Newcastle University

School of Electrical, Electronic and Computer Engineering

Newcastle
University

Interpreted Graph Models

by Ivan Poliakov
PhD Thesis

2011

Abstract

A model class called amterpreted Graph Model (IGMjs defined. This class includes a large
number of graph-based models that are used in asynchroitoui design and other applications
of concurrecy. The defining characteristic of this modetsless an underlying static graph-like
structure where behavioural semantics are attached udiitjomal entities, such as tokens or
node/arc states. The similarities in notation and expregmwer allow a number of operations on
these formalisms, such as visualisation, interactive kitimn, serialisation, schematic entry and
model conversion to be generalised.

A software framework called Workcraft was developed to talleantage of these properties
of IGMs. Workcraft provides an environment for rapid prgfng of graph-like models and
related tools. It provides a large set of standardised fonstthat considerably facilitate the task
of providing tool support for any IGM.

The concept ofnterpreted Graph Models the result of research on methods of application
of lower level models, such as Petri nets, as a back-endrfaulation and verification of higher
level models that are more easily manipulated. The goalashdeve a high degree of automation
of this process. In particular, a method for verification péed-independence of asynchronous
circuits is presented. Using this method, the circuit iscHfme as a gate netlist and its environ-
ment is specified as a Signal Transition Graph. The circuftes automatically translated into a
behaviourally equivalent Petri net model. This model isstbemposed with the specification of
the environment. A number of important properties can babdished on this compound model,
such as the absence of deadlocks and hazards. If a traceibtfmat violates the required property,
it is automatically interpreted in terms of switching of thates in the original gate-level circuit
specification and may be presented visually to the circigigier.

A similar technique is also used for the verification of a maddled Static Data Flow Struc-
ture (SDFS)This high level model describes the behaviour of an asymduse data path. SDFS
is particularly interesting because it models complex behas such apreemptionearly evalu-
ationandspeculation Preemption is a technique which allows to destroy datactdja a compu-
tation pipeline if the result of computation is no longer de@, reducing the power consumption.
Early evaluation allows a circuit to compute the output gsinsubset of its inputs and preempt-
ing the inputs which are not needed. In speculation, all aiimfty branches of computation run
concurrently without waiting for the selecting conditimmce the selecting condition is computed
the unneeded branches are preempted. The automated Rdidseel verification technique is
especially useful in this case because of the complex nafuhese features.

As a result of this work, a number of cases are presented whereoncept of IGMs and
the Workcraft tool were instrumental. These include thagtesf two different types of arbiter
circuits, the design and debugging of the SDFS model, sgighe asynchronous circuits from
the Conditional Partial Order Graph model and the modificatf the workflow of Balsa asyn-
chronous circuit synthesis system.

Acknowledgements

| am very grateful to my supervisor, Alex Yakovlev, for hiv@tuable guidance and constant
support.

I would like to thank my friends and colleagues for their ihpespecially Victor Khomenko
for the numerous fruitful discussions on the topics of veaifion, synthesis, and Interpreted Graph
Models; Danil Sokolov who formalised the SDFS model and Argélekseyev who contributed
a lot to the development of Workcratt.

| would also like to thank Jordi Cortadella, Oriol Roig andn@hiro Yoneda for their help
setting up the verification tools which made it possible tdttobenchmarks for Chapter 4.

And a very special thanks to my family, my father Valery, mythey Natalia and my brother
llya who were always supporting me, even when the times wieedar themselves; and of course
to my wife Katerina, always loving and patient.

This work was supported by the EPSRC grants EP/D053064/DATE) and EP/G037809/1
(VERDAD).

Contents

Abstract
Acknowledgements
List of Figures

List of Publications

1 Introduction

1.1 Motivation e
1.1.1 Automated verification of asynchronous circuits g$tetrinets
1.1.2 Modelling, simulation and automated verificationtaf tlata path of asyn-

chronous circuits L

1.1.3 Multi-formalism models and interaction between falisms
1.1.4 The tool interoperability problem
1.1.5 Interactive graphical environment

1.2 Contribution

1.3 Organisation ofthethesisa. ..

2 Background

2.1 Asynchronous Circuits e e

XV

211 Delaymodels e

2.1.2 Operation modes

2.1.3 CIlasses e e,

CONTENTS

2.1.4 Handshake protocols
215 Dataprotocols
2.2 Asynchronous circuit design paradigms
2.2.1 Direct mapping and syntax-driven translation
2.2.2 Logicsynthesis
2.2.3 Mixedapproach

2.3 CAD tools for the design of asynchronous circuits

2.3.1 Direct mapping/syntax-driven translation tools

2.3.2 Logicsynthesistools
2.3.3 Analysis and verificationtools
234 Modellingtools

2.4 Conclusions

Petri nets

3.1 Definitions.

3.1.1 Anexample system: the Sleeping Barber's Shop

3.1.2 Contextualnets

3.1.3 Another example: a traffic network

3.2 Signal Transition Graphs
3.3 Properties and analysis of Petrinets

3.4 Conclusions

Automated verification of asynchronous circuits using Pet nets

4.1 The verification problem
4.2 Circuitsand Petrinets
4.3 Construction ofacircuit Petrinet.
4.3.1 Applying environment interface
4.3.2 Read arcs complexity reduction
4.4 \Verification

4.4.1 Detection of potential hazards

C e A2

CONTENTS

4.4.2 Detection of interface non-conformance 64
45 Apracticalexample 66
4.6 \Verification of a counterflow data path controller 70
4.7 Performance and comparison statistics 71
4.8 Conclusions2

Modelling, simulation and automated verification of the dda path of asynchronous

circuits 73
5.1 The Static Data Flow Structure model 74
5.2 Atomictokensemantics e 76
5.3 Spreadtokensemantics e 80
5.4 Counterflow semantics L e 84
5,5 Hybridsemantics 92
5.6 \Verificationof SDFSmodels 98
5.7 Comparison of SDFS token game semantics 102
5.8 SDFSwithdynamicelements. 107
5.8.1 Dynamicelements 810
5.82 Control 108
583 Push. e 109
5.8.4 POp e 110
585 MuxandDemux 110
5.8.6 Mapping of the dynamic SDFS elements into Petri nginfients 112
59 Conclusions 112
Interpreted Graph Models 114
6.1 Basicdefinitions. 116
6.2 Graphical representation of Interpreted Graph Models 117
6.2.1 Building a graphical representation ofa Petrinet 120
6.2.2 Usingaseparatevisualmodel 121
6.2.3 Using a hierarchical structure 122

Vi

CONTENTS

6.2.4 Redefining the display operation 123
6.3 Logicnetworks 123
6.3.1 Using logic networks to verify multi-formalism model 126
6.4 Conclusions e 126
Workcraft: a framework for Interpreted Graph Models 131
7.1 Objectives 131
7.1.1 Graphicaluserinterface 132
7.1.2 Toolintegration 133
7.1.3 Formalisminteroperation 134
7.2 Comparison withothertools 135
7.3 Toolarchitecture 136
7.3.1 Theframeworkcore 713
7.3.2 Theplug-inmanager e 381
7.3.3 Thegraphical userinterface 139
7.3.4 Automated serialisation 141
7.3.5 Visualisation a1
7.3.6 External process management 141
7.4 Availability 142
7.5 Conclusions e 142
Use cases 143
8.1 \Vrification of asynchronous circuits 143
8.2 Static Data Flow Structures simulation and verification 144
8.3 Asynchronous circuit synthesis based on ConditionaldP®rder Graphs 146
8.4 Modification of the workflow of Balsa asynchronous cit@yinthesis system . . 146
8.5 A development environment based onthe STGmodel 148
8.6 CoNnClusions e 148
Conclusions 150
9.1 Summary of the contribution, 150

Vii

CONTENTS

9.2 Futurework 521
A Workcraft user manual 154
A.1l Installation and system requirements e oL 154
A.1.1 Setting up the Java Runtime Environment 154
A.1.2 Distribution structure L e 155
A.1.3 Plug-inreconfiguration 156
A.1.4 LaunchingWorkcraft 156
A2 Command-linemode 157
A3 GUImMode e 158
A.3.1 Userinterface overview 158
A.3.2 Workspace e 161
A.3.3 Workingwithmodels 63l
A.3.4 Changing the user interfacelayout 166
A.3.5 Changing the look and feel of the interface 167
B Extending Workcraft 169
B.1 Building Workcraft 169
B.1.1 Creatingacodebranch 170
B.1.2 BuildingwithMaven 7a
B.1.3 Building Workcraft using the Eclipse integrated depenent environment
(IDE) . o o o, 171
B.2 Creating a Workcraft module project in Eclipse 173
B.2.1 Creatinganew Mavenproject 175
B.2.2 CreatingaWorkcraftmodule 175
B.3 Addingtools. 176
B.3.1 Using asynchronoustasks 177
B.3.2 Interfacing with externaltools 179
B.4 Addingmodels 801
B.4.1 Addinganodetype 118

viii

CONTENTS

B.4.2 Implementing the connection methods
B.4.3 Defining editable properties

B.4.4 Using the automatic serialisation

C Working with Signal Transition Graphs

C.1 Usingthe STG editorinterface
C.1.1 STGeditortools
C.1.2 Assigning signalnamesandtypes
C.1.3 Placingtokens
C.1.4 Changingarcshapes

C.2 Simulation.

C.3 Usingtools,
C.3.1 Visuallayout
C.3.2 Parallel composition
C.3.3 Decomposition
C.3.4 Dummy contraction
C.3.5 CSCconflictresolution
C.3.6 Deadlock detection

C.3.7 Reachabilityanalysis

Bibliography

List of Figures

1.1 Architecture of an ARM-based system-on-a-chip.

1.2 A circuit model specified using a gate-level net-list ancenvironment STG.

1.3 The interaction between different formalisms.

1.4 Schematic of the asynchronous circuit design techniglied “resynthesis”.

1.5 Interactive STG simulation. Note that the enabled ttams (a+ and b+) are
highlighted.

2.1 Handshake protocols
2.2 Dataprotocols e e
2.3 Animplementation of the greatest common divisor (GCByEthm in Balsa . .
2.4 Atreeofsequenceelements e
2.5 Logicsynthesis e
2.6 Handshake components and their corresponding STGs

2.7 Balsadesignworkflow
2.8 MVeriSyn e e
2.9 VeriMapdesignflow
2.10 Pipefitterdesignflow.
2.11 TASTdesignflow e
2.12 MOODS design space traversal algorithm

2.13 Composition of a circuit and its environment in Versify.
2.14 CPNTooIsGUI e
2.15 PDETool architecture e

11

12

LIST OF FIGURES

2.16 Yasper GUI e e 14
217 Draw-Net GUI e 24
3.1 The Sleeping Barber'sShop 45
3.2 Petrinetmodel46
3.3 Improved Petrinetmodel 47
3.4 A Petri net model with a complementary place andareadarc 48
3.5 Thegridlock problem 49
3.6 A Petri net model of four intersectingroads 50
3.7 Graphical representationofan STG 51
4.1 Anintuitive implementation of 3-input ANDgate 56
4.2 Examples of elementary cycles in circuit Petrinet 59
4.3 Composition of circuit and environmentSTGs 61

4.4 Read arcs complexity reduction

(a) multiple read arcs associated with one place

(b)onlyonereadarcperplace 61
4.5 Non-semi-modularstates 63
46 AC-elementinterface STG e 65
4.7 NAND C-elementimplementation 66

4.8 NAND-OR C-element implementation

(nowiredelays) 67
4.9 NAND-OR C-element implementation

(wire delay presentonone forkonly) 68

4.10 NAND-OR C-element implementation

(full setofwiredelays) e 68
4.11 Acounterflow stage controller e 69
4.12 Revised counterflow stage controller 69
5.1 SDFSexample 76
5.2 Behaviourofaregister e 79

Xi

LIST OF FIGURES

5.3 Atomictoken SDFSexample e 80
5.4 Spreadtoken SDFSexample e 83
5.5 Behaviour of counterflow register L L ... 90
5.6 Counterflow SDFSexample 91
5.7 Combined spread token and counterflow SDFS example 99
5.8 Underlying STG for spreadtoken SDFS 99
5.9 Mapping SDFS with spread token semantics into Petrinet. 101
5.10 ARISC Processor o i e 103
5.11 Graphical representation ofacontrolnode 108
5.12 Graphical representation of the push and popnodes 109

5.13 Implementation of the multiplexer and demultiplexsing dynamic components 111

5.14 Petri net mapping of the dynamicelements. 111
6.1 High level model verification workflow based on Petrinets 114
6.2 Adirectedgraph 115
6.3 Different interpretations ofaPetrinet 116
6.4 Anexample of a graphical operation, 117
6.5 Combining a local space drawing function with a transfation 118
6.6 Graphical notation violating the one-to-one corresjgoce 121
6.7 A Petri net model visualised using the SDFS graphicadtiwot 121
6.8 An example of the hierarchical arrangement of graphsode. 122
6.9 \Verification of a gate-level model using a logic network 128
6.10 Verification of an SDFS model using a logic network 129
7.1 Working with three different model types simultanegusl. 132
7.2 The tool integration aspect of Workcraft 134
7.3 The architecture of Workcraft 137
7.4 The graphical user interface of Workcraft 139
7.5 Thepropertyeditor e 140
7.6 An example of automated serialisation, 140

Xii

LIST OF FIGURES

8.1 Implementation of a 3-way flatarbiter 144
8.2 Implementation of a multi-resource arbiter 145
8.3 Counterflow SDFS verificationexample 145
8.4 The STG specifications of handshake components 147
8.5 A complex model interoperability example 149
A.1 The Workcraft distribution structure 155
A.2 Workcraft running in the interactive command-linemode 157
A.3 A script for automated generation of SVG images from ggfil. 159
A.4 The main window of Workcraft 160
A.5 The workspace window and its contextmenus 162
A.6 The “Newwork”dialogue 163
A.7 The modelimportdialogue, 164
A.8 The model exportsub-menu 164
A.9 The editor tools window with a hotkey tool-tip 164
A.10 The set of tools applicable for the current model (an $TG. 165
A.11 Thetaskswindow 165
A.12 Changing the interface layout 166
B.1 Eclipse projectimport. 171
B.2 Updating Eclipse project configuration 172
B.3 Therunconfiguration 173
B.4 Creatinganew Mavenproject 174
B.5 Setting the project dependencies 174
B.6 Creating a Workcraftmoduleclass 176
B.7 A basic module implementation 177
B.8 Asimple tool implementation 187
B.9 Registering a tool with a constructor parameter 188
B.10 A tool using the asynchronous tasks functionality 189
B.11 An asynchronous task implementation 190

Xiii

LIST OF FIGURES

B.12 A progress monitor implementationa. ... 191
B.13 An exampleModelDescriptorimplementation 192
B.14 An examplé/isualModelDescriptoimplementation 193
B.15 Avisual node implementation, 194
B.16 An exampleéNodeGeneratoimplementation 195
B.17 An exampleéPropertyDescriptoimplementation 196
C.1 TheSTGeditortools 197
C.2 Creatingaconnection i 198
C.3 Editing signal transitions e 199
C.4 Arcsdrawn using differentshapes 200
C.5 Editor window in simulatonmode oL 201
C.6 Simulationtoolcontrols e 201
C.7 Thesettingswindow e 202
C.8 Automatic STG layout generationusingDot 203
C.9 STG selection for parallel composition 204
C.10 DesiJ configurationwindow e 205
C.11 Dummy contractionexample e 206
C.12 Failure trace report e 207
C.13 MPSat configuration interface e 208

XV

List of Publications

Conference papers

2007 Workcraft: A Static Data Flow Structure Editing, Visualisa tion and Analysis Tool
(Ivan Poliakov, Danil Sokolov, Andrey Mokhov)n Petri Nets and Other Models of Con-

currency (ICATPN '2007)

2007 Asynchronous Data Path Models(Danil Sokolov, Ivan Poliakov, Alexandre Yakovlev),
In Proceedings of the Seventh International Conference pli¢ation of Concurrency to

System Design (ACSD '07)

2008 Automated Verification of Asynchronous Circuits Using Circuit Petri Nets (Ilvan Poli-
akov, Andrey Mokhov, Ashur Rafiev, Danil Sokolov, and Alexkgalev), In Proceedings
of the 2008 14th IEEE International Symposium on Asynchusr@ircuits and Systems
(ASYNC '08)

2008 Static Data Flow Structures with Dynamic Elements(lvan Poliakov, Danil Sokolov, Alex

Yakovlev, Charles BrejJn Proceedings of the 20th UK Asynchronous Forum (UKAF 2008

2009 Workcraft — a Framework for Interpreted Graph Models (Ilvan Poliakov, Victor
Khomenko, Alex Yakovlev)ln Proceedings of the 30th International Conference on Ap-

plications and Theory of Petri Nets (PETRI NETS '09)

XV

LIST OF PUBLICATIONS

Journal papers

2008 Analysis of Static Dataflow Structures(Danil Sokolov, Ivan Poliakov, Alex Yakovlev),

Fundamenta Informaticae, Vol. 88, No.4, pp. 581-610, |IO&®r

Public tool demonstrations

2007 Design and Testing in Europe (DATE)

2007 International conference on Petri Nets and Other Models @fictirrency (ICAPTN)
2009 International Conference on Applications and Theory ofiPéets (PETRINETS)

2008 — 2011IEEE International Symposium on Asynchronous Circuits Spstems (ASYNC)

XVi

Chapter 1

Introduction

With the continuous increase of the number of transistaas ¢an be put on a single VLSI chip,
configurations known as system-on-a-chip (SoC) are begpmire and more popular [96]. Such
systems consist of a number of interconnected heterogsriBocks, such as processors, memory
and 1/0 controllers, built as a single chip (Figure 1.1Yighter integration reduces the size of
the system and the cost to produce, resulting in portabig-péerformance and power efficient
consumer products, such as modern smartphones and talslet PC

Most of the circuits produced by industry today are syncbhusn The operation of their com-
ponents is controlled by one or more globally distributedqaiic signals called clock. Combining
pre-designed components into a globally clocked SoC is mdtial task. Each component (usu-
ally called anlP core) is designed for a certain clock frequency, and its cornettionality relies
on the clock signal being delivered at the same time to atspErthe system. But it is not always
possible to use a common clock frequency for the whole So@itiddally, the variations in inter-
connects between IP cores lead to the clock skew problerablelistribution of the global clock
signal becomes an extremely complex task when the size @ygtem is in the order of billions
of transistors [48, 113].

Therefore, when designing such systems, it is no longeriles® rely solely on the tradi-
tional approach of using the globally distributed clocknsib

Solving the problem of communication between the variousdfes clocked with different

Limage by Colin M.L. Burnett, used under the terms of GFDLpitww.gnu.org/copyleft/fdl.html

CHAPTER 1. INTRODUCTION

< > B « > Gl + y Voltage | |
Scan Processor Regulator | |
System Controller
Advanced Int. Ctrl. Em < > S <+<— FEB] [—
Power Mgt. Ctrl. @) m E
PLL < < =
O Osc o &> SRAM
— [@)
=) RC Osc g
Reset Ctrl. Penpheral “6
Brownout Detect Bridge E
Power On Reset § «—»| Flash
Prog. Int. Timer < >
Watchdog Timer i ¢
< Rela)l Tbime[JTi@er _ | Peripheral Flash >
:H;gc :‘“ E | Data Controller| |Programmer|~ v
trl.
< P | Application-Specific =
D " Logic i
i Ethernet MAC < >|< > CAN [
g USARTO-1 < >« > USB Device g
9,, SPI < >« > PWM Citrl ~79
=B =B
4> Two Wire Interface [« »>|e »| Synchro Serial Ctrl (4
g ADCO0-7 < > < »| Timer/Counter 0-2 (€|

Figure 1.1: Architecture of an ARM-based system-on-a-chip

CHAPTER 1. INTRODUCTION

frequencies, some potentially self-timed, and all runrimgarallel becomes one of the central
requirements for a successful IC design.

One of the widely accepted solutions to this problem is the afsasynchronous circuits to
bridge the IP cores, resulting in what is called a GALS (gllybasynchronous, locally syn-
chronous) design [37]. In a GALS system, each synchronooskbs interfaced with an asyn-
chronous wrapper that provides communication facilitiesveen blocks in an asynchronous man-
ner.

Asynchronous logic holds several important advantagessy&hronous designs. For exam-
ple, in the context of SoCs, asynchronous circuits can beertmahterface with a clocked circuit
independent of the clock frequency. Without an asynchreremmmunication layer, communi-
cation between blocks with unrelated clock frequencieg. (833 MHz and 500 MHz) would be
very hard to implement efficiently. Having a reliable metladdnterfacing blocks with arbitrary
frequencies not only eliminates the need for the globallglbat greatly increases the potential
for component re-use.

A logical evolution of the GALS paradigm is a fully self-tirdesystem, where components do
not have local clocks but instead operate asynchronousiggicausal relations between events.
In addition to better modularity and the lack of clock distion problem, fully asynchronous
circuits possess properties that may be invaluable foricedpplications. Among such proper-
ties are the inherent concurrency which can exploit pdisife generally lower power require-
ments, better tolerance to voltage fluctuations and thetyaldl automatically adjust operating
speed according to changing environmental conditions485110, 118]. These properties allow
asynchronous circuits to be used not only in systems whdnestaconcurrent operation is im-
portant (e.g. SoCs), but also in specialised devices, ssithcge operating on harvested power,
where a synchronous circuit would be unusable. The absdribe global clock results in lower
electromagnetic interference, as well as better devicerggdue to resistance to power analysis
attacks (e.g. differential power analysis [71]) — a propdh&t is essential for security-sensitive
applications [78].

Unfortunately, asynchronous design technology has its sivame of drawbacks that prevent

the technology from becoming mainstream. Mitigating sorhthese problems, which are out-

CHAPTER 1. INTRODUCTION

lined further in this chapter, is the motivation for this \or

1.1 Motivation

The complexity of the asynchronous circuit design procegenerally seen as a major drawback
preventing the wider adoption of this technology by the stdu There are numerous factors

contributing to this perception, and one of the most impdrteaes is the lack of appropriate design
tools. The availability of mature, robust tools for the dgsbf synchronous circuits is much higher

than that of the tools aimed at an asynchronous approachactnrhany asynchronous design

groups rely on modifying the tools that exist for synchromdesign. Because those tools will treat
an asynchronous circuit as if it were synchronous, varidgaks and workarounds are required to

ensure the correct functionality of the resulting design.many cases, such workarounds are
inefficient. Additionally, important design stages, suskaaynchronous logic verification, may be

very difficult to integrate into the design flow.

Tools that are available specifically for the purpose of akyonous logic design tend to suffer
from limited efficiency due to the phenomenon of state spapéosion [117]. This often means
that the designer of an asynchronous system is forced tgrdesiverify parts of the circuit man-
ually to overcome these limitations, which is not only tic@isuming, but also implies that the
designer must have vast knowledge and experience to pradiigele solutions.

The design process of any relatively large asynchronowsiitigenerally consists of three
stages: behavioural specification, implementation andication. During specification, the ex-
pected behaviour of the circuit is described using eitheerzeal-purpose hardware description
language, such as Verilog [114], VHDL [87] and SystemC [%8]a language designed specif-
ically for asynchronous circuits, such as Tangram [119] alsB [47]. The high-level language
description is decomposed into a set of communicating gs®Es® or components. The interaction
between the processes is captured using a formal model. fduméormalisms are used for this
purpose in different design flows, including Petri nets [8d@], Signal Transition Graphs [126],
process algebras [24, 29], Communicating Sequential Bseseg[56] and other. Different parts
of the system may be described using different formalismgointrast to synchronous systems,

where the finite state machine (FSM) model is most often theldmental construct underlying

CHAPTER 1. INTRODUCTION

the whole design process.

For implementation, the specifications of control and datagare extracted from the formal
model. The control and data paths are implemented and agihrseparately to improve the
design features of each path independently. For examme;dhtrol path is often optimised for
low latency and size, while the data path is optimised for groaonsumption and throughput.
There are two distinct methodologies used to obtain theemphtation of the control and data
paths: logic synthesis [68, 41] and direct mapping [47, 10B]. In direct mapping, elements
of the formal model are mapped into pre-designed componsirig one-to-one correspondence.
In logic synthesis, the implementation is produced throtighanalysis of the state graph of the
system. Logic synthesis produces more efficient solutibowever it is only applicable for small
controllers due to its algorithmic complexity. Direct mapgpmethod is very fast and may be used
to build very large circuits, but it often produces slow aits.

To formally verify an asynchronous circuit, various schenaee applied to mathematically
prove that the circuit does not exhibit incorrect behavi@liowing any possible input sequence.
Completely automated verification of a complete system tisno€omputationally infeasible be-
cause of the state space explosion phenomenon. The desigsebe able to produce such ab-
stractions of the system that are small enough for autonvaiéfication but are still representative
of the actual behaviour of the modelled system. In practicany levels of abstractions may be
required to adequately model and analyse the system iniguest

For large projects, it is often a mixture of various formailgs implementation techniques and
verification methods that is used to produce the final deSigere is no universally accepted de-
sign workflow for asynchronous systems. Despite the fattamabust theoretical and technolog-
ical kernel exists for the most of the individual tasks smétl above, a truly complete production
pipeline, such that would cover all stages from specificatioverification to mapping the net-list
to silicon, is indeed very hard to set up. The fragmentedt sifithe tool base is one of the rea-
sons for that. There is not a package, either commercial @n-gpurce, targeted at asynchronous
circuit design, that could be compared to the complete spmtius design solutions provided by
companies such as Synopsys, Cadence, or Mentor Graphgteadh there exists a multitude of

standalone tools, coming mostly from academia, that tavgetparticular task without much re-

CHAPTER 1. INTRODUCTION

gard to interaction with other tools that may be doing tables$ precede or follow it in the design
process. It is up to the designer to organise such an intemaetvhich may not be a trivial task;
unless such an interaction is automated, it quickly becoveeg cumbersome. In addition, the
tools coming from the academic environment are mostly fedus solving the mathematical and
algorithmic problems and rarely focus on the aspects of inéeraction. The interfaces to those
tools are mostly command-line- or file-based, which may hentiag even to an experienced user.
The output often requires post-processing to become hueztable.

The complexities in the asynchronous circuit design tleeesExist not only on the purely
computational level, but also on the level of organisatibthe human-machine interaction during
the design process. This concern is the main motivatiomblethis work.

The specific problems that will be addressed in this thegsatlined below. They include
the automation of specific tasks related to asynchronogsitidesign, assisting in the organisa-
tion of interaction between existing tools, providing us@ndly visual representation of various
formal models and the results of their analysis using tephes such as interactive simulation and

visualisation of violation traces.

1.1.1 Automated verification of asynchronous circuits usig Petri nets

The designs of relatively large circuits are often hieramahand compositional. Individual blocks
of such designs are built after their sub-blocks have besigded and validated. Appropriate
forms of interface of the sub-blocks are required, in whioh behavioural complexity of the in-
ternal implementation of sub-blocks is hidden behind a subginterface signals. For example,
one can abstract away from the timing conditions used ingidesub-blocks, thereby consider-
ing the system at the higher level of abstraction from thetpof view of its delay-independent
behaviour. Conversely, the design may assume a block to &ty in a delay-independent
context but the actual internal behaviour of the implem@mianeeds to be validated in terms of
its freedom from hazards.

Compositional approach can be achieved in different wagsiging on the modelling method
used for verification. For example, in the context of Pettsna block with an implementation that

satisfies its Petri net based specification can be represantecomplex design not by the Petri

CHAPTER 1. INTRODUCTION

net model of its implementation but rather by the Petri net#jzation, which can be significantly
more compact, thereby helping to reduce the complexity afyais at the higher level.

Aside from good support for modularity, the choice of Petisnas the verification back-end
for asynchronous circuits is justified for several othesoes. A gate-level circuit implementation
can be efficiently converted into a Petri net model. Once suchodel is obtained, it is very
flexible with respect to the methods that can be applied fatyais. For instance, it is possible to
compose the Petri net model of a circuit with a Petri net moflégs environment, with the model
of another circuit, or even with a net generated from a tptiiferent formalism to produce the
model of the complete system. Alternatively, the net mayibmpkfied using techniques such as
dummy contraction [99] and serve as an environment spetdificfor another model.

The flexibility also comes from the very rich tool base. Thare a large humber of tools
that apply drastically different techniques for analydisl(A [101], MPSat [68], Petrify [41],
etc.), which provides the possibility to choose the tool t@pes best with the structure of the
system in question. In addition to performance considenafi modern Petri net tools support
the verification of non-standard property specificationscivimay be very helpful during the
debugging of specific systems [66].

Finally, it is possible to interpret a Petri net violatiomde in terms of the signal switching
activity in the original circuit, which makes it easy to peesthe verification result to the designer

visually and using the original gate-level model.

1.1.2 Modelling, simulation and automated verification of he data path of asyn-

chronous circuits

The synthesis of asynchronous control path is well develagpal supported by tools, e.g., Pet-
rify [41] and MPSat [68]. The synthesis of asynchronous g, on the other hand, has not
been studied as thoroughly. Usually, a designer makes tbéewdata path eithdsundled-datgto

achieve a smaller size of the circuit) dual-rail (to get an average-case performance and greater
robustness to delay variations). In both cases the comraitEDA tools, such as Cadence or
Synopsis, are used to obtain the data path combinationil. Idpe synchronous nature of those

tools does not allow exploiting the full potential of the mskironous data path. For instance,

CHAPTER 1. INTRODUCTION

early evaluation cannot be controlled and influenced at €y sgnthesis stage. Data encoding is
forced to single-rail, which is the norm for synchronousigles, but results in redundancy when
the obtained circuits are converted to dual-rail.

The combinational logic for the asynchronous data path tematively be produced by the
tools traditionally used for synthesis of asynchronougradiers, for example Petrify [41]. These
tools are based on the state-space exploration, and henamnlyahandle relatively small speci-
fications. To successfully use them, the data path has todmgmsed into small fragments the
state space of which would not exceed the limitations of tladl@ble computers. These fragments
are then synthesised separately and connected togetlomentdlfe complete data path circuit.

The choice of the suitable synthesis methods for the vapaus of data path is also relevant.
It may be the case that implementing some branch of a dataapdtxpensive” dual-rail does not
give any speed advantage because there is a concurrent binamés very slow and never exhibits
early evaluation (the benefits of early evaluation are expthin Section 5.3).

In order to decompose, optimise and efficiently synthesiseasynchronous data path it must
be analysed at the level of a formal, technology independedel. At the moment of writing,
there is no formal model which adequately represents alfé¢atures of the asynchronous data
path. Traditional models, such Betri nets(PNs) [90] andfinite state machine§~SMs), are ab-
stract and low-level, and it is hard to use them to model tib-fével behaviour of asynchronous
data path. The models that naturally capture the asynchsotiata path, such as Static Data Flow
Structures (SDFS) [110], are not formally defined and rexjiuirther research. In particular, mod-
elling preemption early evaluationandspeculationin the asynchronous data path by SDFS is of
great interest. Preemption is a technique which allowsitkatas to be destroyed in a computation
pipeline if the result of computation is no longer neededstreducing the power consumption.
Early evaluation and speculation techniques are basedeopréemption idea. Early evaluation
allows a circuit to compute the output using a subset of fisii® and preempting the inputs which
are not needed. In speculation, all conflicting branchesoofautation run concurrently without
waiting for the selecting condition; once the selectingdithan is computed the incorrect branches
are preempted.

Due to the presence of such complex behaviours, automatéditaton of SDFS models is

CHAPTER 1. INTRODUCTION

(@) C-element en- (b) C-element implementation
vironment STG

Figure 1.2: A circuit model specified using a gate-levelligtand an environment STG.

Signal Transition
9 Graph Gate-level
. pho circuit W
(Environment specification) \
\
Composition o'
o
S 1
A !
| Petri Net | 2!
L‘El
1
Y !

U
Formal verification
(PETRIFY, PUNF, MPSAT)

Figure 1.3: The interaction between different formalisms.

very important: it is necessary to ensure that the systeme& df problems such as deadlocks.
A verification technique based on the low-level Petri netespntation, similar to the technique
proposed for the verification of circuits in Section 1.1.5 Is&@veral important advantages. In
particular, it provides a clear graphical presentation rbfematic sequences of events found

during the verification, which may greatly assist the design isolating and fixing the issue.

1.1.3 Multi-formalism models and interaction between fornalisms

One of the issues encountered in asynchronous circuit mésithe large number of available
formal models. To increase productivity, it is often reasun for the designer to use different
formalisms to model various aspects of a complex systemekample, whether a circuit design
functions correctly or not almost always depends on the\dehrof its environment, i.e. a circuit

can be functional in one environment and not functional iother. In most cases it is impractical
or even impossible to provide the specification of the emvitent as a gate-level circuit. The
abstractionof the environment is often given in the form of a Signal Tiaos Graph (STG). This

means that the overall specification is inherently hetaregas, as one part of it is a gate net-list

CHAPTER 1. INTRODUCTION

and another part is an STG (Figure 1.2).

Analysis and verification of such a system is problematicalise very few tools support com-
pound system specification. Development of specialiseld fooevery new modelling solution is
not feasible: it takes years for an algorithmically compiex to become stable and robust.

In order to re-use existing tools, an attractive solutiotoisonvert the system specification
into one of the formalisms with highly developed tool sugipsuch as Petri nets. In this case
the analysis is performed on the resulting Petri net, butékalts (the violation traces) are then
interpreted in terms of the original model (Figure 1.3). ahfinately, there are no tools that
provide adequate support for tasks such as conversion betdiferent formalism types and re-

interpreting the low-level analysis results in terms oftheg higher level model.

1.1.4 The tool interoperability problem

Even when working with one particular formal model, an asyonous circuit designer may need
to routinely use several tools to perform various tasks.dxample, there are different tools that
can be used to perform an analysis of a Petri net (e.g. Pétdly MPSat [68, 12], LOLA [101]).
All of them are based on different techniques and their perémce depends greatly on the struc-
ture of the given Petri net. If there is a high degree of commnay present in the net, MPSat
may be the best choice, because it is based on the conceptriof€teunfoldings that naturally
exploits concurrency [64]. On the other hand, if there areyraarts involving choices, MPSat’s
performance may be unacceptable. The tools also havedtiffeets of supported properties, and
their property specification methods differ significantly.

It is therefore impossible to choose one universally applie tool even for one particular
task (verification). And yet besides verification, there ar@ny other practical things that can
be done with Petri nets, e.g. composition (supported by RJd2y), decomposition (supported
by DesiJ [99]), synthesis (supported by SIS [103], Petdfy][MPSat [68, 12] and several other
tools), graphical layout (supported by Dot [7]), etc.

This issue becomes even more evident when working with largere practical projects,
where the number of various model types (and their possiebinations) that need to be man-

aged grows quickly. Consider Figure 1.4, which shows thegs® of asynchronous system design

10

CHAPTER 1. INTRODUCTION

[Balsa language specification]
v

Compilation (Balsa)

v
[Handshake component netlist]

v

Direct mapping
(custom tool)

[Individual component STGs]

Y
Composition (PComp)
Y
[Full system STG]
v
Decomposition (Desi))
Y
[Partial (synthesisable) STG j
v
Synthesis (MPSat, Petrify)
Y
[Partial gate-level netlists j
Y

Composition
(custom tool)

v
[Final gate-level netlist j

Figure 1.4: Schematic of the asynchronous circuit desighnigue called “resynthesis”.

11

CHAPTER 1. INTRODUCTION

known agresynthesi$89, 129]. In this design flow, the original system specifmais written us-
ing Balsa language [47]. The Balsa compiler converts theipation into a network of so-called
handshake componentspre-defined primitive parts that synchronise their openatising hand-
shake signals. Then these components are replaced withl Sigansition Graphs that describe
the behaviour of each individual component. These small S3i@ composed according to the
connections present in the original handshake componéwbrieto produce one large STG that
describes the expected behaviour of the whole system. Einotiite implementation in the form
of logic gates, this STG must be processed by a logic syrsthiesl. However, for any practical
system, the STG will be too complex to obtain the synthesisltén a reasonable time. To elimi-
nate this problem, the STG needs to be decomposed into smiadietly synthesisable fragments.
Finally, the synthesised fragments of logic must be comptsdorm the final system net-list.

In this example, there are several standalone tools thateokved in the different stages of
the process. Additionally, some of them are interchangeablmentioned above, e.g., the logic
synthesis can be done using one of the many available ditersa Organising the interaction
between all of these tools, with their quirks and peculigsitis a very tedious and error-prone

task.

1.1.5 Interactive graphical environment

example-slg-(sc—rel:(;:led - signal Transilinn;raph = X
N
cscO-

g s
B ;/-\
3 a+ b+

Lo

y+ X+

Simulation: click on the highlighted transitions to fire them

Figure 1.5: Interactive STG simulation. Note that the eedltansitions (a+ and b+) are high-
lighted.

12

CHAPTER 1. INTRODUCTION

An interactive graphical environment may be very helpfulinly the process of system design
and debugging. Traditionally, graph layout tools such as[Dphave been used to produce the
graphical representation of graph-like models such ag Rets, STGs, or state graphs. Using
this approach, it is only possible to produce a static srapstthe system in question. However,
the nature of the majority of the models is dynamic. In Pedtispnfor example, transitions get
enabled, fired and transfer tokens between places. Whikepbssible to produce a series of
images of different states describing the evolution of teg a dynamic, interactive visualisation
is much more helpful.

Using tools such as PEP [11, 30, 112], it is possible to ioter@ly simulate Petri nets. The
tool will highlight the currently enabled transitions, at@ user can click on them to cause them
to fire (Figure 1.5). This way, the user can experiment withribt and analyse its behaviour by
triggering different execution paths.

Petri nets and Petri net-derived formalisms are among th& miolely used to model and
analyse concurrent systems. Many natural and man-madensysian be classified as concurrent,
and due to this reason numerous people from various areawofiédge have contributed to the
theory of Petri nets and to the development of relevant sotivwackages such as PEP.

But there are also a significant number of other useful mathalsare similarly dynamic in
nature, but have been introduced recently and are not agenatyg., Static Data Flow Struc-
tures (SDFS) (Chapter 5) and Conditional Partial Order 8s4B0]. Because they are relatively
new, and may not be as widely applicable as Petri nets, theyptget have a dedicated tool base.
To successfully apply these models in a practical desigrkflooy, however, an adequate tool
support is extremely important. Designing and implementircustom graphical environment to
support functionality such as visual entry and interactivaulation for each of those models is
not a task that is readily undertaken by researchers.

A common feature of all of the formalisms mentioned abovestc underlying graph struc-
ture augmented by a set of properties that describe thedtttie system, and a set of rules that
govern the evolution of those properties. By exploitings thimilarity, it is possible to abstract
the visualisation task from the mathematical definitionh&f tnodel, allowing researchers to pro-

vide an accessible and consistent visual interface to thedels without being bothered with the

13

CHAPTER 1. INTRODUCTION

implementation details beyond the model itself.

1.2 Contribution

The underlying issue of this thesis is the problem of intkoacbetween formal models and tools
that provide a framework for asynchronous circuit desighe ®rganisation of the thesis and the
way its contribution is presented is best seen as the ewolati a modelling approach where a
larger system is described using a number of different fommadels either to describe its parts,
or to provide alternative “views” of the system in order tok@dt more amenable to analysis and

verification.

Automated verification of asynchronous circuits using Petrnets A novel method for auto-
mated verification of asynchronous circuits is proposede ethod is based on converting the
gate-level net-list of the circuit into a special type ofiPaet called acircuit Petri net This net

is then composed with the environment specification thaivisngin form of a Signal Transition
Graph. Verification is carried out on the compound systernthdfproperty that is being verified is
not satisfied, the Petri net-level violation trace may baterpreted in terms of switching activity
of the gates in the original net-list. The method is suceglysépplied to show that a previously

published version of a counterflow-style data path cordrad incorrect.

Modelling, simulation and automated verification of the dat path of asynchronous circuits

A new high-level model called a Static Data Flow Structur®KS) is presented. SDFS is a
token based model of asynchronous circuits involved in tita @aths, and can be viewed as an
analogous to theegister transfer leve{RTL) in synchronous design. The model allows advanced
concurrency techniques suchpasemptionearly evaluatiorandspeculatiorto be modelled. This

is achieved by applying different sets of token game rulggedding on the desired functionality
of a particular data path fragment. The key feature of theaghisdhe design of token game rules,
specifically done in such a way that the model can be convanteda low-level Petri net for the
purpose of verification. Similarly to the technique appltecthe gate-level circuit models, the

mapping method allows the low-level violation traces to lmppgated up to the high-level model.

14

CHAPTER 1. INTRODUCTION

Interpreted Graph Models A concept of arinterpreted Graph Modek introduced. This con-

cept allows to exploit similarities between various grdigh-models in order to provide a gener-
alised implementation of several important methods, sgchsing Petri nets for the verification
of the higher-level models and implementing the visualsatind simulation logic, which helps

to quickly set up new models by inheriting the basic funaidy from the Workcraft framework.

Workcraft framework A software framework called Workcraft is presented. Woalkcis de-
signed to provide a flexible common framework for the rapidedtgpment of Interpreted Graph
Models, including visual entry, interactive simulationtér-model conversion and the application
of third-party analysis tools. The framework is targetethat distinct classes of users. For system
designers the framework provides the means to model a plartisystem using the most appro-
priate formalism (or different formalisms for subsysterasyl apply a wide range of external tools
for analysis and verification in a consistent and user-igfashion. The second class of users
are the researchers who wish to introduce new InterpretagtGviodels. For this class of users,
Workcraft provides numerous extension points that alloveustomise the functionality of the
framework in order to accommodate for the new formalism,levtetaining the important basic

features such as the GUI and the consistent interface toctemal tools.

1.3 Organisation of the thesis

The thesis is organised as follows:

Chapter 1. Introduction. This chapter outlines the motivation for this work and itsimeon-

tribution.

Chapter 2. Background. This chapter provides the definitions of asynchronous igctheir
properties, key stages in their design and contains an ievef the software tools relevant to

those stages.

Chapter 3. Petri nets. This chapter introduces the Petri net model which plays ddorental

role in the design and verification of concurrent systemgjqudarly asynchronous circuits.

15

CHAPTER 1. INTRODUCTION

Chapter 4. Automated verification of asynchronous circuitsusing Petri nets. A method for
the verification of asynchronous circuits using a specias<lof Petri nets is introduced in this
chapter. The problems that need to be detected and elirdimaterder to ensure the correct
functionality of an asynchronous circuit are explained.afgorithm to convert a gate-level circuit
specification into a Petri net and to compose the obtained et with a specification of the
environment is given. The violation of the speed indepeodesroperty is formulated in terms
of the Petri net reachability problem that may be solved qusire well-known Petri net tools.
Finally, the method is applied to verify the correctness nfimber of practical circuits, including

a previously published data path controller.

Chapter 5. Modelling, simulation and automated verification of the data path of asyn-
chronous circuits. This chapter presents a new model called a Static Data Flowc-St
ture (SDFS). The definition of the fundamental structure fSDFS is given. Three different
behavioural semantics (atomic token, spread token andedianv) that are realised using distinct
sets of token game rules are defined and their advantagessauyahtages analysed. A method
of interfacing fragments of SDFS having different behava@semantics is proposed. A Petri net
verification technique that is an extension of the verifaratiechnique proposed in the previous
chapter is described. A possible extension of the basic SDé@&I with elements modelling the

influence of the control path is discussed.

Chapter 6. Interpreted Graph Models. This chapter introduces the concept oflaterpreted
Graph Model(IGM). A formal definition of an IGM is given. An general-puwpe algorithm that
uses the IGM concept to generate a graphical representatimmy graph-like model is detailed.
Several extensions to the algorithm are proposed, sucleasthof an additional IGM to produce
the graphical representation without enforcing one-te-correspondence between the mathemat-
ical and graphical objects. A generalised STG mapping dlgorand STG-based verification

technique is also proposed.

Chapter 7. Workcraft framework. A software framework called Workcraft is presented in this

chapter. The general idea behind the tool is explained. Apesizon with previously existing

16

CHAPTER 1. INTRODUCTION

similar tools is given. The software architecture of thd teaescribed.

Chapter 8. Use cases. This chapter gives an overview of several practical usescatere the

Workcraft framework and the IGM concept were instrumenfathong those cases are:
- Verification of an asynchronous data path controller;
- Verification of two different types of arbiters;
- Design and debugging of the SDFS model,
- Synthesis of asynchronous controllers using the ConditiBartial Order graph model;

- Modification of the workflow of Balsa asynchronous circuih#esis system.

Chapter 9. Conclusions. This chapter concludes the thesis, providing an evaluatiotihe
contribution and considering the ways of further developnoé the theoretical concepts, practical

methods and pieces of software that are discussed throutitethesis.

Appendix A. Workcraft user manual. This appendix gives an overview of the basic concepts
of Workcraft's user interface and is aimed at those users wiald like to use Workcraft for a

particular practical application.

Appendix B. Extending Workcraft. This appendix gives several practical examples of exten-
sion classes in Workcraft. A step-by-step instruction mvjated explaining how to design a new
Interpreted Graph Model class, how to define the way thabitkes are visualised, and how to add
custom tools to the new or to the previously existing mod€lss chapter is aimed at those users
who would like to use Workcraft as the base platform for depaient of their own models and/or

tools.

Appendix C. Working with Signal Transition Graphs This appendix contains a tutorial on
using Workcraft to create, edit an simulate the Signal TitimmsGraph models. It also explains
how to use the interface to external tools such as Punf, PChtRfat, Petrify and DesiJ to carry

out advanced operations on the STG models.

17

Chapter 2

Background

This chapter provides the basic definitions pertaining éoasynchronous circuits (delay models,
operation modes, classes and common signalling protoasisiell as an introduction to the meth-
ods used in the asynchronous circuit design and a brief mwemf the CAD tools implementing

those methods.

2.1 Asynchronous circuits

In its basic form, an asynchronous circuit is a set of gatesiected to each other through a set
of wires, where awire is a conducting medium that connects an output of a single abne
or more inputs of other gates andjateis an element that generates its output signal based on a
logical function that depends on the level of input signalse simplest gate, an inverter, produces
the inversion of its input signal as its output, that is l@gione if the input is logical zero, and
logical zero if the input is logical one. The process of shiiig from one value of the output
signal to another is never instantaneous due to a numbemdfng factors, such as the finite
propagation speed of the electric signal in the wires andiéimezero capacitance of the wires and
the transistors that the circuit is built from.

The phenomenon of delays is responsible for numerous paitgmoblems that need to be

accounted for during the design process.

18

CHAPTER 2. BACKGROUND

2.1.1 Delay models

There are two generally accepted delay models. An eleméittigrg pure delayeventually pro-
duces all expected output signal transitions regardlegseahape of the input signal’s waveform.
The behaviour of amertial delayelement may be dependent on the input waveform, in particula
it requires the input signal to stay on the same level for tateperiod of time before an output
signal transition may occur. If the input pulse is too shirtyill not result in a change in the
output.

The length of the delays are characterised using one of tleaving timing models. In the
unbounded delaynodel, the delay time is assumed to be finite (i.e. the outigmias transition
will eventually occur), but the upper bound is unknown. Toeinded delaynodel assumes that
the transition will occur within a known time interval. Tliged delaymodel assumes that the

delay time is always the same.

2.1.2 Operation modes

The protocol that a circuit environment uses to interachlie circuit is callecbperation mode.
In theinput-outputoperation mode, the environment may produce a transitiam afput signal in
response to any output signal transition. Infilnedamental modthe environment is only allowed
to change an input signal if the circuit is stable, i.e. naHfer output transitions may be produced
given the current state of inputs.

The fundamental mode is further divided into several sulokesas follows. If only one input
signal transition is allowed to occur before the environtrieas to wait for the circuit to become
stable again, such an operation mode is cafliegle input change fundamental mo@C). If
multiple input signals are allowed to change, the mode ieddhemultiple input change funda-
mental modéMIC). A circuit operating in the MIC mode is usually fastéran a similar circuit
operating in the SIC mode, however it is much more difficuldésign a circuit operating cor-
rectly in the MIC mode. To receive certain benefits of the MIGda without overly complicating
the circuit implementation it may be helpful to group theungignal transitions into sets called
bursts Inputs in a burst may arrive in arbitrary sequence, howisrguaranteed that no signal

transitions from another burst arrive until the previoussbaompletes. The circuit is allowed to

19

CHAPTER 2. BACKGROUND

stabilise between bursts. A circuit operating in this faslis called éurst-modecircuit.

2.1.3 Classes

Asynchronous circuits are often classified based on thkdrance to delays in various elements
of the circuit. The most robust class is call@elay insensitivgDI). Circuits that belong to this
class are guaranteed to function as intended regardlesdayfsdn gates and wires. This implies
the highest tolerance to environmental and manufactuninggss variations. There are not many
practical circuits that can be constructed as DI [116, 38]aithe standard set of simple gates.

A less robust, but more practical class is catjgidsi delay insensitivgQDI) [73]. QDI circuits
are characterised by the existencasafchronic forksbranching wires where delays in different
branches are assumed to be equal for all practical purpdsesept for this assumption, QDI
circuits must still behave in the same robust fashion as M veispect to the wire and gate delays.

Speed independelEl) [83] circuits are designed to function correctly givamy (bounded)
delay in gates. Wire delays are assumed to be negligible.

Self-timedcircuits [102] are constructed from a set of sub-circuitdief® is no restriction
on the internal implementation of each sub-circuit, buythrist be tolerant to any delay in the
external communication channels.

In each of the above cases, the circuit is assumed to funictithre input-output mode.

2.1.4 Handshake protocols

The communication between the components of an asynchsociocuit is typically based on
two types of signals, called thequestand theacknowledgementThe request signal is issued
by a component to initiate a certain procedure. When theaglae is complete, the component
receives the acknowledgement signal and may act on thégesul

Generally, the exchange of these signals follows a stratiogol calleda handshakeA hand-
shake consists of one component issuing a request signabtbea component, and waiting until
that component responds with an acknowledgement, whictlwdes the handshake. The requests
and the acknowledgements are not allowed to interleave.

There are several ways to interpret the transitions of thiggmls that are called th@ndshake

20

CHAPTER 2. BACKGROUND

reqr reqz
1 3 (5 7
Request aCAkl a/\Ck2
(2 4
Acknowledgment
(a) four-phase protocol
req reqs
z:‘_iji,iii:% 3 5 7
reqs reqa
Request
ack 1 ack 3
2 7 % 8
acks acky
Acknowledgment

(b) two-phase protocol

Figure 2.1: Handshake protocols

protocols. Two most commonly used protocols are the four-phase andptvase. The four-
phase protocol, also called return-to-zero (RTZ), is showrigure 2.1a. The numbers in circles
represent the ordering of signal transitions. The delawéen the two consecutive transitions is
not specified. In this protocol there are four signal tramsg (two on the request and two on the
acknowledgement) comprising a single handshake.

The two-phase protocol, also called non-return-to-zesoshiown in Figure 2.1b. The dif-
ference is that every transition on both the request andoadkdgement wires indicates a new
event. Although this protocol appears more compact therabaircuits are usually smaller for

the four-phase version [61].

2.1.5 Data protocols

As with the control signals, there are several ways to osgathe transfer of data. The most
popular protocol is callebundled dataln this protocol, the data is transferred over an n-bit wide
data bus and two additional signateguestandacknowledgeare used to negotiate data transfer
and to signal its completion (Figure 2.2a). This protocahismost efficient one in terms of wires

used per bit of data, however it relies on an assumption keatoéntrol signals propagate faster

21

CHAPTER 2. BACKGROUND

Sender . h data wires Receiver

A : B

reduest
(delay)—>

acknowledge
(a) Bundled data

Sender . 2n data wires Receiver
1
+ 1
A . B

—
\I

acknowledge

(b) Dual-rall

Figure 2.2: Data protocols

than the data signals.

In practice, the acknowledgement signal is often generayesbuting the request through a
delay element. The length of the delay is determined at de#ite in such a way that it guarantees
that the computations on the receiving end will completetaadiata will no longer be needed by
the time the acknowledgement signal is produced. Althobghapproach is optimal with respect
to the number of wires, the delay should be long enough tcegiiee completion in the worst-case
scenario.

The common alternative to the bundled-data approach isrdilancoding. In this case, a bit

of data is encoded with using two wires. A standard dualemadoding convention is as follows:

00 | data not valid (“spacer”

10 ZEero
01 one
11 not used

In this case, for an n-bit data value, the link between seaddrreceiver must contain 2n+1
wires: two wires for each bit of data plus another bit for thkreowledgement signal (Figure 2.2b).
In a standard four-phase variant of the dual-rail protosehding a bit requires the transition from
the spacer state to either the valid one or valid zero statetsn, upon receiving the acknowl-

edgement, the transition back to the spacer state. The atdaigement wire must be reset prior

22

CHAPTER 2. BACKGROUND

to a subsequent transmission of a valid data bit.

Compared to the bundled data protocol, dual-rail protosahdre robust as it does not rely on
any timing assumptions, however the additional logic tleédts transitions between spacers and
valid data values (calledompletion detectiotogic) may incur large overheads.

M-of-n codes [122] are a more general encoding scheme inhnddta is represented using n
wires, m of which are set to an active level. The simplest gxtaris 1-of-2 code which is called
dual-rail and is discussed above. An important feature lahabdf-n encodings is their balanced
power consumption which improves the security of the cirguth respect to power analysis
attacks [71]. In particular, switching from a spacer to aogeword consumes the same amount

of power due to the symmetry between rails.

2.2 Asynchronous circuit design paradigms

The majority of the integrated circuits designs are callg@hronous because they rely on a global
clock signal to synchronise the changes of states throughetcircuit. The global clock allows
hiding certain features of the underlying technology frdra tdesigner and providing a highly
abstract, discrete view of the system (called the registanrster level, or RTL) where all state
transitions can be viewed as occurring simultaneously.

This design approach relies on the assumption that the sigolal is distributed evenly, with-
out delays or phase shifts, to all parts of the circuit. Whea ¢ircuit grows more and more
complex, however, it becomes difficult to satisfy this asptiom. The clock distribution networks
grow to constitute considerable parts of such circuits amagvdsignificant amount of power. In
addition, dependency on the clock signal of particular ety makes interfacing circuits that
were designed for different clock frequencies very profaigm

Asynchronous circuits are naturally composable and avwdctock distribution overheads.
Due to the absence of global clock, however, the problemsaafi Isynchronisation, relative tim-
ing and hazards become prevalent and have to be dealt withowgh in many historical cases
asynchronous controllers have been designed manually gBriexced designers, it is clear that
for any large scale application automated methods arerestjtd ensure adequate designer effi-

ciency [42].

23

CHAPTER 2. BACKGROUND

activat
input (a,b); 4(%7

while a = b do

ifa> bthena«a—b;
elseb«b —a;
output (a);
(a) GCD algorithm in Balsa language (b) GCD implementation in handshake

components

Figure 2.3: An implementation of the greatest common di&CD) algorithm in Balsa

A number of distinct techniques have been developed to rhaetréquirement. These tech-
niques are discussed briefly in the rest of this section aleitly an overview of the tools that
implement them. These are the tools that come mostly frordesmea and are available in the
public domain. Some of the tools from larger commercial paels, such as Synopsys, Cadence
or Mentor Graphics (packages targeted primarily at thegteprocess of synchronous circuits)
are widely used as a back-end for tasks such as circuit lagmaitrouting in the asynchronous
circuit design groups, but they lack the capacity to proddmmplete workflow for the design of
asynchronous circuits.

In this section of the thesis only those tools that were ekt solve problems directly related
to asynchronous circuit design will be reviewed, as one efrtfajor contributions of this thesis
is a software framework specifically designed to integratesé useful, but scattered tools. At
the time of writing, several of the tools, namely PetrifynRuMPSat and DesiJ have been tightly

integrated with Workcratft.

2.2.1 Direct mapping and syntax-driven translation

In direct mapping, a representation of the system that isrgas a graph is translated into a gate-
level circuit in such a way that the graph nodes corresportdg@ircuit elements and graph arcs

correspond to the connecting wires [106]. Direct mapping loa applied at various abstraction

24

CHAPTER 2. BACKGROUND

Figure 2.4: A tree of sequence elements

levels. An example of high-level direct mapping is syntax«h translation. It is a widely used
design paradigm in which a system specification is writtea imgh-level programming-like lan-
guage. This specification is then translated into a netwbhlandshake components, pre-designed
control modules that directly implement the basic languagestructs [47, 119, 88, 27].

The major advantages of the syntax-driven approach areothealgorithmic complexity of
the translation process and the transparency that is g a strict one-to-one mapping from
language constructs to the components that implement tB&in The latter gives the designer
a greater ability to control the features of the resultinguit and decide the trade-offs between
performance, area and power consumption, compared to detuch as logic synthesis, while
the former allows very large systems to be successfullygdesi. Another notable advantage is
that small changes in the source description generalhytriessmall, predictable changes in the
resulting circuit.

The main drawback of this method is the considerable oveghezquired to implement the
control path. Because the translation is done directly fitoersyntax parsing tree, the control path
often contains redundant constructs that may be slowerttfiacomputational blocks that process
data. This causes stalls in the data path while the conttbl getches up [91]. An example of
such redundant control path is shown in Figure 2.4. When suithe of sequence elements is
activated, the components that are connected to the ledfedfee will simply be activated in
sequence. The control signals, however, will have to trapgednd down the branches between the

sequence components, performing handshakes that ars icesé redundant, which will hurt the

25

CHAPTER 2. BACKGROUND

overall performance of the circuit.

Prominent examples of this approach is the Tangram languwéte its “silicon com-
piler” [119], and Balsa, an asynchronous circuit synthegstem [47]. In Figure 2.3a, a Balsa
language specification of a simple algorithm (finding a greatommon divisor) is shown next to
the network of handshake components that is generated IBalka compiler from this specifica-
tion (Figure 2.3b).

As an alternative to the direct mapping from a special lagguaeveral techniques use Petri
nets as an intermediate specification format. The Petriaretextracted from a traditional hard-
ware description language, such as Verilog, VHDL or Systefft@ control path and the data
path are optimised and synthesised separately [34]. Tliwsldifferent mapping and optimi-
sation techniques to be applied to the different parts oftttmiit. A method proposed in [106]
further splits the control path Petri net into a device an@mrironment, which synchronise via a
communication net that models wires. The device is reptedess a tracker and a bouncer. The
tracker follows the state of the environment and providésremce points to the device outputs.
The bouncer interfaces to the environment and generatgsitoeNents in response to the input
events according to the state of the tracker. Such architecd easily mapped into a gate net-list.

The Gate Transfer Level (GTL) method [105] is a direct magpimethod that is applied at
the very low level of individual gates. In this method theagabf a standard RTL net-list are
replaced by pipeline stages. Each stage contains the galie i register to buffer the output, and

a controller that implements communication of the stagé wstneighbours.

2.2.2 Logic synthesis

Logic synthesis is a method for automatic construction ghelsronous circuits from the specifi-
cation of the expected behaviour given by the designer. baged on the construction of a state
graph, in which each reachable state is assigned a binagythatiholds the value of each signal.
This allows the generation of a circuit using state-of-alneBoolean minimisation techniques.
Generally, the specification is given in the form of a SignadrBition Graph. To produce a

circuit from an STG, the following steps are required [68]:

1. Checking the necessary conditions for the implemeritalnf the given STG as a logic

26

CHAPTER 2. BACKGROUND

i cO-
a_
y&_ y
a+ b+
at+ b+ | |
\ x y+ x+
y+ x+ \,/
\/ c+\
Cf— cscO+
] {
&]
N RN
X+ y- X+ y -
(@) Orig- (b) Modified (c) Modified
inal STG STG speci- STG specifica-
specification fication with tion with CSC
complete state and mappable
coding (CSC) into simple
gates
b
map0
X
map1
csc0
D
map0
D—
map1
b

csco map0

y
c
a D map1
b
C:
a

csc0

F@—go 0sc0

a
(d) Synthesis result (complex gates) (e) Synthesis result (technology mapped)

Figure 2.5: Logic synthesis

27

CHAPTER 2. BACKGROUND

circuit;
2. Modifying, if necessary, the initial STG to make it implentable;

3. Finding the appropriate Boolean covers for the nexedtactions of output and internal
signals and obtaining them in the form of Boolean equati@ngHe (complex) logic gates

of the circuit;

4. Mapping the Boolean equations of the complex logic gat#s the set of standard gates

available in the gate library, preserving the speed-inddeece (logic decomposition).

The above steps are illustrated in Figure 2.5 (as performyethdtool Petrify [41]). In this ex-
ample, Figure 2.5a is the original STG specification, whigmat immediately implementable
because it does not satisfy the Complete State Coding (C&@jjton (which means that there
are two semantically different states that share the samarbencoding of signal states). Fig-
ure 2.5b is the STG modified by the tool to have CSC, which allaveircuit to be derived from

it (Figure 2.5d). Note that the added signals, ecgc0,are treated as internal signals (as opposed
to inputs or outputs), and therefore the externally obgkebehaviour of the STG is not changed
by this modification. The circuit shown in Figure 2.5d is carepd out of so-called complex
gates that implement non-trivial Boolean functions in aegsbmdependent manner. Such gates,
however, are unlikely to be available in the industrial ddiearies. In order to make the circuit
implementable in hardware, an additional step is requioemhdp the Boolean equation obtained
during the previous step onto the set of gates available franibrary. Figure 2.5c is the final
STG transformation performed by Petrify to produce the faiaduit built out of simple 2-input
gates, shown in Figure 2.5e.

Petrify performs all of these steps with the help of a reaitiyalgraph that is extracted from
the initial STG specification (in the form of a Binary DecisiDiagram (BDD) [21]). For highly
concurrent STGs the reachability graph can be prohibitilaalge due to the state space explosion
problem. This limits the practical size of circuits that dmsynthesised using Petrify.

An alternative technique, Petri net analysis based on tpadéal order semantics (in the form
of Petri net unfoldings), can also be applied to the circyittlsesis problem. Experimental results

produced by the MPSat logic synthesis tool [12], which wooksPetri net unfoldings, show

28

CHAPTER 2. BACKGROUND

out1_ac+:

out!_rg-

activate_rq--—activate_ac+ out1_rq+-—e——out1_ac-

activate_ac--e-activate_rq+

out0_ac+: out0_rg-

activate 1 activate 2

out0_rq+~—e——out0_ac-

(a) Sequencer

out0_rq+~—e—out0_ac-

activate_ac-—e—activate_rq+
out0_ac+:

out0_rg-

activate_rqg-- activate_ac+

out!_rq+-—e—out1_ac-

out1_ac+ out1_rg-

(b) Paralleliser

Figure 2.6: Handshake components and their correspondi@s S

significant performance improvements and more efficient orgmasage when compared to the
methods based on reachability graphs, while producinglaireolutions [68]. Although MPSat
is able to handle larger specifications than Petrify, it stiffers from the state space explosion
problem and is therefore also limited to relatively smaéafications.

To tackle complex specifications, the initial STG has to lwkén down into smaller fragments
directly synthesisable by the aforementioned tools. Arcieffit structural STG decomposition
method, specifically designed for synthesis of large asymtius controllers, is described in [99].

Several other synthesis techniques work with differentijgation formats, e.g., [54, 115].

Compared to the direct mapping method, logic synthesisliyquaduces highly efficient so-
lutions, but is not applicable to large system specificatidne to extremely high computational
cost. Additionally, small changes to the specification @sult in unexpectedly large and unpre-

dictable changes in the resulting circuit, making it handtf@ designer to fine-tune the result.

2.2.3 Mixed approach

The syntax-directed translation method greatly enharfeesgdsigner’s productivity, but has sev-
eral important drawbacks, of which the control-path ovathis the most decisive. The controllers
obtained by syntax-directed translation are usually famfroptimal, because the pre-designed
components are required to implement their declared pottdally and strictly in order to be
reusable in all possible circuit configurations. Howeveis bften the case that a significant part
of their functionality becomes redundant due to the pendtiéa of a specific configuration, e.g.

in many cases full handshaking between the components cavolmied.

29

CHAPTER 2. BACKGROUND

This redundancy can be eliminated by replacing the mandakjgned gate-level implemen-
tation of the high level components with an implementatipntisesised automatically. The goal
is to produce an efficient implementation of a set of intermmted handshake components, as
opposed to the composition of the pre-designed generakeimgtations of individual compo-
nents [89, 129]. This approach is often calledynthesis

One method to accomplish this is to design a Signal Trams@Emph describing the expected
behaviour of each of the handshake components controlitsif@igure 2.6). Then, given a hand-
shake component network produced by the compiler, each @oemp is replaced with its STG
specification. The separate component STGs are composeithéogyia an operation callgwhr-
allel compositionto form a complete system STG [89]. An optimal gate-level lengentation
can then be automatically produced from the STG using taalk as petrify [41], SIS [103] and
MPSat [68]. Automatic synthesis can become problematicrvthe size of the STG becomes
too large: at the time of writing, the largest STG size that $lgnthesis tools can process in an
acceptable time is about 100 signals. The impact of this edagsened by including STG decom-
position tools, such as DesiJ [99] into the workflow. The aeposition tool is able to break the
large optimised STG down into several smaller STGs thatyartesisable in reasonable time. A
schematic of this workflow, as implemented in Workcraft,hiswgn in Figure 1.4 (compare to the
standard workflow used in Balsa, shown in Figure 2.7).

It should be noted that although this method can signifigaintprove the efficiency of the
control circuits associated with the handshake compondénis not applicable to the majority
of the data path elements, such as registers and combiabtagic, because their behaviour is
too complex to be automatically synthesised. These elamanthe circuit are unaffected by
the resynthesis method, and therefore it should only bdeabflthe control path is actually the

bottleneck.

2.3 CAD tools for the design of asynchronous circuits

This section contains an overview of the notable tools thatadten applied to the design of

asynchronous circuits.

30

CHAPTER 2. BACKGROUND

2.3.1 Direct mapping/syntax-driven translation tools

. Design refinement
Balsa description < 7y ™~

‘breeze2ps’
‘breeze-cost’

Breeze description y

(HC netlist) N\

Balsa behavioural
simulation system

Simulation
‘balsa—netlist’ results
I
Behavioural

Gate-level sim.
Gate-level netlist » Functional

‘balsa-c’

synthesis
reuse

\

Commercial Si
or FPGA P&R

Y Layout sim.

Layout / bitstream » Timing

Figure 2.7: Balsa design workflow

Balsa Balsa is an asynchronous circuit synthesis system [47]ldged over a number of years
at the APT group of the School Of Computer Science, The Usityeof Manchester.

Balsa is built around the handshake circuits methodologlycam generate gate level net-lists
from high-level descriptions written in the Balsa langua@®th dual-rail (QDI) and single-rail
(bundled data) circuits can be generated.

The approach adopted by Balsa is that of syntax-directedpitation into communicating
handshaking components (Figure 2.7) and is similar to tingeen system of Philips [119] (later
distributed as Haste by Handshake Solutions). The advargithis approach is that the com-
pilation is transparent: there is a one-to-one mapping éetwthe language constructs in the
specification and the intermediate handshake circuitsattggproduced. It is relatively easy for an
experienced user to envisage the architecture of the titwai results from the original descrip-
tion. Incremental changes made at the language level riespitedictable changes at the circuit
implementation level.

Although this property greatly enhances designer proditytithe controllers obtained by

syntax-directed mapping are usually not optimal, becalsepte-designed components are re-

31

CHAPTER 2. BACKGROUND

quired to implement their declared protocols fully and eotiy in order to be reusable in all
possible circuit configurations. It is often the case thaigaiicant part of their functionality
becomes redundant due to the peculiarities of the specififigtoation, e.g. in many cases full
handshaking between the components can be avoided. Therdban attempts [89, 129] to en-
hance Balsa’s synthesis results by introducing a logich®gis step for the control path instead of

direct mapping.

Verilog SPEC Project File Edit Search Options

Compi Simul Sched Synth Miew Ma [
| Optimization Scheduling_|) test madule gedinl, inl, ol ; —
fles input [7:0] ind;
bput [7:0] a7

Conpiler

Multi-nets

case v Tlzeg 17:07 =
i Manually decade v reg [7:0] y;
! t_ciphv
f_thoxy always
f_tsrawy bhegin
T fun.y x=
f_tory
_kexpy
v
fory
forky

= (Coum) o
SI circuits : funv

0 Lobellearhs |
‘ Global DC nets ‘Loml control nets |
! ‘

Coloured PNs

5, [Main Controller | [Local Controlter | | Datapath |

-§ | (DCs) | | (Simple Gates) | |[(REGs/OPs..)|

hd [y T I 3 3T 1 I
w

I o]

[oCarmin | [Commsion | [Dompes | [RTLvering]

Library ‘

Direct Mapping

(oue) S ’
(a) VeriSyn design flow (b) VeriSyn interface

Figure 2.8: VeriSyn

VeriSyn In the VeriSyn tool [104, 18] the high-level language dgstitwns (Verilog, VHDL) are
initially compiled and converted into an intermediate Pa¢t format. The intermediate format is
subsequently used as a medium for direct mapping to asymehsccircuits. The control nets are
split into two types for mapping: global control nets whiale ased for direct mapping to David
Cells and local control nets for mapping to simple contrdaéga

The intermediate format is subsequently passed to optiimisgols and mapping tools where
it is directly mapped into asynchronous data path and cbeinauits using David Cells. Hardware
components are selected from a basic library for mappingRAlnVerilog description can also be
output to a synthesis converter: i.e. a synchronous syistted (e.g. Synopsys Design Compiler)
generates circuits which are converted back to asyncheociocuits using a tool called VeriMap.
Finally logic optimisation tools are applied to generateexpindependent (SI) circuits.

The design flow schematic and a screen shot of the tool'sauteiare shown in Figure 2.8.

32

CHAPTER 2. BACKGROUND

C RTL netlist)
I

4" conversion tnto positive logic DR I‘i
x

(positive logic DR netlist)

library of
gatc prototypes optimisatien for negative logic transformation rules
!
(negative logic DR netlist -)\
D
b
genemation of completion }'
!
(DR netlist with completion) .
libraty of
| —

4" construction of SR wrapper
:

(DR netlist with SR wrapper)

Figure 2.9: VeriMap design flow

VeriMap The VeriMap design kit [17] converts single-rail RTL nett§ into dual-rail circuits
which are resistant to Differential Power Analysis (DPApaks. VeriMap design kit successfully
interfaces to the Cadence CAD tools. It takes as input atstaicVerilog net-list file, created
by Cadence Ambit (or another logic synthesis tool), and edsvit into dual-rail net-list. The
resulting net-list can then be processed by Cadence or Bib&rtools. All Design For Testability
(DFT) features incorporated at the logic synthesis stag@m@aserved.

The VeriMap design flow is shown in Figure 2.9.

2.3.2 Logic synthesis tools

Pipefitter Pipefitter [31] is a tool chain that implements a fully autdéetasynthesis flow for
asynchronous circuits. It can be used to design simple asynous microcontrollers using RTL-
like Verilog HDL as the input format.

Pipefitter directly synthesises the control path as a halzeedstandard cell net-list, and uses
a genetic algorithm to perform binding and multiplexer opsation for the data path. It produces
a synthesisable Verilog specification for the data path, elbag a set of scripts driving both its
synthesis and timing analysis by state-of-the-art commalesgnchronous RTL and logic synthesis
tools. The automated insertion of matched delays comptetefogic design, and hands off the
net-list to the standard cell-based layout tools. The seltiesof the tool's design flow is shown

in figure 2.10.

33

CHAPTER 2. BACKGROUND

CU SYNTHESIS

&

control/data

spliting

Behavioral
Verilog

DP SYNTHESIS

SIMULATION

Synthesizable
Verilog

Verilog
Testbench

{ Petrify }

Optimization

Logic
Synthesis

J

Functional
Simulation

Synthesizable
Verilog

Logic
Synthesis

Standard
Cell

Verilog
Netlist
Placement
&
Routing

Timing
Analysis

Delay
Insertion

Standard
Cell

Timing
Simulation

Back
annotated
Netlist

Extraction

Figure 2.10: Pipefitter design flow.

CHP Specification

Petri Net + DFG

Validation by
Simulation

Behavioral
VHDL

Asynchronous
Synthesis

Asynchronous
VHDL netlist

Standard
design tools

VHDL
Simulator

Back-end
tools

b [|

Figure 2.11: TAST design flow

TAST (Tima Asynchronous Synthesis Tools) TAST (Tima Asynchronous Synthesis
Tools) [46] is an open design framework devoted to asynausrtircuits. It consists of three
parts: a compiler, a synthesiser and a simulation-modetrgéor. TAST offers the capability
of targeting several outputs from a high level, CSP-likecdgsion language called CHP (Com-
municating Hardware Processes). The compiler translakéi3 @rograms into Petri nets (PN)
associated to Data Flow Graphs (DFG). The synthesiser gisesisynchronous circuits from the

PN representation of the CHP programs (Figure 2.11). Itigesva set of rules to guarantee that

34

CHAPTER 2. BACKGROUND

PN-DFG graphs are synthesisable into QDI circuits.

Initial design

Area

Each point in the trajectory

represents a different
structural design

il

SRR R

R Unachievable design region

»
\ Delay

Final design

Figure 2.12: MOODS design space traversal algorithm

MOODS (Multiple Objective Optimisation for Data and contro| Synthesis) The multiple
objective optimisation for data and control synthesis (MIB) [25] system implements global
optimisation of a design data flow and control graph by theaggd application of small reversible
(behaviour preserving) transforms under the control ofnautated annealing algorithm. The
system is designed to support overall optimisation witlpees to various criteria, such as area,
delay, and power dissipation. The operation of the systeosislly characterised by a design
trajectory — the entire structural design is representedtsyalues of area, delay, and power
dissipation and these numbers form the coordinates of & poitesign space. The algorithm
moves the design through this space as shown in Figure 2f®2dn initial point created from a
line-by-line translation of the user-defined goal (typigaminimum area, delay and dissipation).
The speed of this process allows the designer to inter&cttedy the trade-offs possible between

the three criteria.

Petrify Petrify [41] is a tool for manipulating concurrent specifioas and synthesis and op-
timisation of asynchronous control circuits. Given a Phet (PN), a Signal Transition Graph
(STG), or a Transition System (TS) it generates another PNT@ which is simpler than the
original description and produces its implementation mfibrm of a net-list of an asynchronous
controller in the target gate library with the specified itiputput behaviour.

For transforming a specification Petrify performs token feovalysis of the initial PN and pro-

35

CHAPTER 2. BACKGROUND

duces a transition system (TS). In the initial TS, all tréioss with the same label are considered
as one event. The TS is then transformed and transitionseltdd to fulfil the conditions re-
quired to obtain a safe irredundant PN. For synthesis of wncasonous implementation Petrify
performs state assignment by solving the Complete StatinGguloblem. State assignment is
coupled with logic minimisation and speed-independentirietogy mapping to a target library.
The final net-list is guaranteed to be speed-independenthazard-free under any distribution of

gate delays and multiple input changes satisfying theairsfpecification.

Punf/MPSat Punf[55, 64, 12] is a parallel Petri net unfolder: it takess&riPhet (which may be
an STG or a high-level Petri net) and produces a finite and imprefix of its unfolding. Such
a prefix is a concise representation of the net's state spatean be used for efficient model
checking and, in case of STGs, synthesis of circuits. For $S3@&h a representation is often
superior to that based on explicit state graphs and BDDsalthetfact that STGs usually contain
a lot of concurrency but rather few choices. As a result, teenary requirements of synthesis
algorithms based on unfoldings are very moderate.

MPSat [67, 68, 12, 65] is a tool for model-checking and fortbgsis of asynchronous circuits.
It works on an unfolding prefix (e.g. one produced by Punf) bhas several modes of operation.
Among those are model-checking (such as deadlock chechithgeachability analysis), encoding
conflicts detection and resolution, and logic synthesisesod1PSat supports an expressive lan-
guage called Reach [66] for the specification of reachgHike properties. It allows to formulate
non-trivial reachability-like conditions in a concise amaman-readable form. Internally, MPSat
translates the problem into Boolean satisfiability (SATY amploys one of the high performance
SAT-solvers to obtain a solution.

Punfand MPSat are used as a back-end for a large number bhéetnd STG-related tasks

in Workcraft.

2.3.3 Analysis and verification tools

LoLA (Low Level Petri Net Analyser) LoLA (a Low Level Petri Net Analyser) [101] is a
space state reduction based tool for Petri net verificatibimcludes a large number of available

reduction techniques many of which may be applied jointhed@ated variations of state space

36

CHAPTER 2. BACKGROUND

reduction techniques for several frequently used praggedire available. The tool’s interface is
text-based and designed for integration into other todndard properties (liveness, reversibility,
boundedness, reachability, dead transitions, deadlbokse states) as well as satisfiability of state
predicates and CTL model checking are supported. Redutg@miques include stubborn sets,
sweep line method, cycle coverage, invariant based coipreand other. Most techniques may
be applied in combination. In many cases, variations oflartigcie are used which are particularly

optimised for the analysed property.

Figure 2.13: Composition of a circuit and its environmenvansify

Versify Versify [19, 97] is a tool that verifies the speed-indepergeof a given circuit and its
specification. The specification is described as a Petringktlze circuit as a flat net-list of gates.
The Petri net describes both the behaviour of the envirobraed the expected behaviour of
the circuit. Circuit and environment are composed (Figuit@pforming a closed system, and the
reachability analysis of such a system is performed. Botlifipation and circuit are modelled by
Boolean functions and, therefore, the whole system cangresented and manipulated by using
binary decision diagrams (BDDs). Two approaches are usedirst one uses all the variables of
the circuit, whereas the second one automatically eliragatternal combinational signals. With
this reduction in the number of signals, complexity is madpethdent on the number of memory
elements rather than on the number of signals.

A circuit is deemed to be correct if it does not generate argxpacted behaviour following

any possible input sequences that correspond to the enviainspecification.

37

CHAPTER 2. BACKGROUND

zeta zeta [75] is an asynchronous circuit verification tool thiaéaks the conformance of se-
quences of input and output signal changes (traces) in thaitchgainst a Petri net specifica-
tion. The tool is based on an algorithm that uses zero-sapptebinary decision diagrams (ZB-
DDs) [79], which are a variant of BDD that is specifically optsed for the representation of
binary vectors that contain only a small number of ones. Bsedetri nets often have sparse
state spaces, they can be handled very efficiently using a¥ipresentation [128]. Benchmark

results of the tool compare favourably to those of Versify.

GENET (GEneralised NET Synthesis) GENET (for GEneralised NET Synthesis) [36] is a tool
for mining and synthesis of Petri nets from transition syste The tool is based on the theory of
regions. The input of the tool is a transition system fromahtit can generate a Petri net with a
reachability graph that is either bisimilar to the inputis#dion system (synthesis) or is a a superset
of the input transition system’s language (mining).

GENET allows the user to transform a system with a stateebes@esentation into a system
with event-based representation. If the system in questidnibits a high level of concurrency,

event-based representation is often more efficient foralisation and model-checking.

\\\\\

INTADATA

Q]

Binder
Receiver (2) Top Seadar ™~

IHTxDATA

INTUNT

Figure 2.14: CPN Tools GUI

CPN tools CPN Tools [4] is a set of tools for editing, simulating and lgsiag Coloured Petri

Nets. The GUI (Figure 2.14) is based on advanced interattiohniques, such as tool glasses,

38

CHAPTER 2. BACKGROUND

marking menus, and bi-manual interaction. Feedback fiasilprovide contextual error messages
and indicate dependency relationships between net elsnieme tool features incremental syntax
checking and code generation which take place while a netiigjlconstructed.

The simulator handles both untimed and timed nets. Full amtigh state spaces can be gen-
erated and analysed, and a standard state space repoihsontarmation such as boundedness
properties and liveness properties. The functionalityhefsimulation engine and state space fa-
cilities are similar to the corresponding components inifl@€PN, which is a widespread tool

for Coloured Petri Nets [5].

Spin Spin [58, 57, 14] is a tool that primarily targets softwareifieation as opposed to hard-
ware verification. The tool supports a high level languagspiecify systems descriptions, called
PROMELA (a PROcess MEta LAnguage). Spin has been used te logaal design errors in
distributed systems design, such as operating systenescdatmunications protocols, switching
systems, concurrent algorithms, railway signalling peots, etc. The tool detects deadlocks, un-
specified receptions, race conditions, and unwarrantadragns about the relative speeds of
processes. Spin works on-the-fly, which means that it autidsneed to preconstruct a global
state graph, as a prerequisite for the verification of sygterperties.

Spin can be used as a full LTL model checking system, supympéill correctness require-
ments expressible in linear time temporal logic, but it cEo &e used as an efficient on-the-fly
verifier for more basic safety and liveness properties. Mainthe latter properties can be ex-
pressed, and verified, without the use of LTL. Correctnegpeaties can be specified as system or
process invariants (using assertions), as linear temfuial requirements (LTL), as formal Buchi
Automata, or more broadly as general omega-regular piepértthe syntax of never claims.

Spin has also been applied for the analysis of Petri neth,iba standalone tool [49] and as

a part of PEP tool [52].

PEP tool (Programming Environment based on Petri nets) The PEP tool (Programming En-
vironment based on Petri nets) [30, 112, 11] is a comprebersst of modelling, compilation,
simulation and verification components, linked togethehimia Tcl/Tk-based graphical user in-

terface.

39

CHAPTER 2. BACKGROUND

The programming component allows the user to design comwualgorithms in an easy to
use imperative language, and the PEP system then geneedtesd®s from such programs. The
simulation of a Petri net can even trigger the simulatiorhef¢orresponding program.

PEP’s verification component contains various Petri nagigrbus algorithms to check reach-

ability properties and deadlock-freeness, as well as gatifin algorithms.

2.3.4 Modelling tools

Model Editor SimGine Model Stmulator &
Interface Animator
GUI Model
Translator
[Parser] [Simulator] [Animator]
[Code J:i SDES Simulation Manager]
Generator
Utility Library]
SimGine Engine

Figure 2.15: PDETool architecture

PDETool PDETool [62] is a multi-formalism modelling and simulatidool for stochastic
discrete-event systems which uses a simulation enginedb@sea unified abstract description
called SDES [130]. This modelling tool provides featurasdonstruction and translation of mod-
els into the XML-based input language of PDETool's simwlatengine. Currently, some useful
extensions of Petri nets have been implemented in the tw@lding generalised stochastic Petri
nets, stochastic reward nets, stochastic activity netsvarkl coloured stochastic activity networks.
PDETool is designed to be extensible (Figure 2.15) to sumpwide range of graphical and

non-graphical formalisms.

Yasper (Yet Another Smart Process EditoR) Yasper (Yet Another Smart Process Edi-
toR) [120] is a tool for modelling and simulating discret®gesses. Yasper uses extended Petri

nets as its modelling back-end. It supports manual sinarlath which the user selects execution

40

CHAPTER 2. BACKGROUND

& Yasper - C: and Settings\i p\YapserTestl2mei2005\E _paml o

Fle Edt View Roles Options Help

| el []] o e] i]

Mode

 Edt

 Aun manualy

=/ Aun automaticaly

Buiiding blacks

S m 3]

Figure 2.16: Yasper GUI

steps by clicking on the model, and automatic simulationictvinandomises the choice of steps
and produces an aggregated report with relevant statistisper models directly support some
popular Petri net extensions, and can emulate several t#bleniques, such as state machines,

flowcharts, UML 1 activity diagrams, and EPCs.

The Moebius framework The Moebius framework [44] is an environment for impleméota

of multiple modelling formalisms and solution techniquésodels expressed in formalisms that
are compatible with the framework are translated into eajait models using Moebius frame-
work components. This translation preserves the structttee models, allowing efficient solu-
tions. The framework is implemented in the tool by a well-dedi abstract functional interface.
Models and solution techniques interact with one anothreutih the use of the standard interface,
allowing them to interact with Moebius framework comporsemiot formalism components. This

permits novel combinations of modelling techniques to kefsr research.

Draw-Net The Draw-Net Modelling System (DMS), a framework suppaytine design and the
solution of models expressed in a graph-based formalisra.system is characterised by an open
architecture and includes an XML based language family ¢hatbe used to define existing as
well as new formalisms, and multi-formalism models expedsthrough such formalisms. The
idea behind Draw-Ne, that differentiates it from the othgpraaches, is the possibility of easily

adding new formalisms via a GUI, favouring the reuse andynation of existing tools for solving

41

CHAPTER 2. BACKGROUND

= Hodel ®
N | %9 | fiodes)fedoes submodets freasures)
Be B & ven
=iz
A
Ciz] |
0 H
o8 3} Element ®
i) [0\ finstance)fPropertes fREUES)
RE B0 O |tesn Tokens [5456Q
— B0 sowies |1 Q
& > .Q |P-semio + Q
Stowrl 3] 5
8> ®
(Transform | slign’[
|2 b acariace | |
} [P add Transiion } |
| | |
f |
1
| |
ol % |

Figure 2.17: Draw-Net GUI

multi-formalism models, rather than the creation of newgoo

2.4 Conclusions

A number of fundamental definitions related to asynchrormrauits (circuit classes, operation

modes, control and data protocols) were given in this chapte most popular approaches to the

design of asynchronous circuits were discussed. An owerefahe tools implementing stages in

the design workflow was included.

42

Chapter 3

Petri nets

The process ofommunications a key concept that is the basis of any information-drivestem.
The more complex a system becomes, the more intricate iothencnication between its parts.
Failure in communication between the smallest componarigjoickly lead to the malfunction-
ing or even collapse of the whole system. Therefore, a sysiEsigner must have a very good
understanding of all the possible ways that the componentisl énteract. It is easily seen that for
any practical system the number of such possibilities isamageable without automated tools.
For example, a tool may be able to prove that the system wilbebave in any unwanted man-
ner given every possible combination of control actionsjfa behaviour is found violating the
required system property, assist the designer by idengjfilie sequence of events leading to the
undesired state. For this purpose, the system in questiah meudescribed using a formally de-
fined model. The choice of the model is generally based on haoacteristics: expressive power
and ease of analysis, i.e. the possibility and computdti@asibility of verification of essential
properties. Unfortunately, there is always a trade-ofiveen these features.

A Petri net is a mathematical model that in many ways hits gweeét spot” in this trade-
off. Petri nets are expressive just enough to model the magsobitant features of a concurrent
system, and yet are amenable to automated analysis teelsrjgf, 67, 49, 30, 84, 101]. Petri nets
allow modelling major aspects of behaviour of such systénae#iding concurrency, causality and
conflict [126]. Modern analysis tools are able to exploitttiue concurrency representation in Petri

nets (as opposed to, for example, interleaving representist automata) to drastically reduce the

43

CHAPTER 3. PETRINETS

size of data required for state space representation, amekhmemory and computational cost of
verification process. Moreover, Petri nets have a very sraptl intuitive graphical representation
which is very helpful for human understanding.

Petri nets are, of course, not without drawbacks. Due to #igiplicity, the size of the net
required to model a system with complex behaviour can be \age, quickly becoming un-
observable for the designer. To overcome this limitatiomleaigner may be presented with a
higher-level view of the system, where the blocks of the uyite Petri net are represented as
compact high-level objects, while the Petri net itself isdiSbehind-the-scenes” for verification

tasks. This approach is one of the fundamental ideas behigsithesis.

3.1 Definitions

Definition 3.1. A Petri net (PN)is a quadrupleN = (P, T,F,mp), whereP is a finite non-empty
set of placesT is a finite non-empty set of transitions,C (T x P)U (P x T) is the flow relation
between places and transitions anglis the initial marking. A paila € F is called an arc. A Petri
net marking is a functiom: P — Z.., wherem(p) is called the number of tokens in plape P in
the markingm. The set of placeet = {p € P| (p,t) € F} is called the preset of a transitior T,
andte = {p< P | (t,p) € F} is called the postset ¢f A transitiont € T is enabledat markingm

if Vp € ot,m(p) > 0. A transitiont € T enabled at markingn can fire, producing a new marking

m’ (denotedm(t)nY), such that

m(p) =m(p) —1,p€ ot\te
m(p)=m(p)+1pecte) ot
m(p) =m(p),petenet

thus achieving the flow of information within the net.

Graphically, places of a PN are represented as cirdggransitions as boxe]), consuming
and producing arcs are shown using arrows)(and tokens of the PN marking are depicted by
dots in the corresponding places)((see e.g. Figure 3.2).

A very useful extension of a plain Petri net is a labelled iRt

44

CHAPTER 3. PETRINETS

Definition 3.2. A labelled Petri net (LPN)s a 6-tupleS= (P, T,F,my,2,A), where(P, T,F, mp)
is a Petri nety is a finite alphabet and is a functionA : T — X associating each transition of a

Petri net with a label.

This allows for some meaningful semantics to be attachetigdransitions. For example,
each transition may be labelled with the name of an event.n,Thaving observed a sequence
of transitions firing, one can judge from that a sequence eh®vthat happened in the system

modelled by the Petri net.

3.1.1 Anexample system: the Sleeping Barber’s Shop

Working room

Waiting room
Entrance

\\\Q(\\ AN

Barber's window Barber's bed

Figure 3.1: The Sleeping Barber’s Shop

Let us take a variation of the Sleeping Barber Problem [45)uidd an example Petri net
model.

A barber (who notably likes to sleep a lot) has set up theiotig routine for his work. He
has put a bed by the entrance to his shop which he uses to sldepfast opportunity. If he is
sleeping in his bed, the customer who enters the shop seed wakes up the barber, who then
takes the customer to his working room and cuts his or her laie is not in his bed, the customer
assumes that the barber is busy with another client and gdbs tvaiting room, where he or she
waits until the barber comes for them. The barber, havinghigd serving a client, takes a quick

look through a small window (Figure 3.1). If there is anotbknt waiting, he invites them to the

45

CHAPTER 3. PETRINETS

working room and cuts their hair. Otherwise, he proceedsstbéd using a personal door that he

has set up for quickest access to the bed, and falls asleegt i$vhe flaw in this routine?

Get next customer Checking for customer

Customer waiting (K /E/
)/ Finish Go to bed

D<—O<—E]j

Wake up barber Sleeping Sleep

New customer

Figure 3.2: Petri net model

A Petri net that models the barber's work routine is shownigufe 3.2. In the initial state,
the barber has just finished serving a client and is checKiagadther client is waiting for him
(note the tokens in the correspondingly labelled places}hi& point, the transition labelled “Go
to bed” is enabled as per definition 3.1. If it fires, it tramsféhe token from the place labelled
“Checking for customer” to the place labelled “Going to bedflecting the change in the state
of the barber. Transition labelled “Get next customer” i @oabled, however, because there is
no token in the place labelled “Customer waiting”. This #iéion requiring two tokens to fire
reflects the precondition that for the next customer to beeskgrboth he/she must be waiting and
the barber must have finished serving the previous clientsifgplicity, we assume that only one
client can be in the barber’s shop at one time.

By randomly firing enabled transitions, one can see thatytbiees indeed behaves in the way
described in the problem statement. But where is the prabrd how the Petri net helps to
identify it?

By running the net through an automated analysis tool, ssdhiRSat [63, 12] or Petrify [41],
the problem is quickly found: the net has a deadlock staeakllockis a state where no transition
is enabled, hence no progress can be made in the systemsl\dolgdsa state is recognised as one
of the accepted final states, this means that the system doestting wrong. Using the failure
trace given by the tool, one can reproduce the sequence woffsetieat need to have happened for
the system to fail. In this case, this sequence is as folld@s: to bed”, “Wait”, “Sleep”. This

means that the barber has checked his window and found m wl&ting, so he started walking

46

CHAPTER 3. PETRINETS

Get next customer Checking for customer

Customer waiting (K | —
)/ Finish Go to bed

Going to bed
Mutex

Wake up barber Sleeping Sleep

New customer

Figure 3.3: Improved Petri net model

to his bed. However at the same time, a client has enterechthig and having seen no barber
sleeping in the bed, goes to the waiting room. The barber tiesessfully reached his bed and
went to sleep. Now, the barber is waiting for a client to waka hp, but the client is waiting
for the barber to invite him to the working room. Neither ebappens, and the system stops
functioning.

This problem is caused by the fact that the customer and tieibean both be changing state
at the same time. In the Petri net that is reflected by two sanabusly enabled transitions, “Wait”
and “Go to bed”, neither of which disables the other. In a-liéalsituation this could happen if
they were simultaneously taking different routes through lharber’s shop, each unaware of the
others actions, and thus had missed each other. A good wagver that would be introducing
a mutual exclusion, i.e. some action that can only be pe€drivy one party at the same time,
and by performing which one party prevents the other fronmtakurther actions. This is easily
implemented in the Petri net: only one additional placedgiieed, as shown in (Figure 3.3). Both
state changing transitions now need to take a token fronptheg, and, because there is only one
token, only one transition can fire and by doing so disablegposing transition. The token must
be put back into the mutex place at some point in time for tiséesy to keep functioning. A real-
life analogy for this process could be a declaration of itigrs by both parties: when a barber is
about to go to bed, he would announce that loud enough forusteimer to hear, and after hearing
that the customer would not go to the waiting room. Similaifiyhe customer, upon seeing no
sleeping barber, decides to go to the waiting room, he or shédraannounce that, and the barber
would not go to sleep. In this example, declaration of iriter#t is analogous to removing a token

from the mutex place (alternatively, one could think of thetex as a mechanism that prevents

a7

CHAPTER 3. PETRINETS

Go to bed

j Going to bed

Sleep

New customer

Sleeping

Wake up barber®

Not sleeping

Figure 3.4: A Petri net model with a complementary place arehd arc

opening both doors at the same time).

3.1.2 Contextual nets

An extension of a Petri net model iscantextual ne{82]. It uses additional elements such as
non-consuming ar¢gswhich only control the enabling of transitions and do ndtu@nce their

firing.

Definition 3.3. A contextual net [82]s a Petri net extended with a special type of non-consuming
arcs, namelyead-arcs,is defined a#N = (P, T,F,R, mp), where(P, T, F,mp) is a Petri net andR

is the set of read arcs. A set of read-arRs defined alR C (P x T), there is a read-arc between

p andt iff (p,t) € R. Theread-presebf a transitiont € T is defined ast = {p| (p,t) € R}, and

the read-postsedf a placep € P aspx = {t | (p,t) € R}. A transitiont is enabled iffvp, p €

ot Uxt = m(p) > 0. The rules for firing of the transitions are preserved. Giglly, a read-arc

is shown as a line without arrows.

Read arcs prove to be a very practical mechanism for modedartain features of asyn-
chronous systems that otherwise would require much moregleonand non-intuitive Petri net
constructs. They are particularly useful to model systeomsrolled by switching binary signals,
such as asynchronous circuits, as shown in Chapter 4.

To give an example, let us return to the original Petri net ehad the barber’'s shop (Fig-
ure 3.2). Assume that the barber has gone to bed after seavéngtomer and the new customer
has just arrived. In this case, there are two transitionbled&or the new customer: “Wait” and

“Wake up barber”. This contradicts the problem specificabecause the customer must wake the

48

CHAPTER 3. PETRINETS

(a) Normal traffic — no problems (b) Heavy traffic — potential deadlock

Figure 3.5: The gridlock problem

barber up if he or she sees him sleeping. To fix this flaw, we t@esmsure that the “Wait” tran-
sition is only enabled if the barber is not sleeping. A readadlows us to achieve this behaviour
with minimal effort. We cannot use a read arc directly in thigioal net, however, because the
read arc has to check the “Barbenist sleeping” state, and the net only has a place that represents

the “Sleeping” state. In such situatiorcamplementary placis helpful.

Definition 3.4. Given a placep, a placep’ is calledcomplementaryo p if Vme Z.# - m(p') =
N —m(p) whereN is the maximum number of tokens that may appear in pface

In a simple case wherp can hold at most one token, a complimentary platés always
marked with a token whep is not, and, vice versgy is never marked whep is.

In Figure 3.4, the place labelled “Not sleeping” is complataey to the place labelled “Sleep-
ing”. There is also a read arc between transition “Wait” afate “Not sleeping” that prevents
the transition from being enabled when there is no tokenan phace, i.e. prevents the customer
from going to the waiting room if the barber is sleeping. Ntitat the deadlock problem is still
present in this net and it can be resolved in the same way asshd-igure 3.3. Incidentally, the
introduction of mutex place resolves the conflict betweentivo transitions as well, and it can be

seen that using it for this reason is not as obvious as usiegdarc.

49

CHAPTER 3. PETRINETS

Figure 3.6: A Petri net model of four intersecting roads

3.1.3 Another example: a traffic network

Another typical example of a system where a Petri net modadrig useful for finding problems is
shown in Figure 3.5. This model illustrates something dedigridlock, a situation that arises both
in vehicular traffic in the road network as well as in the netwinaffic between a set of routers in
System-on-a-Chip. For clarity, let us consider the roasvogt example. Figure 3.5a shows the
system of four intersecting one-way roads under normalitiond. The cars can freely go around
the inner ring formed by the four roads, which in this casekia to a roundabout, although such
an arrangement is usually controlled by traffic lights. Thesanay enter from any of the four
sides and exit to any other side after spending some timeeinitly. The problem appears when
enough cars enter the system, as shown in Figure 3.5b. A a&bhds entered a junction on the
green light can become blocked in the middle, unable to mowedrd because of the heavy traffic
moving across, and unable to go back because there are tgoaaenbehind it. If this happens
in all four junctions at the same time, then the whole systegbomes deadlocked because no car
can either move along the ring or exit the junction.

This is indeed a problem for heavily congested road netwaggecially those arranged in a
regular grid pattern (e.g. New York). To prevent this fronpp@ning, drivers should never enter
the crossing unless there is enough space in the road acmo#sem to clear it, even if there

is a green light. Unfortunately, some over-eager trafficde#as may insist that such behaviour

50

CHAPTER 3. PETRINETS

activate_ac+

-/
activate_rqg-
1

activate_ac-
.
activate_rq+

. s T
activateOut0_rq+ activateOutl_rg+

) — T~
activateOutO_ac+ activateOutl_ac+
J f
activateOut0_rg- activateOutl_rqg-
N . -~
activateOutO_ac- activateOutl_ac-

Figure 3.7: Graphical representation of an STG

constitutes deliberate blocking of the way and insist tlvat pnove on the green light in any case.

Similar deadlocks may occur in networks-on-chip [23].

3.2 Signal Transition Graphs

The Signal Transition Graph (STG) model, an extension ofRb&i net model designed to to
formally model the behaviour of circuits, was introduceddpendently in [38] and [98]. A Signal
Transition Graph describes the causality relations betvwensitions on the input and output
signals of the specified circuit. It also allows the explibtscription of data-dependent choices
between various possible behaviours. Because STGs areialsgse of Petri nets, there exists a

rich theoretical and tool base for their analysis and spetitin.

Definition 3.5. A signal transition graph (STEp9] is a tupleG = (P, T,F,mp, A, 1,0, V), where
(P, T,F,mp) is an PN| is a set of input signal€) is a set of output signalsn0=0,Z=1U0 =
{21,2,...,27} is ajoint set of all signalsjo = {0,1}'%lis a vector of initial signal values\ is an
injective labelling functiom : T — Z x {+,—}, i.e. an STG is an LPN where each transition is
labelled with a signal level change event. If different sigions correspond to the same event, an
index is used to distinguish them. Note that graphicallygaai event and its index are separated
using a slash symbol, and if there is only one instance of\hatethe index is omitted.

For graphical representation of STGs a short-hand notégioften used (shown in Figure 3.7),
where a place is not shown if it has exactly one incoming arel artgoing arc (the tokens are

drawn on the arc instead).

51

CHAPTER 3. PETRINETS

3.3 Properties and analysis of Petri nets

Checking whether a Petri net satisfies a certain properwrisimportant for the analysis of system
models. In particular, the notions ofarking reachabilityanddeadlockare used throughout this

thesis:

Definition 3.6. (Reachability) The set of reachable markings of a Petri sihe smallest (w.r.t.
C) setZ.# containingmy and such that im e %Z.# andm(t)n, for somet € T thenm! € Z.# .

A markingmis reachableif me Z.# .

Definition 3.7. (Deadlock) A markingm is deadlockedf at this marking no transitions are en-

abled. A Petri net isleadlock-freef none of its reachable markings is deadlocked.

Definition 3.8. (Boundedness) Aetri netis k-bounded ivme 2.4 ,m(p) <N,p < P, i.e. for
every reachable marking the number of tokens in any place doeexceed k. A Petri net is safe

if it is 1-bounded. A Petri net is simply boundeddik such that the net is k-bounded.

To determine if there exists a reachable marking satisfgartpin properties, the set of reach-
able markingsZ.# must be computed. This, however, quickly leads to a combiiztexplosion
problem, and requires state-space reduction techniquies @mnployed. One such technique is
based on Petri net unfoldings [77].

Given a bounded Petri nét, the unfolding technigue aims at building a labelled acynkt

Unfy (prefix) satisfying two key properties [64]:

- Completeness. Each reachable markingNa$ represented by at least one “witness”, i.e.,
one marking ofJnfy reachable from its initial marking. Similarly, for each gdse firing

of a transition at any reachable state\bthere is a suitable “witness” eventlmn fy.

- Finiteness. The prefix is finite and thus can be used as an fopubdel checking algo-

rithms, e.g., those searching for deadlocks.

A prefix satisfying these two properties can be used for moldetking as a condensed represen-
tation of the state space of a system. Since its introdugfi@h the unfolding-based approach

has been extensively improved and is able to deal with mamgtex and varied applications. In

52

CHAPTER 3. PETRINETS

particular, recent research has shown that many verifitgiioblems for unfoldings can be for-
mulated in terms of Boolean satisfiability (SAT) and veryaéintly dealt with by existing SAT
solvers [63].

The unfolding technique is not the only state-space redudgchnique that is applicable to
Petri nets. However, it proved to be very efficient for thesslaf systems discussed throughout

this thesis and thus was chosen as the main model-checkitimpdne

3.4 Conclusions

In this chapter, a formal definition of Petri nets was giversirld two illustrative examples, the
mechanics of the token game in a Petri net were explained.nfbreuof problems characteristic to
concurrent systems are highlighted, and it is shown thai Rets are highly helpful in discovering
such problems. Several properties of Petri nets relevathiet@ontext of the remaining chapters

of this thesis were defined.

53

Chapter 4

Automated verification of asynchronous

circuits using Petri nets

During the design of asynchronous circuits that are redhtigmall in size, but have peculiar be-
haviour (e.g., arbiters, data path controllers, handslcakeponent implementations), it is often
the case that some parts of the circuit are designed mararalignerated by the software written
specifically for this task. Such circuits cannot be guardti® be correct by construction, as op-
posed to the solutions produced by logic synthesis tools.cClfauit implementation obtained this
way needs to be validated against its specification to entsucerrectness before it is committed
to hardware.

The designer can usually choose between two methods ofitcialidation: simulationor
formal verification Simulation can be used to demonstrate the correct furadtigrof a circuit
under certain stimuli from the environment. However, tlasmot reveal all of the possible circuit
behaviours since it would require exhaustive enumeratfoall @llowable sequences of actions
of the environment, which quickly leads to the combinaiogiglosion problem. The aim of the
formal verification methods is to avoid the explicit enuntiera of the input sequences to provide
a more efficient solution to the validation problem.

Simulation and verification are particularly different iretr results for asynchronous circuits,
because the latter often exhibit high degree of concurréioyeover, the environment’s choice of

input signal transitions can be concurrent with the intesignal transitions, making techniques

54

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

such as cycle accurate analysis ineffective. In thoseistances, the complexity of validation by
simulation increases, and demands for the use of analyploetion of the behavioural models of
the circuit implementations. It is therefore imperativetmsider formal verification using models
similar to those used for specification.

When compared to synchronous circuits, asynchronousitsirate often described as having
significantly better modularity. To produce a robust modataution, the designer must adhere to
a strict definition of the environment that the circuit is egfed to work with. The circuit must
produce only those changes of output signal levels thatxqrected by the environment, only in
response to corresponding changes of input signals, abthect time and in the correct sequence.

The “environment” in this case is the circuit that the citdaging designed is to be interfaced
with. Note that the circuit can only “see” those signal titias in its environment that are directly
connected to its inputs. This implies that even though thglémentation of the environment
may be complex, the circuit designer does not need to be nwedevith it. Only the abstract
environment specification that defines the proper orderfrautput signal transitions in response
to the particular input transitions is required. Such djmEation is in most cases much smaller
than a concrete circuit implementing it. It is thereforeqgpical, for the purpose of verification,
to represent a closed system as two parts: the circuit imgiéation and the specification of
the environment. It is also practical to describe thesespasing different formal models: the
environment specification is most naturally expressedguailsignal Transition Graph, and the
circuit implementation is generally given as a network gfitcogates.

Analysing such a system, however, is not a straightforwastt.t Because the different for-
malisms are used to describe the circuit implementationtb@environment specification, they
cannot be directly “glued” together to produce a closedesystuitable for automated verification.
One solution to this problem is to convert both models intother representation. This is the
verification method underlying the tool Versify [19, 97]. &tool checks the correctness of a gate
level implementation of a circuit against its STG specifarat by considering the closed system
whose state space is subject to analysis for undesirabliitcms. The closed system is formed
implicitly, at a symbolic state-space traversal stage,re/lheth the gate-level net-list (i.e. a set of

Boolean equations) and the specification STG contributegtodspective state vector components.

55

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING

PETRINETS
a a
go g0
b 1 > 1
C S a C 2 q

(a) 2 AND gates (b) AND and synchronising
C-element

Figure 4.1: An intuitive implementation of 3-input AND gate

In this chapter we propose an alternative solution. The rithéa is to translate the circuit
implementation into the same modelling language as theifsiaion. To accomplish this, the
gate net-list is converted into a special type of a Petri caltdd a circuit Petri net) using a direct
mapping algorithm. Because the environment STG is alsorarif the composition of the two
parts of the system is simple.

Once the complete system is produced, it is passed to one aiviilable Petri net analysis

tools for automated verification.

4.1 The verification problem

Let us consider an example shown in Figure 4.1 (a), which isssiple implementation of a 3-
input AND gate. Intuitively, one would think that sin¢éa A\ b) Ac) = (aAbAc), this circuit is
correct. Given enough time for the circuit to stabilise betw consecutive computation cycles
(which constitutes the synchronous design approach),ghisdeed true, but it is obviously ad-
vantageous to present the circuit with new data as soon asotheutation of previous data is
complete. However, since no assumptions about gate delaywade in this approach, this can

quickly lead to problems. For example, the following firiregsence:
<C+> a"’a b+> go+> gl+> C—> a_a b—> 91—7 C+> gl+>

leads the gatgl into firing prematurely, which happens because the new wiinputs arrives
before gateg0 could return back into a stable state. This produces anrgatobehaviour of the

circuit. If one tries to avoid this situation by substitigithe second AND gate with a a C-element

56

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

(Figure 4.1 (b)) in order to synchronise the two gates, argthoblematic sequence surfaces:

<C+7a+>b+ago+agl+ac_>

after which the output will remain stable, even though one of the inputs is low, \Wwhig
sufficient to state that this circuit is not a 3-input AND gate

This very small example already illustrates the complexirgadf interactions of the elements
in an asynchronous circuit. Detection of all possible cimieoces that may result in the incorrect
behaviour of a circuit is a very complex task. Consideriragg the modern technology requires to
take into account not only possible delays of the logic gdiesalso delays on the wires, it is also
extremely computationally expensive. Several approaahe&nown that alleviate the state space
explosion problem [97, 75], most of them based on explitihoaigh compressed, representation
of the reachability graph.

In this chapter we present an alternative, Petri net basptbagh to the problem of asyn-
chronous circuit validation. To compress the state spagti Ret unfolding techniques (as out-

lined in section 3.3) are employed, which represent the stadce implicitly.

4.2 Circuits and Petri nets

An idea to represent switching circuits as a special claBeti nets was first proposed in [51] and
further refined in [121]. For a long time, this approach wasmded inefficient due to the fact that
several places and transitions, as well as a set of conge&tas, are required to represent each
signal (as opposed to a pair of Boolean equations used in B&ed approaches [97]). However,
in the light of recent developments in Petri net verificatteohniques, particularly of the tools
based on unfolding theory [64, 55, 66, 12] this approach atha ignored: the finite prefix of a
Petri net unfolding is usually able to represent all of thegilole behaviours of the net in a very

compact way.

Definition 4.1. A circuit [97] is a tripleC = (V, . #, %), WwhereV = {v, vy, ...,y }is a set of signals,
Z is a mapping# :v; — fy,v € V where f, corresponds to the Boolean function of the logic

gate that drives;, andsis the initial state of the circuit.

57

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

Definition 4.2. A circuit Petri netR associated with a circu@ is an STG that satisfies the follow-

ing properties:

1. For each signak €V there exist exactly two complementary pla¢es , oy, } € P, such that
at any reachable marking one and only ong jf, py } is marked with a single token. If in
initial statesy € C signaly; is high, then at the initial markingyp € R placep,, is marked.

Otherwise,py, is marked.

2. For each pair of complementary places, there exists & fimitnber of rising signal transi-
tionst; € T that transfer the token from the plapg to the placepy, corresponding to the
event of signal; going from low to high. Similarly, there exists a finite numloé falling
signal transitions,,” € T that transfer the token from, to Py, corresponding to the event

of signalv; going from high to low.

3. Transitions between complementary places are cordréijea set of read arcs [82] that
non-destructively test the presence of tokens in othereglat P. The read arcs are placed
in such a manner that they correspond to the dependencegiia\gic V on other signals

in V exactly as defined by” (v;).

As can be seen from definition 4.2, a circuit Petri net coasisa number of so-calleelementary
cyclesinterconnected with read arcén elementary cycle is a set of two complementary places
and the transitions connecting them, associated with akiigtthe circuit via labelling. Figure 4.2
shows the structure of such elementary cycles, and the wpsodficing different causality rela-
tions. In the figure, the regular arcs are shown as thin linés arrowheads, and the read arcs
as thick lines with no arrows. Subfigure (a) is an elementgoyecwith only one rising and one
falling transition; subfigure (b) is an elementary cyclehativo rising transitions and one falling
transition, which means that the signal it represents @shibR-causality for positive excitation
and AND-causality for negative excitation (hence an ORedatdriving it); subfigure (c) is an
elementary cycle with OR-causality for negative excitatemmd AND-causality for positive exci-

tation, which suggests that an AND-gate is driving the assed signal.

58

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

(a) (b)

Figure 4.2: Examples of elementary cycles in circuit Pedti n

4.3 Construction of a circuit Petri net

Given a source gate-level model, a corresponding circuit € be produced using Algorithm 1.
However, several further steps are necessary before thienBetan be fed to the external tools

for verification. These steps are detailed below.

4.3.1 Applying environment interface

After the circuit Petri net has been constructed, it is nemgsto compose it with the provided
environment interface STG. This is done by superpositiothefcorresponding transitions of the
two Petri nets. Figure 4.3 shows an example of such supéiosf transitions corresponding to
the output signaf). In the circuit Petri net, there is a rising transitiQa- and a falling transition
Q—. Environment STG contains two occurrences of rising ttaongiQ+ /1,Q+/2} and one
falling transitionQ— (see Subfigure(a)). The superpositiorQef transition is trivial: it is removed
from environment STG and the token flow is redirected throQghtransition in the circuit Petri
net. This is not possible with the rising transiti@Qa-: it needs to be duplicated in the circuit Petri
net to create two transitiof®+ /1, Q+/2} with the same preset and postset. After that these two
transitions can be superpositioned with the corresponmangsitions in the environment STG (see
Subfigure(b)).

This technique is called parallel composition [125].

59

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

Algorithm 1 Conversion to circuit Petri net
for each signal Vi€V:
insert places {py,Pyfinto P
if Vi is high in Spthen
mark Py,
else
mark Py
end if

end for

for each signal Vi €V:
build a DNF DNFset for function .7 (Vi)
perform Boolean minimisation® of DNFset
k=0
for each clause CEDNFget:
insert a transition t\jiLkinto T
insert arcs {(p\,i,t\jirk),(t\ﬁk,m)} into F
for each signal vjeC:
if Vvj is negated then
insert arcs {(Wlt\fk)(t\zrkwj)} into F
else
insert arcs {(pvpt\jk)?(t\jiﬂpvi)} into F
end if
end for
increment k
end for
build a DNF DNReset for function .#(V;)
perform Boolean minimisation of DNFeset
k=0
for each clause CEDNRget:
insert a transition t\;kinto T
insert arcs {(Wi,t\;k),(t\;k, py)} into F
for each signal vj€C:
if Vj is negated then
insert arcs {(Wj,t\;k),(t\;k,wj)} into F
else
insert arcs {(p\,j,t\zk),(t\;k,p\,j)} into F
end if
end for
increment k
end for

end for

xusing Quine-McCluskey algorithm [76]

60

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

Circuit Petri net Environment STG

Q=1
Q- Q+/1 Q+2

(a) Circuit and environment STGs

(b) Compositional STG

Figure 4.3: Composition of circuit and environment STGs

4.3.2 Read arcs complexity reduction

(a) (b)

Figure 4.4: Read arcs complexity reduction
(a) multiple read arcs associated with one place
(b) only one read arc per place

At the time of writing, the available Petri net unfolding tealo not recognise read arcs as
a special type of arc. Instead, read arcs need to be modalldduble-headed arcs, i.e. pfe
ot Nte,p e Pt € T then p andt are connected with a read arc. Though behaviourally cqrrect
this representation is semantically different from an alctead arc in that it introduces a choice,

which may lead to a drastic growth of the unfolding size. Tjtigblem can be resolved to an

61

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

extent by ensuring that any place is associated with at mestread arc [124], which can be
accomplished by making a necessary number of copies of éach with multiple outgoing read

arcs and rearranging the read arcs accordingly, as shoviguaré 4.4).

4.4 \ferification

A circuit is considered speed-independent under a givemament, if

1. It conforms to the environment, i.e. produces only thdsenges of output signals that do

not conflict with the environment’s STG.
2. Itis hazard-free.

In the scope of this work, a hazard is defined to be an unexgpetienge of the input signal of a
gate, such that it causes an enabled (positively or nefjatixeited) gate to become disabled (i.e.
to return into a stable state without firing). A circuit thawver exhibits such behaviour is called

hazard-freepr safe.

4.4.1 Detection of potential hazards

A pair of signals is calleatonflicting if there exists a reachable state of the circuit such that a
change in the level of one of them disables the gate driviegother. In terms of a circuit Petri

net, a potentially hazardous state is a state which viotagsemi-modularityproperty:

Definition 4.3. A Petri net is called semi-modular if any transition in thét,;once enabled, cannot

be disabled until it has fired.

In other words, once each place in the preset of a transiigrbkecome marked with a token,
thus enabling the transition, no other transition can 1sesay of these tokens. In Figure 4.5 (a), an
example of non-semi-modularity is shown: if transitigl— /1 fires, it disables transitiogd— /1

(enabled transitions are depicted as greyed boxes).
Definition 4.4. A pair of transitions{ts,t} € T is calledconflictingif et; N ety # 0.

For the purpose of verification, we consider that if a cir@etri net is semi-modular, then the

circuit it was constructed from by using Algorithm 1 is hat-éree.

62

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

(a) Conflicting transitions (b) Transitions in allowable
conflict

(c) Transitions in allowable
conflict

Figure 4.5: Non-semi-modular states

This statement stems from the following: for each signahmdircuit, there is an elementary
cycle (see Section 4.2) in the Petri net, and for each passifinbination of the levels of input
signals which lead the gate that drives this signal into atigely or negatively excited state,
there is a corresponding rising or falling transition irsthicle. Once any of these combinations
becomes active (the gate becomes excited), the corresgptrdnsition becomes enabled. If the
state of any of the input signals changes in such a way thaxtigation condition is no longer
fulfilled and the gate has not yet fired, this produces hazardf will also cause the corresponding
circuit Petri net transition to become disabled, thus Viotasemi-modularity (see also [83] for
Muller’s original view of semi-modularity).

However, while the presence of a potential hazard in thecgogate-level model will always
indicate a violation of the semi-modularity in the circuietR net, the reverse is not true. There
are two cases in which a violation of semi-modularity in tivewdt Petri net does not indicate the
presence of a potential hazard in the original circuit.

The first situation arises due to the possibility of severahditions representing the same

63

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

signal event, but being caused by different preceding syast shown in Figure 4.5. In Subfig-
ure (b), the conflicting transitiong2+ /1 andg2+ /2 represent the same event, siggalgoing
high. Hence, the conflict of these transitions does not daista signal conflict: they both have
the same semantic and thus their firing does not disable &ry signal. In Subfigure (c), the con-
flict betweeng0— /1 andg0— /2 is allowed for the same reason, but there is also conflietdest
a/+ andg0— /1 which are associated with different signals. Howevernef/e/+fires, disabling
g0—/1, the enabled transitiog0— /2 still keeps the signal evegb— enabled, and thus disabling
of the transitiong0— /1 does not lead to the disabling of the negatively excited daving signal
g0, so there is again no signal conflict. On the other handgifrgnsitiong0— /2 was not enabled,
then the conflict betweeay+ andg0— /1 would be a signal conflict.

The second situation occurs when the conflicting transtame both associated with the input
signals. Since it is the environment that controls theseadsg this situation should be considered
a choice of mode of circuit operation made by the environmaedtnot a signal conflict.

To summarise, if for some conflicting pair of transitiofis,to} € T:
1. A(t;) andA (t2) are not both input signal events
2. A(ty) # A (t2)

3. there exists a reachable marking such W& et; U et;, m(p) > 0 and at this marking there

is no enabled transitione T such thatA(t) = A(t1)) V (A(t) = A(t2))

then there is a potential hazard in the original circuit.

4.4.2 Detection of interface non-conformance

A circuit Petri net, when composed with its environmentpiera closed system: the outputs of the
circuit are the inputs for the environment STG, and viceaeThus, the conformance verification

is twofold: if the environment part of the composed Petri iseable to produce a sequence of
inputs that causes “bad behaviour” of the circuit (i.e. aandor a deadlock), the circuit is said

not to conform to its environment and this situation is nefdrto asor-non-conformanceon the

other hand, if the circuit is ever able to produce an outmriaichange that is not expected by the

64

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

Figure 4.6: A C-element interface STG

environment, it is also said not to conform to the environtnand this situation is referred to as
B-non-conformance.

An example ofa-non-conformance can be demonstrated if a XOR gate is \@rifgginst
the C-element interface STG (Figure 4.6). If the environnpeaduces event&+ andB+ almost
simultaneously, quickly enough so that the XOR gate bec@xeted but does not fire and returns
into stable (output signal low) state, this leads to, fir¢taaard on one of the inputs, and, second,
into a deadlock. The deadlock is present because the C-elaaneironment, having switched
both input signals to high, expects an output sig@atio go high. But this never happens: a
XOR gate cannot switch output signal to high until one of iitput signals goes low, and this
will never happen as well, because the STG does not allowstet tee inputsA andB until the
outputQ is produced. Thusy-non-conformance is decided by checking the Petri net foalts
and deadlocks. A method for hazard detection is explain@ubisection 4.4.1, and the deadlock
problem is solved by external model-checking tools, thueckimg fora-non-conformance does
not require much additional effort.

If the XOR gate is replaced by an AND gate, however, there isrimmn-conformance: the
input goes high only when both outputs go high, thus no hagaserved. But when either one of
the inputs goes low, the AND gate becomes negatively exdited tries to reset the output, which
is not expected by the environment STG. However, in the spoeding compositional Petri net
the environmentestrictsthe circuit because the two transitio@s-(one provided by the circuit,

and the other by the environment) become superimposed €&tidns 4.3.1), which introduces

65

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

a synchronisation, and thus the transiti@a will only become enabled when the environment
resets the second input signal. Hence, the system has nalkazal no deadlock, but the AND
gate obviously does not conform to the C-element interfdewould have not been restricted by
environment, it could produce eveQt- when it was unexpected, exhibitifiyxnon-conformance.
LetC be a circuit,R be a circuit Petri net constructed fratnandE be the environment STG.
Let R.P denote the set of plac®<= R, E.P the seP € E andM the set of all transitions which were
superimposed during circuit-environment compositionefhf there exists a reachable marking
m such that at this marking for at least one transition figimall of the places in its preset that
belong toR are marked, and there exists at least one place in its ptestdielongs tde which is
not marked, or, formallyit € M : (Vp € st NRP,m(p) > 0) A (3p € ot NE.P,m(p) = O) then the

circuit C is B-non-conformant under environmett

4.5 A practical example

inputO
O—
A

input1
Di
B

Figure 4.7: NAND C-element implementation

This section presents an example of application of the ndegioposed in this chapter and
implemented in the Workcraft framework (Chapter 7), and desitrates the achieved integrity
of the design workflow. Figure 4.7 shows a NAND-based impletaion of the C-element pro-
posed by Maevsky. The gate-level model was created usingdiddt’s visual editor and verified.
The verification fails and reports a following trace as therstst firing sequence that leads to a

potential hazard:

(inputl,input0,invl, 90,91, 92,g3, g0, g4,inv2, out pup)

The faulty trace can be simulated and the problematic firggience examined, which reveals

that indeed, provided th@vO inverter’s delay is long enough, it can be excited but still have

66

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

fired after the environment has received output sighahd resets input signafsandB, disabling
inv0. However this is very unlikely, because in order for thigdrd to actually happeimvO delay
should be longer that the total delay of all other gates. gtiis potential failure can be safely

ignored for any practical application.

input0 g0

Figure 4.8: NAND-OR C-element implementation
(no wire delays)

By replacing the inverter$invO,invl} and the NAND gateyl with an OR gate (Figure 4.8),
this problem is eliminated and the verification reports egs¢confirming that the implementation
of the C-element shown in Figure 4.8 is speed-independet,ttze implementation shown of
Figure 4.7 is speed-independent under a very reasonabtetassumption.

But while this circuit is speed-independent, it could gtifbduce unexpected behaviour if it
is not delay-insensitive. To verify whether it is delay@nsitive, possible wire delays should be
taken into account. Since it is enough to demonstrate tHay @ any of the wires may lead to a
hazard in order to assert that the circuit is not delay-isi@n, it may be reasonable not to model
delays on all of the wires in order to minimise verificatiomd. In Figure 4.9, a wire delay is
introduced in the form of a buffer into the fork following @aj3 output. Verification fails with the
following trace:

(inputl,input0, g1, 90,92, 93,90)

Examination of this trace shows that the hazard can hapmeef0, after receiving the signal
from g3, will switch before the same signal frog3, but travelling across the other branch of the
fork, reaches gatg2. In this case, the firing ajO will disable the already excited gag@. This is
enough to state that this C-element implementation is migtlgtdelay-insensitive, but requires a
timing assumption that the delay of signal reachi®gplusg0 switching delay is more than wire
delay on the other branch of the fork.

It may still be helpful to check this circuit considering #tle possible wire delays. This

67

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING

PETRINETS
input0 pULO
DA]
Q
input1
Di

Figure 4.9: NAND-OR C-element implementation
(wire delay present on one fork only)

Figure 4.10: NAND-OR C-element implementation
(full set of wire delays)

can be done by providing branches of all forks with buffere (buffers are not needed on non-
branching wires, and on the sections of wire preceding fdsksause in this case it may simply
be considered that the delay of the gate producing signdiiemire includes the wire delay), as

shown in Figure 4.10. Verification in this case produces tilewing failure trace:

(inputl,input0, w2, w0, g0, w7, g2)

This failure is similar to the one in the case above: if theagealf w7 + g2 is less than delay
of we, g4 will be disabled before it can fire. Note that the verificattome is considerably longer

due to the growth of unfolding prefix.

68

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

(b) Looped controller configuration for verification

Figure 4.11: A counterflow stage controller

Cl C2
F_prev | C) ‘@B_succ

£ b
aj C
b_prev R le)} » 3 f_succ
B —o F

Figure 4.12: Revised counterflow stage controller

69

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

4.6 \Verification of a counterflow data path controller

Let us consider a counterflow stage controller presente@h (Figure 4.11a). If the circuit is
configured as shown in Figure 4.11b, where the inverters sed to emulate the surrounding
pipeline stages, automated verification can be applied.

In this case, the verification completes in a negligible amai time, and produces the fol-

lowing failure trace that leads to a potential hazard:

<Fprev+7 f+7 B+7 F+7 BSUCCv b+7N d_7 Fprev—7 f_7 B_7 F_>

By investigating the trace using the simulation feature orkifraft, one can see that it corre-
sponds to the following scenario. The previous stage chetrissues a data token, causing the
circuit to issue signalB andF. At the same time, the next stage controller sends a tokdmeioft-
posite direction (note that this token is not an acknowleaga of signaF but rather a request for
a borrowed token). Now the previous stage controller caetithe data token, which will cause
the circuit to reset signals and B. But the signalF may not have been latched yet into the C
elementC1 of the next stage controller (which is emulated by the samoeiitivia an inverter loop
in the test configuration), which will cause a hazard. A samroblem may occur with sign&l.

It can be argued that it is a reasonable timing assumptidrilibanext stage controller latches
the value ofF into the C-element faster thah resets to zero. This argument, however, does
not take into account the delay of the combinational logitwieen the registers. This problem
may not be critical for bundled-data implementations whbeerising and falling transitions &t
propagate through the matched delay with the same speedeugquin a dual-rail implementation
the propagation time of data and spacer through combiratiogic varies significantly and a
wave of spacer may overtake the wave of data leading to a dazdre hazards on outpuis
andB can be avoided by explicitly acknowledging these outputshasvn in Figure 4.12 [107].
Inputf_succis connected to the outpiitof the next stage controller and acknowledges ouput
Similarly, inputb_previs connected to output of the previous stage controller and acknowledges
outputB. C-elementC3blocks all changes on inpuEs_prevandB_succuntil both outputd= and

B are acknowledged.

70

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

| Benchmark|| States | Net size (P/T)| Unfolding size (events/cutoffs)

reg2 2.5*10% 183/124 368/29
reg4 7.6*10 337/220 2464/177
regs 7.1*10% 649/416 72192/4865
fifo5 2.6*10° 97/58 86/1
fifo10 1.2*10° 177/108 166/1
fifol5 5.8*10° 257/158 246/1

(a) Benchmark statistics

zeta | Workcraft (PUNF+MPSAT)|

Benchmark| Versify |

reg2 n/a 0.47 sec 0.11 sec
reg4 388 sec| 2.75 sec 6.33 sec
reg8 7246 sec| 83.9 sec 48.38 sec
fifob 8sec | 0.15sec 0.02 sec
fifo10 130 sec| 0.61 sec 1.02 sec
fifol5 634 sec| 3.99 sec 2.4 sec

(b) Comparison of proposed method with existing tools
4.7 Performance and comparison statistics

The presented verification approach was tested on a set ohimamks (see Table 4.1b) which
included asynchronous multiport registers [86] and FIFGelmes [74].

The results are compared with Versify [97] and zeta [75]goblote: the runtimes for Versify
were taken from [97] (because of the technical problemsingnte old software) and thus cannot
be compared directly with the results for zeta and Workdvaftause the latter were obtained on
a modern machine. The times for Versify are provided in otddrighlight the rapid growth of
the runtime due to exponential growth of the state spaces possible to see that Versify and
zeta runtimes grow considerably faster with the growth efribmber of states that the size of the
unfoldings and reachability analysis time, which in mangesagrow linearly because the analysed
circuits exhibit high degree of concurrency.

The tools used as the Petri net verification back-end werernfading-based Punf and MP-
Sat [64, 12]. The benchmark results were obtained on a soayke Pentium 4 machine. More
recent processors tend to be multi-core, which benefitseltréret unfolding algorithm [55]. The
runtime therefore can be significantly reduced on a multeécxystem whilst computations for

BDD-based techniques cannot be easily distributed betwadtiple processing units.

71

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUIF USING
PETRINETS

4.8 Conclusions

In this chapter a new method for the verification of asyncbtencircuits was proposed. This
method was previously published in [93]. It operates bydiaing a circuit specification (given
in the form of a gate-level netlist) into a special class dfiRets called aircuit Petri net This
net is then composed with a specification of the environmeétiteocircuit given in the form of an
STG using the parallel composition operation. The regyltiat is checked for deadlocks as well
as a number of reachability properties required to enswakthie circuit behaves correctly in the
given environment.

Compared to the previously existing verification metholds approach presented in this chap-
ter exploits the flexibility and maturity of the existing Hetet verification tools. In particular,
it allows to apply the state-of-the-art Petri net unfoldileghniques to the verification of asyn-
chronous circuits. Unfolding-based techniques are abddféatively exploit concurrency in order
to build a highly compressed representation of the stateesp@his feature is especially useful
in the context of asynchronous circuits as they are nayucalhcurrent. At the same time, the
method is not bound to any single Petri net verification tepm and therefore allows choosing
the most appropriate verification back-end based on theaafuhe circuit that is being verified.

The proposed method was successfully applied to detectlamith@&e a problem in a previ-

ously published circuit (Section 4.6).

72

Chapter 5

Modelling, simulation and automated
verification of the data path of

asynchronous circuits

There has recently been an increase in research on desigif-tifreed data path logic and pipeline
structures with much more sophistication in dynamic batavihan simple Muller pipelines.
However, the modelling, analysis and synthesis suppotillisery limited, mainly due to the lack
of a formal model that could be used to adequately represem@synchronous data path.

As a result, there are examples of circuit level solutior3, [&] that have not been suffi-
ciently analysed and the published circuits behave wittageundesirable effects. In particular,
verification of counterflow data path controller using a roetipresented in Chapter 4 revealed a
potentially hazardous behaviour (see Section 4.6). Thasngke highlights the importance of a
formal model for the asynchronous data path that would attowerify potential hardware solu-
tions against a set of strictly defined protocols.

Traditional models, such &&tri nets(PNs) [90] andinite state maching$-SMs), are abstract
and are hard to mimic the behaviour of asynchronous datawitth The models which naturally
capture the asynchronous data path, such as SDFS [110]nbayet been formally defined.

In this chapter the Static Data Flow Structure (SDFS) madlrimally defined and three token

game semantics on this model are introduced: atomic tokeead token and counterflow. These

73

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

semantics are compared and the advantages of each of thestudied. Atomic token model
is intended as a formalisation of the original SDFS [110]reap token SDFS model addresses
the drawbacks of the atomic token model and introduces anertiary early evaluation support.
The counterflow semantics is capable of modelling preempgarly evaluation and speculation
in asynchronous data path.

The goal of this chapter is to define a formal model and a vatitio method in order to assist

the designers in analysing such structures early on in thigm@rocess.

5.1 The Static Data Flow Structure model

The SDFS is a high-level model for asynchronous data pathcdrabe viewed as an equivalent
to register transfer levelRTL) in synchronous design. The SDFS has been informalipduced
in [110] concentrating on the structural and syntacticpkats of the model. However, the token
game semantics (enabling and firing rules) is only definedkaynples and is ambiguous in some
cases.

This section focuses on the structure and the syntax of tfeS3odel. Token game semantics
is an independent issue as it is closely related to the eathie of the asynchronous data path.

The most interesting token game semantics are studiedagelyain the following sections.

Definition 5.1. A static data flow structure (SDFS) is a directed gré&p# (V,E,D,Mo), where
V is a set ofvertices(or node$, E CV xV is a set ofedgesdenoting the flow relationD is a

semantic domain afata valuesandMg is aninitial marking of the graph.

There is an edge between vertisesV andy € V iff (x,y) € E. There are two types of vertices
with different semanticstegister nodegor simplyregister R andcombinational logic node®r
simply logic) L, RUL =V. The registers can contaiokens thus defining the markiniyl of the
SDFS. The tokens can be associated with data values froretegic domai. The marking of
SDFS may evolve bgnablingand subsequetiiring of register nodes. The rules of enabling and

firing are defined by the token game semantics and are distaseparately for each semantics.

Presets and postsets

The presetof a vertexx € V is defined asex = {y| (y,x) € E} and thepostsetas xe =

74

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

{yl (xy) € E}.

Source and sink
Only registers can have empty presets and postsets. Aaegish empty preset is calledsaurce
and with empty postset is calledsank Note that source and sink nodes can represent inputs and

outputs of a data path respectively, thus modelling a desisg&ronment interface.

Path and cycle

A sequence of vertice&, z, ...,Z,) such thafz _1,z) € E, i = 1...n is called apathfrom zp € V
(called astart verte) to z, € V (called anend vertexand is denoted a&(z,z,). Note that there
can be several paths from one vertex to another or no path aA alycleis a path whose start
vertex is the same as end vertex. A path with no repeateccesris called aimple path and

cycle with no repeated vertices aside from the start/enxés asimple cycle

Deadlock and liveness
An SDFS reaches deadlockstate if no further firing can happen. If a deadlock state is no
reachable the SDFS is callééadlock-free

An SDFS is calledive if all its registers can fire infinitely many times. In ordertte live it is
necessary for SDFS to have at least one token in every cyhle.lfads to an important structural
property of the SDFS model that any simple cycle must corabieast one register. Note that this
condition may be not sufficient as liveness property alseddp on token game semantics. For
example, applying a token game semantics to SDFS model miaefdimit this requirement to

at least three registers per simple cycle (similar to dinegpping from Petri nets [70]).

Projection
Projectionof a pathd onto a set of verticeX is defined a® | X = Set(d) N X, whereSet(d) is

the set of vertices in sequende

R-preset and register R-postset
The R-presetof a vertexx € V is defined assx = {r e R| 35 (r,x) : d(r,x) L R={r,x} "R},

i.e. a registerr is in R-preset of a node iff there exists a pathd(r,x) with no other

75

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

R2 L2 R4 L5 R6

R1 L1 R3 R5

Figure 5.1: SDFS example

registers except and x (if x is a register). Similarly, theR-postsetis defined asxx =
{reR|3d(x,r): d(x,r) LR={xr}NR}, i.e. aregister is in R-postset of a node iff there

exists a pathd (x,r) with no other registers excepf(if x is a register) and.

Graphical representation

Graphically, the combinational logic nodes are represeateboxesl(]), the registers as boxes
with two vertical lines [I), and the edges are depicted by arrows.(The tokens are usually
drawn as filled cyclese{), however, this representation varies for different tolgame seman-
tics (see Sections 5.3, 5.4 and 5.4).

For example, the SDFS fragment shown in Figure 5.1 consist4 aodes: 5 combinational
logic nodes I(1, L2, L3, L4 andL5) and 6 registersRl, R2, R3, R4, R5 andR6). Note thatR1l
andR2 are sources whilB5 andR6 are sinks. The preset of notl8 is {L2,R3} and it postset is
{L4}; the R-preset of node3 is {R2,R3} and its R-postset i§R4, R5}.

In this section we have formally defined the structure andasyof SDFS model using [110]
as a guideline. The following sections introduce differesken game semantics for the SDFS

model.

5.2 Atomic token semantics

The atomic token semantic of the SDFS model, or singdbmic token models a formalisation

of the intuitive token game which is presented in [110] ontao$simple examples.

Marking semantics
Themarkingin the atomic token model is defined as a functiddn R— {0,1}, i.e. a register can
contain at most one token. The marking in this model reptesdata validity. The presence of a

token in a register means it stores valid data. The abserectokén in a register represents invalid

76

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

data or spacer. Because a register can hold no more thankame tois convenient to assume that
the codomain of the functiokl is the Boolean domain.

A current marking in atomic token model can be viewed as a foboomputation phase in a
circuit, followed by a reset phase. Subsequent computati@ses must not overlap, therefore for

a marked register € Rall registers in its preset and postset must be unmarked, i.e

VreRgexrUrx: M(r) = M(q).

Evaluation and reset of combinational logic nodes

Theevaluation statef the atomic token model is a Boolean functiénL — {0, 1} which defines
if a combinational logic nodec L has computed its outpuE(l) = 1) or has not computed it yet
(=(I)=0). Anodel € L is said to be imeset statéf = (1) = 0; it is said to be irevaluated state
if =(l) = 1. The switching of a combinational logic node form resetval@ated state is called
evaluation transitionits change from evaluated to reset state is cakset transition Note, that
words “state” and “transition” are often omitted in the tét is clear from the context what is
referred: the state of a node or its transition from one $tagnother.

Initially all combinational logic nodes are in reset statéseset combinational logic node may
evaluate iff all the combinational logic nodes in its premetin evaluated states and all the registers
in its preset are marked. This is tegaluation condition Similarly, an evaluated combinational
logic node may reset iff all the combinational logic nodest$npreset are in reset states and all
the registers in its preset are unmarked. This igdisetting condition For a combinational logic
nodel € L the evaluation conditiod. (I) and resetting conditiof_ (I) can be formally expressed

as:

&= A Z®A A M)

keelNL geelnNR

In other words, a combinational logic nobe L may evaluate whe#, (I) = 1 and may reset

whené_ (I) = 1. The evaluation and resetting conditions of atomic tokBi+S are similar to

e

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

the firing conditions of phased logic [72], where a gate isbsthwhen all its input phases are
opposite to the gate output phase; when an enabled gateitfresitputs toggle to the opposite

phase.

Enabling and disabling of registers
Theenabling stateof the atomic token model is a Boolean functibnR — {0,1} which defines
if a registerr € Ris disabled(Z(r) = 0) orenabled(Z (r) = 1).

Initially all unmarked registers are disabled and all mdrkegisters are enabled. A disabled
and unmarked register becomes enabled iff all the combimatiogic nodes in its preset are eval-
uated and all the registers in its preset are marked. Thigggisterenabling condition Similarly,
an enabled and marked register becomes disabled iff albttminational logic nodes in its preset
are reset and all the registers in its preset are unmarkets igh registerdisabling condition
The enabling conditior, (r) and disabling conditiom_ (r) of a register € R can be formally

represented as follows:

o (n=MmnAr A\ ZKAr A M)
q

keernL cerNR

o_(n=Mrnr N\

keernL

A A Mo
geernR

A registerr € Rbecomes enabled when (r) = 1 and it becomes disabled when (r) = 1.

Propagation of tokens

In order to be marked with a token a register must be enablgid dind to be unmarked a register
needs to get disabled. Therefore a register cycles thrcuglfiotiowing four phases: enabling,
marking, disabling and unmarking, as shown by a registee gfeaph in Figure 5.2. The state
of each register is encoded by a vectht(r),=(r)). The excited variables (the ones which may
change in the current state) of this vector are denoted bsytfibol on top right. In the initial state
00", which is outlined, a register is disabled and unmarkeds Tégjister may get enabled, which
is denoted by the ™" symbol next to the(r) component of the vector. After being enabled it may

be marked with a token, then get disabled and finally be unedatkus coming to the initial state.

78

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

< M(r),2(r) >

(08) — & 11— 1o
enabling marking disabling unmarking
phase phase phase phase

Figure 5.2: Behaviour of a register

To prevent overlapping of tokens from subsequent phasesropatation, when propagating
a token, the following two conditions have to be satisfieda fpken can be removed from a
disabled register iff all the registers in its R-postset @mearked; ii) a token can be put into an
enabled register iff all the registers in its R-preset areketh Following these conditions, in a
current marking, a set of registedrs. from which tokens can be potentially removed and a set of

registersR, which can potentially receive tokens are defined as:

R,:{reR| M(r)Am},&Z{QGRIWAZ(Q)}

Token propagation takes place when i) each regist& irmlso belongs to R-preset of some
register inR,, i.e.:Vr e R_,q € rx = q € R,; and ii) each register iR, belongs to R-postset of
some register iR _, i.e.Vr € R, ,q € xr = g€ R_. When these two conditions hold, the registers
in R_ may fire in a single action, removing tokens from all regstefR_ and producing tokens
in each register oR,. The atomic nature of token propagation in this model is Isinto firing
in Petri nets, where places correspond to registers ansiticars correspond to (possibly empty)
combinational logic “clouds” between the registers.

This token game semantics works for simple examples but eaprdblematic for a more
complex SDFS. For instance, consider the SDFS in Figure Bi3Step 1 only registeR1 is
enabled and has a token. It enables regRBat Step 2 and the token propagates fiRbrto R2 at
Step 3 . Now the token in regist& allows combinational logic nodel to evaluate and enable
the registeR3.

Note thatR2 still cannot fire and produce a token inR3, because there is registeb in
its R-postset which is still disabled. This results in a eonency reduction, where the whole
branch{R3, L2, R4} waits for evaluation of the concurrent brandt3}.

Another problem arises at Step 4, when the evaluation of dnebinational logic nodé.3

leads to a deadlock. Indeed, after Step 4 the combinatiogat hodelL4 cannot evaluate until

79

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Logic: |:| - reset; |:| - evaluated;
Register: I:I:I:I - disabled,; I:I:I:I - enabled.

Marking: e - atomic token.

Figure 5.3: Atomic token SDFS example

a token propagates to the regisiR8 and then tdr4. At the same time the regist®3 can only
receive a token when the combinational logic nbdesvaluates and enables regidRer.

These concurrency reduction and deadlock problems candidealvin two different ways.
The easiest would be to introduce a set of constraintsyviei-formed SDFS. For example, a
necessary constraint would be: if one of the concurrentdbres contains a register, then all
the other branches concurrent to it must also contain ateggislowever, this approach would
significantly restrict the class of circuits the model captaee. A more practical approach is
to define the token game rules which would naturally captioeepipeline-style behaviour of the
asynchronous data path. For example, the firing can be slitd atomic actions: i) propagation
of the tokens into the next-stage registers (can be assdaorth a request signal in a pipeline),
and ii) removing the tokens from the previous stage regigtapdels an acknowledgement signal).
Thus, a token can stretch over a chain of registers beforglsemoved from the beginning of the

chain. This token game semantics is cabbpdead tokerand is formally defined in Section 5.3.

5.3 Spread token semantics

The spread token semantics of the SDFS model, or sirmpigad token modgis an extension

of the atomic token semantics. It models asynchronous itsrofi Muller pipeline architecture.

80

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

The spread token semantics does not capture preemptiokesr bmrrowing. However, it can be

extended to modebken borrowingas in low-latency structures with slack [35].

Marking, evaluation and enabling

The marking semantics, evaluation and reset of combiratiogic nodes, and also enabling and
disabling of registers in this model are exactly the sama asamic token. The only difference is
in the way tokens propagate from a register to a registero Alsoncept of early evaluation will
be introduced in this model, which has not been discussetilid][Therefore, in this section we
concentrate on modelling the early evaluation and the nésg iaf token propagation. The rest of

the terminology is adopted from Section 5.2.

Early evaluation

Itis often sufficient to have only a subset of the inputs redadyvaluate a combinational logic node.
This is calledearly evaluationand can be modelled by modifying the evaluation condiggof
the node. For example, a combinational logic nbdeL which evaluates as soon as any of its
inputs is ready, has the following evaluation condition:

&M=\ =0V \ M@

keelNL geelNR

Modification of the evaluation and resetting conditions @ limited to early evaluation. In
fact, anyreasonableexpressions can be assigned to conditi&nd) and_ (1) of a combinational
logic nodel € L. For example, it is reasonable to assume &atl) A&_ (1) =0, i.e. evaluation
and resetting conditions of a node are mutually exclusivpréwent a node from enabling and
resetting at the same time. Also it is reasonable to assuatevthluation and resetting conditions
depend on the marking and evaluation state of SDFS, i.e.dleegot constant 1 or constant 0.

The concept of early evaluation can also be applied to emalaind disabling of a register.
However, the same result can be achieved by splitting suebister into an early evaluation com-
binational logic node and the register itself. Therefone, notion of early evaluation is restricted

to combinational logic nodes.

Propagation of tokens

A token can be put into an enabled register iff all the regssie its R-preset are marked and all

81

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

the registers in its R-postset are unmarked. Thisnsagking condition Similarly, a token can be
removed from a disabled register iff all the registers ifRitpreset are unmarked an all the registers
in its R-postset are marked. Thisusmarking condition Formally this can be represented by

assigning each registerc R a marking conditiorm, (r) and unmarking conditiom_ (r):

gexr Serx
m (r)=%()A AM(@ A \M(s)
gexr Serx

A registerr € R can be marked with a token when, (r) = 1 and can be unmarked when
m_(r)=1.

Note that an unmarked source is always enabled becausepitsset is empty. Therefore, a
new token can be put into an enabled source as soon as itsts&psunmarked. Similarly, a
token can be removed from a disabled sink as soon as its Rtpsesnmarked (its R-postset is
empty). These features of the source and sink registerssafaluio model the communication
with the environment which produces new tokens and consymoegssed ones.

Consider the spread token model on a simple example of FigdreEnabled registers and
evaluated combinational logic nodes are highlighted. Nloé& combinational logic node4 is
labelled withEE tag. This tag means the node exhibits early evaluationfare.4 to evaluate it
is sufficient to havér4 marked o3 evaluatedZ, (L4) = M (R4) v =(L3). Therefore, on Step 2,
when token propagates ®2, combinational logic nodes3 andL4 evaluate and registeR5
becomes enabled. HowevB§ cannot be marked with a token until all registers in its Bspt are
marked. For this to happen two more steps are needed: at $ttep&gisteiR3 is marked and at
Step 4 token propagates®d. At Step 5 registeRS is finally marked. Similarly, the token cannot
be removed fronkR2 until Step 6 when all registers in its R-postset are marBmtause of these
restrictions the token spreads over four registers (at feas, as a tokens could still stay R1
andR2) at Step 5. Finally, the tokens are removed one by one frentaihof the spread token, as

shown at Steps 6-8.

The spread token model solves the concurrency reductiodeaniock problems of the atomic

82

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Step 3 L3 Step 4 L3
[l Ll Lol {lel
(e et = T et ==
N N
Step 5 L3 Step 6 L3
[P Pl
ML) ® = = e]
N
Step 7 L3
Logic: |:| - reset; |:| - evaluated,; EE - early evaluation.
Register: I:I:I:I - disabled,; I:I:I:I - enabled.
Marking: e —spread token.

Figure 5.4: Spread token SDFS example

83

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

token semantics. It also has some rudimentary means to readglevaluation. However, in this

model a register can only accept a token when all the registeits R-preset are marked. This
limits the early evaluation to one pipeline stage only anét@sahe model unusable for capturing
preemption and speculation.

It would be natural to allow further propagation of a toketoian enabled register without
waiting for all the tokens in its R-preset, but there is a B$knixing tokens from different com-
putation cycles. In order to avoid this mixture, when a togermpagates into an enabled register,
all unmarked registers in its R-preset should be marked aviggative tokenThe next data token
to arrive into a register with negative marking must be igaloas it carries old data. Therefore the
data token and the negative token cancel each other. ThelEstechnique is calletbken bor-
rowing. Different types of token borrowing and one of SDFS modelglémenting this technique

are discussed in Section 5.4.

5.4 Counterflow semantics

The token borrowing techniques can be partitioned into tlasses:passive borrowingandac-
tive borrowing In the passive borrowing a special join block is respomesiiol counting the
number of tokens borrowed from each of its inputs. The baimgvdoes not propagate further
in the direction opposite to the token flow. The passive bairig is introduced as a feature of
the change diagramsnodel and is also modelled by unsafe (places can be markédmate
than one token) Petri nets [127]. A model and an implementadif a join element capable of
unbounded borrowing are presented in [35]. The main dis@edge of the passive borrowing is
the lack of preemption mechanism in the unwanted branchgishwnay result in a higher power
consumption and longer computation time.

The active borrowingis characterised by negative tokens which are able to pedpdg the
direction reverse to the data token flow. When a data tokeraaratative token collide, they are
both eliminated. The major drawback of this technique isedby the resolution of the conflicts
when a data token and a negative token want to occupy the sayiséar simultaneously. Usually,
such conflicts result in arbitration which cause significemplementation overheads (increase

in circuit size, power consumption and latency). On the tp@siside, preemption is captured

84

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

naturally by active borrowing.

Both passive and active borrowing can be defined as token gamantics for the SDFS
model. In this thesis we model active borrowing only, as gasnewhat superior to passive bor-
rowing and is advantageous for implementing the preemptienhanism. There are two SDFS
model of active borrowing mechanism, namatytitoken modeandcounterflow model

The antitoken semantics of the SDFS model, or simply argitakodel, is based on the idea
of the two pipelines of opposite directions, one for dataeteskand the other for negative tokens.
Data tokens and negative tokens eliminate each other oisionll Similar idea is employed in
counterflow pipeline process¢€CFPP) [111] which allows instructions to move one way alang
processing pipeline while results flow freely in the oppmslirection; when collide instructions
are executed on the corresponding data.

The main disadvantage of the antitoken model is that in ondérto miss each other, data
tokens and negative tokens must synchronise within eadipgostage. This requires arbitration
which is associated with metastability problems at thelle¥eircuit implementation. The arbi-
tration problem is avoided in counterflow semantics of SDFR&lehwhich is the main focus of
this section. For more details on antitoken SDFS semartteesetader is referred to [107].

The counterflow semantics of SDFS model, or simply countsrftmdel, is based on the idea
of OR-causality [127], which allows to avoid arbitratiorhgrent in antitoken model. Data tokens
and negative tokens are not distinguished in this modeleatetvel of individual stages: the first
to arrive propagates in both directions (as a data tokendi@hand as a negative token backward),
the second one is ignored. The idea of antitokens withoutration is introduced in [33, 32] and

is revisited with minor modifications in [22].

Marking semantics

In the counterflow SDFS model there are two types of toké@R:tokensand AND-tokens The
marking in the counterflow model is defined ls= MOR x MAND where theM©R and MAND
are Boolean functiongv®R: R — {0,1} is theOR-markingandM”NP : R — {0,1} is the AND-
marking The presence of an OR-token in a register means eitherdtehds been received from
its R-preset or that data is not needed anymore by its R-gto&g. due to early evaluation form

another branch). An AND-token in a register means that dasebleen received from its R-preset

85

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

and has been consumed (or ignored, in case of early evaijdiyadts R-postset. Graphically, an

OR-token is depicted as a filled triangle) (vhile an AND-token as a filled boy.

Evaluation and reset of combinational logic nodes

Forward evaluation statef SDFS is a Boolean functio&" : L — {0,1} which defines if a com-
binational logic nodd € L has computed its outpuEf (1) = 1) or has not computed it yet
(ZF (1) = 0). A nodel < L is said to beforward evaluatedf =F (1) = 1 andforward resetif
=F () = 0. Initially all combinational logic nodes are forward rese\ forward reset combi-
national logic node may forward evaluate iff all the combim@al logic nodes in its preset are
forward evaluated and all the registers in its preset havadBBns. Similarly, a forward evaluated
combinational logic node may forward reset iff all the condtional logic nodes in its preset are
forward reset and all the registers in its preset do not hdReédBens. These aferward evalua-
tion conditionandforward resetting conditiomespectively.

Backward evaluation statef SDFS is a Boolean functio® : L — {0,1} which defines if
the output of a combinational logic nodle L has been consumed and is not needed any longer
(ZB(1) = 1) or the output has not been received yet and is still awg&dl) = 0). A combi-
national logic node maypackward evaluateff all the combinational logic nodes in its postset
are backward evaluated and all the registers in its postset @R-tokens. Similarly, a backward
evaluated combinational logic node mlagckward reseiff all the combinational logic nodes in
its postset are backward reset and all registers in its godts not have OR-tokens. These are
backward evaluation conditioandbackward resetting condition

Formally, the forward evaluation conditiaff (1) and the forward resetting conditigft (1)

of a combinational logic nodec L can be expressed as:

gFh= A= A M0

keelNL geelNR

= A ZFKA A\ MOR(q)

keelNL geelnNR

Similarly, the backward evaluation conditidf (1) and the backward resetting conditiéf (1)

are:

86

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

= N = A M)

kelenL gelenR

= A ZBKA A\ MOR(q)

kelenL gelenR

A combinational logic nodé € L may forward evaluate whef’ (1) = 1 and it may forward
reset wheréF (I) = 1. Similarly, a combinational logic nodec L may backward evaluate when
EB(1) = 1 and it may backward reset whéfi (1) = 1.

The above conditions do not allow early forward (backwaxdiation because the change on
all the node inputs (outputs) is required to change its forvwbackward) state. By analogy with
spread token model, the effect of early evaluation in catiote semantics can be modelled by
modifying the evaluation and resetting conditions of a corational logic node, so, that a subset

of node inputs (outputs) is sufficient to trigger its forwdbéickward) state.

Enabling and disabling of registers
Forward enabling statef SDFS is a Boolean functio™ : R— {0, 1} which defines if a register
r € Ris forward enabled =" (r) = 1) orforward disabled(=" (r) = 0). Similarly, backward en-
abling stateof SDFS is a Boolean functioB® : R — {0,1} which defines if a register € R is
backward enabledz® (r) = 1) or backward disableq=8 (r) = 0).

Initially all registers without AND-tokens are both forvehdisabled and backward disabled.
All registers which are marked with AND-tokens are both fard/enabled and backward enabled

A register without an AND-token becomes forward enabledalffthe combinational logic
nodes in its preset are forward evaluated and all the regigteits preset have OR-tokens. A
register with an AND-token becomes forward disabled ifftak combinational logic nodes in
its preset are forward reset and all the registers in itsgprés not have OR-tokens. These are
forward enabling conditiomndforward disabling conditionNote that a source without an AND-
token becomes forward enabled and a source with AND-tokearbes forward disabled (because
its preset is empty).

A register without an AND-token becomes backward enabledllithe combinational logic

nodes in it postset are backward evaluated and all the eegjist its postset have OR_tokens. A

87

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

register with an AND-token becomes backward disabled iffred combinational logic nodes in
its postset are backward reset and all the registers in gts@bdo not have OR-tokens. These
arebackward enabling conditioandbackward disabling conditiorespectively. Note that a sink
without AND-token becomes backward enabled and a sink wiiiDAoken becomes backward
disabled (because its postset is empty).

Formally, the forward enabling conditiast” (r) and the forward disabling conditian” (r) of

aregister € Ris defined as:

oF (N =MABIA A\ A A\ MOR(
q

kecernL cerNR

ot (N =M"P)A A EF(k A /A MOR(g)

kcernL geernR
The backward enabling condition® (r) and the backward disabling conditiar® (r) formally

are:

a2 (r) = MAND (1) N =B (k) A N MOR(q)

kerenL gerenR

0" =M"()A A WA A MO

kerenL gerenkR
A registerr € Rbecomes forward enabled whefi (r) = 1 and it becomes forward disabled when
of (r) = 1. Similarly, a register € Rbecomes backward enabled wheh(r) = 1 and it becomes

backward disabled whem® (r) = 1.

Propagation of tokens

A register can be marked with an OR-token iff it does not havAD-token, it is either forward
enabled or backward enabled and neither its R-preset nerpisstset is marked with AND-token.
An OR-token can be removed from a register iff it is markechwitND-token, it is either forward
disabled or backward disabled and its R-preset and R-gi@stsédoth marked with AND-tokens.

These ar®©R-marking condition ff(r) andOR-unmarking condition B (r) of a register € R,

88

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

which are formally defined as:

m2R(r) = MAND() A (5P (1) vEB(r)) A\ MAND(q)

qexrurx

mOR () =MANP () A (S VER[) A A\ MANP(g)

qexrUr«
A register can be marked with an AND-token iff it has an ORetokand it is both forward
enabled and backward enabled and its R-preset and R-pastsatarked with OR-tokens. An
AND-token can be removed from a register iff it does not hav®©®&-token and it is both forward
disabled and backward disabled and its R-preset and Rep@sts not marked with OR-tokens.
These are OR-marking and OR-unmarking conditions. Thé¢B-marking condition rﬁ\‘D(r)

andAND-unmarking condition P (r) are assigned to each registez R as follows:

MNP (r) = MOR(M ASF () AZB (A A\ MOR()

gexrurx

mNP(r) = MOR() AZF (r)AZB(r)A A\ MOR(q)

qexrUr«

A registerr € R can be marked with an OR-token whef?R(r) = 1 and the OR-token can be
removed whemm®R(r) = 1. Similarly, a register € R can be marked with an AND-token when
n;NP(r) = 1 and the AND-token can be removed whef'®(r) = 1.

A counterflow register operation is represented by the ggateh in Figure 5.5. Each state of
the graph is encoded by a vectd”NP (r),MOR(r), 5B (r),=F (r)). In the initial state 000",
which outlined by a box, a register is both forward and bagkiw@isabled and does not have
tokens. This register may be forward and/or backward edaich is denoted by "* symbol
next to>B(r) and B (r) variables. Changing any of the excited variables leadseméxt state,
where the variabchOR(r) becomes excited, i.e. the register may be marked with andB&nt
and so on.

Note the states where two variables are excited, e.g. tie @f0*1. Changing one of the
excited variables does not remove the excitement from theraine. Eventually both excited
variables have to switch leading to the same statelD. It is also possible for both excited

variables to change simultaneously, which is depicted liiedarcs.

89

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

< MAND(r) MOR(r), 5B(r),=F (r) >

*% * ‘
0000, [—' 1000
: <

* % : * % * « > *
0001 , 4 0010 10i0 - T - 1001
i od11 i T S 1io0 T
0101 ", y ;0110 1ito— N 1ic
TR — a1
|)

marking phase unmarking phast

Figure 5.5: Behaviour of counterflow register

There are two distinctive phases in the operation of a cofloie register: marking phase
andunmarking phaseAt the marking phase a register gets enabled (forward amdickward),
then marked with OR-token and finally marked with AND-tokeAt the unmarking phase it is
first disabled (forward and/or backward), then the OR-toleaves the register and finally the
AND-token is removed.

Figure 5.6 illustrates the counterflow SDFS semantics omalsi example. Forward (back-
ward) enabled registers and forward (backward) evaluabeabmational logic nodes are high-

lighted on top (bottom). The combinational logic nodé labelled withEE tag exhibits early

forward evaluationZ’ (L4) = MOR(R4) v =F (L3), &F (L4) = MOR(R4) A =F (L3).

At Step 1 only registeR1 has an OR-token, which forward enables regiR2i(this models
a request signal in the circuit). The OR-token propagatd®tat Step 2 and backward enables
registerR1 (this models an acknowledgement signal). Also the contibinal logic noded 1, L3
andL4 evaluate at this step (note that exhibits early evaluation). This allows forward enablaig
registersR3 andR5. At Step 3 an AND-token is produced in regisiRdr because it is both forward
enabled and backward enabled; as AND-token appe&$ @nd it is a source, it becomes forward
disabled. Also the OR-tokens propagate to forward enalglgidtersR3 andR5. Now registeiR4
becomes both forward enabled and backward enabled. Asstmiatehave a token yet, first, an
OR-token is generated iR4 at Step 4. After that, at Step 5, an AND-tokens appear mgiR8
andR4 as they are both forward enabled and backward enabled.efit(SOR-token disappears
from the forward disabled regist&2, which leads to forward disabling &3. OR-token leaves

the forward disabled regist&3 and registeR4 becomes forward disabled at Step 7, therefore

90

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

. . forward backward earl
Logic: EI - reset; EI ~ evaluated; EI “evaluated; EE ~evaluation.
; . : . forward backward
Register: I:H:I ~ disabled; I:H:I ~ enabled; I:H:I ~ ‘enabled;
Marking: A - OR-token; m - AND-token.

Figure 5.6: Counterflow SDFS example

OR-token is removed forr®4 which forward disable®5 at Step 8. Now, at Step 9, OR-token
leavesR5 and register®2 andR4 become both forward disabled and backward disabled,ftrere
AND-tokens can be removed from them, as show at Step 10.

Note that at Step 4 it does not matter which regis®8ror R5, initiates the OR-token iR4 - the
resultant marking is the same. Thus, the merge of the datams$ofmoving in forward direction)
and the negative tokens (moving in backward direction) islelled by OR-causality instead of
arbitration. This is the main advantage of the counterflovdehover the antitoken model.

The major drawback of the counterflow model is the complexabietur of its registers. It

91

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

is difficult to design a fully indicating and hazard-free tmfier for counterflow registers. In-
teresting implementations of such controller were progdsg32, 22]. Due to the complexity
of the counterflow protocol these implementations are sévienes larger than a Muller pipeline
stage. This is particularly disadvantageous when no tokerowing is actually possible. For
example, consider a long linear pipeline with a small secB&aving parallel branches, e.g. for
speculative computation. The token borrowing is only gassivithin sectionS, but in order to
satisfy the counterflow protocol the whole pipeline has tap@emented using large counterflow
controllers.

A combination of counterflow pipeline (for the sections whiequire preemption) and Muller
pipeline (for the rest of the circuit) is a promising way talbasynchronous data path. Such data
path has all advantages of counterflow pipelines (no atlaitrapreemption, early evaluation,
speculation) for the price of moderate area increase cadparMuller pipeline. The hybrid data
path can be modelled by combining spread token and counteséimantics of SDFS model as is

described in Section 5.5.

5.5 Hybrid semantics

The idea of combining a counterflow pipeline with a Mullergdipe originates from [107], where
PN models and gate-level implementations for convertetswden different pipeline types were
proposed. The subject of this section is to capture the etnawf such hybrid pipeline in special
SDFS model, which is a combination of spread token and cdilowemodels. The main idea for
this model is that only those parts of data path which maykeéixpreemption should be modelled
by the counterflow semantics while the rest of the data pathldrhave the spread token seman-
tics. Such a syndication of the token game semantics isocalgbrid SDFS model. One of the
ways to achieve this hybrid functionality is to introduce arpf converters between the spread
token SDFS nodes and the counterflow SDFS nodes. For thigtlogé SDFS registerR needs to
be extended with a special kind of regist€&rs_ R, which have spread token type of interface on
one side and counterflow interface on the other side.

A spread token to counterflo@T2CF) converter behaves as a spread token register t@#s p

set and as a counterflow register to its postset. Only nodbsspiead token semantics are allowed

92

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

in the preset of an ST2CF converter and only nodes with cdilmiesemantics are allowed in its
postset. The set of ST2CF converters is denote@fa&F C C.

A counterflow to spread tokdCF2ST) converter appears as a counterflow register toatepr
and as a spread token register to its postset. The preset B2&TCconverter can only contain
nodes with counterflow semantics, while its postset onlyadinodes with spread token semantics.
The set of ST2CF converters is denotedC85%5" C C.

The behaviour of ST2CF and CF2ST converters is somewhat symiaal. They are used in
pairs forming structures of fork-join type. An ST2CF corteeris used as fork interface from a
part of the data path without early propagation to the paitt @veral concurrent branches where
preemption mechanism is employed. These concurrent bearate subsequently joined into a
CF2SF converter which limits the early propagation and ippg@®n to the fork-join part of the

data path.

Marking semantics

The ST2CF and CF2ST converters should be able to accepttifpes of tokens: ordinary to-
kens (used in spread token model), OR-tokens and AND-tokesed in counterflow model).
Therefore the marking of the converters is definediis= M x MOR x MAND where function
M: C — {0,1} is spread token marking)°R: C — {0,1} is OR-marking and”"NP: C — {0,1}

is AND-marking.The semantics of these markings are the senmrespread token and counterflow

models, respectively.

Enabling state

The hybrid enabling state for SDFS converters compriselreetcomponents. The first compo-
nent is enabling staté: C — {0,1} for the spread token part of all converters. The other two are
sF:C— {0,1} and=B: C — {0,1} which are forward enabling and backward enabling states of
the counterflow parts. The semantics of these enablingsséagethe same as for the registers of

spread token model and counterflow model.

Operation of ST2CF converter

The enabling and disabling conditions for the spread tokehqs an ST2CF convertere CSTF

93

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE

DATA PATH OF ASYNCHRONOUS CIRCUITS
are the same as for a spread token register:

o () =MOA A ZKA A M@

keecnL

geecnR

o (©=Mcen A ZKA A\ M(a)
keecnL

M (a)
and it becomes disabled when (c) = 1.

gcecNR
The spread token part of an ST2CF conveaerCS™CF becomes enabled when (c) = 1

c
The forward enabling and forward disabling conditions far tounterflow part of an ST2CF
converterc € CSTF are similar to those of a counterflow register. The major #fiogtion is

because an ST2CF converter does not have any counterflows imoidke preset and the marking of
its spread token part is taken into account instead:

af (c) = MAND(c) AM (c); af (c) = MANP(c) AM (c)
register:

The backward enabling and backward disabling conditioestaa same as for a counterflow

kecenL

a(c) =MAP (A A\ ZBk)A A MOR(s)

seceNR

kecenL

o® (0 =M"PeAn A ZBK)A A MOR(s

scceNR
The counterflow part of an ST2CF converee CS™°F pbecomes forward enabled when

of (c) = 1 and it becomes forward disabled whefi (c) = 1. Similarly, it becomes backward
enabled whew?® (c) = 1 and it becomes backward disabled wizeh(c) = 1.

Once the spread token part of an ST2CF converter is enablewyi accept a spread token,

these marking conditions are:

providing all the spread token registers in its R-presetraaeked and its counterflow part does not
have an OR-token. When the spread token part becomes disablay lose the token. Formally,

94

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

m. (¢) = MOR(Q) AZ(c) A A M(q)

gexc

m_(c) = MR(c)AZ(c)A A\ M(q)

gexc
The spread token part of a converter CS™CF can be marked with a token whem (c) = 1
and can be unmarked whem. (c) = 1.
The marking and unmarking conditions for the counterflont pran ST2CF converter are
identical to those of counterflow register. The only simgidifion is that there are no counterflow

nodes in the preset of a ST2CF converter:

MOR(c) = WPWBTG) A (3 (0 28(0) 1\ AT

gecx

mOR(C) :MAND(c) A <z|:) VIB(c > /\ MAND

gecx

miNP(c) = MOR(c) A 27 () A 2B () A \ MOR(q)

+
gecx

MNP (¢) = MOR(c) A ZF () A ZB () A A\ MOR(q)

gecx
The counterflow part of a convertere CS™CF can be marked with an OR-token when
m?R(c) = 1 and the OR-token can be removed wingtR(c) = 1. Similarly, it can be marked

with an AND-token whem?NP(c) = 1 and the AND-token can be removed wietP (c) = 1.

Operation of CF2ST converter
The forward enabling and forward disabling conditions fa tounterflow part of a CF2ST con-

verterc € C°F2ST are identical to those of a counterflow register:

oL (©=M"Pe) A A =g\ M)

keecnL geecnNR

95

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

" ()=M"Pe)n A ZF(A A MOR(q)

keecnL geecnR
For the backward enabling and backward disabling conditityere is a significant simplifi-

cation compared to the counterflow registers. This is dubaddct that there is no counterflow

nodes in the postset of a CF2ST converter and the marking spitead token part is taken into

account instead:

a2 (c) = MAND(c)AM (c); 0B (c) = MANP(c) AM (c)

The counterflow part of a CF2ST converter becomes forwarthledavhena? (c) = 1 and
it becomes forward disabled wherf (c) = 1. Similarly, it becomes backward enabled when
d®(c) = 1 and it becomes backward disabled wizgh(c) = 1.

The spread token part of a CF2ST converter C°F2ST becomes enabled when there is an
OR-token in its counterflow part; it becomes disabled when@iR-token leaves the converter.

These enabling and disabling conditions can be formalised a

g, (c) =M (c) AMOR(c); o (c) =M (c) AMOR(c)

Marking and unmarking conditions of the counterflow part d€B2ST converter are sim-
ilar to those of a counterflow register. Formally, for a CF2&hverterc € C¢F2ST the OR-

making/unmarking conditions and AND-marking/unmarkirgnditions are:

mOR () = MAND(G) A (37 () V3B (c)) A\ MAND(q)

gexc

mP (c)= MAND(C) A <ZF—(C)\/ZB—(C)) A /\ MAND(q)

gexc

miN° () = MOR(e) A 27 () AZB () A A\ MR ()

gexc

96

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

P (c) = MOR(c) AT () AZB(0) A A\ MOR(g)

gexc
The counterflow part of a convertere CcF2ST can be marked with an OR-token when

m?R(c) = 1 and the OR-token can be removed wimg?R(c) = 1. Similarly, it can be marked

with an AND-token whem?NP(c) = 1 and the AND-token can be removed wietP (c) = 1.
Finally, the marking and unmarking of the spread token plaat©F2ST converteg € CCF2ST

are determined by the following conditions:

M. (¢) =Z(c)A AM(S): m_ () =Z(© A AM(S)

seck sccx
These conditions are derived from the marking and unmark@mglitions for the spread token
register, assuming there is no spread token register in theeget of a CF2ST controller. The
spread token part of a converiee CC2ST can be marked with a token whem, (c) = 1 and can
be unmarked whem_ (c) = 1.
Consider the operation of the hybrid SDFS model on a simpdengke shown in Figure 5.7.
At Step 1 only ST2CF convertdR2 is enabled and a token propagates into it as Step 2. This
forward enables the counterflow part of the controller andeits an OR-token at Step 3; the
counterflow registeR3 and the CF2ST convert®&5 are forward enabled now. Also the tail of
spread token is removed from disabled regiferat this step. At Step 4 both forward enabled
registerR3 and forward enabled CF2ST converl get marked with OR-tokens and backward
enable the counterflow part of ST2CF conve@®. The OR-token in registdR3 also forward
enables registeR4 and the OR-token in CF2ST converf®b enables its spread token part. At
Step 5 the counterflow part of ST2CF converi®r is marked with AND-token because it has
an OR-token and is both forward enabled and backward enalfMdsb a token propagates to
the spread token part of the CF2ST conveRBr At Step 6 a token is removed from the disabled
spread token part of the ST2CF conveRR@r also a token propagates from the CF2ST conv&5er
to the registeiR6. The forward disabled counterflow part of the ST2CF corvdR® is freed of
OR-token at Step 7, which forward disables the regiBr At Steps 8 and 9 OR-tokens first

leave the registeR3 and then the registé&4, which forward disables the counterflow part of the

97

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

CF2ST converteR5. Now OR-token disappears from the forward disabled CFa8iverterR5,
thus disabling its spread token part. Also the regi&érand the ST2CF convert&2 become
backward disabled, see Step 10. Finally, the rest of thestexgi return to the initial state at

Steps 11 and 12.

5.6 \Verification of SDFS models

Direct verification of the SDFS models is a difficult task asrthare no formal methods and no
software tools to do this. It is however reasonable to reheevariety of verification methods
and model checking tools developed for Petri nets. In ordlelotthis a conversion technique is
required, which maps SDFS models into equivalent Petri nets

An SDFS model with its token game semantics is a high levelgigm. At the low level this
model can be viewed as a Petri net, or more precisely an STWhich each state variable of the
SDFS model is represented by elementary cycle

An elementary cycle models a state of a binary variadde{0,1} by two placesx = 0 and
x =1, which represent the value associated to variablélhere is at least one transitioa-
and one transitiox— between places = 0 andx = 1, such thak+ € (x=0)e, X+ € o (x=1),

X— € (Xx=1) e, x— € o(x=0). Transitionx+ determines the change of variable state from 0 to 1,
while x— represents the change of the state from 1 to 0. Transitigrendx— may also connected
to read-arcs which enable the transitions only when a cectamdition is held.

Consider the mapping of spread token model into elementaies of PN. In this model a
combinational logic nodee L is associated with a single evaluation state variatile and a pair
of evaluation conditior€ ;. (1) and resetting conditio&_ (I) (see Section 5.3 for details). Atthe PN
level this is modelled as an elementary cy€lg) shown in Figure 5.8(a). The read-arc connected
to =(I) + allows this transitions to fire only when enabling conditin(l) = 1 is held. Similarly,
transition= (1) — becomes enabled only if its enabling conditi&n(l) = 1 is held. Note that for
readability of the figure the variable naragl) is only shown in the middle of the elementary
cycle; places and transitions associated with this vagiabé labelled in a shorthand notation. In
particular, places (I) =0 and= (1) = 1 are labelled0’ and’1’ while transitions= (1) + and= (1) —

are labelled+’ and’—' respectively.

98

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

—CE()=1

(a) Logic nodd € L (b) Register node € R

Figure 5.8: Underlying STG for spread token SDFS

99

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Mapping of a spread token register into a PN is illustrategigure 5.8(b). There are two state
variables associated with a register R: enabling stat& (r) and markingM (r). Therefore two
elementary cycles are required to capture the registenvimeireby a PN. Condition (r) = 1
ando_ (r) = 1 control transitions (r) + andX (r) — respectively. The former denotes when the
register is enabled and the later when it is disabled. Ligkewihe change of register marking is
defined by conditionsn, (r) = 1 andm_ (r) = 1, which enable transition! (r) + andM (r) —
respectively.

Usually the enabling conditions on the read-arcs are margtex than a single variable. Such
conditions should be represented into a disjunctive nofarad (DNF). Then each DNF clause is
mapped into a separate transition of the elementary cydesanh variable of the clause is read
by its own read-arc.

In order to illustrate how the enabling conditions are repreed by means of read-arcs con-
sider a simple spread token example shown in Figure 5.9(aje that the combinational logic
nodel?2 is tagged withEE label, which means it can evaluate as soon as one of its inputs
ready. Let us concentrate on mapping of this node into anesitary cycle= (12). The evaluation
condition associated with this node§s (12) = =(11) vV M (r2) while the resetting condition is
£ (12) ==(11)AM(r2).

For the evaluation phasg (12) = 1 implies(=(I11) =1) v (M (r2) = 1). This expression has
two DNF clauses, therefore transitiai(12) +, which is controlled by the conditiod_ (12), is
split into a pair of transition& (12) + /1 and=(12) + /2. Transition=(12) 4 /1 is enabled when
place=(11) = 1 is marked and transitioR (12) + /2 is enabled by a token in pladé (r2) =1,
as shown in Figure 5.9(b). Firing either of these trans#iohanges the evaluation state of node
12 € L, which models the early evaluation.

At the reset phasel_ (I11) = 1 implies (= (11) =0) A (M (rl) =0). This expression has a
single DNF clause and therefore both read-arcs, one frooe@él1) = 0 and the other from
placeM (r1) =0, are connected to the same transifiofhi2) —. This means that both places must
be marked to allow the reset of notee L, i.e. no early reset is possible.

Elementary cycles for the rest of the nodes are built the same Note that the resultant

STG is consistent by construction because the positive agdtive transitions of each signal (or

100

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

rl 11
\—’ 12 13
r2 EE
I B
(a) Static data flow structure
M(r1)=1
{0 2(rl) 1 M(r3)=0
/'E'%/ =(12)=1

0 X(r3) 1}

\Iilg\ (12)=0
(r3)=1
{0 M(r1) 1 (r3)=1
/Dé (r1)=1
- — M(r2)=1
rl
0 M(r3) 1
e M0
3 M(r1)=0
>(r3)=0
e W31
(r2)=0

(b) Petri net

Figure 5.9: Mapping SDFS with spread token semantics into fet

101

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

variable) alternate in each the elementary cycle.

Consider the conversion of SDFS models into PNs on a moristieddenchmark, e.g. ARISC
processor whose SDFS model is shown in Figure 5.10(a). Ehésrelatively small example
which consists of 17 combinational logic nodes and 14 registHowever, its underlying PN is
quite big even for a basic spread token semantics witholy pespagation, see Figure 5.10(b).
The PN consists of 45 elementary cycles: 17 elementary £§otecombinational logic nodes and
28 elementary cycles to represent 14 registers. The nanpaaafs and transitions are hidden as
they are not readable at this scale. It is still possible &tke correspondence of the elementary
cycles to the original SDFS nodes - their relative layoutresprved.

Due to high concurrency this PN has more thah dt@tes and therefore cannot be verified by
analysing the whole state space in reasonable time. Forggaitntook Petrify three hours before
it ran out of memory. Instead, verification tools based onyaigof unfolding prefixes should be
employed. The unfolding prefix for this PN has only 164 evamd is built by Punf [64] in 18ms.
Analysis of the resultant unfolding by MPSAT confirms tha thodel of the ARISC processor
does not have deadlocks.

In this section a method for mapping of high-level spreacgitoEDFS model into low-level
PN has been presented. The same technique can be used tortaéltling PNs for other SDFS
models. The only difference is in the number of elementantes/representing the state of SDFS
nodes. For example, in counterflow model each combinatiogét nodel € L is associated with
two state variables, the forward evaluation stfe(l) and the backward evaluation st&é ()
which are mapped into a pair of elementary cycles. A couwtgrfegisterr € R has four state
variables: forward enabling" (r), backward enabling®(r), OR-markingM® (r) and AND-
markingMA (r). Each of these variables is represented by its own elenyecyale. The transpar-
ent correspondence between SDFS and PNs allows to reusé chedking tools developed for

PNs to verify SDFS specifications.

5.7 Comparison of SDFS token game semantics

All the token game semantics presented in this chapter leieddvantages and drawbacks. In

this section the models are informally compared in few aspeghich are summarised in Ta-

102

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

(b) PN model

Figure 5.10: ARISC processor

103

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Table 5.1: Comparison of SDFS token game semantics

Token game Model Model Early Preemption Conflict Control
semantics complexity power | evaluation | mechanism resolution complexity
Atomic token simple limited no no n/a simple
Spread token simple good partially no n/a simple
Antitoken complex excellent yes yes arbitration complex
Counterflow moderate excellent yes yes OR-causality moderate
Hybrid simple/moderate excellent yes yes OR-causality| simple/moderate

ble 5.1. In particular, the model complexity, model powemtcol complexity, support for early
evaluation and preemption are compared.

The SDFS token game semantics can be classifibdsisandadvancednodels. The former
models only capture basic features of the asynchronougpdttawhile the later are able to capture
more advanced concepts, such as preemption and specul@tiearly, the atomic token and the
spread token semantics belong to the class of basic moddls,the antitoken and the counterflow
are advanced models.

In the basic model category, both the atomic token and theasipioken models have similar
complexity. However, the atomic token semantics can onhaglied to some class of well-
formed SDFS, which limits its model power. The spread tol@mamntics represents a much wider
class of asynchronous data path circuits and has a rudingesutpport for early evaluation (within
one pipeline stage). Therefore, the spread token semanbester choice for basic SDFS mod-
elling.

In the category of advanced models the difference is mastlye complexity of the semantics
and the implementation of control logic. Both, antitokem @ounterflow semantics capture early
evaluation and preemption. However, the counterflow seigghtis simpler token game rules.
Also, the use of OR-causality (as opposed to arbitratiomtitaken semantics) for the resolution
of conflicts between tokens results in a simpler implemeriafior control logic. These advan-
tages make counterflow semantics a better choice for modeiDFS with early evaluation and
preemption.

The hybrid token game semantics has the advantages of kaglt, &ind advanced models.
In this model the relatively complex counterflow semantgsnly used in those parts of SDFS

where preemption can be exploited to speed up the data patthelrest of the SDFS simple

104

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

spread token semantics is employed. At the level of impldatiem this results in significant area
decrease compared because the ordinary Muller pipeligeste much smaller than counterflow
pipeline controllers.

Verification of SDFS models is based on their conversion stloematic PNs, as has been
described in Section 5.6. The verification tools which ugeekplicit state space representation
of the underlying PN fail even on relatively small SDFS ex#&msp The reason for this is a high
level of concurrency in SDFS models, which leads to the stpee explosion. The high level
of concurrency does not cause a problem for unfolding-baedtication tools because unfolding
prefixes capture the concurrency in a very compact form, eoafge to the size of original PNs.
Choice becomes a problem for unfolding though, becausedtexte branch needs to be unfolded
and stored explicitly. However, there is not much choicehim 8DFS models. The only source
of choice is early evaluation, which is usually limited tavf@odes where concurrent branches
synchronise. In our experiments, if no early evaluation alémsved, the unfolding time did not
exceed few seconds even on relatively large SDFS exampteaicimg few hundred nodes. |If
early evaluation was enabled, then benchmarks of up to arbdmdunterflow SDFS nodes could
be verified using unfolding-based tools. The benchmarkltedased on PUNF unfolder and
MPSAT model checker [64] are presented in Table 5.2.

All the benchmarks in Table 5.2 have combinational logice®dith early evaluation. In
the small benchmark, which has 27 nodes only, the presence of earlyatim is not critical
for the unfolder - it handles both spread token and counteriemantics within a second. For
theaveragebenchmark, which has 70 nodes, the counterflow semanticsrisca problem - the
unfolding prefix grows much larger than the PN and it takegipdao minutes to build. The
hybrid SDFS model becomes useful in this case. If the coflotesemantics is only applied to
those 12 nodes which can exhibit preemption, then the uinfpldize is much smaller and the
computation time is just 4 seconds. Tlhege benchmark, which consists of 524 nodes, is verified
in 2 seconds under spread token semantics. However, if thet@dlow semantics is applied, the
computation time exceeds 38 minutes; if the hybrid semamsicised with 96 nodes exhibiting
preemption, then the computation time is reduced to 8 minditberefore, few hundred nodes is a

practical limit for the size of SDFS models which can be vedfby our method within acceptable

105

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Table 5.2: Benchmark results

Benchmark Model SDFS size PN size Unfolding size | Computation
semantics | (basic/advanced)| (place /transition) | (event/ cutoff) time (sec)
spread token| 2710 1721783 125/3 <1
small counterflow 0/27 484 /193 524 /18 <1
hybrid 17/10 318/135 351/19 <1
spread token| 70/0 452 /205 2,063/92 1
average counterflow 0/70 1,080/ 463 20,933 /858 117
hybrid 58/12 602 /261 7,668 /443 4
spread token| 524 /0 3,352 /1,520 6,570/192 2
large counterflow 0/524 9,324/ 3,448 144,574 | 6,444 2,319
hybrid 428196 4,632/1,976 83,476 /7,484 492
spread token| 58/0 436 /188 29719 <1
ee?2 counterflow 0/58 1,212 / 440 4,202 /212 2
hybrid 36/22 780 /304 3,015/219 1
spread token| 58/0 436 /190 309/13 <1
ee3 counterflow 0/58 1,212/ 442 11,516 /742 15
hybrid 25/33 952 /364 9,652 /793 8
spread token| 58/0 436 /192 321/17 <1
eed counterflow 0/58 1,212/ 444 31,604 /2,783 291
hybrid 14744 1,124/ 424 30,163 /2,805 199
deadlock hybrid 5/19 300/128 26,658 /5,407 103

106

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

time.

Let us study the influence of early evaluation on the size &ldimg prefix and computation
time using benchmarkse2 ee3andee4 These benchmarks are essentially the same SDFS, but
with different number of early evaluating fork-join block¢wo, three and four early evaluating
blocks, respectively. The early evaluating block in thesadhmarks is such that any of its three
inputs is sufficient to produce the output. For the spreadri@emantics the number of early eval-
uation blocks does not change the unfolding time or size nbedause there is ho preemption in
this model and the early evaluation is limited to a singlespie stage. Contrary, for the counter-
flow semantics both the size of unfolding prefix and its corapoih time grow exponentially with
the number of early evaluation blocks. This is due to the eggwintroduced by early evaluating
combinational logic nodes.

In the last benchmark, calledkadlock the evaluating and resetting conditions of combina-
tional logic nodes were modified to force a deadlock in the ehod/erification of the model

revealed a trace leading to a deadlock state.

5.8 SDFS with dynamic elements

Let us consider a following situation: data that comes ingseetion of the data path may need to
be processed via two alternative computation paths, omdfisgntly slower than the other. The

decision which computation path to take is produced by thmrobpath, which is external to the

data path. In a fully static data flow model that has been ptedein this chapter, both paths
will have to start executing the computation simultanepudlthough the faster result can be
output immediately by making the join element early propi&gain order to start the next wave

of the computation the execution of the slower path stilldset® be completed. If a more complex
token game, such as counterflow, were used in the pipeliea,ttie execution of the slower path
could be interrupted. However, in the modelled system only path is enabled at a time, and
the computation in the other branch should not start at der&fore, it is not always possible to

model the expected behaviour using SDFS.

107

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

5.8.1 Dynamic elements

To resolve this limitation, it is necessary to introducensats that would model the influence of
the control path on the underlying data path. These elenaatsalleddynamic,because they
modify the otherwise static, or deterministic, executi@awflf the model. To model the activity
of the control signals, it is necessary to introduce a newscl# tokens, calledontrol tokens,
that would represent the propagation of the control sigimai way similar to the propagation
of data. As opposed to the data tokens that represent abdatacitems in the SDFS model, the
control tokens need to be associated with the actual datesaln the scope of this work only
two possible values are used, depicte@asken andd-token.

x O X

Figure 5.11: Graphical representation of a control node

5.8.2 Control

The control node acts similarly to the spread token SDFStegiwith the exception that it propa-
gates control tokens preserving their values. Note thatdinérol is allowed to be connected only
to the push/pop nodes or to another control node.

A control node is initially in a disabled state. It can &eablediff all nodes in its preset are
marked with a token. An enabled node canrbarkedwith a @-token if it is enabled, not yet
marked and all nodes in its preset are marked w@htaken, and, similarly, it can be marked with
a@®-token iff all nodes in its preset are marked wittbaoken, thus achieving the propagation of
the tokens while preserving their values. A marked contoalencan becomdisablediff any of
its preset nodes become unmarked, and the token can be mifnowvea disabled node iff none of
its preset nodes hold a token.

If a control node has an empty preset, it is callecdai®rnal controinode. An external control
node is always enabled and can be marked either waft@gken or a@-token in a free choice. A

control node is not allowed to have an empty postset.

108

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Control

interface Control

token

Data token —
Gen| ©
_ .|rTe .
Outer ! Inner
interface ! interface

Figure 5.12: Graphical representation of the push and pdpsio

5.8.3 Push

Push is an element that, depending on the choice made by ti@Iceither forwards the data
token or destroys (acknowledges) it. Paired with pop, it barused to select one of several
possible paths of the data flow. The Push element is compdts#te three blocks: theuter
interface (Ol) theinner interface (I1),and thecontrol interface (CI Figure5.12). The outer and
inner interfaces act as a pair of regular SDFS registerdfoother SDFS nodes, i.e. they can be
enabled, disabled, marked and unmarked; however the ngavigible to its postset and preset
nodes is different. If an SDFS node is in the push node’s priggeads the marking of theuter
interface.If an SDFS node is in the push node’s postset, it reads theingaoktheinner interface.

The transfer of tokens between the outer and inner intesfecgoverned by a special set of
rules, which are as follows. Note thpteset, postset, r-preset, r-postsee defined for the Push
and pop elements in the same way they are defined for requiaS®I2ments [107].

The Ol, Il and CI are initially disabled and unmarked. The @hdecome enabled iff all
registers in the push’s preset are marked and all logic niodée push’s preset are evaluated. The
Ol can become marked with a token iff it is enabled, the Il ah@@ unmarked, the r-preset of
the push is marked. Ol can become disabled iff any of the texgisn the push’s preset becomes
unmarked or any of the logic nodes in the push’s preset besoeset. The disabled Ol can be
unmarked iff the r-preset of the push is unmarked and therhdsked.

The 1l can become enabled iff the Ol holds a token and the Qlsha®-token. The enabled
[l can be marked iff the r-postset of the push is unmarked.

The CIl behaves according to the similar set of rules as a@ambde, with the exception that
it can only accept a token when the Ol is marked, and can benkechavhen the Ol is unmarked.

To summarise, the push element synchronises a data tokée onter interface with a control

109

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

token. If the control token is ®-token, it forwards the data token by transferring it intiitner
interface, and then allows the token to be removed from therdaterface. If the data token is a
©-token, it allows the token to be removed from the outer fate without transferring it into the

inner interface.

5.8.4 Pop

Pop is an element that, depending on the choice made by thmlcagither forwards the data
token or produces a dummy token. Paired with push, it can bd ts select one of several
possible execution paths. Its structure is similar to thehpbut the marking rules are different
and are as follows.

The Ol, Il and CI are initially disabled and unmarked. The @hdecome enabled iff all
registers in the pop’s preset are marked and all logic nad#sei pop’s preset are evaluated. The
Ol can become marked with a token iff it is enabled, the Il imarked, the Cl is holds @-token
and the r-preset of the pop is marked. Ol can become disdblkalyiof the registers in the pop’s
preset becomes unmarked or any of the logic nodes in the pasgt becomes reset. The disabled
Ol can be unmarked iff the r-preset of the pop is unmarked laadl is marked.

The Il can become enabled if the Ol holds a token and the Cisha&-token, or if the Ol
does not hold a token and CI holdatoken. The enabled Il can be marked iff the r-postset of
the pop is unmarked.

The CIl behaves according to the similar set of rules as a@amide, with the exception that
in can only be marked when the Il is unmarked, and can be uredarken the 1l is marked.

To summarise, the pop element first receives a control toKahis a ®-token, it then syn-
chronises it with a data token on the outer interface andteas it into the inner interface. If the

token is a@-token, it immediately produces a dummy data token on therimterface.

5.8.5 Mux and Demux

The multiplexer and demultiplexer are good examples of Henbiasic dynamic elements can be
used. In Figure 5.13 (a), the demux is an element that, démgmh the choice made by the

control, forwards a data token from its input to one of itspouts. This is implemented using

110

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

PUSH

(a) Demux

Figure 5.13: Implementation of the multiplexer and denplatter using dynamic components

enabled O-token 1-token

(a) Control element

control control control
enabled 0-token 1-token
inner

|
\@ {3// enabled
outer inner
marked marked

(b) Push/Pop element

outer
~
enabled

Figure 5.14: Petri net mapping of the dynamic elements

push elements. Depending on the value of the control tokam obthe push elements receives a
®-token and forwards the input token received via the forknelet, and the other one receives a
©-token and blocks the token from entering its correspondeig path.

The mux (Figure 5.13 (b)) is an element that, depending orchloice made by the control,
forwards a data token from one of its inputs to its output. Niimplemented using two Pop
elements. Depending on the value of the control token, ortbeoPop elements receivesoa
token and forwards the input token to the join element, wihigeother one receivesaxtoken and
generates a dummy token that is also sent to the join elewbete it is OR-ed with the actual

data token resulting in the propagation of the data from éected channel.

111

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

5.8.6 Mapping of the dynamic SDFS elements into Petri net frgments

To apply the verification method given in Section 4.4 to thaaiyic elements, it is necessary to
define the set of signals that are to be mapped into elemeryelss.

For the control node (Figure 5.14 (a)), 3 signals are necgse enabling state of the control
node, and the presence of the control token. Because thektolten can carry data, it has to
be represented with more than one signal to encode the “vafube token. The control tokens
are allowed to only have 2 different values: 0 and 1, and thuessignals are enough to encode
the value. The token presence signal can also be encodeglthsisame signals, similar to dual-
rail encoding: the 00 value means “no token”, 10 means “@ogresent”, 01 means “1-token
present” and the value of 11 is not allowed. To build the finoges that need to test only for
the presence of a token (and do not care about its value) ifothreof Boolean equations an OR
construct is used. This approach also allows to extend tteedtanain if need arises simply by
adding additional cycles.

For the push and pop nodes(Figure 5.14 (b)), the number oiregfjsignals is higher because
they act as a 3-way node: they accept control tokens, da¢asadnd can generate (dummy) data
tokens themselves. The signals for the outer and innerfactes are the same as for the usual
SDFS register: enabling and marking, and the signals foctoinérol interface are the same as for
the Control node: enabling and 2 signals for the controlokaue.

Once the Petri net cycles are constructed for each of thalsigihey are ready to be intercon-

nected using read arcs to impose the firing rules.

5.9 Conclusions

In this chapter a new token-based model (called a Static Blata Structure) that captures the
behaviour of an asynchronous data path has been defined.aSleidea of an SDFS described
in [110] has been formalised and extended using three diffesets of token game rules: atomic
token, spread token and counterflow. The rules controlliveghtehaviour of various elements in
an SDFS pipeline (e.g., the marking and disabling of registgropagation of tokens) have been

formally defined and explained for each token semantic. Thamtages and disadvantages of

112

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

each set of token game rules have been analysed. Additipmalybrid SDFS model, which
allows combining the advantages of spread token and cdlawesemantics, has been presented.
An extension of SDFS model with dynamic elements that furéx¢ends the modelling power of
SDFS had been defined.

The strict formalisation of the token game rules was usednfgément an automated ver-
ification technique. SDFS models can be automatically kaéexd into low-level Petri nets for
subsequent verification and model checking by existingstodhe low level traces produces by
those tools can be automatically re-interpreted in termbehigher level SDFS model.

All of the SDFS models presented in this chapter have beetemanted as plug-ins to
Workcraft (Chapter 7) which were used to analyse the adgastand drawbacks of different
SDFS token game rules on a set of benchmarks.

This chapter is based on a number of previously publishedrsdf08, 109, 94].

113

Chapter 6

Interpreted Graph Models

Petri nets [90, 84] have historically been known as a forsnalihat is especially suitable for the
modelling of concurrent and distributed systems. The valugetri nets originates mainly from
the fact that their clean and intuitive graphical notatisdacked by a strict mathematical model
of their behaviour. The graphical notation is very helpfutidg the manual system design and
investigation. At the same time there exists a rich and redtarmal theory of Petri nets as well as
the numerous automated tools that are able to efficientifywearious behavioural properties of
a given net. In particular, model checking [40] is an aut@ddéechnique designed to either prove
that a certain property (e.g., deadlock freeness, redilyadfi a certain marking, etc.) holds for
a given net or to produce a trace demonstrating how the projgeviolated. This information is
very useful for troubleshooting, and often allows to degewt fix errors early in the system design
process.

On the other hand, Petri nets are often seen as a low-levabfam, much like an assembly
language. The size of a Petri net required to describe thevimir of a useful system can become
so large that the designer is no longer able to comfortablygdee and manage it. To work around

this problem, specialised higher level formalisms arerofimployed instead of Petri nets to de-

High-lovel | Wapping j Unfolding | Fini ix | Model checking
model Petri Net Finite prefix

Violation
configuration

; ; Model Petri Net
trace trace

Figure 6.1: High level model verification workflow based orrPaets

114

CHAPTER 6. INTERPRETED GRAPH MODELS

O

v2

vi

v3
vh

v4
Figure 6.2: A directed graph

scribe concurrent systems. Such formalisms include, eofpured Petri nets [60], Conditional
Partial Order Graphs (CPOG) [80], networks of handshakepom@nts [47, 119], the Static Data
Flow Structures (SDFS) model presented in Chapter 5 and wtheys. To be of practical use, the
high level formalisms must be supported by an adequate satadysis and verification methods.
Development of specialised theory and tools for every fémmadel is often impractical — it may
be more efficient to express a formalism in terms of another(ery., a Petri net) for which mature
theory and tools have already been developed. Then, thié oésioe analysis (such as a violation
trace) can be re-interpreted in terms of the original higrel model and presented to the designer
(Figure 6.1). Naturally, Petri nets are a good choice foitéinget model, as their compositions are
well understood, and efficient model checking tools for iRedts are readily available.

A common feature of the high-level models mentioned abowe @so of Petri nets) is the
presence of an underlying static graph structure. Theiaséios are defined using additional en-
tities, such as tokens or node/arc states, which together tlee overall state of the system. We
jointly refer to such formalisms dsterpreted Graph Models (IGM)[he similarities in notation
and expressive power allow a number of basic operationsesetformalisms, such as visualisa-
tion and translation from one formalism into another, to bragalised. More complex operations
on the models can also be used, such as interfacing one nypdahith another. This enables the
designer to model subsystems using the most appropriateafiem, while still maintaining the

ability to simulate and analyse the overall system.

115

CHAPTER 6. INTERPRETED GRAPH MODELS

{ mogpog =1 p0
mo(p1) =1
mo(pa) =0 O

m/(p1) =m(p1) =1 ,m[t)ym/

{ m/(po) = m(po) — 1 t p2
m/(p2) = m(p2) +1

pl
(a) Mathematical interpretation (firing (b) Graphical interpretation
equation for transitiot)

Figure 6.3: Different interpretations of a Petri net

6.1 Basic definitions

Definition 6.1. A graphis a pairG = (V,E) whereV is a set of vertices anf is a set of two-
element subsets &f that define edges representing connections between &ertioden it is
practical to consider the elementsfas ordered pairs5(C V x V), then an edgéa,b) € E is
said to be directed frorato b (and usually called an arc). A graph with directed edgeslisc¢a

directed graph or a digraph (Figure 6.2).

An Interpreted Graph Model (IGMis a pairM = (G, 1) whereG is a graph representing the
static structureof the model and is theinterpretationof the elements of the graph. Note tthas
not strictly defined and depends on the specific interpoetati

For instance, given a Petri nbt= (P, T,F,mp), let G = (PUT,F) and| = (P, T,my,.#),
where.# represents the firing equations, then the Petrinét also an IGMM = (G,) with
the Petri net token game interpretation (Figure 6.3a). rAttévely, letG = (PUT,F) andl =
(P,T,mp, %) where¥ is the set of rules describing the Petri net graphical naatrherM = (G, 1)
is an IGM with a graphical Petri net interpretation (Figur8l§. Similarly, a gate-level circuit
model can be interpreted as a set of logic gates, a set ofisigmaply a graph, or as information
that can be used to produce an image.

The main idea behind the concept of an Interpreted Graph Mettesplit thestructureof the
model from itsinterpretation This allows to apply different interpretations to the samaeking
data structure, similar to how Petri nets may both be in&tgok using the graphical notation or

using the mathematical definitions such as the firing equatibigure 6.3).

116

CHAPTER 6. INTERPRETED GRAPH MODELS

Graphical operation Displayed

: result
: 5]
circle ((4,5),2))
filledCircle ((4,5),1) : VR
curve ((1,1),(1,3),(7,3),(7,1)) 0.0) 1: ‘ll ; >

Figure 6.4: An example of a graphical operation

6.2 Graphical representation of Interpreted Graph Models

Models that have an underlying graph structure are gegeratidered as a set of shapes that
represent vertices and a set of lines or arrows that represiges. For example, in Figure 6.2
a simple directed graph is drawn as a set of circles depistimtices and a set of straight lines
depicting edges. The lines end with arrows that represerditiection of the edges.

For the more complex models, the shapes of both vertices dgelsemay also depend on
some additional state information. For example, a placeRxéta net is usually drawn as a circle
with a number of smaller filled circles inside correspondioghe number of tokens in the place.
Otherwise, however, Petri nets, as well as most other goagkd models, graphically look quite
similar to the basic directed graph. In this section we wikiapt to capture the similarities in the
graphical presentation to construct a general-purpogghgra presentation algorithm.

The relative location of the graphical objects correspogdio the objects in the graph is
determined either manually or using an automated layoli{ameexample of the automated layout
is shown in Figure C.8). When rendered on a computer scraelitianal transform operations
can be applied: the graphical objects may be translatetedsca rotated to give an appropriate
view to the user.

Let ¥ be the set of graphical operations. The individual graphopeerations can be seen
as, for instance, sets of vector graphics commands that eaxdécuted to produce an image

(Figure 6.4). LetZ(g) be a display operatidnthat executes a graphical operatigre ¢ and

19 is assumed to be an external operation, implemented by,agyaphical toolkit. For example, it may be a

117

CHAPTER 6. INTERPRETED GRAPH MODELS

local space model space

-0 1956

\S< l—oc‘a—l‘(‘)f'i‘gm o ‘ model origin

Figure 6.5: Combining a local space drawing function witheasformation

presents the result on the display. Then to display a graphépresentation of a given graph
G = (V,E) itis necessary to define such functigfG) that gives a graphical operation that can be
used produce an image Gfand evaluateZ(y(G)).

Let € € ¢4 be an empty graphical operation that produces no imageg;leg, be a compo-
sition operation ove® that produces a graphical operation that is the sequengaugion of the
operationgy; andg,. LetD be a functiorD : V UE — ¥ that associates a graphical operation with

every object in the graph. Then

£, if V UEis empty
¥(G) = G=(V,E) (6.1)

O D(n), otherwise
nevVUE

Itis usually natural that all objects of the same type argvdrasing the same graphical opera-
tion. For instance, every vertex in a graph is drawn usingaecof the same size and in the same
colours. However, if functiorD that associates the same graphical operation with evegcbbj
were used in equation 6.1, thény) would display all objects drawn on top of each other, which
is obviously not the desired outcome. It is therefore pecattio assume that there exists a function
Diocal that produces a set of graphical operations relative toa mmordinate space. The function
D can then be derived fromqc5 and anaffine transformatiorassociated with every object. This
way using the correct transformations the objects of theesyme can be drawn using the same

graphical operation but will assume the desired arrangemehe final image (Figure 6.5).

function that rasterises a sequence of vector graphics emmsnand paints the result in a window.

118

CHAPTER 6. INTERPRETED GRAPH MODELS

Let A be the set of all allowable affine transformations. [Z&tbe a transformation functién
T 19 x A — ¢ that given a graphical operatigre ¢ and an affine transformatiahe A produces
a graphical operatiog’ such thatZ(d') displays an image that i¥(g) transformed byd. Let X
be a functionX : V UE — A that associates each object in the graph with an affine ttemation.

Equation 6.1 can then be rewritten as

g, if V UEis empty
¥(G) = G=(V,E) (6.2)
O 7 (Diocal(n),X(n)), otherwise

neVUE

which given an appropriat¥X will produce the correct graphical operation that can beluee
generate an image of the gra@using 7(y(G)).

So far in this section a grapt = (V,E) has been extended with an interpretation-
(Diocal, X) Which a graphical representation for this graph to be folyndéfined. Combining
G andl into a single object we get an Interpreted Graph Mddet (G,1). Then

Yiem((G,1)) = y(G) (6.3)

whereDjqcal, Xare inl

which gives a general-purpose graphical operation fundoo any IGM given an interpretation
that definedD;ocq andX.

A pair | = (Djocal, X) associated with a graph = (V, E) whereDqc4 is the drawing function
Digcal : VUE — ¢ and X is the transformation functioiX : V UE — A is called agraphical

interpretationof the graphG.

2Similar to 2, the implementation of the functioff is provided by the graphical toolkit.

119

CHAPTER 6. INTERPRETED GRAPH MODELS

6.2.1 Building a graphical representation of a Petri net

Let N be a Petri neN = (P, T,F,mp) andDP’N_ be a function

local

Dl cals ifneT
DPN (n) — = .
local Diocal(Mo(n)), ifneP

DA (N), ifneF

that defines a graphical operation for an objeetPUT UF, whereD[[,, is a graphical operation

that draws a Petri net transitio,,F;Jcal is a graphical operation that draws a Petri net place with
the corresponding amount of tokert'ﬂfﬁ)ca| is a graphical operation that draws an arc. Xg{ be

a functionXpy : PUT UF — A that associates each object in the Petri net with an affims-tra
formation. LetMap(N) =M whereM = (G,1),G = (PUT,F),l = (D%, Xen) be the function
giving the IGM form of a Petri nelN, such that is a graphical interpretation. Then the equation

6.3 can be used to calculate the graphical representgtjpof the Petri neiN:

yen(N) = viem(Map(N))

To use this equation one needs to associate an affine trarafon not only with places and
transitions but also with arcs. However a more practical isdg derive the shape of a particular
arc from the transformations of those objects that it cotmae€hen the arc will “follow” those
objects even if their transformations change without thedrte change the transformation asso-
ciated with the arc. Letn;,ny) € F be an arc connecting two objeats andn,. Let <7 (01,0,)
be a graphical operatiérthat draws an arc in such a way that it connects the object®idnav
transformation); andd,. Let Xpn(n) = &, n € F whered is the identity transformation. Then
Dﬁ)cal((nl,nz)) = (Xen(M),Xen(M2)), (N1,n2) € F is the graphical representation function for
arcs that does not require to explicitly define arc transéiioms.

To summarise, by converting a Petri net into an IGM form withraphical interpretation, a

generalised algorithm can be applied to produce its graphépresentation. Any other IGM can

3This graphical operation may be implemented, for exampl@ssuming the origins of the local coordinate spaces
of the two objects to be their centres, then using their spwading transformations to calculate the positions df the
centres in the global model coordinate space and then drarcasonnecting the centres.

120

CHAPTER 6. INTERPRETED GRAPH MODELS

b+
b+
a+ a+
(a) A place with one outgoing and one (b) The shorthand graphical notation
incoming arc used in the STG models

Figure 6.6: Graphical notation violating the one-to-oneespondence

Math. model

Visual model

Figure 6.7: A Petri net model visualised using the SDFS gcaplmotation

similarly be extended with such an interpretation allowintp be presented graphically. This

feature is used in the Workcraft framework (Chapter 7) tovjgl® a general-purpose graphical

rendering implementation for the client models.

6.2.2 Using a separate visual model

Sometimes it may be practical to avoid the strict one-to-or@@ping between the objects in a

model and their graphical representations. For exampld&igare 6.6, a shorthand graphical

notation used to represent the objects in an STG model isrshBigure 6.6a shows a fragment

of a Petri net containing a place with exactly one incomind ane outgoing arc. In Figure 6.6b

the same fragment of the Petri net is shown using the shatt®arG notation (the place and

its incident arcs are replaced with a single arc said to aor@aimplicit place. This notation

is useful because such configuration of places is encouhteng often in the STG models and

121

CHAPTER 6. INTERPRETED GRAPH MODELS

ab

[(Ha adb
y —

CHb a+b

]

Figure 6.8: An example of the hierarchical arrangement aplgmodes

using the implicit place concept allows to reduce the vismahplexity of the model’s graphical
representation.

LetM be an IGMM = (G,). Letl = (Myisyal), WhereMyisyal is an IGMMyisyai = (G, 1), =
(Diocal, X). Lety(M) = viem(Myisual) be the graphical operation used to produce the image of the
modelM. Then it is said thalisyqa IS thevisual modekssociated with thenathematical model
M andl is called thevisual model interpretationf the modeM.

Using a visual model interpretation allows to define an aabjt number of graphical repre-
sentations of the same model. For example, the same Pettandhen be presented using the
canonical graphical notation (Figure 6.6a) or using the $o@tion (Figure 6.6b) depending on
the context. A more complex example is shown in Figure 6.Thikexample, large fragments of

a Petri net are mapped into the high level graphical objegisefd token SDFS registers).

6.2.3 Using a hierarchical structure

There are a number of models that are best represented iraachieal fashion: some objects are
treated agparentsof other objects. The transformation function is defineduohsa way that the
transformation of the parent object also affects its chbjeots. For example, in the gate-level
circuit model a gate object acts as a parent for the set oirits(figure 6.8), which means that the
transformations of the contacts are relative to the transdtion of the gate object. Graphically,
this results in contacts “following” the gate object whentitansformation is changed (e.g., when
the user is moving the gate object in the editor). The arnamege of the contacts relative to the
parent gate can still be changed without affecting any atbg@rcts.

Let M be an IGMM = (G,1),G = (V,E). Let| = (Djocal, X,H) where (Digcal, X) is the

graphical interpretation o& andP is the hierarchyfunctionH : V UE — V UE that associates

122

CHAPTER 6. INTERPRETED GRAPH MODELS

each object of the grap® with a parent object. Let

X(n) ifH(N)=0
XH(n) =

X(n)eXy(H(n)) otherwise
be the hierarchical transformation function wheris the transformation concatenation operation

o:AxA—A. Then

y(M) = Viem ((G; (Diocal, Xu)))

is the graphical representation of the hierarchical mdiel

6.2.4 Redefining the display operation

So far in this section the display functia#(g) was defined as a function that given a graphi-
cal operationg displays an image generated by the operation on the scregmedgfining this
function, additional functionality can be obtained usihg same graphical operatign For ex-
ample, instead of drawing the images on screen the grapbpeahtions can be converted to a
serial format such as EPS or SVG and stored to disk. Thisreasuexploited in the Workcraft
framework (Chapter 7) to provide a graphics export functmany model that defines its graphical

interpretation.

6.3 Logic networks

The ideas behind the verification methods for the gate-lewelits (Section 4.4) and the Static
Data Flow Structures (Section 5.6) are quite similar. Inhbcaises, the state of the analysed
system is encoded using a set of binary signals. Their singidhehaviour is captured using the
setandresetfunctions associated with each signal. Those functionsraowhen the signal may
change its state based on the values of a set of other sighlaés a Signal Transition Graph is
constructed in such a way that the state of each signal isdledcosing a pair of complementary
places, and transitions that transfer the token betweese thlaces are arranged in such a way that

the token may only be transferred only when #etor resetconditions are met. The enabling

123

CHAPTER 6. INTERPRETED GRAPH MODELS

of these transitions is controlled using read 4tbsit allow to read the state of other signals non-

destructively. Verification is then carried out on this SWaich is called theverification STG

For the gate-level circuit model the construction of theifigation STG is straightforward.
Each gate is associated with exactly one output signal, laadet and resetfunctions of that
signal depend only on the set of gates directly connecteldetanputs. For the SDFS model the
construction of the STG is more complex, becausestiteind resetfunctions for a given node
may depend on the state of nodes that are not connected tedtlgi(such as, e.g., the R-preset
or a register). Additionally, the state of the SDFS nodestbdme described using more that one
signal per node.

In the previous chapters, the algorithms that produce thication STGs from the gate-level
circuits or SDFS models were defined informally. In this sect formal framework for the
STG-backed verification of high level models is proposedingyshe concept of an Interpreted
Graph Model, the verification method can be applied to anyehttht defines #ogic network

interpretationfor its graph structure.

Definition 6.2. Let S be a set of signals. Le# be a function that associates a sigsat S
with a tuple (Is, f$%, f25¢0\Q), wherels C Sis the set of input signalst$® is the set function
fSet: {0,1}'s — {0,1} of signalse S, f{esis thereset function Fset: {0,1}'s — {0,1} of signal
sc S andV? € {0,1} is the initial value of the signa € S. Thevalue \ of a signals € S may
change from 0 to 1 at any time whd§® evaluates to 1, and from 1 to O at any time wHgfte!
evaluates to 1. Ldtbe a set of input signalsC S. Let O be a set of output signa8 C S. Then a

logic network (LN)s a tupleL = (I,0,.%#).

Let L be a logic network. = (In,Out,.#). Then the functiorf (L) = (P, T,F,mp,A,1,0,Vp)
that constructs a verification STG froimis defined as follows.

Let | = In and O = Out respectively be the sets of input and output signals. S-etinU
Out. Letvp= {\2|se S} be the vector of initial signal values. L&t= Sx {0,1} be the set

of places of the required STG such that0) € P represents the low value of the sigrst S

4Unfortunately, the available verification tools do not rgaise read arcs as a special class of arcs. Read arcs have
to be emulated using two opposite arcs forming a loop. Algothis technique is acceptable for verification, it is not
as efficient as a true read arc would have been.

124

CHAPTER 6. INTERPRETED GRAPH MODELS

and (s, 1) € P represents the high value. LBINF(f) = C be a disjunctive normal form of a
Boolean functionf, whereC is a family of sets oveP. The DNF function is constructed in such
a way that its clauses are sets offeand (s,1) € P corresponds to the positive literal referring
to signals while (s,0) € P corresponds to the negative literal. LRty(S) = sx DNF(f$®) be

the set of rising transitions for the signak S labelled with DNF literals such that for every
clause in the DNF there is a single transition. Similarly,Tigset(S) = s x DNF(f{®®) be the set

of falling transitions for signase€ S Let K = {p,(zC) | (z,C) € Tset(S) U Treset(S), P € C,S€ S}

be the set of read arcs such that each transitisnconnected with a set of places contained in
the DNF clause that the transition is labelled with. Egt, = {(s,0),t | t € Tset(S),S € S} be the

set of arcs connecting the places representing the lowlsigih#es to the rising transitions. Let
Foro = {(s,1),t | t € Treset(S), S € S} be the set of arcs connecting the places representing the hig
signal values to the falling transitions. LB, = {t,(s,1) |t € Tsel(S),S € S} be the set of arcs
connecting the rising transitions to the correspondinggdaepresenting the high signal values.
LetRp- = {t,(s,0) | t € Trese(S),S € S} be the set of arcs connecting the rising transitions to the
corresponding places representing the low signal valuethdop = F U{t,p| (p,t) € K} be the

set of arc loops emulating the read arcs. Tet UTset(S) U Treset(S) be the set of transitions of
the required STG. Lef = Rp; URp- UFy U Fpt_sejﬁoop be the set of arcs of the required STG.

Letmo((s,v)) =V, (s,v) € P be the initial marking of the required STG. Let

(S, —) |f t E Treset
A((s0) =
(37 +) ifte Tset

be the labelling function of the required STG. All the eletseaf the required STG are now
defined. By carefully controlling the names of the signal$ emy violation trace produced by a
verification tool for this STG can be converted into a tragetli@ source high level model.
Algorithm 2 is a possible implementation of the functioim an imperative programming lan-
guage. This implementation works as follows. For everyalignthe input logic network, a pair of
complimentary places is created. A token is put into thegothat corresponds to the initial state
of the signal. Then the set and reset functions are convertedisjunctive normal form (DNF).

For every clause in the DNF of the set function, a rising titeorsis created and connected to the

125

CHAPTER 6. INTERPRETED GRAPH MODELS

two places. For every literal in the DNF clause, a read aroeoting the transition with the place
corresponding to the state of the signal represented byitdval is created. Falling transitions are
constructed in a similar way using the DNF of the set function

Figure 6.9 illustrates the method described in this seci®mpplied to a gate-level circuit

model. Figure 6.10 is the application of the same method ®RRS model.

6.3.1 Using logic networks to verify multi-formalism modek

Definition. LetM be an IGMM = (G, |) wherel =L is alogic network] is called dogic network

interpretationof the modelM.

Let K be a set of models with a logic network interpretation. L be the logic network for
the modek € K. Letn; || n be a composition operation producing an STG from two soulid®@sS
n, andny,. Then

V= || ring (6.4)
keK

is the verification STG of the s&. The operatiorj may be defined in any appropriate way, for
instance as the parallel composition of Petri nets [125)1dfiqn 6.4 is a very powerful compaosi-
tional verification tool. It allows to co-verify and co-sifate an arbitrary set of models of various
types, such as substituting a black box containing an STGifegaion for a part of a gate-level

circuit, or using gate-level circuits to provide the enwineent for an SDFS model.

6.4 Conclusions

In this chapter a class of models called Interpreted Graptdiso(IGM) has been defined. Such
models use a static graph structure and an arbitrary nunfdatespretationsof that structure.
The separation of the structure from its interpretatiot@a generalised algorithms to be intro-
duced. To access those algorithms, an IGM may be extendbdaddlitional interpretations with-
out affecting the underlying static structure or the alyeexisting interpretations. Two important
algorithms that use this abstraction have been describredl¢@rithm for generating a graphi-
cal representation of an IGM and a verification algorithnt tienerates an STG that reflects the

behaviour of the model).

126

CHAPTER 6. INTERPRETED GRAPH MODELS

The concept of an IGM allows to bridge the strictly mathegwdtiobjects comprising the
various formal models used to describe concurrent systeithgaractical algorithms that can be
implemented in a programming language. The Interpretegi@véodels serve as the fundamental

abstraction in the CAD tool Workcraft described in the nehaater.

127

CHAPTER 6. INTERPRETED GRAPH MODELS

Gate-level model Logic network

. I = {input0, inputl, input2, input3}
input1 : © 0 ={g0,91, g2, output0}

output0 I::> f(gO)
input2 ‘ ‘ F(g1)

F(92)
F(output0)

({inputOA, inputl} , input0 A inputl, input0 V inputl, 0)
({inputl input3} ,input0 V inputl, input0 A inputl,0)
{90, g1}, input0 V inputl, input0 A inputl, 0)
{92}, 92,92, 0)

input3

Violation trace

output0+/1

]
g1
O output00 O, O
L

output01

' <inputO+,g0+,input2+,input3+, ;
. gl+,92+,outputO+> .

Figure 6.9: Verification of a gate-level model using a logétwork

128

CHAPTER 6. INTERPRETED GRAPH MODELS

Logic network

SDFS model 1=0 ;
il) '+ O = {r0.enabled, r0.marked, r1.enabled, r1.marked, .
‘ . 10.evaluated, r2.enabled, r2.marked} .
! F(r0.enabled) = (0,1,0,1)
. r0 . . F(r0.marked) = ({rO.enabled“ r2.marked} ,r0.enabled A\ r2.marked,
. 10 2 ! r0.enabled A r2.marked, O) :
. ' F(rl.enabled) = (0,1,0,1) :
; r1 I::>] F(rl.marked) = ({rl.enabled,r2.marked} ,rl.enabled A r2.marked, !
' ! . rl.enabled A r2.marked, U) :
! ' F(l0.evaluated) = ({r0.marked,rl.marked} ,r0.marked A rl.marked, -
. | . r0.marked A rl.marked, O) :
. . ' F(r2.enabled) = ({l0.evaluated} ,l0.cvaluated,l0.cvaluated,0) :
' : ' F(r2.marked) = ({r0.marked,rl.marked,r2.enabled} , '
e ! r2.enabled A r0.marked A rl.marked, :
' r2.enabled A r0.marked A rl.marked, 0)

Verification STG
: r0.marked+/1 ‘

Violation trace .

. . ' r0.enabled 2 marked+/1

! <r0.enabled+,r0.marked+, .)
. rl.enabled+,rl.marked+,) '
' 10.evaluated+, . .
. r2.enabled+> '

r2.enabled-/1

Figure 6.10: Verification of an SDFS model using a logic netwo

129

CHAPTER 6. INTERPRETED GRAPH MODELS

Algorithm 2 Generation of a verification STG from a logic network
let S=1UO be the set of all signals in the source logic network
let V be the required STG, initially empty
for each signal s in S:

create places s0, sl in V
end for

for each signal s in S:
set k = 0
build a DNF sepng from fSe
perform Boolean minimisation* of the SepnFk
for each clause C in SebnF:
create a transition Tg *in V
k = k+1
add arcs (s0,Ts™*) and (Ts'*,s1)
for each literal L in C:
if (L is positive)
find a place P in V
labelled L1
else
find a place P in V
labelled LO
end if
add a read-arc (Ts'*,P)
end for
end for
set k = 0
build a DNF resepyp from fleSet
perform Boolean minimisation of resepng
for each clause C in SebnF:
create a transition Tg ¥in Syggt
k=k+1
add arcs (s1,Ts *,Ts ¥-s0)
for each literal L in C:
if (L is positive)
find a place P in V
labelled L1
else
find a place P in V
labelled LO
end if
add a read-arc T{*—P
end for
end for
end for

130

Chapter 7

Workcraft: a framework for

Interpreted Graph Models

This chapter introduces a computer aided design (CAD) tatéd Workcraft. The tool is a
software framework based on the Interpreted Graph Mod&M]lconcept. Instead of binding
to a particular set of supported models and analysis methtdskcraft implements a number
of fundamental features that can be inherited from the freonle by the plug-ins that realise the
concrete models and tools.

The plug-in driven architecture of the tool allows exterdib with additional Interpreted
Graph Models definitions, new interpretations of existingdels and analysis/verification mod-
ules. By controlling the set of plug-ins that are includethwlorkcraft, the tool can be configured
to serve as a specialised working environment for the desfiggpecific types of concurrent sys-
tems. For instance, Appendix C contains a manual for usingkWaft as an environment for

asynchronous circuit design based on the STG model.

7.1 Objectives

The primary design goal of the Workcraft framework is twofolOne target category of users
are the researchers who would like to provide tool supparttfe new models, while the other
category are those who wish to design, analyse and verifgsgsusing the formalisms that have

already been implemented. To appeal to the former categopitig-in based architecture was

131

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

untitled 1 - Conditional Partial Order Graph [0 [X] || gcd-core - signal Transition Graph [=0] 3]
1000 500 oo 1500 Tio.00 1| |_loon 1100 12000 13000
P
g cn,68,gc+
Scenario A // c12 _dpReq+ _
El
E ' il Yy g /‘(12 dpAck+ T - —
: 8O- ; <. —
7// ~% \ c12 dpReq cn 76_ac+~ T
K \vl c12 dpAck / \
O -O O c4_activate_act_ T\ \
v T T \ \
]] c4 activate_rg- A
% . . /) A
7] B 3 BREAN ~ o 76 rqﬁ ‘c4_activate_ac \ =
A ,o - - . L N
. cn 76_ ac cn 68 T |\, c4_activate_rq+ cn_72 rq—
X [x 4 e ,/ y,
E cn 68_ac- pd / cn 72 acf/
T ‘b_ ’ \ cn_72_ rq+
= | .~
wdpl | e 75 rq+ cn_72_ac+
untitled - Visual Circuit =] p\ \ 7 =
logo 230 1500 1250 11009 — \©’ cn_66 rq+ :
- 9. ;
T o 66 ac+
- cO cut rq+ \
/g TN
c0_ out ac+ |\ \
g }/ — e \ —
B . cn 66 rq— L c(] uu[_rg- \ cn_75_ac+
2l L !
- en_66_: F cn 69 rq cn_ 73 rg- (0 out ac— /"‘ AN e 75 ro-
cn_| 69 e ‘ cns 73 ac T cn 75 ac-
92 ten 69 rq+ | \ cn_ 73 rq+
cn.69_ act+ cn. 73 ac+
. C2 a6 dpReq+
| 18 _dpAck+
‘che,dnkeqf
o s
E c16_dpAck-

Figure 7.1: Working with three different model types sirankously

designed, which allows new formalisms to be introduced withminimum effort (Appendix B)
— the benefits of the graphical presentation, automatedlsation and interfacing with external
tools are inherited from the framework. In addition, soméefimportant algorithms (such as the
Petri net-based verification) are generalised: by progidimodel with a logic network interpreta-
tion (detailed in Section 6.3) the author of the model cantiseverification functionality without
worrying about implementing the Petri net generation arlingathe external tools to carry out

the verification.

7.1.1 Graphical user interface

One of the major features of Workcraft is the graphical ustarface (GUI). Historically, auto-

mated graph layout tools such as Dot [7] have been used tapedtie images of graph-based
models using their graphical notation. This approach isveoy efficient because most of the
models are in fact dynamic. In Petri nets, for example, items transfer tokens between places
according to the token game rules. To observestr@utionof the model state graphically, a series
of static snapshots has to be produced and inspected. Talyetime shortcoming, tools such as

PEP [11, 30, 112] that support the interactive simulatioiefri nets were developed. The tool

132

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

is able to highlight the currently enabled transitions, #reluser can click them to cause them to
fire and immediately see the consequences. This way, theaisémvestigate the behaviour of the
net by triggering the different execution paths.

PEP tool, however, is closely tied to the Petri net model. pesPetri nets being a very
popular model, new models that aim to provide a more specifidatling solution are intro-
duced relatively often (e.g., Static Data Flow Structur@bgpter 5), Conditional Partial Order
Graphs [80]). To successfully apply these models in a pralctiesign workflow an adequate tool
support is extremely important. Designing and implementircustom graphical environment to
support functionality such as visual entry and interacsiveulation for every new models is a task
that usually requires significant effort.

Workcraft's GUI system is designed in such a way that it hasdhost of the routine tasks
such as the creation of document windows, menus and cortiigurdialogues, managing the
Ul layout. Coupled with a generalised graphical presemtatilgorithm for Interpreted Graph
Models, this enables rapid development of model plug-inth wupport for advanced features
such as visual entry and interactive simulation. For exafrplFigure 7.1 a configuration of three
editor windows arranged side-by-side is shown. The windallvsontain different model types.
The plug-ins that define these model types are unaware tblafgnctionality is possible and only

implement the drawing routines specific to the model type.

7.1.2 Tool integration

Most of the tools available in the academia, particularlyha context of asynchronous system
design, are based on the command-line interface. Thistifi¢asbecause such tools are mostly
designed to carry out one particular task (and do it wellj, Witimately results in a fragmented

state of the tool base because there exists a multituderafatane tools but not a consistent devel-
opment environment. From the point of view of a system desigirganising interaction between
the tools may be rather cumbersome: every tool has its owof sstmmand-line arguments and
configuration parameters that are easy to forget, espeeidién a large number of tools is used
in a single workflow.

Workcraft aims to improve this situation by introducinghtweight plug-ins that wrap the

133

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

Signal Transition
Graph

Graphical layout (Dot) Decomposition (Desij)
Composition (PComp) ,v\\ //‘, Dummy contraction (Petrify)
A
Workcraft
Verification (Punf+MPSat) ‘// \\“ Logic synthesis (Punf+MPSat)
Dummy contraction (Desi]) Logic synthesis (Petrify)

Figure 7.2: The tool integration aspect of Workcraft

command-line tools into organisational units called tagktailed in Sections A.3.3 and B.3.1).
The tasks can be chained together to form sophisticatedfleakby using simple and consistent
APIs instead of calling the tools directly. Additionallye tasks can be executed asynchronously
without blocking the rest of the program.

Figure 7.2 illustrates the amount of tools that can be agpbene specific model type (STG).
One of the goals of Workcraft is the integration of those gdnla consistent, user-friendly envi-

ronment.

7.1.3 Formalism interoperation

Workcraft supports formalism interoperability using thEGscomposition operation (see Section
6.3). In this modelling approach different parts of the sgstcan be specified using different
formalisms. To produce a complete model of the system, ths pee individually converted into
STGs, then merged to form an STG that describes the behavidhe whole system which can
then be used for verification. For example, it is often comeminto specify a circuit as a gate
net-list and its environment as an STG. Then the verificatesult (i.e. the violation trace) is
propagated back and presented to the user as a trace ofdgivebmodel (Figures 6.9 and 6.10),

rather than that of the STG to which the model was translaieddrification.

134

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

7.2 Comparison with other tools

The tool closest to Workcraft with respect to the designgsuphy is probably the OsMoSys
framework [123] and its GUI shell called DrawNet [26].

OsMoSys/DrawNet is an environment specifically designedrialti-formalism modelling.
The simulation and verification of the multi-formalism méxlare carried out using a process
calledorchestration which involves simulating each fragment of the compouretgjration sep-
arately, using an algorithm specific to the formalism usechoalel that fragment. The simulation
results are shared between the fragments using adaptked lmadige formalisms OsMoSys and
DrawNet use a custom XML-based language called the Formadisscription Language (FDL)
to add new formalisms to the framework. The language all@adefine model classes, types of
objects (nodes and arcs) allowable in those models, thejigpties and graphical representations.
FDL supports object-oriented features such as inheritandeallows to formulate restrictions on
the structure of the model (e.g., to disallow arcs betweaogd and transitions).

Compared to OsMoSys/DrawNet, Workcraft does not place ashnstress on the multi-
formalism modelling paradigm. The multi-formalism apprbas supported in Workcraft, but
is not a fundamental part of the framework and is realisedpltig-ins of the same level as the
individual formalism plug-ins. This gives Workcraft morexibility with respect to the modelling
paradigms that can be used at the cost of additional developeffort required to implement
them. Workcraft also does not use a custom language to defirealisms. Instead all of the
model logic is written in Java. Similarly, this allows muclora freedom in customising the fea-
tures of a particular model, but requires a slightly more plicated development process. For
instance, the STG model uses the short-hand notation tdagisipe objects of the model but
maintains a standard Petri net in the background. Addingwamhd editing features such as in-
place editing of signal names (Section C.1.2) is also nosiptesin DrawNet without changing
the internal code.

At the time of writing, the DrawNet project seemed to haverbabandoned and neither its
source code or binary distributions were available.

Pep tool [11, 30, 112] is a comprehensive and extensibledwark that includes a set of

utilities for verification of Petri nets. Pep tool supporisoasiderable number of models, including

135

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

process algebrae, high-level and low-level Petri netgritalso export the models into a variety of
formats (SPIN, INA etc.). The only models in Pep that suppsual representation are high-level
and low-level Petri nets; in particular, there is no supparcircuits.

The Moebius framework [44] is a tool similar to OsMoSys inttiigfocuses on the multi-
formalism modelling approach, however it does that diffiéle Instead of simulating the various
formalisms individually, Moebius converts each block egzed in terms of a single formalism
into an internal representation which allows composingrtiirgo a monolithic model that is used
for simulation and verification. A comparable approach isdusy Workcraft to enable multi-
formalism modelling. In contrast to Moebius, Workcraft siske STG model as the base model
type that the other formalisms are translated into. Thisnaadlre-using the Petri net verification
tools instead of maintaining its own verification code.

Visual STG Lab [59] is a tool for the visual editing of STGs.€ltool is tightly integrated with
Petrify [41] and is able to apply operations implemented étriB to the STG models designed
using the GUI. The tool does not support any other model tgpésols. The development of the
tool is discontinued, and the existing version suffers fig@arious issues.

Overall, the main design decision that makes Workcrafedifit from the other similar tools
is that it does not focus on algorithms for a particular mdgipe, analysis tool or a modelling
paradigm, but aims to provide a common environment, opeyatystem of sorts, that helps to
“glue” the existing tools together allowing to use them inangistent manner. For example,
Workcraft provides the visualisation and editing functbty for Petri nets, but does not have any
internal verification routines. Instead, it relies on entds tools such as Punf [64] and MPSat [67]
to carry out the verification. Then it is able to parse thefigiion output and present it to the
user in a graphical manner. Similarly, Workcraft is intedd with the tools such as Petrify, Dot
and DesiJ and benefits from their algorithmic power whilehat $ame time providing the tools

with a user-friendly front-end.

7.3 Tool architecture

The Workcraft framework consists of three major parts (Fégr.3). These parts are the plug-in

manager that scans and categorises the plug-in classaésfaeprices accessible to the plug-ins,

136

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

Workcraft

I

I

Uses plug-ins Core . . |

to provide functionality framework TR S EANUEES :
> 1

Services !

Plug-in
manager

management

I I
External process||
b
o

b e e e — -

« __| Loadsthe | o o 77”7”7J
plug-ins
Plug-in modules

Model
definitions

Additional
plug-ins

I
I I
I I
I I
I I
I I
I I
| |
: Tools :
I I
I I
I I
I I
I I
I I
I I
I I
I I

,,

Figure 7.3: The architecture of Workcraft

and the core part of the framework that manages the startidgslautdown processes, the GUI

windows and also provides the scripting support for the camaidine mode.

7.3.1 The framework core

The main responsibility of the framework core is to start tileer systems that together form
Workcraft. The start-up sequence works as follows. The gardition manager is the first com-
ponent to be started. It loads the configuration files andvallother components to read their
configuration variables in a centralised fashion. Thenptbhg-in manager is initialised. It either
reads the plug-in manifest (if it is present) or starts thgyph reconfiguration process. When all
of the plug-ins are loaded, the start-up scripts are exdcUieese scripts contain additional start-
up logic that can be customised by the user. At this pointfalhe sub-systems are initialised.
The framework core then decides what actions to take nexkasnming the command-line ar-
guments. Workcraft can optionally be started in the comrdaredmode, in the script execution
mode (a specified script file will be executed and the progrdlirttven quit), or, if no arguments

are supplied, Workcraft start in the default graphical ustsrface mode (a detailed explanation

137

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

of the various modes of operation is given in Appendix A). Wlilee program is shutting down,

the configuration manager is informed so that it can saveuheit configuration to disk.

Configuration manager

The configuration manager is responsible for storing thdigoration variables and provide the
other components with a centralised way to access thosalesi This allows the system compo-
nents (including the plug-ins) to use the configurationratee without worrying about saving or
loading their configuration parameters: the configurati@nager loads the variables on start-up

and automatically saves them to disk them on shutdown.

JavaScript engine

JavaScript is used as the scripting language in Workcrdfé scripting engine allows to execute
script files or individual commands to further customiseftivetionality of the framework without

having to go through the process of building a complete jplugtodule. For example, Section A.2
describes a script that can be used to automatically progeater graphics from the STG models

without having to use the interface.

7.3.2 The plug-in manager

The plug-in manager is responsible for discovering the {iugodules and categorising the in-
dividual plug-ins. Its functionality is realised using tfedlection mechanism of the Java language
that allows the Workcraft run-time to dynamically load Jal@sses and inspect them to establish
what interfaces they implement. Those classes that impiethe Module interface defined by
Workcraft (see Section B) are instantiated and initialisBdiring the initialisation each module
is allowed to register the individual plug-in classes tmpliement some extended functionality.
The nature of the functionality is defined by the Java intarfidnat the plug-in implements (the set
of plug-in interfaces is pre-defined). For each plug-inrii@ee the plug-in manager maintains a

list of registered plug-ins that implement it. When anothart of the framework needs to know,

1A “plug-in module” is a related collections of plug-ins thagether implement specific functionality such as a new
model.

138

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

File Edt View Utlity Help Tools

ged - Signal Transition Graph 1 = | gcd_clean - Signal Transition Graph 1 = ["concur - Signal Transition Graph 1 x
oo

T1000 1550 12000 12500

activate_ac+-———

s
abel
abel colo
oregroun
E — tpu
. e ™~ ignal name _lactivate_ac
activate_rg- R
i \
activate_ac- /\

f . SEOEE

[activate _rq+
| _

— \ Tool controls
/ . \
activateOut0_rq+ aCtIVate?Ut;l<qu+ \
— | activateOutl_ac+
activateOutO_ac+ | ‘\ activateQut=_ac
\ . * activateoutl]
. | activateOutl_rg-
activateOut0_rqg- | |
E i ‘\ \ /
T | Load marl
activateOut0_ac- activateOutl_ac- [———
or

El
B Simulation: click on the highlighted transitions to fire them

[output ™ x| Problems = |Javascript x| Tasks =

Now in GUI mode

Figure 7.4: The graphical user interface of Workcraft

say, what tools are currently available for the current nhitdamply passes the corresponding

interface to the plug-in manager which responds with thefiplug-ins.

Plug-in reconfiguration

Reconfiguration is an automated process during which theentnof the plug-in packages are
analysed, and a list of all discovered compatible plug-g1$uilt and stored in a special file.

During start-up, the plug-in manager uses this list to Idal glug-ins instead of scanning the
contents of the plug-ins directory every time, which grneatiduces the start-up time. Workcraft
automatically reconfigures itself during the first starf-hpwever if any changes are made to the

set of plug-ins in the future the reconfiguration must beggigd manually.

7.3.3 The graphical user interface

The graphical user interface (Figure 7.4) is fully managgiorkcraft, allowing the plug-in au-
thors to focus on implementing the desired functionalityhafir tools and models without having
to worry about things such as window creation and placemé&he underlying window toolkit

used by Workcraft is the Java Swing, which ensures comtigtilsind consistent look across

all platforms. Workcraft supports a number of advanced Gafabilities, including a multi-

139

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

public class SignalTransition extends Transition

{

public Type getSignalType() {

public void setSignalType(Type type) {

public Direction getDirection() {

}

Object source code

return type;

this.type = type;

return direction;

Property editor
X 3.00
L -1.00
Label
Label color]
Foreground color | [N
Fill calor
Transition
Signal type Internal
Signal name signalo
Instance 0
Figure 7.5: The property editor

public void setDirection(Direction direction) {

}

this.direction = direction;

Automatically serialised object

<node class="org.workcraft.plugins.stg.SignalTransition" ref="b-">
<SignalTransition>

<property class="org.workcraft.plugins.stg.SignalTransition$Type"
enum-class="org.workcraft.plugins.stg.SignalTransition$Type"
name="signalType"
value="INPUT"/>

<property class="org.workcraft.plugins.stg.SignalTransition$Direction"
enum-class="org.workcraft.plugins.stg.SignalTransition$Direction"
name="direction"
value="MINUS"/>

Figure 7.6: An example of automated serialisation

document interface, the full-screen mode, the non-ovpigpwindow docking system and the

persistent window layout manager (the window layout comégan is saved to disk when the

GUI is shutting down, and restored on the next start-up).

Most of the utility windows (e.g., the new model creationldgue or the pages in the pref-

erences window) are automatically constructed by Workarsihg the information provided by

the plug-ins. Similarly, a graphical property editor (Rigr.5) that provides support for the user-

friendly editing of various property types (such as nunan@lues, strings and colours) can be

used by the model plug-ins without having to explicitly spethe underlying GUI components.

A detailed explanation of Workcraft's GUI features is givarAppendix A.

140

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

7.3.4 Automated serialisation

The automated serialisation feature is very helpful to kjyiget a working implementation of
a new model in Workcraft. It uses the features of the Javauage that allow it to inspect the
objects contained in a given model to determine their typeseatract the declaration of properties
they contain. The object types and the values of the exttgmteperties are then recorded using
an XML-based format (Figure 7.6). A set of frequently usedparty types (numbers, strings,
colours, vectors, matrices etc.) is supported “out of the’ lamd models that use those property
types to describe the state of their components can be sadeldaded as Workcraft documents
without any additional effort from the author of the modeligiin. If needed, the set of the
automatically managed property types can be extended witalisation plug-ins. For advanced

models that define their own serialisation format the autansarialisation can be disabled.

7.3.5 Visualisation

Workcraft uses the generalised Interpreted Graph Modelalisation algorithm given in Sec-

tion 6.2. Any model that defines the drawing and transforomatiinctions for its node types can
be used with the visual editor provided by Workcraft. Auwili editing operations, such as con-
trolling the viewport via panning and zooming, selecting amoving individual nodes, choosing

the nodes to be connected etc. are inherited from the frankesval need not be implemented.
Vector graphics export function that saves the model’s lycab representation in the Scalable
Vector Graphics format (SVG) can also be automatically iggplo any model that defines the

drawing functions mentioned above.

7.3.6 External process management

A mechanism for managing external processes (e.g., veidfictols) is built into the Workcraft
framework. Tool plug-ins relying on external programs cae this feature to avoid manually
writing the code that starts and monitors the execution ofjams. The task monitoring code is
executed on a separate thread which allows executing tomsuening processes without blocking
the reset of the program. Workcraft automatically placésxkernal process tasks into the task

manager interface. The task manager maintains the list niraling tasks and allows the user to

141

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH M@&DS

cancel individual tasks.

7.4 Availability

Workcraft supports all major OS platforms (Windows, Lintkac OS) and is freely available for
academic use. The latest binary distribution can be dowleld&om the tool web site [20]. Please
see Appendix A for installation instructions and the usenuah. Alternatively, Workcraft can be

built using the source code. The building process is detailé\ppendix B.

7.5 Conclusions

In this chapter, a software framework called Workcraft wasoiduced. Goals pursued during the
design and development of the tool were explained. The t@s eompared to the previously
existing similar tools. An overall architecture of the t@wid the individual services accessible to
the plug-ins were described.

Workcraft is based on the concept of Interpreted Graph Motlelt was explained in Chap-
ter 6, which allowed a number of formal models to be impleraérnh a visually consistent and
inter-operable fashion. These models include Signal TiansGraphs [126], Static Data Flow
Structures (Chapter 5), Digital Circuits, Conditional tRaiOrder Graphs [80] and other. The tool
has been successfully used in a number of practical applisa¢see Chapter 8).

Workcraft has been previously presented in [95, 92, 93].

142

Chapter 8

Use cases

The Workcraft framework based on the Interpreted Graph Modecept has been successfully
used in a number practical applications, some of them erqgoyomplex interactions between

several different model types. Several examples are pegsémthis chapter.

8.1 \Verification of asynchronous circuits

The asynchronous circuit verification method describedhager 4 was applied to the following

designs.

Verification of a counterflow controller A counterflow stage controller implementation pub-
lished in [22] was verified and found to be hazardous. A dedaéixplanation of the verification

process and the problem with the circuit that was discovisrgilen in Section 4.6.

Verification of the flat arbiter design Arbiters are special blocks controlling access to shared
resources. They play a very important role in asynchron@asitdesign an it is therefore critical

to ensure their correct implementation. A method of coms$itng N-way arbiters was presented
in [81]. The ‘flat’ arbitration method proposed in the papepiione to threats such as formation of
cycles, leading to deadlocks. The construction algoritmes@nted in the paper gives the correct
implementations of N-way arbiters that are deadlock-free.

The circuit verification method presented in this thesigl(anplemented in Workcraft) was

143

CHAPTER 8. USE CASES

fab
mAB ™ :
o
fba '
I WA 0A
™\ dac L
ra 4&./ | ‘ﬁ :I_c\ ga
|/ ’_}/ |_/ ‘
fac ‘
mAC DJ
: B
D |me fea : dbe L =
a —\\l/‘ 1<) o
R
wB
mBC g 3 ,3&
) [|C gc
re fcb |
S
—Q
R
Pairwise Reset Computation of | _Completion
arbitrations filter ' matrix B i detection

Figure 8.1: Implementation of a 3-way flat arbiter

applied to ensure that the resulting arbiter circuits aadttek-free and conform to the environ-

ment specification.

Verification of a multi-resource arbiter A different class of arbiter circuits was studied in [50].
They are the general-purpose arbiters distributing M nessuto N clients for the cases when the
resources can be either active or passive participantsedrhitration. In the paper, the arbitra-
tion problem is first solved for the case of two active resesirbeing offered to two clients (the

implementation is shown in Figure 8.2). Then a general prokdolution is provided.

The implementations of the arbiters were verified using \tiad.

8.2 Static Data Flow Structures simulation and verification

Workcraft played a crucial role in the development of the SDRodel (Chapter 5). An essential
property of the logic nodes in the model is the possibilitgafly evaluation (EE) —the situation
where just a subset of inputs is sufficient to start produtiiegcomputation result. In such a case,
all the other inputs are no longer required, and it is besetw s signal to terminate their com-
putation in order to save power and time. There are sevarabtpf SDFS capable of expressing
datapaths with EE, including spread token, and counterflow.

Systems with EE often have very intricate behaviour, and itery easy to introduce subtle

144

CHAPTER 8. USE CASES

T
N
T
N
-

Clg H11] (5\ H11 Rl
< Hi2 | (‘5\ .(C H21
C1r T - l r1 R1r
adilmpe Ve 12 ME JLE
—]
T+ ITna T R
C2r c2] ¥
o g (&7 LY | o
C2g H22 R2g
H12 H22
Figure 8.2: Implementation of a multi-resource arbiter
E
(a) Initial state (b) Deadlock state

Figure 8.3: Counterflow SDFS verification example

errors when designing them. For example, the shortest temckng to a deadlock in a (rather
small) Counterflow SDFS model in Figure 8.3 contains 29 stdjss problem would be rather
hard to discover using the manual simulation, due to a verg bnd peculiar sequence of events
that leads to the deadlock. In this example, Workcraft wées abt only to detect a deadlock, but
also to graphically reproduce, step-by-step, the prohlienesent trace. This has led to a better
understanding of the limitations of the Counterflow SDFS etpaind provided the motivation and

essential ideas for further adjustment of the token ganesrul

145

CHAPTER 8. USE CASES

8.3 Asynchronous circuit synthesis based on Conditional Paal Or-

der Graphs

Conditional Partial Order Graph [80] is a formalism for diitcspecification that combines advan-
tages of both Petri nets and Finite State Machines: it doefiane the explicit notion of states
(unlike Petri nets) and models the choice on the level ofclaginditions (unlike FSMs). The

specification size of a highly concurrent system with midtigombinational choice is often much
smaller in the CPOG model than in a PN or FSM one.

CPOG support was implemented in Workcraft. The CPOG mod®ans to be the formalism
with most links to other model types (Figure 8.5). Asynclmas circuits can be synthesised
directly from CPOG specifications, and verified for speatkpendence using the verification
algorithm described in this thesis. A CPOG model can alsoieettly converted into a Petri net,
and checked for properties such as deadlocks. Petrify soobe used as an alternative method
of synthesising the same specification, and its result cacob®ared with that of CPOG-based

synthesis so that the user can choose the best one.

8.4 Modification of the workflow of Balsa asynchronous circui syn-

thesis system

The asynchronous controllers obtained by syntax-direstagping (see Section 2.2.1) methods
realised is systems such as Balsa [47] are usually not optbeeause the pre-designed imple-
mentations of the handshake components are required terngpit their declared protocols fully
and correctly in order to be reusable in all possible circoitfigurations. However, it is often
the case that a significant part of their functionality beesmedundant due to the peculiarities of
the specific configuration, e.g. in many cases full handsiggketween the components can be
avoided.

This redundancy can be eliminated by replacing the mandaljgned gate-level implementa-
tion of the high level components with an equivalent STG (Fég8.4). The individual component
STGs are then composed together to form a complete system@Tich is optimised using Pet-

rify [41]. An optimal gate-level implementation can then d&etomatically produced from the

146

CHAPTER 8. USE CASES

Paralleliser

out0_rq+~—e—out0_ac-

activate

activate_ac-—e—activate_rq+

/
\ ><0Utoac+
activate_ac+

out0_rg-

activate 1 activate 2

activate_rqg- out1_rq+-—e—out1_ac-
out!_ac+ out_rg-
Sequencer
out!_ac+ out1_rg-

activate

activate_rq-——activate_ac+ out1_rq+—e——out1_ac-

activate 1 activate 2 activate_ac--e-activate_rq+

out0_ac+

out0_rg-

out0_rq+——e——out0_ac-

Figure 8.4: The STG specifications of handshake components

STG using tools such as Petrify [41], SIS [103] and MPSat.[@8]tomatic synthesis becomes
problematic when the size of the STG becomes large: modeithesis tools can handle STGs of
no more than 100 signals. The impact of this problem can tsetes] by including STG decom-
position tools [99] into the workflow that would break thegaroptimised STG down into several
smaller STGs that are synthesisable in reasonable timern<ively, the decomposition step can
be carried out on the level of the handshake circuits, digidhe circuit into smaller blocks of
components. The whole process is illustrated in Figure 1.4.

For the purpose of implementation of this design flow the Wiaf framework was extended
with a plug-in that introduces support for Breeze [28] hdnadke components. The handshake
component model allows Workcraft's visual editing toold®applied for the creation and editing
of Breeze net-lists. The same plug-in also performs geioaraf the STG behaviour model from
a given handshake circuit. The STG generation algorithnesgihed to be highly customisable,
with support of multiple handshake protocols and variou& $fplementations for each type of

component.

147

CHAPTER 8. USE CASES

8.5 A development environment based on the STG model

A configuration of Workcraft that makes it possible to usettiw as a feature-rich development
environment based around the STG model is described in Aly&h The tool is able to im-
port and export STG models from the .g file format, automigiaggenerate the graphical layout,
perform logic synthesis using various tools (Petrify, MP&ad DesiJ), compose and decompose

STG models.

8.6 Conclusions

In this chapter a number of practical applications of the kbaft framework based on the Inter-
preted Graph Model concept were presented. These incledapiplication of the asynchronous
circuit verification method presented in the Chapter 4 of thesis for the verification of a coun-
terflow data path controller and two different types of atst the simulation and verification of
the SDFS model; the modification of the Balsa asynchronoigiitisynthesis system and the
application of Workcraft as an asynchronous circuit dgwelent environment based on the STG

model.

148

CHAPTER 8. USE CASES

System specification

Signal Transition

Signal Transition

Partial orders

(Scenarios specification)

l Composition

Conditional Partial

Graph Graph Order Graph
(Environment specification) (Controller specification) (Controller specification)
.. ‘\. [.
\
Synthesis (PETRIFY) Mapping Synthesis Mapping
\
\
- Gate-level '
Mapping) . \
circuit .
(Controller implementation) \
> 8,
Composition \ g |
]
=
\ \ 5,
L v 5
1
Annotated , :
. Petri Net . !
Petri Net /
! /7
! ’
s
7 d
e

Formal verification
(PETRIFY, PUNF, MPSAT)

Statistical analysis
(simulation)

Figure 8.5: A complex model interoperability example

149

Chapter 9

Conclusions

In this thesis, several formal models and methods releatftet design of asynchronous circuits
were presented. The methods were implemented within a amdtivamework called Workcraft

which was also detailed.

9.1 Summary of the contribution

In chapter 2, the fundamental concepts behind the theorgyofciironous circuits concepts were
given, such as delay models, operation modes, control, mtatacols and the classification of
circuits. The most widely used approaches to the designyoicasonous circuits were discussed
including an overview of the tools implementing these téghes.

In chapter 3 a formal definition of the Petri net model thatfteroused in the thesis is given.
Using two illustrative examples, the token game of a Petriwvas explained. A number of prob-
lems characteristic to concurrent systems were highlidgraed it was shown that Petri nets are
highly helpful in discovering such problems. Several praps of Petri nets relevant in the context
of the thesis were defined.

In chapter 4, a method for verification of asynchronous disausing Petri nets was proposed.
The method checks a circuit given together with a specifoatf its environment for hazards and
deadlocks. Among the advantages of the proposed methaatii tises the well-established Petri
net tool base to solve the verification problem. This allohsasing the most efficient verification

tool based on the structure of the original circuit. The perfance of the new method was com-

150

CHAPTER 9. CONCLUSIONS

pared to the previously existing verification techniquesréctical application example involving
the verification of a previously published asynchronous gath controller circuit was given. The
verification revealed critical problems with the controlghich provided the motivation for the
development of a formal model for asynchronous circuit giait.

In chapter 5, a new formal model of the data path in asynchusiwearcuits was detailed. The
model, called the Static Data Flow Structure (SDFS) is caatgla to the Register Transfer Level
(RTL) used in the design of synchronous circuits. In contt@the RTL model, it provides means
to describe complex behaviours suctpesemptionearly evaluatiorandspeculatiorthat are use-
ful in an asynchronous data path. Preemption is a techniduehvallows the destruction of data
objects in a computation pipeline if the result of compuatatis no longer needed, reducing the
power consumption. Early evaluation allows a circuit to poe the output using a subset of its
inputs and preempting the inputs which are not needed. lousggon, all conflicting branches
of computation run concurrently without waiting for the eseting condition; once the selecting
condition is computed the unneeded branches are preenigtediroposed Petri net based verifi-
cation technique is especially useful because of the comature of these features. A possible
extension of the SDFS model that allowed to model the inflaerid¢he control path was investi-
gated.

In chapter 6, a modelling abstraction called an Interpr&€eaph Model (IGM) was introduced.
This abstraction allows to separate the structure of a gbagled model from the interpretation of
the objects that it contains. By associating different rimtetations with the same underlying
structure, various generalised algorithms can be applied.important algorithms were given in
the chapter to illustrate the usability of the IGM concepheTirst example is an algorithm that
allows to produce a graphical representation of a grapbebasodel with minimal effort. The
second example is the generalisation of the Petri net-basdttation approach used in Chapters
4 and 5 that enables the application of the technique to atlogiels, which is particularly useful
for the multi-formalism modelling approach.

In chapter 7, a software framework called Workcraft was gmésd. Workcraft is designed to
provide a consistent development environment based oousgraph-like models. The frame-

work is heavily based on the Interpreted Graph Model (IGM)aapt which greatly facilitates

151

CHAPTER 9. CONCLUSIONS

the introduction of new model types. The chapter explaitedgoals pursued during the design
and development of the tool, compared the tool to other amsiblutions and detailed its software
architecture.

In chapter 8, a number of practical applications of Workicaaid its underlying IGM concept
were presented, including the verification of several asgomus circuit designs, debugging of
the SDFS model, implementation of asynchronous circuitr®gis method based on the Con-
ditional Partial Order Graph model and the modification &f workflow of Balsa asynchronous
synthesis system.

The features and capabilities of the Workcraft framewosk farther detailed in the appen-
dices. Appendix B explains how to introduce new models awtstmto the framework from a
programmer’s point of view. Appendix A contains the ovewief the graphical user interface
of Workcraft from a user’s point of view. Finally, Appendix @resents an example of using

Workcraft as a development environment based on the STGImode

9.2 Future work

The Workcraft framework that bases on the concept of Ingeeor Graph Model has proven itself
to be a useful tool in the context of asynchronous circuiigies However, there is still much
work to be done before Workcraft meets its ultimate goal —aodme a complete development
environment for the design of asynchronous circuits.

In particular, the asynchronous circuit verification methwoposed in this thesis can be im-
proved by introducing means of detecting livelocks. Theeerare cases of circuits that can be
caused to be stuck in an in an infinite loop by the environnepieating some actions but never
achieving progress. The verification method describedigtttesis is unable to detect such be-
haviour. The method could also be improved by adding sugdportelative timing assumptions,
which would allow to exclude potential circuit failures tltan never happen in practice due to the
timing constraints.

To make the SDFS model more practical, a method for trangldlie abstract SDFS specifi-
cations into concrete asynchronous circuits has to be alegdl Such method would be especially

useful if realised in the Workcraft framework to complemém already existing methods for

152

CHAPTER 9. CONCLUSIONS

verification and synthesis of asynchronous controllers.

To improve the modelling power of Workcraft, a hierarchicabdelling solution could be
implemented. In this paradigm a system would be composed usodular blocks in such a way
that the designer could control the observed level of detdin of the sub-blocks. For example,
a model of a CPU on the highest level of abstraction would isbrs large blocks such as the
ALU, the microcontroller, the register banks etc. Using therarchical modelling method, a
designer would be able to “descend” into one of the high Isuélblocks to explore and change
its specification. The specification of the sub-blocks cdagdexpressed using different formal
models, such as, e.g., the CPOG model for the microcontrétie SDFS model for the data paths
in the ALU, the STG model for an external communication unieeen manually designed blocks
for components such as the arbiters in the data bus comgroBecause each of these models can
be translated into fragments of asynchronous logic, thelevhmdel could be compiled into a
monolithic gate-level implementation.

In order to support such modelling approach, a meta-modsdshé& be implemented. This
model would be an IGM in itself, and its nodes would be the Hayel blocks containing the
specifications expressed using the lower level formalisGeeral levels of abstraction could be
introduced, where the specifications of the sub-blocks aigo be meta-models. Additionally,
support for a library of standard elements (e.g., arbitengtexes, registers) needs to be imple-
mented. Using the library, the designer would be able tai#ite the pre-designed blocks to

build a complex model instead of assembling them manually.

153

Appendix A

Workcraft user manual

This appendix contains a general manual for Workcraft. [il&xs the steps required to in-
stall, configure and run the tool and gives an introductionusimg the two operating modes:

the command-line and the GUI.

A.1 Installation and system requirements

Latest Workcraft distributions are available from its wete $20]. The distributions currently do
not include an automatic installer. To install Workcratie files from the distribution archive need
to be extracted manually into the preferred directory.

There are no strict system requirements to run Workcraé,athly requirement is that the
system has a compatible Java Runtime Environment. Perfaenaf the tool was found to be

acceptable on any modern machine, including those basdtemiawer Intel Atom processors.

A.1.1 Setting up the Java Runtime Environment

Workcraft requires a properly configured Java Runtime Bmvritent (JRE) version 6 or higher to
run. The standard JRE [8] is provided by Sun Microsystemsisadailable for Windows, Linux,
and Mac OS. OpenJDK [10], the open-source Java Developmigrdlso includes a compatible
JRE.

Workcraft is regularly tested only against Sun’s propngt#DK, and may have performance

issues when run using OpenJDK. It is therefore recommermgditch to Sun’s JRE if any unex-

154

CHAPTER A. WORKCRAFT USER MANUAL

/ — Workcraft distribution root
/plugins — Directory containing the
plug-in packages
/config
config.zxml — Configuration variables
plugins.xml — The plug-in manifest
uilayout.xml — Layout of the UI elements
workcraft. js — Windows startup script
OR
workcraft.sh — Mac/Linux startup script

Figure A.1: The Workcraft distribution structure

pected behaviour or performance problems arise.
In Ubuntu (and derived operating systems) the Sun’s priamsie)DK is available through the
package sun-java6-jdk, which may be installed either ugiegSynaptics package manager or by

running the following command:

sudo apt-get install sun-java6-sdk

For better performance in GNU/Linux operating systems #él& recommended to turn off

the desktop effects managers (e.g. Compiz).

A.1.2 Distribution structure

Figure A.1 shows the structure of the distribution. The atiwey called “plugins” is of particular

interest to the user: it contains the plug-in packages thatige the implementation of various
Interpreted Graph Models and the supporting tools. By miagaiipe contents of this directory,
Workcraft may be configured to provide the necessary funatity. The plug-in management
process is straightforward: the plug-in packages (in thenfof jar files) may simply be added to
or removed from this directory.

The directory called “config” contains three files. The “cgmfiml” file contains various user-
defined configuration parameters such as visual prefereagtsnal tool paths, etc. This file is
usually updated from the GUI, however it is stored in a humeadable XML format and may be
edited manually if some variables need to be changed witarting the GUI. The “plugins.xml”
file contains the list of plug-ins found during the reconfaion process (see Section A.1.3). It

should never be changed manually. Finally, the “uvilayout’file contains the layout parameters

155

CHAPTER A. WORKCRAFT USER MANUAL

of the user interface elements. If it is removed, the Ul véliet to the default configuration. This
may be useful for troubleshooting and can also be done frenGtil (Utility — Reset Ul layout

in the main menu, see Figure A.4).

A.1.3 Plug-in reconfiguration

If any changes are made to the contents of the “plugins” ttirgcWorkcraft must beeconfig-
ured Reconfiguration is an automated process during which theents of the plug-in packages
are analysed, and a list of all discovered compatible phsgs built and stored in the “config/plu-
gins.xml” file. During startup, Workcraft uses this list twad the plug-ins instead of scanning the
contents of the directory every time, which greatly redubesstart-up time. Reconfiguration must
be triggered manually, either by starting Workcraft frora tommand-line with the “-reconfigure”

argument, or using the GUULility — Reconfigure plugins the main menu, see Figure A.4).

A.1.4 Launching Workcraft

In the Windows distribution, the start-up script is calledricraft.js and can be run either by
double-clicking on it in the Windows Explorer window or byping “workcraft” in the command-
line window (the current directory should be the directaxyr&cted from the distribution archive).
In the Linux distribution, the script is called workcraft.and can be similarly run either from the
command-line (“./workcraft.sh”) or from a graphical file nager.

When creating an application launcher in a desktop envienir(also called a “shortcut” in
Windows), it is necessary to ensure that the working dirgd®set to the root of the Workcraft
distribution. It is possible to set the working directorytive shortcut properties tab in Windows,
however in some Linux desktop environments (e.g., GNOMUpJieation launchers do not have
such a parameter. To work around this limitation, the siarcommand must change the working

directory before launching Workcraft. One way to achieve ihas follows:

bash -c¢ "cd [Workcraft distribution directory] && ./workcraft.sh"

156

CHAPTER A. WORKCRAFT USER MANUAL

File Edit View Search Terminal Help

Initialising javascript... A
Loading plugins configuration...

Loading module: Built-in XML serialisers for basic data types
Loading module: Built-in file operations for Workspace
Loading module: Built-in exporters for Workcraft models
Loading module: Built-in tools

Loading module: Petrify tool support

Loading module: Conditional Partial Order Graphs

Loading module: Petri nets

Loading module: Punf, MPSat and PComp tool support

Loading module: Signal Transition Graphs

Loading module: Gate-level circuit model

Loading module: Desi) tool support

Running startup scripts...

Startup complete.

js=stg = framework.load('seqg.work').getMathModel()
org.workcraft.plugins.stg.STG@487a1576

js=stg.getSignalTransitions().size()

12

js=stg.getSignalTransitions().get(@).getSignalName() 6
activate ac |
js=

Figure A.2: Workcraft running in the interactive commairntlmode

A.2 Command-line mode

Workcraft supports two different modes of operation: thenozand-line mode and the GUI mode.
The command-line mode is implemented using a JavaScrigipirgter and may be used either in
the interactive mode or in the batch mode. The interactivédaratlows to execute single JavaScript
statements and immediately see their results (Figure Al#.batch mode is used to execute a set
of script files without user interaction.

Workcraft is started in the interactive command-line mosieg the “-nogui” argument:

./workcraft.sh -nogui

Alternatively, “exec:filename” argument is used to run amdile without interaction:

./workcraft.sh -nogui -exec:gtosvg.js seq.g

The command-line mode allows to use Workcraft for procesbiterpreted Graph Models as
a part of a larger task. In Figure A.3, an example script i®githat produces an SVG image
of a Signal Transition Graph given in the form of a .g file. Tloei® works as follows. First,
the STG model is imported from a .g file using the DotGImpoctass. Because the .g file does
not define any visual layout information for the model, a gismodel must be created explicitly.
When that is done, the dot layout plug-in (implemented bydass DotLayout) is applied to the

model. Finally, the model is exported to an .svg file using3SN&Exporter class.

157

CHAPTER A. WORKCRAFT USER MANUAL

This script may be run as a standalone command as shown aBgmagt from producing
the SVG files, this command can be used, for example, as a farsteell script to generate a
PostScript image of the STG (using the Inkscape editor):

./workcraft.sh -nogui -exec:gtosvg.js $1
inkscape $1.svg --export-eps=$1l.eps --export-text-to-path

Workcraft uses the Rhino engine to execute JavaScript. BBecRhino is implemented in
Java, it allows to use the Java objects directly from JavpSand therefore no special objects are
needed to organise the interaction of the script with thelkéfaift's core objects. A useful tutorial

on using the Rhino JavaScript implementation to interath d@va programs is available in [13].

A.3 GUI mode

The GUI mode is the default mode used by Workcraft. In this epdte interaction with the
Interpreted Graph Models is done via the visual editingrfatee and the interactive tools. The

GUI mode also provide facilities for managing larger prtge@Vorkspace).

A.3.1 User interface overview

The default GUI configuration is shown in Figure A.4. This figaration is used when Workcraft
is started for the first time, or when the GUI layout is resebgdained in Section A.1.2. All of the
interface windows can be re-arranged by the user, and tbeti@pnfiguration will automatically
be saved and restored during the next start-up of the program

The user interface of Workcraft consists of eight main elemias shown in Figure A.4.

The main menu (1) is composed of the “File” and “Edit” menust gorovide the general file-
and editing-related operations, the “View” menus that masatthe visibility of various GUI ele-
ments and the “Tools” menu that contains the automaticallycsed set of tools that are applicable
to the current model.

The editor tabs (2) allow to switch between the individuata@dwindows. The editor win-
dows (4) provide a graphical view of the current model andriteface of the selected tool. These
windows are used for navigating the model and support srélising the mouse wheel) and pan-

ning (holding the middle mouse button and dragging) opanatto control the viewport. The same

158

CHAPTER A. WORKCRAFT USER MANUAL

importPackage(org.workcraft.util);
(
(
(

importPackage(org.workcraft.workspace);

importPackage(org.workcraft.plugins.interop);

importPackage(org.workcraft.plugins.layout);

if (args.length !=1)

{
}

else

{

println (".gufileunamemissing,,aborting’);

printin ("Converting,,' + args[0] + 'Lto," + args[0] + ".svg’);
stglmporter = new org.workcraft.plugins.interop.DotGlmporter();
svgExporter = new org.workcraft.plugins.interop.SVGExporter();

dotLayout = new org.workcraft.plugins.layout.DotLayout(framework);

modelEntry =
org.workcraft.util.Import.importFromFile(stglmporter, args[0]);

visualModel =
modelEntry.getDescriptor().getVisualModelDescriptor().create(modelEntry.getModel

0);

modelEntry.setModel(visualModel);

workspaceEntry = new org.workcraft.workspace.WorkspaceEntry(null);
workspaceEntry.setModelEntry(modelEntry);
dotLayout.run(workspaceEntry);

org.workcraft.util.Export.export ToFile(svgExporter, visualModel, args[0] + ".svg’');

printIn ("Done!’);

}

done();

Figure A.3: A script for automated generation of SVG images.g files

159

09T

Main menu

Editor tabs

®

Editor
window

@

File Edit View WBtility Help Tools

Property editor

/.

gcd - Signal Transition Graph 1 = | gcd_clean - Signal Transitigﬂraph T = | concur - Signal Transition Graph T x

Property editor /

j0.0p 5.0 |10.p0 J15.00 20.p0

125 po

|-10,00

_activate_ac+——___

®

N T
activate_rg-\
i

activate ac-

/ o)

activate rg+

|-5.00

— \
/ .
activateOutO_rg+ act|vate?ut£_rq+

— \ iva
activateOut0_ac+ .\ ‘ actlvateQutl_ac+

| \
\ 1
\ * - -
activateOut0_rg- * l‘ actwiteOutl_rq

\\\ |

activateOut0_ac- activateOutl_ac-

Jo.op

15.00

Simulation: click on the highlighted transitions to fire them

Fill color
Transition +
Signal type Output

®

Editor
tools

Signal name |activate_ac
Instance 0 /
/

Editor tools

Tool controls

Reset

Stop

Step < Step >
\

Load marking

Workspace \@
\

Qutput x | Problems

x | Javascript x | Tasks x

Now in GUI mode.

v

Workspace

®

Tool
controls

concur.g ¥
ged.g*
gcd_clean.g*

Utility windows

@

Figure A.4: The main window of Workcraft

®

\ Workspace

IVNANVIN 43SN 14VHOMHOM 'V d31dVHO

CHAPTER A. WORKCRAFT USER MANUAL

model representation is usually used for the interactiveikition, however this functionality may
be changed by the implementation of a particular model.

Editor tools (5) are used to switch between working modes a8 creating a particular type of
node, creating connections between nodes, simulating titehetc. The tool buttons optionally
define hotkeys that allow to quickly switch between the tadig the keyboard. The hotkey
associated with a tool is displayed when the mouse pointgrsamver the tool button for a certain
amount of time.

The property editor (3) displays the properties of the autyeselected node and provides the
user with the means to change them. The property editor & fmeexample, to change the node
label or its colour, to set the number of tokens in a Petri hetgy set the type and the logical
function of a circuit gate.

The tool controls window (6) contains the control elemerangd by the active tool. In the
figure, the simulation tool is the active tool, and this windoontains buttons that allow to step
the simulation forward and backward, to save and load sitouldraces etc.

The utility area (7) has four tabs: the output, which is usedisplay various information
during normal execution of the program, the problems windust displays errors which might
have occurred during the execution, the JavaScript windawdllows to execute scripts and the
tasks window that allows to control the progress of curgeetlecuted tasks.

The workspace window (8) shows the files that are containddarcurrent workspace (see

Section A.3.2).

A.3.2 Workspace

Workcraft uses the concept aforkspaceo make managing collections of related files easier. A
workspace is very similar to what is usually callegrajectin an integrated development envi-
ronments (IDE) such as Eclipse or Visual Studio. More speadlfi, a workspace is a directory in
the file system that contains files and directories that ave/stin the Workcraft's workspace win-
dow (Figure A.5), allowing to perform actions on those filegg the interface of Workcraft. Ad-
ditionally, a workspace stores a setrobunt pointghat are directories external to the workspace,

but are treated as a part of the workspace by Workcraft. Eaitufe allows to share files between

161

CHAPTER A. WORKCRAFT USER MANUAL

Workspace Workspace
Workspace Warkspace
Pipefitter_img0.png SequglnceOpktimised.work
STG ariable warl
While work

gcg-core.o *
STG "gcd-core"

Save

Link external files or diractories...

Create work...
Save as...

Create folder...
%— Open editor
Create work... L:F
— Composition ¥
Link files to the root of workspace... Decomposition s

Save workspace :
Dummy contraction »

Save workspace as...))
Encoding conflicts »

State graph >
Synthesis >
Werification >
Delste
(a) Workspace operations (b) Workspace entry operations

Figure A.5: The workspace window and its context menus

several workspaces.

When Workcratft is started, a temporary workspace is credtbi workspace is stored in the
system'’s standard location for temporary files. All filestthee opened or created will automati-
cally be added to this workspace. Additional external doees may be added to the workspace
either using the main menti(e—Link files to the root of workspager using the context menu
that is brought up by right-clicking on the blank space inWarkspace window (Figure A.5a).
The current workspace may be saved to a user-specifieddoaaing either of those menus.

A context menu for workspace entries is brought up by ridicking on a particular entry.
The contents of this menu depend on the type of the selected Eor example, in Figure A.5b a
context menu for a Signal Transition Graph entry (stored.gnfde) is shown. This menu contains
the same set of tools (applicable to a Signal Transition Brapdel) as does the “Tools” sub-menu
of the main menu. However, it is not necessary to open anredgitaow for the model to access

the tools using the workspace interface.

162

CHAPTER A. WORKCRAFT USER MANUAL

rCreation option rType
B create visual model Conditional Partial Order Graph
B cpen in editor Digital Circuit
Title: Petri Met
[Sequencer‘l 1| | signal Transition Graph h
o

Figure A.6: The “New work” dialogue

A.3.3 Working with models
Creating models

New models are created using the “New work” dialogue (FigAi®. This dialogue is accessible
either from the main menu{le— Create worl, by using the keyboard shortci@tfl+N) or from

the workspace context menu. To create a new model, its typearanoptional title should be
specified. By default, the model is created with the corredpm visual model, but this can be
disabled by unchecking the check-box labelled “Createaliswdel”. Omitting the visual model
may be useful if the new model is not supposed to be edited aflgnbut rather using tools
or scripts. Some model types may also lack support for viedding. If the “Open in editor”

check-box is checked, an editor window will automaticakydpened for the new model.

Import and export

The import operation creates a Workcraft model from a givienaind adds it to the workspace.
The set of supported file types is defined by the set of cuprddded import plug-ins. The model
import dialogue (Figure A.7) is accessible from the main m@fle—Import). It is possible to
import multiple files at once using the dialogue by shiftking on the additional files to add them
to the selection. Itis also possible to filter the displaytssfusing the “Files of type” combo-box,
showing only those that are supported by the chosen impagtipl

Export is the reverse operation, i.e. it creates a file of tagetype from a Workcraft model.

It is similarly accessible from the main menkilé—Expori). Export operations are also defined

163

CHAPTER A. WORKCRAFT USER MANUAL

Lookin: [ESTG v [2]B][E] 3T
El1g [2] concur.g [E] gedil_clean.g
=l 2.g [l fetch.g [£] sequenceoptimised.q
El =g [l ged-core.g [E] variable.g
=] bf.g [El ged.g [£] while.g
(] binaryfunc.g [El ged_g
] callmux.g Elged g
] callmux_.g [El ged clean.g
[l case.g [El gedilg
File Name: | |
Files of Type: |Signal Transition Graph (.g)
’ Open |[Cancel |

Figure A.7: The model import dialogue

Export » visual

New workipace daot (Graphviz dot graph fermat)
Open workspace .svg (Batik SWG generator)

Link files to the root of workspace Non-visual s
Save workspace .g (workcraft STG serialiser)
Save workspace as .ps (Petrify draw_astg)

Figure A.8: The model export sub-menu

by the plug-ins, and it is possible to have an arbitrary nunabearget file formats for a given
model type. For instance, the graphical representationaafelnmay be written as an image file.

In Figure A.8, several possible export targets for a Sigmah3ition Graph model are shown.

Editing

A new visual editor window can be created by right-clicking @model entry in the workspace
window and choosing “Open editor”. The number of simultarshp open editor windows is not
limited by Workcraft. Additional editor windows will be a@thed to the primary editor window
using a tab-panel interface (see Figure A.4, items 2 andg.clrrently active editor window is

highlighted with a black border. Focus can be shifted betwke editor windows by clicking on

Editor tools
[, || [l|m]| %
[C] Connect

Figure A.9: The editor tools window with a hotkey tool-tip

164

CHAPTER A. WORKCRAFT USER MANUAL

Tools
Compaosition >
Decomposition > |10.p0

Dummy caontraction »| Contract dummies (Desi))
Encoding conflicts > | Contract dummies (Petrify) [

= = L2 T
—J[/

Layout H Rt YA

State graph » c4;lacti.llate_rq- | -p
Synthesis >| ca_agtivate_ac- /| /d
werification >4 ac \'.,;le_rq_,_/(?_ T -C

cd_dp- ||
- '\ ||

e y |

Figure A.10: The set of tools applicable for the current ni¢gdie STG)

Output % || Problems X | Javascript XITasks X

MPSat tocl chain(flat_arb3_early_D1D2) Unfelding .g

EPeE e S 9 S 9% S
Showlog |[Cancel

Figure A.11: The tasks window

their contents.

The contents of the toolbox (Figure A.4, item 5) and the “Sdalub-menu (Figure A.4, item
1) depend on the type of the model that the currently acti@redindow holds. When another
editor window is made active, the tools are updated accglgdiffhe editor tools can be switched
either by clicking on the tool icon with a mouse, or by pregdine corresponding hotkey. The
hotkeys are shown when the mouse cursor hovers above théutoh for a small period of
time (Figure A.9).

The set of editor tools and the way they interact with the rhetke the editor window is
completely defined by the model plug-in and the user shouier te the documentation of a
particular model plug-in for reference. The only convensi@re that the mouse wheel controls
the zoom level of the editor viewport, holding the right (oidaie) mouse button and moving the
mouse pans the view. These operations are also accessilé¢hie keyboard+ and - keys control

the zoom level antrl+arrow keyscontrols the panning.

165

CHAPTER A. WORKCRAFT USER MANUAL

Qutput * | Problems * | Tasks % || Javascript X

_ >
(a) Window being dragged to another docking location

IOutput X } Problems X | Tasks x Javascript b

How in GUI mode.

[« I [2]
(b) Window moved to the new docking location

Figure A.12: Changing the interface layout

Applying tools and controlling asynchronous processes

The analysis tools can be invoked either from the main meshasn in Figure A.10 or from the
workspace window as shown in Figure A.5b. The set of appléctdwls is defined by the currently
loaded plug-ins. The tools usually present the user witlakbgue for interaction, although this is
not required. If the operation performed by the tool potdhtitakes a considerable a considerable
amount of time, the tool may choose to start its computalipiratensive process asynchronously,
without blocking the rest of the user interface. When thega®mpletes, the tool will present the
user with the results.

The progress of such tasks can be monitored using the “Tasksibw shown in Figure A.11.
Tasks that are no longer needed or take unexpectedly loranplete may be cancelled from this

window.

A.3.4 Changing the user interface layout

The layout of the user interface in Workcraft is defined ughmgrelation called docking. Every
window, regardless of its type, is assigned a docking regietive to some other window (ex-
cept for the root window that is invisible to the user). Thare two types of regions: the side
regions and the central region. If the window is docked tatleerowindow’s central region, the

two windows will share the same space on the screen, and evipldced into a tabbed window

166

CHAPTER A. WORKCRAFT USER MANUAL

container to allow switching between them. An example ohstdiecking arrangement is the util-
ity area (Figure A.4, item 7). If the window is docked to ar@tlwindow’s side region, they will
be arranged in a side-by-side fashion. The divider betwieem tcan be dragged to distribute the
screen space as required.

Docking of any window can be changed by “dragging” its hedadeahe desired location. As
the mouse cursor is moved over the regions of other winddwsposition that the window would
take if the button were released is shown using a grey shameside-to-side arrangements, a half
of the target window (top, bottom, left or right) is shadear Ehe tabbed pane arrangement, the
whole window area is shaded. Figure A.12 show the windowditDavascript” being moved to
another docking location. In subfigure A.12a, the windoweimg dragged and the grey docking
location preview is seen. In subfigure A.12b, the new doclargtion is accepted and the window
is docked.

The layout is persistent and is restored each time Workigafarted. It can be reset back to
the default arrangement using the main mddtilify —Reset Ul layout

Workcraft has eight standard utility windows. They are “Quit, “Problems”, “Javascript”,
“Workspace”, “Property editor”, “Editor tools”, “Tasksnal “Tool controls”. These windows may
be hidden at any time either by clicking on the close buttongied in the window header panel)
or by using the main menwiew—Window3$. A hidden utility window may be shown again by
clicking its name in th&/iew—Windowsmenu. Those windows that are currently shown will have

a checked box near their name.

A.3.5 Changing the look and feel of the interface

Workcraft uses the Java Swing library for its user interfacais library is designed to achieve
a consistent look across all platforms. The look of the Swinglements is defined by a “look
and feel” package that may be changed on the fly. The look aidi$ed by Workcraft may be
changed using the main menviéw—Look and feél An advanced look and feel package called
Substance [15] is included with the Workcraft distributidinis package provides a large selection
of colour schemes and styles for the Ul elements. Additignalhonours the DPI setting of the

monitor correctly (as opposed to the standard Swing lookfeakl which may be critical for very

167

CHAPTER A. WORKCRAFT USER MANUAL

high resolution displays. To achieve the best performahoeiever, the default Swing look and

feel is the best choice and it is recommended to use it on tiweeslsystems.

168

Appendix B

Extending Workcraft

This appendix explains how to build a Workcraft distribatiffom the source code and how to

extend Workcraft with additional Interpreted Graph Modeakses and tools.

B.1 Building Workcraft

Before building Workcraft from the source code, it is neeegso make sure that the Java Devel-
opment Kit (JDK) is properly set up. This can be checked bingryo run the binary Workcraft
distribution and the command-line Java togésia, javac. If Workcraft does not work correctly or
some of the Java tools are missing, the JDK should be rdedtalhe JDK implementations that
are known to compile and run Workcraft correctly are the Suordsystems standard JDK [8]
and OpenJDK [10]. Most of the development of the main code mdone using the Sun’s JDK.
When running with OpenJDK, Workcraft may have some smali (lot fatal) issues.

Workcraft uses the Bazaar version control system [3] to mgarthe source code base and the
Launchpad collaboration platform [9] to publish the depahent branches and to track issues.
This chapter assumes that the reader is familiar with Baaadrhas it installed (Bazaar web
site [3] contains very good documentation and tutorialsprikifraft web site [20] also contains a

quick introduction to getting started with Bazaar.

169

CHAPTER B. EXTENDING WORKCRAFT

B.1.1 Creating a code branch

This documentation is written against the version 2.0.1 ofRttaft. The following command

will get this code branch:

bzr branch lp:~workcraft/workcraft/2.0.1

The following command will get the main development branch:

bzr branch l1lp:workcraft

Please note that this branch contains the latest develdpuda and may be unstable. The plug-
in API discussed in this chapter is also likely to change ifigantly over time. It is therefore
recommended to use the version 2.0.1 to follow this docuparto refer to the Workcraft web

site for the up-to-date documentation.

B.1.2 Building with Maven

Workcraft uses Maven [1] as its build system — a Maven instialh is therefore required to build
Workcraft. With Maven properly installed and the path toatecutable present in the PATH
environment variable, Workcraft can be built using thedaiing command (provided that the

current directory is the root of the code branch):

mvn clean package

Note that Maven can take quite a long time to build Workcraiftfie first time. This is because
Maven depends heavily on plug-ins to perform the varioukllsieps, and during the first build the
set of the plug-ins that are required to build Workcraft (sas, e.g., the JavaCC parser generator)
will be downloaded from the central Maven repository on thebwlIn addition to the plug-ins,
Maven will need to download some of the supporting librafeg., the DesiJ library) from the
repository located on Workcraft's web site. Having a wogkinternet connection is therefore
critical during the first build.

Maven will cache all the plug-ins and dependencies locallys means that all the subsequent
builds will be performed much faster and will no longer reguinternet access.

The result of the Maven build will be the four distributiorchives. The projects that contain

the distributions have names starting with “WorkcraftDistProjects that have “Full” in their

170

CHAPTER B. EXTENDING WORKCRAFT

select N Maven Projects
- : T)
Import Existing Maven Projects H Select Maven projects
Select an import source: Root Directory: ‘Ihomefmechlwork(raﬂ-z.o.l Browse...
voe filter text 4] Projects:
+ = General v WorkcraftCore/pom.xml - org.workcraft:WorkcraftCore:2.0-SNAPSHOT: a [it Wl
E=Te' @ STGPlugin/pom.xml - org.workcraft:STGPIugin:2.0-SNAPSHOTjar Deselect All
= & Maven @ PetriNetPlugin/pomn.xml - org.workcraft:PetriNetPlugin:2.0-SNAPSHOT:jal
%, Check out Maven Projects from SCM '] ml - org.workcraft: Refresh
& Existing Maven Projects [} il m| - org.workci 0-SNAPSH(
[, Install or deploy an artifact to a Maven repository @ CpogsPlugin/pom.xml - org.workcraft:CpogsPlugin:2.0-SNAPSHOT:jar
1 Materialize Maven Projects @ GatesPlugin/pom.xml - org.workcraft:GatesPlugin:2.0-SNAPSHOTjar |
¥ & Run/Debug @ PetrifyPlugi .xml - org.workcraft:PetrifyPlugin:2.0-SNAPSHOT;jar
¥ & SUN ml - org.workc Ugin:2.0-SNAPSHOT:jar
T (= Tasks e @ CircuitPlugin/pom.xml - org.workeraft:CircuitPlugin:2.0-SNAPSHOT;ar
M Desi i .xml - org.workcl i jin:2.0-SNAPSHOT: jar
<]
Add project(s) to working set
@ <Back Next > Cancel F i Tore.
» Advanced
@ < Back Next > Cancel | Finish
(a) Selecting import source (Maven project) (b) Selecting projects

Figure B.1: Eclipse project import

name will include all the plug-ins available in the code lmlanwhile projects that are called

“Basic” will only include the STG and Petri net model support

B.1.3 Building Workcraft using the Eclipse integrated devéopment environment
(IDE)

Using an IDE makes managing a large project such as Worlkeaafer. The Maven build system
is supported by most of the Java IDESs, natively (such as Net8eor through a plug-in (Eclipse).
Bazaar version control system, however, is not supporteltl emeugh by some IDEs (Bazaar
support status in various IDEs is listed in [2]). This is ndtical because Bazaar has its own
GUI interface implementations (QBzr, TortoiseBzr etc.)l @ command-line interface is simple
enough, however support for operations such as versiomat@vtare file renaming directly from
an IDE is helpful.

The Eclipse IDE [16] provides good support for both Maverdaystem and Bazaar version
control system and is recommended for Workcraft developmEme rest of this section assumes
that the user’s Eclipse installation has the m2eclipse-piyg] installed for Maven integration.

Installing the Bazaar integration plug-ins (BzrEclipseQBzrEclipse) is optional.

171

CHAPTER B. EXTENDING WORKCRAFT

Refactor Shift+Alt+T » Add Dependency
Add Plugin
Import... .
New Maven Module Project
EXPOIt...
Update Dependencies
Refresh F5
B Update Snapshots
Close Project - " .
. Update Project Configuration
Close Unrelated Projects s
) B Download JavaDoc
Assign Working Sets...
Download Sources
Run As
Open POM
Debug As _
. Open Project Page
Validate
Open Issue Tracker
Open Source Control
Team > . .
§ Open Continuous Integration
Compare With >
Restore from Local History... Disable Workspace Resolution
Bazaar > Disable Dependency Management

Figure B.2: Updating Eclipse project configuration

Importing the Workcraft projects into an Eclipse workspace

Workcraft projects can be imported to Eclipse directly frime code branch created by Bazaar
using the Import window (Figure B.1a). The Workcraft soutoee package consists of a number
of separate projects (Figure B.1b). If there are other ptsjalready in the Eclipse workspace, all
Workcraft projects can be added to a new working set (“Addguts to working set” option) for

easier organisation, however it may be more conveniente@tera new empty Eclipse workspace

specifically for Workcraft.

Fixing the missing type errors

When the Workcraft Maven projects are imported into an Beligvorkspace and built for the
first time, Eclipse will not be able to find some parsing radatgpes and the red error icons
will appear next to the projects that use those types (Wafi€ore and STGPIlugin). This is
because some Java classes are generated by JavaCC frorarttmagrdefinition files, and they
are created only when the first build completes. To fix thisas&clipse project configuration must
be updated by Maven following the first build. This operatisravailable in the project context
menu (Figure B.2) accessible by right-clicking on a projadhe Package Explorer window. At

this point all Workcraft projects should be able to be builheout errors.

Creating a run configuration

To start Workcraft from Eclipse, it is necessary to createragonfiguration for the project that

contains the main executable class of Workcraft. The rurigomtions window is accessible

172

CHAPTER B. EXTENDING WORKCRAFT

Create, manage, and run configurations Create, manage, and run configurations
RunaJava application @ RunaJava application @
GlE x| B 3~ Name: |Workcraft [E X B Name: New_configuration
New launch c i
type TTer text £1)|[© main" - Arguments| =, JRE| %, Classpath| & Source| ™2 @ © Main 09- Arguments [\ JRE | % Classpath . %/ Source| ™
s 2 % i
4 Java Applet Project: 5 Java Applet ; Bootstrap Enlnevs - P
=) [Java Application WorkcraftCore| Browse... =/ 31 Java Application . =4 JRE Sytem Library [JavaSE-1.6] —— —
o [org workeraft. Console Search. Jujurit e enc e
m2 Maven Build d - kil m2 Maven Build = Maven Dependencies [AddProjects...
Jy Task Context Test Include system libraries when searching for a main class JirTask Context Test @ BalsaPluginBase =
y
Include inherited mains when searching for a main class. & BalsaWrapperGenerator Add JARS...
. . & CircuitPlugin
Stop in main . Add Extemal JARs...
& CpogsPlugin U
& DependencyManager n Advanced...
& DesiPlugin . 5
Appl) Revert Appl) Revert
Filter matched 6 of 6 items PoY, = Filter matched 6 of 6 items pply. vel
©) Close [Run] ®@ Close Run

Figure B.3: The run configuration

from the main menuRun—Run configurations).. A new run configuration can be created by
double-clicking on “Java Application”. As shown in Figure3, the name of the start-up project
is “WorkcraftCore” and the name of the main class is “org keoaft. Console”. All other projects
(except the project called “Tests” that contains the usitstand is not required at runtime) should
be added into the classpath of the run configuration (FiguBb)B This step is required because
Workcraft searches its classpath to locate compatible-ipludasses, and most of Workcraft's
functionality is contained in the plug-ins. At this point YKoraft can be started by clicking on
the “Run” button in the run configurations window. For suhsat runs it is not necessary to use
the run configuration window — a shortcut “Run” button (a gréatton with a white triangle) is

available in the toolbar.

B.2 Creating a Workcraft module project in Eclipse

During the plug-in reconfiguration process, Workcraft scre classpath to find all classes that
implement theorg.workcraft. Moduleinterface All discovered modules are initialised via their
init method during the plug-in initialisation phase. Modules cse theFrameworkinterface
passed to this method to register individual plug-ins sictoals or models. AVMorkcraft module

is therefore an organisational unit that represents aeledllection of plug-ins that implement
the extended functionality. Modules can be added and rethfreen the classpath to achieve a
particular configuration of Workcraft (see Section A.1.3).

The module interface is defined as follows:

173

CHAPTER B. EXTENDING WORKCRAFT

New Maven project

Select a wizard o Configure project M

<

Create a Maven Project [Artifact
Groupid: [org.workcraft.plugins [v]

W Avtifact Id: [MyModule v
“ 4 vesen. [oarswwsror |+
+| = JavaCC -
= = Maven ging: | = ‘

%1 checkout Maven Projects from SCM Name: H s

% Maven Module Description: |]

[Maven POM file Parent Project

& Maven Project Group Id: ‘ ‘ ~ ‘
= SN Artifact d: | [v]
+ (= Tasks

» Adyanced

@ < Back ‘ Cancel | FEinish @ ‘

(a) Selecting the project type

<Back | mext> || cancel H Finish ‘

(b) Configuring the Maven project

Figure B.4: Creating a new Maven project

Select additional dependencies

Add additional dependencies to the project. M
S s 5 =

Enter groupld, artifactid or shal prefix or pattern (*): -m
|Workcmftc0re ‘

Remove
Search Results:

& org.workcraft WorkcraftCore

"] Include Javadocs Include Sources | Include Tests

» Advance WorkcraftCore-2.0-SNAPSHOT.jar 4096 Wed Mar 09 13:27:08 GMT 2011

® Scope: [compile v| | cancel |[[ok |

@ [<Bak | wext> |[_ cancel][mnish |

Figure B.5: Setting the project dependencies

174

CHAPTER B. EXTENDING WORKCRAFT

public interface Module {

public String getDescription();
public void init(Framework framework);

The getDescriptionmethod returns a human-readable description of the moduotetheinit

method is called to initialise the module as explained above

B.2.1 Creating a new Maven project

Although it does not matter where the module is located ag &mit is present on the classpath,
it is recommended to create a separate project for each mdoubetter organisation. A new
Maven project can be created in Eclipse using the “New ptbj@mdow, accessible from the
main menu File—New projec} or using the keyboard shortcu€ifl+N). The type of the project
should be “Maven project” as shown in Figure B.4a. The ptoghould be created as a simple
project (“Create a simple project (skip archetype selegtioption in the following configuration
dialogue). The artifact details should be filled with the rppiate values of the Artifact ID and
version, as shown in Figure B.4b).

In the final stage of the project configuration the projectestelencies must be configured. A
dependency on the “WorkcraftCore” project must be preseiailiprojects (Figure B.5). Addi-
tional dependencies are optional.

When the project has been created, it is necessary to efmairi¢ tises the correct Java lan-
guage version. This can be done in the project property wingight-click on the project name,
thenProperties),section “Java compiler”. The compiler compliance levelidtidoe set to 1.6 or
higher. It is often enough to uncheck the “Use project spesiittings” option — Eclipse will

then use the compliance level corresponding to the cuyrerttalled JDK version.

B.2.2 Creating a Workcraft module

The rest of this section explains how to create a simple neothdt registers a tool. Because
the tool will be applied to Signal Transition Graph (STG) ralsd dependencies on the Petri net

and STG plug-ins must be set when the project is createde Iptbject has already been created

175

CHAPTER B. EXTENDING WORKCRAFT

Java Class =
Create a new Java class. @
Source folder: ‘MyModuIe}srcjmain]java | Browse...
Package: ‘org.workcraft.plugins ‘ Browse...

Enclosing type: Browse

Name: ‘MyModule

Modifiers: © public default private protected
abstract final static
Superclass: ‘java.lang.obiecl | Browse...

Remove

‘Which method stubs would you like to create?
public static void main(5tring[] args)
Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
Generate comments

("?) Cancel ‘&‘

Figure B.6: Creating a Workcraft module class

without those dependencies, they can be added by righirdjake project name in the Package

Explorer and selectinilaven—Open POMfrom the context menuCurrent dependencies are

listed in the “Dependencies” tab in the POM editor windowg amore dependencies can be added
using the “Add...” button.

A new class can be added to the project using the main miéile{New—Clasg or the
project’'s context menuNew—Clas9. By convention, the package name of a module class must
start with “org.workcraft.plugins”, otherwise it will beginored by Workcraft. The class must
implement theorg.workcraft.Moduleinterface (Figure B.6). An example implementation of a
module class is shown in Figure B.7.

As can be seen from the code, during its initialisation thelof® registers a tool clagéode-

Counter The implementation of the tool itself is explained in thetrsection.

B.3 Adding tools

The tool classes can be created using the Eclipse Ul in the gaay as the module class, except
that they must implement therg.workcraft. Toolinterface instead ofrg.workcraft.Module The

implementation of the NodeCounter tool is shown in Figur8.BThe tool counts the different

176

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import org.workcraft.Framework;
import org.workcraft.Module;

public class MyModule implements Module {

public String getDescription() {
return "My module";

}

public void init(Framework framework) {
framework.getPluginManager().registerTool(NodeCounter.class);

}

Figure B.7: A basic module implementation

types of objects in an STG model: places, dummy transitiossignal transitions.

The methodsApplicableTadefined in theTool interface determines whether the tool is com-
patible with a given model. The NodeCounter tool accepts dahibits underlying mathematical
model is an STG (and simply ignores the visual model if oneésgnt). The methogetSection
is used to organise tools in the Tools menu (Figure A.4) byaeseim categories. ThidodeCounter
tool tells the framework to put it in the “Statistics” cateégoThe methodyetDisplayNamelefines
the name of the tool that is shown to the user. Finally, thehotetun is called when the user
chooses to apply the tool to the current model. Since it isapieed that the tool will not be
passed a model that failed tiwApplicableTocheck, the tool can assume that the mathematical
model that is passed to the methaah is an STG and obtain a correspoding interface using a
type-cast operation. The method then builds a string coiniithe result and displays it using the

standard Swing message window.

B.3.1 Using asynchronous tasks

The NodeCountetool is very simple: it does not perform any complex compatet or calls to
the external tools. In this case it is acceptable for the toglerform all its work directly in the
run method. If the tool potentially takes long to complete, hegrethis may be unacceptable.
The tool'srun method is called on the same thread as the GUI and hence tHe eygication

is blocked until the method returns. Workcraft frameworkvides facilities for executing longer

177

CHAPTER B. EXTENDING WORKCRAFT

tasks asynchronously. Using this functionality, the toeéds only to request the framework to
gqueue the task and then immediately return fronmits method. The framework will then auto-
matically start the task on a separate thread, withoutt#ffgthe rest of the application. When the
task finishes, the framework will notify the progress monjtoovided by the tool. The progress
monitor can verify the result and react accordingly.

To be able to queue tasks, the tool needs to obtain a refeterthe TaskManageiinterface
provided by the framework. This is done by passing a referéadhe required interface to the
tool’s constructor. As the tools are instantiated by thenfrevork when needed, the constructor
argument must be included to thegisterToolcall in the module’snit method along with the tool
class (Figure B.9).

An example asynchronous tool implementation is shown iniféi@3.10. The tool registers as
compatible with any model (because it only serves a demeattharpurpose) and in itsin method
it queues a new task instance. The class that defines theotaskeixecuted is callely Taskand
is shown in Figure B.11. Th&askinterface has a type parameter that defines the type of the val
that the task is expected to produce upon successful cdaompldn the example the return type
is Nothing a special type meaning that no return value is actually eéepde The tool also passes
a progress monitoMMy TaskProgressMonitdrthat is responsible for handling the task’s progress
updates and completion.

In its run method the task emulates a sequence of a hundred of conopialiti expensive
steps. Each step takes a random amount of time to completdaienh by theThread.sleegall).

In every step the task reports the progress to the task ndh#bis passed as argument to tha
method. The task also checks if the monitor reports the ¢amgeest (usually initiated by the
user via GUI).

Therun method must return an object of tygesult This is a parametrised type that encap-
sulates the return value and the outcome of the task. It captienally constructed without an
actual return value (e.qg., if the calculations were tert@idgrematurely), but the outcome must
always be specified. The outcome of the task may be one of tlsviing: finished correctly,
failed or cancelled. In théyTaskexample, the task does not need to return any value so it only

returns the outcome.

178

CHAPTER B. EXTENDING WORKCRAFT

The implementation of the progress monitor used to handledimpletion oMyTaskis shown
in Figure B.12. The methofinishedof the progress monitor is called when the queued task
completes (i.e., returns from itan method). In this example, the progress monitor simply check
if the task has successfully completed and, if that is the,csisows a simple message window.
Note that it uses th8wingUstilities.invokeLatemethod to execute the GUI code (as opposed to the
simple tool example shown in Figure B.8). This is becausethgress monitor code is executed
on a separate thread to avoid blocking the GUI and all the feldted code must be executed on
the Swing event dispatch thread. TineokeLatermethod will call the code passed to it on the
event dispatch thread at the first opportunity.

The progress of the task can be observed using the Taskswyiidigure A.11). Tasks can be

terminated using the “Cancel” button in a particular tasldx in the Tasks window.

B.3.2 Interfacing with external tools

Workcraft provides several convenience classes for eterf with external tools. The clagx-
ternalProcessTashllows starting external processes and provides suppodpferations such as
stopping the process and reading its standard output. TEtecee Workcraft tool that relies on
an external command-line based tool, a small modificationbeamade to thédsyncToolkexam-
ple (Figure B.10). Instead of queueing a custom task, aanest ofExternalToolTaslkshould be

queued as follows:

taskManager.queue(new ExternalProcessTask(new String[] {"echo", "Hello,world!"}, "."),

"External tool test", new ExternalTaskProgressMonitor());

This will queue a task that starts the tool “echo” with thegmaeter “Hello world!”. “echo” is
the standard tool in most operating systems that simplyatspehatever line was passed to it as an
argument to its standard output. The completion oBkiernalProcessTagk handled in the same
fashion as that of any other task, except that the task rggdtis fixed toExternalTaskResul
progress monitor implementation calledternalTaskProgressMonitaran be produced by mod-
ifying the MyTaskProgressMonitoslightly: the type parameter should be changed fidothing
to ExternalProcessResuland the line that generates the message window should bgeathas

follows:

179

CHAPTER B. EXTENDING WORKCRAFT

JOptionPane.showMessageDialog(null, new String(result.getReturnValue().getOutput()));

This will construct a string from the standard output of tlxeeenal process, which is in this

case “Hello world!”.

B.4 Adding models

Adding support for new model types in Workcraft is very sanito adding new tools for existing
models, although the classes that define a model may seemcomopdex than the tool classes.
A model is added to Workcraft by implementing thvdelDescriptorinterface and registering it

with the plug-in manager during the module initialisation:
framework.getPluginManager().registerModel(MyModelDescriptor.class);

An exampleModelDescriptorimplementation is shown in Figure B.13. This interface esq
three operations to the Workcraft framework. TietDisplayNamemethod returns a human-
readable name of the model that will be displayed, e.g.,emtlodel creation dialogue. Tioee-
ateMathModelmethod generates a new instance of the mathematical molelgetvisualMod-
elDescriptoroptionally returns a visual model descriptor that impletaeadditional operations
that define the visual model. If this method retumdl, the framework assumes that the model
does not support visual editing and will not be able to creditor windows.

An exampleVisualModelDescriptoimplementation is shown in Figure A.2. It consists of only
two methods: thereateVisualModemethod returns a new visual model instance given a reference
to the mathematical model which it should represent. The ofphe mathematical model that will
be passed to this method is guaranteed to be the same asdhetiymed by thereateMathModel
method in the corresponding model descriptbhe second methodyreateTools defines the set
of graph editor tools that will be used to interact with theual model. In the example, the visual
model descriptor defines two standard tools: the seleabolaind the connection tool (these tools
are described in Section A.3.3).

To return the new instances of the mathematical and thelwisodels, the model descriptors
create new instances of tiyModelandMyVisualModelclasses correspondingly. These classes

implement the model logic and store the node graph. Work@ailvides two helper classes,

180

CHAPTER B. EXTENDING WORKCRAFT

AbstractMathModebnd AbstractVisualModethat implement the general functionality of an In-
terpreted Graph Model. To produce a working instancégModel and MyVisualModel it is
enough to declare these classes as extendinglibizactMathModeandAbstractVisualModete-
spectively and leave the methods sucltasnectand validateConnectiorempty. At this point,
Workcraft will be able to create models of the type “My modtdfough the new model dialogue
and to create editor windows for these models. The modeldbwiempty at this time, however,

because no node types have yet been defined.

B.4.1 Adding a node type

To add a new node type to the model, two steps are requirest, fie new node class should be
implemented both for the mathematical and the visual mot@leé implementation of a node in
the mathematical model is trivial (it may even be empty, huhis example we assume that it has
an integer field calledhyProperty, but the implementation of a node in the visual model is more
complicated. To help with this task Workcraft provides thsdclass calledisualComponerthat
implements most of the logic required for a visual graph noidee only methods that have to be
implemented by the user adeawthat produces the graphical representation of the nutlgstin-
LocalSpacdhat tests whether a given point is inside the node’s vishipe (this method is used
to check whether a mouse pointer is inside the nogefBoundingBoxInLocalSpadeat returns
a rough approximation of the node’s shape in the form of as-akgned rectangle (the bounding
box is used during the first pass of mouse pointer/node hetctien to quickly reject most of the
nodes before calling the potentially expenshitTestinLocalSpadeand getMathReferencethat
returns a list of all nodes in the mathematical model thawtbeal node refers to.

Figure B.15 shows an example implementation of a visual node, tesaalledMyVisualN-
ode

The second step is to add a graph editor tool that will allogvrthdes of the new type to be
created. Workcraft provides a generalised implementétiothis class of tools calleNodeGener-
atorTool To create an instance oNodeGeneratorTophn implementation of thlodeGenerator
interface for the node type is required. An example impletat@n is shown in Figure B.16. The

methodgetlconreturns an icon that will be drawn on the graph editor tootdautin the example,

181

CHAPTER B. EXTENDING WORKCRAFT

the icon is created from an SVG file located in the projecté&stiurces” directory. The method
getLabelreturns the text that will be displayed in the button’s ttpl-The methodyetTextreturns
the text that will be shown in the graph editor window when tibel is activated. The method
getHotKeyCodeeturns the code of the key that is used to quickly activagetdbl using the key-
board (in this case, it is the “N” key). The methgdnerateis responsible for the instantiation
of a new node at the given location. In the example, the nodergéor delegates this task to the

model. The methodreateNoden the typeMyVisualModelis defined as follows:

public void createNode (Point2D position) {
// create a new backing node in the math. model
MyNode node = new MyNode();
mathModel.add(node);

// create the visual node corresponding to the math. node
MyVisualNode node = new MyVisualNode(node);
node.setPosition(position);

// add the node to the graph

add(node);

Finally, the tool is added to the list of tools returnedMyVisualModelDescriptar

tools.add(new NodeGeneratorTool(new MyNodeGenerator()));

B.4.2 Implementing the connection methods

The two methods that are used by the graph editor to creaeannecting the nodes in the model
are theconnectandvalidateConnectionmmethods in the typ&lyVisualModel The validateCon-
nectionmethod is called when the user has selected a node in theatmmmenode and hovers
the mouse cursor above some other node. This method shouldtdimg if the connection be-
tween these nodes is allowed, and thronraralidConnectionExceptiontherwise. An example

implementation is as follows:

182

CHAPTER B. EXTENDING WORKCRAFT

©@Override
public void validateConnection(Node first, Node second) throws InvalidConnectionException
{
if (!(first instanceof MyVisualNode && second instanceof MyVisualNode))
throw new InvalidConnectionException ("Unexpected node types");
for (Connection con : getConnections(first))
if (con.getSecond() == second)

throw new InvalidConnectionException ("Arc already exists");

This implementation first checks that both nodes are of theecbtype MyVisualNodg and
then ensures that an arc between the nodes does not yet exist.

The method that is called to create a connection betweemih@ddes (guaranteed to have
passed thealidateConnectiortheck) is callecconnect. This method should create a connection
between the two visual nodes and the corresponding cooneictithe mathematical model. To
implement it, a method in the mathematical moddlyMode) that would create a connection

between the mathematical nodes is required:

public MathConnection connect (MathNode first, MathNode second) {

MathConnection result = new MathConnection(first, second);
add (result);

return result;

Using this method, theonnectmethod in the visual modeMyVisualModel can be imple-

mented as follows:

©Override public void connect(Node first, Node second) throws InvalidConnectionException

{
MyVisualNode firstVisualNode = (MyVisualNode)first;

MyVisualNode secondVisualNode = (MyVisualNode)second;

183

CHAPTER B. EXTENDING WORKCRAFT

MathConnection con = mathModel.connect(firstVisualNode.getReferencedNode(),
secondVisualNode.getReferencedNode());

VisualConnection vcon = new VisualConnection(con, firstVisualNode, secondVisualNode
)i

add(vcon);

This implementation uses the default connection classeddad by Workcraft flathCon-

nectionandVisualConnectiopthat model a directed arc.

B.4.3 Defining editable properties

Workcraft provides a user-friendly property editor interé (Figure A.4, item 3) that allows chang-
ing the values of the node properties such as, e.g., the nuohbekens in a Petri net place. To
determine what properties should be displayed in the ptpgelitor, Workcraft requests a list of
property descriptors from the model implementation viagéiropertiesnethod. The default im-
plementation of this method provided by tAbstractVisualModeand AbstractMathModetypes

is empty, so it needs to be overridden in the following waytl(ie typeMyMode):

©@Override
public Properties getProperties(Node node) {
if (node instanceof MyNode) {
return Properties.Set.of(new MyPropertyDescriptor((MyNode)node));

}

return Properties.Set.empty();

With this implementation, the model checks the type of théenahose properties are being
requested.MyModeldefines only one type of nodé&lyNode and therefore it returns an empty
property descriptor list if the node is of any other typeh# hode is of the typ®lyNode the model
adds an implementation of tHeropertyDescriptorinterface MyPropertyDescriptor,shown in
Figure B.17) that defines how the property should be preddatine user. The methods are mostly

self-explanatory. TheetValueandgetValuemethods handle the exchange of the property values

184

CHAPTER B. EXTENDING WORKCRAFT

between the node and the GUI controls that are used to digpldyedit them. ThegetChoice
method allows defining a set of values that the user will be &blchoose from instead of being
allowed to edit the value directly. ThgetTypereturns the type of the property that is used to
determine how the property value is displayed and edited.

To determine the complete set of properties displayed bytbperty editor, Workcraft uses
the following algorithm. Given a visual node, it first reqtgea list of properties defined for this
type of node from the visual model. Then, for each matheralatiode from the list of nodes
referred to by the visual node, Workcraft requests its Ilfisprmperties from the mathematical
model. All those property lists are finally merged.

To keep the Ul up-to-date, the framework must be notified wtherproperty is changed. This

is done in the property setter method as follows:

public void setMyProperty(int myProperty) {
this.myProperty = myProperty;

sendNotification(new PropertyChangedEvent(this, "myProperty"));

B.4.4 Using the automatic serialisation

Workcraft provides an automatic serialisation facility &l models. The example model defined
in this section will be able to be serialised (i.e., savedis&)dwithout any additional code. To
support deserialisation (loading from the files on disk)\wéeer, models must define a special
constructor that accepts the graph data loaded from the \iskkcraft's AbstractMathModebnd
AbstractVisualModetlasses implement those constructors, and it is enoughl thase construc-

tors from theMyModelandMyVisualModeltypes to implement the deserialisation support:

// for the type MyModel
public MyModel(MathGroup root) {

super(root);

185

CHAPTER B. EXTENDING WORKCRAFT

//for the type MyVisualModel
public MyVisualModel (MyModel model, VisualGroup root) {
super(model, root);

this.mathModel = model;

At this point, Workcraft will be able to save and load the nmled# type “My model”.

186

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;
import javax.swing.JOptionPane;

import org.workcraft.Tool;
import org.workcraft.plugins.stg.STGModel;
import org.workcraft.workspace.WorkspaceEntry;

public class NodeCounter implements Tool {

public boolean isApplicableTo(WorkspaceEntry we) {
if (we.getModelEntry().getMathModel() instanceof STGModel)
return true;
else
return false;

}

public String getSection() {
return "Statistics";

}

public String getDisplayName() {
return "Count,nodes";

}

public void run(WorkspaceEntry we) {
STGModel stg = (STGModel)we.getModelEntry().getMathModel();

StringBuilder result = new StringBuilder();

result.append("STGstatistics:\n");

result.append("Number,of places:," + stg.getPlaces().size() + "\n");
result.append("Number of_signal transitions:," + stg.getSignalTransitions().size() + "\n");

result.append("Numberyof Jdummyygtransitions:," + stg.getDummyTransitions().size() + "\n");

JOptionPane.showMessageDialog(null, result.toString());

Figure B.8: A simple tool implementation

187

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import org.workcraft.Framework;
import org.workcraft.Module;

public class MyModule implements Module {

public String getDescription() {
return "My, module";

}

public void init(Framework framework) {
framework.getPluginManager().registerTool(NodeCounter.class);
// the task manager will be passed to the AsyncTool’s contstructor
// whenever an instance of this tool is created
framework.getPluginManager().registerTool(AsyncTool.class, framework.getTaskManager());

Figure B.9: Registering a tool with a constructor parameter

188

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import org.workcraft.Tool;
import org.workcraft.tasks. TaskManager;
import org.workcraft.workspace.WorkspaceEntry;

public class AsyncTool implements Tool {
private final TaskManager taskManager;

public AsyncTool(TaskManager taskManager) {
this.taskManager = taskManager;

}

@Override
public boolean isApplicableTo(WorkspaceEntry we) {
return true;

}

Q@Override
public String getSection() {
return "General";

}

@Override
public String getDisplayName() {
return "Asyncrhonoustool test";

}

@Override
public void run(WorkspaceEntry we) {

taskManager.queue(new MyTask(), "Testingumyytask", new MyTaskProgressMonitor());

}

Figure B.10: A tool using the asynchronous tasks functional

189

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import org.workcraft.Nothing;

import org.workcraft.tasks.ProgressMonitor;
import org.workcraft.tasks.Result;

import org.workcraft.tasks.Result.Outcome;
import org.workcraft.tasks. Task;

public class MyTask implements Task<Nothing> {

@Override
public Result<Nothing> run(ProgressMonitor<? super Nothing> monitor) {
for (int i=0; i < 100; i++) {
try {
if (monitor.isCancelRequested()) {
return new Result<Nothing>(Outcome.CANCELLED);

}

// emulate a long calculation step
Thread.sleep((int)(Math.random()*100+20));

} catch (InterruptedException e) {
return new Result<Nothing>(Outcome.FAILED);

}

monitor.progressUpdate(i/99.0);

}

return new Result<Nothing>(Outcome.FINISHED);

Figure B.11: An asynchronous task implementation

190

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;

import org.workcraft.Nothing;

import org.workcraft.tasks.DummyProgressMonitor;
import org.workcraft.tasks.Result;

import org.workcraft.tasks.Result.Outcome;

public class MyTaskProgressMonitor extends DummyProgressMonitor<Nothing> {
@Override

public void finished(Result<? extends Nothing> result, final String description) {
if (result.getOutcome() == Outcome.FINISHED)

{
SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
JOptionPane.showMessageDialog(null, "Task," + description + "_finished!");
}
3
}

Figure B.12: A progress monitor implementation

191

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import org.workcraft.dom.ModelDescriptor;
import org.workcraft.dom.VisualModelDescriptor;
import org.workcraft.dom.math.MathModel;

public class MyModelDescriptor implements ModelDescriptor {

@Override
public String getDisplayName() {
return "My model";

}

@Override
public MathModel createMathModel() {
return new MyModel();

}

@Override
public VisualModelDescriptor getVisualModelDescriptor() {
return new MyVisualModelDescriptor();

}

Figure B.13: An exampl®&odelDescriptorimplementation

192

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import java.util.LinkedList;
import java.util.List;

import org.workcraft.dom.VisualModelDescriptor;

import org.workcraft.dom.math.MathModel,

import org.workcraft.dom.visual.VisualModel;

import org.workcraft.exceptions.VisualModellnstantiationException;
import org.workcraft.gui.graph.tools.ConnectionTool;

import org.workcraft.gui.graph.tools.GraphEditorTool;

import org.workcraft.gui.graph.tools.SelectionTool;

public class MyVisualModelDescriptor implements VisualModelDescriptor {

©@Override
public VisualModel create(MathModel mathModel)
throws VisualModellnstantiationException {
return new MyVisualModel((MyModel)mathModel);

}

@Override
public Iterable<GraphEditorTool> createTools() {
List<GraphEditorTool> tools = new LinkedList<GraphEditorTool>();

tools.add(new SelectionTool());
tools.add(new ConnectionTool());

return tools;

Figure B.14: An exampl®isualModelDescriptoimplementation

193

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;
/* imports omitted x/

public class MyVisualNode extends VisualComponent {
final Path2D shape;
final MyNode node;

public MyVisualNode(MyNode node) {
// the backing node in the math. model
this.node = node;

// a simple diamond shape
shape = new Path2D.Float();
shape.moveTo(—0.5, 0);
shape.lineTo(0.0, 1.0);
shape.lineTo(0.5, 0);
shape.lineTo(0, —1);
shape.closePath();

}

@Override
public void draw(DrawRequest r) {
Graphics2D graphics = r.getGraphics();

// draw a filled shape first
graphics.setColor(Coloriser.colorise(Color.LIGHT _GRAY, r.getDecoration().getColorisation()));
graphics fill(shape);

// now draw an outline

graphics.setStroke (new BasicStroke(0.1f));
graphics.setColor(Coloriser.colorise(Color.BLACK, r.getDecoration().getColorisation()));
graphics.draw(shape);

// draw the value of "my property"

String text = "" + node.getMyProperty();

Font font = new Font("Sans—serif", Font.PLAIN, 1);
graphics.setFont(font);

// calculate the text bounds to center the text on the node
Rectangle2D stringBounds = font.getStringBounds(text, graphics.getFontRenderContext());
graphics.drawString(text, (float)(—0.5*stringBounds.getWidth()), (float)(—0.5fx—stringBounds.getHeight()));

}

Q@Override
public boolean hitTestInLocalSpace(Point2D pointInLocalSpace) {
return shape.contains(pointinLocalSpace);

}

@Override
public Rectangle2D getBoundingBoxInLocalSpace() {
return shape.getBounds2D();

}

@Override
public Collection<? extends MathNode> getMathReferences() {
return Collections.singletonList(node);

}

Figure B.15: A visual node implementation

194

CHAPTER B. EXTENDING WORKCRAFT

class MyNodeGenerator implements NodeGenerator {
@Override
public Icon getlcon() {
return GUl.createlconFromSVG("mynode.svg");

}

@Override
public String getLabel() {
return "Createymyynode";

}

@Override
public String getText() {
return "Click toycreate apnode";

}

©@Override
public void generate(VisualModel model, Point2D where)
throws NodeCreationException {
((MyVisualModel)model).createNode(where);

}

@Override
public int getHotKeyCode() {
return KeyEvent.VK _N;

}

Figure B.16: An exampl&lodeGeneratoimplementation

195

CHAPTER B. EXTENDING WORKCRAFT

package org.workcraft.plugins;

import java.lang.reflect.InvocationTargetException;
import java.util.Map;

import org.workcraft.gui.propertyeditor.PropertyDescriptor;

public class MyPropertyDescriptor implements PropertyDescriptor {
private final MyNode node;

public MyPropertyDescriptor(MyNode node)

{

this.node = node;
}
©Override

public boolean isWritable() {
return true;

}

@Override
public Object getValue() throws InvocationTargetException {
return node.getMyProperty();

}

@Override
public void setValue(Object value) throws InvocationTargetException {
node.setMyProperty((Integer)value);

}

@Override
public Map<Object, String> getChoice() {
return null;

}

@Override
public String getName() {
return "My property";

}

@Override
public Class<?> getType() {
return int.class;

}

Figure B.17: An exampl@ropertyDescriptoimplementation

196

Appendix C

Working with Signal Transition Graphs

A set of plug-ins that together provide a rich environmentdgstem design based on the Sig-
nal Transition Graph (STG) model is included with the staddAlorkcraft distribution. Besides
providing the support for visual entry and simulation of &g Transition Graphs, these plug-ins
implement a number of advanced operations such as veidfigagincoding conflict resolution,
logic synthesis and other.

This appendix documents how to use Workcraft to design ST@eafs@nd how to apply tools
to these models. Before reading this chapter, please ségfiendix A for the general overview

of the user interface of Workcraft.

C.1 Using the STG editor interface

The functionality of the visual STG editor is provided by thet of editor tools shown in Fig-
ure C.1. A particular tool is activated either by clicking itmicon in the “Editor tools” window

or by pressing the corresponding hotkey on the keyboard.e@uotivated, the tool handles all

Editor tools

(B C) (| =T

o
o

Figure C.1: The STG editor tools

197

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

a/b+

Click on the second component {control+click to connect continuously)

Figure C.2: Creating a connection

user input to the editor window (e.g., the mouse clicks andkesses) to implement a certain

operation. The functionality of the tools for editing theGMmodel is explained below.

C.1.1 STG editor tools

Selection tool (hotkey: S) This tool is used to select, delete, move and group nodegleSin
nodes are selected by clicking on them. Multiple nodes aectssl by clicking on an empty
space, holding the mouse button and dragging the cursoat aiselection box. Selected nodes
may be deleted by pressing tBeletekey on the keyboard. Nodes are moved by clicking on a
selected node and holding the left mouse button while motriegursor.

Selected nodes can be grouped together by pre€figG. Grouped nodes are treated as a
single node for the purpose of selection and transform tipesa A group of nodes can be broken
apart by selecting it and pressi@gri+U .

If a single node is selected, the property editor window (FégA.4, item 3) will show the list
of properties defined for that node. Properties can be claaimgelicking on their corresponding
values in the property editor window. The method of speniyihe value depends on the type
of the property. For instance, numerical properties canhaaged by simply typing in the new

value, but for the colour properties a special colour choasedow is used.

Connection tool (hotkey: C) The connection tool is used to create directed arcs. Wheidal

is active, two nodes can be connected by clicking on the foderand then clicking on the second
node. During the choosing of the second node, a visual ctionekint line is displayed (Fig-
ure C.2). The colour of this line depends on what is locatedeuthe cursor at the moment. If
there is no node, the line is blue. If there is a node that cacpbhaected with the first node, the

line is green. If there is a node under the cursor, but thestgp@ode are such that the connection

198

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Property editor
X -7.38
¥ 0.00
Label
Label color]
Foreground color | NN
Fill color
Transition +
Signal type Input v
Signal name Input

ac+/2‘ Instance |Output L} |

b + Internal
C+
(a) In-place signal transition editing (b) Signal transition properties

Figure C.3: Editing signal transitions

between them is invalid (e.g., two places) the line is red thiedreason why such a connection
cannot be created is displayed in the bottom part of the reditadow.

Arcs created using the connection tool can be removed usegdlection tool.

Place tool (hotkey: P) This tool is used to create places. When this tool is activesva place

will be created under the mouse cursor when the user clickstare in the editor window.

Signal transition and Dummy transition tools (hotkey: T) These tools are used similarly
to the Place tool to create transitions. Both tools shareséime hotkey and it may be pressed

repeatedly to cycle between them.

Simulation tool (hotkey: M) This tool activates the simulation mode. Detailed explamabf

the simulation functionality is given in Section C.2.

C.1.2 Assigning signal names and types

When a new signal transition is created, the signal nhame ardtidn can be assigned to it in
two ways. One way is to use in-place editing feature that ivated by double-clicking on a
signal transition in the editor window. A text box will appegith the current name and direction
of the signal transition (Figure C.3a). The new name andtection can be typed directly into

this text box (pressingnter accepts the change). The second way is to use the propetty edi

199

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

ac+ ac+

b+ b+

(a) Polyline (b) Bezier curve

Figure C.4: Arcs drawn using different shapes

window (Figure C.3b). The type of the signal (input, outpuindernal) can also be changed using

the property editor.

C.1.3 Placing tokens

The number of tokens in a place (or in an implicit place) carséeusing the property editor
window. For implicit places, the properties of the arc thaldls them contain the corresponding
property.

There is also a shortcut to place and remove single tokeasgplin an STG will most often
contain at most one token). This is done by double-clickingaglace or an arc with an implicit

place.

C.1.4 Changing arc shapes

When new arcs are created, they have a simple straight laqgestBometimes it is useful to give
some arcs a more complex shape. Workcraft supports two nafdamtrolling the arc shapes:
polylines and Bezier curves. Polyline is the default mode] the arc shape in this mode is
controlled by a series of anchor points (Figure C.4a). Tlaplgical representation of the arc is
constructed from the straight line segments connectinguticeor points. In the Bezier mode, the
arc is drawn using a cubic Bezier curve. The shape of the d¢sic@ntrolled by the two “handles”
as shown in Figure C.4b.

The shape editing mode can be selected in the property .efiiteranchor points can be edited
using the Selection tool. When an arc is selected, its angbiots (or the handles of the Bezier

curve) are shown. They can be moved or deleted in the samesvagdng nodes. In the Polyline

200

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

gcd-core - Signal Transition Graph @
b= jo.0q |10.00 |20.00 |30.00
/_,_,.x'"’] T T — —
cn_76_rgq+-— c8_d|
Y R
T/ en_68_rg+ c8_d
7 ch_68_ac+
. / =
| c12_dpReq+
’]
ch,dpAckﬁ-T ™
T T '
3 cn_76_ac+ c12_dpReqg- | |
3 AN VoS
A i //O*\ c12_dpAck-
// \\-‘anS,rq-i_-.,,_i_i__
L7\ -~ / =~ L
e WARNIRN
T -, l |/ N\, ~
st ol N
= 1y | I -
[— 11 /,ﬂ il I cO_out_rg+
i —
c4_activate_ac+ | \(an | 7<._cO_out_ac+_|
‘ AN - / / ~ AT
4 c4_activate_rq- \. ‘ —Q” .\EU_OL"JI_FQ* an'IS,ac+
i | c4_activate_ac- / ~ L,,anG,rq— N ¢0_out_ac- cn_75_rgq-
N A — 1 W T N — '
~ c4_activate _68_rq- cn_72_rg- cn_76_ac- cn_75_ac-
A ~ /
cn_68_ac- cn_72_ac- /
T TT []
—-EEEEE
Simulation: click on the highlighted transitions t6 firethem

Figure C.5: Editor window in simulation mode

mode, additional control points are created by holdiitd and clicking on the line segment.

C.2 Simulation

Simulation mode is activated using the Simulation tool. His tmode, the editor window high-

lights the currently enabled transitions (Figure C.5). Aalded transition can be fired simply by

clicking on it. The Simulation tool control

window (Figure®} maintains the history of transition

firing events. Itis possible to restore the state of the ST&hyopoint in history by double-clicking

Property editor % | Toal controls X

I Load trace H Save marking | Load marking

I to Clipb || from Clipb |

c4_activa...
cd_dp+
cn_76_rgq+
cd_dp-
cn_68_rg+
c4_dp+
cn_68 ac+

Figure C.6: Simulation tool controls

201

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

~Section———— | Selection propertie

2 Layout MPSat command |mpsat " |
Dot MPSat additional arguments | %3 |
Random

Wisual

2 External tools

[MPSat
punf
PComp

Figure C.7: The settings window

on the transition name.

The “Reset” button resets the marking to the initial state.(the marking that the STG had
when the Simulation tool was activated). The “Step back” &tp forward” buttons allow
to move through a trace (or the simulation history) one ewtrd time. “Load trace”, “Save
trace”, “Load marking” and “Save marking” buttons are siplanatory: they allow managing
files storing the traces and markings. The buttons “To chptband “From clipboard” allow
correspondingly saving and restoring the trace in the fofra comma-separated list of signal

transition to and from the system'’s clipboard.

C.3 Using tools

The STG model implementation in Workcraft uses severalreatdools to provide support for a
number of advanced operations. These tools must be adeetssWorkcraft for those operations
to work correctly. The commands used to start the exterras toan be configured using the
“External tools” section in the Settings window (Figure 2. This window can be brought up
using the main menugdit— Preferenceps

All tools are accessible from the “Tools” sub-menu of themraenu (Figure A.4, item 1).
C.3.1 Visual layout
Tools—Layout

Workcraft can use the Dot tool [7] to automatically produlce graphical layout for models

202

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

activate_ac+

.outputs activate ac out0_rg outl_rq aCtivate_rq—

.inputs activate_rg out0_ac outl_ac \
activate_ac-

.graph

activate_ac+ activate_rqg-

activate_ac- activate rg+ activate_rq+

activate_rqg+ activate ac+ out0_rg+

activate_rqg- activate ac-

out0_ac+ out0_rg- outl_rg+ OUtO_rCH'

out0_ac- out0_rg+ v

out0_rg+ out0_ac+ outo_ac+

out0_rg- out0_ac-

outl ac+ activate_ac+ outl_rg- Outov rq_\autl rq+

outl_ac- outl_rg+

out1:rq+ outl_ac+ / \
outl _rg- outl_ac- OutO_aC— Outlv_ac+

.marking { <activate_ac-,activate rqg+> out 1 rq —
<out0_ac-,out0_rg+> <outl_ac-,outl_rqg+> -

}
.end outl_ac-

(a) Source STG file (b) Generated graphical representation

Figure C.8: Automatic STG layout generation using Dot

that lack one. Signal Transition Graph models are usuatisedtin the .g file format that does
not contain any information about the arrangement of theeadd the graphical STG represen-
tation. Workcraft will apply the Dot-based layout tool antatically when a non-visual model is
attempted to be edited using the visual editor, for examiena .g file is imported and opened
in the editor.

The main advantage of using Workcraft to work with visualresgntation of the STG models
is that the layout information obtained from Dot is used awlynitialise the visual model. The
user can use the automatically produced layout as sometihistgrt with, and then modify parts
of the layout manually. This contrasts with tools suchdeswv_astgin the Petrify package, that
also use Dot to calculate the layout but can only produc&statges of the graph.

By default, Workcraft does not import the complex arc shawesluced by Dot and treats all
arcs as straight lines instead. This behaviour can be chamgesetting the “Import connection

shapes” option in the Settings window (sectlaayout—Dot).

C.3.2 Parallel composition
Tools—Composition—Parallel composition
Parallel composition [125] is an operation that builds a posite STG from a set of input

203

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

~Source STG ~Option
Search:/arb 11l O show result in editar
Workspace Outputs
[flat_arb3_early.g * @ Leave as outputs
[flat_arb3_early.no_r.g* 2 Make internal
[flat_arb3_early D.g* @ Make dummy

[flat_arb3_early D1D2 1.g*
[flat_arb3_early D1D2.g *
[flat_arb3_early_aa.g*

[flat_arb3_early_aa_D.g*
[flat_arb3_lock.g *

[flat_arb3_lock.no_r.g *

[flat_arb3_lock_aa.g*

[J Improved parallel compasition

[Run |[Cancel |

Figure C.9: STG selection for parallel composition

STGs by merging the signal transitions having the same.|dlte$ operation is used, e.g., to con-
struct a closed system from a circuit Petri net and the enment specification (see Section 4.3.1).
Workcraft can perform the parallel composition of an adritrinput set of STGs using the PComp
tool [12]. The Parallel composition window (Figure C.9)aalls choosing the set of input STGs
from the Workspace. The source of the STGs can be both Wdtk&fas models or .g files

present in the Workspace. The “Search” text box allows terfttie list of displayed STG sources

by entering the partial name.

C.3.3 Decomposition

Tools—Decomposition

The decomposition operation [125] splits an STG into sdvamponents. STG decomposi-
tion is particularly useful for synthesis of large circyitghere synthesising the whole circuit at
once is computationally infeasible. Synthesising a setr@iker circuits is significantly easier, and
it is often the case that their composition gives a bettedémpgntation that one large circuit ob-
tained from the original STG [125]. Decomposition is alsefusto detach library elements (such
as arbiters) to avoid the expensive synthesis processdairtuits that already have a well-known
implementation.

Workcraft supports STG decomposition using the DesiJ 198].[DesiJ is tightly integrated

204

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Update preset [Save settings as new preset... ‘ [Manage presets... ‘

rDesi] setting

Operation:

[STG decomposition v |

Decomposition strategy:

@ Basic @ Tree (default) @ Lazy single @ Lazy multi

Aggregation - Signal count:

Output partition:

@ One output per component (default) @ Choose best partition (@ Use custom partition

Deletion of implicit Places:
& loop-only/duplicate [shortcut places [implicit places

Contraction mode:

[_] safeness preserving [] Ouput determinacy [] Risky

Synthesis options:
Logic Synthesiser: | Petrify ~| [Component Synthesis

] csc-mware (Tree-Deco) [] Internal Communication (Self-Triggers)

Run Cancel

Figure C.10: DesiJ configuration window

with Workcraft: it is used as an internal library and not angtalone tool. DesiJ can be run using
the default parametergd@ols—Decomposition»Standard decompositipror with a customised
set of parametersT¢ols—Decomposition>Customised functign

The parameters in the DesiJ configuration window (FigureOmirror the command-line
arguments of the stand-alone version of DesiJ. A detailptheation of those parameters is given
in [100]. The configuration window allows saving the currealfues of the parameters in a named

preset. The presets are persistent across program runs — they ae& stothe configuration

directory of Workcraft.

C.3.4 Dummy contraction

Tools—Dummy contraction

Dummy transitionss a special class of transitions defined in the Signal TtamsiGraph
model. These transitions do not reflect any physical eventise modelled system and are used
as a design aid. The dummy contraction operation attemptsntmve the dummy transitions
from the model while preserving the behaviour of the sigreigitions, as shown in Figure C.11.

Subfigure C.11a is the original STG where some of the tramsitare dummy transitions. Sub-

205

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

c8_dpAck+ c8_dpAck+
e T
c8_dpReg- c8_out_a\c;0— c8 out ac+
c8_0tht_rq- c8_dpReg-
c8_dpAck- c8_out_ac- c8_out_rg-
)
CS—Ot‘t—qu c8_out_ac-
cn_67_rq_p cn_71_rg p c8_dpAck-
¥
cn_67_ac_p cn_71_ac_p
¢8 out_rg+
c8_dpReg+ c¢n_67_rg_m cn_71_rq_m
\ 4
cn_67_ac_m cn_71 _ac_m c8_dpReq+
(a) Original STG with dummy transitions (b) STG with dummy transitions

removed

Figure C.11: Dummy contraction example

figure C.11b is an STG that has the same observed behavidwoiiains no dummies. In this
example dummy contraction was performed by Petrifgols—Dummy contractior>Contract
dummies (Petrify)) Petrify uses state space exploration techniques to peothe STG without
dummy transitions, which often results in very good sohsidut may be very slow for larger
STGs. Workcraft supports an alternative (structural) dynmoontraction method using DesiJ
(Tools—Dummy contractior»Contract dummies (Desl)This method does not suffer from the
state space explosion problem, however it cannot guardhsteall dummy transitions will be
removed.

When a dummy contraction tool is applied, the resulting STilbappear in the Workspace

window alongside the original STG with the suffix “_contredt.

C.3.5 CSC conflict resolution

Tools—Encoding conflicts+Resolve CSC conflicts

The Complete State Coding (CSC) condition means that there@semantically different
STG states (markings) that share the same binary encodigigrmdl states. This condition is a
necessary condition for successful synthesis of an asgnobis circuit from the STG (see Sec-
tion 2.2.2 and Figure 2.5). Workcraft uses MPSat for CSC ainésolution.

When this tool is applied, the resulting STG will appear ia Workspace window alongside

the original STG with the suffix “_resolved”.

206

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

The system has a deadlock.
rb+.rc+.ra+.bc+,ca+,ab+.signalza~| Save |

Play trace

Figure C.12: Failure trace report

C.3.6 Deadlock detection

Tools— Verification—Check for deadlocks

Workcraft uses the unfolding-based tools Punf and MPSattead deadlock states (see Def-
inition 3.7) in Signal Transition Graphs. If a reachabledleek state is found, Workcraft shows
a report window containing that trace. Optionally, the ¢raan be loaded into the simulation tool
which helps to examine the particular sequence of eventethds into the problematic state (Fig-

ure C.12).

C.3.7 Reachability analysis

Tools— Verification—Check custom property

Workcraft provides a user-friendly interface to the MP St tthain for verification of cus-
tom properties (Figure C.13). This mode is useful to spemfychability-like properties (e.g.,
output persistence, consistency, variations of the delgiooperty, etc.) using a language called
Reach [66]. The configuration of the MPSat parameters angbithigerty specification can be

saved using the preset system similar to the DesiJ toofauier

207

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

preset;lr dl '{Im.ih- in]

v
|
| Update preset | [/e settings as new preset] [ge p ts]
~MPSat settings
Mode:
{r\ hability Iy ...1
Solution mode:

@ Find any solution (default) @ Minimise cost function @ Find all solutions

Maxirmum number of solutions (leave blank for no limit):
SAT solver: @ Verbosity |eve|:E

~Property specification (Reach)

exists 5 in SIGNALS * DUMMY {
Tet Ts = tran s {

$s & exists t in Ts s.t. is_plus t { @t }
|

~35 & exists t in Ts s.t. is_minus t© { @ }
H

[Cancal) [—fun]

Figure C.13: MPSat configuration interface

208

Bibliography

[1] Apache Maven — http://maven.apache.org/.
[2] Bazaar IDE Integration — http://wiki.bazaar.canonicam/ideintegration.
[3] Bazaar version control system — http://bazaar.carardom/.
[4] CPN Tools — http://wiki.daimi.au.dk/cpntools/.
[5] Design/CPN Online — http://www.daimi.au.dk/designd/P
[6] Eclipse Maven Integration — http://www.eclipse.or@ed.
[7] Graph visualisation tools — http://www.graphviz.org.
[8] Java SE downloads — http://java.sun.com/javase/doaadd/.
[9] Launchpad collaboration platform — https://launchyesd/.
[10] OpenJDK — http://openjdk.java.net/.
[11] PEP Tool — http://theoretica.informatik.uni-oldemnt.de/ pep/.
[12] Punfand MPSat tools — http://homepages.cs.ncl.adgatr.khomenko/home.formal/tools/mpsat/.
[13] Scripting Java — http://www.mozilla.org/rhino/SgtingJava.html.
[14] SPIN — http://spinroot.com/.
[15] The Substance project — http://java.net/projectsétance/.

[16] The Eclipse Foundation — http://www.eclipse.org/.

209

BIBLIOGRAPHY

[17] VeriMap tool — http://async.org.uk/screen/verimap/
[18] VeriSyn: asynchronous high-level synthesis tool —piithsync.org.uk/besst/verisyn/.

[19] Versify: speed-independent asynchronous circuit ification tool —

http://research.ac.upc.edu/visi/versify/.
[20] Workcraft — http://workcratft.org/.

[21] Sheldon B. Akers. Binary Decision DiagramslEEE Transactions on Computers

27(6):509-516, 1978.

[22] Manoj Ampalam and Montek Singh. Counterflow pipeliningrchitectural support for
preemption in asynchronous systems using anti-tokenBrda. International Conference

Computer-Aided Design (ICCADNovember 2006.

[23] Sreekaanth Isloor Anthony and T. Anthony Marsland. @badlock problem: An overview.

IEEE Computer13:58-78, 1980.
[24] J. C. M. Baeten, editoiApplications of Process Algebr&ambridge Press, 2005.

[25] K.R Baker and A.J. Currie. Multiple objective optimtaan in a behavioral synthesis sys-

tem. Inin Proc. Inst. Elect. Engvolume 140, pages 253260, 1993.

[26] A. Baravalle, G. Franceschinis, M. Gribaudo, V. Lanifthi, M. lacono, N. Mazzocca, and

V. Vittorini. DrawNET Xe: GUI and Formalism Definition Language

[27] A. Bardsley, L. Tarazona, and D. Edward$eak: A Token-Flow Implementation for the

Balsa Language2009.

[28] Andrew Bardsleylmplementing Balsa handshake circuihD thesis, Dept. of Computer

Science, University of Manchester, 2000.

[29] Jan A. Bergstra, Jan Willem Klop, and J. V. Tucker. Alggb tools for system construction,
1984.

[30] E. Best, J. Esparza, B. Grahlmann, S. Melzer, S. RomerFaWallner. The PEP verifica-

tion system. Tool presentation In the FEmSys Conferen®87.1

210

BIBLIOGRAPHY

[31] I. Blunno and L. Lavagno. Designing an asynchronousraaiontroller using Pipefitter. In

Proc. International Conference Computer Design (ICCgges 488 — 493, 2002.

[32] Charles Brej.Early output logic and anti-tokensPhD thesis, Dept. of Computer Science,

University of Manchester, 2005.

[33] Charles Brej and Jim Garside. Early output logic using-tokens. InProc. International

Workshop on Logic Synthesigages 302—-309. ACM Press, May 2003.

[34] Frank Burns, Delong Shang, Albert Koelmans, and AlekoXdev. An asynchronous syn-
thesis toolset using Verilog. IRroceedings of the conference on Design, automation and

test in Europe (Volume 1PATE '04, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[35] Alex Bystrov, Danil Sokolov, and Alex Yakovlev. Lowikency control structures with slack.
In Proc. International Symposium on Advanced Research indsgnous Circuits and

Systems (ASYN@ages 164-173. IEEE Computer Society Press, May 2003.

[36] Josep Carmona, Jordi Cortadella, and Michael KistskhgvGenet: a tool for the synthesis

and mining of Petri Nets. pages 181-185, 2009.

[37] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous systerR&D thesis,
Stanford University, 1984.

[38] Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theorspecifications

PhD thesis, MIT Laboratory for Computer Science, June 1987.

[39] Wesley A Clark. Macromodular computer systems. In AFIPS Conference Pdicgs:

1967 Spring Joint Computer Confereneelume volume 30. Academic Press, 1967.
[40] E.M. Clarke, O. Grumberg, and D.A. Pelddodel CheckingThe MIT Press, 1999.

[41] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavag and A. Yakovlev. Petrify: a
tool for manipulating concurrent specifications and sysithef asynchronous controllers.

IEICE Transactions on Information and Systefa80-D(3):315-325, 1997.

211

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavay and A. YakovlevLogic Synthe-

sis of Asynchronous Controllers and Interfac&pringer, 2002.

Al Davis and Steven M. Nowick. An introduction to asymehous circuit design. Technical

report UUCS-97-013. Technical report, University of UtaB97.

Daniel D. Deavours, Graham Clark, Tod Courtney, Davialyp Salem Derisavi, Jay M.
Doyle, William H. Sanders, and Patrick G. Webster. The Mogltramework and its

implementation. Technical Report 10, Piscataway, NJ, UZ82.

E.W. Dijkstra. Technical Report EWD-123. Technicapoet, Technological University,
Eindhoven, The Netherlands, 1965.

A. V. Dinh Duc, Jean-Baptiste Rigaud, Amine Rezzag,oAm¢ Sirianni, Joo Fragoso, Lau-
rent Resquet, and Marc Renaudin. TAST CAD Tools. Tutoriekgiat the International

Symposium on Advanced Research in Asynchronous CircuidsSyistems (ASYNC'02),

April 2002.

D. A. Edwards and A. Bardsley. Balsa: an asynchronoudware synthesis languagéhe

Computer Journal45 (1):12-18, jan 2002.

E. G. Friedman, editorClock Distribution Networks in VLSI Circuits and SystenisEE
Press, 1995.

Gerald C. Gannod and Sunil Gupta. An automated toolriaieing Petri Nets using SPIN.
In ASE '01: Proceedings of the 16th IEEE international confieeeon Automated software

engineering page 404, Washington, DC, USA, 2001. IEEE Computer Saciety

Stanislavs Golubcovs, Delong Shang, Fei Xia, AndreykMay, and Alex Yakovlev. Mod-
ular approach to multi-resource arbiter designPtoceedings of the 2009 15th IEEE Sym-
posium on Asynchronous Circuits and Systems (async 2088¢s 107-116, Washington,
DC, USA, 2009. IEEE Computer Society.

J. Grabowski. On the analysis of switching circuits bgans of Petri netsElektronische

Informations-verarbeitung und Kybernetik4:611—- 617, 1978.

212

BIBLIOGRAPHY

[52] Bernd Grahlmann, Carola Pohl, and Sercon Mainz. Pngfitiom Spin in PEP. 1998.
[53] T Grotker, S Liao, G. Martin, and Swan System Design with System&pringer, 2002.

[54] Naohiro Hamada, Yuki Shiga, Takao Konishi, HiroshitSalTomohiro Yoneda, Chris My-
ers, and Takashi Nanya. A behavioral synthesis system forchsonous circuits with

bundled-data implementatioimformation and Media Technologie4(2):211-226, 2009.

[55] Keijo Heljanko, Victor Khomenko, and Maciej Koutny. Rdlelisation of the Petri Net
unfolding algorithm. InTools and Algorithms for Construction and Analysis of Syste

pages 371-385, 2002.
[56] C. A.R. Hoare. Communicating sequential processed420

[57] Gerard J. Holzmann. The model checker SPINEE Trans. Softw. Eng23(5):279-295,
1997.

[58] Gerard J. HolzmannThe Spin Model Checker: Primer and Reference Mandaldison-

Wesley, 2004.
[59] Visual STG Lab http://vstgl.sourceforge.net/.

[60] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods, padtical use

Springer-Verlag, 1997.

[61] M.B. Josephs, S.M. Nowick, and C.H. Van Berkel. Modglend design of asynchronous
circuits. Proceedings of the IEEB7(2):234 —242, February 1999.

[62] Ali Khalili, Amir Jalaly Bidgoly, and Mohammad Abdollda Azgomi. PDETool: A multi-
formalism modeling tool for discrete-event systems base8DES description. IRETRI
NETS '09: Proceedings of the 30th International ConfereoseApplications and Theory
of Petri Nets pages 343—-352, Berlin, Heidelberg, 2009. Springer-gerla

[63] V. Khomenko. Computing shortest violation traces indelochecking based on Petri Net
unfoldings and SAT (technical report CS-TR-84). Technieglort, School of Computing

Science, Newcastle University, 2004.

213

BIBLIOGRAPHY

[64] Victor Khomenko.Model Checking Based on Prefixes of Petri Net UnfoldirfsD thesis,

University of Newcastle upon Tyne, School of Computing 8ce 2003.

[65] Victor Khomenko. Efficient automatic resolution of ediing conflicts using STG unfold-
ings. INACSD '07: Proceedings of the Seventh International Confszeon Application of
Concurrency to System Desjgrmages 137-146, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[66] Victor Khomenko. A Usable Reachability Analyser. IneXlYakovlev, editorProc. of 21st
UK Asynchronous Forum’2009, University of BristaD09.

[67] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Dstting state encoding conflicts

in stg unfoldings using sakundam. Inf, 62(2):221-241, 2004.

[68] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Lagsynthesis for asynchronous

circuits based on stg unfoldings and incremental Bahdam. Inf, 70(1):49-73, 2005.

[69] M. A. Kishinevsky, A. Y. Kondratyev, A.R. Taubin, andIVVarshavsky. On self-timed
behavior verification. IPACM Intl. Workshop on Timing Issues in the Specification and

Synthesis of Digital Systenk992.

[70] Michael Kishinevsky, Alex Kondratyev, Alexander Tanpand Victor VarshavskyConcur-
rent hardware: the theory and practice of self-timed desi§eries in Parallel Computing.

Wiley-Interscience, John Wiley& Sons, Inc., 1994.

[71] P. Kocher, J. Jaffe, and B. Jun. Differential power gsial. InCRYPTQ pages 388—-397,
1999.

[72] Daniel H. Linder and James C. Harden. Phased logic: atipg the synchronous de-
sign paradigm with delay-insensitive circuitBEEE Transactions on Compute#5:1031—

1044, September 1996.

[73] Alain J. Martin. Compiling communicating processetidelay-insensitive visi circuits.

Distributed Computing1(4):226-234, 1986.

214

BIBLIOGRAPHY

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Alain J. Martin. Self-timed FIFO: an exercise in conipg programs into VLSI circuits.

HDL description to guaranteed correct circuit design, NeHolland, 1986.

Koichi Masukura, Moniru Tomisaka, and Tomohiro Yoned&rification of asynchronous
circuits based on zero-suppressed BDBystems and Computers in Jap&@®:43-54,

2001.
E. J. McCluskey. Minimization of Boolean functiorBell Syst. Tech35:1417-1444, 1956.

Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem PhD thesis, Carnegie-Mellon University Pittsburgh DeptComputer Science,
1992.

Thomas S. Messerges, Ezzat A. Dabbish, and Robert FinSld&Examining smart-card
security under the threat of power analysis attadEEE Trans. Comput51(5):541-552,
2002.

Shin-ichi Minato. Zero-suppressed BDDs for set mal@pan in combinatorial problems.

pages 272-277, 1993.

Andrey Mokhov. Conditional Partial Order Graphs PhD thesis, University of Newcastle

upon Tyne, School of Electrical, Electronic and ComputegiBeering, 2009.

Andrey Mokhov, Victor Khomenko, and Alex Yakovlev. Elarbiters.Application of Con-

currency to System Design, International Conferencedd®9—-108, 2009.
U. Montanari and F. Rossi. Contextual neAxta Informacia 32(6):545-596, 1995.

D. E. Muller and W. C. Bartky. A theory of asynchronousccits. Annals of Computing
Laboratory of Harvard Universitypages 204243, 1959.

T. Murata. Petri nets: Properties, analysis and appbas. Proceedings of the IEEE

77:541-580, 1989.

Chris J. Myers.Asynchronous circuit desigrwiley-Interscience, John Wiley& Sons, Inc.,

July 2001.

215

BIBLIOGRAPHY

[86] Takashi Nanya, Yoichiro Ueno, Hiroto Kagotani, Masastwako, and Akihiro Takamura.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Titac: Design of a quasi-delay-insensitive microproces$BEE Des. Test11(2):50-63,
1994,

Volnei A. Pedroni.Circuit Design with VHDL The MIT Press, 2004.

A. Peeters, F. te Beest, M. de Wit, and W. Mallon. Clickreknts: An implementation style

for data-driven compilation. pages 3 —14, May 2010.

Marco A. Pena and Jordi Cortadella. Combining Procdggebtas and Petri Nets for the
specification and synthesis of asynchronous circuit&SiWNC '96: Proceedings of the 2nd
International Symposium on Advanced Research in Asynchsoircuits and Systems

page 222, Washington, DC, USA, 1996. IEEE Computer Society.

Carl Adam Petri. Kommunikation mit AutomaterPhD thesis, Bonn: Institut flr Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962. Englisinslation: Technical Report
RADC-TR-65-377, \Vol.1, 1966, New York: Griffiss Air Force 8a.

Luis A. Plana, Doug Edwards, Sam Taylor, Luis A. Tarezoand Andrew Bardsley.
Performance-driven syntax-directed synthesis of asymdus processors. pages 43-47,

2007.

Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Waraft é&S a framework for
interpreted graph models. In Giuliana Franceschinis andt&a Wolf, editorsApplications

and Theory of Petri Nefsyolume 5606 ol ecture Notes in Computer Scienpages 333—
342. Springer Berlin / Heidelberg, 2009.

Ivan Poliakov, Andrey Mokhov, Ashur Rafiev, Danil Soke] and Alex Yakovlev. Au-
tomated verification of asynchronous circuits using cir@étri nets. volume 0, pages

161-170, Los Alamitos, CA, USA, 2008. IEEE Computer Society

Ivan Poliakov, Andrey Mokhov, Danil Sokolov, and Alexakovlev. High-level model

verification within workcraft framework. 149th UK Asynchronous Forur2007.

216

BIBLIOGRAPHY

[95] Ivan Poliakov, Danil Sokolov, and Andrey Mokhov. Workit: A static data flow structure
editing, visualisation and analysis tool. Retri Nets and Other Models of Concurrency -

ICATPN 2007 2007.

[96] Jan M. Rabaey and Alberto Sangiovanni-Vincentellist®y-on-a-Chip - A Platform Per-

spective. University of California.

[97] Oriol Roig. Formal Verification and Testing of Asynchronous CircuRhD thesis, Univer-

sitat Politecnica de Catalunya, 1997.

[98] Leonid Rosenblum and Alex Yakovlev. Signal graphsnirself-timed to timed ones. In
Proceedings of International Workshop on Timed Petri Nedggjes 199-207, Torino, Italy,
July 1985. IEEE Computer Society Press.

[99] M. Schaefer, D. Wist, and R. Wollowski. DESIJ—enablaoecomposition-based synthesis

of complex asynchronous controllers. pages 186 —190, (@092

[100] Mark Schaefer. DesiJ - A Tool for STG DecompositioncHigical report 2007-11. Techni-

cal report, Institute of Computer Science, University ofg&burg, 2007.
[101] Karsten Schmidt. LoLA: A low level analyser. 1825:4@54, 2000.

[102] Charles L. SeitzIntroduction to VLSI systems. Chapter 7: System timiugison-Wesley,
1980.

[103] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Mair A. Saldanha, H. Savoj,
P.R. Stephan, Robert K. Brayton, and Alberto L. Sangiovafimcentelli. Sis: A system
for sequential circuit synthesis. Technical Report UCB/BW92/41, EECS Department,
University of California, Berkeley, 1992.

[104] Delong Shang, Frank Burns, Albert M. Koelmans, Alexkd@ev, and F. Xia. Asyn-
chronous system synthesis based on direct mapping using \&iD Petri netsIEE Pro-

ceedings, Computers and Digital Technigu¥sl(3):209-220, May 2004.

217

BIBLIOGRAPHY

[105] Alexandre Smirnov, Alexander Taubin, Mark Karpovskyd Leonid Rozenblyum. Gate
transfer level synthesis as an automated approach to faie-gipelining. Inin Workshop

on Token Based Computing (ToBaC2()04.

[106] Danil Sokolov. Automated synthesis of asynchronous circuits using dimepping for
control and data paths PhD thesis, Microelectronic System Design Group, Schdol o

EECE, University of Newcastle upon Tyne, 2006.

[107] Danil Sokolov, lvan Poliakov, and Alex Yakovlev. Assiironous data path models. Tth

International Conference on Application of Concurrencysistem Desigr2007.

[108] Danil Sokolov, Ivan Poliakov, and Alex Yakovlev. Asgironous data path models. In

International Conference Application of Concurrency tat8yn DesignJuly 2007.

[109] Danil Sokolov, lvan Poliakov, and Alexandre Yakovléwnalysis of static data flow struc-

tures.Fundam. Inform.88(4):581-610, 2008.

[110] Jens Sparsg and Steve Furli@inciples of asynchronous circuit design: a system perspe

tive. Kluwer Academic Publishers, 2001.

[111] Robert F. Sproull, Ivan E. Sutherland, and Charles Blndr. The counterflow pipeline
processor architecturéEEE Design & Test of Computer$l(3):48-59, 1994.

[112] C. Stehno. PEP Version 2.0. Tool demonstration In @&TIPN conference, 2001.

[113] S. Tam, D.L. Limaye, and U.N Desai. Clock Generatiod &istribution for the 130-nm
[tanium 2 Processor with 6-MB On-Die L3 CachE=EE Journal of Solid-State Circuits
39, 2004.

[114] Donald E. Thomas and Philip R. Moorbylhe Verilog hardware description language
Springer.

[115] Sunan Tugsinavisut, Roger Su, and Peter A. Beerelh4digel synthesis for highly con-
current hardware systemsApplication of Concurrency to System Design, Internationa

Conference 0n0:79-90, 2006.

218

BIBLIOGRAPHY

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Jan Tijmen UddingClassification and composition of delay-insensitive dtecuPhD the-

sis, Eindhoven University of Technology, 1984.
Antti Valmari. The state explosion problem, 1998.

C.H. (Kees) van Berkel, Mark B. Josephs, and Steven dvisk. Scanning the technology:

Applications of asynchronous circuits. pages 223—-2339199

Kees van Berkel, Joep Kessels, Marly Roncken, Ronalelj§ and Frits Schalij. The
VLSI-programming language Tangram and its translation hdndshake circuits. pages

384-389, 1991.

Kees van Hee, Olivia Oanea, Reinier Post, Lou Somed,Jan Martijn v an der Werf.
Yasper: a tool for workflow modeling and analysi&pplication of Concurrency to System

Design, International Conference pd:279-282, 2006.

V. Varshavsky, M. Kishinevsky, V. Marakhovsky, V. Raansky, L. Rosenblum, A. Taubin,
and B. Tzirlin. Self-Timed Control of Concurrent Processé&luwer Academic Publisher,

Dordrecht, The Netherlands, 1990.

Tom Verhoeff. Delay-insensitive codes — an overviBigtributed Computing3:1-8, 1988.

10.1007/BF01788562.

V. Vittorini, M. lacono, N. Mazzocca, and G. Franceisthh The osmosys approach to
multi-formalism modeling of systemsSoftware and Systems Modeljrigj68—81, 2004.
10.1007/s10270-003-0039-5.

Walter Vogler, Alexei L. Semenov, and Alexandre Yalew Unfolding and finite prefix for
nets with read arcs. Imternational Conference on Concurrency Thegogges 501-516,

1998.

Walter Vogler and Ralf Wollowski. Decomposition inyashronous circuit design. In Jordi
Cortadella, Alex Yakovlev, and Grzegorz Rozenberg, esljtdoncurrency and Hardware
Design volume 2549 ofLecture Notes in Computer Sciengeages 152-190. Springer-
Verlag, 2002.

219

BIBLIOGRAPHY

[126] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincdtte A unified Signal Transition

Graph model for asynchronous control circuit synthesidCIBAD’92, 1992.

[127] Alex Yakovlev, Michael Kishinevsky, Alex Kondratyeluciano Lavagno, and Marta
Pietkiewicz-Koutny. On the models for asynchronous ciro@haviour with OR causal-

ity. Formal Methods in System Desjgh189-233, 1996.

[128] T. Yoneda, H. Hatori, A. Takahara, and S. Minato. BDDs ¥ero-Suppressed BDDs:
For CTL symbolic model checking of Petri Nets. limProc. of International Conference
on Formal Methods in Computer-Aided Design (FMCAD’9&)Iume LNCS 1166, pages
435-449. Springer, 1996.

[129] Tomohiro Yoneda, Atsushi Matsumoto, Manabu Kato, @hds Myers. High level synthe-

sis of timed asynchronous circuits. Washington, DC, USA3520

[130] Armin Zimmermann.Stochastic Discrete Event Systems: Modeling, Evaluatpplica-

tions Springer, 2008.

220

Index

Affine transformation, 118 C-element, 66

AND-token, 85 CF2ST converter, 95

Antitoken, 85 Circuit, 57

ARISC processor, 102 Combinational logic, 74

Asynchronous circuits, 18 Complete State Coding, 206
Classes, 20 Complete state coding, 28
Data path, 73 Completion detection, 23
Delay insensitive, 20 Conditional Partial Order Graphs, 115, 146
Delay models, 19 Contextual nets, 48
Design paradigms, 23 Control, 108
Hazards, 62 Control interface, 109
Operation modes, 19 Cycle, 75

Quasi delay insensitive, 20

Data path, 7, 73
Speed-independent, 20

Deadlock, 52, 75, 207
Verification, 54, 62, 143

Demux, 110
Atomic token, 76

DI, 20
Balsa, 31, 146 Direct mapping, 5, 24
Binary decision diagram, 28 Disabling, 78, 87
Boolean function, 57, 78 Disabling condition, 78
Borrowing, 84 Display operation, 117, 123

Active, 84 Dual-rail, 22

Passive, 84 _
Early evaluation, 81
Boundedness, 52
Elementary cycle, 58, 98
Bundled data, 21 _
Enabling, 78, 87

221

INDEX

Enabling condition, 78 Logic networks, 123
Evaluation, 77 Visual model, 121

Early, 81 . .

Java Runtime Environment, 154

Framework, 137 JavaScript, 138
GALS, 3 Layout, 202
gate, 18 Liveness, 75
Graph, 74, 114, 116 Logic networks, 123, 126

Directed, 74, 116 Logic synthesis, 5, 26

Interpreted Graph Models, 114
Marking, 76
Graphical, 12, 117
Model checking, 114
Layout, 117
Muller pipelines, 73
Operation, 117, 119
Multi-formalism, 9, 126, 134
Visualisation, 141
Mux, 110
Graphical user interface, 132, 139

GUI, 132 OR-token, 85

Outer interface, 109
Handshake, 20

Handshake component, 115 Parallel composition, 59
Hazard, 62 Path, 75
Petri nets, 6, 43, 44, 102, 112, 114, 120
IGM, 114
Arcs, 44
Inner interface, 109
Circuit, 58

Interface conformance, 64
Coloured, 115
a-non-conformance, 64 N
Composition, 59
B-non-conformance, 66

Labelled, 44
Interpretation, 116

Marking, 44
Interpreted Graph Models, 114, 115, 131

Places, 44

Graphical presentation, 117 _
Properties, 51
Hierarchical, 122
Read arcs, 58
Interpretation, 116

222

INDEX

Semi-modularity, 62 Serialisation, 141
Tokens, 44 SI, 20
Transitions, 44 Signal, 57
Unfoldings, 57 Signal Transition Graph, 51, 102, 124, 148, 197
Petrify, 28 Composition, 203
Plug-in, 138 Decomposition, 204
Pop, 110 Dummy contraction, 205
Postset, 44, 75 Editing, 197
Preset, 44, 75 Layout, 202
Projection, 75 Simulation, 201
Protocol Simulation, 7, 54
Bundled data, 21 Sleeping barber, 45
Dual-rail, 22 ST2CF converter, 93
Four-phase, 21 Static Data Flow Structure, 73, 115, 123, 144
Handshake protocol, 20 Antitoken, 85
Return-to-zero, 21 Atomic token, 76
Two-phase, 21 Comparison, 102
Push, 109 Counterflow, 84
Dynamic elements, 107
QDI, 20
Hybrid, 92
R-postset, 75 Spread token, 80
R-preset, 75 Tokens, 78
Reachability, 52, 207 Verification, 98, 144
Read arcs, 58 Syntax-driven translation, 24
Complexity reduction, 61 System-on-a-chip, 1
Reconfiguration, 139, 156
. Tools, 30
Register, 76
Balsa, 31
SDFS, 73 Comparison with Workcraft, 135
Semi-modularity, 62 Integration, 133

223

INDEX

Interoperability, 10
MPSat, 36
Petrify, 35
Punf, 36
Trace, 66

Transformation, 118

Verification, 6, 7, 54, 62, 98, 112, 126, 143, 144,
207
Counterflow controller, 70
Visual model, 121

Visualisation, 141

Workcraft, 66, 113, 121, 131, 152
Adding models, 180
Adding tools, 176
Architecture, 136
Asynchronous tasks, 177
Building, 169
Command-line mode, 157
Extending, 169
External tools, 179
Installation, 154
Module, 173, 175
Reconfiguration, 156
User manual, 154
Workspace, 161

Workspace, 161

224

