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Abstract

The wide variety of services and resources available over the Internet presents new opportu-

nities for organisations to collaborate to reach common goals. For example, business partners

wish to access each other’s services and share information along the supply chain in order

to compete more successfully in the delivery of goods or services to the ultimate customer.

This can lead to the investment of significant resources by business partners in the resulting

collaboration. In the context of such high value business-to-business (B2B) interactions it is

desirable to regulate (monitor and control) the behaviour of business partners to ensure that they

comply with agreements that govern their interactions. Achieving this regulation is challenging

because, while wishing to collaborate, organisations remain autonomous and may not unguard-

edly trust each other. Two aspects must be addressed: (i) the need for high-level mechanisms

to encode agreements (contracts) between the interacting parties such that they can be used for

run-time monitoring and enforcement, and (ii) systematic support to monitor a given interac-

tion for conformance with contract and to ensure accountability. This dissertation concerns the

latter aspect — the definition, design and implementation of underlying middleware support

for the regulation of B2B interactions. To this end, two non-repudiation services are identified

— non-repudiable service invocation and non-repudiable information sharing. A flexible non-

repudiation protocol execution framework supports the delivery of the identified services. It is

shown how the services can be used to regulate B2B interactions. The non-repudiation services

provide for the accountability of the actions of participants; including the acknowledgement of

actions, their run-time validation with respect to application-level constraints and logging for

audit. The framework is realised in the context of interactions with and between components

of a J2EE application server platform. However, the design is sufficiently flexible to apply to

other common middleware platforms.
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Chapter 1 Introduction 1

Chapter 1

Introduction

The wide variety of services and resources available over the Internet presents new opportuni-

ties for organisations to collaborate to achieve common goals. For example, business partners

wish to access each other’s services and share information along the supply chain in order to

compete more successfully in the delivery of goods or services to the ultimate customer. This

can lead to the investment of significant resources by business partners in the resulting collab-

oration. In the context of such high value business-to-business interactions (B2B) interactions

it is desirable to regulate (monitor and control) the behaviour of business partners to ensure

that they comply with agreements that govern their interactions. While cooperating on agreed

undertakings, organisations will continue to act autonomously and are likely to privilege their

own interests over those of their business partners. This can lead to tension between the need

for cooperation and the need of each business partner to protect their own interests. In this

context, we assume that each business partner has a set of local policies that they wish to

enforce and that there are one or more agreements between partners for the conduct of their

interactions. Examples of agreements include natural language contracts that govern business

collaborations, agreements that specify acceptable service provision and usage, and the specifi-

cation of the correct execution of cross-organisational processes or workflows to achieve some

common goal. To resolve the tension between cooperation and autonomy, it is desirable to

regulate B2B interactions so that they comply with the agreements between business partners.

At the same time businesses should be able to enforce their own policies. Such enforcement

should include accountability for actions performed. That is, it should not be possible to subse-

quently deny having requested some service or having modified shared information. If actors
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are not accountable for their actions, then agreements are unenforceable. So, there are two

aspects to achieving regulation in the context of high-value B2B interactions:

1. high level mechanisms to specify contractual rights and obligations and to derive an elec-

tronic embodiment of contractual conditions for the validation of observed behaviour,

and

2. lower level mechanisms that record observed behaviour — generating a non-repudiable

audit trail of an interaction and verifying that the observed behaviour is valid with respect

to the electronic embodiment of interaction agreements.

I aim to address the latter aspect of regulation. The work presented in this dissertation concerns

the run-time validation and non-repudiation of B2B interactions, where an interaction is non-

repudiable if the parties to the interaction cannot subsequently deny their participation. A

related concern is that well-behaved parties should not suffer disadvantage as a result of the

misbehaviour, or non-cooperation, of their business partners. Thus accountability can extend

to supporting fair outcomes to parties who comply with agreements.

The main contribution of my thesis is the design and implementation of flexible middleware

to support the non-repudiation and validation of B2B interactions. I define two non-repudiation

services — non-repudiable service invocation and non-repudiable information sharing — that

address requirements in two domains for action (over private and shared resources). I show

how the non-repudiation services can be implemented in a flexible framework for protocol ex-

ecution. This results in abstractions that are familiar from the enterprise context and provide

regulated interaction in the B2B context. For example, non-repudiable service invocation can

be used to audit requests between organisations to access or modify each other’s internal infor-

mation, or for transfer of control over shared information. Non-repudiable information sharing

regulates access to and updates of shared information. An example of shared, or jointly owned,

information is a negotiated agreement that governs a B2B interaction.

The non-repudiation of a service interaction is achieved by the execution of a security pro-

tocol for the exchange of evidence of the interaction. Different non-repudiation protocols can

be used to meet different application requirements. For example, in Chapter 3, I present a
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simple, direct exchange for interaction with a trusted service and I contrast this with proto-

cols for fair, non-repudiable service invocation. The middleware described in this dissertation

also supports application-specific validation of service interactions. Thus, proposed service

invocations and updates to shared information can be validated with respect to agreements and

local policies to ensure compliance with the regulatory regime in force. In Section 1.1 of this

chapter I describe two example applications that serve to motivate the work presented in this

dissertation and provide requirements for that work. Section 1.2 summarises the derived re-

quirements and the scope of my work. Section 1.3 provides an overview of proposed services

for non-repudiable service invocation and information sharing that are intended to address the

identified requirements. Section 1.4 concludes the chapter with the assertion of thesis contri-

butions and an overview of the remainder of the dissertation.

1.1 Example applications

This section describes two applications that motivate the work in this dissertation. These ap-

plications are in part used to derive requirements for my work. In Chapter 5 the applications

also serve as proof-of-concepts for the design and implementation of the non-repudiation mid-

dleware services that address the requirements.

The first application is a B2B car parts auction. An Application Service Provider (ASP)

hosts the auction application and is responsible for enforcing the auction rules and for ensuring

that auctioneers and bidders are held to account for their actions as auction participants. The

work on the auction application was part of the final deliverable for the EU TAPAS project on

the Trusted and QoS-Aware Provision of Application Services [CRS04a, BS04].

The second application concerns the negotiation of a tender to supply chemicals as part

of a chemical development supply chain. The tender, or offer, is shared by the supply chain

business partners who must approve any changes to it. This application is derived from the

real-life requirements capture exercise conducted as part of the UK e-Science GOLD Project

[PCC+06].
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1.1.1 A B2B auction application

TAPAS [SMJ05] was an EU-funded project to address the problems faced by ASPs that host

distributed applications that involve interaction across organisational boundaries. The project

addressed two main areas of regulation in this context: (i) the definition, monitoring and en-

forcement of service level agreements (SLAs); and (ii) the monitoring of service requests to

ensure compliance with contractual terms and conditions. The first area concerns the collec-

tion of statistical measures of the performance of a service to determine whether the service

provider is delivering the quality of service (QoS) that its service consumers can legitimately

expect. The second area concerns the monitoring of interactions to ensure that requests (busi-

ness messages) are syntactically and semantically correct as specified by business agreements.

The ASP is an intermediary that facilitates cooperation between the organisations in order to

achieve a shared business goal. The ASP hosts an application on behalf of the organisations

and ensures that their interactions with the application adhere to the agreements that are in

force.

In the auction scenario a car manufacturer uses a sealed reverse bid auction to buy car parts

from car part suppliers. The sealed reverse bid auction proceeds through a finite number of bid

rounds. A bidder is allowed to place at most one bid in each round. The bid is known only to

the bidder and the auctioneer. The winner of each round is the bidder with the lowest bid. The

value of this bid is announced before the next round is opened. A bidder can only place a bid

in a round if they placed a bid in the previous round. Their bid must be lower than the winning

bid from the previous round. The winner of the auction is the winner of the last round. The

auctioneer determines the number of rounds at the outset of the auction. The auctioneer has the

right to abandon the auction at any time during the bidding process.

Figure 1.1 shows the basic structure of the auction application. In effect, the ASP is a

trusted third party (TTP) that regulates the interaction between the auction clients — an auc-

tioneer plus bidders from two or more part suppliers. The auction clients participate in an

auction by submitting requests to invoke operations on the auction application. The auctioneer

may invoke application client operations that:

1. register/create potential bidders for an auction (the registerBidder operation in Fig-
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Figure 1.1: B2B auction application

ure 1.1),

2. create an auction, specifying parts to supply, auction deadlines, number of bid rounds,

opening price etc.,

3. invite bidders to an auction instance, and

4. select an auction winner or declare an auction abandoned.

A bidder may invoke application client operations that:

1. accept, or reject, an invitation to participate in an auction, and

2. place a bid in an auction round (the placeBid operation in Figure 1.1).

Each application client operation must be validated with respect to the auction terms and con-

ditions. These terms and conditions are the general rules for conduct of the auction outlined

previously and may also include extensions, or modifications, to those rules that apply to spe-

cific auctioneers and/or bidders. In addition, client operations must be logged for audit and,

to ensure accountability, evidence must be generated to bind the invoker of an operation to its

invocation. That is, an auction client must not be able to subsequently deny the invocation an

operation — the invocation of the operation must be non-repudiable. To protect auction client

interests, the ASP must provide an irrefutable acknowledgement (receipt) of each operation
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that a client invokes. This evidence must include an indication of the validity, or otherwise, of

the requested operation with respect to the terms and conditions in force. Further, only valid op-

erations should be invoked on the auction application. We can summarise the non-repudiation

requirements as follows.

1. Both the origin and receipt of requests must be non-repudiable; that is, evidence must

be generated to irrefutably bind a request to an originating client and, given evidence of

origin, the auction service must provide irrefutable evidence of receipt of a request. This

evidence must be recorded in a persistent log to provide an audit trail on behalf of the

clients and the ASP.

2. Requests must be validated with respect to business contract terms and conditions that

govern the behaviour of the clients participating in an auction. The collection of evidence

of the validity of client requests must be integrated with the collection of non-repudiation

evidence.

Now consider that the ASP may host many different instances of a given auction application

and, as suggested previously, certain terms and conditions may be specific to a particular set

of clients (auctioneer and bidders). That is, the ASP may need to customise the behaviour of

the application, as perceived by the application clients, to meet the requirements of a specific

set of business relationships. To manage such customisation, the ASP must be able to impose

agreed constraints on the behaviour of auction participants without having to re-implement the

application. Similarly, the ASP requires that the generation and collection of non-repudiation

evidence does not require modification of the application.

The B2B auction progresses by the invocation of operations on the ASP-hosted applica-

tion. There is no direct communication between auctioneer and bidders. An extension to this

scenario could involve bidders offering part specification services to the auctioneer. Then the

auctioneer could clarify the details of a bid made to the auction service by using a bidder’s part

specification service to obtain supplementary information about the parts that are the subject

of the bid. This supplementary information may be commercially sensitive. So, the bidder

requires evidence that the request for the parts information originated at the auctioneer and that
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the auctioneer received the information in response to the request. In effect, relevant bid now

includes the supplementary information provided by the bidder. The auctioneer requires evi-

dence that their request for clarification was received by the bidder’s service. In order to hold

the bidder accountable for the supplementary information, the auctioneer also requires evi-

dence that the response originated from the bidder’s service. As with the auction application

hosted by the ASP, the auctioneer uses service invocations to interact with bidder services. The

accountability requirements are also essentially the same— the non-repudiation and validation

of invocation request and response. However, it is more challenging to meet these requirements

for direct interactions between auctioneer and bidder organisations than for the interaction with

the trusted ASP. This is because one of the ASP functions, as a trusted service provider, is to

ensure that none of its clients suffers disadvantage as a result of misbehaviour, intentional or

otherwise, by another client. Further, the ASP guarantees delivery of appropriate interaction

evidence to clients that are entitled to receive that evidence. In contrast, in the direct interaction

between an auctioneer and a bidder service, either party may seek to gain advantage over the

other party.

The preceding discussion highlights the need for flexibility when meeting accountability

requirements. The auction house may need to deploy the same application under with different

contractual constraints. Different relationships between interacting parties may mean that dif-

ferent underlying mechanisms are needed to ensure accountability. Section 1.2 takes account of

the need for flexibility when summarising requirements for generic services for non-repudiable

service invocation.

1.1.2 Negotiation of a tender to supply chemicals

The GOLD project concerns the provision of middleware services to support business collabo-

ration. The project focuses on the formation of consortia for chemical development. Commer-

cial pressures, such as time-to-market, are driving a trend to closer collaboration in the sector.

In Europe, the pressure for collaboration is not just commercial. Recent European legislation

for the registration, evaluation, authorisation and restriction of chemicals [Com05] mandates

the sharing of commercially sensitive information along the supply chain. The formation of
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consortia to share the results of chemical safety tests and to trace the use and supply of chem-

icals is becoming imperative. A key requirement in this context is that shared information

should not be modified without the agreement of all parties that share, or jointly own, the in-

formation. In this section, the negotiation of a tender agreement to supply chemicals is used to

derive requirements for information sharing. The shared information is the tender agreement

that will be used to regulate subsequent interactions for the actual delivery of chemicals.

Figure 1.2: Tender application

The scenario is that a manufacturer adopting some new chemical development process

wishes to negotiate a tender for the supply of chemicals. To manage the tendering process, the

supplier and manufacturer (purchaser) share an offer to supply chemicals. Both the supplier

and the purchaser own the offer document. Figure 1.2 depicts a conceptual view of the interac-

tion in which the offer is outside the absolute control of either supplier or purchaser and they

share an agreed view of the offer. The document, or documents, that represent the offer may

actually reside in some shared repository or there may be copies at supplier and purchaser. The

significance of the notion of shared information is that updates to the offer must be visible to

both parties and must be agreed by both parties. The manufacturer and supplier are primarily

concerned with the integrity of the offer — that it accurately represents their agreement. The

negotiation of changes is an iterative peer-to-peer process. Each business partner (supplier or

purchaser) updates the parts of an offer that they are permitted to update and the other party

validates the proposed updates. Only valid updates result in an actual change to the agreed

(shared) view of the offer. When the supplier proposes a change to the offer, the purchaser can

decide whether to accept or reject the offer terms. The purchaser may also propose amendments

to the offer.

As shown in Figure 1.2, a tender contract governs the offer negotiation process. As a

simple example, the purchaser wishes to enforce the following rules with respect to a supplier’s

updates to an offer: (i) the offer must specify a pre-defined contract period during which it is
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valid; (ii) each offer must have a unique identifier; (iii) a supplier must complete the following

offer details: contract period, offer identifier, supplier and purchaser names, offer expiry date,

description of chemical, unit of supply, unit price and quantity offered at the unit price; (iv)

the expiry date must be within the contract period; (v) a supplier can only complete their

part of a uniquely identified offer once; and (iv) a supplier must not indicate the acceptance

or otherwise of the offer. A supplier wishes to enforce the following rules with respect to a

purchaser’s updates to an offer: (i) a purchaser can only update a uniquely identified offer with

their acceptance decision once, (ii) a purchaser must update the offer with their acceptance

decision before the offer expiry date, and (iii) a purchaser must not alter any of the terms of the

offer that were set by the supplier.

The negotiation proceeds by the supplier proposing amendments to a shared offer template

by adding the information specified in the contract. The purchaser continues the process by

validating the proposed changes with respect to the contract. If the changes are valid, the pur-

chaser updates the offer with their decision whether to accept the offer or not. The supplier

then, in turn, checks that the purchaser did not breach the contract conditions when declar-

ing their decision. Assuming the purchaser behaved correctly, the amended offer becomes the

agreed version of the offer. If the decision was to reject the offer, then the offer provides evi-

dence that the proposed terms of tender were unacceptable to the purchaser. If the purchaser’s

decision was to accept the supplier’s offer, then the offer becomes the contract that governs the

supply of the chemicals. In this way the supplier and purchaser build an agreed, shared view

of their interaction and can reach a negotiated agreement to govern continued interaction.

The preceding simple offer and negotiation process could be extended to more complex

scenarios. For example, it could be the purchaser’s responsibility to suggest both the quantity

of chemicals required at the offered price and a deadline for the delivery. The supplier may then

have the option whether to commit to these terms of the offer. Another scenario may involve a

third party to fulfil a part of the offer and this party must agree to the delivery terms. Another

extension may involve agreement on the outsourcing of testing to meet the legal obligations of

both supplier and purchaser. In this case, the test provider must agree the work to be outsourced.

In all cases, the parties sharing the offer are interested in reaching agreement on changes to the
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offer and at the same time maintaining the integrity of the offer with respect to the contract that

governs the process to update it. In particular, no party should be able to claim that an offer is

valid unless the changes to the offer were agreed by all that other parties that share the offer.

Similarly, no party should be able to repudiate their agreement to changes proposed by other

parties.

Chapter 5 uses the B2B auction and the negotiation of an offer as proof-of-concepts appli-

cations for the non-repudiation middleware services. I now derive requirements for the services

and define the scope of the dissertation.

1.2 Summary of requirements and scope of work

For the purposes of this dissertation, a B2B interaction involves the electronic exchange of

messages between computing entities at different organisations. These entities are variously

referred to as clients, servers, applications, nodes and protocol participants. In all cases, the

actors in the interaction are computing entities and messages are exchanged electronically.

Clearly, human actors are also involved in B2B interactions but they are only within the scope

of this dissertation in so far as they are represented by electronic entities — such as the repre-

sentation of a user by their digital certificate.

From the example applications described in Section 1.1, we can identify two domains for

action in B2B interactions: (i) actions on private information or resources that are wholly

owned by a single organisation and (i) actions on shared information that is jointly owned

by two or more organisations. An organisation has complete control over access to its pri-

vate resources. To facilitate business, organisations expose services that act upon their private

resources. There are then the following two necessary forms of basic B2B interaction.

1. A client from one organisation invoking a service that is hosted by another organisation.

A service invocation may involve the sending of a one-way request or the exchange of a

client request for a service response.

2. Access and/or update to shared information by an entity from one organisation that is

subject to the agreement of one or more other organisations.
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Business partners will engage in other forms of interaction. However, the identified basic forms

can serve as useful building blocks for more complex interaction. For example, enactment

of a cross-organisational workflow typically involves the composition of service invocations.

Similarly, processes specified by standard B2B protocols such as RosettaNet Partner Interface

Processes (PIPs) [Ros05] and ebXML [GEN+01] can be realised through service invocations

between partners. The chemical development example is part of a more complex ongoing

process that combines information sharing to reach agreement on a tender with subsequent

service invocations to fulfil the tender, subject to the negotiated agreement. When considering

consortia of collaborating organisations, we can adopt a recursive view of organisations. That

is, organisations that are not members of a given consortium view the consortium as a single

organisation. Then the consortium may provide services to external clients. These services

may, in turn, involve operations on the consortium’s private information. The information that

is private to the consortium from the viewpoint of its external clients may be shared from the

viewpoint of the members of the consortium.

From the example applications we can also identify two broad category of interaction that

depend on the relationships between the participants: (i) interaction between and with trusted

entities and (ii) interaction between business partners that do not unguardedly trust each other.

Examples of the former are the auctioneer and bidder client interactions with the ASP hosted

auction service. Examples of the latter are the auctioneer’s use of bidder part specification ser-

vices. A distinguishing feature of trusted entities in an interaction is that they will not seek to

gain unfair advantage over other participants. In contrast, business partners may obtain unfair

advantage over other parties, either through deliberate action or through omission. Business

partners reserve the right for autonomous action and will privilege their own interests over oth-

ers. A requirement in this context is that the legitimate interests of all parties are safeguarded.

The mechanisms required to achieve this will depend on the relationships between the parties,

the risk of disadvantage in a given context and the domain of action. For example, when a

service invocation between business partners involves the disclosure of sensitive information it

may be imperative that the information is only disclosed in return for a guaranteed acknowl-

edgement of receipt, even if the recipient ceases to cooperate in the invocation. In contrast,
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when sharing information a lack of progress due to non-cooperation may be acceptable as long

as information integrity is preserved.

The categorisation of interactions by action domain and by participant relationship leads

to the overall challenge to regulate both service invocations and information sharing when

participants may not unguardedly trust each other. An important part of meeting this challenge

is to provide regulatory mechanisms that apply in many different contexts yet can be adapted

to the specific requirements of a given context. To achieve regulation, a given action must be

attributable to the party who performed the action and commitments made must be attributable

to the committing party. For example, it should not be possible for a client to subsequently deny

the request and consumption of a service. Similarly, it should not be possible for the service

provider to subsequently deny having delivered a service. Parties that share information should

be able to validate proposed updates to the information, any update should be attributable to its

proposer and the other parties who share the information should not be able to repudiate their

decisions with respect to the validity of the update. That is, to achieve regulation we require

attribution, validation and audit of B2B interactions. Non-repudiable attribution binds an action

to the party performing the action. Validation determines the legality of an action with respect

to interaction agreements. Audit ensures that evidence is available in case of dispute and to

inform future interactions.

From the preceding discussion, I highlight the following specific requirements for system-

atic support for regulation:

Non-repudiation Non-repudiation is fundamental to the achievement of accountability in B2B

interactions. It must not be possible to deny the initiation or receipt of either a service

request or the associated response. Similarly, it must not be possible to deny a proposed

change to shared information or to deny participation in the validation of a proposed

change.

No unfair advantage Actors must be accountable for their actions in B2B interactions yet

they may have an interest in the subverting the non-repudiation mechanisms intended

to achieve accountability. The middleware should ensure that a party that attempts such

subversion can gain no unfair advantage over other parties. As indicated previously,
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the characterisation of unfair advantage may depend on the domain of action. For a

service invocation, acquiring a service request without providing a receipt represents

unfair advantage. For information sharing, the ability to misrepresent the agreed state of

the information is an unfair advantage.

Application-specific validation The validity of actions in a B2B interaction is determined by

the regulatory context. This context is a combination of the local policies of participants,

the agreements between participants and legal constraints on participant behaviour. The

determination of the validity of an action is application-specific. Therefore, the require-

ment is to support the integration of application-specific validation when collecting evi-

dence for the accountability of actions.

Flexibility The requirement for flexibility arises mainly from the need to provide support for

regulation in different application contexts and with respect to different relationships be-

tween B2B interaction participants (whether trusted entities or business partners). For

example, in the auction scenario it was suggested that the ASP may wish to deploy in-

stances of the application under different business contexts — customising the rules that

govern auction client operations. To apply regulation in this case it should be possible

to use the same basic application and, without modification to the application logic, pro-

vide non-repudiable validation of client operations where the rules that are applied vary

according to the regulatory regime. That is the mechanisms to enforce accountability

and to invoke application-specific validation should not require modification to existing

application business logic. Another example is that the ability to guarantee no unfair ad-

vantage is dependent on the relationship between parties. The requirement for flexibility

is that the support for regulation should adapt to these different relationship by providing

underlying non-repudiation mechanisms that are appropriate to a given relationship.

The preceding requirements apply to both service invocation and information sharing. In addi-

tion, in the case of information sharing we require support for transactional access to the shared

information in order to perform a set of related changes, and for the extension of transaction

context to span both shared and private information. Shared information does not exist in iso-
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lation. For example, in the chemical development example, a change to the offer proposed

by the supplier may depend both on validation of the change by the manufacturer and on the

commitment of changes to related local resources such as delivery schedules. As depicted in

Figure 1.3: Transactional access to shared information

Figure 1.3, to manage such dependencies, the supplier needs to be able to complete an update

to shared information and to their local database as an atomic action. Thus we need to extend

transaction context to support the atomic action.

We now have a challenging set of requirements that are not met by any existing system.

For example, no existing non-repudiation system addresses requirements both to avoid unfair

advantage and at the same time to provide the flexibility of application independence. I now

provide a brief overview of the scope of this dissertation. The overall aim is to design and

implement a flexible system to support the regulation of B2B interactions. The approach is

to identify, apply and, where necessary, extend fundamental work on security protocols for

non-repudiation and fairness in the design of the system. To arrive at a practical system, the

following two restrictions apply to the scope of work.

Exchange is not fault-tolerant. There is a considerable body of work on non-repudiation and

fair exchange (see Section 2.2). As discussed in Section 2.2.2.4, less attention has been

paid to fault tolerance and fair exchange. The fault tolerance problem is to avoid unfair

disadvantage to an honest party despite local failures of an assumed type. It is beyond the

scope of this dissertation to deploy fault-tolerant exchange protocols in the system that is

developed. Section 4.4 does address middleware support for recovery from local failure.

The exploitation of this support by fault-tolerant exchange protocols is the subject of

future work. The proposed protocol execution framework is sufficiently flexible for the
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subsequent incorporation of such protocols.

Update to shared information is blocking. I assume that the overriding concern when shar-

ing information is the maintenance of the integrity of shared information. Therefore, my

work concentrates on maintaining a consistent view of shared information that cannot

be repudiated by the parties sharing the information. Applications that access shared

information progress through a series of agreed updates to that information. The sys-

tem presented in this dissertation does not address lack of application progress due

to non-cooperation of one or more participants. However, cooperation in application

progress may be considered rational behaviour when establishing agreements to govern

subsequent, mutually beneficial interaction. Section 2.2.4 discusses incentives for such

rational behaviour. Section 3.5 discusses approaches for guaranteeing termination to

well-behaved parties. Again, the proposed protocol execution framework is sufficiently

flexible to incorporate guaranteed termination as future work.

As suggested, the work presented in this dissertation (see Chapters 3, 4 and 5) will demonstrate

the inherent flexibility of the system design and the ability to extend it to address the preceding

limitations. Essentially, the system can be extended by the deployment of new protocols that

will address requirements for fault-tolerance in exchange and non-blocking update to shared

information.

1.3 Overview of proposed non-repudiation services

This section proposes two services to address the preceding requirements. The service de-

scriptions generalise support for regulation in the two domains for action — over private and

shared resources — and further clarify the scope of work. The core of the dissertation, from

Chapter 3 to Chapter 5, concerns the full definition of these services and the demonstration

that their flexible design and implementation can meet all of the requirements set out in Sec-

tion 1.2. The first service is for non-repudiable and validated service invocation. The second is

for non-repudiable and validated information sharing.
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1.3.1 Service invocation

Figure 1.4 shows a typical two-party, client-server interaction. The client invokes a service by

Figure 1.4: Service invocation

sending a request to the server. The server then issues a response. From the point of view of

client and server, a service invocation corresponds to the correlation of two business messages

— one for the request and the other for any associated response. In certain cases there will be

no response1 and only the request is of interest. For non-repudiable service invocation we wish

to generate irrefutable evidence that the interaction took place and to validate both request and

response with respect to contract (however defined). After an attempt to submit a request to a

server, the following assurances should hold for the client:

1. that either: (i) the submission failed and the server did not receive the request; or (ii) the

submission succeeded and there is proof that the request is available to the server; and

2. that if a response is received, there is proof that the server generated the response.

The corresponding assurances for the server are:

1. that there is proof that the client generated the request; and

2. that following an attempt to deliver any response to the client, either (i) the delivery

failed and the client did not receive the response; or (ii) the delivery succeeded and there

is proof that the response is available to the client.

Further, to ensure that the server only processes valid requests and that the client only pro-

cesses valid responses, both request and response should be subject to validation with respect

to contract. Thus, evidence should be generated with respect to the validity of the request and

the response.
1As for a remote invocation with a void return type.
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To provide the preceding assurances, client and server must execute a non-repudiation pro-

tocol to exchange evidence of the interaction and to ensure that:

1. a request is only passed to the server if: (i) the client provides evidence for the non-

repudiation of origin of the request (NROreq), (ii) the request is valid with respect to

contract, as indicated by non-repudiation of validation of the request (NRVreq), and (iii)

the server provides evidence for the non-repudiation of receipt of the request (NRRreq),

and

2. a response is only passed to the client if: (i) the server provides evidence for the non-

repudiation of origin of the response (NROresp), (ii) the response is valid with respect

to contract, as indicated by non-repudiation of validation of the response (NRVresp),

and (iii) the client provides evidence for the non-repudiation of receipt of the response

(NRRresp).

Figure 1.5: Exchange of service invocation evidence

Figure 1.4 is a logical view of the exchange of evidence that is achieved by the execution of

an appropriate non-repudiation protocol. It shows the minimum requirements for the evidence

that must be generated and exchanged during a request/response service invocation. As shown,

the client initiates a request for some service. The client generates an NROreq token and sends

the request and the token to the server. The server generates a NRRreq token and returns it

to the client. The server then subjects the request to application-level validation and generates

a NRVreq token based on the result of the validation, which they send to the client. If the

request is valid, it is subject to server-side processing. The server then sends the result of this

processing and the associated NROresp token to the client. The client generates a NRRresp

token and returns it to the server. The response is then subject to application-level validation

and a NRVresp token generated from the result of validation. The client sends the NRVresp
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to the server. Finally, if the response is valid, the client application consumes the response.

The precise meaning of generation of non-repudiation tokens will be dependent on the actual

protocol used to execute the exchange. For example, a local signing service may be used to

sign evidence or a token may be generated with the assistance of a TTP. Similarly, the precise

sequence of token exchange is protocol-specific, as is the level of involvement of TTPs.

The aim of the proposed service for non-repudiable and validated service invocation is to

preserve the abstraction shown in Figure 1.4 and at the same time generate and exchange the

evidence shown in Figure 1.5. That is, the mechanism used to achieve the exchange of evidence

should not violate the abstraction presented in Figure 1.4. Further, as indicated in Section 1.2,

the business/application context should determine the choice of mechanism.

1.3.2 Information sharing

The primary concern with respect to information sharing is the maintenance of the integrity

information that is shared between application processes at two or more collaborating organ-

isations. As noted in Section 1.2, we wish to hold organisations to account for their actions

with respect to shared information. As with service invocation, this leads to the need to col-

lect non-repudiation evidence of those actions and their validity with respect to agreements

that determine which actions are legitimate. This section proposes a non-repudiation service

that facilitates information sharing by enforcing the observance of agreements to preserve the

integrity of the information.

There are a number of alternatives for the physical realisation of information sharing. For

example, shared information may be hosted by some centralised service that the information

sharing group can access. Alternatively, the information may be distributed, in which case each

member of the sharing group hosts a replica of the information. Whatever the physical reali-

sation, changes to shared information should be agreed by all the members of the group that

share the information. Through this agreement, the members of the group share a consistent

view of the valid (agreed) state of the information. The challenge for the proposed service for

non-repudiable information sharing is to maintain this irrefutable consistent view. Conceptu-

ally, shared information resides in a shared space. The members of the sharing group act upon
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the information in the shared space. They can observe each other’s actions and subject those

actions to validation. Thus, the shared space is an abstraction that presents the agreed view of

the information.

Figure 1.6: Information sharing

Figure 1.6 shows three organisations (A, B and C) that have access to and can update

information in a shared space. If A wishes to update the information, then, to meet regulatory

requirements, they must reach agreement with B and C on the validity of their proposed update.

For the agreement to be non-repudiable:

1. B and C require evidence that the update originated at A, and

2. A, B and C require evidence that, after reaching a decision on the update, all parties have

the same (agreed) view of the state of the shared information.

The latter condition implies that there must be evidence that all parties received the update and

that they all agreed to the update being applied to the information.

Figure 1.7: Exchange of information sharing evidence

Figure 1.7 shows the exchange of evidence required to achieve the irrefutable, agreed tran-

sition from information state s to information state s+1. First A proposes an update to both B
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and C. As shown, A also provides evidence of the origin of the update (NRO). Then B and C

each provide evidence of receipt of the update (NRR) and their non-repudiable decision on the

validity of the update (NRVB and NRVC, respectively). Finally, A relays the group decision to

B and C by sending them the collected validation tokens and A’s non-repudiation of receipt of

the validation evidence (NRRV). If the validation tokens represent unanimous agreement to the

change, then the consistent shared view of the information after the exchange of evidence is

that it is now in state s+1 (as shown in Figure 1.7). Otherwise the update is considered invalid

and the shared view of the information is that it is in state s.

From the preceding discussion it is apparent that both the application state of information

and the membership of the group that shares the information are fundamental to the agreed

view of shared information. Consider, the offer that the supplier and purchaser share as part

of the tendering process in Section 1.1.2. The state of the shared information includes the

contract period, offer identifier, supplier and purchaser names, description of chemical, unit of

supply etc. The group sharing the offer comprises the supplier and the purchaser. An example

transition in the state of an offer is a change to the unit of supply. An example transition in

the membership of the sharing group is an extension of the group to include a test provider.

Either type of change, whether to the application state of the offer and to the sharing group,

must be subject to the agreement of the existing members of the sharing group. In both cases,

group members should be able to apply the rules of the tender contract, and of any relevant

local policy, to validate a proposed change.

In summary, the overall aim of the proposed service for non-repudiable and validated in-

formation sharing is similar to that for service invocation: to preserve the abstraction shown in

Figure 1.6 and at the same time generate and exchange the evidence shown in Figure 1.7. The

mechanism used to achieve the exchange of evidence should not violate the abstraction and the

business/application context should determine the choice of mechanism.

1.4 Thesis contributions and overview of dissertation

Section 1.2 identified two domains — the private and the shared — that provide broad coverage

of B2B interactions and a challenging set of requirements to support the regulation of actions
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in each domain. Section 1.3 proposed two non-repudiation services to meet the identified

requirements. My thesis is that:

1. a set of middleware services can provide a flexible framework for protocol-based inter-

action,

2. that the framework can deliver non-repudiation services that are appropriate to the two

domains for action — the private and the shared, and

3. that the services can be used to regulate B2B interactions and at the same time preserve

application-level semantics.

This statement will be justified by the design, implementation and deployment of novel mid-

dleware. The principal novelty of the approach is the combination of fundamental work on

non-repudiation with the flexibility to adapt to different business contexts to meet different

application-level requirements. As noted in Section 1.2, flexibility is required because the

relationships between business partners vary from partner to partner and over time. There

will be variations in the agreements and regulatory regimes that constrain interactions. Yet,

there is a consistent need to enforce agreements and provide accountability for B2B interac-

tions that comprise service invocations and/or information sharing. In this dissertation I show

how the novel middleware can adapt to use different underlying regulatory mechanisms (non-

repudiation protocols) that offer different security guarantees to be applied in different contexts.

There is a careful separation of run-time enforcement mechanism from the higher-level process

that determines the validity of actions. This separation allows the middleware to enforce arbi-

trary application-specific validation and at the same time provide accountability for validation

decisions. In Chapter 2 I review fundamental work on non-repudiation. This work is applied

and extended in the development of the middleware services that are the subject of the remain-

der of the dissertation. Also in Chapter 2, I survey other middleware systems for accountability

and non-repudiation. The remainder of the dissertation substantiates the claim of novelty with

respect to these systems. Before providing an overview of the dissertation, I elaborate on novel

contributions in three areas.
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1. The development of flexible middleware that is based on fundamental work on non-

repudiation and fairness. Most of the existing middleware support for non-repudiation

takes no account of the substantial theoretical work on the development and verification

of protocols. Existing middleware systems, whether commercial or academic, tend to

provide for the signing of outgoing requests and for verification of signatures on incom-

ing request; that is, voluntary non-repudiation of origin. Typically, there is no attempt

to guarantee fairness. An exception is the FIDES project (see Section 2.4.1.2). How-

ever, the FIDES system is customised to a specific sub-set of their own protocols for

fair document exchange. Moreover, they do not provide an API that could be used to

adapt the system to provide general support for non-repudiable service interactions or

for validation with respect to contract. The middleware presented in this dissertation

addresses both these problems. The middleware is also adaptable to different protocol

implementations, and can provide both voluntary non-repudiation and non-repudiation

with fairness.

2. Systematic support for regulation. Section 2.3 describes various approaches to the prob-

lem of ensuring that an interaction complies with business agreements (or contracts). In

general, this work concentrates on how to express contracts in a form that is amenable

to integrity checking and that can potentially be used in the regulation of interactions at

run-time. The problem that I address is how to provide systematic support for this run-

time monitoring and enforcement. No other middleware that supports non-repudiation

addresses this problem, except in a very limited sense (see the BEA WebLogic system

in Section 2.4.2). In addition, work on electronic contracts does not address the binding

of actions, and the binding of decisions on the validity of actions, to actors. A novel

aspect of the mechanisms that I develop is, then, the combination of the irrefutable bind-

ing of interacting parties to their actions and the run-time validation of those actions.

Furthermore, the validation mechanism can be used to prevent illegal actions. This ap-

proach links work on non-repudiation to work on the electronic contracts. It provides an

irrefutable audit trail of the actions that were permitted and the actions that were forbid-

den during an interaction. A contribution in this area is the extension of fair exchange
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protocols to provide non-repudiation of (application-level) validation of actions (see Sec-

tion 3.2.1.2). An important consideration when designing the enforcement mechanisms

was the separation of application concerns from regulatory mechanisms. The ability

to specialise validation of interactions to specific (application-level) regulatory require-

ments and, yet, trigger the validation from non-repudiation services executing at the

middleware level is another novel contribution. This approach allows regulation to be

applied as an aspect to interactions. BEA provide non-repudiable regulation of certain

types of interaction that is based on a tight-coupling of the non-repudiation mechanism

with the business protocol that provides some enforcement of contract2. My contribu-

tion could be seen as breaking this tight-coupling and, thereby, providing a more general

approach to support for the regulation of B2B interactions.

3. Inter-organisational information sharing. In this dissertation I develop the notion of reg-

ulated, inter-organisational information sharing. This provides a convenient programmer

abstraction for the manipulation of shared information. I present a coherent model for

agreed transitions in shared information that covers updates to information state, changes

to the membership of the group who share the information, and transactional access

to the information. The middleware ensures non-repudiable coordination of the meta-

information that describes shared information, and, in consequence, agreed (safe) update

and access to the information. Work on security models and policy from Clark-Wilson3

onwards typically concerns the regulation of information that is under the control of a

single organisation. A novel contribution in this area is the combination of the abstrac-

tion of shared information with agreement to changes and access to the information in the

context of B2B collaborations in which no single organisation “owns” the information.

Overview of dissertation

The work presented in this dissertation addresses the requirements identified in Section 1.2 by

providing middleware to support the regulation of B2B interactions. I develop two services: (i)

non-repudiable and validated service invocation; and (ii) non-repudiable, validated and trans-
2See 2.4.2 for further discussion.
3See Section 2.3.1.



24 1.4 Thesis contributions and overview of dissertation

actional information sharing. The approach is to provide a coherent definition of the identified

non-repudiation services. These definitions include the non-repudiation protocols that under-

pin the services. Given the service definitions, I present the design of a flexible framework for

their implementation at the middleware level that supports the systematic regulation of service

interactions. The design also identifies the supporting infrastructure necessary to provide the

non-repudiation services. The inherent flexibility of the design ensures that its implementation

can adapt to application-specific requirements. Given the design, I develop prototype imple-

mentations of the non-repudiation services. Proof-of-concepts applications demonstrate the

utility of the service implementations. The dissertation has the following structure.

Chapter 2 defines concepts and notation that are necessary to understand the remainder of the

dissertation and provides an overview of related work. The chapter concentrates on work

on non-repudiation protocols that is fundamental to the services I develop. I also survey

work on contract-mediated interaction, and on middleware support for non-repudiation

and accountability.

Chapter 3 defines the non-repudiation services that, along with their implementation, are the

novel contribution. The services are based on an interceptor-mediated view of interac-

tion that: (i) allows application programmers to view the provision of non-repudiation

as orthogonal to application concerns, (ii) supports the design of adaptable services, and

(iii) provides a coherent framework for consideration of both non-repudiable service

invocation and non-repudiation information sharing. This chapter develops work first re-

ported in [CSW02, CRS04b]. Section 3.2 extends the description in [CRS04b] to present

concrete examples of protocols for non-repudiable service invocation. Section 3.3 intro-

duces a new approach to modelling transitions in shared information that is a significant

extension to the work in [CSW02].

Chapter 4 presents the design and implementation of a generic protocol-execution frame-

work and related services to support the non-repudiation services. The design is flexible

enough to meet the specific requirements of different interactions and, at the same time,

remain application-independent.
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Chapter 5 describes the implementation of the two identified non-repudiation services based

on the framework introduced in Chapter 4. Proof-of-concepts applications based on the

examples in Section 1.1 demonstrate the utility of the implementations. Section 5.2

describes the implementation of non-repudiable service invocation and is based on work

first reported in [CRS04b]. The implementation of non-repudiable information sharing

in Section 5.3 extends work first reported in [CSW02, CSW03, CRS04b]. In particular,

the support for transactional information sharing in Section 5.3.3 has been revised in the

light of the new model for transitions in shared information. The chosen demonstrator

platform is a Java J2EE [Sun03] application server. Preliminary work [RCS05, CRS06]

on a re-implementation for Web services illustrates the flexibility of the approach.

Chapter 6 concludes the dissertation with a summary of contributions, including an evaluation

with respect to the requirements set out in this chapter, and an overview of future work.
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Chapter 2

Background

This chapter first defines concepts and notation that are necessary to understand the remainder

of the dissertation. I then provide an overview of related work. Section 2.2 focuses on fun-

damental work on non-repudiation protocols that can be used to achieve accountability when

exchanging information between business partners. Cryptography is used to provide an ir-

refutable binding between the information, its originator and its recipient(s). I pay particular

attention to fairness in the exchange of non-repudiation evidence and to the role of TTPs. I also

discuss circumstances when the business context may provide incentives for cooperation. In

Section 2.3 I survey work on contract-mediated interaction that concerns validation of actions

for compliance with business agreements. Section 2.4 presents existing middleware support

for non-repudiation and accountability. Section 2.5 concludes the chapter with a discussion of

the relationship between the related work and this dissertation.

2.1 Definitions

This section defines the following key concepts: non-repudiation, various cryptographic prim-

itives used in non-repudiation services, various trusted third party services, and the notion of

well-behaved parties. I then present the perfect cryptography assumption and the protocol sub-

version model that holds for protocols described in this dissertation. The section concludes

with the definition of common protocol notation and a note on the generation of unique proto-

col run identifiers.
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2.1.1 Non-repudiation

Non-repudiation is the inability to subsequently deny an action or event. In the context of

network security, ISO 7498-2 [ISO89] identifies non-repudiation as one of five main security

services. The others are authentication, access control, confidentiality and data integrity. The

ISO definition states that a non-repudiation service provides protection against false denial of

involvement in a communication. In distributed systems, therefore, non-repudiation typically

applies to evidence of the interaction between communicating nodes. In the case of component-

based middleware we are interested in non-repudiation of interaction (communication) with

and between distributed components.

Non-repudiation services support the generation, collection, maintenance and validation of

evidence of an interaction. The evidence collected can be used to sustain or refute claims with

respect to the occurrence or non-occurrence of an event or action and, therefore, to resolve

disputes between parties to an interaction. As an example, consider sending a message as part

of a transaction between the sender of the message and its recipients. To be able to subsequently

prove that the interaction took place — that the message was sent and was received and by

whom — we are typically interested in two types of non-repudiation:

• non-repudiation of origin (NRO): irrefutable evidence that the message originated at the

sender (generated by the sender or by a trusted third party (TTP) on their behalf); and

• non-repudiation of receipt (NRR): irrefutable evidence that the message was received by

the recipient(s) (generated by the recipient(s) or by a TTP on their behalf).

NRO and NRR protect against false denial of origin and receipt respectively. Other types of

non-repudiation have been defined to meet the requirements of different interaction scenarios

[Zho01]. For example, when a delivery agent is involved in transmission of a message from

sender to recipient(s), the following may also be of interest:

• non-repudiation of submission (NRS): irrefutable evidence that a message was submitted

to a delivery agent for onward delivery to the message recipient(s) (generated by the

delivery agent or by a TTP on their behalf); and
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• non-repudiation of delivery (NRD): irrefutable evidence that the message was delivered

to the intended recipient(s) (generated by the delivery agent or by a TTP on their behalf).

In addition, I introduce the following notion:

non-repudiation of validation (NRV): irrefutable evidence of the validity or other-

wise of application-specific message content as perceived by the recipient(s) (gen-

erated by the recipient(s) or by a TTP on their behalf). NRV can also be seen as

the NRO of a decision on the application-level validity of a message.

Given the preceding definitions, I intend to develop the following non-repudiation services:

• non-repudiable service invocation that comprises: NRO, NRR and NRV of service re-

quest and, for any response, correlated NRO, NRR and NRV of service response; and

• non-repudiable information sharing that comprises: NRO, NRR and NRV of both access

to and changes to the state of shared information.

Non-repudiation evidence can be generated either by using TTP-generated secure envelopes

or using digital signatures. A TTP generates a secure envelope using a secret key known only

to the TTP. In this case, only the TTP can generate and verify evidence. Other parties must

unconditionally trust the TTP’s assurance of the validity of evidence. In contrast, asymmetric

(public key) cryptography is used to generate digital signatures. So, any party may use their pri-

vate key to generate signed evidence. Any relying party may use the signing party’s public key

to verify the evidence. The symmetric key cryptography techniques used for secure envelopes

are computationally more efficient than asymmetric cryptography. A significant disadvantage

of secure envelopes is the unconditional reliance on a TTP for the generation, verification and

maintenance of all evidence for as long as that evidence is required. Consequently, for non-

repudiation, digital signatures are generally preferred to secure envelopes. In the remainder

of this dissertation, I assume the use of a digital signature scheme of the type defined in Sec-

tion 2.1.2.
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2.1.2 Cryptographic primitives

This section defines the following cryptographic primitives: a secure hash function, a digital

signature scheme, and a secure pseudo-random sequence generator [Gol99, Sch96]; and the

notation for these primitives used throughout the dissertation.

A secure hash function has the following basic properties:

• ease of computation: given x, it is easy to compute hash(x);

• compression: given a string of arbitrary length, the function produces a fixed length

string as output (often called a message digest);

• preimage resistance (one-wayness): given h, it is computationally infeasible to find x

such that h= hash(x);

• 2nd preimage resistance: given x and hash(x), it is computationally infeasible to find

y != x such that hash(x) = hash(y); and

• collision resistance: if hash(x) = hash(y), then with an effective probability of 1 x= y.

A digital signature scheme cryptographically authenticates digital information and is analo-

gous to a physical signature on paper. The work presented here assumes a digital signature

scheme based on public key cryptography. In public key cryptography, each user has a pair of

keys: one public and one private. The public key can be distributed freely. The private key

should only be known to its user. Key pairs have the following properties:

• it is computationally infeasible to compute a private key from its corresponding public

key,

• a ciphertext generated using a user’s public key can only be decrypted using the corre-

sponding private key, and

• a ciphertext generated using a user’s private key can only be decrypted using the corre-

sponding public key.

It is this last property that supports digital signatures. Given a key pair and some input x, a

digital signature scheme consists of two algorithms:
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• the signing algorithm, where a signing party encrypts x using their private key to generate

a signature s, and

• the verification algorithm, where a relying party uses the signing party’s public key to

decrypt s and obtain x.

When the relying party retrieves x from s they can confirm that s can only have been generated

using the signing party’s private key, verifying the digital signature. The verifiability property

of a digital signature scheme ensures that a third party can resolve disputes about the validity

of a digital signature without knowledge of the signing party’s private key.

Unless stated otherwise, and without loss of generality, I assume that signature schemes

are non-recoverable; that is, given a signature s over x, a relying party can only determine that

s is a valid signature over x. They cannot learn any other useful information about x from the

signature alone.

Throughout this dissertation, unless stated otherwise, the term signature means digital sig-

nature and signing means digitally signing.

A secure pseudo-random sequence generator generates a sequence of bits with the fol-

lowing properties:

• pseudo-randomness: the sequence is statistically random; and

• unpredictability: even with complete knowledge of the algorithmic or hardware genera-

tor and all previous bits of a sequence, it is computationally infeasible to predict the next

bit of the sequence1.

2.1.3 Trusted third party services

A TTP is a security authority trusted by other entities with respect to security related activities

[ISO96]. Here, I use the classification in [Zho01] to give a brief overview of the following

three types of TTP:

1. a certification authority (CA) that issues public key certificates,
1There is a distinction between a secure random number and a “nonce” (number used only once). It is common

to use nonces in security protocols to ensure the freshness of messages but a nonce is not necessarily random and it
may be possible to guess the next value of a nonce.
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2. a time-stamping authority (TSA) that provides trusted time-stamps on evidence, and

3. a guarantor TTP that supports, and may be directly involved in, the generation, exchange

and verification of non-repudiation evidence.

A public key certificate is a digital credential that binds the subject of the certificate to their

public verification key and thereby to their use of the corresponding private key. A certificate

typically includes: the subject’s public key, information related to the subject’s identity, the

period of validity of the certificate, and the algorithm to use with the verification key. A CA

issues certificates to guarantee the authenticity of the associated public key and the binding of

the key to the subject of the certificate. CAs sign certificates with their own public verification

key to guarantee certificate integrity. Since private keys may be compromised, a CA is also

responsible for maintaining certificate revocation information. X509 [HFPS99] is a widely

used standard for CA-issued public key certificates.

A TSA is used to obtain a signed time-stamp on evidence as proof of the time of generation

of the evidence. For example, given a signature s= sigA (x) by principal A over data x, the TSA

could provide the following time-stamp: {Tg, sigTSA (s, Tg)}. This time-stamp is the TSA’s

counter-signature over s and the time Tg — the time of generation of the counter-signature.

The time-stamp serves as proof of the generation (or existence) of s at time Tg [ZG97]. As

discussed in Section 2.2, trusted time-stamps can be critical to the subsequent verification of

non-repudiation evidence. TSAs may also be used to certify the time of occurrence of some

event or, more precisely, the time the TSA gained knowledge of the occurrence of some event.

Guarantor TTPs, or simply TTPs for short, are used to safeguard the interests of honest par-

ties to an interaction. For example, a trusted delivery agent may be used to guarantee delivery

of messages and to directly exchange non-repudiation evidence. A third party adjudicator may

use non-repudiation evidence to resolve disputes between parties.

TTPs of whatever type may also be categorised by the extent of their involvement in an

interaction.

• An in-line TTP, such as a message delivery agent, acts as an intermediary for all com-

munication between the parties to an interaction.
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• An on-line TTP is actively involved in every instance of a non-repudiable exchange

though not necessarily in every communication. A TSA is an example of a TTP that

should be on-line to time-stamp evidence but is not necessarily in-line with respect to

the exchange of evidence between parties.

• An off-line TTP supports non-repudiation but is not involved in each exchange. For

example, a CA is off-line for issuance of certificates.

I return to the role of TTPs in Section 2.2.

2.1.4 Well-behaved parties

Non-repudiation protocols specify the correct behaviour of the protocol participants. Well-

behaved (or honest) parties adhere to the protocol specification. I make the following assump-

tions about communications between well-behaved parties and their cooperation in protocol

execution.

• The communication channel between well-behaved parties provides eventual message

delivery. That is, there is a known bound on the number of temporary network and

computer related failures experienced by well-behaved parties.

• Each well-behaved party has persistent storage for messages. Minimally, well-behaved

parties will ensure that messages are available for as long as is necessary to meet their

obligations to other well-behaved parties.

• Well-behaved parties only send messages that comply with the specification of the pro-

tocol being executed. Similarly, they only process messages that are correct with respect

to the protocol specification.

In this dissertation, “trusted”, “honest” and “correctly behaving” are synonyms for well-behaved.

Participants that are not well-behaved — do not satisfy the above assumptions — are consid-

ered to be misbehaving. Such misbehaviour may be through intentional or accidental fault.

TTPs are guaranteed to be well-behaved by definition.
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2.1.5 Perfect cryptography assumption and protocol subversion model

I make the standard perfect cryptography assumption: that there exist implementations of the

cryptographic primitives described in Section 2.1.2 that are secure against attack even if ad-

versaries have complete knowledge of the algorithms used. Cryptographic primitives are not

susceptible to cryptanalysis or brute force attack. For example, a ciphertext can only be deci-

phered with the appropriate decryption key.

Security protocols are traditionally analysed under the Dolev-Yao intruder model [DY83].

The Dolev-Yao intruder has control of the network between protocol participants and can

attempt to subvert a protocol using the knowledge obtained from the messages that are ex-

changed. As shown in Figure 2.1a, in effect a protocol executes through the intruder. The

(a) Dolev-Yao intruder (b) Modified Dolev-Yao subversion model

Figure 2.1: Protocol subversion model

intruder can remember all messages transmitted over the network, they can compose new mes-

sages from their knowledge, and they can remove or delay messages. The perfect cryptography

assumption holds for the Dolev-Yao intruder and, therefore, the intruder cannot use cryptanal-

ysis to subvert a protocol. However, they can decrypt and sign messages if they know the

relevant key or keys.

Unless stated otherwise, I adopt the model of protocol subversion formalised by Cederquist

and Dashti [CD04] that is based on a modification to the Dolev-Yao intruder. In this case, to

model misbehaviour, a protocol participant may act as an intruder and may collude with a

non-blocking Dolev-Yao intruder. The non-blocking intruder cannot block messages between

well-behaved parties forever. Thus the assumption of eventual message delivery between well-
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behaved parties holds in the presence of the non-blocking intruder. In particular, communi-

cations with and between TTPs will eventually succeed. Of course, the non-blocking intruder

may still delay messages and relay messages out of order, etc. Figure 2.1b illustrates this model,

where A misbehaves and both B and C are well-behaved. Note, apart from the well-behaved

assumption with respect to TTPs, there is no restriction on the number of misbehaving parties

in the model.

2.1.6 Notation

Table 2.1 shows the notation used throughout this dissertation for various cryptographic prim-

itives and other protocol elements.

Notation Definition
h(x) a secure hash of x
sigP (x) principal P’s signature over x (using P’s private key)
encP (x) encryption of x with P’s public key
rn[P] a secure pseudo-random number/sequence with op-

tional indication of the principal P who generated rn
nrId[i] [= f ()] a unique identifier of a non-repudiation protocol run

with optional index, i, to differentiate between 2 or
more identifiers from related runs and the specifica-
tion of an optional generating function, f ()

Tg time of generation of some information
tsTSA (x) = {Tg, sigTSA (x, Tg)} time-stamp on x generated by TSA as witness to the

time of generation, Tg, of x
P→ Q : x principal P sends x to principal Q

Table 2.1: Notation

2.1.7 Generation of protocol run identifiers

I assume that a protocol run identifier, nrId, is unique for an interaction context. That is, an

nrId need not be globally unique but must be sufficiently unique to unambiguously distinguish

between different protocol runs in a given context. In non-repudiation protocols it is common

to use a secure random number as an authenticator. A secure hash of the random number is

released first as a commitment to the random number that is revealed later in the protocol. In

this case, it is convenient to use the hash of the random number as the basis for the unique

identifier. The hash could be contextualised by prepending some base URI to a URL-safe



36 2.2 Non-repudiation protocols

Base64 [Jos03] encoding of the hash. Table 2.2 shows an example of the generation of a

Element Value
rn okUDiHMXVEsOaAU5PTpBDW75Lo7pGmisnaWUAm7X+ck=

h(rn) UrvmUq2Bs2a08d5ae7v3yZV398/elfFcRVOJxuuC37Q=

nrId http://cs.ncl.ac.uk/nick.cook/UrvmUq2Bs2a08d5ae7v3yZV398_elfFcRVOJxuuC37Q=

Table 2.2: Example generation of a protocol run identifier

nrId of this form given the Base64 representations of random number and hash. Note, the “/”

character in h(rn) is converted to a “_” in the URL-safe encoding for the nrId.

In this dissertation, I assume that the protocol initiator is responsible for generation of

the nrId. I also assume that if a nrId is not unique, then it will be rejected by well-behaved

recipients and this rejection triggers re-start of a protocol with a newly-generated identifier.

2.2 Non-repudiation protocols

Chapter 1 established the need for accountability in high-value B2B interactions. As suggested

in Section 1.3, non-repudiation protocols meet this requirement by exchanging evidence that

prevents the subsequent denial of participation in an interaction. Chapter 1 also identified the

need for flexibility in the choice of mechanism, or protocol, to achieve non-repudiation in

order to adapt to a given business context. In this section I survey fundamental work on non-

repudiation that is the basis for meeting these requirements. The range of available protocols —

from non-repudiation without fairness, through fair non-repudiation with TTP, to probabilistic

fairness — can be seen as an armory of mechanisms to exploit in an adaptable framework

for non-repudiation services. First, I discuss the problem of the exchange of non-repudiation

evidence. Then I review the various approaches to fair non-repudiation. A discussion of the

role of TTPs is followed by consideration of scenarios in which fairness guarantees may be

relaxed.

In Chapter 3 I show how the fundamental work discussed in this section can be used to

provide flexible services for non-repudiable service invocation and non-repudiable information

sharing. For example, I show how to extend the non-repudiation protocols presented in this

section in order to integrate application-level validation of service invocations.
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2.2.1 Exchange of non-repudiation evidence

To illustrate the non-repudiation problem, consider the exchange of a message with the sender’s

non-repudiation of origin evidence (NRO token) for the recipient’s non-repudiation of receipt

evidence (NRR token). Here we present a simple, voluntary non-repudiation protocol for the

direct exchange of evidence between sender A and recipient B. Table 2.3 defines the non-

Token Definition
NRO sigA (nrId, A, B, m)
NRR sigB (nrId, A, B, NRO)

Table 2.3: Tokens used in voluntary non-repudiation protocol

repudiation tokens used in the protocol. Figure 2.2 defines the protocol.

1 A → B : nrId,A, B,m, NRO, tsTSA (NRO)
2 B → A : nrId, A, B, NRR, tsTSA (NRR)

Figure 2.2: A voluntary non-repudiation protocol

In step 1, A sends B a protocol run identifier, the participant identifiers, the message m, the

NRO token and a time-stamp over the token. The NRO token consists of A’s signature over the

identifiers and over message m. The NRO token binds the identifiers and m to A. It constitutes

proof of origin of m and shows that m was sent in the protocol run identified by nrId. In step

2, B replies with the identifiers, the NRR token and a time-stamp over the token. The NRR

token consists of B’s signature over the identifiers and over A’s NRO token. The NRR token

binds the identifiers, the NRO token and, therefore, m to B. It constitutes proof of receipt by

B of m and A’s NRO token and shows that this information was received in the protocol run

identified by nrId. Assuming that B behaves correctly and we have eventual message delivery

between A and B, the voluntary protocol in Figure 2.2 is sufficient to guarantee the exchange of

non-repudiation evidence. For example, the protocol can be used for non-repudiable delivery

of a message m from any sender to a TTP recipient. The sender may misbehave but they cannot

disadvantage the recipient because their misbehaviour simply results in the loss of entitlement

to a receipt. In contrast, if B fails to cooperate in some way, then Amay provide m and the NRO

token without obtaining B’s receipt. This is the selective receipt problem. It is characteristic
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of the general problem of achieving the fair exchange of electronic items when parties do not

necessarily trust each other.

2.2.2 Non-repudiation and fairness

Asokan [Aso98] provides one of the most widely accepted informal definitions of fairness: that

a system is fair if it does not discriminate against correctly behaving parties. More recently,

Markowitch et al [MGK02] provide an overview of the evolution of the notion of fairness in

exchange and the various definitions that have been proposed. To clarify the position, they pro-

pose the following three mandatory properties that must be satisfied for an exchange protocol

to be considered secure and fair.

Viability is the property that, if both parties are well-behaved, there exists an execution of the

protocol that results in successful exchange.

Timeliness is the property that, with the quality of communication channels fixed, there is

always a point in the protocol that can be reached in a finite amount of time when parties

can stop the protocol without compromising fairness.

Fairness is the property that: “the communication channel’s quality being fixed, at the end

of the exchange protocol run, either all involved parties obtain their expected items or

none (even a part) of the information to be exchanged with respect to the missing items

is received.”

In addition they define non-repudiability as the optional property of a secure exchange protocol

that:

“it is impossible for a single entity, after execution of the protocol, to deny having

participated in a part or the whole of the communication.”

There is an extensive literature on the problem of fair exchange and its solution. Kremer et al

[KMZ02] provide a detailed survey of fair non-repudiation protocols. Pagnia et al [PVG03]

provide a wider review of fair exchange in general. A significant distinction between the var-

ious proposed protocols is the extent of involvement of a guarantor TTP. For protocols that
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provide a deterministic guarantee of fairness, there must be some TTP involvement. Differ-

ent protocols have been proposed with either in-line, on-line or off-line TTP involvement. In

non-deterministic approaches, there is no TTP involvement but the fairness guarantee is either

probabilistic or relies on assumptions about the relative computing power of protocol partici-

pants. I discuss the role of TTPs further in Section 2.2.3. In this section I use examples from the

literature to illustrate the different approaches to fair non-repudiation. The first protocol relies

on an in-line TTP to solve the selective receipt problem. The second example is an optimistic

protocol to solve the same problem using an off-line TTP. An overview of the alternative (non-

deterministic) gradual and probabilistic approaches follows the protocol descriptions. Finally,

I briefly describe work on the relatively neglected area of fault-tolerance and fair exchange.

2.2.2.1 Coffey-Saidha protocol with in-line TTP

The Coffey-Saidha protocol [CS96] uses an in-line TTP to solve the selective receipt problem.

The protocol exemplifies the problem of guaranteeing a receipt to a message sender without

disadvantage to a message recipient. Section 3.2 presents my extensions to this protocol to

provide fair and validated non-repudiable service invocation, and to support exception handling

for timely termination.

As in Section 2.2.1, A wishes to send a message, m, to B. B requires NRO of the mes-

sage and A requires NRR. In the protocol, A and B do not communicate directly but send all

messages via the in-line TTP. Here I present a version of the protocol that takes account of

improvements suggested by Zhou and Gollman [ZG97]. Table 2.4 defines the tokens used in

Token Definition
NRO sigA (nrId, A, B, m)
NRR sigB (nrId, A, B, h(NRO))

Table 2.4: Tokens used in Coffey-Saidha in-line TTP protocol

protocol. Figure 2.3 shows the protocol. There follows a step-by-step description.

In step 1: A sends the TTP the following items: a unique identifier, nrId; the participant iden-

tifiers, A and B; the message, m; A’s NRO token; and a time-stamp over the NRO token

witnessed by a TSA. All items are encrypted with the TTP’s public key. This prevents
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1 A → TTP : encTTP (nrId, A, B, m, NRO, tsTSA (NRO))
2 TTP → B : nrId, A, B, h(NRO)
3 B → TTP : encTTP (nrId, A, B, NRR, tsTSA (NRR))
4 TTP → B : nrId, A, B, m, NRO, tsTSA (NRO)
5 TTP → A : nrId, A, B, NRR, tsTSA (NRR)

Figure 2.3: Coffey-Saidha in-line TTP fair exchange protocol

B from obtaining access to any of the information before they provide NRR of the mes-

sage. If the TTP finds that nrId is not unique, an appropriate response will be generated

to prompt A to restart the protocol with a newly generated identifier. Otherwise, the

protocol proceeds to step 2.

In step 2: the TTP sends nrId, the participant identifiers, and a hash of A’s NRO token. The

hash on the NRO token is the TTP’s commitment to provide B with the evidence from

which the hash and the NRO token were generated. That is, the TTP will deliver m and

NRO to B in step 4. B is now able to generate a signature over the items provided. This

signature serves as NRR evidence because sigB (nrId, A, B, h(NRO)) is cryptographi-

cally bound to NRO and NRO is, in turn, cryptographically bound to the message, m.

In step 3: B responds with: nrId, the participant identifiers, their NRR token, and a time-

stamp over the NRR token witnessed by a TSA. All items are encrypted with the TTP’s

public key. This ensures that A only obtains NRR if the protocol runs to some form of

successful termination. It is safe for B to send the receipt to the TTP before obtaining m

because the TTP is, by definition, committed to providing m.

In step 4: the TTP sends B m, the NRO token and associated information provided by A in

step 1.

In step 5: the TTP sends A the NRR token and associated information provided by B in step

3.

Steps 4 and 5 may execute in parallel without loss of fairness to either A or B.

On completion of the protocol in Figure 2.3, A has NRR for m. In return, B has m and

NRO for m. Fairness is guaranteed because the TTP controls the release of evidence to A
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and B, and because the TTP can support exception handling. Exception handling can provide

timely termination of an exchange because the TTP can guarantee to well-behaved parties that

they can obtain the information they expect from an exchange or that the exchange can be

aborted without loss of fairness. Coffey and Saidha did not specify the exception handling sub-

protocols, which is one of the extensions to this work that I present in Section 3.2. To illustrate

some of the issues involved in exception handling, we observe that fairness can be guaranteed

to A and B if:

1. the protocol in Figure 2.3 completes normally, or

2. B chooses not to engage in the main protocol by not responding to the message sent by

the TTP in step 2 because B does not receive any useful information about m or the NRO

token in step 2, or

3. the exchange is aborted when the main protocol has progressed no further than step 3

because up to and including execution of step 3 neither A nor B has received any useful

information about their respective items2, or

4. the exchange is completed successfully after execution of step 3.

Execution of step 3 is the pivotal point in execution of the protocol. Once the TTP has re-

ceived the receipt from B in step 3, the TTP has all the information necessary to complete the

exchange. Thus the TTP has the ability to complete the exchange for both A and B. The TTP

may also satisfy requests to abort the exchange because the TTP has not yet released the criti-

cal information that either A or B expect from the exchange (A’s message for B or B’s receipt

for A). After execution of step 4, the TTP can and must guarantee that all expected items are

available to both A and B.

The encryption of NRR evidence in step 3 of the protocol illustrates the care that must be

taken to achieve fair exchange. For example, without encryption of the protocol message at

step 3, A could mount the following attack: (i) intercept the protocol message to acquire NRR,

and (ii) delay delivery of the message to the TTP for long enough to ensure that the TTP agrees
2As an example, A may wish to abort an exchange because B fails to respond to the message sent by the TTP in

step 2.
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to a request to abort the exchange. This would allow A to obtain a receipt but deny B access to

m and NRO.

2.2.2.2 Optimistic fair exchange

Optimistic fair exchange protocols use an off-line guarantor TTP that only intervenes to handle

exceptions. Initially, the participants behave optimistically by attempting the direct exchange

of items between themselves. If this direct exchange completes successfully, then the TTP is

not involved. In case of delay or suspected misbehaviour, a request can be made to the TTP to

abort or successfully complete the exchange and, thereby, guarantee fairness to well-behaved

parties.

The Asokan, Shoup and Waidner (ASW) contract signing protocol [ASW98] is one of the

earliest examples of an optimistic fair exchange protocol. Their direct exchange protocol re-

quires four steps for the successful fair exchange of signatures on an agreed text between two

parties. If the direct exchange does not complete, then, upon request, a TTP can issue an abort

token or a replacement for the signed text. If the replacement is issued, then the involvement

of the TTP is apparent because they counter-sign the agreed text. That is the replacement is

equivalent but not identical to the expected signed text. Markowitch and Kremer [MK01] sub-

sequently proposed an alternative fair non-repudiation protocol that uses a novel, transparently

recoverable signature scheme to render any TTP involvement transparent with respect to the

evidence generated. That is, the TTP’s involvement is not apparent from the evidence generated

regardless of how the exchange concludes. The Markowitch and Kremer protocol also requires

four steps to complete the direct exchange between two parties. More recently Wang [Wan05]

published a generic fair non-repudiation protocol with transparent TTP. Wang’s protocol is

generic because any signature scheme can be used to generate non-repudiation evidence. Fur-

ther, the protocol is the most communication-efficient of known fair non-repudiation protocol.

It requires just three steps for the direct exchange between two parties. I use this protocol as

an illustration of the optimistic approach to fair exchange. Section 3.2 shows how to combine

executions of the protocol to provide fair, non-repudiable service invocation.

As with the Coffey-Saidha protocol, the aim of Wang’s protocol is for a sender A to ex-
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change a message m, and its NRO, for NRR from B. A begins optimistic direct exchange by

sending input information to B with which B can generate a receipt for m. B then responds by

sending the generated receipt to A. Finally, A sends B the information necessary to recover m.

So, if successful, the exchange completes in three steps. The key insights behind the protocol

are that:

1. A’s interests are safeguarded because they obtain a receipt for m before providing B with

the information they require to recover m, reversing the selective receipt problem, and

2. B’s interests can be safeguarded if the input for the receipt provided by A is cryptograph-

ically bound to m through A’s evidence of origin and, in the event of A not providing the

information that B requires, a TTP, and only the TTP, can enable B to recover m from

A’s input.

Token Definition
kA a secret key generated by A to encrypt m
mCipher enckA (m)— the encryption of m using kA
nrId h(A, B, TTP, h(mCipher) , h(kA))— nrId generating function
kACipher encTTP (nrId, kA, rnA)
NRO sigA (nrId, kACipher)
NRR sigB (nrId, kACipher)

Table 2.5: Tokens used in Wang’s optimistic non-repudiation protocol

Table 2.5 defines the tokens used in the protocol. Figure 2.4 shows the main direct exchange

1 A → B : nrId, A, B, TTP, mCipher, h(kA) , kACipher, NRO
2 B → A : nrId, NRR
3 A → B : nrId, kA, rnA

Figure 2.4: Wang’s optimistic non-repudiation protocol

between between A and B. For brevity, time-stamps are omitted from the protocol description.

To start the protocol A generates the two encrypted tokens: mCypher and kACipher. As

shown in Table 2.5, mCypher is the encryption of m using the secret key kA that is newly

generated by and known only to A. A generates kACipher by using the TTP’s public key

to encrypt the secret key, the protocol run identifier and a newly generated random number.
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The identifier nrId is cryptographically bound to m through the hash of mCipher used in the

generating function for nrId. Only the TTP can decrypt kACipher but any other party can

verity that it is an encryption of nrId and kA with some random number. The protocol now

proceeds as follows.

In step 1: A sends B the protocol run identifier, the participant identifiers (including the TTP’s

identifier), the encrypted tokens, a hash of the private key and the NRO token. The NRO

token cryptographically binds kACipher to nrId and, therefore, tomCipher andm. Given

these items, B can generate a receipt by signing the same items as A to produce the NRR

token. At this point in the protocol, B knows that either:

1. A prepared kACipher correctly and, therefore, that A can produce the correspond-

ing kA and rnA or that the TTP can recover these items from kACipher for B to

enable B both to verify the NRO token and obtain m; or

2. A has provided an invalid kACipher, in which case the NRR token that B provides

by signing nrId and kACipher will not form a valid receipt for A.

In step 2: B sends the NRR token to A. It is safe for B to do this before receiving m because,

as stated previously, the NRR token is only valid and useful to A if the input provided

by A is also valid. So, if the receipt provided to A is valid, then A must have provided

B with the information necessary to complete the exchange through the TTP, should A

cease to cooperate.

In step 3: A sends B kA and rnA. These items enable B to verify the integrity of all the

evidence provided by A. Assuming A’s evidence is valid, B can now decrypt mCipher

and obtain m. If any evidence is invalid, then the cryptographic linkage between evidence

is such that the receipt provided to A is also invalid and A has gained no advantage over

B.

Wang [Wan05] defines exception handling sub-protocols for the abort of an exchange or the

recovery of items through the TTP. A is entitled to request that an exchange is aborted after

step 1 of the optimistic exchange. A may initiate an abort request because B fails to initiate
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step 2 in a timely fashion. The TTP satisfies an abort request from A by issuing a signed abort

token for the identified exchange. Similarly, B may seek timely termination of the exchange by

requesting that the TTP recover the secret key kA and random number rnA from the kACipher

token provided by A in step 1. B can use the recovered items to obtainm and A’s NRO token. In

either case, the request for abort or recovery must contain the evidence necessary for the TTP to

determine whether the request should be fulfilled. For example, the TTP will only comply with

a recovery request from B if the request includes a valid receipt for A and the exchange has not

already been aborted. Following the first valid request for abort or recovery, the TTP records

the status of the identified exchange as either aborted or recovered. Once the TTP has set the

status of an exchange they will forever respond in the same way to any subsequent request from

A to abort the exchange or from B to recover items. That is, the TTP will not recover items for

B if an exchange has been aborted as the result of a prior request from A. In this case, the TTP

will issue an abort token to B. Similarly, the TTP will not satisfy a request from A to abort an

exchange that has been recovered. In this case, the TTP will send B’s receipt to A.

Wang [Wan05] provides a detailed description of the security properties of the protocol.

Here I briefly describe the protection against attempts to cheat by either A or B. A can attempt

to cheat in two ways: (i) they can provide B with an invalid mCipher or invalid kACipher, or

(ii) they can decline to send the final message. As previously discussed, invalid input from

A will lead to the generation of a useless receipt from B. A only achieves non-repudiation of

receipt if they provide valid input to B in the first step of the protocol. If A does not send

the final message, then B can obtain kA and rnA from the TTP in return for their NRR token.

The TTP will provide kA and rnA unless A has requested that the exchange be aborted. If the

exchange has been aborted, then the TTP provides B with a signed abort token that can be used

to repudiate receipt ofm. B can only attempt to cheat by failing to provide A with a valid receipt

and requesting that the TTP provide kA and rnA. However, the TTP only provides these items

to B if B provides the TTP with a valid NRR token and all other items that are necessary for

the TTP to verify their consistency and integrity. That is, the TTP will only allow B to recover

the message m if B provides the information necessary to construct a valid receipt for A and

the exchange has not already been aborted. In conclusion, neither A or B can gain advantage
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by attempting to cheat. The optimistic exchange is only likely to fail because of timeliness

constraints. In the normal case, the exchange will complete as a direct exchange between A

and B without the need to the involve the TTP. Further, if the TTP is required to successfully

complete an exchange, the evidence provided by the TTP to either A or B is exactly the same

as if the TTP had not been involved — the transparency property.

2.2.2.3 Gradual and probabilistic approaches

Prior to the development of fair non-repudiation protocols with guarantor TTP, gradual ex-

change protocols were proposed for the fair exchange of secrets and contract signing [Ted85,

EGL85, BCDv88]. In gradual exchange, parties release bits of items to ensure that at any given

point in the exchange the amount of knowledge on each side is approximately the same. The

exchange continues until each party has sufficient information to construct the secret or one

of the parties ceases participation. If each party has the same or equivalent computing power,

then the exchange should be fair. The main drawbacks of this approach are the large num-

ber of communication steps typically required to successfully complete an exchange and the

impractical assumption of equivalent computing power.

An alternative approach to fair exchange without guarantor TTP is to adopt a probabilistic

notion of fairness: that, at the end of an exchange, there is an overwhelming probability that

either all involved parties obtain their expected information or none of them does.

Markowitch and Roggeman developed the first probabilistic non-repudiation protocol with-

out TTP [MR99]. The aim of the protocol is for a message sender, A, to exchange their message

m and NRO for NRR from the recipient, B. It is an iterative protocol with the characteristic that,

except at the last iteration, neither A nor B is more privileged than other. The message m is

decomposed into n pieces, where n is a secret random number known only to A. The protocol

proceeds through n rounds. In each round A sends a piece of m and B responds with an ac-

knowledgement of receipt. The cryptographic decomposition of m is such that B needs all n

pieces to reconstruct m. B’s acknowledgement of receipt for the nth piece is the NRR token

that A requires. Therefore, there is no incentive for A to stop the protocol before it completes

(unless they suspect B of cheating). The problem is to reduce the probability that B can obtain
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the message and NRO without providing NRR. A and B agree a time limit t for completion

of each protocol round. This time limit is shorter than the computation time needed for B to

reconstruct m from the information provided by A. That is, it takes longer than time t for B to

determine that A has provided the nth piece of m. After initiating a round, A waits for time t to

receive B’s acknowledgement. If A does not receive an acknowledgement within time t, they

abandon the protocol. Therefore, B must continue to send acknowledgements within time t to

prompt A to provide the next piece of n. Since the last iteration is when B gains significant

advantage, there is no benefit to B to stop the protocol before completion of the penultimate

iteration. B can cheat if they guess n and fail to provide the final acknowledgement. The only

way for B to guess n is to compute m from the pieces received to date, which takes longer

than time t. Therefore, there is an incentive for B to send the final acknowledgement and to

be sure that they have reached the nth round of the protocol. If A does not initiate a further

round within time t, then B knows that either A has stopped the protocol prematurely, the last

round has not been reached, or that they have reached the nth round and can now compute

m. B’s interests are safeguarded, regardless of A’s behaviour, because B only provides a valid

receipt to A if A provides all n pieces of m. The probability that B can gain advantage over A

is inversely proportional to the number of protocol rounds chosen by A — the probability that

the protocol is fair for A is 1− 1
n . For example, there must be 10 rounds (20 messages) for a

90% guarantee that the protocol is fair for A.

The probabilistic approach has the advantage that there is no need for a guarantor TTP

and that the risk of loss of fairness is known, and parameterizable by A. Disadvantages when

compared to TTP-based protocols are the increased communication that is typically required

and an increase in protocol complexity.

Avoine et al [AGGV05] have taken a hybrid approach to multi-party fair exchange that

provides the equivalent of a deterministic guarantee of fairness with an honest majority of

participants. If there is no honest majority, their protocol ensures an arbitrarily low probabil-

ity of loss of fairness. As shown in Figure 2.5, the protocol assumes that a virtual TTP can

be constructed from tamper-resistant3 hardware security modules hosted by untrusted hosts at

3Avoine et al use the term “tamper-proof”.
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Figure 2.5: Security module-based virtual TTP

protocol participants. Security modules can be trusted by other security modules and by any

participant host. Hosts are untrusted. A malicious host can behave as a Dolev-Yao intruder

with respect to their security module. An underlying assumption is that the security modules

are perfectly tamper-resistant — any attempt by a host to tamper with a security module can be

detected and will result in a security module that ceases to communicate. The security modules

are assumed to be black-box cryptographic engines with cryptographic keys that are not avail-

able to their hosts. Hosts are said to be honest if they participate correctly in the protocol and

do not disrupt communication with their security module. Dishonest hosts misbehave in some

way. For example, they may not follow the protocol correctly or they may disrupt communica-

tion with their security module. Given these assumptions, a virtual TTP can be constructed if

there is an honest majority of hosts and, therefore, the protocol provides a guarantee of fairness

that is equivalent to that provided by protocols with a genuine TTP.

The security of Avoine et al’s protocol and, in particular, the honest majority fairness guar-

antee is founded on an extension of the perfect cryptography assumption to include perfect

tamper resistance of hardware security modules. Under this assumption, it is impossible for a

dishonest host to undetectably compromise their security module and masquerade as an honest

host. However, Anderson et al [ABCS05] have demonstrated both physical and software-based

attacks on such modules. A relatively new class of practical attacks involves the exploitation of

vulnerabilities in device application programmer interfaces (APIs) [CB02]. API vulnerabilities

are analogous to security protocol vulnerabilities, can be mounted at the interface of the device

to its hosting environment (or an intruder into that environment), and are arguably easier to
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exploit than the physical protection of the hardware devices. In practice, therefore, tamper-

resistance is a probabilistic notion — there is a non-zero probability that tamper-resistant hard-

ware can be compromised without detection. Thus, apparently honest hosts may have compro-

mised security modules and the fairness guarantee with honest majority is probabilistic.

In practice, genuine TTPs are also vulnerable to attack. However, a distinction can be

drawn between reliance on security measures adopted by a genuine TTP that is liable for the

failure of those measures and the need to rely on the invulnerability of security modules on (un-

detectably) dishonest hosts. Issues such as this highlight the need to consider the wider context

when adopting solutions to non-repudiation problems. Ultimately, non-repudiation evidence is

collected in order to prove to some dispute resolution authority that an action or event occurred.

The choice of mechanism to achieve non-repudiation will not only be determined by technical

trade-offs between different approaches but also by the regulatory environment. This under-

lines the need for flexible non-repudiation services that can adapt to different environments.

The decision to use an irrevocable key signature scheme will depend, in part, on the avail-

ability of implementations and their compliance with the security policies of the interacting

parties. The fact that there is a choice reinforces the need for flexible middleware support for

non-repudiation.

2.2.2.4 Fault tolerance and fair exchange

In most of the work on fair exchange and non-repudiation no distinction is made between local

system failure and non-cooperation in a protocol. While the literature often states communi-

cation model assumptions, the fault-tolerance of an exchange protocol is not generally consid-

ered. Notable exceptions are the work of Liu et al [LNJ00] and Ezhilchelvan and Shrivastava

[ES05].

Ezhilchelvan and Shrivastava define a fault-tolerant fair exchange protocol as a protocol

that preserves fairness for honest participants despite failures of the participant’s node of the

assumed type. They provide a systematic treatment of two-party fair exchange with guarantor

TTP under a variety of assumptions with respect to user misbehaviour, node failures and com-

munication delays. There is also a critique of work by Liu et al and, in particular, the subtleties
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of message logging for crash tolerance.

In addition to consideration of fair exchange under standard malicious user assumptions,

Ezhilchelvan and Shrivastava introduce the restricted abuser model. Restriction on abuse is

achieved by relying on a trusted (tamper-resistant) subsystem in the user’s host. This is equiv-

alent to Avoine et al’s security module that resides on a dishonest host. The previous remarks

with respect to tamper-resistance also apply here and, in practice, the notion of restricted abuser

is probabilistic. There is a non-zero probability that abuse by a user cannot be restricted in such

a way as to prevent undetected access to the cryptographic keys of tamper-resistant hardware.

The implementation of fault tolerant fair exchange protocols is beyond the scope of this

dissertation and will be the subject of future work (see Chapter 6).

2.2.3 Non-repudiation and the role of TTPs

The role of TTP as guarantor of fairness is central to much of the work on fair exchange. Even

and Yacobi [EY80] provide the fundamental insight that deterministic fair exchange is impos-

sible without a guarantor TTP.4 Their proof is by contradiction. Two communicating parties,

A and B, wish to compute a mutual signature on an agreement (sigA,B). In order to compute

sigA,B, A and B must engage in the iterative exchange of information. Assume that there exists

a system such that it never happens that one party can compute sigA,B, while the other cannot.

Once A has sufficient information to compute sigA,B, B must also have sufficient information

and vice versa. After n communications, but not before, assume A has sufficient information to

efficiently compute sigA,B. By definition of the system, B transmits the nth communication and,

therefore, the first time B has sufficient information is after n′ communications where n′ != n.

However, this contradicts the system definition. This is similar to an instance of the iterative

Prisoner’s Dilemma when there is insufficient incentive to cooperate (see Section 2.2.4). The

impossibility result for deterministic fair exchange is also supported by arguments that relate

the problem to the FLP impossibility result for distributed consensus [FLP85, PG99, ES05].

As seen in Section 2.2.2, the impossibility result and the desire to eliminate the potential

bottleneck of a guarantor TTP have led protocol developers to concentrate on the reduction

4Even and Yacobi’s definition of a Public Key Agreement Scheme, in which they use the term “judicator” to
mean “a third honest party”, is essentially an expression of the fair contract signing problem.
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of the involvement of the TTP. The main motivation for the optimistic approach to determin-

istic fair exchange is to significantly reduce active involvement (to zero in the normal case).

Probabilistic approaches eliminate the need for a guarantor TTP altogether.

The focus on guarantor TTP is understandable. However, in the case of non-repudiation

(with or without fairness guarantees), the involvement of a TSA can be as, if not more, sig-

nificant. This is because non-repudiation relies on the long-term integrity of signed evidence.5

If signatures cannot be verified, then the signing party can subsequently deny an action or

event. Verification can be compromised if a digital signature scheme allows for revocation of

signing keys, as is the case with common schemes such as those based on X509 public key

infrastructure.

It should be noted that not all fair exchange protocols provide non-repudiation. There are

circumstances when fair exchange is a requirement but it is not necessary to prevent subse-

quent deniability of the exchange. In this case, digital signatures may be used to ensure the

integrity and, usually, the authenticity of information. Therefore, the relying party only needs

to determine the validity of a signature, and its associated signing key, at the time of verifica-

tion — during protocol execution. The problem of revocation can be dealt with by reference to

CA-provided certificate revocation lists, copies of which may be available locally.

To illustrate the problem of key revocation in non-repudiation, consider the Coffey-Saidha

protocol without trusted time-stamps on the signed evidence. The protocol could complete suc-

cessfully with both A and B having received the evidence and items they expect. Then, some

time after protocol completion, a misbehaving party, for example A, could claim that their

signing key had been compromised and revoke the key and associated certificate by communi-

cation with the relevant CA. Without evidence of the time of use of A’s signing key, B is unable

to prove that A signed their NRO token before revocation and A can repudiate the evidence.

As suggested in Section 2.1.2, and as shown in the protocol description in Section 2.2.2, the

traditional solution to the key revocation problem is to use a TSA to apply trusted time-stamps

to signed evidence. If a trusted time-stamp is used, then B can prove that A’s key was valid at

time of use (as evidenced by the time-stamp). The evidence remains non-repudiable even if A

5Where long-term means beyond the execution of the given exchange, though typically time-limited by some
non-repudiation policy and/or interaction agreement.
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subsequently revokes their signing key.

(a) A sends signed message to B

(b) A uses online TSA to timestamp message

(c) A sends message via inline TSA

Figure 2.6: Signed messages and time-stamping

To summarise, Figure 2.6a shows A sending a signed message to B. To ensure non-repud-

iation, if A’s signing key is revocable, the message must include a time-stamp signed by a TSA.

Figure 2.6b shows how this can be achieved using an on-line TSA. Alternatively, for fair non-

repudiation protocols with in-line TTP, the guarantor TTP may also act as TSA and apply a

time-stamp before relaying the message from A to B, as shown in Figure 2.6c.

The requirement for an on-line TSA can be expressed as an additional impossibility result:

If signing keys are revocable without reference to the relying party,6 then non-

repudiation is impossible without an on-line TSA to time-stamp signed evidence.

This impossibility is a consequence of key revocation in signature schemes and the requirement

to prevent the subsequent deniability of signed evidence. It therefore holds irrespective of

exchange protocol, communication model etc.

The problem of revocable keys has led to some work on novel signature schemes that make

signing keys irrevocable. Zhou and Lam [ZL99] propose a temporary certificate scheme that

uses two types of signing keys: a long-term, revocable key certified by a CA; and short-term,

6For example, A may revoke their key by contacting their CA without reference to B (the relying party).
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irrevocable, self-certified keys. A temporary certificate assigns a lifetime to the associated

short-term signing key. The temporary certificate is signed using the user’s long-term key

and counter-signed by a TSA. Any signatures generated using a short-term key are therefore

non-repudiable for the TSA-witnessed lifetime of the temporary certificate. The signing party

incurs the risk that their short-term key may be compromised. However, because the key cannot

be revoked, the relying party is assured that signed evidence is valid. The scheme eliminates

the need for an on-line TSA because temporary certificates can be generated off-line before

transactions take place. The scheme is suitable for high-volume, relatively low value transac-

tions for which the signing party will accept an adjustable degree of risk of compromise (see

[ZL99]).

One-way sequential link signatures can be used to ensure that signing keys are only revoca-

ble with reference to the relying party and, therefore, maintain the validity of non-repudiation

evidence without TSA involvement [Zho02]. One-way hash functions are used to link signa-

tures. Any change to the chain of links is detectable. The signing party may revoke a signing

key by sending the first and last signature in the link to the relying party for counter signature.

Thus, the signing party can only deny signatures that have been generated with their revoked

key but that are not in the counter-signed link.

Another scheme combines forward secure signatures for signature validation without trusted

time-stamps and refreshable certificates to avoid reference to a CA for certificate revocation

[ZBD03]. Forward secure signature schemes divide the lifetime of a key pair into time peri-

ods. At the end of a time period, the signing party derives a new signing key from the current

key using a one-way function and then erases the current key. The keys are cryptographically

bound to a given time period. Therefore, the relying party does not need a trusted time-stamp to

verify their validity. Refreshable certificates use a one-way hash chain to maintain the validity

of public-key certificates without CA involvement for revocation in a similar way to sequential

link signatures.
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2.2.4 Repeat business and the relaxation of fairness guarantees

The work discussed in Section 2.2.2 demonstrates the problems of guaranteeing fair exchange

of non-repudiation evidence. It is therefore of interest to consider circumstances in which it

may be possible to relax fairness guarantees. For example, the business context may provide

strong incentives for cooperation, providing a form of extra-protocol probabilistic fairness as

opposed to guaranteeing fairness at the level of each business message exchange.

A single instance of fair exchange is comparable to one-shot of the iterative Prisoner’s

Dilemma game [Axe90]. In the iterative Prisoner’s Dilemma, two players have the choice of

whether to cooperate or defect on each move. If both cooperate, they each receive the reward

for mutual cooperation. If both defect, they each receive the punishment for mutual defection.

If one defects and the other attempts to cooperate, the defector receives the temptation to defect

and the other player receives the sucker’s payoff. The payoffs may be different for each player

but the following relationships hold for each player’s payoffs:

temptation (T ) > reward (R) > punishment (P) > sucker’s payoff (S); and R>
T +S
2

The best outcome for an individual player is to obtain the temptation for defection. The worst

outcome is to receive the sucker’s payoff. The reward for mutual cooperation is greater than the

punishment for mutual defection and mutual cooperation is better than taking turns to exploit

each other — the even chance of exploitation and being exploited. The only communication

between players is through the sequence of their behaviour. Thus the influences on the game

are the history of an interaction and the prospect of future reward.

It has been shown that there is no incentive to cooperate in the one-shot Prisoner’s Dilemma

because there is no future to influence. The worst accumulated outcome of a defection in the

one-shot game is punishment, which is still better than the sucker’s payoff. In fact, there is no

incentive to cooperate during any interaction of a known finite number of rounds. In the last

round there is no future to influence and the incentive is to defect. In the penultimate round

the incentive is to defect in anticipation of an opponent’s defection in the final round. This

reasoning leads to an unravelling of a game of known finite length back to mutual defection
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in the first round.7 However, Axelrod has shown that in a game of indeterminate length there

may be good reason to cooperate [Axe90]. Further, the incentive to cooperate can hold with

no other influence on the game than the prospect of mutual cooperation. The future influences

the present and cooperation emerges. The requirements for cooperation are that the players are

sufficiently likely to interact again to have a stake in future interaction and that the future is a

significant factor in accumulated payoffs. Axelrod provides many examples of real-life Pris-

oner Dilemma interactions where cooperation emerges. In business, the continuing relationship

can be regarded as an “enforcer” that prevents defection and thereby avoids the need to resort

to costly litigation. That is, B2B collaborations are typically based on continuing relationships

that favour cooperation. However, even in the presence of cooperation, the subsequent undeni-

ability property of non-repudiation may be required. In this case, it may be sufficient to assume

cooperation in the collection of non-repudiation evidence and to resort to dispute resolution if

cooperation ceases.

Work on the Prisoner’s Dilemma may provide a formal basis to explore the influence of

repeat business and reputation on the behaviour of parties to an interaction. Issues that arise

include: how to reliably attach reputations to parties, how to make decisions about the mech-

anisms to deploy based on reputations, and how to ensure that the prospect of repeat business

influences the current interaction. It is beyond the scope of this dissertation to determine how

judgements of this kind can be made. The problem is to determine whether the risk of non-

cooperation is sufficient to incur the costs of guaranteeing fairness. In any case, the realisation

that there are incentives to cooperation reinforces the need for a flexible non-repudiation frame-

work. It should be possible to elect to execute the equivalent of the simple non-repudiation

protocol shown in Figure 2.2 when the risk of selective receipt is low and, equally, to choose a

protocol with appropriate fairness guarantees when there are insufficient incentives to cooper-

ation.

7As noted previously, this is similar reasoning to Even and Yacobi’s proof of the impossibility of deterministic
fair exchange without guarantor TTP.
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2.3 Contract-mediated interaction

My work addresses the need for systematic support for non-repudiation in B2B interactions.

As discussed in Section 1.2, there is also a need for higher-level services to determine whether

business partner actions comply with business agreements. This compliance must be con-

firmed at run-time and the validation of actions must also be non-repudiable. Validators should

be accountable for the outcome of their validation processes. As previously stated, it is there-

fore a requirement on the proposed non-repudiation middleware that validation with respect to

agreements can be triggered during an interaction and that the outcome of validation integrated

with the generation of non-repudiation evidence. This section considers higher-level validation

services for which the middleware can provide a supporting non-repudiation infrastructure.

There has been considerable work recently on the use of business contracts to derive rules

to mediate B2B interactions. The basic premise is that real-world business partnerships are

governed by natural language business contracts. Therefore, the corresponding electronic B2B

interactions should be regulated by an electronic contract that is somehow equivalent to or

derived from the natural language contract. Much of the literature concentrates on formalisms

for expressing contract clauses. The intention is that these formalisms can be used to verify

properties of an electronic contract such as its internal consistency. Ideally, an executable

contract can be derived from its formal representation and this executable contract can then be

used to regulate interactions at run-time. A typical model is that, conceptually, the executable

contract sits between interacting parties and, by some mechanism, enforces the clauses of the

contract. Variations in the work range from the formalisms developed to the general practical

applicability of a given approach. To give a flavour of the research area, I review relatively

mature work by groups at Rutgers University, at the Distributed Systems Technology Centre

(DSTC) in Brisbane and by colleagues at Newcastle University. First, I discuss foundational

work by Clark and Wilson on enterprise security policy.

2.3.1 The Clark-Wilson security model

The Clark-Wilson model [CW87] was the first rigorous treatment of security policy in the

commerce (enterprise/business) domain. Hitherto, work on security policy had been driven by
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requirements from the military domain and concentrated on the problem of regulating informa-

tion disclosure, which was considered of paramount concern to the military and to government

departments. Such work addressed the classification of information according to its sensitivity

and concentrated on mechanisms to enforce policies with respect to the disclosure and declas-

sification of information. Data integrity was a secondary concern, if considered at all. The

key insight of Clark-Wilson was that in the commercial environment, or within the enterprise,

preventing disclosure may be important but the paramount concern is to prevent unauthorised

modification to information and, thereby, ensure data integrity. For example, the prevention of

fraud and errors is often of greater importance than preventing accidental disclosure of infor-

mation. In their view, enterprise security policy should emphasise who can do what to some

data as opposed to who has access to it. From this distinction they concluded that new mech-

anisms were needed to enforce enterprise security in a computerised system. They identified

the two key notions of the well-formed transaction and the separation of duties. In a well-

formed transaction, users are not allowed to manipulate information arbitrarily and changes to

information should be logged for the subsequent audit of actions. To address the separation of

duties, they suggested that the computer system that provides access to data should separate

operations on the data into sub-parts that must be executed by different users. In consequence,

the different actors are accountable for their actions.

Clark-Wilson distinguish between traditional security policy in the military domain that

was primarily concerned with granting of access to information and the need to place greater

emphasis on preserving integrity when operating on information in the commercial domain.

In the military domain, information is associated with a security level, the user demonstrates

a right to access information at that level, and the user is then granted permission to read

or write the information. In the commercial domain, they suggested that information should

be associated with a set of programs (or operations) to manipulate the information. Then

the user is granted permission to execute certain programs. Thus in the traditional military-

inspired policy, the user is constrained by the data items that they can read or write. Given

write permissions, they can modify the data in any way they wish. In contrast, Clark-Wilson

proposed that users be constrained by the programs that they are allowed to execute. The actual
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manipulation of data is implicit in the actions of these programs. They formalised this model

with the notion of verified transformation procedures that enforce well-formed transactions.

The transformations to information respect an organisation’s integrity rules and are logged for

audit.

The Clark-Wilson model concerns enforcement of policy within organisations. However, it

is of relevance to the other work presented here. It is both foundational work on enterprise se-

curity policy and introduces the notion of mediators to enforce policy. Verified transformation

procedures mediate the actions of users on an organisation’s information. This is analogous

to the use of some form of electronic contract to mediate interactions between organisations,

or between the services offered by organisations, and to enforce agreed polices that govern

the interaction. Their notion of well-formed transactions is particularly relevant to access and

update to shared information. In essence, the service for non-repudiable information sharing

defined in Section 3.3 ensures that actions are well-formed from the viewpoint of the business

partners that share the information.

2.3.2 Law Governed Interaction

Work at Rutgers University on Law Governed Interaction (LGI) [MU00] represents one of the

earliest attempts to provide regulated coordination between autonomous organisations. In LGI

a law, expressed in a restricted form of Prolog, determines the validity of messages that can be

sent between independent agents (computer or human) that form the system to be coordinated.

The law is the coordination policy that the agents agree to abide by to achieve some common

goal. Trusted controllers enforce a well-formed law by intercepting messages sent between

agents. The implementation of LGI, called Moses, ensures that all communication between

agents in the system is routed through controllers. The placement and operation of controllers

is flexible. A controller may be co-located with an agent or may execute on a server on the

Internet. One or more agents may be assigned to a single controller. A given controller may

enforce one or more laws with respect to the agents that are assigned to it. The controller

decides what to do with a message according to event-condition-action (ECA) rules encoded

in the law.
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Figure 2.7: LGI message processing

Figure 2.7 illustrates how LGI handles the sending of a single, valid message, m, from

agent X to agent Y. Conceptually, a controller is assigned to each agent — CX for agent X and

CY for agent Y. Each controller maintains its own control state (CSX and CSY , respectively)

and carries the same law, L. Control state CSX is a bag of Prolog-like terms that represent the

attributes of agent X. An example attribute of X may be X’s role under L. The semantics of the

control state are defined by the prevailing law. CSX is not directly accessible to agent X, or any

other agent, and can only be updated by operations that controller CX invokes in response to

events that occur under law L.

LGI distinguishes between regulated events and primitive operations. Regulated events

occur at controllers and are subject to the prevailing law, triggering actions for conditions

specified in the law. Figure 2.7 shows two regulated events. The sent event at CX occurs

when message m arrives from CX ’s agent X. The arrived event at CY occurs when message

m arrives from agent X via CX . Other events include notification that an obligation is due and

notification that an exceptional condition has occurred. The law specifies primitive operations

for a controller to perform for a given regulated event. As shown, these include operations to

update control state and to forward and deliver messages. Given these elements of LGI, law

L specifies a set of ECA rules that controllers CX and CY are trusted to observe. The arrival

of message m at CX triggers the sent event. When CX detects this event, it evaluates L with

respect to the event and its current control state CSX (the condition) and performs any actions

that are specified by L. In Figure 2.7, the obligation on CX is to forward valid messages to

CY . Forwarding m results in an arrived event at CY . In turn, CY evaluates this event with

respect to L and its control state CSY . The action taken by CY is to deliver m to agent Y. It is
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possible for L to specify a variety of obligations on CX and CY that are fulfilled when a message

arrives. For example, they may be required to log the message or they may be required to take

some corrective action if the message is invalid with respect to L. Controllers sign all messages

they send along with a digest of the prevailing law. CX appends a signature over {m, L} to m

before they forward it to CY . The signature cryptographically binds m to L and represents CX ’s

non-repudiable assertion that m is valid with respect to L.

LGI is not restricted to interaction between two agents. The interaction in Figure 2.7 can

be extended to communication between multiple agents. LGI also caters for events other than

the arrival of message at controllers.

LGI has been applied to a number of application scenarios. A recent example is the regula-

tion of distributed coalitions [AM03] where it was shown how a hierarchy of policies governing

the coalition can be enforced by LGI and how LGI-based policies can be federated between

coalitions.

Assuming all messages are mediated by controllers that interpret the same law and that all

the controllers behave correctly, agents will only receive messages that comply with the law.

Controllers are similar to Clark-Wilson’s verified transformation procedures. The controllers

ensure that agents only exchange valid messages and, in consequence, comply with agreed

interaction policy.

There is no systematic support for audit or non-repudiation with respect to the actions of

agents in the coordinated system. Furthermore, there is no systematic provision for acknowl-

edgement, or NRR, of messages. To meet these requirements within LGI, the law in force

would have to explicitly impose the necessary obligations on controllers. For example, con-

trollers would be obliged to drop messages that had not been signed by an agent and would be

obliged to provide some form of NRR for messages before forwarding them to agents. This

implies a considerable amount of trust in the correct behaviour of controllers. To guarantee

fairness, the law would oblige the controllers collectively to perform the function of the in-line

TTP in the Coffey-Saidha protocol (see Section 2.2.2.1).

LGI relies on the interpretation of messages with respect to a law. However, it is not clear

what form the messages take and, therefore, how or whether LGI could interoperate with pre-
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existing service offerings.

2.3.3 Work at the DSTC, Brisbane

A common theme in research on electronic contracts has been the development of logical no-

tations that aim to completely specify business contracts. Such specifications include temporal

constraints, role players and their relationship to policies that are internal to an organisation.

One of the more influential examples is the work of Milosevic et al at the DSTC in Brisbane

[MD02, MGL+04]. They define a contract as a set of policy statements that specify constraints

in terms of permissions, prohibitions and obligations for roles involved in the contract. A role

is an entity that can perform an action. In [MD02], the transformation of natural language

contracts into forms suitable for verification for consistency and for run-time monitoring is

addressed in two phases.

In the first phase, they specify the expected behaviour of contracting parties using a formal

behaviour tree notation. Their methodology is inspired by research on Genetic Software En-

gineering. The natural language contract is treated as an informal set of requirements. These

requirements are translated into the formal structure and notation of a behaviour tree. The

nodes of the tree identify contract components (including actors and users), the states they re-

alise, the events and decisions they are associated with, the data that is exchanged, and causal,

logical and temporal dependencies associated with component interactions. Nodes of the tree

are tagged for traceability to clauses in the original contract. They can also be marked to in-

dicate behaviour that is missing from, or only implied by, the original contract. Advantages

claimed for behaviour trees include their expressive power, their notational simplicity, their

ease of composition and their ability to expose behavioural defects. The methodical refinement

of a behaviour tree model, and the identification of integration points between sub-trees of the

model, can lead to a complete and defect-free formal specification of a contract. The model can

also be extended to incorporate policy external to a contract, such as an organisation’s internal

policy. Although there is some tool support for the use of behaviour trees in software engineer-

ing, there is currently none for their application to formal contract specification. Therefore,

building the behaviour tree model and detecting defects is essentially a manual process. The
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authors liken this to solving a jigsaw, where the solution is revealed by the pieces and the be-

haviour tree identifies the correct position of the pieces. By inspection of the model as it is

built, defects can be detected. New pieces can be added both to model behaviour that was an-

ticipated in the original contract and to remedy behavioural incompleteness, adding behaviour

that was unforeseen but is necessary for correctness. Thus, a solution to the jigsaw is found.

The second phase of the transformation is to derive a form of contract that can be used

for run-time monitoring of business interactions. For this phase, Milosevic et al have defined

a Business Contract Language (BCL) that expresses policy statements (contract clauses) in

terms of deontic logic constraints. Deontic logic concerns reasoning about notions such as

obligation, permission, prohibition and authority. BCL describes constraints on the behaviour

of contracting parties. It allows the specification of what parties or role-players are permitted,

prohibited or obligated to do under various temporal and other constraints. The BCL policy

statements can be interpreted at run-time to monitor the actual behaviour of participants with

respect to contract. There is no tool support to derive a BCL contract that is amenable to run-

time monitoring from a behaviour tree specification. This is a manual process in which the

behaviour tree specification acts as a guide to programming in BCL.

Figure 2.8: The DSTC business contract architecture
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Figure 2.88 shows the business contract architecture proposed in [MGL+04]. This archi-

tecture is intended to support the full life-cycle of contract management. The core components

are: (i) a Contract Repository that stores standard contract templates and clauses to construct

contracts, (ii) a Notary that stores evidence of agreed (signed) contract instances, (iii) an Inter-

ceptor to (unobtrusively) intercept business messages that are subject to contract monitoring,

(iv) a Business Activity Monitor (BAM) that processes events generated by the Interceptor and

that accesses application state that is required for policy evaluation by the Contract Monitor, (v)

a Contract Monitor that evaluates BCL-encoded policies with respect to event and application

state processing by the BAM component, (vi) a Notifier that sends notification messages such

as reminders of tasks to be performed and violation detections to contract managers, and (vii) a

Community Manager that allows contract administrators to update roles, policies etc. Contract

Manager operations are also checked for validity by the contract monitor and BAM compo-

nent. Additional, optional, components are envisaged to enforce contract clauses (as opposed

to monitoring for their violation) and to validate contract specifications.

The unobtrusive interception of business messages and the processing of messages by the

BAM component prior to evaluation suggests that the system could be adapted to provide

systematic monitoring in different execution environments. The DSTC work does not consider

accountability for actions.

2.3.4 Work at Newcastle University

In contrast to research on formal notations that attempt to fully specify contracts and detect a

large range of inconsistencies, colleagues at Newcastle University adopt a modular approach

[MJSSW04, MJSW05]. Complex contracts are divided into individual sub-contracts that can

be formally described and verified to detect ambiguities. If necessary, their composition can

also be verified. Two independent sources of inconsistency are identified: (i) internal enter-

prise policies that conflict with contractual clauses, and (ii) inconsistencies within and between

contract clauses. In the Newcastle work, enterprises are considered black boxes and, therefore,

the former source of inconsistency is considered the concern of each autonomous enterprise.

8Taken from [MGL+04].
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Instead they concentrate on the latter source of inconsistency and on the contract compliance

of the cooperative behaviour of enterprises as opposed to their internal structure.

The widely-used Promela modelling language [Hol91] is used to model the clauses of a

natural language contract. In [MJSW05], Molina et al show how Promela can represent permis-

sions, obligations, prohibitions, agents, time constraints and message type checking. It is not as

expressive as languages such as BCL. However, a significant advantage is that a Promela repre-

sentation of a contract can be verified using the associated SPIN model-checking tool [Hol04].

Correctness properties that can be checked include: that there are no unreachable states in a

contract, that a contract is free of deadlocks, that contracting parties do not receive unsolicited

responses, and that deadlines are observable with appropriate corrective action. The Promela

model of a contract can be refined until it is free of ambiguities and all desired correctness

properties are satisfied. This is assumed to be an iterative process where the natural language

contract is updated in step with the Promela model. This provides a correct, implementation-

neutral version of the contract that can be further refined to produce an implementation-specific

version of the contract. The implementation-specific version of the contract is also amenable to

model-checking but includes details such as additional acknowledgement and synchronisation

messages that are specific to the implementation environment and standards selected. Example

implementation standards include the RosettaNet PIPs specification of business conversations

[Ros05].

From the Promela models it is straightforward to derive one or more finite state machine

(FSM) models of the contract (see [MJSSW04]). These FSMs encode the run-time constraints

on the observable behaviour of the contracting parties. Implementations of the FSMs then

monitor and enforce contract clauses at run-time. In essence, the FSM implementations per-

form the same function as controllers in LGI. They react to events such as the interception of a

message sent between contracting parties or the expiry of deadlines. Depending on the state of

an FSM, the event may result in the sending of a new message and/or transition to a new FSM

state (equivalent to the update of LGI control state).

In [MJSW05], Molina et al present four models for deployment of executable contracts

(x-contracts). Figure 2.99 illustrates three of these for a contract that governs the interaction
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Figure 2.9: x-contract deployment models

between a buyer (B) and seller (S). The x-contract is an implementation of an FSM derived

from a verified contract model. As shown, for a two-party interaction there is either a single

x-contract that sits between the parties or the x-contract is split into parts that monitor the

interaction at each party. The four deployment models follow.

• Reactive central (see Figure 2.9a) where the x-contract is deployed centrally. It is re-

active because the x-contract (1) intercepts messages, (2) analyses the messages with

respect to contract, and then either (3) forwards legal messages or (3′) drops illegal mes-

sages.10

• Proactive central (see Figure 2.9b) where the x-contract is also deployed centrally but

proactively coordinates the conversation between contracting parties. The x-contract (1)

sends an invitation to a business party, (2) receives the response, (3) analyses the response

with respect to contract, and then either (4) forwards legal responses or (4′) drops illegal

responses.

• Reactive distributed (see Figure 2.9c) where the x-contract is split into parts that can be

9Taken from [MJSW05].
10Other actions may be taken in response to illegal messages, but illegal messages are not forwarded.
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deployed at each participant to reactively regulate the interaction from the point of view

that participant.

• Proactive distributed where the x-contract is split into parts that can be deployed at each

participant to proactively regulate the interaction from the point of view that participant.

Molina et al address the high-level aspect of regulation identified in Chapter 1. Aspects such

as accountability, audit and the mechanisms to invoke validation with respect to contract at

run-time are the concern of the work presented in this dissertation.

2.4 Middleware support for non-repudiation and accountability

In this section I present the most significant examples of existing middleware support for non-

repudiation and accountability. Apart from the FIDES project (see Section 2.4.1.2), as far

as I am aware existing middleware support is restricted to various forms of voluntary non-

repudiation — it does not address the selective receipt problem discussed in Section 2.2. Only

the work by BEA (see Section 2.4.2) provides any form of systematic support for account-

ability and audit in contract-mediated interactions. Section 2.4.1 discusses academic research.

Section 2.4.2 discusses commercial systems. The emergence of commercial systems demon-

strates an increasing awareness beyond academia of the need for non-repudiation services to

support B2B interactions.

2.4.1 Research systems

In this section I describe the two existing research systems that provide middleware, or middle-

ware-based, support for non-repudiation. Section 2.4.1.1 presents early work that provides

non-repudiation of origin for remote method invocation in CORBA. Section 2.4.1.2 describes

the FIDES system for fair, non-repudiable document exchange. I conclude this section with a

discussion of provenance and provenance services and their relationship to non-repudiation.
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2.4.1.1 CORBA and non-repudiation

The CORBA security specification [OMG98] specifies an optional non-repudiation service that

is under control of applications, is not used automatically at object invocation, and, therefore, is

only available to applications that are aware of the service. The application must directly invoke

the non-repudiation service to generate and verify evidence, and must append non-repudiation

tokens to application-level messages. The specification identifies the following components

of non-repudiation evidence: the policy (or policies) applicable to the evidence, the type of

action or event, and the parameters related to the type of action or event (including the date

and time). Non-repudiation of origin and non-repudiation of receipt are identified as common

types of evidence required. The specification also mentions the use of a delivery authority

to provide third-party proof of origin and proof of delivery. The only mandatory part of a

Figure 2.10: CORBA non-repudiation service: mandatory and optional components

CORBA-compliant non-repudiation service is a component for evidence generation and veri-

fication — the shaded box in Figure 2.1011. However, as shown in Figure 2.10, other service

components for evidence storage and retrieval, for third-party delivery, and for adjudication

may be deployed depending on the choice of mechanism or policy. Note that Figure 2.10 also

shows application objects interacting directly with the non-repudiation services — the appli-

cation objects are “non-repudiation aware”. The specification is silent on how mechanisms are

chosen or how policy is specified.12 Other than noting that a delivery authority may be used to

11Taken from [OMG98].
12In this dissertation I assume that business partners agree a non-repudiation policy. The non-repudiation services

described in Chapter 3 are designed to be able to adapt to use mechanisms that are appropriate to the policy in force.
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protect against false denial, the specification does not address fairness in the exchange of evi-

dence. As Alireza et al [ALP+00] observe, the specification is incomplete and unsatisfactory in

many other respects. For example, there is no agreed representation of evidence, which leads

to interoperability problems. They also note that there are no known implementations of the

CORBA non-repudiation service, mainly because it relies on CORBA security level 2 and is

an optional extension to the specification.13 It should be noted that no other common middle-

ware platform (J2EE, .NET or Web services) even provides a specification for non-repudiation

services.

Wichert et al [WIC99] take a different approach to non-repudiation in CORBA. They

present a service for transparent14 non-repudiation of remote invocation of CORBA objects.

They share some of the same design goals that have driven my work. For example, their

system aims to place as little additional burden on application programmers as possible by

systematically generating non-repudiation evidence at the middleware level. In the Wichert

system, application objects, such as a purchase order, are responsible for defining the format

of non-repudiation evidence and application programmers tag object interfaces to indicate the

requirement to generate non-repudiation evidence. The non-repudiation service then automati-

cally generates evidence at run-time, transfers the evidence with an object invocation, and ver-

ifies and stores the evidence. CORBA filters (invocation path interceptors) are used to achieve

this transparency.

Figure 2.1115 uses the example of non-repudiation of submission of an order to illustrate the

Wichert service. In the standard application a client simply invokes the process_order method

of a shop object that is hosted by a Marketplace service. The parameter to the method call is an

offer object that the Marketplace service had previously provided to the client for their accep-

tance. The client signals their acceptance of the offer by invoking the process_order method.

It is this acceptance that should be rendered non-repudiable. To achieve this, an outgoing filter

13The MICO ORB <http://www.mico.org/> is level 2 compliant and there is a claim at <http://www.ito.tu-
darmstadt.de/projects/corbasec/index_en_html> that it also provides a CORBA-compliant non-repudiation service.
However, I can find no evidence of this support in either the MICO documentation or the latest version of the
downloadable source code. In 2005, Goovaerts et al [GDWJ05] also reported that they know of no existing imple-
mentation.
14Transparent in this context means transparent to the application objects.
15Taken from [WIC99].
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Figure 2.11: Wichert et al’s CORBA-based transparent non-repudiation

intercepts the method invocation and generates a non-repudiation token, including a signature

over the XML representation of the offer. The token is appended to the request and both are

transmitted to the Marketplace service. An incoming filter at the Marketplace service verifies

the evidence in the non-repudiation token and, if valid, sends the token to a TrustManager ser-

vice. The TrustManager is responsible for secure storage and retrieval of evidence, as defined

in the CORBA security specification. The verified request is then passed to the host shop object

for processing.

The approach taken by Wichert et al is asymmetric. The client provides non-repudiation

of origin of a service invocation. There is no exchange to provide corresponding evidence of

receipt to the client. Nevertheless, this is the first known middleware implementation of a non-

repudiation service. Furthermore, the authors make the key insight that there must be an agreed

representation of non-repudiation evidence for the evidence to be useful. To address this, they

settled on an XML representation of object state and non-repudiation evidence.

2.4.1.2 The FIDES project

The FIDES project [NZB04] provided services, including TTP services, and an associated

application for fair exchange of business items (documents). The project addressed two prob-
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lems: (i) the development of a family of efficient, deterministic fair exchange protocols, and

(ii) the design and implementation of a system for execution of the protocols. I will provide an

overview of the characteristics of the protocols that have been developed and then concentrate

on the FIDES system for protocol execution.

The FIDES protocols apply to the exchange of two types of business item: (i) confidential,

certified e-goods, where the content and/or quality of the goods has been certified by some

independent authority, and (ii) digital signatures on documents such as contracts. The protocols

have a common structure: a normal exchange protocol for the optimistic exchange of items,

and a recovery protocol that involves a transparent, off-line, semi-trusted third party (STTP)

to allow a well-behaved party to recover from the misbehaviour of another party. The TTP

is considered semi-trusted because it is assumed that they may misbehave by attempting to

decrypt encrypted items but they do not collude with the other parties to an exchange. The

following requirements are satisfied by each protocol in the family: fairness; non-repudiation;

confidentiality of exchanged items — no party external to the exchange, including the STTP,

will gain any knowledge of the items; content and/or quality assurance of e-goods; reduction

in the involvement of the STTP; and transparency of the STTP. Further details of the protocols

can be found in the project publications cited in [NZB04].

Figure 2.12: FIDES architecture

Figure 2.1216 provides an overview of the FIDES system architecture. Each enterprise

hosts a FIDES server and a set of one or more FIDES clients. A FIDES STTP server is available

16Taken from [NZB04].
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for dispute resolution. Within an enterprise, users interact with the FIDES system through GUI-

based clients that provide secure access to the services hosted by their local FIDES server. As

shown, the FIDES server at one enterprise executes fair exchange protocols with a peer server

at another enterprise. FIDES servers also execute recovery protocols with the STTP server.

Items for exchange are stored in a secure database. FIDES services are implemented on a

J2EE application server. Java Messaging Service (JMS) is used for both client-to-server and

server-to-server communication.

A typical FIDES exchange proceeds as follows. A user at Enterprise 1 uses a FIDES client

to specify both a previously stored item to be sent to Enterprise 2 and the item they expect in

return from Enterprise 2. They may also specify a transaction timeout. The user’s transaction

specification is sent to FIDES server 1 that, in turn, initiates negotiation of the exchange param-

eters with FIDES server 2 at Enterprise 2. Parameters to negotiate include: exchange protocol

to use, a mutually trusted STTP, a transaction identifier, and an agreed timeout value. FIDES

server 2 then notifies an appropriate Enterprise 2 user of the specified transaction request. The

user at Enterprise 2 uses a FIDES client to browse transaction requests and decide whether

to confirm acceptance of any pending transaction specifications. If a transaction is accepted

then the specified items are exchanged between the FIDES servers using the agreed exchange

protocol. The servers deploy the protocol implementation from a protocol library.

As far as I am aware, FIDES and our work at Newcastle are the only service-based imple-

mentations of fair exchange. A drawback of the FIDES approach is that the only interaction

with the exchange protocol service is through FIDES application clients. There is no published

API for client-side interaction with a FIDES server or for the server-to-server execution of pro-

tocols. Users are restricted to an application-specific mechanism for the exchange of items.

Other than user agreement to involvement in an exchange, there is no support for run-time

validation of the interaction with respect to contract. Any contractual constraints that should

be imposed must be dealt with during negotiation of the items to be exchanged, and of the

parameters of the exchange.
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2.4.1.3 Provenance services

Data provenance can be defined as information, or meta-information, “. . . that helps determine

the derivation of a data product, starting from its original source” [SPG05]. Alternatively, “. . .

the provenance of a data item . . . ” is the “. . . process that produced the data” [MGBM06].

That is, the recorded provenance of data tells us how the data came into being. The advent of

Grid computing, particularly in support of e-Science, has led to considerable interest in data

provenance and provenance services. An example application in e-Science is the recording

of the experimental processes leading to a set of scientific results. The collected provenance

information can be used to verify that a correct process took place and, potentially, to replay

an experiment. The provenance of data is also of interest in other domains, such as the long-

term maintenance of accounting information from which a financial audit report was derived.

Simmhan et al [SPG05] provide a useful survey of data provenance in e-Science. This in-

cludes a taxonomy of provenance services by: (i) the use of provenance information — data

quality, audit, replication, attribution, informational; (ii) the provenance subject — process or

data, and granularity; (iii) its representation; (iv) the storage method; and (v) dissemination or

access method. They also characterise a number of provenance research systems for e-Science

according to the taxonomy.

Provenance services and non-repudiation services address some of the same requirements.

Both are concerned with the attribution, accountability and audit of actions that, electronically,

are represented by the creation of data. Provenance services address a number of additional,

higher-level concerns. For example, the PASOA project gathered requirements from various

use cases to arrive at the proposed provenance architecture shown in Figure 2.1317. There are

functions to record, process, query and present provenance information. There are services to

support re-enactment. There is a need to attach domain-specific meta-information (semantics)

to data as it is collected.

Simmhan et al identify the federation of provenance information and support for the asser-

tion of its truthfulness as open research questions with respect to the usability of provenance

information across organisations. This suggests that actors must be held to account for the in-

17Taken from [MGBM06].
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Figure 2.13: PASOA provenance architecture

formation that they generate. The PASOA project [MGBM06] also identifies non-repudiation

as an important requirement. For example, they highlight the need for irrefutable evidence to

support patent applications. Also, in [GLM04], they present a protocol for post-hoc agreement

on provenance information that has been recorded with TTP provenance store(s) by different

parties to an interaction. In [MJSW05], colleagues propose the use of non-repudiable infor-

mation sharing, as defined in Section 3.3, in order to periodically synchronise the agreed view

that participants have of an interaction. This is very similar to the purpose of the protocol used

in the PASOA project. In both cases the intended outcome is that interacting parties have a
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consistent view of interaction state. In the PASOA project, that view is arrived at, or imposed,

by one or more trusted provenance stores. It is not clear how non-cooperation of interacting

parties is handled in the PASOA project nor do they specify underlying mechanisms for non-

repudiation. The work I present in this dissertation, and proposed future work, is of relevance

here. An avenue for investigation is how non-repudiation services that generate and record

irrefutable evidence of interactions can be used to generate the meaningful audit trails that are

at the heart of provenance services. I will return to this topic when I discuss future work in

Chapter 6.

2.4.2 Commercial systems

Various companies are beginning to offer XML firewall solutions that perform various security

functions such as applying encryption and signatures to outgoing messages, and the decryption

and verification of incoming messages. For example, DataPower [Dat04] offer XML process-

ing in hardware that can apply cryptography to XML documents at "wire-speed". The Verisign

Trust Gateway [Ver04] is a server-based organisational gateway to secure SOAP-based mes-

sage exchanges. Enterprise applications are then deployed behind the gateway and requests

to the application can be encrypted and decrypted at the gateway. Signatures can also be ap-

plied and verified at the gateway. Optionally, a business partner can also deploy the Verisign

Partner Gateway and facilitate the exchange of non-repudiation of origin of a client request for

non-repudiation of its receipt. This approach could also be used to exchange evidence of the

enterprise application response. This corresponds to the simple exchange shown in Figure 2.2

on page 37. The gateway also provides configurable message logging. It is not clear whether

trusted time-stamping is provided or whether client request and server response are correlated

in the non-repudiation evidence. There are other similar offerings in the marketplace. All

of them provide some form of voluntary non-repudiation. They are essentially variations on

a Wichert style non-repudiation service. The variations are whether non-repudiation of re-

ceipt is provided and on the provision of supporting services such as access to a PKI, trusted

time-stamping and message logging. None address the selective receipt problem described in

Section 2.2.
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Figure 2.14: BEA WebLogic Trading Partner Integration Engine

The BEA WebLogic application server [BEA05] offers an alternative approach to firewall

solutions. As shown in Figure 2.1418, their Trading Partner Integration Engine (TPIE) is an

optional service that is integrated with the application server. Non-repudiation is provided as

a component of the TPIE. This is similar to the provision of non-repudiation as a container-

level service that I describe in Chapter 5. The BEA approach is for trading partners to agree

protocol bindings for their business conversations. Currently they provide bindings for the

RosettaNet PIPs [Ros05] and ebXML [GEN+01] standards. The protocol binding to use at

run-time is then configured in the B2BDefaultWebApp component of each partner’s TPIE.

The trading partners have the option to apply signatures to the messages of the given business

18Taken from [BEA05].



76 2.5 Discussion

protocol. The non-repudiation service handles application and verification of signatures at run-

time. The service also provides audit and time-stamping services. BEA have defined interfaces

to these support services and allow the plug-in of third-party services that comply with these

interfaces. This is similar to the approach taken to the definition of interfaces for supporting

services in Section 4.3. The BEA system is interesting because they provide non-repudiation

of business message exchanges that are validated with respect to the business protocol binding

in use. This is form of regulated B2B interaction. The non-repudiation is voluntary. There

is no support for fair exchange. Both non-repudiation and validation with respect to contract

are only available for the supported business protocol bindings. They cannot be applied to

more general interactions. For example, it is not possible to verify that a composition of PIPs

is adhered to correctly (see Chapter 6). Nevertheless the TPIE does represent an example of

systematic non-repudiation and validation with respect to a form of contract.

The Universal Postal Union have proposed a Global Electronic Postmark (EPM) standard

[UPU02]. This is a TTP service provided by postal administrations for the generation, verifica-

tion, time-stamping and storage of non-repudiation evidence. The service supports linking of

evidence under a unique transaction identifier to allow the binding together of business transac-

tion events. There is no support for exchange of evidence between end users. The EPM service

can be seen as an on-line backend TTP service that non-repudiable exchange services can use

for secure time-stamping, storage and linkage of evidence. If widely adopted, EPM services

could offer the assurance that evidence will be accepted by postal administrations worldwide

and, therefore, the likelihood of the acceptance of evidence by arbitration authorities.

2.5 Discussion

The work surveyed in Section 2.2, and the protocols developed in the FIDES project, can

be viewed as the basis for a toolkit of mechanisms to achieve non-repudiable exchange with

and without a fairness guarantee. The surveyed work illustrates the need to be able choose

mechanisms that are appropriate to a given application context. An aim of my work is to

provide a flexible framework for deployment of mechanisms that underpin the non-repudiation

services proposed in Section 1.3.
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The FIDES project adopted a flexible approach for the family of protocols that they have

developed in support of the exchange services that they provide. Unfortunately, their system

cannot be used for the systematic regulation of B2B service interactions because it is not pos-

sible to use FIDES servers as interceptors in the B2B service invocation path. To use their

system as middleware-level interceptors, we require an API for the FIDES server functionality.

This functionality is currently only accessible through FIDES client applications. Similarly,

the lack of an API for protocol execution between FIDES servers limits their solution to their

family of protocols. If APIs were provided, then it is conceivable that the FIDES system could

be used to provide the services I present in this dissertation. Similarly, it should be possible to

build a FIDES-like document exchange application using my non-repudiation services.

Wichert et al did use invocation path interception. Their approach is closer to my work

on non-repudiable service invocation than to the FIDES work. However, Wichert et al did not

address the issues raised in Section 2.2, such as how to guarantee fairness and the need for a

choice of exchange mechanism. A significant insight of their work is the need for an agreed

representation of the information exchanged. In my work the exact representation is assumed

to be a matter for agreement between interacting parties. The important requirement is that

the representation can be subsequently rendered meaningful and irrefutable. I therefore allow

configuration for different agreed data-bindings (see Section 4.2.3).

The commercial systems surveyed in Section 2.4.2 are of interest because, apart from the

BEA system, they could be used as the support infrastructure for an exchange protocol exe-

cution framework. The commercial system could provide delivery and verification of signed

messages, message logging etc. The protocol execution framework could drive the exchange

of evidence according to application requirements. The BEA system is problematic in this re-

spect because of the tight-coupling of non-repudiation to high-level business protocols. This

coupling makes it difficult to insert an exchange protocol layer between the business protocol

and signed message delivery.

The work on contract-mediated interaction is complementary to my work. All of the ap-

proaches surveyed could benefit from the systematic generation of an irrefutable audit trail of

an interaction to hold actors to account for their actions. The Newcastle work explicitly de-
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fers this support to the services I have developed. I assume that the interceptors in the DSTC

business contract architecture could be adapted to use my services for non-repudiation. LGI

provides non-repudiation of messages between trusted controllers but not of messages from

the agents that are assigned to a controller. Since there may be a one-to-many relationship

between a controller and an agent, it cannot be assumed that the controller’s non-repudiation

evidence can be used to hold an agent to account. Therefore, either the LGI law in force must

oblige controllers to guarantee the exchange of appropriate evidence or the LGI system must

be adapted to include an additional interception layer between agent and controller in order to

provide systematic non-repudiation of agent actions.

To conclude, Section 2.2 provides an overview of the substantial literature on security

protocols for non-repudiation and fairness. Section 2.3 samples the active research area of

electronic contracting that is, for the most part, complementary to the work presented in this

dissertation. There has been much less work on systematic support for non-repudiation. There

is still less that takes account of the fundamental work in Section 2.2. As far as I am aware,

there is none that also addresses the requirement for the validation of B2B interactions with

respect to contract that is evident from the work in Section 2.3 or that meets the requirement to

adapt to different application contexts. None of the related work provides the non-repudiable

information sharing service defined in Section 3.3. The remainder of this dissertation addresses

these gaps with a flexible approach to the provision of non-repudiation services, thereby meet-

ing the requirements identified in Chapter 1.
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Chapter 3

Definition of non-repudiation services

Chapter 1 identified two domains for B2B interactions — one in which business partners ac-

cess, or act upon, each other’s private (autonomously owned) resources or information, and the

other in which business partners act upon shared resources that they jointly own. In the first

domain, business partners, and third parties, provide services that allow controlled access to

their resources. The resources remain wholly under the control of the organisation providing

the service(s). Business partner clients use service invocations to perform actions in this do-

main. Agreements between business partners may determine the obligations and rights of both

the client and the service provider with respect to service usage. In the second domain, actions

are performed on information that is shared by a group of business partners. Each member

of the group has the right to access and update the shared information. However, these rights

should only be exercised with the agreement of the other members of the group who jointly

own the information. As established in Section 1.2, there is an overarching requirement to

enforce agreements that constrain the actions that business partners may perform in each do-

main. To meet this requirement, I identified the need for support to hold actors to account for

their participation in B2B interactions. Section 1.3 proposed two services intended to meet the

various requirements identified in Section 1.2, one for each of the domains of action. The first,

non-repudiable service invocation, aims to ensure that both parties to a client-server interaction

obtain non-repudiable evidence of both the request phase and any associated response phase of

the invocation. The second, non-repudiable information sharing, ensures that all parties shar-

ing information have the same, irrefutable view of that information and of the membership of

the group that shares the information. Further challenges when providing these services are
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that they should both be able to adapt to use different underlying mechanisms (non-repudiation

protocols) to meet different requirements and that they should not violate application-level ab-

stractions. In this chapter I provide detailed definitions of these services. Their design and

implementation is novel. As discussed in Chapter 2, there is no other work that combines

fundamental work on non-repudiation with the flexibility to apply that work as middleware

services to regulate B2B interactions at run-time and at the same time maintain application-

level abstractions. The coverage of this work, across the two domains for B2B interaction, is

also unique.

Section 3.1 introduces the abstraction of interceptor-mediated interaction that supports the

two non-repudiation services. Mediation is fundamental to the flexibility of the services and

the preservation of application-level abstractions. Section 3.2 defines non-repudiable service

invocation. This is based on the execution of non-repudiation protocols of the type described

in Section 2.2. Section 3.3 defines non-repudiable information sharing. This includes the defi-

nition of the meta-information used to describe transitions in shared information and a detailed

description of the protocols used to coordinate transitions. Section 3.4 provides an overview of

supporting infrastructure for the two non-repudiation services. The chapter concludes with an

evaluation of the non-repudiation services. Then Chapters 4 presents a generic framework for

their implementation as middleware that is described in Chapter 5.

3.1 Interceptor-mediated interaction

This section introduces the abstraction of interceptor-mediated interaction. Each participant in

a multi-party interaction has an interceptor that acts on their behalf to meet regulatory require-

ments. For the purposes of the non-repudiation services presented in this chapter, a participant’s

interceptor has four main functions:

1. to manage the participant’s involvement in regulation,

2. where appropriate, to subject the actions of other participants to local, application-level

validation,

3. to insulate the participant from the incorrect behaviour of other parties and, in particular,
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from invalid actions proposed by other parties, and

4. to preserve the application-level semantics of a given interaction at the same time as

addressing regulatory requirements.

The interceptors protect the interests of the party on whose behalf they act by executing appro-

priate protocols and accessing appropriate services, including TTP services, while abstracting

away the details of the mechanisms used. This is similar to the well-known proxy design pat-

tern [GHJV93]. In this case, interceptors can be seen as as proxies for the participants that

handle the regulatory aspects of their interaction. In contrast to LGI controllers, interceptors

are owned by the party on whose behalf they act and are not necessarily trusted by any other

party. That is, for two business partners, A and B, B will have no more trust in the correct

behaviour A’s interceptor than they do in the correct behaviour of A. In fact, from the point of

view of A and B, the involvement of the interceptors that mediate their interaction is transpar-

ent. As an example, Figure 3.1a shows A sending a business message to B. To regulate delivery

(a) A sends business message to B

(b) interceptors mediate interaction on behalf of A and B

(c) interceptors access TTP services to support interaction

Figure 3.1: Interceptor-mediated interaction

of the business message, interceptors act on behalf of A and B to execute some non-repudiation
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protocol. As shown in Figure 3.1b, the interceptors maintain the abstraction of A sending the

original business message to B. Figure 3.1c shows the case where the interceptors access TTP

services during protocol execution. As we shall see from the service definitions, the non-

repudiation protocol generates and exchanges evidence of the participation of A and B and can

also support the validation of the business message with respect to agreements governing the

interaction between A and B. The exact protocol executed will depend on the type of service

being provided — non-repudiable service invocation or non-repudiable information sharing —

and also on application-specific factors such as the relationship between participants.

3.2 Non-repudiable service invocation

The purpose of non-repudiable service invocation is provide non-repudiation and validation of

the request and response phase of service invocation. Figure 3.2a recalls the logical view of

(a) exchange of service invocation evidence

(b) interceptor mediated non-repudiable service invocation

(c) application-level abstraction

Figure 3.2: Non-repudiable service invocation

the evidence that the client and server need to exchange from Section 1.3.1. Given a request

and evidence of its origin (NROreq) from the client, the server provides non-repudiation of its

receipt and of its validation (NRRreq and NRVreq, respectively). Similarly, in the response
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phase, the server provides the application-level response to the request with evidence of its

origin (NROresp). In return, the client provides non-repudiation of receipt and of validation

of the response (NRRresp and NRVresp). The preceding description specifies the evidence to

be exchanged. As noted in Section 1.3.1, the exact details of the exchange will depend on the

protocol that is executed.

The proposed middleware for non-repudiable service invocation provides interceptors at

client and server that execute appropriate non-repudiation protocols to achieve the preceding

exchange. If protocol execution is successful, regulatory requirements are met because:

1. a request is only passed to the server for processing if: (i) the client-side interceptor pro-

vides valid evidence of origin (NROreq); (ii) the request is valid with respect to contract,

as indicated by NRVreq provided by the server-side interceptor; and (iii) the server-side

interceptor provides evidence of receipt of the request (NRRreq); and

2. a response is only passed to the client for processing if: (i) the server-side interceptor pro-

vides valid evidence of origin of the response (NROresp), (ii) the response is valid with

respect to contract, as indicated by NRVresp provided by the client-side interceptor, and

(iii) the client-side interceptor provides evidence of receipt of the response (NRRresp).

Figure 3.2b shows the execution of some non-repudiation protocol between client and server

interceptors. As shown, in contrast to Figure 3.2a, the interceptors hide the details of the

exchange from the client and server. Thus the introduction of interceptors, maintains the service

invocation abstraction shown in Figure 3.2c. Chapter 4 describes a generic framework for the

execution of the protocols that provides the services necessary to realise the interceptor-based

interaction. I now discuss how to apply and extend fundamental work on non-repudiation and

fairness to the exchange of evidence between the client and server interceptors.

3.2.1 Example exchange protocols for service invocation

There are two phases to non-repudiable service invocation. The first phase concerns the ex-

change of the request, and evidence of its origin, for evidence of its receipt and validation. The

second phase concerns the exchange of the response, and evidence of its origin, for evidence
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of its receipt and validation. Appropriate non-repudiation protocols must be chosen for the

exchange of evidence in each phase. In addition, the execution of exchange protocols in each

phase must be correlated in order to bind the service request to the response. This section

presents example protocols to achieve the exchange of non-repudiation evidence The first ex-

ample, in Section 3.2.1.1, uses a simple direct exchange protocol. An exchange of this type is

potentially unfair to the initiator of each phase of the service invocation. Nevertheless, there are

circumstances in which a direct exchange is appropriate. A discussion of these circumstances

follows the protocol description. The other examples, in Section 3.2.1.2, involve the correlated

execution of fair exchange for each phase of a service invocation.

The protocols described here rely on the assumptions stated in Sections 2.1.4 and 2.1.5 with

respect to well-behaved parties, cryptographic primitives and the intruder model. The proto-

col execution framework described in Chapter 4 can also be used to execute other protocols

and, for example, to combine different underlying protocols for request and response phases.

Section 5.2 provides details of the implementation of non-repudiable service invocation that is

based on the protocol execution framework.

To simplify the descriptions that follow, the protocol participants A and B correspond to the

interceptors shown in Figure 3.2b that act on behalf of client and server, respectively. However,

it should be noted that, from the point of view of each entity involved in the service invocation

(client, server or TTP), an interceptor is synonymous with the party on whose behalf it acts.

3.2.1.1 Direct exchange for service invocation

Non-repudiable service invocation by direct exchange is based on the correlation of two runs of

the simple non-repudiation protocol shown in Figure 3.3 (recalled from Figure 2.2 on page 37).

A → B : A, B, m, sigA (A, B, m) , tsTSA (sigA (A, B,m))
B → A : sigB (sigA (A, B, m)) , tsTSA (sigB (A, B, m))

Figure 3.3: Simple non-repudiation protocol

Table 3.1 defines the non-repudiation tokens used for service invocation. Figure 3.4 shows the

two phases of the direct exchange.
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Token Definition
NROreq sigA (nrId1, A, B, req)
NRRreq sigB (nrId1, A, B, NROreq)
NRVreq sigB (nrId1,VAL | INVAL)
NROresp sigB (nrId2, A, B, nrId1, resp)
NRRresp sigA (nrId2, A, B, NROresp)
NRVresp sigA (nrId2,VAL | INVAL)

Table 3.1: Tokens used in direct non-repudiable service invocation

Phase 1: A submits request to B:
1.1 A → B : nrId1, A, B, req, NROreq, tsTSA (NROreq)
1.2 B → A : nrId1, A, B,VAL | INVAL, NRRreq, NRVreq,

tsTSA (NRRreq, NRVreq)

Phase 2: if request is valid, B issues response to A:
2.1 B → A : nrId2, A, B, nrId2, resp, NROresp, tsTSA (NROresp)
2.2 A → B : nrId2, A, B,VAL | INVAL, NRRresp,

tsTSA (NRRresp, NRVresp)
NRVresp,

Figure 3.4: Direct non-repudiable service invocation

In step 1.1, A sends B the service request (req) along with a protocol run identifier, nrId1,

the participant identifiers and the NRO of the request and time-stamp over the NRO of request.

The service request is some agreed (serialized) representation of the service invocation as in-

tended for processing by the server1. Assuming B successfully verifies the integrity of the

information provided by A, they may then subject the service request to application-specific

validation. The result of this validation is essentially a boolean: VAL if the request is consid-

ered valid, INVAL otherwise. It may also include diagnostic information. In step 1.2, B returns

the validation result with time-stamped NRR and NRV of the request. If B indicates that the

request is valid, then A can assume that the request will be passed to the target service for pro-

cessing and that the second phase of the service invocation will ensue. If B indicates that the

request is invalid in step 1.2, then the client will be notified of its invalidity, typically through

an exception, and the service invocation will terminate.

The response phase is another execution of the simple non-repudiation protocol, this time

initiated by B. In step 2.1 of this phase, B provides the service response, in some agreed repre-

1See Section 4.2.3 for discussion of agreed representations of information.
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sentation, and also includes nrId1 from the first phase in order to correlate request and response.

If A determines that the response is valid at step 2.2, then it is passed to the client and B receives

non-repudiation evidence of its validity. If the response is deemed invalid, then the client will

be notified of its invalidity and evidence of its invalidity will be logged by both A and B.

In Figure 3.4 application-level validation is effectively a part of the evidence of receipt

provided in the second step of each of phase 1 and 2. It is possible to combine receipting

and validation in this way because the initiator of each phase discloses all of their input to the

exchange in the first step — including the service request in step 1.1 and the service response

in step 2.1. As discussed in Section 3.2.1.2, this is not possible when fair exchange is used

for the exchange of evidence and further steps are required for the fair exchange of validation

evidence.

Direct non-repudiable service invocation is appropriate when both parties are well-behaved

and will therefore cooperate to exchange the information they each expect (see Section 2.2.4).

Circumstances may arise where both parties trust each other but nevertheless they require proof

that an exchange took place to exercise rights they have acquired with respect to some other

party not involved in the exchange. A real-life example is the purchase of goods where buyer

and seller trust each other, yet the buyer requires proof of the purchase in order to exercise

their rights under a guarantee with respect to the manufacturer of the goods purchased. A

direct exchange is also appropriate if, for example, a client wishes to submit a request to a

well-behaved (trusted) server and there is no response phase to the invocation. In this case,

the client will receive the NRR and NRV in step 1.2 if the client proves that they are well-

behaved by providing valid NRO in step 1.1. The interaction with the ASP-hosted auction

service described in Section 1.1.1 consists of one-way requests of this type.

To summarise, the direct approach is appropriate if the party expected to provide a receipt

is well-behaved. That is, in the request phase, the direct exchange is appropriate if B can be

trusted. In the response phase, the direct exchange is appropriate if A can be trusted. Otherwise

a fair exchange is required to safeguard the interests of the initiator of the relevant phase of the

service invocation, A for the request and B for the response.
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3.2.1.2 Fair exchange for service invocation

Fair, non-repudiable service invocation is achieved by two runs of a fair exchange protocol

— the first for the request phase and the second for the response phase. In this section I

present modifications to the Coffey-Saidha in-line TTP fair exchange protocol described in

Section 2.2.2.1 to provide non-repudiation of validation and to correlate the two phases of

service invocation. In addition, I specify exception handling sub-protocols to allow timely

termination of the exchange in either phase of an invocation. The protocol descriptions are

followed by a protocol analysis that substantiates the claim that the exchange of evidence is

fair. I then present an optimisation of the main exchange protocol that uses the in-line TTP as

a time-stamping authority. The section concludes with a further example that uses an off-line

TTP to guarantee fair exchange.

In the following, the request phase protocol run identifier is used as a correlation identifier

for the response phase. As in the original Coffey-Saidha protocol, to guarantee fairness, the

request and associated NROreq, and the response and associated NROresp, are not revealed to

their intended recipients until receipts have been provided to the TTP. Therefore, as shown in

Token Definition
NRRreq sigB (nrId1, A, B, h(NROreq))
NRRresp sigA (nrId2, A, B, h(NROresp))

Table 3.2: Modified tokens for fair non-repudiable service invocation

Table 3.2, the NRRreq and NRRresp tokens used in the direct exchange are modified to include

a digest of the relevant NRO token, as opposed to the NRO token itself. The remaining tokens

are as defined for the direct exchange in Table 3.1.

In the direct exchanges described in Section 3.2.1.1, application-level validation is pro-

vided as part of the receipt for a service request or service response. This is not possible in a

fair exchange because, as previously noted, relevant receipts must be provided before the ser-

vice request or response is revealed. That is, the receipts are generated before the information

to be validated is available for validation. A consequence of the separation of receipting from

validation is that, in order to maintain fairness to both parties, some form of receipt must be

provided to the validating party for their application-level validation of request or response.
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Phase 1: A submits request to B:
1.1 A → TTP : encTTP (nrId1, A, B, rnA, req, NROreq, tsTSA (NROreq))
1.2 TTP → B : nrId1, A, B, h(NROreq)
1.3 B → TTP : encTTP (nrId1, A, B, NRRreq, tsTSA (NRRreq))
1.4 TTP → B : nrId1, A, B, req, NROreq, tsTSA (NROreq)
1.5 TTP → A : nrId1, A, B, NRRreq, tsTSA (NRRreq)
1.6 B → TTP : encTTP (nrId1, A, B,VAL | INVAL, NRVreq, tsTSA (NRVreq))
1.7 TTP → B : nrId1, rnA
1.8 TTP → A : nrId1, A, B,VAL | INVAL, NRVreq, tsTSA (NRVreq)

Phase 2: if request is valid, B issues response to A:

2.1 B → TTP : encTTP



 nrId2, A, B, nrId1, rnB, resp,
tsTSA (NROresp)

NROresp,





2.2 TTP → A : nrId2, A, B, nrId1, h(NROresp)
2.3 A → TTP : encTTP (nrId2, A, B, NRRresp, tsTSA (NRRresp))
2.4 TTP → A : nrId2, A, B, resp, NROresp, tsTSA (NROresp)
2.5 TTP → B : nrId2, A, B, NRRresp, tsTSA (NRRresp)
2.6 A → TTP : encTTP (nrId2, A, B,VAL | INVAL, NRVresp, tsTSA (NRVresp))
2.7 TTP → A : nrId2, rnB
2.8 TTP → B : nrId2, A, B,VAL | INVAL, NRVresp, tsTSA (NRVresp)

Figure 3.5: Fair non-repudiable service invocation

There are now two stages to each phase of service invocation. The first stage involves the ex-

change of application-level input (request or response) for a receipt. The second stage involves

the exchange of application-level validation of the input for a receipt for its validation.

The extension of the Coffey-Saidha protocol to integrate application-level validation in-

volves the exchange of a secure random authenticator for the NRV token. In the request phase,

A generates rnA that the TTP will exchange with B for both their validation decision and the

NRVreqtoken. In the response phase B generates rnB that the TTP will exchange with A for

both their validation decision and theNRVresp token. To allow verification of an authenticator,

and to bind it to the other evidence, a digest of the authenticator is included in the relevant pro-

tocol run identifier. That is, nrId1 includes a digest of rnA, h(rnA), so that both TTP and B can

verify that rnA is a valid authenticator. Similarly, nrId2 includes a digest of rnB. Section 2.1.7

describes the generation of identifiers that include such bindings to secure random numbers.

Figure 3.5 presents the two phases of fair non-repudiable service invocation based on my
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modifications to the Coffey-Saidha protocol. A detailed description of the basic protocol is

provided in Section 2.2.2.1. Here I emphasise the following points with respect to the modifi-

cations to the main protocols for each phase.

1. In the request phase, steps 1.6 to 1.8 are added for application-level validation. In par-

ticular, note the provision of rnA to B in step 1.7 as a receipt for the validation decision

provided in step 1.6. As previously stated, nrId1 includes h(rnA). So, rnA is cryp-

tographically bound to each step of the request phase protocol and can be used as an

authenticated receipt. B encrypts the validation message in step 1.6 to ensure that A can-

not both obtain B’s validation of their request and prevent B from receiving rnA. Since

rnA is cryptographically bound to the other messages and was provided to the TTP by A

in step 1.1, there is no need to sign or encrypt the message in step 1.7. Corresponding

additions, steps 2.6 to 2.8, are made to the response phase. A obtains rnB in step 2.7

as a receipt for its validation of the response in step 2.6. For this phase, nrId2 includes

h(rnB). So, rnB is cryptographically bound to each step of the response phase protocol

and can be used as an authenticated receipt.

2. To correlate request and response phases, B includes nrId1 in step 2.1 of the response

phase and the TTP relays nrId1 to A in step 2.2. Both NROresp and NRRresp provide a

cryptographic binding of the correlation.

3. Step 1.8 of the request phase corresponds to step 1.2 of the direct exchange in Figure 3.4.

If the request is considered valid by B, step 1.8 is the point at which A knows that the

request will be passed to the service for processing. Similarly, step 2.8 corresponds to

step 2.2 of the direct exchange.

4. To support exception handling, the TTP associates a termination state with each phase

of an invocation or, more precisely, with each execution of a main exchange proto-

col. The termination state is SUCCEEDED if the exchange completed successfully and

ABORTED if the exchange is cancelled.

In exceptional circumstances either A or B may request that the TTP terminate a phase of

an invocation before it completes. Such requests typically occur because either A or B is
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concerned about the liveness of protocol execution, whether as a result of non-cooperation of

a participant or extraneous factors such as network delays. Next, I define exception handling

sub-protocols for the TTP to satisfy termination requests from either A or B. I then provide an

analysis of this Coffey-Saidha-based approach to non-repudiable service invocation, followed

by a discussion of protocol optimisation where the in-line TTP also performs trusted time-

stamping and then an overview of how to achieve non-repudiable service invocation using

optimistic fair exchange protocols.

Exception handling

There are two types of termination request:

1. Abort: where the requesting party wishes to terminate a phase of the invocation as if

that phase had not taken place and neither A nor B receives any useful information about

the exchange.

2. Resolve: where the requesting party seeks the TTP’s assistance to secure normal ter-

mination of a phase of the invocation and all expected items for that phase (or their

equivalent) are available to well-behaved parties.

These requests are, in effect, the statement of a preference for how the exchange should com-

plete. The preference for abort or resolve is determined by local policy. For example, a partici-

pant may always seek to abort an exchange if it has not completed within some pre-determined

time limit. Alternatively, if the request phase has completed and the response phase has com-

menced, A’s local policy may be to always seek successful completion of the response phase.

Irrespective of the type of request, it is the TTP’s responsibility to ensure that fairness guar-

antees hold for all well-behaved parties. Depending on the progress of the main protocol for

the given phase of an invocation, and whether the termination state of the phase has already

been set, the TTP must determine whether to terminate the phase in the ABORTED state or the

SUCCEEDED state.2 The request phase can terminate in SUCCEEDED state if and only if:

1. A is entitled to NRRreq and some form of decision on the validity of the request, and
2Successful termination relates to the exchange of items in Figure 3.5 for the given phase and not to whether the

request or response was determined to be valid as a result of application-specific validation.
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2. B is entitled to req and NROreq.

Similarly, the response phase can terminate in SUCCEEDED state if and only if:

1. A is entitled to resp and NROresp, and

2. B is entitled to NRRresp and some form of decision on the validity of the response.

In the request phase, the TTP is empowered to issue the substitute non-repudiation of validation

of request, NRVreqTTP defined in Table 3.3, in place of NRVreq. NRVreqTTP is the TTP’s

signed confirmation that B has not validated req. Once the TTP has issued NRVreqTTP, no

validation of req by B will be accepted. NRVreqTTP is equivalent to invalidation of req with

the supplementary information that B did not cooperate in the decision. In effect, NRVreqTTP

is an abort token for the request validation stage. The TTP’s form of invalidation is indicated

by the inclusion of NVAL, as opposed to VAL or INVAL, in the relevant message of exception

handling sub-protocols. At first sight the substitution places A at a disadvantage, since B can

receive req and simply decide not to cooperate in its validation. But, B always has the option to

autonomously decide that any request is invalid3. Furthermore, A obtains evidence of the fact

that B did not provide a decision on the validity of the request. Thus, in terms of the evidence

exchanged, the substitution of NRVreqTTP for NRVreq is fair. Given this substitution, and

recalling the observations from Section 2.2.2.1, fairness can be guaranteed to both A and B in

the request phase if:

1. the protocol in phase 1 of Figure 3.5 completes normally; or

2. B chooses not to engage in the main protocol by not responding to step 1.2 (at this point

B has no useful information about req or NROreq); or

3. the exchange is aborted when the main protocol has progressed no further than step 1.3

(at this point A and B still have no useful information about each other’s items); or

4. the exchange is completed successfully after execution of step 1.3.

3A decision that may trigger extra-protocol dispute resolution.
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On execution of step 1.3, the TTP has all the information necessary to complete the exchange.

At step 1.4 the TTP releases req and NROreq to B. Therefore, from step 1.4 onwards the TTP

must guarantee that all expected items are available to both A and B. The pivotal point in the

main protocol for the request phase is step 1.3. Before step 1.3, the TTP can only respond to

either type of termination request by aborting the exchange. Upon execution of step 1.3, the

TTP has rnA, req, NROreq and NRRreq but is yet to complete the release of information to

either A or B. Thus, at this point, the TTP can satisfy whichever type of termination request

they receive first. Once the TTP releases critical information, in step 1.4, they must respond to

a termination request by successfully resolving the exchange. Similar observations hold with

respect to the response phase of an invocation.

In summary, in the request phase, there are two key points in the main exchange:

1. the pivot point at step 1.3 when B provides a receipt for the request, before which the

exchange can only be aborted and after which it must run to some form of normal termi-

nation, and

2. step 1.6 when B provides their validation of the request.

As stated previously, the TTP records the termination state of the exchange — either SUC-

CEEDED or ABORTED. In order to recover non-repudiation evidence for either A or B, the

TTP also maintains a log of protocol messages from which the TTP can determine the progress

of the main exchange. So, the TTP decides whether the request phase exchange is abortable

or resolvable or veri f iable, where

1. an exchange is abortable if the TTP has set the termination state to ABORTED or the

main exchange protocol has not progressed beyond step 1.3 (step 1.4 has not been exe-

cuted),

2. an exchange is resolvable if the TTP has not set the termination state to ABORTED and

the main exchange protocol has progressed beyond step 1.2 (at least step 1.3 has been

executed), and

3. an exchange is veri f iable if B provides their validation decision (in step 1.6 of the main

exchange protocol) before the TTP has set the exchange termination state.
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Token Definition
abortRequest nrId1, A, B, ABORT
resolveRequest nrId1, A, B, RESOLVE
abortToken nrId1, A, B, ABORTED
resolveTokenA nrId1, A, B, NRRreq, tsTSA (NRRreq)
resolveTokenB nrId1, A, B, req, NROreq, tsTSA (NROreq)
NRVreqTTP sigTTP (nrId1, NVAL)

Table 3.3: Tokens for request phase exception handling

Table 3.3 defines the tokens used in exception handling for the request phase of service invo-

cation. A request from P ∈ {A, B} to the TTP to abort the request phase of Figure 3.5 results

A1 P→ TTP : nrId3, abortRequest, sigP (nrId3, abortRequest) ,
tsTSA (sigP (nrId3, abortRequest))

if abortable:
A2.1 TTP→ P : nrId3, abortToken, sigTTP (nrId3, abortToken) ,

tsTSA (sigTTP (nrId3, abortToken))
— TTP sets termination state to ABORTED

else if not verifiable:
A2.2 TTP→ P : nrId3, resolveTokenP, NVAL, NRVreqTTP,

tsTSA (NRVreqTTP)
— TTP sets termination state to SUCCEEDED

else:
A2.3 TTP→ P : nrId3, rnA, resolveTokenP,VAL | INVAL, NRVreq,

tsTSA (NRVreq)
— TTP sets termination state to SUCCEEDED

Figure 3.6: Request phase abort sub-protocol

in execution of the abort sub-protocol shown in Figure 3.6. In step A1, P submits a signed

request, abortRequest, to abort the exchange identified by nrId1. The abort sub-protocol is

uniquely identified by nrId3. P’s signature over both nrId3 and abortRequest, which includes

nrId1, serves to bind the sub-protocol to the main exchange. The TTP then checks the state

of the exchange. If the exchange is abortable, then in step A2.1 the TTP provides P with

non-repudiable evidence of abort of the exchange; consisting of abortToken and the TTP’s

signature over abortToken. On execution of step A2.1, the TTP sets the exchange termination

state to ABORTED. If the exchange cannot be aborted then the TTP checks whether the ex-

change is veri f iable. If the exchange is not veri f iable, the TTP executes step A2.2 to complete
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a successful exchange with substitute NRVreqTTP. Otherwise, the TTP executes step A2.3. If

either step A2.2 or A2.3 is executed, then the TTP sets the termination state to SUCCEEDED

and provides P with the information that they expect to obtain from a successful exchange:

resolveTokenA for P= A and resolveTokenB for P= B. In addition, to authenticate B’s valida-

tion of req, the TTP provides rnA in step A2.3.

R1 P→ TTP : nrId4, resolveRequest, sigP (nrId4, resolveRequest) ,
tsTSA (sigP (nrId4, resolveRequest))

if not resolvable:
R2.1 TTP→ P : nrId4, abortToken, sigTTP (nrId4, abortToken) ,

tsTSA (sigTTP (nrId4, abortToken))
— TTP sets termination state to ABORTED

else if not verifiable:
A2.2 TTP→ P : nrId4, resolveTokenP, NVAL, NRVreqTTP,

tsTSA (NRVreqTTP)
— TTP sets termination state to SUCCEEDED

else:
A2.3 TTP→ P : nrId4, rnA, resolveTokenP,VAL | INVAL, NRVreq,

tsTSA (NRVreq)
— TTP sets termination state to SUCCEEDED

Figure 3.7: Request phase resolve sub-protocol

A request to resolve the request phase results in execution of the resolve sub-protocol shown

in Figure 3.7. A signed request to resolve the main protocol (resolveRequest) starts the pro-

tocol. The sub-protocol is uniquely identified by nrId4, which is bound to the main exchange

protocol by P’s signature over resolveRequest and nrId4. Apart from these changes, the only

significant difference to the abort sub-protocol is that the TTP executes step R2.1 if the ex-

change is not resolveable. That is, step R2.1 is executed if the termination state has already

been set to ABORTED or the main exchange has not progressed beyond step 1.2. Otherwise,

the TTP terminates the exchange successfully by executing either step R2.2 or step R2.3, as

appropriate.

The exception-handling sub-protocols for the response phase are essentially the same as

those for the request phase. The differences are:

1. that the definition of abortable, resolvable and veri f iable refer to the relevant steps of
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Token Definition
abortRequest nrId2, A, B, nrId1, ABORT
resolveRequest nrId2, A, B, nrId1, RESOLVE
abortToken nrId2, A, B, ABORTED
resolveTokenA nrId2, A, B, resp, NROresp, tsTSA (NROreq)
resolveTokenB nrId2, A, B, NRRresp, tsTSA (NRRresp)
NRVrespTTP sigTTP (nrId2, NVAL)

Table 3.4: Tokens for response phase exception handling

the main response phase protocol (2.3, 2.2 and 2.6, respectively),

2. the tokens in Table 3.4 replace the corresponding tokens from Table 3.3, in particular

NRVrespTTP is the TTP’s substitution for NRVresp, and

3. in the final step of each sub-protocol NRVresp replaces NRVreq and rnB replaces rnA.

Once the termination state of a service invocation phase has been set, the TTP will forever

respond in the same way to any subsequent request to abort or resolve the identified phase. In

effect, the TTP suspends the main exchange protocol once a corresponding exception handling

sub-protocol has been initiated. Thus, the TTP guarantees to provide A and B with an identical

view of the success or failure of a service invocation phase irrespective of whether normal or

exceptional termination occurred, and irrespective of who requested termination.

If the request phase of a service invocation is aborted then:

• from the server’s viewpoint it will be as if no request was made by the client — the target

service has no knowledge of the aborted request and the response phase of the invocation

does not ensue; and

• from the client’s viewpoint it will be as if their request was not delivered to the server

and an appropriate failure notification is provided to the client.

If the response phase of a service invocation is aborted then:

• from the server’s viewpoint it will be as if the service response could not be delivered to

the client, and
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• from the client’s viewpoint it will be as if no response was generated and an appropriate

failure notification is provided to the client.

In the event of abort of the response phase of an invocation, both client and server will have

irrefutable evidence that the request phase had completed successfully. There will also be

irrefutable evidence of who requested abort of the response phase. Thus a well-behaved party

will be able to demonstrate their correct behaviour should a dispute arise over the missing

service response.

The resolution of either request or response phase is treated as successful completion of

the phase. In steps A2.2 and R2.2 of request phase exception handling the phase is resolved

without application-level validation of the request. In this case, the phase is deemed to have

terminated as if the request had been invalidated, and it is not processed by the server. Likewise

for resolution of the response phase without application-level validation, in which case the

response will not be passed to the client for processing.

Protocol analysis

The informal analysis that follows builds on the analysis of the original Coffey-Saidha pro-

tocol in Section 2.2.2.1 to cover my extensions for application-level validation of messages,

exception handling and the correlation of exchanges for the two phases of service invocation.

The analysis supports the assertion that the TTP can guarantee fairness to both A and B for the

exchange of irrefutable evidence of validated service invocation. The basis of the guarantee is

that the TTP controls the exchange of information between A and B. In particular, the encryp-

tion of items in the first, third and sixth steps of each phase ensures that neither A nor B can

obtain useful additional information about an exchange until the TTP has all of the information

necessary to deliver the fairness guarantee4.

The use of protocol run identifiers in each protocol step, the binding of identifiers to the

random authenticators, the correlation of phases and sub-protocols through their identifiers,

and the signatures over the various items, ensures that all protocol steps and service invoca-

tion phases are cryptographically bound to each other. That is, given any protocol message, a

4Including the random authenticator for the relevant phase (rnA for request, rnB for response).
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relying party can verify message integrity and its relationship to other messages in the same

protocol and to other non-repudiation protocols that are related to the same service invoca-

tion. It is possible to verify that the signed parts of protocol messages are consistent with the

unsigned parts and, therefore, to detect internally inconsistent messages. It is possible to de-

tect inconsistency between messages because of the cryptographic link of each message to its

uniquely identified protocol run and to correlated runs. Any attempt to subvert an exchange by

generating inconsistent message content can be detected as misbehaviour — a special case of

non-cooperation by the misbehaving party.

I now show how fairness can be guaranteed in the request phase5 in the face of attempted

subversion by either A or B, or in case of their non-cooperation. In the following, A and B

can independently specify timeouts for forward progress of a given exchange. Upon expiry

of a timeout, for whatever reason, they can independently request that the TTP terminate an

exchange by executing one of the exception handling sub-protocols.

Attempted request phase subversion by A A gains unfair advantage if they are able to ob-

tain B’s NRRreq and prevent B from receiving the corresponding req. To this end, A

can intercept the message from B to the TTP in step 1.3 and then initiate abort of the

exchange before the TTP sends req to B in step 1.4. However, the message in step 1.3 is

encrypted with the TTP’s public key. Therefore, A can gain no useful information from

this attempted subversion. The TTP will simply abort the exchange and, upon request,

will provide the same termination evidence to B. Similarly, encryption of B’s message

in step 1.6 ensures that A cannot access B’s validation decision before B is entitled to

receive the authenticator rnA from the TTP. After execution of step 1.4, the TTP will not

satisfy any request from A to abort an exchange. Between execution of step 1.3 and 1.6,

A can persuade the TTP to terminate the exchange without application-level validation

by B. However, A does not obtain any advantage over B because the request is not pro-

cessed by B’s server unless it is valid and the authenticator rnA has been provided by the

TTP as a receipt for request validation. That is, the request is not considered valid for

processing by B’s server until the exchange has completed successfully for B with the

5Shown in Figure 3.5 on page 88.
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receipt of rnA.

Attempted request phase subversion by B B does not receive any useful information until

after they provide the encrypted receipt in step 1.3 of the main protocol. The TTP will

not satisfy a request from B to abort the exchange after execution of step 1.4. Therefore

B cannot obtain A’s request without providing a valid receipt that is verifiable by the TTP.

B may cease cooperation after step 1.4. In this case, B will have obtained the request in

return for their receipt. This cannot compromise the fairness guarantee to A. A can use

an exception handling sub-protocol to obtain the receipt from the TTP and they will also

obtain the TTP’s certification that B did not provide application-level validation of the

request. In this case, from the application client’s viewpoint at A, the service invocation

failed. The TTP’s guarantee in these circumstances is that they will not provide B with

the authenticator rnA as a receipt for any validation evidence that B may subsequently

provide. Instead, B will receive the NVAL and NRVreqTTP that was provided to A. So,

B will not be able to show that their validation was made available to A. B can only

demonstrate that they have made validation evidence available to A, through the TTP, if

they can also produce the authenticator rnA.

The response phase of service invocation is essentially a repeat of the request phase with the

roles of A and B reversed. Thus the preceding observations about the request phase apply to the

response phase. In addition, there is the possibility B may not start the response phase despite

having received and validated A’s request. Alternatively, B’s response may be delayed. In these

circumstances, there will be an application-level time-out at A and A will not cooperate in

any subsequent response phase exchange that B may attempt to initiate. Should B commence

the response phase and A not engage in the exchange, B will eventually seek abort of the

exchange through the TTP. Thus, both A and B can determine that the invocation failed in spite

of successful completion of the request phase.

Taken together, the main protocol and exception handling protocols for each phase enable

the TTP to guarantee fairness to A and B. There are no circumstances in which B receives A’s

request and NROreqwithout B providing a corresponding receipt. B does not obtain the request

phase authenticator, rnA, unless they provide non-repudiation of validation of the request. A
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cannot obtain B’s validation decision unless rnA is available to B. Similarly, A cannot obtain

B’s response without provision of a receipt. The response authenticator, rnB, is not available

to A unless their validation of the response is available to B. B cannot obtain A’s validation

decision unless rnB is available to A.

On successful completion of request and response phases, A and B both have the non-

repudiation evidence that they expect. If an exchange is aborted, A and B can obtain TTP-

certified evidence of the abort of the request and/or response phase of an invocation. That is,

we have confirmed that interceptors at client and server can execute fair exchange to deliver

the following guarantees (recalled from the introduction to Section 3.2):

1. a request is only passed to the server for processing if: (i) the client-side interceptor pro-

vides valid evidence of origin (NROreq); (ii) the request is valid with respect to contract,

as indicated by NRVreq provided by the server-side interceptor; and (iii) the server-side

interceptor provides evidence of receipt of the request (NRRreq); and

2. a response is only passed to the client for processing if: (i) the server-side interceptor pro-

vides valid evidence of origin of the response (NROresp), (ii) the response is valid with

respect to contract, as indicated by NRVresp provided by the client-side interceptor, and

(iii) the client-side interceptor provides evidence of receipt of the response (NRRresp).

Protocol time-stamping optimisation

The preceding protocol descriptions assume that signature verification requires a trusted time-

stamp for all signed evidence (see the time-stamps in Figures 3.5, 3.6 and 3.7). That is, a time-

stamp must be obtained from a TSA before sending any message that contains new signed

evidence. One advantage of in-line TTP protocols is that it may be possible to combine the

role of guarantor TTP and TSA. In this case, neither A nor B submit data to a TSA for time-

stamping but rely on time-stamps applied by the guarantor TTP (as shown in Figure 2.6 on

page 52).

Figure 3.8 shows the time-stamping optimisation for the request phase of service invoca-

tion. On receipt of the first message in step 1.1, the TTP generates a time-stamp on NROreq.

The TTP also generates a time-stamp on NRRreq at step 1.3. The TTP sends both of these
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1.1 A → TTP : encTTP (nrId5, A, B, rnA, req, NROreq)
1.2 TTP → B : nrId5, A, B, h(NROreq)
1.3 B → TTP : encTTP (nrIdA, A, B, NRRreq)
1.4 TTP → B : nrId5, A, B, req, NROreq, tsTTP (NROreq) , tsTTP (NRRreq)
1.5 TTP → A : nrId5, A, B, NRRreq, tsTTP (NRRreq) , tsTTP (NROreq)
1.6 B → TTP : encTTP (nrId5, A, B,VAL | INVAL, NRVreq)
1.7 TTP → B : nrId5, rnA, tsTTP (NRVreq)
1.8 TTP → A : nrId5, A, B,VAL | INVAL,NRVreq, tsTTP (NRVreq)

Figure 3.8: Fair exchange of request with TTP as TSA

time-stamps to B in step 1.4 and to A in step 1.5. Finally, on receipt of B’s validation message

in step 1.6, the TTP generates a time-stamp on NRVreq. The TTP sends this time-stamp to B

in step 1.7 and to A in step 1.8. These optimisations eliminate the six message communication

overhead to obtain time-stamps from a TSA for NROreq, NRRreq and NRVreq. Similarly,

the use of the TTP as TSA in the response phase eliminates the communication overhead to

time-stamp NROresp, NRRresp and NRVresp. Application of the optimisation to the excep-

tion handling sub-protocols, removes the need for a time-stamp on the first message of each

sub-protocol.

Optimistic fair exchange for service invocation

A disadvantage of the use of an in-line TTP for fair exchange is the additional communication

overheads imposed by relaying every message through the TTP. So, in some circumstances

it is desirable to use optimistic fair exchange, supported by an off-line TTP, to avoid these

overheads. As with in-line TTP fair exchange, the problem is to integrate application-level val-

idation and preserve fairness. In the extension to the Coffey-Saidha protocol it was shown how

an initiator of an invocation phase, whether request or response, can provide an authenticator

for the TTP to subsequently exchange for evidence of application-level validation. Clearly, this

is not possible when the TTP is off-line. Therefore, to guarantee fairness, the initiator of an

invocation phase must provide a receipt for application-level validation that is directly bound to

the relevant evidence. To achieve this, we correlate two executions of an optimistic exchange

protocol in each phase — one for the receipt stage and the other for the validation stage. For
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example, in the request phase of an invocation, there is one protocol run to exchange the re-

quest for its receipt and then a second protocol run to exchange application-level validation of

the request for a receipt for the validation evidence. Protocol run identifiers correlate the runs

for each stage. I now use Wang’s protocol, described in Section 2.2.2.2, to illustrate how to

achieve this correlation. Table 3.5 defines the tokens to use in the request phase of a service

Token Definition
kA a secret key generated by A to encrypt their request req
reqCipher enckA (req)— the encryption of req using kA
nrId1 h(A, B, TTP, h(reqCipher) , h(kA))— nrId1 generating function
kACipher encTTP (nrId1, kA, rnA)
NROreq sigA (nrId1, kACipher)
NRRreq sigB (nrId1, kACipher)
kB a secret key generated by B to encrypt their validation decision val
valCipher enckB (val)— the encryption of val using kB
nrId2 h(A, B, TTP, h(valCipher) , h(kB))— nrId2 generating function
kBCipher encTTP (nrId2, kB, rnB)
NROval sigB (nrId2, nrId1, kBCipher)— non-repudiation of B’s validation decision
NRRval sigA (nrId2, nrId1, kBCipher)—A’s receipt for B’s validation decision

Table 3.5: Tokens used in optimistic non-repudiable service invocation

invocation. These correspond to the tokens presented in Table 2.5 for Wang’s protocol. The

only difference is that the non-repudiation evidence for the second stage, NROval and NRRval,

cryptographically binds the identifiers of the two protocol runs together. Figure 3.9 shows the

1.1 A → B : nrId1, A, B, TTP, reqCipher, h(kA) , kACipher, NROreq, tsTSA (NROreq)
1.2 B → A : nrId1, NRRreq, tsTSA (NRRreq)
1.3 A → B : nrId1, kA, rnA
1.4 B → A : nrId2, A, B, TTP, nrId1, valCipher, h(kB) , kBCipher, NROval,

tsTSA (NROval)
1.5 A → B : nrId2, NRRval tsTSA (NRRval)
1.6 B → A : nrId2, kB, rnB

Figure 3.9: Optimistic fair exchange for request phase of service invocation

complete optimistic protocol for the request phase of an invocation. Steps 1.1 to 1.3 show

the first protocol run in which A’s request, req, and NROreq are exchanged for B’s NRRreq.

Steps 1.4 to 1.6 show the correlated protocol run to exchange B’s validation decision, val, and
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NROval (non-repudiation of the validation decision) for A’s NRRval. These two correlated

protocol runs ensure that:

1. B only obtains the request if they provide A with a receipt and that A cannot deny having

submitted the request, and

2. A only obtains the validation decision if they provide B with a receipt and that B cannot

deny having generated the validation decision.

The validation decision is cryptographically bound to the request through the signatures over

the correlation of protocol run identifiers in NROval and NRRval. As shown in Table 3.5, the

identifier nrId1 is cryptographically bound to the request and nrId2 is cryptographically bound

to the validation decision. So, the non-repudiation evidence includes the correlation between

the protocols runs that combine to provide both non-repudiation and application-level valida-

tion of the request phase. A corresponding correlation of protocols runs is used to achieve

non-repudiation and validation in the response phase. Finally, as for in-line TTP fair exchange,

correlation of identifiers is used to bind response phase and request phase of a service invoca-

tion. Thus, a complete request/response service invocation involves four runs of the optimistic

exchange protocol — two for receipting and validation of the request and another two for re-

ceipting and validation of the response. It is possible that A or B may cease cooperation at

any point during an invocation. In the event of non-cooperation Wang’s exception handling

sub-protocols, described in Section 2.2.2.2, can be used to guarantee fair termination through

the identified TTP of any one of the four protocol runs. Termination of one of the protocol

runs may lead to failure of the service invocation. However, both A and B can still recover

the evidence they are entitled to through the TTP. That is, the application-level failure of the

invocation does not signify a loss of fairness to either A or B. Other optimistic protocols can

be combined in a similar way.

As for the other examples, it is assumed that trusted time-stamps are required for signature

verification. Figure 3.9 shows time-stamps over NROreq, NRRreq, NROval and NRRval in

steps 1.1, 1.2, 1.4 and 1.6 of the request phase. As there is no in-line TTP, it is not possible to

combine TTP and TSA roles. Therefore, given the signature verification assumption, there is
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a fixed eight message overhead to obtain time-stamps in each phase of the service invocation.

This compares with the six message overhead in each phase for the un-optimised in-line TTP

exchange. Section 3.5 concludes the chapter with further discussion of the relative merits of

different approaches to non-repudiable service invocation. A novel aspect of my approach

is that the interceptor mediation introduced in Section 3.1, as realised using the framework

described in Chapter 4, will support the deployment of any of the mechanism discussed so

far, and others, to meet different application requirements. I now define the service for non-

repudiable information sharing that was proposed in Section 1.3.2.

3.3 Non-repudiable information sharing

The primary purpose of non-repudiable information sharing is to maintain the integrity of in-

formation that is shared by two or more collaborating organisations. We preserve the integrity

of the information by ensuring that changes to the information are legitimate — changes are

subject to the agreement of the organisations that share, or jointly own, the information. To en-

sure that members of the sharing group are accountable for their actions, irrefutable evidence

of the proposal of and agreement to changes must be generated and logged.

(a) information sharing (b) interceptor mediated information sharing

Figure 3.10: Non-repudiable information sharing

Figure 3.10a recalls the logical view of information sharing from Section 1.3.2. Conceptu-
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ally, shared information resides in a shared space that can be accessed by the members of the

sharing group: A, B and C. For example, if A wishes to update the shared information, then

they must seek the agreement of B and C. Further, A’s proposed update must be irrefutably

bound to A and there must be irrefutable evidence of the decisions of B and C with respect

to the proposed update. Assuming B and C agree to the update, then each party shares an

agreed view of the new state of the shared information and no party can misrepresent this view.

The sharing group execute a non-repudiation protocol to establish the agreed view. As with

non-repudiable service invocation, interceptors mediate the interaction in order to allow flex-

ibility in the approach taken to achieve non-repudiation and to maintain the application-level

abstraction presented to sharing group — A, B and C in the example.

Figure 3.10b shows the use of interceptors to execute a non-repudiation protocol for an

agreed update to shared information from state s to state s+1. This corresponds to the change

illustrated in Figure 1.7 on page 19. The interceptors ensure that A, B and C have a consis-

tent view of the agreed state of shared information and of the group who have access to the

information. That is, A, B and C have common knowledge of the state of the shared informa-

tion and irrefutable evidence that it is the agreed view of information state. They also know,

and have irrefutable evidence, that they comprise the sharing group that owns the information.

Their ownership of the information means that each of A, B and C must agree to any changes

both to the state of the information and to the membership of their group. The interceptors also

present a local representation of the information for application-level access at A, B and C.

As far as possible, the participants are free to concentrate on application-level concerns while

maintaining a non-repudiable, agreed view of the information they share.

Section 3.3.1 introduces the notion of information control state to describe transitions in the

state of the shared information and in the membership of the sharing group. In Section 3.3.2 I

describe the non-repudiation protocols that have been implemented to maintain the consistent

view of shared information by reaching agreement on control state transitions. The multi-

party protocols coordinate both state and membership changes between a sharing group of two

or more members. Section 5.3 describes how this interceptor-mediated information sharing

is realised using distributed object middleware and how the middleware can be extended to
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support transactional access to shared information.

3.3.1 Information control state

Information control state is meta-information that uniquely identifies a view of shared infor-

mation. The control state includes references to the previously agreed control state, to the state

of the shared information and to the sharing group. Figure 3.11 depicts a sequence of agreed

Figure 3.11: Agreed control state transitions

transitions between control states from control state x through to control state x+ 3. In the

figure, x, x+ 1, x+ 2 and x+ 3 are simply labels to distinguish between the different control

states. Similarly, y, y+ 1 and y+ 2 label different states of the shared information. Labels n

and n+ 1 distinguish between different sharing groups.The agreed transitions progress from

left to right (see the double-lined arrows in Figure 3.11). Shared information is defined by a

tuple that consists of the application state of the information and the membership of the sharing

group. For example, in the tender processing application from Section 1.1.2, the information

(application) state consists of the current values of the various attributes of the tender offer

and the members of the sharing group are the processes at supplier and purchaser that share

the offer (or the supplier and purchaser, for short). As shown in Figure 3.11, a control state

identifies the current information state and sharing group. The control state transitions corre-

spond to changes in the shared information. The new control state identifies the corresponding

new information state or new sharing group, and also identifies the previously agreed control

state. Table 3.6 summarises the changes to shared information represented by transitions from

control state x to x+3. So, the transition from control state x to control state x+1 corresponds
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Control state Shared information
x 〈state y, groupn〉

x+1 〈state y+1, groupn〉
x+2 〈state y+1, groupn+1〉
x+3 〈state y+2, groupn+1〉

Table 3.6: Control state transition table

to a change in shared information from state y to state y+1 that was agreed by group n. Transi-

tion from control state x+1 to control state x+2 corresponds to a membership change agreed

by group n in which a participant leaves or joins the group to form new group n+ 1. Transi-

tion from control state x+ 2 to x+ 3 represents a further state change agreed by group n+ 1.

Figure 3.12 shows the general case of both agreed transitions to control state and unsuccess-

Figure 3.12: Proposed and agreed control state transitions

ful proposed transition. In this case, proposed control state x+ 2 and proposed control state

x+3, in dashed boxes, represent invalid branches of the shared information. The references to

previously agreed control state, illustrated by the the back arrows between control states, link

a sequence of control states together. Thus a history of the agreed versions of the shared in-

formation can be constructed even if the associated state and sharing group do not convey any

version information. Section 3.3.2.1 defines the control state meta-information that identifies

successive control states and associated shared information.

The model of transitions in control state completely describes the installation of successive

changes to the referenced shared information, including the identification of the group that

decided upon the transitions. In this dissertation I show how all changes to shared information

can be described in terms of control state transitions. In particular, Section 3.3.2.1 shows how

the references to information state and to sharing group cryptographically bind control state
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to its associated shared information. Coordinated, non-repudiable transitions between control

states can support: (i) agreement on state changes, (ii) agreement on membership changes, and,

with appropriate extensions, (iii) concurrency control and transactional access.

3.3.2 Coordination protocols

Each member of a sharing group has a view of shared information that is fully identified by

their view of the currently agreed control state. The coordination protocols I present in this

section ensure that this view remains identical for all well-behaved members of the group.

There are protocols to regulate changes to the state of shared information and to the sharing

group. The aim of the proposer of a change is that all parties should install (agree to) a new view

of the shared information: the new control state and the associated information state and group

membership. Whether for state changes or for membership changes, agreement is achieved by

non-repudiable transitions in control state. Each of the protocols is based on the execution of

signed two-phase commit.

A proposed change to shared information is valid if there is unanimous agreement to the

transition to the new view of the shared information. A proposed change is invalid if any

party vetoes the transition. The requirement for unanimous agreement to a proposed change

is fundamental to the following discussion. It is imposed because, in the context of mutually

mistrusting parties, it cannot be assumed that majority agreement to a change will suffice. For

example, any majority decision on the validity of a change to an offer that is shared by a pur-

chaser, a supplier and a delivery agent is potentially disadvantageous to the minority party. The

unanimity restriction ensures that an invalid control state transition cannot be misrepresented

as being valid and vice versa.

3.3.2.1 Definition of protocol notation and information control state

Table 3.7 defines the notation used for coordination protocol elements. Where appropriate, the

member index, i, is used as shorthand for generation of an element by party Pi, where i ∈ 1 : n

for a group with n members. For example, rnk is a random number generated by Pk.

Participant identifiers, such as Pk, are typically URIs that uniquely identify a participant
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Notation Definition
Gn group n sharing information, Gn = {Pi |i ∈ 1 : n}
Pk∈ Gn the identifier of the proposer of a new control state
RGk = Gn−Pk the recipient group of a proposal from member Pk
Pj∈ RGk the identifier of a member of RGk, j != k
Dk, j member Pj’s decision on the validity of Pk’s proposal
newCSk new control state proposed by Pk
currCSi current control state as viewed by Pi
Sy information state y

Table 3.7: Notation for coordination protocols

in the context of a given interaction. They may also serve to locate the participant. An email

address may be used to identify an individual or organisational participant. A URL may be

used to identify a participant service.

The group Gn is an ordered set of the participant identifiers for the members of sharing

group n. Unless stated otherwise, Gn is the currently agreed sharing group and it has n mem-

bers. As shown in Table 3.7, Pk identifies the proposer of a new control state. RGk is the set of

recipients for a proposed change. For example, the sharing group in Figure 3.10b on page 103

is {A, B,C}. If the proposer of a change, Pk, is A then the recipient group, RGk, is {B,C}. Each

member of a sharing group knows the membership of their group as identified by the currently

agreed control state. That is, each member Pi of group Gn knows the identity of each of the

other members of Gn.

Sy is an agreed representation of the information state (application data) that is shared. In

the current implementation, information state is represented by an object for local application

access. This object representation is then transformed to the agreed representation using a

data-binding. For example, the data-binding may map an application object to some text rep-

resentation such as an XML document (see Section 4.2.3). It is the agreed representation that

is signed and propagated during protocol execution. Unless stated otherwise, Sy represents the

currently agreed information state.

As described in Section 2.1.7, the protocol run identifier, nrId, can be generated by the

protocol initiator from a hash of a random number that is contextualised by a URI that is

unique to the initiator. For participant Pk, an nrId will consist of h(rnk) pre-pended by a URI

that is unique to Pk. This combination of elements should guarantee the uniqueness of an nrId
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for the group sharing information — no correctly behaving party will produce an identifier that

has been seen before by any member of the sharing group.

nrId identifier of this control state
prevAgreedNRId identifier of previously agreed control state
proposerId identifier of the proposer of this control state
groupId identifier of the sharing group
stateId identifier of the information state

Table 3.8: Basic elements of control state

Table 3.8 defines the basic elements of information control state. The current protocol

run identifier, nrId, uniquely identifies the given control state. prevAgreedNRId identifies the

previously agreed control state and, therefore, provides the link between successive control

states. These links allow the construction of a history of transitions between control states. The

proposerId uniquely identifies the proposer of a given control state and, therefore, the proposer

of the change to shared information. The groupId and stateId uniquely identify the associated

sharing group and information state, respectively. These two identifiers need not be unique

across all control states. Both group membership and information state may legitimately return

to some prior state.

The groupId is generated by calculating a message digest over the identifiers of the mem-

bers of the sharing group. For example, h(P1, P2, . . . Pn) is the groupId for group Gn. This

identifier both uniquely identifies Gn and is cryptographically bound to Gn. The identifier can

therefore be used to verify the integrity of group membership information.

The stateId is cryptographically bound to the information state it identifies. For state Sy,

the stateId minimally includes h(Sy). The stateId may also provide location information to

access the identified information state. For example, shared information may be hosted by

some third party data repository. In this case, a stateId could consist of the repository’s URL

and a Base64 representation of the digest to identify the specific information state, similar to

the generation of protocol run identifiers in Section 2.1.7.
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3.3.2.2 Protocol assumptions and invariants

The assumptions with respect to well-behaved parties in Section 2.1.4, and with respect to

cryptographic primitives and protocol subversion model in Section 2.1.5, hold for the proto-

cols described in this section. Note, as in earlier protocols, if a signing key is revocable without

reference to the relying party, then trusted time-stamps should be associated with signed ev-

idence. However, for brevity, these time-stamps are not shown in the coordination protocol

descriptions that follow.

A proposed transition must be disclosed for validation by all members of group Gn. There-

fore, it is assumed that disclosure of information about a proposed transition within the sharing

group is unconditional. This is analogous to the precedence given to data integrity over disclo-

sure in the Clark-Wilson model (see Section 2.3.1).

The aim of the proposer of a change, Pk, is to reach agreement on transition from their

view of the current control state, currCSk , to a new agreed control state, newCSk. The pro-

poser executes a non-repudiation protocol with the other members of group Gn that serves: (i)

to disseminate both newCSk and the associated information required to update each member’s

local view of information state or group membership, and (ii) to obtain agreement on the tran-

sition from currCSk to newCSk. To begin protocol execution, Pk first generates the elements of

newCSk shown in Table 3.8. The other members of Gn, Pj ∈ RGk, use the prevAgreedNRId to

verify that newCSk represents a transition from their view of the current control state: currCSj .

prevAgreedNRId maintains the linked sequence of agreed transitions. For a valid transition to

newCSk, the following invariants must hold:

1. newCSk.nrId is unique for all proposals seen by the members of Gn.

2. newCSk.prevAgreedNRId = currCSj .nrId

That is, ∀Pj ∈ RGk, Pj’s current control state is Pk’s previously agreed control state. If

this invariant does not hold, then either: (i) one or more members of RGk have submitted

a concurrent proposal with Pk and, for these members, their current control state is not

the previously agreed control state; or (ii) Pk is starting from a different view of agreed

control state to that of one or more members of RGk
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3. If newCSk.groupId != currCSj.groupId

then newCSk.stateId = currCSj.stateId

else if newCSk.stateId != currCSj.stateId

then newCSk.groupId = currCSj.groupId

That is, to maintain a definitive view of information state when membership changes, PK

cannot propose a membership change and a state change in the same protocol run (or

control state transition).

Violation of the preceding invariants leads to invalidation of the proposed transition. A tran-

sition is also invalid if any of the non-repudiation evidence is found to be invalid or if any

member of the sharing group determines that the proposed change is invalid when subjected to

application-level validation.

3.3.2.3 Coordination of state changes

I use the first example state transition in Figure 3.11 on page 105 to describe the state coordi-

nation protocol. In the example, the proposer, Pk, wishes to reach agreement on transition from

state Sy to state Sy+1. Table 3.9 defines the newCSk and resp j tokens used in the non-repudiable

Token Definition
newCSk nrId, prevAgreedNRId, Pk, h(Gn) , h(Sy+1)
resp j newCSk.nrId, currCSj .nrId, Pj, Dk, j

Table 3.9: State coordination protocol control state and response tokens

two-phase commit protocol shown in Figure 3.13. newCSk is the new control state proposed

by Pk. resp j is the form of the response that is expected from Pj ∈ RGk. Pk is committed to the

new state at initiation of a protocol run. Thus, a transition is only aborted if it is vetoed by one

or more members of RGk. The final protocol message represents the non-repudiable decision

of the whole of Gn on the validity of the proposed transition.

In step 1, Pk propagates newCSk, Sy+1 and their signature on newCSk. newCSk contains all

the information necessary to identify and verify the transition proposed by Pk. The digest of

Sy+1 included in newCSk allows a recipient to verify the integrity of Sy+1. The signature on

newCSk represents NRO of the proposal and binds the nrId to Pk’s authenticator, rnk.
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1 Pk → RGk : newCSk, Sy+1, sigk (newCSk)
2 ∀Pj ∈ RGk

Pj → Pk : resp j, sig j (resp j) , sig j (newCSk)
3 Pk → RGk : rnk, ∑resp j, ∑sig j (resp j) , ∑sig j (newCSk)

Figure 3.13: State coordination protocol

In step 2, each member of RGk responds with a message that confirms their view of agreed

control state through the identifier currCSj .nrId and provides their decision, Dk, j, on the va-

lidity of the proposed transition to newCSk. The decision Dk, j depends on verification of the

integrity of the proposal and on application-level validation of the new state Sy+1. The inclu-

sion of newCSk.nrId in resp j, along with currCSj.nrId, confirms the recipient’s view of the

proposed transition. The signature on resp j, including Pj, binds the various elements together,

provides NRO of the elements and preserves their integrity. The signature on newCSk provides

NRR of the proposal from Pk. newCSk.nrId irrefutably binds newCSk to resp j. Taken together,

resp j and the signature on newCSk allow any party to verify whether the invariants identified

in Section 3.3.2.2 hold and whether all members of RGk have seen the same proposal from Pk.

In step 3, Pk disseminates the collected responses and NRR tokens along with the authenti-

cator rnk. Since only Pk knows the value of rnk, no other party can generate the final message.

Thus rnk authenticates the group’s decision and is sufficient receipt for the responses provided

in step 2. Given newCSk and ∑resp j, any party can compute the group’s decision to commit or

abort Pk’s proposal. The final message is irrefutably linked to the other messages in the same

protocol run through the authenticator and the signed responses (which include newCSk.nrId).

Gn’s authenticated decision on Pk’s proposal is:

rnk, newCSk, ∑sigi (newCSk) , ∑resp j, ∑sig j (resp j)

i ∈ 1 : n; j ∈ {1 : nand j != k}

This is non-repudiable evidence of acceptance or rejection of a proposed transition and of the

consistency, or otherwise, of the information provided during a protocol run. A successful

protocol run allows the consistent installation of a new view of the agreed state by all members

of Gn. An unsuccessful run results in the consistent view that the proposed transition is invalid.
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In this case, Pk’s prevAgreedNRId identifies the agreed view of shared information.

Modifications for partial update

To allow for update to, as opposed to overwrite of, state, the control state can be extended to

include a digest of a proposed update,Uk. The extended control state is of the form:

newCSk = {nrId, prevAgreedNRId, Pk, h(Gn) , h(Sy+1) , h(Uk)}

The inclusion of h(Uk) allows a proposal recipient to distinguish a partial update from a com-

plete overwrite to the information state. In step 1 of the protocol, the partial update to state,

Uk, is provided in place of Sy+1. Uk may contain changes to certain attributes of Sy that are

necessary to perform the update from Sy to Sy+1 or Uk may define some function over Sy that

achieves the update. Since both h(Uk) and h(Sy+1) are provided in newCSk, it is possible for a

recipient to verify the integrity ofUk and to determine that, if the update is agreed and applied,

a consistent new state will result.

State change protocol analysis

The protocol aims to reach agreement on a control state transition, to prevent the misrepre-

sentation of that agreement, and, therefore, to prevent misrepresentation of the validity of the

associated shared information. Evidence is generated both to ensure that the actions of well-

behaved parties cannot be misrepresented by dishonest parties and to detect misbehaviour. In

particular:

• a proposed transition is irrefutably bound to its proposer and to the decisions of the

parties validating the proposal,

• validation decisions are irrefutably bound to their source — no party can sustain a claim

that a vetoed transition is valid or vice versa, and

• there is irrefutable evidence of who participated in a protocol, through confirmation of

the membership of the sharing group.
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Given the well-behaved party assumption, if all parties behave correctly, liveness is guaranteed

despite a bounded number of temporary failures. Incoming protocol messages are logged on

receipt. Outgoing protocol messages are logged before sending. In the event of local failure,

and upon recovery, a participant can determine the last known state of any active protocol run

from the evidence in their local log. They can also use this evidence to request information

on the status of a given protocol run from other participants. A well- behaved party may then

be able to resume protocol execution following recovery from temporary local failure (see

Section 4.4).

There is no guarantee of termination when even one party misbehaves. In part, this is

a consequence of the local autonomy and the need for unanimous agreement to changes to

shared information. The protocol concerns both the verification of the integrity of messages

and the semantic validation of message content. This exacerbates the problem of guaranteeing

termination because, for example, it is not possible to deduce anything about the validity of

a transition from a failure to respond to a proposal. The protocols are designed to generate

the evidence necessary for application-level resolution of any resultant blocking. In practice,

timeouts will result in the local propagation of exceptions by the the protocol execution frame-

work. The middleware can be configured to react to such events by, for example, proposing the

eviction of members of the sharing group who cease to cooperate. Ultimately, non-cooperation

can mean it is impossible for an application to progress. In this case, participants can use the

evidence in their logs for application-level resolution of disputes. Guaranteeing termination for

well-behaved parties is discussed further in Section 3.5.

I now present an informal analysis to support the assertion that no party can misrepresent

the validity of a control state transition. This safety guarantee is that, irrespective of the be-

haviour of other parties, no well-behaved parties will view an invalid transition to be valid.

To deliver the guarantee, the protocol must withstand subversion by members of Gn, whether

through deliberate or accidental fault, as well as by intruders. Any attempt to subvert a protocol

run by generating inconsistent message content can be detected. In which case, the proposed

state transition is invalidated and evidence of misbehaviour is generated. It is possible to verify

that the signed parts of protocol messages are consistent with the unsigned parts and, there-
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fore, to detect internally inconsistent messages. It is possible to detect inconsistency between

messages because nrId and rnk cryptographically link each message to its uniquely identified

protocol run. I now show how the protocol allows detection of other attempts at subversion by

members of Gn.

1. A member of Gn does not send a message. If Pk does not initiate the protocol then, by

definition, Pk is unable to show that a new state is valid. If a member, Pj, of RGk does

not respond to a proposal, then Pj will have obtained the proposed new state without

providing NRR. However, Pj cannot demonstrate the validity of the state (since they will

not obtain authenticator rnk). If Pk fails to send the final message, then all members

of RGk hold evidence that the protocol run is active and any subsequent coordination

request will reveal inconsistencies between control states. If Pk has evidence that a new

control state has been agreed, then any subsequent action on the information will reveal

this agreement. That is, Pk must produce the non-repudiation evidence to support any

assertion that the new control state is valid.

2. Pk performs selective sending. If different messages are sent to different members of

RGk, then the inconsistency will be detected in subsequent protocol steps or, in the case

of the final message, during any subsequent coordination request. If the first message is

not sent to a subset of RGk, then it is not possible to reach a unanimous decision on the

validity of the proposal and Pk cannot produce a valid final message for any member of

RGk. If the final message is not sent to a subset of RGk, then this subset can show that

the protocol run is still active. Further, any honest party who receives the final message

can relay it to any other member of RGk.

3. There is a temporary divergence of the view of agreed state. It is possible for a member,

Pj, of RGk to prepare two response messages: one representing an accept and the other

a reject of Pk’s proposal. Pj sends one response to Pk, intercepts a subset of the final

messages and, in those messages, substitutes the other response. In this case, if and only

if all other members of RGk accepted the proposal then some members of Gn will install

a new view of shared information and others will remain with the previously agreed
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view. However, the guarantee that no member of RGk installs a view that has not been

unanimously agreed still holds, as does the guarantee of eventual consistency of the view

of agreed state. The next coordination request will reveal the divergent view, as will any

attempt to take advantage of the divergence. Thus the divergence is temporary. All

parties have the information necessary to install the new view and all parties eventually

receive evidence of its validation, at next state or membership coordination. IfPk counter-

signs the responses, ∑resp j , then divergence can only occur ifPk colludes with a member

of RGk to prepare two different sets of responses.

The non-repudiation evidence generated during a protocol run binds a party to their actions

and those actions cannot be misrepresented. Given the subversion model in Section 2.1.5, it is

not possible for an intruder to undetectably modify messages between members of Gn and no

member of Gn can be forced to agree an invalid transition by the intruder. Thus the most that

can be achieved is the detectable disruption of the protocol. In no case is it possible to force a

correctly behaving party to install a new view of shared information unless the view has been

unanimously agreed.

At the end of a protocol run, a correctly behaving party will either:

1. be able to install a new view of valid state, and hold evidence that it has been unanimously

agreed, or

2. hold evidence that the proposed transition has been vetoed.

A misbehaving party cannot misrepresent invalid state as valid. Similarly, they cannot support

a claim that valid, unanimously agreed state is invalid. Thus, the protocol delivers the stated

safety guarantee.

3.3.2.4 Coordination of membership changes

In this section I describe the connection and disconnection protocols used to coordinate group

membership. First, I clarify the roles of subject and proposer in membership changes. Then, I

detail the data propagated with a new control state to effect a membership change. The section

concludes with descriptions of the membership change protocols.
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The protocols ensure the maintenance of a consistent, non-repudiable view both of the

group membership and of the agreed information state at membership changes. The connec-

tion protocol is used to reach agreement on a member joining the group. An existing member

uses a voluntary disconnection protocol to leave the group or temporarily suspend their mem-

bership. An eviction protocol is used to suspend or terminate the membership of uncooperative

member(s). Information ceases to be shared after a succession of member disconnections. In

this way, each party obtains a verified view of the agreed state of the information at the end

of their involvement in sharing. The membership change protocols aim to reach agreement

on a membership change that is represented by transition to a new control state. Since each

party’s view of agreed state is propagated during membership changes as part of the control

state, the temporary divergence of view discussed in Section 3.3.2.3 can be resolved during a

membership change.

Membership change subject(s) and proposer

The subject of the connection protocol is the party intending to join the sharing group. The

subject of the voluntary disconnection protocol is the member leaving the group. The subject(s)

of the eviction protocol are the member(s) to be evicted from the group.

The membership change proposer is the existing member of the group responsible for co-

ordinating agreement to a membership change. In addition, if a connection request is agreed,

the proposer provides the current agreed information state to the subject. The proposer is also

responsible for blocking other coordination requests until a decision on a membership change

is reached. Should a connection request be rejected, the proposer restricts the knowledge of the

shared information that the subject can acquire. For a voluntary disconnection, the proposer

limits the involvement of the subject in protocol execution. The subject(s) of an eviction have

no involvement in protocol execution.

Proposer responsibility can be rotated in order to reduce reliance on a single member to

propose membership changes. In this case, the proposer of a connection request is unambigu-

ously identified as the most recently connected existing member of the group; that is, given

Gn = {Pi |i ∈ 1 : n}, ordered by oldest member first, the proposer of a connection request is
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Pn. If the connection is agreed, then the proposer of the next request will be Pn+1. Similarly,

for group Gn, Pn is the proposer of disconnection requests unless Pn is a disconnection subject.

If Pn is a disconnection subject then the next most recently connected member, Pn−1, is the

proposer. If proposer rotation is not required, then the oldest member of the group can act as

proposer of all membership changes unless they are the subject of a disconnection request (in

which case the responsibility passes to the next oldest member). Since the current proposer

can be unambiguously identified, any member of Gn can verify the legitimate proposer for a

request and provide this information to a potential new member.

Membership change data and group identifier

To allow all parties to install a new view of group membership, a membership update of the

following form is the payload that is propagated with the new control state:

MU = {ADD|REMOVE, sub jectList}

where sub jectList identifies the party joining or the member(s) leaving

The groupId included as part of the new control state uniquely identifies the proposed new

sharing group. For a connection, ADD membership update, the groupId is generated by ap-

pending the single member of sub jectList to the existing ordered set of group members and

then computing a message digest over the new set. For a disconnection, REMOVE membership

update, the groupId is generated by removing the member(s) of sub jectList from the existing

set of group members and then computing a message digest over the new set.

Membership change protocols

Each of the membership change protocols follows the same pattern:

1. The subject of a connection or voluntary disconnection, or the initiator of an eviction,

sends a membership change request to the current membership proposer.

2. The proposer and the existing members of the sharing group, excluding any disconnec-

tion subject(s), execute non-repudiable two phase commit to confirm the membership
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change. The two phase commit is essentially the same as the state change protocol ex-

cept that the proposed control state transition represents a membership change and a

membership update is the payload. The member eviction protocol terminates at this two

phase commit stage.

3. For a connection request, the proposer then provides the connection subject with the

group’s decision. If the request is accepted, the proposer also provides both the infor-

mation necessary to join the sharing group and the currently agreed application state

of the shared information. So, upon agreement to connection by the existing sharing

group, a new member knows the membership of the sharing group, which now includes

themselves, and the state of the shared information. For a voluntary disconnection, the

proposer provides the subject with the confirmed view of both group membership and

information state at their disconnection.

If the outcome of the two phase commit stage is agreement to the membership change, then

at protocol termination all members of the new sharing group will have an identical view of

the membership of the new group and of the information state that they share. If the existing

members of the sharing group that participate in the two phase commit do not agree to the

change, then the agreed view of their shared information does not change.

Connection protocol

Figure 3.14 recalls the member change example from Section 3.3.1 in which transition from

Figure 3.14: Member connection control state transition

control state x+ 1 to control state x+ 1 represents the formation of the new sharing group:

Gn+1. To describe the connection protocol, we assume that connection subject Pn+1 wishes to
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join group Gn to form group Gn+1. Table 3.10 defines the MUn+1, newCSk and resp j tokens

Token Definition
MUn+1 {ADD, Pn+1}
newCSn nrId, prevAgreedNRId, Pn, h(Gn+1) , h(Sy)
resp j newCSn.nrId, currCSj.nrId, Pj, Dn, j

Table 3.10: Connection protocol tokens

used in the protocol description shown in Figure 3.15. MUn+1 is the proposed membership

update. newCSn is the proposed new control state generated by membership change proposer,

Pn. resp j is the form of the response that is expected from Pj ∈ RGn.

1 Pn+1 → Pn : MUn+1, sign+1 (MUn+1)
2 Pn → RGn : newCSn,MUn+1, sign (newCSn) , sign+1 (MUn+1)
3 ∀Pj ∈ RGn

Pj → Pn : resp j, sig j (resp j) , sig j (newCSn)
4 Pn → RGn : rnn, ∑resp j, ∑sig j (resp j) , ∑sig j (newCSn)
5 Pn → Pn+1 : newCSn, rnn, Gn, Sy, ∑resp j, ∑sig j (resp j) , ∑sigi (newCSn)

Figure 3.15: Connection protocol

To start the protocol, Pn+1 sends a signed membership update request to the proposer, Pn.

In steps 2 to 4, Pn coordinates agreement to the change within the existing sharing group:

Gn, where RGn = Gn−Pn. At step 5, assuming the sharing group agrees Pn+1’s membership,

Pn provides Pn+1 with the evidence of the agreement. As shown, Pn also provides Gn and

Sy to enable Pn+1 to join the group. It is assumed that a participant’s identifier, Pi, provides

access to the information necessary to communicate with Pi and to verify Pi’s signature. The

authenticated decision to agree updateMUn+1 and, therefore, Pn+1’s membership is given by:

rnn, newCSn, ∑sigi (newCSn) , ∑resp j, ∑sig j (resp j) , sign+1 (MUn+1)

i ∈ 1 : n; j ∈ 1 : n−1

Together withMUn+1, this information allows all parties, including Pn+1, to install a consistent

view of the new membership, Gn+1. So, on admission to the sharing group, Pn+1 shares the

group’s knowledge of the membership of the new group Gn+1 and of the agreed information

state, Sy. Pn+1 then also has the option to perform application-level validation of both Gn+1 and
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Sy. Should that validation fail, Pn+1 may immediately initiate a voluntary disconnection.

A connection request from Pn+1 may be rejected immediately by Pn or may be vetoed by

one or more members of RGn. In the case of immediate rejection, Pn simply responds with the

following signed reject message.6

Pn → Pn+1 : REJECT, Pn, sign (REJECT, Pn,MUn+1)

In the case of veto by a member of RGn, the protocol follows steps 1 to 4 shown in Figure 3.15.

Then, in step 5, Pn sends Pn+1 the signed reject message. Thus, Pn+1 learns no more information

than in the case of immediate rejection by Pn.

Disconnection protocols

The disconnection protocols ensure that the remaining members of the group have evidence

of the decision to disconnect a subject and, in the case of voluntary disconnection, that the

subject initiated the disconnection. Since any member of the group wishing to disconnect may

in practice simply cease cooperation, voluntary disconnection cannot be vetoed. Thus, there is

no group decision on a voluntary disconnection and the protocol is executed solely to maintain

the consistent view of group membership and information state. Note that the response token

in Table 3.11, resp j , does not include any decision. The corresponding tokens for connection

and eviction include the decision Dn, j.

The eviction protocol removes one or more subject(s) without reference to those subject(s).

Thus the eviction protocol may result in the formation of distinct sharing groups. Any such

groups can only claim that its members have agreed to the formation of their group. No claim

can be made with respect to the agreement of the evictee(s) to the new group membership

nor can any assumption be made about the evictee(s) agreement or otherwise to subsequent

state changes in the group from which they have been evicted. The distinct groups act upon

different views of the information. In effect, the shared information has been cloned and the

state of the information may evolve along separate lines without disadvantage to the members

6The request may be rejected because Pn is not the current membership change proposer. In this case, the reject
message will provide the information necessary to make a request to the current proposer.
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of the distinct groups.

In the following descriptions, P1 is the subject of a disconnection request, Pn is the cur-

rent membership proposer, and Pk initiates the disconnection of P1. In the case of voluntary

disconnection, Pk = P1 . In the case of eviction, Pk != P1.7 The recipient group for a disconnec-

tion proposal from Pn is RG′
n = RGn−P1. The new group after successful completion of the

disconnection protocol is G′
n = Gn−P1.

Token Definition
MU1 {REMOVE, P1}
newCSn nrId, prevAgreedNRId, Pn, h(G′

n) , h(Sy)
resp j newCSn.nrId, currCSj .nrId, Pj

Table 3.11: Voluntary disconnection protocol tokens

Table 3.11 defines tokens used in the description of the voluntary disconnection protocol

shown in Figure 3.16. This protocol is very similar to the connection protocol. The differences

1 P1 → Pn : MU1, sig1 (MU1)
2 Pn → RG′

n : newCSn,MU1, sign (newCSn) , sig1 (MU1)
3 ∀Pj ∈ RG′

n
Pj → Pn : resp j, sig j (resp j) , sig j (newCSn)

4 Pn → RG′
n : rnn, ∑resp j, ∑sig j (resp j) , ∑sig j (newCSn)

5 Pn → P1 : newCSn, rnn, ∑resp j, ∑sig j (resp j) , ∑sig j (newCSn) , sign (newCSn)

Figure 3.16: Voluntary disconnection protocol

are in the form of the membership update (MU1), the new group membership (G′
n), and the

fact that there is no decision on voluntary disconnection in the response token (resp j). The

authenticated voluntary disconnection of P1 is given by:

rnn, newCSn, ∑sigi (newCSn) , ∑resp j, ∑sig j (resp j) , sig1 (MU1)

i ∈ 2 : n; j ∈ 2 : n−1

This provides evidence that P1 initiated voluntary disconnection and that all other members of

Gn have seen the request. The other members of Gn can therefore install the new agreed view

of group membership: G′
n.

7In the general case, for voluntary disconnection: sub jectList = {Pk}, and for eviction: Pk /∈ sub jectList.
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The protocol to evict a member, P1, differs from the voluntary disconnection protocol in

the following ways.

1. Some member Pk != P1 initiates the request to proposer Pn with the membership update

MUk = {REMOVE, P1}.

2. resp j now includes Dn, j — the decision of each member of RG′
n as to whether P1 should

be evicted.

3. The subject is not involved in protocol execution. Thus, it is possible to form a new

sharing group without the agreement of the evictee. Since each respondent must make a

decision on the validity of the eviction, this new group can only be formed by unanimous

agreement of RG′
n and Pn.

4. If the current proposer is also the initiator of an eviction (Pk = Pn), the first step of the

protocol is omitted.

5. Step 5 is omitted altogether since the initiator of the eviction, Pk, is a member of RG′
n.

The authenticated decision to evict member P1 is given by:

rnn, newCSn, ∑sigi (newCSn) , ∑resp j, ∑sig j (resp j) , sigk (MUk)

i ∈ 2 : n; j ∈ 2 : n−1; k != 1

The eviction protocol can be generalised to remove one or more members of the group. In

which case the membership update,MUk, requested by Pk indicates a list of subjects. Following

unanimous agreement to the eviction the new group is: G′
n = Gn− sub jectList.

Membership change protocol analysis

The two phase commit at the core of the membership change protocols is essentially the same as

the state change protocol. Therefore the analysis of the state change protocol in Section 3.3.2.3

applies to the core of each membership change protocol. The significant difference between

state changes and membership changes is the use of a proposer to coordinate membership

changes. The proposer has two important responsibilities:
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1. to act as the identified contact that members joining and leaving the sharing group can

submit membership change requests to and, thereby, initiate an appropriate membership

change protocol, and

2. to prevent (or veto) other changes to membership or to information state during active

execution of a member change protocol.

The latter responsibility means that the proposer can provide a member joining or voluntarily

leaving the sharing group with a definitive view of the membership of the sharing group and of

information state at the time of the membership state. Evidence is generated that this definitive

view is shared by the new sharing group. Concurrent requests for state or membership changes

cannot disrupt the establishment of the shared view. The proposer’s additional responsibilities

present the following additional opportunities for misbehaviour.

1. In the connection protocol, the proposer may unilaterally reject a request to join the

sharing group. Proposer rejection on first receipt of a request is acceptable because

each member of the sharing group, including the proposer, has the right to autonomous

decision on the validity of a membership change request. The proposer may reject a join

request in spite of the agreement to the request by the existing sharing group. In this case,

the existing members will have evidence that the new member has been admitted to the

sharing group. However, the new member will believe their request to join was rejected.

Therefore, in the worst case there will be no further progress among the sharing group

as the new member will not cooperate in coordination. The proposer’s misbehaviour can

be detected from the non-repudiation logs of the members of the sharing group and of

the proposed new member.

2. In the voluntary disconnection protocol, the proposer may not initiate the disconnection

protocol. However, the disconnecting member will cease cooperation in any case. So,

this will simply lead to a lack of progress for the remaining members of the sharing

group. The proposer may decline to provide the member leaving with the definitive state

of shared information at the membership change. However, if necessary, the leaving

member can legitimately request this information from any other member of the sharing
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group.

3. In the eviction protocol, the proposer may unilaterally reject an eviction request. As

for the connection protocol, this is acceptable because the proposer has the right to au-

tonomous decision on the validity of the request.

It should be noted that the subject of a membership change, whether a new member of the

sharing group or a member voluntary disconnecting, is able to detect an attempt by the pro-

poser to misbehave by providing inconsistent information on the current state of the shared

information. The internal consistency of the joining or leaving information is guaranteed by

the cryptographic binding between the evidence provided and by the fact that the information

state at membership change must be the same as the information state identified through the

previously agreed control state. Therefore, the subject can verify the integrity and consistency

of the information and that it is genuinely the shared view of the membership of the sharing

group.

In summary, the proposer does acquire some power from their additional responsibilities.

However, the worst case is that the proposer can use this additional power to prevent forward

progress for the sharing group, including themselves. This misbehaviour can be detected, is

equivalent to blocking by the proposer and may be resolved at application-level. There is

no way for the proposer to misrepresent the validity of decisions with respect to membership

changes. The rotation of proposer responsibility reduces the burden on any one party and

also reduces the opportunities for any individual member to exploit the additional power that a

proposer acquires.

3.3.3 Concurrency control

Shared information, of its nature, is subject to concurrent access. Different parties may in-

dependently initiate a request to update information state or to change the membership of the

sharing group. There is, therefore, a requirement for concurrency control to determine whether

any of two or more competing requests should succeed. There are four different types of

protocol-level concurrency control: (i) read locking of shared information, (ii) optimistic con-

currency control with all fail semantics, (iii) optimistic concurrency control with at most one
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succeeds semantics, and (iv) explicit write locking of shared information.

Read locking

Any member of the sharing group can veto proposed changes to shared information and,

thereby, apply a local read lock on the information. The local acquisition of a read lock can be

communicated to the proposer of the change by a recipient indicating in their decision, Dk, j,

that the information is read-only.

Optimistic concurrency control with all fail semantics

The second invariant from Section 2.1.2 states that each recipient’s view of the current agreed

control state must be the same as the proposer’s previously agreed control state. So:

∀Pj ∈ RGk : newCSk.prevAgreedNRId = currCSj .nrId

This invariant guarantees concurrency control with all fail semantics. Minimally, competing

proposals are detected and rejected by their respective proposers. For example, if member Pk

proposes transition to control state newCSk concurrently with a proposal from Pl for transition

to control state newCSl then:

currCSk = newCSk and currCSl = newCSl, therefore

newCSk.prevAgreedNRId != currCSl .nrId

and newCSl .prevAgreedNRId != currCSk .nrId.

Pk and Pl have inconsistent views of current control state. Therefore, they will veto each other’s

proposals and all other members will obtain evidence of the concurrent proposals.

Optimistic concurrency control with at most one succeeds semantics

It is possible to provide at most one succeeds semantics for competing proposals by adopting

a convention for the precedence of one proposal over another. For example, the ordering of

members to identify the membership proposer could be used to choose between concurrent

proposals. In the case of competing proposals from Pk and Pl, Pk would not automatically veto



Chapter 3 Definition of non-repudiation services 127

Pl’s proposal. Pj’s proposal would succeed providing it passed application-level validation by

all members of the sharing group, including Pk.

Explicit write locking

Explicit write locking of shared information is supported by extending information control

state to include a lockId that identifies the current holder of a write lock. Then a proposer

may use the state coordination protocol to agree transition to a new, locked control state. The

state coordination protocol can support optimistic locking where a lockId is associated with the

new control state along with some new information state payload. Alternatively, the proposer

can perform pessimistic locking by requesting transition to a new locked control state before

proposing a change to the associated information state. Having acquired an explicit write lock

on the information, the proposer may then make a sequence of state changes by appropriate

executions of the state coordination protocol. Figure 3.17 shows a sequence of such control

Figure 3.17: Control state transitions with locking

state transitions. Transition from control state x to control state x+1 represents acquisition of

the write lock by the proposer. While they hold the lock, the proposer obtains agreement to

transition from control state x+1 through to control state x+3. So, the proposer holds a write

lock for changes from state y, through state y+ 1 to state y+ 2. Finally, the proposer releases

the lock in the transition from control state x+3 to control state x+4.

The following conditions hold with respect to explicit write-locking.

1. Any party may request that a lock holder release their lock by initiating transition to a

new unlocked control state. The lock holder may veto such a request.
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2. If the lock holder voluntary disconnects or is evicted from the sharing group, their lock

is relinquished as part of the protocol for transition to the new membership.

3. While a lock is held, the lock holder is the designated membership proposer. So, the

identification of membership proposer discussed in Section 3.3.2.4 is overridden by the

existence of a lock holder.

In Section 5.3.3 I show how transactional access to shared information relies similar extensions

to control state. I now summarise the supporting infrastructure required for the non-repudiation

services defined in Sections 3.2 and 3.3. I then conclude the chapter with an evaluation of the

non-repudiation services.

3.4 Supporting infrastructure

The services described in Sections 3.2 and 3.3 rely on a supporting infrastructure. Here, I

provide a brief overview of its main components. Section 4.3 presents service APIs and other

implementation detail.

Credential (certificate) management: to support signature verification, and for storage and

retrieval of digital certificates and associated public keys. Credential management also

supports certificate revocation and the verification of certificate chains.

Cryptographic services: to sign information, to verify signatures, to encrypt information, to

decrypt cyphers, to generate message digests, and to generate secure pseudo-random

number sequences.

Information time-stamping: to provide trusted time-stamps on signed information as de-

scribed in Section 2.1.3.

Message logging: to log the messages that protocol participants exchange. There are two

types of message log: (i) a long-term non-repudiation log, and (ii) an active message log

that provides temporary storage for messages that are still being processed in some way.

Each participant’s non-repudiation log provides their definitive view of an interaction



Chapter 3 Definition of non-repudiation services 129

and can be used to recover protocol state. However, certain (invalid) incoming messages

should not stored be in the non-repudiation log. For example, duplicate messages or mes-

sages with invalid cryptographic information should be discarded. Therefore, incoming

messages that have been received for processing are stored in the active message log until

a decision has been made to either discard them or to move them to the non-repudiation

log. From each participant’s point of view, a protocol run is active if they have sent a

message for which they are entitled to expect one or more response(s). Thus, for each

participant, the last message they sent determines whether a given protocol run is ac-

tive. These message are stored in, and can be recovered from, the non-repudiation log.

However, protocol-specific knowledge is required to determine whether a given message

relates to an active or terminated protocol run. Rather than perform potentially complex

searches of the non-repudiation log, it is convenient to use the active message log to store

a copy of the last outgoing message for any active protocol run. An outgoing message

is removed from the active message log either: (i) when it is replaced by a subsequent

outgoing message for the same protocol run, or (ii) when the message that terminates

the protocol run is added to the non-repudiation log. For example, in the request phase

of the non-repudiable invocation shown in Figure 3.5 on page 88, B keeps a copy of the

message sent in step 1.3 in the active message log until it can be replaced by the mes-

sage sent in step 1.6. B removes the latter message from the active message log when

they receive the TTP’s message in step 1.7 and, from B’s point of view, the protocol has

terminated. Though not essential, the temporary logging of these outgoing messages is

useful for recovery.

An organisation may already have access to some of the identified infrastructure. For example,

standard Java libraries can be used for the cryptographic services. In other cases, new im-

plementations of support services are provided. Section 4.3 provides service implementation

details.
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3.5 Evaluation of non-repudiation services

In this chapter we have defined two services to address the requirements for accountability

in B2B interactions identified in Section 1.2. The two services for non-repudiable service

invocation and for non-repudiable information sharing address the two domains for action: on

private and shared resources, respectively.

Non-repudiable service invocation is based on fundamental work on non-repudiation, us-

ing protocols for the direct exchange of evidence and for TTP-supported fair exchange. Sec-

tion 3.2.1.2 highlighted extensions to Coffey-Saidha’s in-line TTP protocol to integrate app-

lication-level validation without loss of fairness and to support timely termination. The straight-

forward extension for validation is possible because the TTP is involved in each message ex-

change and controls the release of information to other parties. For off-line TTP protocols, it

was shown that application-level validation can be integrated by the correlation of two protocol

runs. The first protocol run exchanges a message for its receipt. The second run exchanges val-

idation evidence. For each approach to the exchange of non-repudiation evidence, correlated

protocol runs are used to link the request and response phase of service invocation.

The choice of exchange mechanism will depend on application-specific requirements. For

example, direct exchange may be appropriate when interacting with a trusted entity. The choice

between in-line TTP and off-line TTP fair exchange may depend on the availability and capabil-

ities of TTP services. An obvious consideration is the communication overheads of a protocol

in terms of the number of messages needed to achieve the exchange of evidence. However,

care must be taken when calculating these overheads. If signing keys are revocable and trusted

time-stamps are required for signature verification and the long-term validity of evidence, then

the costs of obtaining time-stamps from a TSA must be included in the calculation. Table 3.12

compares the costs for the request phase of a service invocation for five approaches to ex-

change: (i) direct exchange, (ii) direct exchange with a TTP that also acts as a TSA, (iii) in-line

TTP fair exchange, (iv) in-line TTP fair exchange where the TTP is also the TSA, and (v)

optimistic fair exchange. It should be noted that it is not possible to optimise optimistic fair ex-

change when a TTP also acts as TSA since there is no TTP involvement in the main exchange.

Column 2 shows the number of protocol messages required for the exchange of receipting and
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Approach (request phase only) Protocol Time-stamp Total
messages messages messages

(i) Direct exchange (Figure 3.4) 2 4 6
(ii) Direct exchange with
TTP/TSA

2 0 2

(iii) In-line TTP fair exchange
(Coffey-Saidha — Figure 3.5)

8 6 14

(iv) In-line TTP/TSA fair
exchange (Coffey-Saidha —
Figure 3.8

8 0 8

(v) Optimistic, off-line TTP fair
exchange (Wang — Figure 3.9)

6 8 14

Table 3.12: Communication costs for request phase non-repudiation with validation

validation evidence. Direct exchange is cheapest, then optimistic fair exchange and then in-line

TTP exchange. Column 3 shows the number of messages required for trusted time-stamping.

In each protocol, a time-stamp must be obtained the first time that signed evidence is gen-

erated. Two messages are required for each time-stamp, one to send the request to the TSA

and the other for the TSA’s response. As shown, the time-stamping overhead is highest for

optimistic fair exchange, which requires time-stamps for 4 of the 6 protocol messages. Inline

TTP exchange requires a time-stamp for 3 of 8 protocol messages. Direct exchange requires a

time-stamp for each of its 2 protocol messages. As shown for exchanges (ii) and (iv), when a

TTP can also act as a TSA there is no communications overhead for time-stamping. Not sur-

prisingly then, as shown in column 4, direct exchange with a TSA has the lowest total message

cost followed by direct exchange. Perhaps less obvious is that fair exchange with an in-line

TTP/TSA is cheaper, in terms of total messages required, than optimistic fair exchange and

that optimistic fair exchange has the same total message cost as in-line TTP fair exchange. So,

the relative communication costs of the different approaches change when time-stamps from

a TSA are required. Table 3.13 compares communication costs when application-level vali-

dation is not required. In this case, there is no exchange of validation evidence. Once again,

the relative costs of the different approaches change when time-stamping is required. Interest-

ingly, in-line TTP/TSA fair exchange is now cheaper than the simple direct exchange. Clearly,

if communication costs are a factor in the choice of mechanism then important considerations

include whether trusted time-stamping is required and whether guarantor TTP and TSA roles
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Approach (request phase only) Protocol Time-stamp Total
messages messages messages

(i) Direct exchange (Figure 3.4) 2 4 6
(ii) Direct exchange with
TTP/TSA

2 0 2

(iii) In-line TTP fair exchange
(Coffey-Saidha — Figure 3.5)

5 4 9

(iv) In-line TTP/TSA fair
exchange (Coffey-Saidha —
Figure 3.8

5 0 5

(v) Optimistic, off-line TTP fair
exchange (Wang — Figure 3.9)

3 4 7

Table 3.13: Communication costs for request phase non-repudiation without validation

can be combined. Other factors, such as computational costs and relationships between busi-

ness partners, will also inform the choice of mechanism. The preceding analysis underlines

the desirability of being able to choose an appropriate mechanism for the given B2B context.

The flexibility necessary to meet this challenge is based on the model of interceptor-mediated

interaction described in Section 3.1.

The definition of non-repudiable information sharing addresses all the requirements for

the service identified in Section 1.2 except for transactional access. The coordination proto-

cols presented in this chapter guarantee the validity of decisions reached amongst the sharing

group. They are also efficient in terms of the number of messages required (O(n) for n parties)

and are straightforward to implement. Protocol messages, and valid states, are persisted and,

therefore, recovery is possible in many circumstances. These characteristics are achieved in

the context of stated assumptions with respect to failures and, in particular, by not guarantee-

ing protocol termination when parties misbehave. The inability to terminate is detectable and

may be resolved outside of a protocol run.

Application-level validation depends on the semantics of a proposed change to shared in-

formation as interpreted by each individual party. Thus all parties must be involved to validate

a change. Protocol-level support for termination in the presence of misbehaviour therefore

reduces to allowing timely abort of a proposed update without disadvantaging well-behaved

parties. The arguments for the impossibility of deterministic fair exchange without a TTP will

also apply in this case and, therefore, a safe abort protocol will require the involvement of a
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TTP to guarantee that all well-behaved parties terminate with the same view of agreed state.

In effect, a TTP would provide certified abort of a protocol run unless the required set of re-

sponses are available, in which case the TTP would provide a certified decision that reflects

those responses. Another approach is to take advantage of the propagation of the agreed ap-

plication state during membership changes. A membership change can be seen as the point at

which any temporary divergence of application state can be resolved. If a TTP were used as co-

ordinator for membership changes, then the TTP could guarantee termination to well-behaved

parties. The development of sub-protocols to guarantee termination is left as an avenue for

future research. Approaches to explore include the use of both on-line and off-line TTPs, and

also the construction a virtual TTP from an honest majority of members of the sharing group.

The protocols presented in this chapter are an easily understood base for the investigation of

different approaches. Again, the resulting choice underlines the need for flexibility in order to

the deploy the mechanism that is appropriate to the given context.

Taken together the definitions of non-repudiable invocation and non-repudiable informa-

tion sharing are the foundation for systematic support to meet requirements for accountabil-

ity and audit in the two domains of action identified in Chapter 1. Remaining challenges

are: (i) the realisation of the non-repudiation services as middleware with the flexibility to

adapt to different application requirements, and (ii) the support for transactional access to

shared information. Chapter 4 presents the design and implementation of a generic middle-

ware framework for protocol execution that supports the adaptable delivery of non-repudiation

services and the flexible provision of the supporting infrastructure identified in Section 3.4.

The framework supports interceptor-mediated non-repudiable interaction between application

components. Chapter 5 describes the implementation of the non-repudiation services that use

the protocol execution framework. The implementation of non-repudiable information sharing

extends standards-compliant transactional access to resources to include shared information.

Section 5.3.3 describes how information control state can be extended to support transactions,

in a similar way to its extension for explicit write locking in Section 3.3.3. From the point

of view of transaction middleware, the extensions allow shared information that is realised as

application components to behave in the same way as any other transactional resource.
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Chapter 4

Generic protocol execution framework

This chapter presents the design and implementation of the generic protocol execution frame-

work that is basis for the non-repudiation service implementations described in Chapter 5. The

generic framework has two layers: (i) a protocol-specific handler layer for message generation

and processing, and (ii) a protocol-agnostic remote access and coordination layer for the ex-

change of messages between protocol participants. This separation of protocol-specifics from

B2B communication is fundamental to the general applicability of the framework. The frame-

work supports the execution of any protocol for which there is a handler that complies with the

framework’s API. The framework provides support for the run-time invocation of application-

specific validation and for the application-level notification of protocol events. In addition, the

framework provides support services that are not specific to a given non-repudiation service or

protocol.

The framework is implemented in Java. Chapter 5 demonstrates its use to implement the

non-repudiation services defined in Chapter 3 for interaction between and with components of

a J2EE application server. As discussed in Chapter 6, preliminary work on a re-implementation

for Web services demonstrates the flexibility of the approach [RCS05, CRS06]. The Web ser-

vices version provides non-repudiation of SOAP message delivery as a mediation service or

using the AXIS SOAP handler chain [Apa05]. Section 4.1 of this chapter provides an overview

of the protocol execution framework. Then in Section 4.2 I provide details of B2B communica-

tion and protocol handling, the representation of protocol messages, the agreed representation

of evidence, and of application-level validation and event notification. Section 4.3 provides

service APIs and implementation details of the supporting infrastructure introduced in Sec-
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tion 3.4. As stated in Section 1.2, fault tolerance of exchange is beyond the scope of this

dissertation. However, the necessity to log messages for non-repudiation and the design of

the protocol execution framework means that it is possible to support local recovery, and re-

engagement in exchange, at the middleware level. Section 4.4 discusses this middleware-level

support for recovery in the event of temporary local failure. Such recovery is the basis for

future, more comprehensive work on fault tolerance. Section 4.5 concludes the chapter with

a summary of contributions, highlighting how the framework addresses the requirement for

flexibility identified in Section 1.2.

4.1 Overview of framework

Each business partner in a non-repudiable B2B interaction is expected to expose a service for

the exchange of protocol messages. This NRCoordinator service is the external entry point for

remote access and coordination. As shown Figure 4.1a the coordinator services are deployed

(a) protocol execution between peer coordinator services

(b) guarantor TTP coordinator service

Figure 4.1: Interceptor-based protocol execution with NRCoordinator services
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at non-repudiation interceptors that mediate the interaction between business partners. So, for

B2B interactions that require regulation, the interception of communication between applica-

tion components at organisations A and B results in the execution of non-repudiation protocols

through the exchange of messages between the exposed coordinator services. This realisation

of the interceptor-mediated interaction model introduced in Section 3.1 preserves the semantics

of the interaction between application components at A and B. Figure 4.1b shows the exten-

sion of the model to include a guarantor TTP for protocol execution. The TTP also provides

a coordinator service for interaction with A and B. The same protocol execution services are

deployed at the TTP as at A and B. The services at A and B are invoked as a result of the

interception of operations on application components. At the TTP, the services are standalone

and are invoked as a result of calls made at the TTP’s NRCoordinator interface by A’s and B’s

interceptors.

Figure 4.2: Non-repudiation protocol execution components

Figure 4.2 shows the main components of the protocol execution framework (deployed

at non-repudiation interceptors). Operations at the application level are mediated by non-

repudiation service-specific components. The service-specific layer is responsible for the local

selection and initiation of protocols appropriate to the application context and to the given

non-repudiation service, whether service invocation or information sharing. Thus, the service-

specific layer mediates between the application and the underlying protocol execution frame-

work. The protocol-specific layer of the framework manages the execution of specific pro-

tocols, including message generation and processing. The service-specific layer initiates a

protocol through the NRProtocolHandler interface. The NRProtocolHandler also provides an

interface for the remote access layer to forward incoming messages for processing. It is at
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the protocol-specific layer that protocols appropriate to different application requirements are

deployed. For example, different NRProtocolHandler implementations are provided for the

different service invocation protocols described in Section 3.2. The framework is designed to

execute any protocol for which there is a handler that complies with the NRProtocolHandler

API.

The remote access and coordination layer in Figure 4.2 provides protocol-independent

communication between protocol participants. The NRCoordinatorRemote interface is pro-

vided for delivery of incoming messages and the NRMessenger interface is used by the protocol-

specific layer to send outgoing messages. The NRValidationListener provides the means to

plug-in application-specific validation and to trigger that validation during protocol execution.

Similarly, NREventListeners can be used for higher-level reaction to events that are generated

during protocol execution. I now provide further details of the different components of the

framework and their relationship to each other.

4.2 Framework APIs and implementation

In Section 4.2.1 I describe the coordinator service and protocol handlers. Section 4.2.2 defines

the self-describing protocol messages that protocol participants exchange. The agreed repre-

sentation of application data and evidence is discussed in Section 4.2.3. Section 4.2.4 describes

validation and event listeners.

4.2.1 Coordinator service and protocol handlers

Figure 4.3 is the API of the components that constitute the lower layers of Figure 4.2. Protocol-

independent remote access and coordination are provided byNRCoordinatorRemote and NRMes-

senger. NRCoordinatorRemote is the entry point for the delivery of protocol messages from re-

mote parties to be processed by local protocol handlers. Remote invocation of deliverMessage

results in delivery of the given NRProtocolMessage, defined in Section 4.2.2, from the invoker

to the invoked coordinator service. deliverRequest is a convenience method that allows a

remote party to deliver a message and then to wait synchronously for a response. The con-

crete implementation of the NRMessenger interface is responsible for binding to the NRCo-
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Figure 4.3: Non-repudiation protocol execution API

ordinatorRemote interface of remote coordinator services for the delivery of locally generated

messages. As shown, the NRMessenger has two send methods: one to send a single message

to one or more recipients, and a convenience method to send a collection of messages. The

corresponding sendRequest methods send one or more messages and return a possibly empty

array of replies from the intended recipients. Each participant’s local coordinator service is also

responsible for any necessary bootstrapping of the supporting infrastructure (see Section 4.3)

and plays a role in initiating recovery in the event of temporary local failure.

At the heart of the framework are protocol-specific handlers, instantiated at the protocol

execution layer, that generate and process protocol messages. Protocol handlers perform two

main tasks:

1. to initiate protocol execution given a message generated from application data provided

by the local non-repudiation middleware service, and

2. to manage participation in ensuing protocol execution by providing outgoing messages

to the NRMessenger to send to remote parties and by processing incoming messages that

have been delivered to the local coordinator service.

The protocol handlers use the support services described in Section 4.3 for tasks such as signa-

ture generation and verification, message logging and time-stamping.

Protocol handlers are instantiated by a NRProtocolHandlerFactory. Every protocol, and

its associated sub-protocols, has a unique name that enables the handler factory to identify
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the appropriate protocol handler. For example, Table 4.1 identifies six protocols for non-

Protocol Name
Request phase main protocol /nrinv/request/ext-coffey-saidha/main
Request phase abort sub-protocol /nrinv/request/ext-coffey-saidha/abort
Request phase resolve sub-protocol /nrinv/request/ext-coffey-saidha/resolve
Response phase main protocol /nrinv/response/ext-coffey-saidha/main
Response phase abort sub-protocol /nrinv/response/ext-coffey-saidha/abort
Response phase resolve sub-protocol /nrinv/response/ext-coffey-saidha/resolve

Table 4.1: Extended Coffey-Saidha protocol names

repudiable invocation based on the extended Coffey-Saidha protocol suite described in Sec-

tion 3.2.1.2. There are, therefore, six protocol handlers for this protocol suite. In addition,

for all main protocols, there is a status update protocol handler, named <protocol-specific

name>/main/getstatus, to support recovery of protocol status between participants. This al-

lows parties to query the protocol status as seen by other participants. Information exchanged

during a status update sub-protocol will determine whether the requesting party is entitled to

the current protocol status. For local initiation of protocols, a protocol name is obtained from

the middleware configuration. For incoming messages, the coordinator service obtains the

protocol name from the protocol message (see Section 4.2.2) and uses the handler factory to

instantiate an appropriate handler for the message.

All protocol handlers provide the NRProtocolHandler interface shown in Figure 4.3. The

generateMessagemethod is used to generate a protocol-specific initial message from application-

specific data. The form of the application data is dependent on the type of non-repudiation

service involved. For service invocation, application data is either the request or the response

intercepted by the middleware along with additional information such as service identity. For

information sharing, it is the control state and related state change or membership change. The

use of the generateMessage method allows the correlation of application-level information

with protocol-specific information, such as as protocol run identifiers. The NRProtocolHan-

dler processMessage methods are used by the coordinator service to pass protocol messages

to an instantiated protocol handler for protocol-specific processing. The service-specific layer

may also pass messages generated by generateMessage to one of these methods. The recover

method can be used by the coordinator service to initiate recovery after temporary local failure.
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During protocol execution, protocol handlers log messages to the non-repudiation log and to

the active message log described in Section 3.4. To initiate recovery, for each message in the

active message log, the coordinator instantiates an appropriate protocol handler and uses the

recover method to pass the message to the handler for processing. The recovery process is

protocol- and non-repudiation service-specific. Section 4.4 provides further details.

4.2.2 Representation of protocol messages

A protocol message is represented by the NRProtocolMessage class shown in Figure 4.4.

Protocol messages are self-describing and consist of two parts: (i) an NRToken that includes

Figure 4.4: NRProtocolMessage API

protocol meta-information, input data for any signature, the signature itself and the information

necessary to verify it; and (ii) unsigned payload that can be used for application-level informa-

tion that is related to the signature input. As shown in Figure 4.4, a NRProtocolMessage

provides accessor methods for its NRToken and the payload. It also provides some convenient

wrapper methods to access NRToken meta-information that is used frequently during message

processing.

All NRTokens have a NRMetaInf instance. The NRMetaInf provides the context infor-

mation to associate a given message with its protocol and to enable the processing of any

associated application-specific and/or protocol-specific data that is included in the message.

The protocol name, non-repudiation identifier and protocol step unambiguously identify the
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protocol run, and the step within the run, to which the message relates. The other NRMetaInf

elements include: any purpose associated with the message, for example, “NRR”; the protocol

participants — message sender, intended recipient(s), and any guarantor TTP; the data-binding

in use; and cryptographic algorithms used for any message digests, signatures and/or ciphers.

The sender and recipient(s) are represented by Participant objects that provide access to the

participant’s URI and the URI of their coordinator service. The coordinator service URI allows

NRMessenger implementations at each participant to bind to the service NRCoordinatorRe-

mote interface for protocol execution. For example, a participating entity may be represented

by an email address and their coordinator service may be referenced through an RMI URI.

The data-binding is used to convert information to/from an agreed representation and the cor-

responding native Java representation (see Section 4.2.3).

An NRToken that includes signed content has an NRSignatureInput instance. If present, the

signature input actually encloses the concrete representation of NRMetaInf. This ensures that

the meta-information is signed along with the associated application-specific and/or protocol-

specific data. The associated data, and the message payload, are represented by the Java Object

type because their interpretation is dependent on the given application and the protocol to

which a message relates. For example, for the first message of the state coordination protocol

in Figure 3.13 on page 112, the getData method of NRSignatureInput will return a represen-

tation of the new information control state (newCSk) — the data included for signing. The

NRProtocolMessage getPayload method returns the proposed new application state (Sy+1).

As shown in Figure 4.4, in addition to the NRSignatureInput, an NRToken includes the infor-

mation necessary to verify the signature: the Base64 signature string itself, a CertificateRecord

that conveys the signers certificate or a URI referring to it, and a trusted time-stamp over the

signed information (see Section 4.3.3). Finally, a NRToken provides methods to access three

representations of signature input: (i) a native Java NRSignatureInput object, (ii) the agreed

representation as generated by the identified data-binding, and (iii) a conversion of the agreed

representation to a byte array for signature generation.
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4.2.3 Agreed representation of evidence

The primary requirement on non-repudiation services is that the evidence that relates to an

action or event supports the subsequent undeniability of the action or event. This means that

non-repudiation evidence exchanged during a B2B interaction must remain meaningful after

the applications and services that constitute the interaction have ceased to execute. Further,

the evidence must be rendered meaningful and verifiable by a third party who may have no

knowledge of the implementation context in which the evidence was generated. This implies

that there must be an agreed representation of the information, including application-specific

data, that constitutes the non-repudiation evidence of an interaction. This agreed representation

must be meaningful to the parties directly involved in the interaction and also to third parties

who may later rely on the evidence or who may be called on to resolve disputes.

A service invocation can be represented, in part, by an array of Java objects that is com-

prised of the parameters to the service request. To provide NRO of these request parameters

it is possible to perform standard Java object serialization of the array and then to sign the

resulting byte array with the client’s private key. Subsequently, because they share implemen-

tation details of the service, both client and server can deserialize the byte array and retrieve

the request parameters as an object array. Thus, this representation is meaningful to both par-

ties. However, the representation only remains meaningful as long as the Java implementation

classes for the parameters are available because deserialization requires access to these classes.

Further, any third party that subsequently needs to verify the request parameters will require

access to the implementation classes. Thus, subsequent undeniability requires both the signed

non-repudiation evidence and the availability of the implementation classes for deserialization.

This is acceptable provided client, server and any third parties that may subsequently rely on

the non-repudiation evidence agree to this representation. If the tight binding of evidence to

its Java representation is not desirable, then there must be agreement on an implementation-

independent representation of the information for the generation of non-repudiation evidence.

In the case of non-repudiable information sharing, shared state may be represented locally

as an J2EE entity bean (see Section 5.3). The Java serialization of the bean could then be used

as input to signing. As the previous discussion indicates, the implementation of the bean must
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then be available to any party who subsequently relies on the evidence generated. In this case,

the situation is further complicated because the shared information is represented in different

applications at different organisations. These local applications may present different views

of the shared information, even using different implementation classes. Thus there may be a

natural distinction between the local presentation of shared informed and its agreed represen-

tation. Given this, and the requirement for subsequent deniability, it may be convenient to use

an implementation-independent agreed representation for non-repudiation evidence.

There is, then, a need to convert between a local Java representation of information and

an agreed representation that may be implementation independent. To address this require-

ment, the framework provides data-bindings to perform the conversion. A DataBindingFac-

tory is used to instantiate a DataBinding object for the agreed representation. As mentioned

in Section 4.2.2, the agreed data-binding is identified in non-repudiation protocol messages.

Figure 4.5 shows the DataBinding interface. The bytesToData and dataToBytes methods are

public interface DataBinding {
Object bytesToData(byte[] bytes);
byte[] dataToBytes(Object data);
Object dataToObject(Object data);
Object objectToData(Object obj);

}

Figure 4.5: DataBinding interface

used to convert between the agreed representation and a byte array for signing (since it is the

agreed representation that must be signed). The dataToObject and objectToData methods

convert between the agreed representation and the local Java representation. Table 4.2 shows

Data binding name Agreed data representation Conversion to byte array
binary serialized Java object serialized Java object
string string serialization using pro-

grammer defined toString
and valueOf methods

string to byte array con-
version

xmlstring serialization to XML docu-
ment string

string to byte array con-
version

Table 4.2: Pre-defined data bindings
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three pre-defined bindings. The binary binding uses Java serialization as the agreed representa-

tion. The other two bindings are stringified forms. To illustrate these data-bindings, Figure 4.6

Java implementation:
public class OfferImpl implements Offer {

// fields
private String description;
private String currency;
private double price;
// accessor methods etc.
...
...

}

String representation:
description: widgetX, currency: EUR, price: 10.50

XML representation:
<Offer>

<description>widgetX</description>
<currency>EUR</currency>
<price>10.50</price>

</Offer>

Figure 4.6: Example data-bindings for an Offer object

shows the fields of a simple business Offer object followed by a comma-separated string rep-

resentation of an Offer instance and the corresponding fragment of an XML string representa-

tion. In practice, the string and XML representations may convey additional meta-information

such as the element types. The examples are sufficient to illustrate the transformation from

implementation-specific to implementation-neutral representation of the data. The use of a

DataBindingFactory allows extension of the framework to support additional data-bindings

and the customisation of the pre-defined bindings.

4.2.4 Application-level validation and protocol events

A key requirement identified in Section 1.2 is that the actions of interacting parties can be sub-

ject to application-level validation and that this validation is itself non-repudiable. For service

invocation, the server should be able to subject a request to validation with respect to contract
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to protect the server’s interest. Similarly, the client should be able to subject any response to

validation to protect their interests. For information sharing, a proposed state or membership

change should be subject to validation by the recipients of the proposed change. As indicated in

Chapter 3, the invocation of validation is, therefore, an integral part of non-repudiation protocol

execution. However, the application-specific validation logic is not fixed for a given protocol

and cannot be hard-coded in the protocol implementation. To address the problem of integrat-

ing validation with protocol execution, the framework supports the configuration of protocol

handlers to instantiate and invoke validation listeners that are specific to a given business in-

teraction. The application programmer, and not the protocol implementor, is responsible for

implementing and identifying the validation listeners that a protocol handler should use for a

given interaction.

public interface NRValidationListener {
NRDecision validate(NRProtocolMessage msg);

}

Figure 4.7: NRValidationListener interface

All validation listeners implement the interface shown in Figure 4.7. The listener validate

method takes a NRProtocolMessage and returns an NRDecision. A NRProtocolMessage car-

ries all the context information necessary to support its validation. For example, an information

sharing protocol message that requires application-level validation will include the information

control state that allows the programmer to access previous control states. It is therefore possi-

ble to access previous information state(s) and to validate a proposed state change with respect

to those state(s). The data-binding identified by the protocol message allows the programmer

to convert application state from the agreed representation to the local implementation-specific

representation. An NRDecision includes the protocol run identifier of a proposed change,

a boolean indication of the validity of the change and an optional diagnostic message. The

NRDecision is used by the protocol handler to construct the non-repudiation of validation that

is returned during protocol execution.

It is possible to identify more than one validation listener for invocation by a protocol
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handler. In this case, the listeners will be invoked as a chain, in the order registered, until the

last validate method returns or a proposal is found to be invalid; whichever is the sooner. If

validation succeeds for all listeners in the validation chain, then the message is considered valid.

At the appropriate point in protocol execution, the local protocol handler passes a protocol

message to the registered listeners for validation. By definition, validation of the protocol

message constitutes validation of the related service request, service response or change to

shared information.

In addition to validation events, protocol handlers can generate information events as a pro-

tocol executes. Example events are the arrival of acknowledgements during service invocation

or a change to the membership of the group sharing information. Handling of protocol events is

optional. To activate event handling, the application programmer identifies one or more event

listeners for invocation as protocol execution progresses. Figure 4.8 shows the NREventLis-

public interface NREventListener {
void notify(NREvent event);

}

Figure 4.8: NREventListener interface

tenter interface. To notify an event, a protocol handler invokes the notifyEvent method to

pass an NREvent to the event listener. Concrete implementations of NREvent convey the event

type along with information such as the protocol run identifier and event diagnostics. Non-

repudiation service specific events allow the application programmer to react to protocol and

middleware-related events in order to manage a B2B interaction.

Chapter 5 describes how validation and event listeners have been used in demonstrator ap-

plications and, in particular, to perform the sort of contract monitoring described in [MJSSW04].

4.3 Supporting services

This section provides an overview of the services that have been defined to provide the support-

ing infrastructure introduced in Section 3.4. The approach taken is to define a set of high-level
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interfaces for the non-repudiation middleware to use. Wrappers for underlying implementa-

tions that can provide these services have then been written to comply with the defined inter-

faces. Thus, there is a service abstraction layer between the underlying services available at

a given organisation and the non-repudiation middleware that uses those services. For exam-

ple, certificates may be stored and managed locally using a simple Java keystore. They may

be accessible through an LDAP directory service. It is also conceivable that some third party

may provide a certificate service. Whatever the implementation, for the most part, the non-

repudiation middleware simply needs to be able to store and retrieve a certificate. Therefore,

the implementation-specific details of the backing store are hidden by a higher-level interface.

In the following, I define the minimal functional service interface for each component of the

supporting infrastructure to meet the requirements of the non-repudiation protocol execution

framework. Implementation details such as the configuration, administration and maintenance

of the services are beyond the scope of this dissertation. From the point of view of the non-

repudiation middleware, it suffices that there exists a service implementation, or a wrapper

or adapter for the service, to satisfy each of the defined interfaces. In the simplest case, the

underlying services may be provided by standard Java libraries.

4.3.1 CertificateService

A CertificateService provides for storage, retrieval and verification of certificates that provide

access to a subject’s public key that is in turn bound to the subject’s private key. Each certificate

public interface CertificateService {
String addCertificate(Certificate cert, String certId);
String addCertificate(Certificate cert);
Certificate getCertificate(String certId);
boolean verifyCertificate(String certId);
boolean verifyCertificate(String certId, long time);

}

Figure 4.9: CertificateService interface

stored with the service has an identifier that can be used to retrieve the certificate using the

getCertificate method shown in Figure 4.9. There are two addCertificate methods to store



Chapter 4 Generic protocol execution framework 149

a certificate. The first takes a certificate and a suggested identifier for the service to use. The

second just takes a certificate as a parameter. Both return the actual identifier for the certificate

used by the CertificateService. If the certificate is already known to the service, then the service

returns the existing identifier for the certificate. If the certificate is unknown and the first version

of the method is invoked and the suggested identifier is also unknown, then the service uses

the suggested identifier and returns it. Otherwise, for either version of the method, the service

returns a newly generated certificate identifier. There are two forms of certificate verification.

The first verifies that the identified certificate is currently valid. The second verifies that the

identified certificate was valid at the time represented by the given number of milliseconds since

the beginning of the epoch.1 In both cases, certificate verification may involve verification of

any supporting certificate chain, up to some trusted Certificate Authority.

4.3.2 Cryptographic services

Figure 4.10 shows the API for the following cryptographic services: (i) CryptoUtil to gener-

ate pseudo-random numbers (byte streams) and to generate and verify message digests, (ii)

SigningService to generate and to verify digital signatures, and (iii) CipherService for data

encryption and decryption.

For all services, cryptographic elements — message digests, signatures and secure pseudo-

random numbers — are output as Base64 strings rather than as the native byte arrays generated

by the standard Java cryptographic libraries. The Base64 encoding is used because: (i) it is

a standard that is commonly used for cryptographic elements, (ii) it is suitable for any of the

agreed representations of information discussed in Section 4.2.3, and (iii) it can be used in the

generation of protocol run identifiers (see Section 2.1.7). Given the small size of cryptographic

elements,2 the overhead of conversion between native byte arrays and Base64 strings is small,

as is the increase in data size. As shown in Figure 4.10, a Base64 utility class is used to perform

the conversion.

Both the SigningService and CipherService require access to an entity’s private key, as

referenced by the Principal parameter to sign and decrypt methods. How the Principal is

1The epoch is the standard base time: January 1, 1970, 00:00:00 GMT.
2For example, 20 bytes for a SHA-1 message digest.
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Figure 4.10: Cryptographic services API

interpreted by the services and how access to the keys is obtained is implementation-dependent.

There are a number of options to authenticate a service for such access. For example, the

service configuration may provide the necessary authentication. For simple services based on

a Java keystore, this could be the approach taken; where the principal maps to a passphrase for

a private key held in the keystore. Alternatively, the service may provide callback functionality

that, for example, presents a principal with information to sign and prompts for authentication

to access the user’s private key. It should be noted that the CipherService is only used when

message-level encryption is required; as opposed to network-level encryption. For example,

for clarity, the description of the modified Coffey-Saidha protocol in Figure 3.5 shows message

level encryption to emphasise when it is fundamental to the fairness guarantee to ensure that a

message is kept private to sender and immediate recipient. However, for this and many other

protocols, network-level encryption between protocol participants will suffice and may indeed
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be a requirement of the business interaction. Technology such as Secure Sockets Layer can

provide this level of privacy. The CipherService is used when, to guarantee fairness, parts of a

message must be kept secret from the immediate recipient of the message.

CryptoUtil provides four digest methods. The first uses a default algorithm to generate a

Base64-encoded message digest of binary input provided in the form of a byte array.

The second digest method also generates a digest of a byte array but uses the algo-

rithm specified by name in the second parameter to the method. The other two digest

methods perform the corresponding functions for a sequence of byte arrays (byte[][]).

The getDigestAlgorithm method returns the name of the default algorithm used by the

CryptoUtil implementation. There are four methods for generation of secure pseudo

random number streams. Two of them generate random Base64 strings of either a de-

fault length or a specified length. The other two are corresponding methods to generate

random byte arrays. The remaining CryptoUtil methods verify that the Base64 string

provided as first parameter is a valid digest of the byte array, or array of byte arrays, pro-

vided as second parameter. As with the corresponding digest methods, a default digest

algorithm is used for verification unless another is specified.

SigningService provides methods for the generation of signatures and for the verification of

signatures in their Base64 string representation. As with CryptoUtil, a default signature

algorithm can be used, as identified by the getAlgorithm method; or the user can specify

the algorithm to use. sign methods are provided to sign both byte arrays and Base64

strings. The Principal parameter to sign methods provides the service with the infor-

mation it needs to gain access to the identified entity’s private signing key. The exact

mechanism used to access the key is service-specific. The verify methods use the Cer-

tificate provided to access the public key that corresponds to the signing key. To verify a

signature, the relying party performs the following three steps: (i) verify any time-stamp

associated with the signature (see Section 4.3.3); (ii) use a CertificateService to verify

whether the signer’s certificate was valid at the time of the time-stamp; and (iii) use

a verify method of a SigningService to determine whether the signature is valid with

respect to the input data — provided as a byte[] or byte[][] to the verify method.
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CipherService provides decryption of Base64 strings using the private key associated with the

specified Principal. Encryption is performed over byte arrays or Base64 strings using the

public key accessed through the Certificate provided. A default transformation, identified

by the getTransformation method, is used unless another is specified.

4.3.3 TimeStampService

As shown Figure 4.11, a time-stamp service takes some Base64 input and returns a time-stamp

public interface TimeStampService {
TimeStamp getTimeStamp(String base64data);
TimeStamp getTimeStamp(String base64data, boolean useCertURI);

}

Figure 4.11: TimeStampService interface

over the input. The service binds a time, in milliseconds since the beginning of the epoch, to

the Base64 input by generating a signature over their concatenation. Figure 4.12 defines the

public interface TimeStamp {
long getTime();
String getSignature();
String getSignatureAlgorithm();
CertificateRecord getCertificateRecord();

}

Figure 4.12: TimeStamp interface

interface to a TimeStamp that provides access to the time, the signature, the signature algorithm

used by the time-stamping service and the service’s certificate record. To verify a time-stamp,

a relying party must verify that both the time-stamping service’s certificate was valid at the

time of the time-stamp, using the CertificateService; and that the signature, generated with the

private key corresponding to the time-stamping service’s certificate, is valid for the given time

and the input data, using the SigningService. A TimeStamp provides access to the service’s

certificate through a CertificateRecord, returned by the getCertificateRecord method. A Cer-
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tificateRecord either contains the appropriate public key certificate or provides a URI to access

the certificate. As shown in Figure 4.11, a time-stamping service offers two getTimeStamp

methods. The first will return a TimeStamp that includes the service certificate in the Certifi-

cateRecord. The second returns a TimeStamp with a certificate URI to access the certificate in

the CertificateRecord.

4.3.4 NonRepudiationLog

Non-repudiation logs contain serialized NRLogEntry objects. An NRLogEntry object contains

a non-repudiation protocol message (NRProtocolMessage) along with related meta-information

such as time of entry in the log, references to certificates accessible through the CertificateSer-

vice and any protocol-related annotations that may provide a more verbose description of the

purpose of a message. The log stores entries in the serialized form specified by the enclosed

message’s data-binding. As shown in Figure 4.13, the Java interface used by the protocol exe-

public interface NonRepudiationLog {
void add(NRLogEntry entry);
boolean contains(NRLogEntry entry);
boolean contains(URI nrId);
NRLogEntry[] getEntries(URI nrId);
NRLogEntry[] getEntries(long onDay);
NRLogEntry[] getEntries(long fromTime, long toTime);
NRLogEntry[] getEntriesAfter(long time);
NRLogEntry[] getEntriesBefore(long time);

}

Figure 4.13: NonRepudiationLog interface

cution middleware provides methods to add a log entry; to determine whether the log already

contains an entry, or entries, for a given nrId; and to retrieve entries by nrId or that were logged

at specified time periods. Non-repudiation log implementations will provide richer functional-

ity for subsequent access to evidence. For example, if the agreed data-binding is XML, then an

XML database can be used as the backing store that allows Xpath queries over entries in the

log.
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4.3.5 MessageLog

Implementations of the active message log discussed in Section 3.4 provide the MessageLog

public interface MessageLog {
void add(NRProtocolMessage msg);
void remove(NRProtocolMessage msg);
NRProtocolMessage[] getMessages(String protoName);
NRProtocolMessage[] getMessages(URI nrId);
NRProtocolMessage[] getMessages();

}

Figure 4.14: MessageLog interface

interface shown in Figure 4.14. The interface provides methods to add and remove messages,

to retrieve messages by protocol name or nrId, and to retrieve all messages from the log.

As stated in Section 1.2, fault-tolerant exchange is beyond the scope of this dissertation.

However, the protocol execution framework described in this chapter and the preceding support

services together provide a basis for recovery from temporary local failure that will facilitate

future work on fault tolerance. I now provide a brief overview of the support for recovery,

followed by a summary of the contributions of this chapter.

4.4 Recovery from temporary local failure

It is the responsibility of the coordinator service to initiate recovery from local failure. After

restart, for each message in the active message log, the service instantiates an appropriate pro-

tocol handler and passes the message to the handler using its recover method (see Figure 4.3

on page 139). The protocol handler first determines whether a given message is an incom-

ing or outgoing message. If it is an incoming message, then the handler knows that message

processing was interrupted. Message processing is essentially stateless. Therefore, one option

is to simply start processing the message again as if it had been received normally. In this

case, the protocol handler passes the message to its own handleMessage method. The resulting

processing leads to the removal of the message from the active message log. If it is a valid

message for an active protocol run, then it will be entered in the non-repudiation log and pro-
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tocol participation will resume. If the given message is an outgoing message, then the handler

knows that, according to the protocol, a response to the message is expected. In this case, an

option is to assume that the response will eventually arrive and to simply leave the message

in the active message log. In practice, the non-repudiation service and the protocol to which a

message relates determine how such recovered messages are processed.

Recovery for non-repudiable service invocation

For a direct exchange protocol of the type described in Section 3.2.1.1, the only option is to

attempt to resume the exchange to which a message relates. The protocol handler may be

configured to issue a protocol status request to the other participant as part of the attempt to

resume. For a fair exchange protocol, the handler also has the option to request either abort or

resolution of the exchange. The option that is chosen will be determined by the configuration

of the middleware. A handler could be configured to always request the resolution of the

exchange. However configured, the outcome depends on the state of the exchange (see, for

example, Section 3.2.1.2). If an exception handling sub-protocol is initiated, then any message

that relates to the corresponding main protocol is cleared from the active message log.

Recovery for non-repudiable information sharing

Information sharing protocol handlers can determine the local view of agreed information con-

trol state from the messages passed to them and from messages in the non-repudiation log.

They can also determine the state of any active protocol run. From this information they can

attempt to resume execution of a coordination protocol. Optionally, they may also request pro-

tocol status from their remote peers and obtain their view of the currently agreed control state.

If there is a divergence of view then the peers must have evicted the participant on whose behalf

the handler is acting, because no new control state could have been agreed unless their eviction

preceded its agreement. In this case, the handler may be configured to request re-connection to

the sharing group and the resumption of participation in information sharing.
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4.5 Summary

The protocol execution framework presented in this chapter is a generic base for the implemen-

tation of non-repudiation services. Central to the framework’s design is a careful separation of

concerns. Protocol-specific message processing and generation is separate from message ex-

change — coordinator services are protocol-independent. Application-specific issues such as

the specific non-repudiation protocol to use, the validation of actions, the notification of events

and the representation of evidence are all configurable. Thus the framework can adapt to both

non-repudiation specific and application-specific requirements. There follow four specific as-

pects of the framework that contribute to its flexibility.

1. The definition of APIs for interaction between components of the framework and be-

tween coordinator services (in contrast, for example, to the lack of such APIs in the

FIDES project discussed in Section 2.4).

2. The ability to customise behaviour through configurable, factory-based instantiation of

protocol handlers, validation listeners, event listeners and data bindings for the agreed

representation of evidence.

3. The use of self-describing protocol messages that underpin the protocol-independence

of B2B communication and the ability to customise behaviour at message recipients.

4. The specification of a support service API that allows local administrative control over

provision of the supporting infrastructure without modification to the protocol execution

framework.

Thus the framework addresses the flexibility requirement identified in Section 1.2. Further,

the framework provides support for recovery from temporary local failure that is the basis for

future work on fault tolerance. I now demonstrate its use in the middleware implementation of

the non-repudiation services defined in Chapter 3.
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Chapter 5

Implementation of non-repudiation
services

This chapter describes the implementation of the non-repudiation services defined in Chapter 3

using the protocol execution framework from Chapter 4. I concluded Chapter 3 by identi-

fying the following remaining challenges: (i) to realise the defined non-repudiation services

as flexible middleware, and (ii) to support access to shared information in the context of dis-

tributed transactions. Taken together, the protocol execution framework and the implementa-

tions presented in this chapter address these remaining challenges. Section 5.1 provides an

overview of the J2EE application server that is the demonstrator platform for the service im-

plementations. The middleware services provide non-repudiation and validation of interactions

between and with application server components. Section 5.2 describes the implementation of

non-repudiable service invocation that mediates interaction with J2EE session beans that are

exposed as services for access by remote clients. Section 5.3 describes the implementation of

non-repudiable information sharing that mediates access to standard Java objects and/or J2EE

entity beans that represent the state of the shared information. Each member of the sharing

group hosts an object replica and the non-repudiation service coordinates changes to the state

of the replicas. Section 5.3.3 shows how extensions to the information control state introduced

in Section 3.3.1 support the participation of shared information as a transactional resource in

standards-compliant distributed transactions.

The use of both non-repudiation services is essentially declarative. The application pro-

grammer is responsible for identifying when non-repudiation is required and for configuration
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of the relevant non-repudiation service. The only significant additional implementation effort

is the provision of any necessary application-specific validation and event listeners (see Sec-

tion 4.2.4). I detail application programmer responsibilities with respect to non-repudiable

service invocation in Section 5.2.1, and with respect to non-repudiable information sharing

in Section 5.3.2. The utility of each service is demonstrated with proof-of-concepts imple-

mentations of the applications introduced in Section 1.1. Section 5.2.2 demonstrates the use

of non-repudiable service invocation for the ASP-hosted B2B auction application and Sec-

tion 5.3.4 demonstrates non-repudiable information sharing for the negotiation of tenders to

supply chemicals. Section 5.4 concludes this chapter with an overview of the novelty of the

service implementations when compared to other approaches to middleware support for non-

repudiation.

5.1 J2EE application server platform

This section provides a brief overview of relevant aspects of J2EE applications and of the JBoss

J2EE-compliant application server [FR03] that has been chosen as the demonstrator platform

for implementation of non-repudiation middleware services. Full details of the J2EE archi-

tecture are provided in Sun’s specification [Sun03]. The JBoss application server was chosen

because it provides straightforward mechanisms for realisation of the interceptor-mediated in-

teraction introduced in Section 3.1. It is also a widely used platform with which to experiment.

Nevertheless, as is apparent from the following discussion, the general approach to develop-

ment of the middleware is neither JBoss nor J2EE specific.

J2EE applications are assembled from self-contained software units or components. The

components include Enterprise JavaBeans (EJBs) that are deployed on an application server.

There are three types of EJB:

1. session beans that typically provide the externally visible service interface to a J2EE

application and, as the name suggests, represent client sessions for interaction with the

application;

2. entity beans that provide persistent storage of application state; and



Chapter 5 Implementation of non-repudiation services 159

3. message driven beans that provide publish and subscribe notification to J2EE applica-

tions.

EJBs execute in an environment called an EJB container. Together, the application server

and the container provide a bean’s run-time environment. The container is responsible for

invoking appropriate low-level services, such as persistence and transaction management, for

each invocation on a hosted bean. The application programmer concentrates on the functional

(business logic) aspects of the bean’s behaviour. The container invokes services to ensure

correct, non-functional behaviour. Figure 5.1 shows an EJB application client invoking an

Figure 5.1: J2EE-based component architecture with non-repudiation

operation on an EJB component and the container interception of the invocation to provide

various services. As shown, the intention is to add non-repudiation to the services available to

the container in order to provide regulated access to EJBs.

The demonstrator implementations of the non-repudiation services extend version 3.2.5 of

the JBoss J2EE application server. JBoss makes systematic use of reflection and invocation

path interceptors to allow extension to existing services and to add new services. Intercep-

tion on the EJB invocation path is a straightforward way to realise interceptor-mediated inter-

action. Although this exploits JBoss-specific mechanisms, similar support is found in other

component-based systems. For example, the Jironde flexible transaction framework [Pro03]

also makes use of interceptors. Furthermore, even if a J2EE implementation does not support

the introduction of new interceptors, standard Java support for dynamic proxies can be used

to introduce a layer between application clients and application server components. The use

of dynamic proxies to support on-line upgrades to component systems [OTMMS02] is an ex-
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ample of this approach. In fact, it is common for remote invocation middleware such as Java

RMI, CORBA and .Net to support dynamic proxies or the interception of the service invocation

path; as do many Web service frameworks. As far as possible, the implementations presented

here isolate JBoss-specific details. The supporting infrastructure and much of the protocol

execution framework is neither specific to JBoss nor to J2EE. For example, non-repudiation

interceptors are instantiated from factories that could provide implementations for platforms

other than JBoss. As stated previously, work on non-repudiation of Web service interactions

illustrates the flexibility of the approach (see Chapter 6).

In JBoss, interceptors are used to invoke container-level services to meet requirements

specified in a component’s deployment descriptor. An application-level invocation passes

through a chain of interceptors. Each interceptor performs some task before passing the in-

vocation to the next interceptor in the chain. Existing services can be modified or new services

added to a container by inserting additional interceptors in the chain. JBoss uses reflection to

provide the interceptor with access to the application-level method that was called, the parame-

ters to the method call, the target bean and its deployment descriptor. A dynamic proxy is used

to instantiate both client-side and server-side interceptors. Thus the mechanism supports the

execution of additional logic at the client-side on behalf of a container-level service.

In the non-repudiation middleware implementations, the application programmer identi-

fies invocations on EJBs that require non-repudiation: whether as a result of remote service

invocation or local access to shared information. Then, at run-time, JBoss interceptors invoke

appropriate operations on the non-repudiation middleware. Typically, non-repudiable invoca-

tion applies to access to session beans. Non-repudiable information sharing applies to entity

beans that represent the application state that is shared between organisations. As described

in Chapter 4, the protocol execution framework provides a generic coordinator service for the

exchange of protocol messages and supports the deployment of protocol-specific handlers to

drive the execution of non-repudiation protocols. The remainder of this chapter details the

implementation of non-repudiation middleware services on the JBoss/J2EE platform.
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5.2 Implementation of non-repudiable service invocation

Service invocation in a J2EE application equates to the remote invocation of an operation on an

enterprise bean. Figure 5.2 shows an application accessing a service object through its service

Figure 5.2: Non-repudiable service invocation components

interface. Typically, the service object is a session bean that implements a remote interface that

is presented to client applications. To provide non-repudiable service invocation, an invocation

at the service (remote) interface is intercepted before execution of the operation on the target

service object (session bean). The NRInvocationHandler layer in Figure 5.2 performs this

mediation and triggers execution of appropriate protocols using the framework described in

Chapter 4. The NRInvocationHandler corresponds to the non-repudiation service specific layer

shown in Figure 4.2 on page 137. I now describe how to use the JBoss facility for server- and

client-side interceptors to implement this layer between the application and the generic protocol

execution framework.

As shown in Figure 5.3, the JBoss client’s reference to the service object is a dynamic proxy

generated by the server. This proxy contains client-side interceptors that are typically used for

context propagation. The implementation of non-repudiable service invocation adds an extra,

non-repudiation interceptor to both client and server invocation paths. These non-repudiation

interceptors are responsible for triggering execution of a non-repudiation protocol that achieves

the exchange of evidence described in Section 3.2. The client-side non-repudiation interceptor

accesses the client’s non-repudiation middleware that, in turn, manages the client’s participa-

tion in protocols and its access to supporting infrastructure to store evidence etc. Figure 5.3



162 5.2 Implementation of non-repudiable service invocation

Figure 5.3: JBoss/J2EE-based implementation of non-repudiable invocation

shows direct execution of the request phase protocol between client and server coordinators.

For protocols supported by a guarantor TTP, a coordinator service at the TTP would also be

involved in the exchange (as depicted in Figure 4.1b on page 136).

Each interceptor in a chain may execute on both the outgoing and incoming invocation

path. To achieve non-repudiation of the request as constructed by the client and to verify the

integrity of the response presented to the client, the client-side non-repudiation interceptor is

the last in the chain on the outgoing path (and first on the return path). On the server-side, to

verify the integrity of the request as it enters the server and to provide non-repudiation of the

response as it leaves the server, the interceptor is the first in the chain on the incoming path

(and the last on the return path).

Each JBoss interceptor has an invoke operation that takes an Invocation object1 as a pa-

rameter for the interceptor to process in some way. The interceptor then passes the Invocation

to the next interceptor in the chain by calling that interceptor’s invoke operation. The imple-

mentation of the invoke operation of the client-side JBoss non-repudiation interceptor is shown

in Figure 5.4. First, the NRInvocationHandler getInstance factory method is used to obtain

a handler for the given platform ("JBossJ2EE"). The concrete implementation of a NRInvo-

cationHandler is under the control of the client. A NRInvocation object is a generic wrapper

1An Invocation encapsulates the client’s service invocation and includes the request parameters, context infor-
mation and related payload.
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public Object invoke(Invocation inv) {
NRInvocationHandler nrInvHdlr =
NRInvocationHandler.getInstance("JBossJ2EE");

NRInvocation nrInv =
new JBossNRInvocation(nextInterceptor(), inv);

return nrInvHdlr.invoke(nrInv);

}

Figure 5.4: JBoss NRInterceptor invoke operation

for platform-specific representations of the service to invoke and the invocation parameters(s).

In JBoss, the service to invoke is the next interceptor in the chain and the parameters are en-

capsulated by the Invocation object. As shown, a JBossNRInvocation object is instantiated

with the next interceptor and the Invocation object as parameters. The NRInvocation object is

then passed to the NRInvocationHandler for processing and to initiate request phase protocol

execution. Eventually, after successful completion of both request and response phases of the

invocation and of the protocols associated with each phase, this handler returns the result of

the invocation. This result is then passed back through the client interceptor chain to the client

application.

Figure 5.5: JBoss interceptor and NRInvocation API

Figure 5.5 shows the relationship of the NRInvocation interceptor API to protocol exe-

cution and coordination. The invocation handler manages any conversion of information be-
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tween layers (including protocol outcomes), initiates protocol execution, and instantiates the

protocol-specific handlers. When invoke is called, the general behaviour of the client-side

NRInvocationHandler for the request phase of the invocation is to:

1. obtain the name of the protocol to execute from non-repudiation configuration informa-

tion,

2. instantiate a protocol handler for the given protocol,

3. generate the first message of the protocol using the protocol handler’s generateMessage

method,

4. start the request phase protocol by passing the generated message to the protocol han-

dler’s startProtocol method,2 and

5. wait for return of the NRDecision from the startProtocol method that indicates termi-

nation of the request phase protocol.

The NRDecision indicates whether the protocol completed successfully. It includes the nrId

that identifies the request phase protocol run. If the protocol failed, then the invocation handler

raises an appropriate exception that will be propagated to the client. If the protocol completed

successfully, the client-side NRInvocationHandler replaces the parameters to the original JBoss

Invocation object with the NRDecision. This modified Invocation is then passed up through

the interceptor chain to the server by calling the invoke operation of the next interceptor that

was provided in the NRInvocation.

On the server-side, the Invocation object is passed as a parameter to its non-repudiation

interceptor’s invoke method. The behaviour of the interceptor is the same as on the client side.

A JBoss-specific NRInvocationHandler is instantiated and is passed a JBossNRInvocation that

encapsulates a reference to server’s next interceptor and the client-provided Invocation. The

interceptor then calls the NRInvocationHandler’s invoke method with the NRInvocation as a

parameter. The general behaviour of the server-side NRInvocationHandler is to:

2Depending on the level of involvement of any guarantor TTP, the first message may be sent directly to the
server’s coordinator or via the TTP.
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1. obtain the original invocation request parameters that were exchanged during protocol

execution and that were cached by the server-side protocol handler3;

2. replace the NRDecision in the Invocation object with the request parameters, in order to

reconstruct the client’s original Invocation, and pass the reconstructed Invocation through

the server-side interceptor chain to the target EJB component for execution; and

3. use the result of service processing to initiate the response phase of the invocation.

The response phase is essentially the reverse of the request phase. The sever-side NRInvoca-

tionHandler initiates protocol execution, using the service response as application level data.

On completion of protocol execution, an NRDecision is returned to the server-side NRInvoca-

tionHandler. This NRDecision is then passed back along the invocation path to the client as

the result of the client-side NRInvocationHandler’s call to invoke on its next interceptor. If the

response phase protocol completed successfully, then the NRInvocationHandler will be able

to retrieve the service response that was exchanged, and cached, during protocol execution.

The handler uses the nrId from the server-provided NRDecision to identify the response. This

response is then passed through the client-side interceptor chain to the client. If the response-

phase protocol failed, then an appropriate exception is propagated to the client. If the target

service raised an exception when processing the client’s request, then this exception can be used

as the subject of the response-phase protocol and be subsequently re-created for propagation at

the client.

The NRInvocationHandlers, on both client- and server-side, cooperate with service invo-

cation protocol handlers to maintain the correlation of application-level request and response

with the protocol runs that effect a given exchange, identified by nrIds. In the case of a direct

exchange (see Section 3.2.1.1), this correlation is achieved by inclusion of application-level

data in the first message of a protocol run. In the case of a fair exchange (see Section 3.2.1.2),

the protocol handlers persist application-level data passed to them by the invocation handlers

when the first message of a protocol run is generated. This data is then released at the appropri-

ate point in protocol execution. For example, in the protocol discussed in Section 3.2.1.2, the
3The request parameters are referenced through the protocol run nrId provided in the NRDecision. The request

parameters can also be retrieved from the relevant message in the server-side non-repudiation log.
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client request is subjected to validation at step 1.4. Similarly, in the response phase, validation

occurs at step 2.4.

5.2.1 Application programmer responsibilities

The server-side application programmer identifies when non-repudiation is required and pro-

vides (server-side) non-repudiation configuration information. On the client-side, configura-

tion information is provided to determine the client’s reaction to a server’s demand for non-

repudiation. Thus, rendering a service invocation non-repudiable is declarative and, apart from

validation or event listeners, requires no additional implementation effort on the part of the

application programmer.

The application programmer on the server-side is responsible for identifying, in an EJB’s

deployment descriptor, when non-repudiation is required and for identifying the platform for

client-side instantiation of the NRInvocationHandler by its non-repudiation interceptor. Thus

the servers-side application programmer controls activation of non-repudiation. They can stip-

ulate that the client participate in the generation of non-repudiation evidence at two levels: (i)

for all components with a remote interface, or (ii) for one or more of the remote methods of

selected components. The client-side application programmer determines whether the client

engages in non-repudiable exchange through the configuration of their own non-repudiation

middleware. Non-compliance will result in failure of a service request. Once the client is

engaged in non-repudiable exchange, through instantiation of a non-repudiation interceptor,

they control their participation. The client-side application programmer configures the locally

owned and deployed implementations of non-repudiation middleware components, such as

the NRInvocationHandler, NRProtocolHandler and the coordinator service. The client-side

application programmer is also responsible for implementation of local validation and event

listeners.

5.2.2 Regulated interaction with a B2B auction application

This section demonstrates how the B2B auction application introduced in Section 1.1.1 is aug-

mented to regulate client interactions with the application. This augmentation does not involve
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any changes to application code. The non-repudiation middleware renders application-level

operations non-repudiable and validates them with respect to the terms and conditions of the

auction. Section 5.2.2.1 describes application set-up and request processing. Section 5.2.2.2

demonstrates the non-repudiation of both a valid and an invalid auction service invocation.

Section 5.2.2.3 evaluates the demonstration.

5.2.2.1 Auction application set-up

As discussed in Section 1.1.1, a third party ASP has developed the auction application that

Figure 5.6: Regulated B2B auction application

they host on a cluster of JBoss/J2EE application servers. The following requirements on the

non-repudiation middleware are recalled from Section 1.1.1.
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1. Both the origin and receipt of requests must be non-repudiable; that is, evidence must

be generated to irrefutably bind a request to an originating client and, given evidence of

origin, the auction service must provide irrefutable evidence of receipt of a request. The

middleware must also maintain non-repudiation logs of the evidence generated both at

the clients and at the ASP. Since the ASP is trusted by the clients, the direct exchange of

evidence described in Section 3.2.1.1 can be used to satisfy these requirements.

2. Requests must be validated with respect to business contract terms and conditions that

govern the behaviour of clients participating in an auction.

Figure 5.6 shows the augmentation of the auction application with the non-repudiation middle-

ware in order to meet the preceding requirements. Three auction clients, an auctioneer and two

bidders, submit requests to the auction service. For example, Figure 5.6 shows these requests

in the form of the auctioneer’s registration of a bidder and the bidding clients’ invocation of

placeBid operations. The non-repudiation middleware at client- and server-side intercepts the

requests to ensure the exchange of the request and evidence of origin of the request (NRO)

from the client, in return for the receipt (NRR) and validation (NRV) of the request by the

service. As described in Chapter 4, the middleware uses support services to, for example,

log non-repudiation evidence, manage credentials and apply trusted time-stamps for signed

evidence.

The ASP conducts validation against auction terms and conditions by registering validation

listeners with the non-repudiation middleware. As depicted in Figure 5.6, the middleware

invokes this application-level validation with respect to the auction terms and conditions when

a request is intercepted. The validation listeners also access the state of the auction application

to determine whether a request is valid given the current state of the auction. The validation

ensures that the auction progresses along the lines specified in Section 1.1.1. If the middleware

detects a contract violation, the violation is logged and the request that triggered the violation

is rejected. This results in an application-level exception at the client that indicates that they

submitted an invalid request. Such exceptions are essentially the same as any other exception

raised by the application. Invalid requests are not passed to the auction service for processing

and, therefore, its application state remains unchanged.
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5.2.2.2 Auction demonstration

This section first demonstrates the auction application given a valid client request and then

demonstrates the violation of one of the rules governing bidder behaviour. Before starting an

auction, the auctioneer registers a new bidder from the partsuppliers.com company. The auc-

Figure 5.7: Auctioneer registering bidder

tioneer provides the bidder’s details through the Web browser interface shown in Figure 5.7.

This results in the interception of the registration request. Non-repudiation evidence is gener-

ated and logged, and the request validated. Figure 5.8 shows an extract of a non-repudiation

log entry for the request and NRO evidence (note the use of the xmlstring data-binding). The

invocation parameters of the request show the auctioneer, Mark Smith, creating a new person,

Craig Scanlon, in the role of bidder. These parameters are signed along with the service URI

and related information in the signature input. Figure 5.9 is an extract of a log entry for the

NRR and NRV evidence. This entry indicates that the request is valid. The signed receipt

includes a digest of the request, receiptDigest, that matches the signature input digest from

the NRO evidence. The evidence shown is logged both at the ASP and the auctioneer. Since

the request is valid, the indicated createPerson operation will be invoked on the auction appli-

cation hosted by the ASP and the state of the application will be updated accordingly — bidder

Craig Scanlon with id 24 is registered with the auction application.
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Figure 5.8: Request to register a bidder with NRO
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Figure 5.9: NRR/NRV of request to register a bidder
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Figure 5.10: Bidder placing bid

I now demonstrate violation of the following auction rule:

if a car part supplier has had a bid accepted in an bidding round, then that same

car part supplier must not bid again in that round.

In this example, two people are registered as bidders for partsuppliers.com. This is legitimate.

However, it is a violation of the preceding rule for both of them to place a bid in the same round.

If this occurs, then the second bid in a round from a representative of partsuppliers.com should

be detected as a violation of auction rules and recorded as such in the non-repudiation evidence.

To demonstrate this, the same bidder as registered by the auctioneer in Figure 5.7 — Craig

Scanlon with bidder id 24 — submits a second bid in the first round of an auction. Figure 5.10

shows the Web browser interface for placing a bid. The bid value is 2.50 in round one. The

resulting placeBid operation is intercepted and rendered non-repudiable. Figure 5.11 shows an

extract of the evidence of the request and its NRO. Since the bid is the second in the round from

partsuppliers.com, the application-level exception shown in Figure 5.12 is raised at the client to

indicate failure of the operation. The non-repudiation log entry shown in Figure 5.13 includes

the corresponding evidence of the invalidity of the request. This entry is logged both at the ASP

and at partsuppliers.com for access by the bidder, Craig Scanlon. The decisionStatusCode in

the signature input is INVALID and the decisionDiagnostic states that the bid was rejected

because two bidders from the same company attempted to place bids in round one. Since
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Figure 5.11: placeBid request with NRO

the operation is invalid, there is no corresponding placeBid invocation on the target auction

application. Thus, the state of the auction application is unchanged — as if the invalid second

Figure 5.12: Client-side exception due to invalid bid
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Figure 5.13: Evidence of invalidity of placeBid request

bid had not been made.

5.2.2.3 Evaluation of demonstration

The auction application successfully demonstrates the generation, exchange and persistence of

non-repudiation evidence of service invocations. The fact that invocations are non-repudiable

is transparent to the application-level processes at the auction clients (auctioneers and bidders)

and at the ASP auction service. The rules governing the auction are enforced by application-

level validation that is integrated with the non-repudiation protocol for the exchange of ev-

idence. Client operations that violate the rules are detected and recorded but, critically, do

not execute at the target auction service. Thus, neither the auction service nor its application

state are compromised by contract violations. The demonstration shows that the middleware

meets the requirements for non-repudiation and application-level validation identified in Sec-

tion 1.2. Furthermore, the fact that no application code was modified to render the interactions
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non-repudiable is an indication of the middleware’s flexibility. The use of validation listen-

ers supports context-specific customisation of the validation process. In the demonstration,

the requirement for no unfair advantage for auctioneer or bidders is met because the ASP is a

trusted host for the application and the invocations consist of one-way requests from the auction

clients. As indicated by the protocol name — /nrinv/request/direct/main — in the signa-

ture input of each log entry (see Figures 5.8, 5.9, 5.11 and 5.13), this means that the request

phase of the direct exchange protocol from Section 3.2.1.1 is used because the ASP guarantee a

receipt to the client. The naming of the protocol in protocol messages indicates the potential for

the protocol execution framework to adapt to the use of different protocols. This is reinforced

by the use of the same execution framework to support non-repudiable information sharing, as

described in the following.

5.3 Implementation of non-repudiable information sharing

This section presents the implementation of the non-repudiable information sharing service

defined in Section 3.3. The implementation is a significant extension to the B2BObjects mid-

dleware that I first reported in [CSW02]. The middleware regulates information sharing by

coordinating updates to object replicas hosted by the members of the sharing group. Shared in-

formation may be represented locally as a standard Java object4 or as an entity bean hosted by

a J2EE application server. Section 5.3.1 provides a detailed description of the B2BObjects

middleware, its API and its relationship to the protocol-execution framework described in

Chapter 4. Section 5.3.2 describes the J2EE implementation of B2BObjects and application

programmer responsibilities with respect to the J2EE implementation. The use of invocation

path interceptors reduces this effort when compared to information sharing based on standard

Java objects. Section 5.3.3 describes extensions to the middleware to address the remaining

requirement to support transactional information sharing. Section 5.3.4 demonstrates the use

of non-repudiable information sharing in the proof-of-concepts tender negotiation application

introduced in Section 1.

4Commonly referred to as a “POJO” (Plain-Old Java Object).
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5.3.1 B2BObjects middleware

Figure 5.14 shows the B2BObjects realisation of interceptor-mediated information sharing de-

Figure 5.14: B2BObjects-based information sharing

fined in Section 3.3. The shared information is represented locally by object replicas. The

middleware mediates both local and remote access to these objects. From the point of view of

local application clients, access to an object replica is the same as access to a standard applica-

tion object. The B2BObjects middleware ensures that application invocations on a local object

replica are coordinated with other members of the sharing group using the protocols presented

in Section 3.3.2. In step 1 in Figure 5.14, an application client at A makes an invocation on a

local B2BObject replica. The middleware intercepts the invocation and, in step 2, executes an

appropriate state coordination protocol between A, B and C. At step 3, if all parties agree, the

state of each replica is updated to reflect the original invocation at A. If either B or C rejects

the proposed update, there is no change to the state of any of the replicas.

Figure 5.15 shows the three layers of the B2BObjects middleware: (i) local access and state

management that is mediated by the B2BObjectController, (ii) information sharing protocol ex-

ecution based on NRProtocolHandler implementations, and (iii) remote access and coordina-

tion based on implementations of NRMessenger and NRCoordinatorRemote. The local access

layer corresponds to the non-repudiation service specific layer of Figure 4.2 on page 137. The

key component of the local access layer is the B2BObjectController. It performs two main



Chapter 5 Implementation of non-repudiation services 177

Figure 5.15: Non-repudiable information sharing components

functions: (i) to mediate access to and update of the underlying application object replica that

is presented to the controller as a B2BObject, and (ii) to initiate non-repudiable information

sharing protocols using the protocol execution framework.

As shown in Figure 5.15, an application client interacts with an underlying data object

through an application object interface presented by a B2BObject wrapper. Thus, it is possible

for the application need not be B2BObjects-aware. For example, an existing application object

can be augmented to become a B2BObject without modification to any applications that use

the object. Alternatively, it is possible for B2BObject-aware applications to use the B2BObject

interface to interact programmatically with the B2BObjects middleware, and, in particular, an

object’s B2BObjectController. The API of the various components of the middleware and

their relationships are shown in Figure 5.16. I now provide an example implementation of a

B2BObject wrapper. This illustrates the use of the API to trigger state coordination via the

B2BObjectController. In the J2EE implementation a non-repudiation interceptor provided by

the middleware acts as the B2BObject wrapper (see Section 5.3.2).

The B2BObject wrapper and state coordination

A B2BObject can be defined as a new object that implements both the application object’s

interface and the middleware B2BObject interface, or by extension of an existing application

object, or by generation of a proxy for an existing application object. Generation of a proxy

object requires that the methods that write object state can be distinguished from read-only
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Figure 5.16: B2BObjects API

methods. For example, it is straightforward to generate a wrapper for an application object that

uses set methods to write object state and get methods to read object state. However imple-

mented, the method calls of the original application object are in effect wrapped to ensure that

every access to object state is mediated by the B2BObjectController. The controller, in turn,

accesses the application-level object through its implementation of the B2BObject interface.

public class OfferImpl implements Offer {
// fields
private String description;
private String currency;
private double price;
// implementation of Offer interface
public String getDescription() { return description; }
public String getCurrency() { return currency; }
public double getPrice() { return price; }
public void setDescription(String description)
{ this.description = description; }

public void setCurrency(String currency)
{ this.currency = currency; }

public void setPrice(double price)
{ this.price = price; }

}

Figure 5.17: Application Offer implementation
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Figure 5.17 shows an implementation of an application Offer that has get and set methods

to read and write the description, currency and price of an offer. The corresponding B2BObject

public class B2BOffer implements Offer, B2BObject {
// fields
private B2BObjectController controller;
private Offer offer;
// implementation of Offer interface
...
public void setDescription(String description) {

// start of state access
controller.enter(B2BAccessMode.OVERWRITE);
try {
// set offer description
offer.setDescription(description);
// coordinate change

controller.coordinate();
} finally {
// end of state access
controller.leave();
// if coordinate failed, controller performs rollback

}
}
...
// implementation of B2BObject interface follows
...

}

Figure 5.18: Extract of B2BOffer implementation

wrapper, B2BOffer, takes the form of the extract shown in Figure 5.18. The Offer methods

are wrapped to ensure mediation by the middleware. The setDescription, setCurrency and

setPrice methods involve state changes. Invocation of one of these B2BOffer methods results

in coordination of the proposed change with members of the sharing group, including their

validation of the change.

The controller enter and leave methods, shown in the B2BOffer setDescription imple-

mentation, demarcate the scope of access to object state. These calls may be nested as long as

there is a matching leave invocation for each invocation of enter. Nesting allows a series of

state changes to be “rolled-up” into a single coordination event. As shown, enter is parame-

terised with an access mode. B2BAccessMode.OVERWRITE indicates that the whole of the object

state is to be overwritten and coordinated with remote parties. B2BAccessMode.UPDATE indicates
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a partial update to object state. B2BAccessMode.READ indicates that access is read-only. The con-

troller coordinate method is called after writing object state to indicate that the state coordi-

nation protocol should be executed with remote parties. State coordination only actually takes

place when coordinate is called in the context of the outer-most enter/leave block of any

nested blocks. To initiate protocol execution, the controller first obtains a copy of object state

using the B2BObject getState method. The controller then constructs a new B2BControlState

— the Java representation of information control state defined in Section 3.3.1. This is passed,

with the object state, to the generateMessage method of the local protocol handler. The gen-

erated message, with object state as payload, is subsequently passed to the startProtocol

method of the protocol handler to initiate coordination. The result of coordination is recorded

by the controller. If, for example, coordination fails because a remote party vetoed a proposed

object state change, the proposer’s controller will rollback object state when the final leave is

called.

Protocol handlers at remote parties validate a proposed change via calls to local validation

listeners. If a proposed change is accepted by all parties, the protocol handlers subsequently up-

date both the local object state and the currently agreed control state by invocation of setState

through the B2BStateManager interface. This in turn leads to invocation of setState on each

B2BObject replica to install the new validated state.

A single B2BObjectController is statically instantiated for a given uniquely identified B2B-

Object. This guarantees a one-to-one mapping between a B2BObject and its controller. Thus,

the controller can ensure that local access to its B2BObject is thread-safe both with respect

to multiple local threads and with respect to remote access during protocol execution, and for

the acquisition of a write lock by a remote party. The one-to-one mapping is also essential for

transactional access to a B2BObject (see Section 5.3.3). Both the B2BObjectController and

protocol handlers can determine the existence of a lock from the currently agreed control state,

which is persisted and accessible to both components of the middleware.

The membership change process is similar to the state change process. The B2BObject-

Controller connect and disconnect methods initiate the different kinds of membership change

discussed in Section 3.3.2.4, using the specified membership change protocols.
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Object identifiers

Each B2BObject replica is uniquely identified by a URI of the following form:

rmi://<hostname>:<port>/nrcoordinator?localObjectName

Together, the bold components — URI scheme, authority and path — identify the coordinator

service that, from the point of view of remote parties, hosts a partner’s B2BObject. An imple-

mentation of NRMessenger can use this base part of the URI to bind to a remote coordinator

service. The query component of the URI, localObjectName, is a local name that identifies a

specific B2BObject. The local name is also used to access middleware configuration informa-

tion, such as: credentials/certificate identifier, non-repudiation log to use, data-binding to use,

and any validation and/or event listeners to call during protocol execution. The complete URI

is used as the participant identifier and, in particular, as the control state proposerId in coordi-

nation protocols. It is bound to the entity responsible for a given replica by the credentials used

in non-repudiation evidence. The URI is also used by the local protocol handler to identify a

controller for the named B2BObject.

The other control state identifiers related to a B2BObject are the groupId and stateId.

The groupId is generated by taking a message digest of the current set of participant URIs.

The URI of each object replica is added to the message digest in the order of addition to the

sharing group. The stateId is a message digest of an agreed serialized form of the application

object. The serialized form is determined by the agreed representation of application state (see

Section 4.2.3).

B2BObjects and reentrancy

The preceding discussion of B2BObjects middleware assumes that it is safe for a B2BObject-

Controller to make reentrant invocations on a B2BObject. For example, in the implementation

of the setDescription method in Figure 5.18, the B2BOffer invocation of the controller’s

coordinate method results in the reentrant invocation by the controller of the B2BOffer’s

getState method. However, in some contexts it can be unsafe and/or explicitly forbidden

to make reentrant calls on objects. For example, the J2EE specification discourages reentrant
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calls on EJBs. To support non-reentrant B2BObjects, the B2BObjectController provides alter-

native versions of its coordinate and rollback methods. Figure 5.19 shows a non-reentrant

// non-reentrant B2BOffer setDescription method
public void setDescription(String description) {

// start of state access
controller.enter(B2BAccessMode.OVERWRITE);
try {
// set offer description
offer.setDescription(description);
// coordinate change
controller.coordinate(getState());

} catch (Exception e) {
// change rejected, rollback to
// controller-provided state
rollback(controller.rollback());
...

} finally {
// end of state access
controller.leave();

}

}

Figure 5.19: Non-reentrant B2BOffer

version of the B2BOffer setDescription method. The offer state is explicitly passed to the

controller when coordinate is invoked. If coordination fails, the exception handler code ex-

plicitly invokes rollback on the B2BOffer instance with the appropriate rollback state obtained

from the controller.

5.3.2 J2EE implementation and application programmer responsibilities

Figure 5.20 illustrates the component-based implementation of B2BObjects when two organ-

isations, A and B, share a B2BObject and A is updating the object state. As in a standard

J2EE application, an EJB client makes invocations through an application interface (a session

bean) that may result in access and update to an associated entity bean. In this case, the entity

bean has been identified as a B2BObject that should be coordinated with remote replicas. An

interceptor traps invocations on the entity bean to ensure that a B2BObjectController controls

access and update to the bean. The update is only applied to the replicas if B agrees to the

proposal. The process is the same for an update proposed by B.
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Figure 5.20: JBoss/J2EE-based implementation of non-repudiable information sharing

The middleware-provided non-repudiation interceptor is responsible for interaction with

the B2BObjectController, and, through the controller, with the B2BObjects middleware. The

application programmer is responsible for: (i) identifying an entity bean as a B2BObject, (ii)

providing configuration information in the bean’s deployment descriptor, for example, to iden-

tify validation listeners, and (iii) providing the validation listener implementations. Optionally,

the application programmer may specify that a method in the application interface should re-

sult in the “rolling-up” of series of operations on the underlying B2BObject bean into a single

coordination event. The enhancement of an entity bean to become a B2BObject is effectively

transparent to the local EJB client and its application interface.

The application programmer defines the local entity bean representation of shared state.

Get and set methods provide access to the state by co-located business logic session beans.

To ensure that local invocations on these accessor methods are mediated by the B2BObjects

middleware, the application programmer must do the following.

1. Declare that the entity bean’s local interface extends B2BEJBLocalObject, which in turn

extends the standard EJBLocalObject interface and the B2BObject interface. Extension

of B2BEJBLocalObject provides the middleware with an interface to the entity bean to

control access and update to the bean’s state. The middleware-provided JBoss interceptor

reflects on the local object interface to determine which controller operations should be

invoked as a result of invocations on the bean.
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2. Declare that the entity bean implementation extends B2BEntityBean. The B2BEntity-

Bean is a middleware provided implementation of the standard EntityBean interface and

of the B2BObject interface. Middleware invocations on the B2BEJBLocalObject in-

terface result in execution of code defined in the B2BEntityBean implementation. The

middleware automatically generates the B2BEntityBean implementation by reflecting on

the application programmer defined entity bean.

3. Specify, in the bean’s deployment descriptor, an object identifier that is used by the mid-

dleware to key configuration information and to construct the URI for remote parties to

identify the object as a peer replica for coordination. The implementation classes of any

validation listeners and event listeners are also identified in the deployment descriptor.

As shown in Figure 5.16 on page 178, the B2BObject interface defines methods that are in-

voked by the middleware to manage a bean’s state during coordination with remote parties. The

implementation of these methods is automatically generated for the J2EE version of the mid-

dleware. The application programmer simply ensures that an entity bean extends this interface.

The interceptor uses the B2BObjectController interface of the middleware to wrap application-

level access to the information state in appropriate enter/leave blocks and thereby effect state

coordination, concurrency control etc. This wrapper code is generated automatically and is

transparent to the application programmer. For example, given a J2EE version of the Offer

object described in Section 5.3.1, the interceptor injects controller calls such as those shown in

the non-reentrant implementation of the B2BOffer setDescription method in Figure 5.19 on

page 182.

Figure 5.21 illustrates the relationship between the various components for an entity bean

version of the Offer object. OfferBeanLocal defines the business methods (get/set acces-

sors) that can be invoked by co-located beans. This interface extends B2BEJBLocalObject

that in turn extends both the standard J2EE EJBLocalObject interface and the middleware-

provided B2BObject interface. OfferBean is the abstract implementation of the offer provided

by the application programmer. This extends the middleware-provided B2BEntityBean that

in turn implements both the standard J2EE EntityBean interface and the middleware-provided

B2BObject interface. The declaration of the relationships shown is sufficient for an entity
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Figure 5.21: Shared Offer entity bean

bean to become a B2BObject that can be coordinated with remote parties. Application pro-

grammer responsibility could be reduced further by using a code generation tool such as

XDoclet [XDo05]. In this case, the OfferBean class would be annotated to identify it as a

B2BEntityBean and all other code and relationships could be generated automatically.

The B2BObjects middleware described thus far realises non-repudiable information shar-

ing either as standard Java objects or as entity beans hosted by J2EE application servers. In

fact, the use of an agreed representation of information state allows different business partners

to choose their local representation of shared information and still use the B2BObjects middle-

ware to agree updates to the shared information (in its agreed representation). I now address the

remaining requirement to enable shared information to participate as a transactional resource in

standards-compliant distributed transactions. The description of the support for transactional

access is followed by a proof-of-concepts application of non-repudiable information sharing.

5.3.3 Transactional information sharing

This section describes support for transactional information sharing. First, I provide an overview

of typical middleware support for distributed transactions. Then I describe an extension to in-

formation control state that facilitates transactional access to shared information. This allows

one or more B2BObjects to participate as transactional resources in a distributed transaction

with other local transactional resources.
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Middleware support for transactions

Transactions have long been used to ensure the consistency of local resources despite concur-

rent accesses and system failures — delivering the well-known ACID properties of Atomicity,

Consistency, Isolation and Durability. Figure 5.22 illustrates how transactional update to a set

Figure 5.22: Middleware supported distributed transaction

of local resources is supported by commonly used middleware, such as CORBA and J2EE.

There are three basic roles in a distributed transaction:

1. the transactional application (or client) that is responsible for setting the transaction

boundaries,

2. the transactional resources or services, such as enterprise databases, that can be updated

consistently in the context of a transaction, and

3. the transaction coordinator that coordinates delivery of the ACID properties.

As shown, the client first requests the begin of a new transaction from the coordinator. Then

the client updates the resources. The transaction-aware resources register their participation in

the transaction with the coordinator. The application indicates the end of the transaction by

requesting that the coordinator commit. As a result, the coordinator executes a two-phase com-

mit protocol with the resources. In the prepare phase, each resource votes either to commit the
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transaction (if their updates can be made durable) or to abort (if not). If, as shown, all resources

vote to commit, the coordinator then invokes commit on each resource. On completion of the

commit phase, control is returned to the application. If any resource had voted to abort the

transaction, the coordinator would have invoked rollback on each resource.

Different transactional resources may use different mechanisms to meet transactional re-

quirements and may have different interfaces to those mechanisms. To manage the resulting

heterogeneity, the XA standard [Ope91] defines the contract, or interface, between transac-

tional resources and the transaction coordinator in a distributed transaction. The Java Trans-

action API (JTA) [CM02] is a standard interface to Java-based transaction management that

includes a mapping of the XA interface (XAResource). Access to enterprise resources is me-

diated by resource managers that export the XAResource interface to a JTA Transaction Man-

ager. In the following I describe how the B2BObjectController also exports an XAResource

interface to present B2BObjects as transactional resources to a Transaction Manager. In this

way, distributed transactions can be combined with non-repudiable information sharing. First,

I describe the necessary extension to shared information control state.

Extending control state to facilitate transaction

To support transactions, we consider shared information to be in either a prepared state or a

committed state. Both prepared and committed states are subject to the agreement of the shar-

ing group. The distinction is that a prepared state is revocable. If a prepared state is revoked,

then the information returns to the most recently agreed committed state — the rollback state.

A prepared state may be revoked because a transaction coordinator requests rollback of trans-

actional resources or because of the invalidation of a subsequent state transition. To support

the concept of prepared and committed states, I extend information control state to include a

rollbackNRId that identifies the rollback state. A control state describes committed shared

information if the control state rollbackNRId is the same as the control state nrId. Otherwise

the control state describes shared information that is in a prepared state. Table 5.1 shows the

five permitted transitions in shared information in terms of a tuple of rollback state and pro-

posed new state. Transition 1 is equivalent to the state coordination described in Section 3.3.2.3
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Transition type Example transition in〈rollback state, newstate〉
1 committed to committed 〈Sy, Sy〉 → 〈Sy+1, Sy+1〉
2 committed to prepared 〈Sy, Sy〉 → 〈Sy, Sy+1〉
3 prepared to prepared 〈Sy, Sy+1〉 → 〈Sy, Sy+2〉
4 prepared to committed (abort) 〈Sy, Sy+2〉 → 〈Sy, Sy〉
5 prepared to committed (commit) 〈Sy, Sy+2〉 → 〈Sy+2, Sy+2〉

Table 5.1: Permitted state transitions

— transition from the current committed state to a new committed state with no intermediate

prepared state. Transitions 2 and 3 to prepared states can be mapped to the prepare phase

of a distributed transaction. In these cases, the rollback state must be the same before and

after the transition. Transition 4 maps to transaction abort and rollback to the previously com-

mitted state: 〈Sy, Sy〉. Transition 5 maps to transaction commit of the new committed state:

〈Sy+2, Sy+2〉.

1 // start transaction txId context
2 enter(b2bObjA, txId, B2BAccessMode.READ)
3 enter(b2bObjB, txId, B2BAccessMode.READ)
4 // perform state changes
5 enter(b2bObjA, B2BAccessMode.OVERWRITE)
6 // locally update b2bObjA state
7 // coordinate b2bObjA to prepared state
8 // and acquire lock
9 coordinate(b2bObjA)
10 leave(b2bObjA)
11 enter(b2bObjB, B2BAccessMode.OVERWRITE)
12 // locally update b2bObjB state
13 // coordinate b2bObjB to prepared state
14 // and acquire lock
15 coordinate(b2bObjB)
16 leave(b2bObjB)
17 // Perform further state changes. For each enter/leave
18 // block, object state is coordinated
19 // commit transaction txId
20 // coordinate objects to committed states
21 leave(b2bObjA, txId, TX_SUCCESS)

22 leave(b2bObjB, txId, TX_SUCCESS)

Figure 5.23: Pseudo-code for a B2BObjects transaction

Figure 5.23 is a pseudo-code example of a transaction that spans two B2BObjects: b2bObjA

and b2bObjB. The enter operations in lines 2 and 3 indicate the start of the transaction. Lines 4

to 18 show state changes to b2bObjA and b2bObjB in nested enter/leave blocks. Each enclosed
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coordinate operation, including those implied in lines 17 and 18, results in transition to a

prepared state (of type 2 or 3 in Table 5.1). Finally, the leave operations in lines 21 and 22

trigger transition to committed states — transition 5 in Table 5.1.

Figure 5.24: Transaction commit control state transitions

Figures 5.24 and 5.25 show how the transitions in Table 5.1 are represented by control

state transitions to effect transaction commit and abort. Until the final transition of Figure 5.24,

the rollbackNRId identifies control state x. Therefore, up to that point, state y is the agreed

rollback state. After transition from control state x+2 to control state x+3, the rollbackNRId

is the same as the nrId and, therefore, the information is in a new committed state with agreed

rollback state y+ 2. Control states x and x+ 3, in grey, describe committed states. Control

states x+1 and x+2 describe the prepared states that may be revoked. In Figure 5.25 transition

Figure 5.25: Transaction abort control state transitions
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from control state x+ 5 to control state x+ 6 effects the abort of states y+ 3 and y+ 4. The

information is then returned to the state identified through the rollbackNRId of control state

x+5. Control state x+6 is confirmed as the new committed state because its rollbackNRId is

the same as its nrId. Assignment of the lockId in control states x+ 1, x+ 2, x+ 4 and x+ 5

represents proposer lock acquisition in transaction context. The write lock is acquired in the

same transition as a proposed state change, by way of contrast to the example in Figure 3.17

on page 127.

The sharing group can reach agreement on any of the transitions shown in Table 5.1 by

using the extended control state when executing the state coordination protocol described in

Section 3.3.2.3. Agreement to a new prepared state, for example 〈Sy, Sy+1〉, represents: (i)

validation of proposed state Sy+1; and (ii) a commitment to be able to subsequently install

either of the related committed states: 〈Sy, Sy〉 or 〈Sy+1, Sy+1〉. A transition to one of these

committed states does not require application-level validation of the known and agreed infor-

mation state. Thus, the group can reach agreement on transitions 4 and 5, transaction abort

and commit, by executing the state coordination protocol without the information state pay-

load. Non-repudiable coordination from a prepared to a committed state is still required to

ensure that all parties maintain the same view of shared information and, therefore, of the new

committed state.

B2BObjects as transactional resources

I now show how to modify the B2BObjects middleware to enable the participation of shared

information in JTA distributed transactions. The essential requirements are that a JTA trans-

action manager can control the participation of B2BObjects in transactions through an XARe-

source interface, and that the B2BObjects middleware can be instrumented to support JTA-

compliant transactions. The approach is to combine extended control state transitions to deliver

expected transactional behaviour. A transaction-aware controller, TXB2BObjectController,

both exports an XAResource interface and provides additional methods to manage transac-

tional context. The TXB2BObjectController is responsible for mapping requests at the XARe-

source interface to appropriate control state transitions. The controller guarantees both the
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persistence of B2BObject state to facilitate recovery and rollback, and the persistence of trans-

action state information. For example, it maintains a persistent link between a transaction

identifier, provided through the XAResource interface, and the state coordination events asso-

ciated with the transaction. The one-to-one relationship between a controller and the object it

controls ensures that transaction context is correctly maintained for all operations on a given

B2BObject. In effect, the TXB2BObjectController is the transactional resource. Figure 5.26

public interface TXB2BObjectController
extends B2BObjectController {
void enter(Object txId, B2BAccessMode);
void leave(Object txId, int flag);
XAResource getXAResource();

}

Figure 5.26: TXB2BObjectController interface

shows the TXB2BObjectController interface that extends the B2BObjectController in Fig-

ure 5.16. The interface adds new enter and leave methods to demarcate transaction context

for the controller; see lines 2, 3, 21 and 22 of Figure 5.23 for the use of these new methods.

A getXAResource method provides access to the controller’s XAResource interface to allow

participation in a JTA-compliant transaction. The XAResource interface defined in [CM02] in-

cludes start and endmethods to demarcate work on behalf of a given transaction, and prepare,

commit and rollback methods for participation in the transaction two-phase commit protocol.

Figure 5.27 is a sequence diagram for update of a B2BOffer in the context of a JTA dis-

tributed transaction that shows the process from application demarcation of the transaction

to successful commit. In a typical distributed transaction other resources, such as enterprise

databases, would be enlisted with a transaction in the same way and participate in the two-phase

commit protocol via their own XAResource interface. For simplicity, these other resources are

not shown. First the application indicates the beginning of a transaction to the Transaction-

Manager and obtains a Transaction object from the manager. Then the application obtains

the TXB2BObjectController’s XAResource interface and enlists it with the Transaction. This

results in the propagation of transaction context to the controller via the parameterised enter
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Figure 5.27: B2BOffer transaction sequence diagram

call. The application-level setPrice is invoked on the Offer interface of the B2BOffer. This

leads to invocation of setPrice on the underlying Offer implementation in the context of an

enter/leave block. Since the controller is aware that this enter/leave block is within the

context of a transaction, execution of coordinate leads to coordination of the B2BOffer to a

prepared, and locked, state. The controller records the success or failure of coordination. In the

example, the call succeeds and the prepare call to the XAResource results in a vote to commit

the changes. The commit call on the XAResource leads to a parameterised leave call on the

controller that in turn leads to coordination of the B2BOffer to a committed, and unlocked,

state. As shown, XAResource calls are mapped to operations on the TXB2BObjectController.

It should be noted that for J2EE applications, the preceding application-level operations for

transaction demarcation etc. are performed at the container-level and not directly by applica-

tion clients.

Read and write locks are acquired and released in the way described in Section 3.3.3. In

transaction context, a read lock is granted locally by the controller. For example, in Figure 5.27,
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B2BAccessMode READ is used in the first enter call and acquisition of a write lock is deferred

until the first coordination to a prepared state in transactional context. If B2BAccessMode

OVERWRITE or UPDATE were used instead, a write lock would be acquired at the first enter call.

The middleware can be configured locally to use either sequence of lock acquisition. Locks are

released during coordination to a committed state, at transaction completion.

Deferred coordination

It is possible to configure the middleware to execute either immediate or deferred coordination.

Immediate coordination is as described previously — each update to an object in the context of

a transaction results in coordination with remote replicas. In this case, invalidity with respect to

remote parties is detected early; with consequent rollback of the transaction. Deferred coordi-

nation is an optimisation in which updates to an object are performed locally and coordination

with remote replicas is deferred to a single coordination event during the prepare phase of the

transaction.

The controller’s support for nested enter/leave blocks is used to implement deferred co-

ordination. There is an additional enter invocation on the controller as a result of the start in-

vocation on the XAResource. On completion of local state updates, corresponding coordinate

and leave calls are then made as a result of the invocation of prepare on the XAResource. This

triggers coordination to a prepared state that encompasses all of the intervening updates. Fig-

ure 5.28 shows how deferred coordination modifies the pseudo-code presented in Figure 5.23.

For ob jS, the single transition 〈si, si〉 → 〈si, si+m〉 replaces coordination through a series of

intermediate prepared states described.

Deferred coordination can also optimises object locking since, until the prepare phase, it is

sufficient to veto remotely-initiated update of object state by acquiring a read lock with respect

to remote replicas. Then a write lock is acquired as part of the coordination to prepared state.

Deferred coordination results in less interaction with remote parties at the expense of delayed

validation of state changes. An advantage is the confinement of local failure during a series of

updates to a B2BObject or related resources. Deferring coordination means that local failures

will preclude coordination with remote parties.
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// start transaction txId context
enter(objS, txId, B2BAccessMode.READ)
enter(objT, txId, B2BAccessMode.READ)

// defer coordination
enter(objS, B2BAccessMode.READ)
enter(objT, B2BAccessMode.READ)

// perform state changes
enter(objS, B2BAccessMode.OVERWRITE)

// locally update objS state
// but do not coordinate

leave(objS)
enter(objT, B2BAccessMode.OVERWRITE)

// locally update objT state
// but do not coordinate

leave(objT)
// Perform further state changes without
// coordination
// locally objS is in state: 〈si, si+m〉
// and objT is in state:

〈

t j, t j+n
〉

// prepare (and coordinate to prepared states)
coordinate(objS)
leave(objS)
coordinate(objT)
leave(objT)

// commit transaction txId
leave(objS, txId, TX_SUCCESS) // coordinate objS to

// committed state: 〈si+m, si+m〉
leave(objT, txId, TX_SUCCESS) // coordinate objT to

// committed state:
〈

t j+n, t j+n
〉

Figure 5.28: Pseudo-code for a transaction with deferred coordination

Majority voting during commit phase

The requirement at the transaction commit phase is to ensure that the proposer does not attempt

to issue a commit to some parties and abort to others. As noted previously, transition from a

prepared to a committed state does not require further application-level validation because the

relevant application state has already been subject to validation by all parties. During trans-

action commit, or abort, it is therefore possible for the proposer to short-circuit the response

phase of the state coordination protocol after receipt of a majority of responses. The proposer

need only show that a majority of parties have seen the signed transition to the new committed

state. The proposer then completes the protocol by propagating to all parties the evidence that

a majority of parties have seen and signed the new control state.
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5.3.4 Validated negotiation of a tender to supply chemicals

This section demonstrates the use of non-repudiable information sharing in the simple tender

negotiation application described in Section 1.1.2. The application involves the negotiation of

a tender for the supply of chemicals. The negotiation process and the tender contract that gov-

erns the process are as described in Section 1.1.2. A supplier and purchaser share offers that

represent the terms and conditions for the supply of chemicals. Negotiation proceeds through

the non-repudiable validation of each other’s updates to the state of an offer. I now describe

the use of the B2BObjects middleware to support the negotiation process. Section 5.3.4.1 de-

scribes application set-up and the representation of an offer as a B2BObject replica at supplier

and purchaser. Section 5.3.4.2 demonstrates the use of the information sharing middleware to

validate proposed updates to an offer and to generate non-repudiation evidence of the negotia-

tion. Section 5.3.4.3 evaluates the demonstration.

5.3.4.1 Tender application set-up

Figure 5.29 shows the augmentation of the application from Section 1.1.2 with non-repudiable

Figure 5.29: B2BOffer tender application

information sharing middleware. Each party has a local tender application and a tender contract

implemented as a validation listener that encodes the rules specified in Section 1.1.2. Each

tender application accesses a B2BOffer replica through its Offer interface. The non-repudiable

information sharing middleware coordinates updates to the B2BOffer replicas. Users at each

party interact with their local tender application through a Web browser interface that allows

the user to create, edit and save offers. When a user saves an offer, the state of the B2BOffer

is coordinated with, and validated by, the remote peer. If the proposed update is valid with
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respect to the tender contract, then the replicas will be updated to reflect the new offer state. If

the proposed update is invalid, then the replicas will remain in the previously agreed offer state.

Figure 5.30 shows the read and write methods of the application Offer interface. Any local

Figure 5.30: Application Offer interface

application invocation of the write (set) methods at the Offer interface triggers coordination of

the B2BOffer with the remote party. The setOffer method allows more than one attribute of an

offer to be updated at a time. If a supplier complies with the tender contract, then they should

set all attributes except the AcceptanceStatus. If a purchaser complies with the tender contract,

then they should only set the AcceptanceStatus. The AcceptanceStatus is an enumeration with

one of the following values: UNKNOWN (the initial status), ACCEPT or REJECT.

5.3.4.2 Demonstration of tender negotiation

I now show both a valid update to a shared offer and an attempt at an invalid change. In the first

phase of negotiation, the supplier (ChemicalsRUs) edits a new offer — see Figure 5.31a. Note

that the offer price for a kilogram of methane is set to 0.75 Euro. When the “Save” button is

pressed, the ChemicalsRUs user is given the opportunity to confirm or cancel the update to the

offer — see Figure 5.31b. The application presents the agreed string representation of the offer

for confirmation. It is this representation of the state of an offer that is signed and coordinated

with the purchaser (ChemProc Ltd). When the ChemicalsRUs user presses the “Confirm” but-

ton their local tender application invokes the setOffer method on the local B2BOffer replica,

through the Offer interface. This results in state coordination with the B2BOffer replica at

ChemProc Ltd. During state coordination, the update is validated with respect to the tender
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(a) ChemicalsRUs editing offer (b) ChemicalsRUs confirming offer

Figure 5.31: ChemicalsRUs editing and saving offer

contract at ChemProc Ltd. Since the proposed change is valid, the B2BOffer replicas at both

ChemicalsRUs and ChemProc Ltd are updated to the state shown in Figure 5.31b.

In the second phase of negotiation, the ChemProc Ltd user views the current state of the

offer. As can be seen in in Figure 5.32a, their local view of offer state is the same as for the

(a) ChemProc viewing offer (b) ChemProc editing offer

Figure 5.32: ChemProc Ltd viewing and editing offer

ChemicalsRUs user in Figure 5.31b. The ChemProc Ltd user attempts to cheat by both editing
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the price of the offer and setting its AcceptanceStatus to ACCEPT— see Figure 5.32b. Note the

change of the price of the offer to 0.50 Euro for a kilogram of methane. When the ChemProc

Ltd user decides to commit their proposed changes, the middleware triggers state coordination

between the B2BOffer replicas. However, this time the proposed change is found to be invalid

with respect to the tender contract at ChemicalsRUs and the change is rejected. Figure 5.33

Figure 5.33: Invalid proposed update from ChemProc Ltd

shows notification of the alleged contract violation to the ChemProc Ltd application. The

exception provides a reference to the protocol run to allow retrieval of related messages from

the local non-repudiation log. The ChemicalsRUs application can also register an event listener

to be notified of the violation and, therefore, to react to it. The violation is “alleged” because

ChemProc Ltd may wish to contest the allegation of misbehaviour.

At the end of the example, ChemicalsRUs and ChemProc Ltd each have non-repudiable

evidence of the creation of a valid offer by ChemicalsRUs. Similarly, they have non-repudiable

evidence of the invalidation of ChemProc Ltd’s proposed update, and of the reason for the

contract violation. Therefore, offer 10 in the given contract period remains in the agreed state

shown in Figures 5.31b and 5.32a. Since the contract states that each party can only edit a

uniquely identified offer once, there can be no further valid changes to the offer and it will

expire on the date set by ChemicalsRUs.

5.3.4.3 Evaluation of demonstration

The tender negotiation application successfully demonstrates non-repudiable, validated update

to shared information. From the point of view of a local tender application, access the shared

offer is indistinguishable from access to local application state. The distinction is that the infor-
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mation sharing middleware coordinates actions on the local instance of the offer with remote

peers. This coordination is achieved by an initialising execution of the connection protocol

defined in Section 3.3.2.4 that establishes sharing. This is followed by an execution of the

state coordination protocol defined in Section 3.3.2.3 for the supplier’s successful update to the

offer and then another execution of the state coordination protocol that detects, and prevents,

the purchaser’s attempt at an invalid update to the offer. It is straightforward to add new par-

ties to the interaction, such as the fulfillment agent suggested in the application description in

Section 1.1.2. Similarly, it is straightforward to support an extended interaction for negotia-

tion of more complex tender terms and conditions than those specified in the example offer.

Though the resulting application would be more complex, from the middleware perspective

such changes are simply a matter of further executions of the information sharing coordination

protocols. As noted at the end of Section 5.2, the use of the same protocol execution frame-

work to implement services for both information sharing and service invocation demonstrates

the flexibility of the non-repudiation middleware.

5.4 Summary

I have now demonstrated a unified approach to the design and implementation of middleware

for both non-repudiable service invocation and non-repudiable information sharing. The mid-

dleware implementation addresses all of the requirements identified in Section 1.2, namely:

non-repudiation, no unfair advantage, application-specific validation, flexibility and transac-

tional access to shared information. Key characteristics of the middleware are its basis in

fundamental work on non-repudiation, the fact that it addresses both of the domains for ac-

tion identified in Chapter 1 (the private and the shared), and its application-independence. No

other non-repudiation middleware shares this collection of characteristics. The FIDES project

is the only other system found that is based on fundamental work on non-repudiation and fair-

ness. However, their work is specific to an application for document exchange and cannot be

generalised to support other applications. None of the other middleware systems identified in

Section 2.4, such as Wichert et al’s CORBA non-repudiation service or BEA’s Trading Partner

Integration Engine, take account of the fundamental work nor do they exhibit the flexibility
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of the middleware presented in this chapter. No other work addresses the complete set of re-

quirements specified in Section 1.2 and in particular the need for non-repudiable information

sharing. I now conclude this dissertation with a review of the contributions made and sugges-

tions for future work.
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Chapter 6

Summary of contributions and future
work

In this chapter I summarise the contributions of my work and then conclude the dissertation

with suggestions for future work. Chapter 1 identified two domains for action: one over private

resources that are exposed as services to business partners and the other over shared resources

that are jointly owned by business partners engaged in some collaborative venture. There is

then a need for systematic support to regulate (monitor and control) B2B interactions in each

domain. To this end I proposed two middleware services for non-repudiation and validation of

B2B interactions — non-repudiable service invocation and non-repudiable information sharing

that address requirements in the private and shared domains, respectively. The core of the work

in this dissertation comprises:

1. the definition in Chapter 3 of the non-repudiation services based on fundamental work

on protocols for the exchange of non-repudiation evidence,

2. the design and implementation of a generic framework for protocol execution in Chap-

ter 4, and

3. the demonstration in Chapter 5 of the practical implementation of the non-repudiation

services using the protocol execution framework.

Taken together, this work addresses the requirements for middleware support specified in Sec-

tion 1.2. In the following, I summarise the support provided with respect to each of the require-

ments.
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Non-repudiation Both services provide systematic generation, exchange and recording of ev-

idence of B2B interactions at run-time. The evidence cryptographically binds actors to

their actions. Thus, business partners can be held to account for their actions, which they

cannot subsequently deny.

No unfair advantage For service invocation, fairness is addressed by the guaranteed receipt-

ing of authenticated service requests, responses and validation information. So, the mid-

dleware ensures that well-behaved parties obtain the information to which they are enti-

tled. Fairness guarantees are based on fundamental work on fair exchange discussed in

Section 2.2. Section 3.2 shows how to extend protocols to correlate request and response

phases of service invocation, and how to integrate the application-specific validation of

each phase, and at the same time preserve fairness guarantees. For information sharing,

the guarantee of no unfair advantage relates to the integrity of the shared information.

That is, it must not be possible to deny the validity of a well-behaved party’s view of

the agreed state of shared information and of the membership of group that shares the

information. The coordination protocols defined in Section 3.3, and demonstrated in

Section 5.3, guarantee this consistent, non-repudiable view of shared information.

Application-specific validation The requirement was to integrate application-specific valida-

tion of actions with the generation of non-repudiation evidence at run-time. The service

definitions in Chapter 3 addresses the integration of application-specific validation at the

non-repudiation protocol level. The middleware framework in Chapter 4 provides the

validation listener mechanism to invoke potentially arbitrary application-specific valida-

tion of an interaction. Chapter 5 demonstrates the use of this mechanism during protocol

execution for both service invocation and information sharing.

Flexibility The middleware demonstrated in Chapter 5 is application-independent. It does not

require any change to application business logic and it preserves application-level se-

mantics. There are a number of aspects to the flexibility of the middleware. It can adapt

to different requirements for application-specific validation. The underlying mechanisms

to achieve non-repudiation can be tailored to a given application context and to different
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relationships between participants. It is possible to use different local representations

of application data and, yet, specify agreed representations for evidence generation and

information sharing. The specification of a support service API allows organisational

autonomy with respect to the implementation, deployment and use of supporting infras-

tructure.

Transactional information sharing Section 5.3.3 shows how to combine the work on infor-

mation sharing protocols in Section 3.3 with standards-compliant middleware support for

distributed transactions in order to provide transactional access to shared information.

A notable feature of my approach is a careful separation of concerns. Figure 6.1 recalls the

Figure 6.1: Generic protocol execution framework

protocol execution framework from Chapter 4. Application-level abstractions are maintained

by the realisation of the non-repudiation services as middleware. The application-independent

middleware itself is separated into three layers: a protocol-independent layer to address non-

repudiation service specific issues, a layer for deployment of protocol implementations and a

protocol-independent layer for B2B communications. This separation is fundamental to the

flexibility of the middleware. Mechanisms to provide non-repudiation and validation of in-

teractions are independent of the applications to which they apply and yet can be adapted to

a specific application context. Protocol-specifics do not leak into the abstractions provided

by the non-repudiation services nor into the communications interface between organisations.

Thus, different protocols can be deployed to suit different requirements. The separation of con-

cerns is expressed in the middleware through the specification of APIs for interaction with and

between the different middleware components. So, there is a well-defined interface between
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each layer of Figure 6.1, including the specification of self-describing protocol messages for

processing by the middleware. A support service API isolates implementation detail of the

necessary supporting infrastructure. A data-binding API supports the distinction between the

local representation of data and its agreed representation in non-repudiation evidence and, in

particular, as shared information. The definition of an API for validation and event listeners al-

lows the application programmer to adapt the middleware to application-specific requirements

and to customise the rules that are applied in different interaction contexts.

I have demonstrated the novelty of the design and implementation of the non-repudiation

middleware with respect to the related work discussed in Chapter 2. Novel contributions in-

clude: (i) the development of flexible middleware that is based on fundamental work on non-

repudiation and fairness, (ii) the provision of systematic support for regulation that is adaptable

to different application contexts, and (iii) the specification of the two domains for action and

the definition and implementation of a service for non-repudiable information sharing in order

to regulate actions in the shared domain. In summary, as proposed in Chapter 1, through a

unified approach to the development of middleware support for non-repudiation and validation

of B2B interactions, I have established that:

1. a set of middleware services can provide a flexible framework for protocol-based inter-

action,

2. that the framework can deliver non-repudiation services that are appropriate to the two

domains for action — the private and the shared, and

3. that the services can be used to regulate B2B interactions and at the same time preserve

application-level semantics.

I now conclude this dissertation with a discussion for future work that continues the theme of

exploring fundamental concepts in the context of realistic systems implementation.

Future work

It is increasingly common to view B2B interactions in terms of the exchange of business mes-

sages between loosely-coupled services (or business processes). This has led to the devel-
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opment of open standards for business conversations. For example, RosettaNet PIPs [Ros05]

define the externally observable aspects of a B2B interaction. They standardise the XML-based

business messages that should be exchanged between partners to execute some function, such

as order processing. The work I propose in this section concerns support to regulate interactions

of this kind.

In [RCS05, CRS06] we present some preliminary work on a Web services based re-impl-

ementation of the framework for non-repudiation protocol execution. This will be further de-

veloped and will provide an experimental platform for investigations in other areas. Work that

I envisage includes: (i) the composition of message delivery primitives into message exchange

patterns, (ii) the application of non-repudiable information sharing in loosely-coupled interac-

tions, (iii) the automatic derivation of protocol implementations, (iv) the performance analysis

and characterisation of non-repudiation protocols to inform the choice of mechanism to use,

and (v) the use of non-repudiation services to support the recording of provenance information.

The Web services protocol execution framework (WS-NRExchange) is based on: (i) a

well-defined, generic Web services interface for the exchange of protocol messages, (ii) an ex-

tensible XML schema that defines the content of self-describing protocol messages, and (iii)

a well-defined API for message processing by the middleware that includes the registration of

protocol-specific message handlers. Figure 6.2 shows the interactions between the main com-

ponents and services that constitute the implementation. The use of an in-line TTP is illustrated.

However, as with the framework described in Chapter 4, WS-NRExchange is not restricted to

interaction through an in-line TTP. Each protocol participant has an NRExchange Web ser-

vice that manages their participation in non-repudiation protocols. At end-users — A and B in

Figure 6.2 — the NRExchange service is deployed as an interceptor to mediate Web service

interactions that require non-repudiation. This interceptor may be co-located with the local ap-

plication that uses it, or, for example, may be deployed as part of a corporate firewall service.

A and B may be Web services or Web service clients or both. The NRExchange services ac-

cess additional local services for signing evidence, message persistence and application-level

validation. The signing service applies signatures to the parts of messages that have not already

been signed. This service may be an implementation of the Digital Signature Service (DSS)
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Figure 6.2: WS-NRExchange architecture

[PAC+04] or some other mechanism for obtaining private keys to apply signatures to SOAP

messages to comply with the WS-Security standard [NKHBM04]. The NRExchange services

also access trusted time-stamping services and public key management services, such as DSS

and XML Key Management (XKMS) [HBM05] services provided by third parties. For proto-

cols that use an in-line TTP, trusted time-stamps may optionally be applied by the TTP Web

service. There is also a local interface to register application-specific listeners for message

validation and for protocol-related events. Messages that are found to be invalid with respect

to contract are logged but are not passed to the target application for processing.

The WS-NRExchange middleware currently provides a primitive for fair, non-repudiable

and validated one-way message delivery. To support more complex interactions, and different

application-level semantics, the middleware must be developed to allow the composition of

message delivery primitives into message exchange patterns (MEPs). Figure 6.3 illustrates

this composition of MEPs. At the lowest level, message delivery is achieved through protocol

execution. Three message delivery primitives will be built on the protocol execution layer: (i)

send without non-repudiation, (ii) send with NRO, and (iii) fair send with guaranteed exchange

of NRO for NRR. Generic MEPs can then be composed from these primitives. An example

is correlated sends to achieve request/response application semantics. Generic MEPs can also
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Figure 6.3: Message exchange pattern composition

be composed into domain-specific MEPs. The provision of domain-specific MEPs that, for

example, execute PIPs and compositions of PIPs will allow us to regulate such interactions. As

shown in Figure 6.3, message validation may be invoked at each level — providing a chain of

responsibility for validation that is appropriate to the given level.

The exchange of business messages in conversations such as PIPs leads to each party to an

interaction having a view of the state of the interaction that is derived from both the messages

they have sent and the messages they have received. A problem, common to any distributed

system, is that this view of the state of the interaction can become inconsistent; because, for

example, messages may be delayed or lost. Therefore, in addition to regulating the message

exchanges, it would be useful to provide mechanisms to synchronise the state of a business

interaction as viewed by its various participants. This leads to another avenue for investiga-

tion: the application of non-repudiable information sharing to the synchronisation of interac-

tion state. For this, we need to identify synchronisation points in a business interaction and

then apply mechanisms similar to those described in Section 3.3 to provide an agreed view of

the interaction state at the given synchronisation point.

We have implemented a version of the modified Coffey-Saidha protocol to provide the

single WS-NRExchange message delivery primitive. As for the middleware presented in this

dissertation, we intend to implement additional protocols with different characteristics. There

are two significant problems with protocol implementation. The first is how to have confidence

that a protocol design is correct with respect to stated assumptions. The second is how to

have confidence that the corresponding implementation executes the protocol that the designer

intended. The considerable body of work on the formal verification of security protocols ad-

dresses the former problem (see [Low97, SM00], for example). To address the latter problem,
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as with any software, we require tool support to generate an implementation from its formally

verified specification. We have begun work that, in principle, shows how to automate the gen-

eration of protocol implementations that are suitable for deployment in the WS-NRExchange

framework. We are confident that this work applies to TTP-based deterministic fair exchange

protocols. The approach needs to be demonstrated in practice. It also needs to be extended to

support other protocol families. For example, it is not clear how to apply this work to the small

set of deterministic protocols that set explicit deadlines for message delivery, as opposed to

participants setting local timeouts and then pro-actively seeking termination of a protocol run.

Work is also required on the implementation of probabilistic protocols that do not require a

TTP or that construct a virtual TTP from tamper-resistant security modules hosted by the pro-

tocol participants (see Section 2.2.2.3). In principle, implementations could be deployed in the

middleware framework. However, it is not clear whether we can apply our proposed techniques

for the auto-derivation of deterministic protocol implementations to these protocols. Work is

also needed on the implementation of fault-tolerant fair exchange as described in Ezhilchelvan

and Shrivastava [ES05].

An important question when deciding how to regulate B2B interactions is: "are the pro-

posed mechanisms proportionate to the value of the transaction(s) being secured?". There has

been work on the relative computational costs of cryptographic algorithms. There has also been

some work on cryptography-related message processing costs in the context of Web services

(notably [LPF05]). But this work can only inform the choice of algorithms to use for signing

and encryption. To make informed choices, for example, about non-repudiation protocols to

adopt (if any), we need to be able to answer questions such as "what are the characteristics

and associated costs of each candidate protocol?" and "where should the costs fall? Predom-

inantly at guarantor TTPs or at the end users?". Protocols are typically characterised by the

level of involvement of guarantor TTPs and the number of message rounds. As with crypto-

graphic algorithms, and as illustrated by the discussion in Section 3.5, this can only provide a

partial answer. We require a systematic classification of protocols by a range of characteristics

that contribute to the execution overhead as well to trade-offs between the costs and the bene-

fits that accrue. Characteristics that contribute to performance include message size, message
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complexity, number of message rounds, applicable cryptographic schemes, and persistence

requirements. The contribution of these characteristics to the overall performance overhead

needs to be quantified. We also need to compare protocols by their security guarantees, the

responsibilities of participants — where the costs fall, and by TTP involvement (including CA

and TSA involvement). An ambitious goal is that a comprehensive study of the performance

of protocols could lead to a generally applicable approach to their classification. This would

allow the straightforward incorporation of new protocols as they are developed. The method

may then apply to other areas of security.

Recalling the discussion in Section 2.4.1.3, the PASOA project analysed use cases in bioin-

formatics, particle physics, chemistry and software engineering to capture provenance service

requirements [MGBM06]. They concentrated on generic, re-usable aspects with a view to

deriving a domain-independent software architecture for recording, querying and processing

provenance data. Their approach is of particular interest because, as far as possible and in

contrast to many others, they explicitly aim for application-independence. This corresponds to

the systematic recording of non-repudiation evidence, and of the validation of actions to which

the evidence relates. They argue for a separation of concerns between the recording of and

access to provenance data, the querying of provenance data, and the processing of provenance

data (for example, to present to the user or to re-enact experiments). They suggest that record-

ing should be based on the documentation of the processes, or interactions, that produce the

data. The non-repudiation services I provide can be seen as performing this documentation of

interactions. When both non-repudiation and provenance recording are requirements, it seems

reasonable to suggest that non-repudiation logs could be the source of the provenance infor-

mation. A question to explore is whether there are additional provenance requirements that

could be addressed through this use of non-repudiation services as the recording mechanism.

For example, non-repudiation protocol messages contain information about the identity of par-

ticipants, their credentials, message time-stamps, and message validity. Higher-level functions

for querying and processing may be able to exploit this information. In existing provenance

services, information of this type is often explicitly added to messages as meta-information.

An issue to address here is that information in non-repudiation logs is to some extent protocol-
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specific. The information to answer a given provenance query may be scattered across different

protocol messages because a single application-level messages is represented by two or more

protocol messages in a non-repudiation log. Another area for investigation, of particular rele-

vance to e-Science, is how to perform efficient non-repudiation with large data-sets or streams

of data, or with references to such information. In any case, the use of non-repudiation services

to support provenance services has the potential to avoid duplication of effort and provide use-

ful additional interaction information.
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