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The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

J. R. R. Tolkien

The Lord of the Rings
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Abstract

Chapter 0 gives a gentle background to the thesis. It begins with some gen-
eral notions and concepts from homological algebra. For example, not only
are the notions of universal property and of duality central to the flavour
of the subject, they are also suggestive in understanding mathematics at
another depth. In category theory, objects and morphisms are the two main
elements in a category, and notions such as kernels and cokernels are defined
in terms of objects together with morphisms. In accordance with it, the mor-
phisms are given a very subtle significance within a category. The chapter
then introduces the notion of a triangulated category, where due to the lack
of uniqueness of certain morphisms described in the axioms, is allowed to be
far from an abelian category. A few examples of triangulated categories are
given, the homotopy category, the derived category and certain stable cat-
egories. The chapter ends with a little description of an Auslander-Reiten
quiver defined on a Krull-Schmidt category, as well as the notions of Serre
functor and of Auslander-Reiten triangles in subcategories. The introduc-
tion chapter selects lemmas and theorems not only to be referenced in later
chapters, but also those which can induce good intuition on the reader, for
example, in their capacity of being analogues to each other, in the inter-
play between them and in their different suggestiveness in approximating or
generalizing concepts in different ways and directions.

Chapter 1 studies torsion pairs in abelian categories and torsion theories
with torsion theory triangles in triangulated categories. It then gives a
necessary and sufficient condition for the existence of certain adjoint functors
in triangulated categories. Intuitively, they are all different expressions of
subcategories approximating their ambient categories. The chapter goes
on to introduce two special cases of torsion theories, namely t-structures
and split torsion theories, and finishes with a characterization of a split
torsion theory and a classification of split torsion theories in a chosen derived
category.

There is a very close and subtle relationship between the existence of torsion
theory triangles and the existence of Auslander-Reiten triangles. Chapter
2 studies the existence of Auslander-Reiten sequences in subcategories of
mod(Λ), where Λ is a finite-dimensional k-algebra over the field k, based on
the theory of the existence of Auslander-Reiten triangles in subcategories
developed by Jørgensen. The existence theorems strengthen the results by
Auslander and Smalø and by Kleiner.

Chapter 3 sees that quotients of certain triangulated categories are triangu-
lated and are in addition derived categories, appealing to a theorem which
is a slight variation of the results by Rickard and Keller. In this chapter,
the Auslander-Reiten triangles play a predominant role in reflecting the tri-
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angulation structure of a triangulated category, and the Auslander-Reiten
triangles can be read off from the Auslander-Reiten quiver.

The cluster category D of Dynkin type A∞ was introduced by Jørgensen.
One of its several definitions, which is completely analogous to the definition
of the cluster category of type An, motivates us to say that D is a cluster
category of type A∞. In the result by Holm and Jørgensen, the cluster
tilting subcategories of D were shown to be in bijection with certain maximal
sets of non-crossing arcs connecting non-neighbouring integers. Chapter 4
generalizes the result by giving a bijection between torsion theories in D and
certain configurations of arcs connecting non-neighbouring integers. Finally,
a few examples, characterizing all t-structures and co-t-structures in D, are
given.
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Chapter 0

Introduction

The chapter serves as a prelude to the thesis. The definitions, lemmas and
theorems are not introduced once and for all, but they will be reincarnated
again and again in the subsequent chapters, so that each time they appear
with a unique signification and acquire a life of their own, depending on
the context where they manifest themselves, thus altogether a unique phe-
nomenon each time. The totality of the thesis can only be attained when
all the chapters are put together like an orchestra, serving a greater whole.
Let us now begin.

0.1 Homological algebra

In this section, the reader is suggested to refer to [18] for the background.

Definition 0.1.1. A category C consists of

(i) a class of objects X,Y, Z, . . .,

(ii) for any pair of objects X, Y in C, a set HomC(X,Y ), or simply (X,Y ),
when the underlying category is understood, of morphisms from X to
Y ,

(iii) for objects X, Y , Z in C, a composition relation (X,Y ) × (Y,Z) →
(X,Z).

The morphism f from X to Y is written f : X → Y . The set (X,Y )×(Y, Z)
consists of pairs (f, g) where f : X → Y , g : Y → Z and the composition of
f and g is written gf . In addition, C is to satisfy the following axioms.

(i) the sets (X1, Y1) and (X2, Y2) are disjoint unless X1 = X2 and Y1 = Y2,
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(ii) given the morphisms f : W → X, g : X → Y and h : Y → Z, the
relation h(gf) = (hg)f ,

(iii) for each object X there is an identity morphism 1X : X → X, some-
times written idX , such that for any f : X → Y and g : W → X, we
have f1X = f and 1Xg = g. When the object X is understood, the
identity morphism is simply written 1 or id.

Given a category C, let Cop be the opposite category. The objects of Cop and C
are the same with HomCop(X,Y ) = HomC(Y,X). The composition relation
in Cop follows naturally from C, i.e. given morphisms fop in HomCop(Z, Y ),
gop in HomCop(Y,X), with the corresponding morphisms f in HomC(Y,Z),
g in HomC(X,Y ), the composition gopfop in HomCop(Z,X) takes the value
fg in HomC(X,Z).

A morphism f : X → Y in C is an isomorphism if and only if there is a
morphism g : Y → X in C such that gf = 1X and fg = 1Y , and we write
g = f−1 and X ∼= Y . A morphism f : X → X in C is an endomorphism
and an isomorphism f : X → X in C is an automorphism. A zero object 0
in C is one such that, for any object X in C, the sets (X, 0) and (0, X) both
consist of precisely one element. Any zero objects in C, if they exist, are
isomorphic.

Any class of morphisms M together with a composition relation is sufficient
to define a category C. Then a subclass of morphisms M0 of M is to define
a subcategory C0 of C if for every f, g in M0, if gf is defined in M, then gf
is in M0, and given any identity morphism e in M and any morphism f in
M0, and if either ef or fe is defined in M, then e is in M0. In particular,
a full subcategory C0 of a category C satisfies HomC0(X,Y ) = HomC(X,Y )
for any objects X,Y of C0. Therefore to give a full subcategory C0 of C,
it suffices to specify its objects. This notion illustrates the importance of
morphisms in a category. For example, if a morphism is an isomorphism in
C, then it is also an isomorphism in the full subcategory C0 of C.

A covariant (resp. contravariant) functor F : C → D assigns an object
FX in D for each object X in C, and a morphism Ff in HomD(FX,FY )
(resp. HomD(FY, FX)) for each morphism f in HomC(X,Y ), such that
F (fg) = (Ff)(Fg) (resp. F (fg) = (Fg)(Ff)) and F (1A) = 1FA for each
object A in C. A (covariant) functor F : C→ D is full if given objects X,Y
in C, the map FXY : HomC(X,Y )→ HomD(FX,FY ) is onto, and is faithful
if given objects X,Y in C, the map FXY : HomC(X,Y )→ HomD(FX,FY )
is injective. Finally, F is a full embedding if F is full, faithful and injective
on objects.

Let Λ be a finite-dimensional k-algebra over the field k. A left module over
Λ, or a Λ-left-module, is an abelian group A with a scalar multiplication ·
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such that given λ in Λ and a in A, the element λ · a is in A, and given
a, a1, a2 in A, λ, λ1, λ2 in Λ, the following axioms are satisfied.

(i) (λ1 + λ2) · a = λ1 · a+ λ2 · a,

(ii) (λ1λ2) · a = λ1 · (λ2 · a),

(iii) 1Λ · a = a, where 1Λ 6= 0 is the unity element of Λ,

(iv) λ · (a1 + a2) = λ · a1 + λ · a2.

A Λ-left-submodule is a subgroup A′ of A with λ · a′ in A′ for all λ in Λ
and a′ in A′. A Λ-right-(sub)module is defined similarly. A Λ-bi-module is
a module which is simultaneously a Λ-left-module and a Λ-right-module.

Let A and B be Λ-left-modules. A map f : A → B is a homomorphism if
given u, v in A and λ in Λ, we have f(u+v) = f(u)+f(v) and f(λu) = λf(u).
Let S be a subset of A, and let A0 be the set of all elements a in A of the
form a = Σλss where λs is in Λ and λs 6= 0 for only a finite number of
elements s in S. It is trivial that A0 is a submodule of A. If the submodule
A0 is equal to A, then S is a set of generators of A. If A admits a finite set
of generators, it is said to be finitely generated. A set S of generators of A
is said to be a basis of A if every element a of A can be expressed uniquely
in the form a = Σλss where λs is in Λ and λs 6= 0 for only a finite number
of elements s in S. If S is a basis of A, then A is said to be free on the set
S. If A is free on some subset, then A is said to be free.

Example 0.1.2. The category Mod(Λ) is a category with Λ-left-modules as
objects and homomorphisms as morphisms. The category mod(Λ) is a cate-
gory with finitely generated Λ-left-modules as objects and homomorphisms
as morphisms.

Below are a few definitions in an additive category. They are deeply involved
in an abelian category. Both notions will be introduced in a little while. A
kernel of a morphism ϕ : A→ B, denoted by kerϕ, is a morphism µ : K → A
such that µϕ = 0 and if ϕψ = 0 for ψ : X → A, then there is a unique
ψ′ : X → K such that ψ = µψ′. This is suggestive of the following dual
notion. A cokernel of a morphism ϕ : A → B, denoted by cokerϕ, is a
morphism µ : B → C such that µϕ = 0 and if ψϕ = 0 for ψ : B → X, then
there is a unique ψ′ : C → X such that ψ = ψ′µ. The image of a morphism
ϕ : A→ B, denoted by imϕ, is the kernel of the cokernel of ϕ. For example,
consider Λ-left-modules A and B and the homomorphism ϕ : A→ B. Then
simply kerϕ = {a ∈ A | ϕa = 0}, imϕ = ϕA = {b ∈ B | b = ϕa for some
a ∈ A} and cokerϕ = B/imϕ.

A morphism µ : A � B is a monomorphism if µα = µβ implies α = β for
all morphisms α, β. This lends to the dual notion. A morphism ε : A � B
is an epimorphism if αε = βε implies α = β for all morphisms α, β.
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An object P is projective if given any epimorphism B
ε
� C, the map (P, ε) :

(P,B)→ (P,C) is surjective.

P

��~~
B

ε // // C

An injective object is defined dually, i.e. an object I is injective if given any

monomorphism A
ι
↪→ B, the map (ι, I) : (B, I)→ (A, I) is surjective.

A �
� ι //

��

B

��
I

Given a family {Xi} of objects of a category C, the product of the Xi is
(X, pi), where X is an object and the morphisms pi : X → Xi are the
projections with the universal property, this is to say, given any object Y
and morphisms fi : Y → Xi, there is a unique morphism f = {fi} : Y → X
such that pif = fi. The notion of a coproduct is defined dually, i.e. given
a family {Xi} of objects of a category C, the coproduct of the Xi is (X, qi),
written X =

∐
Xi, where X is an object and the morphisms qi : Xi → X are

the injections with the universal property, this is to say, given any object Y
and morphisms fi : Xi → Y , there is a unique morphism f = 〈fi〉 : X → Y
such that fqi = fi.

In the category of Λ-left-modules, the product and the coproduct are simply
the direct product and the direct sum, written

∏
Xi and

⊕
Xi respectively.

This reveals the notion of duality in category theory, see [18, II.3.] for
an account on it. For example, a morphism ϕ is a monomorphism in a
category C if and only if ϕ is an epimorphism in Cop, and the notions are
said to be dual to each other. Similarly, the diagram illustrating the notion
of a projective object, by reversing the arrows and changing epimorphism
to monomorphism, is precisely the diagram illustrating the notion of an
injective object, and vice versa, thus the notions are dual to each other, and
so are the notions of a product and a coproduct. Since (Cop)op = C, any
statement involving certain notions which is true in a category C remains
true if they are replaced by their respective dual notions, with the necessary
adjustments entailed by the changes. Though the duality pair, when it
occurs, is written in its entirety more often in the introduction chapter, the
duals of the statements and proofs are usually left to the reader.

Definition 0.1.3. The finite-dimensional k-algebra Λ over the field k is said
to be right hereditary if any right ideal of Λ is projective as a Λ-module. A
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left hereditary algebra is defined dually, i.e. the algebra Λ is said to be
left hereditary if any left ideal of Λ is projective as a Λ-module. Since the
algebra Λ is right hereditary if and only if it is left hereditary, we simply say
a hereditary algebra, see the remark after [1, Theorem VII.1.4].

Let M be a Λ-right-module, N be a Λ-left-module and consider the set
B = {m⊗ n | m ∈M,n ∈ N}, and let V be a k-vector space with B as the
underlying set. Then the tensor product of M and N , written M ⊗Λ N , is
defined to be the k-vector space V modulo the following relations.

(i) m1 ⊗ n+m2 ⊗ n = (m1 +m2)⊗ n,

(ii) m⊗ n1 +m⊗ n2 = m⊗ (n1 + n2),

(iii) mλ⊗ n = m⊗ λn, λ ∈ Λ.

The tensor product M ⊗Λ N does not necessarily have a module structure.

Lemma 0.1.4. Let M be a Λ-right-module, N be a Λ-left-module and J be
a Λ-bi-module. Then

(i) M ⊗Λ Λ ∼= M and Λ⊗Λ N ∼= N ,

(ii) J ⊗Λ N is injective if J is injective as a Λ-left-module and N is pro-
jective.

A category C is additive if C has a zero object, any two objects in C have
a product in C and given objects A,B,C in C, the morphism sets (A,B)
are abelian groups such that the composition (A,B) × (B,C) → (A,C) is
bilinear. An additive category C is abelian if every morphism has a kernel
and a cokernel, every monomorphism is the kernel of its cokernel and every
epimorphism is the cokernel of its kernel and finally, every morphism can
be expressed as the composite of an epimorphism and a monomorphism.
The categories Mod(Λ) and mod(Λ) are examples of additive and abelian
categories, see [18, II.9.]. Finally, let F : C → D be a functor between the
additive categories. Then F is an additive functor if given X,Y in C, the
map FXY : HomC(X,Y )→ HomD(FX,FY ) is a homomorphism.

A sequence A0
j0→ A1 → . . .→ An

jn→ An+1 in a category C satisfies ji+1ji = 0

for 0 ≤ i ≤ n−1. A sequence A
ϕ→ B

ψ→ C in Mod(Λ) is exact at B if kerψ =
imϕ. A sequence A0 → A1 → . . . → An → An+1 in Mod(Λ) is exact if it is
exact at all the Ai, 1 ≤ i ≤ n. The exact sequence 0 → A � B � C → 0
in Mod(Λ) is a short exact sequence. The notion of exactness can readily be
generalized in any abelian categories, with some delicate considerations.
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A covariant functor F is left exact if given the exact sequence 0 → A →
B → C, the sequence 0 → FA → FB → FC is exact. A contravariant
functor F is left exact if given the exact sequence A → B → C → 0, the
sequence 0 → FC → FB → FA is exact. The right exactness of a functor
F , covariant or contravariant, is defined similarly.

The notions of a monomorphism and an epimorphism are generalizations of
the following.

Definition 0.1.5. Let α : A→ B be a morphism in a category C. Then α is
a split monomorphism if there is a morphism β : B → A such that βα = 1A.
A split epimorphism is defined dually, i.e. α is a split epimorphism if there
is a morphism β : B → A such that αβ = 1B.

In a different manner, the following generalizes the notions of a monomor-
phism and an epimorphism.

Definition 0.1.6. Let A and B be in a category C. A morphism α : A→ B
is right minimal if αf = α for a morphism f : A → A implies that f is an
automorphism. Dually, a morphism α : A → B is left minimal if fα = α
for a morphism f : B → B implies that f is an automorphism.

Let A be an abelian category in this chapter. The following lemma is stan-
dard.

Lemma 0.1.7. (Five Lemma) In the following commutative diagram, con-
sidered in A,

// A1
//

ϕ1

��

A2
//

ϕ2

��

A3
//

ϕ3

��

A4
//

ϕ4

��

A5

ϕ5

��

//

// B1
// B2

// B3
// B4

// B5
// ,

assume that the rows are exact. If ϕ1, ϕ2, ϕ4 and ϕ5 are isomorphisms,
then ϕ3 is also an isomorphism.

Given a category C, any functor F : C → C is an endofunctor. If there is a
functor G : C → C such that FG = GF = id, then F is an automorphism
and written G = F−1. Given functors F,G : C → D and objects X, Y
in C, a natural transformation t from F to G is a collection of morphisms
tX : FX → GX in D such that for any morphism f : X → Y in C, there
is the relation G(f)tX = tY F (f), as shown in the following commutative
diagram.

FX
tX //

Ff
��

GX

Gf
��

FY
tY // GY
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If tX is an isomorphism for each X, then t is a natural equivalence and
we write F ' G. Let F : C → D, G : D → C be functors such that
GF ' id : C → C and FG ' id : D → D. Then F (and also G) is an
equivalence and they are quasi-inverses of each other, and the categories
C and D are equivalent categories. If C = D, then F (and also G) is an
autoequivalence. For example, an automorphism is an antoequivalence.

Example 0.1.8. (i) ([18, Exercise II.4.1.]) Let C0 be a full subcategory of
C such that given any object A in C, there is precisely one object A0

in C0 with A0
∼= A. Then C0 is equivalent to C, and the subcategory

C0 is said to be a skeleton of C. Along with this, any two skeletons of
C are isomorphic.

(ii) ([31, Theorem IV.4.1]) Consider the functor F : C → D. Then F is a
natural equivalence of categories if and only if F is full, faithful and
essentially surjective, this is to say, for all Y in D, there is some X in
C such that FX ∼= Y .

The object X in an additive category C is indecomposable if X is non-zero
and if X ∼= X1 ⊕ X2, then either X1

∼= 0 or X2
∼= 0. If C is the module

category Mod(Λ), then End(X) is also a k-algebra, where End(X) is the
endomorphism ring Hom(X,X). A k-algebra A is a local algebra if A has
a unique maximal right ideal. A characterization of a finite-dimensional
k-algebra A as a local algebra is given in [1, Lemma I.4.6].

Lemma 0.1.9. ([1, Corollary I.4.8]) Let M be a Λ-left-module. Then M is
indecomposable if and only if the algebra End(M) is local.

Let k be a field and let X,Y, Z be objects in a category C. Then C is said
to be k-linear if it is additive, each Hom set (X,Y ) is a k-vector space and
each composition map (X,Y )× (Y, Z)→ (X,Z) is bilinear. It is Hom finite
if given any X,Y in C, the morphism space (X,Y ) is a finite-dimensional
k-vector space.

A category C is finite-dimensional k-additive if C is k-linear and all Hom sets
(X,Y ) are finite-dimensional k-vector spaces. If all idempotents split, that
is, given e = e2 in (X,X) for an object X in C, there are maps µ : Y → X
and ρ : X → Y with ρµ = 1Y and µρ = e, then the endomorphism ring
End(X) of any indecomposable object X of C is a local ring, so that the
category C is to be a Krull-Schmidt category, see the following definition in
[41, 2.2].

Definition 0.1.10. (c.f. Example 0.1.8) Let C be a finite-dimensional k-
linear category. Then C is Krull-Schmidt if given indecomposable objects
xi, xj , 1 ≤ i ≤ s, 1 ≤ j ≤ t, in C such that

⊕s
i=1 xi

∼=
⊕t

j=1 yj , then s = t
and there is a permutation π of {1, . . . , s} such that xi ∼= yπ(i) for all i.
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For example, the category mod(Λ) is Krull-Schmidt, where we remind the
reader that Λ is a finite-dimensional k-algebra over the field k.

Notation 0.1.11. Let C be a Krull-Schmidt category, and let {Xi} be a com-
plete set of representatives from the isomorphism classes of indecomposable
objects in C. The full subcategory of C, with objects the Xi, is denoted by
indC. Let C be any additive category and C0 a subcategory of C. Then
denote by addC0 the smallest subcategory of C containing all the objects in
C0, which is closed under direct sums and direct summands. The category
addC0 is said to be the additive closure of C0, or informally, the add of
objects in C0.

Definition 0.1.12. Let C be an additive category. A chain complex C =
{Cn, ∂n} over C is

C = · · · // Cn+1
∂n+1 // Cn

∂n // Cn−1
∂n−1 // Cn−2

// · · · ,

where the Ci are in C and ∂i∂i+1 = 0.

The following is the dual notion.

A cochain complex C = {Cn, ∂n} over C is

C = · · · // Cn−2 ∂n−2
// Cn−1 ∂

n−1
// Cn

∂n // Cn+1 // · · · ,

where the Ci are in C and ∂i+1∂i = 0.

Remark 0.1.13. Contexts written in terms of chain complexes can be trans-
lated suitably in the context of cochain complexes, where the prefix “co-” is
to be added when it makes sense, and vice versa. This is to be seen read-
ily as subscripts are used for chain complexes and superscripts for cochain
complexes.

A chain complex C = {Cn, ∂n} is said to be bounded below if Cn = 0 for
n � 0. Similarly, there is the notion of a chain complex which is bounded
above or bounded on both sides. An object M in C is identified with the
chain complex

· · · // 0 // 0 //M // 0 // 0 // · · ·

with M in degree 0 when there is no confusion.

Definition 0.1.14. Let C be an additive category and let C = {Cn, ∂n} and
D = {Dn, ∂̃n} be chain complexes over C. Then a chain map ϕ : C → D is
a family {ϕn : Cn → Dn} of morphisms such that the following diagram,

Cn
∂n //

ϕn

��

Cn−1

ϕn−1

��
Dn

∂̃n // Dn−1,

8



is commutative for each value of n.

Given an additive category C, the category with (co)chain complexes over
C as objects and (co)chain maps as morphisms is denoted by C(C). The
category of (co)chain complexes over Mod(Λ) is denoted by C(Λ).

Definition 0.1.15. Let C be an additive category and let C = {Cn, ∂n} and
D = {Dn, ∂̃n} be chain complexes over C. Given a chain map ϕ : C → D, let

the mapping cone of ϕ be the chain complex E = E(ϕ) = {En, ˜̃
∂n}, where

En = Cn−1 ⊕ Dn and
˜̃
∂n(a, b) = (−∂n−1a, ϕn−1a + ∂̃nb) for a ∈ Cn−1 and

b ∈ Dn.

Definition 0.1.16. Let C = {Cn, ∂n} be a chain complex in C(Λ). Let
Hn(C) = ker∂n/im∂n+1 be the n-th homology module of C and write H(C) =
{Hn(C)}. Also Zn = Zn(C) = ker∂n.

Let C = {Cn, ∂n} and D = {Dn, ∂̃n} be chain complexes in C(Λ) and
consider the chain map ϕ : C → D. Then it is natural to define Hn(ϕ) :
Hn(C) → Hn(D) to be Hn(ϕ)(xn + im∂n+1) = ϕn(xn) + im∂̃n+1 for xn in
ker∂n. Since xn is in ker∂n and ∂̃nϕn(xn) = ϕn−1∂n(xn) = 0, therefore
ϕn(xn) is indeed in ker∂̃n.

The map Hn(ϕ) is well-defined. Consider the following diagram,

Cn+1
∂n+1 //

ϕn+1

��

Cn
∂n //

ϕn

��

Cn−1

ϕn−1

��
Dn+1

∂̃n+1 // Dn
∂̃n // Dn−1.

Let xn and x′n be in ker∂n such that xn + im∂n+1 = x′n + im∂n+1, which
is to say xn − x′n is in im∂n+1. Therefore xn − x′n = ∂n+1(u) for some u
in Cn+1. Hence ϕnxn − ϕnx′n = ϕn(xn − x′n) = ϕn∂n+1(u) = ∂̃n+1ϕn+1(u),
which gives ϕnxn − ϕnx′n in im∂̃n+1 indeed.

Example 0.1.17. Functors can be defined on different levels. Here are a few
examples.

(i) A group can be viewed as a category with a single object. The mor-
phisms of the category are the elements of the group, which are all
invertible. A functor between two groups is then a homomorphism
between them.

(ii) Consider the chain complex X = {Xn, ∂n}. The suspension functor
Σ is defined by shifting the complex X one place to the left, and
changing the sign of the differential ∂, i.e. for the chain complex
Σ(X) = {Σ(X)n, ∂̃n}, let Σ(X)n = Xn−1 and ∂̃n = −∂n−1.

9



(iii) Let C and D be two chain complexes in C(Λ) with a chain map ϕ :
C → D. This induces a well-defined morphism H(ϕ) : H(C) → H(D)
and the homology functor H(−) correspondingly, by the little descrip-
tion after Definition 0.1.16. The chain map ϕ is a quasi-isomorphism
if the induced homomorphisms Hn(ϕ) are isomorphisms.

(iv) Let A and B be arbitrary categories. A pair of functors L : A → B
and R : B → A are adjoints if there is an isomorphism τ : (LA,B)

∼=→
(A,RB) for all A in A and B in B, such that τ is natural in A and
B. For the isomorphism τ to be natural in A is to say that given a
morphism f : A1 → A2 in A, the following diagram is commutative.

(LA2, B)
τ //

��

(A2, RB)

��
(LA1, B)

τ // (A1, RB)

Similarly, for the isomorphism τ to be natural in B is to say that given
a morphism g : B1 → B2 in B, the following diagram is commutative.

(LA,B1)
τ //

��

(A,RB1)

��
(LA,B2)

τ // (A,RB2)

L is the left adjoint and R is the right adjoint of the pair of functors.

In Example 0.1.17(iv), givenA inA andB in B, the map ηA = τ(idLA) : A→
RLA is the unit of the adjunction, and the map εB = τ−1(idRB) : LRB → B
is the counit of the adjunction. If A and B are abelian, then L is right exact
and R is left exact, see [42, Theorem 2.14]. In this way, adjoints approximate
exactness as well.

Intuitively, adjoints are approximations of inverse functors. Indeed suppose
the functors L and R are inverse functors. Then their actions can be re-
trieved through τ . For example, let A1 and A2 be in A and consider the
morphism f : A1 → A2. Suppose A2 = RB2 for some B2 in B. Then the
morphism Lf : LA1 → LA2, where LA2 = LRB2 = B2, takes the value
τ−1f .

Any two left adjoints of a functor R are naturally equivalent, dually, any
two right adjoints of a functor L are naturally equivalent, see [11, A5.2.1].
A functor with a left adjoint respects products, and a functor with a right
adjoint respects coproducts. Any invertible functor has both a right and a
left adjoint, see [35, Proposition 1.1.6].

The following lemma follows from the definition of a quasi-isomorphism.
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Lemma 0.1.18. Let X be a chain complex in C(Λ) and consider the mor-
phism f : 0→ X in C(Λ). Then f is a quasi-isomorphism if and only if X
is exact.

Lemma 0.1.19. ([18, Theorem IV.2.1]) Let C be an abelian category and
let A� B � C be a short exact sequence of chain complexes over C, which
is equivalent to saying An � Bn � Cn is a short exact sequence in C for
each value of n. Then there is a long exact sequence

· · · // Hn(A) // Hn(B) // Hn(C) // Hn−1(A) // · · ·

in C.

Lemma 0.1.20. Consider a chain map ϕ : C → D in C(Λ) and the mapping
cone E = E(ϕ) in Definition 0.1.15. Let Σ be the suspension functor. Then

there is a short exact sequence D
ı
� E(ϕ)

ρ
� ΣC in C(Λ), where ı is the

canonical inclusion and ρ is the canonical surjection. In addition,

(i) By Lemma 0.1.19, there is a long exact sequence

· · · // Hn(C) // Hn(D) // Hn(E(ϕ)) // Hn−1(C) // · · ·

in Mod(Λ). Therefore H(E(ϕ)) = 0 if and only if H(ϕ) : H(C)
∼=→

H(D).

(ii) Let X be a chain complex in C(Λ) and consider the chain map µ : X →
E(ϕ) such that ρµ = 0. Then there is a unique chain map µ′ : X → D
such that ıµ′ = µ.

X

µ

��

0

##

µ′

||
0 // D

ı // E(ϕ)
ρ // ΣC // 0

In Lemma 0.1.20(i), the map ϕ is a quasi-isomorphism if and only if the
mapping cone E = E(ϕ) is exact.

The construction of a projective resolution is a subtle way of encoding a
module A in Mod(Λ) into a complex in C(Λ).

Definition 0.1.21. Let A be in Mod(Λ). A projective resolution P (A) of
A is a chain complex

P (A) = · · · // P2
// P1

// P0
// 0 // · · ·

in C(Λ) where Pi is projective for all i ≥ 0, Hi(P ) = 0 for all i ≥ 1 and
H0(P ) ∼= A.
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Definition 0.1.22. Let A be in Mod(Λ). An injective resolution I(A) of A
is a cochain complex

I(A) = · · · // 0 // I0 // I1 // I2 // · · ·

in C(Λ) where Ii is injective for all i ≥ 0, Hi(I) = 0 for all i ≥ 1 and
H0(I) ∼= A.

Example 0.1.23. Below are some examples of projective resolutions.

(i) Let k be a field. Consider the ring R = k[X]/(X2), and turn k into
an R-module by letting (k0 + k1X)m = k0m for m in k. Then the
projective resolution P (M) of k is

P (M) = · · · // k[X]/(X2)
·X // k[X]/(X2) // 0 // · · · .

(ii) Let k be a field. Consider the ring R = k[X], and turn k into an
R-module by letting (k0 + k1X + . . . + knX

n)m = k0m for m in k.
Then the projective resolution P (M) of k is

P (M) = · · · // 0 // k[X]
·X // k[X] // 0 // · · · .

Definition 0.1.24. ([18, VII.7.]) The global dimension of Λ, denoted by gl.
dim. Λ, is less than or equal to m if for all Λ-modules A and all projective
resolutions P (A) of A, ker(Pm−1 → Pm−2) is projective. Then gl. dim. Λ
= m if gl. dim. Λ ≤ m but gl. dim. Λ � m− 1.

Example 0.1.25. ([1, Theorem VII.1.4]) The algebra Λ is hereditary if and
only if the global dimension of Λ is at most one.

Definition 0.1.26. Let C be an additive category and let C = {Cn, ∂n} and
D = {Dn, ∂̃n} be chain complexes over C. A homotopy h : ϕ → ψ between
chain maps ϕ,ψ : C → D is a collection of morphisms {hn : Cn → Dn+1}
such that ϕn − ψn = ∂̃n+1hn + hn−1∂n.

C = · · · //Cn+1
//Cn

∂n //

hn

||

Cn−1
//

hn−1

||

· · ·

D = · · · //Dn+1
∂̃n+1 //Dn

//Dn−1
// · · ·

If there is a homotopy h : ϕ → ψ, then ϕ,ψ are homotopic and we write
ϕ ' ψ. The homotopy relation is an equivalence relation, so that given a
chain map ϕ, let ϕ be the equivalence class of ϕ. The chain complexes C
and D are homotopy equivalent if there are chain maps ϕ : C → D and
ψ : D → C such that ψϕ ' id and ϕψ ' id.
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A chain complex C in C(Λ) is projective if Cn is projective for all n ≥ 0 and
Cn = 0 for all n ≤ −1. A cochain complex D in C(Λ) is injective if Dn is
injective for all n ≥ 0 and Dn = 0 for all n ≤ −1. A (co)chain complex C
in C(Λ) is acyclic if (Hn(C) = 0) Hn(C) = 0 for n ≥ 1.

Lemma 0.1.27. (i) ([18, Theorem IV.4.1]) Let C be a projective chain
complex and D be an acyclic chain complex in C(Λ). Then for every
homomorphism ϕ : H0(C)→ H0(D), there is a chain map ϕ̃ inducing
ϕ and any two such chain maps are homotopic.

(ii) ([18, Theorem IV.4.4]) Let C be an acyclic cochain complex and D be
an injective cochain complex in C(Λ). Then for every homomorphism
ϕ : H0(C) → H0(D), there is a chain map ϕ̃ inducing ϕ and any two
such chain maps are homotopic.

Example 0.1.28. For any M in Mod(Λ), the projective resolution P (M)
always exists, see [18, Lemma IV.4.2]. Consider the isomorphism f0 :

H0P (M)
∼=→ M . By Lemma 0.1.27(i), the morphism f0 can be extended

to a chain map f : P (M) → M . The chain map f is a quasi-isomorphism.
It follows from Lemma 0.1.27(i) that any two projective resolutions of M
are homotopy equivalent.

Lemma 0.1.29. Let P be a chain complex in C(Λ). If P is projective, then
H(P ) = 0 if and only if 1 ' 0 : P → P .

Proof. (if) Since 1 ' 0 : P → P , there are morphisms hn : Pn → Pn+1 such
that 1 = ∂n+1hn + hn−1∂n.

P = · · · //Pn+1
//Pn

∂n //

hn

||

Pn−1
//

hn−1

||

· · · //P0

P = · · · //Pn+1
∂n+1 //Pn //Pn−1

// · · · //P0

Let y ∈ ker∂n. Therefore y = (∂n+1hn + hn−1∂n)y = (∂n+1hn)y and so
y ∈ im∂n+1. (only if) Consider the morphism π : H0(P ) → H0(P ). Since
H0(P ) = 0, therefore π = 1 = 0. Lemma 0.1.27(i) then gives 1 ' 0 : P →
P .

Lemma 0.1.30. ([18, Exercise IV.3.1.]) Let C and D be chain complexes
in C(Λ) and let ϕ and ψ be homotopic chain maps : C −→ D. Then the
mapping cones E(ϕ) and E(ψ) are isomorphic.

The homotopy category K(Λ) is a category whose objects are the chain
complexes in C(Λ), and whose morphisms are the homotopy equivalence
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classes of chain maps between chain complexes, see [17, Chapter I. §2.].
This is possible because the null homotopic morphisms form an ideal in
C(Λ). Let K+(Λ), K−(Λ) and Kb(Λ) be the full subcategories of K(Λ)
consisting of the complexes bounded below, bounded above and bounded
on both sides, respectively.

Lemma 0.1.31. Let X and Y be chain complexes in K(Λ) and let ϕ and ψ
be homotopic chain maps : X → Y . Let F : K(Λ) → K(Λ) be an additive
functor and consider the homology functor H(−). Then

(i) H(ϕ) = H(ψ),

(ii) Fϕ ' Fψ,

(iii) The morphism f : 0 → X in K(Λ) is an isomorphism if and only if
X is null homotopic, i.e. X ' 0.

Proof. This is trivial.

By virtue of Lemma 0.1.31, the homology functor H(−) and subsequently
quasi-isomorphisms are well-defined on K(Λ).

Lemma 0.1.32. Let P be a projective module in Mod(Λ) and let X be in
C(Λ). Then HomΛ(P,H0X) ∼= H0(HomΛ(P,X)).

Proof. Let the chain complex X = {Xn, ∂n} be

X = · · · // X2
// X1

∂1 // X0
∂0 // X−1

// X−2
// · · · ,

and the chain complex (P,X) be

(P,X) = · · · // (P,X1)
d1 // (P,X0)

d0 // (P,X−1) // · · · ,

where di = (P, ∂i).

Let θ : HomΛ(P,H0X) → H0(HomΛ(P,X)) and θ′ : H0(HomΛ(P,X)) →
HomΛ(P,H0X) be maps between the two Hom sets, which are going to be
defined. Let p be in P . Given a morphism f : P → H0X where f(p) = xp +
im∂1 for some xp in ker∂0, consider the canonical morphism πX : ker∂0 �
H0(X). Since P is projective, there is a morphism g : P → ker∂0 such that
πXg = f .

ker∂0
πX // // H0(X)

P

g

OO

f

::
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This gives a morphism g : P → X0. Since ∂0g = 0, therefore g is in kerd0

and define θ(f) = g + imd1 in H0(HomΛ(P,X)). Conversely, consider the
morphism g + imd1 in H0(HomΛ(P,X)) where g : P → X0 and ∂0g = 0.
Given p in P , define θ′(g + imd1) = f where f(p) = g(p) + im∂1. Finally,
one can verify that θ and θ′ are well-defined and that θθ′ = θ′θ = 1.

0.2 Triangulated categories

This section is in reminiscence of [17] and [44], though the reader can also
seek guidance from [24], [34], [35] and [25].

Unlike an abelian category, whose properties are inherent in the category, a
triangulated category is a category with extra structure layered on it. Let
us begin with the definition.

Definition 0.2.1. ([17, Chapter I. §1.]) A triangulated category is an addi-
tive category T, together with

(a) an automorphism Σ : T→ T known as the translation functor, and

(b) a collection of sextuples (x, y, z, u, v, w) known as the distinguished
triangles of T, written x

u→ y
v→ z

w→ Σx, or simply x
u→ y

v→ z →.
Here x, y, z are objects and u, v, w are morphisms of T.

A morphism from the distinguished triangle (x, y, z, u, v, w) to the distin-
guished triangle (x′, y′, z′, u′, v′, w′) is a commutative diagram,

x
u //

f
��

y
v //

g

��

z
w //

h
��

Σx

Σf
��

x′
u′ // y′

v′ // z′
w′ // Σx′.

If the morphisms f , g and h are isomorphisms, the distinguished triangles
(x, y, z, u, v, w) and (x′, y′, z′, u′, v′, w′) are then said to be isomorphic.

The above is required to satisfy

(i) (TR1) Every sextuple (x, y, z, u, v, w) isomorphic to a distinguished
triangle is a distinguished triangle. Every morphism u : x→ y can be
imbedded in a distinguished triangle (x, y, z, u, v, w). For each x, the
sextuple (x, x, 0, idx, 0, 0) is a distinguished triangle.
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(ii) (TR2) (x, y, z, u, v, w) is a distinguished triangle if and only if (y, z,Σ(x), v, w,−Σ(u))
is a distinguished triangle.

(iii) (TR3) Given distinguished triangles (x, y, z, u, v, w) and (x′, y′, z′, u′, v′, w′),
and morphisms f and g such that gu = u′f , there is a morphism h
such that the following diagram is commutative.

x
u //

f
��

y
v //

g

��

z
w //

h
��

Σx

Σf
��

x′
u′ // y′

v′ // z′
w′ // Σx′

(iv) (TR4) The octahedral axiom. Given two composable morphisms f :
x→ y and g : y → u, as in the following commutative diagram,

x
f //

gf

��

y

g

��
u u,

we can extend it to the following commutative diagram,

x
f //

gf

��

y

g

��

// z

��

// Σx

��
u

��

u //

��

0

��

// Σu

��
v //

��

w

��

// Σz // Σv

��
Σx // Σy // Σz // Σ2x,

where all the rows and columns are distinguished triangles.

The automorphism Σ : T → T is an additive functor. By abuse of nota-
tion, given a distinguished triangle x

u→ y
v→ z

w→ Σx, the object z is the
mapping cone of the morphism u : x→ y, see Definition 0.1.15. By (TR1),
any object x in a triangulated category T yields a distinguished triangle
(x, x, 0, idx, 0, 0). This is similar to the way any object in a category yields
a chain complex, see Definition 0.1.12.

The following is a slight variation of (TR3).

(TR3’) Given distinguished triangles (x, y, z, u, v, w) and (x′, y′, z′, u′, v′, w′),
and morphisms f and h such that Σf ◦w = w′h, there is a morphism g such
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that the following diagram is commutative.

x
u //

f
��

y
v //

g

��

z
w //

h
��

Σx

Σf
��

x′
u′ // y′

v′ // z′
w′ // Σx′

This follows from (TR2) and (TR3).

A full additive subcategory S in T is a triangulated subcategory if it is closed
under isomorphisms and the translation functor Σ, and for any distinguished
triangle x→ y → z → Σx, if x and y are in S, then z is in S. Let T and T′

be triangulated categories with translation functors Σ and Σ′ respectively.
A triangulated functor from T to T′ is a pair (F, σ) where F : T → T′ is

an additive functor and σ : FΣ
'→ Σ′F , such that given a distinguished

triangle x
α→ y

β→ z
γ→ Σx in T, the image Fx

Fα→ Fy
Fβ→ Fz

σxFγ→ Σ′Fx
is a distinguished triangle in T′. If a triangulated functor F : T → T′ is
an equivalence, then F is an triangle equivalence and T and T′ are triangle
equivalent.

Lemma 0.2.2. (i) Let x
α→ y

β→ z → Σx be a distinguished triangle.
Then the composition βα is zero.

(ii) In (TR3), if the morphisms f and g are isomorphisms, then the mor-
phism h is an isomorphism.

(iii) Let x
α→ y → z → Σx be a distinguished triangle. Then α is an

isomorphism if and only if z ∼= 0.

(iv) If x1 → y1 → z1 → Σx1 and x2 → y2 → z2 → Σx2 are distinguished
triangles, then x1 ⊕ x2 → y1 ⊕ y2 → z1 ⊕ z2 → Σx1 ⊕ Σx2 is a

distinguished triangle. In particular, x → x ⊕ z → z
0→ Σx is a

distinguished triangle.

(v) The distinguished triangles x→ y → z
γ→ Σx and x→ x⊕z → z

0→ Σx
are isomorphic if and only if γ = 0.

(vi) Let x
α→ y

β→ z → Σx be a distinguished triangle. If there is a
morphism f : m → y such that βf = 0, then there is a morphism
f ′ : m→ x such that αf ′ = f .

m

f

��

0

��

f ′

��
x

α // y
β // z // Σx
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Proof. (i) and (ii): This is [17, Proposition I.1.1.]. (iii) This is [35, Corollary
1.2.6]. (iv) This is [35, Proposition 1.2.3]. (v) This is [35, Corollary 1.2.7].

(vi) By (TR1) and (TR2), there is a distinguished triangle 0→ m
id→ m→ 0,

and by (TR2), there is a distinguished triangle Σ−1z → x
α→ y

β→ z. By
(TR3’), there is a morphism f ′ : m→ x such that the following diagram is
commutative.

0 //

��

m
id //

f ′

��

m //

f

��

0

0

��
Σ−1z // x

α // y
β // z

This gives αf ′ = f .

Lemma 0.2.2(vi) suggests that a triangulated category might not permit
kernels, since the morphism f ′ is not unique. A distinguished triangle of the

form x→ x⊕ z → z
0→ Σx is said to be a split distinguished triangle.

Lemma 0.2.3. ([14, Remark 3.2]) Let x
α→ y

β→ z
γ→ Σx be a distinguished

triangle. Then the following are equivalent.

(i) γ 6= 0,

(ii) α is not a split monomorphism,

(iii) β is not a split epimorphism.

Lemma 0.2.4. ([30, Lemma 2.5]) Let x
α→ y

β→ z
γ→ Σx be a distinguished

triangle. Then β is right minimal if and only if α is left minimal.

In each of the next three little sections a different flavour of triangulated cat-
egories is introduced. They show how triangulation is distilled and shaped
in different categories.

0.2.1 The homotopy category

The homotopy category K(Λ) is triangulated, see [17, Chapter I. §2.]. This
is described as follows. Let the translation functor Σ take the value of the
suspension functor. Given a morphism ϕ : X → Y in K(Λ), complete it to a

diagram X
ϕ→ Y → E(ϕ)→ ΣX, where E(ϕ) is the mapping cone and the

morphisms are viewed in K(Λ). By Lemma 0.1.30, the mapping cone E(ϕ)
is independent of the choice of ϕ up to isomorphism. Let the distinguished
triangles in K(Λ) be either diagrams of such a form or diagrams isomorphic
to them.
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The following lemma is essentially a verification of (TR2) in the category
K(Λ).

Lemma 0.2.5. Consider the identity chain map 1X : X → X in C(Λ).
Then the mapping cone E(1X) is isomorphic to 0 in K(Λ).

Proof. For (xn−1, xn) in Xn−1 ⊕Xn, define hn : Xn−1 ⊕Xn → Xn ⊕Xn+1

to be hn(xn−1, xn) = (xn, 0). Consider the following diagram,

E(1X) = · · · // Xn+1 ⊕Xn+2
∂n+2 // Xn ⊕Xn+1

∂n+1 //

hn+1

vv

Xn−1 ⊕Xn
∂n //

hn

ww

· · ·

E(1X) = · · · // Xn+1 ⊕Xn+2
∂n+2 // Xn ⊕Xn+1

∂n+1 // Xn−1 ⊕Xn
∂n // · · · .

Since (∂n+2hn+1+hn∂n+1)(xn, xn+1) = (∂n+2hn+1)(xn, xn+1)+(hn∂n+1)(xn, xn+1) =
∂n+2(xn+1, 0) + hn(−∂nxn, xn + ∂n+1xn+1) = (−∂n+1xn+1, xn+1) + (xn +
∂n+1xn+1, 0) = (xn, xn+1), therefore ∂n+2hn+1 +hn∂n+1 = 1. Consequently,
the identity chain map on E(1X) is homotopic to 0, and so HomK(Λ)(E(1X), E(1X)) =
0 whence E(1X) ∼= 0 in K(Λ).

Lemma 0.2.6. Let P be a projective module in Mod(Λ) and let X be in
K(Λ). Then HomK(Λ)(P,X) ∼= HomΛ(P,H0(X)).

Proof. Let the chain complex X = {Xn, ∂n} be

X = · · · // X2
// X1

∂1 // X0
∂0 // X−1

// X−2
// · · · .

Let θ : HomK(Λ)(P,X) → HomΛ(P,H0(X)) and θ′ : HomΛ(P,H0(X)) →
HomK(Λ)(P,X) be maps between the two Hom sets, which are going to
be defined. Consider a morphism f in HomΛ(P,H0(X)) and the canonical
morphism πX : ker∂0 � H0(X). Since P is projective, there is a morphism
f ′′0 : P → ker∂0 such that πXf

′′
0 = f .

ker∂0
πX // // H0(X)

P

f ′′0

OO

f

::

Extend f ′′0 to a morphism f ′0 : P → X0, which can readily be extended to
a chain map f ′ in HomC(Λ)(P,X) and subsequently to a morphism f ′ in

HomK(Λ)(P,X) so that we define θ′(f) = f ′.
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P = · · · // 0 //

��

0 //

��

P //

f ′0
��

0 //

��

0 //

��

· · ·

X = · · · // X2
∂2 // X1

∂1 // X0
∂0 // X−1

∂−1 // X−2
// · · ·

Conversely, suppose a morphism g in HomK(Λ)(P,X) is given. In particular,
consider the morphism g0 : P → X0 obtained from the chain map g in
HomC(Λ)(P,X).

P = · · · // 0 //

��

0 //

��

P //

g0

��

0 //

��

0 //

��

· · ·

X = · · · // X2
∂2 // X1

∂1 // X0
∂0 // X−1

∂−1 // X−2
// · · ·

Let us define θ(g) = h where h(p) = g0(p) + im∂1 for p in P . Finally, one
can verify that θ and θ′ are well-defined and that θθ′ = θ′θ = 1.

Example 0.2.7. Below is a special case in Lemma 0.2.6. Let P be the pro-
jective module Λ and consider the following diagram.

P = · · · // 0 //

��

0 //

��}}

Λ //

��}}

0 //

��||

0 //

��{{

· · ·

X = · · · // X2
∂2 // X1

∂1 // X0
∂0 // X−1

∂−1 // X−2
// · · ·

Then HomK(Λ)(P,X) ∼= ker∂0/im∂1 = H0(X) ∼= HomΛ(P,H0(X)).

The following lemma is a little consequence of Lemma 0.2.6.

Lemma 0.2.8. Let P be a projective module in Mod(Λ) and let α : A→ B

be a quasi-isomorphism in K(Λ). Then HomK(Λ)(P, α) : HomK(Λ)(P,A)
∼=→

HomK(Λ)(P,B).

Proof. Consider the chain complexes A = {An, ∂An }, B = {Bn, ∂Bn } and the
quasi-isomorphism α : A→ B in the following diagram.

A = · · · // A2
∂A2 //

α2

��

A1
∂A1 //

α1

��

A0
∂A0 //

α0

��

A−1

∂A−1 //

α−1

��

A−2
//

α−2

��

· · ·

P

g0

??

h0

��
B = · · · // B2

∂B2 // B1
∂B1 // B0

∂B0 // B−1

∂B−1 // B−2
// · · ·
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The lemma is to say that given a morphism h : P → B in HomK(Λ)(P,B),

there is a unique morphism g : P → A such that α g = h. One can see the
existence of g, and here we shall only show its uniqueness.

Suppose there are morphisms g and g′ in HomK(Λ)(P,A) such that α g = α

g′ = h in HomK(Λ)(P,B). By Lemma 0.2.6, there is an isomorphism θ :

HomK(Λ)(P,B)
∼=→ HomΛ(P,H0(B)). Hence θ( α g) = θ( α g′), where θ( α

g) = f with f(p) = α0g0(p) + im∂B1 and where θ( α g′) = f ′ with f ′(p) =
α0g

′
0(p) + im∂B1 for p in P . Hence α0g0(p) + im∂B1 = α0g

′
0(p) + im∂B1 , which

gives g0(p)+im∂A1 = g′0(p)+im∂A1 , so that g = g′ again by Lemma 0.2.6.

The following lemma is a triangulated version of Lemma 0.1.19.

Lemma 0.2.9. ([17, Proposition I.1.1.]) Given a distinguished triangle
(X,Y, Z, u, v, w) and an object M in K(Λ), there is a long exact sequence

· · · // (M,Σ−1Z) // (M,X) // (M,Y ) // (M,Z) // (M,ΣX) // · · ·

in Mod(Z), where all the Hom groups are considered in K(Λ). In particular,
if

M = · · · // 0 // 0 // Λ // 0 // 0 // · · · ,

then there is the long exact sequence

· · · // H1(Z) // H0(X) // H0(Y ) // H0(Z) // H−1(X) // · · ·

by Lemma 0.2.6.

In Lemma 0.2.9, the functor (M,−) is said to be a homological functor. The
functor (−,M) is also a homological functor.

Corollary 0.2.10. Let X
f→ Y → Z → be a distinguished triangle in K(Λ).

Then by Lemma 0.2.9, f is a quasi-isomorphism if and only if Z is exact.

Lemma 0.2.11. ([29, Proposition 2.5.3]) Let X
f→ Y → Z → be a distin-

guished triangle in K(Λ). Then Z is quasi-isomorphic to the mapping cone
E(f).

0.2.2 The derived category

This section introduces one example of a quotient category. A collection S
of morphisms in a category C is a multiplicative system if it satisfies the
following axioms, see [17, Chapter I. §3.].
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(i) (FR1) If f, g are in S, then fg is in S. For any object X in C, idX is
in S.

(ii) (FR2) Any diagram Z

s
��

X
u // Y

with s in S can be completed to a commutative diagram,

W
v //

t
��

Z

s
��

X
u // Y,

with t in S. Similarly for the opposite statement.

(iii) (FR3) If f, g : X −→ Y are morphisms in C, then the following condi-
tions are equivalent.

(i) There is an s : Y −→ Y ′ in S such that sf = sg,

(ii) There is a t : X −→ X ′ in S such that ft = gt.

The category of fractions S−1C is the localization of C with respect to S.
Namely, S−1C has the same objects as C, and a morphism from X to Y in
S−1C is represented by the following diagram,

Z
s

��

f

��
X Y,

where s : Z → X is a morphism in S and f : Z → Y is a morphism in
C. The equivalence relation on and composition of morphisms in S−1C are
given in [17, Chapter I. §3.], and are reproduced here.

(i) (Equivalence relation on morphisms) Given morphisms from X to Y
in S−1C represented by the following diagrams,

X ′

s

~~

a

  
X Y
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and
X ′′

t

~~

b

  
X Y,

the diagrams represent the same morphism if and only if there is a
morphism u : X ′′′ → X in S and morphisms f : X ′′′ → X ′, g : X ′′′ →
X ′′ in C such that sf = u = tg and af = bg, as shown in the following
diagram.

X ′′′

f

}}

g

""
X ′

s

~~

a

**

X ′′t

tt

b

!!
X Y

(ii) (Composition of morphisms) To compose morphisms

X ′

s

~~

a

  
X Y

and

Y ′

t

��

b

  
Y Z,

consider the following commutative diagram given by (FR2),

X ′′

t′

}}

c

!!
X ′

s

~~

a

!!

Y ′

t

}}

b

  
X Y Z,

and then take
X ′′

st′

}}

bc

  
X Z
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to be the composition.

The canonical functor π : C → S−1C maps a morphism f : X → Y in C to
the morphism

X
id

~~

f

  
X Y

in S−1C.

Lemma 0.2.12. Let C be a category and S be a multiplicative system in C.
Consider the canonical functor π : C→ S−1C. Then

(i) Given a morphism s : X → Y in S, the morphism π(s) is invertible.

(ii) If S consists of isomorphisms, then π is an equivalence of categories.

Proof.

(i) By definition, π(s) =

X
id

~~

s

  
X Y,

and then naturally π(s)−1 =

X
s

~~

id

  
Y X.

(ii) Consider the canonical functor π : C→ S−1C and a morphism f : X → Y
in C. Then π(f) =

X
id

~~

f

  
X Y.

Also define the functor G : S−1C→ C by

G

 Z
t

~~

d

��
X Y

 = dt−1 : X → Y .

Accordingly, G is well-defined and is a quasi-inverse to F = π.
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Now let D be a category and consider a functor F : C→ D. Suppose F (s) is
an isomorphism for any s in S. Then there is a unique functor F̃ : S−1C→ D
such that the following diagram commutes, i.e. F̃ π = F .

C
π //

F
��

S−1C

F̃||
D

This is the universal property of S−1C, see [17, Chapter I. §3.].

Let C be a triangulated category with translation functor Σ, and let S be a
multiplicative system in C such that, other than (FR1) - (FR3), the following
two axioms are also satisfied.

(iv) (FR4) s is in S if and only if Σ(s) is in S,

(v) (FR5) The same as (TR3), but where f, g are assumed to be in S, and
h is required to be in S.

The multiplicative system S is then said to be compatible with the triangu-
lation, see [17, Chapter I. §3.]. Then by [17, Proposition I.3.2], the category
S−1C has a unique triangulated structure such that the canonical functor
π : C→ S−1C is triangulated. Given a morphism from X to Y in S−1C,

Z
s

��

f

��
X Y,

complete the morphism f : Z → Y in C to a distinguished triangle Z
f→ Y →

C → ΣZ in C. Then take πX
θ→ πY → πC → ΣπX, where θ = (πf)(πs)−1,

to be a distinguished triangle in S−1C.

Definition 0.2.13. Let C be a category and S be a multiplicative system
in C. An object P in C is K-projective if given a morphism s : X → Y in S,
the map (P, s) : (P,X)→ (P, Y ) is bijective.

Lemma 0.2.14. Let C be a category and S be a multiplicative system in C.
Let P in C be K-projective. Then HomS−1C(P, Y ) ∼= HomC(P, Y ) for any Y
in C.

Proof. Let θ : HomS−1C(P, Y ) → HomC(P, Y ) and θ′ : HomC(P, Y ) →
HomS−1C(P, Y ) be maps between the two Hom sets, which are going to be
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defined. Given a morphism g : P → Y in C, define θ′(g) to be the following
morphism

P
id

��

g

��
P Y

in S−1C. Conversely, given the following morphism µ =

Z
s

��

f

��
P Y

in HomS−1C(P, Y ), where f : Z → Y is any morphism in C, there is the

bijective map (P, s) : (P,Z)
∼=→ (P, P ), since s : Z → P is a morphism

in S and P is K-projective. In particular, consider the identity morphism
id : P → P in (P, P ). Then there is a unique p in (P,Z) such that sp = id,
and θ(µ) is defined to be fp in HomC(P, Y ).

Finally, one can verify that θ and θ′ are well-defined and that θθ′ = 1. On
the other hand, since the diagrams

Z
s

��

f

��
P Y

and

P
sp=id

��

fp

��
P Y

represent the same morphism in HomS−1C(P, Y ), therefore θ′θ does indeed
equal 1.

Consider the category K(Λ). By [17, Proposition I.4.1], the class of quasi-
isomorphisms forms a multiplicative system S in K(Λ) compatible with the
triangulation. The category of fractions S−1K(Λ) is defined to be the derived
category D(Λ) of Λ. Similarly, let S+ be the class of quasi-isomorphisms in-
side K+(Λ). Then S+ forms a multiplicative system in K+(Λ), and we define
D+(Λ) = (S+)−1K+(Λ), D−(Λ) and Db(Λ). They are full subcategories of
D(Λ), and D+(Λ) ∩D−(Λ) = Db(Λ), see [17, Chapter I. §4.].
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Since the homology functor sends quasi-isomorphisms to isomorphisms, it
induces a well-defined functor on D(Λ) by

Hi

 Z
s
��

f

��
X Y

 = Hi(f)Hi(s)
−1.

Lemma 0.2.15. Let P → Q → R → be a distinguished triangle in K(Λ).
If P and Q are K-projective, then R is K-projective.

Proof. Let s : A → B be a quasi-isomorphism in K(Λ). Since P and Q
are K-projective, ΣP and ΣQ are K-projective. This gives the following
commutative diagram,

(ΣQ,A) //

∼=
��

(ΣP,A) //

∼=
��

(R,A) //

��

(Q,A) //

∼=
��

(P,A)

∼=
��

(ΣQ,B) // (ΣP,B) // (R,B) // (Q,B) // (P,B).

Therefore the map (R,A)→ (R,B) is an isomorphism by Lemma 0.1.7 and
R is K-projective.

Lemma 0.2.16. Let P and Q be K-projective in K(Λ). If p : P → Q is a
quasi-isomorphism, then p is an isomorphism.

Proof. The proof given here helps understanding of some of the lemmas
mentioned. Since K(Λ) is triangulated, complete p : P → Q to a distin-

guished triangle P
p→ Q→ R→. Then R is K-projective by Lemma 0.2.15.

The triangle induces a long exact sequence

· · · // (R,P )
∼= // (R,Q) // (R,R) // (R,ΣP )

∼= // (R,ΣQ) // · · ·

by Lemma 0.2.9. Therefore (R,R) = 0 and R ∼= 0, and p is an isomorphism
by Lemma 0.2.2(iii).

Remark 0.2.17. Alternatively, by Lemma 0.2.16, the distinguished trian-

gle P
p→ Q → R → induces the long exact sequence Hi(P )

∼=→ Hi(Q) →
Hi(R) → Hi−1(P )

∼=→ Hi−1(Q). Therefore Hi(R) = 0 and R is exact, and
the morphism f : 0 → R is a quasi-isomorphism by Lemma 0.1.18. Since
R is also K-projective, (R, 0) ∼= (R,R). Then there is a unique morphism
g : R → 0 such that fg = 1R where 1R : R → R is the identity morphism,
as shown in the following diagram.

0

f
��

R
1R //

g
??

R
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Therefore 1R = fg = 0 as it factors through the zero object, and this gives
R ∼= 0.

Definition 0.2.18. Let C be a category and S be a multiplicative system
in C. Let X be in C. A K-projective resolution of X is a K-projective Q in
C, together with a morphism s : Q→ X in S.

For example, given X in K(Λ), a K-projective resolution of X is a K-
projective Q in K(Λ), together with a quasi-isomorphism q : Q→ X.

Example 0.2.19. Let M be in Mod(Λ). Then the projective resolution P (M)
is also a K-projective resolution. For all X in K(Λ), there is a K-projective
resolution of X, see the (unnumbered) remark after [8, Proposition 2.12]
and [43, Corollary 3.5].

Lemma 0.2.20. Let M and N be in Mod(Λ), and let p : P → M be a K-
projective resolution of M . Then HomD(Λ)(M,ΣiN) ∼= HomK(Λ)(P,Σ

iN).

Proof. Let θ : HomD(Λ)(M,ΣiN)→ HomK(Λ)(P,Σ
iN) and θ′ : HomK(Λ)(P,Σ

iN)→
HomD(Λ)(M,ΣiN) be maps between the two Hom sets.

Given the following morphism µ =

X
s

~~

f

""
M ΣiN

in HomD(Λ)(M,ΣiN), where f : X → ΣiN is any morphism in HomK(Λ)(X,Σ
iN),

there is the bijective map (P, s) : (P,X)
∼=→ (P,M), since s : X → M is a

quasi-isomorphism and P is K-projective. In particular, consider the mor-
phism p : P → M in (P,M). Then there is a unique p′ in (P,X) such that
sp′ = p. Let θ(µ) be fp′ in HomK(Λ)(P,Σ

iN).

Conversely, given a morphism g : P → ΣiN in K(Λ), let θ′(g) be the
following morphism

P
p

~~

g

!!
M ΣiN

in HomD(Λ)(M,ΣiN).

Finally, one can verify that θ and θ′ are well-defined and that θθ′ = θ′θ =
1.

Remark 0.2.21. Alternatively, Lemma 0.2.20 can also been seen directly
from Lemma 0.2.12(i) and Lemma 0.2.14.
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Let PΛ be the full subcategory of K(Λ) consisting of K-projectives, and
let S be the class of quasi-isomorphisms in K(Λ). Then S ∩ PΛ forms a
multiplicative system in PΛ. Consider the following diagram,

PΛ
πP //

� _

i
��

(S ∩ PΛ)−1PΛ

ĩ
��

K(Λ)
πC // S−1K(Λ),

where πP , πC are the canonical functors. By Lemma 0.2.12(i), quasi-isomorphisms
in K(Λ) become isomorphisms in S−1K(Λ) = D(Λ), hence there is a unique
functor ĩ : (S ∩ PΛ)−1PΛ → S−1K(Λ) making the diagram commutative by
the universal property of (S ∩ PΛ)−1PΛ. By Example 0.2.19, [17, Propo-
sition I.3.3] and Example 0.1.8(ii), the functor ĩ is an equivalence. By
Lemma 0.2.12(ii) and Lemma 0.2.16, the functor πP : PΛ → (S ∩ PΛ)−1PΛ

is also an equivalence. Hence the functor ĩπP : PΛ → S−1K(Λ) is an equiv-
alence. Therefore D(Λ) can be viewed either as the category of fractions
S−1K(Λ), or as PΛ, the full subcategory inside K(Λ).

By virtue of Lemma 0.1.27(i), define the functor P (−) : Mod(Λ) → K(Λ)
which sends M in Mod(Λ) to the projective resolution P (M) of M in K(Λ).
Similarly, define the functor I(−) : Mod(Λ) → K(Λ) which sends M in
Mod(Λ) to the injective resolution I(M) of M in K(Λ).

The notations P (−) and I(−) will be used for the rest of this section.

Lemma 0.2.22. Given a short exact sequence 0 → M ′
µ′→ M

µ′′→ M ′′ →
0 in Mod(Λ), the diagram P (M ′)

P (µ′)→ P (M)
P (µ′′)→ P (M ′′)

∂→ ΣP (M ′)
is a distinguished triangle in K(Λ), where the connecting morphism ∂ :
P (M ′′)→ ΣP (M ′) can be described explicitly.

Proof. Consider the morphism µ′ : M ′ → M in Mod(Λ) and then the cor-
responding morphism P (µ′) : P (M ′)→ P (M) in K(Λ). Complete the mor-

phism P (µ′) to a distinguished triangle P (M ′)
P (µ′)→ P (M)→ C → ΣP (M ′)

in K(Λ), where C is the mapping cone E(P (µ′)) of P (µ′), since K(Λ) is
triangulated.

This is portrayed in the following diagram, where the morphism ı is the
canonical inclusion and the morphism ρ is the canonical surjection.
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P (M)

ı

��

= // P2
//

��

P1
//

��

P0
//

��

0 //

��
C

ρ

��

= // P2 ⊕ P ′1 //

��

P1 ⊕ P ′0 //

��

P0 ⊕ 0 //

��

0⊕ 0 //

��
ΣP (M ′) = // P ′1

// P ′0
// 0 // 0 //

It can be readily seen that C is a projective resolution of M ′′. Consider the
following diagram in K(Λ),

P (M ′)
P (µ′) // P (M)

ı // C
ρ //

α

��

ΣP (M ′)

P (M ′)
P (µ′) // P (M)

P (µ) // P (M ′′)
∂ // ΣP (M ′),

where the first row is the distinguished triangle constructed and the sec-
ond row is the diagram described in the lemma. Since both C and P (M ′′)
are projective resolutions of M ′′, by Lemma 0.1.27(i), there is a chain map
α : C → P (M ′′) which is an isomorphism by Lemma 0.2.16. Let the con-
necting morphism ∂ : P (M ′′) → ΣP (M ′) be ρα−1, and since αı = P (µ)
by Lemma 0.1.27(i), the diagram on the second row is then a distinguished
triangle by (TR1).

The description of the left derived functors and right derived functors is an
abridgment of [18, IV.5., 6., 7., 8.]. Let Λ1 and Λ2 be finite-dimensional
k-algebras over the field k.

Consider an additive covariant functor F : Mod(Λ1) → Mod(Λ2), and let
FC : C(Λ1) → C(Λ2) be the lift of F from the module category to the

category of chain complexes, i.e. given a chain complex M = · · · → M1
∂1→

M0
∂0→ M−1 → · · · in C(Λ1), define the chain complex FC(M) = · · · →

FM1
F∂1→ FM0

F∂0→ FM−1 → · · · in C(Λ2). Let f, g : M → N be chain maps
in C(Λ1) such that f ' g. Then it is immediate that FCf ' FCg in C(Λ2).
Therefore the functor FC is well-defined on the homotopy category K(Λ1)
as well. Let FK : K(Λ1) → K(Λ2) be the lift of FC from the category of
chain complexes to the homotopy category. It is also a triangulated functor.

Definition 0.2.23. In the above description, let the i-th left derived functor
of F be LiF = Hi ◦ FK ◦ P .
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K(Λ1)
FK // K(Λ2)

Hi

��
Mod(Λ1)

P

OO

LiF //Mod(Λ2)

The following lemma views the left derived functor LiF as generalizing the
functor F .

Lemma 0.2.24. Let us assume that F is right exact, i.e. given a short

exact sequence 0→M ′
µ→M →M ′′ → 0 in Mod(Λ1), the sequence FM ′

Fµ→
FM → FM ′′ → 0 is right exact in Mod(Λ2). Then

(i) LiF = 0 for i < 0,

(ii) L0F ' F ,

(iii) There is a long exact sequence

· · · // L2F (M ′′) // L1F (M ′) // L1F (M) // L1F (M ′′) //

L0F (M ′) // L0F (M) // L0F (M ′′) // 0

in Mod(Λ2).

In Lemma 0.2.24, the functor F fails to be an exact functor, and (iii) ex-
presses kerFµ in terms of the long exact sequence. Consider the functor
i : PΛ1 ↪→ K(Λ1) and the equivalence ĩπP : PΛ1 → S−1K(Λ1) described
above by taking Λ = Λ1, the functors F and FK in Definition 0.2.23
and the canonical functors πi : K(Λi) → D(Λi). Let LF be the functor
π2FKi(̃iπP )−1 : D(Λ1)→ D(Λ2).

K(Λ1)
π1 //

FK

��

D(Λ1)
i(̃iπP )−1

oo

LF
��

K(Λ2)
π2 // D(Λ2)

For example, given M in Mod(Λ), we have

HiLF (M) = HiπFK(P (M))

= HiFK(P (M))

= LiF (M).
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In turn, the description of the right derived functors of some special functors,
namely, the functors HomΛ(−, N) and HomΛ(N,−), where N is in Mod(Λ),
is given.

Both the contravariant functor HomΛ(−, N) and the covariant functor HomΛ(N,−)
are left exact. This allows us to give the following definition.

Definition 0.2.25. Let the i-th right derived functor RiHomΛ(−, N) of
HomΛ(−, N), written ExtiΛ(−, N), be ExtiΛ(−, N) = HiHomΛ(P (−), N) :
Mod(Λ)→ Mod(Λ). Similarly, let the i-th right derived functor RiHomΛ(N,−)

of HomΛ(N,−), written Ext
i
Λ(N,−), be Ext

i
Λ(N,−) = HiHomΛ(N, I(−)) :

Mod(Λ)→ Mod(Λ).

Lemma 0.2.26. Let A and B be in Mod(Λ). Then

(i) ([18, Proposition IV.7.2]) Given a projective module P and an injective
module I in Mod(Λ), we have ExtiΛ(P,B) = 0 = ExtiΛ(A, I), where
i ≥ 1,

(ii) ([18, Proposition IV.8.1]) The functors ExtiΛ(−,−) and Ext
i
Λ(−,−),

where i ≥ 0, are naturally equivalent.

Lemma 0.2.27. (c.f. Lemma 0.2.24) Consider a right exact sequence M ′ →
M →M ′′ → 0 in Mod(Λ). Then

(i) ExtiΛ(−, N) = 0 for i < 0,

(ii) Ext0Λ(−, N) ' (−, N),

(iii) There is a long exact sequence

0 // (M ′′, N) // (M,N) // (M ′, N) //

Ext1Λ(M ′′, N) // Ext1Λ(M,N) // Ext1Λ(M ′, N) // Ext2Λ(M ′′, N) // · · ·

in Mod(Λ).

The following is consistent with Definition 0.1.24.

Definition 0.2.28. ([18, Exercise IV.8.8.]) The global dimension of Λ,
denoted by gl. dim. Λ, is less than or equal to m if for all Λ-modules A,B,
ExtqΛ(A,B) = 0 for all q > m. The smallest m with gl. dim. Λ ≤ m is the
global dimension of Λ.

The following realizes the value of ExtiΛ(−, N) as the Hom space in the
derived category.
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Let M and N be in Mod(Λ).

By Lemma 0.2.6 and Lemma 0.2.20, we have

HomD(Λ)(M,ΣiN) ∼= HomK(Λ)(PM ,Σ
iN),

where PM is a K-projective resolution of M,
∼= H0HomΛ(PM ,Σ

iN)
∼= H0ΣiHomΛ(PM , N)
∼= HiHomΛ(PM , N)

≡ ExtiΛ(M,N).

Lemma 0.2.29. ([17, Chapter I. §6.]) Let 0 → X → Y → Z → 0 be a
short exact sequence of chain complexes in C(Λ). Then there is a morphism

ζ : Z → ΣX in D(Λ) such that X → Y → Z
ζ→ ΣX is a distinguished

triangle in D(Λ).

0.2.3 The stable category

The stable category described in this section is a different flavour of quotient
category. For example, the left or right triangulated structure of stable
categories of an artin algebra is studied in [6]. In the interim, the following
näıve introduction serves as a minute interlude.

The stable categories described below are attainable because given A1 and
A2 in mod(Λ), the direct sum A1 ⊕ A2 is injective (resp. projective) if and
only if A1 and A2 are injective (resp. projective).

Definition 0.2.30. Given A and B in mod(Λ), let I(A,B) be the set of
homomorphisms from A to B which factor through an injective module.

Definition 0.2.31. Given A and B in mod(Λ), let P(A,B) be the set of
homomorphisms from A to B which factor through a projective module.

Definition 0.2.32. The (injective) stable category mod(Λ) of mod(Λ) has
the same objects as mod(Λ), while the morphism set Hom(A,B) in mod(Λ)
is defined to be Hom(A,B)/I(A,B) for all A,B in mod(Λ).

Definition 0.2.33. The (projective) stable category mod(Λ) of mod(Λ) has
the same objects as mod(Λ), while the morphism set Hom(A,B) in mod(Λ)
is defined to be Hom(A,B)/P(A,B) for all A,B in mod(Λ).

The following lemma shows that objects which are not isomorphic in mod(Λ)
can be isomorphic in mod(Λ). For example, the ring Λ is isomorphic to 0 in
mod(Λ).
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Lemma 0.2.34. (c.f. Lemma 0.1.29) Let 0 be the zero object and let X be
an object in mod(Λ). Then f : 0→ X is an isomorphism in mod(Λ) if and
only if X is projective.

Proof. (if ) This is immediate. (only if ) Let g : X → 0 be a morphism in
mod(Λ) such that f g = 1X . This means fg − 1X is in P(X,X). Since
fg = 0, therefore 1X is in P(X,X), i.e. there is a projective module P such
that 1X factorizes as 1X = βα as follows.

X
1X //

α   

X

P
β

>>

To see that X is projective, consider an epimorphism ε : A � B and a
morphism θ : X → B in mod(Λ). We need to find a morphism π′ : X → A
such that επ′ = θ.

A
ε // // B

X
θ

>>

π′

``

α

��
P

β

OO
π

UU

Now consider the morphism θβ : P → B. Since P is projective, there is a
morphism π : P → A such that επ = θβ. Therefore επα = θβα = θ1X = θ.
Finally, π′ = πα is the required morphism.

0.3 Auslander-Reiten quiver

For this section, the reader is suggested to read [14] and [15] for a recapitu-
lation. Let C be any category, A an abelian category and T a triangulated
category.

Let C′ be a full subcategory of C.

Definition 0.3.1. A morphism g : B → C in the subcategory C′ is said to
be a right almost split morphism in C′ if
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(i) g is not a split epimorphism,

(ii) if h : C ′ → C in C′ is not a split epimorphism, then there is an
h′ : C ′ → B such that gh′ = h.

The notion of a left almost split morphism in the subcategory C′ is defined
dually, i.e. a morphism f : A→ B in the subcategory C′ is said to be a left
almost split morphism in C′ if

(i) f is not a split monomorphism,

(ii) if h : A → A′ in C′ is not a split monomorphism, then there is an
h′ : B → A′ such that h′f = h.

Lemma 0.3.2. ([30, Lemma 2.3]) Let the subcategory C′ be additive. Then
given a left almost split morphism g : B → C in the subcategory C′, the
endomorphism ring End(B) is a local ring.

Definition 0.3.3. A morphism h : X → Y in A is irreducible if h is neither
a split monomorphism nor a split epimorphism, and if h = h2h1 then either
h1 is a split monomorphism or h2 is a split epimorphism.

Given objectsX and Y in a Krull-Schmidt category C, the subspace rad(X,Y )
of (X,Y ) is defined to be rad(X,Y ) = {h ∈ (X,Y ) | 1X − gh is invertible
for any g ∈ (Y,X)}. Then for m ≥ 1, the subspace radm(X,Y ) ⊆ rad(X,Y )

of rad(X,Y ) consists of all finite sums of morphisms of the form X = X0
h1→

X1
h2→ X2 → · · · → Xm−1

hm→ Xm = Y , where hi is in rad(Xi−1, Xi). Let dXY
be the dimension dimkIrr(X,Y ), where Irr(X,Y ) = rad(X,Y )/rad2(X,Y ).

If X and Y are indecomposable, then f : X → Y is irreducible if and only
if f is in rad(X,Y ) but not in rad2(X,Y ). Therefore there is an irreducible
morphism from X to Y if and only if Irr(X,Y ) 6= 0.

Definition 0.3.4. Let C be a Krull-Schmidt category. Then the Auslander-
Reiten quiver of C is a quiver where the vertices are the isomorphism classes
[X] of the indecomposable objects X of C, and the quiver has dXY arrows
from [X] to [Y ].

The following definition can be found in [14, 3.1] and in [22, Definition 1.3].

Definition 0.3.5. (c.f. Definition 2.2.2) A distinguished triangle x
α→ y

β→
z →, with x, y and z in the subcategory T′ of T, is an Auslander-Reiten
triangle in T′ if

(i) the triangle is not split,
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(ii) if x′ is in T′, then each morphism x→ x′ which is not a split monomor-
phism factors through α,

(iii) if z′ is in T′, then each morphism z′ → z which is not a split epimor-
phism factors through β.

Consider the Auslander-Reiten triangle x
α→ y

β→ z → in Definition 0.3.5.
By Lemma 0.2.3, the morphism α is left almost split and the morphism β
is right almost split.

Let us recollect some standard results with regard to Auslander-Reiten tri-
angles.

Lemma 0.3.6. ([30, Lemma 2.6]) Let x
α→ y

β→ z → be a distinguished
triangle in T. Suppose β is right almost split. Then the following are equiv-
alent.

(i) End(x) is local,

(ii) β is right minimal,

(iii) α is left almost split,

(iv) The distinguished triangle is an Auslander-Reiten triangle.

The following lemma shows how the Auslander-Reiten triangles can be in-
herent in the Auslander-Reiten quiver.

Lemma 0.3.7. Let T be Krull-Schmidt. If x→ y → z → is an Auslander-
Reiten triangle in T, then given an indecomposable object yi in T, the fol-
lowing are equivalent.

(i) There is an irreducible morphism x→ yi,

(ii) There is an irreducible morphism yi → z,

(iii) yi is an indecomposable direct summand of y.

Proof. This is described in [15, 4.8].

Definition 0.3.8. [39, I.1.] Let A be k-linear and Hom finite. A right Serre
functor is an additive functor S : A→ A, together with isomorphisms

ϕA,B : (A,B)
∼=→ (B,SA)∗

for any A,B ∈ A, which are natural in A and in B, and where (−)∗ =
Homk(−, k). If S is an autoequivalence, then it is a Serre functor.
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Let ϕA,A(idA) be denoted by ϕA. Any two right Serre functors are isomor-
phic, and if ε is an autoequivalence of A, then εS ∼= Sε, see [32, Section
3].

Definition 0.3.9. The triangulated category T is said to have right (resp.
left) Auslander-Reiten triangles if given any indecomposable z (resp. x) in
T, there is an Auslander-Reiten triangle x → y → z → Σx. It is then said
to have Auslander-Reiten triangles if it has both right and left Auslander-
Reiten triangles.

Lemma 0.3.10. The following are equivalent.

(i) T has a Serre functor,

(ii) T has Auslander-Reiten triangles.

Proof. This is [39, Theorem I.2.4]. In addition, the Auslander-Reiten trian-
gle is of the form SΣ−1z → y → z → Sz, where S is the Serre functor and
Σ is the translation functor of T.

This leads us to the following definition.

Definition 0.3.11. The functor τ ∼= SΣ−1 is the Auslander-Reiten trans-
lation.
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Chapter 1

The approximation
properties of subcategories

1.1 Introduction

The idea of approximation is very frequent in mathematics indeed. Several
notions in Chapter 0 are inspired in such a way. For example, given A in
Mod(Λ), a projective resolution P (A) of A intuitively approximates how
projective A is. The right derived functor ExtiΛ(−, N) of HomΛ(−, N) in
Section 0.2.2 can also be understood to approximate the notion of a cok-
ernel. The projective stable category of a given category in Section 0.2.3
approximates the original category by identifying the projective objects with
the zero objects.

Paradoxical as it seems, the greater the degree of accuracy to be attained,
the greater the strength and the more varieties of approximation needed. In
this chapter, torsion pairs in abelian categories and torsion theories in trian-
gulated categories are introduced. The existence of certain adjoint functors
in triangulated categories is also studied. Intuitively, they are all different
expressions of subcategories approximating their ambient categories. The
chapter goes on to introduce some examples of torsion theories, namely t-
structures and split torsion theories, and finishes with a characterization of
a split torsion theory and a classification of split torsion theories in a chosen
derived category.
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1.2 Existence of certain adjoint functors

Let Λ be a finite-dimensional k-algebra over the field k. As usual, let Mod(Λ)
be the category of Λ-left-modules. In this section, let T be a triangulated
category with translation functor Σ, and X and Y be full additive subcat-
egories of T . The subcategories X and Y are assumed to be closed under
isomorphisms.

Let us begin with torsion pairs in abelian categories.

Definition 1.2.1. [1, Definition VI.1.1] A pair (M,N ) of full subcategories
of Mod(Λ) is a torsion pair if

(i) Hom(M,N) = 0 for all M ∈M, N ∈ N ,

(ii) Hom(M,−)|N = 0 implies M ∈M,

(iii) Hom(−, N)|M = 0 implies N ∈ N .

Here, M is the torsion class and N is the torsion-free class. By virtue of
(ii) and (iii), M and N uniquely determine each other.

Definition 1.2.2. [1, Proposition VI.1.4] Let U be in Mod(Λ) and tU be
the trace ofM in U , that is, the sum of images of all homomorphisms from
modules in M to U . Since M is closed under images and direct sums, tU
is the largest submodule of U that lies in M.

Remark 1.2.3. ([1, Propositions VI.1.4, 1.5]) Intuitively, the functor t in
Definition 1.2.2 is an indicator which measures how far U is from being in
M or in N . It has the following significance.

(i) (approximation) It approximates U to give tU in M,

(ii) (characterization) It characterizes the torsion and torsion-free classes,
sinceM = {M ∈ Mod(Λ) | tM = M} and N = {N ∈ Mod(Λ) | tN =
0},

(iii) (existence and uniqueness) It gives existence and uniqueness of short
exact sequences of the form 0→ tU → U → U

tU → 0.

Instead of the decomposition of an object into direct summands, the fol-
lowing description of torsion theories in triangulated categories intuitively
decomposes a category into a pair of subcategories. The definition given
below is the one in [21, Definition 2.2], except that we do not assume X and
Y to be closed under direct sums and direct summands.
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Definition 1.2.4. Let X⊥ = {t ∈ T |(x, t) = 0 for all x in X} and ⊥X =
{t ∈ T |(t, x) = 0 for all x in X}.

Definition 1.2.5. (X , Y) forms a torsion theory if

(i) (X , Y) = 0,

(ii) T = X ∗ Y, i.e. given t in T , there is a torsion theory triangle x →
t→ y → Σx with x in X and y in Y.

Remark 1.2.6. (i) In Definition 1.2.5, (i) gives X ∩ Y = 0. Otherwise a
non-zero U in X ∩ Y would give idU in (X , Y), which is not possible.
Accordingly, there are no non-zero U in X and V in Y such that
U ∼= V .

(ii) Let x
µ→ t

ν→ y → Σx be the torsion theory triangle described in (ii).
Then by Lemma 0.2.2(i), the composition νµ is zero, which accords
with (i). By Lemma 0.2.2(iv), given t ∼= x⊕ y with t, x, y in T , X , Y
respectively, there is always a distinguished triangle x→ t→ y → Σx,
thus satisfying (ii) for the chosen t.

The following lemma gives the situations where X and Y uniquely determine
each other.

Lemma 1.2.7. Let (X , Y) be a torsion theory.

(i) If ΣX ⊆ X , then X⊥ = Y and ⊥Y = X .

(ii) If X and Y are closed under direct summands, then X⊥ = Y and
⊥Y = X .

Proof. (i) This is [7, Remark I.2.2].

(ii) It is immediate that Y ⊆ X⊥. To see that X⊥ ⊆ Y, consider t in
X⊥. Since (X , Y) is a torsion theory, there is a distinguished triangle
x → t → y → Σx with x in X and y in Y, where the morphism
x → t is zero. Then by Lemma 0.2.2(v), the distinguished triangle
t → y → Σx → Σt splits, i.e. y ∼= t ⊕ Σx. Since Y is closed under
direct summands and isomorphisms, t is in Y. Hence X⊥ ⊆ Y and so
X⊥ = Y. Similarly, ⊥Y = X .

Torsion theories in triangulated categories are analogues of torsion pairs in
abelian categories. Given a torsion pair (M, N ), the functor t described in
Definition 1.2.2 characterizes the subcategoriesM and N , see Remark 1.2.3.
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The functor t involves the notion of images, which does not necessarily make
sense in triangulated categories. Following on from this, an analogue of the
functor t in torsion theories is not immediate, and this leads to the study of
certain adjoint functors in triangulated categories.

Definition 1.2.8. An X -precover for an object t in T is a morphism α :
x → t for some x in X , such that for all x′ in X , each morphism x′ → t
factorizes through α. An X -cover is an X -precover which is right minimal.
The notion of an X -(pre)envelope is defined dually.

Definition 1.2.9. X is said to be a (pre)covering for T if every object in
T has an X -(pre)cover. The notion of a (pre)enveloping for T is defined
dually.

Example 1.2.10. (i) In Remark 1.2.3(i), tU → U is an M-cover.

(ii) Let (X , Y) be a torsion theory. Then X is a precovering and Y is a
preenveloping for T . This is because given t in T , there is a distin-
guished triangle x→ t→ y → Σx with x in X , y in Y, where x→ t is
an X -precover and t→ y is a Y-preenvelope (Lemma 0.2.2(vi)).

The notion of adjoints is given in Example 0.1.17(iv).

Lemma 1.2.11. Let L be the embedding functor ı : X ↪→ T . Assume the
right adjoint R : T → X exists. Let x be in X and t be in T . Consider the

isomorphism τ : (x, t)
∼=→ (x,Rt) and the morphism εt = τ−1(idRt). Then

given f : x → t, there is a unique morphism f ′ : x → Rt such that the
following diagram commutes.

x

f
��

f ′

~~
Rt

εt // t

In addition to this, the morphism εt = τ−1(idRt) is right minimal.

Proof. By the naturality of τ , the morphism f ′ = τ(f) is the required unique
morphism, and this is also conceived of as the universal property of the counit
εt : Rt→ t. The morphism εt is also right minimal. Indeed suppose εtg = εt
for any given g : Rt→ Rt and consider the following commutative diagram
obtained from the naturality of τ ,

(Rt,Rt)
g∗ //

τ−1

��

(Rt,Rt)

τ−1

��
(Rt, t)

g∗ // (Rt, t).

41



Therefore (τ−1(idRt))g = τ−1(idRtg), which gives εtg = τ−1(g) and then
τ−1(g) = τ−1(idRt). Since τ−1 is an isomorphism, g = idRt which is an
automorphism. Hence εt is right minimal.

Remark 1.2.12. In Lemma 1.2.11, X is covering in T . Intuitively, Rt in X
is the approximation of t in X , i.e. the right adjoint R can be understood
as measuring how close X is in approximating T .

Definition 1.2.13. ([5]) Let (X , Y) be a torsion theory. If ΣX ⊆ X , then
(X , Y) is a t-structure.

Remark 1.2.14. Let (X , Y) be a t-structure. Then by Lemma 1.2.7(i), X
and Y uniquely determine each other.

Lemma 1.2.15. Let (X , Y) be a t-structure. Then Σ−1Y ⊆ Y.

Proof. This is [7, Remark I.2.2].

Lemma 1.2.16. Let (X , Y) be a t-structure. Then for each t in T , there
is a distinguished triangle x → t → y → Σx, with x in X and y in Y, and
the third morphism y → Σx is uniquely determined.

Proof. Suppose there are distinguished triangles x
α→ t

β→ y
γ1→ Σx and

x
α→ t

β→ y
γ2→ Σx. Then consider the following diagram,

x
α // t

β // y
γ1 //

g

��

Σx

x
α // t

β // y
γ2 // Σx.

By (TR3), there is a morphism g : y → y such that γ1 = γ2g and gβ = β.
Let f = idy − g : y → y. Then fβ = (idy − g)β = β − gβ = 0.

Now consider the following diagram,

t
β //

��

y
γ1 //

f

��

Σx
−Σα //

h

��

Σt

��
0 // y

id // y // 0.

Since fβ = 0, by (TR3) there is h : Σx → y such that hγ1 = idyf = f .
Since (Σx, y) = 0, h = 0, and so f = idy − g = 0, g = idy and γ1 = γ2.

Lemma 1.2.17. Let U = X ∗ Y. If ΣX ⊆ X and ΣY ⊆ Y, then ΣU ⊆ U .
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Proof. This is immediate.

Definition 1.2.18. A subcategory X is closed under extensions if given t
in T and a distinguished triangle x1 → t→ x2 → Σx1 with x1 and x2 in X ,
then t is in X .

Lemma 1.2.19. The subcategories X⊥ and ⊥Y are closed under extensions.

Proof. Let u be in Y. Given t in T , consider a distinguished triangle x1 →
t → x2 → Σx1 with x1 and x2 in ⊥Y. Then by Lemma 0.2.9, the sequence
(x2, u)→ (t, u)→ (x1, u) is exact. Since (x2, u) = (x1, u) = 0, it follows that
(t, u) = 0 and so t is in ⊥Y and ⊥Y is closed under extensions. Similarly,
X⊥ is closed under extensions.

Example 1.2.20. Let (X , Y) be a t-structure. By Remark 1.2.14, X = ⊥Y
which, by Lemma 1.2.19, is closed under extensions. For example, given t
in T and a distinguished triangle x1 → x2 → t→ Σx1 with x1 and x2 in X ,
then t is in X .

Remark 1.2.21. (i) Let X be closed under extensions. Given x in X and
the isomorphism x′ ∼= x, embed the isomorphism into a distinguished

triangle x
∼=→ x′ → z → Σx in T . Then by Lemma 0.2.2(iii), z ∼= 0.

Since X is closed under isomorphisms, z is in X . Since both x and
z are in X and X is closed under extensions, x′ is in X . The two
conditions, that X is closed under extensions, and that X is closed
under isomorphisms, are compatible.

(ii) If X is closed under extensions, then X is closed under direct sums. Let
x1 and x2 be in X . Then by Lemma 0.2.2(iv), there is a distinguished
triangle x1 → x1⊕x2 → x2 → Σx1. Since X is closed under extensions,
x1 ⊕ x2 is in X .

Definition 1.2.22. Let u and v be in T . A morphism f : u→ v is an X -left
phantom if given any x in X and any morphism g : x→ u, the composition
fg is zero. Dually, a morphism f : u→ v is a Y-right phantom if given any
y in Y and any morphism g : v → y, the composition gf is zero.

For the rest of the chapter, given a torsion theory (X , Y), assume X and Y
to determine each other uniquely. By Lemma 1.2.19, the subcategories X
and Y are both closed under extensions and direct sums (Remark 1.2.21(ii)).
The following propositions give necessary and sufficient conditions for the
existence of certain adjoint functors in triangulated categories.

Proposition 1.2.23. (c.f. [27, 1.1], [7, Proposition I.2.3]) Let (X , Y) be
a torsion theory. Then the inclusion ı : X ↪→ T admits a right adjoint R
: T → X if and only if for each t in T , there is a distinguished triangle
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x→ t→ y → Σx, where x ∈ X and y ∈ Y, and the morphism h: Σ−1y → x
is an X -left phantom.

x′

��
0

!!
Σ−1y // x

Proof. (if ) Let t be in T . Then there is a distinguished triangle x → t →
y → Σx, with x ∈ X and y ∈ Y, and the morphism h : Σ−1y → x is an
X -left phantom. Let x′ be in X . Applying the homological functor (x′,−)
to the distinguished triangle, there is the long exact sequence (x′,Σ−1y)→
(x′, x) → (x′, t) → (x′, y) with (x′, y) = 0 (Lemma 0.2.9). The first map
is zero since the morphism h: Σ−1y → x is an X -left phantom. Hence
(x′, x) ∼= (x′, t) and R exists by defining R(t) = x. (only if ) Since the right

adjoint R exists, there is the isomorphism τ−1 : (x,Rt)
∼=→ (x, t) for all x

in X , t in T . Let α = τ−1(idRt) : Rt → t. Then by Lemma 1.2.11, α is
right minimal. Embed α into a distinguished triangle Rt

α→ t → y → ΣRt.
By [22, Lemma 2.1], y is in Y. Let x′ be in X . Applying the homological
functor (x′,−) to the distinguished triangle, there is the exact sequence
(x′,Σ−1y)→ (x′, Rt)→ (x′, t) (Lemma 0.2.9). By Lemma 1.2.11, the second
map is an isomorphism, and so the first map is zero. Hence the morphism
h: Σ−1y → Rt is an X -left phantom.

The following is the dual.

Proposition 1.2.24. Let (X , Y) be a torsion theory. Then the inclusion
ı : Y ↪→ T admits a left adjoint L : T → Y if and only if for each t in T ,
there is a distinguished triangle x→ t→ y → Σx, where x ∈ X and y ∈ Y,
and the morphism h: y → Σx is a Y-right phantom.

y //

0 ��

Σx

��
y′

Proof. This is the dual of Proposition 1.2.23.

Example 1.2.25. Let (X , Y) be a t-structure. Then the inclusion ı : X ↪→ T
admits a right adjoint R : T → X . Similarly, the inclusion ı : Y ↪→ T
admits a left adjoint L : T → Y.
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Proof. Given t in T , there is a distinguished triangle x → t → y → Σx,
where x ∈ X and y ∈ Y. By Lemma 1.2.15, Σ−1y is in Y and so (x′,Σ−1y) =
0 for any x′ in X and h : Σ−1y → x is trivially an X -left phantom. Therefore
by Proposition 1.2.23, the inclusion ı : X ↪→ T admits a right adjoint R :
T → X . Similarly, by Proposition 1.2.24, the inclusion ı : Y ↪→ T admits a
left adjoint L : T → Y.

Remark 1.2.26. In Example 1.2.25, given t in T , there is a unique torsion
theory triangle of the form Rt → t → Lt → ΣRt. This makes sense,
since any two right (resp. left) adjoints of the same functor are naturally
equivalent.

Corollary 1.2.27. Let (X , Y) be a torsion theory. Suppose the right adjoint
R in Proposition 1.2.23 and the left adjoint L in Proposition 1.2.24 exist.
Then X = {t ∈ T | Lt = 0} and Y = {t ∈ T | Rt = 0}.

Proof. Let x be in X and t be in T . If Rt = 0, then t ∈ X⊥ = Y, since
(ıx, t) ∼= (x,Rt) = (x, 0) = 0. On the other hand, given t ∈ Y = X⊥, since
0 = (ıx, t) ∼= (x,Rt) for each x in X , therefore Rt = 0. Hence Y = {t ∈ T |
Rt = 0}. Similarly, X = {t ∈ T | Lt = 0}.

By virtue of Example 1.2.25, Remark 1.2.26 and Corollary 1.2.27 are sum-
marized in the following.

Property 1.2.28. (c.f. Remark 1.2.3) Let (X , Y) be a t-structure and
consider the right adjoint R and the left adjoint L in Example 1.2.25. Then

(i) (existence and uniqueness) For each t in T , there is a torsion the-
ory triangle Rt → t → Lt → ΣRt, and it is unique up to a unique
isomorphism,

(ii) (characterization) X = {t ∈ T | Lt = 0} and Y = {t ∈ T | Rt = 0}.

Example 1.2.29. Let (X , Y) be a t-structure with X , Y closed under direct
summands. Let t be in X⊥. Then since (x, 0) ∼= (x, t) = 0, therefore
Rt = 0. This gives the distinguished triangle 0 → t → Lt → 0. By
Lemma 0.2.2(iii), t ∼= Lt, and the above distinguished triangle is isomorphic

to t
id→ t → 0 → Σt. Alternatively, let x → t → y → Σx be the torsion

theory triangle, where x is in X and y is in Y. Since t is in X⊥, therefore
y ∼= t ⊕ Σx by Lemma 0.2.2(v). It follows that Σx is in Y. On the other
hand, since (X , Y) is a t-structure, Σx is in X as well, therefore Σx is in
X ∩ Y = 0. This gives Σx ∼= 0 and t ∼= y. Then the torsion theory triangle
is isomorphic to the distinguished triangle 0 → t

α→ t → 0 where α is an
isomorphism.
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Remark 1.2.30. (c.f. Remark 1.2.3, Remark 1.2.12) Intuitively, a torsion
theory (X , Y) can be understood as measuring how far each t in T is from
being in X or in Y. Since (X , Y) is a torsion theory, X ∩Y = 0 and so there
is no contradiction (Remark 1.2.6(i)).

1.3 Examples of torsion theories

In this section, let k be a field and T be a k-linear Hom finite and Krull-
Schmidt triangulated category with translation functor Σ and Serre functor
S, see Definition 0.3.8. Let X ,Y,Z be full additive subcategories of T . They
are assumed to be closed under isomorphisms.

Let us begin with a few lemmas.

Lemma 1.3.1. (i) If S−1ΣX ⊆ X , X ⊆ S−1X , then ΣX ⊆ X .

(ii) If S−1ΣX ⊆ X , X ⊆ ΣX , then S−1X ⊆ X .

(iii) If ΣX ⊆ X , S−1X ⊆ X , then S−1ΣX ⊆ X .

(iv) If Y ⊆ S−1ΣY, ΣX ⊆ Y, then SX ⊆ Y.

Proof. (i) This is because ΣX ⊆ ΣS−1X = S−1ΣX ⊆ X .

(ii) This is because S−1X ⊆ Σ−1X ⊆ X .

(iii) This is because S−1ΣX ⊆ S−1X ⊆ X .

(iv) Since ΣX ⊆ Y ⊆ S−1ΣY, therefore X ⊆ S−1Y, SX ⊆ Y.

Lemma 1.3.2. Suppose X⊥ = Y, X = ⊥Y and (X ,Y) = 0. Then SY ⊆ Y
if and only if S−1X ⊆ X .

Proof. (only if) Let X be in X and Y be in Y. Since SY ⊆ Y, therefore
SY = Y ′ for some Y ′ in Y. Hence

(S−1X,Y ) ∼= (X,SY )

= (X,Y ′)

= 0.

Therefore S−1X ∈ ⊥Y = X . (if) Similar.

Lemma 1.3.3. Suppose X⊥ = Y, X = ⊥Y and (X ,Y) = 0. Then SX ⊆ X
if and only if S−1Y ⊆ Y.
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Proof. Similar to Lemma 1.3.2.

Consider t1 and t2 in T with t1 ∼= x1⊕y1 and t2 ∼= x2⊕y2⊕z, where x1 and
x2 are in X , y1 and y2 are in Y and z is in Z. In both cases objects from
both X and Y are present. However, there might or might not be the two
subcategories U1 and U2 of T such that each t in T can be written t ∼= u1⊕u2

with u1 in U1 and u2 in U2. A split torsion theory is an expression for this.

Definition 1.3.4. A split torsion theory is a torsion theory where all the
torsion theory triangles split.

Theorem 1.3.5. (Characterizations of split torsion theories) Let (X ,Y) be
a torsion theory. Then the following statements are equivalent.

(i) (X ,Y) is a split torsion theory,

(ii) (Y,ΣX) = 0 for all X ∈ X , Y ∈ Y,

(iii) S−1ΣX ⊆ X ,

(iv) SΣ−1Y ⊆ Y.

Proof. Let x ∈ X and y ∈ Y.

(i) ⇒ (ii): Consider f : y → Σx. Complete it to a distinguished triangle

x → t → y
f→ Σx in T . Then f = 0 by definition of a split torsion theory

(Lemma 0.2.2(v)).

(ii) ⇒ (i): This is true by definition (Lemma 0.2.2(v)).

(ii) ⇒ (iii): Since (S−1Σx, y) ∼= (y,Σx)∗ = 0, therefore S−1Σx ∈ ⊥Y = X .

(iii)⇒ (ii): For x′ = S−1Σx ∈ X , we have (y,Σx) ∼= (Σx, Sy)∗ ∼= (S−1Σx, y)∗ =
(x′, y)∗ = 0.

(ii) ⇒ (iv): Since (x, SΣ−1y) ∼= (Σ−1y, x)∗ ∼= (y,Σx)∗ = 0, therefore
SΣ−1y ∈ X⊥ = Y.

(iv)⇒ (ii): For y′ = SΣ−1y ∈ Y, we have (y,Σx) ∼= (Σ−1y, x) ∼= (x, SΣ−1y)∗ =
(x, y′)∗ = 0.

Remark 1.3.6. The composition SΣ−1 is the Auslander-Reiten translation
given in Definition 0.3.11.

Example 1.3.7. (c.f. Example 1.2.25) Let (X , Y) be a split torsion theory.
Then the inclusion ı : X ↪→ T admits a right adjoint R : T → X . Similarly,
the inclusion ı : Y ↪→ T admits a left adjoint L : T → Y.
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Proof. Consider the morphism h : Σ−1y → x in Proposition 1.2.23. Since
(Σ−1y, x) = (y,Σx) = 0 by Theorem 1.3.5, h is trivially an X -left phantom.
Therefore by Proposition 1.2.23, the inclusion ı : X ↪→ T admits a right
adjoint R : T → X . Similarly, by Proposition 1.2.24, the inclusion ı :
Y ↪→ T admits a left adjoint L : T → Y.

Remark 1.3.8. By virtue of Example 1.3.7, Property 1.2.28 is also true for
split torsion theories.

Remark 1.3.9. Consider the diagram in Proposition 1.2.23. If the torsion
theory (X , Y) is a t-structure, then the morphism x′ → Σ−1y is zero and
the right adjoint exists (Example 1.2.25). On the other hand, Theorem 1.3.5
describes the behaviour of the morphism Σ−1y → x, and characterizes an-
other example of a torsion theory, the split torsion theory, where the right
adjoint exists as well (Example 1.3.7).

Lemma 1.3.10. Let (X ,Y) be a split torsion theory. Then for each inde-
composable t in T , either t is in X or t is in Y.

Proof. Since (X ,Y) is a torsion theory, X ∩ Y = 0 and so t cannot be in
both X and Y (Remark 1.2.6(i)). Given an indecomposable t in T , there is
a distinguished triangle x→ t→ y → Σx for some x in X and y in Y. Since
the torsion theory is split, t ∼= x⊕y. Since t is indecomposable, either x ∼= 0
or y ∼= 0, which gives either t ∼= y or t ∼= x. Therefore either t is in X or t is
in Y, since X and Y are closed under isomorphisms.

Remark 1.3.11. The converse of Lemma 1.3.10 is not true. Suppose (X ,Y)
is a torsion theory, and that for each indecomposable t in T , either t is in
X or t is in Y. Then (X ,Y) does not need to be a split torsion theory. This
is because the existence of a torsion theory triangle is not unique.

Lemma 1.3.12. Let (X ,Y) be a split torsion theory. Then (X ,Y) is a
t-structure.

Proof. Consider an indecomposable x in X . By Lemma 1.3.10, either Σx is
in X or Σx is in Y. Suppose Σx is in Y. By Theorem 1.3.5, Y ⊆ S−1ΣY,
which gives Sx ∈ Y (Lemma 1.3.1(iv)). By Lemma 0.3.10, there is the
Auslander-Reiten triangle u → v → x → Sx in T . However, the triangle
would split, since x is in X and Sx is in Y, which is not possible. Therefore
Σx is in X , i.e. ΣX ⊆ X .

1.4 The finite derived category of Dynkin type

Let 4 be a quiver (a directed graph). Given an arrow α, the initial point
(resp. end point) of α is denoted by s(α) (resp. e(α)). A path of length
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l ≥ 1 from a vertex x to a vertex y is of the form (x | α1, . . . , αl | y) with
arrows αi satisfying e(αi) = s(αi+1) for 1 ≤ i < l, s(α1) = x and e(αl) = y.
For any vertex x in 4, a path of length 0 is denoted by (x | x). Let the path
algebra k4 be the k-vector space with basis the set of all paths of length
l ≥ 0 in 4. The product of two paths p1 = (x1 | α1, . . . , αm | y1) and
p2 = (x2 | β1, . . . , βn | y2) is p1p2 = (x1 | α1, . . . , αm, β1, . . . , βn | y2) if
y1 = x2. Otherwise it is zero. The global dimension of a path algebra k4
is either 0 or 1 (Example 0.1.25).

Below are the cases where 4 is a Dynkin graph.

The Dynkin graph of type An:

1 2 3 · · · n− 1 n

The Dynkin graph of type Dn, n ≥ 4:

n− 1

1 2 3 · · · n− 2

n

The Dynkin graph of type E6:

6

1 2 3 4 5

The Dynkin graph of type E7:

7

1 2 3 4 5 6

The Dynkin graph of type E8:

8

1 2 3 4 5 6 7
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The finite derived category Db(mod k4) is a k-linear Hom finite triangulated
category. It is Krull-Schmidt as well. By [14, Theorem 3.6], the finite derived
category Db(mod k4) has Auslander-Reiten triangles, and by Lemma 0.3.10
also a Serre functor.

Given a quiver 4, there is the translation quiver Z4 naturally induced by
4. The vertices of Z4 is the set Z×40, where 40 is the set of vertices of
4. The number of arrows from (n, x) to (m, y) in Z×40 is the number of
arrows from x to y (resp. from y to x) in 40 if n = m (resp. m = n + 1),
and there are no arrows otherwise. If 4 is a Dynkin graph, then Z4 does
not depend on the orientation of4, see [15, I.5.6], and the Auslander-Reiten
quiver of the finite derived category Db(mod k4) is Z4. This is given in
[14, 4.5].

Lemma 1.4.1. Let x and y be indecomposable objects of the finite derived
category Db(mod k4), where 4 is a Dynkin graph. Then by [14, 4.6], any
non-zero morphism f from x to y is a linear combination of morphisms,
written f = Σαifi, where the αi are scalars and the fi : x→ y are composi-
tions of irreducible morphisms.

Let 4 be a Dynkin graph. Then the category indDb(mod k4) is equivalent
to the mesh category of Z4. This means that given an Auslander-Reiten

triangle a
α→ b

β→ c→ in the finite derived category Db(mod k4), which can
be read off from the Auslander-Reiten quiver, there is the relation βα = 0
(Lemma 0.2.2(i)), and only relations of this kind are present. The above
is only a gentle and informal initiation, and the reader will be able to seek
guidance from [14, 4.6].

Together with Lemma 1.4.1, the finite derived category Db(mod k4), where
4 is a Dynkin graph, is then said to be standard.

For example, the Auslander-Reiten quiver of Db(mod kAn) is

•
��

•
��

n

��

•
��

•

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•
��

??

•
��

??

• . . .

•
��

??

•
��

??

•a

��

??

•
��

??

•

??

��
2

??

��

•

??

��

•

??

��

•

??

��

•

1

??

•

??

•

??

•

??

•

??

The following coordinate system on the quiver is employed. Suppose the
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indecomposable object a has coordinates (i, j). The coordinates of some of
its surrounding objects are given in the following diagram.

(i− 2, j − 1)

��

(i− 1, j)

��

(i, j + 1)

��
(i− 2, j − 2)

??

��

(i− 1, j − 1)

��

??

(i, j)

��

??

(i+ 1, j + 1)

(i− 1, j − 2)

??

(i, j − 1)

??

(i+ 1, j)

??

The coordinates on the bottom line of the quiver satisfy the equation y−x =
2, and those on the top line satisfy y − x = n+ 1.

Let Σ be the translation functor of Db(mod kAn). Then the action of Σ is
given by Σ(i, j) = (j − 1, i + n + 2) ([25, Example 2.8]), and the action of
the Auslander-Reiten translation τ by τ(i, j) = (i− 1, j − 1).

Definition 1.4.2. Let a be an indecomposable object of Db(mod kAn), and
let L(a) be the set of indecomposable objects with non-zero morphisms to
a. Dually, let R(a) be the set of indecomposable objects to which there are
non-zero morphisms from a.

Sketch 1.4.3. The two regions L(a) and R(a) are depicted below. The
coordinates of the corners of R(a) are given by a = (i, j), b = (j − 2, j),
c = (j − 2, i+ n+ 1) and d = (i, i+ n+ 1).

•d′ •d
y−x=n+1

•c′ •c

L(a) •a R(a)

•b′ •b
y−x=2

Example 1.4.4. Consider the Auslander-Reiten quiver of Db(mod kA4) and
the indecomposable object c2.
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•m4

��

•a4

α′3 ��
•b4

β′3 ��

•c4
��

•d4

��
. . . •m3

��

??

•a3

α′2 ��

α3
??

•b3

β′2 ��

β3
??

•c3
��

γ3
??

•d3

��

??

• . . .

•a2

α′1 ��

α2
??

•b2

β′1 ��

β2
??

•c2
��

γ2
??

•d2

��

??

•
��

??

•a1

α1
??

•b1
β1
??

•c1
γ1
??

•d1

??

•

??

•

Since b2 → b3⊕c1 → c2 → is an Auslander-Reiten triangle, β′2β2 +γ1β
′
1 = 0,

and so by Lemma 1.4.1, (b2, c2) is one-dimensional. In general, given inde-
composable objects x and y of Db(mod kA4), if (x, y) is non-zero, then (x, y)
is one-dimensional. Since b1 → b2 → c1 → is an Auslander-Reiten triangle,
β′1β1 = 0. Therefore by Lemma 1.4.1, (b1, c1) = 0 and so (b1, c2) = 0,
and then (a2, c2) = (m3, c2) = 0. Similarly, since m4 → a3 → a4 →
is an Auslander-Reiten triangle, by Lemma 1.4.1, (m4, a4) = 0 and so
(m4, c2) = 0. Accordingly, L(c2) = {a3, a4, b2, b3, c1, c2}. Dually, R(c2)
= {c2, c3, c4, d1, d2, d3}.

For the rest of this section, let X ,Y be full additive subcategories of the
finite derived category Db(mod kAn), denoted by T , with translation func-
tor Σ, Serre functor S and Auslander-Reiten translation τ ∼= SΣ−1. The
subcategories are assumed to be closed under isomorphisms and direct sum-
mands.

Definition 1.4.5. A zig zag Z in the Auslander-Reiten quiver of the finite
derived categoryDb(mod kAn) is a set of coordinates {(x1, y1), (x2, y2), . . . , (xn, yn)}
where y1−x1 = 2, yn−xn = n+1 and (xi+1−xi, yi+1−yi) ∈ {(−1, 0), (0, 1)}
for 1 ≤ i ≤ n− 1.

Proposition 1.4.6. (c.f. Lemma 1.3.10) Let (X ,Y) be a split torsion
theory. If the indecomposable u = (g, h) is in X , then the region Ru =
{(x, y)|g ≤ x, h ≤ y and 2 ≤ y − x ≤ n+ 1} is in X .

u Ru
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Proof. Since (X ,Y) is a torsion theory, X is closed under extensions. In the
following diagram, let v1 = (g, h+ 1), v2 = (g+ 1, h) and w = (g+ 1, h+ 1).
Then there is the Auslander-Reiten triangle u → v1 ⊕ v2 → w →. Since
τ−1X ⊆ X by Theorem 1.3.5, w = τ−1(u) is in X . Since X is closed
under extensions and direct summands, v1 and v2 are in X . By repeating a
(similar) argument on v1 and v2 and so on, the two line segments t1 and t2
are in X . Eventually, the region Ru is in X , since τ−1X ⊆ X .

t1

v1

u w Ru

v2

t2

Corollary 1.4.7. Let (X ,Y) be a split torsion theory. If X is neither zero
nor all of T , then there is a zig zag Z such that indX = τ−iZ for i ≥ 0 and
indY = τ jZ for j > 0. One example is as follows.

Y X

Proof. Consider a horizontal line y−x = k with 3 ≤ k ≤ n in the Auslander-
Reiten quiver of T . If there are objects from X on this line, then there is
a leftmost such object. Otherwise there are objects of X arbitrarily far
to the left on y − x = k, so all objects on y − x = k are in X because
τ−1X ⊆ X by Theorem 1.3.5. In the following diagram, let d1 = (u1, u2)
and d2 = (u1+1, u2−1) be objects on the lines y−x = k+1 and y−x = k−1
respectively. Then there is the Auslander-Reiten triangle d0 → d1 ⊕ d2 →
d′0 →, where d0 = (u1, u2 − 1) and d′0 = (u1 + 1, u2). Since d0 and d′0
both lie on the line y − x = k which is in X , it follows that d1 and d2 are
in X , since X is closed under extensions and direct summands. Therefore
the two neighbouring lines y − x = k + 1 and y − x = k − 1 are in X .
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Repeating the argument for other (horizontal) lines, X has to contain all
the indecomposable objects of T , i.e. X has to be all of T . The cases where
k = 2 and k = n+ 1 are similar.

d1

��
d0

??

��

d′0

d2

??

Now on the line y−x = k, 2 ≤ k ≤ n+1, let ak be the leftmost object which
is in X , as shown in the following diagram. Suppose that for some k the
object ak+1 was neither a+

k nor a−k . If ak+1 were left of a−k , then its region
Rak+1

⊆ X (Proposition 1.4.6) would contain an object to the left of ak on
y − x = k, which is a contradiction. Also ak+1 could not have been to the
right of a+

k since a+
k is in the region Rak ⊆ X (Proposition 1.4.6). Therefore

ak+1 can only be a+
k or a−k .

a−k

��

a+
k

ak

??

Finally, the result follows by applying Proposition 1.4.6 on all such leftmost
objects.

Theorem 1.4.8. (classification of split torsion theories) There is a bijection
between the set of zig zag Z’s and the set of split torsion theories (X ,Y) in
the finite derived category Db(mod kAn), where X and Y are separated by Z
such that indX = τ−iZ for i ≥ 0 and indY = τ jZ for j > 0.

Proof. If (X ,Y) is a split torsion theory, then by Corollary 1.4.7, there
is a zig zag Z which separates X and Y on the Auslander-Reiten quiver.
Conversely, suppose there is a zig zag Z which separates X and Y on the
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Auslander-Reiten quiver. Then by inspection, Y (resp. X ) is precisely X⊥
(resp. ⊥Y) (Sketch 1.4.3). Therefore by Lemma 1.2.19, X is closed under
extensions. The subcategory X is trivially precovering since (X , Y) = 0.
Therefore (X ,Y) is a torsion theory by [21, Proposition 2.3]. Since it can
be readily seen by considering the Auslander-Reiten quiver that τ−1X ⊆ X ,
by Theorem 1.3.5, (X ,Y) is a split torsion theory.

The following lemma is a special case of Lemma 1.3.12. This is because the
finite derived category Db(mod kAn) has a Serre functor.

Lemma 1.4.9. Let (X ,Y) be a split torsion theory. Then (X ,Y) is a t-
structure.

Proof. Let u = (g, h) be in X . Then by Proposition 1.4.6, the region Ru is
in X . Thus Σu = Σ(g, h) = (h− 1, g+n+ 2) is in Ru = {(x, y)|g ≤ x, h ≤ y
and 2 ≤ y − x ≤ n+ 1} ⊆ X .

An alternative proof is possible by inspecting the action of the Serre functor
S and by appealing to Lemma 1.3.1(i). First we need a little lemma.

Lemma 1.4.10. Let (X ,Y) be a split torsion theory. Then SX ⊆ X .

Proof. Remember S ∼= Στ ∼= τΣ (Definition 0.3.11). Let u = (g, h) ∈ X and
consider the region Ru in Proposition 1.4.6. Thus Sx = S(g, h) = τΣ(g, h) =
τ(h− 1, g + n + 2) = (h− 2, g + n + 1) is in Ru = {(x, y)|g ≤ x, h ≤ y and
2 ≤ y − x ≤ n+ 1} ⊆ X .

An alternative proof of Lemma 1.4.9 is then given.

Proof. Since (X ,Y) is a split torsion theory, S−1ΣX ⊆ X by Theorem 1.3.5
and SX ⊆ X by Lemma 1.4.10. Finally, by Lemma 1.3.1(i), S−1ΣX ⊆ X
and SX ⊆ X give ΣX ⊆ X .

The following lemma is true not only for the subcategory X of the finite
derived category Db(mod kAn), but simply of any k-linear Hom finite and
Krull-Schmidt triangulated category. It is suggestive of the situation when
the notions of split torsion theories and t-structures coincide.

Lemma 1.4.11. Suppose SX ∼= X . Then the following are equivalent.

(i) S−1ΣX ⊆ X ,

(ii) ΣX ⊆ X .
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Proof. This follows by Lemma 1.3.1(i) and Lemma 1.3.1(iii).

Remark 1.4.12. Suppose a torsion theory satisfies the condition in Lemma 1.4.11.
Then the one characterized by (i) corresponds to a split torsion theory by
Theorem 1.3.5, and the one characterized by (ii) corresponds to a t-structure
by definition.

The following is an illustration of Lemma 1.4.11.

Example 1.4.13. Consider the finite derived category Db(k) = Db(mod kAn)
where n = 1. By [15, Section 5.2], an indecomposable X in Db(k) is of the
form

· · · // 0 // 0 // k // 0 // 0 // · · · ,

where k is at any i-th position.

By Lemma 0.3.6 and Lemma 0.1.9, the end terms of an Auslander-Reiten tri-
angle are indecomposable. Therefore an Auslander-Reiten triangle in Db(k)
is of the form

X
α // Y

β // Z
γ 6=0 // ΣX,

where X and Z are indecomposable, and Σ−1Z ∼= X since (Z,ΣX) is one-
dimensional and the morphism γ : Z → ΣX is non-zero. Therefore Y ∼= 0 by
Lemma 0.2.2(iii) and an Auslander-Reiten triangle in Db(k) is of the form

X // 0 // Z
γ 6=0 // ΣX.

Together with τZ ∼= SΣ−1Z ∼= X this gives SX ∼= X.

The Auslander-Reiten quiver of Db(k) is as follows.

· · · • • • • • · · ·

Remark 1.4.14. Let (X1,Y1) be a torsion theory in Db(k) (Example 1.4.13).
Then by Lemma 1.4.11, the torsion theory is a split torsion theory if and
only if it is a t-structure (c.f. Remark 1.4.12).

1.5 Anecdote

The chapter concludes with the following informal recapitulation. As usual,
let k be a field. Let T be a k-linear Hom finite and Krull-Schmidt triangu-
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lated category with translation functor Σ, Serre functor S and Auslander-
Reiten translation τ ∼= SΣ−1. Let X , Y be full additive subcategories of T .
They do not need to be triangulated, but are assumed to be closed under
isomorphisms.

Three different types of distinguished triangles have been hitherto described.

(i) split distinguished triangles,

(ii) torsion theory triangles,

(iii) Auslander-Reiten triangles.

Torsion theory triangles can be split. On the other hand, Auslander-Reiten
triangles are not split.

Lemma 1.5.1. Let (X , Y) be a torsion theory. If τ−1X ⊆ X , then there are
no distinguished triangles (other than the one with all terms zero) ε where ε
is both a torsion theory triangle and an Auslander-Reiten triangle.

Proof. Suppose ε : x → t → y → Σx is such a triangle. Then by Theo-
rem 1.3.5, ε is split, but by definition Auslander-Reiten triangles are not
split. Alternatively, τ−1X ⊆ X implies that y is in X , but then y would
have to be in X ∩ Y = 0 (Remark 1.2.6(i)). Similarly, x would also have to
be 0 since τY ⊆ Y by Theorem 1.3.5.

Below are a few comparisons between torsion theory triangles and Auslander-
Reiten triangles.

Comparison 1.5.2. (nature of restrictions) Let (X , Y) be a torsion theory,

and ε : u
µ→ v

ν→ w
ξ→ Σu be a distinguished triangle in T . If ε is a torsion

theory triangle ε1, then it is defined in terms of the membership of u and w
in the given subcategories X and Y respectively, and the morphisms µ and
ν can be intuitively perceived as approximations of the canonical inclusion
and the canonical projection respectively (Remark 1.2.30). On the other
hand, if ε is an Auslander-Reiten triangle ε2, then it is defined in terms of
the morphisms µ, ν and ξ, and in the example given in Proposition 1.4.6,
the (first three) objects u, v1 ⊕ v2 and w in the Auslander-Reiten triangle
u→ v1 ⊕ v2 → w → are all in X .

Comparison 1.5.3. (construction) A torsion theory triangle is of the form
Rt → t → Lt → ΣRt when the right adjoint R and the left adjoint L exist
(Property 1.2.28). An Auslander-Reiten triangle is of the form SΣ−1z →
y → z → Sz when the Serre functor S exists (Lemma 0.3.10).
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Comparison 1.5.4. (right minimal morphisms) Let (X , Y) be a torsion the-

ory, and ε : u
µ→ v

ν→ w
ξ→ Σu be a distinguished triangle in T . If ε is an

Auslander-Reiten triangle, then ν is right minimal by Lemma 0.3.6. On the
other hand, any given right minimal morphism µ : u → v in T , with µ an
X -precover, can be extended to a torsion theory triangle u

µ→ v → w → Σu
with w in Y by Proposition 1.2.23. Accordingly, the occurrence of a right
minimal morphism in a distinguished triangle affects whether the distin-
guished triangle is an Auslander-Reiten triangle or a torsion theory triangle.

Remark 1.5.5. (i) In Comparison 1.5.2, the example from Proposition 1.4.6
is given, where the (first three) objects u, v1 ⊕ v2 and w in the
(Auslander-Reiten) triangle u

α→ v1 ⊕ v2 → w → are all in X . This
can also be true in some distinguished triangles other than Auslander-

Reiten triangles. For example, consider the morphism α =

(
α1

α2

)
in

the above Auslander-Reiten triangle. The objects u and v1 are in X ,
and in Section 3.2.2, the mapping cone y of the morphism α1 : u→ v1

is shown to be in X as well. The distinguished triangle u→ v1 → y →
is not however an Auslander-Reiten triangle.

(ii) Let (X , Y) be a torsion theory. Suppose for each t in T , there is a
torsion theory triangle x→ t→ y → Σx, where x ∈ X , y ∈ Y and the
morphism h: Σ−1y → x is an X -left phantom. Then by Lemma 1.2.23,
the right adjoint R : T → X of the inclusion ı : X ↪→ T is R(t) = x,
i.e. x = Σ−1u where u is the mapping cone of the Y-preenvelope t→ y.
The action of the right adjoint R can be seen on the Auslander-Reiten
quiver, if it is possible to recognize the Y-preenvelope, the mapping
cone construction as well as the action of Σ on the quiver. There is
more description about mapping cone constructions in some selected
situations in Section 3.2.2, Section 3.3.2 and Section 3.4.3, and an
illustration is given in Example 4.5.6.
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Chapter 2

Existence of
Auslander-Reiten sequences
in subcategories

This chapter is also written in the form of a paper which is accepted for
publication in the Journal of Pure and Applied Algebra ([36]).

2.1 Introduction

The reader is reminded of the notion of Auslander-Reiten triangles in sub-
categories in Definition 0.3.5. The octahedral axiom of a triangulated cat-
egory described in Section 0.2 is not necessarily true when it is confined to
Auslander-Reiten triangles only. There will be more examples of applica-
tions of the octahedral axiom in Section 3.4.3, where not all the distinguished
triangles induced by the octahedral axiom are Auslander-Reiten triangles.
This leads us to other conditions of the existence of Auslander-Reiten tri-
angles, which is very much related to the existence of Auslander-Reiten
sequences described in this chapter.

Let X ,Y be full subcategories of a triangulated category T . The notions of
a torsion theory and torsion theory triangles are given in Definition 1.2.5.
Also the notions of an X -(pre)cover and of X as (pre)covering for T in Defi-
nition 1.2.8 and in Definition 1.2.9. Suppose (X ,Y) is a torsion theory. The
connection between torsion theory triangles and Auslander-Reiten triangles
is very subtle, and it has been described in Comparison 1.5.4.

The following offers another facet of the interrelationship. Since (X ,Y) is a
torsion theory, X is a precovering for T . If X is also a covering for T , then
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given t in T , there is an X -cover of the form x
α→ t which can be extended

to a torsion theory triangle x
α→ t→ y → with y in Y by Proposition 1.2.23.

This is very similar to the existence of Auslander-Reiten triangles in sub-
categories described in [22, Theorem 3.1]. Suppose T is a skeletally small
k-linear Hom finite triangulated category with split idempotents, and X is
a full subcategory of T closed under extensions and direct summands. The
theorem is restated as follows.

Theorem. ([22, Theorem 3.1]) Let x be in X and let u→ v → x→ be an
Auslander-Reiten triangle in T . Then the following are equivalent.

(i) u has an X -cover of the form a→ u,

(ii) There is an Auslander-Reiten triangle a→ b→ x→ in X .

Therefore there is a very close and subtle relationship between the existence
of torsion theory triangles and the existence of Auslander-Reiten triangles.
In this chapter, we study the existence of Auslander-Reiten sequences in
subcategories of mod(Λ), where Λ is a finite-dimensional k-algebra over the
field k, based on the theory of the existence of Auslander-Reiten triangles
in subcategories developed in [22].

In the above theorem, when u is in X , (i) and (ii) are true trivially and
independently. Therefore intuitively, (i) and (ii) are two equivalent forms in
disguise for measuring how far for each u /∈ X it is from X . Accordingly,
X -covers and Auslander-Reiten triangles in X are different expressions of
the subcategory X approximating T .

2.2 Notations

Let Λ be a finite-dimensional k-algebra over the field k, and Λop be the
opposite algebra. The elements of Λ and Λop are the same, and given multi-
plication · and elements λ1, λ2 in Λop, let λ1·λ2 = λ2λ1, where λ2λ1 is consid-
ered in Λ. As usual, let mod(Λ) (resp. mod(Λop)) be the category of finitely
generated Λ-left-modules (resp. Λop-left-modules or Λ-right-modules).

A finite-dimensional k-algebra Λ is said to be representation-finite if the
number of isomorphism classes of indecomposable finite-dimensional Λ-left-
modules is finite. Otherwise, it is said to be representation-infinite.

Let D be the usual duality functor D(−) = Homk(−, k) : mod(Λ) →
mod(Λop). Given a Λ-left-module M in mod(Λ), the set Homk(M,k) is a
k-vector space, and is also a Λ-right-module. Indeed given µ in Homk(M,k)
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and λ in Λ, define (µ · λ)(m) = µ(λ ·m) for m in M . In particular, DΛ =
Homk(Λ, k) is the k-linear dual of Λ which is a Λ-bi-module.

The duality functor D(−) is an exact, contravariant functor and it induces a
contravariant equivalence between the categories mod(Λ) and mod(Λop), so
that the category mod(Λop) is equivalent to the opposite category of mod(Λ).

Lemma 2.2.1. Let M be in mod(Λ). Then

(i) M is indecomposable if and only if DM is indecomposable,

(ii) If M is projective (resp. injective), then DM is injective (resp. pro-
jective).

Subsequently, the duality D(−) : mod(Λ) → mod(Λop) induces a duality
D(−) : mod(Λ)→ mod(Λop).

LetM be a full subcategory of mod(Λ), and remember the notions of a right
almost split morphism and of a left almost split morphism in Definition 0.3.1.

Definition 2.2.2. (c.f. Definition 0.3.5) An exact sequence 0→ A
g→ B

f→
C → 0 with A,B,C in the subcategory M is an Auslander-Reiten sequence
in M if g is left almost split and f is right almost split in M.

Following the notations of [22], let K(InjΛ) be the homotopy category of
complexes of injective Λ-left-modules. Let T be the full subcategory of
K(InjΛ) consisting of complexes X for which each Xi is finitely generated,
and where Hi(X) = 0 for i� 0 and HiHomΛ(DΛ, X) = 0 for i� 0.

The category T is a skeletally small k-linear Hom finite triangulated category
with split idempotents. It is Krull-Schmidt as well. Let the suspension
functor Σ be the translation functor of the triangulated category T . Let
C be the full subcategory of T which consists of injective resolutions of
modules in mod(Λ). The category C is closed under extensions and direct
summands. The reader can refer to [22, Remark 1.2] and [22, Lemma 4.3]
for more details.

Let M be a full subcategory of mod(Λ) closed under extensions and direct
summands, and let C′ consist of the injective resolutions of the M in M.
The subcategories C′ and M need not be abelian.

Remark 2.2.3. (i) C is equivalent to mod(Λ), by the functor F : mod(Λ)→
C which sends X in mod(Λ) to its injective resolution C in C. Similarly,
C′ and M are equivalent.

(ii) By [22, Lemma 4.5], C is covering in T . If C′ is precovering in C, then
C′ is precovering in T .
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By Remark 2.2.3(i), properties in the category mod(Λ) can be passed on
to the category C, and vice versa. For example, mod(Λ) is closed under
extensions and direct summands if and only if C is closed under extensions
and direct summands. Also C′ is (pre)covering in C if and only if M is
(pre)covering in mod(Λ).

The setup described above could be summarized in the following diagram,

M �
� //

'

mod(Λ)

'

C′ �
� // C �

� // T �
� // K(InjΛ).

Remark 2.2.4. Intuitively, C stays away from T far enough to be abelian
(mod(Λ) is abelian). On the other hand, it needs to stay close enough so
that there are C-covers of objects in T .

Finally, the bridge between Auslander-Reiten sequences and Auslander-
Reiten triangles in subcategories is shown in the following lemma.

Lemma 2.2.5. 0 → X → Y → Z → 0 is an Auslander-Reiten sequence
in M if and only if A → B → C → is an Auslander-Reiten triangle in C′,
where A,B,C are injective resolutions of X,Y, Z respectively.

Proof. (if ) This is Lemma 0.2.9. (only if ) This is the dual of Lemma 0.2.22.
Essentially, M and C′ are equivalent so that short exact sequences in M
correspond to distinguished triangles in C′.

2.3 Weakened notions of precovers (preenvelopes)

Let us begin this section with some notations and definitions.

Let (−)∗ be the functor HomΛ(−,Λ) : mod(Λ) → mod(Λop). Given a Λ-
left-module M in mod(Λ), the set HomΛ(M,Λ) is a k-vector space, and is
also a Λ-right-module. Indeed given µ in HomΛ(M,Λ) and λ in Λ, define
(µ · λ)(m) = µ(m) · λ for m in M . In particular, HomΛ(Λ,Λ) = Λ.

The functor (−)∗ is a left exact contravariant functor. However, unlike
the duality functor D(−), the functor (−)∗ does not induce an equivalence
between the categories mod(Λ) and mod(Λop). Therefore, the functor (−)∗

is not a duality and given N in mod(Λop), there is not necessarily an M in
mod(Λ) such that M∗ = N .

Lemma 2.3.1. (c.f. Lemma 2.2.1) Let M be in mod(Λ).
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(i) If M is free, then HomΛ(M,Λ) is also free,

(ii) If M is projective, then HomΛ(M,Λ) is also projective,

(iii) If M is projective, then M∗∗ ∼= M .

Let M be in M. Let

P = · · · // P2
// P1

// P0
// 0 // · · ·

be a projective resolution of M . The Pi do not need to be in M.

The sequence
P1

// P0
//M // 0

is right exact, and the functor (−)∗ induces the following left exact sequence,

0 //M∗ // P ∗0
// P ∗1 .

Since the functor (−)∗ is not an exact functor, this leads us to the following
definition.

Definition 2.3.2. The transpose TrM of M is defined to be the cokernel
of the map P ∗0 → P ∗1 .

The transpose TrM is a k-vector space and is also a Λ-right-module in
mod(Λop). The transpose does not induce a duality Tr(−) : mod(Λ) →
mod(Λop), and in general not even a functor from mod(Λ) to mod(Λop)
since Tr(−) : mod(Λ)→ mod(Λop) is well-defined on objects but in general
not well-defined on morphisms.

Lemma 2.3.3. ([2, Proposition IV.1.7]) Let M be in mod(Λ). Then

(i) TrM = 0 if and only if M is projective,

(ii) If M is not projective, then M is indecomposable if and only if TrM
is indecomposable.

Subsequently, the transpose Tr(−) induces a well-defined contravariant func-
tor and along with it a duality Tr(−) : mod(Λ)→ mod(Λop).

Now let Pi be a projective module in mod(Λ). The tensor product DΛ⊗ΛPi
is naturally equipped with the structure of a Λ-left-module. Given d in DΛ,
p in Pi and λ in Λ, define λ · (d ⊗ p) = (λ · d) ⊗ p. By Lemma 0.1.4(ii),
DΛ⊗Λ Pi is injective.

Since DΛ⊗Λ Pi ∼= Homk(HomΛ(Pi,Λ), k) = D(P ∗i ), we write

DΛ⊗Λ P = D(P ∗) = · · · //D(P ∗2 ) //D(P ∗1 )
d1 //D(P ∗0 ) //0 // · · · .
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Remark 2.3.4. Even though the DΛ⊗ΛPi are injective, the complex DΛ⊗ΛP
is far from being injective, let alone an injective resolution.

From the exact sequence

0 //M∗ // P ∗0
// P ∗1

// TrM // 0,

and the consideration that the functor D(−) preserves exactness, there is
the following exact sequence,

0 // DTrM // D(P ∗1 ) // D(P ∗0 ) // D(M∗) // 0.

Accordingly, DTrM and D(M∗) are the kernel and cokernel of the map d1.

Remark 2.3.5. (i) Even though M is inM, the module DTrM might not
be in M,

(ii) The composition DTr(−) : mod(Λ)→ mod(Λ) induces an equivalence
DTr(−) : mod(Λ) → mod(Λ) of categories with inverse equivalence
TrD(−) : mod(Λ)→ mod(Λ),

(iii) The right exact sequence P ∗0 → P ∗1 → TrM → 0 induces a left exact
sequence 0 → (TrM)∗ → P ∗∗1 → P ∗∗0 . Since P ∗∗i

∼= Pi for i = 0, 1 by
Lemma 2.3.1(iii), there is the exact sequence 0 → (TrM)∗ → P1 →
P0 → M → 0. The module (TrM)∗, which is the kernel of the mor-
phism P1 → P0, is known as the second syzygy of M , denoted by
Ω2M .

Now we are ready to introduce a weakened notion of anM-precover, i.e. an
M-precover with error term, and discover its relationship with a C′-precover.

Definition 2.3.6. Let M and N be in M. Then ν : N → DTrM is said
to be an M-precover with error term if for all L in M, each morphism
s′ : L → DTrM factors through ν up to an error term, i.e. there is a
morphism ν ′ : L→ N such that νν ′ − s′ factors through f2 in the following

way: L→ D(P ∗2 )
f2→ DTrM , as indicated in the following diagram.

L

s′

��

ν′

��

��

N
ν

��

Σ−1D(P ∗) = //D(P ∗2 )

f2
''

d2 //D(P ∗1 )
d1 //D(P ∗0 ) //0 //

DTrM
* 
 j1

77
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Remark 2.3.7. In Definition 2.3.6, there is a unique morphism f2 : D(P ∗2 )→
DTrM since DTrM is the kernel of the map d1.

Similarly, consider the subcategory DM of mod(Λop). The subcategory
DM is equivalent to the opposite category of M. Let M be in M. Let

Q = · · · // Q2
// Q1

// Q0
// 0 // · · ·

be a projective resolution of DM .

Definition 2.3.8. Let M and N be inM. Then Df : DN → DTr(DM) is
said to be a DM-precover with error term if for all L inM, each morphism
Ds′ : DL → DTr(DM) factors through Df up to an error term, i.e. there
is a morphism Df ′ : DL → DN such that DfDf ′ − Ds′ factors through

D(Q∗2) in the following way: DL→ D(Q∗2)
D(g2)→ DTr(DM), as indicated in

the following diagram.

DL

Ds′

��

Df ′

��





DN
Df

��

Σ−1D(Q∗) = //D(Q∗2)

D(g2) ((

//D(Q∗1) //D(Q∗0) //0 //

DTr(DM)
) 	

66

There is also the dual version.

Definition 2.3.9. Let M and N be in M. Then f : Tr(DM)→ N is said
to be an M-preenvelope with error term if for all L in M, each morphism
s′ : Tr(DM) → L factors through f up to an error term, i.e. there is a
morphism f ′ : N → L such that f ′f − s′ factors through Q∗2 in the following
way: Tr(DM)→ Q∗2 → L.

Lemma 2.3.10. Let M , N be in M and ν : N → DTrM be given. Let J
in C′ be the injective resolution of N . Then there is a chain map λ : J →
Σ−1D(P ∗) induced by ν as indicated in the following diagram.

J =

λ

��

//0

��

//J0

λ0

��

a0
//J1

λ1

��

//J2 //

��

N
ν

��

* 
 i

77

Σ−1D(P ∗) = //D(P ∗2 )

f2
''

d2 //D(P ∗1 )
d1

//D(P ∗0 ) //0 //

DTrM
* 
 j1

77
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Proof. This is Lemma 0.1.27(ii), but we shall show it explicitly here. The
J i here do not need to be in M.

J =

λ

��

//0

��

a−1
//J0

��

a0
//

h1
&& &&

J1 //

��

J2 //

��

N
ν

��

) 	 i

66

σN
+ �

i1

88

��
Σ−1D(P ∗) = //D(P ∗2 )

f2
''

d2 //D(P ∗1 )
d1

//

f1
%% %%

D(P ∗0 ) //0 //

DTrM
* 


j1

77

C j2

99

In the above diagram, let σN and C be the cokernels of i and of j1 respec-
tively. Since a0a−1 = 0 and σN is the cokernel, there is a unique i1 : σN →
J1 such that a0 = i1h1. Similarly, there is a unique j2 : C → D(P ∗0 ) such
that d1 = j2f1.

Since Z0(J) = N and D(P ∗1 ) is injective, there is a morphism λ0 : J0 →
D(P ∗1 ) such that λ0i = j1ν. Since f1λ0i = f1j1ν = 0, there is a unique
morphism µ : σN → C such that µh1 = f1λ0, since C is the cokernel.
Finally, there is a morphism λ1 : J1 → D(P ∗0 ) such that λ1i1 = j2µ since
D(P ∗0 ) is injective. Hence λ1a

0 = d1λ0 and there is a chain map λ : J →
Σ−1D(P ∗), which is only dependent on the morphism ν : N → DTrM .

Remark 2.3.11. Conversely, given a chain map λ : J → Σ−1D(P ∗), since
Z0(J) = N , therefore d1λ0i = λ1a

0i = 0, and so there is a unique morphism
ν : N → DTrM such that j1ν = λ0i, since DTrM is the kernel of the map
d1.

Lemma 2.3.12. Let M , N be in M and ν : N → DTrM be given. Let J
in C′ be the injective resolution of N and let λ : J → Σ−1D(P ∗) be a chain
map induced by ν as indicated in the following diagram.

J =

λ

��

//0

��

//J0

λ0

��

ϕ0

��

a0
//J1

λ1

��

ϕ1

��

//J2 //

��

N
ν

��

* 
 i

77

Σ−1D(P ∗) = //D(P ∗2 )

f2
''

d2 //D(P ∗1 )
d1

//D(P ∗0 ) //0 //

DTrM
* 
 j1

77

If λ is null homotopic, then ν factorizes as f2ϕ
0i for some ϕ0.

Proof. Since λ is null homotopic, λ0 = d2ϕ
0 + ϕ1a0 = j1f2ϕ

0 + ϕ1a0 for
some ϕ0, ϕ1. Hence λ0i = j1f2ϕ

0i + ϕ1a0i = j1f2ϕ
0i since a0i = 0. Since
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λ0i = j1ν (by construction), we have j1ν = j1f2ϕ
0i. Since j1 is injective,

ν = f2ϕ
0i.

Lemma 2.3.13. Let M , N be in M and ν : N → DTrM be given. Let J
in C′ be the injective resolution of N and let λ : J → Σ−1D(P ∗) be a chain
map induced by ν as indicated in the following diagram.

J =

λ

��

//0

��

//J0

λ0

��

ϕ0

��

a0
//

h1 %% %%

J1

λ1

��

ϕ1

��

a1
//J2 //

ϕ2

�� ��

N
ν

��

* 
 i

77

σN
+ � i1

99

g
vv

Σ−1D(P ∗) = //D(P ∗2 )

f2
''

d2 //D(P ∗1 )
d1

//D(P ∗0 ) //0 //

DTrM
* 
 j1

77

If ν factorizes as f2ϕ
0i for some ϕ0, then the chain map λ is null homotopic.

Proof. Since λ0i = j1ν, we have λ0i = j1f2ϕ
0i = d2ϕ

0i. Hence (λ0 −
d2ϕ

0)i = 0. Let σN be the cokernel of i, then there is a unique g: σN →
D(P ∗1 ) such that λ0 − d2ϕ

0 = gh1. Since D(P ∗1 ) is injective, there is ϕ1 :
J1 → D(P ∗1 ) such that ϕ1i1 = g. Hence λ0 − d2ϕ

0 = ϕ1i1h1 so λ0 =
d2ϕ

0 + ϕ1i1h1 = d2ϕ
0 + ϕ1a0. Similarly, we obtain a map ϕ2 : J2 → D(P ∗0 )

such that λ1 = d1ϕ
1 + ϕ2a1.

The following proposition is a slight variation of Lemma 0.1.27(ii).

Proposition 2.3.14. Let M be in M. Then DTrM has an M-precover
with error term if and only if Σ−1D(P ∗) has a C′-precover in T .

Proof. Since Σ−1D(P ∗) need not be in C, we cannot appeal to Remark 2.2.3.
We begin by giving a useful diagram.

K =

s

��

r

��

//0 //

��

K0

r0

��

//

ϕ

��

K1

r1

��

//K2 //

��
L

s′

��

ν′

��

* 
 il

77

J =

λ

��

//0 //

��

J0

λ0

��

a0
//J1

λ1

��

a1
//J2 //

��

N
ν

��

* 
 i

77

Σ−1D(P ∗) = //D(P ∗2 )

f2
''

//D(P ∗1 )
d1 //D(P ∗0 ) //0 //

DTrM
* 
 j1

77

The following discussion is with reference to the diagram.
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(only if ) Let ν : N → DTrM be an M-precover with error term. Let J be
an injective resolution of N and extend ν to a chain map λ : J → Σ−1D(P ∗)
by Lemma 2.3.10. Then λ is a C′-precover. First of all, J is in C′ since N
is in M. Suppose K is in C′ with a chain map s : K → Σ−1D(P ∗). Then
there is the induced map s′ : Z0(K) = L→DTrM . Since L is inM and ν is
an M-precover with error term, there is a morphism ν ′ : L → N such that
νν ′ − s′ = f2ϕil for some ϕ : K0 → D(P ∗2 ). By Lemma 2.3.10, extend ν ′ to
a chain map r : K → J . By Lemma 2.3.13, λr − s is null homotopic, that
is, λr = s in T and λ is a C′-precover. (if ) Suppose λ : J → Σ−1D(P ∗) is a
C′-precover. Then there is a morphism ν : Z0(J) = N → DTrM , and ν is an
M-precover with error term. Suppose we are given s′ : L → DTrM where
L is in M. By Lemma 2.3.10, extend s′ to a chain map s : K → Σ−1D(P ∗)
where K is an injective resolution of L. Since λ is a C′-precover, there is
r : K → J such that λr = s. This r induces a homomorphism ν ′ : L → N .
By Lemma 2.3.12, νν ′− s′ factorizes as f2ϕ

0i for some ϕ0 and ν is therefore
an M-precover with error term.

Here we turn to study precovers in the stable category. First we need a little
lemma.

Lemma 2.3.15. Let U in mod(Λ) be a finitely generated injective Λ-module.
Consider the complex D(P ∗) from Section 2.3. Then (U,D(P ∗2 ))→ (U,D(P ∗1 ))→
(U,D(P ∗0 )) is exact.

Proof. First consider the case when U = DΛ. Then the sequence becomes
(DΛ,D(P ∗2 )) → (DΛ,D(P ∗1 )) → (DΛ,D(P ∗0 )), which is isomorphic to the
sequence (P ∗2 ,Λ) → (P ∗1 ,Λ) → (P ∗0 ,Λ) since the duality functor D(−) is a
contravariant equivalence, which is the same as the sequence P ∗∗2 → P ∗∗1 →
P ∗∗0 , which by Lemma 2.3.1(iii) is isomorphic to the exact sequence P2 →
P1 → P0. Finally, any finitely generated injective is a direct summand in a
sum of copies of DΛ.

The following proposition shows that an M-precover with error term is
equivalent to an M-precover in the stable category.

Proposition 2.3.16. Let N be in M. Then ν : N → DTrM is an
M-precover with error term in mod(Λ) if and only if its class ν = ν +
I(N,DTrM) is an M-precover in the stable category mod(Λ).

Proof. (only if ) Suppose ν : N → DTrM is an M-precover with error
term. Then ν = ν + I(N,DTrM) is an M-precover in the stable category.
Suppose we are given s′ : L → DTrM in the stable category with L in M,
i.e. s′ : L → DTrM in mod(Λ). Since ν is an M-precover with error term,
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there is ν ′ : L→ N such that νν ′−s′ = f2ψ for some ψ : L→ D(P ∗2 ). Hence
s′ = νν ′ − f2ψ so s′ = ν ν ′ - f2 ψ = ν ν ′, since f2 = 0.

(if ) Suppose ν is an M-precover in the stable category. Then ν is an M-
precover with error term. Suppose we are given s′ : L → DTrM with L in
M. Consider its class s′ in the stable category. Since ν is anM-precover in
the stable category, we have ν ′ : L→ N such that s′ = ν ν ′ for some ν ′, i.e.
νν ′ − s′ factors through an injective U , say νν ′ − s′ = u2u1. We would like

νν ′ − s′, however, to factor through D(P ∗2 )
f2→ DTrM instead.

L
νν′−s′ //

u1

##

��

DTrM

U

u2

99

��
D(P ∗2 )

f2

FF

Consider the morphism j1u2 : U →D(P ∗1 ), where j1 is as in Definition 2.3.6.

U

j1u2

��

g

yy

0

%%
D(P ∗2 )

d2

// D(P ∗1 )
d1

// D(P ∗0 )

Since d1j1u2 = 0, by Lemma 2.3.15, there is g such that d2g = j1u2, which
gives j1f2g = j1u2. Since j1 is injective, f2g = u2 and νν ′ − s = u2u1 =
f2gu1.

Proposition 2.3.17. Let N be in M. Then Df : DN → DTr(DM)
is a DM-precover with error term in mod(Λop) if and only if the class
f = f+P(Tr(DM), N) is anM-preenvelope in the stable category mod(Λ).

Proof. Similar.

Proposition 2.3.18. Let N be in M. Then f : Tr(DM) → N is an
M-preenvelope with error term in mod(Λ) if and only if the class Df =
Df+I(DN,DTr(DM)) is a DM-precover in the stable category mod(Λop).

Proof. Similar.
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2.4 Existence of Auslander-Reiten sequences in sub-
categories

LetN be in mod(Λ). The functors ExtiΛ(−, N) and Ext
i
Λ(N,−), the right de-

rived functors of HomΛ(−, N) and HomΛ(N,−) respectively, are described in

Section 0.2.2. By Lemma 0.2.26(ii), the functors ExtiΛ(−,−) and Ext
i
Λ(−,−),

where i ≥ 0, are naturally equivalent.

Definition 2.4.1. ([18, III.1.], [45, 3.4]) Let A, B, X and X ′ be in mod(Λ).
An extension of A by B in mod(Λ) is an exact sequence 0 → B → X →
A → 0 in mod(Λ). Two extensions ε and ε′ are equivalent if there is the
following commutative diagram in mod(Λ).

ε : 0 // B // X //

∼=
��

A // 0

ε′ : 0 // B // X ′ // A // 0

An extension is split if it is equivalent to 0→ B → A⊕B → A→ 0.

Let E(A,B) be the set of equivalence classes of extensions of A by B.

The following lemmas are standard.

Lemma 2.4.2. ([45, Lemma 3.4.1]) Let A and B be in mod(Λ). If E(A,B) =
0, then every extension of A by B is split.

Lemma 2.4.3. ([18, Theorem III.2.4], [18, Proposition IV.7.1], [45, Theo-
rem 3.4.3]) Let A and B be in mod(Λ), and consider the extension ε : 0→
B → X → A → 0 in mod(Λ). The functors ExtiΛ(A,−) induce the exact

sequence (A,X) → (A,A)
∂→ Ext1(A,B) in mod(Λ). Then θ : E(A,B) →

Ext1(A,B), given by θ(ε) = ∂(idA), is a one-one correspondence, in which
the split extension corresponds to the element 0 in Ext1(A,B).

Lemma 2.4.4. Let ε : 0 → B → X → A → 0 be an extension in mod(Λ).
If either A is projective or B is injective, then the extension ε is split.

Proof. This is true by Lemma 0.2.26(i), Lemma 2.4.2 and Lemma 2.4.3.

Let us reminisce the following with regard to Auslander-Reiten sequences in
mod(Λ).

Lemma 2.4.5. ([2, Theorem V.1.16]) Let 0 → A
g→ B

f→ C → 0 and

0 → A′
g′→ B′

f ′→ C ′ → 0 be two Auslander-Reiten sequences in mod(Λ).
Then the following are equivalent.
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(i) A ∼= A′,

(ii) C ∼= C ′,

(iii) The sequences are isomorphic, which is to say there is a commutative
diagram,

0 // A
g //

∼=
��

B
f //

∼=
��

C

∼=
��

// 0

0 // A′
g′ // B′

f ′ // C ′ // 0,

where all the vertical morphisms are isomorphisms.

Lemma 2.4.6. ([2, Proposition V.1.14]) Let 0 → A
g→ B

f→ C → 0 be an
exact sequence in mod(Λ). Then the following are equivalent.

(i) The sequence is an Auslander-Reiten sequence,

(ii) The module A is indecomposable and the morphism f is right almost
split,

(iii) The module C is indecomposable and the morphism g is left almost
split,

(iv) A ∼= DTrC and the morphism f is right almost split,

(v) C ∼= TrDA and the morphism g is left almost split.

By Lemma 2.4.5 and Lemma 2.4.6, the existence of Auslander-Reiten se-
quences in mod(Λ) implies that given an indecomposable A in mod(Λ),
there is up to isomorphism a unique indecomposable C in mod(Λ) such that
DTrC ∼= A. Similarly, given an indecomposable C in mod(Λ), there is up to
isomorphism a unique indecomposable A in mod(Λ) such that TrDA ∼= C.

Originally in [3, Theorem 2.4], Auslander and Smalø developed a theory
for the existence of Auslander-Reiten sequences in subcategories of mod(Λ).
Then in [28, Corollary 2.8], Kleiner gave a new proof of their existence
theorems without the use of the theory of dualizing R-varieties. These are
rephrased below.

Theorem. Let C be a precovering of mod(Λ) closed under extensions and
direct summands, and let C be an indecomposable module in C such that
Ext1(C, C̃) 6= 0 for some C̃ in C. Then there is an Auslander-Reiten sequence
0→ A→ B → C → 0 in C.
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Theorem. Let A be a preenveloping of mod(Λ) closed under extensions
and direct summands, and let A be an indecomposable module in A such
that Ext1(Ã, A) 6= 0 for some Ã in A. Then there is an Auslander-Reiten
sequence 0→ A→ B → C → 0 in A.

In this section, we strengthen Auslander-Smalø’s and Kleiner’s results by
providing necessary and sufficient conditions, based on the theory of Auslander-
Reiten triangles developed in [22]. The proof here is more subtle than the
proof of [22, Theorem 3.1], since we cannot replace C by C′ and T by C,
because T is triangulated and C is not triangulated.

It is conceivable that the necessary condition of the existence of Auslander-
Reiten sequences in subcategories provided here is weaker, because in [22,
Theorem 3.1], for the subcategory C ⊆ T to have Auslander-Reiten triangles,
only certain objects X in T are required to have C-covers. This naturally
leads us to give a characterization of the existence of Auslander-Reiten se-
quences in subcategories not in terms of a global condition but in terms of
a condition which describes locally at the level of objects.

Now we state the existence theorem for (right) Auslander-Reiten sequences
in subcategories.

Theorem 2.4.7. LetM be a subcategory of mod(Λ) closed under extensions
and direct summands, and let M be an indecomposable module in M such
that Ext1(M, M̃) 6= 0 for some M̃ in M. Then the following are equivalent.

(i) DTrM has an M-precover in the injective stable category mod(Λ),

(ii) There is an Auslander-Reiten sequence 0→ X → Y →M → 0 in M.

Proof. (i)⇒ (ii): Let P and C be a projective and an injective resolution of
M . By Proposition 2.3.16, DTrM has an M-precover with error term, and
then by Proposition 2.3.14, Σ−1D(P ∗) has a C′-precover. By [22, Theorem
4.6], there is an Auslander-Reiten triangle A→ B → C → in C′, and finally
an Auslander-Reiten sequence 0 → H0(A) → H0(B) → H0(C) → 0 in M,
where M is retrieved through the isomorphism H0(C) ∼= M (Lemma 2.2.5).

(ii) ⇒ (i): Let P and C be a projective and an injective resolution of M .
Following the argument in Theorem 4.6 in [22], there is an Auslander-Reiten
triangle Σ−1D(P ∗) → Y ′ → C → in T . Since there is an Auslander-Reiten
sequence 0 → X → Y → M → 0 in M, by Remark 2.2.5, there is an
Auslander-Reiten triangle A → B → C → in C′. By Theorem 3.1 in [22],
Σ−1D(P ∗) has a C′-precover. By Proposition 2.3.14, DTrM has an M-
precover with error term. Finally by Proposition 2.3.16, DTrM has an
M-precover in the stable category mod(Λ).
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Remark 2.4.8. (i) In the proof of Theorem 2.4.7, (i)⇒ (ii), the Auslander-
Reiten sequence not only exists, but also takes the form 0→ H0(A)→
H0(B)→ H0(C)→ 0 in M.

(ii) In the proof of Theorem 2.4.7, (ii)⇒ (i), the Auslander-Reiten triangle
Σ−1D(P ∗) → Y ′ → C → in T induces the exact sequence · · · → 0 →
H0(Σ−1D(P ∗)) → H0(Y ′) → M → H1(Σ−1D(P ∗)) → · · · in mod(Λ)
by Lemma 0.2.9, but does not render any Auslander-Reiten sequences
in mod(Λ).

Remark 2.4.9. (i) The necessary condition (i) in Theorem 2.4.7 is weaker
than that of Auslander-Smalø and Kleiner in two senses. Firstly, only
precovers in the stable category are considered, and secondly, only
precovers of the DTrM in mod(Λ) with M in M are considered. As
M is precovering in mod(Λ) if and only if C′ is precovering in C,
correspondingly we do not require as much as C′ to be precovering in
C either.

(ii) In the proof of Theorem 2.4.7, (ii)⇒ (i), even though D(P ∗)→ ΣY ′ →
ΣC → is also an Auslander-Reiten triangle in T , the object ΣC is not
necessarily in C since C is not triangulated.

Before we give the existence theorem for (left) Auslander-Reiten sequences
in subcategories, we need the following.

Lemma 2.4.10. Let L be a subcategory of mod(Λ). Then the following are
equivalent.

(i) 0→ X → Y → Z → 0 is an Auslander-Reiten sequence in L,

(ii) 0→ DZ → DY → DX → 0 is an Auslander-Reiten sequence in DL.

Proof. Please refer to the remark after [2, Proposition V.1.13].

Proposition 2.4.11. Let L be a subcategory of mod(Λ). Denote DL byM.
Let L be in L. Then the following are equivalent.

(i) DL has an M-precover in the injective stable category mod(Λop),

(ii) L has an L-preenvelope in the projective stable category mod(Λ).

Proof. This can be shown by standard arguments. However, we shall only
consider the special case L = TrDL′ for some L′ in L, since this is what
is needed in Theorem 2.4.13. Let N be in L. Then by Proposition 2.3.17,
f = f + P(TrDL′, N) is an L-preenvelope in the projective stable category
mod(Λ) if and only if Df : DN → DTrDL′ is a DM-precover with error

73



term in mod(Λop). This is equivalent to saying f : TrDL′ → N is an
L-preenvelope with error term in mod(Λ), which by Proposition 2.3.18 is
equivalent to saying Df = Df + I(DN,DTrDL′) is an M-precover in the
injective stable category mod(Λop).

Proposition 2.4.12. Let L be a subcategory of mod(Λ) closed under exten-
sions and direct summands. Denote DL by M. Let L be an indecomposable
module in L such that Ext1(DL,DL̃) 6= 0 for some L̃ in L. Then the fol-
lowing are equivalent.

(i) DTrDL has an M-precover in the injective stable category mod(Λop),

(ii) There is an Auslander-Reiten sequence 0 → DA → DB → DL → 0
in M, where A and B are in L.

Proof. Since M = DL, and L is closed under extensions and direct sum-
mands,M is a subcategory of mod(Λop) closed under extensions and direct
summands. Since L is an indecomposable module in L, DL is an indecom-
posable module in M. The rest follows from the right module version of
Theorem 2.4.7.

Finally, we give the dual of Theorem 2.4.7.

Theorem 2.4.13. Let L be a subcategory of mod(Λ) closed under extensions
and direct summands, and let L be an indecomposable module in L such that
Ext1(L̃, L) 6= 0 for some L̃ in L. Then the following are equivalent.

(i) TrDL has an L-preenvelope in the projective stable category mod(Λ),

(ii) There is an Auslander-Reiten sequence 0→ L→ B → A→ 0 in L.

Proof. Let M = DL. By Proposition 2.4.11, TrDL has an L-preenvelope
in mod(Λ) if and only if DTrDL has an M-precover in mod(Λop). Also
Ext1(L̃, L) 6= 0 if and only if Ext1(DL,DL̃) 6= 0. Hence the result follows
from Proposition 2.4.12, with the help of Lemma 2.4.10.

Remark 2.4.14. Theorem 2.4.13 can also be shown directly from [22, Theo-
rem 3.2].

Remark 2.4.15. Theorem 2.4.7 and Theorem 2.4.13 together give back the
results by Auslander-Smalø and by Kleiner. For example, suppose M is
precovering in mod(Λ). Then given M inM, the module DTrM has anM-
precover in mod(Λ) and then anM-precover in the injective stable category
mod(Λ). Finally, by Theorem 2.4.7, there is an Auslander-Reiten sequence
0→ X → Y →M → 0 in M.
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2.5 An example

In this section, examples of Theorem 2.4.7 and Theorem 2.4.13 are given.
First, we need a little lemma.

Lemma 2.5.1. Let M be a full subcategory of mod(Λ) closed under direct
sums and direct summands. Let M be in mod(Λ). Suppose there are only
finitely many indecomposable modules inM with non-zero maps to M . Then
M has an M-precover in mod(Λ).

Proof. Since there are only finitely many indecomposable modules in M
with non-zero maps to M , let them be denoted by K1,K2, . . . ,Kn.

(i) Suppose n = 1.

If (K1,M) is one-dimensional with basis {κ}, then K1
κ→M is anM-

precover. Let a morphism m : K ′ → M , with K ′ an indecomposable
in M, be given.

K ′

m
��

K1
κ //M

If K ′ 6= K1, then m is zero. If K ′ = K1, then m factors through κ by
a scalar multiple of κ. On the other hand, if (K1,M) is q-dimensional
with basis {κ1, κ2, . . . , κq}, then K1 ⊕K1 ⊕ . . .⊕K1︸ ︷︷ ︸

q

κ→ M is an M-

precover, where κ =
(
κ1 κ2 . . . κq

)
.

(ii) Suppose n = 2.

If (K1,M) has basis {κ1
1, κ

1
2, . . . , κ

1
s} and (K2,M) has basis {κ2

1, κ
2
2, . . . , κ

2
t },

thenK1 ⊕K1 ⊕ . . .⊕K1︸ ︷︷ ︸
s

⊕K2 ⊕K2 ⊕ . . .⊕K2︸ ︷︷ ︸
t

κ→M is anM-precover,

where κ =
(
κ1

1 κ1
2 . . . κ1

s κ2
1 κ2

2 . . . κ2
t

)
. Let a morphism m :

K ′ → M , with K ′ an indecomposable in M, be given. Without loss
of generality, assume K ′ = K1.

K1

m

��

g

tt
K1 ⊕K1 ⊕ . . .⊕K1 ⊕K2 ⊕K2 ⊕ . . .⊕K2

κ //M
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If m = α1κ
1
1 +α2κ

1
2 + . . .+αsκ

1
s, then m can be factorized as m = κg,

where g =



α1

α2
...
αs
0
0
...
0


. Thus M has an M-precover in mod(Λ).

The case of n > 2 is similar.

In Lemma 2.5.1, an M-precover is given by construction. For example, in
case (ii), K1⊕K1⊕ . . .⊕K1⊕K2⊕K2⊕ . . .⊕K2

κ→M is anM-precover.
This is not the minimal construction when, for example, each κ1

i factors
through κ2

j , some j, in which case K2⊕K2⊕ . . .⊕K2 →M will be sufficient
to be an M-precover.

Example 2.5.2. Let Λ be a representation-infinite hereditary algebra. Let
M be any full subcategory of mod(Λ) which consists of postprojective mod-
ules, which is closed under extensions and direct summands, see [1, Def-
inition VIII.2.2]. Let M be an indecomposable module in M such that
Ext1(M,M̃) 6= 0 for some M̃ in M. Then there is an Auslander-Reiten
sequence 0→ X → Y →M → 0 in M.

Proof. By [1, Lemma VIII.2.5], there are only finitely many indecompos-
able modules in M which have non-zero maps to DTrM . Therefore by
Lemma 2.5.1, DTrM has anM-precover in mod(Λ) and then anM-precover
in the stable category mod(Λ). The existence of the Auslander-Reiten se-
quence 0→ X → Y →M → 0 in M follows from Theorem 2.4.7.

Remark 2.5.3. Dually, let L be the full subcategory of mod(Λ) consisting
of preinjective modules over Λ and is closed under extensions and direct
summands. Let L be an indecomposable module in L such that Ext1(L̃, L) 6=
0 for some L̃ in L. Then the existence of the Auslander-Reiten sequence
0→ L→ Y → X → 0 in L follows from Theorem 2.4.13.
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Chapter 3

Quotients of certain
triangulated categories as
derived categories

3.1 Introduction

Let us begin with the notion of a pretriangulated category. This is an ad-
ditive category with an endofunctor σ and a class of diagrams of the form
x→ y → z → σx known as distinguished right triangles, and another endo-
functor ω and a class of diagrams of the form ωz → x → y → z known as
distinguished left triangles. The distinguished right triangles have to satisfy
the axioms of a triangulated category, except that σ does not need to be
an equivalence. Similarly for the distinguished left triangles. It is worth ac-
knowledging that (σ, ω) is an adjoint pair of functors, which is reminiscent
of the intuition that adjoints are approximations of inverse functors.

Let k be a field and T be a k-linear triangulated category with translation
functor Σ and Serre functor S, which is Hom finite and Krull-Schmidt. Let X
be a subcategory of T which is both precovering and preenveloping, and let
TX be the quotient category defined in [23, Introduction]. By [23, Theorem
1.2], the quotient category TX is pretriangulated. The quotient category
TX is triangulated if and only if τX = X , where τ is the Auslander-Reiten
translation, see [23, Theorem 2.3]. This means the subcategory X is a union
of orbits of τ .

The definition of a Frobenius category is given in [14]. A subcategory of a
triangulated category is thick if it is triangulated and closed under direct
summands. A thick subcategory generated by X, where X is an object of
T , is denoted by thick(X). A triangulated category T is of algebraic origin
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if it is equivalent, as a triangulated category, to the quotient category EP of
a k-linear Frobenius category E , where P is the class of projective objects
of E , see [23, Section 3]. By [23, Theorem 3.2], if T is of algebraic origin,
then TX is also of algebraic origin.

Let Λ be a finite-dimensional k-algebra over the field k. A compact derived
category Dc(Λ) is the full subcategory of the derived category D(Λ) con-
sisting of compact objects, i.e. those finitely built from the algebra Λ using
suspensions, distinguished triangles, direct sums and direct summands. If Λ
is Noetherian and of finite global dimension, then the compact derived cat-
egory Dc(Λ) is equivalent to the finite derived category Db(Λ). Let Dc(A)
be the compact derived category generated by A.

In this chapter, quotients of certain triangulated categories are triangulated
and are in addition derived categories, appealing to the following theorem
which is a slight variation of [40, Theorem 6.4] and of [26, 3.3].

Theorem 3.1.1. Let k be a field and U be a k-linear triangulated category
of algebraic origin such that U = thick(X) for some X in U . Let Σ be the
translation functor of the triangulated category U and let A = EndU (X).
Suppose HomU (X,ΣiX) = 0 for i 6= 0. Then there is an equivalence of

triangulated categories f : U '→Dc(A) where f(X) = A.

3.2 The finite derived category Db(mod kAn)

In this section, let T be the finite derived category Db(mod kAn) described
in Section 1.4. The category T is a k-linear Hom finite triangulated category.
It is Krull-Schmidt as well. The Auslander-Reiten quiver of Db(mod kAn)
is reproduced here, with the coordinate system described in Section 1.4.
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•tn
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•
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•
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•
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•
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•
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Given an indecomposable object (i, j) of Db(mod kAn), the action of Σ is
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given by Σ(i, j) = (j−1, i+n+2), and the action of τ by τ(i, j) = (i−1, j−1)
(Section 1.4).

The following is an example of Lemma 1.4.1 and the narration after it, and
is rewritten below to remind the reader.

Lemma 3.2.1. Let x and y be indecomposable objects of Db(mod kAn).
Then by [14, 4.6], any non-zero morphism f from x to y is a linear combi-
nation of morphisms, written f = Σαifi, where the αi are scalars and the
fi : x → y are compositions of irreducible morphisms. The finite derived
category Db(mod kAn) is also standard.

The Auslander-Reiten quiver of Db(mod kAn) contains the following local
configuration throughout, which gives rise to Auslander-Reiten triangles and
commutativity relations.

Configuration 3.2.2.

◦b
t
��

◦a
s
??

q ��

◦d

◦c
r

??

In Configuration 3.2.2, since a → b ⊕ c → d → is an Auslander-Reiten
triangle, ts + rq = 0. This gives ts = −rq, which means the different
morphisms from a to d are equal up to signs by Lemma 3.2.1.

Given an indecomposable object a of Db(mod kAn), the notions of L(a)
and of R(a), and the sketches of the two respective regions, are described
in Section 1.4. Given indecomposable objects x and y of Db(mod kAn), if
(x, y) is non-zero, then by Lemma 3.2.1 and by virtue of the little remark
after Configuration 3.2.2, (x, y) is one-dimensional.

With the following lemma we end the section.

Lemma 3.2.3. Let a, b and c be indecomposable objects of Db(mod kAn).
Let c be in R(a), and let f : a → b and g : b → c be non-zero morphisms.
Then the composition gf : a→ c is non-zero.

Proof. Assume gf is zero. Let h be a non-zero morphism in (a, c). Since
(a, c) is non-zero, it is one-dimensional. Thus the morphism h is a composi-
tion of irreducible morphisms. Furthermore, the morphism h can be written
h = αg̃f for some scalar α and some non-zero g̃ : b → c by the commu-
tativity relation described above. Since (b, c) is one-dimensional, g̃ = βg
for some scalar β. However, this would give h = αβgf = 0, which is a
contradiction.

79



3.2.1 Lemmas

Consider the indecomposable objects in a band of width n′ vertices along
the top of the Auslander-Reiten quiver of T . Henceforth, let X be add of
them.

Lemma 3.2.4. In the following sketch, the indecomposable objects of X lie
in the region bounded by and including the two upper lines. Let m be an
indecomposable object in T . Then m has an X -cover g : x→ m. Similarly,
m has an X -envelope.

Proof. If m is in X , then the lemma is trivial. The following sketch shows
the case where m is not in X .

b

a x

L(m)

L(x) m

Let x be an object in X which lies on the bottom line of the upper band,
and is on the upper right hand boundary of the region L(m). Then the
non-zero morphism g : x → m is an X -precover of m. Indeed consider an
indecomposable y in X with a non-zero morphism h : y → m. Then y is in
the region abx which is the intersection of X and L(m). Since the region abx
is inside L(x), there is a non-zero morphism f : y → x. By Lemma 3.2.3,
the composition gf is non-zero. Since h and gf are both in (y,m) which is
one-dimensional, h = k(gf), where k is a scalar, and so h factors through g.

Furthermore, g is an X -cover. Suppose ϕ : x → x is a morphism such that
gϕ = g. Then again since (x, x) is one-dimensional, ϕ = α · idx where α
is a scalar, so gϕ = g gives α · g = g but g 6= 0 so α = 1. Therefore ϕ is
invertible. The dual argument gives an X -envelope.

Remark 3.2.5. In Lemma 3.2.4, the region abx, which is the intersection of
X and L(m), has only finitely many objects. Therefore an X -precover of m
can be obtained in the same fashion as in Lemma 2.5.1. The above shows
how an X -precover can be strengthened into an X -cover.
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By Lemma 3.2.4 and [23, Theorem 1.2], the quotient category TX is pretri-
angulated. Since evidently τX = X , therefore TX is in addition triangulated
by [23, Theorem 2.3]. By [23, Theorem 3.2], the Auslander-Reiten quiver of
TX is obtained by deleting the upper n′ lines of vertices and the incident ar-
rows from the Auslander-Reiten quiver of T . Suppose the Auslander-Reiten
quiver of TX is of width m vertices.

Definition 3.2.6. Let a be an indecomposable object in TX . Similarly to
Definition 1.4.2, let LX (a) be the set of indecomposable objects with non-
zero morphisms to a in TX . Dually, let RX (a) be the set of indecomposable
objects to which there are non-zero morphisms from a in TX .

Lemma 3.2.7. Suppose the Auslander-Reiten quiver of T lies in the fol-
lowing sketch in the region bounded by y − x = 2 and y − x = n + 1, and
the indecomposable objects of X form the upper band, which is the region
bounded by y − x = m+ 2 and y − x = n+ 1. The Auslander-Reiten quiver
of TX lies in the lower band, which is the region bounded by y − x = 2 and
y − x = m+ 1. Here the lower band is of width m vertices.

d′ d
y−x=n+1

w
y−x=m+2

c′ v′ v c
y−x=m+1

u′ •s u

LX (a) a RX (a)

b′ b
y−x=2

Then LX (a) is the region ab′u′v′ and RX (a) is the region abuv.

Proof. Since R(a) is the region abcd (Sketch 1.4.3), RX (a) is at most the
region abuv, since any path from a to an object in R(a) outside abuv can
be written as a path which factors through the object w in X , by virtue of
the little remark after Configuration 3.2.2. Now let s be an object within
the region abuv. Since s is in R(a), there is a non-zero morphism f : a→ s
in T , and the corresponding morphism f : a → s in TX is non-zero in TX .
Suppose it is not. Then f is a morphism in T which factors through a (not
necessarily indecomposable) object t in X , i.e. f factorizes as f : a→ t→ s
in T . By Lemma 3.2.4, a has the X -preenvelope a→ w, therefore f further
factorizes as f : a → w → t → s in T . However, s is not in R(w), which
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contradicts f non-zero. This gives f non-zero in TX . Also Lemma 3.2.3 is
implicitly used throughout. The situation for LX (a) is similar.

The following lemma shows how a triangulated subcategory can be recovered
from a finite set of indecomposable objects by virtue of the Auslander-Reiten
triangles alone.

Lemma 3.2.8. The following sketch shows some indecomposable objects in

TX . Consider t =

m⊕
i=1

ti in TX . Then the thick subcategory thick(t) of TX ,

generated by t, is in fact equal to TX .

◦tm ◦um

· · · · · ·

◦t2 ◦u2

◦t1 ◦u1

Proof. This makes sense since thick(t) is triangulated by definition and TX
is triangulated by [23, Theorem 2.3]. For 1 ≤ i ≤ m, ti is in thick(t), since
thick(t) is closed under direct summands. By [23, Theorem 3.2], TX has
Auslander-Reiten triangles, and they can be read off from the Auslander-
Reiten quiver. Since t1 → t2 → u1 → is an Auslander-Reiten triangle, u1

is in thick(t). Similarly, for 2 ≤ i ≤ m − 1, ti → ti+1 ⊕ ui−1 → ui →
is an Auslander-Reiten triangle, and so ui is in thick(t). Finally, since
tm → um−1 → um → is an Auslander-Reiten triangle, um is in thick(t).
Subsequently, all the ui immediately next to the ti on the right hand side
are in thick(t). By induction, all the indecomposable objects on the right
hand side of ti are in thick(t). By a mirror argument, all the indecompos-
able objects on the left hand side of ti are in thick(t). It follows that all
the indecomposable objects of TX are in thick(t), and thick(t) is equal to
TX .

Lemma 3.2.9. Consider t =

m⊕
i=1

ti in TX in the following sketch. Then

EndTX (t) ∼= EndT (t).
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y

x

◦tm

◦tj
◦ti

◦t1

Proof. The idea is that for 1 ≤ i, j ≤ m, there are no non-zero morphisms
h : ti → tj in T which factor through an object in X . Assume i ≤ j
since it is apparent that tj is not in R(ti) for j < i. Suppose there is
a non-zero h : ti → tj such that h factors through an object y in X as
h : ti → y → tj . In the above sketch, y is assumed to be indecomposable,
though this assumption is not necessary. By Lemma 3.2.4, tj has an X -cover
x→ tj , hence the morphism h further factorizes as h : ti → y → x→ tj . But
x is above and behind tj in the quiver, so that x is not in R(ti). Therefore
the only morphism from ti to tj factoring through an object in X is the zero
morphism, and the isomorphism exists.

Remark 3.2.10. The path algebra kAn is isomorphic to its opposite alge-

bra (kAn)◦. Suppose the quiver An is x1
f1→ x2 → · · · → xn−1

fn−1→ xn,
then an isomorphism ϕ could be obtained by ϕ(x1) = xn, ϕ(x2) = xn−1,
ϕ(f1) = fn−1, and so on. The distinguishment between kAn and (kAn)◦ is
nevertheless made explicitly, since this is not true for an arbitrary algebra.

Lemma 3.2.11. Let k be a field. Suppose that in a k-linear category S,
objects p1, . . . , pm satisfy

(pi, pj) ∼=
{
k for i ≤ j,
0 otherwise.

(A)

Suppose the non-zero morphisms pi → pj and pj → pl compose to a non-zero

morphism pi → pl. Then EndS(S) ∼= (kAm)◦ where S =
m⊕
i=1

pi.

Proof. Let h be an endomorphism in EndS(S),

h : p1 ⊕ p2 ⊕ · · · ⊕ pm −→ p1 ⊕ p2 ⊕ · · · ⊕ pm.
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Then h can be viewed as a matrix,

ρ11 ρ12 · · · ρ1m

ρ21 ρ22 · · · ρ2m

. . .

ρm1 ρm2 · · · ρmm


,

where the ρij are morphisms ρij : pj → pi for 1 ≤ i, j ≤ m.

By the given condition (A) on the (pi, pj), the above matrix has the form of
a lower triangular matrix,



k11 0 0 · · · 0
k21 k22 0 · · · 0
k31 k32 k33 · · · 0

. . .

km1 km2 km3 · · · kmm


,

where each kji for 1 ≤ i ≤ j ≤ m takes a value in the field k. Therefore
the endomorphism algebra EndS(S) is isomorphic to the following lower
triangular m×m matrix algebra

M =



k 0 · · · 0
k k · · · 0

. . .

k k · · · k


.

On the other hand, by [1, Lemma II.1.12], the path algebra kAm is also
isomorphic to the lower triangular m×m matrix algebra M . This gives the
isomorphisms EndS(S) ∼= kAm ∼= (kAm)◦ (Remark 3.2.10).

Corollary 3.2.12. Consider the categories T , X and TX as usual, and the

object t =
m⊕
i=1

ti as in Lemma 3.2.8. Then EndTX (t) ∼= EndT (t) ∼= (kAm)◦.

Proof. The first isomorphism exists by Lemma 3.2.9. The existence of the
second isomorphism follows by identifying the ti with the pi in Lemma 3.2.11,
with the help of Lemma 3.2.3.
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3.2.2 Mapping cone construction

In the following sketch, the Auslander-Reiten quiver of T lies in the region
bounded by y − x = 2 and y − x = n + 1, and the indecomposable objects
of X form the upper band, the region bounded by y − x = m + 2 and
y − x = n+ 1. The Auslander-Reiten quiver of TX lies in the lower band of
width m vertices, the region bounded by y − x = 2 and y − x = m+ 1.

g
y−x=n+1

xp
y−x=m+2

r
y−x=m+1c

s u

a

p b q
y−x=2

Let i and j be two fixed integers. Suppose the object a has coordinates
(i, j). The coordinates of some other objects are listed: p = (i, i + 2),
xp = (i, i+m+2), g = (i, i+n+1), q = (i+n−1, i+n+1), s = (j−2, i+m+1).
Modules are identified with their coordinates. R(a) is the region agcb, and
RX (a) is the region arsb (Lemma 3.2.7).

By Lemma 3.2.4, (i, j) has the X -envelope (i, j) → (i, i + m + 2). A copy
of the module category mod(kAn) can be placed inside Db(mod kAn) in
such a way that its Auslander-Reiten quiver corresponds to the region pgq.
Then the modules on the line x = i may be perceived as projective modules
in mod(kAn). Perceiving the projective modules as representations of the
quiver An, the projective module (i, j) becomes

0→ 0→ . . .→ 0→ k → k → . . .→ k,

where there are j − i− 1 copies of k at the end, and the projective module
(i, i+m+ 2) becomes

0→ 0→ . . .→ 0→ k → k → k → . . .→ k,

where there are m+ 1 copies of k at the end.
The cokernel of the embedding (i, j) ↪→ (i, i+m+ 2) is (i, i+m+ 2)/(i, j),
which, when perceived as a representation, becomes

0→ . . .→ 0→ k → . . .→ k → 0→ . . .→ 0,
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where j − i − 1 copies of k are removed from the end. Correspondingly, in
the diagram, the cokernel lies in the same descending line as (i, i+m+ 2),
but it is j− i−1 steps down the line. Therefore the cokernel has coordinates
(i+ (j − i− 1), i+m+ 2) = (j − 1, i+m+ 2), which is denoted by u in the
diagram.

There is an alternative way of realizing the mapping cone (c.f. Section 3.3.2),
and the reader will be reminded again in Remark 3.3.21. An example is
described in the Appendix (Lemma A.3.1 and Lemma A.3.2).

Using the same notation as in [23, Theorem 2.3], let σ be the translation
functor of the triangulated category TX . The construction of the functor σ
is described in [23, Setup 1.1].

Lemma 3.2.13. For i+2 ≤ j′ ≤ i+m+1, we have σ(i, j′) = (j′−1, i+m+2).

Proof. By the above description, given the X -envelope (i, j′)→ (i, i+m+2)
of (i, j′), extend it to the short exact sequence 0→ (i, j′)→ (i, i+m+ 2)→
(j′−1, i+m+2)→ 0 in the module category mod(kAn). By Lemma 0.2.29,
this induces a distinguished triangle in the derived category T , which is
in the form of the distinguished triangle (2) in [23, Setup 1.1] when M is
replaced by (i, j′). Hence σ(i, j′) = (j′ − 1, i+m+ 2).

The special case when n = 6 and m = 4 is given in the following diagram.
The action of σ is σ(ti) = si for 1 ≤ i ≤ 4.

Diagram 3.2.14.

◦
��

◦
��

◦
��

•t6
��

◦
��

◦
��

◦

◦
��

??

◦

??

��

◦

??

��
•t5

??

��
•

??

��

◦

??

��

◦
��

??

◦
��

??

◦
��

??

•t4
??

��

•s1
��

??

•
��

??

◦

??

��

◦

◦
��

??

◦
��

??

•t3
��

??

•
��

??

•s2
��

??

•

??

��

◦
��

??

◦
��

??

•t2
��

??

•
��

??

•
��

??

•s3
��

??

•

??

��

◦

◦

??

•t1
??

•

??

•

??

•

??

•s4
??

•

??

Corollary 3.2.15. For i+ 2 ≤ j′ ≤ i+m+ 1 and N ≥ 0 an integer,

σN (i, j′) =

{
(i+ N

2 (m+ 1), j′ + N
2 (m+ 1)) for N even,

(j′ + N−1
2 (m+ 1)− 1, i+ N+1

2 (m+ 1) + 1) for N odd.

Proof. Immediate from Lemma 3.2.13 by induction.
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For example, for i+2 ≤ j′ ≤ i+m+1, we have σ2(i, j′) = (i+m+1, j′+m+1).

Since the translation functor σ is an autoequivalence, there is also an explicit
description of σ−1.

Lemma 3.2.16. For j −m− 1 ≤ i′ ≤ j − 2, we have σ−1(i′, j) = (j −m−
2, i′ + 1).

Proof. Immediate from Lemma 3.2.13.

The special case when n = 6 and m = 4 is given in the following diagram.
The action of σ−1 is σ−1(ti) = ui for 1 ≤ i ≤ 4.

Diagram 3.2.17.

◦
��

◦
��

◦
��

◦
��

◦
��

•t6
��

◦

◦
��

??

◦

??

��

◦

??

��

◦

??

��

◦

??

��
•t5

??

��

•
��

??

◦u1

��

??

◦
��

??

◦

??

��

◦
��

??

•t4
��

??

•

??

��

•

◦
��

??

◦u2

��

??

◦
��

??

◦
��

??

•t3
��

??

•

??

��

•
��

??

◦
��

??

◦u3

��

??

◦
��

??

•t2
��

??

•
��

??

•

??

��

•

◦

??

◦

??

◦u4

??

•t1
??

•

??

•

??

•

??

Corollary 3.2.18. For j −m− 1 ≤ i′ ≤ j − 2 and N ≥ 0 an integer,

σ−N (i′, j) =

{
(i′ − N

2 (m+ 1), j − N
2 (m+ 1)) for N even,

(j − N+1
2 (m+ 1)− 1, i′ − N−1

2 (m+ 1) + 1) for N odd.

Proof. Immediate from Lemma 3.2.16 by induction.

Lemma 3.2.19. Let N ≥ 1 be an integer. Consider t =

i+m+1⊕
j′=i+2

(i, j′) in TX .

Then HomTX (t, σN t) = 0.

Proof. Suppose N = 1. The action of σ is as given in Lemma 3.2.13. For
i+2 ≤ j′ ≤ i+m+1, the set RX (i, j′) is the region bounded by (i, j′), (i, i+
m + 1), (j′ − 2, i + m + 1) and (j′ − 2, j′) (Lemma 3.2.7). The idea is that
for i + 2 ≤ j′ ≤ i + m + 1, there are no non-zero morphisms from (i, j′)
to (l, i + m + 2), where i + 1 ≤ l ≤ i + m. This is apparent because for
i + 1 ≤ l ≤ i + m, the object (l, i + m + 2) lies outside RX (i, j′), which is
bounded by y = i+m+ 1. Suppose N > 1. Then by similar considerations,
the result is immediate from Corollary 3.2.15.
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Lemma 3.2.20. Let N ≥ 1 be an integer. Consider t =
i+m+1⊕
j′=i+2

(i, j′) in TX .

Then HomTX (t, σ−N t) = 0.

Proof. Similar.

3.2.3 Theorem

The following is the main theorem of the section.

Theorem 3.2.21. Consider the categories T , X and TX as usual, and the

object t =

m⊕
i=1

ti as in Lemma 3.2.8. Then there is an equivalence of trian-

gulated categories f : TX
'→Db(mod (kAm)◦) where f(t) = (kAm)◦.

Proof. Let U and X in Theorem 3.1.1 be TX and t respectively. By Corol-
lary 3.2.12, A ∼= (kAm)◦. Let us take Σ in Theorem 3.1.1 to be the transla-
tion functor σ of the triangulated category TX . Then the result follows from
Lemma 3.2.8, Lemma 3.2.19 and Lemma 3.2.20.

3.3 The cluster category of Dynkin type A∞

In this section, let T be the cluster category D of Dynkin type A∞ described
in [19, Section 1]. The category D is a k-linear Hom finite triangulated
category. It is Krull-Schmidt as well.

The Auslander-Reiten (AR) quiver of D is ZA∞, endowed with the same
coordinate system described in [19, Remark 1.4].

...
��

...
��

...
��

...

��
· · ·

??

��
(−4, 1)

??

��
(−3, 2)

??

��
(−2, 3)

??

��
· · ·

(−4, 0)

??

��
(−3, 1)

??

��
(−2, 2)

??

��
(−1, 3)

??

��
· · ·

??

��
(−3, 0)

??

��
(−2, 1)

??

��
(−1, 2)

??

��
· · ·

(−3,−1)

??

(−2, 0)

??

(−1, 1)

??

(0, 2)

??

Since D is 2-Calabi-Yau, its Serre functor is S = Σ2 and the Auslander-
Reiten translation τ is τ = SΣ−1 = Σ, where Σ is the translation functor of
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D. In terms of coordinates, the action of Σ = τ is Σ(m,n) = (m− 1, n− 1),
see [19, Remark 1.4].

The following lemma describes the morphism spaces between indecompos-
able objects of D. Its significance is in giving the picture of the category
D without a priori knowledge of how it originated and was derived. Let x
be an indecomposable object of D. The regions H−(x) and H+(x) in the
Auslander-Reiten quiver of D, described in [19, Definition 2.1], are sketched
as follows.

H−(x) H+(x)

Σx x Σ−1x

We write H(x) = H−(x) ∪H+(x).

Lemma 3.3.1. ([19, Corollary 2.3]) Let x and y be indecomposable objects
of D. Then the following are equivalent.

(i) (x, y) 6= 0,

(ii) (x, y) = k,

(iii) y ∈ H(Σx),

(iv) x ∈ H(Σ−1y).

In Lemma 3.3.1, there are two different types of non-zero morphisms going
from x to y. Those morphisms with y in H+(x) are said to be forward
morphisms and those morphisms with y in H−(x) are said to be backward
morphisms.

Remark 3.3.2. (i) If f is a backward morphism, then it can always be
written f = gf ′ where f ′ is a backward morphism and g is a forward
morphism (Lemma 3.3.4). Therefore backward morphisms are not
irreducible (can be decomposed indefinitely), and so they do not arise
in the Auslander-Reiten quiver.

(ii) The analogue of Lemma 3.2.1 for D is false in view of the occurrence
of the backward morphisms.

With the following lemmas we end the section.
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Lemma 3.3.3. Let a, b and c be indecomposable objects of D. Then

(i) b is in H+(Σa) if and only if Sa is in H−(Σb),

(ii) c is in H−(Σa) if and only if Sa is in H+(Σc).

Proof. This is [19, Lemma 2.6].

Lemma 3.3.4. Let a, b and c be indecomposable objects of D. Suppose b
and c are in H−(Σa) and c is in H+(Σb). Consider the non-zero morphism

f : b→ c. Then each morphism a→ c factors as a→ b
f→ c.

Proof. This is [19, Lemma 2.7].

Lemma 3.3.5. (c.f. Lemma 3.2.3)

(i) Let a, b and c be indecomposable objects of D. Suppose b and c are
in H+(Σa) and c is in H+(Σb). Consider the non-zero morphisms
f : a→ b and g : b→ c. Then the composition gf : a→ c is non-zero.

(ii) Let a, b and c be indecomposable objects of D. Suppose b and c are
in H−(Σa) and c is in H+(Σb). Consider the non-zero morphisms
f : a→ b and g : b→ c. Then the composition gf : a→ c is non-zero.

Proof. (i) This is [19, Lemma 2.5(i)].

(ii) Assume gf is zero. Let h be any morphism in (a, c). By Lemma 3.3.4,
h = gf̃ for some morphism f̃ : a→ b. Since (a, b) is one-dimensional,
f̃ = αf for some scalar α. Then h = g(αf) = α(gf) would have to be
zero. Since h is arbitrary, (a, c) would have to be zero as well, which
is a contradiction since there is c in H−(Σa).

Lemma 3.3.6. Let a, b and c be indecomposable objects of D. Suppose b
and c are in H+(Σa) and c is in H+(Σb). Consider the non-zero morphism

f : b→ c. Then each morphism a→ c factors as a→ b
f→ c.

Proof. This is [19, Lemma 2.5(ii)].

Lemma 3.3.7. Let a, b and c be indecomposable objects of D. Suppose b
is in H+(Σa) and c is in both H−(Σa) and H−(Σb). Consider the non-zero

morphism f : b→ c. Then each morphism a→ c factors as a→ b
f→ c.
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Proof. This is to show that (a, f) : (a, b) → (a, c) is surjective. By Serre
duality, this is equivalent to (f, Sa) : (c, Sa) → (b, Sa) injective. This map

sends ξ : c → Sa to the composition b
f→ c

ξ→ Sa. Since c is in H−(Σa),
by Lemma 3.3.3(ii), Sa is in H+(Σc). If ξ is non-zero, then it is a forward
morphism. Since b is in H+(Σa), by Lemma 3.3.3(i), Sa is in H−(Σb).
Therefore by Lemma 3.3.5(ii), the composition ξf is non-zero.

Lemma 3.3.8. (c.f. Lemma 3.2.3) Let a, b and c be indecomposable objects
of D. Suppose b is in H+(Σa) and c is in both H−(Σa) and H−(Σb). Con-
sider the non-zero morphisms f : a→ b and g : b→ c. Then the composition
gf : a→ c is non-zero.

Proof. Assume gf is zero. Let h be any morphism in (a, c). By Lemma 3.3.7,
h = gf̃ for some morphism f̃ : a→ b. Since (a, b) is one-dimensional, f̃ = αf
for some scalar α. Then h = g(αf) = α(gf) would have to be zero. Since
h is arbitrary, (a, c) would have to be zero as well, which is a contradiction
since there is c in H−(Σa).

However, the composition of non-zero backward morphisms is always zero,
and this is stated below. The proof is left to the reader.

Lemma 3.3.9. Let a, b and c be indecomposable objects of D. Suppose b
is in H−(Σa) and c is in both H−(Σa) and H−(Σb). Consider the non-zero
morphisms f : a → b and g : b → c. Then the composition gf : a → c is
zero.

3.3.1 Lemmas

Consider an infinite band of indecomposable objects, given by {(x, y) | y −
x ≥ m+ 2}, along the top of the Auslander-Reiten quiver of D. Henceforth,
let X be add of them.

Lemma 3.3.10. (c.f. Lemma 3.2.4) In the following sketch, the indecom-
posable objects of X lie in the region bounded below by and including the
dotted boundary line y − x = m + 2. Let a be an indecomposable object in
D. Then a has an X -preenvelope a→ u.

Proof. If a = (i, j) is in X , then the lemma is trivial. The following sketch
illustrates the situation when a is not in X .
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w′ w

u

Σ2a a

Consider u = (i, i + m + 2) on the dotted line y − x = m + 2, which is
the leftmost object on the line in the region H+(Σa). Then the non-zero
morphism g : a → u is an X -preenvelope of a. Indeed suppose w is in
H+(Σa) ∩ X which is inside H+(Σu). Then each morphism a → w factors

as a
g→ u → w (c.f. Lemma 3.3.6). Now suppose w′ is in H−(Σa) ∩ X

which is inside H−(Σu). To show that each morphism a → w′ factors as

a
g→ u→ w′ is to show that (g, w′) : (u,w′)→ (a,w′) is surjective. By Serre

duality, this is equivalent to (w′, Sg) : (w′, Sa) → (w′, Su) injective. This

map sends ξ : w′ → Sa to the composition w′
ξ→ Sa

Sg→ Su. Since w′ is
in H−(Σa), by Lemma 3.3.3(ii), Sa is in H+(Σw′). If ξ is non-zero, then it
is a forward morphism. Since g is non-zero, Sg is non-zero. Since u is in
H+(Σa), Su is in H+(ΣSa) and thus Sg is also a forward morphism. Finally,

w′
ξ→ Sa

Sg→ Su is non-zero by Lemma 3.3.5(i) since Su is in H+(Σw′), and
this holds by Lemma 3.3.3(ii) since w′ is in H−(Σu).

Lemma 3.3.11. (c.f. Lemma 3.2.4) In the following sketch, the indecom-
posable objects of X lie in the region bounded below by and including the
dotted boundary line y − x = m + 2. Let a be an indecomposable object in
D. Then a has an X -precover u→ a.

Proof. If a = (i, j) is in X , then the lemma is trivial. The following sketch
illustrates the situation when a is not in X .

w w′

u

a Σ−2a
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Consider u = (j − m − 2, j) on the dotted line y − x = m + 2, which is
the rightmost object on the line in the region H−(Σ−1a). Then the non-
zero morphism g : u → a is an X -precover of a. Indeed suppose w is
in H−(Σ−1a) ∩ X which is inside H−(Σ−1u). Then by Lemma 3.3.6 each

morphism w → a factors as w → u
g→ a. This is because a is in both H+(Σu)

and H+(Σw), and u is in H+(Σw) (Lemma 3.3.3(ii)). Now suppose w′ is in
H+(Σ−1a)∩X which is inside H+(Σ−1u). To show that each morphism w′ →
a factors as w → u

g→ a is to show that (w′, g) : (w′, u)→ (w′, a) is surjective.
By Serre duality, this is equivalent to (g, Sw′) : (a, Sw′)→ (u, Sw′) injective.

This map sends ξ : a→ Sw′ to the composition u
g→ a

ξ→ Sw′. Since w′ is in
H+(Σ−1a), Sw′ is in H+(Σa) by Lemma 3.3.3(i), (ii). If ξ is non-zero, then it
is a forward morphism. Similarly, g is non-zero, and since u is in H−(Σ−1a),
a is in H+(Σu) by Lemma 3.3.3(ii) and thus g is also a forward morphism.

Finally, u
g→ a

ξ→ Sw′ is non-zero by Lemma 3.3.5(i) since Sw′ is in H+(Σu),
and this holds by Lemma 3.3.3(i), (ii) since w′ is in H+(Σ−1u).

Remark 3.3.12. Alternatively, in Lemma 3.3.11, each morphism w′ → a
factors as w → u

g→ a by Lemma 3.3.4, since w′ in H+(Σ−1a) and H+(Σ−1u)
implies a, u in H−(Σw′) (Lemma 3.3.3(i)).

By Lemma 3.3.10, Lemma 3.3.11 and [23, Theorem 1.2], the quotient cate-
gory DX is pretriangulated. Since τ = Σ and evidently τX = X , therefore
DX is in addition triangulated by [23, Theorem 2.3]. By [23, Theorem 3.2],
the Auslander-Reiten quiver of DX is obtained by deleting the vertices of
X and the incident arrows from the Auslander-Reiten quiver of D. Suppose
the Auslander-Reiten quiver of DX is of width m vertices. This means DX
has Auslander-Reiten quiver ZAm.

Lemma 3.3.13. (c.f. Lemma 3.2.8) The following sketch shows some in-
decomposables in DX .

◦dm

· · ·

◦d3

◦d2

◦d1

Consider d =

m⊕
i=1

di in DX . Then the thick subcategory thick(d) of DX ,
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generated by d, is in fact equal to DX .

Proof. Similar to Lemma 3.2.8, since DX has Auslander-Reiten triangles by
[23, Theorem 3.2].

Lemma 3.3.14. (c.f. Lemma 3.2.9) Consider d =
m⊕
i=1

di in DX in the

following sketch.

t
u

dm

dj
di

d1

Then EndDX (d) ∼= EndD(d).

Proof. The idea is that for 1 ≤ i, j ≤ m, there are no non-zero morphisms
h : di → dj in D which factor through an object in X . Assume i ≤ j since it
is apparent that dj is not in H(Σdi) for j < i. Suppose there is a non-zero
h : di → dj such that h factors through a (not necessarily indecomposable)
object t in X as h : di → t→ dj . By Lemma 3.3.10, di has the X -preenvelope
di → u, thus the morphism h further factorizes as h : di → u → t → dj .
Since it is again apparent that dj is not in H(Σu), the only morphism from
di to dj factoring through an object in X is the zero morphism, and the
isomorphism exists.

Corollary 3.3.15. (c.f. Corollary 3.2.12) Consider the categories D, X

and DX as usual, and the object d =
m⊕
i=1

di as in Lemma 3.3.13. Then

EndDX (d) ∼= EndD(d) ∼= (kAm)◦.

Proof. The first isomorphism exists by Lemma 3.3.14. The existence of the
second isomorphism follows by identifying the di with the pi in Lemma 3.2.11,
with the help of Lemma 3.3.1 and Lemma 3.3.5(i).
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3.3.2 Mapping cone construction

This section displays the significance of Auslander-Reiten triangles in de-
termining the mapping cones of certain morphisms in the category D, and
the way Auslander-Reiten triangles alone reflect the (unique) triangulation
structure of the triangulated category D.

The mapping cone constructions realized in this section might not remain
the same in other triangulated categories with Auslander-Reiten quivers
which contain the same (local) configurations. This is because properties
of a category, for example, the actions of the translation functor and the
Auslander-Reiten translation, are inherent attributes of the quiver.

Consider the Auslander-Reiten quiver of D in the following diagram.

...

•
��

•
��

•
��

•
��

•
��

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•

•

??

��
•b2

��

??

•
��

??

•
��

??

•
��

??

. . . •
��

??

•a2

g2
��

f2 ??

•b1
��

??

•
��

??

•
��

??

• . . .

•
��

??

•a1

g1
��

f1 ??

•b0
��

??

•
��

??

•
��

??

•

??

•

??

•a0

f0 ??

•c
??

•

??

•

The coordinates of some of the objects are as follows: a0 = (i, j), b0 =
(i, j + 1), a1 = (i− 1, j), b1 = (i− 1, j + 1), a2 = (i− 2, j), b2 = (i− 2, j + 1)
and c = (i + 1, j + 1). As usual, the coordinates of objects on the bottom
line satisfy the equation y − x = 2.

Lemma 3.3.16. The mapping cones of the maps fn : (i−n, j)→ (i−n, j+1)
are all isomorphic to c = (i+ 1, j + 1).

Proof. Since a0 → b0 → c→ is an Auslander-Reiten triangle, the statement
is true for n = 0. Suppose the statement is true for n = p, p ≥ 0, i.e. the
mapping cone of the map fp : ap → bp is c = (i+ 1, j + 1). To see that the
statement is true for n = p+1, consider the following commutative diagram,

ap+1
µp+1 // ap ⊕ bp+1



��
ap+1

fp+1

// bp+1,
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where µp+1 =

(
gp+1

fp+1

)
and the map  is the canonical surjection. By the

octahedral axiom, it may be extended to the following commutative diagram,

0 //

��

ap

ı

��

ap

fp
��

// 0

��
ap+1

µp+1 // ap ⊕ bp+1
//



��

bp

��

// Σap+1

ap+1
fp+1

//

��

bp+1

��

// c

��

// Σap+1

��
0 // Σap Σap // 0,

where the map ı is the canonical injection. The distinguished triangle on
the second row is an Auslander-Reiten triangle. Hence the mapping cone of
the map fp+1 : ap+1 → bp+1 is the same as the mapping cone of the map
fp : ap → bp, which is c = (i+ 1, j + 1) by the induction hypothesis.

Remark 3.3.17. The connecting morphism ∂ in the Auslander-Reiten trian-

gle ap+1
µp+1→ ap ⊕ bp+1 → bp

∂→ Σap+1 on the second row is a backward
morphism.

Lemma 3.3.18. Consider the following sketch.

•(i,j+1)

��

•(i,j−r)

??

•cr

•c0 y−x=2

For −1 ≤ n ≤ j − i − 2, let an = (i, j − n). Let fn be the morphism
fn : (i, j − n)→ (i, j − n+ 1). Then for 0 ≤ r ≤ j − i− 2, the composition
f0 . . . fr−1fr : (i, j − r)→ (i, j + 1) has mapping cone cr = (j − 1− r, j + 1).

Proof. Consider the object c0 = (j − 1, j + 1) on the bottom line y − x =
2. It lies in the same descending line as (i, j + 1), where the composition
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f0 . . . fr−1fr maps to. The mapping cone cr = (j − 1 − r, j + 1) lies in the
same descending line as c0, but it is r steps up the line. This is how we
understand the location of the mapping cone cr.

Let us consider again the Auslander-Reiten quiver of D.

...

•
��

•
��

•
��

•
��

•
��

•

•
��

??

•Σa−1

��

??

•a−1

��

??

•
��

??

•
��

??

. . . •
��

??

•Σa0

��

??

•a0

��

f0 ??

•
��

??

•
��

??

• . . .

•Σa1

��

??

•a1

��

f1 ??

•
��

??

•
��

??

•
��

??

•

??

��

•

??

��

•

??

��

•

??

��

•

??

��

•

•

??

��

•

??

��

•

??

��

•

??

��
•c1

??

��
•

??

•

??

•

??

•

??

•d0

??

•c0

The statement is true for r = 0 by Lemma 3.3.16. Suppose the statement is
true for r = p, p ≥ 0, and then the statement is also required to be true for
r = p+ 1.

Consider the following commutative diagram,

ap+1
g // a0

f0

��
ap+1

f0g
// a−1,

where g is the morphism f1 . . . fp+1 : (i, j − p− 1)→ (i, j).

By the octahedral axiom, it may be extended to the following commutative
diagram,

ap+1
g // a0

f0

��

ρ // d

��

// Σap+1

ap+1
f0g //

��

a−1
//

��

∗

��

// Σap+1

��
0 //

��

c0

%

��

c0

(Σρ)%

��

// 0

��
Σap+1

// Σa0
Σρ // Σd // Σ2ap+1.
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Consider the object d0 = (j − 2, j) on the bottom line y − x = 2. It lies
in the same descending line as (i, j), where the morphism g maps to. By
the induction hypothesis, the mapping cone of the morphism g lies in the
same descending line as d0, but it is p steps up the line, i.e. it is the object
d = (j−2−p, j). This gives the distinguished triangle on the first row. The
mapping cone of the morphism f0 is c0 = (j − 1, j + 1) by Lemma 3.3.16,
which gives the distinguished triangle in the second column.

The map ρ : a0 → d is non-zero, as otherwise ap+1
∼= Σ−1d ⊕ a0 by

Lemma 0.2.2(v), which is not possible since ap+1 is indecomposable. There-
fore the map Σρ : Σa0 → Σd is non-zero as well. Similarly, the map
% : c0 → Σa0 is non-zero. Therefore by Lemma 3.3.5(ii) the composition
(Σρ)% : c0 → Σd is non-zero, and the distinguished triangle d → ∗ → c0 →
Σd is non-split.

Let an object e have coordinates (j − 2 − p, j + 1). By Lemma 3.3.16, the
mapping cone of d → e is c0. Since (c0,Σd) is one-dimensional, the object
∗ is indeed equal to e. Therefore the mapping cone of the morphism f0g is
e = (j − 2− p, j + 1) = (j − 1− (p+ 1), j + 1) = cp+1 as desired.

Using the same notation as in [23, Theorem 2.3], let σ be the translation
functor of the triangulated category DX . The construction of the functor σ
is described in [23, Setup 1.1]. The following example helps understand it.

Example 3.3.19. Consider again the Auslander-Reiten quiver in Lemma 3.3.18
with the same coordinate system.

...

•
��

•
��

•
��

•
��

•
��

•

•
��

??

•
��

??

•a−1

��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•a0

��

f0 ??

•
��

??

•
��

??

• . . .

•Σa1

��

??

•a1

��

f1 ??

•
��

??

•c3
��

??

•
��

??

•Σa2

??

��
•a2

f2 ??

��

•

??

��

•d2

??

��
•c2

??

��
•

•a3

f3 ??

��

•

??

��

•

??

��

•d1

??

��
•c1

??

��
•

??

•

??

•

??

•

??

•d0

??

•c0

Consider an infinite band of indecomposable objects along the top of the
Auslander-Reiten quiver bounded below by and including the dotted bound-
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ary line, i.e. the region given by {(x, y) | y − x ≥ j + 1 − i}, and let X be
add of them.

For example, the morphism f1 : a1 → a0 is an X -monomorphism in D, i.e.
a morphism such that each morphism a1 → x with x in X factors through
f1 (c.f. Lemma 3.3.10). Extend f1 : a1 → a0 to the distinguished triangle

a1
f1→ a0 → d0

∂1→ Σa1 in D by Lemma 3.3.18. On the other hand, the
mapping cone of the morphism f0f1 is c1 by Lemma 3.3.18, where f0f1 :
a1 → a−1 is an X -preenvelope of a1 by Lemma 3.3.10. Then the diagram

a1
f1→ a0 → d0

∂2→ c1, considered in DX , is defined to be a distinguished
triangle in DX , so that σ(a1) = c1. The reader can refer to [23, Setup 1.1]
for more details.

The following deserves attention.

(i) The connecting morphism ∂1 in the distinguished triangle a1
f1→ a0 →

d0
∂1→ Σa1 in D is a backward morphism, while the connecting mor-

phism ∂2 in the distinguished triangle a1
f1→ a0 → d0

∂2→ c1 in DX is a
forward morphism.

(ii) The morphism f0f1 : a1 → a−1 is an X -preenvelope of a1, hence an

X -monomorphism as well. Therefore a1
f0f1→ a−1 → c1

∂→ c1 is a
distinguished triangle in DX by construction. However, a−1 in X is
isomorphic to zero in DX , so that the connecting morphism ∂ has to
be an isomorphism in DX .

(iii) Similarly, to suggest but a few, there is the distinguished triangle

a2
f1f2→ a0 → d1 → c2 in DX , and also a3

f1f2f3→ a0 → d2 → c3 in
DX . The distinguished triangles in DX seem to be quite symmetrical.

Lemma 3.3.20. (c.f. Lemma 3.2.13) For i+ 2 ≤ j′ ≤ i+m+ 1, we have
σ(i, j′) = (j′ − 1, i+m+ 2).

Proof. By Lemma 3.3.10, (i, j′)→ (i, i+m+2) is an X -preenvelope. Extend
the map (i, j′)→ (i, i+m+ 2) to the distinguished triangle (i, j′)→ (i, i+
m+ 2)→ (j′ − 1, i+m+ 2)→ given in Lemma 3.3.18, which is in the form
of the distinguished triangle (2) in [23, Setup 1.1] when M is replaced by
(i, j′). Hence σ(i, j′) = (j′ − 1, i+m+ 2).

Remark 3.3.21. The mapping cone construction described in this section
can be imitated to accommodate the previous situation in Section 3.2.2.
An example in the finite derived category Db(mod kA7) is given in the Ap-
pendix (Lemma A.3.1 and Lemma A.3.2). Since there is a high resemblance
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between the respective locations of the X -preenvelopes (Lemma 3.2.4 and
Lemma 3.3.10), there is no surprise that Lemma 3.2.13 and Lemma 3.3.20
yield the same consequence accordingly.

Corollary 3.3.22. (c.f. Corollary 3.2.15) For i + 2 ≤ j′ ≤ i + m + 1 and
N ≥ 0 an integer,

σN (i, j′) =

{
(i+ N

2 (m+ 1), j′ + N
2 (m+ 1)) for N even,

(j′ + N−1
2 (m+ 1)− 1, i+ N+1

2 (m+ 1) + 1) for N odd.

Proof. Immediate from Lemma 3.3.20 by induction.

For example, for i+2 ≤ j′ ≤ i+m+1, we have σ2(i, j′) = (i+m+1, j′+m+1).

Since the translation functor σ is an autoequivalence, there is also an explicit
description of σ−1.

Lemma 3.3.23. (c.f. Lemma 3.2.16) For j −m− 1 ≤ i′ ≤ j − 2, we have
σ−1(i′, j) = (j −m− 2, i′ + 1).

Proof. Immediate from Lemma 3.3.20.

Lemma 3.3.23 is deduced from Lemma 3.3.20, where X is perceived as preen-
veloping. Alternatively, one can obtain the value of σ−1 directly if X is
perceived as precovering. An example is given in the Appendix (Exam-
ple A.3.8).

Corollary 3.3.24. (c.f. Corollary 3.2.18) For j −m − 1 ≤ i′ ≤ j − 2 and
N ≥ 0 an integer,

σ−N (i′, j) =

{
(i′ − N

2 (m+ 1), j − N
2 (m+ 1)) for N even,

(j − N+1
2 (m+ 1)− 1, i′ − N−1

2 (m+ 1) + 1) for N odd.

Proof. Immediate from Lemma 3.3.23 by induction.

Lemma 3.3.25. (c.f. Lemma 3.2.19) Let N ≥ 1 be an integer. Consider

d =
i+m+1⊕
j′=i+2

(i, j′) in DX . Then HomDX (d, σNd) = 0.

Proof. This is similar to Lemma 3.2.19.

Lemma 3.3.26. (c.f. Lemma 3.2.20) Let N ≥ 1 be an integer. Consider

d =

i+m+1⊕
j′=i+2

(i, j′) in DX . Then HomDX (d, σ−Nd) = 0.
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Proof. This is similar to Lemma 3.2.20. However, for i + 2 ≤ j′ ≤ i + m +
1, any non-zero morphism in D from (i, j′) to an object y in H−(Σ(i, j′))
has to factor through an object in X . This is true by Lemma 3.3.4, since
there is always a non-zero forward morphism u : x → y where x is an
indecomposable object in X and in H−(Σ(i, j′)). An example is given in the
following diagram, where the indecomposable objects of X lie in the region
bounded below by and including the dotted boundary line.

x

y

Σ2(i, j′) (i, j′)

By Lemma 3.3.1, the non-zero morphism space from (i, j′) to y is one-
dimensional. Therefore there are no non-zero morphisms in DX from (i, j′)
to an object y in H−(Σ(i, j′)).

3.3.3 Theorem

The following is the main theorem of the section.

Theorem 3.3.27. Consider the categories D, X and DX as usual, and the

object d =
m⊕
i=1

di as in Lemma 3.3.13. Then there is an equivalence of

triangulated categories f : DX
'→Db(mod (kAm)◦) where f(d) = (kAm)◦.

Proof. Let U and X in Theorem 3.1.1 be DX and d respectively. By Corol-
lary 3.3.15, A ∼= (kAm)◦. Let us take Σ in Theorem 3.1.1 to be the trans-
lation functor σ of the triangulated category DX . Then the result follows
from Lemma 3.3.13, Lemma 3.3.25 and Lemma 3.3.26.

3.4 The finite derived category Db(mod kD5)

In this section, let T be the finite derived category Db(mod kD5) described
in Section 1.4. The category T is a k-linear Hom finite triangulated category.
It is Krull-Schmidt as well. The Auslander-Reiten quiver of Db(mod kD5)
is given below (Section 1.4).
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•m+

��

•a+

α′+

��

•b+

��

•c+

��

•d+

��

•e+

��
•m−

��
•a−

α′−

��
•b−

��
•c−

��
•d−

��
•e−

��
. . . •m3

??

GG

��
•a3

α′2
��

α−

??
α+

GG

•b3
��

??

GG

•c3
��

??

GG

•d3

��

??

GG

•e3
??

GG

��
•f3

��

. . .

•m2

??

��
•a2

α′1
��

α2 ??

•b2
��

??

•c2
��

??

•d2

��

??

•e2
??

��
•f2

??

��
•

•a1

α1 ??

•b1
??

•c1
??

•d1

??

•e1
??

•f1

??

•g1

??

Let i ∈ {1, 2, 3} and j ∈ {2, 3,+,−}. If there is an arrow bi → bj , then let
the arrow be βi : bi → bj if j ∈ {2, 3} and let the arrow be βj : bi → bj if
j ∈ {+,−}. Now let i ∈ {2, 3,+,−} and j ∈ {1, 2, 3}. If there is an arrow
bi → cj , then let the arrow be β′i−1 : bi → cj if i ∈ {2, 3} and let the arrow
be β′i : bi → cj if i ∈ {+,−}. The rest of the arrows are named similarly
in terms of γ’s, δ’s, etc. The vertices m+,m−, a+, a−, b+, b−, . . . are the
exceptional vertices. The vertices a3, b3, c3, . . . are the bridge vertices. The
exceptional vertices together with the bridge vertices are said to lie in the
exceptional part of the Auslander-Reiten quiver. The vertices other than the
exceptional vertices are the type A vertices, and are said to lie in the type
A part of the Auslander-Reiten quiver. The exceptional and type A parts
of the Auslander-Reiten quiver are not disjoint. The vertices a3 and b3 are
assigned to be one horizontal unit apart, and so are a+ and b+ etc.

The following coordinate system is employed. Suppose the indecomposable
object a3 has coordinates (i − 1, i + 3). The coordinates of some of its
surrounding objects are given in the following diagram.

(i− 2, i+ 3)+

��

(i− 1, i+ 4)+

��

(i, i+ 5)+

��

(i− 2, i+ 3)−

��

(i− 1, i+ 4)−

��

(i, i+ 5)−

��
(i− 2, i+ 2)

??

GG

��

(i− 1, i+ 3)

��

??

GG

(i, i+ 4)

��

??

GG

(i+ 1, i+ 5)

(i− 1, i+ 2)

??

��

(i, i+ 3)

??

��

(i+ 1, i+ 4)

??

��
(i− 1, i+ 1)

??

(i, i+ 2)

??

(i+ 1, i+ 3)

??

(i+ 2, i+ 4)

The coordinates of objects of the bottom line satisfy the equation y−x = 2,
and the coordinates of the exceptional vertices satisfy the equation y−x = 5.

The action of the translation functor Σ on the Auslander-Reiten quiver is
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given in [33, Table 4.I.]. It acts by shifting 4 units to the right and switching
each pair of exceptional vertices. For example, Σ(b2) = f2 and Σ(a+) = e−.

The following is an example of Lemma 1.4.1 and the narration after it, and
is rewritten below to remind the reader.

Lemma 3.4.1. (c.f. Lemma 3.2.1) Let x and y be indecomposable objects
of Db(mod kD5). Then by [14, 4.6], any non-zero morphism f from x to y
is a linear combination of morphisms, written f = Σαifi, where the αi are
scalars and the fi : x → y are compositions of irreducible morphisms. The
finite derived category Db(mod kD5) is also standard.

Definition 3.4.2. Let a be an indecomposable object of Db(mod kD5), and
let L(a) be the set of indecomposable objects with non-zero morphisms to
a. Dually, let R(a) be the set of indecomposable objects to which there are
non-zero morphisms from a.

The Auslander-Reiten quiver contains different types of local configurations
which give rise to different Auslander-Reiten triangles and commutativity
relations. In the configurations below, the black dots indicate the bridge
vertices.

◦x

v′′

��

◦x′

��

◦y

v′ ��

◦y′

��

(i)

•a
u′

??
u′′

GG

u ��

•b

w′′

GG

w′

??

w ��

•c

◦z
v

??

◦z′

??

In Configuration (i), since a → x ⊕ y ⊕ z → b → is an Auslander-Reiten
triangle, v′′u′′+v′u′+vu = 0. There are also the Auslander-Reiten triangles
x→ b→ x′ → and y → b→ y′ →, and so w′′v′′ = 0 and w′v′ = 0.

•b
t
��

•b′
t′

��
◦a

s
??

q ��

◦d
s′
??

q′ ��

◦e (ii)

◦c
r

??

◦c′
r′

??

In Configuration (ii), since a→ b⊕c→ d→ is an Auslander-Reiten triangle,
ts+ rq = 0. There is also the Auslander-Reiten triangle c→ d→ c′ →, and
so q′r = 0.
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The above description permits us to give examples of the region R(x) for
some indecomposable objects x in Db(mod kD5). The way they are derived
is very similar to the situation given in Example 1.4.4.

Diagram 3.4.3. The region R(a3) is as shown by the black dots in the
following diagram.

◦m+

��

•a+

��

•b+

��

•c+

��

◦d+

��

◦e+

��
◦m−

��
•a−

��
•b−

��
•c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
•a3

��

??

GG

•b3
��

??

GG

•c3
��

??

GG

•d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
◦a2

��

??

•b2
��

??

•c2
��

??

•d2

��

??

◦e2
??

��
◦f2

??

��
◦

◦a1

??

◦b1
??

•c1
??

•d1

??

◦e1
??

◦f1

??

◦g1

??

Diagram 3.4.4. The region R(a−) is as shown by the black dots in the
following diagram.

◦m+

��

◦a+

��

•b+

��

◦c+

��

•d+

��

◦e+

��
◦m−

��
•a−

��
◦b−

��
•c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
◦a3

��

??

GG

•b3
��

??

GG

•c3
��

??

GG

•d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
◦a2

��

??

◦b2
��

??

•c2
��

??

•d2

��

??

◦e2
??

��
◦f2

??

��
◦

◦a1

??

◦b1
??

◦c1
??

•d1

??

◦e1
??

◦f1

??

◦g1

??

Diagram 3.4.5. The region R(a1) is as shown by the black dots in the
following diagram.

◦m+

��

•a+

��

◦b+

��

◦c+

��

◦d+

��

◦e+

��
◦m−

��
•a−

��
◦b−

��
◦c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
•a3

��

??

GG

•b3
��

??

GG

◦c3
��

??

GG

◦d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
•a2

��

??

◦b2
��

??

•c2
��

??

◦d2

��

??

◦e2
??

��
◦f2

??

��
◦

•a1

??

◦b1
??

◦c1
??

•d1

??

◦e1
??

◦f1

??

◦g1

??

With the following lemma we end this section.
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Lemma 3.4.6. (c.f. Lemma 3.2.3) Let a, b and c be indecomposable objects
of Db(mod kD5). Assume (a, b), (b, c) and (a, c) are all one-dimensional.
Let f : a → b and g : b → c be some non-zero morphisms. Then the
composition gf : a→ c is non-zero.

Proof. Similar to Lemma 3.2.3.

3.4.1 Hom spaces

In this section, the non-zero morphisms between certain indecomposable
objects are described. This will lead to the calculations of the dimensions
of some of the Hom spaces.

Lemma 3.4.7. Suppose a is a bridge vertex and b is an exceptional vertex
where b is in R(a). Then any non-zero morphism f : a → b can be written
as a linear combination of paths lying in the exceptional part of the quiver.

Proof. Let y be the bridge vertex with an arrow to b. Any non-zero mor-
phism f : a → b can be factored as a

g→ y → b by Lemma 3.4.1, since y is
the only vertex with an arrow to b. Consider g : a → y. Write g = Σαipi,
where αi is a scalar and pi is a path from a to y. It is enough to show that
the path pi is a linear combination of paths lying in the exceptional part of
the quiver.

If in the path pi there are consecutive arrows q and r placed as follows,
where the black dot is a bridge vertex,

•
t
��

◦
s ??

q ��

◦ ,

◦
r

??

then rq can be replaced by −ts, by virtue of the little remark after Con-
figuration (ii). And if in the path pi there are consecutive arrows u and v
placed as follows, where the black dots are the bridge vertices,

◦

v′′

��

◦
v′ ��• u′

??
u′′

GG

u ��

• ,

◦
v

??

then vu can be replaced by −(v′u′ + v′′u′′), by virtue of the little remark
after Configuration (i). In this way, the path pi is transformed into a linear
combination of paths lying in the exceptional part of the quiver.
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Lemma 3.4.8. Suppose a is an exceptional vertex and b is a type A vertex
where b is in R(a). Then any non-zero morphism f : a → b can be written
f = Σαifig, where αi is a scalar, g is an irreducible morphism from the
vertex a to a bridge vertex y and fi : y → b is a path lying in the type A part
of the quiver.

Proof. It is sufficient to consider the example a = a−. The region R(a−) is
given in Diagram 3.4.4, which is as shown by the black dots in the following
diagram.

◦m+

��

◦a+

��

•b+

��

◦c+

��

•d+

��

◦e+

��
◦m−

��
•a−

��
◦b−

��
•c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
◦a3

��

??

GG

•b3
��

??

GG

•c3
��

??

GG

•d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
◦a2

��

??

◦b2
��

??

•c2
��

??

•d2

��

??

◦e2
??

��
◦f2

??

��
◦

◦a1

??

◦b1
??

◦c1
??

•d1

??

◦e1
??

◦f1

??

◦g1

??

The bridge vertex y is b3 and g = α′− here. The lemma is immediate when
b = b3, c2 and d1. Suppose b = c3, then write f = Σαipiα

′
−, where pi is

a path from b3 to c3. Then it remains to show that piα
′
− can be written

piα
′
− = fiα

′
−, where fi is a path lying in the type A part of the quiver.

However, pi can only be

(i) pi = β′+β+,

(ii) pi = β′−β−,

(iii) pi = γ2β
′
2.

For (iii), the path pi already lies in the type A part of the quiver. For (ii),
we have however piα

′
− = β′−β−α

′
− = 0 by virtue of the little remark after

Configuration (i). Finally, for (i), we have piα
′
− = β′+β+α

′
− = −(β′−β− +

γ2β
′
2)α′− = −γ2β

′
2α
′
− by virtue of the little remark after Configuration

(i), and γ2β
′
2 lies in the type A part of the quiver. The case where b = d2

or b = d3 is similar.

Corollary 3.4.9. Suppose a is a bridge vertex and b is an exceptional vertex
where b is in R(a). Then (a, b) is one-dimensional.

Proof. It is sufficient to consider the example a = a3. The region R(a3) is
given in Diagram 3.4.3, which is as shown by the black dots in the following
diagram.
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◦m+

��

•a+

��

•b+

��

•c+

��

◦d+

��

◦e+

��
◦m−

��
•a−

��
•b−

��
•c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
•a3

��

??

GG

•b3
��

??

GG

•c3
��

??

GG

•d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
◦a2

��

??

•b2
��

??

•c2
��

??

•d2

��

??

◦e2
??

��
◦f2

??

��
◦

◦a1

??

◦b1
??

•c1
??

•d1

??

◦e1
??

◦f1

??

◦g1

??

If b = a+ or b = a−, then it is true by Lemma 3.4.1. Consider a non-
zero morphism f : a → b. Then by Lemma 3.4.7, assume f to be a linear
combination of paths lying in the exceptional part of the quiver. If b =
b+, then there is only one non-zero path β+α

′
−α− : a → b lying in the

exceptional part of the quiver. This is because the other path β+α
′
+α+ :

a → b is a zero path by virtue of the little remark after Configuration (i).
The case where b = b−, b = c+ or b = c− is similar.

Corollary 3.4.10. Suppose a is an exceptional vertex and b is a type A
vertex where b is in R(a). Then (a, b) is one-dimensional.

Proof. Consider a non-zero morphism f : a → b. Then by Lemma 3.4.8, f
can be written f = Σαifig, where αi is a scalar, g is an irreducible morphism
from a to a bridge vertex y and fi : y → b is a path lying in the type A
part of the quiver. And the result is immediate from the little remark after
Configuration (ii).

Corollary 3.4.11. Let a and b be two exceptional vertices where b is in
R(a). Then (a, b) is one-dimensional.

Proof. Consider a non-zero morphism f : a → b. Then f can be written
f = Σαifif

′, where αi is a scalar, f ′ : a→ y is a morphism from the vertex
a to a bridge vertex y, because there is only one arrow going from a. Since
fi is then a morphism from the bridge vertex y to the exceptional vertex b,
the rest is very similar to Corollary 3.4.9.

Corollary 3.4.12. The Hom space (a1, d1) is one-dimensional.

Proof. The region R(a1) is given in Diagram 3.4.5. Consider a non-zero
morphism f : a1 → d1. Then write f = Σαipi as a linear combination of
paths with pi : a1 → d1. The path pi cannot contain the vertices b1, b2 nor
c1, since they are not in R(a1), therefore it has to either go through the
vertex a+ or the vertex a−. However, the two choices are equal up to signs.

107



For example, consider a path pi which goes through the vertex a+. Since
the vertex b2 is not in R(a1), it can be written as a path which goes through
the vertex a− by virtue of the little remark after Configuration (i).

3.4.2 Lemmas

Consider the indecomposable objects a+, b+, c+, . . . along the top line of the
Auslander-Reiten quiver of T . Henceforth, let X be add of them.

Lemma 3.4.13. The indecomposable object a3 has an X -preenvelope a3 →
a+ ⊕ b+.

Proof. The objects in X to which there is a non-zero morphism from a3

are a+, b+ and c+. The cases for a+ and b+ are trivial. Suppose a non-
zero morphism h : a3 → c+ is given. It is enough to assume that h is a
composition of irreducible morphisms and to show that h factors through
a3 → a+. This is true by Lemma 3.4.7 and Corollary 3.4.9.

Lemma 3.4.14. The indecomposable object a2 has an X -preenvelope a2 →
a+ ⊕ b+.

Proof. This is because the intersection of R(a2) and X only consists of
a+ and b+, and that (a+, b+) is zero by virtue of the little remark after
Configuration (i).

Lemma 3.4.15. The indecomposable object a− has an X -preenvelope a− →
b+.

Proof. This is because the intersection of R(a−) and X is the same as the
intersection of R(b+) and X (the intersection consists of b+ and d+), and
since (a−, d+) is one-dimensional by Corollary 3.4.11, any non-zero mor-
phism f : a− → d+ has to factor through b+. This is in the proof of
Corollary 3.4.11 as well.

Lemma 3.4.16. The indecomposable object a1 has an X -preenvelope a1 →
a+.

Proof. Similar to Lemma 3.4.15.

By Lemma 3.4.13, Lemma 3.4.14, Lemma 3.4.15, Lemma 3.4.16 and [23,
Theorem 1.2], the quotient category TX is pretriangulated. Since evidently
τX = X , therefore TX is in addition triangulated by [23, Theorem 2.3]. By
[23, Theorem 3.2], the Auslander-Reiten quiver of TX is obtained by deleting
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vertices on the top line and the incident arrows from the Auslander-Reiten
quiver of T . Therefore the two categories TX and Db(mod kA4) have the
same Auslander-Reiten quiver ZA4.

Definition 3.4.17. Let a be an indecomposable object in TX . Similarly to
Definition 3.4.2, let LX (a) be the set of indecomposable objects with non-
zero morphisms to a in TX . Dually, let RX (a) be the set of indecomposable
objects to which there are non-zero morphisms from a in TX .

Lemma 3.4.18. (c.f. Lemma 3.2.7) The region RX (a3) is as shown by the
black dots in the following diagram.

◦m+

��

◦a+

��

◦b+

��

◦c+

��

◦d+

��

◦e+

��
◦m−

��
•a−

��
◦b−

��
◦c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
•a3

��

??

GG

•b3
��

??

GG

◦c3
��

??

GG

◦d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
◦a2

��

??

•b2
��

??

•c2
��

??

◦d2

��

??

◦e2
??

��
◦f2

??

��
◦

◦a1

??

◦b1
??

•c1
??

◦d1

??

◦e1
??

◦f1

??

◦g1

??

Proof. The philosophy of Section 3.4.1 allows us to see that the region
RX (a3) is at most the region as indicated. Now let s be an object in it.
Since s is in R(a3), there is a non-zero morphism f : a3 → s in T so that
the corresponding morphism f : a3 → s is non-zero in TX . Suppose other-
wise that f is zero. Then f is a morphism in T which factors through a (not
necessarily indecomposable) object t in X , i.e. f factorizes as f : a3 → t→ s
in T . By Lemma 3.4.13, a3 has the X -preenvelope a3 → a+ ⊕ b+, therefore
f further factorizes as f : a3 → a+ ⊕ b+ → t → s in T . The morphism
a+ ⊕ b+ → t is non-zero, therefore either a+ → t is non-zero, or b+ → t
is non-zero. In the first case, t is to be (finite sums of) c+, but s is not in
R(c+). In the second case, t is to be (finite sums of) d+, but s is not in
R(d+) either. This gives f non-zero in TX . Also Lemma 3.4.6 is implicitly
used throughout.

Lemma 3.4.19. (c.f. Lemma 3.2.7) The region RX (a2) is as shown by the
black dots in the following diagram.

◦m+

��

◦a+

��

◦b+

��

◦c+

��

◦d+

��

◦e+

��
◦m−

��
•a−

��
◦b−

��
◦c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
•a3

��

??

GG

•b3
��

??

GG

◦c3
��

??

GG

◦d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
•a2

��

??

•b2
��

??

◦c2
��

??

◦d2

��

??

◦e2
??

��
◦f2

??

��
◦

◦a1

??

•b1
??

◦c1
??

◦d1

??

◦e1
??

◦f1

??

◦g1

??
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Proof. Similar.

Lemma 3.4.20. (c.f. Lemma 3.2.7) The region RX (a1) is as shown by the
black dots in the following diagram.

◦m+

��

◦a+

��

◦b+

��

◦c+

��

◦d+

��

◦e+

��
◦m−

��
•a−

��
◦b−

��
◦c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
•a3

��

??

GG

◦b3
��

??

GG

◦c3
��

??

GG

◦d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
•a2

��

??

◦b2
��

??

◦c2
��

??

◦d2

��

??

◦e2
??

��
◦f2

??

��
◦

•a1

??

◦b1
??

◦c1
??

◦d1

??

◦e1
??

◦f1

??

◦g1

??

Proof. Similar.

Lemma 3.4.21. (c.f. Lemma 3.2.7) The region RX (a−) is as shown by the
black dots in the following diagram.

◦m+

��

◦a+

��

◦b+

��

◦c+

��

◦d+

��

◦e+

��
◦m−

��
•a−

��
◦b−

��
◦c−

��
◦d−

��
◦e−

��
. . . ◦m3

??

GG

��
◦a3

��

??

GG

•b3
��

??

GG

◦c3
��

??

GG

◦d3

��

??

GG

◦e3
??

GG

��
◦f3

��

. . .

◦m2

??

��
◦a2

��

??

◦b2
��

??

•c2
��

??

◦d2

��

??

◦e2
??

��
◦f2

??

��
◦

◦a1

??

◦b1
??

◦c1
??

•d1

??

◦e1
??

◦f1

??

◦g1

??

Proof. Similar.

Lemma 3.4.22. (c.f. Lemma 3.2.8) Consider a = a1⊕a2⊕a3⊕a− in TX .
Then the thick subcategory thick(a) of TX , generated by a, is in fact equal to
TX .

Proof. Similar to Lemma 3.2.8, since TX has Auslander-Reiten triangles by
[23, Theorem 3.2].

Lemma 3.4.23. (c.f. Lemma 3.2.9) Consider a = a1⊕a2⊕a3⊕a− in TX .
Then EndTX (a) ∼= EndT (a).

Proof. This is similar to Lemma 3.2.9. But surely, we shall do it again.
The idea is that there are no non-zero morphisms h : ai → aj in T , where
i, j ∈ {1, 2, 3,−}, which factor through an object in X . Only the cases where
i, j ∈ {1, 2, 3} or j = − need to be considered, since there are no non-zero
morphisms from ai to aj otherwise. Assume i ≤ j if i, j ∈ {1, 2, 3}. Suppose
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there is a non-zero h : ai → aj such that h factors through an object y in X
as h : ai → y → aj . By Lemma 3.4.13, Lemma 3.4.14, Lemma 3.4.15 and
Lemma 3.4.16, ai has an X -preenvelope ai → x, thus the morphism h further
factorizes as h : ai → x → y → aj . Since x can only be a+, b+ or a+ ⊕ b+,
there are apparently no non-zero morphisms from x to aj . Therefore the
only morphism from ai to aj factoring through an object in X is the zero
morphism, and the isomorphism exists.

Corollary 3.4.24. (c.f. Corollary 3.2.12) Consider the categories T , X and
TX as usual, and the object a = a1⊕a2⊕a3⊕a− in TX as in Lemma 3.4.22.
Then EndTX (a) ∼= EndT (a) ∼= (kA4)◦.

Proof. The first isomorphism exists by Lemma 3.4.23. The existence of
the second isomorphism follows by identifying the ai with the pi for 1 ≤
i ≤ 3 and by identifying a− with p4 in Lemma 3.2.11, with the help of
Lemma 3.4.6.

3.4.3 Mapping cone construction

Lemma 3.4.25. The mapping cone of the morphism β′1 : b2 → c1 is Σb1.

Proof. This is because b1 → b2 → c1 → is an Auslander-Reiten triangle.

Lemma 3.4.26. The mapping cone of the morphism β′2 : b3 → c2 is Σb1.

Proof. By the octahedral axiom, extend to the following commutative dia-
gram,

b1 //

��

b3

��

β′2 // c2
// ∗

b2

��

// b3 ⊕ c1
//

��

c2

��

//

c1

��

c1
// 0

Σb1 .

The distinguished triangle on the second row is an Auslander-Reiten trian-
gle, and the distinguished triangle on the first column is given by Lemma 3.4.25.

Lemma 3.4.27. The mapping cone of the morphism γ′1β
′
2 : b3 → d1 is Σb2.
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Proof. By the octahedral axiom, extend to the following commutative dia-
gram,

b1

��
∗

��

// b3
γ′1β
′
2 //

��

d1
// Σ∗

c1

��

// c2
//

��

d1

��

// Σc1

Σb1 Σb1 // 0 .

The distinguished triangle on the third row is given by Lemma 3.4.25 and
the distinguished triangle in the second column is given by Lemma 3.4.26.

By Corollary 3.4.12, (c1,Σb1) = (c1, f1) is one-dimensional (replacing a1 by
c1 and d1 by f1). Since b3 is indecomposable, the distinguished triangle
b1 → b3 → c2 → Σb1 is non-split, and the morphism c2 → Σb1 is non-zero.
Similarly, since d1 is indecomposable, the morphism c1 → c2 is non-zero,
hence the morphism c1 → Σb1 is non-zero by Lemma 3.4.6. Therefore the
distinguished triangle in the first column has to be the Auslander-Reiten
triangle b1 → b2 → c1 →.

Lemma 3.4.28. The mapping cone of the morphism µ : a+ → d1 is d+.

Proof. The Hom space (a+, d1) is one-dimensional by Corollary 3.4.10, there-
fore the mapping cones of all non-zero morphisms µ : a+ → d1 are iso-
morphic. Such considerations permeate this section, and they will not be
repeated each time, since most Hom spaces are one-dimensional.

In the following diagram, the region R(d1) is as shown by the black dots.

◦m+

��

◦a+

��

◦b+

��

◦c+

��

•d+

��

◦e+

��
◦m−

��
◦a−

��
◦b−

��
◦c−

��
•d−

��
◦e−

��
. . . ◦

??

GG

��
◦a3

��

??

GG

◦b3
��

??

GG

◦c3
��

??

GG

•d3

��

??

GG

•e3
??

GG

��
◦f3

��

. . .

◦

??

��
◦a2

��

??

◦b2
��

??

◦c2
��

??

•d2

��

??

◦e2
??

��
•f2

??

��
◦

◦a1

??

◦b1
??

◦c1
??

•d1

??

◦e1
??

◦f1

??

•g1

??

Extend a non-zero morphism µ to the distinguished triangle a+
µ→ d1

ν→
∗ →. By [16, Lemma 6.5], the mapping cone ∗ is indecomposable. The
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morphism ν is non-zero, otherwise the distinguished triangle Σ−1∗ → a+
µ→

d1
ν→ ∗ splits, but this is impossible since a+ is indecomposable. Therefore

the object ∗ has to be in R(d1).

The object ∗ cannot be d1, d2, d3 or d−. Assume it is. Since (a+, d1) is one-
dimensional by Corollary 3.4.10, (d1, ∗) is one-dimensional by Lemma 3.4.1
and (a+, ∗) is one-dimensional by Corollary 3.4.10 and Corollary 3.4.11, the
composition νµ is non-zero by Lemma 3.4.6. However, this is a contradiction
given that the composition of two consecutive morphisms of a distinguished
triangle is zero by Lemma 0.2.2(i).

Appealing to the octahedral axiom, extend to the following commutative
diagram,

Σ−1∗ //

��

a+

��

µ // d1
ν // ∗

b2 //

��

b3 //

��

d1

��

// Σb2

b+

��

b+

��

// 0

∗ .

The distinguished triangle on the second row is given in Lemma 3.4.27. The
distinguished triangle in the second column is an Auslander-Reiten triangle.
Suppose the object ∗ is e3. Then the distinguished triangle on the first row
is a3 → a+

µ→ d1
ν→ e3. But again this is not possible for the same reason.

Consider the distinguished triangle in the first column. Since b2 is indecom-
posable, the distinguished triangle is non-split. This means the morphism
from b+ to ∗ is non-zero. The object ∗ cannot be f2 or g1, since neither of
them is in R(b+). Hence the mapping cone has to be the object d+.

Corollary 3.4.29. The mapping cone of the morphism µ : b2 → b+ is d+.

Proof. Consider the distinguished triangle Σ−1∗ → b2 → b+ → ∗ in the
first column of the commutative diagram in Lemma 3.4.28, and the result
is evident. Also the Hom space (b2, b+) is one-dimensional.

Lemma 3.4.30. The mapping cone of the morphism µ : m+ → b2 is b−.

Proof. The Hom space (m+, b2) is one-dimensional by Corollary 3.4.10. By
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the octahedral axiom, extend to the following commutative diagram,

m+

��

µ // b2

��

// ∗

��
0 // c1

��

c1

��

// 0

��
∗ // c+

//

��

Σb1

��

// Σ∗

.

The distinguished triangle m+ → c1 → c+ → is given by Lemma 3.4.28 and
the distinguished triangle b2 → c1 → Σb1 → is given by Lemma 3.4.25. Fi-
nally, the mapping cone of the morphism c+ → Σb1 is Σb− by Lemma 3.4.28.
Also the Hom space (c+,Σb1) is one-dimensional.

Lemma 3.4.31. The mapping cone of the morphism α+ : a3 → a+ is d−.

Proof. By the octahedral axiom, extend to the following commutative dia-
grams,

0 //

��

a− ⊕ b2

��

a− ⊕ b2

��

//

a3
// a+ ⊕ a− ⊕ b2 //

��

b3

��

//

a3
α+ // a+

//

��

∗

��

//

,

// b2

��

b2

��

// 0

��// a− ⊕ b2 //

��

b3 //

��

∗

// a− //

��

d1

��

// ∗

��.

In the first diagram, the distinguished triangle on the second row is an
Auslander-Reiten triangle. In the second diagram, the distinguished triangle
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in the middle column is given by Lemma 3.4.27. Finally, the mapping cone
of the morphism a− → d1 is d−, by a mirror version of Lemma 3.4.28.

Corollary 3.4.32. The mapping cone of the morphism a2 → a+ is c+.

Proof. It is the same as Corollary 3.4.29 by a suitable translation of coordi-
nates.

Corollary 3.4.33. The mapping cone of the morphism a1 → a+ is b−.

Proof. The Hom space (a1, a+) is one-dimensional by Lemma 3.4.1. By the
octahedral axiom, extend to the following commutative diagram,

a1

��

// a+
// ∗ //

Σ−1c+
//

��

a2
//

��

a+

��

// c+

b1

��

b1 // 0

∗ .

The distinguished triangle a1 → a2 → b1 → is an Auslander-Reiten triangle.
The distinguished triangle on the second row is given by Corollary 3.4.32.

Since a+ is indecomposable, the morphism Σ−1c+ → a2 is non-zero. Simi-
larly, since a1 is indecomposable, the morphism a2 → b1 is non-zero, hence
the morphism Σ−1c+ → b1 is non-zero by Lemma 3.4.6.

Finally, the mapping cone of the morphism Σ−1c+ → b1 is b−, by a mirror
version of Lemma 3.4.28.

Lemma 3.4.34. The mapping cone of the morphism m+ → b+ is d2.

Proof. The Hom space (m+, b+) is one-dimensional by Corollary 3.4.11. By
Corollary 3.4.32, the mapping cone of m2 → m+ is b+. Hence the mapping
cone of m+ → b+ is Σm2 = d2.

Lemma 3.4.35. The mapping cone of the morphism a3 → a+ ⊕ b+ is d2.

Proof. By the octahedral axiom, extend to the following commutative dia-
gram,
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m+

��
0 //

��

b+

��

b+

θ1

��

//

(i)

0

��
a3

// a+ ⊕ b+

��

// ∗ γ1 //

θ2
��

(ii)

e3

a3
// a+

// d−
γ2 // e3.

The distinguished triangle on the last row is given by Lemma 3.4.31 and the
distinguished triangle in the third column is given by Lemma 3.4.34.

Finally, rest reassured that the morphism m+ → b+ considered is non-zero.
Assume it is. Then the object ∗ would have to be isomorphic to b+ ⊕ d−,
and θ1 would have to be the non-zero canonical inclusion and θ2 would have
to be the non-zero canonical surjection. Since square (i) is commutative, γ1

would have to be zero although e3 is in R(b+). Similarly, since square (ii) is
commutative, γ2 would have to be zero although e3 is in R(d−). However,
this is a contradiction since a+ is indecomposable. Therefore the morphism
m+ → b+ considered is non-zero indeed.

Remark 3.4.36. In Lemma 3.4.35, it is not possible to use [16, Lemma 6.5]
to show that ∗ is indecomposable, as in Lemma 3.4.28.

Corollary 3.4.37. The mapping cone of the morphism a2 → a+⊕ b+ is c3.

Proof. By the octahedral axiom, extend to the following commutative dia-
gram,

Σ−1c+

��
0 //

��

b+

��

b+

��
a2

// a+ ⊕ b+

��

// ∗ //

��
a2

// a+
// c+

// .

The distinguished triangle on the last row is given by Lemma 3.4.32. There is
an Auslander-Reiten triangle b+ → c3 → c+ →, and the result is immediate
since (a2, a+ ⊕ b+) is one-dimensional.
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Finally, the morphism Σ−1c+ → b+ considered is non-zero indeed. This is
very similar to Lemma 3.4.35 where the morphism m+ → b+ is non-zero.

Lemma 3.4.38. The mapping cone of the morphism a− → b+ is e1.

Proof. By a mirror version of Corollary 3.4.33, the mapping cone of the
morphism a1 → a− is b+. Hence the mapping cone of the morphism a− → b+
is Σa1 = e1.

Using the same notation as in [23, Theorem 2.3], let σ be the translation
functor of the triangulated category TX . The construction of the functor σ
is described in [23, Setup 1.1].

Lemma 3.4.39. (c.f. Lemma 3.2.13) Let a = (u, v) be an indecomposable
object of TX . Let p and q be integers and let λ = v − u. Then

σ(u, v) =


(p+ 4, q + 1) if (u, v) = (p, q)−,
(u+ λ, v + (5− λ)) = (v, u+ 5) if 1 < λ < 4,
(u+ 1, v + 4)− if λ = 1.

Proof. The first line is true by Lemma 3.4.15 and Lemma 3.4.38. The sec-
ond line is true by Lemma 3.4.13, Lemma 3.4.14, Lemma 3.4.35 and Corol-
lary 3.4.37. The last line is true by Lemma 3.4.16 and Corollary 3.4.33.

The action of σ is shown in the following diagram.

Diagram 3.4.40.

•

��

•

��

•

��

•

��

•

��

•

��

•
��

•a−
��

•b−
��

•
��

•
��

•
��

. . . •

??

GG

��
•a3

��

??

GG

•
��

??

GG

•c3
��

??

GG

•
��

??

GG

•

??

GG

��

•
��

. . .

•

??

��
•a2

��

??

•
��

??

•
��

??

•d2

��

??

•

??

��

•

??

��

•

•a1

??

•

??

•

??

•

??

•e1
??

•

??

•

??

The action of σ is given by σ(a1) = b−, σ(a2) = c3, σ(a3) = d2 and σ(a−) =
e1.

Corollary 3.4.41. (c.f. Corollary 3.2.15) Let a = (p, q)− be an indecom-
posable object of TX , N ≥ 0 an integer. Then

σN (a) =

{
(p+ 5N

2 , q + 5N
2 )− for N even,

(p+ 5(N+1)
2 − 1, q + 5(N−1)

2 + 1) for N odd.
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Proof. Immediate from Lemma 3.4.39 by induction.

Corollary 3.4.42. (c.f. Corollary 3.2.15) Let a = (u, v) be an indecom-
posable object of TX . Let λ = v − u, N ≥ 0 an integer. If 1 < λ < 4,
then

σN (a) =

{
(u+ 5N

2 , v + 5N
2 ) for N even,

(v + 5(N−1)
2 , u+ 5(N+1)

2 ) for N odd.

Proof. Immediate from Lemma 3.4.39 by induction.

Corollary 3.4.43. (c.f. Corollary 3.2.15) Let a = (u, v) be an indecompos-
able object of TX . Let N ≥ 0 be an integer. If v − u = 1, then

σN (a) =

{
(u+ 5N

2 , v + 5N
2 ) for N even,

(u+ 5(N−1)
2 + 1, v + 5(N+1)

2 − 1)− for N odd.

Proof. Immediate from Lemma 3.4.39 by induction.

For example, let a = (u, v) be an indecomposable object. Then σ2(u, v) =
(u+ 5, v + 5).

Since the translation functor σ is an autoequivalence, there is also an explicit
description of σ−1.

Lemma 3.4.44. (c.f. Lemma 3.2.16) Let a = (u, v) be an indecomposable
object of TX . Let p and q be integers and let λ = v − u. Then

σ−1(u, v) =


(p− 1, q − 4) if (u, v) = (p, q)−,
(v − 5, u) if 1 < λ < 4,
(u− 4, v − 1)− if λ = 1.

Proof. Immediate from Lemma 3.4.39.

Corollary 3.4.45. (c.f. Corollary 3.2.18) Let a = (p, q)− be an indecom-
posable object of TX , N ≥ 0 an integer. Then

σ−N (a) =

{
(p− 5N

2 , q −
5N
2 )− for N even,

(p− 5(N−1)
2 − 1, q − 5(N+1)

2 + 1) for N odd.

Proof. Immediate from Lemma 3.4.44 by induction.
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Corollary 3.4.46. (c.f. Corollary 3.2.18) Let a = (u, v) be an indecom-
posable object of TX . Let λ = v − u, N ≥ 0 an integer. If 1 < λ < 4,
then

σ−N (a) =

{
(u− 5N

2 , v −
5N
2 ) for N even,

(v − 5(N+1)
2 , u− 5(N−1)

2 ) for N odd.

Proof. Immediate from Lemma 3.4.44 by induction.

Corollary 3.4.47. (c.f. Corollary 3.2.18) Let a = (u, v) be an indecompos-
able object of TX . Let N ≥ 0 be an integer. If v − u = 1, then

σ−N (a) =

{
(u− 5N

2 , v −
5N
2 ) for N even,

(u− 5(N+1)
2 + 1, v − 5(N−1)

2 − 1)− for N odd.

Proof. Immediate from Lemma 3.4.44 by induction.

Lemma 3.4.48. (c.f. Lemma 3.2.19) Let N ≥ 1 be an integer. Consider
a = a1 ⊕ a2 ⊕ a3 ⊕ a− in TX . Then HomTX (a, σNa) = 0.

Proof. Similar to Lemma 3.2.19, with the help of Lemma 3.4.18, Lemma 3.4.19,
Lemma 3.4.20, Lemma 3.4.21, Corollary 3.4.41, Corollary 3.4.42 and Corol-
lary 3.4.43.

Lemma 3.4.49. (c.f. Lemma 3.2.20) Let N ≥ 1 be an integer. Consider
a = a1 ⊕ a2 ⊕ a3 ⊕ a− in TX . Then HomTX (a, σ−Na) = 0.

Proof. Similar.

3.4.4 Theorem

The following is the main theorem of the section.

Theorem 3.4.50. Consider the categories T , X and TX as usual, and the
object a = a1 ⊕ a2 ⊕ a3 ⊕ a− in TX as in Lemma 3.4.22. Then there is

an equivalence of triangulated categories f : TX
'→Db(mod (kA4)◦) where

f(a) = (kA4)◦.

Proof. Let U and X in Theorem 3.1.1 be TX and a respectively. By Corol-
lary 3.4.24, A ∼= (kA4)◦. Let us take Σ in Theorem 3.1.1 to be the transla-
tion functor σ of the triangulated category TX . Then the result follows from
Lemma 3.4.22, Lemma 3.4.48 and Lemma 3.4.49.
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Chapter 4

A characterization of torsion
theories in the cluster
category of Dynkin type A∞

This chapter is also written in the form of a paper which is submitted for
publication in Homology, Homotopy and Applications ([37]).

4.1 Introduction

The cluster category D of Dynkin type A∞ was introduced in [19]. One of
its several definitions, which is completely analogous to the definition of the
cluster category of type An, motivates us to say that D is a cluster category
of type A∞. Namely, it is the orbit category Df (mod Γ)/SΣ−2. Here Γ is
a quiver of type A∞ with zigzag orientation and S and Σ are the Serre and
translation functors of the finite derived category Df (mod Γ).

There are also several other ways to realize the category D. In brief, it is
the algebraic triangulated category generated by a 2-spherical object. It is
also the compact derived category Dc(A) of the differential graded cochain
algebra A = C∗(S2; k) where S2 is the 2-sphere and k is a field. Finally, D
is the finite derived category Df (k[T ]) where k[T ] is viewed as a DG algebra
with T placed in homological degree 1 and zero differential. It is ubiquitous
and the reader can refer to [19, Section 0] for more details.

In [19], the cluster tilting subcategories of D were shown to be in bijection
with certain maximal sets of non-crossing arcs connecting non-neighbouring
integers. One can think of these maximal sets as “triangulations of the
∞-gon”.
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A torsion theory in D is a pair (X ,Y) of subcategories such that there are
no non-zero morphisms from any object in X to any object in Y, and that
for each d in D, there is a distinguished triangle x→ d→ y → in D, with x
in X and y in Y (Definition 1.2.5). If T is a cluster tilting subcategory, then
(T , ΣT ) is a torsion theory, but t-structures and co-t-structures are other
examples of torsion theories.

In this chapter, the results of [19] are generalized by giving a bijection be-
tween torsion theories in D and certain configurations of arcs connecting
non-neighbouring integers. A few examples, characterizing all t-structures
and co-t-structures in D, are given.

4.2 Coordinate system

Let us recollect some material from [19]. The category D has finite-di-
mensional Hom spaces over a field k and split idempotents, so it is Krull-
Schmidt ([19, Remark 1.2]). In this chapter, a subcategory of D is assumed
to be a full subcategory closed under direct sums and direct summands. For
subcategories X and Y of D, the set of morphisms from any x in X to any
y in Y is denoted by (X ,Y). In particular, for objects x and y of D, the set
of morphisms from x to y is denoted by (x, y).

By [19, Remark 1.4], the Auslander-Reiten quiver of D is ZA∞, and the
following standard coordinate system is laid down on the Auslander-Reiten
quiver.

...
��

...
��

...
��

...

��
· · ·

??

��
(−4, 1)

??

��
(−3, 2)

??

��
(−2, 3)

??

��
· · ·

(−4, 0)

??

��
(−3, 1)

??

��
(−2, 2)

??

��
(−1, 3)

??

��
· · ·

??

��
(−3, 0)

??

��
(−2, 1)

??

��
(−1, 2)

??

��
· · ·

(−3,−1)

??

(−2, 0)

??

(−1, 1)

??

(0, 2)

??

Let Σ be the translation functor of D. Since D is 2-Calabi-Yau, its Serre
functor is S = Σ2 and the Auslander-Reiten translation is τ = SΣ−1 = Σ. In
terms of coordinates, the action of Σ = τ is given by Σ(m,n) = (m−1, n−1),
see [19, Remark 1.4].

The definitions to follow interpret coordinate pairs in an alternative way, as
arcs connecting non-neighbouring integers.

Definition 4.2.1. ([19, Definition 3.1]) An arc is a pair (m,n) of integers
with n−m ≥ 2. The arc (m,n) is said to end in each of the integers m and n.
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Two arcs (m1, n1) and (m2, n2) are said to cross if eitherm1 < m2 < n1 < n2

or m2 < m1 < n2 < n1. The action of Σ makes sense on arcs as well.

In the diagrams to follow arcs are drawn on number lines which are numbered
thus.

−2 −1 0 1 2 3

For example, in the above diagram, the arc (−1, 2) is drawn as a curve
between the integers −1 and 2. Crossing of arcs has been defined to match
this geometrical picture in the natural way.

This, together with the following definition, relies heavily on the coordinate
system.

Definition 4.2.2. ([19, Definition 3.2]) Let A be a set of arcs. If, for each
integer n, there are only finitely many arcs in A which end in n, then A is
said to be locally finite. A left (resp. right) fountain of A is an integer n
for which there are infinitely many arcs of the form (m,n) (resp. (n,m)) in
A. A fountain of A is an integer n which is both a left and a right fountain
of A. A left (resp. right) fountain n of A is said to be full if for each m
the arc of the form (m,n) (resp. (n,m)) is in A. Finally, A is said to be
non-crossing if A does not contain any pairs of crossing arcs.

Coordinate pairs (m,n), n−m ≥ 2, are identified with either indecomposable
objects of D or with arcs. Thereupon a set A of arcs induces a collection of
indecomposable objects of D, and add of them gives a subcategory A of D,
thus there is a bijection between sets of arcs and subcategories of D.

It is our intention to display (in diagrams) at times both versions of interpre-
tations, coordinate pairs as indecomposable objects of D on the quiver and
as arcs on number lines. The reader should be able to feel so comfortable
with the simultaneous visualizations in the mind’s eye, so much so that any
one interpretation is at once able to find an echo and a corroboration in the
other.

The following pairs of definitions describe some constraints on a set of arcs
A.

Definition 4.2.3. A set of arcs A is said to satisfy condition (?) if, for each
pair of crossing arcs (a, b) and (c, d) in A, those of the pairs (a, c), (c, b),
(b, d) and (a, d) which are arcs belong to A (for instance, (a, c) is only an
arc if c− a ≥ 2).
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a c b d

The following example visualizes condition (?) on the quiver.

Example 4.2.4. Suppose the set of arcs A satisfies condition (?). Then given
the arcs (−4, 0) and (−2, 2) in A, the arcs (−4,−2), (−2, 0), (0, 2) and (−4, 2)
are in A.

...
��

...
��

...
��

...
��

...

��
· · ·

??

��
(−6, 1)

??

��
(−5, 2)

??

��
(−4, 3)

??

��
(−3, 4)

??

��
· · ·

(−6, 0)

??

��
(−5, 1)

??

��
(−4, 2)

??

��
(−3, 3)

??

��
(−2, 4)

??

��
· · ·

??

��
(−5, 0)

??

��
(−4, 1)

??

��
(−3, 2)

??

��
(−2, 3)

??

��
· · ·

(−5,−1)

??

��
(−4, 0)

??

��
(−3, 1)

??

��
(−2, 2)

??

��
(−1, 3)

??

��
· · ·

??

��
(−4,−1)

??

��
(−3, 0)

??

��
(−2, 1)

??

��
(−1, 2)

??

��
· · ·

(−4,−2)

??

(−3,−1)

??

(−2, 0)

??

(−1, 1)

??

(0, 2)

??

Definition 4.2.5. A set of arcs A is said to satisfy condition (? ?) if it has
the following property: if a is a left fountain but not a right fountain of A,
b is a right fountain but not a left fountain of A and b− a ≥ 2, then the arc
(a, b) is in A.

a b

The following example visualizes condition (? ?) on the quiver.

Example 4.2.6. Suppose the set of arcs A satisfies condition (? ?). Then
given the left fountain (but not right fountain) −1 and the right fountain
(but not left fountain) 2 of A, the arc (−1, 2) is in A. The diagram below
shows only some of the arcs from the fountains.
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...
��

...
��

...
��

...
��

...
��

...
��

...
��

...

��
· · ·

??

��
(−6, 1)

??

��
(−5, 2)

??

��
(−4, 3)

??

��
(−3, 4)

??

��
(−2, 5)

??

(−1, 6)

??

��
(0, 7)

??

��
· · ·

(−6, 0)

??

��
(−5, 1)

??

��
(−4, 2)

??

��
(−3, 3)

??

��
(−2, 4)

??

��
(−1, 5)

??

��
(0, 6)

??

��
(1, 7)

??

��
· · ·

??

��
(−5, 0)

??

��
(−4, 1)

??

��
(−3, 2)

??

��
(−2, 3)

??

��
(−1, 4)

??

��
(0, 5)

??

��
(1, 6)

??

��
· · ·

(−5,−1)

??

��
(−4, 0)

??

��
(−3, 1)

??

��
(−2, 2)

??

��
(−1, 3)

??

��
(0, 4)

??

��
(1, 5)

??

��
(2, 6)

??

��
· · ·

??

��
(−4,−1)

??

��
(−3, 0)

??

��
(−2, 1)

??

��
(−1, 2)

??

��
(0, 3)

??

��
(1, 4)

??

��
(2, 5)

??

��
· · ·

(−4,−2)

??

(−3,−1)

??

(−2, 0)

??

(−1, 1)

??

(0, 2)

??

(1, 3)

??

(2, 4)

??

(3, 5)

??

Definition 4.2.7. Given a subcategory U of D, let U⊥ = {d ∈ D|(u, d) = 0
for all u in U} and ⊥U = {d ∈ D|(d, u) = 0 for all u in U}.

Definition 4.2.8. Given a set of arcs U, let ort(U) be the set of arcs ort(U)
= {d | d does not cross any arcs in U}.

Lemma 4.2.9. Let U be a set of arcs. Then ort ort ort(U) = ort(U).

Proof. That ort ort(U) ⊇ U is immediate, so that ort ort ort(U) ⊆ ort(U),
since ort reverses inclusions. Similarly, ort ort ort(U) ⊇ ort(U). Therefore
ort ort ort(U) = ort(U).

Lemma 4.2.9 gives the minimal level when the operation ort becomes peri-
odic. Later on, Lemma 4.4.20 gives the equivalent condition for the equality
ort ortA = A.

Remark 4.2.10. In addition, the operation ort2 satisfies the following.

(i) ort ort(U) ⊇ U,

(ii) ort4(U) = ort2(U), which is immediate from Lemma 4.2.9.

Lemma 4.2.11. Let U be a set of arcs. Then U = ort(C) for some set of
arcs C if and only if U = ort ort(U).

Proof. (if ) This is immediate. (only if ) Since U = ort(C), therefore ort ort(U) =
ort ort ort(C) = ort(C) = U by Lemma 4.2.9.

Lemma 4.2.12. Let U, U′ be sets of arcs. Suppose ort ort(U) = U, ort ort(U′) =
U′. Then

(i) If ort(U) ⊇ ort(U′), then U ⊆ U′.
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(ii) If ort(U) = ort(U′), then U = U′.

Proof. (i) If ort(U) ⊇ ort(U′), then ort ort(U) ⊆ ort ort(U′) which gives
U ⊆ U′.

(ii) This is immediate by (i).

Lemma 4.2.13. Let U be a set of arcs. Then

(i) U is non-crossing if and only if U ⊆ ort(U).

(ii) U is maximal non-crossing if and only if U = ort(U).

Proof. This is immediate.

Let x = (i, j) be an indecomposable object of D, accompanied by the regions
H−(x) = {(m,n) | m ≤ i − 1, i + 1 ≤ n ≤ j − 1} and H+(x) = {(m,n) |
i + 1 ≤ m ≤ j − 1, j + 1 ≤ n} in the Auslander-Reiten quiver of D ([19,
Definition 2.1]). They are sketched as follows.

H−(x) H+(x)

Σx x Σ−1x

We write H(x) = H−(x) ∪H+(x).

Remark 4.2.14. Let (a, b) and (c, d) be arcs. Then the two arcs cross if and
only if (c, d) is in H(a, b).

The following lemma describes morphisms in the category D.

Lemma 4.2.15. ([19, Corollary 2.3]) Let x and y be indecomposable objects
of D. Then the following are equivalent.

(i) (x, y) 6= 0,

(ii) (x, y) = k,

(iii) y ∈ H(Σx),

(iv) x ∈ H(Σ−1y).
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Remark 4.2.16. By virtue of the coordinate system, the way the regions
H−(x) and H+(x) are defined, and the above lemma, crossing of arcs is en-
dowed with a meaningful interpretation. This is to say, given indecompos-
able objects x and y ofD, then (x, y) 6= 0 if and only if the arcs corresponding
to x and Σ−1y cross, see [19, Lemma 3.6].

Now let X and Y be two subcategories of D such that X = ⊥Y and Y = X⊥,
accompanied by the sets of arcs X and Y respectively. By Remark 4.2.16,
X = {d | Σd does not cross any arcs in Y} and Y = {d | Σ−1d does not cross
any arcs in X}. Together they determine each other.

Let Σ−1Y = W. The above can be rewritten as X = {d | d does not cross any
arcs in W} = ort(W) and W = {d | d does not cross any arcs in X} = ort(X).

The following lemma bridges indecomposable objects of D on the quiver and
arcs on number lines.

Lemma 4.2.17. (double orthogonal property) Let X and X be defined as
above. Then X = ⊥(X⊥) is equivalent to X = ort ort(X).

Proof. This is immediate by the above description.

4.3 Precovering (preenveloping) subcategories

In this section, precovering and preenveloping subcategories are character-
ized in terms of their corresponding sets of arcs.

Theorem 4.3.1. Let A be a subcategory of D and let A be the corresponding
set of arcs. Then A is precovering if and only if each right fountain of A is
in fact a fountain.

Proof. Suppose A is precovering. A right fountain of A is an integer n for
which there are infinitely many arcs of the form (n, p) in A. The correspond-
ing collection P of indecomposable objects of A lies on a diagonal half line
r in the Auslander-Reiten quiver of D. The following sketch shows r along
with some of the indecomposable objects ai in P (indicated by the black
dots) and, in dotted lines, their respective regions H(Σai).
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s′ r

•
s

•
•

To show that n is also a left fountain, that is, there are infinitely many arcs
in A of the form (m,n), is the same as showing that there are infinitely
many indecomposable objects of A which are on the half line s. Consider
an object x on the half line s and its region H(Σ−1x) indicated by dashed
lines in the following diagram.

l3 t′ s′ r

l2
l1

•
s

•
x •

Let β : b → x be an A-precover, where b and β are written b1 ⊕ · · · ⊕ bq
and

(
β1, . . . , βq

)
respectively. The morphism β : b → x can be assumed to

be non-zero on each direct summand bj of b, so that all the bj belong to
H(Σ−1x).

It is apparent that x is in H−(Σai) for all the ai in P . Pick an indecomposable
a in P and let α : a→ x be a non-zero morphism. Then α factors through β

as shown in the following diagram, where the morphism γ is written

γ1
...
γq

.
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a

α

''

γ

��
b1 ⊕ · · · ⊕ bq

β
// x

Since α is non-zero and α = β1γ1 + · · ·+ βqγq, there is a term βkγk which is
non-zero. Hence γk : a→ bk is non-zero so bk is in H(Σa).

Therefore bk can only be on the half line s above x, or in the infinite region
inside H+(Σ−1x) bounded by t′, s′ and li for some i. But it cannot be the
latter because then βk and γk would both be backward morphisms whence
βkγk would be zero (Lemma 3.3.9). Therefore bk can only be on the half line
s above x. Repeating the argument, consider an object x1 on the half line s
above bk. Then another object c in A on the half line s above x1 is revealed.
Since it can be continued in this way indefinitely, there are infinitely many
indecomposable objects of A which are on the half line s.

Now suppose each right fountain of A is in fact a fountain.

In the following diagram, consider an object x and its region H(Σ−1x) in
the Auslander-Reiten quiver of D, indicated by wavy lines. As indicated,
half lines (which start from the bottom line) of the form ri or si, where
i ∈ N is a variable, are also introduced. Suppose the region H−(Σ−1x)
(resp. H+(Σ−1x)) has boundary half lines s0 and sm (resp. r0 and rm).
Then each line si (resp. ri), 0 ≤ i ≤ m, has to pass through the region
H−(Σ−1x) (resp. H+(Σ−1x)) and is parallel to the boundary lines of the
region H−(Σ−1x) (resp. H+(Σ−1x)).

sm r0

ri

si x

s0 rm

t

Let S be the intersection of H−(Σ−1x) and the objects of A. On each
line si, 0 ≤ i ≤ m, consider the first object ai in A which lies above the
line segment t. Denote by as the direct sum of all the ai and consider the
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canonical morphism as → x. By Lemma 3.3.6, each morphism a → x with
a in S factors as a→ as → x.

For example, in the following diagram, let m = 5 and the circles and bullets
indicate the first few objects of A on each line si. The object as described
above is the direct sum of the objects indicated by circles ◦.

s5

s4

s3

s2 •
s1 x

s0 • ◦
•
◦ t

•

Let R be the intersection of H+(Σ−1x) and the objects of A. There is the
desire of an ar in A with a morphism ar → x such that each morphism
a→ x with a in R factors as a→ ar → x.

Suppose R is finite. Then let ar be the direct sum of the objects in R
(Lemma 2.5.1). Otherwise R is infinite. Since there are only finitely many
ri, there is a line rj which contains infinitely many objects in A with a non-
zero morphism to x. Let J ⊆ {0, . . . ,m} consist of the j such that the line
rj contains infinitely many objects in A with a non-zero morphism to x.

Now for each j in J , the line rj corresponds to a right fountain of A, and by
assumption, each right fountain is also a fountain. Hence the corresponding
line sj contains infinitely many objects in A with a non-zero morphism to x.
Among the sj with j in J , take the line sq which is closest to the boundary
line sm, and then consider any object which is in both A and H−(Σ−1x) on
that line. By Lemma 3.3.4, this object plays the role of ar.

For example, in the following diagram, m = 5 and J = {1, 2}. The line sq
described above is the line s2 here. The bullets on the ri indicate the first
few objects of A in H+(Σ−1x). The bullets and the circle on the si indicate
the first few objects of A on those half lines. The object ar described above
is indicated by the circle ◦ (one of the infinitely many choices).
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s5 r0

r1

• r2

s2

s1 x • •
s0 • • • r5

• ◦
•

•

Finally, an A-precover of x can be obtained as ar ⊕ as → x.

Remark 4.3.2. (i) In the only if part of the proof of Theorem 4.3.1, the
way the position of the direct summand bk is calibrated is very similar
to the descriptions found in two previous situations, by simply looking
at which morphisms are zero and which are not. The first situation is
in Lemma 3.2.7, where the regions LX (a) and RX (a) are determined.
The other situation is in Lemma 3.4.28, where the mapping cone of
the morphism µ : a+ → d1 is determined.

(ii) In the if part of the proof of Theorem 4.3.1, the occurrence of the back-
ward morphisms begets the simultaneous occurrence of a left fountain
(where it is a right fountain already) in pursuance of symmetry. Even
though the introduction of the left fountain induces more objects in
A, it also provides another distribution of objects in A with different
suggestiveness, thus permitting A to be precovering.

The following is the dual of Theorem 4.3.1.

Theorem 4.3.3. Let A be a subcategory of D and let A be the corresponding
set of arcs. Then A is preenveloping if and only if each left fountain of A is
in fact a fountain.

Proof. Similar.

4.4 Torsion theories

In this section, let A be a set of arcs. A sequence of results regarding A
is given, and then also a checkable condition equivalent to X = ort ort(X),
see Lemma 4.4.20. Finally, the main theorem of this chapter is given in
Theorem 4.4.22.
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Definition 4.4.1. Let U be a subcategory of D. Then U is said to be weak
cluster tilting if it satisfies U = (Σ−1U)⊥ and U = ⊥(ΣU), and is said to be
cluster tilting if it is weak cluster tilting, precovering and preenveloping.

In [19], the cluster tilting subcategories of D were shown to be in bijection
with certain maximal sets of non-crossing arcs connecting non-neighbouring
integers. This is rephrased as follows.

Theorem 4.4.2. ([19, Theorem 4.4]) Let U be a weak cluster tilting sub-
category of D with U as the corresponding maximal set of non-crossing arcs.
Then U is precovering and preenveloping (that is, U is a cluster tilting sub-
category of D) if and only if U is (i) locally finite, or (ii) has a fountain.

In this section, the above theorem is generalized in terms of a bijection
between torsion theories in D and certain configurations of arcs connecting
non-neighbouring integers.

The following little lemma is a simple play of concepts.

Lemma 4.4.3. Let (a, b) be an arc (not necessarily in A). Then the follow-
ing are equivalent.

(i) ort ortA = A,

(ii) If (a, b) is an arc such that each arc crossing (a, b) also crosses an arc
in A, then (a, b) is in A.

Proof. (i)⇒ (ii): Suppose ort ortA = A and let the arc (a, b) be as described.
Then the arc (a, b) is in ort ortA, otherwise there would have to be an arc
(c, d) in ortA which crossed (a, b). Subsequently, (c, d) would be an arc which
crossed (a, b) but would not cross any arcs in A, which is a contradiction.
Therefore the arc (a, b) is in ort ortA = A.

(ii) ⇒ (i): Suppose otherwise that ort ortA ⊃ A. Let (a, b) be an arc in
ort ortA but not in A. Then there has to be an arc (c, d) which crosses
(a, b) but does not cross any arcs in A. Therefore (c, d) is in ortA. However,
(c, d) is not in ort ort ort(U), which is a contradiction since ort ort ort(U)
= ort(U) by Lemma 4.2.9. Therefore ort ortA ⊆ A which, together with
ort ort(U) ⊇ U, gives ort ortA = A.

Now let us enter the spirit of this section.

Lemma 4.4.4. Suppose ort ortA = A. Then A satisfies conditions (?) and
(? ?) of Definitions 4.2.3 and 4.2.5.

131



Proof. To see that A satisfies condition (?), consider the diagram in Defini-
tion 4.2.3. The arc (a, c) is in ort ortA, otherwise there would have to be
an arc (m,n) in ortA which crossed (a, c), but the arc (m,n) cannot be in
ortA since it crosses either the arc (a, b) or the arc (c, d) in A. Therefore
the arc (a, c) is in ort ortA = A. The rest is similar.

To see that A satisfies condition (? ?), consider the diagram in Defini-
tion 4.2.5. Suppose the arc (a, b) is not in ort ortA. Then there is an arc
(m,n) in ortA which crosses (a, b), that is, m < a < n < b or a < m < b < n.
For the first case the arc (m,n) cannot however be in ortA, since there is
always an arc (q, a) with q < m in A which crosses (m,n), and similarly for
the second case. Therefore the arc (a, b) is in ort ortA = A.

Lemma 4.4.5. Suppose A satisfies condition (?) and suppose there are only
finitely many (but not zero) arcs in A that end in a. Suppose there are both
arcs going to the left and arcs going to the right from a. If (p, a) is the
longest arc in A going to the left from a and (a, q) is the longest arc in A
going to the right from a, then (p, q) is an arc in ortA.

p a q

Proof. There are no arcs (m,n) in A withm < p, p < n < a, otherwise (m, a)
would be in A by condition (?), contradicting that (p, a) is the longest arc in
A going to the left from a. There are also no arcs (m,n) in A with p < m < a,
q < n, otherwise (a, n) would be in A by condition (?), contradicting that
(a, q) is the longest arc in A going to the right from a.

Similarly, there are no arcs (m,n) in A with a < m < q, q < n, and there
are also no arcs (m,n) in A with m < p, a < n < q. By construction there
are no arcs (m, a) in A with m < p, and there are also no arcs (a, n) in A
with q < n.

Combining all these shows that there are no arcs in A crossing (p, q) so (p, q)
has to be in ortA.

Lemma 4.4.6. Suppose A satisfies condition (?) and suppose there are only
finitely many (but not zero) arcs in A that end in a. Suppose there are only
arcs going to the left from a. If (p, a) is the longest arc in A going to the
left from a, then (p, a+ 1) is in ortA.
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p a a+ 1

Proof. There are no arcs (m,n) in A with m < p, p < n < a, otherwise
(m, a) would be in A by condition (?), contradicting that (p, a) is the longest
arc in A going to the left from a. There are also no arcs (m,n) in A with
p < m < a, n > a + 1, otherwise (a, n) would be in A by condition (?),
contradicting that there are no arcs in A going to the right from a. By
construction there are no arcs (m, a) in A with m < p and it is a condition
that there are no arcs (a, n) in A. Therefore (p, a+1) has to be in ortA.

Lemma 4.4.7. Suppose A satisfies condition (?) and suppose there are only
finitely many (but not zero) arcs in A that end in a. Suppose there are only
arcs going to the right from a. If (a, p) is the longest arc in A going to the
right from a, then (a− 1, p) is in ortA.

a− 1 a p

Proof. Similar to Lemma 4.4.6.

Remark 4.4.8. Suppose (a, b) is an arc in ort2(A). Then there has to be
some arc in A which ends in a (resp. b). Otherwise the arc (a − 1, a + 1)
(resp. (b−1, b+1)) is in ortA, which is a contradiction since it crosses (a, b)
in ort2(A).

Corollary 4.4.9. Suppose A satisfies condition (?). Suppose that (a, b) is
an arc in ort2(A) and that there are only finitely many arcs in A that end
in a. Then it is not possible that all arcs in A that end in a are of the form
(m, a).

p a b

Proof. Suppose all arcs in A that end in a were of the form (m, a) and let
(p, a) be the longest one. Then by Lemma 4.4.6 the arc (p, a + 1) is in ort
A, but this is a contradiction since it crosses (a, b) which is in ort2(A).
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Corollary 4.4.10. Suppose A satisfies condition (?). Let (a, b) be an arc
in ort2(A) and suppose there are only finitely many arcs in A that end in a.
Then there is an arc (a,m) in A with b ≤ m.

Proof. By Corollary 4.4.9, it is not possible that all arcs in A that end in a
are of the form (m, a). Therefore only the following two cases remain.

(i) Suppose there are arcs in A going to the left and going to the right
from a. Let (a, q) be the longest arc in A going to the right from a and
(p, a) be the longest arc in A going to the left from a. By Lemma 4.4.5,
(p, q) is in ortA, so q < b is not possible since then (p, q) would cross
(a, b) in ort2(A).

p a q b

Therefore b ≤ q.

(ii) Suppose there are only arcs in A going to the right from a. Let (a, p)
be the longest arc in A going to the right from a. By Lemma 4.4.7,
(a−1, p) is in ortA, so p < b is not possible since then (a−1, p) would
cross (a, b) in ort2(A).

a− 1 a p b

Therefore b ≤ p.

Corollary 4.4.11. Suppose A satisfies condition (?). Suppose that (a, b) is
an arc in ort2(A) and that there are only finitely many arcs in A that end
in b. Then it is not possible that all arcs in A that end in b are of the form
(b,m).

Proof. Similar to Corollary 4.4.9.

Corollary 4.4.12. Suppose A satisfies condition (?). Let (a, b) be an arc
in ort2(A) and suppose there are only finitely many arcs in A that end in b.
Then there is an arc (m, b) in A with m ≤ a.
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Proof. Similar to Corollary 4.4.10.

Lemma 4.4.13. Suppose A satisfies condition (?). Let (a, b) be an arc in
ort2(A) and suppose that each of a and b is only an end point of finitely
many arcs in A. Then (a, b) is in A.

Proof. By Corollary 4.4.10, there is an arc (a, q) in A with b ≤ q. On the
other hand by Corollary 4.4.12, there is an arc (p, b) in A with p ≤ a. If
q = b or p = a already, then this is what is to be shown. Assume otherwise
that q > b and p < a. But then (a, b) is in A by condition (?).

p a b q

Lemma 4.4.14. Suppose A satisfies condition (?). Let both a and b be right
(resp. left) fountains of A with b− a ≥ 2. Then (a, b) is in A.

Proof. Suppose both a and b are right fountains of A. Choose an arc (a, p)
in A with b < p and then choose an arc (b, q) in A with p < q. Then (a, b)
is in A by condition (?).

a b p q

The other case is similar.

Lemma 4.4.15. Suppose A satisfies condition (?). Let a be a right fountain
of A, b be a left fountain of A with b− a ≥ 2. Then (a, b) is in A.

Proof. Choose an arc (a, q) in A with b < q and then choose an arc (p, b) in
A with p < a. Then (a, b) is in A by condition (?).

p a b q

Lemma 4.4.16. Suppose A satisfies condition (?). Let (a, b) be an arc in
ort2(A). Suppose b is a left fountain of A and suppose there are only finitely
many arcs in A that end in a. Then (a, b) is in A.
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Proof. By Corollary 4.4.10, there is an arc (a,m) in A with b ≤ m. If m = b
already, then this is what is to be shown. Otherwise choose an arc (p, b) in
A with p < a. Then (a, b) is in A by condition (?).

p a b m

Lemma 4.4.17. Suppose A satisfies condition (?). Let (a, b) be an arc in
ort2(A). Suppose b is a right fountain of A and suppose there are only finitely
many arcs in A that end in a. Then (a, b) is in A.

Proof. By Corollary 4.4.10, there is an arc (a,m) in A with b ≤ m. If m = b
already, then this is what is to be shown. Otherwise choose an arc (b, q) in
A with m < q. Then (a, b) is in A by condition (?).

a b m q

Lemma 4.4.18. Suppose A satisfies condition (?). Let (a, b) be an arc
in ort2(A). Suppose a is a right fountain of A and suppose there are only
finitely many arcs in A that end in b. Then (a, b) is in A.

Proof. Similar to Lemma 4.4.16.

Lemma 4.4.19. Suppose A satisfies condition (?). Let (a, b) be an arc in
ort2(A). Suppose a is a left fountain of A and suppose there are only finitely
many arcs in A that end in b. Then (a, b) is in A.

Proof. Similar to Lemma 4.4.17.

Finally, we deliver the following lemma which is a recollection of the above
lemmas.

Lemma 4.4.20. (c.f. Lemma 4.2.17) ort ortA = A if and only if A satisfies
conditions (?) and (? ?).
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Proof. (only if ) This is Lemma 4.4.4. (if ) It is immediate that A ⊆ ort ortA.
Let (a, b) be an arc in ort2(A). Suppose that each of a and b is only an end
point of finitely many arcs in A. Then (a, b) is in A by Lemma 4.4.13.
Otherwise suppose that both a and b are end points of infinitely many arcs
in A. Then (a, b) is in A by Lemma 4.4.14, Lemma 4.4.15 and condition (? ?).
Finally, suppose that precisely one of a and b is an end point of finitely many
arcs in A. Then (a, b) is in A by Lemma 4.4.16, Lemma 4.4.17, Lemma 4.4.18
and Lemma 4.4.19.

Unlike Lemma 4.4.3, Lemma 4.4.20 expresses explicitly ort ortA = A in
terms of the configuration of A. It can also be seen directly that the condition
in Lemma 4.4.3 does imply conditions (?) and (? ?).

Example 4.4.21. (i) Let U be a set of arcs. By Lemma 4.2.9, ort ort ort(U)
= ort(U). Therefore ort(U) satisfies conditions (?) and (? ?) by Lemma 4.4.20.
The same is true for ortn(U), n ≥ 1.

(ii) Suppose A is a set of non-crossing arcs where ort ortA = A. Then
it is not necessary that A is a maximal set of non-crossing arcs. For
example, let A consist only of a left fountain a, a right fountain b and
the arc (a, b). The following diagram shows only some of the arcs from
the configuration described.

a b

By Lemma 4.4.20, ort ortA = A. However, it is certainly not a maxi-
mal set of non-crossing arcs. For example, it is possible to add an arc
as in the following diagram.

a b

Now we are ready to deliver the main theorem of this chapter.

Theorem 4.4.22. Let X be a subcategory of D and let X be the correspond-
ing set of arcs. Then the following conditions are equivalent.

(i) X satisfies conditions (?) and (? ?), and each right fountain of X is in
fact a fountain,

(ii) The subcategory X is precovering and is closed under extensions,
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(iii) (X ,Y) is a torsion theory for some subcategory Y of D. In particular,
Y = X⊥.

Proof. (i) ⇒ (ii): X satisfying conditions (?) and (? ?) implies X being
closed under extensions by Lemma 4.2.17 and Lemma 4.4.20 (as well as
Lemma 1.2.19). Finally, X is precovering if and only if each right fountain
of X is in fact a fountain by Theorem 4.3.1. (ii) ⇔ (iii): This is true by [21,
Proposition 2.3]. (iii) ⇒ (i): Since (X ,Y) is a torsion theory, X = ⊥(X⊥)
(Lemma 1.2.7) and X is precovering. Therefore X satisfies conditions (?)
and (? ?) by Lemma 4.2.17 and Lemma 4.4.20 and each right fountain of X
is in fact a fountain by Theorem 4.3.1.

Example 4.4.23. (c.f. Example 4.4.21(ii)) In Theorem 4.4.22, if X is only
closed under extensions, then X does not necessarily satisfy condition (?).
For example, by Lemma 3.3.18, (−4,−1)→ (−4, 1)→ (−2, 1)→ is a distin-
guished triangle. Suppose the arcs (−4,−1), (−4, 1) and (−2, 1) are all in
X. This however does not imply the arcs (−4,−2) and (−1, 1) in X, which
is required by condition (?).

−4 −3 −2 −1 0 1 2 3

Example 4.4.24. Let U be a cluster tilting subcategory with the correspond-
ing set of arcs U. Then by definition (U , ΣU) is a torsion theory. Therefore
by Theorem 4.4.22, U satisfies conditions (?) and (? ?), and each right foun-
tain of U is in fact a fountain. This is compatible with the description given
in Theorem 4.4.2, and is altogether a generalization of it.

Remark 4.4.25. This is a little digression. The way torsion theories general-
ize cluster tilting subcategories reminds us of the way distinguished triangles
generalize Auslander-Reiten triangles. It is good mathematics to consider
(different) special cases of the given notions, and then unveil the special
relationships hidden not because they are particularly enigmatic but that
coincidences are simply nature’s camouflage.

4.5 Examples

In this section, two special types of torsion theories in D are described, those
of t-structures and co-t-structures. Given a subcategory U of D, examples
where the pair (U ,U⊥) might or might not be a torsion theory are given.
In the context of a t-structure, an example is given to illustrate the torsion
theory triangles explicitly on the Auslander-Reiten quiver.

Let us first describe t-structures.
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Theorem 4.5.1. Let (U ,V) be a t-structure in D, that is, (U ,V) is a torsion
theory with ΣU ⊆ U . Suppose U is neither zero nor all of D, then there is a
half line such that the indecomposable objects of U are precisely the objects
on the half line and to the left of it, as shown in the following diagram.

U

Proof. Let U be the corresponding set of arcs for the subcategory U .

(Step 1 ) Consider a horizontal line y − x = k with k ≥ 3 in the Auslander-
Reiten quiver of D. If there are objects from U on this line, then there is
a rightmost such object. Namely, suppose not. Then there are objects of
U arbitrarily far to the right on y − x = k, so all objects on y − x = k
are in U because ΣU ⊆ U . In the following diagram, let d1 = (u1, u2) and
d2 = (u1 + 1, u2− 1) be objects on the lines y− x = k+ 1 and y− x = k− 1
respectively. Then there is the Auslander-Reiten triangle d0 → d1 ⊕ d2 →
d′0 →, where d0 = (u1, u2 − 1) and d′0 = (u1 + 1, u2). Since d0 and d′0
both lie on the line y − x = k which is in U , it follows that d1 and d2 are
in U , since U is closed under extensions and direct summands. Therefore
the two neighbouring lines y − x = k + 1 and y − x = k − 1 are in U .
Repeating the argument for other (horizontal) lines, U has to contain all
the indecomposable objects of D, i.e. U has to be all of D. The case where
k = 2 is similar.

d1
��

d0

??

��
d′0

d2

??

(Step 2 ) Pick an object d = (m,n) in U and assume it is the rightmost
object of U on the horizontal line y−x = n−m. Here it will be shown that
the region L = {(x, y)|y ≤ n, y − x ≥ 2} is in U .

(i) Suppose n − m = 2. In the following diagram, let u1 = (m − 1, n).
Then there is the Auslander-Reiten triangle Σd → u1 → d →. Since
ΣU ⊆ U , therefore Σd is in U . Hence u1 is in U , since U is closed
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under extensions. By applying a (similar) argument on u1 and so on,
the half line y = n is in U , and so are all the half lines y = n′ with
n′ ≤ n, since ΣU ⊆ U . Therefore the region L is in U .

y = n

u1

Σd d

(ii) Suppose n−m > 2. Since ΣU ⊆ U , therefore Σd = (m− 1, n− 1) is in
U . In the following diagram, let u1 = (m− 1, n) and u2 = (m,n− 1).
Then there is the Auslander-Reiten triangle Σd → u1 ⊕ u2 → d →.
Therefore u1 and u2 are both in U , since U is closed under extensions.
By applying a (similar) argument on u1 and u2 and so on (if possible),
the two half lines t1 and t2 are in U . Eventually, the region labelled
L0 (including the two half lines t1 and t2) is in U , since ΣU ⊆ U .

t1

u1

L0 Σd d

u2

t2 L1

Now it remains to show that the little triangular region, L1 = {(x, y) |
m+ 1 ≤ x ≤ n− 2,m+ 3 ≤ y ≤ n and y − x ≥ 2}, is also in U .

Let r0 = (m − 1,m + 1). Since the arcs r0 and d = (m,n) cross, it
follows that q0 = (m + 1, n) is in U since U satisfies condition (?) by
Theorem 4.4.22.

m− 1 m m+ 1 n

Similarly, with the help of r1 = (m − 1,m + 2), it follows that q1 =
(m+ 2, n) is in U , and so on (if possible), until all the objects (m′, n),
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with m+ 1 ≤ m′ ≤ n− 2, are in U . This argument is to be repeated,
starting with u2 = (m,n − 1), u3 = (m,n − 2) and so on instead (if
possible), until the region L1 is in U . Therefore L = L0 ∪ L1 is in U ,
and this is what is needed to be shown.

u1

Σd d

u2 q0

u3 q1

r1

r0

(Step 3 ) Suppose there is an indecomposable object d′ = (u, v) of U which
lies outside the region L, i.e. n < v. Similar to Step 2, all the half lines
y = v′ with v′ ≤ v will be in U . Therefore the indecomposable object Σ−1d =
(m+ 1, n+ 1) will also be in U , contradicting that d is the indecomposable
object of U which is rightmost on the line y − x = n − m. Therefore the
indecomposable objects of U are precisely the objects on the half line y = n
and to the left of it, i.e. the region L.

Remark 4.5.2. Consider U and U in Theorem 4.5.1. Other possible choices of
crossing of arcs within U would not give us any more new arcs not contained
in U already (Example 4.2.4 and Remark 4.2.14).

Alternatively, one can conceive the set of arcs U as a sequence of left full
fountains going to the left. This means there is an integer p such that q is a
left full fountain of U for all q ≤ p and there are no left (full) fountains q > p
of U (p is the rightmost left full fountain of U). Any arcs (a, b) induced by
crossing of arcs within U (those arcs that are to be included under condition
(?)) are in U already (i.e. b has to be a left full fountain of U already).
Therefore the set of arcs U in Theorem 4.5.1 does satisfy condition (?).

For example, let p = 2. The following diagram shows, amongst other arcs
of U, the arcs (−4, 0) and (−2, 2) and they cross.

−4 −3 −2 −1 0 1 2
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The arc (0, 2) has to be in U since 2 is a left full fountain, and similarly the
arcs (−2, 0), (−4,−2) and (−4, 2) have to be in U, since 0, −2 and 2 are all
left full fountains.

Example 4.5.3. Let U be a subcategory of D. Lemma 4.2.15 is needed for
the following.

(i) In the following diagram, suppose the indecomposable objects of U are
precisely the objects on the dotted half line l1 : y = m (some m) and
to the left of it. Then the indecomposable objects of U⊥ are precisely
the objects on the dotted half line l2 : x = m − 1 and to the right of
it, and the indecomposable objects of (U⊥)⊥ are precisely the objects
on the dotted half line l3 : y = m− 2 and to the left of it.

l3 l1 l2

(U⊥)⊥ U U⊥

(ii) In the following diagram, suppose the indecomposable objects of U are
precisely the objects on the dotted half line l1 : y = m (some m) and
to the left of it. Then the indecomposable objects of ⊥U are precisely
the objects on the dotted half line l2 : x = m + 1 and to the right of
it, and the indecomposable objects of ⊥(⊥U) are precisely the objects
on the dotted half line l3 : y = m+ 2 and to the left of it.

l1 l3 l2

U ⊥(⊥U) ⊥U

Here it is true that U = ⊥(U⊥) and that U = (⊥U)⊥.

Let U be as described in Theorem 4.5.1. Then all the rightmost objects
of U on their respective horizontal lines form a straight half line. This is
profoundly different from Corollary 1.4.7, where given a split torsion theory
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(X ,Y) in the finite derived category Db(mod kAn), the leftmost objects ak
(on their respective lines y − x = k) which are in X form a zig zag Z. It
would not be true if the straight half line in Theorem 4.5.1 were replaced by
a half zig zag line. One example is as follows.

Example 4.5.4. Let U ′ be a subcategory of D. Suppose there is a half zig zag
line such that the indecomposable objects of U ′ are precisely the objects on
the half zig zag line and to the left of it, as shown in the following diagram.
Here the solid line segment on the top keeps on going to the left. The dotted
half line is l1 : y = m (some m).

l1

U ′

In the following diagram, let U ′0 be the region outside U ′ bounded by and
including the dotted line.

U ′ U ′0

Let U′ be the corresponding set of arcs for the subcategory U ′.

Either interpretation, as arcs or as indecomposable objects of D on the
quiver, gives that U ′ is not equal to ⊥(U ′⊥). This is described as follows.

In terms of arcs, follow (with variations) Step 2 of the proof of Theorem 4.5.1
(since U ′ = ⊥(U ′⊥) is equivalent to U′ satisfying conditions (?) and (? ?) by
Lemma 4.2.17 and Lemma 4.4.20, to have U ′ = ⊥(U ′⊥) is to have the region
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U ′0 in U ′ as well, similar to the way the little triangular region L1 is to be in
U in Theorem 4.5.1).

In terms of indecomposable objects of D on the quiver, this is simply by in-
spection. The regions U ′⊥ and ⊥(U ′⊥) are as follows, i.e. the indecomposable
objects of U ′⊥ are precisely the objects on the dotted half line l2 : x = m−1
and to the right of it, and the indecomposable objects of ⊥(U ′⊥) are pre-
cisely the objects on the dotted half line l1 : y = m and to the left of it (c.f.
Example 4.5.3).

l1 l2

⊥(U ′⊥) U ′⊥

Both interpretations give U ′ ⊂ ⊥(U ′⊥).

Remark 4.5.5. In Example 4.5.4, the set of arcs U′ does not satisfy condition
(?). Therefore by Theorem 4.4.22, (U ′,U ′⊥) is not a torsion theory, even
though U′ contains no right fountains at all. This is no surprise, as U ′ ⊂
⊥(U ′⊥) contradicts Lemma 1.2.7.

Given an (indecomposable) object t of D which is neither in U ′ nor in U ′⊥,
there might not even be a torsion theory triangle u′ → t→ u′′ →, where u′

is in U ′ and u′′ is in U ′⊥. Nevertheless, the following example illustrates the
existence of (some) torsion theory triangles in a t-structure explicitly.

Example 4.5.6. Consider again the t-structure (U ,V) in Theorem 4.5.1, and
let U and V be the corresponding sets of arcs for the subcategories U and V
respectively. The lines l1 : y = m and l2 : x = m− 1, and the regions U and
U⊥ are shown in the following diagram (Example 4.5.3(i)).
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t1

��

l1 l2

u1

??

t2

��U u2

??

q U⊥

t0
��

v1

u u0

??

v0
y−x=2

As seen in Lemma 1.2.7, U⊥ = V and U = ⊥(U⊥). This is again no surprise
(Example 4.5.3).

(i) Let t0 = (m− 2,m+ 1). Then there is the Auslander-Reiten triangle
u0 → t0 → v0 →, which is also a torsion theory triangle, where u0 =
(m− 2,m) is in U and v0 = (m− 1,m+ 1) is in U⊥ = V.

(ii) Let t1 = (a1, b1) be an indecomposable object of D which is neither
in U nor in U⊥. Then by Lemma 3.3.18, there is the distinguished
triangle u1 → t1 → v1 →, which is a torsion theory triangle, where
u1 = (a1,m) is in U and v1 = (m− 1, b1) is in U⊥ = V.

(iii) Let u = (m − 4,m − 2) be in U and let t2 = (m − 4,m + 1) be an
indecomposable object of D which is neither in U nor in U⊥. Then
by Lemma 3.3.18, there is the distinguished triangle u → t2 → q →,
where q = (m − 3,m + 1). This is however not a torsion theory
triangle, since q is not in U⊥ = V. But similar to (ii) there is a torsion
theory triangle u2 → t2 → v2 →, where u2 = (m − 4,m) is in U and
v2 = v0 = (m− 1,m+ 1) is in U⊥ = V.

(iv) It can be seen directly from the diagram that U⊥ = V is not closed
under the action of Σ (it is closed under the action of Σ−1, and it is
of no surprise, see Lemma 1.2.15), and it is not true that each right
fountain of V is in fact a fountain (it is however true that each left
fountain of V is in fact a fountain, though V does not have any left
fountains).

(v) The morphisms u0 → t0 in (i), u1 → t1 in (ii) and u2 → t2 in (iii) are
all U-precovers, and the morphisms t0 → v0 in (i), t1 → v1 in (ii) and
t2 → v2 in (iii) are all V-preenvelopes (Example 1.2.10(ii)). Compare
Lemma 3.3.10 and Lemma 3.3.11.

(vi) This example echoes Remark 1.5.5 in Section 1.5. Since (U ,V) is
a t-structure, the inclusion ı : U ↪→ D admits a right adjoint R :

145



D → U . Similarly, the inclusion ı : V ↪→ D admits a left adjoint
L : D → V (Example 1.2.25). Given t in D, there is a (unique)
torsion theory triangle Rt → t → Lt → ΣRt with Rt in U and Lt in
V. Accordingly, the torsion theory triangles ui → ti → vi → in (i),
(ii) and (iii) serve as examples of realizing the actions of the left and
right adjoints on the Auslander-Reiten quiver. For example, in (ii),
Σu1 = Σ(a1,m) = (a1 − 1,m − 1) is indeed the mapping cone c1 of
the V-preenvelope t1 → v1 (Lemma A.3.7), thus the value of Rt1 can
be retrieved (i.e. Rt1 = Σ−1c1 = Σ−1Σu1 = u1).

(vii) Simultaneously, Rt→ t in (vi) is right minimal (Lemma 1.2.11), thus
in (i), (ii) and (iii), ui → ti is a U-cover.

The following example is a slight modification of Example 4.5.6.

Example 4.5.7. Let U be a subcategory of D, and U be the corresponding
set of arcs for the subcategory U .

In the following diagram, suppose the indecomposable objects of U are pre-
cisely the objects on the dotted half line l1 : y = m (some m) and to the
left of it, except the object ◦. Then the indecomposable objects of U⊥ are
precisely the objects on the dotted half line l2 : x = m− 1 and to the right
of it, and the indecomposable objects of ⊥(U⊥) are precisely the objects on
the dotted half line l1 and to the left of it, thus including the object ◦ (c.f.
Example 4.5.3).

l3 l1 t

��

l2

b0

U a u

??

U⊥

b1 ◦ v

u0 u1 u2
y−x=2

Let ◦ = (m−4,m−1), a = (m−5,m−1) be objects on the line l3 : y = m−1,
and u0 = (m − 6,m − 4), u1 = (m − 4,m − 2) and u2 = (m − 3,m − 1)
be objects on the line y − x = 2. Even though (U ,U⊥) = 0, and as seen
in Example 4.5.6(ii), that given an indecomposable object t = (a, b) of D
which is neither in U nor in U⊥ nor the object ◦, there is the distinguished
triangle u → t → v → with u = (a,m) in U and v = (m − 1, b) in U⊥, the
pair (U ,U⊥) is not a torsion theory.
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This is because there are no torsion theory triangles ◦u → ◦ → ◦v → with
◦u in U and ◦v in U⊥. Assume there is. Then since the object ◦ is in
⊥(U⊥), the morphism ◦ → ◦v is zero, and thus the distinguished triangle
Σ−1◦v → ◦u → ◦ → ◦v splits, i.e. ◦u ∼= Σ−1 ◦v ⊕◦. Since U is closed under
isomorphisms and direct summands, the object ◦ will have to be in U , which
is a contradiction. Therefore (U ,U⊥) is not a torsion theory.

This is again no surprise by Theorem 4.4.22, since

(i) U is not closed under extensions. This is because u1 → ◦ → u2 → is an
Auslander-Reiten triangle with u1, u2 in U but not ◦. Alternatively,
let b1 = (m−6,m−3) and b0 = (m−6,m−1). Then by Lemma 3.3.18,
b1 → b0 → ◦ → Σb1 is a distinguished triangle. Since both b0 and Σb1
are in U but not ◦, this is another example where U fails to be closed
under extensions.

(ii) U does not satisfy condition (?). Again consider the pair of crossing
arcs u0 = (m − 6,m − 4) and a = (m − 5,m − 1), but the arc ◦ =
(m− 4,m− 1) is not in U.

(iii) Simply, U ⊂ ⊥(U⊥) (Lemma 4.2.17 and Lemma 4.4.20).

The author would like to thank Rafael Bocklandt and Vanessa Miemietz for
suggesting the following example.

Let U be some subcategory of D. The following gives the example where
the pair (U ,U⊥) is a torsion theory but not a t-structure.

Example 4.5.8. Let the indecomposable objects of U consist precisely of the
objects on the half lines y = m and x = m. Then the indecomposable objects
of U⊥ consist precisely of the objects on the dotted half lines x = m−1 and
y = m− 1 (Example 4.5.3(i)).

y = m− 1 y = m x = m− 1 x = m

t0

t1

t2

Then by Theorem 4.4.22, the pair (U ,U⊥) is a torsion theory, and it is
readily seen from Theorem 4.5.1 that the pair is not a t-structure. The
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reader can also readily establish the torsion theory triangle u0 → t0 → v0 →
where u0 is in U and v0 is in U⊥ (c.f. Example 4.5.6). Similarly, by virtue of
Lemma A.3.7, there is a torsion theory triangle u1 → t1 → v1 → where u1

is in U and v1 is in U⊥, and then finally by virtue of Lemma 3.3.18, there is
a torsion theory triangle u2 → t2 → v2 → where u2 is in U and v2 is in U⊥.

Remark 4.5.9. By virtue of Remark 4.5.2, the subcategory U of the given
form in Theorem 4.5.1 does indeed satisfy the conditions in Theorem 4.4.22
because the corresponding set of arcs U contains no right fountains at all.
Since such a subcategory U is also closed under the action of Σ, the converse
of Theorem 4.5.1 has to be true.

Remark 4.5.10. In Example 4.5.6, let U and V be the corresponding sets of
arcs for the subcategories U and U⊥ = V respectively. Then V = Σ ortU.
This gives Σ ortU = {d | Σ−1d does not cross any arcs in U} = {d | d
does not cross any arcs in ΣU} = ort(ΣU). Therefore ort ort(Σ ortU) =
ort ort ort(ΣU) = ort(ΣU) = Σ ortU (Lemma 4.2.9). Alternatively, ort ortV =
V (Lemma 4.2.17) since U⊥ = ⊥((U⊥)⊥) (Example 4.5.3).

On the other hand, V satisfies conditions (?) and (? ?), by a mirror argument
of the situation in U (Remark 4.5.2 and Remark 4.5.9). This is no surprise
(Lemma 4.4.20).

By virtue of Remark 4.5.9, there are by contrast no non-trivial co-t-structures
([10], [38]).

Theorem 4.5.11. Let (U ,V) be a co-t-structure in D, that is, (U ,V) is a
torsion theory with Σ−1U ⊆ U . If U is non-zero, then U has to be all of D.

Proof. Let U be the corresponding set of arcs for the subcategory U . If U is
non-zero, let d = (m,n) be an indecomposable object of U .

(Step 1 ) Here it will be shown that the region R0 = {(x, y)|m ≤ x, n ≤ y
and y − x ≥ 2} is in U .

(i) Suppose n − m = 2. In the following diagram, let u1 = (m,n + 1).
Then there is the Auslander-Reiten triangle d → u1 → Σ−1d → .
Since Σ−1U ⊆ U , therefore Σ−1d is in U . Hence u1 is in U , since U
is closed under extensions. By applying a similar argument on u1 and
so on, the half line x = m is in U , and so are all the half lines x = m′

with m ≤ m′, since Σ−1U ⊆ U . Therefore the region R0 is in U .
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x = m

u1 R0

d Σ−1d

(ii) Suppose n−m > 2. Since Σ−1U ⊆ U , therefore Σ−1d = (m+1, n+1) is
in U . In the following diagram, let u1 = (m,n+1) and u2 = (m+1, n).
Then there is the Auslander-Reiten triangle d→ u1 ⊕ u2 → Σ−1d→.
Therefore both u1 and u2 are in U , since U is closed under extensions.
By applying a (similar) argument on u1 and u2 and so on (if possible),
the two half lines t1 and t2 are in U . Eventually, the region R0 is in
U , since Σ−1U ⊆ U .

t1

u1

d

u2 R0

t2

(Step 2 ) It follows from Step 1 that m is a right fountain of U. By Theo-
rem 4.4.22, it is a fountain.

In particular, choose an indecomposable object d0 = (p,m) of U withm−p >
2, as shown in the following diagram. Similar to (ii) in Step 1, the region
R1 = {(x, y)|p ≤ x,m ≤ y and y − x ≥ 2} ⊃ R0 is in U .
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y = m x = m− 2 x = m

R1

d0

(Step 3 ) Similarly, p is a right fountain of U, and so repeating the argument
of Step 2, there is a region R2 ⊃ R1 in U . Since the argument can be
continued in this way indefinitely, U has to contain all the indecomposable
objects of D, i.e. U has to be all of D.

At last we have arrived at the finale of the thesis. The following is an echo
of Section 1.3 and Section 1.4 in Chapter 1.

Remark 4.5.12. Let (U ,V) be a t-structure in D.

(i) Lemma 1.3.12 and Theorem 1.4.8 together classifies t-structures in the
finite derived category Db(mod kAn). Compare Theorem 4.5.1.

(ii) Remark 1.4.12 describes the condition where the notions of split tor-
sion theories and t-structures coincide (SU ∼= U). This is very far from
the situation in D (S = Σ2).

(iii) The distinguished triangles given in Example 4.5.6(i), (ii) and (iii) are
indubitably non-split, and there are no doubt indecomposable objects
t in D which are neither in U nor in V. Again (U ,V) is not a split
torsion theory (Lemma 1.3.10).

Remark 4.5.13. Let (U ,V) be a co-t-structure in D.

(i) By Theorem 1.3.5, a torsion theory in D is a co-t-structure if and
only if it is a split torsion theory, since τ = SΣ−1 = Σ. However,
Theorem 4.5.11 differs very much from Theorem 1.4.8, where the split
torsion theories in the finite derived category Db(mod kAn) are classi-
fied.

(ii) By Lemma 1.3.10 and (i), each indecomposable d in D is either in U
or in V. This is vacuously true, since if U is non-zero, then U has to
be all of D by Theorem 4.5.11.
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(iii) By Lemma 1.3.12, every split torsion theory is a t-structure. Together
with (i), this means (U ,V) is a t-structure. However, this is again
vacuously true, since there are no non-trivial co-t-structures by Theo-
rem 4.5.11.
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“It is a land of peace,” whispered Frodo, though he knew not from whence
his words came. “A land of quiet, and of healing, and of bright white light.
There is joy there, and there is rest.”

“There is quiet and rest in the Shire,” Merry pointed out, “or at least, there
is for me.”

“Yes,” said Frodo, laughing suddenly, “and I do not want for quiet and rest
while you are with me. You are the light in my darkness, the gentle strength
that has carried me through the darkest of times. You are my family, and
no more could I wish for until my work here is done.”

The white gem that hung upon Frodo’s neck flashed with a sudden light, and
all four hobbits turned to see the sun rising above the mountains of Mordor,
chasing away the lingering shadows with her healing rays of gold. The hob-
bits stood transfigured, silver cloaks gently rippling in the soft breeze, faces
shining with light, and in each eye a vision of white shores and rolling hills
of soft green grass glimmering in the golden light of day.

J. R. R. Tolkien

The Lord of the Rings

152



Appendix A

In Section A.1 and Section A.2, coherence problems in the situations of ad-
joint functors and Serre functors are studied. In category theory, a multitude
of notions are portrayed in terms of commutative diagrams. As suggested
by the word coherence, certain diagrams are considered and shown to be
commutative. Problems of this nature are largely contributed by the myr-
iad paths connecting different Hom sets, and it is not always trivial that the
different paths are the same.

In Section A.3.1, some mapping cone constructions in the finite derived
category Db(mod kA7) are illustrated. It is an attempt to provide an alter-
native to the mapping cone construction in Section 3.2.2, in the manner of
Section 3.3.2.

In Section A.3.1 and Section A.3.2, mapping cones of (compositions of)
downward morphisms in Db(mod kA7) and the cluster category of Dynkin
type A∞ are also portrayed. They serve to enrich our répertoire of map-
ping cone constructions, albeit the different suggestiveness bequeathed upon
them.

A.1 Coherence problems for adjoint functors

In this section, let A and B be arbitrary categories, and let the pair of
functors L : A → B and R : B → A be adjoints, i.e. there is an isomorphism

τ : (LA,B)
∼=→ (A,RB) for all A in A and B in B, such that τ is natural in

A and B. This is given in Example 0.1.17(iv).

Let A be in A and B be in B. Then the map ηA = τ(idLA) : A → RLA is
the unit of the adjunction, and the map εB = τ−1(idRB) : LRB → B is the
counit of the adjunction.

Example A.1.1. Let A be in A and B be in B. Suppose ηA is invertible, and
consider ηRB = τ(idLRB) : RB → RLRB. Then η−1

RB = R(εB) : RLRB →
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RB.

Proof. Since τ is natural in B, there is the following commutative diagram.

(LRB,LRB)
τRB,LRB //

(LRB,εB)

��

(RB,RLRB)

(RB,RεB)

��
(LRB,B)

τRB,B // (RB,RB)

Therefore (RB,RεB)τRB,LRB(idLRB) = τRB,B(LRB, εB)(idLRB).

Thus (RB,RεB)ηRB = τRB,BεB,

and finally, RεBηRB = idRB.

Since ηRB is invertible, η−1
RB = R(εB).

Example A.1.2. Let A be in A and B be in B. Suppose A and B are
triangulated with translation functors ΣA and ΣB respectively. If (L, σL) :

A → B is a triangulated functor where σL : LΣA
'→ ΣBL, then by [35,

Lemma 5.3.6], (R, σR) is also a triangulated functor where σR : RΣB
'→

ΣAR.

Consider εΣBB : LRΣBB → ΣBB and ΣB(εB) : ΣBLRB → ΣBB. Since

σRB : RΣBB
∼=→ ΣARB, therefore LσRB : LRΣBB

∼=→ LΣARB. Also σLRB :

LΣARB
∼=→ ΣBLRB. Is the following diagram commutative? The author at

the time of writing is not able to give an answer.

LRΣBB
εΣBB //

L(σR
B)

��

ΣBB

L(ΣAR)B

(LΣA)RB

σL
RB
��

ΣBLRB
ΣB(εB)

// ΣBB
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A.2 Coherence problems for Serre functors

In this section, let A be a k-linear and Hom finite additive category with a
Serre functor S. This is given in Definition 0.3.8. Nevertheless, it is stated
as follows.

Notation A.2.1. A right Serre functor is an additive functor S : A → A,
together with isomorphisms

ϕA,B : (A,B)
∼=→ (B,SA)∗

for any A,B ∈ A, which are natural in A and in B, and where (−)∗ =
Homk(−, k). If S is an autoequivalence, then it is a Serre functor.

Let ϕA,A(idA) be denoted by ϕA. The notations ϕA and ϕA,B, where A,B ∈
A, will be used for the rest of the section.

Let V and W be k-vector spaces and consider f : V → W . Then for θ in
W ∗ and v in V , there is a natural way to define f∗ : W ∗ → V ∗ described as
follows.

f∗(θ)(v) = θ(f(v)) (A.2.1)

Given the k-vector spaces U , V and W , consider f : U → V and g : V →W .
Then by equation (A.2.1), we have

(gf)∗ = f∗g∗. (A.2.2)

Notation A.2.2. Let U be a finite-dimensional k-vector space. Then there

is a natural way to define the double dual isomorphism ηU : U
∼=→ U∗∗, i.e.

for u in U , f in U∗,
ηU (u)(f) = f(u). (A.2.3)

The notation ηU , simply written η, where U is a finite-dimensional k-vector
space, will be used for the rest of the section.

The isomorphism η is natural in the following sense. Suppose U and V
are finite-dimensional k-vector spaces. Then given f : U → V , there is the
following commutative diagram.

U

f
��

η // U∗∗

f∗∗
��

V
η // V ∗∗
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This is because given ρ in V ∗, u in U , we have

f∗∗(η(u))(ρ) = η(u)(f∗(ρ)) (by equation (A.2.1))

= f∗(ρ)(u) (by equation (A.2.3))

= ρ(f(u)). (by equation (A.2.1))

On the other hand, since

η(f(u))(ρ) = ρ(f(u)), (by equation (A.2.3))

therefore
f∗∗(η(u)) = η(f(u)). (A.2.4)

This means the diagram is commutative.

Example A.2.3. Let A, B be in A. Consider ϕB,SA : (B,SA)
∼=→ (SA, SB)∗,

η : (SA, SB)
∼=→ (SA, SB)∗∗ and f : A → B, g : B → SA in A. Then we

have

(ϕ∗B,SAη(Sf))(g) = (η(Sf))(ϕB,SA(g)) (by equation (A.2.1))

= (ϕB,SA(g))(Sf). (by equation (A.2.3))

Therefore
(ϕ∗B,SAη(Sf))(g) = (ϕB,SA(g))(Sf). (A.2.5)

Example A.2.4. Let A1, A2, B be in A. Consider ϕAi,B : (Ai, B)
∼=→

(B,SAi)
∗, i = 1, 2. Consider g : A1 → A2, θ : A2 → B and f : B → SA1

in A. Since ϕAi,B is natural in the first variable, there is the following
commutative diagram.

(A2, B)

(g,B)

��

ϕA2,B// (B,SA2)∗

(B,Sg)∗

��
(A1, B) ϕA1,B

// (B,SA1)∗

This is to say

156



ϕA1,B ◦ (g,B) = (B,Sg)∗ ◦ ϕA2,B, (A.2.6)

which gives

(ϕA1,B(θg))(f) = ϕA2,B(θ)((Sg)f).

Suppose A2 = B and θ = idB, then

(ϕA1,B(g))(f) = ϕB,B(idB)((Sg)f) = ϕB((Sg)f). (A.2.7)

Finally, A.2.2 and A.2.6 together give

(g,B)∗ ◦ ϕ∗A1,B = ϕ∗A2,B ◦ (B,Sg)∗∗. (A.2.6*)

Example A.2.5. Let A, B1, B2 be in A. Consider ϕA,Bi : (A,Bi)
∼=→

(Bi, SA)∗, i = 1, 2. Consider g : B1 → B2, θ : A → B1 and f : B2 → SA
in A. Since ϕA,Bi is natural in the second variable, there is the following
commutative diagram.

(A,B1)

(A,g)
��

ϕA,B1// (B1, SA)∗

(g,SA)∗

��
(A,B2) ϕA,B2

// (B2, SA)∗

This is to say

ϕA,B2 ◦ (A, g) = (g, SA)∗ ◦ ϕA,B1 , (A.2.8)

which gives

(ϕA,B2(gθ))(f) = ϕA,B1(θ)(fg).

Suppose A = B1 and θ = idB1 , then

ϕB1,B2(g)(f) = ϕB1,B1(idB1)(fg) = ϕB1(fg). (A.2.9)

Finally, A.2.2 and A.2.8 together give

(A, g)∗ ◦ ϕ∗A,B2
= ϕ∗A,B1

◦ (g, SA)∗∗. (A.2.8*)
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Lemma A.2.6. Let A, B be in A, and consider f : A→ B and g : B → SA
in A. Then ϕB,SA(g)(Sf) = ϕA,B(f)(g).

Proof.

ϕB,SA(g)(Sf) = ϕB((Sf)g) (by equation (A.2.9))

= ϕA,B(f)(g). (by equation (A.2.7))

The first equality corresponds to the lower commutative square, while the
second equality corresponds to the upper commutative square in the follow-
ing diagram.

(A,B)
ϕA,B // (B,SA)∗

(B,B)

(f,B)

OO

(B,g)

��

ϕB,B // (B,SB)∗

(B,Sf)∗

OO

(g,SB)∗

��
(B,SA) ϕB,SA

// (SA, SB)∗

Lemma A.2.7. Let A, B be in A, and consider g : A→ B and θ : B → SA
in A. Then (ϕSA,SB(Sg))(Sθ) = ϕA,B(g)(θ).

Proof.

(ϕSA,SB(Sg))(Sθ) = ϕSA(SθSg) (by equation (A.2.9))

= ϕB,SA(θ)(Sg) (by equation (A.2.7))

= ϕB((Sg)θ) (by equation (A.2.9))

= ϕA,B(g)(θ). (by equation (A.2.7))

(A,B)

S(−,−)

��

ϕA,B // (B,SA)∗

(SA, SB)
ϕSA,SB// (SB, S2A)∗

S(−,−)∗

OO
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Lemma A.2.8. Let A, B be in A. Consider η : (SA, SB)
∼=→ (SA, SB)∗∗

and then f : A → B and g : B → SA in A. Then (ϕ∗B,SAη(Sf))(g) =
ϕA,B(f)(g).

Proof.

(ϕ∗B,SAη(Sf))(g) = ϕB,SA(g)(Sf) (by equation (A.2.5))

= ϕA,B(f)(g). (by Lemma A.2.6)

(A,B)

S(−,−)
��

ϕA,B // (B,SA)∗

(ϕ∗B,SA)−1

��
(SA, SB)

η // (SA, SB)∗∗

Therefore ϕ∗B,SAη(Sf) = ϕA,B(f).

Lemma A.2.9. Let A, B be in A. Consider η : (SA, SB)
∼=→ (SA, SB)∗∗

and then g : A → B and f : B → SA in A. Then (ϕ∗B,SAη(Sg))(f) =
ϕSA,SB(Sg)(Sf).

Proof.

(ϕ∗B,SAη(Sg))(f) = ϕA,B(g)(f) (by Lemma A.2.8)

= ϕSA,SB(Sg)(Sf). (by Lemma A.2.7)

(SB, S2A)∗

S(−,−)∗

��

(ϕSA,SB)−1

// (SA, SB)

η

��
(B,SA)∗ (SA, SB)∗∗

ϕ∗B,SA

oo

Example A.2.10. Consider again the diagram in Lemma A.2.7.

(A,B)

S(−,−)

��

ϕA,B // (B,SA)∗

(SA, SB) ϕSA,SB

// (SB, S2A)∗

S(−,−)∗

OO

159



Consider η : (SA, SB)
∼=→ (SA, SB)∗∗. The diagram can be expressed as

follows.

(A,B)

S(−,−)

��

ϕA,B // (B,SA)∗

(SA, SB)
η //

ϕSA,SB

��

(SA, SB)∗∗

ϕ∗B,SA

OO

ϕ∗B,SA

��
(SB, S2A)∗

S(−,−)∗
// (B,SA)∗

The upper square corresponds to the diagram in Lemma A.2.8, while the
lower square corresponds to the diagram in Lemma A.2.9.

Lemma A.2.11. Let A, B, Y be in A, and consider y : SY → B in A.
Then the following diagram is commutative.

(B,SA)
η //

(y,SA)
��

(B,SA)∗∗
ϕ∗A,B // (A,B)∗

(A,y)∗

��

(SY, SA)

(S(−,−))−1

��
(Y,A) ϕY,A

// (A,SY )∗

Proof. The diagram can be decomposed as follows.

(B,SA)
η //

(y,SA)
��

(B,SA)∗∗
ϕ∗A,B //

(y,SA)∗∗

��

(A,B)∗

(A,y)∗

��

(SY, SA)

(S(−,−))−1

��

η // (SY, SA)∗∗

ϕ∗A,SY

''
(Y,A) ϕY,A

// (A,SY )∗

The upper left square commutes by equation (A.2.4). The square on the
right commutes by equation (A.2.8*). The square on the bottom commutes
by Lemma A.2.8.
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A.3 Mapping cone construction

The author would like to thank Yann Palu for suggesting the constructions of
mapping cones of (compositions of) downward morphisms in Db(mod kA7)
and in the cluster category of Dynkin type A∞.

A.3.1 The finite derived category Db(mod kA7)

This section considers only the finite derived category Db(mod kA7), never-
theless the lemmas can be readily generalized in the finite derived category
Db(mod kAn). As usual, let Σ be the translation functor of Db(mod kA7).

Lemma A.3.1 and Lemma A.3.2 in this section have been mentioned in
Remark 3.3.21.

Consider the Auslander-Reiten quiver of the finite derived categoryDb(mod kA7)
in the following diagram.

•
��

•
��

•
��

•
��

•
��

•
��

•
��

•

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
??

��
• . . .

•
��

??

•b2
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
??

��
•a2

f2 ??

g2
��
•b1

??

��
•
??

��
•
??

��
•
??

��
•
??

��
•

•
??

��
•a1

f1 ??

g1
��
•b0

??

��
•
??

��
•
??

��
•
??

��
•
??

��
•
??

•
??

•a0

f0 ??

•c
??

•
??

•
??

•
??

•

The coordinates of some of the objects are as follows: a0 = (i, j), b0 =
(i, j + 1), a1 = (i− 1, j), b1 = (i− 1, j + 1), a2 = (i− 2, j), b2 = (i− 2, j + 1)
and c = (i + 1, j + 1). As usual, the coordinates of objects on the bottom
line satisfy the equation y − x = 2.

Lemma A.3.1. (c.f. Lemma 3.3.16) The mapping cones of the maps fn :
(i− n, j)→ (i− n, j + 1) are all isomorphic to c = (i+ 1, j + 1).

Proof. This is similar to Lemma 3.3.16. The two categories, the finite de-
rived category Db(mod kAn) and the cluster category of Dynkin type A∞,
are distinct, though their Auslander-Reiten quivers have some similarity.
The action of the translation functor Σ is not relevant in this situation.
Nevertheless, a proof is given below. Since a0 → b0 → c→ is an Auslander-
Reiten triangle, the statement is true for n = 0. Suppose the statement is
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true for n = p, p ≥ 0, i.e. the mapping cone of the map fp : ap → bp is
c = (i+ 1, j + 1). To see that the statement is true for n = p+ 1, consider
the following commutative diagram,

ap+1
µp+1 // ap ⊕ bp+1



��
ap+1

fp+1

// bp+1,

where µp+1 =

(
gp+1

fp+1

)
and the map  is the canonical surjection. By the

octahedral axiom, it may be extended to the following commutative diagram,

0 //

��

ap

ı

��

ap

fp
��

// 0

��
ap+1

µp+1 // ap ⊕ bp+1
//



��

bp

��

// Σap+1

ap+1
fp+1

//

��

bp+1

��

// c

��

// Σap+1

��
0 // Σap Σap // 0,

where the map ı is the canonical injection. The distinguished triangle on
the second row is an Auslander-Reiten triangle. Hence the mapping cone of
the map fp+1 : ap+1 → bp+1 is the same as the mapping cone of the map
fp : ap → bp, which is c = (i+ 1, j + 1) by the induction hypothesis.

The following is similar to Lemma 3.3.18, and the proof is left to the reader.
The action of Σ is implicitly alluded and is not entirely irrelevant in this
situation (c.f. Lemma A.3.1). This will be illustrated in Example A.3.3.

Lemma A.3.2. (c.f. Lemma 3.3.18) Let 3 ≤ j − i ≤ 8 and consider the
following sketch where the Auslander-Reiten quiver of Db(mod kA7) lies in
the region bounded by y − x = 2 and y − x = 8.
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y−x=8

•(i,j)

!!

•(i,j−r−1)

==

•cr

•c0 y−x=2

For 0 ≤ r ≤ j − i − 2, let ar = (i, j − r). Let fr be the morphism fr :
(i, j−r−1)→ (i, j−r), where 0 ≤ r ≤ j− i−3. Then for 0 ≤ r ≤ j− i−3,
the composition f0 . . . fr−1fr : (i, j − r − 1)→ (i, j) has mapping cone cr =
(j − r − 2, j).

Example A.3.3. Consider the following sketch.

•(i,i+8)

��

y−x=8

•(i,i+7−r)

??

•cr

•c0 y−x=2

For −1 ≤ n ≤ 5, let an = (i, i + 7 − n). Let fn be the morphism fn :
(i, i + 7 − n) → (i, i + 8 − n), where 0 ≤ n ≤ 5. Then for 0 ≤ r ≤ 5,
the composition f0 . . . fr−1fr : (i, i + 7 − r) → (i, i + 8) has mapping cone
cr = (i+ 6− r, i+ 8).

Proof. Consider the object c0 = (i + 6, i + 8) on the bottom line y − x =
2. It lies in the same descending line as (i, i + 8), where the composition
f0 . . . fr−1fr maps to. The mapping cone cr = (i + 6 − r, i + 8) lies in the
same descending line as c0, but it is r steps up the line. This is how we
understand the location of the mapping cone cr.
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Consider the Auslander-Reiten quiver of the finite derived categoryDb(mod kA7).

•
��

•
��
•a−1

��
•
��

•
��

•
��

•
��

•

•
��

??

•a0

��

f0 ??

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

. . . •
��

??

•a1

��

f1 ??

•
��

??

•
��

??

•
��

??

•
��

??

•
??

��
• . . .

•a2

��

f2 ??

•
��

??

•
��

??

•
��

??

•Σa2

��

??

•
��

??

•
��

??

•
??

��
•
??

��
•
??

��
•
??

��
•
??

��
•Σa1

??

��
•
??

��
•

•
??

��
•
??

��
•
??

��
•
??

��
•c1

??

��
•Σa0

??

��
•
??

��
•
??

•
??

•
??

•
??

•d0

??

•c0
??

•Σa−1

??

•

The statement is true for r = 0 by Lemma A.3.2. Suppose the statement is
true for r = p, p ≥ 0, and then the statement is also required to be true for
r = p+ 1.

Consider the following commutative diagram,

ap+1
fp+1 // ap

g

��
ap+1

gfp+1

// a−1,

where g is the morphism f0 . . . fp : (i, i+ 7− p)→ (i, i+ 8).

By the octahedral axiom, it may be extended to the following commutative
diagram,

ap+1
fp+1 // ap

g

��

ρ // dp

��

// Σap+1

ap+1
gfp+1 //

��

a−1
//

��

∗

��

// Σap+1

��
0 //

��

cp

%

��

cp

(Σρ)%

��

// 0

��
Σap+1

// Σap
Σρ // Σdp // Σ2ap+1.

By the induction hypothesis, the mapping cone of the morphism g is cp =
(i+6−p, i+8), which gives the distinguished triangle in the second column.
By Lemma A.3.1, the mapping cone of the morphism fp+1 is the object
dp = (i+ 5− p, i+ 7− p). This gives the distinguished triangle on the first
row.
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The map ρ : ap → dp is non-zero, as otherwise ap+1
∼= Σ−1dp ⊕ ap by

Lemma 0.2.2(v), which is not possible since ap+1 is indecomposable. There-
fore the map Σρ : Σap → Σdp is non-zero as well. Similarly, the map
% : cp → Σap is non-zero. For −1 ≤ p ≤ 4, dp lies on the line y = i + 7 − p
and hence Σdp lies on the line x = i + 6 − p. This gives Σdp in R(cp).
Therefore the composition (Σρ)% : cp → Σdp is non-zero by Lemma 3.2.3,
and the distinguished triangle dp → ∗ → cp → Σdp is non-split.

Let an object e have coordinates (i + 5 − p, i + 8). By Lemma A.3.2, the
mapping cone of dp → e is cp. Since (cp,Σdp) is one-dimensional, the object
∗ is indeed equal to e. Therefore the mapping cone of the morphism gfp+1

is e = (i+ 5− p, i+ 8) = (i+ 6− (p+ 1), i+ 8) = cp+1 as desired.

The following two lemmas consider mapping cones of (compositions of)
downward morphisms, and they are delivered entirely out of leisure. Their
proofs are the mirror versions of the proofs of Lemma A.3.1 and Lemma A.3.2
respectively, since the action of the translation functor Σ corresponds to the
glide reflection. Nevertheless, they are given below, so that the reader can
be guided formally and rigorously with good intuition.

They also engender yet another significance in the construction of distin-
guished triangles in the quotient categories. This is similar to the forthcom-
ing section, and the reader can refer to the description given there.

Consider again the Auslander-Reiten quiver in the following diagram.

•
��

•
��

•
��
•a−1

f0��
•b−1

��
•
��

•
��

•

•
��

??

•
��

??

•a0
f1��

g−1 ??

•b0
��

??

•
��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•a1
f2��

g0 ??

•b1
��

??

•
��

??

•
��

??

•
??

��
• . . .

•
��

??

•a2
f3��

g1 ??

•b2
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
??

��
•
??

��
•b3

??

��
•
??

��
•
??

��
•
??

��
•
??

��
•

•
??

��
•
??

��
•
??

��
•
??

��
•
??

��
•
??

��
•
??

��
•
??

•
??

•
??

•
??

•
??

•
??

•
??

•

For −1 ≤ n ≤ 5, let an = (i, i+ 7− n), bn = (i+ 1, i+ 8− n).

Lemma A.3.4. (c.f. Lemma A.3.1)

The mapping cones of the maps fn : (i, i+ 8− n)→ (i+ 1, i+ 8− n) are all
isomorphic to b−1 = (i+ 1, i+ 9).
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Proof. Since a−1 → b0 → b−1 → is an Auslander-Reiten triangle, the state-
ment is true for n = 0. Suppose the statement is true for n = p, p ≥ 0, i.e.
the mapping cone of the map fp : ap−1 → bp is b−1 = (i + 1, i + 9). To see
that the statement is true for n = p+ 1, consider the following commutative
diagram,

ap
µp−1 // ap−1 ⊕ bp+1



��
ap

fp+1

// bp+1,

where µp−1 =

(
gp−1

fp+1

)
and the map  is the canonical surjection. By the

octahedral axiom, it may be extended to the following commutative diagram,

0 //

��

ap−1

ı

��

ap−1

fp
��

// 0

��
ap

µp−1 // ap−1 ⊕ bp+1
//



��

bp

��

// Σap

ap
fp+1

//

��

bp+1

��

// c

��

// Σap

��
0 // Σap−1 Σap−1

// 0,

where the map ı is the canonical injection. The distinguished triangle on
the second row is an Auslander-Reiten triangle. Hence the mapping cone
of the map fp+1 : ap → bp+1 is the same as the mapping cone of the map
fp : ap−1 → bp, which is b−1 = (i+ 1, i+ 9) by the induction hypothesis.

Lemma A.3.5. (c.f. Lemma A.3.2, Example A.3.3)

Consider the following sketch.
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•a−1

��

•b−1
y−x=8

•cr

•ar

y−x=2

For −1 ≤ n ≤ 5, let an = (j − 7 + n, j) and bn = (j − 6 + n, j + 1). Let fn
be the morphism fn : (j − 8 + n, j)→ (j − 7 + n, j), where 0 ≤ n ≤ 5. Then
for 0 ≤ r ≤ 5, the composition fr . . . f1f0 : (j − 8, j) → (j − 7 + r, j) has
mapping cone cr = br−1 = (j − 7 + r, j + 1).

Proof. Consider the object b−1 = (j − 7, j + 1) on the top line y − x = 8.
The mapping cone cr = (j − 7 + r, j + 1) lies in the same descending line as
b−1, but it is r steps down the line. The object b−1 lies immediately to the
right of a−1, where a−1 is whence the composition fr . . . f1f0 maps from.
This is how we understand the location of the mapping cone cr.

Consider again the Auslander-Reiten quiver in the following diagram.

•
��
•a−1

f0
��
•b−1

��
•
��

•
��

•
��

•
��

•

•
��

??

•a0
f1
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•a1
f2
��

??

•
��

??

•
��

??

•
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•
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•
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•
??

•
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•

The statement is true for r = 0 by Lemma A.3.4. Suppose the statement is
true for r = p, p ≥ 0, and then the statement is also required to be true for
r = p+ 1.
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Consider the following commutative diagram,

a−1
g // ap

fp+1

��
a−1

fp+1g
// ap+1,

where g is the morphism fp . . . f0 : (j − 8, j)→ (j − 7 + p, j).

By the octahedral axiom, it may be extended to the following commutative
diagram,

a−1
g // ap

fp+1

��

ρ // cp

��

// Σa−1

a−1
fp+1g //

��

ap+1
//

��

∗

��

// Σa−1

��
0 //

��

dp

%

��

dp

(Σρ)%

��

// 0

��
Σa−1

// Σap
Σρ // Σcp // Σ2a−1.

The distinguished triangle on the first row is given by the induction step.
The mapping cone of the morphism fp+1 is dp = (j − 6 + p, j + 2 + p) by
Lemma A.3.4, which gives the distinguished triangle in the second column.

The map ρ : ap → cp is non-zero, as otherwise a−1
∼= Σ−1cp ⊕ ap by

Lemma 0.2.2(v), which is not possible since a−1 is indecomposable. There-
fore the map Σρ : Σap → Σcp is non-zero as well. Similarly, the map
% : dp → Σap is non-zero. Since Σcp = (j, j+2+p) lies on the line y = j+2+p,
this gives Σcp in R(dp). Therefore the composition (Σρ)% : dp → Σcp is non-
zero by Lemma 3.2.3, and the distinguished triangle cp → ∗ → dp → Σcp is
non-split.

Let an object e have coordinates (j − 6 + p, j + 1). By Lemma A.3.4, the
mapping cone of cp → e is dp. Since (dp,Σcp) is one-dimensional, the object
∗ is indeed equal to e. Therefore the mapping cone of the morphism fp+1g
is e = (j − 6 + p, j + 1) = (j − 7 + (p+ 1), j + 1) = cp+1 as desired.

A.3.2 The cluster category of Dynkin type A∞

This section considers mapping cones of (compositions of) downward (for-
ward) morphisms in the cluster category D of Dynkin type A∞. As usual,
let Σ be the translation functor of D.
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Given a subcategory X of D which is both precovering and preenveloping,
the quotient category DX is pretriangulated. DX is triangulated if and only
if τX = X , where τ is the Auslander-Reiten translation. This is described
in Section 3.1.

The distinguished triangles in DX are described in [23, Setup 1.1]. They
are obtained either by apprehending X as preenveloping or as precovering.
If X is perceived as preenveloping, then Lemma 3.3.16 and Lemma 3.3.18
are needed (Example 3.3.19). In a different manner, if X is perceived as
precovering, then the following lemmas are needed (Example A.3.8).

Consider the Auslander-Reiten quiver of D in the following diagram.

...

•
��

•
��

•
��

•
��

•
��

•
��

??

•
��

??

•
��

??

•
��

??

•
��

??

•

•

??

��

•
��

??

•a3
g2
��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•a2
g1
��

f2 ??

•b2
��

??

•
��

??

• . . .

•
��

??

•a1
g0
��

f1 ??

•b1
��

??

•
��

??

•
��

??

•c
??

•a0

f0 ??

•b0
??

•

??

•

??

•

Let us write down the coordinates of some of the objects shown: a0 =
(i, j), b0 = (i+ 1, j+ 1), a1 = (i, j+ 1), b1 = (i+ 1, j+ 2), a2 = (i, j+ 2), b2 =
(i+ 1, j + 3) and c = (i− 1, j − 1). As usual, the coordinates of objects on
the bottom line satisfy the equation y − x = 2.

Lemma A.3.6. (c.f. Lemma 3.3.16, Lemma A.3.4) The mapping cones
of the maps gn : (i, j + n + 1) → (i + 1, j + n + 1) are all isomorphic to
c = Σa0 = (i− 1, j − 1).

Proof. Since a0 → a1 → b0 → Σa0 is an Auslander-Reiten triangle, the
statement is true for n = 0. Suppose the statement is true for n = p, p ≥ 0,
i.e. the mapping cone of the map gp : ap+1 → bp is c = (i− 1, j − 1). To see
that the statement is true for n = p+ 1, consider the following commutative
diagram,

ap+1
µp+1 // ap+2 ⊕ bp



��
ap+1 gp

// bp,
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where µp+1 =

(
fp+1

gp

)
and the map  is the canonical surjection. By the

octahedral axiom, it may be extended to the following commutative diagram,

0 //

��

ap+2

ı

��

ap+2

gp+1

��

// 0

��
ap+1

µp+1 // ap+2 ⊕ bp //



��

bp+1

��

// Σap+1

ap+1 gp
//

��

bp

��

// c

��

// Σap+1

��
0 // Σap+2 Σap+2

// 0,

where the map ı is the canonical injection. The distinguished triangle on
the second row is an Auslander-Reiten triangle. Hence the mapping cone of
the map gp+1 : ap+2 → bp+1 is the same as the mapping cone of the map
gp : ap+1 → bp, which is c = (i− 1, j − 1) by the induction hypothesis.

Lemma A.3.7. (c.f. Lemma 3.3.18, Lemma A.3.5) Consider the following
sketch.

•Σ(i,j) •(i,j)

��
•cr •(i+r+1,j)

•c0
y−x=2

For 0 ≤ n, let an = (i+ n, j). Let gn be the morphism gn : (i+ n, j)→ (i+
n+1, j). Then for 0 ≤ r, the composition grgr−1 . . . g0 : (i, j)→ (i+r+1, j)
has mapping cone cr = (i− 1, i+ 1 + r).

Proof. Consider the object c0 = (i− 1, i+ 1) on the bottom line y − x = 2.
It lies in the same ascending line as Σ(i, j). The mapping cone cr = (i −
1, i+1 + r) lies in the same ascending line as c0, but it is r steps up the line.
This is how we understand the location of the mapping cone cr.

170



Consider again the Auslander-Reiten quiver of D.

...

•
��

•
��

•
��

•
��

•
��

•
��

•

•
��

??

•
��

??

•Σa0

��

??

•a0
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��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•
��

??
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��

??

•a1
g1
��

??

•
��

??

• . . .

•
��

??

•
��

??

•
��

??

•
��

??

•a2
g2
��

??

•
��

??

•
��

??

•
??

��
•
??

��
•
??

��
•
??

��
•a3

??

��
•

•c1
��

??

•
??

��
•
??

��
•
??

��
•
??

��
•
??

��
•c0

??

•
??

•
??

•
??

•
??

•
??

•

The statement is true for r = 0 by Lemma A.3.6. Suppose the statement is
true for r = p, p ≥ 0, and then the statement is also required to be true for
r = p+ 1.

Consider the following commutative diagram,

a0
g // ap+1

gp+1

��
a0 gp+1g

// ap+2,

where g is the morphism gpgp−1 . . . g0 : (i, j)→ (i+ p+ 1, j).

By the octahedral axiom, it may be extended to the following commutative
diagram,

a0
g // ap+1

gp+1

��

ρ // dp

��

// Σa0

a0 gp+1g
//

��

ap+2
//

��

∗

��

// Σa0

��
0 //

��

ep

%

��

ep

(Σρ)%

��

// 0

��
Σa0

// Σap+1
Σρ // Σdp // Σ2a0.

Again consider the object c0 = (i− 1, i+ 1) on the bottom line y−x = 2. It
lies in the same ascending line as Σa0, where a0 is the place from where the
morphism g maps. By the induction hypothesis, the mapping cone of the
morphism g lies in the same ascending line as c0, but it is p steps up the line,
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i.e. dp = cp = (i− 1, i+ 1 + p). This gives the distinguished triangle on the
first row. The mapping cone of the morphism gp+1 is ep = (i+p, i+p+2) by
Lemma A.3.6, which gives the distinguished triangle in the second column.

The map ρ : ap+1 → dp is non-zero, as otherwise a0
∼= Σ−1dp ⊕ ap+1 by

Lemma 0.2.2(v), which is not possible since a0 is indecomposable. Therefore
the map Σρ : Σap+1 → Σdp is non-zero as well. Similarly, the map % : ep →
Σap+1 is non-zero. Therefore the composition (Σρ)% : ep → Σdp is non-zero
by Lemma 3.3.8, and the distinguished triangle dp → ∗ → ep → Σdp is
non-split.

Let an object s have coordinates (i − 1, i + 2 + p). By Lemma 3.3.16, the
mapping cone of dp → s is ep. Since (ep,Σdp) is one-dimensional, the object
∗ is indeed equal to s. Therefore the mapping cone of the morphism gp+1g
is ∗ = s = (i− 1, i+ 2 + p) = (i− 1, i+ 1 + (p+ 1)) = cp+1 as desired.

The section finishes with the following example which illustrates the obtain-
ing of the distinguished triangles in the quotient category DX in virtue of
X -precovers. The reader can refer to [23, Setup 1.1] for more details.

Example A.3.8. (c.f. Example 3.3.19) Consider again the Auslander-Reiten
quiver and the subcategory X in Example 3.3.19. As usual, let σ be the
translation functor of DX .

...

•
��

•
��

•
��

•
��

•
��

•
��

•

•
��

??

•
��

??

•b−1
g−1

��

??

•a−1

��

??

•
��

??

•
��

??

. . . •
��

??

•
��

??

•b0
��

??

•a0
g0��

??

•
��

??

•
��

??

• . . .

•Σb1
��

??

•b1
��

??

•a1

��

??

•d3
g1��

??

•c3
��

??

•
��

??

•
��

??

•b2
??

��
•a2

??

��

•

??

��

•d2

??

g2��
•c2

??

��
•

•b3
��

??

•a3

??

��

•

??

��

•

??

��

•d1

??

g3��
•c1

??

��
•b4

??

•a4

??

•

??

•

??

•

??

•d0

??

•c0

For example, the morphism g = g2g1g0 : a0 → d1 is an X -epimorphism in D,
i.e. a morphism such that each morphism x→ d1 with x in X factors through
g (c.f. Lemma 3.3.11). Extend g : a0 → d1 to the distinguished triangle

a0
g→ d1 → b2 → Σa0 in D by Lemma A.3.7, i.e. b2 is the mapping cone

of the morphism g. On the other hand, the mapping cone of the morphism
gg−1 is Σb1 by Lemma A.3.7, where gg−1 : b−1 → d1 is an X -precover of
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d1 by Lemma 3.3.11. Then the diagram Σ−1Σb1 → Σ−1b2 → a0 → d1,
which is the diagram b1 → a2 → a0 → d1, considered in DX , is defined
to be a distinguished triangle in DX , so that σ−1(d1) = b1. Compare in
Example 3.3.19(iii) the distinguished triangle a2 → a0 → d1 → c2 in DX .
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