to demonstrate the effect of inter-site-dependence on: 

1. Quantile confidence intervals. 

2. The effective number of sites in the region, which is typically less than the 

actual number of sites in the pooling group. 

This is shown in chapter 5.6 and 5.7. 

 

Chapter 5.8 demonstrates an alternative method of homogeneity, which uses the 

likelihood value from the MLE fitting technique.  The homogeneity test is a test of 

whether a sample distribution (individual site) belongs to a parent distribution 

(regional pooled group); this test is called the Likelihood Ratio Test (LRT).  This 

method has been used to test predefined regions and also focused regional growth 

curve expansion methods such as the FORGE approach, which stands for FOcused 

Regional Growth curve Expansion. 
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4.2 - Comparison of two distribution fitting techniques: L-Moments and 

Maximum Likelihood Estimates (MLE) 

 

Figure 4.2.1 shows why a comparison is required. The technique used for this test 

was: 

1. Start by selecting a donor set of GEV parameters – for either a single site or 

pooling group of annual maxima rainfall data; 

2. Generate a synthetic sample data set using a Monte Carlo technique randomly 

selected data from the know distribution – this was used to simulate a single 

site with 40 years of data; and, 

3. Using the two techniques of L-Moments and MLE, fit a GEV distribution to 

the sample data. 
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Figure 4.2.1:  Comparison of L-Moments and MLE, for a short synthetic data set. 

 

Figure 4.2.1 shows that, for this sample only, both techniques will underestimate at all 

quantile values when compared with the „true‟ distribution.  It can also be seen that 

the MLE technique, on this occasion, produces the greater error. 

If this test is repeated multiple (10,000) times and the distribution curves are 

extrapolated to include the 100-year return period event, then the following results are 

obtained: 

 



 54 

Simulated - 100 Year Return Period Events

50

70

90

110

130

150

170

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Sample Number

R
a

in
fa

ll
 E

s
ti

m
a

te
 (

m
m

)

100Yr MLE (Est)

True Value

100Yr L (Est)

 

Figure 4.2.2:  Comparison of L-Moments and MLE, for the 100-year Return Period 

Event. 

 

Figure 4.2.2 shows a small sample from the 10,000 estimates produced for the 100-

year rainfall estimate, using a single site.  The size of the sample is chosen to assist 

the reader, as it displays a wide range of results.  Primarily this figure shows that there 

is a larger spread of estimates (greater uncertainty) when using MLE than is produced 

by L-Moments. 

4.3 - Method for Single site distribution fitting technique comparison: 

 

The method adopted for comparison has been as follows: 

• Starting with a time series of 24 hours (1 day fixed duration) annual maximum 

rainfall data, taken from a site in the UK, GEV distribution parameters were 

calculated using L-Moments and used as the control parameters for the 

following simulation. 

• A random (normal) number generator was used to select points from the 

control distribution.  This method was repeated to give 10,000 samples 

representing: 20, 40, 60 and 100 values (values in this case meaning the 

effective record length or the number of Annual Maxima at the synthetic site). 
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• Using the methods of L-Moments and MLE for parameter estimation, return 

period estimates were calculated and compared with the known true value.  

This comparison revealed the relative error for each estimate. 

• All simulation work was carried out using a free software package and 

programming language called R, see: www.r-project.org/ for more details. 

• The random number generator is available within R and called: rnorm. 

• A routine was written to generate synthetic annual maxima, by randomly 

generating a vector of length n, and with values x, where: 10  x .  These 

random values are interpreted as Gringorten plotting positions, which when 

combined with known (control) GEV parameters, allows site specific synthetic 

extreme values to be generated. 

 

 

 

 

Figure 4.3.1: Summary of Estimates and Range of Errors produced by the two 

techniques. 

 

(Some of the outliers for the 10, 20, and 30 year synthetic data sets have been 

excluded from view because they are too extreme and their inclusion would diminish 

the clarity of the graph.)  
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http://www.r-project.org/
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Summary of figure 4.3.1: 

1. The range of errors (confidence interval and outliers) is reduced as the size of 

the data set is increased.  

2. Figure 4.3.1 does not show the density of errors associated with the two 

techniques. 

3. Clearly demonstrates the need to include confidence limits for return period 

estimates based upon the amount of data available and the resulting 

confidence, because, as already stated, figure 4.3.1 shows the confidence 

limits and outliers (most extreme estimates) produced when using each 

technique. 

 

Although confidence intervals have been shown in figure 4.3.1 this has only been 

possible because from the 10,000 generated estimates the values were ranked and the 

250
th

 and 9750
th

 values where used to show the 95% confidence interval, the outliers 

therefore account for the remaining 5%.  

To achieve these results, routines have been created to generate and analyze the data 

as shown using the language „R‟. 

R is a language and environment for statistical computing and graphical 

representation of the data. It is similar to the S language and environment that was 

developed at Bell Laboratories (formerly ATandT, now Lucent Technologies) by John 

Chambers and colleagues. There are some important differences between the two 

languages, but much code written for S runs unaltered under R [http://www.r-

project.org/doc/R-FDA.pdf].  

R provides a wide variety of statistical (linear and nonlinear modelling, classical 

statistical tests, time-series analysis, classification, clustering, and so on) and 

graphical techniques, and is highly extensible. The „S‟ language is often the vehicle of 

choice for research in statistical methodology, and „R‟ provides an Open Source route 

to participation in that activity [http://www.r-project.org/doc/R-FDA.pdf].  

It is important to note that only MLE is capable of generating confidence intervals as 

a result of its use.  L-Moments requires a form of re-sampling of the data, known as 

boot-strapping.  One advantage of using MLE therefore is the instantaneous 

generation of confidence intervals.  An example of this follows: 
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Figure 4.3.2 – MLE and L-Moment fit to annual maxima rainfall data; showing the 

confidence interval (faint, finely dashed lines, top and bottom) generated as a result of 

using MLE. 

Figure 4.3.2 has been included for three reasons:  

1. It shows the confidence interval generated as a result of using MLE 

2. It shows that MLE does not always underestimate when compared with L-

Moments, which may have been inferred in figure 4.2.1 

3. It demonstrates one of the tools created during this thesis – using „R‟ to aid 

with this investigation 
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4.4 – Summary 

 

This chapter has demonstrated the strengths and weaknesses of two distribution fitting 

techniques.  It has shown that the method of L-Moments appears to be more accurate 

for relatively short time series, at least for the distribution tested, but it also shows that 

any advantage demonstrated by L-Moments diminishes as the length of the time series 

increases.   

Figure 4.3.2 shows that the confidence intervals for the estimates are very wide, 

especially beyond the 10 year return period event.  Chapter 5 goes onto to look at 

accepted methods to reduce uncertainty and begins to quantify how accurate they are.   
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5.0 – Synthetic data generation for a region of N-sites with 

Spatial Inter-Site-Dependence 

 

5.1 - Introduction 

 

Following on from chapter 4, the next step was to look at methods of pooling data.  

When producing return period estimates, the recommended length of a time series is 5 

times the required return period event.  For example, the 10-year return period event 

requires a recommended minimum of 50 years of data and therefore for the 100-year 

event, ideally you would have a time series that is equivalent to 500 years of data.  

The only way to get long time series like these is to pool data from multiple sites in a 

region. 

To gain a better understanding of the factors controlling uncertainty when pooling 

data, all of the analyses have been carried out using synthetic data.  This approach 

allows the distribution parameters and inter-site-dependence (correlation) to be 

known; aiding understanding with regard to the effect of these on uncertainty. 

 

Background 

 

Rain gauges are typically operated by the Meteorological Office, water utilities and 

the Environment Agency.  They are often located near to reservoirs, airfields, 

universities and other academic establishments; it is not unusual for a rain gauge to be 

located in a private garden, where that person has an interest in meteorology.  Rain 

gauges are not located in a uniform manner and it is very often the case that rainfall 

data is required at a site without a gauge.  When this happens it is standard practice to 

transfer data from one or more neighbouring sites using interpolation and or some 

scaling factor, perhaps based on elevation.  Inter-site correlation (dependence) in this 

situation is clearly advantageous.  This chapter however, is going to focus on the 

detrimental impact of inter-site-dependence.   

Inter-site-dependence, or the correlation between sites, causes a duplication of data 

when it is pooled.  Pooling groups are used in an attempt to augment a data set, for the 

purpose of generating greater accuracy for rare (extreme) event estimation.  The level 

of correlation is important, as the size of the pooling group may have been selected to 
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achieve a station year total.  The station year total is the product of the number of sites 

(N) multiplied by the number of years (n).  For example, the desired station year total 

might be five times greater in length than the required return period estimate.   

This chapter will also show that for Great Britain, the effective number of sites in a 

region or pooling group using the Station Year method, ranges from 74% – 93% of 

the total for 1 Day Annual Maxima (AM), and 61% - 88% of the total for 10 Day 

Annual Maxima.  This means that a pooling group of 10 Sites, each with 40 years of 

data, does not equate to a time series of 400 station years in length, but to one of 

perhaps 74% * 400 = 296 station years for 1 Day AM or 61% * 400 = 244 station 

years for 10 Day AM. This is one of the main findings of this thesis. 

5.2 – Synthetic Data Generation 

 

Using the Generalised Extreme Value (GEV) distribution and the method that 

follows, synthetic data sets with varying inter-site-dependence within a region have 

been generated.  These demonstrate the impact of varying inter-site correlation upon 

the confidence interval and later the effective number of sites in a pooling group. 

5.3 – Method 

 

The method described in this chapter is taken from Hosking and Wallis (1988).   

The methodology outlines a procedure to allow the generation of simulated data for a 

pooling group, using primarily the cross-correlation of normalised Annual Maxima 

data between all of the sites in a specified region or group.  Using the observed / 

generated matrix of site-to-site correlations (which are explained in more detail in this 

chapter), a multivariate normal random number generator is used to generate data 

samples of length t-years for each site; following some additional manipulation 

(explained in this chapter) this results in the synthetic annual maxima rainfall data. 

What follows is a concise description of the methodology and the steps taken within 

the programme produced to carry out this analysis: 

1. Read in the Annual Maxima for each site in the region (taken from real data, 

typically 40 years in length); 

2. Read in site locations, in the form of grid references; 

3. Calculate site-to-site separation, dij.  Distance between sites „i‟ and „j‟; 
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4. Transform Annual Maxima data to a normal distribution using an empirical 

transformation; 

a. Achieved using a pnorm routine in R.  This is a predefined function, 

available from a library or toolkit within R. 

5. Carry out pair-wise cross-correlation of normalised data between sites, which 

generates a correlation matrix; 

6. Alternative to 5: Use a pre-defined „median correlation‟ for the region and use 

equation: ρij = exp (-αdij), to generate site-to-site correlation, using the site-

separation matrix.  The variable „α‟ is optimised to give the required ρmed; 

7. Carry-out a GEV distribution fit for each site (using observed data) and store 

parameters; 

8. Using the pooled data, fit a regional (pooled) distribution and store GEV 

parameters; call this the regional GEV distribution or growth curve; 

9. Using the „Multivariate Normal Random Number Generator‟ (MVRNorm 

function in R) and the cross-correlation matrix, generate a data set of „n‟ years (for 

example n = 40 years); 

a. The MVRNorm function in R takes the cross-correlation matrix (which 

is also the covariance matrix because we‟ve normalised the data) and 

generates as many new datasets as requested from the covariance 

matrix.  Each new random dataset shares the same 

covariance/correlation between sites as seen in the original data. 

10. Use the Regional GEV distribution to perform the Inverse Transformation of the 

data set, back to Annual Maxima Data – this is the artificial or synthetic data; 

11. Combine or pool all of the data using the station-year pooling method, giving the 

number of sites multiplied by the length of the data sets, i.e. N sites * n years of 

synthetic data = Nn years of data with a known median regional correlation 

coefficient (ρmed); 

12. Repeat step 9, 1,000 times to ensure a representative and realistic range of results.  

The number of samples (repetitions) was chosen based on consistency of results, 

where < 1% variation on summary statistics was achieved; 

13. For each generated synthetic data set a GEV distribution is fitted and from this the 

rainfall return period (R.P.) estimates for the 50, 100, 1,000 and 10,000-year 

events are returned; 
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14. The range of results for each return period estimate is shown using a „Box and 

Whisker‟ plot.  The „box‟ represents the median and the 95% confidence intervals; 

the whiskers show the most extreme values returned, these are called the 

„outliers‟; and, 

15. For the sake of completeness, this test was repeated using a range of ρmed values, 

as follows: 0 < ρmed < 1, ρmed = approximately 0, 0.1, 0.2, 0.3, 0.5, 0.75 and 

approximately 1; 
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5.4 - A summary of the methodology (with examples) 

 

The aim of this section is to explain a part of the methodology, focusing on steps 2 to 

6 of chapter 5.3.  This part of the method is associated with correlation matrix.  For 

normal use, this would be generated by performing a cross correlation of normalised 

annual maxima for the corresponding year for all of the sites in the region.  This is the 

primary method used for this analysis.  To explore and gain insight into the impact of 

inter-site dependence, it is also possible to generate a correlation matrix by using the 

equation: 

 
ijij d  exp       Equation: 5.4.1 

Where: 

 ρij = the correlation (rho) between sites i and j. 

 dij = the distance between sites i and j. 

By varying the value of alpha (found by iterative analysis) the correlation between 

sites can be varied. Here, the median for the matrix has been optimised for academic 

interest, to generate a range of inter-site dependence values, ρmed of 0 ≤ ρmed ≤ 1.  This 

is explained in more detail within this chapter.  What follows is an explanation of the 

methods used for the correlation matrix and also of Equation 5.4.1. 

When looking at real data ρmed is calculated straight from the correlation matrix for 

the regional pooling group.  However, should we wish to generate a correlation matrix 

and the associated annual maxima data, this could be based upon manipulating the 

correlation between sites with real spatial locations (where „i‟ and „j‟ are specific to a 

region) or could be based on a uniform grid, as per figure 5.4.1 overleaf.  
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Figure 5.4.1: Shows a uniform grid that could be used to demonstrate the location of 

sites within the synthetic region; sites xi and xj are shown for clarity, these could 

occupy any position within the grid or the region. 

5.5 - The generation of a matrix of site-to-site separation, in kilometres: 

 

Initial trials of this methodology were performed using 20 sites, each with 40 years of 

annual maxima data for the south west of England (SWE).  The locations of these 

sites are shown in figure 5.5.1. 

 

 

Figure 5.5.1: Locations of long-term daily rain gauges in the south west of England. 

 

Site Location 

Key: 

xj 

xi 

Where: 

 

 Represents 

the location within 

the grid of site „x‟ 
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The grid reference for each of the sites was used to calculate the distance between 

sites and produce the following matrix:  

BOSCM BUDEE CHELT CWMYS DALEF GOGER HURNN LNGAS LYNEH LYONS PLYMO PRESW RHOOS SIDMT STANN SWANS TRAWS TRENG USKKK YEOTN

BOSCM 0 200 84 194 244 210 44 70 40 144 190 123 113 118 214 162 201 294 101 65

BUDEE 0 209 177 106 182 192 148 195 190 61 196 107 94 27 97 175 106 151 136

CHELT 0 129 213 145 126 66 45 71 223 46 103 158 231 134 137 314 61 106

CWMYS 0 116 16 222 129 158 60 223 85 111 190 204 82 9 276 95 170

DALEF 0 112 254 175 221 161 167 179 131 176 129 82 109 178 155 191

GOGER 0 238 145 174 75 231 100 124 202 209 90 10 278 110 184

HURNN 0 93 81 179 169 160 126 100 200 176 228 275 128 62

LNGAS 0 49 90 157 77 46 93 167 93 135 251 35 47

LYNEH 0 105 197 83 94 127 213 139 165 295 69 71

LYONS 0 222 25 95 173 215 96 68 295 57 136

PLYMO 0 222 129 72 46 141 222 106 173 127

PRESW 0 94 166 221 108 93 302 50 124

RHOOS 0 81 129 51 114 212 45 65

SIDMT 0 100 117 192 176 117 56

STANN 0 124 201 83 174 149

SWANS 0 81 201 74 115

TRAWS 0 272 101 174

TRENG 0 257 230

USKKK 0 80

YEOTN 0

Figure 5.5.2: Matrix of site-to-site separation, ijd , (km), 

For the same sites, the annual maxima data was transformed to a normal distribution 

(step 4 of the method) and a pair-wise cross correlation performed to generate the 

correlation matrix, figure 5.5.3. 

BOSCM BUDEE CHELT CWMYS DALEF GOGER HURNN LNGAS LYNEH LYONS PLYMO PRESW RHOOS SIDMT STANN SWANS TRAWS TRENG USKKK YEOTN

BOSCM 1 0.078 0.330 0.063 -0.031 -0.099 0.212 0.255 0.104 0.279 0.082 0.022 0.355 -0.035 0.074 0.246 0.119 0.148 0.022 0.305

BUDEE 1 0.144 0.243 -0.043 -0.001 0.013 0.147 0.123 0.276 0.421 0.092 0.036 0.332 0.599 0.018 -0.008 0.116 0.144 0.565

CHELT 1 0.015 0.157 0.070 -0.031 0.333 0.272 0.354 0.072 0.486 0.331 -0.007 0.280 0.170 0.199 0.041 0.382 0.268

CWMYS 1 -0.068 0.303 -0.007 -0.193 0.049 0.252 0.065 0.096 -0.173 0.007 0.175 0.021 0.749 0.162 -0.161 0.288

DALEF 1 0.199 0.135 -0.037 0.316 0.335 0.093 0.433 0.033 0.258 -0.124 0.149 0.182 0.146 0.263 -0.046

GOGER 1 0.044 -0.176 0.021 0.058 0.076 -0.155 -0.302 0.248 -0.070 0.143 0.432 0.030 -0.035 -0.115

HURNN 1 0.170 0.159 -0.201 0.027 -0.194 0.076 0.091 -0.259 -0.013 0.121 0.201 -0.071 0.133

LNGAS 1 0.594 0.054 0.117 0.273 0.575 0.222 0.267 0.193 -0.229 0.207 0.199 0.216

LYNEH 1 0.146 0.114 0.290 0.302 0.384 0.028 0.097 0.153 0.274 0.370 0.325

LYONS 1 0.134 0.406 0.289 0.229 0.267 0.206 0.295 0.151 0.159 0.277

PLYMO 1 0.007 0.036 0.211 0.234 -0.076 0.058 0.309 0.131 0.156

PRESW 1 0.320 -0.113 0.205 0.248 0.160 0.038 0.356 0.082

RHOOS 1 0.178 0.204 0.249 -0.105 0.111 0.188 0.222

SIDMT 1 0.142 0.029 0.152 0.177 0.066 0.273

STANN 1 0.141 -0.048 0.133 0.205 0.391

SWANS 1 0.047 0.029 0.324 -0.005

TRAWS 1 0.192 -0.043 0.242

TRENG 1 -0.028 0.186

USKKK 1 0.091

YEOTN 1

Figure 5.5.3: Matrix of site-to-site cross-correlation, ρij 

 

From figure 5.5.3, it is possible to define ρmed, which is the median correlation for the 

region.  This value defines the level of dependence for the region.   

Alternatively, for research and validation purposes it is possible to optimise α (in 

equation 5.4.1 - [  
ijij d  exp ]) to give a ρmed of 0 ≤ ρmed ≤ 1.  For example if ρmed 

= 0 were chosen, this would indicate that there is zero dependence between sites and 

for other values of ρmed up to ρmed = 1 for example, that greater levels of dependence 

exist within the region, and the corresponding effects on the accuracy of the station 
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year approach to pooling regional data; this has been shown in this chapter and 

chapter 5.7.1.   

However, the generated Multivariate Normal data set (synthetic data), has been based 

on the at site cross-correlations for the south west of England.  Because the „at site‟ 

time series has been „normalised‟ (step 4, Chapter 5.3), meaning the annual maximum 

values at each site have been transformed to a normal distribution, the correlation 

matrix for all of the sites is also the covariance matrix of the variables.  The 

covariance matrix is used by the Multivariate Random Normal routine (available 

within the „R‟ environment, called ‟mvrnorm‟) to produce one or more samples from 

the multivariate normal distribution (this is explained in step 15 of the method).  This 

study produced record lengths ranging from 10 to 40 years for each rain gauge site, of 

which there were 20 in the south west of England. 

The generated data consist of the cumulative density function (c.d.f.) for each site in 

the region.  The method used to perform the inverse-transformation of the c.d.f. for 

each site is to use this data as the Gringorten plotting positions (see Chapter 4.2.2).  

Using the GEV parameters for the pooling group in the chosen region, the inverse 

transformation was carried out; this produced the synthetic annual maxima data sets 

for the region. 

By having 1,000 repetitions of this process for each site, it was found that this gave an 

adequate representation of the range of possible sample variations that could be 

encountered. This figure was decided upon when repeating the same experiment; the 

variability of the results was negligible, typically less than 1% for any of the stated 

values; for example, the mean, median and confidence limits, but not including the 

most extreme outliers. 

The correlation vs. distance (spatial separation) relationships for each region can be 

seen in Appendix 1. 

5.5.1 – Results and discussion 

 

The graphs that follow in Figures 5.5.4 to 5.5.6 show a summary comparison of L-

Moments and MLE for the fitting of distributions to the synthetic or artificial multi-

site pooling groups.  To aid in the comprehension of these results graphs have been 

produced showing ρmed = 0.1, 0.3, 0.5 and 0.75, with the estimates produced by the 

two methods for the 100, 1,000 and 10,000-year event. 
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The following graphs show the L-moment estimates in blue and MLE in yellow.  For 

those readers viewing a black and white copy of this document, the pairings consist of 

L-Moment estimates on the left and MLE on the right.  The box-plots show the 95% 

confidence interval and the horizontal black line in the box shows the median of the 

estimates.  The pink bullet-point shows the corresponding mean of the estimates. 
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Figure 5.5.4: 100-year return period estimates with 95% confidence intervals for 20 sites in the south west England (SWE), each site 

having: 10, 20 or 40 Yrs of 1 day annual maxima data. 
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Figure 5.5.5: 1,000-year return period estimates with 95% confidence intervals for 20 sites in the south west England (SWE), each site 

having: 10, 20 or 40 Yrs of 1 day annual maxima data. 
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Figure 5.5.6: 10,000-year return period estimates with 95% confidence intervals for 20 sites in the south west England (SWE), each 

site having: 10, 20 or 40 Yrs of 1 day annual maxima data. 
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Looking at Figures 5.5.4, 5.5.5 and 5.5.6, it is possible to start to visualise the distribution 

of the estimates.  However, to simplify this further, two examples are shown below.  

These are taken from Figure 5.5.6 and show: 

1. A dashed line representing the true value of 5.97, plotted on the right-hand limit 

of this point – the histogram „bins‟ increase with intervals of 1. 

2. The number of estimates above or below this „True value‟; and, 

3. For this example, the distribution of estimates for each method. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.7: Histogram of Estimates produced by the synthetic data set where med =0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.8: Histogram of Estimates produced by the synthetic data set where med =0.75 

Histogram of the 10000 Year Event Estimates.

Produced by a pooling groups with 20 Sites each with 20 years of data. Pmed = 0.1
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So far, the figures in chapter 5.5 have shown that an increase in med results in decreased 

confidence in the quantile estimate as the 95% confidence intervals (upper and lower 

limits) move further away from the true (known) value.  The decrease in confidence takes 

the form of increased standard deviation and a more skewed distribution of the estimates.  

The median values have a more pronounced negative bias (under-estimating) as the Inter-

site-dependence increases (it is not known why); however, the mean has a more 

pronounced positive bias, increased by the dramatically over-estimating outliers that are 

also a consequence of the increased dependency.  The 10,000-year return period 

estimates have been chosen to demonstrate these characteristics, purely because they are 

more pronounced and clearly more visible, but the characteristics remain the same at 

lower return periods.  The median values give a more representative indication of the true 

value, where as the mean is more affected by bias of the estimates, typically producing an 

over estimation, due to the very large outliers.   

Examining 40 years (1960 to 2000) of 1, 2, 5 and 10 Day Annual Maxima has shown that 

for multi-site (regional) pooling groups the regional med values are: 

Regions 1 Day 2 Day 5 Day 10 Day 

Southern Scotland 0.22 0.28 0.39 0.44 

Northern Scotland 0.17 0.2 0.3 0.38 

East Scotland 0.18 0.24 0.3 0.34 

North East England 0.31 0.44 0.44 0.44 

North West England 0.18 0.17 0.23 0.2 

Central Eastern England 0.2 0.2 0.25 0.32 

South West England 0.15 0.18 0.19 0.28 

South East England 0.26 0.25 0.35 0.45 

Table 5.5.9: Table of the observed regional med values for 1, 2, 5 and 10 day annual 

maxima. 

 

In general, Table 5.5.9 shows that there is increased inter-site correlation as the duration 

increases from the 1 day to the 10 day duration annual maximum events.  The degree of 

correlation corresponds to the chance that the maxima come from the same storm event. 
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N.B. Graphs of the distance versus correlation relationship can be seen in Appendix 1, 

these also show information relating to the Netmax concept (defined in chapter 5.6). 

An alternative to comparing med for each region and varying duration is to compare  for 

a fixed separation, say 100km, giving 100.  The justification for this is that med will vary 

according to the size of the region and therefore may not give a clear comparison of inter-

site-dependence in the various regions.   

 

Regions 1 Day 2 Day 5 Day 10 Day 

Southern Scotland 0.1 0.2 0.3 0.35 

Northern Scotland 0.3 0.3 0.38 0.45 

East Scotland 0.15 0.17 0.18 0.3 

North East England 0.3 0.4 0.4 0.42 

North West England 0.17 0.15 0.2 0.2 

Central Eastern England 0.25 0.25 0.3 0.35 

South West England 0.2 0.19 0.2 0.35 

South East England 0.2 0.2 0.23 0.38 

Table 5.5.10: Table of the regional 100 (approximate  - spatial correlation - at 100km 

separation) values for 1, 2, 5 and 10 day annual maxima. 

 

With these results in mind the importance of confidence limits becomes more apparent.  

Confidence limits may be unpopular with designers and engineers who seek one 

definitive answer, but it is irresponsible and misleading to give one value, when a range 

of uncertainty exists.  It should also be made clear that the range of uncertainty reduces 

with increased record lengths, but also that questions need to be asked about the 

homogeneity of pooled data sets. 
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5.6 - Netmax concept and ln(Ne), the effective number of sites 

 

In this chapter, the aim is to show a working relationship between the Network Maximum 

values (Netmax) for a region and , the correlation between sites within the regional 

network of rain gauges, which in turn is related to the effective number of rain gauges 

within a spatially defined region.  This work follows on from the multi-variate, synthetic 

rainfall data generation. 

Network Maximum values (Netmax) 

 

The Network Maximum value is defined as the largest value for a given year across the 

network or region.  For each annual maximum series in the pre-defined region or 

network, there is a maximum value for each year across the network. 

When a distribution is fitted to these values, the resultant growth curve is called the 

Netmax growth curve. 

The effective number of sites 

 

The effective number of rain gauges is of interest because when sites are pooled together 

it is known that the accuracy or the improvement gained by pooling more and more sites 

is not proportional.  For example, a regional pooling group of 20 sites with 20 years of 

data is not an equal replacement for one site within the region with a continuous record 

length of 400 years, the question being asked in this chapter is: what is the equivalent 

record length, or the effective number of sites in the pooling group? 

Within this chapter, it has been shown (using synthetic data) that when med = 1 the 

median of the Network Maximum is equal to the true plotting position for the regional 

growth curve.  When med = 1, there is total dependency between sites, meaning that the 

effective number of sites in the region is just 1.  This can be further explained using the 

following example: when med = 1, it implies that just one rainfall event is being 

recorded; it is simply being recorded at different locations with varying magnitude.  From 
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this, we realise we are seeing a range of estimates that fit one distribution with a median 

and mean equal to the true plotting position.   

Conversely, this means that if med = 0, then there is no spatial dependency between sites 

and that no two rain-gauges record the same rainfall event, suggesting that the rainfall is 

highly localised or that the gauges are separated by a relatively large distance, compared 

to the size of the weather system; med therefore has an impact on the effective number of 

sites within a region and this has a significant impact on the amount of available data. 

In reality, it is virtually impossible to achieve either med = 0 or med = 1 as random 

events, will occur simultaneously within a large enough sample; there will also be other 

factors, such as topography and separation between gauges which will prevent a med of 

zero or one.  It is possible, however, for  to be negative, meaning that the opposite 

occurs at one site compared to another.  An example of this is when it is raining in one 

location it frequently appears to be dry at the other location being examined.   and med 

must therefore lie between these two values, i.e. -1      1.   

The examples shown overleaf for med = 0 and med = 1, are actually very close 

approximations, for example med = 0.00072 or med = 0.999849.  The reason behind this 

are explained in the paragraph above. 

With this in mind and the desire to find a relationship between med or 100 and the 

effective number of sites within a region, an empirical relationship between ij and the 

spatial separation dij, between gauges i and j was used, see equation 5.4.1.  This allowed a 

correlation matrix to be generated with a med in mind, i.e.: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 

and 1. 

This method was proposed as a means for gaining insight into the tail of a distribution, 

that part which contains the rarest events.  This technique was pioneered by Dales and 

Reed (1989).  The assumption is that if the largest values are extracted from the annual 

maxima network for each year and plotted, there will be a constant separation between 

the Netmax Growth Curve and the Regional Growth Curve.   The constant, Ne, represents 

the effective number of sites in the region.  This assumption has also been tested and 

shown to be incorrect by this thesis and also by work carried out by the Cooperative 

Research Centre for Catchment Hydrology (1997).  
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NetMax Principle
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Figure 5.6.1 – Illustration of the Netmax principle, as explained by Dales and Reed. 

 

Figure 5.6.1 shows that the separation between the Netmax growth curve and the regional 

growth curve to be constant, as explained by Dales and Reed (1989).  However, this 

thesis finds that this separation is not a constant, but that it increases with return period.  

This has been demonstrated using synthetic data (Figure 5.6.3) and has been seen using 

observed data; however, the separation has also been shown to decrease when compared 

with an increasing return period, converging and then increasing again. 

Using synthetic data, figures 5.6.2 and 5.6.3 show the effect of inter-site-correlation on 

the separation between the Netmax values and the regional growth curve from which they 

originate. 
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Figure 5.6.2 – Network Maximum values, illustration of total dependence between sites. 
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Figure 5.6.3 – Network Maximum values, illustration of zero spatial dependence between 

sites. 
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5.7 – ln(Ne) – Effective Number of sites for Observed 1, 2, 5 and 10 Day 

Annual Maxima Data.  Regional Correlation / Dependence Data for 

regions within Great Britain 

 

An analysis of the inter-site-dependence characteristics for each region in Great Britain 

has been carried out.  The analysis was performed using pooled 1, 2, 5 and 10 day 

durations of annual maxima, for each region.   

The regional network maximum is extracted from the data set and plotted along side the 

regional growth curve.  The separation on the x-axis, using the reduced variate „y‟, 

between corresponding rainfall depths of these two growth curves is calculated and using 

equation 5.7, a value for Ne, the effective number of sites, this is then calculated: 


)ln(

)ln(

N

Ne
Separation between corresponding data on the x axis.  Equation 5.7 

Where N is the total number of sites in the pooling group. 

This study has shown with synthetic data and observed regional data, that Ne is not a 

constant.  This is significant result because Dales and Reed, who introduced this 

technique, assume that ln(Ne)/ln(N) is a constant; this assumption is used by the Flood 

Estimation Handbook.  A complete set of results for each region within Great Britain can 

be found in Appendix 1. 

5.7.1 – Results for the Effective Number of sites for regions within Great 

Britain 

 

Table 5.5.9 shows the correlation between sites, expressed in the form of the median 

regional correlation descriptor.  Appendix 1 shows the effective number of sites in each 

region.  Table 5.7.1.1 summarises the effective number of sites in each region by taking 

the mean of ln(Ne)/ln(N) at F10, F20 and F30.  The notation: F10, F20, F30 and F40 have 

been used to represent the Gringorten plotting positions for the 10, 20, 30 and 40 year 

return periods. 
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Regions 1 Day 2 Day 5 Day 10 Day 

Southern Scotland 0.75 0.76 0.70 0.63 

Northern Scotland 0.93 0.85 0.80 0.71 

East Scotland 0.83 0.81 0.66 0.61 

North East England 0.87 0.71 0.72 0.70 

North West England 0.90 0.91 0.86 0.88 

Central Eastern England 0.92 0.91 0.85 0.79 

South West England 0.84 0.90 0.91 0.75 

South East England 0.74 0.71 0.71 0.61 

Table 5.7.1.1: Table of the regional ln(Ne)/ln(N) values for 1, 2, 5 and 10 day annual 

maxima. 

 

The results in Table 5.7.1.1 can be interpreted as a percentage of the total number of sites, 

for example the 1 Day ln(Ne)/ln(N) result for Southern Scotland is 0.75, this means that 

the effective number of sites = 75% or 18.75 sites from the regional total of 25 sites; 

effectively reducing the station year total from 1,000 station years to 750 station years. 

Plotting med and 100 (tables: 5.5.9 and 5.5.10) against the effective number of sites in 

each region, then fitting a linear regression to each, an equation (equation 5.7.1) relating 

med to the effective number of sites in the pooling group was created. Where med is the 

median of the correlation values between the sites in the region and 100 is correlation 

value which corresponds to a 100km separation between sites within the regional being 

assessed. 
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Figure 5.7.1.2: Plot of med and 100 vs. ln(Ne)/ln(N) values for each region, for durations 

of : 1, 2, 5 and 10 day annual maxima. 

 

From previous explanations on the effect of inter-site-dependence (see Chapter 5.6) it 

was explained that as the inter-site-dependence reduced to zero, the effective number of 

sites increased to 100% of the pooling group.  It was also explained that as the inter-site-

dependence () approaches 1, the effective number of sites reduces to 1. 
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Figure 5.7.1.2 clearly shows that there is a relationship between the inter-site correlation 

and the effective number of sites in the region.  In fact, using the regression equation, the 

relationship can be approximated as: 

Ln(Ne)/Ln(N) = -0.833 med + 1.0209    Equation 5.7.1 

 

If the observed med values from Table 5.7.9 are entered into Equation 5.7.1, then it is 

possible to compare the observed or calculated Ne values with those estimated by 

Equation 5.7.1; this shows a typical range of errors of approximately +/- 15%, the 

exceptions are highlighted, see Table 5.7.1.3: 

 

  1 Day 2 Day 5 Day 10 Day 

Region 

Estimated 

Ne/N 

% 

Error 

Estimated 

Ne/N 

% 

Error 

Estimated 

Ne/N 

% 

Error 

Estimated 

Ne/N 

% 

Error 

SS 0.83764 12% 0.78766 4% 0.69603 -1% 0.65438 4% 

NS 0.87929 -5% 0.8543 1% 0.771 -4% 0.70436 -1% 

ES 0.87096 5% 0.82098 1% 0.771 17% 0.73768 21% 

NEE 0.76267 -12% 0.65438 -8% 0.65438 -9% 0.65438 -7% 

NEW 0.87096 -3% 0.87929 -3% 0.82931 -4% 0.8543 -3% 

CEE 0.8543 -7% 0.8543 -6% 0.81265 -4% 0.75434 -5% 

SWE 0.89595 7% 0.87096 -3% 0.86263 -5% 0.78766 5% 

SEE 0.80432 9% 0.81265 14% 0.72935 3% 0.64605 6% 

Table 5.7.1.3: Estimates and Range of percentage errors from using Equation 5.7.1 with 

observed correlation data from Table 5.7.9. 
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5.8 – Homogeneity Testing 

 

5.8.1 – Introduction 

 

This section (Chapter 5.8) aims to introduce an existing homogeneity testing technique 

and to demonstrate the potential of a new technique, which is dependent upon the use of 

Maximum Likelihood Estimation (MLE) and the Likelihood ratio test. 

The hypothesis of homogeneity is that the at-site frequency distributions are the same 

except for a site-specific scale factor [Hosking and Wallis, 1997]. 

5.8.2 – Existing techniques 

 

If a region is homogenous in the sense that the data for each site within the region 

represents a random realisation of the same underlying physical process, then the regional 

L-Moments can be used to fit a probability distribution [Hosking 1990; Hosking and 

Wallis 1990; Wallis 1989].  Hosking and Wallis [1991] constructed a method to evaluate 

goodness of fit.  This measure is based upon the difference between L-Kurtosis of the 

fitted distribution and the regional average L-Kurtosis of the sample data.  Assessment of 

goodness of fit is based on L-Kurtosis, the fourth L-moment, because the first three L-

Moments are used to estimate the three parameters of the distribution. 

Homogeneity is a basic requirement when pooling data and is often assumed in regional 

frequency analysis.  This chapter sets out to test for homogeneity within the predefined 

regions, which have been used up to this point.  Homogeneity testing using L-Moments is 

achieved by making comparisons of the L-Moment ratios.  The graphical comparison 

checks for similarity / homogeneity in the distribution properties, typically L-CV 

(coefficient of variation).   The measure of similarity is often achieved through a 

„goodness‟ of fit measure, such the R
2
 value obtained following a linear regression. 

5.8.3 – Possible future technique 

 

The homogeneity test that will be demonstrated here is the Likelihood Ratio Test (LRT).  

This is testing at a significance level, for example 5%, the probability of the sample (at 
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site distribution) originating from the population distribution (pooling group).  The Null 

Hypothesis is that the pooling group is homogeneous.  A significant result therefore is 

where the test statistic returns a probability of less than a chosen significance level, for 

example 5%.  Then it is a significant result and the test has indicated a high probability of 

Heterogeneity.   

It is important to note that the 5% significance level refers to the associated error, or 

probability of the result being incorrect.  To explain this further, a p-value of 5% means 

that 5 times out of 100 an incorrect result will be returned, meaning the data will show 

that the region is heterogeneous when it is in fact homogeneous. 

5.8.4 – Method description 

 

This chapter (5.8.4) contains an example and a more complete description of the method 

used to carry out homogeneity testing using MLE and the Likelihood Ratio Test. 

In order to carry out the likelihood ratio test, the log likelihood for two different models 

are required: 

Model 1 - All sites are assumed to be homogeneous, so that the same GEV parameters u, 

a and k fit all.  In order to find these values, the data are pooled into a single sample, and 

the GEV parameters are calculated.  The log-likelihood value returned is the target value 

for this model, which will now be referred to as LL1.   

Model 2 - All the sites are allowed to have their own values of (u,a,k).  This time the 

GEV parameters are calculated for each site individually.  Log-likelihood values are 

calculated for each site.  The sum of these values is calculated and referred to as LL2. 

N.B. LL2 must be greater than or equal to LL1.  The test statistic is 2(LL2-LL1), (i.e. 

twice the difference LL2-LL1).  This should result in a positive number. Under the null 

hypothesis, which is that the pooling group is homogenous, then this should come from a 

Chi-Square Test Statistic distribution on  degrees of freedom, where  is (total number 

of parameters in model 2 - total number of parameters in model 1).  

So, a significant result, i.e. a test statistic which is significantly large when you look at 

the Chi Square Test Statistic tables for  degrees of freedom, is evidence against the null 

hypothesis, in favour of the alternative, i.e. non-homogeneity. 
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5.8.4.1 - Example 

 

Below is an example of the output from the routine written in R to test for homogeneity.  

This test has been applied to all of the regions used up to this point; a complete set of 

results can be seen in Appendix 2. 

 

South West England – 1 Day 

 

U a k l 

0.942036 0.211624 0.093996 -3.1992 

0.942192 0.211769 0.192607 -5.53006 

0.911459 0.224329 0.340342 -11.133 

0.911124 0.267258 0.005082 -10.6507 

0.896275 0.233196 0.273198 -11.1267 

0.952809 0.227815 0.35171 -12.0498 

0.913875 0.212925 -0.39129 6.811892 

0.915441 0.211287 0.295503 -7.75602 

0.889045 0.248756 0.178687 -11.4995 

0.855755 0.228604 0.205212 -8.39799 

0.913484 0.216958 0.13232 -4.74053 

0.887935 0.275808 -0.07215 -9.73624 

0.911084 0.208854 0.171804 -4.15513 

0.916082 0.200704 0.299894 -5.7368 

0.901103 0.190262 0.141279 -0.0196 

0.948006 0.199842 -0.0044 1.490193 

0.940956 0.185781 0.164788 0.335779 

0.935837 0.157831 0.433141 0.983086 

0.935659 0.219414 0.172069 -6.53008 

0.928031 0.285398 0.039427 -12.7036 

NA NA NA -115.344 

NA NA NA 67.01819 

Regional Pool parameter values: 

U a k L 

0.916089 0.230015 -0.145857 -148.853 

Chi Square Test Statistic with 20 sites in total,  = 57 @ 5% significance = 75.62 

Test Statistic = 67, therefore homogeneity is likely. 

 

Figure 5.8.2.1 – Homogeneity test for SWE using 1 Day Annual Maxima 

 

Test Statistic value 
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5.8.5 – Discussion 

 

The main motivation for the trial of this method was the desire that this technique might 

enable the formation of very large pooling groups (regions).  The inspiration was the 

method of catchment selection used by the FEH; where catchment descriptors are used to 

select comparable sites for the purpose of data augmentation, not being restricted to 

neighbouring catchments. 

The aim for the homogeneity test (described in this chapter) was to select sites or perhaps 

more accurately to reject sites based upon a comparison of their fitted distribution with 

the existing yet expanding pooling group.  One example of why this method might be 

more powerful than a straight forward radial expansion of the pooling group (focused on 

the site of interest) is: should the focal site be located close to but clearly on one side of 

the Pennines for example, then a radial expansion might not be suitable, given the 

influence of the Pennines on the rainfall characteristics of the available rain gauges.  It is 

also clearly preferable to choose sites that are further away yet still statistically 

homogeneous as this would lead to reduced inter-site-dependence (see Chapters 5.6 and 

5.7 for information on inter-site correlation) and therefore the advantage of the additional 

site is two fold: 

1. Increasing the number of station years in the pooling group; and, 

2. Reducing the inter-site-dependence.   

Chapter 1.1 provided the background and introduced the problems associated with 

extreme value rainfall estimates; primarily this is a lack of long duration rainfall data – 

especially at the point of interest. This chapter has demonstrated a method using 

statistical analysis to form significantly larger data sets. 

Although some results have been included, it was decided not to pursue this technique of 

site selection for pooling groups.  The reason is that this statistical test uses a significance 

level in the hypothesis testing each time a site is added to the pooling group.  Therefore, 

each time a site is added there is, for example, a 5% chance of error.  What has not been 

investigated is the compounding effect of repeating this test and the associated errors.  It 

has been included here though, because it is hoped that someone with sufficient statistical 

expertise might be able to develop this technique further.   
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A summary of results from using an experimental method of focused pooling group 

expansion, based upon homogeneity testing of 179 rain gauges in Great Britain, follows. 

Having written a programme that will expand upon a single site, the focal site, by adding 

sites according to (or in the order of) their proximity to the focal site and testing for 

homogeneity each time a site is added until a pooling group which is deemed to be non-

homogeneous is produced. The following summarised results were obtained for each site 

in Great Britain: 
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Figure 5.8.2.2 - Histogram of number of sites per pool. 

 

Starting from any one of 179 rain gauges in Great Britain (selected by the user, randomly 

if desired), additional sites were added to the target site.  This Pool (x-axis) was expanded 

upon and until a non-homogeneous Pool is produced.  Figure 5.8.2.2 shows the number 

of rain gauges in the homogeneous Pool and the number of Pooling groups (y-axis) for 

the corresponding Pooling group size. 
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Figure 5.8.2.3 - Histogram of maximum radial separation of sites per pool, up to but not 

including the site that caused heterogeneity. 

 

Taking the average number of sites per pooling group, 31.4, and assuming that each site 

has 40 years of data (the average for the sites used in this thesis), then using this method 

the average pooling group contains 1256 station years of rainfall data. 

The largest pooling group contained 85 sites which produced 3400 station years of 

rainfall data (figure 5.8.2.4). 

0 150 30075
Km

Legend

Raingauge

 

Figure 5.8.2.4 - Shows the 85 sites which produced the largest homogeneous pool. 
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Histogram of Sites which 'caused' a non-

homogeneous state within the pool.
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Figure 5.8.2.5 - Shows the 54 sites which produced / caused a non-homogeneous pool. 

 

If we choose those sites with a frequency >6, we are left with the following sites: 

Site Frequency Site Name Region 

30 7 Lyonshall SWE 

72 7 Llanuwchllyn NEW 

133 7 Balmoral ES 

143 7 Frandy ES 

73 10 Loggerheads NEW 

156 11 Benmore Younger Botanic Garden SS 

44 12 Elmdon CEE 

95 12 Cockle Par NEE 

Figure 5.8.2.5 – Table of sites shown to have repetitively caused heterogeneity. 

 

It was hypothesised that the location of the sites in Figure 5.8.2.5 could be directly 

attributable to, for example: 

1. Geographical/ topographical uniqueness 

2. Anomaly with equipment 

3. Inappropriate human interference 

4. Proximity to coast   
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However, only Benmore Botanic Gardens appears close to the coast, the others can be 

classed as inland. 

Of the 179 sites used as the focal site, 125 of those sites were not responsible for creating 

a non-homogeneous pool. 

Taking those sites as a „region‟ and attempting one pooled analysis of the region for 

homogeneity, the group of sites was found to be homogeneous with a test statistic = 

376.55, the corresponding Chi-Square value @ 5% significance = 414.79 

125 sites each with 40 years of data = 5000 station years. 

5.9 – Summary 

 

This chapter has tried to explain some of the controlling factors, and to understand the 

limitations associated with the available data when analysed. 

This chapter started by introducing the method that has been used to generate the 

synthetic, multi-site rainfall data.  It then went on to explain the Netmax concept and the 

effective number of sites in a pooling group.   

A method for homogeneity testing was proposed and explored, the objective of which 

was to optimise pooling groups for extreme value estimates, therefore reducing 

uncertainty.  This method requires further analysis. Hydrologically, however, the 

potential of this method is apparent and very attractive.  
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Chapter 6 – Using a non-stationary model to represent and test 

for a trend in Annual Maxima rainfall 

 

6.1 – Introduction 

 

This chapter introduces and describes the GEV distribution, its parameters and the annual 

maxima growth curve with which they are associated.  It also describes how a trend can 

be simulated and tested for, first by using synthetic rainfall data, and then by testing for 

trends in observed or recorded annual maxima rainfall. 

A non-stationary model is one that is changing with time.  The models presented in this 

chapter assume „climate change‟ in relation to extreme rainfall can be modelled, and 

more importantly detected, using the parameters of an Extreme Value distribution.   

Non-stationary data sets can be defined as having statistical properties that do change 

over time; more precisely, the probability distributions of the process are time-variant.  A 

simple summary of a non-stationary data set is that the mean, variance and covariance of 

the distribution can all change with time, either individually or proportionally. 

An assumption or even a requirement of most distribution fitting techniques is that the 

data be from a stationary distribution, meaning with no climate change.  One significant 

advantage of the Maximum Likelihood (MLE) technique over Linear Moments (L-

Moments) is that MLE is able to fit to a non-stationary data set and detect whether the 

data set is non-stationary by using a likelihood ratio test (LRT).  All of these properties 

will be demonstrated in this chapter using synthetic data.  However, at the end of this 

chapter, the tools that have been developed and proven will be applied to 179 observed 

annual maximum time series from Great Britain. 

6.2 – Non-stationary GEV distribution  

 

The distributions that will be used are the Generalized Extreme Value (GEV) 

distributions, of which there are 3 special cases: 
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GEV Distribution with k = -0.15, k = 0, k = 0.15
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Figure 6.2.1 – GEV distribution with shape parameters k=-0.15, k=0, k=0.15 

 

If X is a random variable with GEV(μ,α, k ) distribution, then: 

Equation 6.2.1:    
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and a special case of the GEV, the Gumbel distribution, equation 6.2.2.   

Gumbel: 

Equation 6.2.2:    



























 




x
xF expexp  

 

If: 0k     

 

(EV-II, Frechet Distribution) 

 

(EV-III, Weibull Distribution) 

(EV-I) 



 98 

Where:    = Location parameter; 

    = Scale parameter; and, 

  k   = The Shape parameter. 

The parameters   and   correspond to the mean and standard deviation, the other 

parameter, k , gives an indication of how skewed the distribution is. 

The GEV distribution is justified because under very broad conditions, for any sequence 

of independent, identically, distributed (iid) random variables X1, X2, …, Xn, the GEV 

distribution is the limiting distribution of max { X1, X2, …, Xn} as n→∞, after 

appropriate normalisation (As explained by Coles, 2001).   

In practise, this means that in many realistic situations, the GEV distribution is a very 

good approximation for the distribution of maxima obtained over fixed time intervals. 

As has already been stated this distribution has three forms:  

1. Gumbel (k=0) 

2. Frechet (k<0) 

3. Weibull (k>0) 

 

These have been shown graphically in Figure 6.2.1. 

6.2.1 – GEV parameters 

 

Chapter 6.1 introduced the GEV distribution and demonstrated the changes upon the 

distribution caused by varying k, the shape parameter.  This chapter demonstrates in 

greater detail the significance of all three parameters upon the potential estimates 

returned by the distribution and will allow the reader to visualise the impact of a trend 

(year on year increase) in one or more of the GEV parameters. 

Chapter 6.2 has already explained how the parameters   and  correspond to the mean 

and standard deviation; the other parameter, k , gives an indication of how skewed the 

distribution is.  A number of graphs follow that demonstrate much more clearly the 

effects of a change in one or more of these parameters. 

The Location parameter, μ, controls the y-intercept and the mean positioning in the y-

axis.  This is illustrated in Figure 6.2.1.1. 
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Effect of Change in Location Parameter, u.
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Figure 6.2.1.1 – Graph showing the effect of varying  , the Location parameter. 

 

The Scale parameter,  , controls the overall gradient, as illustrated in figure 6.2.1.2 
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Figure 6.2.1.2 – Graph showing the effect of varying  , the Scale parameter. 
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The Shape parameter, k, controls the asymptotic curvature.  This is shown in figure 

6.2.1.3 below. 

Effect of Change in Shape Parameter, k.
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Figure 6.2.1.3 – Graph showing the effect of varying k, the Shape parameter. 

6.3 - Generation of a trend 

 

Trends have been introduced into synthetic data sets using a constant linear increase for 

each time interval, which in this case will be annual.  There has been no additional 

complication in the form of seasonal cycles as it is intended to generate and to make use 

of the annual maxima only – the largest event recorded in a year.  The data has been 

generated using a „random normal number generator‟ within the R-package as per the 

method in chapter 5.3.  The difference will be that the parameter values which are used 

will not be stationary and will therefore increase with each time step. 

The time series for a parameter can be represented as: 

 

Equation 6.3.1      tBBt 10   

 

Where:  (t) = the parameter value at time interval t. 

  0B  = the starting value of the parameter; 
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  1B is the incremental increase; and, 

t = is the time interval. 

 

The incremental increase, 1B , which can be detected, has been found using a sensitivity 

analysis of the synthetic data in the trend detection model.  Some examples of the 

amounts by which a parameter would need to change if detection were to be possible 

using this method, are shown in figures: 6.4.3.1 to 6.4.3.5. 

6.4 – Trend detection 

 

6.4.1 - Method 

 

The method of Maximum Likelihood (ML) produces parameter estimates that maximise 

the sample likelihood.  These parameter estimates are known as the Maximum Likelihood 

Estimates (MLE).  Having chosen a probability distribution model, in this case the GEV 

distribution, then the method of ML optimises or maximises the parameters to give the 

most likely estimates.  It is possible, however, to introduce additional parameters, or more 

accurately replace one parameter for multiple parameters.  This is what has been done 

with the introduction of trends and this is what ML estimation allows for in the detection 

of trends. 

It is not enough, however, to simply fit additional parameters to a distribution.  A form of 

hypothesis testing is required to distinguish between the Null hypothesis, which is that 

the time-series is stationary and therefore fitted to by a simpler model (one which does 

not contain a time varying parameter) and the alternative hypothesis, which is that the 

time-series is non-stationary (includes a time varying component) and therefore fitted to 

by the more complicated model. 

The hypothesis test takes the form of the Likelihood Ratio Test (LRT).  This is a 

statistical test of the goodness-of-fit between two models.  As already described, a 

relatively more complex model is compared to a simpler model to see if it fits a particular 

data set significantly better.  Adding additional parameters will always result in a higher 
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likelihood score.  The likelihood ratio test begins with a comparison of the likelihood 

values for the two models: 

 

LR = 2*(ln[L2] – ln[L1])    Equation: 6.4.1.1 

Where:  LR = the likelihood ratio 

  L1 = Likelihood for test 1 – stationary model (not changing with time) 

  L2 = Likelihood for test 2 – non-stationary model (time varying) 

The likelihood value L, is calculated during the Maximum Likelihood parameter 

estimation optimisation. 

The LRT statistic approximately follows a chi-square distribution.  To determine if the 

difference in likelihood scores among the two models is statistically significant, the 

number of degrees of freedom needs to be considered.  The number of degrees of 

freedom is equal to the difference in the number of parameters for the two models being 

compared.  If the LRT statistic is greater than the Chi-square distribution statistic for the 

number of degrees of freedom and also at the chosen significance level, then the Null 

hypothesis has been shown to be incorrect, for a chosen significance level.  In this case 

the result would indicate that the time-series is not stationary, or is non-stationary and 

contains a trend. 

N.B. - As has already been stated, the LRT is assigned a significance level.  This gives an 

indication of how likely it is that a stationary data set could be interpreted as a non-

stationary data set due to the chance occurrence of a trend.  A simple example of this 

would be: at the 5% significance level, it would be expected, that on generating a random 

data set 100 times, that a trend be detected 5 times out of 100 when one does not exist 

(referred to as a Type I error).  Caution must therefore be exercised when looking at 

multiple data sets for this reason.   

To counter this problem when dealing with synthetic data (containing a known trend), a 

measure of the „power‟ of the test can be used to better explain the results from the 

significance test.  The power and power curve show the following relationship:  

Equation 6.4.1.2  
SitesofNumberTotal

SitestSignificanofNumber
Power

___

___
  

The definition „significant site‟ is used to denote a site where a trend has been detected. 
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It is interesting to note that the significance level and the point at which the power curve 

is interpreted to yield a sufficiently powerful result can be chosen by the „user‟; they are 

arbitrary values that must be chosen with the test, and the impact of the decision in mind. 

6.4.2 – Trend Detection using a two parameter, Gumbel (k=0) distribution 

 

Initially, it was decided to simplify the problem of trend detection in the UK by using the 

Gumbel Distribution.  This decision was made for two reasons: 

1. The shape parameter for one-day annual maxima rainfall at individual sites varies 

from -0.5 < k < 0.5.  However, a significant proportion (approximately 70%) of 

single site k values fall into the range of 0 > k > -0.2, as shown by Figure 6.4.2.1.  

Further, regional pooling groups tend to have a shape parameter in the region of -

0.15 < k > 0, it was therefore believed to be a reasonable simplification to make. 

2. It was not known how well the fitting method would handle the complexity of 

fitting multiple parameters with a covariate and whether it would be possible to 

interpret the fitted parameters, other than to say that a trend had been detected. 
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Figure 6.4.2.1 – Histogram of k values for 179 sites in Great Britain 
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When looking at extremes, especially in excess of (rarer than) the 100-year return period 

event, single site time series would not be used – due to the increased uncertainty.   

Regional pooling group „k‟ values (for Great Britain) range from approximately -0.15 to 

approximately 0, and are shown in table 6.4.2.2, below. 

Regional pooling group Shape parameter, k 

South East England -0.023 

South West England -0.146 

Central Eastern England 0.0328 

North West England -0.09 

North East England -0.0215 

Northern Scotland 0.033 

Eastern Scotland 0.069 

Southern Scotland -0.098 

Table 6.4.2.2 – Shape parameter k, for regional pooling groups in Great Britain 

 

Except for the South West of England (SWE), all of the other regions could be 

approximated to Gumbel, k=0, for the purpose of this analysis.  In addition, if the level of 

uncertainty for all quantile estimates is included, then once again it could be argued that 

the Gumbel distribution can adequately describe the SWE.  See figure 6.4.2.3, below. 
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Figure 6.4.2.3 – Comparison of Gumbel and GEV fit to the SWE pooling group. 
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Figure 6.4.2.3 shows a regional growth curve where k= -0.15.   

Having demonstrated that it is not unreasonable to use the Gumbel distribution, primarily 

for reasons of simplification, the results of the sensitivity testing of this technique and the 

parameters follow a short explanation of the sensitivity testing procedure. 

6.4.3 - Sensitivity testing of parameters 

 

The aim of this chapter is to test for the level of trend required in each parameter, and 

combinations of these, to enable detection.  The test used to detect the trend has been 

defined in chapter 6.4.1.  The „power of detection‟, as defined by equation 6.4.1.2, has 

been plotted for each time series tested.  This has been repeated for a range of trends in 

the available parameters. 

Starting values for the parameters were chosen by looking at observed standardised 

parameters within the UK.  Taking the regional mean of a parameter as the starting point, 

for example 0B , then using 100
th

 ( 0B /100) of the observed parameter range as a starting 

point for the incremental increase, 1B , it was possible to then carry out a sensitivity 

analysis (varying the parameter until a range of results were obtained) and allowing the 

model to indicate the „power‟ associated with the trend in one or more parameters.  The 

model has been structured to generate 1000 samples of length, t = 40, 60, 80, …, 200.  

This allows the reader to see the impact of both the „magnitude‟ of the trend and the 

„length‟ of the data set or time series, allowing a greater understanding of the trend to be 

gained.  A representative sample of the results follows: 
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Trend in Location = 0.003, approximately 0.32% of starting 

value.  Test @ 5% Significance Level 
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Figure 6.4.3.1 – Power curve for Trend Detection in the Location parameter within a 

Gumbel Distribution. 

 

Figure 6.4.3.1 demonstrates the power of detection for a trend of 0.32%/yr in the location 

parameter.  It is important to realise that a 0.32% annual increase in the starting value of 

the location parameter equates to a 32% increase at t=100 and a 64% increase when 

t=200. 

Figure 6.4.3.1 also demonstrates that: 

1. The correct parameter (the one containing a trend) was identified by the test; and, 

2. The single parameter test is more powerful than the multi-parameter test when the 

trend exists in one parameter only. 
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Trend in Scale = 0.0014, approximately 0.7% of starting 

value.  Test @ 5% Significance Level 
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Figure 6.4.3.2 – Power curve for Trend Detection in the Scale Parameter within a Gumbel 

Distribution 

 

Figure 6.4.3.2 shows a result at the lower end of the acceptable range of the sensitivity 

analysis, for a trend in scale parameter.  This demonstrates the power of detection for a 

trend of 0.7% in this parameter.  A 0.7% annual increase in the starting value of the scale 

parameter equates to a 70% increase at t=100 and a 140% increase when t=200. 

Figure 6.4.3.2 demonstrates that: 

1. The correct parameter (the one containing a trend) was identified by the test; and, 

2. Once again the single parameter test is more powerful than the multi-parameter 

test when the trend exists in one parameter only. 
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Trend in Scale = 0.002, approximately 1% of starting 

value.  Test @ 5% Significance Level 
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Figure 6.4.3.3 – Power curve for Trend Detection in the Scale Parameter within a Gumbel 

Distribution 

 

Figure 6.4.3.3 shows a larger trend in scale parameter; 1% instead of 0.7%  This 

demonstrates the increased power of detection.  A 1% annual increase in the starting 

value of the scale parameter equates to a 100% increase at t=100 and a 200% increase 

when t=200. 

Figure 6.4.3.3 demonstrates that: 

1. The correct parameter (the one containing a trend) was identified by the test; and, 

2. Once again the single parameter test is more powerful than the multi-parameter 

test when the trend exists in one parameter only. 
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Figure 6.4.3.4 – Power curve for Trend Detection in the Location and Scale Parameters 

simultaneously, within a Gumbel Distribution. 

 

Figure 6.4.3.4 shows that once again the test correctly identifies the source of the trend. 

Looking at the results (as illustrated by the figures within this chapter), the reader will 

start to appreciate the annual percentage increase in each parameter that is required for 

the likelihood ratio test to have sufficient power of detection.   

Parameter Annual % 

change 

Length of 

dataset (Yrs) 

Total % 

increase
1
 

Power 

Location 0.32 80 25.6 0.672 

100 32 0.947 

Scale 1 80 80 0.535 

100 100 0.791 

Both 1 80 80 0.4 

100 100 0.618 

Table Notes: 

1 – This is the total increase in the selected parameter. 

Figure 6.4.3.5 – Summary of Power Curves – Gumbel Distribution only. 
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These results (figure 6.4.3.5) show the relationship between the percentage increase of 

the applied trend, and the time period required by this method to successfully detect the 

trend using synthetic data.  The location parameter appears to be the most amenable 

parameter for early detection of change in extreme rainfall (for the distribution tested). 

 

6.4.4 – Trend Detection using a 3 parameter GEV (k≠0) distribution 

 

Having demonstrated that the proposed trend detection method works for the Gumbel 

distribution (two parameters, k=0), it was decided to increase the complexity of the trend 

detection test to include the k (shape) parameter, therefore using all three parameters of 

the GEV distribution. 

It is also important to note that when this technique is applied to observed data sets 

(instead of synthetic data), it will be to single site data, meaning the available record 

lengths will be approximately 40 years.  As section 6.4.2 demonstrated, variation in the k 

parameter for single site analysis is such that it is difficult to defend the use of the 

Gumbel based trend detection test if a full GEV trend detection test exists. 

The graphs/results that follow (overleaf) are similar in appearance to those in chapter 

6.4.3.  The only significant difference is the addition of the k parameter. 
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Trend in Location = 0.003, approximately 0.32% of starting 

value.  Test @ 5% Significance Level 
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Figure 6.4.4.1 - Power curve for Trend Detection in Location Parameter using the full 

GEV Distribution 

 

Figure 6.4.4.1 demonstrates the power of detection for a trend of 0.32% in the location 

parameter.  As stated previously, a 0.32% annual increase in the starting value of the 

location parameter equates to a 32% increase at t=100 and a 64% increase when t=200. 

Figure 6.4.4.1 also demonstrates that the correct parameter (the one containing a trend) 

was identified by the test. 
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Trend in Location = 0.0047, aprroximately 0.5% of starting 

value.  Test @ 5% Significance Level 
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Figure 6.4.4.2 - Power curve for Trend Detection in Location Parameter using the full 

GEV Distribution.  

 

Figure 6.4.4.2 demonstrates the power of detection for a trend of 0.5% in the location 

parameter.  As stated previously, a 0.5% annual increase in the starting value of the 

location parameter equates to a 50% increase at t=100 and a 100% increase when t=200. 

Figure 6.4.4.2 also demonstrates: 

1. That the correct parameter (the one containing a trend) was identified by the test; 

2. That the power of detection has increased inline with the increased annual trend; 

and, 

3. Where the test has incorrectly detected a trend (Scale parameter, albeit with a 

significantly lower power), with additional data/stronger trend, the power is seen 

to reduce after a period of time. 
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Trend in Scale = 0.0014, approximately 0.7% of starting 

value.  Test @ 5% Significance Level 
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Figure 6.4.4.3 - Power curve for Trend Detection in Scale Parameter using the full GEV 

Distribution 

 

Figure 6.4.4.3 demonstrates the power of detection for a trend of 0.7% in the scale 

parameter.  As stated previously, a 0.7% annual increase in the starting value of the scale 

parameter equates to a 70% increase at t=100 and a 140% increase when t=200. 

Figure 6.4.4.3 also demonstrates that the correct parameter (the one containing a trend) 

was identified by the test.   

Comparing figure 6.4.4.3 with figure 6.4.3.2, it appears that the Gumbel trend detection 

test is more powerful on this occasion. 
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Trend in Scale = 0.003, approximately 1.5% of starting 

value.  Test @ 5% Significance Level 
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Figure 6.4.4.4 - Power curve for Trend Detection in the Scale Parameter, using the full 

GEV Distribution 

 

Figure 6.4.4.4 demonstrates the power of detection for a trend of 1.5% in the scale 

parameter.  A 1.5% annual increase in the starting value of the scale parameter equates to 

a 150% increase at t=100 and a 300% increase when t=200. 

Figures 6.4.4.3 and 6.4.4.4 show that a doubling of the scale parameter (0.7% to 1.5%) is 

required to achieve a similar power of detection to those observed in the preceding tests.  

It is important to note that the test continues to correctly identify the parameter containing 

a trend. 
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Trend in Scale = 2% of starting value.  

Test @ 5% Significance Level 
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Figure 6.4.4.5 - Power curve for Trend Detection in Scale Parameter using the full GEV 

Distribution 

 

Figure 6.4.4.5 demonstrates the power of detection for a trend of 2% in the Scale 

parameter.  A 2% annual increase in the starting value of the scale parameter equates to a 

200% increase at t=100 and a 400% increase when t=200. 

 

Figures 6.4.4.6 to 6.4.4.10 show the varying performance of the power of detection test 

associated with trends in the shape (k) parameters; where the trend ranges between 1.9% 

and 6.67%. 
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Trend in Shape = -0.00282, approximately 1.9% of starting 

value. Test @ 5% Significance Level 
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Figure 6.4.4.6 - Power curve for Trend Detection in Shape Parameter using the full GEV 

Distribution 

 

Trend in Shape = -0.0035, approximately 2.33% of starting 

value. Test @ 5% Significance Level 

0
0.019

0.004 0.003 0 0 0 0 0 00 0.008 0.005 0.001 0.001 0 0 0 0 00 0.004 0.01
0.035

0.091

0.154

0.266

0.355

0.463

0.624

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
Length of data set (Years)

P
o

w
e

r

Scale Trend Test

Location Trend Test

Shape Trend Test

 

Figure 6.4.4.7 - Power curve for Trend Detection in Shape Parameter using the full GEV 

Distribution 
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Trend in Shape = -0.005 approximately 3.33% of starting 

value. Test @ 5% Significance Level  
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Figure 6.4.4.8 - Power curve for Trend Detection in Shape Parameter using the full GEV 

Distribution 

 

 

 

Trend in Shape = -0.0075, approximately 5% of starting value. 
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Figure 6.4.4.9 - Power curve for Trend Detection in Shape Parameter using the full GEV 

Distribution 
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Trend in Shape = -0.01, approximately 6.67% of starting 

value. Test @ 5% Significance Level
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Figure 6.4.4.10 - Power curve for Trend Detection in Shape Parameter using the full GEV 

Distribution 

 

By increasing the trend in the shape (k) parameter (Figures 6.4.4.6 to 6.4.4.10), the 

characteristic power curve becomes visible.   

6.4.5 - Equivalence of changes in GEV parameters on quantile estimates 

 

Taking the 100, 1,000 and 10,000-year return period events, and applying an increase of 

10%, 25% and 50% to each parameter individually, the effects of these changes has been 

assessed.  The results of this analysis are shown in the figures below: 

Unless otherwise stated u = 30, a = 8, k = -0.1 

Percentage 

Increase 

100-year Estimate with varying: 

u a k 

0% 76.73 76.73 76.73 

10% 79.73 77.31 77.90 

25% 84.23 78.19 79.74 

50% 91.73 79.65 83.00 

Figure 6.4.5.1 – Table showing the effect of a percentage increase, in any one of the three 

GEV parameters, upon the 100-year return period event. 
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Percentage 

Increase 

1,000-year Estimate with 

varying: 

u a k 

0% 109.61 109.61 109.61 

10% 112.61 110.61 112.75 

25% 117.11 112.10 117.76 

50% 124.61 114.59 126.97 

Figure 6.4.5.2 – Table showing the effect of a percentage increase, in any one of the three 

GEV parameters, upon the 1,000-year return period event. 

 

Percentage 

Increase 

10,000-year Estimate with 

varying: 

u a k 

0% 150.95 150.95 150.95 

10% 153.95 152.46 157.58 

25% 158.45 154.73 168.38 

50% 165.95 158.51 188.99 

Figure 6.4.5.3 – Table showing the effect of a percentage increase, in any one of the three 

GEV parameters, upon the 10,000-year return period event. 

 

Figures 6.4.5.1 to 6.4.5.3 show a maximum increase in any one parameter of 50%.  This 

may seem significant, but it is important to remember that the Scale parameter may be 

caused to increase by a greater amount than this due to the recording of a significantly 

large event.  For example, at Manston in South East England, Figure 6.4.5.4 overleaf:  
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Figure 6.4.5.4 – Graphs relating to the fit of the Manston Data set, with the largest event 

removed from the record. 

 

Comparing Figure 6.4.5.4 and Figure 6.4.5.5 (without and with the largest event on 

record) there is a noticeable increase in the k parameter from k=-0.3098 to k=-0.4846, an 

increase of 56.4% (in the k parameter), due to the inclusion of the largest event.  This 

example has been included to demonstrate that such increases in a parameter, whilst 

large, can be observed by varying the available data.  With this in mind the percentage 

increases required for trend detection do not seem unreasonable. 

u=0.928, 

a=0.208, 

k=-0.3098 
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Figure 6.4.5.5 – Graphs relating to the fit of the Manston data set, with the largest event 

included in the record. 

  

6.5 – Trend detection in observed annual maxima data 

 

This section applies the trend detection test to the 179 rain gauges that have been used 

When looking at observed data, decision makers might ask to be shown more detail than 

a test which is limited to a p value of say 0.05, believing that additional information (for 

other significance levels) would be of value.  For this reason, it might be preferable to 

display the p-values for each site.  It is important to allow some form of spatial 

awareness, because, the nature of the test is to show a significant result, 5% of the time 

(at the 5% significance level) even when one does not exist (type 1 error).  Hence, any 

clustering of significant results reinforces their importance.  Perhaps a better response is 

to inform the user of this data and allow them to choose a value with which they are 

comfortable.  For example, the significance level of 5% excludes all test results which are 

greater than this value.  If however, a decision maker is concerned that a number of sites 

u=0.916, 

a=0.219, 

k=-0.4846 
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in his or her region come back with a p value between say 0.05 and 0.1, then the user may 

believe these results should not be ignored.  For this reason, when looking at the observed 

annual maxima data sets, it was decided to display all of the results that were returned 

with a p ≤ 20%; this thesis does not wish not imply that these results be regarded as 

significant, but if they are located within a cluster of sites deemed significant at 5%, then 

this additional information adds weight to the primary test.  These results have been 

plotted on maps, as well as displaying the point values; an inverse distance weighting was 

calculated and plotted to interpolate the point values.  

Clustering of significant results has been interpreted as meaning that there is more likely 

to be a trend present, than for those sites where only one or two sites showed evidence of 

a trend.  However, caution must be exercised as it is of course possible for the error sites 

to be located within or near to the actual cluster of sites which contain a trend. 

Figures 6.5.1, 6.5.2 and 6.5.3 have been plotted (overleaf) and show the p-values 

(graphically) for each site, as well as a spatially correlated interpretation of the single site 

data. 

The results that follow are for the location parameter only as this was found to contain the 

greatest number of trends at the 1, 5 and 10 day duration of annual maximum rainfall in 

Great Britain. 

Interestingly, M. Ekstrom et al (2004) found that the HadRM3H projects (following the 

IPCC SRES scenario A2 for 2070–2100) showed a 30% increase in rainfall intensity, for 

longer duration events (5–10 days),  and that event magnitudes at given return periods 

show large increases in Scotland (up to c30%), with greater relative change at higher 

return periods (25–50 years).   
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Figure 6.5.1 – Detected trends in 1 Day Annual Maximum Rainfall Data 

N.B. Trend detection shown in 

Location Parameter only, however, this 

parameter showed the greatest number 

of sites with a trend. 

Period of record 

used: 1961 – 2000. 
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Figure 6.5.2 – Detected trends in 5 Day Annual Maximum Rainfall Data 

N.B. Trend detection shown in 

Location Parameter only, however, this 

parameter showed the greatest number 

of sites with a trend. 

Period of record 

used: 1961 – 2000. 
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Figure 6.5.3 – Detected trends in 10 Day Annual Maximum Rainfall Data 
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6.6 – Summary 

 

This chapter has introduced and described the GEV distribution, its parameters and the 

annual maxima growth curve with which they are associated.  It has also described how a 

trend can be simulated and tested for using synthetic rainfall data.  Having demonstrated 

the ability of this technique to accurately identify a trend, and having also shown the 

strength of the trend required for detection, this technique was applied to observed data.  

Interestingly and perhaps surprisingly, trends were detected.  The greatest signal strength 

was observed at longer durations (10 day annual maxima) over western Scotland.  

Reviewing the figures in this chapter leads to an important question: at what power can 

the statement „a trend has been detected‟, be justified?  This power test can only be 

carried out at a regional or national level.  However, it is important to remember when 

looking at the power curve that 5% (or the chosen significance level) could be errors and 

therefore not contain a trend (Type 1 error).   

In all of the synthetic trend scenarios observed in this chapter, when in error, none of the 

incorrectly identified trends exceeded a power of 0.3 or 30%.  Following more analysis, it 

might be sufficient to say that the minimum threshold for detection, should be set just 

above this maximum observed error.  Ultimately, as with the significance level, it must be 

the analyst that makes the final decision once presented with all of the available facts. 

Having seen the shape of the power curves and knowing that the majority of rainfall data 

sets in the UK are typically 40 – 50 years in length, with a few exceptions, this thesis 

recommends a power of 0.51; or 51% of sites containing a trend. 

  



 127 

This page is intentionally blank. 



 128 

 

 

 

 

 

 

 

 

 

Chapter 7 

 

 



 129 

This page is intentionally blank. 

 

 



 130 

Chapter 7 – Summary of Thesis 

 

7.1 – Summary of Chapters 

 

The initial two chapters introduced the aims of this study and the theory behind dam 

safety practice.  

 

Chapter 3 introduced flood estimation methods currently used within the UK and Europe.  

It further described some of the techniques associated with the Flood Estimation 

Handbook, which is the accepted UK standard for flood estimation.  This chapter also 

included a technical description of two distribution fitting techniques.   

 

Chapter 3 also looked at PMP, with estimates of PMP being considered to be 

approximations that depend upon the amount and quality of the data available for 

applying the various methods.  Further, as the WMO description of PMP states, there is 

no allowance for long term climatic trends.  This information appears to have increasing 

significance in consideration of research showing that over the past 30 years there has 

been an increase in global temperature of approximately a 0.5°C.   Of greater concern, it 

is forecast that this trend will continue and that an increase in temperature of between 1.5 

and 4.5°C over the next 100-years could occur. 

 

Chapter 4 then considered two distribution fitting techniques and demonstrated the 

strengths and weaknesses of each.  It showed that the method of L-Moments appears to 

be more accurate for relatively short time series, but it also shows that any advantage 

demonstrated by L-Moments diminishes as the length of the time series increases.   

 

Chapter 5 started by introducing the method that has been used to generate the synthetic, 

multi-site rainfall data and then continued to explain the Netmax concept and the 

effective number of sites in a pooling group.  To optimise pooling groups for extreme 

value analysis and therefore reduce uncertainty, a method for homogeneity testing was 
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proposed and explored.  From a hydrological viewpoint, the potential of this method is 

apparent and very attractive. However, this method requires further analysis.  

 

Chapter 6 described the GEV distribution, including its parameters and the associated 

annual maxima growth curves.  This chapter also described the use of synthetic rainfall 

data to simulate and test a trend. It was demonstrated that this technique can accurately 

identify a trend, with the technique then being applied to observed data.   

7.2 – Main Outcomes 

 

The four main outcomes of this thesis have been:  

1. Gaining an increased understanding of spatial dependence and the impact this has 

on the effective number of sites (amount of data) in a pooling group, with analysis 

showing that this varies with event rarity (return period).   

2. One of the underlying assumptions for the Netmax concept, used by the FORGEX 

method, has been shown to be wrong. This is particularly true for rare events 

where the return period is greater than approximately 100 years.  

3. Developing a method for trend detection in the parameters of the GEV 

distribution.   

4. Having tested this on synthetic data, it was then applied to observed data for Great 

Britain and trends were found. 

 

Each of these points will now be discussed in more detail.  

1. Spatial dependence and trends within hydrological and meteorological data have a 

significant effect upon reliable estimation of the 10,000-year (or other extreme) event.  

Spatial dependence has been shown to have significant impact on the amount of data 

in a pooling group but has also been shown to vary with return period (event rarity). 

This has a significant impact on the effective number of sites in a pooling group and 

also highlighted that the FORGEX method was in need of review (this will be 

explained in point 2). During the analysis of spatial dependence, this thesis also found 

that the effective number of sites in a region or pooling group using the Station Year 

method has been shown to range from 74% – 93% of the total for 1 Day Annual 
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Maxima (AM), and 61% - 88% of the total for 10 Day Annual Maxima rainfall data.  

This means that a pooling group of 10 Sites, each with 40 years of data, does not 

equate to a time series of 400 station years in length, but to one of perhaps 74% * 400 

= 296 station years for 1 Day AM or 61% * 400 = 244 station years for 10 Day AM. 

This information is provided for example only. Full regional analysis for Great 

Britain is reported upon in chapter 5.7.  

2. As discussed in chapter 5.6, the effect of spatial dependence (inter-site correlation) 

has been shown to vary with return period; spatial correlation reduces with increasing 

return period. It was this realisation that lead to the questioning of the Netmax 

concept. This discovery is in agreement with earlier research in 1997 by CRCCH 

(Cooperative Research Centre for Catchment Hydrology), which demonstrated that 

there was not a constant separation between the Netmax and regional growth curve. 

This research was carried out for rainfall data in the area of Victoria in Australia.  

3. In addition to the work described above, a method for trend detection in annual 

maxima rainfall has been tested and shown to be effective (in chapter 6). This was 

initially demonstrated using synthetic data with known trends.  This method 

introduced a constant trend in one or many of the GEV parameters, the test was then 

applied and results have been produced showing the „power of detection‟. With this 

knowledge, it is possible to assess how strong a trend, and or how long a time-series 

is required to detect a trend.   

4. Following the investigation described above, observed (recorded) rainfall data sets 

were analysed, using 1, 5 and 10 day duration annual maximum rainfall data for 179 

rain gauges in Great Britain (from 1960 to 2000).  Interestingly, trends were detected 

with the greatest signal strength being observed at longer durations (10 day annual 

maxima) over western Scotland. 
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7.3 Summary of methods developed to achieve the main outcomes 

 

Research was carried out in to the accepted methods for extreme value rainfall estimates 

in Great Britain and parts of Europe.  Reservoir design and the Reservoirs Act (1975) 

have also been investigated to gain insight into how these extreme values are used and 

why they are needed.   

In parallel with a literature review, work started on a comparison of statistical methods 

that are widely used by hydrologists, and these were compared with a method that is 

widely used by statisticians for extreme value (rainfall) estimates, namely L-Moments, 

and MLE (Maximum Likelihood Estimates).  Whilst studying these methods, it became 

apparent that the majority of rainfall and flood estimates are produced using techniques 

that assume the data (rainfall time-series) are stationary, where stationary data sets are 

defined as having statistical properties that do not change over time.  With a growing 

consensus among the scientific community that the climate is changing (non-stationary), 

it would appear that the time has come to stop using these inappropriate techniques. 

This thesis has shown, in a hydrological context, that an alternative in the form of MLE 

should be considered, for the following reasons: 

 MLE can be adapted (without compromise) to fit to a non-stationary time series; 

 MLE is able to plot confidence intervals without re-sampling the available data; and, 

 MLE can test for trends in non-stationary data sets. 

 

This thesis has shown that a great deal of uncertainty exists when extreme rainfall 

estimates are produced, however this is very rarely reported or made use of.  One 

example where this is important is rainfall runoff modelling using extreme estimates. 

By using MLE, this valuable information (uncertainty) could be relayed to the user, and 

be considered in design calculations. 
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7.4 – Future work 

 

7.4.1 – Introduction 

 

Whilst we have achieved the aims and objectives both set out and that evolved during the 

thesis, it is also apparent that some of this work could and should be either expanded 

upon or challenged as part of some future studies. The one area which is in need of 

questioning is the proposal for a homogeneity test which allows the formation of large 

pooling groups. As already explained, I have concerns over the suitability of this 

proposal.  The concerns relate to the principle of the test, that there is a chance 5% (or 

chosen level of uncertainty) chance of error.  Normally, this test would be applied once so 

the level of uncertainty is known.  The iterative nature of the proposed test however, 

raises concerns about the suitability and accuracy of this test after multiple each 

additional gauge is added.  Statistical analysis of this repetitive method and the potential 

compound errors that might be associated with it need to be investigated. 

7.4.2 – Areas to be considered for future work 

 

1. Further development of the test for detecting trends in a GEV distribution.  

2. Greater analysis of the finding that spatial dependence is a function of return 

period. 

3. The homogeneity test for defining large pooling groups. 

7.4.3 – Future work explained 

 

1. It is proposed that methods are explored which aim to increase the power of trend 

detection in extremes.  Further, this thesis has looked at linear trends only; further work 

needs to be done on time varying trend detection.  The problem here is that each data 

point must have an associated time-index; for this reason it is not possible to adopt a 

station-year method of pooling and fitting. However, it is possible to fit to multiple sites 

simultaneously and test for similarities.  For example each site could be fitted too using 
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the hypothesis that one value of k could satisfactorily fit the distribution at each site in the 

pooling group.  The likelihood ratio test would then return a test statistic for or against 

this hypothesis.  This test could then be repeated for each GEV parameter.  More 

importantly when testing for a trend, the same principle could be applied to the covariate 

of one or more parameters – the covariate being the time varying trend.  The test would 

then be based on the hypothesis that the trend in say the location parameter could be 

fitted using one value for multiple sites, whilst allowing the other parameters to be site 

dependent and therefore independent of each other.  This test would be especially useful 

where clustering has been observed in the single site trend detection test. 

Fitting to the time varying distributions does return a time varying set of parameters, 

meaning that estimation of the changes in user defined return period event can be 

calculated.  For example, the 100-year, 24 hour rainfall event using a stationary fitting 

technique may be 50mm.  The non-stationary fitting technique allows an estimate to be 

generated of the equivalent event in 100-years time (from the calculations being carried 

out).  In 100-years the same event might equate to a rainfall depth of 65mm; assuming 

that the trend is linear.  Work should be carried out testing the accuracy of the covariate 

parameter (trend element) and its ability to successfully extrapolate to future events. 

 

2. Following the discovery that spatial dependence varies with return period, an 

assessment of the impact upon techniques that are currently in use by hydrologists within 

the UK needs to be carried out. This specifically impacts the Netmax element of the 

FORGEX method for growth curve extension and therefore extreme value estimation. 

Initially, it would appear that this finding will result in reduced rainfall totals for a given 

return period. So, the current technique is effectively providing a conservative estimate, 

meaning greater than the actual value. This work has not been pursued during this thesis 

as it did not form part of the initial objectives. 

 

3. Another area for future research is the proposed homogeneity test for pooling rainfall 

sites, chapter 5.8.  This method requires careful analysis of the implications surrounding 

the test; the repetitive process of testing and adding another site carries the potential risk 
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of accumulating errors.  This was not explored further during this thesis due to time 

constraints, but is worthy of further analysis due to the potential gains. 
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Results for the South East of England. 

u a k L 

0.932774 0.222635 0.04447 -3.6358 

0.89935 0.244093 0.067983 -7.74763 

0.872194 0.225846 -0.13177 -0.34965 

0.907365 0.246507 -0.23456 -2.23582 

0.924218 0.20363 0.074848 -0.9981 

0.958119 0.166485 0.094999 5.967554 

0.875429 0.208834 -0.15595 3.062091 

0.957191 0.26367 -0.15562 -6.03652 

0.899831 0.195064 -0.04329 2.938675 

0.915367 0.194487 0.12659 -0.67357 

0.880931 0.231147 0.28071 -10.4426 

0.927126 0.214044 -0.1759 2.767844 

0.888453 0.206067 -0.05273 1.337721 

0.923215 0.155987 0.246487 5.542211 

0.938524 0.230097 0.032458 -4.77746 

0.94808 0.187561 0.069986 2.080728 

0.955957 0.258834 0.059374 -9.84363 

0.892858 0.215372 0.119037 -4.58358 

0.929551 0.201486 -0.03807 1.748607 

0.925636 0.171924 0.127133 4.35611 

NA NA NA -21.5228 

NA NA NA 61.16587 

 

Here we see the Test Statistic value = 61 

 

Regional Pool values: 

u a k l 

0.914419 0.218632 -0.023272 -52.1057 

 

Chi Square Test Statistic with 20 sites in total,  = 57 @ 5% significance = 75.62 

 

Test Statistic = 61, therefore homogeneity is likely.

Test Statistic value 
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u a k l 

0.942036 0.211624 0.093996 -3.1992 

0.942192 0.211769 0.192607 -5.53006 

0.911459 0.224329 0.340342 -11.133 

0.911124 0.267258 0.005082 -10.6507 

0.896275 0.233196 0.273198 -11.1267 

0.952809 0.227815 0.35171 -12.0498 

0.913875 0.212925 -0.39129 6.811892 

0.915441 0.211287 0.295503 -7.75602 

0.889045 0.248756 0.178687 -11.4995 

0.855755 0.228604 0.205212 -8.39799 

0.913484 0.216958 0.13232 -4.74053 

0.887935 0.275808 -0.07215 -9.73624 

0.911084 0.208854 0.171804 -4.15513 

0.916082 0.200704 0.299894 -5.7368 

0.901103 0.190262 0.141279 -0.0196 

0.948006 0.199842 -0.0044 1.490193 

0.940956 0.185781 0.164788 0.335779 

0.935837 0.157831 0.433141 0.983086 

0.935659 0.219414 0.172069 -6.53008 

0.928031 0.285398 0.039427 -12.7036 

NA NA NA -115.344 

NA NA NA 67.01819 

 

 

Regional Pool values: 

 

u a k L 

0.916089 0.230015 -0.145857 -148.853 

 

 

Chi Square Test Statistic with 20 sites in total,  = 57 @ 5% significance = 75.62 

 

Test Statistic = 67, therefore homogeneity is likely. 

 

 

 

Test Statistic value 
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Central Eastern England – 1 Day 

 

u a k l 

0.899759 0.212445 -0.03683 -0.60179 

0.909038 0.228752 0.111828 -6.47524 

0.864789 0.162739 0.214134 4.635733 

0.95293 0.193697 -0.26748 8.458981 

0.927076 0.237719 -0.03287 -4.99186 

0.883705 0.239639 -0.16878 -2.05173 

0.935604 0.151759 -0.00986 12.2212 

0.921923 0.230132 -0.01723 -4.18706 

0.941666 0.212872 0.129546 -4.31911 

0.940511 0.257573 -0.01279 -6.82057 

0.920056 0.163839 0.048643 6.741978 

0.902815 0.216644 -0.03697 -0.61802 

0.890979 0.192307 0.102826 0.365507 

0.96 0.210295 -0.32252 6.316616 

0.927436 0.23961 -0.13947 -2.85301 

0.928653 0.182728 0.125476 1.754144 

0.895838 0.218525 -0.19626 2.013733 

0.893254 0.21594 0.087398 -3.924 

0.919228 0.237341 -0.27093 0.18713 

0.985237 0.232833 0.048431 -6.16186 

0.9122 0.192191 -0.05164 3.839074 

NA NA NA 3.529842 

NA NA NA 58.39992 

 

Regional Pool values: 

u a k l 

0.917964 0.217116 0.03288 -25.6701 

 

 

Chi Square Test Statistic with 21 sites in total,  = 60 @ 5% significance = 70.98 

 

Test Statistic = 58, therefore homogeneity is likely. 
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North West England – 1 Day 

 

 

u a k l 

0.94553 0.188749 0.190615 -0.67333 

0.907328 0.216784 0.030413 -2.51238 

0.898369 0.249187 0.021219 -7.29694 

0.930154 0.181573 0.206503 0.349248 

0.926403 0.192171 0.097917 0.437488 

0.8975 0.266808 -0.0073 -10.0391 

0.91251 0.221872 0.419032 -12.2688 

0.96692 0.22013 0.126421 -5.57423 

0.922807 0.238798 -0.08935 -4.26598 

0.902326 0.225672 0.02628 -4.46473 

0.890462 0.229307 -0.23308 0.839642 

0.891126 0.246529 0.419742 -16.5299 

0.921972 0.190293 0.183044 -0.89032 

0.926668 0.175995 -0.01911 6.537236 

0.953762 0.171764 0.179888 2.916546 

0.905469 0.236731 0.243489 -10.2326 

0.909837 0.201044 -0.03885 1.610441 

0.904128 0.185789 0.052009 3.195819 

0.885019 0.220295 0.047079 -3.81472 

0.912519 0.223499 0.093202 -5.1437 

0.885504 0.21074 0.07849 -2.8039 

0.947227 0.236704 0.192705 -9.90341 

0.918037 0.23535 0.096646 -7.63595 

0.928965 0.184621 0.118597 1.545812 

NA NA NA -86.6177 

NA NA NA 70.93757 

 

Regional Pool values: 

u a k l 

0.915916 0.223018 -0.093177 -122.087 

  

Chi Square Test Statistic with 24 sites in total,  = 69 @ 5% significance = 89.39 

 

Test Statistic = 71, therefore homogeneity is likely. 
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North East England – 1 Day 

 

u a k l 

0.968935 0.225573 0.003119 -3.79085 

0.945197 0.238804 -0.06554 -4.57351 

0.943873 0.164749 0.177523 4.919153 

0.9115 0.216679 -0.12998 1.198109 

0.933695 0.254468 -0.1428 -5.04443 

0.959522 0.227181 0.16445 -7.73734 

0.939142 0.174808 -0.15834 9.797928 

0.897273 0.157419 0.401558 1.889436 

0.958943 0.183264 -0.01212 4.836467 

0.875111 0.268815 -0.20217 -6.35646 

0.914081 0.198274 -0.00086 1.558655 

0.94677 0.261287 0.260435 -14.9971 

0.938954 0.178544 0.127099 2.796644 

0.921443 0.185516 0.222843 -0.68347 

0.907342 0.205366 0.08528 -1.85812 

0.945068 0.199901 0.138125 -2.0729 

0.938516 0.182782 0.110998 2.264898 

0.934061 0.308688 0.044488 -16.6959 

0.877806 0.250919 0.177848 -11.9788 

0.941886 0.193709 0.159347 -1.17022 

0.929485 0.197261 0.1264 -1.21054 

0.921401 0.21953 -0.00267 -2.40675 

NA NA NA -51.315 

NA NA NA 81.56493 

 

 

Regional Pool values: 

u a k l 

0.932311 0.22663 -0.021528 -92.0975 

 

Chi Square Test Statistic with 22 sites in total,  = 63 @ 5% significance = 82.52  

 

Test Statistic = 81.56, therefore homogeneity is likely. 
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Northern Scotland – 1 Day 

 

 

u a k l 

0.943749 0.223581 -0.01733 -3.02923 

0.947778 0.203802 0.059936 -0.82022 

0.930816 0.172614 -0.01624 7.258746 

0.928102 0.199755 -0.09948 3.16946 

0.929598 0.195707 0.088267 0.184645 

0.934393 0.226132 -0.03866 -2.65212 

0.944829 0.158863 0.074988 8.364004 

0.921562 0.187722 -0.00137 3.617643 

0.913388 0.200692 -0.15418 4.436191 

0.93294 0.254688 -0.00412 -7.59641 

0.954854 0.189902 -0.21206 7.712822 

0.891252 0.233049 0.135402 -7.82599 

0.917912 0.164129 -0.19242 12.75885 

0.913612 0.181948 -0.07266 6.855754 

0.91739 0.163867 -0.06564 10.23955 

0.969395 0.179624 -0.24288 9.91506 

0.94444 0.15978 0.013144 10.04166 

0.94594 0.141299 -0.04402 16.25909 

0.951959 0.156646 -0.04941 11.78025 

0.964893 0.159352 -0.15548 12.82084 

0.954753 0.143574 -0.369 22.2755 

0.948994 0.126085 -0.18411 23.79358 

0.954053 0.199454 -0.20648 5.553423 

NA NA NA 155.1131 

NA NA NA 89.0895 

 

 

Regional Pool values: 

u a k l 

0.932685 0.186673 0.03303 110.5684 

 

Chi Square Test Statistic with 23 sites in total,  = 66 @ 5% significance = 85.96  

 

Test Statistic = 89, therefore appears to be non-homogeneous. 
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Eastern Scotland – 1 Day 

 

u a k l 

0.938597 0.232714 -0.02937 -3.71209 

0.907734 0.242429 0.089846 -7.82926 

0.933306 0.240213 0.294998 -12.545 

0.914276 0.238529 0.065731 -7.33169 

0.949034 0.19687 -0.32062 8.155842 

0.904175 0.226133 -0.12686 -1.07946 

0.921487 0.235912 0.029518 -5.82612 

0.944492 0.216206 0.130151 -4.86773 

0.909186 0.199756 0.083445 -0.44637 

0.938759 0.246101 0.029714 -7.19759 

0.921963 0.199326 0.262719 -4.17106 

0.948159 0.2055 0.049673 -0.94637 

0.896062 0.240439 -0.19597 -1.82426 

0.92998 0.193163 0.13425 -0.06651 

0.899638 0.1791 -0.14992 8.925604 

0.883742 0.274169 0.138652 -14.2453 

0.867462 0.213082 0.274879 -7.47895 

0.936554 0.196758 -0.18865 5.970558 

0.894003 0.257095 0.265481 -9.67044 

0.942718 0.194706 0.073956 0.487422 

0.90405 0.235975 -0.09791 -3.42436 

0.91257 0.275899 0.158513 -14.4163 

0.920666 0.187635 -0.05209 5.166909 

0.948148 0.188351 0.011598 3.310533 

NA NA NA -75.0619 

NA NA NA 72.85796 

 

 

Regional Pool values: 

u a k l 

0.915434 0.224929 0.069214 -111.491 

 

Chi Square Test Statistic with 24 sites in total,  = 69 @ 5% significance = 89.39 

 

Test Statistic = 73, therefore homogeneity is likely. 
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Southern Scotland – 1 Day 

 

u a k l 

0.967236 0.164928 0.046388 7.490773 

0.952565 0.119673 0.014863 21.7669 

0.935666 0.194543 -0.17986 6.269138 

0.932005 0.195289 -0.08032 4.011154 

0.937603 0.182905 -0.33836 11.87947 

0.95449 0.189428 -0.16183 6.455731 

0.961783 0.186087 -0.18036 8.066889 

0.945557 0.201476 -0.1454 3.898922 

0.923371 0.19836 -0.15127 5.002378 

0.931499 0.193647 -0.23466 7.754474 

0.946396 0.167676 -0.05898 9.717948 

0.913258 0.173311 -0.28985 13.58012 

0.903742 0.193253 0.013344 2.275558 

0.918037 0.201063 -0.18014 5.259407 

0.938475 0.160237 -0.14715 13.53653 

0.92552 0.169988 -0.17466 11.67853 

0.940065 0.151893 -0.20565 16.30748 

0.959672 0.168349 0.175777 4.004063 

0.967778 0.109926 0.001175 25.37232 

0.922052 0.171969 0.11941 4.461126 

0.947594 0.153373 0.038624 10.12649 

0.942261 0.164014 -0.21747 13.56026 

0.955832 0.147576 -0.06384 14.74242 

0.930203 0.164669 0.008535 8.750192 

0.964896 0.205793 -0.27637 6.002971 

NA NA NA 241.9712 

NA NA NA 76.76215 

 

 

Regional Pool values: 

u a k l 

0.938547 0.177985 -0.09821 203.5902 

 

 

Chi Square Test Statistic with 25 sites in total,  = 72 @ 5% significance = 92.80 

 

Test Statistic = 76, therefore homogeneity is likely. 
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Appendix 3 – Sample of ‘R’ routine for Homogeneity testing 

 

Portion of the fitting routine for model 1: 

 

# Model 1. ## Stationary - GEV - parameter estimation 

par2 <- sqrt(6 * var(xdat))/pi 

par1 <- mean(xdat) - 0.57722 * par2 # 0.577 = euler's constant 

par3 <- 0.1 

mu <- mumat %*% (a[1])  # parameter 1 - Location 

Sc <- Scmat %*% (a[seq(2, length=1)]) # parameter 2 - Scale 

xi <- ximat %*% (a[seq(3, length=1)]) # parameter 3 - Shape 

y <- (xdat - mu)/Sc 

y <- 1 + xi * y 

 

Portion of the fitting routine for model 2: 

 

# Model 2. ## GEV - Test for trend in Scale 

in4 <- 0.1 

in3 <- 0.01 

in2 <- sqrt(6 * var(xdat))/pi 

in1 <- mean(xdat) - 0.57722 * in2 # 0.577 = euler's constant 

mu <- mumat %*% (a[1])  # parameter 1 – Location 

B <- Bmat %*% (a[seq(2, length=1)]) # the Scale parameter starting value. 

a <- amat %*% (a[seq(3, length=1)]) # Incremental increase (trend) in the Scale Parameter 

xi <- xmat %*% (a[seq(4, length=1)]) # parameter 3 – Shape, ξ 

y <- (xdat - mu)/(B + (a*ydat)) 

y <- 1 + xi * y 

 

 

ydat – is the time index for the data set.   

 

The covariate is a time dependent parameter which is associated with each of the GEV 

parameters in turn. 
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Appendix 4 - Statistical Terminology and Concepts 

 

1. Basics of the technique 

 

(1) Evaluate past data using statistical methods and probabilistic approaches to prepare a 

probability distribution curve, i.e. discharge-probability relationship, (Q vs. P)past.  

The curve indicates the magnitude of a flood (peak flow) or drought (lowflow) for a 

given return period (frequency) or a cumulative probability of occurrence. 

 

(2) Predict future events, assuming they follow the same laws of probability.  

 

  (Q vs. P)future = (Q vs. P)past 

 

2. Applications 

 

Flood (peak flow), drought (lowflow), rainfall, evaporation, and infiltration. 

 

3. Uses 

 

(1)  Statistics and stochastic approaches 

 

(2) Frequency (probability) analysis approaches - to find the magnitude and/or frequency 

of a given event 

 

(3)  Economic evaluation of expected benefits and costs 
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4. Laws of probability 

 

(1) Total probability always equals to 1.0:  
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(2)  Probability that an event occurs is 1 minus probability that it does not occur:  

  P = 1 - (1 - P) 

(3)  Joint probability--probability that event A and B both occur is:  P(AB)=P(A)P(B), 

assuming A and B are statistically independent. 

(4)  Conditional probability--probability that event B occurs given that event A has 

already occurred is P(B/A) = P(AB)/P(A). 

 

5. Terminology and concepts 

 

Random variable: A variable governed by a probability distribution function.  That is, the 

value obtained is somewhat dependent on probability.  Flood discharge is a random 

variable. Two types of variables: discrete (sample) and continuous (population). 

 

Variate: An individual observation or value of a variable. A flood peak flow is known as 

a variate. 

 

Time series (sample): An array of variates, representing a sample of population of peak 

flows (discharges) recorded in the past and to be observed in the future at the study site.  

A collection of discharge representing the process. 

 

Sample space: All possible values,  zero to infinity for flood discharge: 0 < Q < + 

Event: A subset of the sample space, X. The probability that event (X  x) occurs is P(X 

 x), where x is a assigned value of the variable and X is values which occur. 
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Frequency: The number of items in a class (number of occurrence of a variate) within the 

entire data base.  Plotted in a frequency histogram (bar chart). 

 

Relative frequency: Frequency divided by the total number of items in all classes:  

  
N

n
f i

i  ,  where ni is the number of items in the ith class. 

 

Probability:  p(xi): Relative frequency when N tends to infinity, i.e., 
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Probability density function (PDF): Theoretical (mathematical) distribution functions of 

probability density: normal, Pearson, extreme value and log-normal.  PDF's are very 

convenient because of known solutions.  Its integration gives the cumulative probability. 
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Probability distribution function or Cumulative distribution function (CDF): Integration 

of PDF (from continuous population) 

 

Nonexceedance probability: 

  )()()( xFdxxpxXP
x

x   
 

 

Exceedance probability: 
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6.  Statistical parameters 
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PDF's are defined by population parameters which are estimated from sample data.  

There are three main categories: 

1. Central tendency, i.e., expected value (mean) – 1
st
  moment about the mean; 

2. Variability, i.e., variance and standard deviation – 2
nd

 moment about the mean; 

and, 

3. Symmetry, i.e., coefficient of skewness – 3
rd

 moment about the mean. 
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Appendix 5 – Complete routines for use within ‘R’  

A5.1 - Introduction 

 

See http://www.r-project.org/ for a complete and free download of this software. 

 

What follows are two of the key routines.  Prior to each of these is an explanation of how 

to use them including any changes/setup requirements that will be required. 

 

A5.2 – Explanation of Routine 1 

 

The routine needs to be copied and pasted into the „R‟ Environment.  Within „R‟ the 

working directory must be set to that which contains all of the Annual Maxima files and 

location reference files.  Sites can be added to the list but this will require annual maxima 

data files being generated, where missing data is represented as „NA‟, currently all annual 

maxima files are of length 40 (years).  Additionally the spatial location reference files 

will have to be updated, ensuring the new data is located in the correct position.   

At the command prompt, within the „R‟ environment, call the routine by entering the 

name followed by open and closed brackets, i.e. Forge(). 

This will result in the default analysis, which is currently focused on site 41 (Cambridge), 

having a pooling group of 5 sites and a confidence of 0.95, or 95% (applied to the 

homogeneity testing).   

To change the default analysis there is a text file called „Forge Site Ref‟ listing all of the 

sites currently contained within the routine and the supporting files.  To change the 

number of sites, simply choose the number you require based upon desired pooling group 

size.  The final option relates to the probability associated with the homogeneity test, 0.95 

gives a 5% significance level, meaning the associated error equates to 5 incorrect results 

for each 100 tests.  A modified analysis might take the form: Forge(30, 10, 0.95) 

 

http://www.r-project.org/
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The routine starts by standardising all the of the annual maxima data using the median 

value at each site.  The median annual maxima rainfall depth at the focal site is then used 

to convert the pooling group growth curve into equivalent rainfall depth estimates for the 

focal site.  The pooling group is calculated based upon spatial location relative to the 

pooling focal site.  A separation (km) matrix is produced from which it is possible to rank 

in ascending order the separation of all sites from the focal site.  The user defines how 

many sites are included, up to a current maximum of 179 sites for Great Britain. 

 

Each individual site has its GEV parameters estimated using MLE.  Then all of the 

selected sites are pooled and fitted too.  This allows homogeneity testing of each site 

within the pooling group. 

 

The growth curve is multiplied by the Rmed value for the focal site, allowing rainfall depth 

estimates to be generated for a number of quantiles.  The L-Moment estimate is included 

for comparison.  Finally the confidence interval is calculated and added to the graph, this 

displays the likely range that the estimate falls in and must be used to highlight the 

uncertainty associated with the estimate.  As the user will discover, the uncertainty is 

negligible for lesser return periods, but increases considerably for the rarer return period 

events.  This tool also demonstrates that the uncertainty reduces with increased pooling 

group size. 

It is believed that this routine would be useful in the classroom.  It can be used to aid 

comprehension by demonstrating graphically the topics that it covers. 
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A5.3 - Routine 1 

 

Forge <- function(focus=41, len=5, conf=0.95) { 

 

lines=40 #reducing this value would shorten the length of the time series 

library(ismev) # library commands required to provide pre-written routines 

library(stats) 

library(base) 

 

## SEE 

boxly <- c(scan("boxly.txt", nlines = lines, na.strings = "NA")) 

dartf <- c(scan("dartf.txt", nlines = lines, na.strings = "NA")) 

eastb <- c(scan("eastb.txt", nlines = lines, na.strings = "NA")) 

evert <- c(scan("evert.txt", nlines = lines, na.strings = "NA")) 

faver <- c(scan("faver.txt", nlines = lines, na.strings = "NA")) 

gatwk <- c(scan("gatwk.txt", nlines = lines, na.strings = "NA")) 

hastg <- c(scan("hastg.txt", nlines = lines, na.strings = "NA")) 

heath <- c(scan("heath.txt", nlines = lines, na.strings = "NA")) 

kewbg <- c(scan("kewbg.txt", nlines = lines, na.strings = "NA")) 

Ingst <- c(scan("Ingst.txt", nlines = lines, na.strings = "NA")) 

#10 

manst <- c(scan("manst.txt", nlines = lines, na.strings = "NA")) 

marty <- c(scan("marty.txt", nlines = lines, na.strings = "NA")) 

oxfor <- c(scan("oxfor.txt", nlines = lines, na.strings = "NA")) 

rotha <- c(scan("rotha.txt", nlines = lines, na.strings = "NA")) 

shoeb <- c(scan("shoeb.txt", nlines = lines, na.strings = "NA")) 

stans <- c(scan("stans.txt", nlines = lines, na.strings = "NA")) 

winds <- c(scan("winds.txt", nlines = lines, na.strings = "NA")) 

wisle <- c(scan("wisle.txt", nlines = lines, na.strings = "NA")) 

writt <- c(scan("writt.txt", nlines = lines, na.strings = "NA")) 
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wyedr <- c(scan("wyedr.txt", nlines = lines, na.strings = "NA")) 

#20 

 

## SWE 

BOSCM <- c(scan("BOSCM.txt", nlines = lines, na.strings = "NA")) 

BUDEE <- c(scan("BUDEE.txt", nlines = lines, na.strings = "NA")) 

CHELT <- c(scan("CHELT.txt", nlines = lines, na.strings = "NA")) 

CWMYS <- c(scan("CWMYS.txt", nlines = lines, na.strings = "NA")) 

DALEF <- c(scan("DALEF.txt", nlines = lines, na.strings = "NA")) 

GOGER <- c(scan("GOGER.txt", nlines = lines, na.strings = "NA")) 

HURNN <- c(scan("HURNN.txt", nlines = lines, na.strings = "NA")) 

LNGAS <- c(scan("LNGAS.txt", nlines = lines, na.strings = "NA")) 

LYNEH <- c(scan("LYNEH.txt", nlines = lines, na.strings = "NA")) 

LYONS <- c(scan("LYONS.txt", nlines = lines, na.strings = "NA")) 

#10 

PLYMO <- c(scan("PLYMO.txt", nlines = lines, na.strings = "NA")) 

PRESW <- c(scan("PRESW.txt", nlines = lines, na.strings = "NA")) 

RHOOS <- c(scan("RHOOS.txt", nlines = lines, na.strings = "NA")) 

SIDMT <- c(scan("SIDMT.txt", nlines = lines, na.strings = "NA")) 

STANN <- c(scan("STANN.txt", nlines = lines, na.strings = "NA")) 

SWANS <- c(scan("SWANS.txt", nlines = lines, na.strings = "NA")) 

TRAWS <- c(scan("TRAWS.txt", nlines = lines, na.strings = "NA")) 

TRENG <- c(scan("TRENG.txt", nlines = lines, na.strings = "NA")) 

USKKK <- c(scan("USKKK.txt", nlines = lines, na.strings = "NA")) 

YEOTN <- c(scan("YEOTN.txt", nlines = lines, na.strings = "NA")) 

#20 

 

## CEE 

cambn <- c(scan("cambn.txt", nlines = lines, na.strings = "NA")) 

colti <- c(scan("colti.txt", nlines = lines, na.strings = "NA")) 

cranw <- c(scan("cranw.txt", nlines = lines, na.strings = "NA")) 
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elmdo <- c(scan("elmdo.txt", nlines = lines, na.strings = "NA")) 

eyebr <- c(scan("eyebr.txt", nlines = lines, na.strings = "NA")) 

hulll <- c(scan("hulll.txt", nlines = lines, na.strings = "NA")) 

keele <- c(scan("keele.txt", nlines = lines, na.strings = "NA")) 

lowes <- c(scan("lowes.txt", nlines = lines, na.strings = "NA")) 

newpo <- c(scan("newpo.txt", nlines = lines, na.strings = "NA")) 

persh <- c(scan("persh.txt", nlines = lines, na.strings = "NA")) 

#10 

santd <- c(scan("santd.txt", nlines = lines, na.strings = "NA")) 

shawb <- c(scan("shawb.txt", nlines = lines, na.strings = "NA")) 

silso <- c(scan("silso.txt", nlines = lines, na.strings = "NA")) 

skegn <- c(scan("skegn.txt", nlines = lines, na.strings = "NA")) 

strat <- c(scan("strat.txt", nlines = lines, na.strings = "NA")) 

suttb <- c(scan("suttb.txt", nlines = lines, na.strings = "NA")) 

terri <- c(scan("terri.txt", nlines = lines, na.strings = "NA")) 

warso <- c(scan("warso.txt", nlines = lines, na.strings = "NA")) 

watti <- c(scan("watti.txt", nlines = lines, na.strings = "NA")) 

welle <- c(scan("welle.txt", nlines = lines, na.strings = "NA")) 

#20 

wobur <- c(scan("wobur.txt", nlines = lines, na.strings = "NA")) 

 

## NWE 

apple <- c(scan("apple.txt", nlines = lines, na.strings = "NA")) 

askhl <- c(scan("askhl.txt", nlines = lines, na.strings = "NA")) 

bodnt <- c(scan("bodnt.txt", nlines = lines, na.strings = "NA")) 

buxto <- c(scan("buxto.txt", nlines = lines, na.strings = "NA")) 

carli <- c(scan("carli.txt", nlines = lines, na.strings = "NA")) 

daleh <- c(scan("daleh.txt", nlines = lines, na.strings = "NA")) 

dougl <- c(scan("dougl.txt", nlines = lines, na.strings = "NA")) 

dunhm <- c(scan("dunhm.txt", nlines = lines, na.strings = "NA")) 

formb <- c(scan("formb.txt", nlines = lines, na.strings = "NA")) 
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glasc <- c(scan("glasc.txt", nlines = lines, na.strings = "NA")) 

#10 

llanu <- c(scan("llanu.txt", nlines = lines, na.strings = "NA")) 

logge <- c(scan("logge.txt", nlines = lines, na.strings = "NA")) 

lymep <- c(scan("lymep.txt", nlines = lines, na.strings = "NA")) 

newto <- c(scan("newto.txt", nlines = lines, na.strings = "NA")) 

penyf <- c(scan("penyf.txt", nlines = lines, na.strings = "NA")) 

ringw <- c(scan("ringw.txt", nlines = lines, na.strings = "NA")) 

stmic <- c(scan("stmic.txt", nlines = lines, na.strings = "NA")) 

sunny <- c(scan("sunny.txt", nlines = lines, na.strings = "NA")) 

sutth <- c(scan("sutth.txt", nlines = lines, na.strings = "NA")) 

thirl <- c(scan("thirl.txt", nlines = lines, na.strings = "NA")) 

#20 

valle <- c(scan("valle.txt", nlines = lines, na.strings = "NA")) 

vivod <- c(scan("vivod.txt", nlines = lines, na.strings = "NA")) 

voela <- c(scan("voela.txt", nlines = lines, na.strings = "NA")) 

worth <- c(scan("worth.txt", nlines = lines, na.strings = "NA")) 

#24 

 

## NEE 

turnh <- c(scan("turnh.txt", nlines = lines, na.strings = "NA")) 

edinb <- c(scan("edinb.txt", nlines = lines, na.strings = "NA")) 

birds <- c(scan("birds.txt", nlines = lines, na.strings = "NA")) 

bushh <- c(scan("bushh.txt", nlines = lines, na.strings = "NA")) 

dunbr <- c(scan("dunbr.txt", nlines = lines, na.strings = "NA")) 

locht <- c(scan("locht.txt", nlines = lines, na.strings = "NA")) 

haydo <- c(scan("haydo.txt", nlines = lines, na.strings = "NA")) 

barnd <- c(scan("barnd.txt", nlines = lines, na.strings = "NA")) 

bradf <- c(scan("bradf.txt", nlines = lines, na.strings = "NA")) 

cockl <- c(scan("cockl.txt", nlines = lines, na.strings = "NA")) 

#10 
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birst <- c(scan("birst.txt", nlines = lines, na.strings = "NA")) 

durhm <- c(scan("durhm.txt", nlines = lines, na.strings = "NA")) 

gantn <- c(scan("gantn.txt", nlines = lines, na.strings = "NA")) 

leemg <- c(scan("leemg.txt", nlines = lines, na.strings = "NA")) 

highm <- c(scan("highm.txt", nlines = lines, na.strings = "NA")) 

bramm <- c(scan("bramm.txt", nlines = lines, na.strings = "NA")) 

askbr <- c(scan("askbr.txt", nlines = lines, na.strings = "NA")) 

lockw <- c(scan("lockw.txt", nlines = lines, na.strings = "NA")) 

mulgv <- c(scan("mulgv.txt", nlines = lines, na.strings = "NA")) 

scamp <- c(scan("scamp.txt", nlines = lines, na.strings = "NA")) 

#20 

cawoo <- c(scan("cawoo.txt", nlines = lines, na.strings = "NA")) 

whitb <- c(scan("whitb.txt", nlines = lines, na.strings = "NA")) 

 

## NS 

ardng <- c(scan("ardng.txt", nlines = lines, na.strings = "NA")) 

assyn <- c(scan("assyn.txt", nlines = lines, na.strings = "NA")) 

bridg <- c(scan("bridg.txt", nlines = lines, na.strings = "NA")) 

capew <- c(scan("capew.txt", nlines = lines, na.strings = "NA")) 

cassl <- c(scan("cassl.txt", nlines = lines, na.strings = "NA")) 

fairb <- c(scan("fairb.txt", nlines = lines, na.strings = "NA")) 

fanni <- c(scan("fanni.txt", nlines = lines, na.strings = "NA")) 

fasna <- c(scan("fasna.txt", nlines = lines, na.strings = "NA")) 

ferst <- c(scan("ferst.txt", nlines = lines, na.strings = "NA")) 

frtag <- c(scan("frtag.txt", nlines = lines, na.strings = "NA")) 

#10 

hoyps <- c(scan("hoyps.txt", nlines = lines, na.strings = "NA")) 

inver <- c(scan("inver.txt", nlines = lines, na.strings = "NA")) 

irhum <- c(scan("irhum.txt", nlines = lines, na.strings = "NA")) 

kinlc <- c(scan("kinlc.txt", nlines = lines, na.strings = "NA")) 

kirkw <- c(scan("kirkw.txt", nlines = lines, na.strings = "NA")) 
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lchrn <- c(scan("lchrn.txt", nlines = lines, na.strings = "NA")) 

lerwk <- c(scan("lerwk.txt", nlines = lines, na.strings = "NA")) 

mullw <- c(scan("mullw.txt", nlines = lines, na.strings = "NA")) 

rhuba <- c(scan("rhuba.txt", nlines = lines, na.strings = "NA")) 

storn <- c(scan("storn.txt", nlines = lines, na.strings = "NA")) 

#20 

tiree <- c(scan("tiree.txt", nlines = lines, na.strings = "NA")) 

ulvah <- c(scan("ulvah.txt", nlines = lines, na.strings = "NA")) 

wicka <- c(scan("wicka.txt", nlines = lines, na.strings = "NA")) 

 

## ES 

aberd <- c(scan("aberd.txt", nlines = lines, na.strings = "NA")) 

balbr <- c(scan("balbr.txt", nlines = lines, na.strings = "NA")) 

balmo <- c(scan("balmo.txt", nlines = lines, na.strings = "NA")) 

braem <- c(scan("braem.txt", nlines = lines, na.strings = "NA")) 

cardy <- c(scan("cardy.txt", nlines = lines, na.strings = "NA")) 

clatt <- c(scan("clatt.txt", nlines = lines, na.strings = "NA")) 

craib <- c(scan("craib.txt", nlines = lines, na.strings = "NA")) 

cromb <- c(scan("cromb.txt", nlines = lines, na.strings = "NA")) 

drumm <- c(scan("drumm.txt", nlines = lines, na.strings = "NA")) 

dycee <- c(scan("dycee.txt", nlines = lines, na.strings = "NA")) 

#10 

elgin <- c(scan("elgin.txt", nlines = lines, na.strings = "NA")) 

faska <- c(scan("faska.txt", nlines = lines, na.strings = "NA")) 

frand <- c(scan("frand.txt", nlines = lines, na.strings = "NA")) 

geani <- c(scan("geani.txt", nlines = lines, na.strings = "NA")) 

glnqu <- c(scan("glnqu.txt", nlines = lines, na.strings = "NA")) 

glnth <- c(scan("glnth.txt", nlines = lines, na.strings = "NA")) 

kinls <- c(scan("kinls.txt", nlines = lines, na.strings = "NA")) 

lchlv <- c(scan("lchlv.txt", nlines = lines, na.strings = "NA")) 

lethn <- c(scan("lethn.txt", nlines = lines, na.strings = "NA")) 
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leuch <- c(scan("leuch.txt", nlines = lines, na.strings = "NA")) 

#20 

mylne <- c(scan("mylne.txt", nlines = lines, na.strings = "NA")) 

rocho <- c(scan("rocho.txt", nlines = lines, na.strings = "NA")) 

strer <- c(scan("strer.txt", nlines = lines, na.strings = "NA")) 

tilli <- c(scan("tilli.txt", nlines = lines, na.strings = "NA")) 

 

## SS 

auchi <- c(scan("auchi.txt", nlines = lines, na.strings = "NA")) 

benmr <- c(scan("benmr.txt", nlines = lines, na.strings = "NA")) 

black <- c(scan("black.txt", nlines = lines, na.strings = "NA")) 

blyth <- c(scan("blyth.txt", nlines = lines, na.strings = "NA")) 

bowhl <- c(scan("bowhl.txt", nlines = lines, na.strings = "NA")) 

buted <- c(scan("buted.txt", nlines = lines, na.strings = "NA")) 

carnw <- c(scan("carnw.txt", nlines = lines, na.strings = "NA")) 

dumfr <- c(scan("dumfr.txt", nlines = lines, na.strings = "NA")) 

dunsd <- c(scan("dunsd.txt", nlines = lines, na.strings = "NA")) 

eskdl <- c(scan("eskdl.txt", nlines = lines, na.strings = "NA")) 

#10 

forre <- c(scan("forre.txt", nlines = lines, na.strings = "NA")) 

garls <- c(scan("garls.txt", nlines = lines, na.strings = "NA")) 

glass <- c(scan("glass.txt", nlines = lines, na.strings = "NA")) 

glnkn <- c(scan("glnkn.txt", nlines = lines, na.strings = "NA")) 

glnle <- c(scan("glnle.txt", nlines = lines, na.strings = "NA")) 

irvin <- c(scan("irvin.txt", nlines = lines, na.strings = "NA")) 

islay <- c(scan("islay.txt", nlines = lines, na.strings = "NA")) 

mugdk <- c(scan("mugdk.txt", nlines = lines, na.strings = "NA")) 

ormsy <- c(scan("ormsy.txt", nlines = lines, na.strings = "NA")) 

paisl <- c(scan("paisl.txt", nlines = lines, na.strings = "NA")) 

#20 

penwh <- c(scan("penwh.txt", nlines = lines, na.strings = "NA")) 
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pulla <- c(scan("pulla.txt", nlines = lines, na.strings = "NA")) 

roths <- c(scan("roths.txt", nlines = lines, na.strings = "NA")) 

skipn <- c(scan("skipn.txt", nlines = lines, na.strings = "NA")) 

threv <- c(scan("threv.txt", nlines = lines, na.strings = "NA")) 

 

## boxly omitted in reg' analysis due to non-positive sigma. 

## elmdo omitted in reg' analysis due to non-positive sigma. 

## askhl omitted in reg' analysis due to non-positive sigma. 

 

 

data=cbind(boxly, dartf, eastb, evert, faver, gatwk, hastg, heath,  

kewbg, Ingst, manst, marty, oxfor, rotha, shoeb, stans,  

winds, wisle, writt, wyedr, BOSCM, BUDEE, CHELT, CWMYS,  

DALEF, GOGER, HURNN, LNGAS, LYNEH, LYONS, PLYMO, PRESW,  

RHOOS, SIDMT, STANN, SWANS, TRAWS, TRENG, USKKK, YEOTN, 

cambn, colti, cranw, elmdo, eyebr, hulll, keele, lowes,  

newpo, persh, santd, shawb, silso, skegn, strat, suttb,  

terri, warso, watti, welle, wobur, apple, askhl, bodnt,  

buxto, carli, daleh, dougl, dunhm, formb, glasc, llanu,  

logge, lymep, newto, penyf, ringw, stmic, sunny, sutth,  

thirl, valle, vivod, voela, worth, turnh, edinb, birds,  

bushh, dunbr, locht, haydo, barnd, bradf, cockl, birst,  

durhm, gantn, leemg, highm, bramm, askbr, lockw, mulgv,  

scamp, cawoo, whitb, ardng, assyn, bridg, capew, cassl,  

fairb, fanni, fasna, ferst, frtag, hoyps, inver, irhum,  

kinlc, kirkw, lchrn, lerwk, mullw, rhuba, storn, tiree,  

ulvah, wicka, aberd, balbr, balmo, braem, cardy, clatt,  

craib, cromb, drumm, dycee, elgin, faska, frand, geani,  

glnqu, glnth, kinls, lchlv, lethn, leuch, mylne, rocho,  

strer, tilli, auchi, benmr, black, blyth, bowhl, buted,  

carnw, dumfr, dunsd, eskdl, forre, garls, glass, glnkn,  
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glnle, irvin, islay, mugdk, ormsy, paisl, penwh, pulla,  

roths, skipn, threv) 

 

k <- dim(data)[1]# number of rows 

c <- dim(data)[2]# number of col's 

L <- c(1:dim(data)[1])# seq' from 1 to total number of rows (or years / length of data set) 

n <- c(1:dim(data)[2])# seq' from 1 to total number of col's (or number of sites) 

p <- n 

q <- n 

av <- matrix(nrow = c, ncol = 1) 

stand <- matrix(nrow = k, ncol = c) 

 

 for (s in c(n)) { # col'n loop number for output matrix, read and work on each 

col'n in turn. 

 

 site <- c(data[,s])  

 av[s] <- median(site, na.rm=TRUE) 

 stand[,s] <- site/av[s] # Use (site/av) if standardizing data. 

 } 

 

#### Distance Calcs 

site <- c(scan("ref.txt")) 

east <- c(scan("east.txt")) 

north <- c(scan("north.txt")) 

ddata <- cbind(site, east, north) 

as.matrix(ddata) 

 

a <- dim(ddata) # gives [rows x col's] 

distance <- matrix(nrow = c, ncol = c) 

 for (s in c(p)) { # col'n loop number for output matrix 

   for (t in c(q)) { # row loop number for output matrix 
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 distance[t,s] <- ((((ddata[s,2]-ddata[t,2])^2)+((ddata[s,3]-

ddata[t,3])^2))^0.5)/1000 

  

   } 

 } 

 

diss <- distance[,focus] 

tempdata <- cbind(p,diss)# vector with seq' and col'n 'focus' 

tempdata[is.na(tempdata[,2]),2]=999 

tempdata=tempdata[sort(tempdata[,2],index=T)$ix,]# arranges tempdata 's' into 

ascending order 

tdata=tempdata 

tdata[tdata[,2]==999,2]=NA 

disdata <- tdata 

 

## Data ranked in ascending order, with Col'n 1 containing the site ref' number and col'n 

2 the distance from the  

## chosen 'focal' site.  Standard = site 41 Cambridge. 

# If we choose the first 5 rows and save the site numbers to vector, we can use these to 

call data from the other 

# matrices without modification to them. 

 

fone <- c(tdata[1:len,1]) # Number of sites chosen by user 

test <- fone 

seq <- c(1:length(test)) 

bb <- length(test) 

zz <- 1 

 

### Model 2: 

#Fit the GEV parameters for each individual site and record the log-likelihood (llh) 
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gev2 <- matrix(nrow = bb+3, ncol = 4) 

 

 for (s in c(seq)) { # col'n loop number for output matrix, read and work on each 

col'n in turn. 

 

 b <- fone[s] 

 x <- c(stand[,b]) 

 x <- sort(x)  

 y <- gev.fit(x) 

 

 gev2[s,1] <- y$mle[1] 

 gev2[s,2] <- y$mle[2] 

 gev2[s,3] <- -1 * y$mle[3] 

 gev2[s,4] <- -1 * (y$nllh) 

 } 

 

### Model 1: 

# Starting with 5 sites (default) and using the focus site and minimum seperation 

selection technique. 

# standardise site annual maxima by dividing by the at site sample median 

########################## 

 

pool <- c(stand[,fone]) 

pool <- sort(pool) 

z <- gev.fit(pool) 

 

x <- pool 

n <- length(x) 

l1 <- mean(x) 

jb1 <- c(2:n) 
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z1 <- c((jb1-1)/(n-1)) 

y1 <- c(x[jb1]) 

q1 <- c(z1*y1) 

b01 <- sum(q1) 

b1 <- b01/n 

l2 <- (2*b1)-l1 

jb2 <- c(3:n) 

z2 <- c(((jb2-1)*(jb2-2))/((n-1)*(n-2))) 

y2 <- c(x[jb2]) 

q2 <- c(z2*y2) 

b02 <- sum(q2) 

b2 <- b02/n 

l3 <- (6*b2)-(6*b1)+l1 

jb3 <- c(4:n) 

z3 <- c(((jb3-1)*(jb3-2)*(jb3-3))/((n-1)*(n-2)*(n-3))) 

y3 <- c(x[jb3]) 

q3 <- c(z3*y3) 

b03 <- sum(q3) 

b3 <- b03/n 

l4 <- (20*b3)-(30*b2)+(12*b1)-l1 

LCV <- l2/l1 

lSKEW <- l3/l2 

lKurt <- l4/l2 

LM <- c(l1, l2, l3, l4, LCV, lSKEW, lKurt) 

names(LM) <- c("L1", "L2", "L3", "L4", "L-CV", "L-Skewness", "L-kurtosis") 

c1 <- (((2*b1)-l1)/((3*b2)-l1))-(log(2) / log(3)) 

kappa <- (7.8590*c1)+(2.9554*(c1^2)) 

shape <- kappa 

a <- (((2*(b1))-l1)*kappa)/(gamma(1+kappa)*(1-(2^-kappa))) 

Scale <- a 

mu <- (l1+(a*((gamma((1+kappa)))-1)/kappa)) 
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Loc <- mu 

 

a<-z$mle 

mat<-z$cov 

dat<-z$data 

 

    eps <- 1e-06 

    a1 <- a 

    a2 <- a 

    a3 <- a 

    a1[1] <- a[1] + eps 

    a2[2] <- a[2] + eps 

    a3[3] <- a[3] + eps 

    f <- c(seq(0.01, 0.09, by = 0.01), 0.1, 0.2, 0.3, 0.4, 0.5,  

        0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995, 0.999, 0.9999) 

 qfocl <- Loc + (Scale * (1-(-log(f))^(shape)))/shape  

 

    q <- gevq(a, 1 - f) 

    d1 <- (gevq(a1, 1 - f) - q)/eps 

    d2 <- (gevq(a2, 1 - f) - q)/eps 

    d3 <- (gevq(a3, 1 - f) - q)/eps 

    d <- cbind(d1, d2, d3) 

    v <- apply(d, 1, q.form, m = mat) 

    plot(-1/log(f), q, log = "x", type = "n", xlim = c(0.1, 10000),  

        ylim = c(min(dat, q), max(dat, q)), xlab = "Return Period (Years)",  

        ylab = "Standardised Rainfall Depth") 

    title("Focused Growth Curve Plot") 

    lines(-1/log(f), q, lty=1) 

 lines(-1/log(f), qfocl, col=2, lty=2) 

    lines(-1/log(f), q + 1.96 * sqrt(v), col = 4, lty=3) #Confidence interval (upper) 

    lines(-1/log(f), q - 1.96 * sqrt(v), col = 4, lty=3) #Confidence interval (lower) 
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    points(-1/log((1:length(dat))/(length(dat) + 1)), sort(dat)) 

 

leg1x <- c(0.4,0.45)  #Legend Location, x 

leg1y <- c(0.9*max(dat, q),0.9*max(dat, q)) #Legend Location, y 

 

text((-log(-log(0.5))), 0.95*max(dat, q), 'rmed(mm) =') 

#Legend for MLE parameter results 

text((-log(-log(0.875))), 0.95*max(dat, q), av[focus]) 

lines(-log(-log(leg1x)), leg1y,lty=1) 

text((-log(-log(0.9))), 0.9*max(dat, q), 'MLE / R.P. (mm)') 

text((-log(-log(0.42))), 0.85*max(dat, q), 'u =') 

text((-log(-log(0.5))), 0.85*max(dat, q), round(z$mle[1],3)) 

text((-log(-log(0.42))), 0.8*max(dat, q), 'a =') 

text((-log(-log(0.5))), 0.8*max(dat, q), round(z$mle[2],3)) 

text((-log(-log(0.42))), 0.75*max(dat, q), 'k =') 

text((-log(-log(0.5))), 0.75*max(dat, q), round(-1*z$mle[3],3)) 

 

leg2x <- c(0.4,0.45) 

leg2y <- c(0.7*max(dat, q),0.7*max(dat, q)) 

 

#Legend for L-Moment parameter results 

lines(-log(-log(leg2x)), leg2y,col=2,lty=2) 

text((-log(-log(0.95))), 0.7*max(dat, q), 'L-Moments / R.P.(mm)') 

text((-log(-log(0.42))), 0.65*max(dat, q), 'u =') 

text((-log(-log(0.5))), 0.65*max(dat, q), round(Loc,3)) 

text((-log(-log(0.42))), 0.6*max(dat, q), 'a =') 

text((-log(-log(0.5))), 0.6*max(dat, q), round(Scale,3)) 

text((-log(-log(0.42))), 0.55*max(dat, q), 'k =') 

text((-log(-log(0.5))), 0.55*max(dat, q), round(shape,3)) 

 

# Quatile estimates, 10, 50 and 100-years, in mm ## 
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forge10L <- av[focus]*(Loc + (Scale * (1-(-log(0.9))^(shape)))/shape) 

forge50L <- av[focus]*(Loc + (Scale * (1-(-log(0.98))^(shape)))/shape) 

forge100L <- av[focus]*(Loc + (Scale * (1-(-log(0.99))^(shape)))/shape) 

 

forge10ML <- av[focus]*(z$mle[1] + (z$mle[2] * (1-(-log(0.9))^(-1*z$mle[3])))/(-

1*z$mle[3])) 

forge50ML <- av[focus]*(z$mle[1] + (z$mle[2] * (1-(-log(0.98))^(-1*z$mle[3])))/(-

1*z$mle[3])) 

forge100ML <- av[focus]*(z$mle[1] + (z$mle[2] * (1-(-log(0.99))^(-1*z$mle[3])))/(-

1*z$mle[3])) 

 

text((-log(-log(0.85))), 0.65*max(dat, q), '10 Yr=') 

text((-log(-log(0.99))), 0.65*max(dat, q), round(forge10L)) 

text((-log(-log(0.85))), 0.6*max(dat, q), '50 Yr=') 

text((-log(-log(0.99))), 0.6*max(dat, q), round(forge50L)) 

text((-log(-log(0.85))), 0.55*max(dat, q), '100-year=') 

text((-log(-log(0.99))), 0.55*max(dat, q), round(forge100L)) 

text((-log(-log(0.85))), 0.85*max(dat, q), '10 Yr=') 

text((-log(-log(0.99))), 0.85*max(dat, q), round(forge10ML)) 

text((-log(-log(0.85))), 0.8*max(dat, q), '50 Yr=') 

text((-log(-log(0.99))), 0.8*max(dat, q), round(forge50ML)) 

text((-log(-log(0.85))), 0.75*max(dat, q), '100-year=') 

text((-log(-log(0.99))), 0.75*max(dat, q), round(forge100ML)) 

 

gev1 <- matrix(nrow = 1, ncol = 4) 

gev1[1] <- z$mle[1] 

gev1[2] <- z$mle[2] 

gev1[3] <- -1 * z$mle[3] 

gev1[4] <- -1 * (z$nllh) 

gev2[(bb+1),4] <- sum(gev2[zz:bb,4]) 

gev2[(bb+2),4] <- 2*(gev2[(bb+1),4]-gev1[4]) 
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gev2[(bb+3),4] <- qchisq(conf,df=((bb*3)-3)) 

 

chisq <- gev2[(bb+3),4] 

tstat <- gev2[(bb+2),4] 

 

ifelse(tstat < chisq, statement<-'Homogeneity', statement<-'Heterogeneity') 

 

capture.output(gev1, file = "gevforge.txt") 

capture.output(gev2, file = "regsites.txt") 

 

text((-1/log(0.999)), 1, statement) 

text((-1/log(0.995)),0.75, 'Number of sites in Pool = ') 

text((-1/log(0.99975)), 0.75, len) 

} 

 

 


