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Abstract

This thesis assesses the ability of remote semsaigniques to characterise soill
moisture in a transport corridor environment. Mo€hhe world’s transport networks
are built on earthwork embankments or in cuttiigshe UK, many of these
earthworks were constructed in the mid*X®entury and are susceptible to slope
instability. Instability in transport corridors @dten triggered by an increase in pore
pressure, which is directly influenced by an ineee soil moisture. Although a
number of studies have investigated the use of tresensing techniques for estimating
soil moisture, they have tended to be conducte@ucahtrolled conditions and few
have considered their capacity for being operatiortas study addresses this point by
exploring the use of high spatial resolution digiievation models (DEMs) and
airborne hyperspectral imagery for characterismigraoisture in transport corridors.

A number of terrain (topographic wetness index (J;\fotential solar radiation,
aspect) and spectral analysis (red edge positiimagson, derivative stress ratios,
continuum removal analysis, partial least squaPeS] regression modelling, mapping
biological indicator values) techniques were assssing terrestrial systems over a
test embankment, and airborne data for a transpardor. The terrain analysis metrics
TWI and potential solar radiation were found taohioghly sensitive to the DEM spatial
interpolation routine used, with a thin plate selhmoutine performing best in this study.
This work also demonstrated that Ellenberg indicastues extended for the UK can be
mapped successfully for transport corridor envirents, providing potential for a
number of different applications. Individually, ttechniques were shown to be
generally poor predictors of soil moisture. Howe\ar integrated statistical model
provided an improved characterisation of soil momstwith a coefficient of
determination (B of 0.67.

Analysis of the model results along with field ebsations revealed that soil
moisture is highly variable over the transport whor investigated. Soil moisture was
shown to increase in a non linear fashion towandgae of earthwork slopes, while
contribution from surrounding fields often led tncentrations of moisture in cutting
earthworks. Critically, while these patterns colddcaptured using the data investigated
in this study, such spatial variability is rare#kén into account using analytical slope

stability models, potentially raising important dbages in this respect.
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1 Introduction

1.1 Instability in transport corridors

Much of the world’s transport networks are locabadcuttings and embankments which
are all susceptible to instability (LIoyd et alo@®). About 60% of UK rail networks are
composed of embankment and cutting earthworks,tequ@ 16 000 kilometres
(Manning et al., 2008). Many of these earthworkaires were constructed in the mid-
19" century before the development of modern theariemil mechanics and were
therefore poorly compacted (Ridley et al., 2004).

Soil cuttings were crudely excavated by pick anaveh or blasted using
gunpowder, and embankments were constructed byngjgoil and rock into place
using horse-drawn wagons. In the early part oP@fecentury methods improved with
steam-powered excavators replacing the pick andethand steam locomotives
replacing the horse and cart to tip material omb@nkments (Figure 1.1) (Perry et al.,
2003Db). Despite these efforts, this offered littiehe way of soil compaction that can be
seen in today’s modern earthwork construction.dditton, embankment slope angles
were based on short-term angles of repose whitheimodern age would be
considered too steep (Perry et al., 2003b). As,suelmy of these structures failed
during, or soon after, construction (Ridley et 2004; Perry et al., 2003b). Subsequent
remediation seldom fully excavated and replacedelstructures, leaving residual
rupture surfaces such that the earthworks remaigraficant hazard (Ridley et al.,
2004; Perry et al., 2003Db).

Historically, transport earthworks have not beeated as an asset to network
operators and have received a low priority for rtemiance and renewal (Perry et al.,
2003b). As a result, engineering performance hHisredl, increasing the risk of
instability. More recently transport earthworks baeceived greater awareness within
the UK transport industry, with embankments andirmgs comprising one third of total
asset value for transport infrastructure (Ridleglet2004). Furthermore, it has been
noted that transport earthworks may support aduditiassets, including road paving,
lights, drainage, trackbed, or third party struetusuch as telecommunications masts
(Perry et al., 2003b). These assets represenhidicignt commodity and



consequentially the cost of replacinese assets, due to earthwork instability, cal
outweigh the cost of initially repairing the struct (Perry et al., 2003.

Figure 1.1 Embankmer construction in 1922 using a steam powered locoradt
tip material on the earthwork from Perry et(2003b).

As the UK’s transport infrastructure ages, the agkarthwork instability
increasegPerry et al., 2003a; Phipps and McGinnity, 2(. Heavier loading an
increasing passengeumbers have added pressure to the aging earthwitk
detrimental effect¢Perry et al., 2003. In some areas of the world, notably South |
Asia, rapid urban expansion has led to an increadee pressure on available la
(Kwak et al., 2006)In some cases has led to building constructiamupanspor
earthworks, which has led to increasing concerm thadr stability(Zhang et al., 2005).
Climate change is expected to further increaseiskeof earthwork instability, witl
research suggesting that the UK climate is ming more extreme, manifested by
increase in the magnitude of rainfall eve(Ekstrém et al., 2005)

There are a number of examples in the UK where a caatibim of extrem:e
rainfall events and aging earthworks have resiittefope failures. On" January



2003, a train carrying 105 passengers deraileth@mBtighton to London line when it
hit a landslide. The landslide was attributed tavyerainfall that had persisted for
several days before the event. Although local exgglhad previously expressed
concern over the weakness of the cutting slopesnfiastructure operator Network
Rail had failed to reinforce the earthworks desfietgging up the area as vulnerable
(Guardian, 2003).

This example of instability and others like it harenediate implications for
passengers including extensive delays and risketblit also an increase maintenance
costs, risk of power failure, interruption to notrtrain operations and environmental
degradation (Gyasi-Agyei et al., 2001). In lightlois, the last two decades have seen
an increase in the demand for improved reliabditg safety on transport networks.
This has resulted in a growing focus on appraisdlrapair of embankments and
cuttings, highlighted by an increase in spendiray.éxample, over the period 1998 to
1999, the UK railway infrastructure operator Raitk (now Network Rail) spent over
£50 million was spent on earthwork maintenancer{Retral., 2003b).

Despite the inherent problems with the UK’s tramspdrastructure, it is not
economically or practically viable to replace eahk structures (Ridley et al., 2004).
In some cases remediation is undertaken solelyaiatain transport operations and do
not correct for permanent or ongoing deformatiddgasi-Agyei et al., 2001). One of
the reasons for this is that delays for even gbenibds of time, to allow for repair, can
far outweigh remedial costs (Lloyd et al., 200h)tHe past, unstable earthwork
structures were met with a reactive response leuétis a growing awareness to be
proactive (Perry et al., 2003b).

The cost of unplanned, reactive repair to transparthworks greatly exceeds
the cost of proactive and continual maintenanceryRs al., 2003b). For example,
McGinnity et al. (1998) state that the cost of enkmaent remedial works fell from
£3000-5000 per metre of track to £1000-2000 peraenehen part of a proactive
maintenance strategy. Similar examples can be fouhdjhway maintenance where it
is thought a proactive maintenance strategy foMBA8 motorway in Surrey led to
savings of about 80% compared with works carriettbased on a reactive response
(Perry et al., 2003b). It is therefore importanhighlight areas prone to instability

which can be achieved through risk-mapping.



Considered to be the most basic tool for reduasigof instability, risk maps
can provide vital information for administratorsdgomolicy makers (Yesilnacar and
Suzen, 2006; Schulz, 2005). As a result, land$ladgard assessment has become a topic
of major interest (Xie et al., 2003) with much bétresearch focussing on catastrophic
deep-seated landslides. However, there is a groladg of research that studies
shallow slope failures, typically 1-1.5 metres degpich is the mode of failure that

mainly effects transport earthworks (Fourie, 1996).

1.2 |Instability and the role of soil moisture

The principal causes of earthwork instability ird#uburrowing animals, vandalism,
embankment age, construction type, change in earkhmaterials, culvert
deterioration, slope geometry, angle and heightstue and vegetation shrink swell
cycles, and the presence of water (Perry et ad3R)) Many of these features can be
clearly identified by experienced network inspestdiut some can be harder to spot.
Specifically, this is the case where dense vegeataian mask instability processes at
the earthwork surface, such as shallow slope &slun the case of such failures, it is
important to identify them early to minimise thdatrimental effects (Perry et al.,
2003b).

Shallow slope failures are one of the most comsiope processes, and are
found all over the world (Begueria, 2006). Suclufais are generally associated with
areas that experience prolonged rainfall, partrtyla the sub-tropics, but there is
growing evidence to suggest that compacted earksnweithin the UK are becoming
increasingly susceptible to such failures (Four#96). The trigger for most of these
failures is a build up of pore water pressure (Be@y 2006; Borga et al., 2002;
Fukuoka, 1980), which is directly related to heavyrolonged rainfall events and
elevated soil moisture content (Collins and Zni@ar2004; Johnson and Sitar, 1990).
This is illustrated by Figure 1.2 which shows thationship between volumetric soil
water content and pore water pressure (here deastathtric suction), for different soil
textures. As a result of this relationship, somieifes have become annual events

associated with wetter seasons (Baum et al., 200§ et al., 2001).
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Figure 1.2 Diagram demonstrating the relationship betweenraoikture anmatric
suction (pore water pressure) for different soituees. From Frednd and Xing
(1994)

The intrinsic relationship between soil moisturd afope stability has led sor
researchers to suggest that areas of higher satunme content require le
precipitation to trigger a landslide eve(Manning et al., 2008; Fourie, 19 This is
particularly the case for railway embankments taate little or no drainage, allowir
rainfall to percolate dectly into the earthworlPerry et al., 2003. In fact, many
earthwork problems are a result of poor or defeatirainage, with just sme
improvements to drainage leading to significantiovements to slope stabili(Perry
et al., 2003h)This notion is reinforced by Ridley et (2004)who identified a strong
correlation between earthwork failure events anldiced soil moisture deficit fc
railway embakment soils in the London ai (Figure 1.3).

Slope instability in embankments can also be matateéthrough the ce
heaving proces@erry et al., 2003. This is where infiltration of water into ¢
earthwork softens the clay foundations and is fbfcem beneath the track, therefc
weakening the soil above. The effects of excessnwatiltration can be exacerbatec
water is shed from surrounding areas down cuttioges(Perry et al., 2003. An
example of this was seen on™ October 2008 when a night of heavy rainfall resi
in flood water spilling onto a cutting resultingthe failure ofa ter-metre section with a

further 20 metresection put at risk in Derbyshire, closing the Masster to Sheffiel



line indefinitely (MEN, 2008). Highway embankmemat® generally less prone to the
effects of excessive water infiltration as they @veonstructed more recently than
railway embankments with higher specificationsywadl as a largely impermeable top
layer. However, defective drainage, such as thenplagiven in Derbyshire, can

concentrate water onto a slope leading to instgl{ferry et al., 2003b).
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Figure 1.3 Variation of soil moisture deficit and major eartimk events for the
London area for the period 1988-2001. From Ridkegl.&2004)

1.3 Measuring soil moisture

Network operators have a statutory obligation todtwt regular appraisals of
earthwork stability (Perry et al., 2003b). As pafrtheir appraisal, earthwork inspectors
make subjective observations of soil moisture cioors based on descriptions of
drainage type and conditions, and identifying pt&sources of water ingress (Perry
et al., 2003b). Additionally, they are adviseddoHl for signs of failure by identifying
seepage or ponding of water (Mickoviski and VankB@€06). Similarly, inspectors try
to identify potential future instability by lookinfgr the presence of hydrophilic, water-
loving vegetation, or changes in the vegetatiocluiing rich dense vegetation that
may indicate seepage (Perry et al., 2003b).



Although the collection o situ soil moisture contents would be preferable,
this process is time consuming and laborious. Ti@dl methods for measuring soil
moisture involve collecting samples of soil, theeasuring the weight of the sample
before and after drying in an oven for 24 hoursalzulate the gravimetric moisture
content. Even with the advent of moisture impedammobes that have the ability to
rapidly measure soil moisture in the field, bothtimoels involve lengthy periods in the
field by a number of inspectors. Furthermore, @sispection of embankment and
cutting slopes carry obvious dangers, as well anded for train drivers to reduce their
speed in case of any impending danger. As a resartte authors have identified the use
remote sensing to aid earthwork remediation asmgoitant topic for future research
(Perry et al., 2003b).

1.4 Potential for remote sensing

Although remote sensing techniques would neveapgpground-based earthwork
inspection, they have the potential to provide miggkinformation on areas of known
deterioration, as well as providing broad assessofdarger areas at the transport
corridor scale (Perry et al., 2003b). As a resdtjal photographs are routinely used for
making appraisals and providing historical inforioatabout an earthwork and its
surrounding area (Perry et al., 2003b). Howeverenaovanced remote sensing
techniques have the potential to detect featuresisible to the naked eye, including
soil moisture (Perry et al., 2003b).

Studies have shown that surface soil moisture tiomdi are highly variable
over time and space (Bardossy and Lehmann, 19983it® inspectors are expected to
cover 5 km lengths of track a day when carryingassiessments of earthwork stability
(Perry et al., 2003b) but this could result in mpesentation of the soil moisture
conditions as moisture patterns can change overdseof just hours. Furthermore,
some earthwork structures, especially in the casaral railway networks, can be
difficult to access (Perry et al., 2003b), makimgsite assessments arduous and in some
cases impossible. Remote sensing has the potempabvide a synoptic view over
transport corridors, including those in a remoteatmn where transport links can be

vital links to the wider community (Lloyd et al.0@1).



Current methods for the remote inspection of trartsporridor assets include
video filming from a moving vehicle, radar, thernralaging, low and high altitude
aerial photography, and the use of satellite ima¢eerry et al., 2003b). It is thought
that the use of such techniques is growing dubdormprovements made to interpretive
techniques, but authors note the need for fursgarch in this area (Perry et al.,
2003b).

The transport industry has identified the growiregnand for digital data (Perry et
al., 2003b). As part of this drive, network operatare increasingly making use of
Geographical Information Systems (GIS) for the @ffe® management of spatial data,
where traditional paper based information systeragldficult to access and visualise
(Perry et al., 2003b). Additionally, GIS can ovgrthfferent maps of interest (Perry et
al., 2003b), as well as the ability to calculask of slope instability based on different
spatial components (Dai et al., 2002). Modern rensensing techniques often require
processing and analysis within GIS software, progdligital data that can be
integrated with other geographical information. GtStware therefore provides a
platform for processing and storing soil moistur®imation as well as the ability to

produce a meaningful map of soil moisture distidoufor network operators.

1.5 Aims and objectives

The aim of this study is to explore the potentialdharacterising soil moisture in
transport corridors using remotely sensed dataacheeve this aim the following
objectives are addressed:

1. Identify and review existing techniques for chagaising soil moisture from
remotely sensed data and critically assess theiratipnal capability in the context
of transport corridor environments.

2. Carry out a proof of concept study for the techesjdeemed applicable in
objective 1, using ground based instruments atawork scale and assess their
potential for being scaled up to a transport corrgtale.

3. Based on the findings made in objectives 1 angb@lyahe techniques to a transport
corridor using airborne remotely sensed datasets.

4. Design a method for integrating the most success@liiniques into an overall model

for characterising soil moisture in transport adori environments.



1.6 Thesis structure

The main aim and key objectives, outlined in Secfidb, are addressed in this thesis
and are presented over the following six chapt@hspter 2 presents a thorough review
of current remote sensing techniques with the piatieior characterising soil moisture.
The techniques presented are critically assessbdeierence to their ability to be
operationally employed within a transport corrié@orvironment.

Based on the findings of Chapter 2, a proof ofcemt study is carried out for
several of the potentially most promising operaticemote sensing methods. In this
study, the techniques are evaluated over a tesamkniient under controlled conditions.
This evaluation is carried out to gain a quantiatinderstanding of the relationships
that exist between the distribution of soil moistand measurements made using
ground based remote sensing instruments. The tpodmiare also assessed for their
potential to be scaled up to airborne sensors taresport corridor.

The findings made in the embankment scale stuelyren used to set out the
optimal methods for applying the techniques toainle remotely sensed dataset for a
real world transport corridor. This also includeshniques that could not be tested in
the small scale study. The main product of thesjpart corridor scale work is an
integrated model incorporating techniques that jple@an improved characterisation of
soil moisture distribution.

The methods for both the earthwork and transpartdmr scale studies are
reported in Chapters 3. The results of these methosldescribed in Chapters 4 and 5
for the earthwork and transport corridor scale issidespectively. These results are
analysed and discussed in Chapter 6, with parti@nghasis on a critical assessment
of the results obtained and how they contributscience. The key findings are

concluded in Chapter 7, including suggestionsHerdirection of future research.



2 Review of techniques for characterising soil moisture using
remote sensing

2.1 Introduction

Section 1.4 of this thesis outlined the potentialfsing remote sensing to monitor
transport earthwork infrastructure. However, ibadgknowledged that the transport
industry has not fully embraced the potential ehotely sensed data, particularly for
characterising soil moisture as an indicator offeeork instability. This chapter
provides a thorough critique of remote sensingnaples that have the potential to
characterise soil moisture, with specific referetactheir utility within transport
corridor environments.

Remote sensing can help make observations ab®taith’s surface in a
number of different ways, according to the seniat is being used, or the platform on
which it is stationed. With regard to remote segfifisoil properties, some sensors can
penetrate vegetation canopies and even the swfdhe ground, to make direct
measurements from the soil itself. Others can e s make a measure of the Earth’s
surface, for instance elevation or topography, Wizan then be used to make indirect
inferences about the soil below. Additional teclueis|involve making inferences from
surrogate measurements, such as observations etiawieg characteristics. In light of
this, the review is split into three main sectidmssed on whether the specific technique
characterises soil moisture directly (Section Ar#}irectly using terrain analysis
(Section 2.3), or through surrogate measures w&ggtation reflectance (Section 2.4).

2.2 Remote sensing of soil moisture

Microwave remote sensing is considered to be th&t promising technique for the
remote measurement of soil moisture over wide gifeasiglietti et al., 1999). The
advantage of using microwave sensors is that theyntake observations at both day
and night, and are relatively unaffected by thesenee of cloud (Cracknell and Hayes,
2007). Furthermore, microwaves (with a spectrafjeaof 1 mm to 1 m) can, under
some circumstances, penetrate vegetation canapietharefore obtain measurements
relating directly to the soil surface. Microwavasers can be divided into two distinct

groups: passive sensors that detect microwave eityfsom the Earth’s surface, and
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active sensors that transmit a microwave sign#iéagyround and record the proportion
of energy backscattered to the instrument (Campd@6). This section will discuss
the use of microwave remote sensing for measunigreisture using both passive
and active sensors. In addition, this section dises the use of optical sensors such as
thermal imagers and sensors measuring spectrattafice in the visible, near, and
shortwave infrared. These sensors record refledsdromagnetic radiation which can
be used to make inferences about Earth surfacepreg, such as soil moisture. As
these inferences are made from a direct measuretfre soll, i.e. reflected

electromagnetic radiation, they are also considerélis section.

2.2.1 Passive microwave sensors

Passive microwave sensors measure emissions awace energy from the Earth’s
surface (Cracknell and Hayes, 2007). Water withsoimatrix increases the dielectric
permittivity, this being the ability of a medium ¢onduct electrical energy (Sharkov,
2003). This means that a wetter soil has greaiétyao absorb electromagnetic
radiation which therefore lowers the amount of mneave emissivity (Schmugge et al.,
2002). The ability of a material to conduct elemdtienergy is sometimes referred to as
the dielectric constant. Water is known to haveugirhigher dielectric constant
(approximately 80) compared to dry soils (< 5), ethiranslates to a difference in
emissivity of approximately 0.95 for dry soils abé for wet soils (Schmugge et al.,
2002). The influence of water on the dielectricstant means that measures of
microwave emissions can be used to measure scstunei

The measure of microwave emissivity from a soblased on the scattering of
electromagnetic radiation from the soil surfacea Boil, scattering at the surface is
mainly a function of the dielectric constant and tbughness of the soil surface. In
addition, shadowing caused by surface roughnesshanelative view angle of sensor
has also shown to have an influence on the dedmeearded emissivity (Kuria et al.,
2007). The effects of shadowing and surface rougghaee comparable, and in some
cases greater, than the effect of soil moisturtherdegree of backscatter (Kuria et al.,
2007). For example, a rough soil surface has stowypically reduce the microwave
signal by 10% or 20%, and in some extreme casesighal can be halved (Schmugge

et al., 2002). Therefore, in order to make infeesnaf soil moisture content, the effects
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of surface roughness must be accurately estim&iaide( al., 2005). These estimates are
based on empirical or physical surface emissionetsodach have relative advantages
and disadvantages in terms of complexity, easemipitation, effectiveness over
vegetation, and transferability (for further detake Kuria et al. (2007), Crosson et al.
(2005), Shi et al. (2005), and Wigneron et al. g%9

One of the main restricting factors on the uspasfsive microwave sensors is
that the intensity of microwave emissivity from tBarth’s surface is very low. This
means that in order to record an adequate sigmalabwave emissivity, the sensor
must remain positioned over the area of interessdéweral days. However, components
such as soil moisture are temporally variable adahange over a matter of hours
(Famiglietti et al., 1998). This inevitably leadsa great deal of uncertainty in making
characterisations of soil moisture using passiveote sensing systems. In addition, the
weak intensity of emitted radiation from the EastBurface means that a passive
microwave instrument must have a large field ofwier footprint, which limits the
potential spatial resolution (Cracknell and Hay&X)7). For example, satellite based
thermal-infrared sensors typically have a fieldviefv three or four times smaller than
passive microwave sensors (Cracknell and Hayeg,)200

The low microwave emissivity from the Earth’sfsige also means that the
signal can be perturbed by a number of differectiois (Schmugge et al., 2002). As
discussed earlier in this section, one of the rfetors is surface roughness. However,
the presence of vegetation can often have the dedsimental effect on the
characterisation of soil moisture. Dense vegetatemopies can drastically reduce, and
in some cases totally obscure, the microwave sigoal the soil, as electromagnetic
radiation is scattered by the surface of plantésaand woody biomass, and absorbed
by moisture in the vegetation (Notarnicola et 2006). As a result, many successful
campaigns to map soil moisture using microwave@srisave been carried out over
bare earth, or sparse vegetation canopies (Jaektsdn 1999; Burke et al., 1998;
Wigneron et al., 1998; Jackson et al., 1995; Sclymaw@nd Jackson, 1994). Schmugge
et al. (2002) demonstrated this effect by explajrirat measurements made over a
mature corn crop can reduce the sensitivity ofetiméssivity signal by 25% compared to
a bare soil.
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Remote sensing in the microwave domain of thet®e@gnetic spectrum tends
to centre on a small range of wavelengths (Taldle Pue to the influence of factors
such as surface roughness and the presence oatiegethe L band frequency is
generally considered to be the optimal frequencyrfeasuring soil moisture (Crosson
et al., 2005). This is because it has a relatilatg wavelength which has greater
potential to penetrate vegetation canopies aress$usceptible to atmospheric
attenuation (Wigneron et al., 2003; Kerr et alQP0 Moreover, microwaves detected
from a soil at this wavelength are derived frompeavithin the soil, and are therefore
seen to be a more accurate depiction of soil mastantent below the surface, or crust,
of the soil (Njoku et al., 2003).

Band name Frequency (MH2z) Waveength (cm)
P 300 - 1000 30 - 100

L 1000 - 2000 15 - 30

S 2000 - 4000 75-15

C 4000 - 8000 3.75-75
X 8000 - 12000 2.5-3.75
Ky 12000 - 18000 1.667 - 2.5
K 18000 - 27000 1.111 - 1.667
Ka 27000 - 40000 0.75-1.111

Table 2.1 Table showing common microwave band names andvelequency
and wavelengths. From Mather (2004).

There have been a number of successful attemptgaposoil moisture
distribution with L band passive microwave sensBerhaps one of the most commonly
cited examples include Jackson et al. (1999). 3tdy was based around applying soil
moisture retrieval algorithms, previously develop¢a fine scale, to a regional scale.
The algorithm requires information regarding seihperature, vegetation type,
vegetation water content, surface roughness, atkldensity, and soil texture. The
vegetation parameters were estimated from satgtidgery but the measures of soll
properties were derived from field observationsahimot only limits operational

potential but potentially limits its use outside #tudy area where soil properties are
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likely to vary. The study found that the soil maist retrieval algorithm could be scaled
up to coarser resolution passive microwave datid, &ror levels in the region of 3%.
Despite this success, the dominating vegetatioesty the study area were pasture
grassland, with relatively low vegetation canopisthe algorithm relies on a great
deal of parameterisation, in terms of vegetatibis, therefore likely to have a high
degree of uncertainty when applied to other vegetatovers. This is of particular
significance as the study was carried out to agbesgotential for the algorithm to help
inform global climate models, where undoubtedlystheegetation covers will be
encountered.

As previously mentioned, the L band frequencyoissidered to be the most
optimal for the detection of soil moisture usinggae microwave systems. However,
the long nature of L band wavelengths requiresg Eperture on the sensing
instrument. This has long seen to be a limitingdaon the use of microwave
radiometry due to the challenges facing satelhigireeers (Cracknell and Hayes, 2007,
Jackson et al., 1999). For instance, in order ¢@ide an adequate footprint of less than
60 km, a satellite sensor must have an antennghle@fgbove 4 m (Kerr et al., 2001)
which would lead to a payload beyond the capaddiof present satellite systems
(Drinkwater et al., 2009). Developments in antedesign have recently made this
possible through synthetic aperture whereby a langenna is simulated from a number
of small antennas distributed over a Y-shaped frésee Kerr et al. (2001) and
Drinkwater et al. (2009) for a detailed descripjiorhis theory has been materialised
through the European Space Agency'’s launch of dilev®isture and Ocean Salinity
(SMOS) satellite in November 2009. Despite thes@aades, SMOS provides measures
of microwave emissivity at a maximum ground resolubf 50 km (Kerr et al., 2001).
This characteristic essentially rules out the dsgagsive microwave sensors for
monitoring transport corridors, as earthworks atelmsmaller than the footprint that
can be achieved, i.e. in the region of metres ratran kilometres.

Sensors operating at higher frequencies, suchratsi#, C and X (see Table 2.1
for frequencies and corresponding wavelengths)e laégso shown to have potential for
the retrieval of soil moisture (Crosson et al., 208joku et al., 2003). The advantage of
these frequencies is that due to their relativelglswavelengths, they require smaller

antennas, and as a result, have the potentiabtoder finer spatial scale footprints.
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Example systems include the Advanced Microwave SogrRadiometer for Nasa’s
Earth Observation System (AMSR-E). This system mm@ssmicrowave emissivity in
the C and X band frequencies, with an averageapasolution of 56 km and 38 km
respectively. Sahoo et al. (2008) compared obseswiddnoisture measurements with
estimates of soil moisture from AMSR-E, producimgrelation coefficients up to 0.81.
Despite a high correlation, these estimates coullg lle made using a heavily
parameterised Land Surface Microwave Emission MdeMEM). This model is
based on radiative transfer theory, which describesvay in which electromagnetic
radiation interacts with the Earth’s surface. Therowave emissivity observed by the
sensor is taken to be a contribution of signalsftbe soil, vegetation, water bodies,
snow cover and atmosphere. In the case of Salalo(@008) and Njoku et al. (2003), a
number of assumptions are made: the influenceeo&timosphere is assumed to be
constant, there is assumed to be no differencedegtwanopy and surface temperature,
and multiple scattering at the Earth’s surfacgmored (see Sahoo et al. (2008) and
Njoku et al. (2003) for more details).

Although studies have shown that reasonable esgadtsoil moisture can be
made using C and X band microwave radiometers, tdreyto be limited to relatively
sparse vegetation canopies, despite the bestsffbradiative transfer models. This is
because the smaller wavelengths associated witlisb@rand X are highly perturbed by
the presence of vegetation, as well as being maresxable to influences from
atmospheric attenuation and the effects of sunfagghness, compared to measures of
emissivity at the L band frequency (Kerr et al.02p0 This could have serious
implications for mapping soil moisture in transpootridors where earthworks tend to
be covered in dense vegetation, including tall shiiand deciduous trees, to aid
stability.

This section has demonstrated a trade off thateewisen using passive
microwave sensors to estimate soil moisture. Higgudency microwave bands (X and
C) have the potential to be sensed at a relatiusdyspatial resolution; whereas low
frequency bands (L band) tend to be relatively umleed by influences from the
atmosphere, surface roughness and the presenegetition. Despite high
correlations with observed soil moisture using dutgh and low frequency sensors,

their limitations give them no potential for usectmaracterising soil moisture in
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transport corridor earthworks, where high spagabtution information is required,

often over dense vegetation canopies.

2.2.2 Active microwave sensors

Active microwave sensors are radar (radio detecimhranging) systems which form
an image by detecting the reflectance of a micr@nsagnal transmitted by the sensor.
Similar to the passive variety, acquiring imagesing these sensors has the advantage
of being relatively unaffected by time of day, twud cover (depending on atmospheric
conditions relating to moisture and aerosols). Talsy function over similar
frequencies and corresponding wavelengths (Tale 2.

Another trait shared with passive microwave systérihat active microwave
sensors using real apertures are restricted teeagatial resolutions. As discussed in
Section 2.2.1, this is due to the length of theana needed to emit and receive (in the
case of active sensors) microwave energy. As dtyesal aperture systems tend to be
limited to large scale observations, such as olsiens of the Earth’s geoid, and
various meteorological applications (e.g. wind dii@ and speed) (Cracknell and
Hayes, 2007). Conversely, most applications aststiaith earth surface properties,
including soil moisture, tend to be carried oungstynthetic Aperture Radar (SAR)
systems.

Section 2.2.1 alluded to the development of syidtapertures which are used in
passive microwave remote sensing to simulate a faugkr antenna, thereby reducing
the potential size of the footprint, for examples Soil Moisture and Ocean Salinity
(SMOS) satellite (Kerr et al., 2001). SAR uses kEntechnology to not only receive
microwave signals, but also to emit microwave epeftis technology requires
sophisticated system designs, as well as compleepsing procedures. In basic terms,
the SAR sensor emits a series of microwave putsearts the Earth’s surface as the
platform, satellite or aircraft, flies over the araf interest (Ulaby et al., 1996). This
results in a number of overlapping footprints rumgnalong the direction of the flight
path (Figure 2.1). The system uses precise meastites amplitude and phase of the
return signal to calculate the position of the sensbject relative to the antenna. The
Doppler effect is exploited in order to detect Wwiegtthe target is behind or ahead of the
sensor. Cracknell and Hayes (2007) and Woodh@26866) provide more detailed
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descriptions of the principles behind the SAR syshait the most important feature
concerning this review is the fact that better igpha¢solution can be achieved
compared to real aperture systems.

/ Flight line

Figure 2.1 lllustration showing the geometry of the Synthé{zerture Radar (SAR)
system. Large footprints are designed to overlapaaa combined to synthesise a

larger antenna. From Woodhouse (2006).

Microwave energy emitted and received by a radstesy can be horizontally or
vertically polarised. Many systems have the abtlitype configured to specify the way
in which the system emits and receives a microveayeal. A system that both emits
and receives a horizontally polarised signal isnred to as ‘like polarised’. Conversely,
a system that emits horizontally polarised sigmal geceived only vertically polarised
returns is referred to as a ‘cross polarised’ syst®y comparing a ‘like polarised’
image and a ‘cross polarised’ image for the saraa,deatures that influence the

polarisation of the signal can be identified. Tiyise of analysis is known as

depolarisation.
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Depolarisation is related to the physical charastics and the dielectri
properties of the target. As discussed at the sté8ection 2.2.1, the amount of watel
a soil matrix can have a strong influence on tleéedirc constan In terms of active
microwave imageryhigher amplitude backscattends to be found oviwetter soils
(Figure 2.2)Using these princles, it is possible to map soil moisture distributiging
SAR imagery. The ENVISAT (Environmental Satelli@band ASAR (Advance
Synthetic Aperture Rad: is an example of a system tlias the ability to provid
imagery with different polarisations. Baghdadi ke((2006)compared oterved soil
moisture measurements with microwave backscatien &ASAR using a number
different polarisations and incident angles. Altgunigh correlations were fout
(RMSE of around 6%), the study found that the Usgass polarised imagery does
help to improve estimations. In fact, the most gigant factor was the incidence anc
whereby, higher errors (RMSE between 9.1% and 9w@ét¢ found with low incidenc
angles (~40°). This finding is related to Figur3 which demonstrates reduc
sensitivity for low incidence angles, due to redusedttering in the direction of tt
sensor. The use of cross polarised images for ctesiging soil moisture also h
potential limitations as factors, such as surfacghness, can also leac
depolarisatior{Baghdadi et al., 200.

Incoming EMR _
Incoming EMR

Some surface
Surface scattering scattering

X 'Y
Some absorbance

Dry sail

Figure 2.2 Diagran of soil profiles showing the interaction of electragnetic
radiation with dry and wet soils. Dry soils tendréflect microwave energy where

wet soils tend to absorb energy due to its highededtric constant

18



Increasing roughess )

Incidence angle

Voo e
Y.

Figure 2.3 Diagram showing the effects of surface roughnedsraidence angle on

scattering. Smooth surfaces show only speculagatdin. Rough surface show
increasing diffuse scattering. For the roughedaser reflectance is almost entirely
diffuse and is not influenced greatly by incideaogle. Modified from
Woodhouse (2006).

The example of Baghdadi et al. (2006) improvedresdions of soil moisture
(RMSE of 3.0%) by exploiting the relationship beémencidence angle and surface
roughness. Again, Baghdadi et al. (2007) found $#R imagery acquired at different
incidence angles could be used to make vastly ivgatr@stimations. This is because
the ratio of backscatter coefficients can redueestifiects of other soil surface
components, namely, surface roughness. It is pessilzapture two images with
different incident angles using satellite sensahsas the Canadian C-band
RADARSAT (Radar Satellite). Despite this, the titaken for the second image to be
collected (a matter of days) means that soil mpestonditions are likely to have
changed (Baghdadi et al., 2007; Quesney et alQ)20Wis, therefore, reduces the
likelihood of capturing a reliable characterisatafrsoil moisture, particularly over
temperate areas where the temporal variabilityodfsoisture is high (Famiglietti et

al., 1998). In addition, as discussed in Secti@i?the relatively short wavelength of
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C band microwave energy (Table 2.1) means thatstrongly susceptible to scattering
by vegetation canopies (Figure 2.4). As a resudt,examples of Baghdadi et al. (2006;
2007) have been restricted to low vegetation casopi bare soils. Therefore, these

methods hold little relevance for vegetated earthveonbankments.

Incoming

EMR \\“ X-BAND
\\\‘*A Scattering
AN

Figure 2.4 Diagram showing the interaction of electromagnidiation with
vegetation canopies at different microwave freqiemcK-band is the highest
frequency with a relatively short wavelength reisiglin a high degree of scattering.
L-band is the lowest frequency with a relativelgdovavelength which penetrates
the vegetation canopy and scatters from the groQodesponding frequencies and

wavelengths can be found in Table 2.1. Adapted fiRan (1992).

Attempts have been made to make estimations bfremsture using C band
SAR imagery that are free from the influence ofate roughness and vegetation.
Quesney et al. (2000) developed such a method tlsnguropean Space Agency’s
ERS (European Remote Sensing) SAR, that operates i@ band frequency at an
incidence angle of >10°. Their method involved deqg soil moisture over specific
calibration targets, that were corrected for theas$ of vegetation and surface
roughness. This allowed for the development ofilnsoisture index that could then be
applied to rest of the study area, in this casteewatersheds. Despite showing high
correlation coefficients with observed soil moist(® of 0.89), this method involved a
high degree of parameterisation to correct foretfiect of surface roughness, but
especially, vegetation (Le Hegarat-Mascle et 802). The effect of vegetation on the
microwave backscatter was also modelled, but immeernomprehensive manner. They

made use of a radiative transfer model based oprtheipals described in Karam et al.
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(1992). This model requires information regardiegetation height and plant density.
Quesney et al. (2000) explained that these parasnede be derived using satellite
vegetation reflectance data (in the form of essaleld near infrared/red ratios from
Landsat imagery as discussed later in Section2atd knowledge of the plant type,
in this case knowledge of the agricultural cropel@o changeable nature of these
parameters, this information must be continuallgtatpd throughout the vegetation
growth cycle. This requires multiple satellite ireagand ground truth measurements,
which can hinder the use of these methods in aratipeal context.

In a follow up to the method presented by Questay). (2000), Le Hegarat-
Mascle et al. (2002) developed these techniquas @ttempt to eliminate the
restrictions enforced by the reliance on continuafidated information regarding
vegetation. The previously developed method by Qexest al. (2000) was validated
over watersheds with varying soil types, compositemd vegetation cover. Rather than
continually updating with ground truth data, th@wde in vegetation parameters were
estimated using a crop growth model. Their resotl&cated reasonable correlation
coefficients (R 0.63 — 0.85); however, the authors acknowledgethiegar methods
cannot be applied to dense vegetation covers,dimgjuforests, ungrazed pasture and
developed crops (Le Hegarat-Mascle et al., 200Rs lTmitation was attributed to the
nature of C band microwave energy which, as diszigs Section 2.2.1, cannot
penetrate dense vegetation canopies. Again, thssiot question the potential for
using such techniques over densely vegetated eanitewPerhaps one suggestion
would be to apply these methods during the winteene the presence of leaves is
limited, thereby reducing the effects of canopytterang. However, the methods
presented by Le Hegarat-Mascle et al. (2002) relthe estimation of vegetation
parameters from optical satellites which requied-len conditions during spring or
summer months.

Recent attempts have been made to improve thevatof soil moisture over
vegetated areas. Pierdicca et al. (2010) usediegration between airborne C band
microwave imagery, from AirSAR, and information ab@egetation cover from
Landsat satellite imagery (further details regagdime use of satellite imagery for
deriving information about vegetation can be foun&ection 2.4.1). Initially, SAR

backscatter data is collected for bare soilspiegore vegetation growth. This is then
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used to estimate the change in backscatter fagréift times of the year, with the
assumption that there is a relationship betwedn@oghness conditions and time of
year. Similar to Le Hegarat-Mascle et al. (2002getation conditions are quantified
using Landsat imagery. Comparisons between estiha@ate observed soil moisture
showed reasonable correlation coefficients¢R0.72). Although this is not as high as
other studies mentioned in this Section, the stiidyincluded the presence of well
developed vegetation cover. In addition, thesereds were made over a relatively
fine spatial resolution, between 6.6 - 9.2 m, &y tlvere made using a relatively high
frequency microwave (C band) sensor, on boardr@orme platform.

Both Le Hegarat-Mascle et al. (2002) and Pierdatca. (2010) have
demonstrated the potential for using C band SA&stonate soil moisture over
vegetated areas. However, the models used to Hegbe effects of vegetation
canopies are highly complex, using a number ofrpatars to characterise the
vegetation at hand. This is therefore likely toitithe use of their soil moisture retrieval
algorithms outside the study area. Furthermoreitkethe relatively high spatial
resolution at which these estimates are made,rémagin too coarse to provide a
characterisation of soil moisture distribution otransport corridor earthworks with a
typical width of 5-20 m. The launch of TerraSAR¥4th a possible resolution of 1 m
(Werninghaus et al., 2002), provides an excitingsgality for future research
(Baghdadi et al., 2007), but currently there areepmrted attempts to map soil
moisture using this system. However, as this systpenates at the high frequency X
band, the soil moisture signal is likely to be Wygbulnerable to the effects of
vegetation and surface roughness.

This section has shown the potential for retrig\gnil moisture from active
microwave sensors. Despite excellent correlatioitis @bserved soil moisture, there are
a number of inherent limitations that restrict tise of such systems. Many of these
limitations are the result of a trade off betweehiavable spatial resolution and the
vulnerability to the effects of soil surface rougbka and the presence of vegetation. In
general terms, although shorter frequency microveaergy (longer wavelength) is less
susceptible to the influence of vegetation andasgrfoughness, the long aperture
required for these systems limits the spatial tggwi of the resulting imagery.

Although recent advances have strived to improeesgtimation of soil moisture using
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high frequency microwave sensors (fine spatialltg®m imagery) over vegetated
areas, subsequent retrieval algorithms are highigipeterised and likely to be limited
to their use outside the training area. Nevertlselegen the highest spatial resolution
microwave sensors are insufficient for providindedailed characterisation of soil

moisture over a transport corridor earthwork.

2.2.3 Thermal sensors

The use of thermal imagery to map soil moisturgeihaps the only remote sensing
method that has been considered in transport esgnye(Perry et al., 2003b). Similar
to passive microwave sensors, thermal sensorstaatessivity from the Earth’s
surface, but at much shorter wavelengths, typicaly- 5.5um and 8 — 14m. Such
sensors have been applied to a range of diffemglications, such as the detection of
natural geothermal anomalies, and monitoring heesst from building roof surfaces.
Thermal channels have been incorporated into a ruwnfisatellite platforms, including
ASTER (Advanced Spaceborne Thermal Emission ank&efn Radiometer), MODIS
(Moderate Resolution Imaging Spectroradiometer)HRR (Advanced Very High
Resolution Radiometer) and Landsat ETM+ (Enhandezhiatic Mapper Plus),
providing thermal imagery at a range of spatiabhésons (Landsat has the highest
spatial resolution at 60 m). However, in terms @inmtoring transport corridor
earthworks, the potential of using thermal imadey in the development of relatively
lightweight sensors. Due to the reduced payloagkdlsensors can be installed on light
aircraft, providing the opportunity to obtain higpatial resolution imagery (Minacapilli
et al., 2009).

The physical principles behind retrieving soil stare from thermal imagery
bears similarities with estimations made using ow@ave sensors. As described in
Section 2.2.1, this relates to the fact that wettéis have a higher dielectric constant,
meaning they have greater ability to conduct etestrgnetic radiation (see Figure 2.1).
In terms of thermal radiation, the higher dielectonstant of a wet soil means that it
has a greater ability to retain thermal energyaAssult, soil moisture is a major
control on the daily range in soil temperature, rghgetter soils exhibit a lower range

in temperature (Verstraeten et al., 2006). Usimg ghincipal, soil moisture can be
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characterised through thermal inertia mapping, Wwiggantifies the diurnal change in
temperature for a specific target.

Rather than making direct measures of thermatimeemote sensing techniques
estimate the contributing components, such as ddyaht time surface temperatures
(see Minacapilli et al. (2009) for a breakdownlod formulas used). The estimate of
thermal inertia is used to invert an equation tescribes the relationship between the
thermal properties of a soil (heat capacity andntia¢ conductivity) and the soil water
content. However, the relationship between thentlaéconductivity of a soil and the
soil moisture content is complex due to the effe€tsoil composition (Minacapilli et
al., 2009). Similar to the complications associatéti microwave signals from
variations in surface roughness (see Sections artiR2.2.2), the relationship between
soil moisture and thermal conductivity is modellesing a range of approaches.

Physically based models, used to model the effieittermal conductivity on soil
moisture content, tend to be highly parameterisetaae therefore unlikely to be useful
outside the training area (Minacapilli et al., 2009 et al., 2007). As a result,
empirically based models have been developed Heatet parameters to express
different soil textures. Despite this generalmatistudies have found a good
correspondence between observed and estimatettiaonal conductivity under
laboratory conditions (Lu et al., 2007). Minacapel al. (2009) used this kind of
modelling in a thermal inertia mapping campaigeharacterise soil moisture
demonstrating correlation coefficients up to 0 &8.well as producing reasonable
correlations, these estimates were made using Aiebdohematic Mapper (ATM) with a
spatial resolution of 4 m, which would be adequatearry out monitoring campaigns
over transport corridor earthworks. However, thiglg was applied to bare soils only
and therefore has no bearing on the estimationibfisture over vegetated areas. In
addition, soil wetness was artificially inducedngsirrigation technology, which is
likely to produce more distinct differences in soibisture values compared to a
naturally occurring distribution of soil moisture.

The main limitations, associated with using thdrimagery to characterise soill
moisture, are inherent to all sources of opticalotely sensed data. Notably, these
limitations include vulnerability to atmospheri¢eatuation and the inability to penetrate

cloud cover and vegetation canopies (Kerr, 200®hodgh the presence of vegetation
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remains a major limiting factor, attempts have beaade to estimate soil moisture for
areas with agricultural crops. Crow et al. (2008)lained that through accurate
interpretation of the thermal signal from vegetati@nopies, it is possible to detect
differences in surface temperature, due to chamgegapotranspiration, which can be
used to infer soil moisture conditions. This wakiaeed through the assimilation of
two soil-vegetation atmosphere transfer modellipgraaches (see Crow et al. (2008)
for full details of the methods and models usetip first modelling approach uses
thermal remote sensing observations to predicteimperature from the vegetation
canopy and the soil surface. The second is a watance model that uses observed
rainfall data and predicted evapotranspirationdtednine soil moisture within the
vegetation root zone. The results of this work sigood correspondence with
observed soil moisture, with a correlation coeéfitiof 0.84. However, the strength of
the correlations were found to be strongly dependerthe accuracy of vegetation input
parameters into the aforementioned models (Craal. ,€2008). This involved extensive
and continued field work, which limits the potehfar such a technique to become
operational. In addition, the study site used bgvCet al. (2008) was located over
agricultural fields with a land cover of homogenaosn crop. It is likely that a
transport corridor earthwork, with heterogeneougetation cover, is likely to present a
much more challenging environment to model.

Another approach to deriving soil moisture ovegetated areas is referred to as
the ‘triangle method’ (Vicente-Serrano et al., 208d4ndholt et al., 2002), which
exploits the relationship between soil moisturefaste temperature and fractional
vegetation cover. In terms of remotely sensed datdace temperature can be
determined using a thermal sensor, and vegetatioar can be estimated using
reflectance measurements in the red and neareédfragions of the electromagnetic
spectrum. Specifically, a normalised differenceatagon index (NDVI) is used to
represent vegetation cover, which uses reflectémoe the red and infrared regions of
the spectrum, that are sensitive to plant leavesiBri et al., 1995) (discussed in
greater detail in Section 2.4.1). Analysis of telationship between derived surface
temperature and NDVI, referred to as the tempegatagetation dryness index (TVDI),
Is used to provide information on soil moisturedibions by estimating

evapotranspiration rates (see Sandholt et al. (2@02ull details). This relationship is
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summarised in Figure 2.5 with high TVDI values tielg to limited water availability,
and low values corresponding to maximum evapotigaispn due to high soil moisture
contents (Vicente-Serrano et al., 2004; Sandhalt.e2002). This method has
advantages over other techniques, such as thoselaesby Crow et al. (2008), as
estimations of TVDI rely solely on remotely senskedia, therefore increasing the
potential for being used operationally (Sandhokllgt2002).
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Figure 2.5 Simplification of the triangle method that defirtee relationship between
surface temperature, vegetation cover (represdité&DVI) and evaporation,
which is used in the calculation of TVDI to infeilsmoisture conditions. Modified
from Sandholt et al. (2002).

Using the triangle method and the calculation DVT values, studies have found
reasonable correlations with soil moisture valustsraated using hydrological models.
For example, Sandholt et al. (2002) found corretatoefficients up to 0.81 using data
from the AVHRR sensor. They also found that thetimeates were insensitive to
surface cover indicating stability of the developechnique. However, it should be
noted that this study was conducted for a semiragn of West Africa where

vegetation tends to be sparse (Sandholt et al2)2Mente-Serrano et al. (2004) used
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similar techniques to Sandholt et al. (2002) fdinesting soil moisture over an area in
north east Spain, using data from both AVHRR anadisat satellites. Although the
study site had greater vegetation cover, compasisoti soil moisture derived from
hydrological models showed relatively poor resuifsto an R of 0.42. This suggests
that the triangle method is better suited to ava#s sparse vegetation cover and may
therefore not be applicable for UK transport casrgd Perhaps more crucial is the
coarse spatial resolution of the AVHRR sensor kin} which is not adequate for

monitoring transport corridor earthworks.

2.2.4 Visible, near and shortwave infrared

Thermal imagery focuses on an area of the elecgosta spectrum with relatively
long wavelengths. Efforts have also been madeuttyshe effects of soil moisture on
reflectance in the visible, near and shortwaveanaf region of the spectrum, ranging
from 400 nm to 2500 nm. The influence of soil maistcontent on the reflectance of a
soil in this spectral domain follows similar linesthat of thermal and microwave
reflectance or emissivity. Specifically, an incre@s water in a soil matrix increases the
amount of electromagnetic energy that is absobystie soil (Moran et al., 2004).
This results in the familiar darkening of a soteafwetting (Lobell and Asner, 2002)
which forms the basis of estimations of soil maistusing reflectance in the visible,
near and shortwave infrared.

Lobell and Asner (2002) gathered reflectance nreasents in this spectral
domain for four different soil types with varyinggrees of wetness under laboratory
conditions. The relationship between soil moistamd reflectance was expressed as the
best fit coefficients for an exponential model. IRetiance at the wavelengths 600 nm,
1200 nm and 2200 nm, were shown to have a parntiggaeong exponential
relationship with observed soil moisture, althoagtual correlation coefficients were
not reported. Their findings also showed that flace measurements in the visible
domain were only sensitive to soil moisture corgerg to 20%, whereas reflectance in
longer wavelengths, such as the near and shortinfraeed, continued to respond to
soil moisture content value up to 50%.

Weidong et al. (2002) also examined the influenfcgoil moisture on reflectance

measurements in the visible, near and shortwavared regions of the spectrum.
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Reflectance in this domain is strongly affectedsby type and texture (Moran et al.,
2004; Muller and Decamps, 2001) and therefore Wegdst al. (2002) analysed the
effects over 10 different soil types. They foundyeigh correlations, Rabove 0.88,
when reflectance measurements were compared tmedture values for individual
soils. High correlations, #between 0.7 and 0.85, were also found when cosypsi
were made using the whole set of soils, showinghse for developing a universal
model. However, this was only applicable to soitdhwelatively low soil moisture
content as poorer correlations were found overewsttils (R less than 0.5). This is
due to the non linear relationship between soilstuoe and reflectance over this
spectral domain. Specifically, under low soil morstconditions, reflection tended to
decrease with an increase in soil moisture, wheegdsgher soil moisture levels,
reflectance tended to increase with an increaseilrmoisture (Weidong et al., 2002).

Despite the complexities illustrated by the lagerdy, the work reported by
Lobell and Asner (2002) and Weidong et al. (206ndnstrated the potential for using
reflectance measurements in the near and shortwheeed to infer soil moisture
content. However, this work was limited to a lattorg setting where factors such as
soil type, surface roughness and texture couldbé&a@lled. Lihua et al. (2005)
extended this work by estimating soil moisture gsiisible imagery gathered from an
unmanned aerial vehicle and hyperspectral dataeri¢ld using a spectroradiometer.
Despite Lobell and Asner (2002) previously showtimg visible part of the spectrum to
be insensitive to soil moisture content value a0, Lihua et al. (2005) found
strong correlations with observed soil moisturetaipn B of 0.9.

One the advantages of taking remotely sensed mezasuts of reflectance in the
visible, near and shortwave infrared, is the padéfdr acquiring very high spatial
resolution imagery (0.5 m with some commercial l§sesensors) (Lobell and Asner,
2002). There are a number of sensors with the dégdb record reflectance in the
visible, near and shortwave infrared. Those wifima spatial and spectral resolution
are typically hyperspectral sensors onboard airaradasuring spectral reflectance over
numerous bands. Ben-Dor et al. (2002) used the EYRIES (Digital Airborne Imaging
Spectrometer) scanner with 79 channels acrosgp#utral region 400 nm to 1400 nm
at a spatial resolution of 8 m to map soil progsrover farmland in Northern Israel.

They compared reflectance measurements againstatitfsoil properties, including
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soil moisture content, using multiple linear regrea. Correlations between observed
soil moisture and estimates made using the airb@metely sensed data were not as
good as those derived from laboratory experimenits, R? values of 0.65 and 0.85
respectively. Nevertheless, this study demonstridu@ida reasonable characterisation of
soil moisture can be made, at a high spatial résoluusing airborne sensors

The previously mentioned studies have all showh leorrelations with observed
soil moisture. However, these estimates were madeltare soil as reflectance
measurements made in the visible, near and shaogtiménared are highly perturbed by
the presence of vegetation (Moran et al., 2004 &land Decamps, 2001). This is
because the relatively short wavelength of elecagmetic energy within this spectral
domain is absorbed and scattered by leaves andh@anTherefore, techniques using
this spectral domain to make direct inferencesdfrsoisture would have little use

over a vegetated transport corridor earthworks.

2.3 Characterising soil moisture using terrain analysis

Rather than detecting soil moisture directly frdra soil surface, research has shown
potential for characterising soil moisture condigdhrough indirect methods.
Specifically, topography has been shown to haveoag influence on the processes
that control soil moisture distribution, includisgrface and subsurface flows, and
evapotranspiration (Tenenbaum et al., 2006; Baydasd Lehmann, 1998).
Researchers have exploited this relationship tHralbg development of terrain analysis
routines such as wetness indices and calculatibpstential evaporation. These
calculations are applied to digital elevation med&EMs) which are generated using a

number of different techniques, which are discussetkction 2.3.3.

2.3.1 Wetness indices

Terrain analysis using DEMs is a well establishextfise in hydrology (Sgrensen et al.,
2006). Perhaps one of the most common exampldssoistthrough the use of a
topographic wetness index (TWI). The theory belims index was first presented by
Beven and Kirkby (1979), and can be expressed loyafian 2.1.
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a
TWI =1 ( )
" tan

Equation 2.1

Wherea s the local upslope area draining through a aegaint per unit contour
length, angb is the local surface slope (Sgrensen et al., 200 tangent curvature of
the slope provides a measure of flow convergencivergence, and the upslope area is
a measure of the potential area that can contritmtethrough a unit contour length
(Western et al., 1999a). The specific calculatiogisind the TWI are detailed in Section
3.2.1.1.

To put the TWI calculation into context, take tleersario in Figure 2.6. The
input DEM shows a simplified version of a catchmarga, with steep sides and a flat
base (step 1). The upslope contributing area imWécalculation (Equation 2.1)
indicates that flow directions travel from the gtestdes of the catchment, towards the
flat base (step 2). As the flat base is locatedchtdw the end of the flow direction paths,
it has a higher degree of contribution from furtbprthe catchment, compared to the
valley sides that have little or no other cellsaiog into them (step 3). This illustrates
the estimation of accumulation based on upslopé¢ribotions. The curvature of the
slope explains that moisture is more likely to e&ined on flatter slopes, as opposed to
steep slopes for which moisture is likely to floawghslope. The combination of
contributing area and the curvature of the slopamadhat flat areas which receive
contribution from upslope areas have higher TWugalthan steep areas with little or
no upslope contribution. Areas with high valueskarewn as areas of topographic
convergence, which is depicted in Figure 2.6 (8jewhere the base of the catchment
has a higher TWI value (red grid squares) tharc#ttehment sides (white grid squares).
However, it should be acknowledged that valuesapeessions of subsurface flow and
susceptibility to wetness rather than direct prigais of soil moisture content
(Tenenbaum et al., 2006; Beven, 1997). As a rethdtcalculation of TWI does not
take into account other controls on the distributd soil moisture, such as soil

characteristics (Schmidt and Persson, 2003).
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1. Input DEM

3. Estimates accumulation based
on upslope contribution area

Figure 2.6 lllustration showing key components in the caldolabf a TWI,
including the calculation of flow direction and Uggse contributing area. Red areas

refer to high TWI values, corresponding to wetteras.

A common application for TWIs is in slope stabilgiudies (Baum et al., 2005;
Gritzner et al., 2001; Pack et al., 1998). Thisased on the observation that areas with
higher soil moisture content tend to occur in afaspographic convergence, as

illustrated in Figures 2.6 and 2.7, which is comiy@ssociated with slope instability
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(Pack et al., 1998). This coincidence is considerethtrinsic that entire stability
models have been explicitly based around TWI catauts, such as the SINMAP
(Stability Index Mapping) model developed by Patkle(1998). However, these
studies make no attempt to draw comparisons wisieied soil moisture
measurements. Despite this, there is a growing bbayork that specifically aims to
assess the quality of TWIs with observed soil nuboesmeasurements.

Topographic Moksture Index

[ 3282 . 4445
) 4445 . 5608
5600 . 6.711
6771 .7.9U
7934 .9.0%8
9,090 - 10,261
I 10261 11424
B 11.424 12587
12.587 - 13,75
Mo Data

Figure 2.7 Example TWI calculated from a 11.25 m DEM from eekied catchment
near Baltimore, USA, from Tenenbaum et al. (200®)table patterns include
increased wetness (blue) in an area of convergemceng down the centre of the
scene and lower wetness values (dark orangehéosteep slopes surrounding this
area of convergence.

Schmidt and Persson (2003) showed a reasonableacmop between surface
soil moisture measurements and a TWI generated &8m DEM for varying relief in
Central Sweden and North East Germany. Best reselts found over undulating,
hummocky terrain with an3of 0.64. However, poor results were found in aafdsw
relief due to the lack of topographically conveggareas. As Schmidt and Persson
(2003) explained, the concept behind the TWI iy malid for areas with a high degree
of lateral water movement, which is controlled biative relief. This is supported by
Barling et al. (1994), who explained that soil niais distribution is not sufficiently
controlled by topography in areas that exhibit aerall shallow slope angle (< 6°).
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Whereas transport corridors as a whole may exhdih shallow sloping low relief and
steep sloping hummocky terrain, slopes on embankam@hcutting earthworks
generally tend to be more than 6°, therefore shgwistential for using a TWI to
characterise soil moisture in such an environment.

Western et al. (1999a) compared a TWI, calculasgigua 5 m DEM for an
undulating catchment near Melbourne, Australiajrega detailed survey of soll
moisture measurements made throughout the yearel@bon coefficients varied
greatly throughout the measurement period, ranfyorg no correlation, to an¥of
0.42 found during the wet season. Interestinglghsimprovements to correlations
were obtained when soil moisture was compareddamétural logarithm of the
contributing area, i.e. taking the tangent of tlopa () out of the TWI calculation in
Equation 2.1, with a correlation coefficient of .gp0.5. This correlation was only
achieved during wet conditions suggesting thatrdauting area becomes the dominant
control on soil moisture distribution (Western bt 8999a). This implies that during
time of increased rainfall, lateral movement of @vahrough a terrain becomes more
dominant than the control of slope curvature, whiey be more applicable to long
term controls on soil moisture distribution as vests concentrates in areas of
convergence. Better results were achieved whem\tflewas coupled with a
calculation of potential solar radiation, whichdiscussed in Section 2.3.2.

Tenenbaum et al. (2006) showed a similar spreadnmlation coefficients
when they compared soil moisture measurements tbcBWulations made using
DEMs with a range of spatial resolutions (0.5 n8@m), over a forested area with
undulating terrain, and a suburban area with redgtilow relief in Baltimore, USA.
The strongest correlations{Bf 0.8) were found using a 11.25 m DEM, when
compared to soil moisture measurements made iremaihditions. Moderate
correlations, Rup to 0.56, were found using a TWI derived fro@mm DEM. This
shows promise for characterising soil moisture fe@scale. However, to achieve
these results, the wetness index was averagedhoVEt x 11 kernel producing a
conceptual grid with a 5.5 m resolution. This aggiowas adopted so the TWI grid
values were comparable to the observed the sodtomel measurements. In doing so,
this would suppress any fine scale variation ptedidy the calculation which could be
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crucial in precision engineering over transportieaorks where important hydrological
features, such as drains, are typically narrow tfwaf approximately 1 m).

The degree of success in using wetness indicagthgd soil moisture
distribution has varied greatly. It is generallychéhat higher correlations with observed
soil moisture can be found when calculations agieg to coarser scale DEMs
(Tenenbaum et al., 2006). However, this is higldpehdent on the complexity of the
terrain and environment being modelled. For exantptézner et al. (2001) found only
partial success when using a TWI as part of ansagsent into landslide potential in a
875 knf catchment in Idaho, USA, as the coarse 30m DEMdab identify features
such as roads. This leads to the suggestion tbautcess of the TWI calculation is
dependent on the ability of the DEM to identify tmiling hydrological features
(Tenenbaum et al., 2006; Gritzner et al., 2001seBeon these findings, if a TWI was
used to characterise soil moisture in a transpmridor, a trade off would have to be
made between sufficient spatial resolution, with albility to represent all major
hydrological features, and the size of the dattsaliow for reasonable processing
time.

One criticism of TWIs is that they assume the entipslope contributing area
flows to a specific point by subsurface flow, whiohsome environments can be a very
slow process (Wilson and Gallant, 2000; Westeid.e1999a). This can be a particular
disadvantage in applications such as pollutant meve over a catchment. Here, the
steady-state estimations made by TWIs do not tatikeaiccount the time since the
rainfall event which can affect surface and sulmafllow patterns (Kim and Jung,
2003). This has led to the development of quasifaliyldynamic wetness indices that
incorporate a temporal dimension, taking into aotdydraulic functions such as
discharge rate, conductivity and gravitational smeion (Kim and Jung, 2003; Barling
et al., 1994). However, these models require knogdeof soil properties, such as grain
size composition and effective porosity, which b@cumbersome to measure
accurately in the field, and would likely detrairh the original advantage of using a
TWI to characterise soil moisture distribution wiglss effort than using conventional

ground-based methods.
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2.3.2 Potential solar radiation

As discussed earlier in Section 2.3.1, wetness@sdiend to work better in wetter
overall conditions, where soil moisture distribatis more strongly controlled by
topographic convergence (Western et al., 1999ay<éraet al., 1997). However, during
dry periods, soil moisture distribution has beeovainto be a function of aspect and
resulting evapotranspiration (Tenenbaum et al.6200estern et al., 1999a; Isard,
1986). Potential evapotranspiration can be chaiaetéby a calculation of potential
solar radiation (Western et al., 1999a).

The calculation of potential solar radiation us&&M to model the way in
which solar radiation reaches the Earth’s surfaoen fthe Sun. Solar radiation arrives at
the Earth’s surface in three different ways: (Igdi radiation, as the name suggests, is
received via a direct line from the sun, and isléingest contributor to total radiation;

(2) diffuse radiation reaches the Earth’s surfacevly of scattering in the atmosphere;
(3) reflected radiation is scattered by featureshenEarth’s surface. Generally, the
latter route is only significant where there iglisnow cover and is therefore not
considered in the calculation of potential solaliaton. Although spatial variation in
humidity would also have an effect on potentialgoration, it is considered
insignificant at a small catchment scale (approxétys500 nf) due to mixing in the
atmospheric boundary layer (Western et al., 1998a),is also excluded from the
calculation.

Fu and Rich (2002) modelled the principles of scdaliation to calculate
potential solar radiation. This calculation bedaysgenerating a hemispherical
viewshed for each location in the input DEM. Thiswshed is a representation of the
area of sky that is visible to that point basedr@npresence of any obstructions (Figure
2.8). It is therefore important to have a DEM tbatficiently represents topography, as
coarse DEMs may produce under, or overestimatibpstential solar radiation for any
given grid cell. The hemispherical viewshed is usecbnjunction with information
about the position of the sun and sky directiooaiculate total radiation. A sunmap is
used to represent the position of the sun by takitoggaccount the time of the day, time
of year and latitude of the area of interest (3gare 2.9 for a graphical representation).
As a result, potential solar radiation can be dated for any length of time from

specific days, to entire years. Sky direction gresented by a skymap that produces a
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hemispherical view of the sky, with different aredshe map defined by the zenith and
azimuth direction (Figure 2.10). The different area the sky map have a unique value
that is used to quantify the contribution of digusdiation from atmospheric scattering.
These contributions are generalisations of a caaf@d process which is normally
guantified using complex atmospheric contributioodels. Total radiation is calculated
by overlaying the viewshed with the sunmap and slgym\n example of this can be
found in Figure 2.11 which shows a map of surfaceperature predicted from the
potential solar radiation calculation outlined hy&nhd Rich (2002).

The potential solar radiation calculation has bessd in studies to achieve
improved estimations of soil moisture particulanydry conditions (Western et al.,
1999a). However, the calculation is rarely usedediineate soil moisture on its own.
Greater success has been found using a combiratmrtential solar radiation and
TWI (Western et al., 1999a; Western et al., 19989pgcifically, Western et al. (1999a)
found that a combination of potential solar radiatand TWI produced an’Rf 0.61
with observed soil moisture during wet conditioas,improvement by a factor of
nearly 20% compared to using the TWI on its own.

Advances in the collection of remotely sensed gpaphic data and terrain
analysis using GIS has led to the developmentrefraber of hydrological models (Du
et al., 2007; Boughton, 2005). The hydrological gloOPOG uses terrain analysis to
predict hydrological characteristics including saisture distribution and catchment
erosion (Huang et al., 2005). This model incorpesanformation from both wetness
and solar radiation calculations from a DEM in oredescribe the way in which water
moves through a landscape. Soil moisture estinmsete using such models have been
successfully applied to the assessment of slopdistdRay and Jacobs, 2007) but few
reported attempts have been made to compare s@turedistributions with observed
soil moisture measurements. One of the criticishtBese kind of models is that they
require a large number of parameters (Du et ali720ncluding soil depth, hydraulic
conductivity and vegetation cover, all of which apatially variable (Huang et al.,
2005). As a result, models are likely to be taitbre specific study areas and have
limited use in an operational context. In additiomgdels such as TOPOG require a
great deal of terrain data and are therefore omhgiclered to be applicable to small

catchment scale areas (less than 18) KBoughton, 2005; Huang et al., 2005).
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(b)

Figure 2.8 lllustration of a viewshed calculated for a specdell. Image (a) show
the hemispherical view from a particular DEM grgiare. Image (b) shows area:s
grey that are considered to be obstructions. Infegehows the same hemispheri
view as (a) buwith the area of sky that is not visible due bstuctions masked o

in grey. Images taken from ESRI's ArcGIS help doeuts(ESRI, 2007a).
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Figure 2.9 Schematic representation of the sunmap that qiestirect sola
radiation from time of year, time of year and ladi¢ of the area of interest. Tl
particular sunmap is for a latitude of 45° N, céted for the period Decemberst
to June 21stEach square represents half hour intervals throwigthe day an
monthly intervals through the year. Adapted fronRES ArcGIS help documen
(ESRI, 2007a).
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Figure 2.10 Schematic representation of the sky map that id teseepresent diffuse
radiation from zenith and azimuth directions. EBoR represents a portion of the
sky with a unique calculation of diffuse solar etthn. From ESRI's ArcGIS help

documents (ESRI, 2007a).
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Figure 2.11 Map of soil temperature predicted using linear esgion between
observed temperature measurements and potentalradiation calculated using a
30 m DEM, from Fu and Rich (2002). Noticeable patenclude a reduction in
predicted surface temperature on north facing slope
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2.3.3 Issues relating to input DEM

Sections 2.3.1 and 2.3.2 relate to indirect mettiodsharacterising soil moisture using
DEMs. However, there are a number of issues rglatirthe input DEM that can affect
these characterisations, particularly with the daliton of TWIs. Gritzner et al. (2001)
highlighted the need for a DEM with a resolutioattlufficiently represents the
hydrological features within the area of inter&&turally, this varies with the
complexity of the area at hand. Tenenbaum et @0@Rfound that urban areas require
much finer scale DEMs to produce an accurate TWI (g) compared to a forested
area with low relief (5-10 m). Transport corridaften run through urban areas and
would therefore require a fine scale DEM. In adufifitransport infrastructure such as
bridges, embankments and cuttings can be impadnmairblogical features in
themselves (Tenenbaum et al., 2006; Gritzner g2@01) and therefore need to be
represented in the input DEM. As a result, it mayadvantageous to consider the use of
digital surface models (DSMs). Whereas DEMs aregdtion of terrain, DSMs

include other features, such as buildings, roadsvagetation, that are normally filtered
out in routines for DEM generation. However, featusuch as roads and buildings are
relatively small and may not be detected in coassale terrain data. For example,
Gritzner et al. (2001) found inaccuracies usin@aBDEM to delineate soil moisture
as input to an assessment of landslide risk dsalisequent terrain analyses not taking
into account features such as roads.

Issues concerning DEM resolution relate to thehods used for capturing
elevation data. Data gathered using portable RTé&a(Rime Kinetic) GPS tend to be
cheap (providing the equipment is available) araVvigle accurate measurements, but
they are labour intensive over large areas, anddled for a constant radio link has
proved to be problematic in undulating terrain (8at and Persson, 2003). Spot
elevation values can be derived over wide areas &erial photography and
photogrammetric techniques (Schmidt and Perssd8)26lowever, some authors have
noted that photogrammetric techniques may not gdeogaidequate resolution to
represent hydrological features, particularly imgbex urban environments, or where
there are dense vegetation canopies (Tenenbaum 20@6; Haugerud and Harding,
2001) and would therefore be problematic in a fpariscorridor environment. For this

reason, DEMs derived from airborne laser scanniip] tend to be favoured as they
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consistently achieve higher point density retu@shfnidt and Persson, 2003) and have
the ability to provide reasonable ground returnsraxegetated areas (Schulz, 2005). In
addition, terrain data derived from ALS has showbe useful for depicting fine scale
features such as roads and buildings (Hollaus €2@05), which were identified earlier
in this section as having an influence on the amuof terrain analysis calculations,
including TWI.

ALS systems are typically mounted on an aircrdétveihg timely acquisition of
high density elevation data over large areas. Bjlyithis can produce high spatial
resolution DEMs of less than 1 m, with errors kettt@an 25 cm, depending on a
number of conditions including vegetation cover I{blgs et al., 2005). DEMs derived
in this way have been successfully used to generetieess parameters for a number of
slope stability studies (Baum et al., 2005; Sch2005; Borga et al., 2002).
Additionally, ALS derived DEMs have been used imunber of soil moisture
distribution studies such as Schmidt and Perssod3)2and Tenenbaum et al. (2006),
but currently there have been no attempts to aglye methods for characterising soil
moisture in a transport corridor environment.

Despite the notable advantages of using ALS serfigogenerating DEMSs, the
ground surface signal can be strongly perturbethbyresence of vegetation
(Reutebuch et al., 2003). To overcome this, fittgralgorithms have been developed to
maximise the signal from the ground by eliminating signal from the vegetation
canopy and other obstructions (Haugerud and Hay@@@l). This process has
provided excellent results, as well as being fallyomated (Haugerud and Harding,
2001). As a result, the filtering procedure hasobee a common practise in DEM
processing (Lim et al., 2007) and undergoes coatidavelopment. For a more
comprehensive review of filtering algorithms seth@e and Vosselman (2004).

SAR sensors can also be used to derive elevatioesand build high spatial
resolution DEMs using SAR interferometry (also kmoas INSAR) where the
difference in the signal from two separate SAR ande are used to construct a map of
surface elevation (Mather, 2004; Rosen et al., 2d@0wever, studies have shown that
the signal can be perturbed by different land cevearticularly vegetation (Rosen et
al., 2000) and as a result is not as accurate asyk®ms for generating a DEM (Chang
et al., 2004). Based on these findings, a DEM @erivom ALS would be most
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applicable in a transport corridor environment ttuthe presence of dense vegetation
and the need for a fine spatial resolution.

2.4 Remote sensing of vegetation as a surrogate for characterising soil
moisture

Section 2.2 discusses remote sensing techniquestbasoil moisture directly from

the Earth’s surface, whereas Section 2.3 refeimsctaniques that make an indirect
characterisation of soil moisture from DEMs derivean remotely sensed data. This
section centres on the characterisation of soiktnoe through surrogate measurements.
Specifically, the techniques discussed involve messof vegetation spectral
reflectance that can be used to make inferencas #fw® soil below. This discussion

will show that these techniques are potentiallyontgnt for monitoring transport
corridors as earthworks tend to be covered in deegetation, which can often hinder
the use of the remote sensing techniques discussttions 2.2 and 2.3.

Plants get their water from soil and therefore ¢egnin soil moisture are felt by
the plant (Porporato et al., 2001). The responsegétation to changes in soil moisture
is termed ecohydrology (Rodriguez-lturbe et alQP0and can be categorised into two
main responses: (1) an increase in water avaitatelads to an increase in nutrient
availability, which results in an increase in grover biomass (Goldberg and Miller,
1990); (2) an excess of water, leading to wateilogygcausing the depletion of oxygen
in the soil, results in plant stress, highlightgdréduced chlorophyll production and
overall biomass (Smith et al., 2004a; Trought aneMD 1980).

To some extent this theory is put into practicdrbpsport corridor inspectors as
they walk railway routes and attempt to identifgas of increased biomass that could
be indicative of an increase in soil moisture coh{Perry et al., 2003b). However,
there is no reference in the literature, or frorgieeering professionals, to any attempts
made by inspectors to identify stressed vegetasoan indicator of waterlogged areas.
In addition, there are no documented studies that lklealt with the response of
vegetation to an increase in soil moisture on @aotk slopes. This is a potentially
important area of research as vegetation speefitactance in the visible and near
infrared domains has been shown to be able toifgestitessed vegetation (Kempeneers
et al., 2005; Li et al., 2005; Smith et al., 200Bdams et al., 1999; Carter, 1993), and
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therefore has the potential to be scaled up t@adbsensors for application over wide
areas (Kempeneers et al., 2005; Li et al., 2005).

2.4.1 Remote sensing of vegetation change

Since the launch of the first satellites with tlapability to monitor the Earth’s
resources in the 1970s, researchers have devetogibdds to establish relationships
between spectral reflectance and vegetation paessn@istin et al., 1999; Bannari et
al., 1995; Rouse et al., 1974; Rouse et al., 19438understand the relationship
between spectral reflectance and vegetation we finsistonsider the properties of
plant leaves.

Figure 2.12 shows a cross section of a typical [Bafvards the upper part of the
leaf, the palisade layer is made up of elongat=iié that contains chloroplasts. These
are cells that include lens shaped chlorophyll @gts that facilitate photosynthesis by
absorbing sunlight. However, chlorophyll does razgab sunlight equally. Light in the
red and blue regions of the spectrum is absorbatidpigments and green light is
reflected, giving leaves their distinctive greetoco. This top layer of the leaf,
including the cuticle and upper epidermis, is almiegsible to infrared light. This
passes through to the internal spongy mesophglig¢isvhere it is strongly scattered or
reflected (Campbell, 2006).

Attempts to analyse vegetation using broad barallisatimagery has involved
the development of vegetation indices, using tkearel infrared regions of the
spectrum, which have a particularly defined respdoglant leaves (Bannari et al.,
1995). The most common of such indices is the Nbset Difference Vegetation
Index (NDVI), which was briefly introduced in Semti 2.2.3. This was developed by
Rouse et al. (1973) and remains extensively ussayttior many multispectral
operations, using sensors with just a few spebtiatls, such as Landsat with seven
spectral channels. However, such indices were dpedlfor broad band multispectral
sensors which hold only limited information aboagetation targets (Cho and
Skidmore, 2006; Thenkabalil et al., 2000). The dgwelent of hyperspectral sensors,
with near continuous reflectance values over tleetspm (of a given range) have
increased the potential amount of information taat be derived about vegetation from

their spectral reflectance (Thenkabalil et al., 2000
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visible and near infrared light.dapted from Campbe(2006).

Features within a continuous spectral reflectamceecof a plant can revea
number of characteristics, such as biomass, leaf, senescence, stress andies type
(Mather, 2004)More specifically, the red edge region of thecgtemagnetic spectrui
is extremely sensitive to vegetation and aesult is possibly the most studied spec
feature(Baranoski and Rokne, 20(. The red edge (Figure 2.13) is defined by
abrupt change in reflectance from 680 nm (strorspadiion) to 740 nm (stror
reflectance). This occurs due to a combinationbsbabance by leaf chloroph
pigments and reflectance by internal scatteringiwithe leai(Baranoki and Rokne,
2005; Dawson and Curran, 19.

A number of techniques have been developed to éxtpred edge featur
The following subsection discusses those techniques with relatichanges i

vegetation due to changes in soil moisture cions.
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Figure 2.13 Example of healthy and stressed vegetation spewesured over grass
canopies using field spectroscopy with highlighted edge feature.

2.4.1.1 Remote sensing of the red edge feature

Plant tissue under stress increases its heat pgroduc order to dissipate excess
energy, which can lead to a reduction in chloroppsdduction (Zarco-Tejada et al.,
2003). This propagates itself in the leaf reflec&athrough a shift in the red edge
towards longer wavelengths (Cho and Skidmore, 2@®men et al., 2006; Li et al.,
2005; Smith et al., 2005b; Smith et al., 2004a;tbler1998). Authors have identified
this shift by examining the red edge position (RE®y example, Smith et al. (2005b)
found a shift in REP of up to 30 nm towards shontavelengths (from 718 nm to
688 nm) when plants were subjected to a rangeffefreint environmental stresses over
a period of four weeks. In terms of soil moistuae,increase in soil moisture can lead to
oxygen displacement in the soil, therefore redutiegavailability of oxygen to a plant
leading to stress (Smith et al., 2004a). Althouginynof the following studies do not
explicitly address the impact of changes in soilstuve on the red edge feature, they all
refer to different sources of plant stress.

The position of the red edge can be estimated wsimgmber of different
techniques. Perhaps the most basic technique fiirtethe REP uses linear

interpolation to define a straight line between et of minimum and maximum
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reflectance, typically 670 nm and 780 nm respelti{es seen in Figure 2.13) (Dawson
and Curran, 1998). The REP is subsequently defreed the slope of the line. This
technique has been extended by employing an ird/&teissian technique, that uses a
least-squares approach to fit a normal curve todgteedge (Cutler and Curran, 1996).
The REP is then defined as the midpoint betweemisiveg limb of this curve. Although
these two techniques are relatively simple, theyire predefined points for the
minimum and maximum points of reflectance which ralgr between species and
stage of senescence (Dawson and Curran, 1998heffunre, they do not take into
account the possible influence of the canopy, oidg the effects of shadowing and
soil background (Dawson and Curran, 1998).

More advanced techniques for estimating the positicthe red edge largely
focus on exploiting the derivative of the spectkéth the advent of hyperspectral
sensors, many early studies concentrated on oignssmple band ratio calculations
that were previously developed for multispectralsses (Tsai and Philpot, 1998). Such
techniques treated each band as an independeabhaaind ignored any band to band
relationship (Tsai and Philpot, 1998). Derivativelysis overcame this by taking into
account the surrounding bands and is thereforexaression of the rate of change in
reflectance from one band to the next (Equatioh 2Sthowengerdt, 2007; Smith et al.,
2004a).

o = P+1-P-1
Ap1-Ag

Equation 2.2

Where,p’ is the first derivative of the spectrumis the reflectance value aid
is the corresponding wavelength.

Although reflectance of vegetation in the red edgpon of the spectrum is
largely a function of leaf properties, there asoatontributions from shadow, soill
background and vegetation underneath the targetg®@aand Curran, 1998). The
advantage of derivative analysis is that it maxasithe signal from the vegetation
target and suppresses background features (Dawsb@waran, 1998; Tsai and Philpot,
1998; Filella and Penuelas, 1994). As the derieadivthe spectrum is concerned with
change in reflectance, rather than absolute refiteg, it is also relatively insensitive to

the effects of atmospheric scattering and illumoraintensity (Dawson and Curran,
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1998; Tsai and Philpot, 1998). This attribute makealysis of the derivative of the
spectra particularly useful for being applied tedpal reflectance data gathered from
an airborne platform where variations in cloud acemed sun angle can change absolute
reflectance values (Tsai and Philpot, 1998). Dedpits, the derivative spectrum is
known to be sensitive to noise (Tsai and Philp888). As a result, some authors have
chosen to smooth spectra prior to calculating grevdtive. Smith et al. (2004a) found
that a five point weighted average provided sugfitismoothing without losing any fine
scale spectral detail and is easy to calculate eoaapto other commonly used
smoothing algorithms including the Savitzky-Golagdt squares fitting procedure (Tsai
and Philpot, 1998).

Studies have successfully used derivative speatimpgrove estimations of
vegetation parameters, compared to raw spectraliiabnd Madeira, 1993). In
particular, authors have noted the significancevof peaks in the first derivative of
plant spectra (Figure 2.14) (Cho and Skidmore, 2806ith et al., 2004b; Zarco-Tejada
et al., 2003). Zarco-Tejada et al. (2003) explaitined this double peak feature is
entirely the result of reflectance from chloroplgilyments in the leaf. Extensive work
by Smith et al. (2005a; 2005b; 2004a; 2004b) exddngoon this theory by calculating a
ratio of derivative reflectance values at 702 nd @25 nm that correspond to the
double peak feature. They found that this ratio awatrong indicator of stress in plants.
However, the specific wavelengths where the dopbbks occur may vary from plant
to plant, as highlighted by the different peaksidiy Smith et al. (2004b), Zarco-
Tejada et al. (2003), Cho and Skidmore (2006) deddCs et al. (2004). As a result, a
predefined stress ratio may not be applicableltspgcies types and may have to be
tailored to site specific vegetation types (Kemmeaet al., 2005). The stress ratio has

not been tested for embankment vegetation in resptman increase in soil moisture.
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Figure 2.14 Example of the double peak feature at the maximamtf inflection in
derivative spectra for the canopy of healthy grasasured using field

spectroscopy.

Dawson and Curran (1998) presented a techniqué#sathe benefits of being
relatively simple to calculate, sufficiently flexéto allow for different points of
minimum/maximum reflectance, and requireanpriori knowledge about the spectrum
being analysed. Their technique, known as the lragiaa interpolation technique, uses
the derivative of the spectra’] (calculated using Equation 2.2). The calculat®n

described in Equation 2.3.

;o A=A =24 A= 2@ = A41)
Pa= (A1 = ) Ric1 — Ai51) Pag-n A = i) (A — A1) P
A=A DA-4)
Aip1 = Aic) A1 — 4 P+

Equation 2.3

Where,p’ represents the first derivative at a given wavgtlerd; is the band with the
maximum first derivative value, with; andl.; representing the two bands either side.

P ¢y, P aci-1)) @ndp’,i41) represent the first derivative values which canléermined

for any band position on a theoretical red-edgehéncase of Dawson and Curran
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(1998), the wavelengths 695 nm, 700 nm and 705 eme wsed (Figure 2.15). REP can
then be calculated using Equations 2.4 and 2.5.

A(A; + Aiy1) + B(Aizg + A41) + C(A4-1 + 4y)

REP =
2(A+ B+ 0)
Equation 2.4
Where,
P aae P i
A= A(i-1) B = A@0) _and
(Ai-1 — 2D QAi=1 — Aig1) (A = Aim) (A — A1)
C= P'/‘L(i+1)
Aip1 = Aim) Qi1 — A

Equation 2.5

6 REP
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Figure 2.15 Example of derivative spectra for vegetation witl point of maximum
inflection (\t) and the two points either sida-(L andii+1) for use in calculating

Lagrangian REP. From Dawson and Curran (1998).
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Dawson and Curran (1998) demonstrated that theabhggan technique is
comparable to the more complex Gaussian technigaking it better suited to large
remotely sensed datasets due to reduced proceksimands. This is supported by
studies such as Li et al. (2005) who successfudgdithe Lagrangian technique to
identify a shift in REP over two epochs of AVIRI&td, as a response to oil induced
vegetation stress. They compared their resultd&E® Bstimated using polynomial
fitting and found that the latter was less consisie detecting a shift in the red edge
over the whole image, compared to the Lagrangiemigue. However, they also found
that, unlike the polynomial technique, the Lagrangnethod was sensitive to the band
combination, meaning that it may provide differestimates of REP when applied to
reflectance measurements from different sensoesiadifferent band combinations
which are likely to be sensitive to slightly diféet wavelengths. Based on these
findings they concluded that it was difficult tast which of the two methods should be
favoured, but stated that the polynomial method beapreferred due its insensitivity to
band combinations (Li et al., 2005).

A simplified calculation of REP can be found baseditting a linear model to the red
edge but assuming a straight line between refleetah 700 nm and 740 nm. The
reflectance of the red edge is then estimated twalfevay between the absorption
feature at about 670 nm and the reflectance featumbout 780 nm (Clevers et al.,
2004). REP can then be defined by a linear intatpmi between 700 and 740 nm using
Equation 2.6.

Rg70 + R 2—R
REP = 700 + 40 <{( 670 780)/ 700}>

R740 - R700

Equation 2.6

Where, R0, Rroo, Rra0 and Rgo represent reflectance values at the wavelengtbs 67
700, 740 and 780 nm respectively. The constantair@0 are used to represent
spectral range from 700 nm to 740 nm. Clevers.€28D4) compared this technique
with other methods, including®and &' order polynomial fitting, inverted Gaussian,
and maximum of the first derivative, for estimatiREgP to detect vegetation stress
caused by heavy metal contamination. They fountttileamaximum first derivative

provided the only significant correlation, wittf Ralues up to 0.64.
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Despite the success of derivative analysis, sortteeihave noted that
predictor models, based on multiple linear regmssif derivative spectra, can be
inconsistent when applied to different scales asees (Huang et al., 2004; Kokaly and
Clark, 1999). To overcome this, Kokaly and ClarRq4Q2) developed a technique known
as continuum removal analysis which isolated tleespl feature of interest, in this
case the red edge. The line of continuum is defased hull over an absorption feature,
which is then removed by dividing the reflectanedue at each wavelength along the
line by the reflectance value of absorption fea{gee Figures 2.16 and 2.17) (Mutanga
et al., 2005; Curran et al., 2001). When predictiitgbgen content they found an
improvement in the correlation coefficient from 91 0.85, when compared with
derivative analysis (Kokaly and Clark, 1999). Noanet al. (2006) studied the effects
of plant stress induced by gas leakage throughireann removal analysis and found
an increase in reflectance in the red region of@sdo 750 nm, that defines the red
edge absorption feature (Figure 2.17). Mutangd €2@05) also used continuum
removal analysis to relate spectral reflectandbénsame region with plant nutrients
using stepwise regression achieving high corralatmefficients (up to 0.77). Huang et
al. (2004) found that improvements can be made stegwise linear regression by
using a partial least squares (PLS) approach.

The examples of Mutanga et al. (2005) and Kokaty @lark (1999) demonstrated the
potential for using continuum removal analysisgbreate vegetation parameters.
Currently there have been no reported attemptsitty she relationship between soil
moisture and the continuum removed spectra of pd@avies. Some studies have used
continuum removed spectra in the shortwave infrarest bare soils to estimate
moisture content (Whiting et al., 2004). Similatthe studies cited in Section 2.2.4,
excellent correlations with observed soil moisttaa be obtained fRup to 0.91);

however, their methods would have little applicataver vegetated earthworks.
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field spectroscopy.
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The use of spectral analysis techniques, suchressstatios, red edge position
estimation, derivative analysis and continuum reahewalysis, have been shown to
indicate stress in plants, as well as other veigetgarameters relating to plant health.
The sources of stress discussed in this sectidbmdeaatural gas (Noomen et al., 2006;
Smith et al., 2004b), methane (Noomen et al., 20&t6ane (Noomen et al., 2006), oil
spills (Li et al., 2005), herbicide (Smith et &005b), shade (Smith et al., 2005b),
argon, nitrogen and waterlogging (Smith et al.,2000nly the latter study assesses
the impact of soil moisture change, in this casexreme increase, on the red edge
feature. However, the impact of many of these smiat stress, including
waterlogging, relate to oxygen displacement (Sreithl., 2004a). It could therefore be
assumed that the techniques described in thisoseotiuld possibly be used to identify
areas of increased soil moisture over vegetatdatiwearks. However, relatively few of
the aforementioned studies have attempted to &R detection techniques to
heterogeneous vegetation covers (e.g. Li et a0paand therefore there is uncertainty
as to how the developed techniques may work ovgetaéed earthworks. In addition, it
is largely acknowledged that these techniques ddaee the ability to differentiate
between different sources of stress (Li et al. 22@mith et al., 2004a). In applying
these techniques in an operational environmentait therefore be necessary to make
assumptions about the type of change being obsefredysis of the derivative of the
spectrum has the most promise for being used apeadily due to its relative
insensitivity to variations in illumination angleackground soil, and atmospheric
attenuation (Dawson and Curran, 1998; Tsai ang8hil998) and may therefore be
better suited to multiple epoch airborne remotelysed data, gathered from different

sensor types.

2.4.2 Using vegetation as a bioindicator of soil moisture

Section 2.4.1 considers techniques that have ttempal to identify vegetation stress,
including discussion of how these methods migHeoefshort term responses of
vegetation to changes in soil moisture conditibimwyever, this section is concerned
with the long-term response of vegetation to salsture conditions in relation to plant

species abundance.
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Plant species are defined by their environmentcamdtherefore be used to
make inferences about local conditions (Hill et 2000; Schaffers and Sykora, 2000).
In this sense, plants can be seen as biologicelatais and have been used as such by
farmers for thousands of years (Diekmann, 2003xeMecently, scientists have
exploited the use of plants as bioindicators, gitime following advantages over
conducting field measurements of environmental dms: (1) plants express a
summary of local environmental variables which ftactuate strongly over time and
space (Diekmann, 2003). This is particularly afgile to soil moisture where
characterisations cannot be made using single merasats (Hawley et al., 1983). (2)
Measurements of environmental variables tend tméee using expensive equipment
and can often be laborious in comparison to flmrigsbservations (Diekmann, 2003).
(3) Plants tend to remain over time, therefore mglki possible to make temporal
observations of bioindicators (Diekmann, 2003).

The use of plants as bioindicators can be sumntbbgehe concept of
environmental gradients. This concept, outlinedbyak and Prentice (1988), states
that all species occur in specific habitats basedreeir optimum environmental
conditions. The theory explains that the abundaf@especies is therefore a function of
measureable environmental variables, such as sastane. A number of indicator
scales have been proposed based on this theommdesinclude the C-S-R scales
developed by Grime (2001). These scales are basesioocategories that control the
amount of dead or living plant matter in a habitatiably stress (due to availability of
light, water, nutrients, optimal temperature) arstudbance (due to erosion, fire, frost,
being eaten etc). The scales group plant specigsvasether they are a competitor (C),
tolerant to stress (S), or a ruderal (R), this ggilants that are first to colonise
disturbed areas. Although the C-S-R scales have sisecessfully applied to study
vegetation patterns across large habitats (608M@gsant et al., 2009), they have no
explicit link with soil moisture and therefore alibetween these indictor scales and
observed soil moisture may be tenuous.

Other examples of plant indicator scales tend tpupose built for the study of
a particular plant controlling variable (Hill et @2000). For example, Diekmann and
Falkengren-Grerup (1998) developed an index fandej soil nitrogen content by

forest tree species. Only two generalised indicatates have been developed: Landolt
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and Ellenberg indicator values (Hill et al., 200Dhe former was developed as an
extension of the Ellenberg values to be specifydalllored for Switzerland (Diekmann,
2003) and may therefore not reflect plant specigside this area.

The most widely used indicator scale is Ellenbadjcator values (Diekmann,
2003; Hill et al., 2000) which have been used staadard for drawing comparisons
with other scales (Massant et al., 2009; DiekmamhFalkengren-Grerup, 1998).
Ellenberg indicator values were developed on theafbf central Europe (Ellenberg et
al., 1991) and assign indicator values to plantigserelating to specific environmental
variables, namely, soil nitrogen content, pH, sbibride concentration, light regime,
temperature, continentally and soil moisture (Stghafand Sykora, 2000). The
definitions of the soil moisture indicator valugs aummarised in Table 2.2.

Many studies have compared Ellenberg indicatoresto field measurements
(Schmidtlein and Sassin, 2004; Ewald, 2003; Scha#iad Sykora, 2000; Ertsen et al.,
1998). Schaffers and Sykora (2000) tested thehiétiaof Ellenberg values to predict
environmental conditions for vegetation in the Nekiinds. They adopted two weighted
averaging approaches to relate the indicator vatuésld measurements, species based
and site based. For the plant based method, amalptalue for each environmental
variable was calculated per species type. Coraglatiere then made between these
optimal values and the species indicator valuesthesite based method, average
indicator values were calculated per site accortbrtyeir abundance and compared
against actual measurements. The results showeédelsetis with the site based
method, achieving strong correlations with soil stmie (R between 0.8 and 0.9).

Despite the apparent success of Ellenberg valueatais there are a number of
well documented criticisms associated with theiwred@oment and subsequent
application. One of the main criticisms is thatytineere developed for species in central
Europe and should therefore warrant little meawoigide this area (Hill et al., 2000).
This prompted Hill et al. (2000) to conduct a lasgale survey of British plant species,
in order to extend Ellenberg indicator values far UK. Currently there have not been
any published investigations into the reliabilifytbese extended Ellenberg values but

Hill et al. (2000) provided their own critical assenent.
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Ellenberg moisture value

Definition

Indicator of extreme dryness, restricted to stitd bften

1 dry out for some time

2 Between 1 and 3

3 Dry-site indicator, more often found on dry grouhéen in
moist places

4 Between 3 and 5

5 Moist-site indicator, mainly on fresh soils of azge
dampness

6 Between 5 and 7

- Dampness indicator, mainly on constantly moistamg,
but not wet soils

8 Between 7 and 9

9 Wet-site indicator, often on water saturated, badisated
soils

10 Indicator of shallow-water sites that may lack giag
water for extensive periods

11 Plant rooting under water, but at least for a terposed
above, or plant floating on the surface

12 Submerged plant, permanently or almost constamitie

water

Table 2.2 Moisture scale and definitions as defined by Eleglket al. (1991).

One of the principal acknowledgements made byéd4idll. (2000) was that no

effort was made to ensure their vegetation sampliag unbiased. In fact, the contrary

was adopted to deliberately represent particulgetagion types (Hill et al., 2000). Two

surveys were included in their work, one biasedaios common vegetation types,

seldom recording rarer species, and the other skéoveard rare species and special

habitats. They also discussed their modified indicaalues in terms of being plant-

centred, meaning they referred to the immediaté&r@nment in which they were found,
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which can have implications when recording indicatues over relatively large plots.
However, they acknowledged the fact that indicatdues worked best when averaged
out for a specific area and therefore the issysanft centred definitions may not be
appropriate.

A thorough review of bioindicators was conducteddigkmann (2003), with
particular emphasis on Ellenberg indicator valUée first criticism is that they rely on
field observations and can therefore have a degjreebjectivity. This can be of
particular relevance where the field study is caeld by inexperienced ecologists. It is
therefore essential to have adequate knowledgkanft gpecies in the study area. The
review also highlighted the potential for circutgyiin that indicator values are driven
by floristic observations, which are then used akeinferences about habitat
characteristics. The suggestion was that indiczdtires must be calibrated to
environmental measurements. However, this couldade¢he object of using
bioindicators as a replacement for laborious fraeasurements of environmental
components. To a degree this could be compensatdyy drawing comparisons
between indicator values and coincidental field sne@aments. Further criticisms
include the fact that the response of plant speoiesivironmental conditions may
change over time and space (Diekmann, 2003). Agla@nsuggestion is to calibrate the
indicator values with measured values, which magagefrom the operational

capabilities of using bioindicators.

2.4.2.1 Remote sensing of Ellenberg indicator values

The application of bioindicators is growing, andea®sult, they are becoming
increasingly accepted (Diekmann, 2003). Despitg field based methods for mapping
species abundance tend to be laborious and theraésessments are made at a small
scale, typically stand level (Schmidtlein, 2005%. &result, Schmidtlein (2005)
explored the use of remotely sensed data to mapdiators over wide areas by
exploiting the strong relationship between plaseasblages and reflectance.

Authors have noted that plant species composifi@gifiicult to detect using
remote sensing due to the differences between gicalanapping methods and the
methods employed in remote sensing (Lewis, 1998pihg bioindicators, however,
skips the vegetation classification step which semot to exploit all the spectral
information provided by imaging spectroscopy and assult leads to a loss of
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ecological information that might otherwise be gairfSchmidtlein and Sassin, 2004).
Despite this, there have only been a limited nunalb@ttempts to map bioindicators
using remotely sensed data, perhaps due to thegonady of sensor resolution to
identify particular species. This is supported lohr8idtlein (2005) who explained that
attempts have only been made where vegetation tc®eenfined to one or two species,
where more complex vegetation canopies are notuadeky represented by coarse
resolution sensors. Schmidtlein (2005) overcanmgeliiimapping indicator values
directly as a function of vegetation reflectancgng fine spectral resolution imaging
spectroscopy (see Figure 2.18 for the resultingpedsoil moisture indicator values).
The method adopted by Schmidtlein (2005) was toeniighd observations of
species type and relative abundance in 46 relevépjadrats, with a radius of 1 m.
Average Ellenberg values were then calculateddchelot, which were weighted
around their relative abundance. The position esé¢hsites were recorded using
differential GPS and were located within imageryaaiied using an airborne AVIS-2
(Airborne Visible near Infrared Imaging Spectrommgsensor, with a spatial resolution
of approximately 2 m and a spectral coverage fratr868 nm over 64 bands. Partial
least squares (PLS) regression was then used teliedindicator values from the
imagery. This method was favoured over multipledinregression for hyperspectral
data as the latter takes into account just a fegtspl bands that are not collinear
(Schmidtlein, 2005; Huang et al., 2004; Schmidtkmad Sassin, 2004). Reasonable
correlations were found when compared to observidrmisture values (Rof 0.58).
The correlations experienced by Schmidtlein (200&)e not as strong as the
predictions made using the direct remote sensicigniques reported in Section 2.2.
This is largely due to the fact that the direct oégnsensing techniques were largely
applied to areas with bare soils or sparse vegetainopies. However, this could also
be attributed to the fact that bioindicators acgi$tic gradients, and would therefore be
a closer representation of floristic charactersstether than actual soil attributes. This
is highlighted by the results experienced by Schieiid (2005); for example, areas of
high soil moisture were found to be characterisgd belatively high absorption in the
green region of spectrum, suggesting low chlordptoitent in wetland plant species.
However, other areas of high moisture content etddlithe opposite trend, with

absorption in the red and a strong change in teih@e over the red edge, which

57



identified the differences between poor and rictlanel vegetation. In addition, the
response of vegetation to different changes inrenmental conditions can be the
same. For example, the effects of low nutrient supan have the same effects as low
water supply (Schmidtlein and Sassin, 2004). Howes®ologists tend to treat spatial
variation in plant species as a result of long-teanditions and therefore bioindicators
can be seen as expressing the overall charaatsredta soil rather than expressing

short-term changes in environmental conditions §8dhein and Sassin, 2004).

Figure 2.18 Map of soil moisture predicted by mapping Ellenbergjsture indicator
values over alpine pasture, near Salzburg, Austsiag airborne hyperspectral data.
From Schmidtlein (2005). Scale corresponds to flenkerg categorical values
detailed in Table 2.2.
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Despite these criticisms, the fact that reasonsdalenoisture maps can be
predicted over complex vegetated sites gives thikwgreat potential for monitoring
transport corridor earthworks. Furthermore, sensoctuding CASI (Compact
Airborne Spectrographic Imaging), AVIRIS (Airborkeésible InfraRed Imaging
Spectrometer) and HyMap (Hyperspectral Mapper)aaeadlable that have a greater
spectral range than the AVIS sensor used by SchemdR005), and could therefore
hold further potential for this technique. Schiedil (2005) also identified the
advantage of using field measurements of refleetarather than extracting spectra
from the imagery, as this provided targets with edoomogenous vegetation cover, and
helped to enhance the overall model. However woisld require considerable field
work and would be labour consuming for use oveaadport corridor stretching tens of
kilometres.

Although there is clearly potential with mappin@ibidicators through imaging
spectroscopy, there are a number of shortcomirsgsceged with Schmidtlein’s (2005)
methods. Topographic normalisation was not appbeitie imagery prior to analysis,
which could have implications on illumination effecDespite this, subsequent error
analysis did not identify any significant relatibins between model errors and
topographic effects on illumination, despite sonaerestimation of soil moisture in
areas of shadow. Furthermore, no considerationgivas to the effects of canopy
structure. At the leaf level, reflectance is layggbverned by pigments, water content,
carbon content, and has a significant control ogfectance at the canopy level.
However, different ecosystems have very differeflectance properties at the canopy
level. Leaf area index (LAI) has the strongestuefice on canopy reflectance, which
relates to the amount of green leaf area per waitrgl area. Mean leaf angle also has a
strong influence on canopy reflectance, for examnmegetation with vertically
orientated foliage has very different reflectanogperties to vegetation with
horizontally orientated foliage, such as deciduness (Asner, 1998).

The importance of canopy structure is reinforcedblgmidtlein’s study (2005)
which characterised wetter areas by a small LAdhsas bog mosses, but the opposite
could also be found with dense, higher canopiespethis, the study acknowledged
the flexibility of the PLS approach to modelling, idis able to take into account these

differences by handling variations over a numbanpiit spectral bands. In addition,
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this highlights the fundamental advantage of muperspectral remote sensing over
simple band ratio methods that do not embraceahe spectral detail.

Studies have taken into account the effects of mastructure on reflectance
through the use of canopy radiative transfer, anggric-optical models (Bateson et
al., 2000). There are a number of such models vatking degrees of complexity, from
simple 1D models, to complex 3D models. Jacquenab@adl (2000) discussed the
various merits of such models and concluded tbapperational purposes, a 1D model
is sufficient as it is relatively simple to run arejuires a small number of parameters,
but carries enough detail to improve a sensor’sesgmtation of a canopy. The 1D
models PROSAIL, PROSIAPI, and PROKUUSK were allsidared easy to compute,
producing very few differences (Jacquemoud eR800). Among the models tested,
PROSAIL is considered to be the most widely used.

There are two approaches to deriving vegetatioampaters for spectral
reflectance, the empirical or statistical approactd the physical approach
(Darvishzadeh et al., 2008). The statistical apgnaa similar to that used by
Schmidtlein (2005) by which correlations are madenveen the target variable
(Ellenberg indicator values) and spectral reflecgarsuch methods can be considered
sensor specific and are dependent on the conditiornkich sampling was undertaken,
and as a result can change over time (Darvishzedalh, 2008; Meroni et al., 2004).
The physical method involves the use of radiatimedfer models that describe
variation in spectral reflectance as a functiorogam leaf and soil background
characteristics. As the physical method is basethemaws of physics it can offer an
important link between canopy reflectance and #ggetation characteristics of interest
(Darvishzadeh et al., 2008; Meroni et al., 200&4widver, there is an argument to say
that mapping soil moisture indicator values fopglatability in transport corridors is
not concerned with changes over time, merely amativeharacterisation of soil
conditions and may not benefit from radiative tfansnodelling.

Inputs to radiative transfer models require infotioraabout variables such as
chlorophyll concentration, carotenoid concentrgtiwater thickness, dry matter
content, and a leaf structure parameter (Batesah,&000). However, to quantify
these parameters prior to model calculation woel@ak the object of providing an

operational technique. Furthermore, and possiblgtraaucially, radiative transfer

60



models define the canopy as a horizontally homogeteyer and can therefore only be
suitable for largely homogenous vegetation canof@svishzadeh et al., 2008; Meroni
et al., 2004), whereas the nature of vegetatetiwarks can often be complex,

heterogeneous canopies.

2.5 Conclusion

This chapter has provided a critique of directjrect and surrogate techniques for
characterising soil moisture using remotely sertsgd, which is summarised at the end
of this Section in Table 2.3. Of these techniqties direct methods, using active
microwave sensors are most well established andam®dered to have the greatest
potential for being used operationally. Specifigafioil moisture estimations made
using these sensors have been shown to have goethtions with observed soil
moisture. In addition, using microwave remotelyssghdata at low frequencies (longer
wavelengths) it is possible to penetrate vegetataopies. However, due the inherent
limitations on the spatial resolution that can bei@ved by such sensors, both using
satellite and airborne platforms, these techniguesinable to offer a viable solution to
monitoring transport corridor earthworks. Activecnoiwave sensors, such as
TerraSAR-X, have the ability to provide finer sphtiesolution data but these systems
use high frequency (shorter wavelengths) microwdvatsare highly susceptible to the
effects of surface roughness and vegetation caverder to make reliable estimations
using these systems, highly parameterised modelsesaded to correct for these effects,
which require accurate information regarding veg@techaracteristics and soill
properties. As a result, these methods offer lderational potential over earthworks
with complex vegetation covers.

Remotely sensed data using thermal sensors hsvstwed promise for
characterising soil moisture distribution. Agaimghcorrelations have been found with
observed soil moisture measurements but studiesttelne restricted to bare soils as
electromagnetic energy in this spectral domain oapanetrate vegetation canopies.
Successful attempts have been used to exploitnrd@on from red/near infrared
vegetation indices to inform soil moisture retriefram thermal sensors. Although

good correlations were found in semi arid areagreskegetation cover is sparse,
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poorer results were obtained over denser canogeslitions which are more
comparable with temperate environments, found inttdiksport corridor environments.

Direct soil moisture retrieval using reflectanceasurements in the visible, near
and shortwave infrared share characteristics vatimations made using thermal
sensors. Whereas estimations made using theseséase provided excellent
correlations with observed soil moisture, electrgnedic energy over these
wavelengths are unable to penetrate vegetatiorpoesand, therefore, estimations
have been limited to bare soils. To an extentptieeence of vegetation has shown to be
a limiting factor for all the techniques discussethis Chapter relating to direct
estimations of soil moisture. As a result, the abterisation of soil moisture
distribution using indirect techniques was explored

Indirect techniques using terrain analysis of DEN&nely TWIs, are well
established in hydrology and slope stability stadeg delineating soil moisture
distribution. Furthermore, when these calculatiaresapplied to fine spatial resolution
DEMs generated from ALS data, they have potentialite in monitoring transport
corridor earthworks. However, these techniques lsheavn to have mixed results
depending on a number of factors, including theigpeesolution of the DEM and the
overall wetness conditions when validating obseéis@l moisture measurements are
collected. Therefore, soil moisture characterisatising these techniques should be
used in conjunction with other sources of datariprove predictions. Suggestions are
to incorporate an estimation of solar radiationalitthas shown to improve correlations
with observed soil moisture.

Despite the best efforts of vegetation removalnegles, the accuracy of a
DEM generated from ALS datasets can be affectetthédpresence of vegetation. As a
result, techniques are explored that use surragassures from remotely sensed data to
characterise soil moisture conditions below, speadify, the techniques discussed refer
to the use of vegetation canopy reflectance. Tharstdge of using these methods is
that they can be used over vegetated areas whichden a major limiting factor for the
other techniques discussed in this chapter. Howévere have been few reported
attempt to verify the estimation of soil moistuseng these techniques.

The technigues using vegetation reflectance asgate measures of soil

moisture conditions fit broadly into two categori€s) methods for identifying
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vegetation stress, and (2) techniques for mapgeugt phdicator values. There are a
number of examples where spectral analysis tecksibave been used to detect the
onset of plant stress. In particular, derivativalgsis has shown to be particularly
sensitive to different sources of stress and hageatvantage of being relatively
unaffected by differences in illumination which magcur when comparing data from
different sensors, or different epochs of datattiersame location. However, authors
acknowledge that these techniques are unablefayefitiate between different sources
of stress, and therefore assumptions may have noaldle when using them to detect
changes in vegetation due to differences in soiktuge content. Despite the range of
studies using spectral analysis for stress detgctiery few have compared their results
to actual observed soil moisture, with focus tegdmbe on the effects of extreme soil
moisture conditions, i.e. waterlogging. As a reshié potential for using these
technique for characterising soil moisture is unkno

The other vegetation reflectance analysis technogusidered in this chapter is
mapping plant indicator values. Ellenberg indicataiues have been shown to be the
most widely used, which include specific categodetailing optimal soil moisture
conditions for each plant species. Ellenberg vaha® been mapped using airborne
imaging spectroscopy with relative success forre¢idurope, which is the area they
were originally developed for. Ellenberg valuesdaeen extended for UK plant
species but currently there have been no repottechpts to map these using remotely
sensed data. The limitation of this technique & threquires a detailed survey of
species abundance. Despite this drawback, itdyatmliextrapolate environmental
conditions, including soil moisture, over wide arggves it great potential. In addition,
the sensors that have been used to apply this chétnee a fine spatial resolution which

would be adequate for monitoring transport corriearthworks.
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192}

192}

Technique References Correlations Spatial resolution Advantages Limitations
Direct
(sah Lal Very high Footbrint Relatively unaffected by Affected by surface roughnes
- ahoo et al., ootprints atmospheric conditions and presence of vegetation
E?Srfmzve 2008; Jackson | Sahoo etal. typically ~50 km with _ P _ _ _ 'p g
et al., 1999) (2008) R of satellite sensors High correlations with Limited to poor spatial
0.81. observed soil moisture resolutions
Very high
(Pierdicca et al., Quesney etal. | Footprint typically Relatively unaffected by Affected by surface roughnes
, (2000) R of above 7 m using airborne | atmospheric conditions and presence of vegetation
. 2010; Le 0.89. SAR. TerraSAR-X satellite | . . . p. g. _
Active Hegarat-Mascle has a potential footprint of High correlations with Require complex radiative
microwave et al., 2002; Le Hegarat- 1 m but using X band observed soil moisture transfer models with accurate
(zgougos)ney etal, (I\ggzc;_l)eét al. which is highly affected by Higher spatial resolution tha1'nf0rmaf['°n on vegetation
i i arameters.
between 0.63- | Vegetation passive systems p
0.85.
High o Require highly parameterised
(Minacapilli et | \minacapilli et al. i(r:na;gg:gwde fine scale physically based models
al., 2009; Crow | (2009) B of 0.75 )
Thermal et al., 2008; Lu ( ) Spatial resolution up to High correlations with Hr'ggleynggr;?r\?;degﬂgf
imagery et al., 2007; Crow et al. 2 m using airborne sensorsobserved soil moisture P 9

Sandholt et al.,
2002)

(2008) R of 0.84

Sandholt et al.
(2002) R of 0.81

Some success over vegetate
areas

| Success over vegetated area
"Teliant on accurate informatior
on vegetation cover

1°2}
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Very high

Estimations affected by soil

2005; Ben-Dor | (2005) Rof 0.9 | studies conducted with | High correlations with _
Visible, near et al., 2002: Weidong et al. | 8 m spatial resolution but observed soil moisture Models need to be tailored to
and shortwave | Lobell and (2002) R there are airborne sensorssensors in this spectral specific soil types
infrared Asner, 2002; | petween 0.7-0.85, With the ability to provide | gomain can provide high | Only applicable to bare soil
Weidong et al., resolutionsupto 1 m spatial resolutions _
2002) Ben-Dor et al. Largely restricted to laborator
(2002) between studies
0.65-0.85.
Indirect
Variable
Schmidt and
Pzersfson (2003) Intrinsic I’e|a'[i0nship with Accuracy of DEM generation
(Tenenbaum et R®0f 0.64 areas of slope instability affected by presence of
al., 2006; Western et al. Capability of high spatial | Vegetation
Topographic Schmidt and (1999a) R resolution using ALS systemsy/griable results accordin
wetness index | Persson, 2003; | between 0.42- | Upto0.5m , i —
, ' 0.61 (with Potential for good terrain, DEM resolution,
Western et al., | ¥-°% 7 lati h overall wetness conditions
1999a) potential solar correfations when . : o
radiation) incorporated with potential | during observed soil moisture

Tenenbaum et al
(2006) R

between 0.56-0.8

solar radiation

sampling
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Improves estimations made

Unknown using TWI Very f _ "
(Du et al., 2007; with TWI Reported attempts up to o ery few comparisons wi
Potential solar | Fu and Rich, Western et al. 5 m but could be applied toi%ﬁﬁ[]fg%:gg}gg;?ﬂoguﬁzzo | observed soil moisture
radiation 2002; Western | (1999a) found R | ALS DEM with grid overall drier conditions Some models are highly
et al., 1999a) between 0.42- resolutions of less than 1 m parameterised
0.61 Some models are simple to
compute
Surrogate

Plant stress
indicators

(Noomen et al.,
2006; Smith et
al., 2004a;
Zarco-Tejada et
al., 2003;
Kokaly and
Clark, 1999;
Tsai and
Philpot, 1998)

Unknown

Techniques can be applie
to airborne hyperspectral
sensors, some with a
spatial resolution of less

than 1 m

Relate to transport network
inspectors identifying
increased biomass due to
increase in soil moisture

dCan be used over vegetated
earthworks

Potential to be applied to hig
spatial resolution airborne
imagery

Potential to be applied to
different vegetation types

Potential for monitoring soil
moisture unknown

Few reported attempts to
compare against observed so
moisture

>

Success over complex
vegetation covers unknown

Unable to differentiate betwee
different sources of stress
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Mapping
biological
indicator values

(Feldmeyer-
Christe et al.,
2007;
Schmidtlein,
2005)

Largely unknown

Schmidtlein
(2005) found R
of 0.58

Has been applied at a
spatial resolution of 2 m
but has potential to be
applied to finer scale
imagery of less than 1 m

Can be used over vegetated
earthworks

Potential to be applied to high

spatial resolution airborne
imagery

Strong correlations found

between indicator values and canopies

observed soil moisture

vegetation abundance

Mapping indictors has not bee
assessed for UK

Require field observations of

Uncertainties over tress

2N

Table 2.3 Summary of the techniques discussed in Chaptett2reference to their advantages, disadvantagepaedtial spatial

resolution.
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3 Methodology for characterising soil moisture in transport
corridor environments

Chapter 2 identified a number of techniques thaehhe potential to characterise soill
moisture in a transport corridor environment. Thieshniques included terrain analysis
calculations, such as TWI and potential solar tamha Reflectance from vegetation
canopies in the visible and near infrared regiothefspectrum have been shown to be
useful for detecting different sources of stressdiden et al., 2006; Smith et al.,
2005b). However, there has been little work thaieitly focuses on the influence of
changes in soil moisture on vegetation reflectaand,no reported attempts to apply
such techniques to transport earthwork infrastmectMapping bioindicators have also
been shown to have potential for characteringreoikture (Schmidtlein, 2005) but
there have only been a few reported attempts thidaising remotely sensed data and
no attempts have been made over a transport carkdahermore, there have been no
reported attempts to map and validate the Ellenbmigdicator values that have been
extended for the UK in any environment.

This chapter details the methods that will be usesissess the potential of the
aforementioned techniques applied to a transporidos environment. In addition,
methods designed to overcome the shortcomingsiagsdaevith these individual
techniques are explained. Some of the techniquesidered here are conceptual and
are therefore initially tested at an earthwork ecaing terrestrial remote sensing
technologies. The techniques deemed successfuklaas other techniques that could
not be assessed at a fine scale, are then appkeldraader scale, using airborne
remotely sensed data for a UK transport corridor.

A summary of the methods described in this chagaarbe found in Figure 3.1.
This shows two distinct sections to the overall kflomv, the earthwork scale
experiment (described in Section 3.2) and the parsorridor scale work (Section
3.3). The flow diagram indicates that the technggwéh potential for characterising
soil moisture in a transport corridor environmex#t identified in Chapter 2, are carried
on to an experimental stage. This begins with @esef earthwork scale studies which
are used to assess specific techniques, namealyint@nalysis techniques applied to a
fine spatial resolution DEM (TWI, solar radiationdaaspect) (see Section 3.2.1) and
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spectral analysis of field spectroscopy to ideniggetation stress as a response to
artificial wetting (Section 3.2.2). The diagram tianes to show how the terrain
analysis work is carried forward to inform how b&sapply these techniques to a
transport corridor scale. Conversely, the fieldcsmescopy study is not carried on and
therefore does not link with the transport corridoale work. This is due to the
uncertainties associated with applying such teckesdo relatively complex vegetation
cover in transport corridor environments, whickaigr explained in Section 5.1.2. The
lower part of the diagram, summarising the transporidor work, shows how analysis
is carried out using airborne remote sensing systeamely lidar and CASI datasets.
The terrain analysis techniques are applied tdidlae data in a similar fashion to the
earthwork scale experiment (Section 3.3.1). The IGfsfa is used to map Ellenberg
indicator values (Section 3.3.2), a technique tloatd not be assessed at a fine scale
due to the relatively homogenous vegetation cofénetest embankment and therefore
appears here for the first time. The diagram thews how the terrain analysis
techniques are brought together in an integratedietrend compared against observed
soil moisture measurements (Section 3.3.3). Althdeigure 3.1 provides a coarse
summary of the methods employed, a more detailesiorg including a series of sub
diagrams detailing the individual work packagegrsvided in Appendix 1.
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Potential techniques identified in Chapter 2.

b

Earthwork scale experiment

v

Terrestrial laser scanning

A 4

TWI

Solar
radiation

Aspect

Compare against soil moisture

A 4

Transport

corridor scale

v

Field spectroscopy

v

Wetting experiment

!

Vegetation reflectance
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Compare against soil moisture

'

Not carried onto
transport corridor scale
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Lidar data CASI imagery
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TWI

Solar radiation
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Map Ellenberg values

Figure 3.1 Flow diagram summarising the methods describedi;n@hapter. A more

Integrated model

:

Compare against soil moisture

comprehensive set of flow diagrams detailing théhmds can be found in

Appendix 1.
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3.1 Study sites

The analysis undertaken at an earthwork scale amed out on a test embankment

located at Nafferton Farm, Northumberland, whicmenaged by Newcastle

University's School of Civil Engineering and Geasutes (Hughes et al., 2009). The

embankment was constructed to establish a fadditgngineering and biological

research for the purposes of determining the effecctlimate change on earthwork
embankments (BIONICS, 2009). The earthwork meas2as in length, 29 m across

and 6 m high, and has an approximate northwestheast facing aspect for either side

of the earthwork (Figures 3.2 and 3.3). On the facsach slope are four separate

panels, two constructed to the requirements of mmoearthwork structures, and two

poorly constructed to mimic the poorly compactetlireof historically constructed

earthworks typical of transport infrastructurelie UK.

90m

am|

18m

18m
18m

18m

o}

29m

_ Reinforced earth ends

—

— Biological test plot

—

| Poor compaction test plot

Impermeable membranes
between each plot

29m

™\

[— Modern specification plots

[~ Poor compaction test plot

— Biological test plot

Plan view

Cross section

Figure 3.2 Diagram of the BIONICS test embankment locatedaftéton Farm,
Northumberland. Modified from BIONICS (2009).
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Figure 3.3 The BIONICS test embankment viewed from an appraxaty easterly

direction. Various markers on the slope indicateltitation of embedded
instruments used in other studies. Blue pipingddeea sprinkler system, mark the
approximate edges of the earthwork test plots.

The test site used for the transport corridoressady was a four kilometre
stretch of the railway line near Haltwhistle, labetween Carlisle in the west and
Newcastle upon Tyne to the east (Figure 3.4). Tdil&ay was constructed over 100
years ago and has been identified by Network Rdileving a history of instability
(Hall, 2009) with numerous minor landslides ocaugrover recent years (for example
see BBC (2007)). The transport corridor lies laygeithin the floodplain of the South
Tyne River, with some stretches of embankment eantks located within close
proximity of the river (approximately fifteen mesje Vegetation conditions within the
test site are representative of those found otutheail network, and across Northern
England in particular (Miller et al., 2009). A mixt of grasses, agricultural weeds,
small shrubs and deciduous trees dominate, butdaatk slopes, and stretches of dense
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deciduous woodland are also relatively commonp{gagures 3.5 and 3.6). This
presents a relatively challenging environment inclvlio characterise soil moisture. As
discussed in Chapter 2, many other studies that agmpted to estimate the
distribution of soil moisture have been carried @utr bare earth or sparse vegetation
canopies, such as Burke et al. (1998) due to thelaxities presented by multiple
canopy layers (Schmugge and Jackson, 1994). Sgahyfithis can have an influence
on optical remote sensing techniques where thebkagm be confused by differences in
leaf angle relative to the sun and the sensoripagitVolf et al., 2010). In addition,
dense vegetation, as depicted in Figure 3.6 catuobshe ground reducing the
effectiveness of laser scanning systems (Reutedtuah, 2003). Resulting DEMs

interpolated from such datasets are thereforeylitcehave a degree of uncertainty.
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Figure 3.4 Map showing the location of the Haltwhistle trandmmrridor. Map data
© Crown Copyright 2010. An Ordnance Survey EDINAgIlied service.
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Figure 3.5 Part of a cutting earthwork approximately 2.5 krated Haltwhistle.
Here, tall shrubs dominate as well as large arebare earth. Much of this

earthwork is riddled with rabbit holes presentimgaalditional problem to the
network operator. Note the leaning fence postatadig slope movement.

Figure 3.6 A stretch of the Carlisle to Newcastle railway leggoroximately two
kilometres east of Haltwhistle. This example intksathe heterogeneous nature of
the vegetation cover, including tall trees, shrabd wildflowers.
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3.2 Earthwork scale

3.2.1 Terrestrial laser scanning data acquisition and processing

Terrestrial laser scanning data was acquired wsingica HDS2500, which has a range
of 50 m to 100 m, and a precision of £ 6 mm. Th&nmer has a fixed head and must be
orientated using a resection approach using spyeeid@pted control targets, the
position of which were observed using a Leica T8tation. To ensure sufficient
coverage of the earthwork, seven scan positions se&trup towards the south of the
embankment and five towards the north of the emimemik (Figure 3.7). Data
collection was carried out by a summer scholarstupgent but unfortunately the data
from one of the scans was missing, which is ided@iin Figure 3.7. The raw point
clouds were processed using Leiddigclonesoftware which allows for data
acquisition, registration and basic editing. A w@agjen removal algorithm was then
applied in TerraScan following the concept provitdtgdHaugerud and Harding (2001).
The point data was then exported to ArcGIS whererdmary kriging routine
was used to interpolate between points to genaredster grid surface. Kriging is a
technique synonymous with geostatistics and is tseake predictions at unobserved
locations (Trauth, 2007). In this case, elevatialugs are predicted between the point
observations made by the laser scanner. Thesechpoedi are based on the notion that
the elevation values are spatially correlated cl@ser observations are more similar
than those far away (Trauth, 2007). Like otherrppéation methods, including
inversed distance weighted (IDW) (discussed lateSaction 3.3.1), spatial correlation
is summarised through locally weighted averaginggikg differs in this respect as the
weights used are a measure of the spatial variagiweeen neighbouring samples which
provides an optimal interpolation with minimal \ace (Desmet, 1997). Spatial
variance is characterised in the kriging routinegs semi-variogram, this being half
the squared difference between the observationteglagainst the distance separating
them (Trauth, 2007). Using this plot the spatiaiarace can be defined as the distance,
or range, at which the semi-variance levels oubykmas the sill (Figure 3.8). For
detailed descriptions of the calculations madd&ékKriging routine refer to Trauth
(2007).
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Figure 3.7 Diagram of the BIONICS test embankment with locatd terrestria
laser scanner and subsequent coverage. Figureealsdes the location of

missing scan.

Kriging interpolatior was preferred to deterministic approaches, sudhvasse
distance weighted, as it is based on the statisg&ationship between the measu
points and as a result tends to produce a beftezsentation of a terrain face (Rees,
2000).0Ordinary kriging using a spherical model was usadlinary kriging wa:s
preferred over universal kriging as it does vary the prediction of spatial variance
the data (summarised by the s-variogram), unlike universal kriging for which sjadu
variance is assumed to vary throughout the davesieh is more suited to tf
representation of heterogeneous ter(Rees, 2000)A search radius of 12 points w
used in this interpolation to ensure small scal@tian is taken into account witho
becomimgy too computationally intensive (a smaller radiusyihavetaken into account
more detailed variation but would take a long timeompute). The radius w
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determined by number of points rather than distascine density of the elevation
points provided by TLS varied over space. A splamcodel was used to fit the semi-
variogram. This was chosen by analysing the odtpat a number of different model
types, including Gaussian and exponential. This tyfomodel was chosen as it seemed
to offer a better fit than other model types, sastexponential, although there was little
visual difference between the Gaussian and sphenicdels. The ordinary kriging
routine produced a DEM with a cell size of 35 cmchlhwas the default set by ArcGIS,
based on the length of the input extent divide@BQ.

Semi-variance

Range

0 é 1I0 2IO 3'0 40
Lag distance (m)
Figure 3.8 Example of a semi-variogram with labelled sill aadge. The sill is the
point at which the semi variance of the observatienels out, indicated by the
solid interpolation line through the points. Thaga refers to the lag, or distance at
which the sill occurs, which in this case is appmately 33 m. Adapted from
Curran (1988).

As well as using the kriging routine, a thin plafgine interpolation method
called AnuDEM interpolation (Hutchinson, 2009) vedso evaluated. This technique is
designed to construct a smooth surface from iragtyuspaced elevation points. This is
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done by applying a spatially variable smoothingcfion, or roughness penalty, which
is dependent on a measure of roughness based omptheslevation values. See
Hutchinson (2008) and (1989) for a full descriptadrthe calculations made in the
AnuDEM routine. As well as removing spurious pitgs interpolation method is
favoured in hydrological studies as it allows fioe talculation of continuous flow
through a given terrain (Hutchinson, 2008; Bishog BicBratney, 2002). Furthermore,
the relatively smooth surface constructed using@DEM routine reduces the
tendency to produce spurious surface oscillatinormplex areas (Hutchinson, 2008).
The kriging and thin plate spline techniques wenagared as the AnuDEM routine
would not normally be employed for creating a DBMth kriging being used to
represent a standard interpolation technique.

One of the aims of the earthwork scale study exaore the sensitivity of
terrain analysis calculations to changes in thetifEM resolution. To do this, the
original grid DEM was degraded to 1 m and 2 m u&iigear interpolation. This
approach interpolates the new output grid cell @ddased upon an average, weighted
by distance, of the four nearest input cells. Oteehniques are available, including
nearest neighbour, cubic convolution and majoegsampling, but bilinear interpolation
was used to be consistent with other similar swfithaubey et al., 2005). The
resolution is degraded twice in order to charasgetie effect of DEM grid resolution
on the terrain analysis calculations describedeictiSns 3.2.1.1 and 3.2.1.2. Simple
visual interpretation is used to assess whethargdsin the DEM resolution produces
artefacts in the calculations. The effect of reBotuon reproducing surface roughness
is assessed by comparing interpolated elevatiaresabken from a transect across the
earthwork. The differences between these valueasa® to provide a quantitative
description of the effects of DEM resolution. Faliog Schmidt and Persson (2003),
the quality of the resulting DEMs are assessedalgutating root mean square error
with the original point elevation values derivedrfr the laser scanning data. This
analysis is also carried out to quantify the défeze between the two DEM

interpolation techniques.
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3.2.1.1 Topographic wetness index

The TauDEM plug-in software, developed by Tarbq@002) for ArcGIS, was used to
calculate TWI. TauDEM generates a wetness indeoutiir a ratio of the predefined
raster grids, slope and specific catchment areis. Sdftware is favoured as it
accommodates the Dinf flow direction routine whinkans that flow can be directed in
an infinite number of single directions. This roatiapportions flow between two
downslope pixels according to how close this flavection is to the direct angle to
the downslope pixel. This has advantages over diwerdirection procedures, such
as the D8 routine, where flow is restricted to oheight cardinal directions, potentially
leading to grid bias and unrealistic flow dispens{®@arboton, 1997). Other, more
complicated algorithms, such as the DEMON (digelavation model network
extraction) method, were also available that dertnatesa more realistic model of flow
dispersion (Wilson and Gallant, 2000). Howevers teichnique suffers from being
complicated to compute and can often create attefadydrologically complex areas,
for example, saddle shaped terrain (Tarboton, 19843} is because such techniques
specify flow direction over a locally fit plane peixel according to the lowest corner
estimated by averaging the elevation values foattjeining pixels. Problems arise
where certain combinations of elevation valuesresalt in inconsistent or counter
intuitive flow directions (Tarboton, 1997). Take fexample the scenario in Figure 3.9
whereby flow from cells A and B are forced agageth other, whereas the more likely
flow direction would be the lowest grid elevatioalwes located towards the north and
south of cell A.

The first step in calculating a TWI involves filgrall pits that are present in the
DEM by raising their elevation to the level of tle&vest point around the edge. The
reason for this is that pit grid cells are compieseirrounded by higher terrain and tend
to be artefacts and if not removed can interruptfibw of hydraulic conductivity
throughout the scene (Tarboton, 2000). Flow dioectind contributing area are then
calculated from the DEM with filled pits using tBénf procedure. The following
describes these calculations in greater detaiedas Tarboton’s paper (1997) which

outlines the method.

79



NORTH

13 9 5 9 11

105 8 5 1075

11 9\ 9 11 12

Cell A
WEST-8:875 7.875 0\ 425 AST

9 65 | 7 13 14

8 6 5.8 30 12
SOUTH

Figure 3.9 Hypothetical subset of a DEM demonstrating flowpéisal determined
using locally fitted planes, as used in algorittsush as DEMON. Elevation values
are given in the centre of each grid square. Calexations, denoting the locally
fitted plane, are given as smaller numbers in betwhe grid squares. Arrows show
flow direction as determined using DEMON, where ¢lxpected flow direction

(from grid square A) would be towards the north aadth where elevation values

are lowest. Adapted from Tarboton (1997).

A single flow direction is assigned to each celjeh is represented as a

continuous value between 0 and.Z'his direction is defined as the steepest dowdwar
slope over eight triangular facets on a 3 x 3 pixeldow centred on the cell of interest
(Figure 3.10). A downslope vector is calculateddach triangular facet which can lie
within or outside a 45° angle range of the centiatpof the facet. The flow direction

for the central pixel is taken as the directiorhaf steepest downslope vector from all

eight facets.
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Steepest direction
downslope

Proportion flowing
to neighbouring
grid cell 4 is a1/(a1+a2)

Proportion flowing
to neighbouring
grid cell 3 is a2/(a1+a2)

______________________________________________________ 1 Flow direction measured
|+ as counter-clockwise
1 angle from east

Figure 3.10 Diagram of a 3 x 3 pixel window on which flow diten is calculated
using eight triangular facets. Outline of the atgral cells are represented by the
dotted lines.

To illustrate this procedure Tarboton (1997) gimasexample using a singular
triangular facet (Figure 3.11). The downwards slispepresented by the vector, S,

as described in Equations 3.1 and 3.2.

S1=(eo—e1)/dy
Equation 3.1

S, = (e1 — e3)/d;
Equation 3.2
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____________________________________________________________

Figure 3.11 Definition of variables for the calculation of splirection for a single

triangular facet.

where, g e;and ¢ are elevations, and dnd d are distances between the pixels as
denoted in Figure 3.11. The values produced in #opum3.1 and 3.2 can then be used
to calculate slope direction (r) and magnitudeu@ing Equations 3.3 and 3.4
respectively.

r =tan"1(s,/s;)

Equation 3.3

s=\/512—+522

Equation 3.4

The downslope direction can be applied to eachegtight facets by using an
appropriate transformation for each of the corhevations shown in Figure 3.10.
Relative transformations for each facet are shawhable 3.1 and correspond to the
elevation values used in Equations 3.1 to 3.4.taio the overall flow direction angle
(rg), the angle of the largest downward slope is adglt represent the angle counter-
clockwise from east using Equation 3.5 (Tarbot®97).
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y=ar' +acm/2
Equation 3.5
where, r' is the slope direction (from Equation)38the triangular facet with the

largest slope magnitude (from Equation 3.4) anchihéiplier 8 and constant.alepend

on the facet of interest, as listed in Table 3.1.

Facet 1 2 3 4 5 6 7 8

€ 6] 6] €, 8, 8 8, 8, 8,
€ j+1 6.1, 6-1,] €1 €1 €+1, €+1, € j+1

0 1 1 2 2 3 3 4

€
(5] €-1,+1 €-1,j+1 6-1,j-1 611 €+1-1 €+1-1 €+1j+1 €+1j+1
ac
=, 1 -1 1 -1 1 -1 1 -1

Table 3.1 Table showing the transformation factors for elmratvalues for each

facet used in the calculation of slope and angle.

An example of the calculation of flow direction mgiTauDEM is given in
Figure 3.12. The same elevation values are usedthe demonstration of the DEMON
algorithm over a saddle shaped terrain in Figu®e Bnlike the counter intuitive flow
directions predicted by DEMON, TauDEM directs fltawards the north and south of
cell A as would be expected in reality. This dentaiss the effectiveness of this
method for representing flow over complex terraattires. Over simpler terrains, there
has shown to be little difference between the nathalthough the DEMON model is
said to be difficult to program and often requisés specific parameterisation
(Tarboton, 1997).
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Figure 3.12 Hypothetical subset of a DEM as used in Figure B¢, it is used to
demonstrate flow dispersal using the TauDEM Dinfhrod as proposed by
Tarboton (1997). Elevation values are given indéetre of each grid square.
Corner elevations, denoting the locally fitted @aare given as smaller numbers in
between the grid squares. Arrows show flow direcgienerally in a north and south

direction where elevation values are lowest. Additem Tarboton (1997).

Specific catchment area is defined as its own @ea pixel), plus the area of
the upslope neighbours that have some proportomirily into the pixel of interest. If
the downslope angle lies between two cardinal toes then a proportion of the flow
Is assigned according to how close the flow dicgctingle is to the direct angle of the
neighbouring cells. This function is describedha two equations given in Figure 3.10
and is demonstrated in Figure 3.13. The directiosteepest slope has been calculated
using the Dinf function as is displayed as an arb@iween the centres of cells three

and four. Let the angle from this arrow to the oewf cell three (angla;) be 30° and
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the angle to cell four (angke) be 15°, therefore equalling a 45° angle betwhen t

directions of cells three and four. Using the emumstin Figure 3.13, the proportion of
flow to cell three is 0.33 (15°/(30°+15°)) and fr@portion flowing to cell four is 0.66
(30°/(30°+15°)). In this way, more flow is propamied to cell four as this is closer to

steepest downslope direction.

Proportion flowing Steepest direction
to grid cell 4 is downslope Proportion flowing
al/(a1+a2)

to grid cell 3 is

\ / a2/(a1+a2)

Figure 3.13 Diagram showing how flow is proportioned between ttownslope grid
cells based on their proximity to the angle of $hkeepest downslope direction.
Adapted from Tarboton (1997).

The wetness index is finally generated throughtia tzetween the calculation of
slope and specific catchment area. This is relatele original wetness index proposed
by Beven and Kirkby (1979) (see Section 2.3.1), neltatchment area is divided by
slope, but in TauDEM slope is divided by catchrmemeta (Equation 3.6). This is done
to avoid errors where slope is zero, otherwiserelsalting wetness index value for flat
areas would be zero (Tarboton, 2002).

Dinf Slope grid

TauDEM TWI =
a Dinf Specific Catchment Area grid

Equation 3.6
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3.2.1.2 Potential solar radiation calculation

The Area Solar Radiation function in ArcGIS, deyeld by Fu and Rich (1999) was
used to calculate potential solar radiation. Ad&red in Section 2.3.2, total radiation
for a given DEM grid square is calculated by owdrlg a representation of the
viewshed with the sunmap and skymap. The concdphtdehese representations is
detailed in Section 2.3.2 using Figures 2.8 to ZTHe specific calculations that define
the Area Solar Radiation function are given below.

Total (or global) radiation is calculated for eafhlthe sunmap and skymap
sectors using Equation 3.7 (ESRI, 2007b).

Globaly; = Diryyt + Difior
Equation 3.7

Where, Global; is the total radiation, Di is direct radiation, and Qif is diffuse
radiation. Digy is defined as the sum of the direct radiatioredlbthe sunmap sectors.
Direct radiation is defined by the solar constantsolar flux outside the atmosphere at
the average Earth to Sun distance. This is takée thi367 W i7 which is derived from
the World Radiation Centre (ESRI, 2007b). Diffuadiation is estimated using a
predefined constant relating to whether the dontinkrud conditions are overcast or
clear. For this study, the conditions were setvasaast as field experience has shown
this to be the dominant cloud conditions over tred Embankment. As a sensitivity test,
the calculation of solar radiation was carried waihg different conditions but no
visible difference was found.

The method for calculating potential solar radiatias developed by Fu and Rich
(2002; 1999), is used in this study as a black Btis method is used because it is
more comprehensive than other techniques, namelgdtential solar radiation index
used by Western et al. (1999a), as it takes intowat factors such as time of year,
latitude of the site and subsequent sun anglen Bttampt to mitigate for the potential
pit falls of using black box techniques, tests weagied out to assess the sensitivity of
the model by changing the input parameters sutheageriod for which the calculation
is made and cloud conditions.

The Area Solar Radiation function requires theutrgf the mean latitude for the
input DEM. This was calculated by ArcGIS as 54Wie function was run twice for
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each interpolated DEM, with the time configuratset at two different periods, one
calculating solar radiation for a whole year (20@8)d the other for the specific day in
which the ground truth soil moisture measuremermtewaken (24 November 2008).
This was done to test the ability of the two couafagions to characterise soil moisture
gathered on a specific day.

The calculation of aspect was also carried outs tetric is a common input to
previous terrain analysis studies, such as Westesih (1999a), and is used as a more
simplified quantification of potential solar rad@i. Aspect was calculated for the
kriging and AnuDEM interpolated DEMs using ArcGIBhis quantifies aspect for each
grid cell in degrees from north by identifying thlepe direction of the maximum

difference in elevation value from a 3 x 3 cellgidourhood (ESRI, 2007a).

3.2.1.3 Soil moisture measurements

In situsoil moisture was collected using a Theta portabfgedance probe

(www.delta-t.co.uk This probe consists of four stainless steel mwlich are inserted

into the soil. The rods then use a simplified wpdtatanding wave method to measure
relative impedance, which is used to infer theatiglc constant of the soil relating
directly to the volumetric water content of thel §bamiglietti et al., 1999). Following
Cosh et al. (2005) the probe was calibrated usiagigpetric soil moisture
measurements taken from soil samples located attressmbankment (Section 4.1.7).
Calibrations made in this way have shown to yiedttdy results than generalised
calibrations made with the same soil type fromfeedent area (Cosh et al., 2005).
Measurements were made across half the embankooseting a well
constructed and poorly constructed panel on baldéssof the earthwork. Only half the
earthwork could be studied due to the construatiozovers, used for an ongoing
climate experiment towards one end of the embankiser Hughes et al. (2009)).
Measurements were restricted to the earthwork slapehe top of the embankment is
flat and is not liable to the same forces of inditgbFor the terrain analysis
experiment, measurements were taken approximately éwo metres based on a grid
sampling strategy. This scheme was adopted asrauthge identified tenfold
improvements to precision when measuring soil pitiggeon a sampling grid rather

than randomly selected points (McBratney and Wep$883). This is because
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systematic sampling ensures any spatial variabilithe data will be taken into account
(McBratney and Webster, 1983), a characteristiosymous with the distribution of
soil properties (Famiglietti et al., 1999; Famigiiet al., 1998; Western et al., 1998;
McBratney and Webster, 1983). The position of gamht measurement was recorded
using real time kinematic (RTK) GPS, with the apito provide centimetre level
positional accuracy (Montillet et al., 2007).

Ideally, the ground truth data would have beeneyaith periodically throughout
the year to test the sensitivity of the terrainded to characterise soil moisture during
different wetness conditions. However, this coudtl lIme achieved in the time frame for
the study at hand, as focus was diverted to tmspa@t corridor scale experiments
detailed later in Section 3.3. This means that @mspns made with the subsequent soil
moisture measurements must not be assumed todpeesentative of conditions
throughout the year. The measurements were ma@é"oNovember 2008 during cold,
wet and windy conditions. This time of year wass#oas other studies have reported
increased topographic organisation of soil moistareccur during overall wetter
conditions and may therefore improve correlatioith the terrain analysis calculations
(Tenenbaum et al., 2006; Schmidt and Persson, 20683tern et al., 1999a).

3.2.1.4 Analysis techniques

Elevation values and the terrain analysis metrieseveompared for the kriging and
AnuDEM interpolated DEMs, and the subsequent sihatiagraded resolution DEMs.
Initially, qualitative comparisons were made throwgsual analysis. Quantitative
analysis was then made by extracting values fre@ri@s of representative transects
across the earthwork. The elevation values tal@n these transects were also
compared to the original TLS point elevation datayviding a measure of residual
error. This was done to determine which interpotatechnique best reproduces the
original TLS elevation values. This was not, howeeemeasure of the overall accuracy
of the interpolation techniques. Such analysisada undertaken by comparing against
additional observations of elevation (Chang et26lQ4). This was not undertaken as it
was not the overall focus of the study at hand.

To facilitate a comparison between the soil moestaeasurements and the

terrain analyses, the raster outputs from the Thdl @otential solar radiation
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calculations were converted to point shapefile sitta These point datasets were then
joined to the soil moisture point dataset basedpatial location. As the points do not
overlap exactly, a new value was assigned as aagef the closest points to that
particular location using bilinear interpolatiorif® measurements were compared
rather than raster grids following the example dfi§idt and Persson (2003) and
Tenenbaum et al. (2006).

Authors have drawn comparisons between wetnegsemdnd soil moisture
measurements using ordinary least squares coarletiefficients (Rvalues)
(Tenenbaum et al., 2006; Schmidt and Persson, 20683tern et al., 1999a). In
addition, some authors have considered multipleessgon models to combine terrain
indices to predict soil moisture values (Westeralgtl999a). As a result, this
investigation primarily used ordinary least squaeggession correlation coefficients
and multiple regression modelling to compare salsture measurements with the
estimations made using the terrain analysis cdionls Multiple regression models
were made using stepwise forward regression astiysenters variables into the
prediction based on their significance, in thisecadere the p value is less that 0.05,
representing the 95% confidence level.

The ordinary least squares (OLS) regression praegddopted in the studies
cited above, is a global regression technique. fipis of statistical analysis is
vulnerable to a phenomena known as the SimpsomadBe. This paradox occurs
where the relationship between model parameterssvapatially. These local variations
are ignored in global regression which might othsewead to a change, or even
reverse, in trend between the observed and predigtriables. As a result,
geographically weighted regression (GWR) was atstsiclered in the analysis, which
provides a spatial component to the ordinary resjpesprocedure (Fotheringham et al.,
2002). This is a local regression technique thptats the widely regarded theory that
points closer to one another are more alike thasetliar away (Fotheringham et al.,
2002; Brunsdon et al., 1998) (see Appendix 2 fdescription of GWR).

To facilitate a comparison between the soil moesmeasurements and the
terrain analysis calculations, a GWR model wasngefiwith a fixed Gaussian kernel,
as the spatial density of the observations doeshmatge significantly. Bandwidth was
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selected usin@IC; cross validation, producing an optimal bandwidtb.8 m. A
Monte Carlo significance test was used to tesspatial variability of the metrics.

The analysis techniques discussed in this sectwn hll assumed the
relationships between the terrain calculations@wskrved soil moisture are linear.
However, some authors have noted that the reldtiproetween TWI and soil moisture
Is non linear (Western et al., 1999a). Despite thisre are few examples of studies
attempting to deal with this relationship to impeawerall soil moisture estimations.
Western et al. (1999a) explained that a lowessdllp®Veighted Scatterplot Smoother)
regression procedure significantly improves ovezattelations. Although this may be
the case, the use of such locally fitting curveésontuces a large number of model
parameters, which can reduce the stability of tbedehfor making predictions outside
the model training area. Other non linear solutioickide cubic or quadratic fits, but
again this would introduce additional parametets the model. Expressing a metric as
the natural logarithm may also provide a solutimnlihearising the relationship without
introducing any additional parameters as with thigicand quadratic solutions. Despite
the simplistic nature of this method there havenbe@reported attempts to improve
correlations by expressing the TWI by the natusghlithm. This could have the
potential to improve estimations, particularly ovarform transport earthwork slopes,
as moisture would tend to concentrate towardsabet the slope, rather than gradually
increasing downslope.

The reason why previous studies have not expldreaatural logarithm of the
TWI for use in soil moisture estimation modelshattthe original equation, put forward
by Beven and Kirkby (1979), uses this functionxpress their index (as described in
Equation 2.1). However, the wetness index usebdenfauDEM tool does not refer at
any time to the use of the natural logarithm inregping any of the input calculations,
specific catchment area and slope grid (see Se8tibt.2 or Tarboton (2002)).
Therefore, this study will explore the use of tla¢unal logarithm to improve the

relationship between the wetness index in TauDEMabserved soil moisture.
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3.2.2 Hyperspectral reflectance data acquisition and processing
3.2.2.1 Experiment design and sampling strategy

This part of the earthwork scale experiment ainoedhtestigate the response of
embankment grasses to artificial wetting througpdngpectral analysis techniques.
Three plots were set up on the north facing uncatepgpanel of the test embankment
(see Figure 3.2 for a diagram of the test embankKm&he uncompacted panel was
chosen as it was designed to mimic the charadtayiah earthwork typically found in
the UK (see Section 3.1). The plots were locatethemorth facing slope as
construction of a climate simulator was taking plaa the opposite south facing slope.
One plot was wetted each day for a month with 8diof water, one was covered to
stop water infiltration from rainfall, and the otheas left as a control plot. The amount
of water used to wet the wetted plot was chosehiasvas the amount initially needed
to fully saturate the soil. This was done to endagoil oxygen displacement in an
attempt to induce plant stress, similar to the w@shof Smith et al. (2004a). The plots
were placed at least 5 metres apart in an attesphit movement of water from one
plot to the next.

Each plot measured 1 x 1 m, which was chosenigsitnilar to the pixel size of
the aerial imagery collected for the transportidorscale analysis (see Section 3.3.2).
This meant that any sub pixel variations in soiishae, or vegetation reflectance,
could be assessed. Each plot was subdivided igtwl af twenty five 20 x 20 cm
subplots. Measurements of soil moisture and sgeefitactance were taken within each
of these subplots to ensure the whole square wagled. Grid sampling was chosen
over random sampling to aid repeatability, but morportantly, as McBratney and
Webster (1983) explained, systematic grid sampdargalmost always improve the
precision of sampling soil properties, as they havénherent spatial component which
random sampling does not take into accobmsitu soil moisture contents were
collected using a Theta portable impedance prabdeacribed in Section 3.2.1.3 An
average of three measurements were taken at eathgtake into account any

variation in the sensor response.
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3.2.2.2 Spectral reflectance measurements

Spectral reflectance was measured using an ASH Bigéc Prd spectroradiometer,
which has a spectral range from 350 to 2500 nmrany¢he visible, near infrared and
shortwave infrared. Measurements were taken fréveight of approximately 1.5 m
using an 8° foreoptic producing a field of viewagfproximately 20 cfn Analysis of

the spectra was restricted to the 350 nm to 100@ommain, as this is the spectral range
that a number of potentially operational airboraesors cover, including the sensor
described later in Section 3.2.2.4. Multiples wéfspectra were gathered and averaged
for each measurement point to suppress any atmoesghanges and to take into
account small scale variations at the samplingtp@iien recording these multiple
readings, care was taken to rotate the probe ®itd& account any blind spots in the
field of view caused by broken fibre optic cablESFE, 2008). Reflectance
measurements were made in raw digital number mwikieh tends to improve the
signal to noise ratio compared to measurements madkite Reference Mode (FSF,
2008). Corrections for absolute reflectance werdeanssing coincidental reference
measurement taken from a white Spectralon panethwiad previously been

calibrated by the Natural Environment Research Cibari-ield Spectroscopy Facility

at Edinburgh University.

3.2.2.3 Spectral processing techniques

A five point weighted mean moving average filtersvegoplied to the data to suppress
any noise from the instrument without losing angcpal detail (Section 2.4.1.1). This
weighting was selected as it has previously beewstio provide sufficient smoothing
without losing any spectral detail (Smith et a002b). Continuum removal analysis
was then performed to highlight the chlorophyll@ipsion feature. The line of
continuum is defined by the minimum peak refleceaimcthe red (550 nm) and the peak
reflectance in the near-infrared (750 nm) partthefspectrum. The continuum line is
then removed by dividing the filtered spectra by ¥alue of the line at that position
(Section 2.4.1.1). The derivative of the smoothaettra was then calculated by
dividing successive values by the wavelength irstieseparating them (Equation 2.2).
This accentuates the maximum point of inflectionalhs indicative of the red-edge
feature (Section 2.4.1.1).
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The position of the red-edge was located on thwakere of the spectra using
the Lagrangian technique which has been shown strbegly correlated to chlorophyll
content (Section 2.4.1.1) (Dawson and Curran, 19RB) was also estimated using the
linear interpolation technique (Clevers et al.,£20@hich was applied to the original
spectra, without any derivative calculation. Stnedgs were also applied to the data
which exploit the twin peak feature at the maximpmmt of inflection of the first
derivative of the spectra, which have been showepoesent vegetation stress, notably
at 702 nm and 725 nm (Section 2.4.1.1) (Smith.eR@D4b). These spectral analysis
technigues were compared to the soil moisture nmeamnts using regression analysis
following similar studies such as Smith et al. (200

The methods discussed in this Section have magfigyrned to techniques borne
out of hyperspectral analysis, which utilise threefspectral detail offered by specific
sensors. However, attempts were also made to aterebil moisture measurements
using simple band ratios developed for broad banda's, namely the Normalised
Difference Vegetation Index (NDVI). Although theaee a whole host of vegetation
indices that can be applied in spectroscopy (sem@a(1995) for a comprehensive
review), the focus in this study is to exploit firee spectral detail offered by
hyperspectral sensors, whereas simple band ratiokstd take into account reflectance
from just a small number of regions across thetelaagnetic spectrum. Despite this,
the NDVI was tested because, if successful, theacherisation of soil moisture using
simple band ratios could be applied to imagery feomuch less complex sensor. Such
imagery tends to be available at a relatively l@stccompared to hyperspectral sensors
and therefore increases the potential for becompegational.

3.2.2.4 Sensor simulation

The CASI (Compact Airborne Spectrographic Imagiaighorne sensor provides
hyperspectral imagery, over 32 bands covering tsible and near infrared regions of
the spectrum. The sensor is flown by operators asadhe Geomatics Group and has
been used in numerous vegetation and marine morgteurveys on behalf of the
Environment Agency, demonstrating its potentialdse in operational monitoring

programmes. The field spectroscopy data gatherddsrexperiment was used to
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simulate the CASI sensor in order to investigagepbtential for the spectral analysis
techniques to be scaled up to airborne imagingtspssopy.

The CASI sensor was simulated using a normaliseg§ian point spread
function relating to the spectral range of CASIs®is bands, as denoted by the
operator, Geomatics Group. This approach is adagsatde CASI sensor has shown to
have a Gaussian spectral response because theggratiin the pushbroom sensor
head is curved (Milton and Choi, 2004). Milton &lkdoi (2004) explained that the
response of hyperspectral sensors are often rowhgetb the effects of diffraction,
scattering in the optical system and the non-regtkam nature of the detector.

The CASI sensor is a programmable system makipgssible to centre the
bands over different wavelengths. For this stuldg,default bandset defined by the
Geomatics Group for the analysis of vegetation wsesl (Table 3.2). This was chosen
because the main operation for the sensor in thdysvas the analysis of vegetation
reflectance. The ASD field spectroscopy measuresrgscribed in Section 3.2.2.2
were used to simulate CASI reflectance.

The simulation begins by calculating the standawdation ¢) for each band
centre (defined by central wavelength in nm usiggdion 3.8 (Milton and Choi,
2004).

FWHM
o =
2V2In2

Equation 3.8

where, the full width half maximunFWWHM) corresponds to the spectral resolution of
the sensor at a particular bandwidth. This funcisotefined as the spectral interval at
which the sensor’s response equals one half itsrmam value (Figure 3.14) which

was provided by the Geomatics Group (Table 3.Zh&gh sensors receive reflectance
beyond the FWHM, the signal is weak and unreliadahel therefore insignificant
(Campbell, 2006). Using the calculationofthe wavelength values (at 1nm intervals to
match the ASD spectrometer) surrounding the cemaakelength of the CASI band are
expressed as a Gaussian point spread function Hsjngtion 3.9 (van der Meer et al.,
2006; Castleman, 1996).
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(xi— X0 )?

Gaussian PSF = EXP 202

Equation 3.9

where,x; is the wavelength of interest arglis the position of the central wavelength
which is assumed to be the peak of the Gaussiattidun(Mather, 2004). These values
are then normalised by dividing by the total of @&ussian point spread function
values covering the range of CASI band. This presid numerator per wavelength
which can be multiplied by the corresponding rdfiece value provided by the ASD
spectroscopy data, simulated spectra per CASI bandhen be obtained by summing
these values. An example of how this method wosksgihypothetical data is provided

in Appendix 3.
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Band | Wavelength centre (nm) FWHM (+/- nm)
001: 397.6 4
002: 405.3 3.7
003: 412.7 3.7
004: 420.1 3.7
005: 427.6 3.8
006: 435.4 4
007: 443.6 4.2
008: 452.3 4.5
009: 461.5 4.7
010: 471.2 5
011: 481.6 5.3
012: 492.5 5.7
013: 504.2 6
014: 516.5 6.4
015: 529.7 6.8
016: 543.6 7.2
017: 558.6 7.7
018: 574.5 8.3
019: 591.7 8.9
020: 610.1 9.6
021: 630.1 10.4
022: 651.6 11.2
023: 675 12.2
024: 700.3 13.2
025: 727.8 14.3
026: 757.5 15.5
027: 789.6 16.7
028: 824.3 18
029: 861.5 19.2
030: 901.2 20.5
031: 943.4 21.7
032: 988 22.9

Table 3.2 Default bandset defined by the Geomatics Groupdgetation analysis.
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Figure 3.14 Definition of field width half maximum used in tl&ASI sensor
simulation. From Campbell (2006).

3.2.2.5 Analysis of spectral techniques

The spectral analysis techniques were appliedadi¢id spectroscopy data and the
CASI simulated spectra. These were then comparttketsoil moisture measurements
using OLS regression analysis. The regression rmadgle then applied to the
reflectance data and compared to additional soistme measurements for validation.

The spectral analyses described in Section 3.2e2e8 to published techniques.
In addition to these already established technig@kS regression was used to explore
the potential for building a new model, specifigalesigned to predict soil moisture
using vegetation reflectance. This type of regmssias employed as it can cope with a
large number of noisy predictors that are not tmtlependent (Carrascal et al., 2009),
as is often the case with imaging spectroscopy @das et al., 2002). PLS is similar to
principal components analysis (PCA) whereby neviabées, or components, are
created which are linear combinations of the ptedjovariables that explain the total
variance of the data. These new variables are telated which, therefore, solve the
colinearity issue associated with OLS, which wdikdly produce a well fitted, but
unstable model using collinear predictors (Nees.e2@02). The drawback of PCA is
that it requires the user to choose the numbeowiponents to be used in the final

model. This means that the user must accept tkeéhas some of the components may
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have little relevance for predicting the observatligs (Naes et al., 2002). Although the
use of loading plots can make this an intuitivecpss, it remains a subjective decision
and does not carry much statistical rigour.

Whereas PCA creates components that best deskahmddicting variables,

PLS is based on explaining the variance in botlptledicting and observed variables. It
does this by maximising the covariance betweerbserved variable and all possible
combinations of the predicting variables. The rizsglcomponents are therefore more
directly related to the original observed valuese@\et al., 2002). Generally speaking,
the regression coefficient will increase with thenber of components used in the
model, as a greater variation in the predictorr@sgonse variables are explained.

PLS differs from PCA regression by selecting theropm number of
components based on a leave one out cross vahdatioducing a predicted?Ror each
sub model with varying numbers of components. Thiselation coefficient tends to be
higher for models with just a few components ay teed to be more stable. However,
there can also be cases where a model with morpauents has a much better fit at a
sacrifice of just a marginally smaller cross vaiida R score. For example, Figure
3.15 shows the model selection plot for a set efwlal data (this example was chosen
as it provides a clearer demonstration than theefnsrlection plots calculated in this
study). Here, the optimum model, with two composei#t selected based on the highest
cross validation Rscore. However, the user is more likely to chaoseodel with four
components as this has a comparable cross validetioelation but with a much
improved fit for the original data.

One of the criticisms of PLS regression is the lat&tatistical rigour for testing
the significance of the model parameters (Davié812 Realising this, Martens (2000)
developed an uncertainty test to complement thereufne. Their test is used to
estimate the standard errors of the regressioriicieet estimates in the PLS model.
Similar to cross validation, the test uses the-jadke principle where one (or more)
sample is removed at a time to create a numbartsfrodels (see Martens and Martens
(2000) for a full description of the technique).eTtegression coefficients for each sub-
model are then computed giving information aboatuériability of the parameter
values and an estimate of the standard error. Stma&ed standard error can then be

used to calculate T-test values to test the sicaniite of the variables in the model (Naes
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et al., 2002). The uncertainty test, embeddederithscrambler® multivariate analysis
software (CAMO, 2010), denotes insignificant préidig variables where the

uncertainty limits go below zero.
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Figure 3.15 Example plot demonstrating the selection of optirmumber of
components for a PLS model using the correlatiadfiment (R) scores for the
original model and the model validated using leawe out cross validation. Data
taken from MiniTab example data with elemental @mations acting as the
predicting variable and the response being winenardata from Frank and
Kowalski (1984).

PLS regression was applied to the CASI simulatedtsg which had been

transformed using the expression in Equation 3.10.

log;0(1/R)
Equation 3.10

where, R is relative reflectance. This transformation roetimas born out of chemical

spectroscopy as it is generally assumed that aeglyscedures, such as PLS

99



regression, do not work well with nonlinear datqu&tion 3.10 is held to be the best
effort for linearising near infrared reflectancealéReeves, 2009). In terms of spectral
reflectance of vegetation, it has been said thexetis a near linear relationship between
transformed spectra (using Equation 3.10) and sgeadtsorption by chlorophyll
pigments within a leaf (Kumar et al., 2006; Schieidt 2005). As a result, this
transformation is commonly used to prepare rematehsed spectroscopy data for PLS
analysis (Smith et al., 2003; Smith et al., 208®)wever, it has also been suggested
that such transformations not have a great inflaenmcany subsequent spectral analysis
(Reeves, 2009). Despite this, the transformatidagnation 3.10 was carried out to
enable consistency with the remote sensing litezatu

The transformation routine discussed above isedout in spectroscopy to
linearise the relationship between spectral redleceé and absorbing component (Kumar
et al., 2006). In addition, such techniques redbeeeffect of differences in sample
thickness and light scattering (Naes et al., 2088pther simple technique that achieves
the same effect is the use of the derivative ofthextra (Naes et al., 2002), which is
described in Section 2.4.1.1. The motivation belimslis that the derivative of the
spectrum can minimise the effects of bi-directiamdllectance caused by differences in
the orientation of the sun, sensor, or target. Myeeal. (1995) also demonstrated that
derivatives of the spectra can be direct indicavbbsorbing components in the leaves
of dense canopies, making the technique an idealidate for use in the analysis of
dense vegetation in transport corridors.

The PLS regression models built using the origibabl simulated spectra
(without transformation), Log(1/R) transformed spectra, and derivative of trectp,
were compared. This was done to judge which teckid any, is best at preparing
vegetation spectral data for PLS regression arsly$ie motivation for this is that
examples in the literature, including Schmidtle20@5), Smith et al. (2003), Townsend
et al. (2003), and Wolter et al. (2008), have mttlsd on one recommended
transformation technique. The analysis was undentakthin the Unscrambler®
software to take advantage of the Martens’ unaastdest. Using each set of spectra
(original and transformed) as the predicting vdaaland the soil moisture
measurements as the observations, PLS regresssmitvally run to determine which

spectral bands were significant predictors. Theselb were then selected for a second
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PLS regression analysis, using the same obsenieti@igture measurements, to
determine the optimum number of components requdgedescribing the variation in
the data without becoming over fitted. For validatithis model was then used to

predict additional soil moisture measurements.

3.3 Transport corridor scale

3.3.1 Lidar data acquisition and processing

Lidar data was collected from a helicopter-mourtdgdech ALTM 2033 sensor in July
2007, producing a minimum point density of 20 psiper M. The data were processed
in TerraScan, where non-ground and vegetation paiete classified and removed,
following the concept detailed by Haugerud and Hayd2001). Two separate DEMs
were generated from this data, the first usingrseelistance weighted (IDW)
interpolation and the second using the AnuDEM puéation routine as described in
Section 3.2.1.

These two interpolation techniques were comparethiattempt to repeat the
methods carried out an earthwork scale, as detml8ection 3.2.1, with IDW being
used to represent a standard interpolation tecknifjois technique was used instead of
the computationally intensive kriging interpolatiosed in Section 3.2.1 as it is
relatively quick and simple to compute over the mlazger area of the transport
corridor. In contrast, kriging interpolation oftetalled when applied to the transport
corridor lidar data and could only be reliably usegroduce coarse resolution DEMs
(5 m). IDW interpolation estimates grid elevatioorh the lidar point elevation data by
averaging values within a neighbourhood surroundimch grid cell. A weighting is
applied that gives more influence to points cldedhe centre of the cell of interest.
IDW was applied with a power of two using a varetddius distance set to take an
average 20 points. A power of two was selectedasrgromise between higher
powers, which give a higher weighting to pointsseloto the centre of a cell typically
resulting in an increase in topographic detail, lmeer powers that give more influence
to points further from the centre, leading to alostopographic detail resulting in a
smoother surface. This power is the default use®dra®IS (ESRI, 2007a) and has been
used in other studies, including Yue et al. (200N points were averaged using a
variable radius distance as the density of lidantpdata was not distributed evenly
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across the scene. An average of the nearest 26 pas specified to match the
minimum density of the lidar data. This was deemaasgonable as a 1 m grid resolution
DEM was desired (based on the results of the tabhakment work detailed later in
Section 4.1.2) and, therefore, this ensured tleaktivere at least 20 points per grid
square to interpolate from.

Calculations of TWI and potential solar radiatisere applied to the two DEMs
in an attempt to characterise soil moisture distidm using the methods outlined in
Sections 3.2.1.1 and 3.2.1.2. In addition to visullysis, comparisons were drawn by
comparing various profiles of elevation, TWI andegydial solar radiation values across
the earthworks. These values could then be usqdantify the differences between the

two interpolated DEMs.

3.3.1.1 Soil moisture sampling strategy

Soil moisture measurements were gathered overdhspgort corridor using the Theta
portable impedance probe (introduced in Sectiorl3B? The locations of these
measurements were decided using cluster analysesrafn analysis calculations.
K-means clustering was used, despite the disadyamtihaving to subjectively
predefine the number of clusters used in the aizalgdthough there are techniques,
such as hierarchical clustering, that do not regaipredefined number of clusters, they
are computationally intensive (Wu et al., 2009) praled to be problematic when
applied to the extensive raster datasets usedsistildy. To overcome this, K-means
clustering was repeated with an increasing numbelusters defined each time. The
optimum number of clusters was determined througdtyais of silhouette plots
generated after each run. These plots provide guneaf how close each point in one
cluster is to the points in neighbouring clustetsoh is defined by the squared
Euclidean distance, +1 being very distinct frongheouring clusters and - 1 indicating
misassignment (Lleti et al., 2004). The overallcess of the run can be determined by
the average of these values (Lleti et al., 2004).

Analysis of the silhouette plots indicated two melusters. These clusters were
mapped which helped to identify one particular tmeg a cutting at Whitchester, that
accommodated both clusters and was readily acéedsitstudy. Three subsequent soll

moisture campaigns were carried out in this aréa.fiFst occurred on ¥8June 2009
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following a period of little rainfall and involvea transect of readings across the profile
of the cutting with measurements made every 2 s 3dmpling strategy was chosen
as it takes into account both downslope variatiosail moisture and the influence of
the north/south slope aspects and can give anaitioicof small scale variations in soll
moisture distribution without being too laboriod$ie second soil moisture campaign
was carried on"9July 2009 again following a period of dry weath@n this occasion
measurements were taken approximately every 5arete a grid of measurements
across the earthwork where access was possiblee Saas were inaccessible due to
dense vegetation. this is a potential limitatiors@i$ moisture contents are likely to be
underrepresented under dense vegetation whidkely lio influence soil moisture
distribution through processes such as rainfadlirggption. The overall sampling
strategy was chosen in order to maximise the dpatieerage of the soil moisture
measurements following the guidance of McBratney/ \Afebster (1983). The third
campaign was carried out on"30uly 2009 following a period of heavy rainfall.&h
sampling strategy here was similar to that useti@hjune 2009 with a series of
transects across the profile with 2 m spacing betwaeasurement points. On each
occasion the position of the measurements werededaising real-time kinematic
GPS.

3.3.1.2 Analysis techniques

The soil moisture measurements were compared tietre@n analysis calculations, for
both the IDW and AnuDEM interpolated DEMs usingekin regression. Stepwise
multiple regression was then used to create a npddicting soil moisture from the
terrain analysis metrics. Non linear transformabéthe TWI metric was also
considered (see Section 3.2.1.4 for further dgtd88VR was also used to consider the
spatial variability in the relationship betweenl snoisture and the metrics. A GWR
model was defined with a fixed Gaussian kernethasspatial density of the
observations does not change significantly. Bantiwiehs selected usimgyC. cross
validation (see Appendix 2 for details on GWR). s 'hroduced an optimal band width
of 18 m. A Monte Carlo significance test was usetest the spatial variability of the

parameters used in the GWR model.
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3.3.2 Airborne imagery acquisition and processing

High spectral resolution CASI imagery was colleatedr the Haltwhistle transport
corridor in September 2007 onboard a fixed wingrait at a height of 1100 m giving a
pixel resolution of 60 cm. Radiometric calibratioithe imagery was undertaken by
applying the empirical line method (Smith and Miltd.999) to coincidental field
spectroscopy measurements taken over three 6 sa6pawlin targets (black, grey and
white) (Figure 3.16). The three targets were pws#d at least twelve metres from each
other to ensure any signal taken from the imagexy purely from one target at a time
and had no influence from nearby targets.

Smith and Milton (1999) demonstrated that the eioglitine method provides
adequate results (errors in the region of a fewegue) and is relatively easy to compute,
compared to complicated radiative transfer modétsvever, they stress the importance
of using at least two targets. Figure 3.17 showsxample of the radiometric
calibration for band 1 using this method, illustigta strong relationship €rf 1)
between the reflectance recorded using field spectipy and the radiance recorded by
the airborne CASI sensor (see Appendix 4 for thadityuof the radiometric correction
for all 32 bands).

1,000 Metres .

20 10 O 20 Metres
| B O

Figure 3.16 Location of the black, grey and white targets usetie empirical line

radiometric calibration.
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Figure 3.17 Example of the empirical line method for radiometralibration of CASI

band 1, with regression equation and correlatiaffimpent.

Geometric calibration was carried out by the opmrabeomatics Group
(Environment Agency). Following the procedure meéti in Brown et al. (2003) the
CASI imagery is synchronised with the onboard natian system using a Precise
Positioning Service (PPS) from the GPS. The CASl&y is then geocorrected using

navigational data using bespoke software from Ilgnegw.itres.con), which allows for

geocorrection using a fixed elevation surface. i&agational system is integral to this
process which consists of a dual frequency Nowdié¢nium GPS receiver providing
positional data which is post processed using gidsRS data referenced to the
Ordnance Survey passive and active networks itveA rudimentary quality
assessment is made by comparing the imagery tooreafays from Ordnance Survey
data. The system is calibrated each time the im&n is replaced in the aircraft, and
periodical test flights are flown to ensure thishoation is still valid.

The quality assessment, referred to by Brown €aD3), was deemed
insufficient for a precision engineering study da¢he unknown accuracy of the
Ordnance Survey data. Therefore geometric validatias carried out against

independent ground control points collected infiblel using RTK GPS. The maximum
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RMSE quoted by the operator (1.5 pixels) was fotanlde exceeded in two of the CASI
strips (RMSE of 1.7 and 2.4 pixels), which waseetitd by poor mean residual errors
and standard deviations quoted in Tables 3.3 ahdrl'Bis information was reported and
as a result the operator made a rudimentary ad@mtby applying a global shift to the
data to bring it in line with the ground controlipis, reducing the aforementioned
RMSE to 1.1 and 0.98 respectively. This is refldeteFigure 3.18 which shows the
change in residuals for one CASI strip before dtef @orrection, and Tables 3.4 and
3.5 which show changes in mean and standard dewiafithe residuals for two CASI
strips. The justification for the use of this methwas that the residuals for each point
tended to follow the same pattern. This was natvadrable solution and suggests
perhaps this form of data collection and processnmpt accurate enough for
application in precision engineering. A more rokaution would be to collect
coincidental GPS measurements of clearly visibigets and use them as control points
to carry out geometric correction of the raw imagdihis was not done because the

data ordered from the operator was expected toithénvthe quoted accuracy.

Old New
X y X y
Flight line 1 -0.51 -2.09 -0.35 0.03
Flight line 2 -0.4 -1.41 -0.27 0.7

Table 3.3 Mean residuals between GCPs located using RTK GHSdantified in
two CASI imagery flight lines before and after @ation by the operator.

Old New
X y X y
Flight line 1 0.54 0.82 0.7 0.66
Flight line 2 0.52 0.62 0.57 0.59

Table 3.4 Standard deviation of residuals between ground KBRS location and
location identified in two CASI imagery flight lisebefore and after correction by

the operator.
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Figure 3.18 Plot showing change in residual error followingreation by the operator
for ground control points located using RTK GPS alwhtified in the CASI

imagery.

Two strips covering the transport corridor earthikgaaind surrounding fields and
structures were merged using ERDAS IMAGINE softwdi@ prepare the imagery for
subsequent analysis a number of steps were perdaioneduce the amount of noise
within the data and improve the overall signal frihra vegetation. Firstly, a Minimum
Noise Fraction (MNF) transformation was appliedha ITT ENVI software which can
be used to identify spectral anomalies. The MNRineubegins with a forward rotation
of the spectral data which orders the image datedifferent components of varying
guality (van der Meer et al., 2006). It does thegg a cascaded principal components
transform whereby new components are selectedeasighal to noise ratio decreases.
In ENVI, the degree of noise per component canifgalised as a grey-scale image
where the pixel value is considered to have a finglationship with the level of noise.
Typically, the images in first few MNF components anuch more coherent than later
component images that are often speckled, witk [t no spatial coherence. By

examining the images and associated eigenvectensuitmber of components with
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coherency can be chosen. These components cabdlsstected as a spectral subset in
an inverse MNF transform which places the MNF bdrat in their original data
space, which in this case corresponds to eacled2HCASI bands. The spectral subset
chosen for the Haltwhistle data were bands onevers which corresponds to an

eigenvalue of more than five.

3.3.2.1 Mapping Ellenberg values
3.3.2.1.1 Vegetation sampling strategy

To date there have been no reported attempts tdEeamerg values derived for UK
plant species, such as the typology developed bethal. (2000). Indeed, apart from
Schmidtlein (2005), there have been few attempisdp Ellenberg values using
Imaging spectroscopy. One possible reason foighlse uncertainty surrounding the
adequate number of vegetation species abundaneevabens that are required to
characterise the range of Ellenberg values that exia given site. For example,
Schmidtlein (2005) explained that variation in plapecies composition and cover was
assessed in 46 relevés (a uniform area used to vegjetation observations, such as a
guadrat) positioned randomly throughout the stutky Blowever, no reference is made
as to how this sampling strategy was chosen.

One approach that may be suited to defining adecgsanple size for measuring
species abundance is the use of the nested plotitee (Mueller-Dombois and
Ellenberg, 1974) ( Figure 3.19). This techniqueoimes counting the number of species
that occur in the smallest sub plot, in the cadeigdire 3.19, plot number one
measuring 0.5 x 0.5 m. The number of species & ricorded in the subsequent sub
plots, up to number nine, with an increasing samapda covered. A species-area curve
can then be constructed where the number of spestesded is plotted against sample
size. Mueller-Dombois and Ellenberg (1974) explditieat adequate sample size can be
defined as the point at which number of speciesroen does not increase significantly
with an increase in plot size (being defined agpihiat at which a 10% increase in plot
size yields only 10% more species). Despite thes species-area curve tends to be used
in modern ecology for monitoring biodiversity, wiittle mention to the method being

used for defining sample size.
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8m

Figure 3.19 System of nested plots. Each subplot from 1 indutle area of the
previous subplot, therefore all plots are squaremPMueller-Dombois and
Ellenberg (1974).

Stohligren et al. (1995) explained a number of htiins associated with the
nested-plot technique. Firstly, the number of sgececorded is added from each
previous sub plot, starting from the initial 0.% m square. As a result, each measure
is not truly independent from the last, which caad to autocorrelation and a strong
bias around the first sub plot. Secondly, if a tetbs not strictly homogenous then the
number of species measured per plot may be infegeby the shape of the area being
examined. For example, circular or square plotsredord fewer species as they have a
reduced perimeter to surface area ratio, comparaddng, thin rectangle plots. In an
attempt to overcome these issues, Stohlgren Et35) suggested the use of a series of
long thin plots that do not overlap. This type afmgpling plot is known as a modified-
Whittaker plot as it is based on the widely usedttker plot which first made use of
long, elongated sub plots.

In an attempt to bring a degree of robustnessawégetation survey,
preliminary sampling was undertaken to construsppecies-area curve for earthworks
in the Haltwhistle transport corridor. This was darsing the modified-Whittaker plot
but adapted to fit in the confines of a cuttingtleaork near Whitchester (Figure 3.20).
Within each sub plot, the number of vegetation sgsewas recorded (see Appendix 5
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for details). This equated to ten small sub plvts, medium sub plots, one large sub
plot, and the plot encompassing all the sub plotsthe space in between. The average
species number for each plot size was then caélldthis was plotted against relative
sample area to produce a species-area curve (RBgtg Scheiner (2003) explained
that a power function best describes the speces-@irve, which is supported in the
present example with arf Rf 0.95 compared to®Rralues of 0.66 and 0.92 for
exponential and logarithmic fitted curves respeativHowever, it could also be argued
that the logarithmic fit is better suited as italees a plateau rather than the assumption
made by a power curve that the total number ofispatould increase indefinitely with

sample area.
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Figure 3.20 Diagram of the modified-Whittaker plot used to netepecies abundance
over a cutting earthwork near Whitchester (notcles) in order to create a species-
area curve used to define adequate sample sizeettangles refer to different
sized sub plots for which species type is recordéé. rectangle encompassing all

the sub plots is the total area. Further explanatigrovided in Appendix 5.

The species area-curve in Figure 3.21 shows teattimber of species does not
increase significantly after a sample area of 160Terefore, this value is used as the
adequate sample area for assessing species abanddhne transport corridor. Species
type and abundance was assessed following the éxaichmidtlein (2005). The
first step was to define the study area by spexmeagposition. Two main vegetation
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covers were identified: (1) a mixture of agricuétbweeds, wild flowers and shrubs, and
(2) deciduous woodland. A decision was made torgeciduous woodland in the
Ellenberg mapping analysis as tall tree canopiasoéonly complicate the spectral
signal from bidirectional reflectance and shadowplf et al., 2010; Feldmeyer-
Christe et al., 2007), but also mask smaller sgemmethe forest floor that may be a
better indicator of soil moisture conditions. TEsan important limitation on the use of

Ellenberg values which is discussed in greaterildat&hapters 6 and 7.
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Figure 3.21 Species-area curve created using observationsof gbecies within a
modified-Whittaker plot located on a cutting earthwnear Whitchester. The
observed number of species are taken from the mdeWhittaker plot sampling.
The solid line refers to a logarithmic fit on thiesserved number of species points.
Line A refers to an increase in species and saargie in 10% steps. Line Bis a
tangent parallel to the 10% line (Line A) whereoiiches the species-area curve.
The point at which Line B intercepts the logarithrhi is taken to be the adequate
sample area, indicated by the grey dashed line.
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The two vegetation cover types, along with addalarovers of bare earth and
manmade surfaces, were classified using the CA&gary. This was done so that
random sampling points could be positioned ovessacé agricultural weeds, wild
flowers and shrubs, which were used to sample spa@tiundance for the calculation of
weighted Ellenberg values. Classification was earout using a maximum likelihood
classification routine. Many other classificatiqggpeoaches exist but these were not
explored as this was not a listed objective forgtugly at hand. Furthermore, there is
suggestion that adequate selection of training sstenore influential than the choice of
classification procedure (Campbell, 2006; Math€Q4).

The training areas used in the maximum likeliholadsification routine were
sampled using a mixture of ground-based knowleddleeostudy area and 5 cm aerial
photography taken at the same time as the lidardiatussed in Section 3.3.1. The
minimum area covered by each training area pes olas selected using simple
heuristics, which suggests 10 to 30 pixels pers¢lasiltiplied by the number of bands
used in the classification (Lillesand and Kiefé0Q), which in the case of the CASI
sensor is 32 bands. A fuzzy convolution filter vaaplied to the resulting classification
to reduce the speckled effect and improve ovengkpretation. The classification
accuracy was then assessed at 300 points locatédmdy throughout the study site,
again using a mixture of field-based knowledge t#wed5 cm aerial photography to
determine the ‘true’ class of a pixel.

The overall classification accuracy was 90% wittappa statistic 0.87 (Table
3.5). This suggests a high level of classificabonuracy, however, discrepancies did
exist. For instance, areas of bare ground were o@e misclassified as vegetation,
especially where these were adjacent to clustevegsdtation, or where vegetation was
partially overhanging. In addition, ballast, whidims the basis of the railway track
bed, often spilt over onto bare earthwork slopéss Ted to misclassification of the
ballast into the bare earth category. The clasgiba of the weeds, wild flowers and
shrubs land cover was shown to largely successthiseme misclassification due to
overhanging deciduous trees. The user’s accuradpitclass was 94.3% showing that
this classification could be used to delineateBEhenberg mapping study area with a

certain level of accuracy.
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Bare Deciduous Grass
Unclassified Manmade and Total
ground wood
shrub
Unclassified 0 0 0 0 0 0
Bare 0 27 0 2 2 31
ground
Deciduous
wood 0 1 70 0 9 80
Manmade 0 9 0 75 0 84
Grass and 0 0 6 0 99 105
shrub
Total 0 37 76 77 110
Producer's User's
accuracy accuracy
Bare ground 73.0% 87.1%
Deciduous o o
wood 92.1% 87.5%
Manmade 97.4% 89.3%
Grass and 90.0% 94.3%
shrub

Table 3.5 Error matrix showing the classification accuracyte maximum
likelihood classification routine applied to themine CASI imagery. The
clasification was carried out in order to delineadeicultural weeds, wild flowers

and shrubs for the random position of vegetatiamdhance plots.

The classification discussed above was used tomlydposition plots over
grasses, weeds and shrubs throughout the studyTdrese plots were then used to
measure species abundance in order to calculatdteei average Ellenberg values.
Schmidtlein (2005) recorded species abundancendbra plots which consisted of
three 1 rcircular relevés, positioned approximately 1 mfrthe centre of the plot, the
position of which was measured using differenti®iS5 This strategy was adopted in
the present study, but 1 x 1 m quadrats were eradloyith 10 cm grid squares
(representing 1% of total coverage). This was dorteelp improve an otherwise
subjective measure of percentage species abundanaditional methods for
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recording species abundance involve an estimatdaifve percentage cover per
species. More accurate measures of species abundan®de made by harvesting the
vegetation at each plot, then weighing the relatihasses for each species (Kent and
Coker, 1995). However, this was deemed impractinalto the need for additional
personnel to collect field samples, as well asreded laboratory work. In addition,
measuring species abundance through harvesting terx reserved for studies that
are primarily concerned with biomass, or the yehd productivity of particular species
(Kent and Coker, 1995).

Thirty-three plots were positioned over grassegdseand shrubs landcover
throughout the study area using randomly generaeddinates, which were located in
the field using RTK GPS. This ensured that an adexjarea was sampled
(approximately 100 ), as defined by the modified-Whittaker plot analysiowever,
it later emerged that four of the plots could netused due to misclassification of
vegetation type, or inaccurate soil moisture messents. Once species composition
and abundance were recorded, a weighted averape &llenberg indicator value for

soil moisture could be calculated for each plohgdtquation 3.11.

n
i=1 XiW;
E==7—7
A X;
=17

Equation 3.11

Where,E is the weighted average Ellenberg vakigsfers to the relative Ellenberg
value for the specific vegetation typg @s defined by Hill et al. (1999), amdis the
weight per species based on their relative aburedenihe plot. For example, take a
plot with a relative abundance of Bramble (50%n@hg Nettle (20%) and Bracken
(30%), with corresponding Ellenberg moisture valok8, 6 and 5 respectively (Hill et
al., 1999). Using Equation 3.11 the resulting weaghaverage Ellenberg value for this

plot would be:

_ (6 *50%) + (6 x 20%) + (5 * 30%)
Weighted average = 100 =57
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3.3.2.1.2 Linking Ellenberg values with spectral reflectance using PLS

The processed reflectance data, described in $e®t#2, was linked to the average
Ellenberg scores using PLS regression, followingnddtlein (2005). As described in
Section 3.2.2.5, this type of regression was enga@s it can cope with a large number
of noisy predictors that are not truly independ@mior to analysis, the spectral
reflectance data was transformed using:bdgR), and the derivative of the spectra.
Details of these transformations, and the motivestioehind their use, can be found in
Section 3.2.2.5.

Using the selected CASI bands considered to béfisigmnt, and optimum
number of components necessary to represent tiaigarin the data, Ellenberg soil
moisture values could be mapped and compared &\ soil moisture data. As the
West to East transport corridor typically includasthworks with north or south facing
slopes, separate models were also consideredddwthdominating aspects. Ideally,
additional plots would have been recorded to védidlae Ellenberg indicator value
models. However, due to the lengthy time needembllect plot abundance data, as well
as the need to collect validating soil moistureaddteach point within a day, this was
not possible. As a substitute, leave one out crabdation was carried out. The ability
of the model to predict Ellenberg indicator valoesside the observation point was
assessed by comparing the RMSE for model calibratth the RMSE for the cross
validation.

Part of the original plan in this part of the stwdys to collect field based
spectroscopy at each of the Ellenberg plots. Tloslavhave provided an ideal
reflectance dataset, with reduced atmospheric-dirbctional reflectance effects
associated with airborne data, to fully understiedpotential for mapping Ellenberg
values using spectroscopy. However, damage by plarty to the field spectrometer,
and lengthy estimated times of repair, meant thiatwas not possible, but remains an

interesting scope for future study.

3.3.3 Model integration

The experimental methods described above are dsbigridentify metrics that are able
to help characterise soil moisture distributionm®awf these metrics, namely the terrain

calculations, have been discussed in terms of usuigple regression to improve
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estimations by integrating the calculations. Timalfistep of this methodology is to
create a multiple regression model that incorpsratethe metrics, derived from
analysis of both the airborne laser scanning aedtepscopy datasets, to characterise
soil moisture across the transport corridor. Midtiegression was used as predictions
can be made outside the confines of the modelredikiim area. Multiple regression also
provides a rudimentary measure of success witiRfrelibration coefficient, which is
comparable with the analysis techniques used iesasy) the accuracy of the individual
metrics throughout this methodology.

One of the limitations of using multiple regressis that is does not provide a
thorough measure of model error. This could havequdar bearing in this study as
error propagation might occur where the remotehsed metrics with their own levels
of error are integrated, therefore compounding egbent errors. In this respect it may
have been interesting to explore a Bayesian modediirategy whereby predictions are
based on probabilities (Dungan, 1999). In the presase, areas of increased soil
moisture can be identified by taking into accounat probability of its occurrence
predicted by the remotely sensed metrics. Thisegjyaalso has the ability to take into
account known uncertainty in the metrics by assigr probability that the metrics are
not true. This method was not thoroughly explorethss type of conditional modelling
has the tendency to be less accurate locally (Durig09) which could be significant
when concerned with a component that is highlyalde over space, such as soil
moisture content.

Other modelling procedures include neural networkss technique mimics the
way in which the brain works, by using a numbesiaiple processing units called
neurons (Mather, 2004). Using neural networks tipeiti predicting variables, in this
case remotely sensed metrics, are inputted intogheons with a specific weighting.
The neuron then sums these weighted input varialdsapplies a simple calculation,
such as a threshold. In the example of a thresifdlek input value is greater than a
preset value then the output is sent onto the laggt of neurons, or to the final output
or prediction. This is known as a feed-forward ratNeaes et al., 2002). The issue
with this type of model is that it does not leaseif and requires input information
from the user. This means that the model mustameed by the user and modified

accordingly to produce a more desirable resulihig case, a better prediction of soil
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moisture distribution. Techniques to overcome tl@pendence on user input include
back-propagation. Here, errors associated withrtbéel output are used to redefine the
weights applied to the model inputs. One knowndssiih this kind of model is that
despite speedy computation times for the final mhddgning times can be very lengthy
(Mather, 2004) which may be problematic when degiiith high spatial resolution

data over large areas. In addition, models canrbecover trained’ losing effectiveness
over areas outside the training area (Mather, 2004)

In order to create the integrated model, stepligar regression was carried out
using observed soil moisture measurements, gatioer&d July 2009, as the
dependent variable, and the remotely sensed mesitise predictor variables. This
method was favoured over standard multiple regoassis variables are entered into the
model providing they fit a predefined criterion.iFleriterion is based on the
significance of the predicting variable, which the present study was defined as the
probability of the F value (0.05 for entry and @ft removal). The resulting model was
used to map predicted soil moisture distributioross the corridor, and was validated
using soil moisture measurements gathered 8hiti8e 2009.

As well as the global linear multiple regressiondal a spatially variable mode
using GWR was also considered. However, it mustdied that this was not carried out
in an attempt to improve upon the original globaldal, but to explore the spatial
variability of the relationships between soil margt and the predicting variables. This
is because the model parameters estimated in the @fine are specifically tailored
to the extent of the input calibration, or trainaata. Therefore any predictions made
outside this area would be unstable and unreliable.

3.4 Summary

This Chapter has detailed the methods that weie tosassess the potential of the
remote sensing techniques identified in Chapt&a® hhave the potential to characterise
soil moisture over transport corridor earthworks.explained at the start of this
chapter, some of the techniques are conceptualvareltherefore tested at an
earthwork scale, using terrestrial remote sengnfgrtologies. The details of these
methods were outlined in Section 3.2. The techrsgleemed successful, as well as
other techniques that could not be assessed aalasrale, were then applied to
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airborne remotely sensed data at a transport corsichle using the methods detailed in
Section 3.3. Although many of the techniques us¥d Are not new, the novelty lies in
their integration and use within the context ofeasport corridor environment.
Furthermore, attempts are made to cover some dfritbcomings associated with
some of the techniques. In particular, there isamtt lack of robustness in designing
the sample strategy and subsequent statisticatsasalf vegetation abundance data. It
is hoped that the methods detailed here will prexadasis for applying such

techniques in precision engineering.
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4 Earthwork scale study results

This chapter details the results of the earthwogtesstudy following the application of
the methods outlined in Section 3.2. This is bro#tewn according to the type of data
being investigated. Section 4.1, covers the temaalysis techniques applied to
terrestrial laser scanning data. Section 4. 2esltai the spectral analysis techniques
applied to field spectroscopy data. At the staaxdh of these sections a very brief

overview of the relevant methods are given in otddoring the results into context.

4.1 Terrain analysis experiment

Section 3.2.1 detailed the methods used in theiteanalysis experiment. In brief,
terrain analysis calculations were applied to DEjdeerated from TLS point elevation
data using kriging and AnuDEM interpolation techreg. These terrain analysis metrics
were then compared to observed soil moisture measants. The following details the
results of this work.

4.1.1 Impact of DEM interpolation on representing terrain

Due to the relatively uniform relief of the test lemmkment, there was little difference
between the elevation values interpolated usindtiggtng and AnuDEM techniques,
with an average difference of 1 cm. This is reféédin Figure 4.1 which shows a plot of
elevation values taken from the two DEMs for a $isnt running across the earthwork
(the location of this transect is shown in Figur&)4The maximum difference between
the two elevation profiles was 7 cm, which occuti@dards the summit of the
earthwork, at a distance of 13 m from point 1 (Sigeire 4.3 for the location of point 1).
Comparisons with the original TLS point elevatiatalshowed very small residuals,
with an average of -0.46 cm and 0.59 cm for the[28M and kriging DEMs

respectively. This corresponds to RMSE values® @m and 0.77 cm respectively.
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Figure 4.1 Profile of elevation values and differences actomssect 1 for the kriging

and AnuDEM interpolated DEMs. See Figure 4.3 faalmn of the transect.

Elevation values derived from the two interpolatieahniques were also taken
from transect 2 drawn along the contour of the erkbeent slope (location shown in
Figure 4.3). Plots of these values, shown in Figu?e demonstrated the degree of
smoothing enforced by AnuDEM. This resulted in axmmaum difference of
approximately 5 cm at approximately 2.5 m from poniy (location marked on Figure
4.3), where the AnuDEM method has suppressed th@ahteature that is identified in
the kriging DEM. Despite these visual differenag, and F-test showed there was no
significant difference between the two samplesgje > 0.05). The average residuals,
when comparing the DEMSs to elevation values fromdhginal TLS data, are 0.46 cm
and 0.39 cm, corresponding to an RMSE of 0.68 cth(a62 cm for AnuDEM and
kriging respectively. Due to the lack of differenmetween the two datasets, these
results cannot be used to suggest which interpolaéchnique is more accurate for

reproducing the original TLS elevation values.
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Figure 4.2 Profile of elevation values across transect 2Herkriging and AnuDEM

interpolated DEMs. See Figure 4.3 for locationhef transect.

Hillshade analysis was used to make a visual assggf how the two
interpolation techniques represented the terrathe@test embankment. This was based
on the assumption that increased terrain varighilduld be represented by an increase
in the variation in hillshade values. Figures 48 4.4 show hillshades of the AnuDEM
and kriging DEMs respectively. Although AnuDEM idiied fine scale topographic
features, such as the panel membranes and embedtiednents, these features were
more prominent in the kriging interpolated DEM. Flaigain reflected the smoothing
effect enforced by the AnuDEM interpolation techuggAs a result, kriging
interpolation is more useful for depicting fine lecterrain, whereas the AnuDEM
method creates a smoother surface. Figure 4.3ddsatfies the location of missing
data in the TLS dataset, which is noted in Sec3i@nl.
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Figure 4.3 Hillshade of the AnuDEM interpolated DEM for thestembankmen
Transects And2 refer to the location of the profile graphs in Fes 4.1 and 4.2
respectively. Quadrilateral shape shows the lopaifanissin¢TLS data.
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Figure 4.4 Hillshade of the kriging interpolated DEM for thesst embankmen
Markers identify topographic details that are mpr@minent in the kriging DEN
compared to thAnuDEM DEM in Figure 4.:
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4.1.2 Impact of DEM interpolation on TWI calculation

Despite there being no significant difference bemvthe elevation values for the two
interpolated DEMs, there were marked differencatenTWI calculations. When
analysing the TWI results it should be noted thgh TWI values correspond to
potentially drier areas. This is a result of theéeix being inverted to avoid errors where
the slope is zero (see Section 3.2.1.1 for moraildgtVisually, TWI calculated using
the AnuDEM interpolated DEM was noticeably smoottan the TWI for the kriging
interpolated DEM (Figures 4.5 and 4.6 respectivelfe kriging TWI included a
number of seemingly random peaks across the eatthwabich are likely to be a
response to the fine scale topographic detail ifledtusing the kriging interpolation
routine. There were also differences in the rarfgé/dl values calculated, with 0 to
4.04 for the kriging DEM and 0 to 1.26 for the Arialid DEM. The high values found
with the kriging DEM were attributed to a handfdilgnid cells located on the steep
slopes at the southwest and northeast facing drttie embankment. These extreme
values occur due to the calculation of very smatfitabuting areas which are the result
of a flatter upslope neighbouring grid square tgkafi the upslope contribution. This
did not occur with the AnuDEM DEM as the smoothaigorithm ensured continuous
flow downslope.

Profiles of the TWI calculations for the differanterpolated DEMs once again
demonstrated the smoothness of the AnuDEM DEM coedpi@ the kriging DEM.
Moving downslope from the shoulder of the southrfgslope (point 3 as indicated in
Figure 4.6), the TWI values gradually decreasediferAnuDEM DEM (Figure 4.7).
This trend should correlate with an expected doapesincrease in soil moisture. In
contrast, the profile of TWI values for the krigibgEM was more erratic. Moving
downslope, there were three large peaks betweemi@dd m from point 3 with a TWI
value of more than 0.25, indicating drier soils &mgs the shoulder of the slope, with
the bottom half of the slope having relatively lgalues of approximately 0.05,
indicating uniformly high soil moisture (Figure 4.The difference between the
AnuDEM and kriging TWIs is also shown in Figure 4This shows that there is little
difference between the two calculations from 4 mitan from point 3. In contrast,
there is a great deal of difference between vdhaes 0 m to 4 m. Here, the kriging
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DEM shows three peaks TWI values at 0 m, 2 m amdfldbm position z, with a range
of over 0.25 covering nearly the entire range adikg TWI values.

The difference in TWI values was the result offfedence in the calculation of
specific catchment area. Specific catchment arfeasréo the number of cells that flow
into a cell of interest. In this example, values mpresented by the cell size ih, m
therefore, for the AnuDEM DEM with a grid resolutiof 35 cm (see Section 3.2.1 for
details), a cell with a contribution of just onestnream grid cell will have a specific
catchment area of 0.7°ri.e. the value in metres of itself and one ugstreell). The
profiles in Figure 4.8 demonstrate that specificicment area increased linearly
downslope. In contrast, specific catchment areshiekriging DEM increases rapidly
to 10 nf (representing approximately 22 grid cells) at agjpmnately 5 m from the
shoulder of the slope (Figure 4.8). This differenaa be attributed to fine scale
differences between the two input DEMs. The krigdtgM identified fine scale
topographic features, which act as small local manleading to the TWI being reset at
these locations, resulting in a pattern of sporadiceases and decreases around the
location of these features. Conversely, the AnuDdtidpressed these features and
allowed flow to continue downslope resulting inradpal increase in contributing area
and a gradual decrease in TWI values (indicatinmarease in potential surface

wetness).
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Figure 4.5 TWI calculated for the test embankment using thalEM interpoated
DEM. High TWI values correspond to low wetn
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Figure 4.6 TWI calculated fothe test embankment using the kriging interfed

DEM. Transect 3 shows location of profiles for Figues and 4.¢
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Figure 4.7 Plots of TWI values for kriging and AnuDEM interptéd DEMSs for

transect 3 shown in Figure 4.6.
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Figure 4.8 Profile plots of specific catchment area (SCA)Kdging an AnuDEM

interpolated DEMs for transect 3 shown in Figu@ 4.
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4.1.3 Impact of DEM interpolation on potential solar radiation calculation

The calculation of potential solar radiation showleat the north facing slope of the
earthwork received less radiation than the soutim@pslope. Specifically, the
calculations made for an entire year (2008) sheiseafrom approximately

600,000 WH/m on the north facing slope to 1,000,000 WHfar the south facing
slope (Figure 4.9). The calculations made fdf Rbvember 2008 indicated a rise from
50 WH/nt on the north facing slope to approximately 190 Wiffior the south facing
slope (Figure 4.10). This increase is relativetgéaincrease, with a percentage increase
of 280%, compared to the calculation made for a,yeith a percentage increase of
67%. This is because the calculation was made4BiNdbvember, a time of the year in
which the sun is relatively low meaning the nogbhifig slope receives little direct
radiation. As a result, there is a greater diffeeebetween the radiation received on
either side of the embankment.
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Figure 4.9 Plot of potential solar radiation values calculdi@dan entire year (2008)
across transect 1 (see Figure 4.3 for locatio)elsashow corresponding north and

south facing slope aspects.
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Figure 4.10 Plot of potential solar radiation values calculdi@d24" November 2008

across transect 1 (see Figure 4.3 for locationjtstéme expressed as watt hours per

The north facing slope lies between 0 m and 10amfpoint 1. The calculation
of solar radiation for this portion of the earthwehowed more variation when made
for an entire year compared to the calculation nfad@8" November 2008 (Figures
4.9 and 4.10). This is because the calculation nfarden entire year includes the
summer period where the sun is high enough fobtle slopes to receive direct
radiation. This increase in variation is appararfigures 4.11 and 4.12 that show maps

metre square.

of solar radiation values calculated fof"28ovember 2008 and an entire

yearsrespectively, using the kriging DEM.
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Figure 4.11 Potential solar radiation cwlated for 28 November 2008 using tt

kriging interpolated DEM.
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Figure 4.12 Potential solar radiation calculated for the ye2d&using the krigin
interpolated DEM.
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The examples shown in Figures 4.11 and 4.12 shatathle calculation of
potential solar radiation made over an entire geanonstrated more variation for the
north facing slope. This was also apparent whemrcahaulation was applied to the
AnuDEM DEM, as demonstrated in the profiles showfigures 4.9 and 4.10.
However, this variation was not as prominent asctleulations made using the kriging
DEM, with the latter showing a range of 135,765 \Wfibver a distance of 0 m to 10 m
from x, compared to a smaller range of 122,135 WAHémthe AnuDEM DEM. This
was also apparent in the maps of solar radiatituregecalculated using the AnuDEM
DEM (Figures 4.13 and 4.14) which were generallpsther and revealed less
response over the embedded instruments and pandbraiees (the locations of which
are shown in Figure 4.4). Similar to the calcullasi@of TWI discussed in Section 4.1.2,
this is due to the smoothing enforced by the AnuDigtdrpolation technique. The fine
scale topographic features were suppressed bgriosthing, leading to a more
uniform calculation of solar radiation.

Whereas this smoothing is preferable in the catmraf TWI, to ensure
continuous flow downslope, this may be less aceui@tthe calculation of solar
radiation. This is because solar radiation at amyiWEM grid square is largely governed
by its aspect and the presence of features thatmsgure direct radiation, i.e.
shadowing. Therefore, it would be preferable toehaDEM that represented the terrain
as accurately as possible. Although a T-test showesignificant difference between
the two (Section 4.1.1), the profiles of elevatiatues (Figures 4.1 and 4.2) and
hillshade analysis (Figures 4.3 and 4.4) showetthigakriging DEM better represented
fine scale topographic features. Therefore, a DEEd&ted using this interpolation

method is better suited to the calculation of tbieptial solar radiation.

130



AnuDEM solar radiation
Specific Day - 24th Nov 2008

WH/m2
oS
-

0 5 0 10 Meters
I I .

Figure 4.13 Potential solar radiation calculated foi” November 2008 using tt
AnuDEM interpolated DEM.
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Figure 4.14 Potential solar radiation calculated for an enggar (2008) using th
AnuDEM interpolated DEM.
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4.1.4 Impact of DEM interpolation on the calculation of aspect

The difference in the calculation of aspect ushegkriging and AnuDEM interpolated
DEMs followed similar trends to the differencesridun the calculation of potential
solar radiation (Section 4.1.3). Aspect calculatsithg the kriging DEM showed a great
response to the panel membranes and embeddedmnestisi This resulted in a greater
variation in aspect which is illustrated in thengact of values shown in Figure 4.15.
This transect shows that the transition of valeesHhe AnuDEM DEM is smoother

than the kriging DEM, which is a reflection of temoothing enforced by the AnuDEM
interpolation routine. This suggests that the kiggDEM is better suited to the
calculation of aspect over the test embankmenhiasnterpolation routine better
represents fine scale terrain features. Thesergsatwuld be important where localised
variations in solar radiation result in variationsoil moisture, such as a hollow feature

which retains moisture as it does not receive tnadiation.
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Figure 4.15 Profile of aspect values (degrees) taken from &ein® running along the
contour of the test embankment. Values range beti26 and 170 as the transect
was taken from the south facing slope, locatiowloich is shown in Figure 4.3.
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4.1.5 Impact of earthwork orientation on potential solar radiation calculation

Due to the west to east orientation of the testasrkiment, the main variation in
potential solar radiation was polarised by themartd south facing slope aspects. This
dominant feature masks small scale variationsrttegt exist on the slopes themselves.
Generally, it was found that the influence of snsakile features was augmented by
calculating potential solar radiation for an entiear, therefore taking into account
direct radiation of the north facing slope duringrsner periods, using a kriging
interpolated DEM, which represented the fine stap@graphic features. A test was
carried out to see how the calculation might penfon a north to south orientated
earthwork, by rotating the DEM in a GIS environment

The calculations of potential solar radiation apglio the rotated DEMs
demonstrated a response to smaller scale terraiarés, rather than the polarisation
exhibited in the original DEM orientation. A map mdtential solar radiation calculated
using the kriging DEM demonstrates this well (Feydr16) with variation being
reported over the embedded instruments and parmabnames. This was also reflected
in a transect of values drawn across the contothreoéarthwork (Figure 4.17) which
showed a fluctuation in solar radiation calcula@m28" November 2008 at 2.5 m,
20 m and 38.5 m in response to the panel membrdeesfied by the kriging DEM.
The difference in solar radiation over these fesgueaches a maximum of 67 WH/m
(20 m from point 4) which represented over 85%heftotal range in values calculated
across the transect. This showed that variaticolar radiation calculated for a north to
south orientated earthwork was controlled by tles@nce of topographic features on
the slopes rather than a difference in slope agseséen with the original west to east

orientated earthworks.
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Figure 4.16 Potential solar radiation calculated foi”” November 2008 and an ent
year (2008) using the kriging DEM rotated to beentated approximately north
south. The location of transect 4 is also shc
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Figure 4.17 Transect of potential solar radiation values actbesontour of the
simulated north to south orientated earthwork. [Dleation of transect 4 is shown in
Figure 4.16.

The map of solar radiation calculated using the D&M DEM also depicted a
response to the panel membranes and embeddednestisi(Figure 4.18). However,
this response was less pronounced as seen wiknigjtreg DEM due to the suppression
of topographic features in the AnuDEM interpolati@his is illustrated by the transect
values in Figure 4.17. In comparison to the valadsulated using the kriging DEM,
the AnuDEM showed a smoother variation in valuesr dlie features at 2.5 m, 20 m
and 38.5 m. For example, at a distance of 20 m fromt 4 the difference in solar
radiation was 42 WH/fmcompared to 67 WH/ffor the kriging DEM. This again
suggests that a DEM created using kriging intetpmias better suited to the
calculation of potential solar radiation. There wassignificant difference between the
distribution of values calculated for 28lovember 2008 and an entire year. This was
indicated by a Pearson correlation of over 0.9&fih the AnuDEM and kriging
calculations and an F-test indicating that sampléwnces were not significantly
different (p < 0.005). This is because direct radrais distributed uniformly across the
earthwork in a similar fashion to the calculatioadea over an entire year. However, the

variation in solar radiation over a year has presip been shown to influence soil
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moisture distribution patterr(Western et al., 1999alf the calculations made here
not vary signifi@ntly for 2¢" November 2008 or an entire year then it is unlikbbt
predicted solar radiation would be a strong prediof soil moisture. Therefore, the L
of this terrain analysis for characterising soilistiare may be limited to earthwor
with north and south facing aspects, or other topogrdghittires that result
significantly different solar radiation distribufis.

N

WH/m?2 WH/m2
AnuDEM DEM AnuDEM DEM

251 . 1029862 .
. Specific Day . Entire Year 10
l Meters

46 387863

Figure 4.18 Potential solar radiation calculated 28" November 2008 and an ent
year (2008) using the AnuDEM DEM rotated to lrientated approximately nor
to south.
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4.1.6 Impact of DEM resolution on the terrain analysis calculations

As discussed in Section 4.1.1, the original gridMBEcreated using the AnuDEM and
kriging interpolation methods depicted fine scalgagraphic features such as
embedded instruments and panel membranes. Wh@&#tiMeresolution was degraded
to 2 m this information was lost, but the overakhge of the earthwork was retained. As
a result, the calculation of TWI did not show ap@sse to topographic features such as
panel membranes or embedded instruments. Integbstat this resolution there was
little difference between the calculations of TWéing the two DEMSs. Figure 4.19
shows a transect of TWI values across the profita@earthwork demonstrating the
similarity between the two profiles. A T-test shalibat there was no significant
difference between the two sample means (p < 0,008) a Pearson correlation of
0.98. Furthermore, a F-test suggested there wasidence to suggest that the variance
of the two samples were significantly differentigtvas due to small differences in the
TWI calculation, particularly at a distance of 10fnmm point 1 (location shown in
Figure 4.3) where the AnuDEM TWI was approximatelyo higher than the kriging
TWI.

In Section 4.1.2, the differences in the calcolatf TWI between the two
interpolated DEMs was found to be due to a diffeeeim the calculation of specific
catchment area. However, at 10 m from point 1 thaa® no difference between
specific catchment area as the only contributiasm ghid cell was receiving was from
itself, i.e. one grid square (equating to 2 m).hReatthe differences are found in the
calculation of slope grid with the kriging DEM shiog a slope grid value of 0.51
compared to 0.48 for the AnuDEM DEM. Although th#eadence is small, it shows the
kriging DEM at this grid square to be steeper tttenAnuDEM DEM, resulting in a
higher TWI value, corresponding to a lower potditietness. This is again the result of
the smoothing mechanism of the AnuDEM interpolatioutine ensuring that fine scale
topographic features are suppressed.

A T-test showed there to be no significant diffexe between the means of
potential solar radiation values calculated ushegttvo interpolated DEMs with a grid
resolution of 2 m (p < 0.005). An F-test also iradéd that there was no difference
between the variance of the two datasets. This¢alse the resolution of the DEM is

too coarse to identify topographic detail, suclpasel membranes and embedded
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instruments that was evident in the finer resolufiEMs (as discussed in Section
4.1.1.3). This means that interpolation methodlitides or no influence on the
calculation of potential solar radiation for thettembankment at grid resolutions

coarser than 2 m.

0.16

0.14

£\
IA\ ‘\\ Kriging TWI
[ \ \
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Figure 4.19 Transect of TWI values across the profile of trst ganbankment
calculated for the kriging and AnuDEM DEMs. Locatiof transect 1 is shown in

Figure 4.3.

Some of the fine scale topographic features tlemewdentified in the original
resolution DEMs (both kriging and AnuDEM interp@d) were also apparent in the
1 m degraded DEMs. Although less pronounced thandroriginal DEM, the hillshade
of the 1 m kriging DEM demonstrated this with véioas found around the panel
membranes (Figure 4.20). A transect of elevatidntp@cross the contour of the
kriging and AnuDEM interpolated DEMs revealed seldifferences (Figure 4.21).
Unlike the 2 m resolution DEMs, the smoothing gddgraphic features again becomes
apparent at a grid resolution of 1 m. For examiple panel membrane features at 10 m
and 25 m from point 5 are clearly shown, with @uction in elevation of over 10 cm in
both DEM profiles. However, the surface roughnessicted in the kriging DEM from
approximately 17 m to 23 m from point 5 has beenahned out in the AnuDEM

profile.
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Hillshade of 1m kriging DEM
Digital number N

10 5 0 10 Meters

Figure 4.20 Hillshade analysis of the 1 m degraded kriging Di&lth annotation:
identifying the panel membrane features and thatioe of transec5.
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Figure 4.21 Profile of elevation values from transect b aldmg tontour of the te:
embankment for the 1 m kriging and ArEM DEMs. The location of transect 5

shown in Figure 4.20.
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Respective T and F-tests showed that there wagniicant difference
(p < 0.005) between the calculation of potentiddustadiation using the 1 m kriging or
AnuDEM interpolated DEMs. However, there was aat#hce with the calculation of
TWI. Values taken from transect 3 (the locatiomwich is identified in Figure 4.6)
showed the AnuDEM wetness index to gradually degremwnslope, whereas the
kriging TWI was less consistent, with a fluctuatairapproximately 6 m from point 3
where the value was 15% higher (Figure 4.22). hizecause the kriging DEM
represented finer scale features resulting indlaibns in specific catchment area, slope
grid and subsequent TWI. This is similar to theliitgs made with the original
resolution DEM in Section 4.1.2 demonstrating ttad grid resolution of 1 m, TWI
should be calculated using an AnuDEM interpolat&ivD
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Distance from point 3 (m)

Figure 4.22 Downslope profile of TWI values for transect z cddted using kriging
and AnuDEM DEMs. High TWI values represent low vests. The location of

transect 3 is found in Figure 4.6.
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4.1.7 Description of the test embankment soil moisture measurements used
to compare against the terrain analysis calculations

The soil moisture measurements used throughoustity, at both the earthwork and
transport corridor scale, were made using a Thetialple impedance probe. This probe
was calibrated using gravimetric soil moisture nieasients taken from soil samples
located across the test embankment. A scattecphoparing the measurements can be
found in Figure 4.23. The results of the calibmatiodicated an Rvalue of 0.85 which
proved to be better than the results reported kgh@b al. (2005) who showed
correlation coefficients ranging fronfRf 0.61 to 0.84. The average residual was 2.9%
resulting in a total RMSE of 1.7%. Although thesdues are very small, the residuals

in some cases reached almost 10%. Deviations ®friagnitude could have a
significant effect on the comparisons made withréraotely sensed metrics used in this
study. In addition, sampled soil moisture was ppogpresented between 0 - 20% and

therefore there is uncertainty over the accuradh@fprobe during dry conditions.
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Figure 4.23 Scatter plot between Theta probe and gravimetrigrsasture

measurements for the calibration of the Theta probe

Observed soil moisture measurements were obtaim@d'bNovember 2008 for
comparison with the terrain analysis calculatidreble 4.1 shows the descriptive

statistics for this dataset. Local weather dat&catdd a number of rainfall events over
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the few weeks before the measurements were tagsufing in overall wet conditions
on the embankment with a mean volumetric soil nmogstontent of 41.1%. The mean
soil moisture value masks a wide range with a mummand maximum of 18.3% and
50.3% respectively, and a standard deviation d¥5.Phe measure of skewness shows
that the distribution of this data is negativelgwied. This is reflected in the histogram
shown in Figure 4.24 which shows a bulk of the meawments to be distributed around

43% and a tail tending towards lower soil moistakies, below 30%.

Descriptive statistics
Mean 41.1
Standard Deviation 5.16
Skewness -0.90
Minimum 18.3
Maximum 50.3
Count 311

Table 4.1 Table showing descriptive statistics for the tesbankment soil moisture
measurements gathered o' Movember 2008. Values are in volumetric soil

moisture (%0).
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Figure 4.24 Histogram showing the distribution of soil moistuneasurements for the

test embankment gathered of"2ovember 2008.
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Figure 4.25 shows the location and value of thersoisture measurements. T
first pattern that emerged was a slight increaseverall values for the north facit
slope, illustrating the inflence of aspect. This was reflected in an averaijenssture
content of 43% and 38.9% for the north and soutiméaslopes respectively. Valu
were shown to vary more on the south facing slople asrange of 30.2% compared
25% for the north facinslope. The variation in soil moisture contents wagher thar
expected and shows that there was a lack of smagahisation, which may be t|
result of a rainfall event just prior to data cotlen. This may have implications on t
comparison betweethese measurements and the terrain analysiscsibgcause tr
metrics base their prediction on patterns of saiisture distribution. Therefore, po
correlations might be expected if the observedmoilsture values exhibit litt or no

pattern.

AnuDEM DEM hillshade

Soil moisture measurements
Digital Number Volumetric soil moisture (%)

High : 249 ° 18.3-30.0

. 30.1-35.0
Low : 37

]
QO 35.1-40.0
QO 40.1-45.0
10 5 o 10 Meters

QO as.1-500

O 50.1-550

Figure 4.25 Location and values of soil moisture (% volumetfa)the tes

embankment. Values displayed as graduated syr

Figure 4.26 shows the relationship between thensoisture measurements &

elevation. This shows that overall there was adti@rincieasing soil moistur
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downslope, which was more prominent on the nortinaslope. Although this is an
expected trend, as it is assumed that moisturemgtate downslope over time, the
magnitude of this trend is relatively small. Theitbofacing slope, for example, shows
an increase in soil moisture content from the tofhe bottom of the slope of just 2.5%.
This difference cannot be considered significarthasstandard deviation for the total
dataset was 5% (Table 4.1). The difference betwakres at the top and bottom of the
north facing slope was above the standard deviatidtine dataset, showing an increase
of 7.5%. Despite this, overall the downslope trewdse poor. The reason for the lack
of trend may again be attributed to the rainfadittbccurred just prior to the
measurements, leaving little time for downslope erognt and resulting topographic

organisation of soil moisture values.
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Figure 4.26 Scatter plot of elevation against soil moisture sae@ments for the north

and south facing slopes with trend line calculatsitig linear regression.

4.1.8 Regression analysis between terrain analysis calculations and observed

soil moisture measurements
Ordinary least squares regression between theustarrain analysis calculations and
soil moisture measurements generally showed paoelations (see Table 4.2). The
TWI calculations showed almost no correlation vabserved soil moisture which was

not improved when the calculations were expressdati@natural logarithm. The
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calculation of potential solar radiation and aspertormed better than the TWIs but
they still showed poor regression coefficients vabiserved soil moisture, all with an
R? below 0.16 suggesting that these metrics expégis than 16% of the variation in
observed soil moisture. These findings show thdividual terrain analysis calculations

cannot be used to predict soil moisture over teeegmbankment.

R’ correlation N
.- . . Significance
. . coefficient with soil

Topographic metric ) (p-value)

moisture
TWI (AnuDEM DEM) 0.06 0.000
TWI (kriging DEM) 0.043 0.000
Potential solar radiation - entire year (AnuDEM DEM) 0.156 0.000
Potential solar radiation - entire year(kriging DEM) 0.155 0.000
Potential solar radiation - specific day (AnuDEM DEM) 0.149 0.000
Potential solar radiation - specific day (kriging DEM) 0.144 0.000
Aspect (AnuDEM DEM) 0.141 0.000
Aspect (kriging DEM) 0.148 0.000
Natural logarithm of TWI (AnuDEM DEM) 0.058 0.000
Natural logarithm of TWI (kriging DEM) 0.047 0.000

Table 4.2 Regression correlation coefficients for terraircoédtions against soil

moisture measurements.

Stepwise linear regression showed best estimationsl be made using a
mixture of potential solar radiation calculatedngsihe kriging DEM and TWI
calculated using the AnuDEM DEM. However, the clatien coefficient remained
poor with an R of 0.26 (p value < 0.000). A GWR model with a baitith of 5.8 m
was built using these two metrics. This signifitanmnproved the correlation with an
R? of 0.56. The Akaike information criterion showédt a locally fitted GWR model
was better suited than a global regression modhes. Wiias supported by the Monte
Carlo test for significance that showed the ref&lop between soil moisture and the
terrain calculations to vary significantly over spdsignificant to 0.1% level). Mapping
the GWR model residuals revealed no spatial pattemch suggested that perhaps the
reason for the poor correlations found were dubedack of spatial organisation of the
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observed soil moisture values. In addition, ning the predicted values from the GV
model revealed that the independent soil moistieasurements used to build
model was dominated by the influence of potenti#rsradiation (Figure 4.27). This
reinforced by an average predicted soil mois content of 43.5% for the north facii
slope compared to an average of 31.7% for the daathg slope, representing
difference of 11.8%. By comparison, the averagedihce in the observed s
moisture measurements was just 4.1% meaning the @Kl overestimated th
influence of solar radiation. This may also be tluthe lack of downslope trend fou
in the observed soil moisture measurements meanen@W!| has reduced influence
the model. This is supported by the scatter plgireflicted sil moisture using GWF
against elevation in Figure 4.28, showing thatdéheas only a slight downslope tre

in values.

AnuDEM DEM hillshade

GWR model prediction

Digital Number Volumetric soil moisture (%)
High : 249 ° 317-380
. o 381-40.0
Low: 37 O 401-420
© 421-440
0 5 0 10 Meters O 441460
N — O 461-480

Figure 4.27 Predicted soil moisture using the TWI (calculatsthg the AnuDEN
interpolated DEM) and potential solar radiationifgghe kriginginterpolated
DEM) metrics in a GWR model.
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Figure 4.28 Scatter plot of predicted soil moisture values gshe GWR model
against elevation. Trend line was fitted usingdineegression indicating a slight
downslope trend in the data.

4.2 Hyperspectral response of vegetation to artificial wetting

The methods used in this experiment were detaile&ection 3.2.2. In summary, three
plots were set out on the test embankment, oneediathe covered and one left as a
control, in an attempt to exhibit a range of sodisture contents. Systematic
measurements of soil moisture content and hypetrsppeeflectance were made over a
period of a month. Spectral analysis technique®en used to assess the potential

for using vegetation spectral reflectance datéhtracterise soil moisture content.

4.2.1 Soil moisture measurements

The vegetation reflectance experiment was carnigdweer the period@March to &

April 2009. Weather records for this period showteat rainfall gradually decreased
(Figure 4.29). This meant that the soil moisturetent of the embankment was
naturally falling, which was reflected in the charig values for the control plot (Figure
4.29). Soil moisture also gradually decreasedéncttvered plot, although no more than
the control plot. Rather than increasing soil moistn the wetted plot, artificial wetting

ensured soil moisture values remained above 40%.
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Figure 4.29 Graph showing rainfall and soil moisture contentgiet over the duration

of the experiment. Trend line is fitted to the falhdata using linear regression.

T-tests demonstrated that the soil moisture vdirethe wetted plot were
significantly different to the control and covengldts (p < 0.005). The control plot
showed some response to rainfall events, as #ligstrin Figure 4.29, with a slight
increase in soil moisture content of 5% followihg tainfall event onsMarch 2009.
The wetted plot, in comparison, demonstrated alsmakrease of 3% in response to
the same rainfall event. The covered plot registareincrease of less than 2% to the
same rainfall event but showed no increase in respto any other rainfall event. This
suggested that the cover was successful in limttiegnfluence of natural rainfall.
However, a T-test showed that there was no sigmifidifference between the soil
moisture measurements for the control and coveled (p > 0.05). Soil moisture
content in the covered plot was expected to redume than the control plot due to the
limitation of rainfall enforced by the cover. Howayit is likely that the cover limited
evapotranspiration, similar to the effects of aegiteuse, resulting in the plot retaining
its moisture. This was due to inadequate ventiat@s the cover had to be tied down
during periods of high wind speeds (Figure 4.30).
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Figure 4.30 Photograph of the covered plot with the plasticesing tied down during
periods of high wind.

4.2.2 Spectral analysis techniques

Analysis of the original spectra (before derivatbadculation) did not reveal any
obvious response to changes in soil moisture ®thihee experimental plots. This is
illustrated in the spectral profiles in Figure 4\8kich show no particular pattern in the
change of reflectance for the wetted plot over tifirfee derivative of the spectra
indicated some signs of change, particularly okentetted plot where the red-edge
feature had weakened over the duration of the @xpet, from 0.64 to 0.47 at 720 nm
(Figure 4.32). The control plot also exhibited arfpe in the derivative of the spectra at
720 nm with a decrease from 0.78 to 0.57. The @aplot, however, did not indicate
any significant difference. Each of the spectralgsis techniques showed a response to
changes in soil moisture. This is illustrated by tfend lines in Figure 4.33 which show
a gradual decrease in both soil moisture and theade stress ratio for the wetted
plot. The covered plot also demonstrated a stresganse to a change in soil moisture
content with an increase in the stress ratio fra87 dbn 18 March to 1.65 on'3 April.
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The control plot also indicated a negative, if [psnounced, relationship with soll
moisture, with an increase from 1.49 ofi'March to 1.65 on'%ApriI. These negative
relationships suggest that the vegetation in tiéroband covered plots developed over
the experimental period, indicated by an increassress ratio. In contrast, the positive
relationship found in the wetted plot suggests Wegfetation is becoming stressed in
response to waterlogging.

A fault in the spectral measurements made"Mrch resulted in a large
decrease in reflectance values for all plots, teguln erroneous values calculated by
each of the analysis techniques (demonstratedgur&i4.33 by a peak in the derivative
stress ratio). As a result, data from day thresx@uded from all further analysis.
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Figure 4.31 Spectral profiles for the wetted plot for six dalygoughout the
experimental period. Profiles are shaded chronoddlyi in order to identify any

temporal trend in reflectance values.
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Figure 4.32 First derivative of spectral reflectance for thette plot at day 1 and
day 31 (start and end of the wetting period).
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duration of the experiment for the wetted plot.
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4.2.3 Regression analysis

Table 4.3 shows the regression correlation coefiitsi for the hyperspectral analysis
technigues compared against soil moisture measutsrfa all three plots together.
The resulting regression models were also validasg#ag an independent set of
reflectance and soil moisture measurements. Afletations were significant with 99%
confidence (p < 0.000). The results demonstrafecoRelation coefficients above 0.5
for the stress ratio, Lagrangian REP, linear irdkied REP and NDVI analysis
techniques, showing that the metrics explained @& of the variation in observed
soil moisture. Upon validation, the linear intergueld REP and NDVI were shown to be
the most successful in predicting soil moistureiclvhwere also amongst the simplest to
compute. However, the correlations coefficientsortgd were all very similar. This is
supported by Pearson correlation matrix shown & 4.4 which shows a number of
the metrics to be significantly correlated (at 988ffidence), including the linear
interpolated REP and NDVI.

Stress Continuum removal Lagrangian Linear
ratio (675 nm) REP interpolated REP NDVI
R? 0.61 0.49 0.57 0.66 0.57
RZ
N 0.52 0.51 0.55 0.60 0.58
validation

Table 4.3 Regression correlation coefficients’(Ralues) for spectral analysis
techniques using field spectroscopy data compagathst soil moisture

measurements for all the plots.

Stress ratio Continuum Lagrangian REP Linear REP
removal
Continuum -0.44%
removal
Lagrangian REP 0.83** -0.29
Linear REP 0.24 -0.69** 0.15
NDVI 0.43* -0.99** 0.28 0.77**

Table 4.4 Pearson correlation matrix between the spectrdysisanetrics.
Significance at 95% confidence indicate by *, siigaince at 99.5% confidence
indicated by **,
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4.2.4 Airborne sensor simulation

The regression analysis was repeated for the sppacialysis techniques applied to
CASI simulated spectra for all three plots togeth&erestingly, improvements were
made to the regression correlation coefficientsgarly all the spectral analysis
techniques, bar the linear interpolated REP (T4t8¢ This indicates that the CASI
sensor holds sufficient spectral detail to sucelyshpply these hyperspectral analysis
techniques. This is significant as it would meamtéchniques could be scaled up to an
airborne platform allowing for their applicationenarge areas.

Overall the Lagrangian REP and derivative straie analysis were shown to
have the highest correlation coefficient with sodisture using CASI simulated
spectra. However, Pearson correlation analysis stidlese two metrics to be
significantly related (Table 4.6). Incidentally,Bla 4.6 shows that all the metrics were
significantly correlated with each other at a 998afalence interval. As a result, the
analysis carried out here cannot suggest with denfie which is the best technique to
use for characterising soil moisture.

PLS regression was also considered for predictilgmoisture using the CASI
simulated spectra. Prior to this analysis, the fated spectra underwent a {gd/R)
transformation (see Section 3.2.1). Martens’ urdety test (Martens and Martens,
2000) showed that just two simulated CASI band90atnm and 943 nm, had any
significant ability to predict observed soil moiguThese bands were placed into a PLS
regression model in order to select the optimumbemef components for the final
model. However, results for the model calibraticerevpoor with an Rof 0.48 and
subsequent (leave one out) cross validation shakaadhe model was unstable with an
R® of 0.37.
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Stress Continuum Lagrangian | Linear interpolated NDVI
ratio removal REP REP
R’ 0.66 0.6 0.68 0.64 0.57
RZ
I 0.60 0.52 0.61 0.59 0.58
validation

Table 4.5 Regression correlation coefficients’(Ralues) for spectral analysis
technigues compared against soil moisture measutsrfa the CASI simulated

spectra.
Stress ratio Continuum Lagrangian REP Linear REP
removal

Continuum -0.72
removal
Lagrangian REP 0.98 -0.80
Linear REP 1.00 -0.69 0.98
NDVI 0.78 -0.99 0.84 0.75

Table 4.6 Pearson correlation matrix between the spectrdysisanetrics applied to
the CASI simulated spectra. All correlations agngicance at a 99% confidence

interval.

PLS regression was also considered using thedistative of the CASI
simulated spectra. Martens’ uncertainty test (Met@nd Martens, 2000) indicated six
simulated CASI bands as having significant predgcpower. These bands correspond
to the wavelengths 675, 700, 728, 758, 901 anch@®4,3and are highlighted in the
example spectral plot shown in Figure 4.34. PLSaggjon analysis using these bands
suggested that an optimum six components are reegessdescribe the variation in
both the predicting simulated CASI bands and theepked soil moisture values. The
plot in Figure 4.35 shows the regression correfatioefficients behind this model
selection. It indicates that the calibrated modsh six components, produced a good
fit with an R value of 0.82. The plot also shows that this mdael the highest
validated R score of 0.72, indicating that it was the mosblstanodel in the cross
validation analysis. To further test the predictaality of this model, the PLS
regression model was compared against an indepeseleof soil moisture
observations producing arf Bf 0.72 which was significant to the 99% confidenc

level.
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Figure 4.34 Example first derivative spectral plot for simulht&ASI spectra with the
location of significant predicting bands selectsthg Martens’ uncertainty test
(Martens and Martens, 2000).
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increasing numbers of components.
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The spectral analysis techniques described irsggson were also applied to
the airborne CASI imagery (Section 3.3.2) for thare transport corridor (Figure 3.4)
and compared to the observed soil moisture valatsled in Section 3.3.1.1 and later
in Section 5.1.2. In all cases, the techniquescatdd no correlation with observed soil
moisture. This result was expected as the hetesmysvegetation canopy found in the
Haltwhistle transport corridor is much more comptexnpared to the relatively

homogenous vegetation of the test embankment.

4.3 Earthwork scale study conclusions

The soil moisture measurements used to test thigyadfithe terrain analysis
calculations to predict soil moisture conditionsiexted considerable spatial variability
and showed only a small degree of topographicrosgéion. Little downslope trend in
soil moisture values was found to be present. iifag have been the result of
collecting soil moisture measurements shortly adteginfall event, leaving little or no
time to allow soil moisture values to become sfiigt@ganised. This only became
apparent when the rainfall data was obtained. # ma possible to repeat the
experiment as construction relating to anotherysardthe embankment had begun,
which changed the topography of the earthwork #retefore, new TLS data would be
required in addition to new soil moisture measunetsa-uture studies should consider
recent weather conditions when considering theectitin of validating soil moisture
data. In addition, consideration could be givethetemporal variation in patterns of
soil moisture distribution which may include théeets of different weather regimes
and changes in topography.

Multiple linear regression using a combination ¥¥Tand potential solar
radiation produced best correlations with obses@tmoisture, although coefficients
remained poor with an%bf 0.26. GWR vastly improved estimations and réaga
spatial variability in the relationship between thgain attributes and soil moisture.
The lack of trend in the residuals of this modedsarts the suggestion that the observed
soil moisture measurements were lacking in spatgdnisation.

The response of vegetation spectral reflectancedoges in soil moisture were
much more encouraging. Reasonable predictionsilofingisture could be made using a
range of spectral analysis techniques, includitatixely simple calculations that could
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be made using reflectance values from broad bamsbsg namely NDVI and linear
interpolated REP. Some of these techniques alseeshpotential for being scaled up to
imagery acquired by the CASI airborne sensor. hiqdar the Lagrangian REP and
the derivative stress ratio calculated using CARLusated spectra performed well when
compared to observed soil moisture measuremertts Rivalues of 0.68 and 0.66
respectively.

PLS regression was used to build a model incorpayaix of the CASI
simulated spectral bands. AR Borrelation coefficient of 0.72 was found when
comparing predicted soil moisture using the PLSegated model with observed soill

moisture measurements not used to train the model.

4.4 Summary

The soil moisture measurements gathered in akxiperiments reported in this chapter
indicated a great deal of spatial and temporabtan, sometimes exhibiting little
spatial organisation. This supports claims by ogtedies that soil moisture is a
difficult component to quantify (Famiglietti et aL999; Famiglietti et al., 1998). As a
result, many of the techniques used in this stusetproduced relatively poor
correlations with observed soil moisture. Despiis, tthe results detailed in this chapter
give an indication of which techniques work besthiea context of transport corridor
environments.

Differences in the DEM interpolation and subsequaft calculation showed
that the AnuDEM interpolation routine is necesdargroduce a reasonable depiction
of soil moisture distribution at both the earthwarld transport corridor scales.
Furthermore, the relationship between soil moisauna the TWI was shown to be non
linear. Therefore, expressing the TWI as the natagarithm improves the
correlations. At an earthwork scale, a number etspl analysis techniques were
shown to have the ability to represent changesilmetness. Tests using reflectance
from a simulated airborne sensor also indicategttential for these analysis
techniques to be scaled up. However, these techsiyere only tested over
homogenous vegetation cover, so there is unceytaudr their performance in

heterogeneous environments, such as a transpadaror
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5 Transport corridor scale study results

This chapter details the transport corridor scaldysresults following the application

of the methods described in Section 3.3. Simildh&oresults chapter for the earthwork
scale study (Chapter 4) this is broken down acaogrtb the type of data being
investigated. Section 5.1 covers the terrain amalysrk applied to airborne lidar data
and Section 5.2 details the analysis of airboreetsal reflectance data for mapping
Ellenberg indicator values. At the start of eaclthefse sections a very brief overview of
the relative methods are given in order to brirgrésults into context. The results of
integrating the terrain analysis and vegetatiorcspkereflectance metrics are reported

in Section 5.3.

5.1 Terrain analysis

A detailed description of the methods used in teraaalysis work at a transport
corridor scale can be found in Section 3.3.1. lefpterrain analysis calculations were
applied to DEMs generated from airborne lidar peietvation data using IDW and
AnuDEM interpolation techniques. These terrain gsialmetrics were then compared
to a series of observed soil moisture datasetshwere collected under different
overall soil moisture conditions or using differespiatial sampling strategies. The

following details the results of this work.

5.1.1 DEM interpolation

Hillshade analysis of the two interpolated DEMswé&d that the IDW DEM held more
fine scale topographic detail (Figure 5.1) compdeetthe smoother AnuDEM DEM
(Figure 5.2). Examination of the elevation profitaken from each DEM over an
example cutting earthwork supported this claim (Fég5.3). Specifically, the IDW

profile showed a response to a feature about 1®m point 1 (profile line marked in
Figure 5.2) where the surface flattened out sliglttbmpared to the smoother surface of
the AnuDEM DEM. This translated itself into the T\&4 the index responded to the
feature in the IDW DEM, by resetting the calculatimf upslope contributing area. The
result was a peak in TWI values half way down tbees, at approximately 15 m from

point 1 (Figure 5.4), representing an increaseWi Value of 0.33 over a distance of
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2.5 m. This would correspond to a low soil moistuaue half way down the slope,
where in reality it is more likely to increase fuet downslope. The AnuDEM TWI also
showed a response to this topographic featurenbihis case it was much less
pronounced with an increase of just 0.02 over #mesdistance. This is because the
AnuDEM interpolation has smoothed out the topogi@fgature enabling upslope

contributing area to continue to increase downslope

Fine scale topography not
found on the AnuDEM
interpolated DEM

IDW DEM
Hillshade N

Digital Number
High : 226

20 10 O

Low: 16 20 Meters

AnuDEM DEM
Hillshade

Digital Number
High : 220

20 10 O 20 Meters

Low : 19

Figure 5.2 Hillshade of the AnuDEM interpolated DEM for a ¢ag at Whitchester
with line identifying the location of the elevati@nofiles in Figures 5.3 and 5.4.
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Figure 5.3 Transect of elevation values across the Whitchesii#ing for the IDW
and AnuDEM interpolated DEMs. Location of transkis shown in Figure 5.2.
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Figure 5.4 Transect of TWI values across the Whitchestermgitalculated for the
IDW and AnuDEM interpolated DEMs. Location of traas 1 is shown in Figure

5.2.
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5.1.2 Soil moisture measurements

Figures 5.5 - 5.7 show maps of the three soil mmstneasurement campaigns.
Visual analysis showed a small degree of topograpitjanisation on*7July 2009
(Figure 5.5), with little discernable pattern bedénehe north and south facing slopes.
One pattern that did emerge was an increase isdihenoisture content of surrounding
pasture fields and also towards the toe of théveantk slopes. However, this was not
consistent across the whole sample area. Convetkelyneasurements taken on

18" June and 30July 2009 (Figures 5.6 and 5.7 respectively) destrated high soil
moisture content in the surrounding fields, aneaegal increase downslope with
moisture concentrating towards the toe of the ganhk slopes. Additionally, the soil
moisture readings for the north facing slopes vgergerally higher than the south

facing slopes.

| Railway  Soil moisture %

[ | Fietds e 27-100

Natural @ 10.1-15.0

B o @ 151-150
|:| SouthTyne . 15.1-20.0
B suiding @ 20.1-30.0

. 30.1-35.0

Pe

|y s

60 Meters \\

Figure 5.5 Distribution of soil moisture measurement pointspthyed as graduated
symbols for ¥ July 2009. Most of the measurements were takemimat cutting
earthwork meaning the downslope direction is towadh@ middle of the railway

feature.
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Figure 5.6 Distribution of soil moisture measurement points¥8" June 2009.
Smaller maps show soil moisture values displayegt@asuated symbols for two
selected areas. The soil moisture values for tredlesmmap towards the left were

taken in a cutting, therefore, downslope direct®towards the middle of the

railway feature.
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Figure 5.7 Distribution of soil moisture measurement pointspthyed as graduated
symbols for 38 July 2009. All measurements were taken within téiry earthwork

meaning the downslope direction is towards the tridfithe railway feature.

Table 5.1 shows the descriptive statistics fortkinee soil moisture datasets. The
average soil moisture content for the measurenreat® on 7 July 2009 was 14.2%.
This was relatively low compared to the measuremeretde on 18June 2009 and 30
July 2009 with averages of 22.8% and 35% respdygtiVée standard error, standard
deviation, and range of the datasets increasedaniincrease in average soil moisture.
This shows that there was greater variation imtleasurements made during wetter

conditions.
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7th July 2009 | 18th June 2009 | 30th July 2009

Mean 14.2 22.8 34.9

Standard Error 0.6 0.9 1.3

Standard Deviation 6.3 9.1 9.6

Range 31.0 41.0 45.3

Minimum 2.7 8.2 14.3

Maximum 33.7 49.3 59.6

Count 128 96 57
Table 5.1 Descriptive statistics for the three soil moistdeg¢asets gathered over the

Haltwhistle transport corridor. Values are exprdsse % volumetric soil moisture
content.
7th July 2009 18th June 2009 30th July 2009

Average 14.2 22.8 34.9
North facing slopes 15.2 25.9 39.8
South facing slopes 12.9 19.8 30.5

Table 5.2 Average soil moisture values (% volumetric) on ileeth and south facing

slopes for the three soil moisture datasets.

The increased variation in soil moisture contemtegdenced in wetter conditions
is spatially organised. This is illustrated by fuatter plot shown in Figure 5.8 which
shows the relationship between soil moisture aadation. Specifically, the trend lines,
fitted using linear regression, show increasing®ep gradients with an increase in
average soil moisture conditions. This shows thiaihd wetter conditions, the
relationship between soil moisture and elevatios steonger with a gradient of -1.02
compared to -0.08 during dry conditions. In additiall three datasets showed a
variation in soil moisture content between nortt aauth facing slopes (Table 5.2).
This variation increased during higher averagersoilsture conditions. For example,
on 30" July when the average soil moisture content wa@¥%84he difference between
the average values for the north and south fadomes was 10%. This is in contrast to
the measurements made dhJuly when the average soil moisture content wag%4

the difference was just 2.3%.
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Figure 5.8 Scatter plot of soil moisture measurements agaiesation for ¥ July

2009 with average soil moisture content, trend éind the gradient of the trend line.

5.1.3 Terrain analysis regression results

Figure 5.8 shows that the soil moisture measuresreitected on 30July 2009
increased downslope. Therefore, it was expectadhkarWi calculations would
provide a reasonable predictor of this pattern. e\mv, poor correlations were found
between soil moisture and the TWI calculated usinegIDW interpolated DEM, with
an R of 0.19. The AnuDEM TWI gave a poor, but improvBd correlation coefficient
of 0.23. The best correlations were found with pbé solar radiation calculated using
the IDW DEM, with an Rvalue of 0.27. Stepwise regression using bottAtheDEM
TWI and potential solar radiation achieved gvRlue of 0.5. All correlations were
significant at a 99% confidence level.

Previous studies comparing the wetness index torgmsture measurements
have assumed linearity (Tenenbaum et al., 2006ly&rs of the soil moisture
measurements revealed that in some cases, mdistuled to concentrate towards the
toe of the slope rather than increase steadily dtype. This is illustrated by the
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profiles in Figure 5.9 which show soil moisture me@ments from the $Quly 2009
dataset. Here, soil moisture does not increaséfisigmtly until an elevation of 110 m,

which occurs approximately two thirds of the waywislope.
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Figure 5.9 Plot showing soil moisture values (from thé"3uly 2009 dataset) for
three profiles running down an earthwork slopesdoh case, soil moisture does not
increase significantly until an elevation of apgroately 110 m.

On the basis of the trends exhibited by the prefilleown in Figure 5.9 a
number of non linear fitting methods were considdacehelp improve correlations
between TWI and soil moisture. Cubic and quadf#@sdo the TWI values worked
best, achieving Rvalues of 0.38 and 0.31 respectively. Howeversetsplutions
introduced additional model parameters which coettlice their effectiveness in an
eventual model to predict soil moisture. This isdhese whereas the parameters may
suit the data used to form the model, they arelikesly to be suited to a set of
independent observations. As a result, the TWIexgsessed as a natural logarithm
which introduces just one additional parameter Wiinerefore has a greater chance at
being suited to an independent dataset. This ingatolve R correlation coefficient to
0.33. Subsequent stepwise multiple regressioneoh#tural logarithm of TWI and

potential solar radiation further improved the tielaship with observed soil moisture,
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with an R of 0.65 being achieved which was which was sigaift at the 99%
confidence level.

GWR further improved correlations with observed smisture using the
natural logarithm of TWI and potential solar radiatwith an R of 0.76 being
achieved. This suggests that a GWR model bett@rides the variation in observed
soil moisture than the global linear regression ehadowever, the Monte Carlo test for
significance showed that potential solar radiati@s the only parameter that had a
significant spatially variable relationship (witB% confidence) with soil moisture.

Analysis of the GWR model residuals showed thaintloelel tended to over
predict where observed soil moisture was high,araer predict where soil moisture
was low. This is illustrated in Figure 5.10 whidiosvs the relationship between
observed soil moisture and the GWR model residdi@s.model residuals revealed
some under predictions towards the shoulders otdingnwork slopes. The residuals for
the OLS regression between soil moisture and thealdogarithm of the TWI were
polarised by the north and south facing slopes.ekample, in one area the average
residual for the south facing slope was 4.6 congptre4.2 on the north facing slope,
with an average residual of -0.8. This highlightieel importance of including the

calculation of potential solar radiation in modedjisoil moisture using terrain analysis.
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Figure 5.10 Scatter plot showing the relationship between ofesbsoil moisture and
the predictions made using GWR.
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5.2 Vegetation reflectance analysis

The methods relating to this section are describb&gction 3.3.2. In summary,
vegetation species abundance was sampled in arderive weighted Ellenberg
indicator values across the transport corridor. Rigsession was then used to link the
observed Ellenberg values with the airborne CASltispectral data in order to map the
indicator values across the study area. These thenecompared to observed soil

moisture measurements.

5.2.1 Observed Ellenberg indicator values

In total, 45 different species types were founthatsample point locations (see
Appendix 6 for a list of these species). In comgaami a total of 36 species were found
in the modified-Whittaker plot sampling used toidefadequate sample size (see
Section 3.3.2.1.1 for more details and Appendigrsaflist of these species). This meant
that the plots used to observe Ellenberg values wmre species rich than the
modified-Whittaker plot. Ideally, the modified-Wtaker plot sampling should be a
perfect representation of the diversity of theltstady site. However, this was difficult
to predict as the number of species is not alwaysoos, particularly when considering
indistinct grasses and small wildflowers. If thediiied-Whittaker plot did accurately
represent the diversity of the total plot, it iselly that the subsequent species-area curve
(Figure 3.21) would suggest that a larger arealdhmeisampled.

At each sampling point, abundance was recordéur&® plots to give a measure
of variation. The average standard deviation fehesampling point was 0.47
(Ellenberg moisture value). Table 5.3 shows sumratatystics for the weighted
average Ellenberg values. The average value w8s/bth a positive skew towards
higher values, which is illustrated in the histogra Figure 5.11 showing the
distribution of the values. This was due to an aamte of Himalayan Balsam
(Impatiens glanduliferpat two sample locations. This species has a Bllgimberg
value of eight, as it prefers wetter soils, bubdaends to dominate local vegetation
(Wadsworth et al., 2000). The range of values @®biacross the embankment was
2.45, which is much smaller than the values repdoieSchmidtlein (2005) who
showed a range of 4.3 to 9.5. The latter rangefawasd as the study site included areas

of raised bog and wet fens which skewed the digiioh of values away from a mean
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of 6.0. Overall, higher values were expected téobed in the case of Schmidtlein
(2005), as the study site was located over uplastupes with high average annual

rainfall rates (2000 mm per year).

Weighted average Ellenberg
indicator values

Mean 5.63

Range 2.45

Minimum 4.82

Maximum 7.27

Count 32

Table 5.3 Summary statistics for the weighted average Ellembelicator values.

Frequency

4.75 5 525 55 575 6 6.25 6.5 6.75 7  More

Weighted average Ellenberg value

Figure 5.11 Histogram of weighted average Ellenberg indicatdues.

5.2.2 Mapping Ellenberg values

The logo(1/R) transformed CASI spectral bands (see Se&i8r2 for details on this
transformation) were linked to the observed Ellegbeoisture values using PLS. The
Martens’ uncertainty test (Martens and Martens 0200 the Unscrambler® software
(Section 3.2.2.5) indicated that there were noiggmt bands, and therefore any

subsequent PLS model built using these predictorddhbe unstable. For example,
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small changes in the data, i.e. one sample befhgueat a time, leads to different
bands becoming important, therefore increasing#n@nce in the model coefficients
and instability of the model. This was likely to thee to the heterogeneity of the
predicting variables, leading to colinearity.

The results of the Martens’ uncertainty test sutggethat the CASI bands could
not be used to build a reliable PLS model to ptelilenberg values. However, Nees et
al. (2002) explained that the selection of sigaifitpredicting variables could also be
made using a stepwise regression routine. Forwamvise regression, based on
entering significant variables at a 95% confidelese! (p < 0.05), was run in MatLab.
This routine has the advantage of allowing the tséefine a number of different
variable combinations. In this way, the user caeractively view changes to the
stepwise regression results as different prediciorthis case CASI bands, are removed
and included, showing the change in significancthefinput predicting bands. This
analysis identified eight significant bands thatethe range of the CASI sensor, with
six of the bands clustering around the red and inéf@red reflectance and absorbance
features (Figure 5.12). Using these significantmteng bands, a strong correlation
coefficient can be found using ordinary least sgsaegression with observed
Ellenberg soil moisture values{®f 0.86). However, a large degree of colinearity
existed between the eight predicting variablesh witly bands 29 and 30 shown to have
a significant difference with other predicting bar(@5% confidence interval). As a
result, this model would be prone to instabilitydaherefore, a PLS regression routine
was employed.

To add statistical rigour to the stepwise regresbiand selection process, the
predicting bands were all tested for significansm@ Martens’ uncertainty test. The
results indicated that each of the eight selecte@bles were significant predictors of
observed Ellenberg moisture indicator values. Was because, unlike the model using
all 32 bands, the model using just eight predictass more reliable, a result of there
being less autocorrelation. PLS regression usiagight significant predicting
variables identified seven components as beingpiienum number to describe the
maximum variation in the data without becoming owéed. This was illustrated by a
correlation coefficient for the cross validation@64, and the highest correlation
coefficient for the original fitted model ¢Rf 0.85).
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Figure 5.12 Graph showing example spectra (transformed by d(dbR)) with location

of significant bands chosen using forward stepweggession.

It would have been preferable to compare the resilthis model to additional
Ellenberg values, rather than validating the madatg cross validation. However, this
would have required additional vegetation abundalata. This was not possible as
validating soil moisture data has to be sampletiiwia day, ideally within the space of
just a few hours, due to the temporally variableireaof this parameter (Famiglietti et
al., 1998). This therefore restricted the numbesitals where vegetation species
abundance could be sampled.

As discussed in Section 3.3.2.1, Ellenberg moistatees were not mapped for
areas with tree canopies due to the complexitiesobpy bidirectional reflectance
(Wolf et al., 2010), as well as issues with gatingthe observed Ellenberg values. In
addition, it was decided that mapped values shbelestricted to the range of
observed values used to build the PLS model, atighi@ns outside this range are likely
to be unreliable. As a result, the map of modelgdes in Figure 5.13 indicated large
areas of no data values, mainly representing woodia manmade features, and

speckles of no data values depicting values prediictitside the observed range.
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The resulting map of predicted Ellenberg moistuakies (Figure 5.13)
potentially reveals a great deal more informatieith regard to soil moisture, than the
terrain analysis calculations discussed in Sed&i@nIin comparison to the uniform
distribution of the terrain analysis results, thapmped Ellenberg values indicated
variability across the earthworks. Figure 5.13sitates this with higher values
predicted towards the west of the cutting earthwdHhese scores represented an
abundance of Stinging Nettledrtica dioica) and BramblesRubus fruticosysthat
have a relatively high Ellenberg moisture valuesif In contrast, relatively low values
were predicted for the east of the earthwork. Temesented a mixture of grasses and
wildflowers, including Heath Bedstraws@lium sternen and Common Ragwort
(Senecio jacobagathat have lower Ellenberg moisture values of fdwi addition,
some areas showed an increase in Ellenberg vatwes tthe slope of the earthwork
cutting. For example, transect 3 shows values @sing from 5.2 at the shoulder of the
slope to 6.1 at the toe (Figure 5.14).

‘:ﬁ; oy o e

Modelled Ellenberg values N

Ellenberg moisture value

o A

48

50 25 0 50 Meters

N\

Figure 5.13 Mapped Ellenberg moisture values for a cuttingheeotk. Mapped values

are restricted to mask out tree canopies and mamswataces, which are
represented by the clear (white) areas. Transesfess to the location of the profile

drawn in Figure 5.14.
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Figure 5.14 Profile of mapped Ellenberg values for transeairihing down the slope

of the cutting earthwork. The location of the tractss found in Figure 5.13.

The mapped Ellenberg moisture values were compganhst soil moisture
measurements gathered coincidentally with the speatdbundance data. This data was
collected on 18 August 2009 during relatively dry conditions reswg in an average
soil moisture content of 14.5%. Previous work iis @hapter (Section 5.1.2) showed
greater spatial organisation of soil moisture dyhigher overall wetness conditions.
Therefore, the measurements made dhABgust were not expected to exhibit a high
degree of spatial organisation. This was demomstiay comparing the measurements
against relative elevation values (Figure 5.15)1@ll there is a trend of increased soil
moisture with a reduction in elevation, howeveg tlata depicts a wide spread from the
trend line, in some cases exceeding 20% (volumsdilanoisture). In addition, there
was little difference between north and south fa@iopes with average soil moisture
contents of 14.7% and 14.2% respectively whichltedun a T-test result of no

significant difference between the two sample mépnalue > 0.05).
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Figure 5.15 Scatter plot showing the relationship betweenmmailsture and elevation
for the measurements made off' Zigust 2009. Trend line fitted using linear

regression.

The resulting Rcorrelation coefficient between the Ellenberg ealand
observed soil moisture was 0.4 (significant at3B® confidence level). Despite not
being a strong correlation it does represent a ethikprovement on the results found
in the terrain analysis work (Section 5.1.3), floaind individual correlations up to an
R? of just 0.33. In addition, this correlation waglér than expected in light of the poor
spatial organisation of this soil moisture datasegéxplained above. Despite this, the
results obtained here cannot be used to relialggest that soil moisture can be

characterised by mapping Ellenberg indicator vahalese.

5.3 Integrated model

The results of comparing both the terrain analyssrics (Section 5.1.3) and the
mapped Ellenberg indicator values (Section 5.zh@yed that no single metric could
provide a reliable estimation of soil moisture.agesult, an integrated model was
developed which could exploit information regardiongographic control on soil
moisture and the information provided by speciasmdbance. The terrain analysis
metrics used in this model were determined by thlogegave the best correspondence

with observed soil moisture, namely, potential sadaiation calculated using the
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kriging DEM and the natural logarithm of the TWlaaated using the AnuDEM
DEM.

The terrain analysis metrics were integrated withrhapped Ellenberg values
using OLS multiple regression, using observedrsoiisture measurements from™30
July 2009. This resulted in arf Borrelation coefficient of 0.67. This model wasdigo
map soil moisture across the Haltwhistle transportidor, with an example shown in
Figure 5.16. Predicted soil moisture from the ri@sglmap was validated against
additional soil moisture measurements, gatheret88rlune 2009, giving an’Rf
0.48. The model was further validated using cr@slation. This procedure
demonstrated a RMSE (root mean square error) imvelric soil moisture of 5.5% for
the original model calibration and 5.9% for thess@alidation, suggesting that the

original model error does not change significamthen applied to new observations.
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Figure 5.16 Modelled soil moisture using OLS multiple regressmodel integrating
the natural logarithm of the TWI, potential soladiation, and mapped Ellenberg

moisture indicator values, for a cutting earthwork.
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5.4 Transport corridor scale study conclusions

The observed soil moisture measurements colleatedtbe transport corridor
demonstrated two main patterns. The first was arease in wetness downslope. The
second was an increase in wetness on north faltiipgs These trends were shown to
be stronger with higher average soil moisture quste

Comparisons made between the remotely sensedmatrd observed soil
moisture showed that no single metric could be twsatharacterise soil moisture. This
was illustrated by generally poor correlation cimééhts (less than #of 0.5) . Despite
being poor, they were improvements on the cormtatfound in the earthwork scale
experiments (reported in Section 4.1.8). This wasiy due to the increase in spatial
organisation of the observed soil moisture data iselraw comparisons. In addition,
the transport corridor provided more variance mai@ compared to the relatively
uniform relief of the test embankment used in thehavork scale study. Observed soill
moisture was shown to increase in a non-lineandastiownslope, with moisture
tending to gather at the toe of earthwork slopesaAesult, the correlation between
TWI and observed soil moisture was found to impraten the index was expressed as
the natural logarithm.

The vegetation reflectance analysis work showat Etlenberg indicator values
can be successfully mapped over a UK transportdmtrwith a cross validation’R
correlation coefficient of 0.64. Comparisons withserved soil moisture measurements
showed this metric to be a better individual prestiof soil moisture than the terrain
analysis metrics, with an’Rf 0.40. An integrated model, using mapped Ellegbe
values, TWI calculated using the AnuDEM and potdrgolar radiation calculated
using IDW DEM, was shown to provide the best estintd soil moisture, with anFof
0.67. The resulting map of predicted soil moisuistribution showed influence from
both terrain analysis calculations, including adpreed increase in wetness on the north
facing slope, increase in wetness downslope aadeas of contribution from
neighbouring fields, as well as more subtle infeesnof the Ellenberg mapping, with an
increase in wetness over water loving speciesdetbn of this model using cross
validation showed a reasonable RMSE of 5.89 volumsbil moisture (%). Validation
using additional soil moisture measurements prodiaceR of 0.48.
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5.5 Summary

The soil moisture measurements gathered overdhneport corridor indicated a great
deal of spatial and temporal variation, sometiméslgting little spatial organisation.
This supports claims by other studies that soilstuoe is a difficult component to
guantify (Famiglietti et al., 1999; Famiglietti @&t, 1998). As a result, many of the
technigues used in this study have produced relgtpoor correlations with observed
soil moisture. Despite this, the results detaitethis chapter give an indication of
which techniques work best in the context of tramsporridor environments.

Differences in the DEM interpolation and subsequamt calculation showed
that the AnuDEM interpolation routine is necesdargroduce a reasonable depiction
of soil moisture distribution at the transport edor scale. Furthermore, the relationship
between soil moisture and the TWI was shown todrelmear. Therefore, expressing
the TWI as the natural logarithm improves the datrens.

The results for both the terrain analysis and nrappf Ellenberg values
showed no single metric to be a strong predictambserved soil moisture, although
mapped Ellenberg moisture values were shown to tieevstrongest correlation. In
order to achieve a reasonable characterisatioailof®isture distribution, the metrics
had to be integrated. Best results were found wsimyltiple regression model with the
natural logarithm of the TWI (using the AnuDEM DEMbptential solar radiation
(using the IDW DEM), and mapped Ellenberg valuethagredictors, with anFof
0.67. However, a reasonable prediction can be msig just the terrain analysis, with
an R of 0.65,which is limited to just one source of maly sensed data.

The results reported in this chapter have a numbienplications both in terms
of scientific development of the techniques theneglas well as what the results
might mean for transport corridor earthwork stajillhese issues are discussed in
Chapter 6.
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6 Analysis and discussion

This chapter provides an analysis and discussidneofesults presented in Chapters 4
and 5. This is divided into two main sections lieato the work carried out at the
earthwork and transport corridor scales respegtiveth a summary section discussing
the implications of the results found in this stadya whole.

6.1 Earthwork scale study

The results from this body of work, carried out iothe test embankment, is analysed
and discussed in the subsections below. Thesedidrse(Sections 6.1.1 and 6.1.2
respectively) relate to the two distinct experinserdrried out at this scale, terrain

analysis and hyperspectral analysis of vegetation.

6.1.1 Terrain analysis experiment

The terrain analysis calculations applied to DEMsiipolated from TLS data revealed
a number of important findings that could be useddvelop an optimal strategy for
implementing the terrain analysis calculationg@amsport corridor environments. These

findings are discussed below.

6.1.1.1 Impact of DEM interpolation

The main topographic features present on the resaekment were membranes
dividing each panel section and embedded instrusnesed to take geotechnical
measurements. A DEM interpolated from the TLS pdata using kriging was better at
representing these features than the AnuDEM intatgd DEM. The kriging
interpolation technique also revealed a greateradegf variation as a response to small
scale changes in terrain (Section 4.1.1). Thisduesto the smoothing effect that is
enforced by the AnuDEM interpolation technique.aAsesult, kriging interpolation is
more useful for depicting fine scale terrain.

Although the fine scale detail identified in thegkng DEM makes it an ideal
candidate for general monitoring of earthwork ass®bnitoring deformation for
example (Miller et al., 2008), it makes it lessfusér characterising soil moisture

using terrain analysis. Specifically, TWI valueswsfed little downslope trend, with
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seemingly erratic responses to fine scale topogedphatures using the kriging DEM. In
contrast, TWI values calculated using the AnuDERkéiipolated DEM was smoother

and showed values decreasing gradually downslolpiehwepresents a gradual increase
in soil moisture. This is much closer to what ipested in reality implying that the
AnuDEM interpolation is better suited for the caation of TWI. This was an

important finding as some studies, such as SchamdtPersson (2003), used a kriging
interpolated DEM for the calculation of TWI. Howeyéhese findings were made using
terrestrial laser scanning data at a fine scaleréfbre, TWI calculation may not be as
sensitive to DEM interpolation using broader sd2eéMs that do not represent fine
scale topographic features.

The calculation of potential solar radiation wéahown to be sensitive to
DEM interpolation (Section 4.1.3). Although botle tkriging and AnuDEM
interpolated DEMs demonstrated a response in patesaiar radiation values around
the panel membrane features and embedded instrsintieistresponse was more
prominent using the kriging DEM. Again, this wasdo the AnuDEM method
suppressing fine scale topographic features, ctisigitheir impact on the calculation of
potential solar radiation. Therefore, a DEM creatsithg kriging interpolation is better
suited to representing the effects of terrain oepital solar radiation and subsequent
control on soil moisture distribution. There hawt been any reported attempts to
compare the impact of DEM interpolation on the gktion of potential solar radiation
proposed by Fu and Rich (1999). Although the défifiees found here have shown to be
relatively small compared to other terrain analgsikulations (TWI1), this study
demonstrates the importance of considering whicMDierpolation method to use,
which is rarely discussed in the literature.

The calculation of potential solar radiation mager an entire year showed
greater variation in response to topographic festeompared to the calculation made
for a specific day, which showed variation only@sponse to the north and south
facing slope aspects. It is expected that fineestmgdographic features would have an
influence on soil moisture distribution, followirstudies such as Rajkai and Rydén
(1992) that showed features such as track marlkis,sivhilar spatial dimensions to the
panel membranes found at the test embankment,ieechéo strong influence on the

distribution of soil moisture. Based on this asstiorp potential solar radiation
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calculated for an entire year may provide a beftaracterisation of the variation in soil
moisture. Resulting correlation coefficients wavarfd to be higher for the annual
calculation (0.16) than the specific day calculaif0.15). However, this difference is
not significant and any conclusions based on thesdts cannot be stated with much
confidence.

This work has shown that the individual terraimlgais calculations are better
suited to DEMs created using specific interpolatechniques. However, it is not
common practice to apply multiple interpolationtinas to the same data due to issues
concerning processing time, data storage, or sitigltyoperators have trust in the
interpolation method being adopted. This study shthat users need to consider which
interpolation routine best suits their needs. # baen shown that whereas kriging
provides a better depiction of terrain and subsegpetential solar radiation
calculation, AnuDEM interpolation should be usedewltalculating TWI. In terms of
expected soil moisture distribution patterns, gmmmendation is that two different
interpolation methods may be necessary to make@nate characterisation using the
two different terrain analysis calculations. Th&ermpolation technique was shown to
affect the calculation of TWI greater than potdrd@ar radiation. Therefore, if one
interpolation technique is to be chosen to reduoegssing and storage demands then
the AnuDEM routine should be used.

Kriging was applied in this study using a seawtius of 12 points, to ensure
small scale variation are taken into account withmcoming too computationally
intensive (Section 3.2.1). Increasing this seaacthus would suppress the impact of
finer scale topographic features, similar to theiBEM method. However, the latter
routine also has the advantage of ensuring calonkabf flow accumulation increase
downslope and is therefore a more accurate regeg®emof reality (Hutchinson,

2008).

6.1.1.2 Impact of earthwork orientation on potential solar radiation calculation

Once the earthwork was rotated to produce a norslotith orientation, the calculation
of potential solar radiation demonstrated a greasponse to small scale terrain
features than the original earthwork orientatioacfton 4.1.5). This showed that

variation in solar radiation calculated for a nadtsouth orientated earthwork was
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controlled by the presence of topographic featarethe slopes rather than a difference
in slope aspect, as seen with the original westsi orientated earthworks. This was
illustrated by a variation in estimated potent@hs radiation over the panel membrane
features representing 85% of the total range inegfor the north to south orientated
earthwork. In comparison, the maximum variationrdhe same feature as a proportion
to the total range represented just 44% for thgirall west to east orientated earthwork.

This test was only carried out on a hypothetieai®in a GIS environment and
should be tested using a real north to south @iedtearthwork using soil moisture
observations. This was not considered when chodbmgtudy site because the test
embankment used in this study is the only onesdfiitd in the UK, leaving no
alternative. A real world earthwork could have basad but the test embankment had
the advantage of unlimited access, improved safstyyell as availability of

complementary measurements, such as weather data.

6.1.1.3 Impact of DEM resolution on the terrain analysis calculations

The terrain calculations discussed in this sedti@ve all referred to fine scale
topographic features, such as the panel membrawesmbedded instruments.
However, when the DEMs were degraded to a griduéea of 2 m, this information
was lost. Despite this, the overall terrain analysitterns that were exhibited in the
finer resolution work was retained. For instancé/lValues were shown to decrease
downslope, potential solar radiation and aspecewefarised by the north and south
facing slopes. Therefore, if a DEM was generatecifoentire transport corridor at this
resolution, only broad scale patterns of the inflieeof terrain on soil moisture
distribution could be represented. Features smidéar this scale would have little or
no influence on resulting terrain analysis caldata. This could be significant, as
earthwork assets, such as drainage ditches, hawndb have a strong influence on
soil moisture content (Perry et al., 2003b). Desphie loss of detail, this coarser
resolution has the advantage of requiring less coenstorage and processing time to
calculate the terrain analysis techniques and fbierédas the potential to be applied to a
much greater area.

A compromise between the fine scale detail deg@ictehe original resolution
DEM and the 2 m DEM could be found when the grgbhetion was degraded to 1 m.
Here, some influence from the small scale topogcajglatures was retained which is
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illustrated by the hillshade analysis in Figured4(3ection 4.1.6) but due to the coarser
resolution, was relatively quick to compute complaethe original scale DEM. This
could be significant when considering the praciiies of processing data for an entire

transport corridor.

6.1.1.4 Comparison between observed soil moisture measurements and terrain

analysis calculations
The soil moisture measurements, gathered to tegirgdictability of the terrain
analysis calculations, were taken o' 28Bvember 2008. This time of year was chosen
as it tends to be wetter than average, and pregimases have shown a higher degree
of topographic organisation of soil moisture dunmetter conditions (Tenenbaum et al.,
2006; Western et al., 1999a). Weather data fotasieembankment confirmed that the
month of November was wetter than average, refleict¢he relatively high mean
volumetric soil moisture content of 41.1% (relatteeprevious soil moisture contents of
27.0% in February and April). It should be noteowbkver, that laser scanning data
cannot be easily collected during times of preatwn. Therefore, operational
difficulties may be encountered when attemptinglitain airborne lidar data during
wetter periods when there is a greater chancepod@pitation event. Despite this, it
can be assumed that terrain would not change gigntfy, except in the case of an
extreme event such as a landslide, and thereferkdidwr data can be collected on the
nearest rain free date.

Generally, the distribution of soil moisture valdeBowed expected patterns
with higher values on the north facing slope anéharease in moisture downslope.
However, these patterns were not as strong as dodeor example, soil moisture
measurements made down the profile of the earthwalikated a degree of variation
which did not always follow the general downslomnt. Similarly, there was only a
small amount of difference between average soiktnoe content of the north and south
facing slopes with average soil moisture contehé386 and 38.9% respectively. As a
result, poor correlations were found between olesksoil moisture and the TWI and
potential solar radiation metrics, with correlatimoefficients less than 0.2. The reason
for the lack of topographic organisation, and riasglcorrelation with observed soil

moisture, was due to heavy rainfall event occurjusg prior to the measurements. This
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left little time for the downslope movement of watehich has been shown to be a
lengthy process (Wilson and Gallant, 2000).

The lack of observed topographic organisation dfreoisture was confirmed
by poor regression correlation coefficients forth# terrain analysis metrics
(correlation coefficients less than 0.2). The T\d&culated using both the interpolated
DEMs illustrated little or no explanation of thesttibution of observed soil moisture
(R? less than 0.1). This was also the case for thesTa¥pressed by the natural
logarithm, carried out following the findings maidethe transport corridor scale study,
which revealed a non linear relationship between @kd soil moisture.

Although results were poor, the calculation of ptitd solar radiation for an
entire year was shown to have better correspondeiticesoil moisture (Rof 0.16)
compared to the calculation made for a specific(@yf 0.15 respectively). This was
not expected as it was assumed that the potental adiation calculated for a specific
day would provide a better characterisation ofrs@diation at the time of year in
which the validating soil moisture measurementseviaken. The fact that a non-
specific calculation of solar radiation for an emtyear provides a better representation
of the distribution of soil moisture means that tlaéculation does not need to be
repeated for different times of the year. This @ages the practicality of using this
metric in an operational context. However, a fathporal study would need to be
carried out to confirm this, comparing the calcalatto soil moisture values observed
throughout the year, under different wetness canast This was beyond the scope of
the present study as the primary focus is on sgaithe characterisation of soil
moisture to a transport corridor rather than fomgsen variations at a small earthwork
scale.

Integrating the TWI and potential solar radiati@ing stepwise multiple linear
regression improved the correlation with soil maistto an Rof 0.26. Despite making
a marked improvement on the correlation coeffigdat the individual metrics, this
correlation is poor. GWR helped to further imprake correlation, producing arf Bf
0.56. This shows that locally fitted regression Wwatter suited to the data compared to
global regression. A map of soil moisture valugsdicted using this model showed
that the only discernable pattern was an increaseil moisture on the north facing

slope, with little or no trend running downslopéigreinforced the earlier notion that
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the poor correlations found in this study were ttupoor organisation of the soll
moisture. Again, this would need to be supportedibye soil moisture measurements
gathered at different times of the year to testtiwiethe poor correlations found were
due to poor spatial organisation or due to theiggetrot fully representing the
distribution of soil moisture over the test embasekin In addition, although the GWR
model may provide an improved correlation with sodisture, questions are raised
over the model’s transferability outside the stadga. This is because the regression
parameters are tailored to localised clusters hfegaand may be unstable when applied

to other areas.

6.1.1.5 Summary of the test embankment terrain analysis experiments

Although the terrain analysis metrics showed paoretations with observed soil
moisture, important lessons were learnt. Firstlgpserved soil moisture measurements
are to be used to build a statistical model udiegtérrain calculations, they must be
made not only during wetter overall conditionss&ged by other authors (Tenenbaum
et al., 2006; Western et al., 1999a), but also wifficient time after a rainfall event to
allow for downslope organisation to take place si$tudy showed that measurements
made within hours of a rainfall event did not allsufficient time for moisture to
organise. Future work, with a greater emphasisorporal patterns of soil moisture
distribution, could help to demonstrate the adegjaatount of time required for soil
moisture to spatially organise before making measents.

This study has highlighted the complex natureodfraoisture distribution and
that a temporal dimension may have to be takenaotount to enable an accurate
characterisation. This is a limitation that shooédnoted when using terrain analysis for
the future characterisation of soil moisture, ssjgg the use of quasi-dynamic
wetness indices may be more applicable, such agaBairal. (2002). However, users of
these calculations must also consider the appdicdtr which the soil moisture
characterisation is being used. For instancepodfimodelling it may be necessary to
monitor the changes in soil moisture distributimertime to coincide with extreme
rainfall events, but for slope stability studiesiagle snap shot characterising moisture

distribution may be adequate to focus maintenara® w areas susceptible to soil
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moisture accumulation, such as areas of water $sgrem areas surrounding
earthworks (Perry et al., 2003b).

6.1.2 Hyperspectral response of vegetation to artificial wetting

This part of the earthwork scale study focussetheranalysis of hyperspectral
reflectance from earthwork grasses in responsditeial changes in soil moisture.
This work was carried out on the same test embankagethe terrain analysis (Section

6.1.1) but acts as a standalone study.

6.1.2.1 Comparisons between observed soil moisture and spectral reflectance

Analysis of the spectra did not reveal any obvimsponse to changes in soil moisture.
The derivative of the spectra, however, indicatate signs of change, particularly
over the wetted plot where the red-edge featureNeskened over the duration of the
experiment (Figure 4.32). The red-edge featuredgative of chlorophyll production
(Zarco-Tejada et al., 2003) therefore demonstratiaggchanges in soil moisture were
having an effect on the vegetation. The fact thatderivative of the spectra indicated a
response, and not the original spectra, was anriaapidinding. The derivative of a
spectral band is based on the previous and nexisbdiis restricts the application of
derivative techniques to sensors with sufficiergctal resolution, i.e. hyperspectral
sensors (Tsai and Philpot, 1998). Imagery from sattsors, both airborne and
spaceborne, tends to be expensive to acquirevelatimagery from a broad band
sensor. This may therefore limit the number of datéection campaigns a network
operator can afford to carry out, reducing its @ffeeness as an operational monitoring
technique.

All spectral analysis techniques were shown toelasonable predictors of soil
moisture. Overall, the linear interpolated REP sbdwo be the best predictor with a
validated R correlation coefficient of 0.60. This was an ie&ing finding as it was the
simpler of the two methods for calculating REP amdild be less computationally
demanding if applied to large airborne hyperspédatasets. Continuum removal
analysis was shown to have the poorest correlatitnsoil moisture (validated Fof
0.51), despite showing the largest visual resptmsbanges in soil moisture over the
wetting period. This implies that the continuum ox®d spectra were not being fully

exploited because comparisons with observed sagtome were made using the value
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at the lowest point on the continuum removed troagle675 nm. Future work may
focus on enhancing the information gained from icontm removed spectra. This study
attempted to develop metrics based on ratios aectrsh angle of the continuum
removed spectra but found no improvement to theetadron with soil moisture.

A correlation matrix showed little significant déffent between the spectral
analysis techniques. As a result, it was diffitaltletermine which technique is best
using the findings made in this study. The sucoésise techniques may therefore be
assessed by their ease of calculation. For exampay interpolated REP and
derivative stress ratios were much simpler to casmpaompared to the Lagrangian REP
and may therefore be more applicable to largersg@tédaHowever, techniques such as
Lagrangian REP have the advantage of requiring poori knowledge of the spectrum
(Dawson and Curran, 1998). The derivative stress raquires knowledge of the
spectra in order to sample reflectance from thabtiopeak feature (Zarco-Tejada et al.,
2003). However, this study has shown that the posdf this feature defined by Smith
et al. (2004b) using derivative stress ratios aaafplied to embankment vegetation for
characterising soil moisture. Further work may Helgupport these findings by testing

its robustness over a range vegetation types.

6.1.2.2 Potential for scaling up the techniques to an airborne sensor

The spectra gathered in this experiment were wssahtulate the signal from the CASI
sensor in an attempt to test the potential forisgalp the techniques to an airborne
sensor (Section 4.2.4). Interestingly, improvemerdse made to the correlation
coefficients for all the spectral analysis techesjexcept the linear interpolated REP.
This implies that the spectral resolution of theSTAensor is adequate for detecting the
response of vegetation to changes in soil moisfitrerefore, the derivative stress ratio,
Lagrangian REP, linear interpolated REP and ND\dldgotentially be applied to a
sensor that is routinely flown by operators sucthasEnvironment Agency’s
Geomatics Group. Specifically, the techniques @¢nre stress ratio, NDVI,

Lagrangian and linear REP estimation showed a attig R correlation coefficient
between 0.58 and 0.61. Although there are no sirggactral analysis studies to draw

comparisons with, these correlations are comparaittereported correlations with
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topographic indices, such as Tenenbaum et al. 2006 found R values typically in
the region of 0.56.

It was of particular interest to note that the N2¥lculated using the simulated
spectra showed good correspondence with soil nreisilnis index is easy to compute
and is widely applied to imagery with red and nieérared capabilities. In addition, the
derivative stress ratio showed good correspondettbeobserved soil moisture despite
using central wavelengths that do not corresporetty to the double peak feature
found in the spectra. This means the default bahtise CASI sensor provide sufficient
detail to represent the double peak feature fovdgetation of the test embankment.
This is despite the earthwork including a mixtufg@ass and wildflower species
(Glendinning et al., 2009) where previous work slaswn that the wavelength position
of the double peak feature varies from speciepéaiss (Cho and Skidmore, 2006;
Clevers et al., 2004; Smith et al., 2004a; Zarc@da& et al., 2003). This demonstrated
the robustness of the original derivative streie @defined by Smith et al. (2004b) for
use over a mixture of vegetation species whichapubve crucial in the development
of an operational methodology.

Despite encouraging results from the analysif®i@ASI simulated spectra, the
simulation used in this study is no replacementdsting the techniques using a sensor
with reduced spectral resolution. For example stheothing process carried out in the
sensor simulation may have retained spectral detadh might otherwise be lost using
a reduced spectral resolution sensor. In additaly, spectral resolution was examined
in this simulation. No consideration was given spatial resolution, or field of view of
the sensor. The field of view for the field spestopy data was just 20 éifSection
3.2.2.2) whereas the spatial resolution of airb@A&I imagery tends to range between
1 m and 2 m and is therefore likely to captureai@tince from a wider range of
vegetation canopy types. An attempt was made talatenthis by taking an average of
multiple field spectroscopy measurements taken theemetre squared plots. However,

fine scale detail may have been retained.

6.1.2.3 Partial least squares regression analysis

Section 6.1.2 has focussed on the assessmentstihgxspectral analysis techniques for

the characterisation of soil moisture. In additiothese techniques, the development of
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a new technique applied the CASI simulated spechasmexplored using PLS
regression, that is specifically designed to chtaree soil moisture. Prior to the PLS
analysis, the spectra was transformed usingd(bdRr) following Reeves (2009) and
Schmidtlein (2005). A subsequent Martens’ uncetyaiest (Martens and Martens,
2000) applied to the transformed spectra showegltard bands to have significant
ability to predict soil moisture. However, a subsent model built using these two
bands produced a cross validated correlation aefii of just 0.37 (Section 4.2.4).

Although disappointing, the poor results were ki be a result of the
Logi0o(1/R) transformation. This method was used assthdeen employed in other
vegetation spectral analysis studies such as Syhah (2003; 2002) and Schmidtlein
(2005). Normally, reflectance in the red and na&mared would be expected to exhibit
the greatest sensitivity over a vegetation targébbce the spectra were transformed,
the blue and green regions of the spectrum becaone pnominent. This meant that the
transformation was actually detrimental to the Pégression routine as it suppressed
the signal from the red and near infrared and doe¢ed the noisy blue region of the
spectrum. This is an issue that has been littiéoegg in vegetation spectroscopy and
shows that such transformations, which were dedifmespectro-chemical studies
(Reeves, 2009; Nees et al., 2002), should not naalysise applied in vegetation
analysis. This raises the need for a study to agskesmpact of different transformation
techniques on the hyperspectral reflectance asabfsiegetation, similar to the review
conducted by Reeves (2009) for chemical spectrgscop

Nees et al. (2002) explained that spectra can &dmhsformed using the
derivative of the spectrum. The derivative of thecrum has already been shown in
this study to have a strong response to changesgietation following artificial changes
in soil moisture. This finding was reinforced by tMartens’ uncertainty test (Martens
and Martens, 2000) which indicated six simulatedSCBands as having significant
predicting power. These bands corresponded tothethed edge feature and the
specific bands used in the derivative stress rassoa result, these bands are more likely
to demonstrate a response to changes in the viegetatsubsequent PLS regression
model, built using these significant bands, produgstrong correlation with observed
soil moisture which was consistent upon validatibms suggested that the model was

stable and had the potential to make predictionsiade the model training area.
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The success of the PLS regression model couldsmgnédicant finding for the
characterisation of soil moisture over transportidor earthworks. However, a number
of simplifications were made in order to facilitabes earthwork scale test. Primarily,
the vegetation of the plots were relatively homames with low canopy grasses
dominating. Although this is a characteristic ofdam constructed earthworks, the
predominantly aging infrastructure of the UK hamach more complex mix of grasses,
shrubs and trees. As well as providing a numbelifedrent leaf structures, this also
produces a much more complex canopy in terms dirbttional reflectance (Wolf et
al., 2010), which would not have been taken intaat in this model. In addition,
field observations of many real-world earthworkewslthat areas of bare ground are
commonplace. Background reflectance from soil withie sensor’s instantaneous field
of view is likely to reduce the signal from the e¢gfion canopy and destabilise the

model which in this case has been constructed sixelly using vegetation.

6.1.2.4 Hyperspectral vegetation analysis summary

This work has demonstrated that spectral analgstsiques have the potential for
measuring changes in vegetation caused by changed imoisture content. In
addition, sufficient evidence has been given tcsater the application of these
techniques to airborne sensors, with a coarsetrspeesolution. This work also
showed that PLS regression can be used to butlbéesmodel for predicting changes
in soil moisture. However, there is uncertaintyathe ability of these techniques to
perform over more complex environments, such a&sdamopies, which are likely to be

present within real world transport corridors.

6.1.3 Earthwork scale study summary

The results of the earthwork scale study have shmvan correlations between the
terrain analysis metrics and observed soil moistuhereas the spectral analysis study
has generally shown good correspondence. Howéesetfindings are not necessarily
a direct reflection of how these techniques migirfgrm at the transport corridor scale
using airborne remotely sensed data. For instaheeaglatively homogenous terrain of
the test embankment meant there was little varighhd be captured by the terrain

analysis calculations. In contrast, a real wordshgport corridor would be expected to
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have earthworks with a range of different slopee@sigaspects, sizes and other
influences such as flow contribution from surroungdareas. The increase in
topographic variation would also be expected tcehavinfluence on the distribution of
soil moisture. This is supported by the range ihraoisture contents measured in the
transport corridor scale study. For example, tingean soil moisture content found in
the transport corridor was 45% (volumetric soil store content) (Section 5.1.2)
compared to a range of 32% for the test embankoheirig similar weather conditions
(Section 4.1.7). The suggestion here is that soiktare is easier to model in an
environment with increased variability.

In contrast to the terrain analysis experimerd,dpectral analysis study was
carried out in a more controlled environment. Héne,variation in soil moisture was
artificially induced using the control, covered ameltted plots. A range of soil moisture
values could therefore be enforced, allowing fon@e informed model relating the
spectral analysis techniques to observed soil mn@stontent. In addition, the spectral
reflectance data used in this experiment was veligtiree from the complexities
normally found in real world transport corridons¢iuding large shrub and tree

canopies.

6.2 Transport corridor scale

The results from transport corridor scale worknalgsed and discussed in the
subsections below. This is divided into two distisections addressing terrain analysis
and vegetation reflectance analysis (Sections @u2d16.2.2 respectively). The findings
made using these two distinct experiments were tesgdorm an integrated model

which is analysed and discussed in Section 6.2.3.

6.2.1 Terrain analysis

The findings made by applying the terrain analgsisulations at the transport corridor
scale broadly followed the observations made ae#rthwork scale. This helped to
support some of the claims made at an earthwotk mathe optimal implementation

of the calculations within transport corridor emviments. These findings are discussed
below in Section 6.2.1.1. In addition, it was fouhdt improvements could be made

when applying the calculations at the transportidor scale in comparison with the
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earthwork scale. This is discussed in Section 22dgether with an analysis and
discussion of the observed distribution of soil stimie and what this the implications of

these findings mean for slope stability analysia agole.

6.2.1.1 Impact of DEM interpolation

As with the analysis undertaken over the test erkient, two separate DEMs were
generated for the transport corridor using twoedléht interpolation techniques. The
AnuDEM routine was used as it allows for the cadtioh of continuous flow
downslope and is therefore, in terms of hydroldgiwadelling, a more accurate
representation of reality (Hutchinson, 2008). IDMerpolation was also explored at
this scale as opposed to the kriging technique us#te test embankment study. This
was because the kriging interpolation routine veascdomputationally demanding for
generating a DEM with a grid resolution of 1 m oaef km transport corridor, often
leading to lengthy processing times (over two days) was unstable and prone to
crashing using both ArcGIS and TerraScan softwhines finding has implications in
terms of using the methods developed here in aratpeal context. Various
interpolation techniques may have relative advargamd disadvantages in terms of
representing terrain, or making characterisatidrsoib moisture, but their operational
use is limited if the demand on computer processkageds the capacity of current
desktop computers.

Following similar trends to the earthwork scalsules (Section 6.1.1.1), the
AnuDEM interpolation technique produced a much stim@orepresentation terrain
compared to the IDW method, which held more firlestopographic detail. This
difference translated itself into a differencehe talculation of TWI. Specifically, a
TWI calculated using the AnuDEM DEM showed a smaighrease downslope,
whereas TWI for the IDW DEM appeared spatially gcravith wetness predicted to
increase and decrease several times before redti@mgpttom of the slope. This was
similar to the results found in the test embanknseate study which were made at a
much finer grid resolution. This showed that althlothe 1 m resolution DEM for the
transport corridor would suppress a degree of taiygc detail, the IDW interpolation
retained enough detail to affect the flow of maistdownslope predicted by the TWI.

As a result, it is suggested that the AnuDEM intéapon technique should always be
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used when generating a DEM for TWI calculation.t&aiting the statement made in
Section 6.1.1.1, this finding is important as s@nalies have relied upon other
interpolation techniques, such as kriging, to gateeDEMs for the calculation of TWI
(Schmidt and Persson, 2003). Despite this, SchamdtPersson (2003) reported no
similar erratic patterns in the calculation of TWhis could be due to the fact that they
made their calculations using a DEM with a gricblegon of 2 m. This means that less
small scale topographic variation would be captdmgthe kriging interpolation than if
a 1l m DEM was used, leading to less variation éndalculation of TWI. In addition,
Schmidt and Persson (2003) drew comparisons witht goil moisture measurement
by taking an average TWI value using a filter vathadius of three cells which is likely

to suppress any small scale variation.

6.2.1.2 Comparisons between observed soil moisture measurements and the terrain
analysis calculations
The terrain calculations, TWI and potential soktiation, made using the two
interpolated DEMs were compared against observiétheasture measurements.
Measurements made during relatively dry periodsatestrated little topographic
organisation, which was consistent with the findingade by other studies, including
Tenenbaum et al. (2006) and Western et al. (199%&)low degree of spatial
organisation specifically related to the middldle# earthwork slopes or in locations
where slopes are relatively flat. However, pattetidsemerge including a general
increase in soil moisture found on north facingps®and at the toe of earthwork
slopes. The latter trend showed that during peraddistle or no rainfall, water retained
within an earthwork migrated downslope and conegatr at the bottom of the slopes.
This trend was more apparent in the soil moistueasurements taken following
a relatively wet period, with generally little clggnover the centre of the slope but a
marked increase at the toe. This finding couldigeifcant in terms of slope
geotechnics as areas of soil moisture convergamckkaly to increase the strain at
specific points in the earthwork and increase tle of instability (Pack et al., 1998). In
addition, current slope stability models, includihg coupled SHETRAN -FLAC
model (Kilsby et al., 2009; Rouainia et al., 20B%en et al., 2000), tend to characterise
soil moisture using a single value for a whole sldgigh soil moisture values were also

found in flat fields bordering the transport comickarthworks. This could also have
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geotechnical implications with cutting earthworlsscantributions of soil moisture are
likely to be made from surrounding land (Perrylet2003b). This is particularly
significant where rainfall onto saturated soils tzad to direct runoff onto the
earthwork slopes which has been a major causecehtdailures (e.g. BBC (2007)).
The TWI applied in this study indicated potental the this phenomena in a cutting
east of Haltwhistle which is demonstrated in tharegle map for the integrated model
shown in Figure 5.16 (Section 5.3) which is diseddater in Section 6.2.3.

Despite the apparent organisation of the obserggan®isture measurements,
regression correlation coefficients with the terranalysis calculations were poor.
Overall, potential solar radiation was the bestjmter (R of 0.27) which showed that
earthwork orientation, and the subsequent influafis®lar radiation, was the
dominating factor on soil moisture distribution.iFkvas an unusual finding as previous
work has shown potential solar radiation to be tkgainant in wetter conditions
(Tenenbaum et al., 2006; Western et al., 1999&],14886). The influence of this
metric was a result of the west to east orientatifaitne transport corridor, with
earthworks having predominately north and southesfacing aspects. Despite its
influence here, potential solar radiation is urlifjk® have the same control in transport
corridors with other orientations, which was dentmtsed in the earthwork scale study
when the test embankment was rotated. Therefoegacterisation of soil moisture
distribution using potential solar radiation mayéao be tailored to suit specific
orientations. This could be tested by applyingrttethods used in this study to transport
corridors with a variety of earthwork orientaticensd comparing against observed soll
moisture measurements. This was not considerdeeimitially choice of study site as
preference was given to a stretch of railway withistory of instability.

A potential flaw in the calculation of potentiallaoradiation is that it does not
take into account the vegetation canopy. Densetaige canopies, particularly broad-
leafed deciduous trees, mask the soil surface hailimiting the amount of direct solar
radiation that can reach the soil surface as vgeihi@rcepting rainfall. Future
refinement of the DEM used to make this calculabanhthis would involve the use of
optical ray tracing models (Disney et al., 2000)chirequire a high degree of
parameterisation and are therefore beyond the suape present study. The use of full

waveform lidar could provide an interesting direatfor future study. This technology

193



can provide more detailed information about theetation canopy (Hyde et al., 2005)
and have been shown to provide accurate measuocasopy geometry using the
aforementioned ray tracing models (Hancock efal08).

Although poor, a TWI calculated using the AnuDENEmpolated DEM
provided a better predictor of soil moisture (R 0.23) compared to the IDW DEM {R
of 0.19). This supported the suggestion that theD¥M interpolation technique is
better suited to making hydrological calculatioRsiichinson, 2008) but the small
correlation coefficients give this statement litjlavity. The TWI calculation showed a
gradual decrease downslope implying a linear irs@éa soil moisture content.
However, the soil moisture measurements showecsgaturemain relatively constant
with a sharp rise at the toe of the earthwork gdjfégure 5.9). In order to capture this
trend the TWI was expressed by the natural logaritwhich improved correlations
with soil moisture for the AnuDEM DEM to arfRf 0.33. This was a potentially
significant finding as other studies using the TRiWDversion of the TWI calculation
(Tenenbaum et al., 2006) have not considered spihi@ non linear relationship with
soil moisture. Furthermore, expressing the metyithe natural logarithm is simple to
compute and does not introduce multiple additigreabmeters such as cubic and
guadratic expressions.

Combining the natural logarithm of the TWI and pdit&l solar radiation using
stepwise multiple regression produces &mf0.65. This was comparable to other
studies, such as Western et al. (1999a), who faurmmbination of TWI and potential
solar radiation explained up to 61% of the varmatd soil moisture during wetter
conditions. The difference with the present stugthat the characterisation of soil
moisture has been made at a fine spatial resolofid@m compared to Western et al.
(1999a) with a grid resolution of 5 m. This implibat the terrain analysis metrics used
in this study and by Western et al. (1999a) aresbht both DEM grid resolutions. In
addition, the grid resolution used on this studgufficient for monitoring transport
corridor earthworks with widths typically in thedar of tens of metres (Section 2.5).

The correlation coefficient for the multiple regses model (0.65) was also a
marked improvement on the correlations betweenrgbdesoil moisture and the
individual terrain analysis calculations (betwee?70and 0.33). Other studies, such as

Tenenbaum et al. (2006), have used TWI as thepsetéictor of soil moisture
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distribution, achieving correlation coefficientsagproximately 0.56. The findings
made in this study show that this correlation cddsie been improved if potential solar
radiation were taken into account. Moreover, thisild have been possible using the
same DEM used to calculate the TWI. Tenenbaum ¢€2@06) found best results using
a relatively coarse DEM, with a grid resolution1df.25 m. They also compared
observed soil moisture to a TWI calculated usimgueh finer, 0.5 m DEM. This
produced poorer correlations ranging from &rpR0.56 during wetter conditions and
no correlation during dry conditions. This studg Isaown that a reasonable
characterisation of soil moisture can be madecainaparable spatial resolution of 1 m.

One potential explanation for the poor correlatitmsd by Tenenbaum et al.
(2006) at this spatial scale is that they were dpglthe terrain analysis calculations
within an urbanised catchment. Urban areas pravidee complex hydrological
environments to model due to the potential rangeeoineable and impermeable
surfaces which is not taken into account by theateranalysis metrics. Hydrological
features within an urbanised catchment also odcdiffarent scales which may not be
captured by even high spatial resolution (< 1 mM3EFor instance, kerbs act as a
barrier forcing water down the sides of roads (l4pl1988) but are often less than
20 cm in height which tends to be beyond the valraccuracy achieved by airborne
lidar campaigns (Hodgson and Bresnahan, 2004).

Tenenbaum et al. (2006) found best correlationswthe TWI was averaged
around a 11 x 11 kernel. Therefore, these resudislve misrepresentative of the
accuracy of a resulting map of predicted soil mwestvith a grid resolution matching
the input DEM. This study did not average TWI valaeound a kernel, meaning
observed correlations with soil moisture are repmétive for a map of predicted values
with a grid resolution of 1 m.

A GWR model was built to predict observed soil mais using the terrain
calculations, natural logarithm of TWI and potehsi@lar radiation. This helped to
improve the correlation coefficient to ai & 0.76. Therefore, a locally fitted
regression was better than global regression fecrdeng the relationship between soil
moisture distribution and the terrain analysisilattes. The improvement in correlation
coefficient reflects the complex spatial relatiapdbetween soil moisture and the

terrain analysis metrics. For example, whilst thera general negative trend between
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potential solar radiation and observed soil moestthre relationship changes downslope
as observed soil moisture tends to gather at theftearthwork slopes. This was an
important finding as previous studies have not wwred a spatially local model to
describe the relationship between terrain anabasulations and soil moisture. Future
work should therefore consider spatially varialdiationships, in order to refine
existing terrain analysis calculations. This istigafarly poignant when considering a
parameter (soil moisture) which has consistentgnbsated as having innate spatial
variability (Famiglietti et al., 1999; McBratney @webster, 1986; Hawley et al.,
1983), where studies attempting to model its digtion have largely relied on global
models (Tenenbaum et al., 2006; Western et al9d)99

Monte Carlo significance testing showed that paéésblar radiation was the
only parameter that had a spatially significarditiehship (with 99% confidence) with
soil moisture. The spatial dependence betweemsmsture and potential solar
radiation reflects the influence of the predomihat®rth and south facing slopes. This
is demonstrated by the GWR model residuals whiatewhown to be an average of 4.6
(% volumetric soil moisture content) on the sowttirig slope compared to -4.2 on the
north facing slope, with an average residual @8 {@ection 5.1.3). As a result, future
work should consider the localised relationshipsveen potential solar radiation and
soil moisture, in order to make better informeddirBons of soil moisture distribution.

6.2.2 Vegetation reflectance analysis

The analysis undertaken here could not be assas#leel earthwork scale due to the
relatively homogenous nature of vegetation on ¢iseémbankment. Therefore, the
results discussed here are irrespective of therbgpetral analysis results found at the
earthwork scale. The work carried out here waditbereported attempt to map
Ellenberg biological indicator values in UK transpoorridor environments. As a
results, separate sections (6.2.2.1 and 6.2.2p2c¢asely) discuss the observed
Ellenberg values and the mapping of these valuieg asrborne imaging spectroscopy.
An additional section (Section 6.2.2.3) addresBesaite of this technique as a predictor

of soil moisture distribution.
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6.2.2.1 Observed Ellenberg indicator values

Thirty-three plots were used to measure speciesdsamnce in order to derive weighted
average Ellenberg indicator values. The variattoggecies found in the species
abundance plots demonstrated the heterogeneous wattegetation cover within the
transport corridor. However, slope stability modeisluding SLIP4EX (Greenwood,
2006) and SHETRAN-FLAC (Kilshy et al., 2009; Rouaiet al., 2009; Ewen et al.,
2000), characterise vegetation cover as a singégogy, normally bare soil, grass, or
trees. Although this study is not concerned withrislationship between slope stability
and vegetation, the observed variation in vegaidiipe found in the study area
suggests that these models insufficiently des¢hbeactual distribution of vegetation
cover over a transport corridor earthwork slopasThof particular significance where
vegetation type changes down a slope profile froallew root types (grasses and
wildflowers) to deep root types (tall shrubs areks) which have shown to have
different influences on slope stability (Glendingiet al., 2009).

The number of plots used to measure species aboadeas based on a species-
area curve constructed from observations mademaéthmodified-Whittaker plot
following Stohlgren et al. (1995) and Mueller-Donand Ellenberg (1974). It later
emerged that four of the plots could not be usetltdunisclassification of vegetation
type or inaccurate soil moisture measurements i8e8t3.2.1). On reflection, it would
have been better practice to over sample in cagelats needed to be discarded. As a
result, it is possible that the full range of vegein species, and subsequent Ellenberg
values, was not sampled. This could have implioation the success of the mapping of
Ellenberg values where it is necessary to use vagens that cover the full range of
the parameter that is being sampled, and may atémusome of the uncertainties
found in the modelling process. In addition, it weded in Section 6.2.2 that an
improved validation of the Ellenberg values coudtvdr been made if an additional set
of data could be collected. However, this wouldeneaquired additional vegetation
abundance data which was not possible as validatitgnoisture data has to be
sampled within a day, preferably within the spatpist a few hours, due to the
temporally variable nature of this parameter (Faietig) et al., 1998). This could have
been possible with additional labour on the groand remains a potential for future

studies with more resources.
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6.2.2.2 Mapping Ellenberg values

PLS regression was used to link the CASI spectthddellenberg moisture indicator
values. Prior to analysis, the spectra was trangfdrusing the Log(1/R)
transformation. Similar to the findings made in gagthwork scale study (Section
6.1.2.3), the initial Martens’ uncertainty test (fans and Martens, 2000) did not show
any bands to be significant. The uncertainty tksi failed to show any significant
predicting bands when the spectra was transforraegd) the first derivative, a
transformation which produced meaningful predictvamds in the earthwork scale
study (Section 6.1.2.3). This further reinforces timcertainty over which
transformation technique, if any, should be usdayiperspectral remote sensing of
vegetation. Therefore, an alternative approachadagted whereby predicting bands
were selected using stepwise regression (Naes @08R). This identified eight
significant bands from the Leg{1/R) transformed spectra which were also founieto
significant using the Martens’ uncertainty testafy this implies uncertainty over the
correct procedure for applying PLS regression igetation spectroscopy. Future work
should be directed at addressing these shortcoramgse results from both the
earthwork and transport corridor scale studies liadieated a strong potential for the
use of PLS regression.

PLS regression using the significant bands frompveige regression produced a
strong correlation with the Ellenberg indicatorues, with an Rof 0.85. The latter
model used eight components to describe the raktiip between Ellenberg moisture
values and the significant CASI bands. Normallys theld that a large number of model
components would make it unstable for making ptextis outside the training area
(Nees et al., 2002). However, this model was chepeuaifically due to its high cross
validation correlation coefficient @Rof 0.64). The large number of components
required to create a meaningful model represeptsnihiti-dimensionality of the
relationship between the Ellenberg moisture vaaresthe predicting CASI bands. Nees
et al. (2002) explained that using near infrarddcéance data, good predictions can
normally be made using a few components. Howehes s related to chemical
spectroscopy studies where relationships may bpleirthan studies examining

vegetation reflectance. Therefore, future studssgiPLS regression to estimate
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vegetation parameters from spectral reflectancaldlamnsider a greater number of
model parameters than expected.

Analysis of the mapped Ellenberg moisture valugsaked trends that were
consistent with field observations of vegetatiopetyThis was encouraging as it further
supported the stability of the PLS model. In addhfifield observations showed a trend
between high predicted soil moisture and an oveealser canopy. This canopy has a
larger leaf area, associated with vegetation spestieh as Brambles and Stinging
Nettles. The larger leaf area of these vegetatiped restricts evaporation from the soil
surface below the canopy, leading to overall wedtgls than the relatively less dense
canopies of grasses and wildflowers towards theafdke earthwork. Although this
was not the intention of the Ellenberg mapping pdure this could prove to be a useful
finding. Specifically, slope stability models, sua$i SHETRAN-FLAC (Kilsby et al.,
2009; Rouainia et al., 2009; Ewen et al., 20003yatterise soil moisture based on the
dominating vegetation cover (bare ground, gragsees) and their relative impact on
the interception of rainfall due to leaf area. Diheservations of leaf area made here are
purely subjective but it would be interesting togue this matter further by attempting
to predict leaf area index using the CASI imag&gggh et al., 2002). However, this
would have involved extensive field observationd as a result, was beyond the
timescale of the present study.

6.2.2.3 Comparisons between observed soil moisture measurements and mapped
Ellenberg values
The mapped Ellenberg moisture values were compgaihst observed soil moisture
measurements, producing ah\Rlue of 0.4 (significant at the 99% confidenoeel
This was poorer than the results found in simitadies, such as Schmidtlein (2005),
who found an Rvalue of 0.58. This difference was due to the eanigobserved
Ellenberg moisture values found over the study Jitee present study found a
relatively limited range of 4.8 to 6.8, comparedshmidtlein (2005) with a range of
4.3 to 9.5. The greater range found in the latighswas due to the presence of raised
bogs and wet fens which are unlikely to be foundransport corridor earthworks.
Despite the smaller range in observed values,dhelation coefficient demonstrated
that the mapped Ellenberg moisture values can gessome explanation of the

distribution of soil moisture over earthworks. Ha®e as the correlation was not
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strong the suggestion was that additional mettiesterrain analysis metrics, are
required to make a reasonable characterisatioailoin®isture. This was similar to the
findings discussed in Section 6.2.1 which showed tte terrain analysis calculations
were poor predictors on their own and needed todmporated to produce any
meaningful predictions. Other attempts to map sailsture distribution using terrain
analysis such as Western et al. (1999a) also cdedlthat best correlations are found
when a combination of metrics are used. Howevadis$ using mapped biological
indicator values, such as Schmidtlein (2005), tdnu# to consider the integration of
other remotely sensed metrics. This study showshleaestimation of soil moisture
using mapped Ellenberg values can be improved tiegtating terrain analysis
calculations, as discussed in Section 6.2.3.

One major limitation of the Ellenberg mapping prdhaee is that it was not
applied to woodland areas. Such areas were noidayed following the example of
Feldmeyer- Christe et al. (2007) and SchmidtleDD&). As mentioned in Section
3.3.2.1, this was because tall tree canopies ngtommplicate the spectral signal with
bidirectional reflectance and shadowing (Wolf et 2010) but also mask smaller
species on the forest floor that may be a betticator of soil moisture conditions.
Consideration could be given to the incorporatibradiative transfer models into the
Ellenberg mapping procedure. Such models are wseubtel spectral reflectance over
vegetation canopies in an attempt to remove theptioations caused by issues such as
bidirectional reflectance (Cescatti, 1997). Thipioves the signal from the vegetation
canopy and has been shown to improve the charsatien of vegetation using
remotely sensed data (Jacquemoud et al., 2009 .\Wds not explored as such models
require a number of input parameters (Section P\Wgh2ch may detract from the

potential operational use of these techniques.

6.2.3 Integrated model

The terrain analysis work showed that metrics @efifrom remotely sensed data have
little predictive power on their own. This was ciomfed by R poor regression
correlation coefficients of 0.33 for the naturajdoithm of the TWI and 0.27 for the
calculation of potential solar radiation. Howewshen the two metrics were integrated
using stepwise multiple regression thevllue improved to 0.65 with 99% confidence.
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The inclusion of mapped Ellenberg moisture valuwethér improved this correlation,
although marginally, with an®Rvalue of 0.67. As discussed earlier in Section1622

this is comparable to the best correlations founatiher studies (Tenenbaum et al.,
2006; Schmidt and Persson, 2003; Western et &9a)%ut in this case predictions
were made at a spatial resolution sufficient fonitaying transport corridor
earthworks. In addition, and perhaps more sigmtigathese predictions were made
over densely vegetated areas, a characteristib#satestricted the use of other remote
sensing techniques, including thermal inertia magpactive and passive microwave
systems, and spectral reflection from the visibégr and shortwave infrared (Chapter
2).

A map of predicted soil moisture, made using thegrated multiple regression
model (natural logarithm of the TWI, potential saladiation, mapped Ellenberg
values) clearly showed the influence of the TWihaatgradual increase in predicted
moisture running down the profile of earthwork slepFurthermore, the influence of
the TWI resulted in a number of points within aticg earthwork where contribution
from neighbouring fields has directed flow into #sathwork. It is important that these
features have been retained as slope stabilityestusuich as Pack et al. (1998), depict
areas of potential instability by moisture concatiém in areas of topographic
convergence. Similarly, Perry et al. (2003b) expdithat the infiltration of water into
cutting earthworks from surrounding areas can tesuhe cess heaving process. This
is a significant slope process whereby infiltratadiwater into an earthwork softens the
clay foundations, weakening the soil above. Thegrdted model also showed the
influence of the potential solar radiation calcudaf suggesting that effects of cess
heaving will be accentuated on north facing sloplkere predicted soil moisture
contents are higher that the south facing slope.

The correlation coefficients for the multiple regg®mn models show that the
inclusion of mapped Ellenberg values only sligithproved the overall prediction of
soil moisture (improvement in correlation coeffitiédrom 0.65 to 0.67). Potential users
of this work could therefore conclude that a readdas characterisation of soil moisture
can be made using just the terrain analysis cadlonk This could have greater
operational potential as the terrain analyses requst one airborne dataset (lidar) and

relatively little field work, compared to the exte vegetation sampling associated
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with the Ellenberg values. However, the integratextiel showed subtle variations in
modelled soil moisture which originate from the e Ellenberg value metric. When
this particular metric is taken out of the integthtnodel, leaving the natural logarithm
of the TWI and potential solar radiation, this pattis lost. Potential users of this
methodology must carefully consider whether thedels variations are important to
justify the use of the Ellenberg mapping proceduréerms of slope stability analysis
this could be crucial as small scale areas of asgd moisture may represent areas of
water inundation from water sources such as leghipgs, ponds or lakes, blocked
drains, and increases in groundwater level (Preugh., 2010; Perry et al., 2003b;
Fukuoka, 1980), which might otherwise not be dei@tty the terrain analysis metrics.

Predicted soil moisture using the integrated meged validated against
additional soil moisture measurements giving af0.48 which was significant at the
99% confidence level. The reason for this relayiy@or correlation may be due to the
fact that the validating measurements were gathetkdving a period of relatively dry
weather when the degree of topographic organisatamnot at its greatest. In addition,
some of the measurements were taken on earthworkaiging a mixture of fly ash and
ballast which were shown to produce erroneous mmeasants. This was because the
presence of ballast created pockets of air withénsoil matrix being sampled which
would change the electromagnetic impedance recdrgelde probe to estimate soill
moisture content.

The measurements were taken using a portable Thptdance probe (Section
3.2.1.2) which have been used in a number of studte the spatial distribution of soil
moisture, including Cosh et al. (2005), Famigliettal. (1999), Western et al. (1999a),
and Tenenbaum et al. (2006). However, these stddiemt refer to any difficulties in
obtaining meaningful measurements. This impliestitamsport corridor earthworks
containing fly ash and ballast present an additiohallenge to the study of soill
moisture. Calibration of the Theta probe prior &dadcollection did not take into
account this type of material (Section 4.1.7) asniesion was not given to take soil
samples from the transport corridor earthworksufauwvork should endeavour to
capture the full variability in soil type, parti@uly in transport corridor environments.
However, this would require extensive field samghvhich would have detracted from
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the original aim of this study, to provide a moficeent characterisation of soil
moisture distribution.

Due to the lack of confidence in the validating sooisture dataset, the
integrated model was also validated using crosdatabn. This procedure
demonstrated an RMSE of 5.48% (volumetric soil owey for the original model
calibration and an RMSE of 5.89% for the crossdadlon, suggesting model error does
not change significantly when applied to new obagons. Although this supports the
overall robustness of the model it is not as rédias testing the model against actual
observations. In addition, no consideration haslg#een to error propagation
throughout the modelling process. Future work sthaohsider systematically
removing samples from the metrics used in the nateg model to test its sensitivity.
For example, the PLS regression model used to heagltenberg values was not
validated against additional field observationserEfiore, tests could be done to remove
particular observations and see how this affe@stlerall PLS model. In turn, the
resulting mapped Ellenberg values could integratid the other metrics to test for
differences with the original integrated modelthié original model was stable,
differences with the new model would be expecteldetemall. This analysis was not
carried out due to the extensive processing thatumaertaken for each remotely
sensed metric. In order to carry out a rigorousysiaof error propagation this would
take a great deal of processing time and was rtbirwihe time frame of the present

study.

6.2.4 Implications for mapping slope stability

The overall aim of this study was to character@kroisture as an indicator of slope
instability in transport corridor environments. Wdiugh the characterisation of soil
moisture has been achieved, there has been lighgiom of its application in mapping
slope stability. This work has been carried oupas of the wider EPSRC (Engineering
and Physical Sciences Research Council) fundeeégrdfemote asset inspection for
transport corridor environments’ (reference nuntbiéfD023726/1). The aim of this
project was to provide an assessment of slopéehitisgeby extracting a number of key
parameters using a range of remote sensing defhtlsr et al., 2009). These

parameters include slope gradient, slope aspegttaton type, and soil moisture.
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Following other slope stability studies (Borga let 2002; Pack et al., 1998) soil
moisture was characterised using a TWI.

Specifically, the remotely measured slope pararagstope gradient and
vegetation type, are used as an input into a fel@enent numerical modelling
procedure. This procedure involves the couplinthefSHETRAN hydrological and the
FLAC TP geotechnical models, to simulate the responseffefrent slopes to a range of
different climate scenarios (Kilsby et al., 2009jl&f et al., 2009; Rouainia et al.,
2009). The influence of soil moisture, here modklising a TWI, is later incorporated
using a weighting factor based on wetter soils i@ greater risk of slope instability.
As this study has shown, the calculation of TWIviles a limited characterisation of
soil moisture distribution, particularly as theadhtion was made using a DEM
interpolation technique (IDW) that is not ‘hydrologlly correct’, unlike AnuDEM
(Hutchinson, 2008). In addition, non linear relasbips between the TWI and soill
moisture were not considered. Therefore, the figslimade in this study, using an
incorporated TWI, potential solar radiation, andoped Ellenberg values model, can
help to improve the characterisation of the soilstuve parameter for input into the
wider ‘Remote asset inspection for transport corrghvironments’ project.

Since this study was conducted, the UK railwaysatoe Network Rail has
expressed an interest in using some of the devélo@thods. Specifically, there has
been growing concern over the impact of blockedesective drainage, leading to
concentrations of soil moisture and risk of indigbfor transport corridor earthworks
(Hall, 2009). Particular interest has been givetheopotential for using mapped
Ellenberg values to identify areas abundant in dghiic vegetation species which may
be indicative of defective drainage. This wouldphiel direct ground based network
inspectors to assess areas with potential riskibfristure concentration. Further
development may also include the use of a TWI ¢émiifly areas of moisture
convergence that are not currently logged as haltiampage installed in earthwork

structures or in surrounding land.

6.3 Summary

This summary is divided into three distinct secsionhe first addresses the overall
success of characterising soil moisture in trartspmridors using the developed
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methodology. The second refers to the implicatimintde findings made in this study
with specific reference to slope stability analysi$JK transport corridors. The third

looks at the wider implications of this study imntes of benefitting other applications.

6.3.1 The success of characterising soil moisture

This chapter has discussed the implications ofdkalts found in this study. This has
included an assessment of individual techniquestiaracterising soil moisture at both
an earthwork and transport corridor scale. At atheark scale, the terrain analysis
calculations were shown to be poor predictors dfrsoisture distribution. These poor
results were the result of a combination of pooriyanised observed soil moisture
measurements and the lack of topographical vaityaliilat existed on the test
embankment. This implies the terrain analysis teghis only applicable to areas with
variable terrain. In addition, the soil moistureaserements have shown that future
studies need to consider the time since the lasfathevent in order to obtain
meaningful soil moisture observations.

The vegetation spectral analysis, however, wagrapcouraging. This work
showed that a reasonable characterisation of ckangm®il moisture content could be
determined from vegetation reflectance. Furthermibiie experiment showed the
potential for applying these techniques to an aitesensor. However, further work
needs to be carried out to assess the potentitidse techniques to be applied to more
complex vegetation covers, which exist over reallevtvansport corridors.

At a transport corridor scale the individual terranalysis calculations also
demonstrated generally poor correlations with olesoil moisture measurements.
Despite this, important findings were made. Thewation of TWI was shown to be
better suited to the AnuDEM interpolated DEM. Tisisignificant as this interpolation
technigue is not always adopted in studies thatakmilations of TWI. In contrast, the
calculation of potential solar radiation was shawmvork best when applied to an IDW
interpolated DEM which better represents fine stap@graphic features. This is again
an important finding as studies tend to use orexaiation technique to generate a
DEM, regardless of the type of analysis it is baisgd for.

The analysis of vegetation reflectance over thegport corridor has revealed

that Ellenberg indicator values can be robustly pegjfor a UK transport corridor. This
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is a feat that has yet to be reported in the liteeaand represents a progression in
deriving land surface parameters at a high spagsallution using remotely sensed data.
In terms of characterising soil moisture, the mapyeues showed fair, but by no
means strong, correspondence with observed sogitarei However, when they were
incorporated with the terrain analysis metrics,¢beelation with soil moisture was
comparable to other studies at a coarser spasalugon. In addition, these predictions
were made over densely vegetated areas that havieysly restricted other remote

sensing techniques.

6.3.2 Implications in slope stability studies

As well as providing a reasonable characterisatiosoil moisture, this study has
demonstrated a number of implications in assoaiatiith slope stability studies.
Observed soil moisture was shown to gather towttrelsoe of earthwork slopes,
resulting in a non linear relationship with the mexts index. The TWI also predicted
areas in which moisture is contributed to cuttingteworks from surrounding fields.
These areas of convergence, and subsequent catmantf soil moisture, raise their
susceptibility to instability due to the potentiat higher pore water pressures. In
addition, this susceptibility is shown to increasenorth facing slopes where soll
moisture was shown to be higher.

This study has also raised questions over therityeaf current slope stability
models. Firstly, soil moisture was shown to vargsiderably downslope whereas
models such as SHETRAN-FLAC characterise soil mogsby a single value. This is a
generalisation which could have implications on gilg of the internal structure of
earthworks as variability in surface soil moistigdikely to reflect a variation in pore
pressure down the soil profile. Secondly, in thamegle of SHETRAN-FLAC, soil
moisture is characterised by the dominating vegetatover. This is again assumed to
be constant, whereas field observations of vegetatpecies distribution in this study
have demonstrated great variability. Although atidels must make assumptions, the
generalisations made by these models are unreakgtiesentations of conditions in
transport corridors and are likely to affect theseguent modelling undertaken for the
‘Remote asset inspection for transport corridoriremments’ project that this work

contributes to.
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This study has shown potential for characterismigraoisture in vegetated
transport corridors at a high spatial resolutiom(1 As reported in the literature review
(Chapter 2) this has so far eluded the remote sgraimmunity where efforts have
largely been focussed on using microwave systentisodgh techniques using these
systems have provided higher correlations with mailsture compared to this study
(Baghdadi et al., 2006) they are made at the expeha relatively poor spatial
resolution which is too coarse for the monitoririgransport corridor earthworks. In
addition, best results have been restricted to basparsely vegetated areas which is

contrary to the nature of earthwork infrastruct{@®endinning et al., 2009).

6.3.3 Implications for other applications

This study has focussed on the characterisati@ibmoisture as an indicator of slope
stability in transport corridors. However, mappsal moisture has a wide range of
applications. Walker et al. (2004) summed up theartance of measuring soill
moisture by explaining that “the measurement dfreoisture content can be extremely
useful, if not essential, in hydrologic, environrterand agricultural applications”
(pages 85-86). Specifically, this study has helpedievelop a methodology for
characterising soil moisture at fine spatial scélesn) over vegetated areas. This has
the potential to be applied to a host of differgpplications.

One example for the application of the methods ligeal in this study is for
mapping malarial mosquito habitats. Research hawrsthat surface water habitats for
certain species of mosquito (Anonpheles) in Easirica tend to be smaller than
40 nf (Mutuku et al., 2009; Mushinzimana et al., 2006tiku et al., 2006). This fine
scale has meant that previous studies using brepadial resolution sensors, such as
Landsat TM (Bogh et al., 2007), have not been ttblepresent a large proportion of
these habitats (Mushinzimana et al., 2006). Thénaust presented in this thesis could
potentially be used to provide an improved clasatfon of such habitats by
incorporating information about moisture convergenssing a TWI, and vegetation
characteristics, using mapped Ellenberg values.

Another application that could benefit from the huets developed in this study
is in precision farming. Steps are continually lgeimade to improve the spatial

resolution of measuring soil parameters in thecadjtiral sector, particularly over large

207



areas (Bishop and McBratney, 2002). TWIs have Iseenessfully used to estimate soil
moisture distribution for farmland by Schmidt aret$3on (2003). However, the
findings made in the present study at both an wartkand transport corridor scale
(Sections 6.1.1.1 and 6.2.1 respectively) have shbwat the calculation of TWI is
better suited to a DEM interpolated using a thatgkpline routine (AnuDEM) rather
than kriging as used by Schmidt and Persson (20@3ddition, the results have
indicated that this estimation could be improvedrnmprporating a calculation of
potential solar radiation.

The estimation of species richness for landscapsearwation could also benefit
from the developed methods. Luoto et al. (2002)atestrated that species richness
could be estimated over agricultural areas in Rithlasing a mixture of terrain analysis
using a TWI and vegetation classification usingadrband satellite imagery (Landsat
TM). As with the previous example in precision agtiure, improvements could be
made to their methodology by calculating TWI ussngnuDEM interpolated DEM,
although it should be noted that Luoto et al. (902 not state the interpolation method
used. More significantly, the methods developediapping Ellenberg values in this
thesis may provide an improvement to the overalisnee of species richness. This
notion is based on previous work in the ecoloditadature which advocates the use of
biological indicator values, such as those devaldpeEllenberg et al. (1991), as an
indicator of biodiversity and species richness Knann, 2003; Ellenberg et al., 1991).
Mapping these values over large areas using reyns¢eised imagery could therefore

provide major developments in this area.
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7 Conclusions

The overall aim of this study was to explore theeptal for using remotely sensed
datasets to characterise saibisture for a transport corridor. In order to &sfei this

overall aim, a number of objectives were set:

1. Identify and review existing techniques for chagaising soil moisture from
remotely sensed data and critically assess theiratipnal capability in the context
of transport corridor environments.

2. Carry out a proof of concept study for the teche&deemed applicable in objective
one using ground based instruments at an earthsealk and assess their potential
for being scaled up to a transport corridor scale.

3. Based on the findings made in objectives one aig &pply the techniques to a
transport corridor using airborne remotely senssdgsets.

4. Design a method for integrating the most success@liiniques into an overall model

for characterising soil moisture in transport adori environments.

This concluding chapter explains how each of theailves have been achieved.
Specific reference is given to the key findings madd their implications for
characterising soil moisture in transport corridovironments. Suggestions are also
given as to how the findings made in this studylealp to direct future work, as well as
how this work might contribute to other applicasoithe final section of this chapter

provides a short concluding statement to this ghesi

7.1 Objective 1

Objective 1 was addressed by the literature reue@hapter 2. This revealed a number
of existing techniques that have been shown to bee@t potential for characterising
soil moisture. In particular, the use of passive aative microwave system has proved
to have the greatest potential for mapping soilstuoe over wide areas (Famiglietti et
al., 1999). However, these techniques share inhéneitations that render them
inapplicable for use in monitoring transport cooriegarthworks. Their primary

limitation relates to the poor spatial resolutibattthese sensors often provide, which is
too coarse to make characterisations over earttsweitk widths in the region of tens

of metres. An additional limitation is that the muiwave signal from the soil is strongly
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perturbed by the presence of vegetation (Notaraiebhl., 2006). As a result, studies
are often restricted to areas with low homogeneeggtation canopies or bare earth
(Schmugge et al., 2002), whereas transport coradahworks tend to be covered in

dense heterogeneous vegetation.

Chapter 2 identified techniques using two souocfe@smotely sensed data that
have the potential to overcome the limitations eisded with microwave sensors,
airborne laser scanning and airborne imaging spexdpy. Techniques applied to the
former involve terrain analysis calculations thgpleit the relationship between soill
moisture distribution and topography, such as TWd potential solar radiation. These
calculations have been successfully applied to Bpgtial resolution (1 m) DEMs
derived from airborne lidar (Tenenbaum et al., 30016 have not been assessed within
UK transport corridor environments. The technigagglied to imaging spectroscopy,
including derivative stress ratios, continuum real@nalysis, red edge position
estimation, and mapping of biological indicatorues, also have the potential for being
applied to fine spatial resolution data (~1 m).éje¢he techniques use measures of
canopy spectral reflectance to make inferencestdahewegetation which act as a
surrogate for characterising the soil moisture Wwelbhis overcomes the limitations
associated with techniques using other sensorsathaestricted by the presence of
vegetation, such as microwave systems and theenabss. Few reported attempts
have explicitly attempted to characterise soil muwes using these spectral analysis
techniques but some studies have shown a link plétht stress induced by
waterlogging (Smith et al., 2004a; Pickerill andltias, 1998). The potential for
characterising a number of environmental paramgteekiding soil moisture, by
mapping biological indicator values has also bemmahstrated (Schmidtlein, 2005) but

not in the context of a UK transport corridor.

7.2 Objective 2

This objective was chiefly addressed by the testaarkment study. Here, a proof of
concept study was carried out to test the abilithe techniques identified in

objective 1 for characterising soil moisture inoairolled environment using ground
based sensors. This study could be divided intodistinct parts: terrain analysis using
terrestrial laser scanning and the analysis of tedige reflectance using a field
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spectrometer. Varying success was found with thraiteanalysis work. Although
important findings were made, which helped to infadhe implementation of these
methods to the transport corridor scale, the poaretations found with observed soil
moisture meant that claims made did not have mtattstical backing. This meant that
many of the methods had to be evaluated once maré&ansport corridor scale. The
vegetation reflectance work, however, revealed rstatstically significant findings
meaning conclusions could be drawn with more camfaz. The key findings from both

experiments are summarised below.

7.2.1 Terrain analysis

Generally, poor correlations were found betweertéh@in analysis metrics and
observed soil moisture. Despite this, importarddes had been made concerning their
suitability for being scaled up to a transport whor:

1. Validating soil moisture measurements must be takeimg wet conditions to
maximise the degree of topographic organisatiomadahition, sufficient time
needs to be given after a rainfall event beforkecthg measurements to give
moisture enough time to become spatially organised.

2. The terrain analysis calculations, particularly TWere sensitive to DEM
interpolation method. This study found that the thiiate spline interpolation
method called AnuDEM (Hutchinson, 2009) providdok#ter characterisation
of soil moisture distribution than kriging.

3. The terrain analysis calculations were also founkle sensitive to DEM grid
resolution. A spatial resolution of 1 m was fouade sufficient for taking into
account fine scale topographic features such aegh@mbankment panel
membranes.

4. Improvements could be made to the prediction dfreoisture using the terrain
analysis metrics by incorporating the calculatibm@/| with potential solar
radiation using stepwise regressiorf (R0.26).

5. A locally fitted model using GWR is better suiteddescribing the relationship
between the terrain analysis metrics and soil masthan global regression,
resulting in an improved in correlation coefficidrdm 0.26 (global regression)
to 0.56 (GWR). This improvement was mainly a restithe spatially variable
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relationship between potential solar radiation abslerved soil moisture due to
the predominantly north and south facing slope etspe

This study suggests that if the above criteriaf@lfewed, an improved characterisation
of soil moisture can be made using digital elevatata. Although this study has
focussed on the use of high spatial resolution DENE same methodology is
transferable at broader scales, outside the coat@sdansport corridor environments.
Examples were given in Chapter 2 of this thesisreslveoad scale DEMs have been
used as an input to a range of hydrological angesttability studies (Baum et al.,
2005; Gritzner et al., 2001; Pack et al., 1998k Tihdings made in this study are likely

to have implications for such studies, particulaviyere the availability of free

elevation data is increasing (for exampttp://edc2.usgs.gov/geodata/index.papd

spaceborne lidar campaigns are reaching near gtobalage (Rosette et al., 2008).

7.2.2 Vegetation reflectance

The aim of this experiment was to test the abdityhe spectral analysis techniques
identified in objective 1 to predict changes inl sooisture. Artificial soil moisture
change was successfully induced through a periwditing of a small plot on the test
embankment. Despite this, there was no obviousgghamthe vegetation spectra in
response to these changes. In contrast, many gptwtral analysis techniques
(derivative stress ratio, Lagrangian and lineagrpblated red edge position analysis,
NDVI) demonstrated good correlations with obserseitl moisture (R between 0.57
and 0.66). Additionally, the techniques applied#®SI| simulated spectra showed
similar correlations with observed soil moisturé ¢R0.57 to 0.68). This was an
important finding as it demonstrated the poteritakcaling these techniques up to an
airborne sensor and, therefore, for applicatiore&b world transport corridors.

The derivative ratio uses vegetation reflectaradaes taken at specific
wavelengths in order to represent the double-peatufe indicative of vegetation stress
(Smith et al., 2004b; Zarco-Tejada et al., 2008)e Wavelengths used in this study,
702 nm and 725 nm were taken from Smith et al. 4BD@ut were developed for
identifying a different source of plant stress gsilifferent vegetation types to those
used in this study. This study has shown thatgpexific stress ratio can also be used to
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characterise changes in soil moisture over thetagiga on the test embankment &
0.61). In addition, this ratio was also tested gsuavelengths centred on the default
band position of the CASI sensor, 700 nm and 728Awmain, good results were found
(R? of 0.66) indicating this technique can potentidié/scaled up to an airborne sensor.
These findings are promising for the developmera ohiversal stress ratio although
future work may help to further test the robustredsis ratio over a range vegetation
types and sources of plant stress.

The novelty in using the spectral analysis techesgs that many have not been
studied with direct reference to changes in soilstooe. Despite this, the techniques
themselves are not new. In an attempt to furthiéf éljective 2 and fully test the
potential for using the spectral reflectance ofetatjon to characterise soil moisture, a
new technique was developed based on PLS regressidelling. It is generally
accepted that spectral reflectance measuremenitddbe linearised using the
Logi0o(1/R) transformation prior to PLS regression (Reew®09). However, this study
found that this suppressed the signal from thearetinear infrared regions of the
spectrum, which are indicative of vegetation.

An alternative transformation was explored usirgydirivative of the spectra
following Nees et al. (2002). This maximised thenaigfrom the red and near infrared
regions of spectrum, as well as suppressing theabr noisy bands in the blue region.
The resulting PLS regression model demonstratéagsfit with observed soill
moisture and was shown to be stable under crogatiah, with an Rof 0.72.

Although this model can only be applicable to tlegetation found on the test
embankment, the results show great potential fmgusuch a technique. Furthermore,
this model could have a significant bearing for ermdhighways earthworks, as they
tend to be seeded with the same mix of grassewaditbwers that were used on the

test embankment (Glendinning et al., 2009).

7.3 Objective 3

The earthwork scale study sought to achieve obe&iby providing a proof of concept
for the techniques identified for objective 1. iy so, this helped to set out optimal
methods for applying the techniques to airborneoteiy sensed dataset for a transport
corridor. In addition, there were some techniqies tould not be applied to the test
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embankment, notably, mapping Ellenberg biologindigator values. Therefore, the
reliability of their application could only be baken previous studies and have been
tested for the first time in the context of trangmorridor environments here. The key
findings made when achieving this objective are manised below.

Similar to the test embankment study, the teraaialysis metrics were found to
be sensitive to DEM interpolation. The AnuDEM ragtiagain proved to be the best
interpolation method for representing moistureribstion using TWI. This is an
important finding, particularly where previous stg] such as Schmidt and Persson
(2003), have used other methods (kriging) to irdkxie a DEM for the calculation of
TWI.

The correlation coefficient between TWI and obsdrsoil moisture could be
improved by expressing the TWI as the natural ltigar (from 0.23 to 0.33). This
accounted for the non linear increase in soil mogstiown earthwork slopes. Although
correlations between observed soil moisture andettiain metrics, TWI (expressed as
the natural logarithm) and potential solar radiativere poor (Rof 0.33 and 0.27
respectively), a reasonable correlation could b@dowvhen the two were integrated
using stepwise regression%& 0.65). This finding implies that other studisach as
Tenenbaum et al. (2006), could have improved gsimations of soil moisture
distribution by incorporating a calculation of poti@l solar radiation.

The relationship between soil moisture and theieicalculations could be
further improved by using a locally fitted regressmodel. GWR using the natural
logarithm of TWI and potential solar radiation puedd a correlation coefficient of
0.76. Similar to the analysis undertaken at theaedankment (Section 7.2.1), this was
because the relationship between potential sothatian and soil moisture distribution
varied significantly over space, a result of thetim@and south facing earthwork slopes.

The observed soil moisture measurements useddaimgy comparisons with the
remotely sensed metrics were found to be highliabée over space. Specifically, soll
moisture was shown to increase non linearly dowtheark slopes, similar to the
findings made in the test embankment study (Segtiadrl). However, some slope
stability models characterise soil moisture asglsivalue for an entire slope. This
generalisation is likely to have implications oc@@te modelling of the internal

structure of earthworks. In addition, observed sgseabundance within the transport
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corridor indicated a heterogeneous vegetation caitbra mixture of grasses,
agricultural weeds, wildflowers, trees and shritbgsting slope stability models tend to
characterise slope vegetation as a single coveamntherefore inadequate for
application in transport corridor environments.

Ellenberg indicator values for soil moisture cannbapped in transport corridor
environments using airborne CASI data. This isfitts¢ reported attempt to do so for
values extended for the UK by Hill et al. (2000y. ilBapping Ellenberg values using
imaging spectroscopy this study found that the;bdgR) transformation advocated by
spectro-chemical studies (Reeves, 2009) is inadedoaapplication in multivariate
vegetation spectral reflectance analysis. Thisystulvises the use of the derivative of
the spectra which provides a transformation rouitia¢ accentuates the red and near
infrared and suppresses the typically noisy blggores of the spectrum. Subsequent
mapping of the Ellenberg values showed that hidhegcoincided with the distribution
of hydrophilic (water loving) vegetation types. $luould be an important finding for
network operators as earthwork inspectors are redjto identify such species as
indicators of water ingress into earthworks fromrses such as leaking ponds or water
pipes (Perry et al., 2003b) which may not be datdetusing the terrain analysis
metrics.

As discussed in Section 6.3.3 the mapping of Bleg indicator values has the
potential to benefit applications outside the crnhtd slope stability studies. This is
largely due to the fact that Ellenberg values ptevan indication of soil nitrogen
content, pH, soil chloride concentration, lightireg, temperature, continentally, as
well as soil moisture (Schaffers and Sykora, 20B@pwledge of the distribution of
these variables could be significant for a rangapglications, particularly in the
agricultural sector (Knops and Tilman, 2000) andeweesources (Kang and Lin, 2007,
Alexander et al., 2000).

7.4 Objective 4

The work carried out in order to achieve objecB8w@emonstrated that the individual
remotely sensed metrics, potential solar radiafléfl) and mapped Ellenberg values,
were poor predictors of soil moisture with correlatcoefficients below 0.35. This was
because the information provided by the individuatrics were insufficient for
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describing the complex nature of soil moistureribstion. Therefore, objective 4 was
set out to provide a more informed characterisatifosoil moisture by incorporating
these metrics. The method for incorporating thes&ios was stepwise regression,
providing a simple model that can be applied oetsie model calibration area, as well
as ensuring the predicting variables used in théahare statistically significant.

Best results were found using a stepwise regnessmdel incorporating TWI,
potential solar radiation and mapped Ellenbergeslproducing a correlation
coefficient of 0.67. The results of this model destoated the influence of potential
solar radiation with an increase in soil moistusatent predicted for the north facing
slopes. The influence of TWI indicated soil moisttw concentrate towards the toe of
earthwork slopes. Perhaps more significantly, thd &lso showed areas of
topographic convergence where moisture is predictedntribute to cutting
earthworks at specific points from neighbourindd$e In terms of slope stability
analysis, this is an important finding as studiagehnoted the coincidence between
areas prone to slope instability and areas of tgpigc convergence (Pack et al., 1998).

The influence from mapped Ellenberg values wasersabtle. For example,
there was a coincidence between an increase ima@assoil moisture content and the
abundance of hydrophilic vegetation (Section A8hen this metric was taken out of
the integrated model, leaving just the terrain ggialmetrics, this information was lost.
Despite this, the improvement in correlation cagdint from 0.65 to 0.67 showed that
the inclusion of mapped Ellenberg values only sligimproved the overall prediction
of soil moisture. Therefore, a reasonable charsetigon of soil moisture can be made
using just the terrain analysis calculations. Thezdeulations are applied to just one
source of remotely sensed data, lidar, which tloeedias greater potential for becoming
operational due to reduced data acquisition costgaatively little field work.
However, the subtle variations in soil moisturedicted by the Ellenberg values may
represent areas of water inundation from sourcedetectable by the terrain analysis
metrics, such as leaking pipes (Section 6.2.3).

The overall aim of objective 4 by providing anegtated model to characterise
soil moisture was achieved using stepwise regresgie discussed, the relative success
of this procedure is supported by a reasonablespondence between the model and

observed soil moisture. Stepwise regression was lbseause it only takes into account
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metrics that make a significant improvement todbeelation with observed values
without introducing many additional parameterss klso quick to compute and can be
applied as an equation to remotely sensed metgesuoned outside the model training
area. However, in order to further fulfil this obje different modelling procedures
could have been explored. For example, stepwisessmn does not provide a
thorough measure of model error. As discussed atic®e3.3.3, this could have
particular bearing in the present study as erropggation might occur where the
remotely sensed metrics with their own levels obeare integrated, therefore
compounding subsequent errors. A Bayesian appitoatciodelling has been discussed
as a method to potentially overcome these issuésoégh this approach may be
interesting to explore, this method was not thohdygxplored here as this type of
conditional modelling has the tendency to be lessii@ate locally (Dungan, 1999)
which could be significant when concerned with mponent that is highly variable
over space such as soil moisture content.

Other modelling procedures cited in Section 3i8cBide neural networks. This
type of modelling may provide a more intelligentlanformed model of soil moisture
distribution and may well prove valuable to explore¢he future. However, such an
approach was not considered as although fast catiputimes are expected for the
final model, training times can be very lengthy (N&, 2004) which may be
problematic when dealing with high spatial resantdata over large areas. In addition,
models can become ‘over trained’ losing their dif@ness over areas outside the

training area (Mather, 2004).

7.5 Future research

The results presented in this thesis have idedtdiaumber of directions for future
research. The following provides a summary of thesepoints.

* Observed soil moisture contents were found to bblhivariable over space.
Specifically, soil moisture was shown to increase hnearly down earthwork
slopes, similar to the findings made in the tesb@ankment study (Section
7.2.1). However, some slope stability models ottarese soil moisture as a

single value for an entire slope. This generalisais likely to have implications
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on accurate modelling of the internal structureafthworks and should be
addressed in future work.

Measurements of soil moisture content using thearseil moisture probe over
fly ash and ballast that has proven to be problem@&titure work should
consider the reliability of this piece of equipmgarticularly in a transport
corridor environment.

A reasonable characterisation of soil moisturelmmade (Rof 0.66) over
controlled plots on the test embankment using déxig stress ratios developed
by Smith et al. (2004b). Future work should be a&d at further testing the
robustness of this technique over different vegataand plant stress types.

A number of spectral analysis studies have empldlyedog(1/R)
transformation (Schmidtlein, 2005; Smith et al.020Smith et al., 2002). This
study has found mixed results when applying tlaagformation technique. This
uncertainty has been little explored in vegetaipactroscopy and shows that
such transformations, which were designed in spaatiemical studies (Reeves,
2009; Nees et al., 2002), should not necessaribppéed in vegetation analysis.
This raises the need for a study to assess thectropdifferent transformation
techniques on the hyperspectral reflectance asabysiegetation, similar to the
review conducted by Reeves (2009) for chemicaltspsmopy.

In addition to soil moisture, Ellenberg values gisovide an indication of light,
acidity, nitrogen content, and salinity. If theseameters were mapped with
similar success to the moisture values in thisysttigen it would provide a
significant tool for a range of land managementiappons. One such
application is in water resources, where the dereknt of the EU Water
Framework Directive (Chave, 2001) require riveribasgo be characterised.
Mapping Ellenberg values using imaging spectrosamud provide an
invaluable tool for providing such characterisasi@ver wide areas.

This study mapped Ellenberg values using airborA81l@magery. The
acquisition of such data can be costly but sagtdiliirne sensors, such as
WorldView 2 and Rapid Eye, could provide a cheagt@rnative, at the expense
of a coarser spatial resolution (1.8 m and 6.5 speetively).
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The integrated model developed in this study shawadonable correspondence
with observed soil moisture tRf 0.67). This model was created using stepwise
regression creating a simple model that could Ipdiegto areas outside the
model training area. However, future work shouldsider different modelling
strategies to characterise soil moisture usinge¢h®tely sensed metrics to give,
for example, a better measure of the model erRneposed modelling

directions include conditional modelling using Bay theory and neural
networks.

A reasonable characterisation of soil moisturedimasvn to be possible using
the terrain analysis calculations?(6 0.65) which are applied to just one source
of remotely sensed data. This is an attractive gsitjon considering the costs
associated with airborne data collection. Howether information provided by
mapping Ellenberg values may provide crucial infation regarding sources of
increased soil moisture not detectable by terraalysis. Potential users of the
methods presented in this thesis must carefullgiden this point before
discounting the collection of CASI imagery and spe@bundance data for the
mapping of Ellenberg values. Future work could helpeinforce these claims
by examining imagery over areas of known leaksjlamo Pickerill and

Malthus (1998).

Mapping Ellenberg indicator values was limited tm#orested areas. This is
restricting an otherwise potentially important teicjue for a multitude of
applications and should therefore be given camdokideration in a more
detailed study using canopy radiative transfer mimggeto help improve the
signal over complex vegetation canopy structures.

Network Rail have expressed an interest in usingp®ed Ellenberg indicator
values for identifying blocked or defective drairaghe methods developed in
this study can be used to implement this proceduee entire transport
networks. This could be achieved by increasingilmaber of species
abundance observations over the whole range dimxigegetation stand types
and linking them to airborne hyperspectral imagesing PLS regression. To
ensure the success of this method, however, theefwtork outlined in the

previous point should be addressed.
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* This study contributes to the wider ‘Remote assgpeéction for transport
corridor environments’ project. Presently, soil store is quantified using a
TWI calculation applied to a DEM interpolated usiiyV. The results of this
study have shown that the calculation of TWI camniygroved by applying it to
a DEM interpolated using the AunDEM routine andelxpressing the metric as
the natural logarithm. More significantly, this dhas shown that vast
improvements can be made to the accuracy of claisiog this parameter if an
integrated model, using a TWI, potential solar atidn, and mapped Ellenberg
values, is used. Future work in this project shahktefore be directed at
utilising the integrated model designed in thiglgtto refine the weighted
assessment of risk.

7.6 Concluding statement

Many of the techniques used in this study have Ipeeviously developed. The novelty
here is that often these techniques have not lessssed in the context of
characterising soil moisture and very few haveudised the applicability to transport
corridor environments. In addition, this study kaamined multiple sources of
remotely sensed data and thought about novel wagssptoiting the data provided by
these technologies. In carrying out this work #gtigly has provided a methodology for
characterising soil moisture with reasonable aayueh a high spatial resolution over
vegetated areas, two assets that have so far ellnd@dmote sensing community.

As discussed throughout this thesis, soil moissigpatially and temporally very
variable and is therefore difficult to model. Asesult, it is important to develop models
that are informed by a number of sources to hglpesent the numerous processes that
govern the distribution of soil moisture. In lighitthis, a simple statistical model has
been developed in this study to integrate rematehsed metrics to provide an
improved characterisation of soil moisture. The bagis now is to employ this model
in the wider ‘Remote asset inspection for transportidor environments’ project that
this study contributes to so that improved assestsvd instability risk can be made.

In Section 6.3 reference was made to a quote Waiker et al. (2004) stating
the importance of measuring. As a result, the noghiteveloped in this study have the

potential to benefit a number of different applicas including mapping malarial
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mosquito habitats, precision farming, and mappperees richness. Events during the
last winter (2009/10) have reiterated the imporganicmeasuring soil moisture in the
context of slope stability analysis in UK transpaotridors. Specifically, in November
2009 following a period of heavy rainfall there wer number of reports of landslides
causing disruption, delays and even a derailmenaoinus UK road and railway
networks (BBC, 2009a; 2009b; 2009c). Fortunatelyatty was hurt during these
events and the only damage caused was economie\t¢oyithis reinforces the
importance of this study to help target areas ¢émital instability and prevent these

events occurring.

221



References

Adams, M. L., Philpot, W. D. and Norvell, W. A. (Q9) 'Yellowness index: an
application of spectral second derivatives to estachlorosis of leaves in
stressed vegetatiomiternational Journal of Remote Sensig@, (18), pp.
3663-3675.

Alexander, R. B., Smith, R. A. and Schwarz, G.ZB0Q) 'Effect of stream channel size
on the delivery of nitrogen to the Gulf of MexicNature,403, (6771), pp. 758-
761.

Asner, G. P. (1998) 'Biophysical and Biochemicali®es of Variability in Canopy
Reflectance’Remote Sensing of Environmegt, pp. 234-253.

Baghdadi, N., Aubert, M., Cerdan, O., FranchisteduyViel, C., Martin, E., Zribi, M.
and Desprats, J. F. (2007) 'Operational mappirgpibimoisture using synthetic
aperture radar data: application to the Touch B@siance)'Sensorsy, pp.
2458-2483.

Baghdadi, N., Holah, N. and Zribi, M. (2006) 'Smibisture estimation using multi-
incidence and multi-polarization ASAR dataternational Journal of Remote
Sensing27, (10), pp. 1907-1920.

Bannari, A., Morin, D. and Bonn, F. (1995) 'A rewief vegetation indicesRemote
Sensing Review$3, pp. 95-120.

Baranoski, G. V. G. and Rokne, J. G. (2005) 'A pcatapproach for estimating the red
edge position of plant leaf reflectandaternational Journal of Remote Sensing,
26, (3), pp. 503-521.

Bardossy, A. and Lehmann, W. (1998) 'Spatial distion of soil moisture in a small
catchment. Part 1: geostatistical analyssurnal of Hydrology206, (1-2), pp.
1-15.

Barling, R. D., Moore, I. D. and Grayson, R. B. 949'A quasi-dynamic wetness index
for characterizing the spatial distribution of zemd surface saturation and soil
water content\Water Resources Resear@&0, (4), pp. 1029-1044.

Bateson, C. A., Asner, G. P. and Wessman, C. AQREndmember bundles: a new
approach to incorporating endmember variability isppectral mixture analysis',
IEEE Transactions on Geoscience and Remote Ser@&n(), pp. 1083-1094.

Baum, R. L., Coe, J. A., Godt, J. W., Harp, E.Rejd, M. E., Savage, W. Z., Schulz,
W. H., Brien, D. L., Chleborad, A. F., McKennaPJ.and Michael, J. A. (2005)
'Regional landslide-hazard assessment for Sedttshington, USA',
Landslides?, (4), pp. 266-279.

222



BBC. (2007) 'Residents trapped by flash flood',|[#]. Available at:
http://news.bbc.co.uk/1/hi/england/cumbria/6907%88 (Accessed: 08/10/09).

BBC. (2009a) 'Landslide derails passenger trabmlipe]. Available at:
http://news.bbc.co.uk/1/hi/england/dorset/8386 364 (Accessed: 04/06/10).

BBC. (2009b) 'Landslip prevention work starts 'n[i@e]. Available at:
http://news.bbc.co.uk/1/hi/england/gloucestersB885646.stn{Accessed:
04/06/10).

BBC. (2009c) Trains suspended due to landsligiif@]. Available at:
http://news.bbc.co.uk/1/hi/england/essex/8322181(Accessed: 04/06/10).

Begueria, S. (2006) 'Changes in land cover andoshéndslide activity: A case study
in the Spanish Pyrenee&eomorphology74, (1-4), pp. 169-206.

Ben-Dor, E., Patkin, K., Banin, A. and Karniele,(002) 'Mapping of several soil
properties using DAIS-7915 hyperspectral scanngr-da case study over
clayey soils in Israelinternational Journal of Remote Sensi@g, (6), pp.
1043-1062.

Beven, K. J. (1997) 'TOPMODEL.: a critiquEfydrological Processed4,1, (3), pp.
1069-1085.

Beven, K. J. and Kirkby, M. J. (1979) 'A Physicallgsed, Variable Contributing Area
Model of Basin Hydrology Hydrological Sciences Bulleti24, (1), pp. 43-69.

BIONICS (2009)Biological and engineering impacts of climate charmg slopes
Available at:www.ncl.ac.uk/bionic§Accessed: 27/01/09).

Bishop, T. F. A. and McBratney, A. B. (2002) 'CiegtField Extent Digital Elevation
Models for Precision AgricultureRrecision Agriculture3, (1), pp. 37-46.

Boegh, E., Soegaard, H., Broge, N., Hasager, Clddisen, N. O., Schelde, K. and
Thomsen, A. (2002) 'Airborne multispectral datadaantifying leaf area index,
nitrogen concentration, and photosynthetic efficiem agriculture’Remote
Sensing of Environmer8]l, (2-3), pp. 179-193.

Bogh, C., Lindsay, S. W., Clarke, S. E., Dean,Jawara, M., Pinder, M. and Thomas,
C. J. (2007) 'High spatial resolution mapping ofana transmission risk in the
Gambia, West Africa, using Landsat TM satellite gegy', The American
Journal of Tropical Medicine and Hygien#, (5), pp. 875-881.

Borga, M., Fontana, G. D. and Cazorzi, F. (2002plxsis of topographic and climatic

control on rainfall-triggered shallow landslidinging a quasi-dynamic wetness
index’,Journal of Hydrology268, (1-4), pp. 56-71.

223



Boughton, W. (2005) 'Catchment water balance mouagih Australia 1960-2004",
Agricultural Water Management /1, (2), pp. 91-116.

Brown, K. M., Duncan, A., O'Dwyer, C., Davison, Blogarth, P., Butler, D. and
Sampson, E. (200emote Sensing and Photogrammetry Society Annual
General MeetingNottingham, UK, 10-12 September 2003.

Brunsdon, C., Fotheringham, S. and Charlton, M989Geographically weighted
regression - modelling spatial non-stationarifyie Statistician47, (3), pp. 431-
443.

Burke, E. J., Gurney, R. J., Simmonds, L. P. aided; P. E. (1998) 'Using modelling
approach to predict soil hydraulic properties frpassive microwave
measurementdiEE Transactions on Geoscience and Remote Ser3én(),
pp. 454-462.

CAMO (2010)Multivariate Analysis Available atwww.camo.con(Accessed:
18/01/10).

Campbell, J. B. (200@ptroduction to Remote Sensingondon: Taylor and Francis.

Carrascal, L. M., Galvan, I. and Gordo, O. (20@@tial least squares regression as an
alternative to current regression methods usedoiogy’,Oikos, 118, (5), pp.
681-690.

Carter, G. A. (1993) 'Responses of leaf spectfdatance to plant stres&merican
Journal of Botany80, (3), pp. 239-243.

Castleman, K. R. (199®igital Image Processind.ondon: Prentice Hall.

Cescatti, A. (1997) 'Modelling the radiative traarsih discontinuous canopies of
asymmetric crowns. |. Model structure and algorghiacological Modelling,
101, (2-3), pp. 263-274.

Chang, H.-C., Ge, L., Rizos, C. and Milne, T. (208lidation of DEMs derived from
radar interferometry, airborne laser scanning dmatqggrammetry by using
GPS-RTK, IEEE International Geoscience and Remote SerSymgposium.
Anchorage, Alaska, 20-24 Septemhsy. 2815-2818

Chaubey, I., Cotter, A. S., Costello, T. A. andi®aos, T. S. (2005) 'Effect of DEM data
resolution on SWAT output uncertaintifydrological Processed,9, pp. 621-
628.

Chave, P. (2001)he EU Water Framework Directive: An Introducticcmndon: IWA
Publishing.

Cho, M. A. and Skidmore, A. K. (2006) 'A new tedum for extracting the red edge

position from hyperspectral data: The linear extgtafpon method'Remote
Sensing of Environmerit01, (2), pp. 181-193.

224



Clevers, J. G. P. W,, Kooistra, L. and Salas, H..A2004) 'Study of heavy metal
contamination in river floodplains using the redyegbosition in spectroscopic
data',International Journal of Remote Sensi§, (19), pp. 3883 - 3895.

Coallins, B. D. and Znidarcic, D. (2004) 'Stabiliyalyses of Rainfall Induced
Landslides'Journal of Geotechnical and Geoenvironmental Engjimg, 130,
(4), pp. 362-372.

Cosh, M. H., Jackson, T. J., Bindlish, R., Famiglid. S. and Ryu, D. (2005)
‘Calibration of an impedance probe for estimatibauwface soil water content
over large regionslournal of Hydrology311, (1-4), pp. 49-58.

Cracknell, A. P. and Hayes, L. (200@jroduction to Remote Sensirigpndon: Taylor
& Francis.

Crosson, W. L., Limaye, A. S. and Laymon, C. A.q8D'Parameter sensitivity of soil
moisture retrievals from airborne C- and X-bandoatkter measurements in
SMEX02',Geoscience and Remote Sensing, IEEE Transactiq8p(i2), pp.
2842-2853.

Crow, W. T., Kustas, W. P. and Prueger, J. H. (20@8nitoring root-zone soll
moisture through the assimilation of a thermal rems@nsing-based soil
moisture proxy into a water balance mode&mote Sensing of Environment,
112, (4), pp. 1268-1281.

Curran, P. J. (1988) 'The semivariogram in remetesisg: An introductionRemote
Sensing of Environmer4, (3), pp. 493-507.

Curran, P. J., Dungan, J. L. and Peterson, D.Q@Q0X? 'Estimating the foliar
biochemical concentration of leaves with refleceaapectrometry: Testing the
Kokaly and Clark methodologie®emote Sensing of Environmerg, (3), pp.
349-359.

Cutler, M. E. J. and Curran, P. J. (1996) 'An obaton of shifts in the position of the
red edge at different spatial resolutioRSS96: Remote Sensing Science and
Industry, pp. 290-297.

Dai, F. C., Lee, C. F. and Ngai, Y. Y. (2002) 'Lalde risk assessment and
management: an overvielgngineering Geologyg4, (1), pp. 65-87.

Darvishzadeh, R., Skidmore, A., Schlerf, M. andb&tiger, C. (2008) 'Inversion of a
radiative transfer model for estimating vegetatiéa and chlorophyll in a
heterogeneous grasslarf@émote Sensing of Environmetit?2, (5), pp. 2592-
2604.

Davies, A. M. C. (2001) 'Uncertainty testing in Piggression'Spectroscopy Europe,
13, (2), pp. 16-109.

225



Dawson, T. P. and Curran, P. J. (1998) 'A new teglenfor interpolating the
reflectance red edge position, Technical nétégrnational Journal of Remote
Sensingl9, (11), pp. 2133-2139.

Desmet, P. J. J. (1997) 'Effects of InterpolatioroEs on the Analysis of DEMd<arth
Surface Processes and Landfori@3, (6), pp. 563-580.

Diekmann, M. (2003) 'Species indicator values asrgortant tool in applied plant
ecology — a review Basic and Applied Ecology, (6), pp. 493-506.

Diekmann, M. and Falkengren-Grerup, U. (1998) 'AvN&pecies Index for Forest
Vascular Plants: Development of Functional IndiBased on Mineralization
Rates of Various Forms of Soil Nitrogedgurnal of Ecology86, (2), pp. 269-
283.

Disney, M. |, Lewis, P. and North, P. R. J. (2000pnte Carlo ray tracing in optical
canopy reflectance modellinfRemote Sensing Revieds, (2), pp. 163 - 196.

Drinkwater, M., McMullan, K., Marti, J., Brown, MMartin-Neira, M., Rits, W.,
Ekholm, S., Lemanczyk, J., Kerr, Y., Font, J. ardd®r, M. (2009) 'The SMOS
payload: MIRAS', (Bulletin 137), [Online]. Availablat: (Accessed: 12/02/10).

Du, J., Xie, S., Xu, Y., Xu, C.-y. and Singh, V.(2007) 'Development and testing of a
simple physically-based distributed rainfall-runofbdel for storm runoff
simulation in humid forested basin¥yurnal of Hydrology336, (3-4), pp. 334-
346.

Dungan, J. L. (1999) 'Conditional simulation: Ateahative to estimation for achieving
mapping objectives’, in Stein, A., van der Meeraid Gorte, B.(edSgpatial
Statistics in Remote Sensihgndon: Kluwer Academic Publishers, pp. 135-
152.

Ekstrom, M., Fowler, H. J., Kilsby, C. G. and JaresD. (2005) 'New estimates of
future changes in extreme rainfall across the Uikgusegional climate model
integrations. 2. Future estimates and use in imgtadies 'Journal of
Hydrology, 300, (1-4), pp. 234-251.

Ellenberg, H., Weber, H. E., Duell, R., Wirth, Werner, W. and Paulissen, D. (1991)
'Indicator values of plants in Central Eurof@ripta Geobotanica8, pp. 1-
248.

Ertsen, A. C. D., Alkkemade, J. R. M. and WassenJM1998) 'Calibrating Ellenberg
indicator values for moisture, acidity, nutrientdability and salinity in the
Netherlands Plant Ecology135, (1), pp. 1573-5052.

ESRI (2007aArcGIS 9.2 Desktop HelpAvailable athttp://webhelp.esri.com
(Accessed: 30/03/10).

226



ESRI (2007b)ArcGIS 9.2 Desktop Help: solar radiation analysigiations Available
at:
http://webhelp.esri.com/arcgisdesktop/9.2/indexXfapicName=Solar_radiati
on_analysis_equatiorfdccessed: 08/04/2010).

Ewald, J. (2003) 'The sensitivity of Ellenberg icattior values to the completeness of
vegetation relevésBasic and Applied Ecology, (6), pp. 507-513.

Ewen, J., Parkin, G. and O'Connell, P. E. (200HEBRAN: distribution river basin
flow and transport modelling systendgurnal of Hydrological Engineering,
(3), pp. 250-258.

Famiglietti, J. S., Devereaux, J. A., Laymon, C.Psegaye, T., Houser, P. R., Jackson,
T.J., Graham, S. T., Rodell, M. and van Oeveled, P1999) '‘Ground-based
investigation of soil moisture variability withiemote sensing footprints during
the Southern Great Plains 1997 (SGP97) HydrologyeErment' Water
Resources Researcdp, (6), pp. 1839-1851.

Famiglietti, J. S., Rudnicki, J. W. and Rodell, (#1998) 'Variability in surface moisture
content along a hillslope transect: Rattlesnaké Héxas 'Journal of
Hydrology210, (1-4), pp. 259-281.

Feldmeyer-Christe, E., Ecker, K., Kuchler, M., Gtdf and Waser, L. (2007)
'Improving predictive mapping in Swiss mire ecosyss$ through re-calibration
of indicator valuesApplied Vegetation Scienck), (2), pp. 183-192.

Filella, I. and Penuelas, J. (1994) The red edggitipn and shape as indicators of plant
chlorophyll content, biomass and hydric statutgrnational Journal of Remote
Sensingl5, (7), pp. 1459-1470.

Foody, G. M. (2003) '‘Geographical weighting asréer refinement to regression
modelling: An example focused on the NDVI-rainfalationship' Remote
Sensing of Environmergg, (3), pp. 283-293.

Fotheringham, S., Brunsdon, C. and Charlton, MORGeographically Weighted
Regression: the Analysis of Spatially Varying Refethips.London: John
Wiley & Sons.

Fourie, A. B. (1996) 'Predicting rainfall-inducedge instability',Proceedings from the
Institution of Civil Geotechnical Engineering19, (4), pp. 211-218.

Frank, I. E. and Kowalski, B. R. (1984) 'PredictmiWine Quality and Geographic
Origin from Chemical Measurements by Partial Le&gtrares Regression
Modeling',Analytica Chimica Actal62, pp. 241-251.

Fredlund, D. G. and Xing, A. (1994) 'Equationsttue soil-water characteristic curve’,
Canadian Geotechnical Journdyl, (3), pp. 521-532.

227



FSF. (2008) Personal Communication, NERC Field 8pscopy Facility, Edinburgh,
15th September 2008.

Fu, P. and Rich, P. M. (1999) 'Design and implemgor of the Solar Analyst: an
ArcView extension for modeling solar radiation atdlscape scaledNineteenth
Annual ESRI User Conferencgan Diego, USA, pp. 1-33.

Fu, P. and Rich, P. M. (2002) 'A geometric solaiaaon model with applications in
agriculture and forestryGomputers and Electronics in Agricultui®, (1-3),
pp. 25-35.

Fukuoka, M. (1980) 'Landslides associated withfediinGeotechnical Engineerind.1,
pp. 1-29.

Glendinning, S., Loveridge, F., Starr-Keddle, R.Bansby, M. F. and Hughes, P. N.
(2009) 'Role of vegetation in sustainability ofredtructure slopedroceedings
of the ICE - Engineering Sustainabilii62, (2), pp. 101-110.

Goldberg, D. E. and Miller, T. E. (1990) 'Effectsifferent Resource Additions of
Species Diversity in an Annual Plant CommuniBcplogy,71, (1), pp. 213-
225.

Grayson, R. B., Western, A. W., Chiew, F. H. S. Bimkschl, G. (1997) 'Preferred
states in spatial soil moisture patterns: Local mmal-local controls Water
Resources Researc33, (12), pp. 2897.

Greenwood, J. R. (2006) 'SLIP4EX - A program ottirraslope stability analysis to
include the effects of vegetation, reinforcemertt ydrological changes’,
Geotechnical and Geological Engineeririg, (3), pp. 449-465.

Grime, J. P. (2001plant strategies, vegetation processes, and easystoperties.
Second editionChichester: John Wiley & Sons.

Gritzner, M. L., Marcus, A. W., Aspinall, R. and §lar, S. G. (2001) 'Assessing
landslide potential using GIS, soil wetness modgland topographic attributes,
Payette River, IdahdGeomorphology37, (1-2), pp. 149-165.

Guardian (20037 rain hits landslide after torrential rain Available at:
http://www.guardian.co.uk/environment/2003/jan/0ather.transportintheuk
(Accessed: 18/08/2010).

Gyasi-Agyei, Y., Sibley, J. and Ashwath, N. (20@uiantitative evaluation of
strategies for erosion control on a railway embagkitatter'Hydrological
Processesl5, pp. 3249-3268.

Hall, S. (2009) Personal communication, Networkl Réork, 11/11/09.

228



Hancock, S., Lewis, P., Disney, M. |., Foster, Mduller, J.-P. (2008) 'Assessing the
accuracy of forest height estimation with long pulsaveform lidar through
Monte-Carlo ray tracirigSilviLaser.Edinburgh, UK, September 17-19th, 2008
pp. 199-206.

Haugerud, R. A. and Harding, D. J. (2001) 'Somerélgms for virtual deforestation
(VDF) of LIDAR topographic survey datahternational Archives of
Photogrammetry and Remote SensBwy,(3/W4), pp. 714-719.

Hawley, M. E., Jackson, T. J. and McCuen, R. H88)SSurface soil moisture
variation on small agricultural watershedsurnal of Hydrology62, (1-4), pp.
179-200.

Hill, M. O., Mountford, J. O., Roy, D. B. and Bunde. G. H. (1999ECOFACT 2a
Technical Annex - Ellenberg’s indicator values British Plants Available at:
http://www.ceh.ac.uk/products/publications/untittgdhl (Accessed:
19/07/2010).

Hill, M. O., Roy, D. B., Mountford, J. O. and Bunde. G. H. (2000) 'Extending
Ellenberg's indicator values to a new area: anrdhgoic approach'Journal of
Applied Ecology37, (1), pp. 3-15.

Hodgson, M. E. and Bresnahan, P. (2004) ‘Accurdeyrborne lidar-derived elevation:
empirical assessment and error budgdttogrammetric Engineering and
Remote Sensing, (3), pp. 331-339.

Hollaus, M., Wagner, W. and Kraus, K. (2005) 'Ainbe laser scanning and usefulness
for hydrological models/Advances in Geosciencés,pp. 57-63.

Hollis, G. E. (1988) 'Rain, roads, roofs and runéfydrology in cities'Geography,73,
pp. 9-18.

Huang, Z.-H., Zhou, G.-Y., Zhou, G.-Y., Morris, 3ilberstein, R. and Wang, X. (2005)
‘Terrain analysis and steady-state hydrologicaletimg) of a small catchment
in southern ChinaEcology and Environment4, (5), pp. 700-705.

Huang, Z., Turner, B. J., Dury, S. J., Wallis, l.&Rd Foley, W. J. (2004) 'Estimating
foliage nitrogen concentration from HYMAP data @sgontinuum removal
analysis'Remote Sensing of Environméed, (1-2), pp. 18-29.

Hughes, P. N., Glendinning, S., Toll, D. G., GallipD., Parkin, G. and Mendes, J.
(2009) 'Full-scale testing to assess climate effentembankments’,
Proceedings from the Institution of Civil Enginedfsigineering Sustainability,
162, (2), pp. 67-79.

Hutchinson, M. F. (1989) 'A new procedure for gnigelevation and stream line data

with automatic removal of spurious pit¥qurnal of Hydrology 106, (3-4), pp.
211-232.

229



Hutchinson, M. F. (2008) 'Adding the Z Dimension’,Wilson, J. P. and
Fotheringham, A. S.(ed3he Handbook of Geographic Information Science.
Oxford: Blackwell, pp. 144-168.

Hutchinson, M. F. (2009QNUDEM Version 5.2 Available at:
http://fennerschool.anu.edu.au/publications/sofédaarudem.phpAccessed:
27/07/2009).

Hyde, P., Dubayah, R., Peterson, B., Blair, JHBfton, M., Hunsaker, C., Knox, R.
and Walker, W. (2005) 'Mapping forest structureviddlife habitat analysis
using waveform lidar: Validation of montane ecosyst’',Remote Sensing of
Environment96, (3-4), pp. 427-437.

Isard, S. A. (1986) 'Factors influencing soil morstand plant community distribution
on Niwot Ridge, Front Range, Colorado, U.S.Argctic and Alpine Research,
18, (1), pp. 83-96.

Jackson, T. J., Le Vine, D. M., Hsu, A. Y., Olda&k, Starks, P. J., Swift, C. T., Isham,
J. D. and Haken, M. (1999) 'Soil moisture mappinigegional scale using
passive microwave radiometry: the Southern Greaibh®hydrology
experiment’|EEE Transactions on Geoscience and Remote Ser&sin(h), pp.
2136-2151.

Jackson, T. J., Le Vine, D. M., Swift, C. T., Schlgge, T. J. and Schiebe, F. R. (1995)
‘Large area mapping of soil moisture using the EBpassive microwave
radiometer in Washita'9ZRemote Sensing of Environmestt, (1), pp. 27-37.

Jacquemoud, S., Bacour, C., Poilvé, H. and Frand?, (2000) ‘Comparison of four
radiative transfer models to simulate plant car®peflectance: direct and
inverse mode Remote Sensing of Environmerd, (3), pp. 471-481.

Jacquemoud, S., Verhoef, W., Baret, F., BacourZ&co-Tejada, P. J., Asner, G. P.,
Francois, C. and Ustin, S. L. (2009) 'PROSPECT H.SAodels: A review of
use for vegetation characterizatidRémote Sensing of Environmetit3,
(Supplement 1), pp. S56-S66.

Johnson, K. A. and Sitar, N. (1990) 'Hydrologic dihions leading to debris-flow
initiation', Canadian Geotechnical Journ&y, (6), pp. 789-801.

Kang, S. and Lin, H. (2007) 'Wavelet analysis afimjogical and water quality signals
in an agricultural watershed'ournal of Hydrology338, (1-2), pp. 1-14.

Karam, M. A., Fung, A. K., Lang, R. H. and ChauhidnS. (1992) 'A microwave

scattering model for layered vegetatidBEE Transactions on Geoscience and
Remote Sensing0, (4), pp. 767-784.

230



Kempeneers, P., De Backer, S., Debruyn, W., Coppiand Scheunders, P. (2005)
'‘Generic wavelet-based hyperspectral classificajmplied to vegetation stress
detection'|JEEE Transactions on Geoscience and Remote Se#3ir(@§), pp.
610-614.

Kent, M. and Coker, P. (199¥egetation Description and Analys@hichester: John
Wiley & Sons.

Kerr, Y. (2007) 'Soil moisture from space: Where ae?' Hydrogeology Journall5,
(1), pp. 117-120.

Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Mauzzi, J., Font, J. and Berger, M.
(2001) 'Soil moisture retrieval from space: thel $tmisture and Ocean Salinity
(SMOS) mission'|EEE Transactions on Geoscience and Remote Serdéng,
(8), pp. 1729-1735.

Kilsby, C., Glendinning, S., Hughes, P. N., Parki,and Bransby, M. F. (2009)
‘Climate-change impacts on long-term performancgdages'Engineering
Sustainability,162, (2), pp. 59-66.

Kim, S. and Jung, S. (2003) 'Digital terrain aneyd the dynamic wetness pattern on
the Sulmachun watershe®iffuse Pollution Conferenc®ublin, Ireland, pp. 1-
6.

Knops, J. M. H. and Tilman, D. (2000) 'Dynamicssoil nitrogen and carbon
accumulation for 61 years after agricultural abammdent',Ecology,81, (1), pp.
88-98.

Kokaly, R. F. and Clark, R. N. (1999) 'Spectroscagetermination of leaf biochemistry
using band-depth analysis of absorption featurdsstapwise multiple linear
regression'Remote Sensing of Environmesit, (3), pp. 267-287.

Kumar, L., Schmidt, K., Dury, S. J. and Skidmore KA (2006) 'Imaging spectroscopy
and vegetation science’, in van der Meer, F. andlothg, S.(eddinaging
Spectroscopy: Basic Principals and Prospective &ppbns.Dordrecht,
Netherlands: Springer, pp. 111-154.

Kuria, D. N., Koike, T., Hui, L., Tsutsui, H. and&, T. (2007) 'Field-Supported
Verification and Improvement of a Passive Microw&teface Emission Model
for Rough, Bare, and Wet Soil Surfaces by IncorfiogaShadowing Effects’,
IEEE Transactions on Geoscience and Remote Sedsin@h), pp. 1207-1216.

Kwak, Y., Jang, Y. and Kang, I. (2006) 'Web GIS agement and risk evaluation of a

road slope using a terrestrial LIDARYeb and wireless geographical
information system8833, pp. 256-266.

231



Le Hegarat-Mascle, S., Zribi, M., Alem, F., Weis8eand Loumagne, C. (2002) 'Soil
moisture estimation from ERS/SAR data: toward agrajonal methodology’,
IEEE Transactions on Geoscience and Remote Sed€in{fl2), pp. 2647-2658.

Lewis, M. M. (1998) 'Numeric classification as ad # spectral mapping of vegetation
communities'Plant Ecology 136, (2), pp. 133-149.

Li, L., Ustin, S. L. and Lay, M. (2005) 'Applicahmf AVIRIS data in detection of oil-
induced vegetation stress and cover change atdimrhiw Mexico'Remote
Sensing of Environmerf4, (1), pp. 1-16.

Lihua, Z., Minzan, L., Jianying, S., Ning, T. andi& Z. (2005) 'Estimation of soil
moisture with aerial images and hyperspectral' dEE&E International
Geoscience & Remote Sensing SympoSieaul, Korea, 25-29 Julgp. 4516-
45109.

Lillesand, T. M. and Kiefer, R. W. (200Remote sensing and image interpretation.
Chichester: John Wiley & Sons.

Lim, M., Mills, J. P., Barr, S. L., Barber, D., @Gl@inning, S., Parkin, G., Hall, J. and
Clarke, B. (2007) 'High resolution earth imaging ti@nsport corridor slope
stability risk analysisinternational Archives of Photogrammetry, Remote
Sensing and Spatial Information Scien@&(1/W51), pp. 1-6.

Lleti, R., Ortiz, M. C., Sarabia, L. A. and Sanchigz S. (2004) 'Selecting variables for
k-means cluster analysis by using a genetic algorihat optimises the
silhouettes'Analytica Chimica Acta515, (1), pp. 87-100.

Lloyd, D. M., Anderson, M. G., Hussein, A. N., Jdathan, A. and Wilkinson, P. L.
(2001) 'Preventing landslides on roads and railwaysew risk-based approach’,
Proceedings of ICE Civil Engineering44, (3), pp. 129-134.

Lobell, D. B. and Asner, G. P. (2002) 'Moistureeett of soil reflectance5oil Science
Society of America Journadg, (3), pp. 722-727.

Lu, S., Ren, T., Gong, Y. and Horton, R. (2007) itaproved model for predicting soil
thermal conductivity from water content at room pamature'Soil Science
Society of America Journall, (1), pp. 8-14.

Luoto, M., Toivonen, T. and Heikkinen, R. (2002)@&iction of total and rare plant
species richness in agricultural landscapes fraellgée images and topographic
data',Landscape Ecology,7, (3), pp. 195-217.

Malthus, T. J. and Madeira, A. C. (1993) 'High teton spectroradiometry: spectral

reflectance of field bean leaves infected by Barigbae'Remote Sensing of
Environment45, (1), pp. 107-116.

232



Manning, L. J., Hall, J. W., Kilsby, C. G., Glending, S. and Andrerson, M. G. (2008)
‘Spatial analysis of the reliability of transpoetworks subject to rainfall-
induced landslidesHydrological Processe®2, pp. 3349-3360.

Martens, H. and Martens, M. (2000) 'Modified Jacikfé estimation of parameter
uncertainty in bilinear modelling by partial leasjuares regression (PLSR)’,
Food Quality and Preferencé], (1-2), pp. 5-16.

Massant, W., Godefroid, S. and Koedam, N. (200Rjs¥€ring of plant life strategies
on meso-scaleRlant Ecology205, (1), pp. 47-56.

Mather, P. M. (2004 omputer processing of remotely-sensed images — an
introduction. Third editionChird ed Chichester: John Wiley and Sons.

McBratney, A. B. and Webster, R. (1983) 'How mabgearvations are needed for
regional estimation of soil properties3gil Sciencel 35, (3), pp. 177-183.

McBratney, A. B. and Webster, R. (1986) 'Choosungctions for semi-variograms of
soil properties and fitting them to sampling estesgEuropean Journal of Soil
Science37, (4), pp. 617-639.

McGinnity, B. T., Fitch, R. and Rankin, W. J. (1998stitution of Civil Engineers.
Proceedings of the seminar "Value of Geotechni&anstruction".
London:Construction Research Communications Limited

MEN (2008)Landslide blocks rail line Available at:
http://www.manchestereveningnews.co.uk/news/s/1836landslide blocks ra
il_line?rss=yegAccessed: 03/07/2010).

Meroni, M., Colombo, R. and Panigada, C. (2004)eision of a radiative transfer
model with hyperspectral observations for LAl maggpin poplar plantations’,
Remote Sensing of Environmedt, (2), pp. 195-206.

Merton, R. (1998Feventh annual JPL airborne Earth Science Workshapadena,
California, 12-16 January, 1998.NASA.

Mickoviski, S. B. and Van Beek, L. P. H. (2006)dAcision support system for the
evaluation of eco-engineering strategies for sjmo¢ection’ Geotechnical and
Geological Engineering?24, pp. 483-498.

Miller, P. E., Hardy, A. J., Mills, J. P., Barr, 5, Birkinshaw, S. J., Parkin, G.,
Glendinning, S. and Hall, J. W. (2009) 'Intelligémiegration of multi-sensor
data for risk assessment in transport corridorrenment§ ISPRS Workshop:
High-Resolution Earth Imaging for Geospatial Inf@ton. Hannover,
Germany, pp. 1-6.

233



Miller, P. E., Mills, J. P., Barr, S. L., Lim, MBarber, D., Parkin, G., Clarke, B.,
Glendinning, S. and Hall, J. (2008) 'Terrestrigklascanning for assessing the
risk of slope instability along transport corridptsternational Archives of
Photogrammetry, Remote Sensing and Spatial Infeom&ciences37 (B5),
pp. 495-500.

Milton, E. J. and Choi, K. Y. (2004) 'Estimatingethpectral response function of the
CASI-2, Remote Sensing and Photogrammetry Society AiGeraéral
Meeting.Aberdeen, UK, 7-10 September 2004. 1-11.

Minacapilli, M., lovino, M. and Blanda, F. (2009)igh resolution remote estimation of
soil surface water content by a thermal inertiarapph’,Journal of Hydrology,
379, (3-4), pp. 229-238.

Montillet, J. P., Meng, X., Roberts, G. W., Taha, Aancock, C. and Ogundipe, O.
(2007) 'Achieving centimeter-level positional aaey in urban canyons with
Locata technologyJournal of Global Positioning Systents,(2), pp. 158-165.

Moran, M. S., Peters-Lidard, D., Watts, J. M. ancBWoy, S. (2004) 'Estimating soil
moisture at the watershed scale with satellite-dbagdar and land surface
models' Canadian Journal of Remote Sensig@, (5), pp. 805-826.

Mueller-Dombois, D. and Ellenberg, H. (197liims and Methods of Vegetation
Ecology.London: John Wiley & Sons.

Muller, E. and Decamps, H. (2001) 'Modeling soilistare-reflectanceRemote
Sensing of Environmerntg, (2), pp. 173-180.

Mushinzimana, E., Munga, S., Minakawa, N., Li,Eeng, C.-c., Bian, L., Kitron, U.,
Schmidt, C., Beck, L., Zhou, G., Githeko, A. andhY&. (2006) ‘Landscape
determinants and remote sensing of anopheline ntodguwal habitats in the
western Kenya highland#/alaria Journal,5, (1), pp. 13.

Mutanga, O., Skidmore, A. K., Kumar, L. and Ferveerd. (2005) 'Estimating tropical
pasture quality at canopy level using band depétyars with continuum
removal in the visible domairihternational Journal of Remote Sensig6, (6),
pp. 1093 - 1108.

Mutuku, F. M., Alaii, J. A., Bayoh, M. N., Gimnid, E., Vulule, J. M., Walker, E. D.,
Kabiru, E. and Hawley, W. A. (2006) 'Distributiathescription, and local
knowledge of larval habitats of Anopheles gambide & a village in western
Kenya',American Journal of Tropical Medicine and Hygieféd, (1), pp. 44-53.

Mutuku, F. M., Bayoh, M. N., Hightower, A. W., VUi J. M., Gimnig, J. E., Mueke,
J. M., Amimo, F. A. and Walker, E. D. (2009) 'A supised land cover
classification of a western Kenya lowland enderoicfuman malaria:
associations of land cover with larval Anophelelitaas’,International Journal
of Health Geographics3, (1), pp. 19-32.

234



Myneni, R. B., Hall, F. G., Sellers, P. J. and Nhatg A. L. (1995) The interpretation
of spectral vegetation indexeleEE Transactions on Geoscience and Remote
Sensing33, (2), pp. 481-486.

Nees, T., Isaksson, T., Fearn, T. and Davies, T0ZPA User-Friendly Guide to
Multivariate Calibration and ClassificatiorChichester: NIR Publications.

Njoku, E. G., Jackson, T. J., Lakshmi, V., ChanKTand Nghiem, S. V. (2003) 'Saoill
moisture retrieval from AMSR-EEEE Transactions on Geoscience and
Remote Sensing,l, (2), pp. 215-229.

Noomen, M. F., Skidmore, A. K., van der Meer, Faidd Prins, H. H. T. (2006)
'‘Continuum removed band depth analysis for detgdhe effects of natural gas,
methane and ethane on maize reflectariRerjote Sensing of Environment,
105, (3), pp. 262-270.

Notarnicola, C., Angiulli, M. and Posa, F. (2008%¢ of radar and optical remotely
sensed data for soil moisture retrieval over veagdtareas\EEE Transactions
on Geoscience and Remote Sensidg(4), pp. 925-935.

Pack, R. T., Tarboton, D. G. and Goodwin, C. N9&9The SINMAP approach to
terrain stability mappirigProceedings Eighth International Congress -
International Association of Engineering Geologancouver, British
Columbia, 21-25 September, 199®. 1157-1165.

Perry, J., Pedley, M., Brady, K. and Reid, M. (280Embankment cuttings: condition
appraisal and remedial treatmeRtrpceedings of the Institute of Civil
Engineers156, (4), pp. 171-175.

Perry, J., Pedley, M. and Reid, M. (2008fyastructure embankments - condition
appraisal and remedial treatmertondon: CIRIA.

Phipps, P. J. and McGinnity, B. T. (2001) 'Classifion and stability assessment for
chalk cuttings: the Metropolitan Line case stu@uarterly Journal of
Engineering Geology and Hydrogeolo@y, (4), pp. 353-370.

Pickerill, J. M. and Malthus, T. J. (1998) 'Leaketzion from rural aqueducts using
airborne remote sensing techniqubedernational Journal of Remote Sensing,
19, (12), pp. 2427-2433.

Pierdicca, N., Pulvirenti, L. and Bignami, C. (20180il moisture estimation over

vegetated terrains using multitemporal remote sgndata’'Remote Sensing of
Environment114, (2), pp. 440-448.

235



Porporato, A., Laio, F., Ridolfi, L. and Rodrigukarbe, I. (2001) 'Plants in water-
controlled ecosystems: active role in hydrologiocgasses and response to water
stress lll. Vegetation water stre#sivances in Water Resourced, (7), pp.
725-744.

Preuth, T., Glade, T. and Demoulin, A. (2010) 'Bitgtanalysis of a human-influenced
landslide in eastern Belgiungeomorphologyl120, (1-2), pp. 38-47.

Quesney, A., Le Hégarat-Mascle, S., Taconet, QlaMadjar, D., Wigneron, J. P.,
Loumagne, C. and Normand, M. (2000) 'Estimatiowatershed soil moisture
index from ERS/SAR datéRemote Sensing of Environmerg, (3), pp. 290-
303.

Rajkai, K. and Rydén, B. E. (1992) 'Measuring asgél moisture distribution with the
TDR method'Geodermab2, (1-2), pp. 73-85.

Rao, Y. S. (1992Microwave remote sensing of soil moistursvailable at:
http://www.csre.iitb.ac.in/ysrao/m_tech_civill.p@ccessed: 16/03/10).

Ray, R. and Jacobs, J. (2007) 'Relationships amamngtely sensed soil moisture,
precipitation and landslide eventdatural Hazards43, (2), pp. 211-222.

Rees, W. G. (2000) 'The accuracy of Digital ElematModels interpolated to higher
resolutions'|nternational Journal of Remote Sensi@d, (1), pp. 7-20.

Reeves, J. B. (2009) 'Does the Spectral Formate¥attDiffuse Reflection
Spectroscopy?Applied Spectroscopg3, (6), pp. 669-677.

Reutebuch, S. E., McGaughey, R. J., Andersen, ldn#& . Carson, W. W. (2003)
'‘Accuracy of high-resoltuion lidar terrain modelden a conifer forest canopy’,
Canadian Journal of Remote Sensif§, (5), pp. 527-535.

Ridley, A., McGunnity, B. and Vaughan, P. (20049I&of pore water pressures in
embankment stabilityGeotechnical Engineerind,57, (4), pp. 193-198.

Rodriguez-lturbe, 1., Porporato, A., Laio, F. anddifi, L. (2001) 'Plants in water-
controlled ecosystems: active role in hydrologiocgasses and response to water
stress |. Scope and general outlidelyances in Water Resourced, (7), pp.
295-705.

Rosen, P. A., Hensley, S., Joughin, I. R, Li, E.Madsen, S. N., Rodriguez, E. and
Goldstein, R. M. (2000) 'Synthetic aperture radéerferometry'Proceedings of
the IEEE,88, (3), pp. 333-382.

Rosette, J. A. B., North, P. R. J. and Suéarez, R@8) 'Vegetation height estimates

for a mixed temperate forest using satellite |adgmetry',International Journal
of Remote Sensing9, (5), pp. 1475 - 1493.

236



Rouainia, M., Davis, O., O'Brien, T. and Glendirgi. (2009) 'Numerical modelling
of climate effects on slope stabilit£ngineering Sustainability,62, (2), pp. 81-
89.

Rouse, J. W., Haas, R. H., Schell, J. A., Deeiding¥. and Harlan, J. C. (1974)
Monitoring the vernal advancement and retrogradat{greenwave effect) of
natural vegetationGreenbelt, Maryland: NASA/GSFC.

Rouse, J. W., Smith, M. O. and Adams, J. B. (19v8)itoring vegetation systems in
the great plains with ERTS hird ERTS Symposium, NASA S¥1, pp. 39-317.

Sahoo, A. K., Houser, P. R., Ferguson, C., Woodk. EDirmeyer, P. A. and Kafatos,
M. (2008) 'Evaluation of AMSR-E soil moisture resulising the in-situ data
over the Little River Experimental Watershed, Gé&driremote Sensing of
Environment112, (6), pp. 3142-3152.

Sandholt, I., Rasmussen, K. and Andersen, J. (280&nple interpretation of the
surface temperature/vegetation index space fosassnt of surface moisture
status'Remote Sensing of Environmerf, (2-3), pp. 213-224.

Schaffers, A. P. and Sykora, K. V. (2000) 'Reli@pibf Ellenberg indicator values for
moisture, nitrogen and soil reaction: a comparisah field measurements’,
Journal of Vegetation Scienckl, (3), pp. 225-244.

Scheiner, S. M. (2003) 'Six types of species-aweaet, Global Ecology &
Biogeographyl12, (6), pp. 441-447.

Schmidt, F. and Persson, A. (2003) '‘ComparisonE¥iData Capture and
Topographic Wetness Indice®tecision Agriculture4, (2), pp. 179-192.

Schmidtlein, S. (2005) 'Imaging spectroscopy asoafor mapping Ellenberg indicator
values'Journal of Applied Ecologyl2, (5), pp. 966-974.

Schmidtlein, S. and Sassin, J. (2004) 'Mappingootiauous floristic gradients in
grasslands using hyperspectral imageReimote Sensing of Environmedf,
(1), pp. 126-138.

Schmugge, T. and Jackson, T. J. (1994) 'Mappingaeisoil moisture with microwave
radiometers'Meteorology and Atmospheric Physibd, (1), pp. 213-223.

Schmugge, T. J., Kustas, W. P., Ritchie, J. Ckslag, T. J. and Rango, A. (2002)
'Remote sensing in hydrolog@dvances in Water Resourc@s, (8-12), pp.
1367-1385.

Schowengerdt, R. A. (200Remote Sensing: models and methods for image
processingrhird ed London: Elsevier.

237



Schulz, W. H. (2005) ‘'Landslide susceptibility ested from mapping using light
detection and ranging (LIDAR) imagery and histdrieadslide records, Seattle,
Washington'Engineering Geologyg9, (1-2), pp. 67-87.

Sharkov, E. A. (2003passive Microwave Remote Sensing of the Earth:i€dlys
FoundationsChichester: Praxis Publishing Ltd.

Shi, J., Jiang, L., Zhang, L., Chen, K.-S., Wigmerd P. and Chanzy, A. (2005) 'A
parameterized multifrequency-polarization surfatéssion model|lEEE
Transactions on Geoscience and Remote Sengi@12), pp. 2831-2841.

Sithole, G. and Vosselman, G. (2004) 'Experimectiatparison of filter algorithms for
bare-Earth extraction from airborne laser scanpumigt clouds'JSPRS Journal
of Photogrammetry and Remote Sensi%y,(1-2), pp. 85-101.

Smith, G. M. and Milton, E. J. (1999) 'The uselaf empirical line method to calibrate
remotely sensed data to reflectanbggrnational Journal of Remote Sensing,
20, (13), pp. 2653-2662.

Smith, K. L., Colls, J. J. and Steven, M. D. (200%afacility to investigate effects of
elevated soil gas concentration on vegetatidater, Air, and Soil Pollution,
161, (1), pp. 75-96.

Smith, K. L., Steven, M. D. and Colls, J. J. (200&pectral responses of pot-grown
plants to displacement of soil oxygdnternational Journal of Remote Sensing,
25, (20), pp. 4395-4410.

Smith, K. L., Steven, M. D. and Colls, J. J. (2004se of hyperspectral derivative
ratios in the red-edge region to identify planéssrresponses to gas leaks',
Remote Sensing of Environmedt, (2), pp. 207-217.

Smith, K. L., Steven, M. D. and Colls, J. J. (200%ant spectral responses to gas
leaks and other stressdaternational Journal of Remote Sensi2§, (18), pp.
4067-4081.

Smith, M.-L., Ollinger, S. V., Martin, M. E., Abed, D., Hallett, R. A. and Goodale, C.
L. (2002) 'Direct Estimation of Aboveground ForPsbductivity through
Hyperspectral Remote Sensing of Canopy Nitrogerojogical Applications,
12, (5), pp. 1286-1302.

Smith, M. L., Martin, M. E., Plourde, L. C. and @byer, S. V. (2003) 'Analysis of
hyperspectral data for estimation of temperatestocanopy nitrogen
concentration: comparison between an airborne (AS¥)JRnd a spaceborne
(Hyperion) sensorlEEE Transactions on Geoscience and Remote Sering,
(6), pp. 1332-1337.

238



Sgrensen, R., Zinko, U. and Seibert, J. (2006Me@rcalculation of the topographic
wetness index: evaluation of different methods dasefield observations',
Hydrology and Earth System SciencEs, (1), pp. 101-112.

Stohlgren, T. J., Falkner, M. B. and Schell, L(D895) 'A Modified-Whittaker nested
vegetation sampling metho@lant Ecology 117, (2), pp. 113-121.

Tarboton, D. G. (1997) 'A New Method for the Detaration of Flow Directions and
Upslope Areas in Grid Digital Elevation ModeM/ater Resources Research,
33, (2), pp. 309-3109.

Tarboton, D. G. (2000)ARDEM, a suite of programs for the analysis oftdlg
elevation data Available at:
http://www.engineering.usu.edu/cee/faculty/dtaroléan.html(Accessed:
01/09/2009).

Tarboton, D. G. (2002)errain analysis using digital elevation models {D&M).
Available at:http://hydrology.neng.usu.edu/taudefAtcessed: 22/01/09).

Tenenbaum, D. E., Band, L. E., Kenworthy, S. T. &adue, C. L. (2006) 'Analysis of
soil moisture patterns in forested and suburbachoa¢nts in Baltimore,
Maryland, using high-resolution photogrammetric &H0AR digital elevation
datasetsHydrological Processe20, (2), pp. 219-240.

ter Braak, C. J. F. and Prentice, I. C. (1988hdory of gradient analysig\dvances in
Ecological Researct,8, pp. 271-317.

Thenkabail, P. S., Smith, R. B. and De Pauw, EOQ2Hyperspectral Vegetation
Indices and Their Relationships with Agriculturab@ CharacteristicsRemote
Sensing of Environmeritl, (2), pp. 158-182.

Townsend, P. A., Foster, J. R., Chastain, R. A.@mdie, W. S. (2003) 'Application of
Imaging spectroscopy to mapping canopy nitrogeherforests of the central
Appalachian Mountains using Hyperion and AVIRIEEE Transactions on
Geoscience and Remote Sens#ig,(6), pp. 1346-1354.

Trauth, M. H. (2007MATLAB Recipes for Earth Scienc&rlin: Springer.

Trought, M. C. T. and Drew, M. C. (1980) 'The deprhent of waterlogging damage in
wheat seedlings (Triticum aestivum L.) I. Shoot amots growth in relation to
changes in the concentrations of dissolved gasgsantes in the soil solution’,
Plant and soil54, (1), pp. 77-94.

Tsai, F. and Philpot, W. (1998) 'Derivative anadysi hyperspectral dat&®emote
Sensing of Environmer@g, (1), pp. 41-51.

Ulaby, F. T., Dubois, P. C. and van Zyl, J. (19%8dar mapping of surface soil
moisture' Journal of Hydrology 184, (1-2), pp. 57-84.

239



Ustin, S. L., Smith, M. O., Jacquemoud, S., Vetakl. and Govaerts, Y. (1999)
'‘Geobotany: vegetation mapping for earth scienoeslencz, A. N.(ed),
Remote sensing for the earth sciences, Manual mbReSensindNew York:
John Wiley & Sons, pp. 189-248.

van der Meer, F., de Jong, S. and Bakker, W. (200®@)ging spectroscopy: basic
analytical techniques', in van der Meer, F. andalgg, S.(eddmaging
Spectroscopy: Basic Principals and Prospective isppibns.Dordrecht,
Netherlands: Springer, pp. 17-61.

Verstraeten, W. W., Veroustraete, F., Sande, Qofaers, |. and Feyen, J. (2006) 'Soil
moisture retrieval using thermal inertia, deterrdimath visible and thermal
spaceborne data, validated for European foré&shote Sensing of
Environment101, (3), pp. 299-314.

Vicente-Serrano, S. M., Pons-Fernandez, X. and @idtats, J. M. (2004) 'Mapping
soil moisture in the central Ebro river valley (th@ast Spain) with Landsat and
NOAA satellite imagery: a comparison with meteogital data'Jnternational
Journal of Remote SensirZh, (20), pp. 4325 - 4350.

Wadsworth, R. A., Collingham, Y. C., Willis, S. Gluntley, B. and Hulme, P. E.
(2000) 'Simulating the Spread and Management @mARiparian Weeds: Are
They Out of Control?Journal of Applied Ecologyg7, (1), pp. 28-38.

Walker, J. P., Willgoose, G. R. and Kalma, J. @O0@) 'In situ measurement of soil
moisture: a comparison of techniqudsurnal of Hydrology293, (1-4), pp. 85-
99.

Wang, Q., Ni, J. and Tenhunen, J. (2005) 'Applazabf a geographically-weighted
regression analysis to estimate net primary prodocf Chinese forest
ecosystemsGlobal Ecology and Biogeograph¥4, (4), pp. 379-393.

Weidong, L., Baret, F., Xingfa, G., Qingxi, T., lfan, Z. and Bing, Z. (2002) 'Relating
soil surface moisture to reflectand@eémote Sensing of Environmesi, (2-3),
pp. 238-246.

Werninghaus, R., Balzer, W., Buckreuss, S., Miteyer, J. and Mihlbauer, P. (2002)
"The TerraSAR-X-missidn5th European Conference on Synthetic Aperture
Radar, Eusar2004Cologne, Germany, pp. 49-52.

Western, A. W., Bléschl, G. and Grayson, R. B. @98low well do indicator
variograms capture the spatial connectivity of smisture?'Hydrological
Processes] 2, (12), pp. 1851-1868.

Western, A. W., Grayson, R. B., Bloschl, G., Wilkge, G. R. and McMahon, T. A.

(1999a) 'Observed spatial organization of soil muoesand its relation to terrain
indices',Water Resources Resear@, (3), pp. 797-810.

240



Western, A. W., Grayson, R. B. and Green, T. R99H) 'The Tarrawarra project: high
resolution spatial measurement, modelling and armsabf soil moisture and
hydrological responsajydrological Processeq,3, (5), pp. 633-652.

Whiting, M. L., Li, L. and Ustin, S. L. (2004) 'Rieting water content using Gaussian
model on soil spectraRemote Sensing of Environmedf, (4), pp. 535-552.

Wigneron, J.-P., Calvet, J.-C., Pellarin, T., Van@reind, A. A., Berger, M. and
Ferrazzoli, P. (2003) 'Retrieving near-surface smlisture from microwave
radiometric observations: current status and futleles' Remote Sensing of
Environment85, (4), pp. 489-506.

Wigneron, J.-P., Schmugge, T., Chanzy, A., Callie€. and Kerr, Y. (1998) 'Use of
passive microwave remote sensing to monitor soistue’,Agronomie 18, (1),
pp. 27-43.

Wilson, J. P. and Gallant, J. C. (20a@yrain Analysis: Principals and Applications.
Chichester: John Wiley & Sons.

Wolf, A., Berry, J. A. and Asner, G. P. (2010) @xhetric constraints on sources of
variability in multi-angle reflectance measuremgmemote Sensing of
Environment114, (6), pp. 1205-1219.

Wolter, P. T., Townsend, P. A., Sturtevant, B. Rl &ingdon, C. C. (2008) 'Remote
sensing of the distribution and abundance of hostiss for spruce budworm in
Northern Minnesota and Ontari®&emote Sensing of Environmeli2, (10),
pp. 3971-3982.

Woodhouse, 1. H. (2008htroduction to Microwave Remote SensiBgca Raton,
USA: Taylor and Francis.

Wu, J., Xiong, H. and Chen, J. (2009) 'Towards ustdeding hierarchical clustering: A
data distribution perspectiv®leurocomputing72, (10-12), pp. 2319-2330.

Xie, M., Esaki, T., Zhou, G. and Mitani, Y. (2008eographic information systems-
based three-dimensional critical slope stabilitglgsis and landslide hazard
assessmenASCE Journal of Geotechnical and Geoenvironmemaitieers.,
129, (12), pp. 1109-1118.

Yesilnacar, E. and Suzen, M. L. (2006) 'A land-castassification for landslide
susceptibility mapping by using feature componeht&rnational Journal of
Remote Sensingy, (2), pp. 253-275.

Yue, T.-X., Du, Z.-P., Song, D.-J. and Gong, Y.qZD'A new method of surface

modeling and its application to DEM constructi@@&omorphology91, (1-2),
pp. 161-172.

241



Zarco-Tejada, P. J., Pushnik, J. C., Dobrowskard. Ustin, S. L. (2003) 'Steady-state
chlorophyll a fluorescence detection from canopyvadive reflectance and
double-peak red-edge effecRemote Sensing of Environmes#t, pp. 283-294.

Zhang, W., Wu, L., Zhou, J., Qin, Z. and Zhang(ZD05) 'Quantitative hill-slope
stability assessment with a remote sensing andb@s$8d distribution modelling
schemég IEEE International Geoscience and Remote SerfSymgposiunpp.
2891-2895.

242



Appendix 1: Flow diagrams of methods

This appendix provides an extension to the flovgdien of methods shown at the start
of Chapter 3 (Figure 3.1). The diagram given iguré 3.1 (and repeated below) is
designed to give the reader an overview of the atstlused in this study. This includes
five distinct sections, or work packages, whichlakelled: (1) Terrestrial laser
scanning, (2) field spectroscopy, (3) lidar dada,GASI data, and (5) integrated model.
Following this initial overview, five more flow dggams are given which provide a
breakdown of the methods used in each of thesmctisiections. All these methods are
described in Chapter 3 but these diagrams will hdlygorovide the reader with a clear
structure of the methods used in this study tagpedatability and improve clarity.
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Potential techniques identified in Chapter 2.
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2. Field spectroscopy
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3. Lidar data
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4. CASI imagery
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5. Integrated model
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Appendix 2: Geographically Weighted Regression

Section 3.2.1.4 refers to a type of locally varatgdgression known as Geographically
Weighted Regression (GWR) which may not be famibaall readers. The following
provides a description of GWR.

The theoretical background to GWR can be explainédrms of the ordinary
least squares, or global, regression model. Tmdeadefined as:

y = ,81x1+...+,8pxp +¢

wherey is the dependent variabbe,to x, are independent variablgs,to s, are
estimated coefficients, ands the error term (Wang et al., 2005). GWR alldarsthe
estimate of local parameters rather than just kblead) parameters and can therefore be

expressed as:

y = :80(#' v)x1+. . +ﬁn(ﬂl v)xn +é&

wherefy is the intercept and:( V) represents the coordinates of each observation.

In GWR, the parameters are estimated by weigliogntributing point based on
its proximity to the point of interest. In this waihe weighting of an observation is no
longer constant, but varies over space, with tlobservations closer to the point of

interest having a higher weighting. The parameténmeation can be expressed as:

Br(wv) = XTW(wv)X) X (1, v)y

where /" (1,v) is an estimate ¢f, X is the matrix of independent variables, &Mg,v) is
the weigh matrix which ensures that observatioosesi to the point of interest have
more influence than those further away (Wang e2a5).

The model weighting can take the form of a nundéefifferent models,
depending on the type of variable being analyseth@fingham et al., 2002). Often a
Gaussian function with a fixed kernel bandwidtised (Figure 1). However, this
approach can be problematic as, by assuming aardrisindwidth across a study area,
the degree of spatial variation can be exagge(&eady, 2003). To overcome this, a

kernel with an adaptive bandwidth can be employembdy, 2003; Fotheringham et al.,
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2002). Here, a bi-square function is used to spelb# weight of thgth observation at a

specific location of interest, regression poiig,

wy =1~ (dij/b)z]z whend;; < b

Wi = 0 Whendij >Db

wheredij is the Euclidian distance between the locatiorthefsites and is the kernel
bandwidth.

Figure 1. Graphical representation of the locafjnleourhood, defined by kernel
bandwidth, over which regression analysis is penfdn this example, the two
neighbourhoods are of different sizes, meaning#beulation has a kernel with an
adaptive bandwidth (note that the large circl@cated over less dense points
compared to the smaller circle). The curved linesimg from the centre of the two
neighbourhoods represent the relative weighting uséhe regression analysis. In

this case the weighting is defined by a Gaussiantion.

The kernel bandwidth size can have an importdhtence on the model. For
example, where kernel sizes are too big the GWReimah be no different from its
global equivalent, and where kernels are too srtrel may not estimate the
parameters sufficiently where data is scarce (Warad., 2005). To account for this, a
measure of how well the model fits the data cambde, such as the Akaike
Information Criterion (AlG), which is used to compare the fit of the GWR ntode
against the measure of fit for the global regressmmdel (Foody, 2003). Fotheringham
et al. (2002) define the AlGs:
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n+ tr(S)
AIC, = 2nlog.(6*) + nlog,(2m) + n

n—2-—tr(S)

Where,n is the sample size* is the estimated standard deviation of the emonft),
andtr(S) is the trace of the hat mati$(Wang et al., 2005). Thepart of AIC refers to
the fact that the criterion is corrected (Fothenam et al., 2002). Wang et al. (2005)
explains as a general rule that the lowerAlK&. number, the more the estimate
represents reality. By using this rule, one woulgezt theAlC. value for the GWR
model to be lower than the value for the globatesgion model. As part of the GWR
validation, an F test is performed using the resoiitthe global regression, with the null
hypothesis being that GWR makes no improvemenherestimation of the
independent variable (Wang et al., 2005).
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Appendix 3: Simulation of the CASI sensor

Spectral reflectance data collected using the A8 pectroradiometer was used to
simulate the response from the CASI sensor. The&sdweae using the equations
provided in Section 3.2.2.4. The following diagrahows how these calculations work
for hypothetical data. The data used correspon@A8I band 1. This is centred over
the wavelength 398 nm and has a spectral rangé dfrm.

1. Calculate the standard deviatiar) based on the FWHM (Field Width Half

Maximum) using:

_ FWHM
2v2In2

Therefore,

2. Calculate the Gaussian point spread function foh&#velength covering the

spectral range (FWHM) around the band centre

(xi— X0 )?

Gaussian PSF = EXP 202

Where,x is the wavelength of interest arglis the position of the central
wavelength. For CASI band 1, with a wavelength@8 &m this corresponds to

the following values:
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X; (hm) Xo (NM) Gaussian PSF
394 398 0.06
395 398 0.21
396 398 0.50
397 398 0.84
398 398 1.00
399 398 0.84
400 398 0.50
401 398 0.21
402 398 0.06

3. The Gaussian point spread function is normaliseditaging by the total of all
the Gaussian point spread values. The sum of thhev& the above table

equates to 4.23. Therefore the normalised poimagpralues are:

Xi (nm) Normalised PSF
394 0.01
395 0.05
396 0.12
397 0.20
398 0.24
399 0.20
400 0.12
401 0.05
402 0.01

4. The normalised point spread function values are tised as a multiplier to
simulate the response of the CASI sensor from Belkectroscopy
measurements. An example of this is given belawguisypothetical field

spectroscopy data:
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X; (nm) _ Field spectroscopy Simulated CASI
Normalised PSF (% reflectance) response
394 0.01 3.70 0.05
395 0.05 3.76 0.19
396 0.12 3.73 0.44
397 0.20 3.85 0.77
398 0.24 3.86 0.91
399 0.20 3.67 0.73
400 0.12 3.65 0.43
401 0.05 3.73 0.19
402 0.01 3.87 0.06

5. Finally, CASI simulated spectra for the central el@ngth 398 nm can be
calculated by summing the simulated CASI respoRsethe example above,
this equates to 3.77%.

This process is repeated for each CASI band tolatethe entire response from the
CASI sensor.
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Appendix 4: CASI radiometric correction

Radiometric calibration of the CASI imagery wasreat out by applying the empirical
line method (Smith and Milton, 1999) to coincidéritald spectroscopy measurements

taken over three 6 x 6 m tarpaulin targets (blgeg&y and white) (Section 3.3.2). The

following table shows the regression equationsfurh band with relative?R

correlation coefficient:

Central . . R? correlation
CASI Band wavelength (nm) Regression equation coefficient

1 398 y = 0.0072x - 5.7759 1

2 405 y = 0.0075x - 2.7677 0.9994
3 413 y = 0.0094x - 4.0857 0.9993
4 420 y = 0.0109x - 6.2091 0.9999
5 428 y = 0.0126x - 5.5489 0.9993
6 435 y =0.0124x - 5.0131 1

7 444 y =0.0113x - 4.6365 0.9994
8 452 y = 0.01x - 3.0913 0.9999
9 462 y = 0.0103x - 3.8989 0.9999
10 471 y = 0.0105x - 3.0749 1

11 482 y = 0.0105x - 3.0558 0.9998
12 493 y = 0.0108x - 3.128 0.9999
13 504 y =0.011x - 2.7955 0.9997
14 517 y =0.0112x - 2.4983 0.9997
15 530 y = 0.0109x - 2.4335 0.9996
16 544 y = 0.011x - 2.6015 0.9997
17 559 y =0.0112x - 2.326 0.9999
18 575 y =0.0118x - 2.2385 0.9998
19 592 y =0.0122x - 2.1158 0.9999
20 610 y = 0.0122x - 2.0664 0.9998
21 630 y = 0.0126x - 1.6787 0.9999
22 652 y =0.0132x - 1.6441 0.9996
23 675 y =0.0131x - 1.4088 0.9997
24 700 y = 0.0149x - 1.6909 0.9998
25 728 y = 0.0163x - 2.7653 0.9997
26 758 y = 0.0157x - 3.6425 0.9998
27 790 y = 0.0143x - 3.7689 0.9997
28 824 y = 0.018x - 4.1063 0.9997
29 862 y = 0.0164x - 4.0208 0.9998
30 901 y = 0.0224x - 3.9166 0.9997
31 943 y = 0.051x - 4.7153 0.9996
32 988 y = 0.0254x - 4.5207 0.9997

256




Appendix 5: Modified-Whittaker species sampling

Species type was recorded over a number of sub platrder to calculate a species-
abundance curve. The names and occurrence of pacies are detailed in Table 1.
The location and size of the sub plots are idexttifn Figure 1, which is also referred to
in Section 3.3.2.1.1.

0.5m

S$1

S2

10m

L1 20 m

w |2m  S3— S *—

| I B S
[&)]
3
(/]
~
1

100 m

Figure 1. Diagram of the modified-Whittaker ploeddo sample vegetation species
type for construction of a species-area curve. IBlmls refer to the list of species

name and occurrence reported in Table 1.
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Meadow Cranesbill
Ox-eye Daisy
Smooth Hawksbeard
Field Forgetmenot
Hogweed

Field Scabious

Geranium pratense
Leucanthemum vulgare
Crepis capillaris
Myosotis arvensis
Heracleum sphondylium
Knautia arvensis

English name Latin name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 M1 M2 L1 Total area
Stinging Nettle Urtica dioica 1 1 1 1 1 1 1 1
Creeping Thistle Cirsium arvense 1 1 1 1 1 1 1 1
Cleavers Galium aparine 1 1 1 1 1 1 1
Bramble Rubus fruticosus agg. 1 1 1 1 1 1
Heath Bedstraw Galium sterneri 1 1 1 1 1 1
Red Campion Silene dioica 1 1 1 1 1
Common Dog Violet Viola riviniana 1 1 1
Ribwort Plantain Plantago lanceolata 1 1 1 1 1 1
Birdsfoot Trefoll Lotus corniculatus 1 1
Tufted Vetch Vicia cracca 1 1 1 1 1
Common Knapweed Centaurea nigra agg. 1 1 1 1
Common Sorrel Rumex acetosa 1 1 1 1
Common Ragwort Senecio jacobaea 1 1 1 1
Rosebay Willowherb Chamerion angustifolium 1 1 1 1
Germander Speedwell Veronica chamaedrys 1 1 1
Elder Sambucus nigra 1 1
Bracken Pteridium aquilinum 1 1
Dog Rose Rosa canina 1 1
Spear Thistle Cirsium vulgare 1 1
Hawthorn Crataegus monogyna 1 1
Dandelion Taraxacum officinale 1 1
Pale Lady's Mantle Alchemilla xanthochlora 1 1
1
1
1
1
1
1
1

Himalayan Balsam
Continued overleaf...

Impatiens glandulifera
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Great Burnet
American Willowherb
Meadow Foxtail
Common Bent-Grass
Yorkshire Fog
Cocksfoot

Sanguisorba officinalis

Epilobium ciliatum

Alopecurus pratensis

Agrostis capillaris
Holcus lanatus
Dactylis glomerata

e

Total

®( PR

ok P R

o ] NSNS =

Uk P R

ok P R

Table 1. List of plant species found in the modifi&hittaker plot. Location and size of the plote egported in Figure 1.
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Appendix 6: Species abundance sampling for Ellenberg values

Species abundance was sampled in 96 quadrats nmgasw 1 m. This data was used
to calculate weighted average Ellenberg valuegdoh site. Table 1 shows a list of all
the plant species recorded and their corresporigliegberg value for the indication of

soil moisture. Higher values corresponding to highetness.

English name

Latin name

Ellenberg value

American Willowherb
Betony

Birdsfoot Trefoil
Bracken

Bramble

Brown Bent-Grass
Cleavers

Cocksfoot

Common Bent-Grass
Common Knapweed
Common Ragwort
Common Sorrel
Common Toadflax
Creeping Buttercup
Creeping Thistle
Crested Dog's-Tall
Curled Dock

Daisy

Dog Rose

Elder

False Oat-Grass
Field Horsetail
Germander Speedwell
Greater Plantain
Hawthorn

Heath Bedstraw
Himalayan Balsam
Hogweed

Lesser Clubmoss
Lilac

Ox-eye Daisy

Red Campion

Red Dead-Nettle
Continued overleaf...

Epilobium ciliatum
Stachys arvensis
Lotus corniculatus
Pteridium aquilinum
Rubus fruticosus agg.
Agrostis vinealis
Galium aparine
Dactylis glomerata
Agrostis capillaris
Centaurea nigra agg.
Senecio jacobaea
Rumex acetosa
Linaria vulgaris
Ranunculus repens
Cirsium arvense
Cynosurus cristatus
Rumex Crispus

Bellis perennis

Rosa canina
Sambucus nigra
Arrhenatherum elatius
Equisetum arvense
Veronica chamaedrys
Plantago major
Crataegus monogyna
Galium sterneri
Impatiens glandulifera
Heracleum sphondylium
Selaginella selaginoides
Syringa vulgaris
Leucanthemum vulgare
Silene dioica
Lamimum purpureum

6
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Ribwort Plantain
Rosebay Willowherb
Rough Chervil
Spear Thistle
Square-stalked St. John's Wort
Stinging Nettle

Tall Fescue

Tufted Vetch

White Campion
White Clover

White Dead-Thistle
Yorkshire Fog

Plantago lanceolata
Chamerion angustifolium
Chaerophyllum temulum
Cirsium vulgare
Hypericum tetrapterum
Urtica dioica

Festuca arundinacea
Vicia cracca

Silene latifolia

Trifolium repens
Lamimum album

Holcus lanatus

o U1 o1 A OO O 0 U1 O OOl

Table 1. List of plant species identified in theadtats used for determining species

abundance to calculate weighted average Ellentsdugyv
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