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Abstract 

This thesis assesses the ability of remote sensing techniques to characterise soil 

moisture in a transport corridor environment. Much of the world’s transport networks 

are built on earthwork embankments or in cuttings. In the UK, many of these 

earthworks were constructed in the mid-19th Century and are susceptible to slope 

instability. Instability in transport corridors is often triggered by an increase in pore 

pressure, which is directly influenced by an increase in soil moisture. Although a 

number of studies have investigated the use of remote sensing techniques for estimating 

soil moisture, they have tended to be conducted under controlled conditions and few 

have considered their capacity for being operational. This study addresses this point by 

exploring the use of high spatial resolution digital elevation models (DEMs) and 

airborne hyperspectral imagery for characterising soil moisture in transport corridors.  

 A number of terrain (topographic wetness index (TWI), potential solar radiation, 

aspect) and spectral analysis (red edge position estimation, derivative stress ratios, 

continuum removal analysis, partial least squares (PLS) regression modelling, mapping 

biological indicator values) techniques were assessed using terrestrial systems over a 

test embankment, and airborne data for a transport corridor. The terrain analysis metrics 

TWI and potential solar radiation were found to be highly sensitive to the DEM spatial 

interpolation routine used, with a thin plate spline routine performing best in this study. 

This work also demonstrated that Ellenberg indicator values extended for the UK can be 

mapped successfully for transport corridor environments, providing potential for a 

number of different applications. Individually, the techniques were shown to be 

generally poor predictors of soil moisture. However, an integrated statistical model 

provided an improved characterisation of soil moisture with a coefficient of 

determination (R2) of 0.67. 

 Analysis of the model results along with field observations revealed that soil 

moisture is highly variable over the transport corridor investigated. Soil moisture was 

shown to increase in a non linear fashion towards the toe of earthwork slopes, while 

contribution from surrounding fields often led to concentrations of moisture in cutting 

earthworks. Critically, while these patterns could be captured using the data investigated 

in this study, such spatial variability is rarely taken into account using analytical slope 

stability models, potentially raising important challenges in this respect. 
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1 Introduction 

1.1 Instability in transport corridors 

Much of the world’s transport networks are located on cuttings and embankments which 

are all susceptible to instability (Lloyd et al., 2001). About 60% of UK rail networks are 

composed of embankment and cutting earthworks, equating to 16 000 kilometres 

(Manning et al., 2008). Many of these earthwork structures were constructed in the mid-

19th century before the development of modern theories of soil mechanics and were 

therefore poorly compacted (Ridley et al., 2004).  

Soil cuttings were crudely excavated by pick and shovel, or blasted using 

gunpowder, and embankments were constructed by tipping soil and rock into place 

using horse-drawn wagons. In the early part of the 20th century methods improved with 

steam-powered excavators replacing the pick and shovel, and steam locomotives 

replacing the horse and cart to tip material onto embankments (Figure 1.1) (Perry et al., 

2003b). Despite these efforts, this offered little in the way of soil compaction that can be 

seen in today’s modern earthwork construction. In addition, embankment slope angles 

were based on short-term angles of repose which in the modern age would be 

considered too steep (Perry et al., 2003b). As such, many of these structures failed 

during, or soon after, construction (Ridley et al., 2004; Perry et al., 2003b). Subsequent 

remediation seldom fully excavated and replaced these structures, leaving residual 

rupture surfaces such that the earthworks remain a significant hazard (Ridley et al., 

2004; Perry et al., 2003b). 

Historically, transport earthworks have not been treated as an asset to network 

operators and have received a low priority for maintenance and renewal (Perry et al., 

2003b). As a result, engineering performance has suffered, increasing the risk of 

instability. More recently transport earthworks have received greater awareness within 

the UK transport industry, with embankments and cuttings comprising one third of total 

asset value for transport infrastructure (Ridley et al., 2004). Furthermore, it has been 

noted that transport earthworks may support additional assets, including road paving, 

lights, drainage, trackbed, or third party structures such as telecommunications masts 

(Perry et al., 2003b). These assets represent a significant commodity and 
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2003, a train carrying 105 passengers derailed on the Brighton to London line when it 

hit a landslide. The landslide was attributed to heavy rainfall that had persisted for 

several days before the event. Although local residents had previously expressed 

concern over the weakness of the cutting slopes, the infrastructure operator Network 

Rail had failed to reinforce the earthworks despite flagging up the area as vulnerable 

(Guardian, 2003).  

This example of instability and others like it have immediate implications for 

passengers including extensive delays and risk to life but also an increase maintenance 

costs, risk of power failure, interruption to normal train operations and environmental 

degradation (Gyasi-Agyei et al., 2001). In light of this, the last two decades have seen 

an increase in the demand for improved reliability and safety on transport networks. 

This has resulted in a growing focus on appraisal and repair of embankments and 

cuttings, highlighted by an increase in spending. For example, over the period 1998 to 

1999, the UK railway infrastructure operator Railtrack (now Network Rail) spent over 

£50 million was spent on earthwork maintenance (Perry et al., 2003b). 

Despite the inherent problems with the UK’s transport infrastructure, it is not 

economically or practically viable to replace earthwork structures (Ridley et al., 2004). 

In some cases remediation is undertaken solely to maintain transport operations and do 

not correct for permanent or ongoing deformations (Gyasi-Agyei et al., 2001). One of 

the reasons for this is that delays for even short periods of time, to allow for repair, can 

far outweigh remedial costs (Lloyd et al., 2001). In the past, unstable earthwork 

structures were met with a reactive response but there is a growing awareness to be 

proactive (Perry et al., 2003b).  

The cost of unplanned, reactive repair to transport earthworks greatly exceeds 

the cost of proactive and continual maintenance (Perry et al., 2003b). For example, 

McGinnity et al. (1998) state that the cost of embankment remedial works fell from 

£3000-5000 per metre of track to £1000-2000 per metre when part of a proactive 

maintenance strategy. Similar examples can be found in highway maintenance where it 

is thought a proactive maintenance strategy for the M23 motorway in Surrey led to 

savings of about 80% compared with works carried out based on a reactive response 

(Perry et al., 2003b). It is therefore important to highlight areas prone to instability 

which can be achieved through risk-mapping. 
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Considered to be the most basic tool for reducing risk of instability, risk maps 

can provide vital information for administrators and policy makers (Yesilnacar and 

Suzen, 2006; Schulz, 2005). As a result, landslide hazard assessment has become a topic 

of major interest (Xie et al., 2003) with much of the research focussing on catastrophic 

deep-seated landslides. However, there is a growing body of research that studies 

shallow slope failures, typically 1-1.5 metres deep, which is the mode of failure that 

mainly effects transport earthworks (Fourie, 1996). 

1.2 Instability and the role of soil moisture 

The principal causes of earthwork instability include burrowing animals, vandalism, 

embankment age, construction type, change in earthwork materials, culvert 

deterioration, slope geometry, angle and height, moisture and vegetation shrink swell 

cycles, and the presence of water (Perry et al., 2003b). Many of these features can be 

clearly identified by experienced network inspectors, but some can be harder to spot. 

Specifically, this is the case where dense vegetation can mask instability processes at 

the earthwork surface, such as shallow slope failures. In the case of such failures, it is 

important to identify them early to minimise their detrimental effects (Perry et al., 

2003b). 

 Shallow slope failures are one of the most common slope processes, and are 

found all over the world (Beguería, 2006). Such failures are generally associated with 

areas that experience prolonged rainfall, particularly in the sub-tropics, but there is 

growing evidence to suggest that compacted earthworks within the UK are becoming 

increasingly susceptible to such failures (Fourie, 1996). The trigger for most of these 

failures is a build up of pore water pressure (Beguería, 2006; Borga et al., 2002; 

Fukuoka, 1980), which is directly related to heavy or prolonged rainfall events and 

elevated soil moisture content (Collins and Znidarcic, 2004; Johnson and Sitar, 1990). 

This is illustrated by Figure 1.2 which shows the relationship between volumetric soil 

water content and pore water pressure (here denoted as matric suction), for different soil 

textures. As a result of this relationship, some failures have become annual events 

associated with wetter seasons (Baum et al., 2005; Lloyd et al., 2001).  
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line indefinitely (MEN, 2008). Highway embankments are generally less prone to the 

effects of excessive water infiltration as they were constructed more recently than 

railway embankments with higher specifications, as well as a largely impermeable top 

layer. However, defective drainage, such as the example given in Derbyshire, can 

concentrate water onto a slope leading to instability (Perry et al., 2003b). 

 

 

Figure 1.3 Variation of soil moisture deficit and major earthwork events for the 

London area for the period 1988-2001. From Ridley et al. (2004) 

1.3 Measuring soil moisture 

Network operators have a statutory obligation to conduct regular appraisals of 

earthwork stability (Perry et al., 2003b). As part of their appraisal, earthwork inspectors 

make subjective observations of soil moisture conditions based on descriptions of 

drainage type and conditions, and identifying potential sources of water ingress (Perry 

et al., 2003b). Additionally, they are advised to look for signs of failure by identifying 

seepage or ponding of water (Mickoviski and Van Beek, 2006). Similarly, inspectors try 

to identify potential future instability by looking for the presence of hydrophilic, water-

loving vegetation, or changes in the vegetation, including rich dense vegetation that 

may indicate seepage (Perry et al., 2003b).  
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Although the collection of in situ soil moisture contents would be preferable, 

this process is time consuming and laborious. Traditional methods for measuring soil 

moisture involve collecting samples of soil, then measuring the weight of the sample 

before and after drying in an oven for 24 hours to calculate the gravimetric moisture 

content. Even with the advent of moisture impedance probes that have the ability to 

rapidly measure soil moisture in the field, both methods involve lengthy periods in the 

field by a number of inspectors. Furthermore, onsite inspection of embankment and 

cutting slopes carry obvious dangers, as well as the need for train drivers to reduce their 

speed in case of any impending danger. As a result, some authors have identified the use 

remote sensing to aid earthwork remediation as an important topic for future research 

(Perry et al., 2003b). 

1.4 Potential for remote sensing 

Although remote sensing techniques would never replace ground-based earthwork 

inspection, they have the potential to provide essential information on areas of known 

deterioration, as well as providing broad assessment of larger areas at the transport 

corridor scale (Perry et al., 2003b). As a result, aerial photographs are routinely used for 

making appraisals and providing historical information about an earthwork and its 

surrounding area (Perry et al., 2003b). However, more advanced remote sensing 

techniques have the potential to detect features not visible to the naked eye, including 

soil moisture (Perry et al., 2003b).  

Studies have shown that surface soil moisture conditions are highly variable 

over time and space (Bárdossy and Lehmann, 1998). On site inspectors are expected to 

cover 5 km lengths of track a day when carrying out assessments of earthwork stability 

(Perry et al., 2003b) but this could result in misrepresentation of the soil moisture 

conditions as moisture patterns can change over periods of just hours. Furthermore, 

some earthwork structures, especially in the case of rural railway networks, can be 

difficult to access (Perry et al., 2003b), making on site assessments arduous and in some 

cases impossible. Remote sensing has the potential to provide a synoptic view over 

transport corridors, including those in a remote location where transport links can be 

vital links to the wider community (Lloyd et al., 2001). 
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Current methods for the remote inspection of transport corridor assets include 

video filming from a moving vehicle, radar, thermal imaging, low and high altitude 

aerial photography, and the use of satellite imagery (Perry et al., 2003b). It is thought 

that the use of such techniques is growing due to the improvements made to interpretive 

techniques, but authors note the need for further research in this area (Perry et al., 

2003b).   

The transport industry has identified the growing demand for digital data (Perry et 

al., 2003b). As part of this drive, network operators are increasingly making use of 

Geographical Information Systems (GIS) for the effective management of spatial data, 

where traditional paper based information systems are difficult to access and visualise 

(Perry et al., 2003b). Additionally, GIS can overlay different maps of interest (Perry et 

al., 2003b), as well as the ability to calculate risk of slope instability based on different 

spatial components (Dai et al., 2002). Modern remote sensing techniques often require 

processing and analysis within GIS software, providing digital data that can be 

integrated with other geographical information. GIS software therefore provides a 

platform for processing and storing soil moisture information as well as the ability to 

produce a meaningful map of soil moisture distribution for network operators. 

1.5 Aims and objectives 

The aim of this study is to explore the potential for characterising soil moisture in 

transport corridors using remotely sensed data. To achieve this aim the following 

objectives are addressed: 

1. Identify and review existing techniques for characterising soil moisture from 

remotely sensed data and critically assess their operational capability in the context 

of transport corridor environments. 

2. Carry out a proof of concept study for the techniques deemed applicable in 

objective 1, using ground based instruments at an earthwork scale and assess their 

potential for being scaled up to a transport corridor scale. 

3. Based on the findings made in objectives 1 and 2, apply the techniques to a transport 

corridor using airborne remotely sensed datasets. 

4. Design a method for integrating the most successful techniques into an overall model 

for characterising soil moisture in transport corridor environments. 
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1.6 Thesis structure  

The main aim and key objectives, outlined in Section 1.5, are addressed in this thesis 

and are presented over the following six chapters. Chapter 2 presents a thorough review 

of current remote sensing techniques with the potential for characterising soil moisture. 

The techniques presented are critically assessed with reference to their ability to be 

operationally employed within a transport corridor environment. 

 Based on the findings of Chapter 2, a proof of concept study is carried out for 

several of the potentially most promising operational remote sensing methods. In this 

study, the techniques are evaluated over a test embankment under controlled conditions. 

This evaluation is carried out to gain a quantitative understanding of the relationships 

that exist between the distribution of soil moisture and measurements made using 

ground based remote sensing instruments. The techniques are also assessed for their 

potential to be scaled up to airborne sensors for a transport corridor.  

 The findings made in the embankment scale study are then used to set out the 

optimal methods for applying the techniques to airborne remotely sensed dataset for a 

real world transport corridor. This also includes techniques that could not be tested in 

the small scale study. The main product of the transport corridor scale work is an 

integrated model incorporating techniques that provide an improved characterisation of 

soil moisture distribution.  

The methods for both the earthwork and transport corridor scale studies are 

reported in Chapters 3. The results of these methods are described in Chapters 4 and 5 

for the earthwork and transport corridor scale studies respectively. These results are 

analysed and discussed in Chapter 6, with particular emphasis on a critical assessment 

of the results obtained and how they contribute to science. The key findings are 

concluded in Chapter 7, including suggestions for the direction of future research.  
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2 Review of techniques for characterising soil moisture using 

remote sensing  

2.1 Introduction 

Section 1.4 of this thesis outlined the potential for using remote sensing to monitor 

transport earthwork infrastructure. However, it also acknowledged that the transport 

industry has not fully embraced the potential of remotely sensed data, particularly for 

characterising soil moisture as an indicator of earthwork instability. This chapter 

provides a thorough critique of remote sensing techniques that have the potential to 

characterise soil moisture, with specific reference to their utility within transport 

corridor environments.  

 Remote sensing can help make observations about the Earth’s surface in a 

number of different ways, according to the sensor that is being used, or the platform on 

which it is stationed. With regard to remote sensing of soil properties, some sensors can 

penetrate vegetation canopies and even the surface of the ground, to make direct 

measurements from the soil itself. Others can be used to make a measure of the Earth’s 

surface, for instance elevation or topography, which can then be used to make indirect 

inferences about the soil below. Additional techniques involve making inferences from 

surrogate measurements, such as observations of vegetation characteristics. In light of 

this, the review is split into three main sections, based on whether the specific technique 

characterises soil moisture directly (Section 2.2), indirectly using terrain analysis 

(Section 2.3), or through surrogate measures using vegetation reflectance (Section 2.4). 

2.2 Remote sensing of soil moisture 

Microwave remote sensing is considered to be the most promising technique for the 

remote measurement of soil moisture over wide areas (Famiglietti et al., 1999). The 

advantage of using microwave sensors is that they can make observations at both day 

and night, and are relatively unaffected by the presence of cloud (Cracknell and Hayes, 

2007). Furthermore, microwaves (with a spectral range of 1 mm to 1 m) can, under 

some circumstances, penetrate vegetation canopies and therefore obtain measurements 

relating directly to the soil surface. Microwave sensors can be divided into two distinct 

groups: passive sensors that detect microwave emissivity from the Earth’s surface, and 
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active sensors that transmit a microwave signal to the ground and record the proportion 

of energy backscattered to the instrument (Campbell, 2006). This section will discuss 

the use of microwave remote sensing for measuring soil moisture using both passive 

and active sensors. In addition, this section discusses the use of optical sensors such as 

thermal imagers and sensors measuring spectral reflectance in the visible, near, and 

shortwave infrared. These sensors record reflected electromagnetic radiation which can 

be used to make inferences about Earth surface properties, such as soil moisture. As 

these inferences are made from a direct measure from the soil, i.e. reflected 

electromagnetic radiation, they are also considered in this section.   

2.2.1 Passive microwave sensors 

Passive microwave sensors measure emissions of microwave energy from the Earth’s 

surface (Cracknell and Hayes, 2007). Water within a soil matrix increases the dielectric 

permittivity, this being the ability of a medium to conduct electrical energy (Sharkov, 

2003). This means that a wetter soil has greater ability to absorb electromagnetic 

radiation which therefore lowers the amount of microwave emissivity (Schmugge et al., 

2002). The ability of a material to conduct electrical energy is sometimes referred to as 

the dielectric constant. Water is known to have a much higher dielectric constant 

(approximately 80) compared to dry soils (< 5), which translates to a difference in 

emissivity of approximately 0.95 for dry soils and 0.6 for wet soils (Schmugge et al., 

2002). The influence of water on the dielectric constant means that measures of 

microwave emissions can be used to measure soil moisture.  

 The measure of microwave emissivity from a soil is based on the scattering of 

electromagnetic radiation from the soil surface. In a soil, scattering at the surface is 

mainly a function of the dielectric constant and the roughness of the soil surface. In 

addition, shadowing caused by surface roughness and the relative view angle of sensor 

has also shown to have an influence on the degree of recorded emissivity (Kuria et al., 

2007). The effects of shadowing and surface roughness are comparable, and in some 

cases greater, than the effect of soil moisture on the degree of backscatter (Kuria et al., 

2007). For example, a rough soil surface has shown to typically reduce the microwave 

signal by 10% or 20%, and in some extreme cases the signal can be halved (Schmugge 

et al., 2002). Therefore, in order to make inferences of soil moisture content, the effects 



12 
 

of surface roughness must be accurately estimated (Shi et al., 2005). These estimates are 

based on empirical or physical surface emission models. Each have relative advantages 

and disadvantages in terms of complexity, ease of computation, effectiveness over 

vegetation, and transferability (for further details see Kuria et al. (2007), Crosson et al. 

(2005), Shi et al. (2005), and Wigneron et al. (1998)). 

 One of the main restricting factors on the use of passive microwave sensors is 

that the intensity of microwave emissivity from the Earth’s surface is very low. This 

means that in order to record an adequate signal of microwave emissivity, the sensor 

must remain positioned over the area of interest for several days. However, components 

such as soil moisture are temporally variable and can change over a matter of hours 

(Famiglietti et al., 1998). This inevitably leads to a great deal of uncertainty in making 

characterisations of soil moisture using passive remote sensing systems. In addition, the 

weak intensity of emitted radiation from the Earth’s surface means that a passive 

microwave instrument must have a large field of view, or footprint, which limits the 

potential spatial resolution (Cracknell and Hayes, 2007). For example, satellite based 

thermal-infrared sensors typically have a field of view three or four times smaller than 

passive microwave sensors (Cracknell and Hayes, 2007). 

  The low microwave emissivity from the Earth’s surface also means that the 

signal can be perturbed by a number of different factors (Schmugge et al., 2002). As 

discussed earlier in this section, one of the main factors is surface roughness. However, 

the presence of vegetation can often have the most detrimental effect on the 

characterisation of soil moisture. Dense vegetation canopies can drastically reduce, and 

in some cases totally obscure, the microwave signal from the soil, as electromagnetic 

radiation is scattered by the surface of plant leaves and woody biomass, and absorbed 

by moisture in the vegetation (Notarnicola et al., 2006). As a result, many successful 

campaigns to map soil moisture using microwave sensors have been carried out over 

bare earth, or sparse vegetation canopies (Jackson et al., 1999; Burke et al., 1998; 

Wigneron et al., 1998; Jackson et al., 1995; Schmugge and Jackson, 1994). Schmugge 

et al. (2002) demonstrated this effect by explaining that measurements made over a 

mature corn crop can reduce the sensitivity of the emissivity signal by 25% compared to 

a bare soil. 
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 Remote sensing in the microwave domain of the electromagnetic spectrum tends 

to centre on a small range of wavelengths (Table 2.1). Due to the influence of factors 

such as surface roughness and the presence of vegetation, the L band frequency is 

generally considered to be the optimal frequency for measuring soil moisture (Crosson 

et al., 2005). This is because it has a relatively long wavelength which has greater 

potential to penetrate vegetation canopies and is less susceptible to atmospheric 

attenuation (Wigneron et al., 2003; Kerr et al., 2001). Moreover, microwaves detected 

from a soil at this wavelength are derived from deeper within the soil, and are therefore 

seen to be a more accurate depiction of soil moisture content below the surface, or crust, 

of the soil (Njoku et al., 2003). 

 

Band name Frequency (MHz) Wavelength (cm) 

P 300 - 1000 30 - 100 

L 1000 - 2000 15 - 30 

S 2000 - 4000 7.5 - 15 

C 4000 - 8000 3.75 - 7.5 

X 8000 - 12000 2.5 - 3.75 

Ku 12000 - 18000 1.667 - 2.5 

K 18000 - 27000 1.111 - 1.667 

Ka 27000 - 40000 0.75 - 1.111 

Table 2.1 Table showing common microwave band names and relative frequency 

and wavelengths. From Mather (2004). 

 

 There have been a number of successful attempts to map soil moisture 

distribution with L band passive microwave sensors. Perhaps one of the most commonly 

cited examples include Jackson et al. (1999). This study was based around applying soil 

moisture retrieval algorithms, previously developed at a fine scale, to a regional scale. 

The algorithm requires information regarding soil temperature, vegetation type, 

vegetation water content, surface roughness, soil bulk density, and soil texture. The 

vegetation parameters were estimated from satellite imagery but the measures of soil 

properties were derived from field observations which not only limits operational 

potential but potentially limits its use outside the study area where soil properties are 
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likely to vary. The study found that the soil moisture retrieval algorithm could be scaled 

up to coarser resolution passive microwave data, with error levels in the region of 3%. 

Despite this success, the dominating vegetation types of the study area were pasture 

grassland, with relatively low vegetation canopies. As the algorithm relies on a great 

deal of parameterisation, in terms of vegetation, it is therefore likely to have a high 

degree of uncertainty when applied to other vegetation covers. This is of particular 

significance as the study was carried out to assess the potential for the algorithm to help 

inform global climate models, where undoubtedly these vegetation covers will be 

encountered. 

 As previously mentioned, the L band frequency is considered to be the most 

optimal for the detection of soil moisture using passive microwave systems.  However, 

the long nature of L band wavelengths requires a long aperture on the sensing 

instrument. This has long seen to be a limiting factor on the use of microwave 

radiometry due to the challenges facing satellite engineers (Cracknell and Hayes, 2007; 

Jackson et al., 1999). For instance, in order to provide an adequate footprint of less than 

60 km, a satellite sensor must have an antenna length of above 4 m  (Kerr et al., 2001) 

which would lead to a payload beyond the capabilities of present satellite systems 

(Drinkwater et al., 2009). Developments in antenna design have recently made this 

possible through synthetic aperture whereby a large antenna is simulated from a number 

of small antennas distributed over a Y-shaped frame (see Kerr et al. (2001) and 

Drinkwater et al. (2009) for a detailed description). This theory has been materialised 

through the European Space Agency’s launch of the Soil Moisture and Ocean Salinity 

(SMOS) satellite in November 2009. Despite these advances, SMOS provides measures 

of microwave emissivity at a maximum ground resolution of 50 km (Kerr et al., 2001).  

This characteristic essentially rules out the use of passive microwave sensors for 

monitoring transport corridors, as earthworks are much smaller than the footprint that 

can be achieved, i.e. in the region of metres rather than kilometres.  

Sensors operating at higher frequencies, such as bands S, C and X (see Table 2.1 

for frequencies and corresponding wavelengths), have also shown to have potential for 

the retrieval of soil moisture (Crosson et al., 2005; Njoku et al., 2003). The advantage of 

these frequencies is that due to their relatively small wavelengths, they require smaller 

antennas, and as a result, have the potential to provide finer spatial scale footprints. 
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Example systems include the Advanced Microwave Scanning Radiometer for Nasa’s 

Earth Observation System (AMSR-E). This system measures microwave emissivity in 

the C and X band frequencies, with an average spatial resolution of 56 km and 38 km 

respectively. Sahoo et al. (2008) compared observed soil moisture measurements with 

estimates of soil moisture from AMSR-E, producing correlation coefficients up to 0.81. 

Despite a high correlation, these estimates could only be made using a heavily 

parameterised Land Surface Microwave Emission Model (LSMEM). This model is 

based on radiative transfer theory, which describes the way in which electromagnetic 

radiation interacts with the Earth’s surface. The microwave emissivity observed by the 

sensor is taken to be a contribution of signals from the soil, vegetation, water bodies, 

snow cover and atmosphere. In the case of Sahoo et al. (2008) and Njoku et al. (2003), a 

number of assumptions are made: the influence of the atmosphere is assumed to be 

constant, there is assumed to be no difference between canopy and surface temperature, 

and multiple scattering at the Earth’s surface is ignored (see Sahoo et al. (2008) and 

Njoku et al. (2003) for more details).  

Although studies have shown that reasonable estimates of soil moisture can be 

made using C and X band microwave radiometers, they tend to be limited to relatively 

sparse vegetation canopies, despite the best efforts of radiative transfer models. This is 

because the smaller wavelengths associated with bands C and X are highly perturbed by 

the presence of vegetation, as well as being more vulnerable to influences from 

atmospheric attenuation and the effects of surface roughness, compared to measures of 

emissivity at the L band frequency (Kerr et al., 2001). This could have serious 

implications for mapping soil moisture in transport corridors where earthworks tend to 

be covered in dense vegetation, including tall shrubs and deciduous trees, to aid 

stability.  

This section has demonstrated a trade off that exists when using passive 

microwave sensors to estimate soil moisture. High frequency microwave bands (X and 

C) have the potential to be sensed at a relatively fine spatial resolution; whereas low 

frequency bands (L band) tend to be relatively unperturbed by influences from the 

atmosphere, surface roughness and the presence of vegetation.  Despite high 

correlations with observed soil moisture using both high and low frequency sensors, 

their limitations give them no potential for use in characterising soil moisture in 
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transport corridor earthworks, where high spatial resolution information is required, 

often over dense vegetation canopies. 

2.2.2 Active microwave sensors 

Active microwave sensors are radar (radio detection and ranging) systems which form 

an image by detecting the reflectance of a microwave signal transmitted by the sensor. 

Similar to the passive variety, acquiring imagery using these sensors has the advantage 

of being relatively unaffected by time of day, or cloud cover (depending on atmospheric 

conditions relating to moisture and aerosols). They also function over similar 

frequencies and corresponding wavelengths (Table 2.1). 

 Another trait shared with passive microwave systems is that active microwave 

sensors using real apertures are restricted to coarse spatial resolutions. As discussed in 

Section 2.2.1, this is due to the length of the antenna needed to emit and receive (in the 

case of active sensors) microwave energy. As a result, real aperture systems tend to be 

limited to large scale observations, such as observations of the Earth’s geoid, and 

various meteorological applications (e.g. wind direction and speed) (Cracknell and 

Hayes, 2007). Conversely, most applications associated with earth surface properties, 

including soil moisture, tend to be carried out using Synthetic Aperture Radar (SAR) 

systems.  

 Section 2.2.1 alluded to the development of synthetic apertures which are used in 

passive microwave remote sensing to simulate a much larger antenna, thereby reducing 

the potential size of the footprint, for example, the Soil Moisture and Ocean Salinity 

(SMOS) satellite (Kerr et al., 2001). SAR uses similar technology to not only receive 

microwave signals, but also to emit microwave energy. This technology requires 

sophisticated system designs, as well as complex processing procedures. In basic terms, 

the SAR sensor emits a series of microwave pulses towards the Earth’s surface as the 

platform, satellite or aircraft, flies over the area of interest (Ulaby et al., 1996). This 

results in a number of overlapping footprints running along the direction of the flight 

path (Figure 2.1). The system uses precise measures of the amplitude and phase of the 

return signal to calculate the position of the sensed object relative to the antenna. The 

Doppler effect is exploited in order to detect whether the target is behind or ahead of the 

sensor. Cracknell and Hayes  (2007) and Woodhouse  (2006) provide more detailed 
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descriptions of the principles behind the SAR system but the most important feature 

concerning this review is the fact that better spatial resolution can be achieved 

compared to real aperture systems. 

 

Figure 2.1 Illustration showing the geometry of the Synthetic Aperture Radar (SAR) 

system. Large footprints are designed to overlap and are combined to synthesise a 

larger antenna. From Woodhouse (2006). 

  

Microwave energy emitted and received by a radar system can be horizontally or 

vertically polarised. Many systems have the ability to be configured to specify the way 

in which the system emits and receives a microwave signal. A system that both emits 

and receives a horizontally polarised signal is referred to as ‘like polarised’. Conversely, 

a system that emits horizontally polarised signal and received only vertically polarised 

returns is referred to as a ‘cross polarised’ system. By comparing a ‘like polarised’ 

image and a ‘cross polarised’ image for the same area, features that influence the 

polarisation of the signal can be identified. This type of analysis is known as 

depolarisation.  



 

 Depolarisation is related to the physical characteris

properties of the target. As discussed at the start of Section 2.2.1, the amount of water in 

a soil matrix can have a strong influence on the dielectri

microwave imagery, higher amplitude backscatter t

(Figure 2.2). Using these princip

SAR imagery. The ENVISAT (Environmental Satellite) C

Synthetic Aperture Radar)

imagery with different polarisations. Baghdadi et al. 

moisture measurements with microwave backscatter from ASAR using a number of 

different polarisations and incident angles. Although high correlations were found 

(RMSE of around 6%), the study found that the use of cross polarised imagery does not

help to improve estimations. In fact, the most significant factor was the incidence angle, 

whereby, higher errors (RMSE between 9.1% and 9.6%) were found with low incidence 

angles (~40°). This finding is related to Figure 2.

sensitivity for low incidence angles, due to reduced scattering in the direction of the 

sensor. The use of cross polarised images for characterising soil moisture also has 

potential limitations as factors, such as surface roughness, can also lead to 

depolarisation (Baghdadi et al., 2007)

 

Figure 2.2 Diagram

radiation with dry and wet soils. Dry soils tend to reflect microwave energy whereas 

wet soils tend to absorb energy due to its higher dielectric constant. 
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Depolarisation is related to the physical characteristics and the dielectric 

properties of the target. As discussed at the start of Section 2.2.1, the amount of water in 

a soil matrix can have a strong influence on the dielectric constant.

higher amplitude backscatter tends to be found over 

Using these principles, it is possible to map soil moisture distribution using 

SAR imagery. The ENVISAT (Environmental Satellite) C-band ASAR (Advanced 

Synthetic Aperture Radar) is an example of a system that has the ability to provide 

imagery with different polarisations. Baghdadi et al. (2006) compared obs

moisture measurements with microwave backscatter from ASAR using a number of 

different polarisations and incident angles. Although high correlations were found 

(RMSE of around 6%), the study found that the use of cross polarised imagery does not

help to improve estimations. In fact, the most significant factor was the incidence angle, 

whereby, higher errors (RMSE between 9.1% and 9.6%) were found with low incidence 

angles (~40°). This finding is related to Figure 2.3 which demonstrates reduced 

nsitivity for low incidence angles, due to reduced scattering in the direction of the 

sensor. The use of cross polarised images for characterising soil moisture also has 

potential limitations as factors, such as surface roughness, can also lead to 

(Baghdadi et al., 2007). 

Diagram of soil profiles showing the interaction of electromagnetic 

radiation with dry and wet soils. Dry soils tend to reflect microwave energy whereas 

wet soils tend to absorb energy due to its higher dielectric constant. 
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compared observed soil 

moisture measurements with microwave backscatter from ASAR using a number of 

different polarisations and incident angles. Although high correlations were found 

(RMSE of around 6%), the study found that the use of cross polarised imagery does not 

help to improve estimations. In fact, the most significant factor was the incidence angle, 

whereby, higher errors (RMSE between 9.1% and 9.6%) were found with low incidence 

which demonstrates reduced 

nsitivity for low incidence angles, due to reduced scattering in the direction of the 

sensor. The use of cross polarised images for characterising soil moisture also has 

potential limitations as factors, such as surface roughness, can also lead to 

 

of soil profiles showing the interaction of electromagnetic 

radiation with dry and wet soils. Dry soils tend to reflect microwave energy whereas 

wet soils tend to absorb energy due to its higher dielectric constant.  
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Figure 2.3 Diagram showing the effects of surface roughness and incidence angle on 

scattering. Smooth surfaces show only specular reflection. Rough surface show 

increasing diffuse scattering. For the roughest surface, reflectance is almost entirely 

diffuse and is not influenced greatly by incidence angle. Modified from 

Woodhouse (2006). 

 

 The example of Baghdadi et al. (2006) improved estimations of soil moisture 

(RMSE of 3.0%) by exploiting the relationship between incidence angle and surface 

roughness. Again, Baghdadi et al. (2007) found that SAR imagery acquired at different 

incidence angles could be used to make vastly improved estimations. This is because 

the ratio of backscatter coefficients can reduce the effects of other soil surface 

components, namely, surface roughness. It is possible to capture two images with 

different incident angles using satellite sensors such as the Canadian C-band 

RADARSAT (Radar Satellite). Despite this, the time taken for the second image to be 

collected (a matter of days) means that soil moisture conditions are likely to have 

changed (Baghdadi et al., 2007; Quesney et al., 2000). This, therefore, reduces the 

likelihood of capturing a reliable characterisation of soil moisture, particularly over 

temperate areas where the temporal variability of soil moisture is high (Famiglietti et 

al., 1998). In addition, as discussed in Section 2.2.1, the relatively short wavelength of 
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C band microwave energy (Table 2.1) means that it is strongly susceptible to scattering 

by vegetation canopies (Figure 2.4). As a result, the examples of Baghdadi et al. (2006; 

2007) have been restricted to low vegetation canopies or bare soils. Therefore, these 

methods hold little relevance for vegetated earthwork embankments.  

 

 

Figure 2.4 Diagram showing the interaction of electromagnetic radiation with 

vegetation canopies at different microwave frequencies. X-band is the highest 

frequency with a relatively short wavelength resulting in a high degree of scattering. 

L-band is the lowest frequency with a relatively long wavelength which penetrates 

the vegetation canopy and scatters from the ground. Corresponding frequencies and 

wavelengths can be found in Table 2.1. Adapted from Rao (1992). 

 

 Attempts have been made to make estimations of soil moisture using C band 

SAR imagery that are free from the influence of surface roughness and vegetation. 

Quesney et al. (2000) developed such a method using the European Space Agency’s 

ERS (European Remote Sensing) SAR, that operates in the C band frequency at an 

incidence angle of >10°. Their method involved deriving soil moisture over specific 

calibration targets, that were corrected for the affects of vegetation and surface 

roughness. This allowed for the development of a soil moisture index that could then be 

applied to rest of the study area, in this case, entire watersheds. Despite showing high 

correlation coefficients with observed soil moisture (R2 of 0.89), this method involved a 

high degree of parameterisation to correct for the effect of surface roughness, but 

especially, vegetation (Le Hegarat-Mascle et al., 2002). The effect of vegetation on the 

microwave backscatter was also modelled, but in a more comprehensive manner. They 

made use of a radiative transfer model based on the principals described in Karam et al. 
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(1992). This model requires information regarding vegetation height and plant density. 

Quesney et al. (2000) explained that these parameters can be derived using satellite 

vegetation reflectance data (in the form of established near infrared/red ratios from 

Landsat imagery as discussed later in Section 2.4.1) and  knowledge of the  plant type, 

in this case knowledge of the agricultural crop. Due to changeable nature of these 

parameters, this information must be continually updated throughout the vegetation 

growth cycle. This requires multiple satellite images and ground truth measurements, 

which can hinder the use of these methods in an operational context. 

 In a follow up to the method presented by Quesney et al. (2000), Le Hegarat-

Mascle et al. (2002) developed these techniques in an attempt to eliminate the 

restrictions enforced by the reliance on continually updated information regarding 

vegetation. The previously developed method by Quesney et al. (2000) was validated 

over watersheds with varying soil types, composition, and vegetation cover. Rather than 

continually updating with ground truth data, the change in vegetation parameters were 

estimated using a crop growth model. Their results indicated reasonable correlation 

coefficients (R2 0.63 – 0.85); however, the authors acknowledge that their methods 

cannot be applied to dense vegetation covers, including forests, ungrazed pasture and 

developed crops (Le Hegarat-Mascle et al., 2002). This limitation was attributed to the 

nature of C band microwave energy which, as discussed in Section 2.2.1, cannot 

penetrate dense vegetation canopies. Again, this calls into question the potential for 

using such techniques over densely vegetated earthworks. Perhaps one suggestion 

would be to apply these methods during the winter where the presence of leaves is 

limited, thereby reducing the effects of canopy scattering. However, the methods 

presented by Le Hegarat-Mascle et al. (2002) rely on the estimation of vegetation 

parameters from optical satellites which require leaf-on conditions during spring or 

summer months.  

 Recent attempts have been made to improve the retrieval of soil moisture over 

vegetated areas. Pierdicca et al. (2010) used an integration between airborne C band 

microwave imagery, from AirSAR, and information about vegetation cover from 

Landsat satellite imagery (further details regarding the use of satellite imagery for 

deriving information about vegetation can be found in Section 2.4.1). Initially, SAR 

backscatter data is collected for bare soils, i.e. before vegetation growth. This is then 
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used to estimate the change in backscatter for different times of the year, with the 

assumption that there is a relationship between soil roughness conditions and time of 

year. Similar to Le Hegarat-Mascle et al. (2002), vegetation conditions are quantified 

using Landsat imagery. Comparisons between estimated and observed soil moisture 

showed reasonable correlation coefficients (R2 of 0.72). Although this is not as high as 

other studies mentioned in this Section, the study site included the presence of well 

developed vegetation cover. In addition, these estimates were made over a relatively 

fine spatial resolution, between 6.6 - 9.2 m, as they were made using a relatively high 

frequency microwave (C band) sensor, on board an airborne platform.   

 Both Le Hegarat-Mascle et al. (2002) and Pierdicca et al. (2010) have 

demonstrated the potential for using C band SAR to estimate soil moisture over 

vegetated areas. However, the models used to describe the effects of vegetation 

canopies are highly complex, using a number of parameters to characterise the 

vegetation at hand. This is therefore likely to limit the use of their soil moisture retrieval 

algorithms outside the study area. Furthermore, despite the relatively high spatial 

resolution at which these estimates are made, they remain too coarse to provide a 

characterisation of soil moisture distribution over transport corridor earthworks with a 

typical width of 5-20 m. The launch of TerraSAR-X, with a possible resolution of 1 m 

(Werninghaus et al., 2002), provides an exciting possibility for future research 

(Baghdadi et al., 2007), but currently there are no reported attempts to map soil 

moisture using this system. However, as this system operates at the high frequency X 

band, the soil moisture signal is likely to be highly vulnerable to the effects of 

vegetation and surface roughness. 

 This section has shown the potential for retrieving soil moisture from active 

microwave sensors. Despite excellent correlations with observed soil moisture, there are 

a number of inherent limitations that restrict the use of such systems. Many of these 

limitations are the result of a trade off between achievable spatial resolution and the 

vulnerability to the effects of soil surface roughness and the presence of vegetation. In 

general terms, although shorter frequency microwave energy (longer wavelength) is less 

susceptible to the influence of vegetation and surface roughness, the long aperture 

required for these systems limits the spatial resolution of the resulting imagery. 

Although recent advances have strived to improve the estimation of soil moisture using 
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high frequency microwave sensors (fine spatial resolution imagery) over vegetated 

areas, subsequent retrieval algorithms are highly parameterised and likely to be limited 

to their use outside the training area. Nevertheless, even the highest spatial resolution 

microwave sensors are insufficient for providing a detailed characterisation of soil 

moisture over a transport corridor earthwork.   

2.2.3 Thermal sensors 

The use of thermal imagery to map soil moisture is perhaps the only remote sensing 

method that has been considered in transport engineering (Perry et al., 2003b). Similar 

to passive microwave sensors, thermal sensors detect emissivity from the Earth’s 

surface, but at much shorter wavelengths, typically 3.5 - 5.5 µm and 8 – 14 µm. Such 

sensors have been applied to a range of different applications, such as the detection of 

natural geothermal anomalies, and monitoring heat loss from building roof surfaces. 

Thermal channels have been incorporated into a number of satellite platforms, including 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), MODIS 

(Moderate Resolution Imaging Spectroradiometer), AVHRR (Advanced Very High 

Resolution Radiometer) and Landsat ETM+ (Enhanced Thematic Mapper Plus), 

providing thermal imagery at a range of spatial resolutions (Landsat has the highest 

spatial resolution at 60 m). However, in terms of monitoring transport corridor 

earthworks, the potential of using thermal imagery lies in the development of relatively 

lightweight sensors. Due to the reduced payload, these sensors can be installed on light 

aircraft, providing the opportunity to obtain high spatial resolution imagery (Minacapilli 

et al., 2009).  

 The physical principles behind retrieving soil moisture from thermal imagery 

bears similarities with estimations made using microwave sensors. As described in 

Section 2.2.1, this relates to the fact that wetter soils have a higher dielectric constant, 

meaning they have greater ability to conduct electromagnetic radiation (see Figure 2.1). 

In terms of thermal radiation, the higher dielectric constant of a wet soil means that it 

has a greater ability to retain thermal energy. As a result, soil moisture is a major 

control on the daily range in soil temperature, where wetter soils exhibit a lower range 

in temperature (Verstraeten et al., 2006). Using this principal, soil moisture can be 
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characterised through thermal inertia mapping, which quantifies the diurnal change in 

temperature for a specific target. 

 Rather than making direct measures of thermal inertia, remote sensing techniques 

estimate the contributing components, such as day and night time surface temperatures 

(see Minacapilli et al. (2009) for a breakdown of the formulas used). The estimate of 

thermal inertia is used to invert an equation that describes the relationship between the 

thermal properties of a soil (heat capacity and thermal conductivity) and the soil water 

content. However, the relationship between the thermal conductivity of a soil and the 

soil moisture content is complex due to the effects of soil composition (Minacapilli et 

al., 2009). Similar to the complications associated with microwave signals from 

variations in surface roughness (see Sections 2.2.1 and 2.2.2), the relationship between 

soil moisture and thermal conductivity is modelled using a range of approaches.  

 Physically based models, used to model the effect of thermal conductivity on soil 

moisture content, tend to be highly parameterised and are therefore unlikely to be useful 

outside the training area (Minacapilli et al., 2009; Lu et al., 2007). As a result, 

empirically based models have been developed that use set parameters to express 

different  soil textures. Despite this generalisation, studies have found a good 

correspondence between observed and estimated soil thermal conductivity under 

laboratory conditions (Lu et al., 2007). Minacapilli et al. (2009) used this kind of 

modelling in a thermal inertia mapping campaign to characterise soil moisture 

demonstrating correlation coefficients up to 0.75. As well as producing reasonable 

correlations, these estimates were made using Airborne Thematic Mapper (ATM) with a 

spatial resolution of 4 m, which would be adequate to carry out monitoring campaigns 

over transport corridor earthworks. However, this study was applied to bare soils only 

and therefore has no bearing on the estimation of soil moisture over vegetated areas. In 

addition, soil wetness was artificially induced using irrigation technology, which is 

likely to produce more distinct differences in soil moisture values compared to a 

naturally occurring distribution of soil moisture. 

 The main limitations, associated with using thermal imagery to characterise soil 

moisture, are inherent to all sources of optical remotely sensed data. Notably, these 

limitations include vulnerability to atmospheric attenuation and the inability to penetrate 

cloud cover and vegetation canopies (Kerr, 2007). Although the presence of vegetation 
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remains a major limiting factor, attempts have been made to estimate soil moisture for 

areas with agricultural crops. Crow et al. (2008) explained that through accurate 

interpretation of the thermal signal from vegetation canopies, it is possible to detect 

differences in surface temperature, due to changes in evapotranspiration, which can be 

used to infer soil moisture conditions. This was achieved through the assimilation of 

two soil-vegetation atmosphere transfer modelling approaches (see Crow et al. (2008) 

for full details of the methods and models used). The first modelling approach uses 

thermal remote sensing observations to predict the temperature from the vegetation 

canopy and the soil surface. The second is a water balance model that uses observed 

rainfall data and predicted evapotranspiration to determine soil moisture within the 

vegetation root zone. The results of this work showed good correspondence with 

observed soil moisture, with a correlation coefficient of 0.84. However, the strength of 

the correlations were found to be strongly dependent on the accuracy of vegetation input 

parameters into the aforementioned models (Crow et al., 2008). This involved extensive 

and continued field work, which limits the potential for such a technique to become 

operational. In addition, the study site used by Crow et al. (2008) was located over 

agricultural fields with a land cover of homogenous corn crop. It is likely that a 

transport corridor earthwork, with heterogeneous vegetation cover, is likely to present a 

much more challenging environment to model. 

 Another approach to deriving soil moisture over vegetated areas is referred to as 

the ‘triangle method’ (Vicente-Serrano et al., 2004; Sandholt et al., 2002), which 

exploits the relationship between soil moisture, surface temperature and fractional 

vegetation cover. In terms of remotely sensed data, surface temperature can be 

determined using a thermal sensor, and vegetation cover can be estimated using 

reflectance measurements in the red and near infrared regions of the electromagnetic 

spectrum. Specifically, a normalised difference vegetation index (NDVI) is used to 

represent vegetation cover, which uses reflectance from the red and infrared regions of 

the spectrum, that are sensitive to plant leaves (Bannari et al., 1995) (discussed in 

greater detail in Section 2.4.1). Analysis of the relationship between derived surface 

temperature and NDVI, referred to as the temperature-vegetation dryness index (TVDI), 

is used to provide information on soil  moisture conditions by estimating 

evapotranspiration rates (see Sandholt et al. (2002) for full details). This relationship is 
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summarised in Figure 2.5 with high TVDI values relating to limited water availability, 

and low values corresponding to maximum evapotranspiration due to high soil moisture 

contents (Vicente-Serrano et al., 2004; Sandholt et al., 2002). This method has 

advantages over other techniques, such as those described by Crow et al. (2008), as 

estimations of TVDI rely solely on remotely sensed data, therefore increasing the 

potential for being used operationally (Sandholt et al., 2002).   

 

Figure 2.5 Simplification of the triangle method that defines the relationship between 

surface temperature, vegetation cover (represented by NDVI) and evaporation, 

which is used in the calculation of TVDI to infer soil moisture conditions. Modified 

from Sandholt et al. (2002). 

 

 Using the triangle method and the calculation of TDVI values, studies have found 

reasonable correlations with soil moisture values estimated using hydrological models. 

For example, Sandholt et al. (2002) found correlation coefficients up to 0.81 using data 

from the AVHRR sensor. They also found that their estimates were insensitive to 

surface cover indicating stability of the developed technique. However, it should be 

noted that this study was conducted for a semi arid region of West Africa where 

vegetation tends to be sparse (Sandholt et al., 2002). Vicente-Serrano et al. (2004) used 
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similar techniques to Sandholt et al. (2002) for estimating soil moisture over an area in 

north east Spain, using data from both AVHRR and Landsat satellites. Although the 

study site had greater vegetation cover, comparisons with soil moisture derived from 

hydrological models showed relatively poor results, up to an R2 of 0.42. This suggests 

that the triangle method is better suited to areas with  sparse vegetation cover and may 

therefore not be applicable for UK transport corridors. Perhaps more crucial is the 

coarse spatial resolution of the AVHRR sensor (1.1 km) which is not adequate for 

monitoring transport corridor earthworks.  

2.2.4 Visible, near and shortwave infrared 

Thermal imagery focuses on an area of the electromagnetic spectrum with relatively 

long wavelengths. Efforts have also been made to study the effects of soil moisture on 

reflectance in the visible, near and shortwave infrared region of the spectrum, ranging 

from 400 nm to 2500 nm. The influence of soil moisture content on the reflectance of a 

soil in this spectral domain follows similar lines to that of thermal and microwave 

reflectance or emissivity. Specifically, an increase in water in a soil matrix increases the 

amount of  electromagnetic energy that is absorbed by the soil (Moran et al., 2004). 

This results in the familiar darkening of a soil after wetting (Lobell and Asner, 2002) 

which forms the basis of estimations of soil moisture using reflectance in the visible, 

near and shortwave infrared. 

 Lobell and Asner (2002) gathered reflectance measurements in this spectral 

domain for four different soil types with varying degrees of wetness under laboratory 

conditions. The relationship between soil moisture and reflectance was expressed as the 

best fit coefficients for an exponential model. Reflectance at the wavelengths 600 nm, 

1200 nm and 2200 nm, were shown to have a particularly strong exponential 

relationship with observed soil moisture, although actual correlation coefficients were 

not reported. Their findings also showed that reflectance measurements in the visible 

domain were only sensitive to soil moisture contents up to 20%, whereas reflectance in 

longer wavelengths, such as the near and shortwave infrared, continued to respond to 

soil moisture content value up to 50%. 

 Weidong et al. (2002) also examined the influence of soil moisture on reflectance 

measurements in the visible, near and shortwave infrared regions of the spectrum. 
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Reflectance in this domain is strongly affected by soil type and texture (Moran et al., 

2004; Muller and Decamps, 2001) and therefore Weidong et al. (2002) analysed the 

effects over 10 different soil types. They found very high correlations, R2 above 0.88, 

when reflectance measurements were compared to soil moisture values for individual 

soils. High correlations, R2 between 0.7 and 0.85, were also found when comparisons 

were made using the whole set of soils, showing promise for developing a universal 

model. However, this was only applicable to soils with relatively low soil moisture 

content as poorer correlations were found over wetter soils (R2 less than 0.5). This is 

due to the non linear relationship between soil moisture and reflectance over this 

spectral domain. Specifically, under low soil moisture conditions, reflection tended to 

decrease with an increase in soil moisture, whereas, at higher soil moisture levels, 

reflectance tended to increase with an increase in soil moisture (Weidong et al., 2002). 

 Despite the complexities illustrated by the latter study, the work reported by 

Lobell and Asner (2002) and Weidong et al. (2002) demonstrated the potential for using 

reflectance measurements in the near and shortwave infrared to infer soil moisture 

content. However, this work was limited to a laboratory setting where factors such as 

soil type, surface roughness and texture could be controlled. Lihua et al. (2005) 

extended this work by estimating soil moisture using visible imagery gathered from an 

unmanned aerial vehicle and hyperspectral data in the field using a spectroradiometer. 

Despite Lobell and Asner (2002) previously showing the visible part of the spectrum to 

be insensitive to soil moisture content value above 20%, Lihua et al. (2005) found 

strong correlations with observed soil moisture, up to an R2 of 0.9. 

 One the advantages of taking remotely sensed measurements of reflectance in the 

visible, near and shortwave infrared, is the potential for acquiring very high spatial 

resolution imagery (0.5 m with some commercial satellite sensors) (Lobell and Asner, 

2002). There are a number of sensors with the capability to record reflectance in the 

visible, near and shortwave infrared. Those with a fine spatial and spectral resolution 

are typically hyperspectral sensors onboard aircraft, measuring spectral reflectance over 

numerous bands. Ben-Dor et al. (2002) used the DAIS-7915 (Digital Airborne Imaging 

Spectrometer) scanner with 79 channels across the spectral region 400 nm to 1400 nm 

at a spatial resolution of 8 m to map soil properties over farmland in Northern Israel. 

They compared reflectance measurements against different soil properties, including 
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soil moisture content, using multiple linear regression. Correlations between observed 

soil moisture and estimates made using the airborne remotely sensed data were not as 

good as those derived from laboratory experiments, with R2 values of 0.65 and 0.85 

respectively. Nevertheless, this study demonstrated that a reasonable characterisation of 

soil moisture can be made, at a high spatial resolution, using airborne sensors 

 The previously mentioned studies have all shown high correlations with observed 

soil moisture. However, these estimates were made over bare soil as reflectance 

measurements made in the visible, near and shortwave infrared are highly perturbed by 

the presence of vegetation (Moran et al., 2004; Muller and Decamps, 2001). This is 

because the relatively short wavelength of electromagnetic energy within this spectral 

domain is absorbed and scattered by leaves and branches. Therefore, techniques using 

this spectral domain to make direct inferences of soil moisture would have little use 

over a vegetated transport corridor earthworks. 

2.3 Characterising soil moisture using terrain analysis 

Rather than detecting soil moisture directly from the soil surface, research has shown 

potential for characterising soil moisture conditions through indirect methods. 

Specifically, topography has been shown to have a strong influence on the processes 

that control soil moisture distribution, including surface and subsurface flows, and 

evapotranspiration (Tenenbaum et al., 2006; Bárdossy and Lehmann, 1998). 

Researchers have exploited this relationship through the development of terrain analysis 

routines such as wetness indices and calculations of potential evaporation. These 

calculations are applied to digital elevation models (DEMs) which are generated using a 

number of different techniques, which are discussed in Section 2.3.3. 

2.3.1 Wetness indices 

Terrain analysis using DEMs is a well established practise in hydrology (Sørensen et al., 

2006). Perhaps one of the most common examples of this is through the use of a 

topographic wetness index (TWI). The theory behind this index was first presented by 

Beven and Kirkby (1979), and can be expressed by Equation 2.1. 
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Equation 2.1  

Where a is the local upslope area draining through a certain point per unit contour 

length, and β is the local surface slope (Sørensen et al., 2006). The tangent curvature of 

the slope provides a measure of flow convergence or divergence, and the upslope area is 

a measure of the potential area that can contribute flow through a unit contour length 

(Western et al., 1999a). The specific calculations behind the TWI are detailed in Section 

3.2.1.1. 

To put the TWI calculation into context, take the scenario in Figure 2.6. The 

input DEM shows a simplified version of a catchment area, with steep sides and a flat 

base (step 1). The upslope contributing area in the TWI calculation (Equation 2.1) 

indicates that flow directions travel from the steep sides of the catchment, towards the 

flat base (step 2). As the flat base is located towards the end of the flow direction paths, 

it has a higher degree of contribution from further up the catchment, compared to the 

valley sides that have little or no other cells flowing into them (step 3). This illustrates 

the estimation of accumulation based on upslope contributions. The curvature of the 

slope explains that moisture is more likely to be retained on flatter slopes, as opposed to 

steep slopes for which moisture is likely to flow downslope. The combination of 

contributing area and the curvature of the slope means that flat areas which receive 

contribution from upslope areas have higher TWI values than steep areas with little or 

no upslope contribution. Areas with high values are known as areas of topographic 

convergence, which is depicted in Figure 2.6 (step 3) where the base of the catchment 

has a higher TWI value (red grid squares) than the catchment sides (white grid squares). 

However, it should be acknowledged that values are expressions of subsurface flow and 

susceptibility to wetness rather than direct predictions of soil moisture content 

(Tenenbaum et al., 2006; Beven, 1997). As a result, the calculation of TWI does not 

take into account other controls on the distribution of soil moisture, such as soil 

characteristics (Schmidt and Persson, 2003).  
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Figure 2.6 Illustration showing key components in the calculation of a TWI, 

including the calculation of flow direction and upslope contributing area. Red areas 

refer to high TWI values, corresponding to wetter areas. 

 

A common application for TWIs is in slope stability studies (Baum et al., 2005; 

Gritzner et al., 2001; Pack et al., 1998). This is based on the observation that areas with 

higher soil moisture content tend to occur in areas of topographic convergence, as 

illustrated in Figures 2.6 and 2.7, which is commonly associated with slope instability 
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(Pack et al., 1998). This coincidence is considered so intrinsic that entire stability 

models have been explicitly based around TWI calculations, such as the SINMAP 

(Stability Index Mapping) model developed by Pack et al. (1998). However, these 

studies make no attempt to draw comparisons with observed soil moisture 

measurements. Despite this, there is a growing body of work that specifically aims to 

assess the quality of TWIs with observed soil moisture measurements. 

 

 

Figure 2.7 Example TWI calculated from a 11.25 m DEM from a forested catchment 

near Baltimore, USA, from Tenenbaum et al. (2006). Notable patterns include 

increased wetness (blue) in an area of convergence running down the centre of the 

scene and lower wetness values  (dark orange) for the steep slopes surrounding this 

area of convergence.  

 

Schmidt and Persson (2003) showed a reasonable comparison between surface 

soil moisture measurements and a TWI generated from a 3 m DEM for varying relief in 

Central Sweden and North East Germany. Best results were found over undulating, 

hummocky terrain with an R2 of 0.64. However, poor results were found in areas of low 

relief due to the lack of topographically converging areas. As Schmidt and Persson 

(2003) explained, the concept behind the TWI is only valid for areas with a high degree 

of lateral water movement, which is controlled by relative relief. This is supported by 

Barling et al. (1994), who explained that soil moisture distribution is not sufficiently 

controlled by topography in areas that exhibit an overall shallow slope angle (< 6˚). 
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Whereas transport corridors as a whole may exhibit both shallow sloping low relief and 

steep sloping hummocky terrain, slopes on embankment and cutting earthworks 

generally tend to be more than 6˚, therefore showing potential for using a TWI to 

characterise soil moisture in such an environment.   

Western et al. (1999a) compared a TWI, calculated using a 5 m DEM for an 

undulating catchment near Melbourne, Australia, against a detailed survey of soil 

moisture measurements made throughout the year. Correlation coefficients varied 

greatly throughout the measurement period, ranging from no correlation, to an R2 of 

0.42 found during the wet season. Interestingly, slight improvements to correlations 

were obtained when soil moisture was compared to the natural logarithm of the 

contributing area, i.e. taking the tangent of the slope (β) out of the TWI calculation in 

Equation 2.1, with a correlation coefficient of up to 0.5. This correlation was only 

achieved during wet conditions suggesting that contributing area becomes the dominant 

control on soil moisture distribution (Western et al., 1999a). This implies that during 

time of increased rainfall, lateral movement of water through a terrain becomes more 

dominant than the control of slope curvature, which may be more applicable to long 

term controls on soil moisture distribution as wetness concentrates in areas of 

convergence. Better results were achieved when the TWI was coupled with a 

calculation of potential solar radiation, which is discussed in Section 2.3.2. 

Tenenbaum et al. (2006) showed a similar spread in correlation coefficients 

when they compared soil moisture measurements to TWI calculations made using 

DEMs with a range of spatial resolutions (0.5 m to 30 m), over a forested area with 

undulating terrain, and a suburban area with relatively low relief in Baltimore, USA. 

The strongest correlations (R2 of 0.8) were found using a 11.25 m DEM, when 

compared to soil moisture measurements made in wetter conditions. Moderate 

correlations, R2 up to 0.56, were found using a TWI derived from a 0.5 m DEM. This 

shows promise for characterising soil moisture at a fine scale. However, to achieve 

these results, the wetness index was averaged over an 11 x 11 kernel producing a 

conceptual grid with a 5.5 m resolution. This approach was adopted so the TWI grid 

values were comparable to the observed the soil moisture measurements. In doing so, 

this would suppress any fine scale variation predicted by the calculation which could be 
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crucial in precision engineering over transport earthworks where important hydrological 

features, such as drains, are typically narrow (width of approximately 1 m).  

The degree of success in using wetness indices to predict soil moisture 

distribution has varied greatly. It is generally held that higher correlations with observed 

soil moisture can be found when calculations are applied to coarser scale DEMs 

(Tenenbaum et al., 2006). However, this is highly dependent on the complexity of the 

terrain and environment being modelled. For example, Gritzner et al. (2001) found only 

partial success when using a TWI as part of an assessment into landslide potential in a 

875 km2 catchment in Idaho, USA, as the coarse 30m DEM failed to identify features 

such as roads. This leads to the suggestion that the success of the TWI calculation is 

dependent on the ability of the DEM to identify controlling hydrological features 

(Tenenbaum et al., 2006; Gritzner et al., 2001). Based on these findings, if a TWI was 

used to characterise soil moisture in a transport corridor, a trade off would have to be 

made between sufficient spatial resolution, with the ability to represent all major 

hydrological features, and the size of the dataset to allow for reasonable processing 

time. 

One criticism of TWIs is that they assume the entire upslope contributing area 

flows to a specific point by subsurface flow, which in some environments can be a very 

slow process (Wilson and Gallant, 2000; Western et al., 1999a). This can be a particular 

disadvantage in applications such as pollutant movement over a catchment. Here, the 

steady-state estimations made by TWIs do not take into account the time since the 

rainfall event which can affect surface and subsurface flow patterns (Kim and Jung, 

2003). This has led to the development of quasi and fully dynamic wetness indices that 

incorporate a temporal dimension, taking into account hydraulic functions such as 

discharge rate, conductivity and gravitational acceleration (Kim and Jung, 2003; Barling 

et al., 1994). However, these models require knowledge of soil properties, such as grain 

size composition and effective porosity, which can be cumbersome to measure 

accurately in the field, and would likely detract from the original advantage of using a 

TWI to characterise soil moisture distribution with less effort than using conventional 

ground-based methods. 
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2.3.2 Potential solar radiation 

As discussed earlier in Section 2.3.1, wetness indices tend to work better in wetter 

overall conditions, where soil moisture distribution is more strongly controlled by 

topographic convergence (Western et al., 1999a; Grayson et al., 1997). However, during 

dry periods, soil moisture distribution has been shown to be a function of aspect and 

resulting evapotranspiration (Tenenbaum et al., 2006; Western et al., 1999a; Isard, 

1986). Potential evapotranspiration can be characterised by a calculation of potential 

solar radiation (Western et al., 1999a).  

The calculation of potential solar radiation uses a DEM to model the way in 

which solar radiation reaches the Earth’s surface from the Sun. Solar radiation arrives at 

the Earth’s surface in three different ways: (1) direct radiation, as the name suggests, is 

received via a direct line from the sun, and is the largest contributor to total radiation; 

(2) diffuse radiation reaches the Earth’s surface by way of scattering in the atmosphere; 

(3) reflected radiation is scattered by features on the Earth’s surface. Generally, the 

latter route is only significant where there is large snow cover and is therefore not 

considered in the calculation of potential solar radiation. Although spatial variation in 

humidity would also have an effect on potential evaporation, it is considered 

insignificant at a small catchment scale (approximately 500 m2) due to mixing in the 

atmospheric boundary layer (Western et al., 1999a), and is also excluded from the 

calculation. 

Fu and Rich (2002) modelled the principles of solar radiation to calculate 

potential solar radiation. This calculation begins by generating a hemispherical 

viewshed for each location in the input DEM. This viewshed is a representation of the 

area of sky that is visible to that point based on the presence of any obstructions (Figure 

2.8). It is therefore important to have a DEM that sufficiently represents topography, as 

coarse DEMs may produce under, or overestimations of potential solar radiation for any 

given grid cell. The hemispherical viewshed is used in conjunction with information 

about the position of the sun and sky direction to calculate total radiation. A sunmap is 

used to represent the position of the sun by taking into account the time of the day, time 

of year and latitude of the area of interest (see Figure 2.9 for a graphical representation). 

As a result, potential solar radiation can be calculated for any length of time from 

specific days, to entire years. Sky direction is represented by a skymap that produces a 
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hemispherical view of the sky, with different areas of the map defined by the zenith and 

azimuth direction (Figure 2.10). The different areas on the sky map have a unique value 

that is used to quantify the contribution of diffuse radiation from atmospheric scattering. 

These contributions are generalisations of a complicated process which is normally 

quantified using complex atmospheric contribution models. Total radiation is calculated 

by overlaying the viewshed with the sunmap and skymap. An example of this can be 

found in Figure 2.11 which shows a map of surface temperature predicted from the 

potential solar radiation calculation outlined by Fu and Rich (2002). 

The potential solar radiation calculation has been used in studies to achieve 

improved estimations of soil moisture particularly in dry conditions (Western et al., 

1999a). However, the calculation is rarely used to delineate soil moisture on its own. 

Greater success has been found using a combination of potential solar radiation and 

TWI (Western et al., 1999a; Western et al., 1999b). Specifically, Western et al. (1999a) 

found that a combination of potential solar radiation and TWI produced an R2 of 0.61 

with observed soil moisture during wet conditions, an improvement by a factor of 

nearly 20% compared to using the TWI on its own. 

 Advances in the collection of remotely sensed topographic data and terrain 

analysis using GIS has led to the development of a number of hydrological models (Du 

et al., 2007; Boughton, 2005). The hydrological model TOPOG uses terrain analysis to 

predict hydrological characteristics including soil moisture distribution and catchment 

erosion (Huang et al., 2005). This model incorporates information from both wetness 

and solar radiation calculations from a DEM in order to describe the way in which water 

moves through a landscape. Soil moisture estimates made using such models have been 

successfully applied to the assessment of slope stability (Ray and Jacobs, 2007) but few 

reported attempts have been made to compare soil moisture distributions with observed 

soil moisture measurements. One of the criticisms of these kind of models is that they 

require a large number of parameters (Du et al., 2007), including soil depth, hydraulic 

conductivity and vegetation cover, all of which are spatially variable (Huang et al., 

2005). As a result, models are likely to be tailored to specific study areas and have 

limited use in an operational context. In addition, models such as TOPOG require a 

great deal of terrain data and are therefore only considered to be applicable to small 

catchment scale areas (less than 10 km2) (Boughton, 2005; Huang et al., 2005). 



 

Figure 2.8 Illustration of a viewshed calculated for a specific cell. Image (a) shows 

the hemispherical view from a particular DEM grid square. Image (b) shows areas in 

grey that are considered to be obstructions. Image (c) shows the same hemispherical 

view as (a) but with the area of sky that is not visible due to obstructions masked out 

in grey. Images taken from ESRI’s ArcGIS help documents 

  

Figure 2.9 Schematic representation of the sunmap that quantifies direct solar 

radiation from time of year, time of year and latitude of the area of interest. This 

particular sunmap is for a latitude of 45° N, calculated for the period December 21

to June 21st. Each square represents half hour intervals throughout the day and 

monthly intervals through the year. Adapted from ESRI’s ArcGIS help documents 
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Illustration of a viewshed calculated for a specific cell. Image (a) shows 

the hemispherical view from a particular DEM grid square. Image (b) shows areas in 

grey that are considered to be obstructions. Image (c) shows the same hemispherical 

t with the area of sky that is not visible due to obstructions masked out 

in grey. Images taken from ESRI’s ArcGIS help documents 

Schematic representation of the sunmap that quantifies direct solar 

radiation from time of year, time of year and latitude of the area of interest. This 

particular sunmap is for a latitude of 45° N, calculated for the period December 21

. Each square represents half hour intervals throughout the day and 

monthly intervals through the year. Adapted from ESRI’s ArcGIS help documents 

(ESRI, 2007a). 

(a) 
(b) 

 

Illustration of a viewshed calculated for a specific cell. Image (a) shows 

the hemispherical view from a particular DEM grid square. Image (b) shows areas in 

grey that are considered to be obstructions. Image (c) shows the same hemispherical 

t with the area of sky that is not visible due to obstructions masked out 

in grey. Images taken from ESRI’s ArcGIS help documents (ESRI, 2007a). 

 

Schematic representation of the sunmap that quantifies direct solar 

radiation from time of year, time of year and latitude of the area of interest. This 

particular sunmap is for a latitude of 45° N, calculated for the period December 21st 

. Each square represents half hour intervals throughout the day and 

monthly intervals through the year. Adapted from ESRI’s ArcGIS help documents 

(c) 
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Figure 2.10 Schematic representation of the sky map that is used to represent diffuse 

radiation from zenith and azimuth directions. Each box represents a portion of the 

sky with a unique calculation of diffuse solar radiation. From ESRI’s ArcGIS help 

documents (ESRI, 2007a). 

 

Figure 2.11 Map of soil temperature predicted using linear regression between 

observed temperature measurements and potential solar radiation calculated using a 

30 m DEM, from Fu and Rich (2002). Noticeable patterns include a reduction in 

predicted surface temperature on north facing slopes. 

  



39 
 

2.3.3 Issues relating to input DEM 

Sections 2.3.1 and 2.3.2 relate to indirect methods for characterising soil moisture using 

DEMs. However, there are a number of issues relating to the input DEM that can affect 

these characterisations, particularly with the calculation of TWIs. Gritzner et al. (2001) 

highlighted the need for a DEM with a resolution that sufficiently represents the 

hydrological features within the area of interest. Naturally, this varies with the 

complexity of the area at hand. Tenenbaum et al. (2006) found that urban areas require 

much finer scale DEMs to produce an accurate TWI (< 1 m) compared to a forested 

area with low relief (5-10 m). Transport corridors often run through urban areas and 

would therefore require a fine scale DEM. In addition, transport infrastructure such as 

bridges, embankments and cuttings can be important hydrological features in 

themselves (Tenenbaum et al., 2006; Gritzner et al., 2001) and therefore need to be 

represented in the input DEM. As a result, it may be advantageous to consider the use of 

digital surface models (DSMs). Whereas DEMs are a depiction of terrain, DSMs 

include other features, such as buildings, roads and vegetation, that are normally filtered 

out in routines for DEM generation. However, features such as roads and buildings are 

relatively small and may not be detected in coarser scale terrain data. For example, 

Gritzner et al. (2001) found inaccuracies using a 30 m DEM to delineate soil moisture 

as input to an assessment of landslide risk due to subsequent terrain analyses not taking 

into account features such as roads.  

 Issues concerning DEM resolution relate to the methods used for capturing 

elevation data. Data gathered using portable RTK (Real Time Kinetic) GPS tend to be 

cheap (providing the equipment is available) and provide accurate measurements, but 

they are labour intensive over large areas, and the need for a constant radio link has 

proved to be problematic in undulating terrain (Schmidt and Persson, 2003). Spot 

elevation values can be derived over wide areas from aerial photography and 

photogrammetric techniques (Schmidt and Persson, 2003). However, some authors have 

noted that photogrammetric techniques may not provide adequate resolution to 

represent hydrological features, particularly in complex urban environments, or where 

there are dense vegetation canopies (Tenenbaum et al., 2006; Haugerud and Harding, 

2001) and would therefore be problematic in a transport corridor environment. For this 

reason, DEMs derived from airborne laser scanning (ALS) tend to be favoured as they 
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consistently achieve higher point density returns (Schmidt and Persson, 2003) and have 

the ability to provide reasonable ground returns over vegetated areas (Schulz, 2005). In 

addition, terrain data derived from ALS has shown to be useful for depicting fine scale 

features such as roads and buildings (Hollaus et al., 2005), which were identified earlier 

in this section as having an influence on the accuracy of terrain analysis calculations, 

including TWI.  

ALS systems are typically mounted on an aircraft allowing timely acquisition of 

high density elevation data over large areas. Typically this can produce high spatial 

resolution DEMs of less than 1 m, with errors better than 25 cm, depending on a 

number of conditions including vegetation cover (Hollaus et al., 2005). DEMs derived 

in this way have been successfully used to generate wetness parameters for a number of 

slope stability studies (Baum et al., 2005; Schulz, 2005; Borga et al., 2002). 

Additionally, ALS derived DEMs have been used in a number of soil moisture 

distribution studies such as Schmidt and Persson (2003) and Tenenbaum et al. (2006), 

but currently there have been no attempts to apply these methods for characterising soil 

moisture in a transport corridor environment. 

Despite the notable advantages of using ALS sensors for generating DEMs, the 

ground surface signal can be strongly perturbed by the presence of vegetation 

(Reutebuch et al., 2003). To overcome this, filtering algorithms have been developed to 

maximise the signal from the ground by eliminating the signal from the vegetation 

canopy and other obstructions (Haugerud and Harding, 2001). This process has 

provided excellent results, as well as being fully automated (Haugerud and Harding, 

2001). As a result, the filtering procedure has become a common practise in DEM 

processing (Lim et al., 2007) and undergoes continual development. For a more 

comprehensive review of filtering algorithms see Sithole and Vosselman (2004). 

SAR sensors can also be used to derive elevation values and build high spatial 

resolution DEMs using SAR interferometry (also known as InSAR) where the 

difference in the signal from two separate SAR antennae are used to construct a map of 

surface elevation (Mather, 2004; Rosen et al., 2000). However, studies have shown that 

the signal can be perturbed by different land covers, particularly vegetation (Rosen et 

al., 2000) and as a result is not as accurate a ALS systems for generating a DEM (Chang 

et al., 2004). Based on these findings, a DEM derived from ALS would be most 
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applicable in a transport corridor environment due to the presence of dense vegetation 

and the need for a fine spatial resolution.  

2.4 Remote sensing of vegetation as a surrogate for characterising soil 

moisture 

Section 2.2 discusses remote sensing techniques that infer soil moisture directly from 

the Earth’s surface, whereas Section 2.3 refers to techniques that make an indirect 

characterisation of soil moisture from DEMs derived from remotely sensed data. This 

section centres on the characterisation of soil moisture through surrogate measurements. 

Specifically, the techniques discussed involve measures of vegetation spectral 

reflectance that can be used to make inferences about the soil below. This discussion 

will show that these techniques are potentially important for monitoring transport 

corridors as earthworks tend to be covered in dense vegetation, which can often hinder 

the use of the remote sensing techniques discussed in Sections 2.2 and 2.3.  

Plants get their water from soil and therefore changes in soil moisture are felt by 

the plant (Porporato et al., 2001). The response of vegetation to changes in soil moisture 

is termed ecohydrology (Rodriguez-Iturbe et al., 2001) and can be categorised into two 

main responses: (1) an increase in water availability leads to an increase in nutrient 

availability, which results in an increase in growth or biomass (Goldberg and Miller, 

1990); (2) an excess of water, leading to waterlogging, causing the depletion of oxygen 

in the soil, results in plant stress, highlighted by reduced chlorophyll production and 

overall biomass (Smith et al., 2004a; Trought and Drew, 1980). 

To some extent this theory is put into practice by transport corridor inspectors as 

they walk railway routes and attempt to identify areas of increased biomass that could 

be indicative of an increase in soil moisture content (Perry et al., 2003b). However, 

there is no reference in the literature, or from engineering professionals, to any attempts 

made by inspectors to identify stressed vegetation as an indicator of waterlogged areas. 

In addition, there are no documented studies that have dealt with the response of 

vegetation to an increase in soil moisture on earthwork slopes. This is a potentially 

important area of research as vegetation spectral reflectance in the visible and near 

infrared domains has been shown to be able to identify stressed vegetation (Kempeneers 

et al., 2005; Li et al., 2005; Smith et al., 2005b; Adams et al., 1999; Carter, 1993), and 
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therefore has the potential to be scaled up to airborne sensors for application over wide 

areas (Kempeneers et al., 2005; Li et al., 2005). 

2.4.1 Remote sensing of vegetation change 

Since the launch of the first satellites with the capability to monitor the Earth’s 

resources in the 1970s, researchers have developed methods to establish relationships 

between spectral reflectance and vegetation parameters (Ustin et al., 1999; Bannari et 

al., 1995; Rouse et al., 1974; Rouse et al., 1973). To understand the relationship 

between spectral reflectance and vegetation we must first consider the properties of 

plant leaves. 

Figure 2.12 shows a cross section of a typical leaf. Towards the upper part of the 

leaf, the palisade layer is made up of elongated tissue that contains chloroplasts. These 

are cells that include lens shaped chlorophyll pigments that facilitate photosynthesis by 

absorbing sunlight. However, chlorophyll does not absorb sunlight equally. Light in the 

red and blue regions of the spectrum is absorbed by the pigments and green light is 

reflected, giving leaves their distinctive green colour. This top layer of the leaf, 

including the cuticle and upper epidermis, is almost invisible to infrared light. This 

passes through to the internal spongy mesophyll tissue where it is strongly scattered or 

reflected (Campbell, 2006). 

Attempts to analyse vegetation using broad band satellite imagery has involved 

the development of vegetation indices, using the red and infrared regions of the 

spectrum, which have a particularly defined response to plant leaves (Bannari et al., 

1995). The most common of such indices is the Normalised Difference Vegetation 

Index (NDVI), which was briefly introduced in Section 2.2.3. This was developed by 

Rouse et al. (1973) and remains extensively used today for many multispectral 

operations, using sensors with just a few spectral bands, such as Landsat with seven 

spectral channels. However, such indices were developed for broad band multispectral 

sensors which hold only limited information about vegetation targets (Cho and 

Skidmore, 2006; Thenkabail et al., 2000). The development of hyperspectral sensors, 

with near continuous reflectance values over the spectrum (of a given range) have 

increased the potential amount of information that can be derived about vegetation from 

their spectral reflectance (Thenkabail et al., 2000).  
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Cross section of a typical leaf showing interaction of leaf structure with 

visible and near infrared light. Adapted from Campbell 
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Figure 2.13 Example of healthy and stressed vegetation spectra measured over grass 

canopies using field spectroscopy with highlighted red edge feature. 

2.4.1.1 Remote sensing of the red edge feature  

Plant tissue under stress increases its heat production in order to dissipate excess 

energy, which can lead to a reduction in chlorophyll production (Zarco-Tejada et al., 

2003). This propagates itself in the leaf reflectance through a shift in the red edge 

towards longer wavelengths (Cho and Skidmore, 2006; Noomen et al., 2006; Li et al., 

2005; Smith et al., 2005b; Smith et al., 2004a; Merton, 1998). Authors have identified 

this shift by examining the red edge position (REP). For example, Smith et al. (2005b) 

found a shift in REP of up to 30 nm towards shorter wavelengths (from 718 nm to 

688 nm) when plants were subjected to a range of different environmental stresses over 

a period of four weeks. In terms of soil moisture, an increase in soil moisture can lead to 

oxygen displacement in the soil, therefore reducing the availability of oxygen to a plant 

leading to stress (Smith et al., 2004a). Although many of the following studies do not 

explicitly address the impact of changes in soil moisture on the red edge feature, they all 

refer to different sources of plant stress. 

The position of the red edge can be estimated using a number of different 

techniques. Perhaps the most basic technique for defining the REP uses linear 

interpolation to define a straight line between the point of minimum and maximum 
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reflectance, typically 670 nm and 780 nm respectively (as seen in Figure 2.13) (Dawson 

and Curran, 1998). The REP is subsequently derived from the slope of the line. This 

technique has been extended by employing an inverted Gaussian technique, that uses a 

least-squares approach to fit a normal curve to the red edge (Cutler and Curran, 1996). 

The REP is then defined as the midpoint between the rising limb of this curve. Although 

these two techniques are relatively simple, they require predefined points for the 

minimum and maximum points of reflectance which may alter between species and 

stage of senescence (Dawson and Curran, 1998). Furthermore, they do not take into 

account the possible influence of the canopy, including the effects of shadowing and 

soil background (Dawson and Curran, 1998). 

More advanced techniques for estimating the position of the red edge largely 

focus on exploiting the derivative of the spectra. With the advent of hyperspectral 

sensors, many early studies concentrated on optimising simple band ratio calculations 

that were previously developed for multispectral sensors (Tsai and Philpot, 1998). Such 

techniques treated each band as an independent variable and ignored any band to band 

relationship (Tsai and Philpot, 1998). Derivative analysis overcame this by taking into 

account the surrounding bands and is therefore an expression of the rate of change in 

reflectance from one band to the next (Equation 2.2)  (Schowengerdt, 2007; Smith et al., 

2004a).  

�� � ��� � ��� ��� � ���  

Equation 2.2  

Where, ρ’ is the first derivative of the spectrum, ρ is the reflectance value and λ 

is the corresponding wavelength. 

Although reflectance of vegetation in the red edge region of the spectrum is 

largely a function of leaf properties, there are also contributions from shadow, soil 

background and vegetation underneath the target (Dawson and Curran, 1998). The 

advantage of derivative analysis is that it maximises the signal from the vegetation 

target and suppresses background features (Dawson and Curran, 1998; Tsai and Philpot, 

1998; Filella and Penuelas, 1994). As the derivative of the spectrum is concerned with 

change in reflectance, rather than absolute reflectance, it is also relatively insensitive to 

the effects of atmospheric scattering and illumination intensity (Dawson and Curran, 



46 
 

1998; Tsai and Philpot, 1998). This attribute makes analysis of the derivative of the 

spectra particularly useful for being applied to spectral reflectance data gathered from 

an airborne platform where variations in cloud cover and sun angle can change absolute 

reflectance values (Tsai and Philpot, 1998). Despite this, the derivative spectrum is 

known to be sensitive to noise (Tsai and Philpot, 1998). As a result, some authors have 

chosen to smooth spectra prior to calculating the derivative. Smith et al. (2004a) found 

that a five point weighted average provided sufficient smoothing without losing any fine 

scale spectral detail and is easy to calculate compared to other commonly used 

smoothing algorithms including the Savitzky-Golay least squares fitting procedure (Tsai 

and Philpot, 1998).  

Studies have successfully used derivative spectra to improve estimations of 

vegetation parameters, compared to raw spectra (Malthus and Madeira, 1993). In 

particular, authors have noted the significance of two peaks in the first derivative of 

plant spectra (Figure 2.14) (Cho and Skidmore, 2006; Smith et al., 2004b; Zarco-Tejada 

et al., 2003). Zarco-Tejada et al. (2003) explained that this double peak feature is 

entirely the result of reflectance from chlorophyll pigments in the leaf. Extensive work 

by Smith et al. (2005a; 2005b; 2004a; 2004b) extended upon this theory by calculating a 

ratio of derivative reflectance values at 702 nm and 725 nm that correspond to the 

double peak feature. They found that this ratio was a strong indicator of stress in plants. 

However, the specific wavelengths where the double peaks occur may vary from plant 

to plant, as highlighted by the different peaks found by Smith et al. (2004b), Zarco-

Tejada et al. (2003), Cho and Skidmore (2006) and Clevers et al. (2004). As a result, a 

predefined stress ratio may not be applicable to all species types and may have to be 

tailored to site specific vegetation types (Kempeneers et al., 2005). The stress ratio has 

not been tested for embankment vegetation in response to an increase in soil moisture.  
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Figure 2.14 Example of the double peak feature at the maximum point of inflection in 

derivative spectra for the canopy of healthy grass measured using field 

spectroscopy. 

 

Dawson and Curran (1998) presented a technique that has the benefits of being 

relatively simple to calculate, sufficiently flexible to allow for different points of 

minimum/maximum reflectance, and require no a priori knowledge about the spectrum 

being analysed. Their technique, known as the Lagrangian interpolation technique, uses 

the derivative of the spectra (��) (calculated using Equation 2.2). The calculation is 

described in Equation 2.3.  

��� � �� � ����� � �����
����� � �������� � ����� �������� � �� � ������� � �����

��� � �������� � ����� ������

� �� � ������� � �������� � ���������� � ��� �������� 

Equation 2.3  

Where, �� represents the first derivative at a given wavelength, λi is the band with the 

maximum first derivative value, with λi-1 and λi+1 representing the two bands either side. 

������, ��������) and �������� represent the first derivative values which can be determined 

for any band position on a theoretical red-edge. In the case of Dawson and Curran 
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(1998), the wavelengths 695 nm, 700 nm and 705 nm were used (Figure 2.15). REP can 

then be calculated using Equations 2.4 and 2.5. 

 

��� � ���� � ����� � ������ � ����� �  ����� � ���2�� � � �  �  

Equation 2.4  

Where, 

� � ������������� � �������� � ����� , � � ��������� � �������� � ����� , and  

 � ������������� � ���������� � ���,   
Equation 2.5  

 

 

Figure 2.15 Example of derivative spectra for vegetation with the point of maximum 

inflection (λι) and the two points either side (λι-1 and λι+1) for use in calculating 

Lagrangian REP. From Dawson and Curran (1998). 
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 Dawson and Curran (1998) demonstrated that the Lagrangian technique is 

comparable to the more complex Gaussian technique, making it better suited to large 

remotely sensed datasets due to reduced processing demands. This is supported by 

studies such as Li et al. (2005) who successfully used the Lagrangian technique to 

identify a shift in REP over two epochs of AVIRIS data, as a response to oil induced 

vegetation stress. They compared their results to REP estimated using polynomial 

fitting and found that the latter was less consistent in detecting a shift in the red edge 

over the whole image, compared to the Lagrangian technique. However, they also found 

that, unlike the polynomial technique, the Lagrangian method was sensitive to the band 

combination, meaning that it may provide different estimates of REP when applied to 

reflectance measurements from different sensors, due to different band combinations 

which are likely to be sensitive to slightly different wavelengths. Based on these 

findings they concluded that it was difficult to state which of the two methods should be 

favoured, but stated that the polynomial method may be preferred due its insensitivity to 

band combinations (Li et al., 2005). 

A simplified calculation of REP can be found based on fitting a linear model to the red 

edge but assuming a straight line between reflectance at 700 nm and 740 nm. The 

reflectance of the red edge is then estimated to be half way between the absorption 

feature at about 670 nm and the reflectance feature at about 780 nm (Clevers et al., 

2004). REP can then be defined by a linear interpolation between 700 and 740 nm using 

Equation 2.6. 

��� � 700 � 40 '(��)*+ � �*,+�--/2 � �*++/
�*0+ � �*++ 1 

Equation 2.6  

 

Where, R670, R700, R740 and R780 represent reflectance values at the wavelengths 670, 

700, 740 and 780 nm respectively. The constants 700 and 40 are used to represent 

spectral range from 700 nm to 740 nm. Clevers et al. (2004) compared this technique 

with other methods, including 3rd and 6th order polynomial fitting, inverted Gaussian, 

and maximum of the first derivative, for estimating REP to detect vegetation stress 

caused by heavy metal contamination. They found that the maximum first derivative 

provided the only significant correlation, with R2 values up to 0.64. 
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Despite the success of derivative analysis, some authors have noted that 

predictor models, based on multiple linear regression of derivative spectra, can be 

inconsistent when applied to different scales or sensors (Huang et al., 2004; Kokaly and 

Clark, 1999). To overcome this, Kokaly and Clark (1999) developed a technique known 

as continuum removal analysis which isolated the spectral feature of interest, in this 

case the red edge. The line of continuum is defined as a hull over an absorption feature, 

which is then removed by dividing the reflectance value at each wavelength along the 

line by the reflectance value of absorption feature (see Figures 2.16 and 2.17) (Mutanga 

et al., 2005; Curran et al., 2001). When predicting nitrogen content they found an 

improvement in the correlation coefficient from 0.65 to 0.85, when compared with 

derivative analysis (Kokaly and Clark, 1999). Noomen et al. (2006) studied the effects 

of plant stress induced by gas leakage through continuum removal analysis and found 

an increase in reflectance in the red region of 550 nm to 750 nm, that defines the red 

edge absorption feature (Figure 2.17). Mutanga et al. (2005) also used continuum 

removal analysis to relate spectral reflectance in the same region with plant nutrients 

using stepwise regression achieving high correlation coefficients (up to 0.77). Huang et 

al. (2004) found that improvements can be made over stepwise linear regression by 

using a partial least squares (PLS) approach.  

The examples of Mutanga et al. (2005) and Kokaly and Clark (1999) demonstrated the 

potential for using continuum removal analysis to estimate vegetation parameters. 

Currently there have been no reported attempts to study the relationship between soil 

moisture and the continuum removed spectra of plant leaves. Some studies have used 

continuum removed spectra in the shortwave infrared over bare soils to estimate 

moisture content (Whiting et al., 2004). Similar to the studies cited in Section 2.2.4, 

excellent correlations with observed soil moisture can be obtained (R2 up to 0.91); 

however, their methods would have little application over vegetated earthworks.  
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Figure 2.16 Red edge absorption feature with line of continuum for canopy reflectance 

from healthy grass measured using field spectroscopy. 

 
 

 

Figure 2.17 Continuum removed spectra for normal and stressed vegetation. Normal 

vegetation is characterised by a pronounced red edge absorption feature, identified 

by the depth of the continuum removed spectra, compared to the shallow depth of 

the stressed vegetation. Spectral measurements were made over grass canopies using 

field spectroscopy. 
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The use of spectral analysis techniques, such as stress ratios, red edge position 

estimation, derivative analysis and continuum removal analysis, have been shown to 

indicate stress in plants, as well as other vegetation parameters relating to plant health. 

The sources of stress discussed in this section include natural gas (Noomen et al., 2006; 

Smith et al., 2004b), methane (Noomen et al., 2006), ethane (Noomen et al., 2006), oil 

spills (Li et al., 2005), herbicide (Smith et al., 2005b), shade (Smith et al., 2005b), 

argon, nitrogen and waterlogging (Smith et al., 2004a). Only the latter study assesses 

the impact of soil moisture change, in this case an extreme increase, on the red edge 

feature. However, the impact of many of these sources of stress, including 

waterlogging, relate to oxygen displacement (Smith et al., 2004a). It could therefore be 

assumed that the techniques described in this section could possibly be used to identify 

areas of increased soil moisture over vegetated earthworks. However, relatively few of 

the aforementioned studies have attempted to apply REP detection techniques to 

heterogeneous vegetation covers (e.g. Li et al. (2005)) and therefore there is uncertainty 

as to how the developed techniques may work over vegetated earthworks. In addition, it 

is largely acknowledged that these techniques do not have the ability to differentiate 

between different sources of stress (Li et al., 2005; Smith et al., 2004a). In applying 

these techniques in an operational environment, it may therefore be necessary to make 

assumptions about the type of change being observed. Analysis of the derivative of the 

spectrum has the most promise for being used operationally due to its relative 

insensitivity to variations in illumination angle, background soil, and atmospheric 

attenuation (Dawson and Curran, 1998; Tsai and Philpot, 1998) and may therefore be 

better suited to multiple epoch airborne remotely sensed data, gathered from different 

sensor types. 

2.4.2 Using vegetation as a bioindicator of soil moisture 

Section 2.4.1 considers techniques that have the potential to identify vegetation stress, 

including discussion of how these methods might reflect short term responses of 

vegetation to changes in soil moisture conditions. However, this section is concerned 

with the long-term response of vegetation to soil moisture conditions in relation to plant 

species abundance.  
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Plant species are defined by their environment and can therefore be used to 

make inferences about local conditions (Hill et al., 2000; Schaffers and Sýkora, 2000). 

In this sense, plants can be seen as biological indicators and have been used as such by 

farmers for thousands of years (Diekmann, 2003). More recently, scientists have 

exploited the use of plants as bioindicators, citing the following advantages over 

conducting field measurements of environmental conditions: (1) plants express a 

summary of local environmental variables which can fluctuate strongly over time and 

space (Diekmann, 2003). This is particularly applicable to soil moisture where 

characterisations cannot be made using single measurements (Hawley et al., 1983). (2) 

Measurements of environmental variables tend to be made using expensive equipment 

and can often be laborious in comparison to floristic observations (Diekmann, 2003). 

(3) Plants tend to remain over time, therefore making it possible to make temporal 

observations of bioindicators (Diekmann, 2003).  

The use of plants as bioindicators can be summarised by the concept of 

environmental gradients. This concept, outlined by Braak and Prentice (1988), states 

that all species occur in specific habitats based on  their optimum environmental 

conditions. The theory explains that the abundance of a species is therefore a function of 

measureable environmental variables, such as soil moisture. A number of indicator 

scales have been proposed based on this theory. Examples include the C-S-R scales 

developed by Grime (2001). These scales are based on two categories that control the 

amount of dead or living plant matter in a habitat, notably stress (due to availability of 

light, water, nutrients, optimal temperature) and disturbance (due to erosion, fire, frost, 

being eaten etc). The scales group plant species as to whether they are a competitor (C), 

tolerant to stress (S), or a ruderal (R), this being plants that are first to colonise 

disturbed areas. Although the C-S-R scales have been successfully applied to study 

vegetation patterns across large habitats (608 ha) (Massant et al., 2009), they have no 

explicit link with soil moisture and therefore a link between these indictor scales and 

observed soil moisture may be tenuous.  

Other examples of plant indicator scales tend to be purpose built for the study of 

a particular plant controlling variable (Hill et al., 2000). For example, Diekmann and 

Falkengren-Grerup (1998) developed an index for defining soil nitrogen content by 

forest tree species. Only two generalised indicator scales have been developed: Landolt 
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and Ellenberg indicator values (Hill et al., 2000). The former was developed as an 

extension of the Ellenberg values to be specifically tailored for Switzerland (Diekmann, 

2003) and may therefore not reflect plant species outside this area.  

The most widely used indicator scale is Ellenberg indicator values (Diekmann, 

2003; Hill et al., 2000) which have been used as a standard for drawing comparisons 

with other scales (Massant et al., 2009; Diekmann and Falkengren-Grerup, 1998). 

Ellenberg indicator values were developed on the flora of central Europe (Ellenberg et 

al., 1991) and assign indicator values to plant species relating to specific environmental 

variables, namely, soil nitrogen content, pH, soil chloride concentration, light regime, 

temperature, continentally and soil moisture (Schaffers and Sýkora, 2000). The 

definitions of the soil moisture indicator values are summarised in Table 2.2.   

Many studies have compared Ellenberg indicator values to field measurements 

(Schmidtlein and Sassin, 2004; Ewald, 2003; Schaffers and Sýkora, 2000; Ertsen et al., 

1998). Schaffers and Sýkora (2000) tested the reliability of Ellenberg values to predict 

environmental conditions for vegetation in the Netherlands. They adopted two weighted 

averaging approaches to relate the indicator values to field measurements, species based 

and site based. For the plant based method, an optimal value for each environmental 

variable was calculated per species type. Correlations were then made between these 

optimal values and the species indicator values. For the site based method, average 

indicator values were calculated per site according to their abundance and compared 

against actual measurements. The results showed best results with the site based 

method, achieving strong correlations with soil moisture (R2 between 0.8 and 0.9).  

Despite the apparent success of Ellenberg value indicators there are a number of 

well documented criticisms associated with their development and subsequent 

application. One of the main criticisms is that they were developed for species in central 

Europe and should therefore warrant little meaning outside this area (Hill et al., 2000). 

This prompted Hill et al. (2000) to conduct a large scale survey of British plant species, 

in order to extend Ellenberg indicator values for the UK. Currently there have not been 

any published investigations into the reliability of these extended Ellenberg values but 

Hill et al. (2000) provided their own critical assessment. 
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Ellenberg moisture value Definition  

1 
Indicator of extreme dryness, restricted to soils that often 
dry out for some time 

2 Between 1 and 3 

3 
Dry-site indicator, more often found on dry ground than in 
moist places 

4 Between 3 and 5 

5 
Moist-site indicator, mainly on fresh soils of average 
dampness 

6 Between 5 and 7 

7 
Dampness indicator, mainly on constantly moist or damp, 
but not wet soils 

8 Between 7 and 9 

9 
Wet-site indicator, often on water saturated, badly aerated 
soils 

10 
Indicator of shallow-water sites that may lack standing 
water for extensive periods 

11 
Plant rooting under water, but at least for a time exposed 
above, or plant floating on the surface 

12 
Submerged plant, permanently or almost constantly under 
water 

Table 2.2 Moisture scale and definitions as defined by Ellenberg et al. (1991). 

 

One of the principal acknowledgements made by Hill et al. (2000) was that no 

effort was made to ensure their vegetation sampling was unbiased. In fact, the contrary 

was adopted to deliberately represent particular vegetation types (Hill et al., 2000). Two 

surveys were included in their work, one biased towards common vegetation types, 

seldom recording rarer species, and the other skewed toward rare species and special 

habitats. They also discussed their modified indicator values in terms of being plant-

centred, meaning they referred to the immediate environment in which they were found, 
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which can have implications when recording indicator values over relatively large plots. 

However, they acknowledged the fact that indicator values worked best when averaged 

out for a specific area and therefore the issue of plant centred definitions may not be 

appropriate. 

A thorough review of bioindicators was conducted by Diekmann (2003), with 

particular emphasis on Ellenberg indicator values. The first criticism is that they rely on 

field observations and can therefore have a degree of subjectivity. This can be of 

particular relevance where the field study is conducted by inexperienced ecologists. It is 

therefore essential to have adequate knowledge of plant species in the study area. The 

review also highlighted the potential for circularity, in that indicator values are driven 

by floristic observations, which are then used to make inferences about habitat 

characteristics. The suggestion was that indicator values must be calibrated to 

environmental measurements. However, this could defeat the object of using 

bioindicators as a replacement for laborious field measurements of environmental 

components. To a degree this could be compensated for by drawing comparisons 

between indicator values and coincidental field measurements. Further criticisms 

include the fact that the response of plant species to environmental conditions may 

change over time and space (Diekmann, 2003). Again, the suggestion is to calibrate the 

indicator values with measured values, which may detract from the operational 

capabilities of using bioindicators.  

2.4.2.1 Remote sensing of Ellenberg indicator values 

The application of bioindicators is growing, and as a result, they are becoming 

increasingly accepted (Diekmann, 2003). Despite this, field based methods for mapping 

species abundance tend to be laborious and therefore assessments are made at a small 

scale, typically stand level (Schmidtlein, 2005). As a result, Schmidtlein (2005) 

explored the use of remotely sensed data to map bioindicators over wide areas by 

exploiting the strong relationship between plant assemblages and reflectance.  

Authors have noted that plant species composition is difficult to detect using 

remote sensing due to the differences between ecological mapping methods and the 

methods employed in remote sensing (Lewis, 1998). Mapping bioindicators, however, 

skips the vegetation classification step which tends not to exploit all the spectral 

information provided by imaging spectroscopy and as a result leads to a loss of 
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ecological information that might otherwise be gained (Schmidtlein and Sassin, 2004). 

Despite this, there have only been a limited number of attempts to map bioindicators 

using remotely sensed data, perhaps due to the inadequacy of sensor resolution to 

identify particular species. This is supported by Schmidtlein (2005) who explained that 

attempts have only been made where vegetation cover is confined to one or two species, 

where more complex vegetation canopies are not adequately represented by coarse 

resolution sensors. Schmidtlein (2005) overcame this by mapping indicator values 

directly as a function of vegetation reflectance, using fine spectral resolution imaging 

spectroscopy (see Figure 2.18 for the resulting mapped soil moisture indicator values). 

The method adopted by Schmidtlein (2005) was to make field observations of 

species type and relative abundance in 46 relevés, or quadrats, with a radius of 1 m. 

Average Ellenberg values were then calculated for each plot, which were weighted 

around their relative abundance. The position of these sites were recorded using 

differential GPS and were located within imagery obtained using an airborne AVIS-2 

(Airborne Visible near Infrared Imaging Spectrometer) sensor, with a spatial resolution 

of approximately 2 m and a spectral coverage from 411-868 nm over 64 bands. Partial 

least squares (PLS) regression was then used to model the indicator values from the 

imagery. This method was favoured over multiple linear regression for hyperspectral 

data as the latter takes into account just a few spectral bands that are not collinear 

(Schmidtlein, 2005; Huang et al., 2004; Schmidtlein and Sassin, 2004). Reasonable 

correlations were found when compared to observed soil moisture values (R2 of 0.58).  

The correlations experienced by Schmidtlein (2005) were not as strong as the 

predictions made using the direct remote sensing techniques reported in Section 2.2. 

This is largely due to the fact that the direct remote sensing techniques were largely 

applied to areas with bare soils or sparse vegetation canopies. However, this could also 

be attributed to the fact that bioindicators are floristic gradients, and would therefore be 

a closer representation of floristic characteristics rather than actual soil attributes. This 

is highlighted by the results experienced by Schmidtlein (2005); for example, areas of 

high soil moisture were found to be characterised by a relatively high absorption in the 

green region of spectrum, suggesting low chlorophyll content in wetland plant species. 

However, other areas of high moisture content exhibited the opposite trend, with 

absorption in the red and a strong change in reflectance over the red edge, which 
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identified the differences between poor and rich wetland vegetation. In addition, the 

response of vegetation to different changes in environmental conditions can be the 

same. For example, the effects of low nutrient supply can have the same effects as low 

water supply (Schmidtlein and Sassin, 2004). However, ecologists tend to treat spatial 

variation in plant species as a result of long-term conditions and therefore bioindicators 

can be seen as expressing the overall characteristics of a soil rather than expressing 

short-term changes in environmental conditions (Schmidtlein and Sassin, 2004). 

 

 

Figure 2.18 Map of soil moisture predicted by mapping Ellenberg moisture indicator 

values over alpine pasture, near Salzburg, Austria, using airborne hyperspectral data. 

From Schmidtlein (2005). Scale corresponds to the Ellenberg categorical values 

detailed in Table 2.2.  
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Despite these criticisms, the fact that reasonable soil moisture maps can be 

predicted over complex vegetated sites gives this work great potential for monitoring 

transport corridor earthworks. Furthermore, sensors, including CASI (Compact 

Airborne Spectrographic Imaging), AVIRIS (Airborne Visible InfraRed Imaging 

Spectrometer) and HyMap (Hyperspectral Mapper), are available that have a greater 

spectral range than the AVIS sensor used by Schmidtlein (2005), and could therefore 

hold further potential for this technique. Schmidtlein (2005) also identified the 

advantage of using field measurements of reflectance, rather than extracting spectra 

from the imagery, as this provided targets with more homogenous vegetation cover, and 

helped to enhance the overall model. However, this would require considerable field 

work and would be labour consuming for use over a transport corridor stretching tens of 

kilometres.  

Although there is clearly potential with mapping bioindicators through imaging 

spectroscopy, there are a number of shortcomings associated with Schmidtlein’s (2005) 

methods. Topographic normalisation was not applied to the imagery prior to analysis, 

which could have implications on illumination effects. Despite this, subsequent error 

analysis did not identify any significant relationship between model errors and 

topographic effects on illumination, despite some overestimation of soil moisture in 

areas of shadow. Furthermore, no consideration was given to the effects of canopy 

structure. At the leaf level, reflectance is largely governed by pigments, water content, 

carbon content, and has a significant control over reflectance at the canopy level. 

However, different ecosystems have very different reflectance properties at the canopy 

level. Leaf area index (LAI) has the strongest influence on canopy reflectance, which 

relates to the amount of green leaf area per unit ground area. Mean leaf angle also has a 

strong influence on canopy reflectance, for example, vegetation with vertically 

orientated foliage has very different reflectance properties to vegetation with 

horizontally orientated foliage, such as deciduous trees (Asner, 1998). 

The importance of canopy structure is reinforced by Schmidtlein’s study (2005) 

which characterised wetter areas by a small LAI, such as bog mosses, but the opposite 

could also be found with dense, higher canopies. Despite this, the study acknowledged 

the flexibility of the PLS approach to modelling, as it is able to take into account these 

differences by handling variations over a number of input spectral bands. In addition, 
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this highlights the fundamental advantage of multi/hyperspectral remote sensing over 

simple band ratio methods that do not embrace the same spectral detail.  

Studies have taken into account the effects of canopy structure on reflectance 

through the use of canopy radiative transfer, or geometric-optical models (Bateson et 

al., 2000). There are a number of such models with varying degrees of complexity, from 

simple 1D models, to complex 3D models. Jacquemoud et al. (2000) discussed the 

various merits of such models and concluded that, for operational purposes, a 1D model 

is sufficient as it is relatively simple to run and requires a small number of parameters, 

but carries enough detail to improve a sensor’s representation of a canopy. The 1D 

models PROSAIL, PROSIAPI, and PROKUUSK were all considered easy to compute, 

producing very few differences (Jacquemoud et al., 2000). Among the models tested, 

PROSAIL is considered to be the most widely used.  

There are two approaches to deriving vegetation parameters for spectral 

reflectance, the empirical or statistical approach, and the physical approach 

(Darvishzadeh et al., 2008). The statistical approach is similar to that used by 

Schmidtlein (2005) by which correlations are made between the target variable 

(Ellenberg indicator values) and spectral reflectance. Such methods can be considered 

sensor specific and are dependent on the conditions in which sampling was undertaken, 

and as a result can change over time (Darvishzadeh et al., 2008; Meroni et al., 2004). 

The physical method involves the use of radiative transfer models that describe 

variation in spectral reflectance as a function canopy, leaf and soil background 

characteristics. As the physical method is based on the laws of physics it can offer an 

important link between canopy reflectance and the vegetation characteristics of interest 

(Darvishzadeh et al., 2008; Meroni et al., 2004). However, there is an argument to say 

that mapping soil moisture indicator values for slope stability in transport corridors is 

not concerned with changes over time, merely an overall characterisation of soil 

conditions and may not benefit from radiative transfer modelling.  

Inputs to radiative transfer models require information about variables such as 

chlorophyll concentration, carotenoid concentration, water thickness, dry matter 

content, and a leaf structure parameter (Bateson et al., 2000). However, to quantify 

these parameters prior to model calculation would defeat the object of providing an 

operational technique. Furthermore, and possibly most crucially, radiative transfer 
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models define the canopy as a horizontally homogenous layer and can therefore only be 

suitable for largely homogenous vegetation canopies (Darvishzadeh et al., 2008; Meroni 

et al., 2004), whereas the nature of vegetated earthworks can often be complex, 

heterogeneous canopies. 

2.5 Conclusion 

This chapter has provided a critique of direct, indirect and surrogate techniques for 

characterising soil moisture using remotely sensed data, which is summarised at the end 

of this Section in Table 2.3. Of these techniques, the direct methods, using active 

microwave sensors are most well established and are considered to have the greatest 

potential for being used operationally. Specifically, soil moisture estimations made 

using these sensors have been shown to have good correlations with observed soil 

moisture. In addition, using microwave remotely sensed data at low frequencies (longer 

wavelengths) it is possible to penetrate vegetation canopies. However, due the inherent 

limitations on the spatial resolution that can be achieved by such sensors, both using 

satellite and airborne platforms, these techniques are unable to offer a viable solution to  

monitoring transport corridor earthworks. Active microwave sensors, such as 

TerraSAR-X, have the ability to provide finer spatial resolution data but these systems 

use high frequency (shorter wavelengths) microwaves that are highly susceptible to the 

effects of surface roughness and vegetation cover. In order to make reliable estimations 

using these systems, highly parameterised models are needed to correct for these effects, 

which require accurate information regarding vegetation characteristics and soil 

properties. As a result, these methods offer little operational potential over earthworks 

with complex vegetation covers. 

 Remotely sensed data using thermal sensors have also showed promise for 

characterising soil moisture distribution. Again, high correlations have been found with 

observed soil moisture measurements but studies tend to be restricted to bare soils as 

electromagnetic energy in this spectral domain cannot penetrate vegetation canopies. 

Successful attempts have been used to exploit information from red/near infrared 

vegetation indices to inform soil moisture retrieval from thermal sensors. Although 

good correlations were found in semi arid areas, where vegetation cover is sparse, 
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poorer results were obtained over denser canopies, conditions which are more 

comparable with temperate environments, found in UK transport corridor environments. 

 Direct soil moisture retrieval using reflectance measurements in the visible, near 

and shortwave infrared share characteristics with estimations made using thermal 

sensors. Whereas estimations made using these sensors have provided excellent 

correlations with observed soil moisture, electromagnetic energy over these 

wavelengths are unable to penetrate vegetation canopies and, therefore, estimations 

have been limited to bare soils. To an extent, the presence of vegetation has shown to be 

a limiting factor for all the techniques discussed in this Chapter relating to direct 

estimations of soil moisture. As a result, the characterisation of soil moisture 

distribution using indirect techniques was explored. 

Indirect techniques using terrain analysis of DEMs, namely TWIs, are well 

established in hydrology and slope stability studies for delineating soil moisture 

distribution. Furthermore, when these calculations are applied to fine spatial resolution 

DEMs generated from ALS data, they have potential for use in monitoring transport 

corridor earthworks. However, these techniques have shown to have mixed results 

depending on a number of factors, including the spatial resolution of the DEM and the 

overall wetness conditions when validating  observed soil moisture measurements are 

collected. Therefore, soil moisture characterisation using these techniques should be 

used in conjunction with other sources of data to improve predictions. Suggestions are 

to incorporate an estimation of solar radiation which has shown to improve correlations 

with observed soil moisture. 

Despite the best efforts of vegetation removal techniques, the accuracy of a 

DEM generated from ALS datasets can be affected by the presence of vegetation. As a 

result, techniques are explored that use surrogate measures from remotely sensed data to 

characterise soil moisture conditions below, specifically, the techniques discussed refer 

to the use of vegetation canopy reflectance. The advantage of using these methods is 

that they can be used over vegetated areas which has been a major limiting factor for the 

other techniques discussed in this chapter. However, there have been few reported 

attempt to verify the estimation of soil moisture using these techniques. 

The techniques using vegetation reflectance as surrogate measures of soil 

moisture conditions fit broadly into two categories: (1) methods for identifying 
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vegetation stress, and (2) techniques for mapping plant indicator values. There are a 

number of examples where spectral analysis techniques have been used to detect the 

onset of plant stress. In particular, derivative analysis has shown to be particularly 

sensitive to different sources of stress and have the advantage of being relatively 

unaffected by differences in illumination which may occur when comparing data from 

different sensors, or different epochs of data, for the same location. However, authors 

acknowledge that these techniques are unable to differentiate between different sources 

of stress, and therefore assumptions may have to be made when using them to detect 

changes in vegetation due to differences in soil moisture content. Despite the range of 

studies using spectral analysis for stress detection, very few have compared their results 

to actual observed soil moisture, with focus tending to be on the effects of extreme soil 

moisture conditions, i.e. waterlogging. As a result, the potential for using these 

technique for characterising soil moisture is unknown. 

The other vegetation reflectance analysis technique considered in this chapter is 

mapping plant indicator values. Ellenberg indicator values have been shown to be the 

most widely used, which include specific categories detailing optimal soil moisture 

conditions for each plant species. Ellenberg values have been mapped using airborne 

imaging spectroscopy with relative success for central Europe, which is the area they 

were originally developed for. Ellenberg values have been extended for UK plant 

species but currently there have been no reported attempts to map these using remotely 

sensed data. The limitation of this technique is that it requires a detailed survey of 

species abundance. Despite this drawback, its ability to extrapolate environmental 

conditions, including soil moisture, over wide areas gives it great potential. In addition, 

the sensors that have been used to apply this method have a fine spatial resolution which 

would be adequate for monitoring transport corridor earthworks.  
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Technique References Correlations Spatial resolution Advantages  Limitations  

Direct      

Passive 
microwave 

(Sahoo et al., 
2008; Jackson 
et al., 1999) 

Very high  

Sahoo et al.  
(2008) R2 of 
0.81. 

Footprints 
typically  ~50 km with 
satellite sensors  

Relatively unaffected by 
atmospheric conditions  

High correlations with 
observed soil moisture 

Affected by surface roughness 
and presence of vegetation 

Limited to poor spatial 
resolutions 

Active 
microwave 

(Pierdicca et al., 
2010; Le 
Hegarat-Mascle 
et al., 2002; 
Quesney et al., 
2000) 

Very high  

Quesney et al. 
(2000) R2 of 
0.89. 

Le Hegarat-
Mascle et al. 
(2002) R2 
between 0.63-
0.85. 

Footprint typically 
above 7 m using airborne 
SAR. TerraSAR-X satellite 
has a potential footprint of 
1 m but using X band 
which is highly affected by 
vegetation 

Relatively unaffected by 
atmospheric conditions  

High correlations with 
observed soil moisture 

Higher spatial resolution than 
passive systems 

Affected by surface roughness 
and presence of vegetation 

Require complex radiative 
transfer models with accurate 
information on vegetation 
parameters. 

Thermal 
imagery 

(Minacapilli et 
al., 2009; Crow 
et al., 2008; Lu 
et al., 2007; 
Sandholt et al., 
2002) 

High 

Minacapilli et al. 
(2009) R2 of 0.75 

Crow et al. 
(2008) R2 of 0.84 

Sandholt et al. 
(2002) R2 of 0.81 

Spatial resolution up to 
2 m using airborne sensors 

Can provide fine scale 
imagery 

High correlations with 
observed soil moisture 

Some success over vegetated 
areas 

Require highly parameterised 
physically based models 

Highly perturbed by the 
presence of vegetation  

Success over vegetated areas 
reliant on accurate information 
on vegetation cover 
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Visible, near 
and shortwave 
infrared 

(Lihua et al., 
2005; Ben-Dor 
et al., 2002; 
Lobell and 
Asner, 2002; 
Weidong et al., 
2002) 

Very high 

Lihua et al. 
(2005) R2 of 0.9 

Weidong et al. 
(2002) R2 
between 0.7-0.85. 

Ben-Dor et al. 
(2002) between 
0.65-0.85. 

Studies conducted with 
8 m spatial resolution but 
there are airborne  sensors 
with the ability to provide 
resolutions up to 1 m 

High correlations with 
observed soil moisture  

Sensors in this spectral 
domain can provide high 
spatial resolutions  

Estimations affected by soil 
properties 

Models need to be tailored to 
specific soil types 

Only applicable to bare soil 

Largely restricted to laboratory 
studies 

Indirect      

Topographic 
wetness index 

(Tenenbaum et 
al., 2006; 
Schmidt and 
Persson, 2003; 
Western et al., 
1999a) 

Variable  

Schmidt and 
Persson (2003) 
R2 of 0.64 

Western et al. 
(1999a) R2 
between 0.42-
0.61 (with 
potential solar 
radiation) 

Tenenbaum et al. 
(2006) R2 
between 0.56-0.8  

Up to 0.5 m 

Intrinsic relationship with 
areas of slope instability 

Capability of high spatial 
resolution using ALS systems  

Potential for good 
correlations when 
incorporated with potential 
solar radiation 

Accuracy of DEM generation 
affected by presence of 
vegetation 

Variable results according 
terrain, DEM resolution, 
overall wetness conditions 
during observed soil moisture 
sampling 
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Potential solar 
radiation  

(Du et al., 2007; 
Fu and Rich, 
2002; Western 
et al., 1999a) 

Unknown 

With TWI 
Western et al. 
(1999a) found R2 
between 0.42-
0.61 

Reported attempts up to 
5 m but could be applied to 
ALS DEM with grid 
resolutions of less than 1 m 

Improves estimations made 
using TWI 

Better characterisation of soil 
moisture distribution during 
overall drier conditions 

Some models are simple to 
compute 

Very few comparisons with 
observed soil moisture 

Some models are highly 
parameterised 

Surrogate      

Plant stress 
indicators 

(Noomen et al., 
2006; Smith et 
al., 2004a; 
Zarco-Tejada et 
al., 2003; 
Kokaly and 
Clark, 1999; 
Tsai and 
Philpot, 1998) 

Unknown  

Techniques can be applied 
to airborne hyperspectral 
sensors, some with a 
spatial resolution of less 
than 1 m 

Relate to transport network 
inspectors identifying 
increased biomass due to 
increase in soil moisture 

Can be used over vegetated 
earthworks  

Potential to be applied to high 
spatial resolution airborne 
imagery 

Potential to be applied to 
different vegetation types 

 

Potential for monitoring soil 
moisture unknown 

Few reported attempts to 
compare against observed soil 
moisture 

Success over complex 
vegetation covers unknown  

Unable to differentiate between 
different sources of stress 
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Mapping 
biological 
indicator values 

(Feldmeyer-
Christe et al., 
2007; 
Schmidtlein, 
2005) 

Largely unknown 

Schmidtlein 
(2005) found R2 
of 0.58 

Has been applied at a 
spatial resolution of 2 m 
but has potential to be 
applied to finer scale 
imagery of less than 1 m 

Can be used over vegetated 
earthworks  

Potential to be applied to high 
spatial resolution airborne 
imagery 

Strong correlations found 
between indicator values and 
observed soil moisture 

Mapping indictors has not been 
assessed for UK 

Require field observations of 
vegetation abundance 

Uncertainties over tress 
canopies 

Table 2.3 Summary of the techniques discussed in Chapter 2 with reference to their advantages, disadvantages and potential spatial 

resolution. 
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3 Methodology for characterising soil moisture in transport 

corridor environments 

Chapter 2 identified a number of techniques that have the potential to characterise soil 

moisture in a transport corridor environment. These techniques included terrain analysis 

calculations, such as TWI and potential solar radiation. Reflectance from vegetation 

canopies in the visible and near infrared region of the spectrum have been shown to be 

useful for detecting different sources of stress (Noomen et al., 2006; Smith et al., 

2005b). However, there has been little work that explicitly focuses on the influence of 

changes in soil moisture on vegetation reflectance, and no reported attempts to apply 

such techniques to transport earthwork infrastructure. Mapping bioindicators have also 

been shown to have potential for charactering soil moisture (Schmidtlein, 2005) but 

there have only been a few reported attempts to do this using remotely sensed data and 

no attempts have been made over a transport corridor. Furthermore, there have been no 

reported attempts to map and validate the Ellenberg bioindicator values that have been 

extended for the UK in any environment. 

 This chapter details the methods that will be used to assess the potential of the 

aforementioned techniques applied to a transport corridor environment. In addition, 

methods designed to overcome the shortcomings associated with these individual 

techniques are explained. Some of the techniques considered here are conceptual and 

are therefore initially tested at an earthwork scale, using terrestrial remote sensing 

technologies. The techniques deemed successful, as well as other techniques that could 

not be assessed at a fine scale, are then applied at a broader scale, using airborne 

remotely sensed data for a UK transport corridor. 

 A summary of the methods described in this chapter can be found in Figure 3.1. 

This shows two distinct sections to the overall workflow, the earthwork scale 

experiment (described in Section 3.2) and the transport corridor scale work (Section 

3.3). The flow diagram indicates that the techniques with potential for characterising 

soil moisture in a transport corridor environment, as identified in Chapter 2, are carried 

on to an experimental stage. This begins with a  series of earthwork scale studies which 

are used to assess specific techniques, namely, terrain analysis techniques applied to a 

fine spatial resolution DEM (TWI, solar radiation and aspect) (see Section 3.2.1) and 
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spectral analysis of field spectroscopy to identify vegetation stress as a response to 

artificial wetting (Section 3.2.2). The diagram continues to show how the terrain 

analysis work is carried forward to inform how best to apply these techniques to a 

transport corridor scale. Conversely, the field spectroscopy study is not carried on and 

therefore does not link with the transport corridor scale work. This is due to the 

uncertainties associated with applying such techniques to relatively complex vegetation 

cover in transport corridor environments, which is later explained in Section 5.1.2. The 

lower part of the diagram, summarising the transport corridor work, shows how analysis 

is carried out using airborne remote sensing systems, namely lidar and CASI datasets. 

The terrain analysis techniques are applied to the lidar data in a similar fashion to the 

earthwork scale experiment (Section 3.3.1). The CASI data is used to map Ellenberg 

indicator values (Section 3.3.2), a technique that could not be assessed at a fine scale 

due to the relatively homogenous vegetation cover of the test embankment and therefore 

appears here for the first time. The diagram then shows how the terrain analysis 

techniques are brought together in an integrated model and compared against observed 

soil moisture measurements (Section 3.3.3). Although Figure 3.1 provides a coarse 

summary of the methods employed, a more detailed version, including a series of sub 

diagrams detailing the individual work packages, is provided in Appendix 1. 
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Figure 3.1 Flow diagram summarising the methods described in this Chapter. A more 

comprehensive set of flow diagrams detailing the methods can be found in 

Appendix 1. 

 

Potential techniques identified in Chapter 2. 

Earthwork scale experiment 

Terrestrial laser scanning Field spectroscopy  

Compare against soil moisture  

Vegetation reflectance  

Not carried onto 

transport corridor scale  

Transport 
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Lidar data  CASI imagery  

TWI  Solar radiation   Aspect   Map Ellenberg values  

Compare against soil moisture  

TWI  Solar 

radiation   
Aspect   

Wetting experiment  

Compare against soil moisture  

Integrated model 
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3.1 Study sites 

The analysis undertaken at an earthwork scale was carried out on a test embankment 

located at Nafferton Farm, Northumberland, which is managed by Newcastle 

University’s School of Civil Engineering and Geosciences (Hughes et al., 2009). The 

embankment was constructed to establish a facility for engineering and biological 

research for the purposes of determining the effects of climate change on earthwork 

embankments (BIONICS, 2009). The earthwork measures 90 m in length, 29 m across 

and 6 m high, and has an approximate northwest, southeast facing aspect for either side 

of the earthwork (Figures 3.2 and 3.3). On the face of each slope are four separate 

panels, two constructed to the requirements of modern earthwork structures, and two 

poorly constructed to mimic the poorly compacted nature of historically constructed 

earthworks typical of transport infrastructure in the UK. 

 

Figure 3.2 Diagram of the BIONICS test embankment located at Nafferton Farm, 

Northumberland. Modified from BIONICS (2009). 
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Figure 3.3 The BIONICS test embankment viewed from an approximately easterly 

direction. Various markers on the slope indicate the location of embedded 

instruments used in other studies. Blue piping, used for a sprinkler system, mark the 

approximate edges of the earthwork test plots. 

 

 The test site used for the transport corridor scale study was a four kilometre 

stretch of the railway line near Haltwhistle, located between Carlisle in the west and 

Newcastle upon Tyne to the east (Figure 3.4). This railway was constructed over 100 

years ago and has been identified by Network Rail as having a history of instability 

(Hall, 2009) with numerous minor landslides occurring over recent years (for example 

see BBC (2007)). The transport corridor lies largely within the floodplain of the South 

Tyne River, with some stretches of embankment earthworks located within close 

proximity of the river (approximately fifteen metres). Vegetation conditions within the 

test site are representative of those found on the UK rail network, and across Northern 

England in particular (Miller et al., 2009). A mixture of grasses, agricultural weeds, 

small shrubs and deciduous trees dominate, but bare earth slopes, and stretches of dense 
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deciduous woodland are also  relatively commonplace (Figures 3.5 and 3.6). This 

presents a relatively challenging environment in which to characterise soil moisture. As 

discussed in Chapter 2, many other studies that have attempted to estimate the 

distribution of soil moisture have been carried out over bare earth or sparse vegetation 

canopies, such as Burke et al. (1998) due to the complexities presented by multiple 

canopy layers (Schmugge and Jackson, 1994). Specifically, this can have an influence 

on optical remote sensing techniques where the signal can be confused by differences in 

leaf angle relative to the sun and the sensor position (Wolf et al., 2010). In addition, 

dense vegetation, as depicted in Figure 3.6 can obscure the ground reducing the 

effectiveness of laser scanning systems (Reutebuch et al., 2003). Resulting DEMs 

interpolated from such datasets are therefore likely to have a degree of uncertainty. 

 

 

Figure 3.4 Map showing the location of the Haltwhistle transport corridor. Map data 

© Crown Copyright 2010. An Ordnance Survey EDINA supplied service. 
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Figure 3.5 Part of a cutting earthwork approximately 2.5 km east of Haltwhistle. 

Here, tall shrubs dominate as well as large areas of bare earth. Much of this 

earthwork is riddled with rabbit holes presenting an additional problem to the 

network operator. Note the leaning fence posts indicating slope movement.  

 
 

Figure 3.6 A stretch of the Carlisle to Newcastle railway line approximately two 

kilometres east of Haltwhistle. This example indicates the heterogeneous nature of 

the vegetation cover, including tall trees, shrubs and wildflowers. 
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3.2 Earthwork scale  

3.2.1 Terrestrial laser scanning data acquisition and processing 

Terrestrial laser scanning data was acquired using a Leica HDS2500, which has a range 

of 50 m to 100 m, and a precision of ± 6 mm. This scanner has a fixed head and must be 

orientated using a resection approach using specially adapted control targets, the 

position of which were observed using a Leica Total Station. To ensure sufficient 

coverage of the earthwork, seven scan positions were set up towards the south of the 

embankment and five towards the north of the embankment (Figure 3.7). Data 

collection was carried out by a summer scholarship student but unfortunately the data 

from one of the scans was missing, which is identified in Figure 3.7. The raw point 

clouds were processed using Leica’s Cyclone software which allows for data 

acquisition, registration and basic editing. A vegetation removal algorithm was then 

applied in TerraScan following the concept provided by Haugerud and Harding (2001).  

The point data was then exported to ArcGIS where an ordinary kriging routine 

was used to interpolate between points to generate a raster grid surface. Kriging is a 

technique synonymous with geostatistics and is used to make predictions at unobserved 

locations (Trauth, 2007). In this case, elevation values are predicted between the point 

observations made by the laser scanner. These predictions are based on the notion that 

the elevation values are spatially correlated, i.e. closer observations are more similar 

than those far away (Trauth, 2007). Like other interpolation methods, including 

inversed distance weighted (IDW) (discussed later in Section 3.3.1), spatial correlation 

is summarised through locally weighted averaging. Kriging differs in this respect as the 

weights used are a measure of the spatial variance between neighbouring samples which 

provides an optimal interpolation with minimal variance (Desmet, 1997). Spatial 

variance is characterised in the kriging routine using a semi-variogram, this being half 

the squared difference between the observations plotted against the distance separating 

them (Trauth, 2007). Using this plot the spatial variance can be defined as the distance, 

or range, at which the semi-variance levels out, known as the sill (Figure 3.8). For 

detailed descriptions of the calculations made in the kriging routine refer to Trauth 

(2007). 

 

 



 

Figure 3.7 Diagram of the BIONICS test embankment with location of terrestrial 

laser scanner and subsequent coverage. Figure also includes the location of a 
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Diagram of the BIONICS test embankment with location of terrestrial 

laser scanner and subsequent coverage. Figure also includes the location of a 

missing scan. 

interpolation was preferred to deterministic approaches, such as inverse 

distance weighted, as it is based on the statistical relationship between the measured 

points and as a result tends to produce a better representation of a terrain sur

Ordinary kriging using a spherical model was used. Ordinary kriging was 

preferred over universal kriging as it does not vary the prediction of spatial variance in 

the data (summarised by the semi-variogram), unlike universal kriging for which spatial 

variance is assumed to vary throughout the dataset which is more suited to the 

representation of heterogeneous terrain (Rees, 2000). A search radius of 12 points was 

used in this interpolation to ensure small scale variation is taken into account without 

g too computationally intensive (a smaller radius may have 

more detailed variation but would take a long time to compute). The radius was 

 

Diagram of the BIONICS test embankment with location of terrestrial 

laser scanner and subsequent coverage. Figure also includes the location of a 

was preferred to deterministic approaches, such as inverse 

distance weighted, as it is based on the statistical relationship between the measured 

points and as a result tends to produce a better representation of a terrain surface (Rees, 

Ordinary kriging using a spherical model was used. Ordinary kriging was 

vary the prediction of spatial variance in 

variogram), unlike universal kriging for which spatial 

variance is assumed to vary throughout the dataset which is more suited to the 

. A search radius of 12 points was 

used in this interpolation to ensure small scale variation is taken into account without 

have taken into account 

more detailed variation but would take a long time to compute). The radius was 
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determined by number of points rather than distance as the density of the elevation 

points provided by TLS varied over space. A spherical model was used to fit the semi-

variogram. This was chosen by analysing the output from a number of different model 

types, including Gaussian and exponential. This type of model was chosen as it seemed 

to offer a better fit than other model types, such as exponential, although there was little 

visual difference between the Gaussian and spherical models. The ordinary kriging 

routine produced a DEM with a cell size of 35 cm which was the default set by ArcGIS, 

based on the length of the input extent divided by 250.  

 

 

Figure 3.8 Example of a semi-variogram with labelled sill and range. The sill is the 

point at which the semi variance of the observations levels out, indicated by the 

solid interpolation line through the points. The range refers to the lag, or distance at 

which the sill occurs, which in this case is approximately 33 m. Adapted from 

Curran (1988).  

 

As well as using the kriging routine, a thin plate spline interpolation method 

called AnuDEM interpolation (Hutchinson, 2009) was also evaluated. This technique is 

designed to construct a smooth surface from irregularly spaced elevation points. This is 
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done by applying a spatially variable smoothing function, or roughness penalty, which 

is dependent on a measure of roughness based on the input elevation values. See 

Hutchinson (2008) and (1989) for a full description of the calculations made in the 

AnuDEM routine. As well as removing spurious pits, this interpolation method is 

favoured in hydrological studies as it allows for the calculation of continuous flow 

through a given terrain (Hutchinson, 2008; Bishop and McBratney, 2002). Furthermore, 

the relatively smooth surface constructed using the AnuDEM routine reduces the 

tendency to produce spurious surface oscillations in complex areas (Hutchinson, 2008). 

The kriging and thin plate spline techniques were compared as the AnuDEM routine 

would not normally be employed for creating a DEM, with kriging being used to 

represent a standard interpolation technique.  

One of the aims of the earthwork scale study is to explore the sensitivity of 

terrain analysis calculations to changes in the input DEM resolution. To do this, the 

original grid DEM was degraded to 1 m and 2 m using bilinear interpolation. This 

approach interpolates the new output grid cell value based upon an average, weighted 

by distance, of the four nearest input cells. Other techniques are available, including 

nearest neighbour, cubic convolution and majority resampling, but bilinear interpolation 

was used to be consistent with other similar studies (Chaubey et al., 2005). The 

resolution is degraded twice in order to characterise the effect of DEM grid resolution 

on the terrain analysis calculations described in Sections 3.2.1.1 and 3.2.1.2. Simple 

visual interpretation is used to assess whether changes in the DEM resolution produces 

artefacts in the calculations. The effect of resolution on reproducing surface roughness 

is assessed by comparing interpolated elevation values taken from a transect across the 

earthwork. The differences between these values are used to provide a quantitative 

description of the effects of DEM resolution. Following Schmidt and Persson (2003), 

the quality of the resulting DEMs are assessed by calculating root mean square error 

with the original point elevation values derived from the laser scanning data. This 

analysis is also carried out to quantify the difference between the two DEM 

interpolation techniques. 



79 
 

3.2.1.1 Topographic wetness index 

The TauDEM plug-in software, developed by Tarboton (2002) for ArcGIS, was used to 

calculate TWI. TauDEM generates a wetness index through a ratio of the predefined 

raster grids, slope and specific catchment area. This software is favoured as it 

accommodates the Dinf flow direction routine which means that flow can be directed in 

an infinite number of single directions. This routine apportions flow between two 

downslope pixels according to how close this flow direction is to the direct angle to 

the downslope pixel. This has advantages over other flow direction procedures, such 

as the D8 routine, where flow is restricted to one of eight cardinal directions, potentially 

leading to grid bias and unrealistic flow dispersion (Tarboton, 1997). Other, more 

complicated algorithms, such as the DEMON (digital elevation model network 

extraction) method, were also available that demonstrate a more realistic model of flow 

dispersion (Wilson and Gallant, 2000). However, this technique suffers from being 

complicated to compute and can often create artefacts in hydrologically complex areas, 

for example, saddle shaped terrain (Tarboton, 1997). This is because such techniques 

specify flow direction over a locally fit plane per pixel according to the lowest corner 

estimated by averaging the elevation values for the adjoining pixels. Problems arise 

where certain combinations of elevation values can result in inconsistent or counter 

intuitive flow directions (Tarboton, 1997). Take for example the scenario in Figure 3.9 

whereby flow from cells A and B are forced against each other, whereas the more likely 

flow direction would be the lowest grid elevation values located towards the north and 

south of cell A. 

The first step in calculating a TWI involves filling all pits that are present in the 

DEM by raising their elevation to the level of the lowest point around the edge. The 

reason for this is that pit grid cells are completely surrounded by higher terrain and tend 

to be artefacts and if not removed can interrupt the flow of hydraulic conductivity 

throughout the scene (Tarboton, 2000). Flow direction and contributing area are then 

calculated from the DEM with filled pits using the Dinf procedure. The following 

describes these calculations in greater detail, based on Tarboton’s paper (1997) which 

outlines the method. 
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Figure 3.9 Hypothetical subset of a DEM demonstrating flow dispersal determined 

using locally fitted planes, as used in algorithms such as DEMON. Elevation values 

are given in the centre of each grid square. Corner elevations, denoting the locally 

fitted plane, are given as smaller numbers in between the grid squares. Arrows show 

flow direction as determined using DEMON, where the expected flow direction 

(from grid square A) would be towards the north and south where elevation values 

are lowest. Adapted from Tarboton (1997). 

 

A single flow direction is assigned to each cell, which is represented as a 

continuous value between 0 and 2 π. This direction is defined as the steepest downward 

slope over eight triangular facets on a 3 x 3 pixel window centred on the cell of interest 

(Figure 3.10). A downslope vector is calculated for each triangular facet which can lie 

within or outside a 45° angle range of the centre point of the facet. The flow direction 

for the central pixel is taken as the direction of the steepest downslope vector from all 

eight facets. 
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Figure 3.10  Diagram of a 3 x 3 pixel window on which flow direction is calculated 

using eight triangular facets. Outline of the actual grid cells are represented by the 

dotted lines. 

 

To illustrate this procedure Tarboton (1997) gives an example using a singular 

triangular facet (Figure 3.11). The downwards slope is represented by the vector S1, S2 

as described in Equations 3.1 and 3.2. 

 

2� � �3+ � 3��/4� 

Equation 3.1  

25 � �3� � 35�/45 

Equation 3.2  
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Figure 3.11 Definition of variables for the calculation of slope direction for a single 

triangular facet. 

 

where, e0, e1 and e2 are elevations, and d1 and d1 are distances between the pixels as 

denoted in Figure 3.11. The values produced in Equations 3.1 and 3.2 can then be used 

to calculate slope direction (r) and magnitude (s) using Equations 3.3 and 3.4 

respectively. 

6 � tan���75/7�� 

Equation 3.3  

7 � 87�5 � 755 

Equation 3.4  

The downslope direction can be applied to each of the eight facets by using an 

appropriate transformation for each of the corner elevations shown in Figure 3.10. 

Relative transformations for each facet are shown in Table 3.1 and correspond to the 

elevation values used in Equations 3.1 to 3.4. To obtain the overall flow direction angle 

(rg), the angle of the largest downward slope is adjusted to represent the angle counter-

clockwise from east using Equation 3.5 (Tarboton, 1997). 
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69 � 	:6� � 	;</2 

Equation 3.5  

where, r’ is the slope direction (from Equation 3.3) of the triangular facet with the 

largest slope magnitude (from Equation 3.4) and the multiplier af and constant ac depend 

on the facet of interest, as listed in Table 3.1.  

 

 

Facet 1 2 3 4 5 6 7 8 

e0 ei,j ei,j ei,j ei,j ei,j ei,j ei,j ei,j 

e1 ei,j+1 ei-1,j ei-1,j ei,j-1 ei,j-1 ei+1,j ei+1,j ei,j+1 

e2 ei-1,j+1 ei-1,j+1 ei-1,j-1 ei-1,j-1 ei+1,j-1 ei+1,j-1 ei+1,j+1 ei+1,j+1 

ac 0 1 1 2 2 3 3 4 

af 1 -1 1 -1 1 -1 1 -1 

Table 3.1 Table showing the transformation factors for elevation values for each 

facet used in the calculation of slope and angle. 

 

An example of the calculation of flow direction using TauDEM is given in 

Figure 3.12. The same elevation values are used as in the demonstration of the DEMON 

algorithm over a saddle shaped terrain in Figure 3.9. Unlike the counter intuitive flow 

directions predicted by DEMON, TauDEM directs flow towards the north and south of 

cell A as would be expected in reality. This demonstrates the effectiveness of this 

method for representing flow over complex terrain features. Over simpler terrains, there 

has shown to be little difference between the methods, although the DEMON model is 

said to be difficult to program and often requires site specific parameterisation 

(Tarboton, 1997). 
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Figure 3.12 Hypothetical subset of a DEM as used in Figure 3.9. Here, it is used to 

demonstrate flow dispersal using the TauDEM Dinf method as proposed by 

Tarboton (1997). Elevation values are given in the centre of each grid square. 

Corner elevations, denoting the locally fitted plane, are given as smaller numbers in 

between the grid squares. Arrows show flow direction generally in a north and south 

direction where elevation values are lowest. Adapted from Tarboton (1997). 

 
Specific catchment area is defined as its own area (one pixel), plus the area of 

the upslope neighbours that have some proportion flowing into the pixel of interest. If 

the downslope angle lies between two cardinal directions then a proportion of the flow 

is assigned according to how close the flow direction angle is to the direct angle of the 

neighbouring cells. This function is described in the two equations given in Figure 3.10 

and is demonstrated in Figure 3.13. The direction of steepest slope has been calculated 

using the Dinf function as is displayed as an arrow between the centres of cells three 

and four. Let the angle from this arrow to the centre of cell three (angle a1) be 30° and 
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the angle to cell four (angle a2) be 15°, therefore equalling a 45° angle between the 

directions of cells three and four. Using the equations in Figure 3.13, the proportion of 

flow to cell three is 0.33 (15°/(30°+15°)) and the proportion flowing to cell four is 0.66 

(30°/(30°+15°)). In this way, more flow is proportioned to cell four as this is closer to 

steepest downslope direction. 

 

Figure 3.13 Diagram showing how flow is proportioned between two downslope grid 

cells based on their proximity to the angle of the steepest downslope direction. 

Adapted from Tarboton (1997). 

 

The wetness index is finally generated through a ratio between the calculation of 

slope and specific catchment area. This is related to the original wetness index proposed 

by Beven and Kirkby (1979) (see Section 2.3.1), where catchment area is divided by 

slope, but in TauDEM slope is divided by catchment area (Equation 3.6). This is done 

to avoid errors where slope is zero, otherwise, the resulting wetness index value for flat 

areas would be zero (Tarboton, 2002).  

 

TauDEM TWI �  Dinf Slope grid
Dinf SpeciMic Catchment Area grid 

Equation 3.6  



86 
 

3.2.1.2 Potential solar radiation calculation  

The Area Solar Radiation function in ArcGIS, developed by Fu and Rich (1999) was 

used to calculate potential solar radiation. As explained in Section 2.3.2, total radiation 

for a given DEM grid square is calculated by overlaying a representation of the 

viewshed with the sunmap and skymap. The concept behind these representations is 

detailed in Section 2.3.2 using Figures 2.8 to 2.10. The specific calculations that define 

the Area Solar Radiation function are given below. 

Total (or global) radiation is calculated for each of the sunmap and skymap 

sectors using Equation 3.7 (ESRI, 2007b). 

 

GlobalTUT �  DirTUT � DifTUT 
Equation 3.7  

Where, Globaltot is the total radiation, Dirtot is direct radiation, and Diftot is diffuse 

radiation. Dirtot is defined as the sum of the direct radiation for all the sunmap sectors. 

Direct radiation is defined by the solar constant, or solar flux outside the atmosphere at 

the average Earth to Sun distance. This is taken to be 1367 W m-2 which is derived from 

the World Radiation Centre (ESRI, 2007b). Diffuse radiation is estimated using a 

predefined constant relating to whether the dominant cloud conditions are overcast or 

clear. For this study, the conditions were set as overcast as field experience has shown 

this to be the dominant cloud conditions over the test embankment. As a sensitivity test, 

the calculation of solar radiation was carried out using different conditions but no 

visible difference was found.  

 The method for calculating potential solar radiation, as developed by Fu and Rich 

(2002; 1999), is used in this study as a black box. This method is used because it is 

more comprehensive than other techniques, namely the potential solar radiation index 

used by Western et al. (1999a), as it takes into account factors such as time of year, 

latitude of the site and subsequent sun angle. In an attempt to mitigate for the potential 

pit falls of using black box techniques, tests were carried out to assess the sensitivity of 

the model by changing the input parameters such as the period for which the calculation 

is made and cloud conditions. 

 The Area Solar Radiation function requires the input of the mean latitude for the 

input DEM. This was calculated by ArcGIS as 54.9˚. The function was run twice for 
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each interpolated DEM, with the time configuration set at two different periods, one 

calculating solar radiation for a whole year (2008), and the other for the specific day in 

which the ground truth soil moisture measurements were taken (24th November 2008). 

This was done to test the ability of the two configurations to characterise soil moisture 

gathered on a specific day.  

 The calculation of aspect was also carried out. This metric is a common input to 

previous terrain analysis studies, such as Western et al. (1999a), and is used as a more 

simplified quantification of potential solar radiation. Aspect was calculated for the 

kriging and AnuDEM interpolated DEMs using ArcGIS. This quantifies aspect for each 

grid cell in degrees from north by identifying the slope direction of the maximum 

difference in elevation value from a 3 x 3 cell neighbourhood (ESRI, 2007a). 

3.2.1.3 Soil moisture measurements 

In situ soil moisture was collected using a Theta portable impedance probe 

 (www.delta-t.co.uk). This probe consists of four stainless steel rods which are inserted 

into the soil. The rods then use a simplified voltage standing wave method to measure 

relative impedance, which is used to infer the dielectric constant of the soil relating 

directly to the volumetric water content of the soil (Famiglietti et al., 1999). Following 

Cosh et al. (2005) the probe was calibrated using gravimetric soil moisture 

measurements taken from soil samples located across the embankment (Section 4.1.7). 

Calibrations made in this way have shown to yield better results than generalised 

calibrations made with the same soil type from a different area (Cosh et al., 2005).  

Measurements were made across half the embankment, covering a well 

constructed and poorly constructed panel on both sides of the earthwork. Only half the 

earthwork could be studied due to the construction of covers, used for an ongoing 

climate experiment towards one end of the embankment (see Hughes et al. (2009)). 

Measurements were restricted to the earthwork slopes as the top of the embankment is 

flat and is not liable to the same forces of instability. For the terrain analysis 

experiment, measurements were taken approximately every two metres based on a grid 

sampling strategy. This scheme was adopted as authors have identified tenfold 

improvements to precision when measuring soil properties on a sampling grid rather 

than randomly selected points (McBratney and Webster, 1983). This is because 
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systematic sampling ensures any spatial variability in the data will be taken into account 

(McBratney and Webster, 1983), a characteristic synonymous with the distribution of 

soil properties (Famiglietti et al., 1999; Famiglietti et al., 1998; Western et al., 1998; 

McBratney and Webster, 1983). The position of each point measurement was recorded 

using real time kinematic (RTK) GPS, with the ability to provide centimetre level 

positional accuracy (Montillet et al., 2007). 

Ideally, the ground truth data would have been gathered periodically throughout 

the year to test the sensitivity of the terrain indices to characterise soil moisture during 

different wetness conditions. However, this could not be achieved in the time frame for 

the study at hand, as focus was diverted to the transport corridor scale experiments 

detailed later in Section 3.3. This means that comparisons made with the subsequent soil 

moisture measurements must not be assumed to be a representative of conditions 

throughout the year. The measurements were made on 24th November 2008 during cold, 

wet and windy conditions. This time of year was chosen as other studies have reported 

increased topographic organisation of soil moisture to occur during overall wetter 

conditions and may therefore improve correlations with the terrain analysis calculations 

(Tenenbaum et al., 2006; Schmidt and Persson, 2003; Western et al., 1999a). 

3.2.1.4 Analysis techniques 

Elevation values and the terrain analysis metrics were compared for the kriging and 

AnuDEM interpolated DEMs, and the subsequent spatially degraded resolution DEMs. 

Initially, qualitative comparisons were made through visual analysis. Quantitative 

analysis was then made by extracting values from a series of representative transects 

across the earthwork. The elevation values taken from these transects were also 

compared to the original TLS point elevation data, providing a measure of residual 

error. This was done to determine which interpolation technique best reproduces the 

original TLS elevation values. This was not, however, a measure of the overall accuracy 

of the interpolation techniques. Such analysis could be undertaken by comparing against 

additional observations of elevation (Chang et al., 2004). This was not undertaken as it 

was not the overall focus of the study at hand. 

 To facilitate a comparison between the soil moisture measurements and the 

terrain analyses, the raster outputs from the TWI and potential solar radiation 
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calculations were converted to point shapefile datasets. These point datasets were then 

joined to the soil moisture point dataset based on spatial location. As the points do not 

overlap exactly, a new value was assigned as an average of the closest points to that 

particular location using bilinear interpolation. Point measurements were compared 

rather than raster grids following the example of Schmidt and Persson (2003) and 

Tenenbaum et al. (2006).  

 Authors have drawn comparisons between wetness indices and soil moisture 

measurements using ordinary least squares correlation coefficients (R2 values) 

(Tenenbaum et al., 2006; Schmidt and Persson, 2003; Western et al., 1999a). In 

addition, some authors have considered multiple regression models to combine terrain 

indices to predict soil moisture values (Western et al., 1999a). As a result, this 

investigation primarily used ordinary least squares regression correlation coefficients 

and multiple regression modelling to compare soil moisture measurements with the 

estimations made using the terrain analysis calculations. Multiple regression models 

were made using stepwise forward regression as this only enters variables into the 

prediction based on their significance, in this case where the p value is less that 0.05, 

representing the 95% confidence level.   

The ordinary least squares (OLS) regression procedure, adopted in the studies 

cited above, is a global regression technique. This type of statistical analysis is 

vulnerable to a phenomena known as the Simpson’s Paradox. This paradox occurs 

where the relationship between model parameters varies spatially. These local variations 

are ignored in global regression which might otherwise lead to a change, or even 

reverse, in trend between the observed and predicting variables. As a result, 

geographically weighted regression (GWR) was also considered in the analysis, which 

provides a spatial component to the ordinary regression procedure (Fotheringham et al., 

2002). This is a local regression technique that exploits the widely regarded theory that 

points closer to one another are more alike than those far away (Fotheringham et al., 

2002; Brunsdon et al., 1998) (see Appendix 2 for a description of GWR).  

To facilitate a comparison between the soil moisture measurements and the 

terrain analysis calculations, a GWR model was defined with a fixed Gaussian kernel, 

as the spatial density of the observations does not change significantly. Bandwidth was 
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selected using AICc cross validation, producing an optimal bandwidth of 5.8 m. A 

Monte Carlo significance test was used to test for spatial variability of the metrics. 

The analysis techniques discussed in this section have all assumed the 

relationships between the terrain calculations and observed soil moisture are linear. 

However, some authors have noted that the relationship between TWI and soil moisture 

is non linear (Western et al., 1999a). Despite this, there are few examples of studies 

attempting to deal with this relationship to improve overall soil moisture estimations. 

Western et al. (1999a) explained that a lowess (Locally Weighted Scatterplot Smoother) 

regression procedure significantly improves overall correlations. Although this may be 

the case, the use of such locally fitting curves introduces a large number of model 

parameters, which can reduce the stability of the model for making predictions outside 

the model training area. Other non linear solutions include cubic or quadratic fits, but 

again this would introduce additional parameters into the model. Expressing a metric as 

the natural logarithm may also provide a solution for linearising the relationship without 

introducing any additional parameters as with the cubic and quadratic solutions. Despite 

the simplistic nature of this method there have been no reported attempts to improve 

correlations by expressing the TWI by the natural logarithm. This could have the 

potential to improve estimations, particularly over uniform transport earthwork slopes, 

as moisture would tend to concentrate towards the toe of the slope, rather than gradually 

increasing downslope. 

The reason why previous studies have not explored the natural logarithm of the 

TWI for use in soil moisture estimation models is that the original equation, put forward 

by Beven and Kirkby (1979), uses this function to express their index (as described in 

Equation 2.1). However, the wetness index used in the TauDEM tool does not refer at 

any time to the use of the natural logarithm in expressing any of the input calculations, 

specific catchment area and slope grid (see Section 3.2.1.2 or Tarboton (2002)). 

Therefore, this study will explore the use of the natural logarithm to improve the 

relationship between the wetness index in TauDEM and observed soil moisture. 
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3.2.2 Hyperspectral reflectance data acquisition and processing 

3.2.2.1 Experiment design and sampling strategy 

This part of the earthwork scale experiment aimed to investigate the response of 

embankment grasses to artificial wetting through hyperspectral analysis techniques. 

Three plots were set up on the north facing uncompacted panel of the test embankment 

(see Figure 3.2 for a diagram of the test embankment). The uncompacted panel was 

chosen as it was designed to mimic the characteristics an earthwork typically found in 

the UK (see Section 3.1). The plots were located on the north facing slope as 

construction of a climate simulator was taking place on the opposite south facing slope. 

One plot was wetted each day for a month with 20 litres of water, one was covered to 

stop water infiltration from rainfall, and the other was left as a control plot. The amount 

of water used to wet the wetted plot was chosen as this was the amount initially needed 

to fully saturate the soil. This was done to enforce soil oxygen displacement in an 

attempt to induce plant stress, similar to the methods of Smith et al. (2004a). The plots 

were placed at least 5 metres apart in an attempt to limit movement of water from one 

plot to the next.  

Each plot measured 1 x 1 m, which was chosen as it is similar to the pixel size of 

the aerial imagery collected for the transport corridor scale analysis (see Section 3.3.2). 

This meant that any sub pixel variations in soil moisture, or vegetation reflectance, 

could be assessed. Each plot was subdivided into a grid of twenty five 20 x 20 cm 

subplots. Measurements of soil moisture and spectral reflectance were taken within each 

of these subplots to ensure the whole square was sampled. Grid sampling was chosen 

over random sampling to aid repeatability, but more importantly, as McBratney and 

Webster (1983) explained, systematic grid sampling can almost always improve the 

precision of sampling soil properties, as they have an inherent spatial component which 

random sampling does not take into account. In situ soil moisture contents were 

collected using a Theta portable impedance probe, as described in Section 3.2.1.3 An 

average of three measurements were taken at each point to take into account any 

variation in the sensor response.  
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3.2.2.2 Spectral reflectance measurements 

Spectral reflectance was measured using an ASD Field Spec Pro® spectroradiometer, 

which has a spectral range from 350 to 2500 nm covering the visible, near infrared and 

shortwave infrared. Measurements were taken from a height of approximately 1.5 m 

using an 8° foreoptic producing a field of view of approximately 20 cm2. Analysis of 

the spectra was restricted to the 350 nm to 1000 nm domain, as this is the spectral range 

that a number of potentially operational airborne sensors cover, including the sensor 

described later in Section 3.2.2.4. Multiples of five spectra were gathered and averaged 

for each measurement point to suppress any atmospheric changes and to take into 

account small scale variations at the sampling point. When recording these multiple 

readings, care was taken to rotate the probe to take into account any blind spots in the 

field of view caused by broken fibre optic cables (FSF, 2008). Reflectance 

measurements were made in raw digital number mode, which tends to improve the 

signal to noise ratio compared to measurements made in White Reference Mode (FSF, 

2008). Corrections for absolute reflectance were made using coincidental reference 

measurement taken from a white Spectralon panel, which had previously been 

calibrated by the Natural Environment Research Council’s Field Spectroscopy Facility 

at Edinburgh University. 

3.2.2.3 Spectral processing techniques 

A five point weighted mean moving average filter was applied to the data to suppress 

any noise from the instrument without losing any spectral detail (Section 2.4.1.1). This 

weighting was selected as it has previously been shown to provide sufficient smoothing 

without losing any spectral detail (Smith et al., 2005b). Continuum removal analysis 

was then performed to highlight the chlorophyll absorption feature. The line of 

continuum is defined by the minimum peak reflectance in the red (550 nm) and the peak 

reflectance in the near-infrared (750 nm) parts of the spectrum. The continuum line is 

then removed by dividing the filtered spectra by the value of the line at that position 

(Section 2.4.1.1). The derivative of the smoothed spectra was then calculated by 

dividing successive values by the wavelength interval separating them (Equation 2.2). 

This accentuates the maximum point of inflection which is indicative of the red-edge 

feature (Section 2.4.1.1).  
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The position of the red-edge was located on the derivative of the spectra using 

the Lagrangian technique which has been shown to be strongly correlated to chlorophyll 

content (Section 2.4.1.1) (Dawson and Curran, 1998). REP was also estimated using the 

linear interpolation technique (Clevers et al., 2004) which was applied to the original 

spectra, without any derivative calculation. Stress ratios were also applied to the data 

which exploit the twin peak feature at the maximum point of inflection of the first 

derivative of the spectra, which have been shown to represent vegetation stress, notably 

at 702 nm and 725 nm (Section 2.4.1.1) (Smith et al., 2004b). These spectral analysis 

techniques were compared to the soil moisture measurements using regression analysis 

following similar studies such as Smith et al. (2004b).  

The methods discussed in this Section have mainly referred to techniques borne 

out of hyperspectral analysis, which utilise the fine spectral detail offered by specific 

sensors. However, attempts were also made to correlate soil moisture measurements 

using simple band ratios developed for broad band sensors, namely the Normalised 

Difference Vegetation Index (NDVI). Although there are a whole host of vegetation 

indices that can be applied in spectroscopy (see Bannari (1995) for a comprehensive 

review), the focus in this study is to exploit the fine spectral detail offered by 

hyperspectral sensors, whereas simple band ratios tend to take into account reflectance 

from just a small number of regions across the electromagnetic spectrum. Despite this, 

the NDVI was tested because, if successful, the characterisation of soil moisture using 

simple band ratios could be applied to imagery from a much less complex sensor. Such 

imagery tends to be available at a relatively low cost, compared to hyperspectral sensors 

and therefore increases the potential for becoming operational.  

3.2.2.4 Sensor simulation 

The CASI (Compact Airborne Spectrographic Imaging) airborne sensor provides 

hyperspectral imagery, over 32 bands covering the visible and near infrared regions of 

the spectrum. The sensor is flown by operators such as the Geomatics Group and has 

been used in numerous vegetation and marine monitoring surveys on behalf of the 

Environment Agency, demonstrating its potential for use in operational monitoring 

programmes. The field spectroscopy data gathered in this experiment was used to 
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simulate the CASI sensor in order to investigate the potential for the spectral analysis 

techniques to be scaled up to airborne imaging spectroscopy.  

The CASI sensor was simulated using a normalised Gaussian point spread 

function relating to the spectral range of CASI sensor’s bands, as denoted by the 

operator, Geomatics Group. This approach is adopted as the CASI sensor has shown to 

have a Gaussian spectral response because the grating within the pushbroom sensor 

head is curved (Milton and Choi, 2004). Milton and Choi (2004) explained that the 

response of hyperspectral sensors are often rounded due to the effects of diffraction, 

scattering in the optical system and the non-rectangular nature of the detector. 

The CASI sensor is a programmable system making it possible to centre the 

bands over different wavelengths. For this study, the default bandset defined by the 

Geomatics Group for the analysis of vegetation was used (Table 3.2). This was chosen 

because the main operation for the sensor in this study was the analysis of vegetation 

reflectance. The ASD field spectroscopy measurements described in Section 3.2.2.2 

were used to simulate CASI reflectance.  

The simulation begins by calculating the standard deviation (σ) for each band 

centre (defined by central wavelength in nm using Equation 3.8 (Milton and Choi, 

2004). 

V � W�XY
2√2 ln 2 

Equation 3.8  

where, the full width half maximum (FWHM) corresponds to the spectral resolution of 

the sensor at a particular bandwidth. This function is defined as the spectral interval at 

which the sensor’s response equals one half its maximum value (Figure 3.14) which 

was provided by the Geomatics Group (Table 3.2). Although sensors receive reflectance 

beyond the FWHM, the signal is weak and unreliable, and therefore insignificant 

(Campbell, 2006). Using the calculation of σ, the wavelength values (at 1nm intervals to 

match the ASD spectrometer) surrounding the central wavelength of the CASI band  are 

expressed as a Gaussian point spread function using Equation 3.9 (van der Meer et al., 

2006; Castleman, 1996). 
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Gaussian PSF �  �^���_`a _b �c
5dc  

Equation 3.9  

 

where, xi is the wavelength of interest and x0 is the position of the central wavelength 

which is assumed to be the peak of the Gaussian function (Mather, 2004). These values 

are then normalised by dividing by the total of the Gaussian point spread function 

values covering the range of CASI band. This provides a numerator per wavelength 

which can be multiplied by the corresponding reflectance value provided by the ASD 

spectroscopy data, simulated spectra per CASI band can then be obtained by summing 

these values. An example of how this method works using hypothetical data is provided 

in Appendix 3.    
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Band Wavelength centre (nm) FWHM (+/- nm) 
001: 397.6 4 
002: 405.3 3.7 
003: 412.7 3.7 
004: 420.1 3.7 
005: 427.6 3.8 
006: 435.4 4 
007: 443.6 4.2 
008: 452.3 4.5 
009: 461.5 4.7 
010: 471.2 5 
011: 481.6 5.3 
012: 492.5 5.7 
013: 504.2 6 
014: 516.5 6.4 
015: 529.7 6.8 
016: 543.6 7.2 
017: 558.6 7.7 
018: 574.5 8.3 
019: 591.7 8.9 
020: 610.1 9.6 
021: 630.1 10.4 
022: 651.6 11.2 
023: 675 12.2 
024: 700.3 13.2 
025: 727.8 14.3 
026: 757.5 15.5 
027: 789.6 16.7 
028: 824.3 18 
029: 861.5 19.2 
030: 901.2 20.5 
031: 943.4 21.7 
032: 988 22.9 

 

Table 3.2 Default bandset defined by the Geomatics Group for vegetation analysis. 
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Figure 3.14 Definition of field width half maximum used in the CASI sensor 

simulation. From Campbell (2006). 

 

3.2.2.5 Analysis of spectral techniques 

The spectral analysis techniques were applied to the field spectroscopy data and the 

CASI simulated spectra. These were then compared to the soil moisture measurements 

using OLS regression analysis. The regression models were then applied to the 

reflectance data and compared to additional soil moisture measurements for validation.  

The spectral analyses described in Section 3.2.2.3 refer to published techniques. 

In addition to these already established techniques, PLS regression was used to explore 

the potential for building a new model, specifically designed to predict soil moisture 

using vegetation reflectance. This type of regression was employed as it can cope with a 

large number of noisy predictors that are not truly independent (Carrascal et al., 2009), 

as is often the case with imaging spectroscopy data (Næs et al., 2002). PLS is similar to 

principal components analysis (PCA) whereby new variables, or components, are 

created which are linear combinations of the predicting variables that explain the total 

variance of the data. These new variables are uncorrelated which, therefore, solve the 

colinearity issue associated with OLS, which would likely produce a well fitted, but 

unstable model using collinear predictors (Næs et al., 2002). The drawback of PCA is 

that it requires the user to choose the number of components to be used in the final 

model. This means that the user must accept the risk that some of the components may 
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have little relevance for predicting the observed values (Næs et al., 2002). Although the 

use of loading plots can make this an intuitive process, it remains a subjective decision 

and does not carry much statistical rigour.  

Whereas PCA creates components that best describe the predicting variables, 

PLS is based on explaining the variance in both the predicting and observed variables. It 

does this by maximising the covariance between the observed variable and all possible 

combinations of the predicting variables. The resulting components are therefore more 

directly related to the original observed values (Næs et al., 2002). Generally speaking, 

the regression coefficient will increase with the number of components used in the 

model, as a greater variation in the predictor and response variables are explained. 

PLS differs from PCA regression by selecting the optimum number of 

components based on a leave one out cross validation, producing a predicted R2 for each 

sub model with varying numbers of components. This correlation coefficient tends to be 

higher for models with just a few components as they tend to be more stable. However, 

there can also be cases where a model with more components has a much better fit at a 

sacrifice of just a marginally smaller cross validation R2 score. For example, Figure 

3.15 shows the model selection plot for a set of chemical data (this example was chosen 

as it provides a clearer demonstration than the model selection plots calculated in this 

study). Here, the optimum model, with two components, is selected based on the highest 

cross validation R2 score. However, the user is more likely to choose a model with four 

components as this has a comparable cross validation correlation but with a much 

improved fit for the original data.  

One of the criticisms of PLS regression is the lack of statistical rigour for testing 

the significance of the model parameters (Davies, 2001). Realising this, Martens (2000) 

developed an uncertainty test to complement the PLS routine. Their test is used to 

estimate the standard errors of the regression coefficient estimates in the PLS model. 

Similar to cross validation, the test uses the jack-knife principle where one (or more) 

sample is removed at a time to create a number of sub-models (see Martens and Martens 

(2000) for a full description of the technique). The regression coefficients for each sub-

model are then computed giving information about the variability of the parameter 

values and an estimate of the standard error. The estimated standard error can then be 

used to calculate T-test values to test the significance of the variables in the model (Næs 
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et al., 2002). The uncertainty test, embedded in the Unscrambler® multivariate analysis 

software (CAMO, 2010), denotes insignificant predicting variables where the 

uncertainty limits go below zero. 
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Figure 3.15 Example plot demonstrating the selection of optimum number of 

components for a PLS model using the correlation coefficient (R2) scores for the 

original model and the model validated using leave one out cross validation. Data 

taken from MiniTab example data with elemental concentrations acting as the 

predicting variable and the response being wine aroma. Data from Frank and 

Kowalski (1984). 

 

PLS regression was applied to the CASI simulated spectra which had been 

transformed using the expression in Equation 3.10. 

log�+�1/�� 

Equation 3.10  

where, R  is relative reflectance. This transformation routine was born out of chemical 

spectroscopy as it is generally assumed that analysis procedures, such as PLS 
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regression, do not work well with nonlinear data. Equation 3.10 is held to be the best 

effort for linearising near infrared reflectance data (Reeves, 2009). In terms of spectral 

reflectance of vegetation, it has been said that there is a near linear relationship between 

transformed spectra (using Equation 3.10) and spectral absorption by chlorophyll 

pigments within a leaf (Kumar et al., 2006; Schmidtlein, 2005). As a result, this 

transformation is commonly used to prepare remotely sensed spectroscopy data for PLS 

analysis (Smith et al., 2003; Smith et al., 2002). However, it has also been suggested 

that such transformations not have a great influence on any subsequent spectral analysis 

(Reeves, 2009). Despite this, the transformation in Equation 3.10 was carried out to 

enable consistency with the remote sensing literature. 

The transformation routine discussed above is carried out in spectroscopy to 

linearise the relationship between spectral reflectance and absorbing component (Kumar 

et al., 2006). In addition, such techniques reduce the effect of differences in sample 

thickness and light scattering (Næs et al., 2002). Another simple technique that achieves 

the same effect is the use of the derivative of the spectra (Næs et al., 2002), which is 

described in Section 2.4.1.1. The motivation behind this is that the derivative of the 

spectrum can minimise the effects of bi-directional reflectance caused by differences in 

the orientation of the sun, sensor, or target. Myneni et al. (1995) also demonstrated that 

derivatives of the spectra can be direct indicators of absorbing components in the leaves 

of dense canopies, making the technique an ideal candidate for use in the analysis of 

dense vegetation in transport corridors. 

The PLS regression models built using the original CASI simulated spectra 

(without transformation), Log10(1/R) transformed spectra, and derivative of the spectra, 

were compared. This was done to judge which technique, if any, is best at preparing 

vegetation spectral data for PLS regression analysis. The motivation for this is that 

examples in the literature, including Schmidtlein (2005), Smith et al. (2003), Townsend 

et al. (2003), and Wolter et al. (2008), have not settled on one recommended 

transformation technique. The analysis was undertaken within the Unscrambler® 

software to take advantage of the Martens’ uncertainty test. Using each set of spectra 

(original and transformed) as the predicting variables and the soil moisture 

measurements as the observations, PLS regression was initially run to determine which 

spectral bands were significant predictors. These bands were then selected for a second 
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PLS regression analysis, using the same observed soil moisture measurements, to 

determine the optimum number of components required for describing the variation in 

the data without becoming over fitted. For validation, this model was then used to 

predict additional soil moisture measurements.       

3.3 Transport corridor scale 

3.3.1 Lidar data acquisition and processing  

Lidar data was collected from a helicopter-mounted Optech ALTM 2033 sensor in July 

2007, producing a minimum point density of 20 points per m2. The data were processed 

in TerraScan, where non-ground and vegetation points were classified and removed,  

following the concept detailed by Haugerud and Harding (2001). Two separate DEMs 

were generated from this data, the first using inverse distance weighted (IDW) 

interpolation and the second using the AnuDEM interpolation routine as described in 

Section 3.2.1.  

 These two interpolation techniques were compared in an attempt to repeat the 

methods carried out an earthwork scale, as detailed in Section 3.2.1, with IDW being 

used to represent a standard interpolation technique. This technique was used instead of 

the computationally intensive kriging interpolation used in Section 3.2.1 as it is 

relatively quick and simple to compute over the much larger area of the transport 

corridor. In contrast, kriging interpolation often stalled when applied to the transport 

corridor lidar data and could only be reliably used to produce coarse resolution DEMs 

(5 m). IDW interpolation estimates grid elevation from the lidar point elevation data by 

averaging values within a neighbourhood surrounding each grid cell. A weighting is 

applied that gives more influence to points closer to the centre of the cell of interest.  

IDW was applied with a power of two using a variable radius distance set to take an 

average 20 points. A power of two was selected as a compromise between higher 

powers, which give a higher weighting to points closer to the centre of a cell typically 

resulting in an increase in topographic detail, and lower powers that give more influence 

to points further from the centre, leading to a loss of topographic detail resulting in a 

smoother surface. This power is the default used in ArcGIS (ESRI, 2007a) and has been 

used in other studies, including Yue et al. (2007). The points were averaged using a 

variable radius distance as the density of lidar point data was not distributed evenly 
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across the scene. An average of the nearest 20 points was specified to match the 

minimum density of the lidar data. This was deemed reasonable as a 1 m grid resolution 

DEM was desired (based on the results of the test embankment work detailed later in 

Section 4.1.2) and, therefore, this ensured that there were at least 20 points per grid 

square to interpolate from.  

 Calculations of TWI and potential solar radiation were applied to the two DEMs 

in an attempt to characterise soil moisture distribution using the methods outlined in 

Sections 3.2.1.1 and 3.2.1.2. In addition to visual analysis, comparisons were drawn by 

comparing various profiles of elevation, TWI and potential solar radiation values across 

the earthworks. These values could then be used to quantify the differences between the 

two interpolated DEMs.  

3.3.1.1 Soil moisture sampling strategy  

Soil moisture measurements were gathered over the transport corridor using the Theta 

portable impedance probe (introduced in Section 3.2.1.3). The locations of these 

measurements were decided using cluster analysis of terrain analysis calculations.       

K-means clustering was used, despite the disadvantage of having to subjectively 

predefine the number of clusters used in the analysis. Although there are techniques, 

such as hierarchical clustering, that do not require a predefined number of clusters, they 

are computationally intensive (Wu et al., 2009) and proved to be problematic when 

applied to the extensive raster datasets used in this study. To overcome this, K-means 

clustering was repeated with an increasing number of clusters defined each time. The 

optimum number of clusters was determined through analysis of silhouette plots 

generated after each run. These plots provide a measure of how close each point in one 

cluster is to the points in neighbouring clusters which is defined by the squared 

Euclidean distance, +1 being very distinct from neighbouring clusters and - 1 indicating 

misassignment (Lletí et al., 2004). The overall success of the run can be determined by 

the average of these values (Lletí et al., 2004).  

 Analysis of the silhouette plots indicated two main clusters. These clusters were 

mapped which helped to identify one particular location, a cutting at Whitchester, that 

accommodated both clusters and was readily accessible for study. Three subsequent soil 

moisture campaigns were carried out in this area. The first occurred on 18th June 2009 
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following a period of little rainfall and involved a transect of readings across the profile 

of the cutting with measurements made every 2 m. This sampling strategy was chosen 

as it takes into account both downslope variation in soil moisture and the influence of 

the north/south slope aspects and can give an indication of small scale variations in soil 

moisture distribution without being too laborious. The second soil moisture campaign 

was carried on 9th July 2009 again following a period of dry weather. On this occasion 

measurements were taken approximately every 5 m to create a grid of measurements 

across the earthwork where access was possible. Some areas were inaccessible due to 

dense vegetation. this is a potential limitation as soil moisture contents are likely to be 

underrepresented under dense vegetation which is likely to influence soil moisture 

distribution through processes such as rainfall interception. The overall sampling 

strategy was chosen in order to maximise the spatial coverage of the soil moisture 

measurements following the guidance of McBratney and Webster (1983). The third 

campaign was carried out on 30th July 2009 following a period of heavy rainfall. The 

sampling strategy here was similar to that used on 18th June 2009 with a series of 

transects across the profile with 2 m spacing between measurement points. On each 

occasion the position of the measurements were recorded using real-time kinematic 

GPS.  

3.3.1.2 Analysis techniques 

The soil moisture measurements were compared to the terrain analysis calculations, for 

both the IDW and AnuDEM interpolated DEMs using linear regression. Stepwise 

multiple regression was then used to create a model predicting soil moisture from the 

terrain analysis metrics. Non linear transformation of the TWI metric was also 

considered (see Section 3.2.1.4 for further details). GWR was also used to consider the 

spatial variability in the relationship between soil moisture and the metrics. A GWR 

model was defined with a fixed Gaussian kernel, as the spatial density of the 

observations does not change significantly. Bandwidth was selected using AICc cross 

validation (see Appendix 2 for details on GWR). This produced an optimal band width 

of 18 m. A Monte Carlo significance test was used to test the spatial variability of the 

parameters used in the GWR model.  
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3.3.2 Airborne imagery acquisition and processing 

High spectral resolution CASI imagery was collected over the Haltwhistle transport 

corridor in September 2007 onboard a fixed wing aircraft at a height of 1100 m giving a 

pixel resolution of 60 cm. Radiometric calibration of the imagery was undertaken by 

applying the empirical line method (Smith and Milton, 1999) to coincidental field 

spectroscopy measurements taken over three 6 x 6 m tarpaulin targets (black, grey and 

white) (Figure 3.16).  The three targets were positioned at least twelve metres from each  

other to ensure any signal taken from the imagery was purely from one target at a time 

and had no influence from nearby targets.  

Smith and Milton (1999) demonstrated that the empirical line method provides 

adequate results (errors in the region of a few percent) and is relatively easy to compute, 

compared to complicated radiative transfer models. However, they stress the importance 

of using at least two targets. Figure 3.17 shows an example of the radiometric 

calibration for band 1 using this method, illustrating a strong relationship (R2 of 1) 

between the reflectance recorded using field spectroscopy and the radiance recorded by 

the airborne CASI sensor (see Appendix 4 for the quality of the radiometric correction 

for all 32 bands).  

 

 

Figure 3.16 Location of the black, grey and white targets used in the empirical line 

radiometric calibration. 
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Figure 3.17 Example of the empirical line method for radiometric calibration of CASI 

band 1, with regression equation and correlation coefficient. 

 

Geometric calibration was carried out by the operator, Geomatics Group 

(Environment Agency). Following the procedure outlined in Brown et al. (2003) the 

CASI imagery is synchronised with the onboard navigation system using a Precise 

Positioning Service (PPS) from the GPS. The CASI system is then geocorrected using 

navigational data using bespoke software from Itres (www.itres.com), which allows for 

geocorrection using a fixed elevation surface. The navigational system is integral to this 

process which consists of a dual frequency Novatel Millenium GPS receiver providing 

positional data which is post processed using ground GPS data referenced to the 

Ordnance Survey passive and active networks in the UK. A rudimentary quality 

assessment is made by comparing the imagery to map overlays from Ordnance Survey 

data. The system is calibrated each time the instrument is replaced in the aircraft, and 

periodical test flights are flown to ensure this calibration is still valid. 

The quality assessment, referred to by Brown et al. (2003), was deemed 

insufficient for a precision engineering study due to the unknown accuracy of the 

Ordnance Survey data. Therefore geometric validation was carried out against 

independent ground control points collected in the field using RTK GPS. The maximum 
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RMSE quoted by the operator (1.5 pixels) was found to be exceeded in two of the CASI 

strips (RMSE of 1.7 and 2.4 pixels), which was reflected by poor mean residual errors 

and standard deviations quoted in Tables 3.3 and 3.4. This information was reported and 

as a result the operator made a rudimentary adjustment by applying a global shift to the 

data to bring it in line with the ground control points, reducing the aforementioned 

RMSE to 1.1 and 0.98 respectively. This is reflected in Figure 3.18 which shows the 

change in residuals for one CASI strip before and after correction, and Tables 3.4 and 

3.5 which show changes in mean and standard deviation of the residuals for two CASI 

strips. The justification for the use of this method was that the residuals for each point 

tended to follow the same pattern. This was not a favourable solution and suggests 

perhaps this form of data collection and processing is not accurate enough for 

application in precision engineering. A more robust solution would be to collect 

coincidental GPS measurements of clearly visible targets and use them as control points 

to carry out geometric correction of the raw imagery. This was not done because the 

data ordered from the operator was expected to be within the quoted accuracy. 

 

 Old New 

 x y x y 

Flight line 1 -0.51 -2.09 -0.35 0.03 

Flight line 2 -0.4 -1.41 -0.27 0.7 

Table 3.3 Mean residuals between GCPs located using RTK GPS and identified in 

two CASI imagery flight lines before and after correction by the operator.  

 

 Old New 

 x y x y 

Flight line 1 0.54 0.82 0.7 0.66 

Flight line 2 0.52 0.62 0.57 0.59 

Table 3.4 Standard deviation of residuals between ground RTK GPS location and 

location identified in two CASI imagery flight lines before and after correction by 

the operator.  

 



107 
 

 

Figure 3.18 Plot showing change in residual error following correction by the operator 

for ground control points located using RTK GPS and identified in the CASI 

imagery. 

 

Two strips covering the transport corridor earthworks and surrounding fields and 

structures were merged using ERDAS IMAGINE software. To prepare the imagery for 

subsequent analysis a number of steps were performed to reduce the amount of noise 

within the data and improve the overall signal from the vegetation. Firstly, a Minimum 

Noise Fraction (MNF) transformation was applied in the ITT ENVI software which can 

be used to identify spectral anomalies. The MNF routine begins with a forward rotation 

of the spectral data which orders the image data into different components of varying 

quality (van der Meer et al., 2006). It does this using a cascaded principal components 

transform whereby new components are selected as the signal to noise ratio decreases. 

In ENVI, the degree of noise per component can be visualised as a grey-scale image 

where the pixel value is considered to have a linear relationship with the level of noise. 

Typically, the images in first few MNF components are much more coherent than later 

component images that are often speckled, with little or no spatial coherence. By 

examining the images and associated eigenvectors the number of components with 
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coherency can be chosen. These components can then be selected as a spectral subset in 

an inverse MNF transform which places the MNF bands back in their original data 

space, which in this case corresponds to each of the 32 CASI bands. The spectral subset 

chosen for the Haltwhistle data were bands one to seven, which corresponds to an 

eigenvalue of more than five.  

3.3.2.1 Mapping Ellenberg values 

3.3.2.1.1 Vegetation sampling strategy  

To date there have been no reported attempts to map Ellenberg values derived for UK 

plant species, such as the typology developed by Hill et al. (2000). Indeed, apart from 

Schmidtlein (2005), there have been few attempts to map Ellenberg values using 

imaging spectroscopy. One possible reason for this is the uncertainty surrounding the 

adequate number of vegetation species abundance observations that are required to 

characterise the range of Ellenberg values that exist at a given site. For example, 

Schmidtlein (2005) explained that variation in plant species composition and cover was 

assessed in 46 relevés (a uniform area used to make vegetation observations, such as a 

quadrat) positioned randomly throughout the study site. However, no reference is made 

as to how this sampling strategy was chosen.  

 One approach that may be suited to defining adequate sample size for measuring 

species abundance is the use of the nested plot technique (Mueller-Dombois and 

Ellenberg, 1974) ( Figure 3.19). This technique involves counting the number of species 

that occur in the smallest sub plot, in the case of Figure 3.19, plot number one 

measuring 0.5 x 0.5 m. The number of species are then recorded in the subsequent sub 

plots, up to number nine, with an increasing sample area covered. A species-area curve 

can then be constructed where the number of species recorded is plotted against sample 

size. Mueller-Dombois and Ellenberg (1974) explained that adequate sample size can be 

defined as the point at which number of species recorded does not increase significantly 

with an increase in plot size (being defined as the point at which a 10% increase in plot 

size yields only 10% more species). Despite this, the species-area curve tends to be used 

in modern ecology for monitoring biodiversity, with little mention to the method being 

used for defining sample size.  
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Figure 3.19 System of nested plots. Each subplot from 1 includes the area of the 

previous subplot, therefore all plots are square. From Mueller-Dombois and 

Ellenberg (1974). 

 

Stohlgren et al. (1995) explained a number of limitations associated with the 

nested-plot technique. Firstly, the number of species recorded is added from each 

previous sub plot, starting from the initial 0.5 x 0.5 m square. As a result, each measure 

is not truly independent from the last, which can lead to autocorrelation and a strong 

bias around the first sub plot. Secondly, if a habitat is not strictly homogenous then the 

number of species measured per plot may be influenced by the shape of the area being 

examined. For example, circular or square plots will record fewer species as they have a 

reduced perimeter to surface area ratio, compared to a long, thin rectangle plots. In an 

attempt to overcome these issues, Stohlgren et al. (1995) suggested the use of a series of 

long thin plots that do not overlap. This type of sampling plot is known as a modified-

Whittaker plot as it is based on the widely used Whittaker plot which first made use of 

long, elongated sub plots.  

In an attempt to bring a degree of robustness to the vegetation survey, 

preliminary sampling was undertaken to construct a species-area curve for earthworks 

in the Haltwhistle transport corridor. This was done using the modified-Whittaker plot 

but adapted to fit in the confines of a cutting earthwork near Whitchester (Figure 3.20). 

Within each sub plot, the number of vegetation species was recorded (see Appendix 5 
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for details). This equated to ten small sub plots, two medium sub plots, one large sub 

plot, and the plot encompassing all the sub plots and the space in between. The average 

species number for each plot size was then calculated. This was plotted against relative 

sample area to produce a species-area curve (Figure 3.21). Scheiner (2003) explained 

that a power function best describes the species-area curve, which is supported in the 

present example with an R2 of 0.95 compared to R2 values of 0.66 and 0.92 for 

exponential and logarithmic fitted curves respectively. However, it could also be argued 

that the logarithmic fit is better suited as it reaches a plateau rather than the assumption 

made by a power curve that the total number of species would increase indefinitely with 

sample area. 

 

Figure 3.20 Diagram of the modified-Whittaker plot used to record species abundance 

over a cutting earthwork near Whitchester (not to scale) in order to create a species-

area curve used to define adequate sample size. The rectangles refer to different 

sized sub plots for which species type is recorded. The rectangle encompassing all 

the sub plots is the total area. Further explanation is provided in Appendix 5.  

 

The species area-curve in Figure 3.21 shows that the number of species does not 

increase significantly after a sample area of 100 m2. Therefore, this value is used as the 

adequate sample area for assessing species abundance in the transport corridor. Species 

type and abundance was assessed following the example of Schmidtlein (2005). The 

first step was to define the study area by species composition. Two main vegetation 
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covers were identified: (1) a mixture of agricultural weeds, wild flowers and shrubs, and 

(2) deciduous woodland. A decision was made to ignore deciduous woodland in the 

Ellenberg mapping analysis as tall tree canopies can not only complicate the spectral 

signal from bidirectional reflectance and shadowing (Wolf et al., 2010; Feldmeyer-

Christe et al., 2007), but also mask smaller species on the forest floor that may be a 

better indicator of soil moisture conditions. This is an important limitation on the use of 

Ellenberg values which is discussed in greater detail in Chapters 6 and 7. 

 

 

Figure 3.21 Species-area curve created using observations of plant species within a 

modified-Whittaker plot located on a cutting earthwork near Whitchester. The 

observed number of species are taken from the modified-Whittaker plot sampling.  

The solid line refers to a logarithmic fit on the observed number of species points. 

Line A refers to an increase in species and sample area in 10% steps. Line B is a 

tangent parallel to the 10% line (Line A) where it touches the species-area curve. 

The point at which Line B intercepts the logarithmic fit is taken to be the adequate 

sample area, indicated by the grey dashed line. 
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The two vegetation cover types, along with additional covers of bare earth and 

manmade surfaces, were classified using the CASI imagery. This was done so that 

random sampling points could be positioned over areas of agricultural weeds, wild 

flowers and shrubs, which were used to sample species abundance for the calculation of 

weighted Ellenberg values. Classification was carried out using a maximum likelihood 

classification routine. Many other classification approaches exist but these were not 

explored as this was not a listed objective for the study at hand. Furthermore, there is 

suggestion that adequate selection of training sites is more influential than the choice of 

classification procedure (Campbell, 2006; Mather, 2004).  

The training areas used in the maximum likelihood classification routine were 

sampled using a mixture of ground-based knowledge of the study area and 5 cm aerial 

photography taken at the same time as the lidar data discussed in Section 3.3.1. The 

minimum area covered by each training area per class was selected using simple 

heuristics, which suggests 10 to 30 pixels per class, multiplied by the number of bands 

used in the classification (Lillesand and Kiefer, 2000), which in the case of the CASI 

sensor is 32 bands. A fuzzy convolution filter was applied to the resulting classification 

to reduce the speckled effect and improve overall interpretation. The classification 

accuracy was then assessed at 300 points located randomly throughout the study site, 

again using a mixture of field-based knowledge and the 5 cm aerial photography to 

determine the ‘true’ class of a pixel.  

The overall classification accuracy was 90% with a kappa statistic 0.87 (Table 

3.5). This suggests a high level of classification accuracy, however, discrepancies did 

exist. For instance, areas of bare ground were sometimes misclassified as vegetation, 

especially where these were adjacent to clusters of vegetation, or where vegetation was 

partially overhanging. In addition, ballast, which forms the basis of the railway track 

bed, often spilt over onto bare earthwork slopes. This led to misclassification of the 

ballast into the bare earth category. The classification of the weeds, wild flowers and 

shrubs land cover was shown to largely successful with some misclassification due to 

overhanging deciduous trees. The user’s accuracy for this class was 94.3% showing that 

this classification could be used to delineate the Ellenberg mapping study area with a 

certain level of accuracy.  
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Unclassified  Bare 

ground 
Deciduous 

wood Manmade  
Grass 
and 

shrub 
Total  

Unclassified  0 0 0 0 0 0 

Bare 
ground 0 27 0 2 2 31 

Deciduous 
wood 0 1 70 0 9 80 

Manmade 0 9 0 75 0 84 

Grass and 
shrub 0 0 6 0 99 105 

Total 0 37 76 77 110 
 

 

 
Producer's 
accuracy 

User's 
accuracy 

Bare ground 73.0% 87.1% 

Deciduous 
wood 92.1% 87.5% 

Manmade 97.4% 89.3% 

Grass and 
shrub 90.0% 94.3% 

 

Table 3.5 Error matrix showing the classification accuracy of the maximum 

likelihood classification routine applied to the airbone CASI imagery. The 

clasification was carried out in order to delineate agricultural weeds, wild flowers 

and shrubs for the random position of vegetation abundance plots. 

 

The classification discussed above was used to randomly position plots over 

grasses, weeds and shrubs throughout the study area. These plots were then used to 

measure species abundance in order to calculate weighted average Ellenberg values. 

Schmidtlein (2005) recorded species abundance at random plots which consisted of 

three 1 m2 circular relevés, positioned approximately 1 m from the centre of the plot, the 

position of which was measured using differential GPS. This strategy was adopted in 

the present study, but 1 x 1 m quadrats were employed, with 10 cm grid squares 

(representing 1% of total coverage). This was done to help improve an otherwise 

subjective measure of percentage species abundance as traditional methods for 



114 
 

recording species abundance involve an estimate of relative percentage cover per 

species. More accurate measures of species abundance can be made by harvesting the 

vegetation at each plot, then weighing the relative masses for each species (Kent and 

Coker, 1995). However, this was deemed impractical due to the need for additional 

personnel to collect field samples, as well as extended laboratory work. In addition, 

measuring species abundance through harvesting tends to be reserved for studies that 

are primarily concerned with biomass, or the yield and productivity of particular species 

(Kent and Coker, 1995). 

Thirty-three plots were positioned over grasses, weeds and shrubs landcover 

throughout the study area using randomly generated coordinates, which were located in 

the field using RTK GPS. This ensured that an adequate area was sampled 

(approximately 100 m2), as defined by the modified-Whittaker plot analysis. However, 

it later emerged that four of the plots could not be used due to misclassification of 

vegetation type, or inaccurate soil moisture measurements. Once species composition 

and abundance were recorded, a weighted average of the Ellenberg indicator value for 

soil moisture could be calculated for each plot using Equation 3.11.  

 

� � ∑ h�i�j�k�∑ h�j�k�
 

Equation 3.11  

Where, E is the weighted average Ellenberg value, x refers to the relative Ellenberg 

value for the specific vegetation type (i), as defined by Hill et al. (1999), and w is the 

weight per species based on their relative abundance in the plot. For example, take a 

plot with a relative abundance of Bramble (50%), Stinging Nettle (20%) and Bracken 

(30%), with corresponding Ellenberg moisture values of 6, 6 and 5 respectively (Hill et 

al., 1999). Using Equation 3.11 the resulting weighted average Ellenberg value for this 

plot would be: 

  

Weighted average � �6 n 50%� � �6 n 20%� � �5 n 30%�
100 � 5.7 
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3.3.2.1.2 Linking Ellenberg values with spectral reflectance using PLS 

The processed reflectance data, described in Section 3.3.2, was linked to the average 

Ellenberg scores using PLS regression, following Schmidtlein (2005). As described in 

Section 3.2.2.5, this type of regression was employed as it can cope with a large number 

of noisy predictors that are not truly independent. Prior to analysis, the spectral 

reflectance data was transformed using Log10(1/R), and the derivative of the spectra. 

Details of these transformations, and the motivations behind their use, can be found in 

Section 3.2.2.5.  

Using the selected CASI bands considered to be significant, and optimum 

number of components necessary to represent the variation in the data, Ellenberg soil 

moisture values could be mapped and compared to observed soil moisture data. As the 

West to East transport corridor typically includes earthworks with north or south facing 

slopes, separate models were also considered for the two dominating aspects. Ideally, 

additional plots would have been recorded to validate the Ellenberg indicator value 

models. However, due to the lengthy time needed to collect plot abundance data, as well 

as the need to collect validating soil moisture data at each point within a day, this was 

not possible. As a substitute, leave one out cross validation was carried out. The ability 

of the model to predict Ellenberg indicator values outside the observation point was 

assessed by comparing the RMSE for model calibration with the RMSE for the cross 

validation.  

Part of the original plan in this part of the study was to collect field based 

spectroscopy at each of the Ellenberg plots. This would have provided an ideal 

reflectance dataset, with reduced atmospheric or bi-directional reflectance effects 

associated with airborne data, to fully understand the potential for mapping Ellenberg 

values using spectroscopy. However, damage by a third party to the field spectrometer, 

and lengthy estimated times of repair, meant that this was not possible, but remains an 

interesting scope for future study.  

3.3.3 Model integration 

The experimental methods described above are designed to identify metrics that are able 

to help characterise soil moisture distribution. Some of these metrics, namely the terrain 

calculations, have been discussed in terms of using multiple regression to improve 
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estimations by integrating the calculations. The final step of this methodology is to 

create a multiple regression model that incorporates all the metrics, derived from 

analysis of both the airborne laser scanning and spectroscopy datasets, to characterise 

soil moisture across the transport corridor. Multiple regression was used as predictions 

can be made outside the confines of the model calibration area. Multiple regression also 

provides a rudimentary measure of success with the R2 calibration coefficient, which is 

comparable with the analysis techniques used in assessing the accuracy of the individual 

metrics throughout this methodology.  

 One of the limitations of using multiple regression is that is does not provide a 

thorough measure of model error. This could have particular bearing in this study as 

error propagation might occur where the remotely sensed metrics with their own levels 

of error are integrated, therefore compounding subsequent errors. In this respect it may 

have been interesting to explore a Bayesian modelling strategy whereby predictions are 

based on probabilities (Dungan, 1999). In the present case, areas of increased soil 

moisture can be identified by taking into account the probability of its occurrence 

predicted by the remotely sensed metrics. This strategy also has the ability to take into 

account known uncertainty in the metrics by assigning a probability that the metrics are 

not true. This method was not thoroughly explored as this type of conditional modelling 

has the tendency to be less accurate locally (Dungan, 1999) which could be significant 

when concerned with a component that is highly variable over space, such as soil 

moisture content. 

 Other modelling procedures include neural networks. This technique mimics the 

way in which the brain works, by using a number of simple processing units called 

neurons (Mather, 2004). Using neural networks the input predicting variables, in this 

case remotely sensed metrics, are inputted into the neurons with a specific weighting. 

The neuron then sums these weighted input variables and applies a simple calculation, 

such as a threshold. In the example of a threshold, if the input value is greater than a 

preset value then the output is sent onto the next layer of neurons, or to the final output 

or prediction. This is known as a feed-forward network (Næs et al., 2002).  The issue 

with this type of model is that it does not learn itself and requires input information 

from the user. This means that the model must be trained by the user and modified 

accordingly to produce a more desirable result, in this case, a better prediction of soil 
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moisture distribution. Techniques to overcome this dependence on user input include 

back-propagation. Here, errors associated with the model output are used to redefine the 

weights applied to the model inputs. One known issue with this kind of model is that 

despite speedy computation times for the final model, training times can be very lengthy 

(Mather, 2004) which may be problematic when dealing with high spatial resolution 

data over large areas. In addition, models can become ‘over trained’ losing effectiveness 

over areas outside the training area (Mather, 2004). 

 In order to create the integrated model, stepwise linear regression was carried out 

using observed soil moisture measurements, gathered on 30th July 2009, as the 

dependent variable, and the remotely sensed metrics as the predictor variables. This 

method was favoured over standard multiple regression, as variables are entered into the 

model providing they fit a predefined criterion. This criterion is based on the 

significance of the predicting variable, which for the present study was defined as the 

probability of the F value (0.05 for entry and 0.1 for removal). The resulting model was 

used to map predicted soil moisture distribution across the corridor, and was validated 

using soil moisture measurements gathered on 18th June 2009.  

 As well as the global linear multiple regression model a spatially variable mode 

using GWR was also considered. However, it must be noted that this was not carried out 

in an attempt to improve upon the original global model, but to explore the spatial 

variability of the relationships between soil moisture and the predicting variables. This 

is because the model parameters estimated in the GWR routine are specifically tailored 

to the extent of the input calibration, or training data. Therefore any predictions made 

outside this area would be unstable and unreliable.  

3.4 Summary 

This Chapter has detailed the methods that were used to assess the potential of the 

remote sensing techniques identified in Chapter 2 that have the potential to characterise 

soil moisture over transport corridor earthworks. As explained at the start of this 

chapter, some of the techniques are conceptual and were therefore tested at an 

earthwork scale, using terrestrial remote sensing technologies. The details of these 

methods were outlined in Section 3.2. The techniques deemed successful, as well as 

other techniques that could not be assessed at a small scale, were then applied to 
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airborne remotely sensed data at a transport corridor scale using the methods detailed in 

Section 3.3. Although many of the techniques used here are not new, the novelty lies in 

their integration and use within the context of a transport corridor environment. 

Furthermore, attempts are made to cover some of the shortcomings associated with 

some of the techniques. In particular, there is a distinct lack of robustness in designing 

the sample strategy and subsequent statistical analysis of vegetation abundance data. It 

is hoped that the methods detailed here will provide a basis for applying such 

techniques in precision engineering.  
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4 Earthwork scale study results 

This chapter details the results of the earthwork scale study following the application of 

the methods outlined in Section 3.2. This is broken down according to the type of data 

being investigated. Section 4.1, covers the terrain analysis techniques applied to 

terrestrial laser scanning data. Section 4. 2 relates to the spectral analysis techniques 

applied to field spectroscopy data. At the start of each of these sections a very brief 

overview of the relevant  methods are given in order to bring the results into context. 

4.1 Terrain analysis experiment 

Section 3.2.1 detailed the methods used in the terrain analysis experiment. In brief, 

terrain analysis calculations were applied to DEMs generated from TLS point elevation 

data using kriging and AnuDEM interpolation techniques. These terrain analysis metrics 

were then compared to observed soil moisture measurements. The following details the 

results of this work. 

4.1.1 Impact of DEM interpolation on representing terrain 

Due to the relatively uniform relief of the test embankment, there was little difference 

between the elevation values interpolated using the kriging and AnuDEM techniques, 

with an average difference of 1 cm. This is reflected in Figure 4.1 which shows a plot of 

elevation values taken from the two DEMs for a transect running across the earthwork 

(the location of this transect is shown in Figure 4.3). The maximum difference between 

the two elevation profiles was 7 cm, which occurred towards the summit of the 

earthwork, at a distance of 13 m from point 1 (see Figure 4.3 for the location of point 1). 

Comparisons with the original TLS point elevation data showed very small residuals, 

with an average of -0.46 cm and 0.59 cm for the AnuDEM and kriging DEMs 

respectively. This corresponds to RMSE values of 0.68 cm and 0.77 cm respectively.  
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Figure 4.1 Profile of elevation values and differences across transect 1 for the kriging 

and AnuDEM interpolated DEMs. See Figure 4.3 for location of the transect. 

 

Elevation values derived from the two interpolation techniques were also taken 

from transect 2 drawn along the contour of the embankment slope (location shown in 

Figure 4.3). Plots of these values, shown in Figure 4.2, demonstrated the degree of 

smoothing enforced by AnuDEM. This resulted in a maximum difference of 

approximately 5 cm at approximately 2.5 m from position y (location marked on Figure 

4.3), where the AnuDEM method has suppressed the hollow feature that is identified in 

the kriging DEM. Despite these visual differences, a T and F-test showed there was no 

significant difference between the two samples (p value > 0.05). The average residuals, 

when comparing the DEMs to elevation values from the original TLS data, are 0.46 cm 

and 0.39 cm, corresponding to an RMSE of 0.68 cm and 0.62 cm for AnuDEM and 

kriging respectively. Due to the lack of difference between the two datasets, these 

results cannot be used to suggest which interpolation technique is more accurate for 

reproducing the original TLS elevation values. 
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Figure 4.2 Profile of elevation values across transect 2 for the kriging and AnuDEM 

interpolated DEMs. See Figure 4.3 for location of the transect.  

 

Hillshade analysis was used to make a visual assessment of how the two 

interpolation techniques represented the terrain of the test embankment. This was based 

on the assumption that increased terrain variability would be represented by an increase 

in the variation in hillshade values. Figures 4.3 and 4.4 show hillshades of the AnuDEM 

and kriging DEMs respectively. Although AnuDEM identified fine scale topographic 

features, such as the panel membranes and embedded instruments, these features were 

more prominent in the kriging interpolated DEM. This again reflected the smoothing 

effect enforced by the AnuDEM interpolation technique. As a result, kriging 

interpolation is more useful for depicting fine scale terrain, whereas the AnuDEM 

method creates a smoother surface. Figure 4.3 also identifies the location of missing 

data in the TLS dataset, which is noted in Section 3.2.1.  
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Figure 4.3 Hillshade of the AnuDEM interpolated DEM for the test embankment. 

Transects 1 and 

respectively. Quadrilateral shape shows the location of missing 

Figure 4.4 Hillshade of the kriging interpolated DEM for the test embankment. 

Markers identify topographic details that are more prominent in the kriging DEM 

 

2 

122 

Hillshade of the AnuDEM interpolated DEM for the test embankment. 

and 2 refer to the location of the profile graphs in Figur

respectively. Quadrilateral shape shows the location of missing 

Hillshade of the kriging interpolated DEM for the test embankment. 

Markers identify topographic details that are more prominent in the kriging DEM 

compared to the AnuDEM DEM in Figure 4.3.
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respectively. Quadrilateral shape shows the location of missing TLS data. 
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4.1.2 Impact of DEM interpolation on TWI calculation 

Despite there being no significant difference between the elevation values for the two 

interpolated DEMs, there were marked differences in the TWI calculations. When 

analysing the TWI results it should be noted that high TWI values correspond to 

potentially drier areas. This is a result of the index being inverted to avoid errors where 

the slope is zero (see Section 3.2.1.1 for more details). Visually, TWI calculated using 

the AnuDEM interpolated DEM was noticeably smoother than the TWI for the kriging 

interpolated DEM (Figures 4.5 and 4.6 respectively). The kriging TWI included a 

number of seemingly random peaks across the earthwork, which are likely to be a 

response to the fine scale topographic detail identified using the kriging interpolation 

routine. There were also differences in the range of TWI values calculated, with 0 to 

4.04 for the kriging DEM and 0 to 1.26 for the AnuDEM DEM. The high values found 

with the kriging DEM were attributed to a handful of grid cells located on the steep 

slopes at the southwest and northeast facing ends of the embankment. These extreme 

values occur due to the calculation of very small contributing areas which are the result 

of a flatter upslope neighbouring grid square taking all the upslope contribution. This 

did not occur with the AnuDEM DEM as the smoothing algorithm ensured continuous 

flow downslope. 

Profiles of the TWI calculations for the different interpolated DEMs once again 

demonstrated the smoothness of the AnuDEM DEM compared to the kriging DEM. 

Moving downslope from the shoulder of the south facing slope (point 3 as indicated in 

Figure 4.6), the TWI values gradually decreased for the AnuDEM DEM (Figure 4.7). 

This trend should correlate with an expected downslope increase in soil moisture. In 

contrast, the profile of TWI values for the kriging DEM was more erratic. Moving 

downslope, there were three large peaks between 0 m and 4 m from point 3 with a TWI 

value of more than 0.25, indicating drier soils towards the shoulder of the slope, with 

the bottom half of the slope having relatively low values of approximately 0.05, 

indicating uniformly high soil moisture (Figure 4.7). The difference between the 

AnuDEM and kriging TWIs is also shown in Figure 4.7. This shows that there is little 

difference between the two calculations from 4 m to 11 m from point 3. In contrast, 

there is a great deal of difference between values from 0 m to 4 m. Here, the kriging 
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DEM shows three peaks TWI values at 0 m, 2 m and 4 m from position z, with a range 

of over 0.25 covering nearly the entire range of kriging TWI values.  

The difference in TWI values was the result of a difference in the calculation of 

specific catchment area. Specific catchment area refers to the number of cells that flow 

into a cell of interest. In this example, values are represented by the cell size in m2, 

therefore, for the AnuDEM DEM with a grid resolution of 35 cm (see Section 3.2.1 for 

details), a cell with a contribution of just one upstream grid cell will have a specific 

catchment area of 0.7 m2 (i.e. the value in metres of itself and one upstream cell). The 

profiles in Figure 4.8 demonstrate that specific catchment area increased linearly 

downslope. In contrast, specific catchment area for the kriging DEM increases rapidly 

to 10 m2 (representing approximately 22 grid cells) at approximately 5 m from the 

shoulder of the slope (Figure 4.8). This difference can be attributed to fine scale 

differences between the two input DEMs. The kriging DEM identified fine scale 

topographic features, which act as small local minima leading to the TWI being reset at 

these locations, resulting in a pattern of sporadic increases and decreases around the 

location of these features. Conversely, the AnuDEM suppressed these features and 

allowed flow to continue downslope resulting in a gradual increase in contributing area 

and a gradual decrease in TWI values (indicating an increase in potential surface 

wetness). 



 

Figure 4.5 TWI calculated for the test embankment using the AnuDEM interpol

DEM

Figure 4.6 TWI calculated for 

DEM. Transect 3 shows location of profiles for Figures 4.7 and 4.8.
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TWI calculated for the test embankment using the AnuDEM interpol

DEM. High TWI values correspond to low wetness.

TWI calculated for the test embankment using the kriging interpolat

. Transect 3 shows location of profiles for Figures 4.7 and 4.8.

3 

 

TWI calculated for the test embankment using the AnuDEM interpolated 

. High TWI values correspond to low wetness. 

 

the test embankment using the kriging interpolated 

. Transect 3 shows location of profiles for Figures 4.7 and 4.8. 
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Figure 4.7 Plots of TWI values for kriging and AnuDEM interpolated DEMs for 

transect 3 shown in Figure 4.6. 

 

Figure 4.8 Profile plots of specific catchment area (SCA) for kriging an AnuDEM 

interpolated DEMs for transect 3 shown in Figure 4.6. 

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0 1 2 3 4 5 6 7 8 9 10

D
if

fe
re

n
ce

 (
T

W
I 

v
a

lu
e

)

T
W

I 
v

a
lu

e

Distance from 3 (m)

AnuDEM TWI

Kriging TWI

Difference

-5

-4

-3

-2

-1

0

1

2

0 

2 

4 

6 

8 

10 

12 

0 1 2 3 4 5 6 7 8 9 10

D
if

fe
re

n
ce

 (
m

)

S
p

e
ci

fi
c 

co
n

tr
ib

u
ti

n
g

 a
re

a
 (

m
2
)

Distance from point 3 (m)

AnuDEM SCA

Kriging SCA

Difference



127 
 

4.1.3 Impact of DEM interpolation on potential solar radiation calculation 

The calculation of potential solar radiation showed that the north facing slope of the 

earthwork received less radiation than the south facing slope. Specifically, the 

calculations made for an entire year (2008) show a rise from approximately 

600,000 WH/m2 on the north facing slope to 1,000,000 WH/m2 for the south facing 

slope (Figure 4.9). The calculations made for 24th November 2008 indicated a rise from 

50 WH/m2 on the north facing slope to approximately 190 WH/m2 for the south facing 

slope (Figure 4.10). This increase is relatively large increase, with a percentage increase 

of 280%, compared to the calculation made for a year, with a percentage increase of 

67%. This is because the calculation was made for 24th November, a time of the year in 

which the sun is relatively low meaning the north facing slope receives little direct 

radiation. As a result, there is a greater difference between the radiation received on 

either side of the embankment.  

 

 

 

Figure 4.9 Plot of potential solar radiation values calculated for an entire year (2008) 

across transect 1 (see Figure 4.3 for location). Labels show corresponding north and 

south facing slope aspects. 
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Figure 4.10 Plot of potential solar radiation values calculated for 24th November 2008 

across transect 1 (see Figure 4.3 for location). Units are expressed as watt hours per 

metre square. 

 

The north facing slope lies between 0 m and 10 m from point 1. The calculation 

of solar radiation for this portion of the earthwork showed more variation when made 

for an entire year compared to the calculation made for 28th November 2008 (Figures 

4.9 and 4.10). This is because the calculation made for an entire year includes the 

summer period where the sun is high enough for the both slopes to receive direct 

radiation. This increase in variation is apparent in Figures 4.11 and 4.12 that show maps 

of solar radiation values calculated for 28th November 2008 and an entire 

yearsrespectively, using the kriging DEM. 
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Figure 4.11 Potential solar radiation calc

Figure 4.12 Potential solar radiation calculated for the year 2008 using the kriging 
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Potential solar radiation calculated for 28th November 2008 using the 

kriging interpolated DEM. 

Potential solar radiation calculated for the year 2008 using the kriging 

interpolated DEM. 

 

November 2008 using the 

 

Potential solar radiation calculated for the year 2008 using the kriging 
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The examples shown in Figures 4.11 and 4.12 show that the calculation of 

potential solar radiation made over an entire year demonstrated more variation for the 

north facing slope. This was also apparent when the calculation was applied to the 

AnuDEM DEM, as demonstrated in the profiles shown in Figures 4.9 and 4.10. 

However, this variation was not as prominent as the calculations made using the kriging 

DEM, with the latter showing a range of 135,765 WH/m2 over a distance of 0 m to 10 m 

from x, compared to a smaller range of 122,135 WH/m2 for the AnuDEM DEM. This 

was also apparent in the maps of solar radiation values calculated using the AnuDEM 

DEM (Figures 4.13 and 4.14) which were generally smoother and revealed less 

response over the embedded instruments and panel membranes (the locations of which 

are shown in Figure 4.4). Similar to the calculations of TWI discussed in Section 4.1.2, 

this is due to the smoothing enforced by the AnuDEM interpolation technique. The fine 

scale topographic features were suppressed by this smoothing, leading to a more 

uniform calculation of solar radiation.  

Whereas this smoothing is preferable in the calculation of TWI, to ensure 

continuous flow downslope, this may be less accurate for the calculation of solar 

radiation. This is because solar radiation at a given DEM grid square is largely governed 

by its aspect and the presence of features that may obscure direct radiation, i.e. 

shadowing. Therefore, it would be preferable to have a DEM that represented the terrain 

as accurately as possible. Although a T-test showed no significant difference between 

the two (Section 4.1.1), the profiles of elevation values (Figures 4.1 and 4.2) and 

hillshade analysis (Figures 4.3 and 4.4) showed that the kriging DEM better represented 

fine scale topographic features. Therefore, a DEM created using this interpolation 

method is better suited to the calculation of the potential solar radiation. 



 

Figure 4.13 Potential solar radiation calculated for 28

 

Figure 4.14 Potential solar radiation calculated for an entire year (2008) using the 
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Potential solar radiation calculated for 28th November 2008 using the 

AnuDEM interpolated DEM. 

Potential solar radiation calculated for an entire year (2008) using the 

AnuDEM interpolated DEM. 

 

November 2008 using the 

 

Potential solar radiation calculated for an entire year (2008) using the 



132 
 

4.1.4 Impact of DEM interpolation on the calculation of aspect 

The difference in the calculation of aspect using the kriging and AnuDEM interpolated 

DEMs followed similar trends to the differences found in the calculation of potential 

solar radiation (Section 4.1.3). Aspect calculated using the kriging DEM showed a great 

response to the panel membranes and embedded instruments. This resulted in a greater 

variation in aspect which is illustrated in the transect of values shown in Figure 4.15.  

This transect shows that the transition of values for the AnuDEM DEM is smoother 

than the kriging DEM, which is a reflection of the smoothing enforced by the AnuDEM 

interpolation routine. This suggests that the kriging DEM is better suited to the 

calculation of aspect over the test embankment, as this interpolation routine better 

represents fine scale terrain features. These features could be important where localised 

variations in solar radiation result in variations in soil moisture, such as a hollow feature 

which retains moisture as it does not receive direct radiation. 

 

 

 

Figure 4.15 Profile of aspect values (degrees) taken from transect 2 running along the 

contour of the test embankment. Values range between 125 and 170 as the transect 

was taken from the south facing slope, location of which is shown in Figure 4.3. 
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4.1.5 Impact of earthwork orientation on potential solar radiation calculation  

Due to the west to east orientation of the test embankment, the main variation in 

potential solar radiation was polarised by the north and south facing slope aspects. This 

dominant feature masks small scale variations that may exist on the slopes themselves. 

Generally, it was found that the influence of small scale features was augmented by 

calculating potential solar radiation for an entire year, therefore taking into account 

direct radiation of the north facing slope during summer periods, using a kriging 

interpolated DEM, which represented the fine scale topographic features. A test was 

carried out to see how the calculation might perform on a north to south orientated 

earthwork, by rotating the DEM in a GIS environment.   

The calculations of potential solar radiation applied to the rotated DEMs 

demonstrated a response to smaller scale terrain features, rather than the polarisation 

exhibited in the original DEM orientation. A map of potential solar radiation calculated 

using the kriging DEM demonstrates this well (Figure 4.16) with variation being 

reported over the embedded instruments and panel membranes. This was also reflected 

in a transect of values drawn across the contour of the earthwork (Figure 4.17) which 

showed a fluctuation in solar radiation calculated for 28th November 2008 at 2.5 m, 

20 m and 38.5 m in response to the panel membranes identified by the kriging DEM. 

The difference in solar radiation over these features reaches a maximum of 67 WH/m2 

(20 m from point 4) which represented over 85% of the total range in values calculated 

across the transect. This showed that variation in solar radiation calculated for a north to 

south orientated earthwork was controlled by the presence of topographic features on 

the slopes rather than a difference in slope aspect as seen with the original west to east 

orientated earthworks.  



 

Figure 4.16 Potential solar radiation calculated for 28

year (2008) using the kriging DEM rotated to be orientated approximately north to 
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Potential solar radiation calculated for 28th November 2008 and an entire 

year (2008) using the kriging DEM rotated to be orientated approximately north to 

south. The location of transect 4 is also shown. 

 

November 2008 and an entire 

year (2008) using the kriging DEM rotated to be orientated approximately north to 

south. The location of transect 4 is also shown.  
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Figure 4.17 Transect of potential solar radiation values across the contour of the 

simulated north to south orientated earthwork. The location of transect 4 is shown in 

Figure 4.16. 

 

The map of solar radiation calculated using the AnuDEM DEM also depicted a 

response to the panel membranes and embedded instruments (Figure 4.18). However, 

this response was less pronounced as seen with the kriging DEM due to the suppression 

of topographic features in the AnuDEM interpolation. This is illustrated by the transect 

values in Figure 4.17. In comparison to the values calculated using the kriging DEM, 

the AnuDEM showed a smoother variation in values over the features at 2.5 m, 20 m  

and 38.5 m. For example, at a distance of 20 m from point 4 the difference in solar 

radiation was 42 WH/m2 compared to 67 WH/m2 for the kriging DEM. This again 

suggests that a DEM created using kriging interpolation is better suited to the 

calculation of potential solar radiation. There was no significant difference between the 

distribution of values calculated for 28th November 2008 and an entire year. This was 

indicated by a Pearson correlation of over 0.98 for both the AnuDEM and kriging 

calculations and an F-test indicating that sample variances were not significantly 

different (p < 0.005). This is because direct radiation is distributed uniformly across the 

earthwork in a similar fashion to the calculation made over an entire year. However, the 

variation in solar radiation over a year has previously been shown to influence soil 
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moisture distribution patterns 

not vary significantly for 28

predicted solar radiation would be a strong predictor of soil moisture. Therefore, the use 

of this terrain analysis for characterising soil moisture may be limited to earthworks 

with north and south facing aspects, or other topographic features that result in 

significantly different solar radiation distributions. 

Figure 4.18 Potential solar radiation calculated for 

year (2008) using the AnuDEM DEM rotated to be o

136 

moisture distribution patterns (Western et al., 1999a). If the calculations made here do 

antly for 28th November 2008 or an entire year then it is unlikely that 

predicted solar radiation would be a strong predictor of soil moisture. Therefore, the use 

of this terrain analysis for characterising soil moisture may be limited to earthworks 

orth and south facing aspects, or other topographic features that result in 

significantly different solar radiation distributions.  

Potential solar radiation calculated for 28th November 2008 and an entire 

year (2008) using the AnuDEM DEM rotated to be orientated approximately north 

to south. 

. If the calculations made here do 

November 2008 or an entire year then it is unlikely that 

predicted solar radiation would be a strong predictor of soil moisture. Therefore, the use 

of this terrain analysis for characterising soil moisture may be limited to earthworks 

orth and south facing aspects, or other topographic features that result in 
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4.1.6 Impact of DEM resolution on the terrain analysis calculations  

As discussed in Section 4.1.1, the original grid DEMs created using the AnuDEM and 

kriging interpolation methods depicted fine scale topographic features such as 

embedded instruments and panel membranes. When the DEM resolution was degraded 

to 2 m this information was lost, but the overall shape of the earthwork was retained. As 

a result, the calculation of TWI did not show a response to topographic features such as 

panel membranes or embedded instruments. Interestingly, at this resolution there was 

little difference between the calculations of TWI using the two DEMs. Figure 4.19 

shows a transect of TWI values across the profile of the earthwork demonstrating the 

similarity between the two profiles. A T-test showed that there was no significant 

difference between the two sample means (p < 0.005), with a Pearson correlation of 

0.98. Furthermore, a F-test suggested there was no evidence to suggest that the variance 

of the two samples were significantly different. This was due to small differences in the 

TWI calculation, particularly at a distance of 10 m from point 1 (location shown in 

Figure 4.3) where the AnuDEM TWI was approximately 11% higher than the kriging 

TWI. 

 In Section 4.1.2, the differences in the calculation of TWI between the two 

interpolated DEMs was found to be due to a difference in the calculation of specific 

catchment area. However, at 10 m from point 1 there was no difference between 

specific catchment area as the only contribution this grid cell was receiving was from 

itself, i.e. one grid square (equating to 2 m). Rather, the differences are found in the 

calculation of slope grid with the kriging DEM showing a slope grid value of 0.51 

compared to 0.48 for the AnuDEM DEM. Although the difference is small, it shows the 

kriging DEM at this grid square to be steeper than the AnuDEM DEM, resulting in a 

higher TWI value, corresponding to a lower potential wetness. This is again the result of 

the smoothing mechanism of the AnuDEM interpolation routine ensuring that fine scale 

topographic features are suppressed.  

 A T-test showed there to be no significant difference between the means of 

potential solar radiation values calculated using the two interpolated DEMs with a grid 

resolution of 2 m (p < 0.005). An F-test also indicated that there was no difference 

between the variance of the two datasets. This is because the resolution of the DEM is 

too coarse to identify topographic detail, such as panel membranes and embedded 
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instruments that was evident in the finer resolution DEMs (as discussed in Section 

4.1.1.3). This means that interpolation method has little or no influence on the 

calculation of potential solar radiation for the test embankment at grid resolutions 

coarser than 2 m. 

 

 

Figure 4.19 Transect of TWI values across the profile of the test embankment 

calculated for the kriging and AnuDEM DEMs. Location of transect 1 is shown in 

Figure 4.3.  

  

 Some of the fine scale topographic features that were identified in the original 

resolution DEMs (both kriging and AnuDEM interpolated) were also apparent in the 

1 m degraded DEMs. Although less pronounced than in the original DEM, the hillshade 

of the 1 m kriging DEM demonstrated this with variations found around the panel 

membranes (Figure 4.20). A transect of elevation points across the contour of the 

kriging and AnuDEM interpolated DEMs revealed subtle differences (Figure 4.21). 

Unlike the 2 m resolution DEMs, the smoothing of topographic features again becomes 

apparent at a grid resolution of 1 m. For example, the panel membrane features at 10 m 

and 25 m from point 5 are clearly shown, with a  reduction in elevation of over 10 cm in 

both DEM profiles. However, the surface roughness depicted in the kriging DEM from 

approximately 17 m to 23 m from point 5 has been smoothed out in the AnuDEM 

profile.  
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Figure 4.20 Hillshade analysis of the 1 m degraded kriging DEM with annotations 

identifying the panel membrane features and the location of transect 

Figure 4.21 Profile of elevation values from transect b along the contour of the test 

embankment for the 1 m kriging and AnuD
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Hillshade analysis of the 1 m degraded kriging DEM with annotations 

identifying the panel membrane features and the location of transect 

 

Profile of elevation values from transect b along the contour of the test 

embankment for the 1 m kriging and AnuDEM DEMs. The location of transect 5 is 

shown in Figure 4.20. 
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Hillshade analysis of the 1 m degraded kriging DEM with annotations 

identifying the panel membrane features and the location of transect 5. 
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Respective T and F-tests showed that there was no significant difference 

(p < 0.005) between the calculation of potential solar radiation using the 1 m kriging or 

AnuDEM interpolated DEMs. However, there was a difference with the calculation of 

TWI. Values taken from transect 3 (the location of which is identified in Figure 4.6) 

showed the AnuDEM wetness index to gradually decrease downslope, whereas the 

kriging TWI was less consistent, with a fluctuation at approximately 6 m from point 3 

where the value was 15% higher (Figure 4.22). This is because the kriging DEM 

represented finer scale features resulting in fluctuations in specific catchment area, slope 

grid and subsequent TWI. This is similar to the findings made with the original 

resolution DEM in Section 4.1.2 demonstrating that at a grid resolution of 1 m, TWI 

should be calculated using an AnuDEM interpolated DEM. 

 

 

 

Figure 4.22 Downslope profile of TWI values for transect z calculated using kriging 

and AnuDEM DEMs. High TWI values represent low wetness. The location of 

transect 3 is found in Figure 4.6. 
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4.1.7 Description of the test embankment soil moisture measurements used 

to compare against the terrain analysis calculations 

The soil moisture measurements used throughout this study, at both the earthwork and 

transport corridor scale, were made using a Theta portable impedance probe. This probe 

was calibrated using gravimetric soil moisture measurements taken from soil samples 

located across the test embankment. A scatter plot comparing the measurements can be 

found in Figure 4.23. The results of the calibration indicated an R2 value of 0.85 which 

proved to be better than the results reported by Cosh et al. (2005) who showed 

correlation coefficients ranging from R2 of 0.61 to 0.84. The average residual was 2.9% 

resulting in a total RMSE of 1.7%. Although these values are very small, the residuals 

in some cases reached almost 10%. Deviations of this magnitude could have a 

significant effect on the comparisons made with the remotely sensed metrics used in this 

study. In addition, sampled soil moisture was poorly represented between 0 - 20% and 

therefore there is uncertainty over the accuracy of the probe during dry conditions. 

 

 

Figure 4.23 Scatter plot between Theta probe and gravimetric soil moisture 

measurements for the calibration of the Theta probe. 

 

Observed soil moisture measurements were obtained on 24th November 2008 for 

comparison with the terrain analysis calculations. Table 4.1 shows the descriptive 

statistics for this dataset. Local weather data indicated a number of rainfall events over 
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the few weeks before the measurements were taken, resulting in overall wet conditions 

on the embankment with a mean volumetric soil moisture content of 41.1%. The mean 

soil moisture value masks a wide range with a minimum and maximum of 18.3% and 

50.3% respectively, and a standard deviation of 5.2%. The measure of skewness shows 

that the distribution of this data is negatively skewed. This is reflected in the histogram 

shown in Figure 4.24 which shows a bulk of the measurements to be distributed around 

43% and a tail tending towards lower soil moisture values, below 30%. 

 

Descriptive statistics 

Mean 41.1 

Standard Deviation 5.16 

Skewness -0.90 

Minimum 18.3 

Maximum 50.3 

Count 311 

Table 4.1 Table showing descriptive statistics for the test embankment soil moisture 

measurements gathered on 24th November 2008. Values are in volumetric soil 

moisture (%). 

 

Figure 4.24 Histogram showing the distribution of soil moisture measurements for the 

test embankment gathered on 24th November 2008.  
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 Figure 4.25 shows the location and value of the soil moisture measurements. The 

first pattern that emerged was a slight increase in overall values for the north facing 

slope, illustrating the influ

content of 43% and 38.9% for the north and south facing slopes respectively. Values 

were shown to vary more on the south facing slope with a range of 30.2% compared to 

25% for the north facing 

expected and shows that there was a lack of spatial organisation, which may be the 

result of a rainfall event just prior to data collection. This may have implications on the 

comparison between these measurements and the terrain analysis metrics because the 

metrics base their prediction on patterns of soil moisture distribution. Therefore, poor 

correlations might be expected if the observed soil moisture values exhibit little

pattern.  

Figure 4.25 Location and values of soil moisture (% volumetric) for the test 

embankment. Values displayed as graduated symbols.

 

 Figure 4.26 shows the relationship between the soil moisture measurements and 

elevation. This shows that overall there was a trend of incr
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Figure 4.25 shows the location and value of the soil moisture measurements. The 

first pattern that emerged was a slight increase in overall values for the north facing 

slope, illustrating the influence of aspect. This was reflected in an average soil moisture 

content of 43% and 38.9% for the north and south facing slopes respectively. Values 

were shown to vary more on the south facing slope with a range of 30.2% compared to 

25% for the north facing slope. The variation in soil moisture contents were higher than 

expected and shows that there was a lack of spatial organisation, which may be the 

result of a rainfall event just prior to data collection. This may have implications on the 

n these measurements and the terrain analysis metrics because the 

metrics base their prediction on patterns of soil moisture distribution. Therefore, poor 

correlations might be expected if the observed soil moisture values exhibit little

Location and values of soil moisture (% volumetric) for the test 

embankment. Values displayed as graduated symbols.

Figure 4.26 shows the relationship between the soil moisture measurements and 

elevation. This shows that overall there was a trend of increasing soil moisture 

Figure 4.25 shows the location and value of the soil moisture measurements. The 

first pattern that emerged was a slight increase in overall values for the north facing 

ence of aspect. This was reflected in an average soil moisture 

content of 43% and 38.9% for the north and south facing slopes respectively. Values 

were shown to vary more on the south facing slope with a range of 30.2% compared to 

slope. The variation in soil moisture contents were higher than 

expected and shows that there was a lack of spatial organisation, which may be the 

result of a rainfall event just prior to data collection. This may have implications on the 

n these measurements and the terrain analysis metrics because the 

metrics base their prediction on patterns of soil moisture distribution. Therefore, poor 

correlations might be expected if the observed soil moisture values exhibit little or no 

 

Location and values of soil moisture (% volumetric) for the test 

embankment. Values displayed as graduated symbols. 

Figure 4.26 shows the relationship between the soil moisture measurements and 

easing soil moisture 
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downslope, which was more prominent on the north facing slope. Although this is an 

expected trend, as it is assumed that moisture will migrate downslope over time, the 

magnitude of this trend is relatively small. The south facing slope, for example, shows 

an increase in soil moisture content from the top to the bottom of the slope of just 2.5%. 

This difference cannot be considered significant as the standard deviation for the total 

dataset was 5% (Table 4.1). The difference between values at the top and bottom of the 

north facing slope was above the standard deviation of the dataset, showing an increase 

of 7.5%. Despite this, overall the downslope trends were poor. The reason for the lack 

of trend may again be attributed to the rainfall that occurred just prior to the 

measurements, leaving little time for downslope movement and resulting topographic 

organisation of soil moisture values. 

 

 

Figure 4.26 Scatter plot of elevation against soil moisture measurements for the north 

and south facing slopes with trend line calculated using linear regression. 

4.1.8 Regression analysis between terrain analysis calculations and observed 

soil moisture measurements 

Ordinary least squares regression between the various terrain analysis calculations and 

soil moisture measurements generally showed poor correlations (see Table 4.2). The 

TWI calculations showed almost no correlation with observed soil moisture which was 

not improved when the calculations were expressed as the natural logarithm. The 
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calculation of potential solar radiation and aspect performed better than the TWIs but 

they still showed poor regression coefficients with observed soil moisture, all with an 

R2 below 0.16 suggesting that these metrics explain less than 16% of the variation in 

observed soil moisture. These findings show that individual terrain analysis calculations 

cannot be used to predict soil moisture over the test embankment.  

 

Topographic metric 

R
2
 correlation 

coefficient with soil 

moisture 

Significance 

(p-value) 

TWI (AnuDEM DEM) 0.06 0.000 

TWI (kriging DEM) 0.043 0.000 

Potential solar radiation - entire year (AnuDEM DEM) 0.156 0.000 

Potential solar radiation - entire year(kriging DEM) 0.155 0.000 

Potential solar radiation - specific day (AnuDEM DEM) 0.149 0.000 

Potential solar radiation - specific day (kriging DEM) 0.144 0.000 

Aspect (AnuDEM DEM) 0.141 0.000 

Aspect (kriging DEM) 0.148 0.000 

Natural logarithm of TWI (AnuDEM DEM) 0.058 0.000 

Natural logarithm of TWI (kriging DEM) 0.047 0.000 

Table 4.2 Regression correlation coefficients for terrain calculations against soil 

moisture measurements. 

Stepwise linear regression showed best estimations could be made using a 

mixture of potential solar radiation calculated using the kriging DEM and TWI 

calculated using the AnuDEM DEM. However, the correlation coefficient remained 

poor with an R2 of 0.26 (p value < 0.000). A GWR model with a bandwidth of 5.8 m 

was built using these two metrics. This significantly improved the correlation with an 

R2 of 0.56. The Akaike information criterion showed that a locally fitted GWR model 

was better suited than a global regression model. This was supported by the Monte 

Carlo test for significance that showed the relationship between soil moisture and the 

terrain calculations to vary significantly over space (significant to 0.1% level). Mapping 

the GWR model residuals revealed no spatial patterns which suggested that perhaps the 

reason for the poor correlations found were due to the lack of spatial organisation of the 



 

observed soil moisture values. In addition, mapp

model revealed that the independent soil moisture measurements used to build the 

model was dominated by the influence of potential solar radiation (Figure 4.27). This is 

reinforced by an average predicted soil moisture

slope compared to an average of 31.7% for the south facing slope, representing a 

difference of 11.8%. By comparison, the average difference in the observed soil 

moisture measurements was just 4.1% meaning the GWR mode

influence of solar radiation. This may also be due to the lack of downslope trend found 

in the observed soil moisture measurements meaning the TWI has reduced influence in 

the model. This is supported by the scatter plot of predicted so

against elevation in Figure 4.28, showing that there was only a slight downslope trend 

in values. 

Figure 4.27 Predicted soil moisture using the TWI (calculated using the AnuDEM 

interpolated DEM) and potential solar radiation (using the kriging 
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observed soil moisture values. In addition, mapping the predicted values from the GWR 

model revealed that the independent soil moisture measurements used to build the 

model was dominated by the influence of potential solar radiation (Figure 4.27). This is 

reinforced by an average predicted soil moisture content of 43.5% for the north facing 

slope compared to an average of 31.7% for the south facing slope, representing a 

difference of 11.8%. By comparison, the average difference in the observed soil 

moisture measurements was just 4.1% meaning the GWR model overestimated the 

influence of solar radiation. This may also be due to the lack of downslope trend found 

in the observed soil moisture measurements meaning the TWI has reduced influence in 

the model. This is supported by the scatter plot of predicted soil moisture using GWR 

against elevation in Figure 4.28, showing that there was only a slight downslope trend 

Predicted soil moisture using the TWI (calculated using the AnuDEM 

interpolated DEM) and potential solar radiation (using the kriging 

DEM) metrics in a GWR model. 

 

ing the predicted values from the GWR 

model revealed that the independent soil moisture measurements used to build the 

model was dominated by the influence of potential solar radiation (Figure 4.27). This is 

content of 43.5% for the north facing 

slope compared to an average of 31.7% for the south facing slope, representing a 

difference of 11.8%. By comparison, the average difference in the observed soil 

l overestimated the 

influence of solar radiation. This may also be due to the lack of downslope trend found 

in the observed soil moisture measurements meaning the TWI has reduced influence in 

il moisture using GWR 

against elevation in Figure 4.28, showing that there was only a slight downslope trend 

 

Predicted soil moisture using the TWI (calculated using the AnuDEM 

interpolated DEM) and potential solar radiation (using the kriging interpolated 
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Figure 4.28 Scatter plot of predicted soil moisture values using the GWR model 

against elevation. Trend line was fitted using linear regression indicating a slight 

downslope trend in the data. 

4.2 Hyperspectral response of vegetation to artificial wetting 

The methods used in this experiment were detailed in Section 3.2.2. In summary, three 

plots were set out on the test embankment, one wetted, one covered and one left as a 

control, in an attempt to exhibit  a range of soil moisture contents. Systematic 

measurements of soil moisture content and hyperspectral reflectance were made over a 

period of a month. Spectral analysis techniques were then used to assess the potential 

for using vegetation spectral reflectance data to characterise soil moisture content. 

4.2.1 Soil moisture measurements  

The vegetation reflectance experiment was carried out over the period 4th March to 3rd 

April 2009. Weather records for this period showed that rainfall gradually decreased 

(Figure 4.29). This meant that the soil moisture content of the embankment was 

naturally falling, which was reflected in the change in values for the control plot (Figure 

4.29). Soil moisture also gradually decreased in the covered plot, although no more than 

the control plot. Rather than increasing soil moisture in the wetted plot, artificial wetting 

ensured soil moisture values remained above 40%.  
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Figure 4.29 Graph showing rainfall and soil moisture content per plot over the duration 

of the experiment. Trend line is fitted to the rainfall data using linear regression. 

 

T-tests demonstrated that the soil moisture values for the wetted plot were 

significantly different to the control and covered plots (p < 0.005). The control plot 

showed some response to rainfall events, as illustrated in Figure 4.29, with a slight 

increase in soil moisture content of 5% following the rainfall event on 5th March 2009. 

The wetted plot, in comparison, demonstrated a smaller increase of 3% in response to 

the same rainfall event. The covered plot registered an increase of less than 2% to the 

same rainfall event but showed no increase in response to any other rainfall event. This 

suggested that the cover was successful in limiting the influence of natural rainfall. 

However, a T-test showed that there was no significant difference between the soil 

moisture measurements for the control and covered plots (p > 0.05). Soil moisture 

content in the covered plot was expected to reduce more than the control plot due to the 

limitation of rainfall enforced by the cover. However, it is likely that the cover limited 

evapotranspiration, similar to the effects of a greenhouse, resulting in the plot retaining 

its moisture. This was due to inadequate ventilation, as the cover had to be tied down 

during periods of high wind speeds (Figure 4.30). 
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Figure 4.30 Photograph of the covered plot with the plastic sheeting tied down during 

periods of high wind.   

4.2.2 Spectral analysis techniques  

Analysis of the original spectra (before derivative calculation) did not reveal any 

obvious response to changes in soil moisture for the three experimental plots. This is 

illustrated in the spectral profiles in Figure 4.31 which show no particular pattern in the 

change of reflectance for the wetted plot over time. The derivative of the spectra 

indicated some signs of change, particularly over the wetted plot where the red-edge 

feature had weakened over the duration of the experiment, from 0.64 to 0.47 at 720 nm 

(Figure 4.32). The control plot also exhibited a change in the derivative of the spectra at 

720 nm with a decrease from 0.78 to 0.57. The covered plot, however, did not indicate 

any significant difference. Each of the spectral analysis techniques showed a response to 

changes in soil moisture. This is illustrated by the trend lines in Figure 4.33 which show 

a gradual decrease in both soil moisture and the derivative stress ratio for the wetted 

plot. The covered plot also demonstrated a strong response to a change in soil moisture 

content with an increase in the stress ratio from 1.37 on 10th March to 1.65 on 3rd April. 
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The control plot also indicated a negative, if less pronounced, relationship with soil 

moisture, with an increase from 1.49 on 10th March to 1.65 on 3rd April. These negative 

relationships suggest that the vegetation in the control and covered plots developed over 

the experimental period, indicated by an increase in stress ratio. In contrast, the positive 

relationship found in the wetted plot suggests that vegetation is becoming stressed in 

response to waterlogging.   

 A fault in the spectral measurements made on 7th March resulted in a large 

decrease in reflectance values for all plots, resulting in erroneous values calculated by 

each of the analysis techniques (demonstrated in Figure 4.33 by a peak in the derivative 

stress ratio). As a result, data from day three is excluded from all further analysis. 

 

 

Figure 4.31 Spectral profiles for the wetted plot for six days throughout the 

experimental period. Profiles are shaded chronologically in order to identify any 

temporal trend in reflectance values. 
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Figure 4.32 First derivative of spectral reflectance for the wetted plot at day 1 and 

day 31 (start and end of the wetting period). 

 

 

Figure 4.33 Volumetric soil moisture and 725:702nm derivative stress ratio over the 

duration of the experiment for the wetted plot. 

 

-0.2

0

0.2

0.4

0.6

0.8

350 450 550 650 750 850 950

F
ir

st
 d

e
ri

va
ti

ve
 o

f 
re

fl
e

ct
a

n
ce

Wavelength (nm)

Day 1

Day 31

36

38

40

42

44

46

48

50

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

V
o

lu
m

e
tr

ic
 s

o
il

 m
o

is
tu

re
 (

%
)

D
e

ri
va

ti
ve

 s
tr

e
ss

 r
a

ti
o

 (
7

2
5

:7
0

2
 n

m
)

Stress ratio Volumetric sm (%)

Tendline (stress ratio) Trendline (SM)



152 
 

4.2.3 Regression analysis  

Table 4.3 shows the regression correlation coefficients for the hyperspectral analysis 

techniques compared against soil moisture measurements for all three plots together. 

The resulting regression models were also validated using an independent set of 

reflectance and soil moisture measurements. All correlations were significant with 99% 

confidence (p < 0.000). The results demonstrated R2 correlation coefficients above 0.5 

for the stress ratio, Lagrangian REP, linear interpolated REP and NDVI analysis 

techniques, showing that the metrics explained over 50% of the variation in observed 

soil moisture. Upon validation, the linear interpolated REP and NDVI were shown to be 

the most successful in predicting soil moisture, which were also amongst the simplest to 

compute. However, the correlations coefficients reported were all very similar. This is 

supported by Pearson correlation matrix shown in Table 4.4 which shows a number of 

the metrics to be significantly correlated (at 95% confidence), including the linear 

interpolated REP and NDVI.  

 

 
Stress 

ratio 

Continuum removal 

(675 nm) 

Lagrangian 

REP 
Linear 

interpolated REP 
NDVI 

R
2
 0.61 0.49 0.57 0.66 0.57 

R
2
 

validation 
0.52 0.51 0.55 0.60 0.58 

Table 4.3 Regression correlation coefficients (R2 values) for spectral analysis 

techniques using field spectroscopy data compared against soil moisture 

measurements for all the plots.  

 Stress ratio Continuum 

removal  

Lagrangian REP 
Linear REP 

Continuum 

removal 

-0.44*    

Lagrangian REP 0.83** -0.29   

Linear REP 0.24 -0.69** 0.15  

NDVI 0.43* -0.99** 0.28 0.77** 

Table 4.4 Pearson correlation matrix between the spectral analysis metrics. 

Significance at 95% confidence indicate by *, significance at 99.5% confidence 

indicated by **. 
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4.2.4 Airborne sensor simulation 

The regression analysis was repeated for the spectral analysis techniques applied to 

CASI simulated spectra for all three plots together. Interestingly, improvements were 

made to the regression correlation coefficients for nearly all the spectral analysis 

techniques, bar the linear interpolated REP (Table 4.5). This indicates that the CASI 

sensor holds sufficient spectral detail to successfully apply these hyperspectral analysis 

techniques. This is significant as it would mean the techniques could be scaled up to an 

airborne platform allowing for their application over large areas.  

 Overall the Lagrangian REP and derivative stress ratio analysis were shown to 

have the highest correlation coefficient with soil moisture using CASI simulated 

spectra. However, Pearson correlation analysis showed these two metrics to be 

significantly related (Table 4.6). Incidentally, Table 4.6 shows that all the metrics were 

significantly correlated with each other at a 99% confidence interval. As a result, the 

analysis carried out here cannot suggest with confidence which is the best technique to 

use for characterising soil moisture. 

PLS regression was also considered for predicting soil moisture using the CASI 

simulated spectra. Prior to this analysis, the simulated spectra underwent a log10(1/R) 

transformation (see Section 3.2.1). Martens’ uncertainty test (Martens and Martens, 

2000) showed that just two simulated CASI bands, at 901 nm and 943 nm, had any 

significant ability to predict observed soil moisture. These bands were placed into a PLS 

regression model in order to select the optimum number of components for the final 

model. However, results for the model calibration were poor with an R2 of 0.48 and 

subsequent (leave one out) cross validation showed that the model was unstable with an 

R2 of 0.37. 
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Stress 

ratio 

Continuum 

removal 

Lagrangian 

REP 

Linear interpolated 

REP 
NDVI 

R
2
 0.66 0.6 0.68 0.64 0.57 

R
2
 

validation 
0.60 0.52 0.61 0.59 0.58 

Table 4.5 Regression correlation coefficients (R2 values) for spectral analysis 

techniques compared against soil moisture measurements for the CASI simulated 

spectra. 

 Stress ratio Continuum 

removal  

Lagrangian REP 
Linear REP 

Continuum 

removal 
-0.72    

Lagrangian REP 0.98 -0.80   

Linear REP 1.00 -0.69 0.98  

NDVI 0.78 -0.99 0.84 0.75 

Table 4.6 Pearson correlation matrix between the spectral analysis metrics applied to 

the CASI simulated spectra. All correlations are significance at a 99% confidence 

interval.  

PLS regression was also considered using the first derivative of the CASI 

simulated spectra. Martens’ uncertainty test (Martens and Martens, 2000) indicated six 

simulated CASI bands as having significant predicting power. These bands correspond 

to the wavelengths 675, 700, 728, 758, 901 and 943 nm, and are highlighted in the 

example spectral plot shown in Figure 4.34. PLS regression analysis using these bands 

suggested that an optimum six components are necessary to describe the variation in 

both the predicting simulated CASI bands and the observed soil moisture values. The 

plot in Figure 4.35 shows the regression correlation coefficients behind this model 

selection. It indicates that the calibrated model, with six components, produced a good 

fit with an R2 value of 0.82. The plot also shows that this model had the highest 

validated R2 score of 0.72, indicating that it was the most stable model in the cross 

validation analysis. To further test the predictive ability of this model, the PLS 

regression model was compared against an independent set of soil moisture 

observations producing an R2 of 0.72 which was significant to the 99% confidence 

level.  
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Figure 4.34 Example first derivative spectral plot for simulated CASI spectra with the 

location of significant predicting bands selected using Martens’ uncertainty test 

(Martens and Martens, 2000). 
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Figure 4.35 Plot showing the PLS model selection plot which includes the correlation 

coefficients (R2) for the fitted and the leave one out cross validated models, with 

increasing numbers of components. 
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The spectral analysis techniques described in this section were also applied to 

the airborne CASI imagery (Section 3.3.2) for the entire transport corridor (Figure 3.4) 

and compared to the observed soil moisture values detailed in Section 3.3.1.1 and later 

in Section 5.1.2. In all cases, the techniques indicated no correlation with observed soil 

moisture. This result was expected as the heterogeneous vegetation canopy found in the 

Haltwhistle transport corridor is much more complex compared to the relatively 

homogenous vegetation of the test embankment.  

4.3 Earthwork scale study conclusions  

The soil moisture measurements used to test the ability of the terrain analysis 

calculations to predict soil moisture conditions exhibited considerable spatial variability 

and showed only a small degree of  topographic organisation. Little downslope trend in 

soil moisture values was found to be present. This may have been the result of 

collecting soil moisture measurements shortly after a rainfall event, leaving little or no 

time to allow soil moisture values to become spatially organised. This only became 

apparent when the rainfall data was obtained. It was not possible to repeat the 

experiment as construction relating to another study on the embankment had begun, 

which changed the topography of the earthwork and, therefore, new TLS data would be 

required in addition to new soil moisture measurements. Future studies should consider 

recent weather conditions when considering the collection of validating soil moisture 

data. In addition, consideration could be given to the temporal variation in patterns of 

soil moisture distribution which may include the effects of different weather regimes 

and changes in topography.  

Multiple linear regression using a combination of TWI and potential solar 

radiation produced best correlations with observed soil moisture, although coefficients 

remained poor with an R2 of 0.26. GWR vastly improved estimations and revealed 

spatial variability in the relationship between the terrain attributes and soil moisture. 

The lack of trend in the residuals of this model supports the suggestion that the observed 

soil moisture measurements were lacking in spatial organisation.  

The response of vegetation spectral reflectance to changes in soil moisture were 

much more encouraging. Reasonable predictions of soil moisture could be made using a 

range of spectral analysis techniques, including relatively simple calculations that could 
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be made using reflectance values from broad band sensors, namely NDVI and linear 

interpolated REP. Some of these techniques also showed potential for being scaled up to 

imagery acquired by the CASI airborne sensor. In particular the Lagrangian REP and 

the derivative stress ratio calculated using CASI simulated spectra performed well when 

compared to observed soil moisture measurements, with R2 values of 0.68 and 0.66 

respectively.  

PLS regression was used to build a model incorporating six of the CASI 

simulated spectral bands. An R2 correlation coefficient of 0.72 was found when 

comparing predicted soil moisture using the PLS generated model with observed soil 

moisture measurements not used to train the model.  

4.4 Summary 

The soil moisture measurements gathered in all the experiments reported in this chapter 

indicated a great deal of spatial and temporal variation, sometimes exhibiting little 

spatial organisation. This supports claims by other studies that soil moisture is a 

difficult component to quantify (Famiglietti et al., 1999; Famiglietti et al., 1998). As a 

result, many of the techniques used in this study have produced relatively poor 

correlations with observed soil moisture. Despite this, the results detailed in this chapter 

give an indication of which techniques work best in the context of transport corridor 

environments.  

Differences in the DEM interpolation and subsequent TWI calculation showed 

that the AnuDEM interpolation routine is necessary to produce a reasonable depiction 

of soil moisture distribution at both the earthwork and transport corridor scales. 

Furthermore, the relationship between soil moisture and the TWI was shown to be non 

linear. Therefore, expressing the TWI as the natural logarithm improves the 

correlations. At an earthwork scale, a number of spectral analysis techniques were 

shown to have the ability to represent changes in soil wetness. Tests using reflectance 

from a simulated airborne sensor also indicated the potential for these analysis 

techniques to be scaled up. However, these techniques were only tested over 

homogenous vegetation cover, so there is uncertainty over their performance in 

heterogeneous environments, such as a transport corridor.  
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5 Transport corridor scale study results 

This chapter details the transport corridor scale study results following the application 

of the methods described in Section 3.3. Similar to the results chapter for the earthwork 

scale study (Chapter 4) this is broken down according to the type of data being 

investigated. Section 5.1 covers the terrain analysis work applied to airborne lidar data 

and Section 5.2 details the analysis of airborne spectral reflectance data for mapping 

Ellenberg indicator values. At the start of each of these sections a very brief overview of 

the relative methods are given in order to bring the results into context. The results of 

integrating the terrain analysis and vegetation spectral reflectance metrics are reported 

in Section 5.3. 

5.1 Terrain analysis 

A detailed description of the methods used in terrain analysis work at a transport 

corridor scale can be found in Section 3.3.1. In brief, terrain analysis calculations were 

applied to DEMs generated from airborne lidar point elevation data using IDW and 

AnuDEM interpolation techniques. These terrain analysis metrics were then compared 

to a series of observed soil moisture datasets, which were collected under different 

overall soil moisture conditions or using different spatial sampling strategies. The 

following details the results of this work. 

5.1.1 DEM interpolation 

Hillshade analysis of the two interpolated DEMs showed that the IDW DEM held more 

fine scale topographic detail (Figure 5.1) compared to the smoother AnuDEM DEM 

(Figure 5.2). Examination of the elevation profiles taken from each DEM over an 

example cutting earthwork supported this claim (Figure 5.3). Specifically, the IDW 

profile showed a response to a feature about 18 m from point 1 (profile line marked in 

Figure 5.2) where the surface flattened out slightly, compared to the smoother surface of 

the AnuDEM DEM. This translated itself into the TWI as the index responded to the 

feature in the IDW DEM, by resetting the calculation of upslope contributing area. The 

result was a peak in TWI values half way down the slope, at approximately 15 m from 

point 1 (Figure 5.4), representing an increase in TWI value of 0.33 over a distance of 
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2.5 m. This would correspond to a low soil moisture value half way down the slope, 

where in reality it is more likely to increase further downslope. The AnuDEM TWI also 

showed a response to this topographic feature but in this case it was much less 

pronounced with an increase of just 0.02 over the same distance. This is because the 

AnuDEM interpolation has smoothed out the topographic feature enabling upslope 

contributing area to continue to increase downslope.  

 

 

Figure 5.1 Hillshade of the IDW interpolated DEM for a cutting at Whitchester. 

 

Figure 5.2 Hillshade of the AnuDEM interpolated DEM for a cutting at Whitchester 

with line identifying the location of the elevation profiles in Figures 5.3 and 5.4. 
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Figure 5.3 Transect of elevation values across the Whitchester cutting for the IDW 

and AnuDEM interpolated DEMs. Location of transect 1 is shown in Figure 5.2. 

 

 

Figure 5.4 Transect of TWI values across the Whitchester cutting calculated for the 

IDW and AnuDEM interpolated DEMs. Location of transect 1 is shown in Figure 

5.2. 
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5.1.2 Soil moisture measurements 

Figures 5.5 - 5.7 show maps of the three soil moisture measurement campaigns.  

Visual analysis showed a small degree of topographic organisation on 7th July 2009 

(Figure 5.5), with little discernable pattern between the north and south facing slopes. 

One pattern that did emerge was an increase in the soil moisture content of surrounding 

pasture fields and also towards the toe of the earthwork slopes. However, this was not 

consistent across the whole sample area. Conversely, the measurements taken on 

18th June and 30th July 2009 (Figures 5.6 and 5.7 respectively) demonstrated high soil 

moisture content in the surrounding fields, and a general increase downslope with 

moisture concentrating towards the toe of the earthwork slopes. Additionally, the soil 

moisture readings for the north facing slopes were generally higher than the south 

facing slopes. 

 

 

Figure 5.5 Distribution of soil moisture measurement points displayed as graduated 

symbols for 7th July 2009. Most of the measurements were taken within a cutting 

earthwork meaning the downslope direction is towards the middle of the railway 

feature.  
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Figure 5.6 Distribution of soil moisture measurement points for 18th June 2009. 

Smaller maps show soil moisture values displayed as graduated symbols for two 

selected areas. The soil moisture values for the smaller map towards the left were 

taken in a cutting, therefore, downslope direction is towards the middle of the 

railway feature. 
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Figure 5.7 Distribution of soil moisture measurement points displayed as graduated 

symbols for 30th July 2009. All measurements were taken within a cutting earthwork 

meaning the downslope direction is towards the middle of the railway feature.  

 

  

 Table 5.1 shows the descriptive statistics for the three soil moisture datasets. The 

average soil moisture content for the measurements made on 7th July 2009 was 14.2%. 

This was relatively low compared to the measurements made on 18th June 2009 and 30th 

July 2009 with averages of 22.8% and 35% respectively. The standard error, standard 

deviation, and range of the datasets increased with an increase in average soil moisture. 

This shows that there was greater variation in the measurements made during wetter 

conditions.   
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  7th July 2009 18th June 2009 30th July 2009 

Mean 14.2 22.8 34.9 

Standard Error 0.6 0.9 1.3 

Standard Deviation 6.3 9.1 9.6 

Range 31.0 41.0 45.3 

Minimum 2.7 8.2 14.3 

Maximum 33.7 49.3 59.6 

Count 128 96 57 

Table 5.1 Descriptive statistics for the three soil moisture datasets gathered over the 

Haltwhistle transport corridor. Values are expressed as % volumetric soil moisture 

content. 

 

 7th July 2009 18th June 2009 30th July 2009 

Average 14.2 22.8 34.9 

North facing slopes 15.2 25.9 39.8 

South facing slopes 12.9 19.8 30.5 

Table 5.2 Average soil moisture values (% volumetric) on the north and south facing 

slopes for the three soil moisture datasets. 

 

The increased variation in soil moisture content experienced in wetter conditions 

is spatially organised. This is illustrated by the scatter plot shown in Figure 5.8 which 

shows the relationship between soil moisture and elevation. Specifically, the trend lines, 

fitted using linear regression, show increasingly steep gradients with an increase in 

average soil moisture conditions. This shows that during wetter conditions, the 

relationship between soil moisture and elevation was stronger with a gradient of -1.02 

compared to -0.08 during dry conditions. In addition, all three datasets showed a 

variation in soil moisture content between north and south facing slopes (Table 5.2). 

This variation increased during higher average soil moisture conditions. For example, 

on 30th July when the average soil moisture content was 34.9% the difference between 

the average values for the north and south facing slopes was 10%. This is in contrast to 

the measurements made on 7th July when the average soil moisture content was 14.2% 

the difference was just 2.3%.   
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Figure 5.8 Scatter plot of soil moisture measurements against elevation for 7th July 

2009 with average soil moisture content, trend line and the gradient of the trend line. 

 

5.1.3 Terrain analysis regression results  

Figure 5.8 shows that the soil moisture measurements collected on 30th July 2009 

increased downslope. Therefore, it was expected that the TWI calculations would 

provide a reasonable predictor of this pattern. However, poor correlations were found 

between soil moisture and the TWI calculated using the IDW interpolated DEM, with 

an R2 of 0.19. The AnuDEM TWI gave a poor, but improved, R2 correlation coefficient 

of 0.23. The best correlations were found with potential solar radiation calculated using 

the IDW DEM, with an R2 value of 0.27. Stepwise regression using both the AnuDEM 

TWI and potential solar radiation achieved an R2 value of 0.5. All correlations were 

significant at a 99% confidence level.  

Previous studies comparing the wetness index to soil moisture measurements 

have assumed linearity (Tenenbaum et al., 2006). Analysis of the soil moisture 

measurements revealed that in some cases, moisture tended to concentrate towards the 

toe of the slope rather than increase steadily downslope. This is illustrated by the 

0

10

20

30

40

50

60

70

95 100 105 110 115 120

V
o

lu
m

e
tr

ic
 s

o
il

 m
o

is
tu

re
 %

Elevation (m)

SoilMoisture - 7th July 2009

SM - 30th July 2009

SM - 18th June 2009

Trend line gradient = -0.08 

(7th July)

Trend line gradient = -1.02 

(30th July)

Trend line gradient = -0.43 

(18th June)



166 
 

profiles in Figure 5.9 which show soil moisture measurements from the 30th July 2009 

dataset. Here, soil moisture does not increase significantly until an elevation of 110 m, 

which occurs approximately two thirds of the way downslope.  

 

 

Figure 5.9 Plot showing soil moisture values (from the 30th July 2009 dataset) for 

three profiles running down an earthwork slope. In each case, soil moisture does not 

increase significantly until an elevation of approximately 110 m. 
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with an R2 of 0.65 being achieved which was which was significant at the 99% 

confidence level. 

GWR further improved correlations with observed soil moisture using the 

natural logarithm of TWI and potential solar radiation with an  R2 of 0.76 being 

achieved. This suggests that a GWR model better describes the variation in observed 

soil moisture than the global linear regression model. However, the Monte Carlo test for 

significance showed that potential solar radiation was the only parameter that had a 

significant spatially variable relationship (with 99% confidence) with soil moisture.  

Analysis of the GWR model residuals showed that the model tended to over 

predict where observed soil moisture was high, and under predict where soil moisture 

was low. This is illustrated in Figure 5.10 which shows the relationship between 

observed soil moisture and the GWR model residuals. The model residuals revealed 

some under predictions towards the shoulders of the earthwork slopes. The residuals for 

the OLS regression between soil moisture and the natural logarithm of the TWI were 

polarised by the north and south facing slopes. For example, in one area the average 

residual for the south facing slope was 4.6 compared to -4.2 on the north facing slope, 

with an average residual of -0.8. This highlighted the importance of including the 

calculation of potential solar radiation in modelling soil moisture using terrain analysis.  

 

 

Figure 5.10 Scatter plot showing the relationship between observed soil moisture and 

the predictions made using GWR. 
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5.2 Vegetation reflectance analysis   

The methods relating to this section are described in Section 3.3.2. In summary, 

vegetation species abundance was sampled in order to derive weighted Ellenberg 

indicator values across the transport corridor. PLS regression was then used to link the 

observed Ellenberg values with the airborne CASI multispectral data in order to map the 

indicator values across the study area. These were then compared to observed soil 

moisture measurements. 

5.2.1 Observed Ellenberg indicator values 

In total, 45 different species types were found at the sample point locations (see 

Appendix 6 for a list of these species). In comparison, a total of 36 species were found 

in the modified-Whittaker plot sampling used to define adequate sample size (see 

Section 3.3.2.1.1 for more details and Appendix 5 for a list of these species). This meant 

that the plots used to observe Ellenberg values were more species rich than the 

modified-Whittaker plot. Ideally, the modified-Whittaker plot sampling should be a 

perfect representation of the diversity of the total study site. However, this was difficult 

to predict as the number of species is not always obvious, particularly when considering 

indistinct grasses and small wildflowers. If the modified-Whittaker plot did accurately 

represent the diversity of the total plot, it is likely that the subsequent species-area curve 

(Figure 3.21) would suggest that a larger area should be sampled. 

 At each sampling point, abundance was recorded in three plots to give a measure 

of variation. The average standard deviation for each sampling point was 0.47 

(Ellenberg moisture value). Table 5.3 shows summary statistics for the weighted 

average Ellenberg values. The average value was 5.63 with a positive skew towards 

higher values, which is illustrated in the histogram in Figure 5.11 showing the 

distribution of the values. This was due to an abundance of Himalayan Balsam 

(Impatiens glandulifera) at two sample locations. This species has a high Ellenberg 

value of eight, as it prefers wetter soils, but also tends to dominate local vegetation 

(Wadsworth et al., 2000). The range of values recorded across the embankment was 

2.45, which is much smaller than the values reported by Schmidtlein (2005) who 

showed a range of 4.3 to 9.5. The latter range was found as the study site included areas 

of raised bog and wet fens which skewed the distribution of values away from a mean 
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of 6.0. Overall, higher values were expected to be found in the case of Schmidtlein 

(2005), as the study site was located over upland pastures with high average annual 

rainfall rates (2000 mm per year). 

 

Weighted average Ellenberg 

indicator values 

Mean 5.63 

Range 2.45 

Minimum 4.82 

Maximum 7.27 

Count 32 

Table 5.3 Summary statistics for the weighted average Ellenberg indicator values. 

 

 

Figure 5.11 Histogram of weighted average Ellenberg indicator values. 
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small changes in the data, i.e. one sample being left out at a time, leads to different 

bands becoming important, therefore increasing the variance in the model coefficients 

and instability of the model. This was likely to be due to the heterogeneity of the 

predicting variables, leading to colinearity.  

The results of the Martens’ uncertainty test suggested that the CASI bands could 

not be used to build a reliable PLS model to predict Ellenberg values. However, Næs et 

al. (2002) explained that the selection of significant predicting variables could also be 

made using a stepwise regression routine. Forward stepwise regression, based on 

entering significant variables at a 95% confidence level (p < 0.05), was run in MatLab. 

This routine has the advantage of allowing the user to define a number of different 

variable combinations. In this way, the user can interactively view changes to the 

stepwise regression results as different predictors, in this case CASI bands, are removed 

and included, showing the change in significance of the input predicting bands. This 

analysis identified eight significant bands that cover the range of the CASI sensor, with 

six of the bands clustering around the red and near infrared reflectance and absorbance 

features (Figure 5.12). Using these significant predicting bands, a strong correlation 

coefficient can be found using ordinary least squares regression with observed 

Ellenberg soil moisture values (R2 of 0.86). However, a large degree of colinearity 

existed between the eight predicting variables, with only bands 29 and 30 shown to have 

a significant difference with other predicting bands (95% confidence interval). As a 

result, this model would be prone to instability, and therefore, a PLS regression routine 

was employed. 

To add statistical rigour to the stepwise regression band selection process, the 

predicting bands were all tested for significance using Martens’ uncertainty test. The 

results indicated that each of the eight selected variables were significant predictors of 

observed Ellenberg moisture indicator values. This was because, unlike the model using 

all 32 bands, the model using just eight predictors was more reliable, a result of there 

being less autocorrelation. PLS regression using the eight significant predicting 

variables identified seven components as being the optimum number to describe the 

maximum variation in the data without becoming over fitted. This was illustrated by a 

correlation coefficient for the cross validation of 0.64, and the highest correlation 

coefficient for the original fitted model (R2 of 0.85).  
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Figure 5.12 Graph showing example spectra (transformed by Log10(1/R)) with location 

of significant bands chosen using forward stepwise regression. 

 

It would have been preferable to compare the results of this model to additional 

Ellenberg values, rather than validating the model using cross validation. However, this 

would have required additional vegetation abundance data. This was not possible as 

validating soil moisture data has to be sampled within a day, ideally within the space of 

just a few hours, due to the temporally variable nature of this parameter (Famiglietti et 

al., 1998). This therefore restricted the number of sites where vegetation species 

abundance could be sampled.  

As discussed in Section 3.3.2.1, Ellenberg moisture values were not mapped for 

areas with tree canopies due to the complexities of canopy bidirectional reflectance 

(Wolf et al., 2010), as well as issues with gathering the observed Ellenberg values. In 

addition, it was decided that mapped values should be restricted to the range of 

observed values used to build the PLS model, as predictions outside this range are likely 

to be unreliable. As a result, the map of modelled values in Figure 5.13 indicated large 

areas of no data values, mainly representing woodland or manmade features, and 

speckles of no data values depicting values predicted outside the observed range. 
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The resulting map of predicted Ellenberg moisture values (Figure 5.13) 

potentially reveals a great deal more information, with regard to soil moisture, than the 

terrain analysis calculations discussed in Section 5.1. In comparison to the uniform 

distribution of the terrain analysis results, the mapped Ellenberg values indicated 

variability across the earthworks. Figure 5.13 illustrates this with higher values 

predicted towards the west of the cutting earthwork. These scores represented an 

abundance of Stinging Nettles (Urtica dioica) and Brambles (Rubus fruticosus) that 

have a relatively high Ellenberg moisture values of six. In contrast, relatively low values 

were predicted for the east of the earthwork. This represented a mixture of grasses and 

wildflowers, including Heath Bedstraw (Galium sterneri) and Common Ragwort 

(Senecio jacobaea), that have lower Ellenberg moisture values of four. In addition, 

some areas showed an increase in Ellenberg values down the slope of the earthwork 

cutting. For example, transect 3 shows values increasing from 5.2 at the shoulder of the 

slope to 6.1 at the toe (Figure 5.14). 

 

Figure 5.13 Mapped Ellenberg moisture values for a cutting earthwork. Mapped values 

are restricted to mask out tree canopies and manmade surfaces, which are 

represented by the clear (white) areas. Transect 3 refers to the location of the profile 

drawn in Figure 5.14. 

Modelled Ellenberg values

Ellenberg moisture value

6.8

4.8

50 0 5025 Meters

¯

3 



173 
 

 

 

Figure 5.14 Profile of mapped Ellenberg values for transect 3 running down the slope 

of the cutting earthwork. The location of the transect is found in Figure 5.13. 

 

The mapped Ellenberg moisture values were compared against soil moisture 

measurements gathered coincidentally with the species abundance data. This data was 

collected on 13th August 2009 during relatively dry conditions resulting in an average 

soil moisture content of 14.5%. Previous work in this Chapter (Section 5.1.2) showed 

greater spatial organisation of soil moisture during higher overall wetness conditions. 

Therefore, the measurements made on 13th August were not expected to exhibit a high 

degree of spatial organisation. This was demonstrated by comparing the measurements 

against relative elevation values (Figure 5.15). Overall there is a trend of increased soil 

moisture with a reduction in elevation, however, the data depicts a wide spread from the 

trend line, in some cases exceeding 20% (volumetric soil moisture). In addition, there 

was little difference between north and south facing slopes with average soil moisture 

contents of 14.7% and 14.2% respectively which resulted in a T-test result of no 

significant difference between the two sample means (p value > 0.05). 
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Figure 5.15 Scatter plot showing the relationship between soil moisture and elevation 

for the measurements made on 13th August 2009. Trend line fitted using linear 

regression.  

 

The resulting R2 correlation coefficient between the Ellenberg values and 

observed soil moisture was 0.4 (significant at the 99% confidence level). Despite not 

being a strong correlation it does represent a marked improvement on the results found 

in the terrain analysis work (Section 5.1.3), that found individual correlations up to an 

R2 of just 0.33. In addition, this correlation was higher than expected in light of the poor 

spatial organisation of this soil moisture dataset as explained above. Despite this, the 

results obtained here cannot be used to reliably suggest that soil moisture can be 

characterised by mapping Ellenberg indicator values alone.  

5.3 Integrated model 

The results of comparing both the terrain analysis metrics (Section 5.1.3) and the 

mapped Ellenberg indicator values (Section 5.2.2) showed that no single metric could 

provide a reliable estimation of soil moisture. As a result, an integrated model was 

developed which could exploit information regarding topographic control on soil 

moisture and the information provided by species abundance. The terrain analysis 

metrics used in this model were determined by those that gave the best correspondence 

with observed soil moisture, namely, potential solar radiation calculated using the 
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kriging DEM and the natural logarithm of the TWI calculated using the AnuDEM 

DEM. 

The terrain analysis metrics were integrated with the mapped Ellenberg values 

using OLS multiple regression, using observed soil moisture measurements from 30th 

July 2009. This resulted in an R2 correlation coefficient of 0.67. This model was used to 

map soil moisture across the Haltwhistle transport corridor, with an example shown in 

Figure 5.16. Predicted soil moisture from the resulting map was validated against 

additional soil moisture measurements, gathered on 18th June 2009,  giving an R2 of 

0.48. The model was further validated using cross validation. This procedure 

demonstrated a RMSE (root mean square error) in volumetric soil moisture of 5.5% for 

the original model calibration and 5.9% for the cross validation, suggesting that the 

original model error does not change significantly when applied to new observations.  

 

 

Figure 5.16 Modelled soil moisture using OLS multiple regression model integrating 

the natural logarithm of the TWI, potential solar radiation, and mapped Ellenberg 

moisture indicator values, for a cutting earthwork. 
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5.4 Transport corridor scale study conclusions 

The observed soil moisture measurements collected over the transport corridor 

demonstrated two main patterns. The first was an increase in wetness downslope. The 

second was an increase in wetness on north facing slopes. These trends were shown to 

be stronger with higher average soil moisture contents. 

 Comparisons made between the remotely sensed metrics and observed soil 

moisture showed that no single metric could be used to characterise soil moisture. This 

was illustrated by generally poor correlation coefficients (less than R2 of 0.5) . Despite 

being poor, they were improvements on the correlations found in the earthwork scale 

experiments (reported in Section 4.1.8). This was mainly due to the increase in spatial 

organisation of the observed soil moisture data used to draw comparisons. In addition, 

the transport corridor provided more variance in terrain compared to the relatively 

uniform relief of the test embankment used in the earthwork scale study. Observed soil 

moisture was shown to increase in a non-linear fashion downslope, with moisture 

tending to gather at the toe of earthwork slopes. As a result, the correlation between 

TWI and observed soil moisture was found to improve when the index was expressed as 

the natural logarithm.  

 The vegetation reflectance analysis work showed that Ellenberg indicator values 

can be successfully mapped over a UK transport corridor, with a cross validation R2 

correlation coefficient of 0.64. Comparisons with observed soil moisture measurements 

showed this metric to be a better individual predictor of soil moisture than the terrain 

analysis metrics, with an R2 of 0.40. An integrated model, using mapped Ellenberg 

values, TWI calculated using the AnuDEM and potential solar radiation calculated 

using IDW DEM, was shown to provide the best estimate of soil moisture, with an R2 of 

0.67. The resulting map of predicted soil moisture distribution showed influence from 

both terrain analysis calculations, including a predicted increase in wetness on the north 

facing slope, increase in wetness downslope and in areas of contribution from 

neighbouring fields, as well as more subtle influences of the Ellenberg mapping, with an 

increase in wetness over water loving species. Validation of this model using cross 

validation showed a reasonable RMSE of 5.89 volumetric soil moisture (%). Validation 

using additional soil moisture measurements produced an R2 of 0.48.  
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5.5 Summary 

The soil moisture measurements gathered over the transport corridor indicated a great 

deal of spatial and temporal variation, sometimes exhibiting little spatial organisation. 

This supports claims by other studies that soil moisture is a difficult component to 

quantify (Famiglietti et al., 1999; Famiglietti et al., 1998). As a result, many of the 

techniques used in this study have produced relatively poor correlations with observed 

soil moisture. Despite this, the results detailed in this chapter give an indication of 

which techniques work best in the context of transport corridor environments.  

Differences in the DEM interpolation and subsequent TWI calculation showed 

that the AnuDEM interpolation routine is necessary to produce a reasonable depiction 

of soil moisture distribution at the transport corridor scale. Furthermore, the relationship 

between soil moisture and the TWI was shown to be non linear. Therefore, expressing 

the TWI as the natural logarithm improves the correlations. 

The results for both the terrain analysis and mapping of Ellenberg values 

showed no single metric to be a strong predictor of observed soil moisture, although 

mapped Ellenberg moisture values were shown to have the strongest correlation. In 

order to achieve a reasonable characterisation of soil moisture distribution, the metrics 

had to be integrated. Best results were found using a multiple regression model with the 

natural logarithm of the TWI (using the AnuDEM DEM), potential solar radiation 

(using the IDW DEM), and mapped Ellenberg values as the predictors, with an R2 of 

0.67. However, a reasonable prediction can be made using just the terrain analysis, with 

an R2 of 0.65,which is limited to just one source of remotely sensed data. 

The results reported in this chapter have a number of implications both in terms 

of scientific development of the techniques themselves, as well as what the results 

might mean for transport corridor earthwork stability. These issues are discussed in 

Chapter 6. 
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6 Analysis and discussion 

This chapter provides an analysis and discussion of the results presented in Chapters 4 

and 5. This is divided into two main sections relating to the work carried out at the 

earthwork and transport corridor scales respectively, with a summary section discussing 

the implications of the results found in this study as a whole.  

6.1 Earthwork scale study 

The results from this body of work, carried out over the test embankment, is analysed 

and discussed in the subsections below. These subsections (Sections 6.1.1 and 6.1.2 

respectively) relate to the two distinct experiments carried out at this scale, terrain 

analysis and hyperspectral analysis of vegetation.  

6.1.1 Terrain analysis experiment  

The terrain analysis calculations applied to DEMs interpolated from TLS data revealed 

a number of important findings that could be used to develop an optimal strategy for 

implementing the terrain analysis calculations in transport corridor environments. These 

findings are discussed below. 

6.1.1.1 Impact of DEM interpolation  

The main topographic features present on the test embankment were membranes 

dividing each panel section and embedded instruments used to take geotechnical 

measurements. A DEM interpolated from the TLS point data using kriging was better at 

representing these features than the AnuDEM interpolated DEM. The kriging 

interpolation technique also revealed a greater degree of variation as a response to small 

scale changes in terrain (Section 4.1.1). This was due to the smoothing effect that is 

enforced by the AnuDEM interpolation technique. As a result, kriging interpolation is 

more useful for depicting fine scale terrain. 

 Although the fine scale detail identified in the kriging DEM makes it an ideal 

candidate for general monitoring of earthwork assets, monitoring deformation for 

example (Miller et al., 2008), it makes it less useful for characterising soil moisture 

using terrain analysis. Specifically, TWI values showed little downslope trend, with 



179 
 

seemingly erratic responses to fine scale topographic features using the kriging DEM. In 

contrast, TWI values calculated using the AnuDEM interpolated DEM was smoother 

and showed values decreasing gradually downslope, which represents a gradual increase 

in soil moisture. This is much closer to what is expected in reality implying that the 

AnuDEM interpolation is better suited for the calculation of TWI. This was an 

important finding as some studies, such as Schmidt and Persson (2003), used a kriging 

interpolated DEM for the calculation of TWI. However, these findings were made using 

terrestrial laser scanning data at a fine scale. Therefore, TWI calculation may not be as 

sensitive to DEM interpolation using broader scale DEMs that do not represent fine 

scale topographic features. 

 The calculation of potential solar radiation was also shown to be sensitive to 

DEM interpolation (Section 4.1.3). Although both the kriging and AnuDEM 

interpolated DEMs demonstrated a response in potential solar radiation values around 

the panel membrane features and embedded instruments, this response was more 

prominent using the kriging DEM. Again, this was due to the AnuDEM method 

suppressing fine scale topographic features, restricting their impact on the calculation of 

potential solar radiation. Therefore, a DEM created using kriging interpolation is better 

suited to representing the effects of terrain on potential solar radiation and subsequent 

control on soil moisture distribution. There have not been any reported attempts to 

compare the impact of DEM interpolation on the calculation of potential solar radiation 

proposed by Fu and Rich (1999). Although the differences found here have shown to be 

relatively small compared to other terrain analysis calculations (TWI), this study 

demonstrates the importance of considering which DEM interpolation method to use, 

which is rarely discussed in the literature. 

 The calculation of potential solar radiation made over an entire year showed 

greater variation in response to topographic features compared to the calculation made 

for a specific day, which showed variation only in response to the north and south 

facing slope aspects. It is expected that fine scale topographic features would have an 

influence on soil moisture distribution, following studies such as Rajkai and Rydén 

(1992) that showed features such as track marks, with similar spatial dimensions to the 

panel membranes found at the test embankment, exhibited a strong influence on the 

distribution of soil moisture. Based on this assumption, potential solar radiation 
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calculated for an entire year may provide a better characterisation of the variation in soil 

moisture. Resulting correlation coefficients were found to be higher for the annual 

calculation (0.16) than the specific day calculation (0.15). However, this difference is 

not significant and any conclusions based on these results cannot be stated with much 

confidence.  

 This work has shown that the individual terrain analysis calculations are better 

suited to DEMs created using specific interpolation techniques. However, it is not 

common practice to apply multiple interpolation routines to the same data due to issues 

concerning processing time, data storage, or simply that operators have trust in the 

interpolation method being adopted. This study shows that users need to consider which 

interpolation routine best suits their needs. It has been shown that whereas kriging 

provides a better depiction of terrain and subsequent potential solar radiation 

calculation, AnuDEM interpolation should be used when calculating TWI. In terms of 

expected soil moisture distribution patterns, the recommendation is that two different 

interpolation methods may be necessary to make an accurate characterisation using the 

two different terrain analysis calculations. The interpolation technique was shown to 

affect the calculation of TWI greater than potential solar radiation. Therefore, if one 

interpolation technique is to be chosen to reduce processing and storage demands then 

the AnuDEM routine should be used.  

 Kriging was applied in this study using a search radius of 12 points, to ensure 

small scale variation are taken into account without becoming too computationally 

intensive (Section 3.2.1). Increasing this search radius would suppress the impact of 

finer scale topographic features, similar to the AnuDEM method. However, the latter 

routine also has the advantage of ensuring calculations of flow accumulation increase 

downslope and is therefore a more accurate representation of reality (Hutchinson, 

2008). 

6.1.1.2 Impact of earthwork orientation on potential solar radiation calculation 

Once the earthwork was rotated to produce a north to south orientation, the calculation 

of potential solar radiation demonstrated a greater response to small scale terrain 

features than the original earthwork orientation (Section 4.1.5). This showed that 

variation in solar radiation calculated for a north to south orientated earthwork was 
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controlled by the presence of topographic features on the slopes rather than a difference 

in slope aspect, as seen with the original west to east orientated earthworks. This was 

illustrated by a variation in estimated potential solar radiation over the panel membrane 

features representing 85% of the total range in values for the north to south orientated 

earthwork. In comparison, the maximum variation over the same feature as a proportion 

to the total range represented just 44% for the original west to east orientated earthwork.  

 This test was only carried out on a hypothetical basis in a GIS environment and 

should be tested using a real north to south orientated earthwork using soil moisture 

observations. This was not considered when choosing the study site because the test 

embankment used in this study is the only one of its kind in the UK, leaving no 

alternative. A real world earthwork could have been used but the test embankment had 

the advantage of unlimited access, improved safety, as well as availability of 

complementary measurements, such as weather data. 

6.1.1.3 Impact of DEM resolution on the terrain analysis calculations  

The terrain calculations discussed in this section have all referred to fine scale 

topographic features, such as the panel membranes and embedded instruments. 

However, when the DEMs were degraded to a grid resolution of 2 m, this information 

was lost. Despite this, the overall terrain analysis patterns that were exhibited in the 

finer resolution work was retained. For instance, TWI values were shown to decrease 

downslope, potential solar radiation and aspect were polarised by the north and south 

facing slopes. Therefore, if a DEM was generated for an entire transport corridor at this 

resolution, only broad scale patterns of the influence of terrain on soil moisture 

distribution could be represented. Features smaller than this scale would have little or 

no influence on resulting terrain analysis calculations. This could be significant, as 

earthwork assets, such as drainage ditches, have shown to have a strong influence on 

soil moisture content (Perry et al., 2003b). Despite the loss of detail, this coarser 

resolution has the advantage of requiring less computer storage and processing time to 

calculate the terrain analysis techniques and therefore has the potential to be applied to a 

much greater area. 

 A compromise between the fine scale detail depicted in the original resolution 

DEM and the 2 m DEM could be found when the grid resolution was degraded to 1 m. 

Here, some influence from the small scale topographic features was retained which is 
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illustrated by the hillshade analysis in Figure 4.20 (Section 4.1.6) but due to the coarser 

resolution, was relatively quick to compute compared to the original scale DEM. This 

could be significant when considering the practicalities of processing data for an entire 

transport corridor.   

6.1.1.4 Comparison between observed soil moisture measurements and terrain 

analysis calculations  

The soil moisture measurements, gathered to test the predictability of the terrain 

analysis calculations, were taken on 28th November 2008. This time of year was chosen 

as it tends to be wetter than average, and previous studies have shown a higher degree 

of topographic organisation of soil moisture during wetter conditions (Tenenbaum et al., 

2006; Western et al., 1999a). Weather data for the test embankment confirmed that the 

month of November was wetter than average, reflected in the relatively high mean 

volumetric soil moisture content of 41.1% (relative to previous soil moisture contents of 

27.0% in February and April). It should be noted, however, that laser scanning data 

cannot be easily collected during times of precipitation. Therefore, operational 

difficulties may be encountered when attempting to obtain airborne lidar data during 

wetter periods when there is a greater chance of a precipitation event. Despite this, it 

can be assumed that terrain would not change significantly, except in the case of an 

extreme event such as a landslide, and therefore the lidar data can be collected on the 

nearest rain free date. 

Generally, the distribution of soil moisture values followed expected patterns 

with higher values on the north facing slope and an increase in moisture downslope. 

However, these patterns were not as strong as expected. For example, soil moisture 

measurements made down the profile of the earthwork indicated a degree of variation 

which did not always follow the general downslope trend. Similarly, there was only a 

small amount of difference between average soil moisture content of the north and south 

facing slopes with average soil moisture contents of 43% and 38.9% respectively. As a 

result, poor correlations were found between observed soil moisture and the TWI and 

potential solar radiation metrics, with correlation coefficients less than 0.2. The reason 

for the lack of topographic organisation, and resulting correlation with observed soil 

moisture, was due to heavy rainfall event occurring just prior to the measurements. This 
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left little time for the downslope movement of water, which has been shown to be a 

lengthy process (Wilson and Gallant, 2000).  

The lack of observed topographic organisation of soil moisture was confirmed 

by poor regression correlation coefficients for all the terrain analysis metrics 

(correlation coefficients less than 0.2). The TWIs calculated using both the interpolated 

DEMs illustrated little or no explanation of the distribution of observed soil moisture 

(R2 less than 0.1). This was also the case for the TWIs expressed by the natural 

logarithm, carried out following the findings made in the transport corridor scale study, 

which revealed a non linear relationship between TWI and soil moisture.  

Although results were poor, the calculation of potential solar radiation for an 

entire year was shown to have better correspondence with soil moisture (R2 of 0.16) 

compared to the calculation made for a specific day (R2 of 0.15 respectively). This was 

not expected as it was assumed that the potential solar radiation calculated for a specific 

day would provide a better characterisation of solar radiation at the time of year in 

which the validating soil moisture measurements were taken. The fact that a non-

specific calculation of solar radiation for an entire year provides a better representation 

of the distribution of soil moisture means that the calculation does not need to be 

repeated for different times of the year. This increases the practicality of using this 

metric in an operational context. However, a full temporal study would need to be 

carried out to confirm this, comparing the calculation to soil moisture values observed 

throughout the year, under different wetness conditions. This was beyond the scope of 

the present study as the primary focus is on scaling up the characterisation of soil 

moisture to a transport corridor rather than focussing on variations at a small earthwork 

scale. 

Integrating the TWI and potential solar radiation using stepwise multiple linear 

regression improved the correlation with soil moisture to an R2 of 0.26. Despite making 

a marked improvement on the correlation coefficients for the individual metrics, this 

correlation is poor. GWR helped to further improve the correlation, producing an R2 of 

0.56. This shows that locally fitted regression was better suited to the data compared to 

global regression. A map of soil moisture values  predicted using this model showed 

that the only discernable pattern was an increase in soil moisture on the north facing 

slope, with little or no trend running downslope. This reinforced the earlier notion that 
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the poor correlations found in this study were due to poor organisation of the soil 

moisture. Again, this would need to be supported by more soil moisture measurements 

gathered at different times of the year to test whether the poor correlations found were 

due to poor spatial organisation or due to the metrics not fully representing the 

distribution of soil moisture over the test embankment. In addition, although the GWR 

model may provide an improved correlation with soil moisture, questions are raised 

over the model’s transferability outside the study area. This is because the regression 

parameters are tailored to localised clusters of values and may be unstable when applied 

to other areas.   

6.1.1.5 Summary of the test embankment terrain analysis experiments  

Although the terrain analysis metrics showed poor correlations with observed soil 

moisture, important lessons were learnt. Firstly, if observed soil moisture measurements 

are to be used to build a statistical model using the terrain calculations, they must be 

made not only during wetter overall conditions, as stated by other authors (Tenenbaum 

et al., 2006; Western et al., 1999a), but also with sufficient time after a rainfall event to 

allow for downslope organisation to take place. This study showed that measurements 

made within hours of a rainfall event did not allow sufficient time for moisture to 

organise. Future work, with a greater emphasis on temporal patterns of soil moisture 

distribution, could help to demonstrate the adequate amount of time required for soil 

moisture to spatially organise before making measurements. 

 This study has highlighted the complex nature of soil moisture distribution and 

that a temporal dimension may have to be taken into account to enable an accurate 

characterisation. This is a limitation that should be noted when using terrain analysis for 

the future characterisation of soil moisture, suggesting the use of quasi-dynamic 

wetness indices may be more applicable, such as Borga et al. (2002). However, users of 

these calculations must also consider the application for which the soil moisture 

characterisation is being used. For instance, in flood modelling it may be necessary to 

monitor the changes in soil moisture distribution over time to coincide with extreme 

rainfall events, but for slope stability studies a single snap shot characterising moisture 

distribution may be adequate to focus maintenance work in areas susceptible to soil 
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moisture accumulation, such as areas of water ingress from areas surrounding 

earthworks (Perry et al., 2003b).  

6.1.2 Hyperspectral response of vegetation to artificial wetting 

This part of the earthwork scale study focussed on the analysis of hyperspectral 

reflectance from earthwork grasses in response to artificial changes in soil moisture. 

This work was carried out on the same test embankment as the terrain analysis (Section 

6.1.1) but acts as a standalone study.   

6.1.2.1 Comparisons between observed soil moisture and spectral reflectance  

Analysis of the spectra did not reveal any obvious response to changes in soil moisture. 

The derivative of the spectra, however, indicated some signs of change, particularly 

over the wetted plot where the red-edge feature had weakened over the duration of the 

experiment (Figure 4.32). The red-edge feature is indicative of chlorophyll production 

(Zarco-Tejada et al., 2003) therefore demonstrating that changes in soil moisture were 

having an effect on the vegetation. The fact that the derivative of the spectra indicated a 

response, and not the original spectra, was an important finding. The derivative of a 

spectral band is based on the previous and next bands. This restricts the application of 

derivative techniques to sensors with sufficient spectral resolution, i.e. hyperspectral 

sensors (Tsai and Philpot, 1998). Imagery from such sensors, both airborne and 

spaceborne, tends to be expensive to acquire relative to imagery from a broad band 

sensor. This may therefore limit the number of data collection campaigns a network 

operator can afford to carry out, reducing its effectiveness as an operational monitoring 

technique.  

 All spectral analysis techniques were shown to be reasonable predictors of soil 

moisture. Overall, the linear interpolated REP showed to be the best predictor with a 

validated R2 correlation coefficient of 0.60. This was an interesting finding as it was the 

simpler of the two methods for calculating REP and would be less computationally 

demanding if applied to large airborne hyperspectral datasets. Continuum removal 

analysis was shown to have the poorest correlation with soil moisture (validated R2 of 

0.51), despite showing the largest visual response to changes in soil moisture over the 

wetting period. This implies that the continuum removed spectra were not being fully 

exploited because comparisons with observed soil moisture were made using the value 
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at the lowest point on the continuum removed trough, at 675 nm. Future work may 

focus on enhancing the information gained from continuum removed spectra. This study 

attempted to develop metrics based on ratios and spectral angle of the continuum 

removed spectra but found no improvement to the correlation with soil moisture.  

A correlation matrix showed little significant different between the spectral 

analysis techniques. As a result, it was difficult to determine which technique is best 

using the findings made in this study. The success of the techniques may therefore be 

assessed by their ease of calculation. For example, linear interpolated REP and 

derivative stress ratios were much simpler to compute compared to the Lagrangian REP 

and may therefore be more applicable to larger datasets. However, techniques such as 

Lagrangian REP have the advantage of requiring no a priori knowledge of the spectrum 

(Dawson and Curran, 1998). The derivative stress ratio requires knowledge of the 

spectra in order to sample reflectance from the  double peak feature (Zarco-Tejada et al., 

2003). However, this study has shown that the position of this feature defined by Smith 

et al. (2004b) using derivative stress ratios can be applied to embankment vegetation for 

characterising soil moisture. Further work may help to support these findings by testing 

its robustness over a range vegetation types.  

6.1.2.2 Potential for scaling up the techniques to an airborne sensor  

The spectra gathered in this experiment were used to simulate the signal from the CASI 

sensor in an attempt to test the potential for scaling up the techniques to an airborne 

sensor (Section 4.2.4). Interestingly, improvements were made to the correlation 

coefficients for all the spectral analysis techniques except the linear interpolated REP. 

This implies that the spectral resolution of the CASI sensor is adequate for detecting the 

response of vegetation to changes in soil moisture. Therefore, the derivative stress ratio, 

Lagrangian REP, linear interpolated REP and NDVI could potentially be applied to a 

sensor that is routinely flown by operators such as the Environment Agency’s 

Geomatics Group. Specifically, the techniques derivative stress ratio, NDVI, 

Lagrangian and linear REP estimation showed a validating R2 correlation coefficient 

between 0.58 and 0.61. Although there are no similar spectral analysis studies to draw 

comparisons with, these correlations are comparable with reported correlations with 
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topographic indices, such as Tenenbaum et al. (2006) who found R2 values typically in 

the region of  0.56.  

 It was of particular interest to note that the NDVI calculated using the simulated 

spectra showed good correspondence with soil moisture. This index is easy to compute 

and is widely applied to imagery with red and near infrared capabilities. In addition, the 

derivative stress ratio showed good correspondence with observed soil moisture despite 

using central wavelengths that do not correspond directly to the double peak feature 

found in the spectra. This means the default bands of the CASI sensor provide sufficient 

detail to represent the double peak feature for the vegetation of the test embankment. 

This is despite the earthwork including a mixture of grass and wildflower species 

(Glendinning et al., 2009) where previous work has shown that the wavelength position 

of the double peak feature varies from species to species (Cho and Skidmore, 2006; 

Clevers et al., 2004; Smith et al., 2004a; Zarco-Tejada et al., 2003). This demonstrated 

the robustness of the original derivative stress ratio defined by Smith et al. (2004b) for 

use over a mixture of vegetation species which could prove crucial in the development 

of an operational methodology.  

 Despite encouraging results from the analysis of the CASI simulated spectra, the 

simulation used in this study is no replacement for testing the techniques using a sensor 

with reduced spectral resolution. For example, the smoothing process carried out in the 

sensor simulation may have retained spectral detail which might otherwise be lost using 

a reduced spectral resolution sensor. In addition, only spectral resolution was examined 

in this simulation. No consideration was given the spatial resolution, or field of view of 

the sensor. The field of view for the field spectroscopy data was just 20 cm2 (Section 

3.2.2.2) whereas the spatial resolution of airborne CASI imagery tends to range between 

1 m and 2 m and is therefore likely to capture reflectance from a wider range of 

vegetation canopy types. An attempt was made to simulate this by taking an average of 

multiple field spectroscopy measurements taken over the metre squared plots. However, 

fine scale detail may have been retained.  

6.1.2.3 Partial least squares regression analysis 

Section 6.1.2 has focussed on the assessment of existing spectral analysis techniques for 

the characterisation of soil moisture. In addition to these techniques, the development of 
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a new technique applied the CASI simulated spectra was explored using PLS 

regression, that is specifically designed to characterise soil moisture. Prior to the PLS 

analysis, the spectra was transformed using Log10(1/R) following Reeves (2009) and 

Schmidtlein (2005). A subsequent Martens’ uncertainty test (Martens and Martens, 

2000) applied to the transformed spectra showed only two bands to have significant 

ability to predict soil moisture. However, a subsequent model built using these two 

bands produced a cross validated correlation coefficient of just 0.37 (Section 4.2.4). 

Although disappointing, the poor results were likely to be a result of the 

Log10(1/R) transformation. This method was used as it has been employed in other 

vegetation spectral analysis studies such as Smith et al. (2003; 2002) and Schmidtlein 

(2005). Normally, reflectance in the red and near infrared would be expected to exhibit 

the greatest sensitivity over a vegetation target but once the spectra were transformed, 

the blue and green regions of the spectrum became more prominent. This meant that the 

transformation was actually detrimental to the PLS regression routine as it suppressed 

the signal from the red and near infrared and accentuated the noisy blue region of the 

spectrum. This is an issue that has been little explored in vegetation spectroscopy and 

shows that such transformations, which were designed for spectro-chemical studies 

(Reeves, 2009; Næs et al., 2002), should not necessarily be applied in vegetation 

analysis. This raises the need for a study to assess the impact of different transformation 

techniques on the hyperspectral reflectance analysis of vegetation, similar to the review 

conducted by Reeves (2009) for chemical spectroscopy. 

Næs et al. (2002) explained that spectra can also be transformed using the 

derivative of the spectrum. The derivative of the spectrum has already been shown in 

this study to have a strong response to changes in vegetation following artificial changes 

in soil moisture. This finding was reinforced by the Martens’ uncertainty test (Martens 

and Martens, 2000) which indicated six simulated CASI bands as having significant 

predicting power. These bands corresponded to both the red edge feature and the 

specific bands used in the derivative stress ratio. As a result, these bands are more likely 

to demonstrate a response to changes in the vegetation. A subsequent PLS regression 

model, built using these significant bands, produced a strong correlation with observed 

soil moisture which was consistent upon validation. This suggested that the model was 

stable and had the potential to make predictions outside the model training area. 
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 The success of the PLS regression model could be a significant finding for the 

characterisation of soil moisture over transport corridor earthworks. However, a number 

of simplifications were made in order to facilitate this earthwork scale test. Primarily, 

the vegetation of the plots were relatively homogenous, with low canopy grasses 

dominating. Although this is a characteristic of modern constructed earthworks, the 

predominantly aging infrastructure of the UK has a much more complex mix of grasses, 

shrubs and trees. As well as providing a number of different leaf structures, this also 

produces a much more complex canopy in terms of bi-directional reflectance (Wolf et 

al., 2010), which would not have been taken into account in this model. In addition, 

field observations of many real-world earthworks show that areas of bare ground are 

commonplace. Background reflectance from soil within the sensor’s instantaneous field 

of view is likely to reduce the signal from the vegetation canopy and destabilise the 

model which in this case has been constructed exclusively using vegetation.  

6.1.2.4 Hyperspectral vegetation analysis summary  

This work has demonstrated that spectral analysis techniques have the potential for 

measuring changes in vegetation caused by changes in soil moisture content. In 

addition, sufficient evidence has been given to consider the application of these 

techniques to airborne sensors, with a coarser spectral resolution. This work also 

showed that PLS regression can be used to build a stable model for predicting changes 

in soil moisture. However, there is uncertainty as to the ability of these techniques to 

perform over more complex environments, such as tree canopies, which are likely to be 

present within real world transport corridors. 

6.1.3 Earthwork scale study summary 

The results of the earthwork scale study have shown poor correlations between the 

terrain analysis metrics and observed soil moisture, whereas the spectral analysis study 

has generally shown good correspondence. However, these findings are not necessarily 

a direct reflection of how these techniques might perform at the transport corridor scale 

using airborne remotely sensed data. For instance, the relatively homogenous terrain of 

the test embankment meant there was little variability to be captured by the terrain 

analysis calculations. In contrast, a real world transport corridor would be expected to 
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have earthworks with a range of different slope angles, aspects, sizes and other 

influences such as flow contribution from surrounding areas. The increase in 

topographic variation would also be expected to have an influence on the distribution of 

soil moisture. This is supported by the range in soil moisture contents measured in the 

transport corridor scale study. For example, the range in soil moisture content found in 

the transport corridor was 45% (volumetric soil moisture content) (Section 5.1.2) 

compared to a range of 32% for the test embankment during similar weather conditions 

(Section 4.1.7). The suggestion here is that soil moisture is easier to model in an 

environment with increased variability. 

 In contrast to the terrain analysis experiment, the spectral analysis study was 

carried out in a more controlled environment. Here, the variation in soil moisture was 

artificially induced using the control, covered and wetted plots. A range of soil moisture 

values could therefore be enforced, allowing for a more informed model relating the 

spectral analysis techniques to observed soil moisture content. In addition, the spectral 

reflectance data used in this experiment was relatively free from the complexities 

normally found in real world transport corridors, including large shrub and tree 

canopies.   

6.2 Transport corridor scale 

The results from transport corridor scale work is analysed and discussed in the 

subsections below. This is divided into two distinct sections addressing terrain analysis 

and vegetation reflectance analysis (Sections 6.2.1 and 6.2.2 respectively). The findings 

made using these two distinct experiments were used to inform an integrated model 

which is analysed and discussed in Section 6.2.3. 

6.2.1 Terrain analysis 

The findings made by applying the terrain analysis calculations at the transport corridor 

scale broadly followed the observations made at the earthwork scale. This helped to 

support some of the claims made at an earthwork scale for the optimal implementation 

of the calculations within transport corridor environments. These findings are discussed 

below in Section 6.2.1.1. In addition, it was found that improvements could be made 

when applying the calculations at the transport corridor scale in comparison with the 
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earthwork scale. This is discussed in Section 6.2.1.2 together with an analysis and 

discussion of the observed distribution of soil moisture and what this the implications of 

these findings mean for slope stability analysis as a whole.  

6.2.1.1 Impact of DEM interpolation 

As with the analysis undertaken over the test embankment, two separate DEMs were 

generated for the transport corridor using two different interpolation techniques. The 

AnuDEM routine was used as it allows for the calculation of continuous flow 

downslope and is therefore, in terms of hydrological modelling, a more accurate 

representation of reality (Hutchinson, 2008). IDW interpolation was also explored at 

this scale as opposed to the kriging technique used in the test embankment study. This 

was because the kriging interpolation routine was too computationally demanding for 

generating a DEM with a grid resolution of 1 m over a 7 km transport corridor, often 

leading to lengthy processing times (over two days) and was unstable and prone to 

crashing using both ArcGIS and TerraScan software. This finding has implications in 

terms of using the methods developed here in an operational context. Various 

interpolation techniques may have relative advantages and disadvantages in terms of 

representing terrain, or making characterisations of soil moisture, but their operational 

use is limited if the demand on computer processing exceeds the capacity of current 

desktop computers.  

 Following similar trends to the earthwork scale results (Section 6.1.1.1), the 

AnuDEM interpolation technique produced a much smoother representation terrain 

compared to the IDW method, which held more fine scale topographic detail. This 

difference translated itself into a difference in the calculation of TWI. Specifically, a 

TWI calculated using the AnuDEM DEM showed a smooth decrease downslope, 

whereas TWI for the IDW DEM appeared spatially erratic, with wetness predicted to 

increase and decrease several times before reaching the bottom of the slope. This was 

similar to the results found in the test embankment scale study which were made at a 

much finer grid resolution. This showed that although the 1 m resolution DEM for the 

transport corridor would suppress a degree of topographic detail, the IDW interpolation 

retained enough detail to affect the flow of moisture downslope predicted by the TWI. 

As a result, it is suggested that the AnuDEM interpolation technique should always be 
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used when generating a DEM for TWI calculation. Reiterating the statement made in 

Section 6.1.1.1, this finding is important as some studies have relied upon other 

interpolation techniques, such as kriging, to generate DEMs for the calculation of TWI 

(Schmidt and Persson, 2003). Despite this, Schmidt and Persson (2003) reported no 

similar erratic patterns in the calculation of TWI. This could be due to the fact that they 

made their calculations using a DEM with a grid resolution of 2 m. This means that less 

small scale topographic variation would be captured by the kriging interpolation than if 

a 1 m DEM was used, leading to less variation in the calculation of TWI. In addition, 

Schmidt and Persson (2003) drew comparisons with point soil moisture measurement 

by taking an average TWI value using a filter with a radius of three cells which is likely 

to suppress any small scale variation. 

6.2.1.2 Comparisons between observed soil moisture measurements and the terrain 

analysis calculations 

The terrain calculations, TWI and potential solar radiation, made using the two 

interpolated DEMs were compared against observed soil moisture measurements. 

Measurements made during relatively dry periods demonstrated little topographic 

organisation, which was consistent with the findings made by other studies, including 

Tenenbaum et al. (2006) and Western et al. (1999a). The low degree of spatial 

organisation specifically related to the middle of the earthwork slopes or in locations 

where slopes are relatively flat. However, patterns did emerge including a general 

increase in soil moisture found on north facing slopes and at the toe of earthwork 

slopes. The latter trend showed that during periods of little or no rainfall, water retained 

within an earthwork migrated downslope and concentrated at the bottom of the slopes.  

This trend was more apparent in the soil moisture measurements taken following 

a relatively wet period, with generally little change over the centre of the slope but a 

marked increase at the toe. This finding could be significant in terms of slope 

geotechnics as areas of soil moisture convergence are likely to increase the strain at 

specific points in the earthwork and increase the risk of instability (Pack et al., 1998). In 

addition, current slope stability models, including the coupled SHETRAN -FLAC 

model (Kilsby et al., 2009; Rouainia et al., 2009; Ewen et al., 2000), tend to characterise 

soil moisture using a single value for a whole slope. High soil moisture values were also 

found in flat fields bordering the transport corridor earthworks. This could also have 
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geotechnical implications with cutting earthworks as contributions of soil moisture are 

likely to be made from surrounding land (Perry et al., 2003b). This is particularly 

significant where rainfall onto saturated soils can lead to direct runoff onto the 

earthwork slopes which has been a major cause of recent failures (e.g. BBC (2007)). 

The TWI applied in this study indicated potential for the this phenomena in a cutting 

east of Haltwhistle which is demonstrated in the example map for the integrated model 

shown in Figure 5.16 (Section 5.3) which is discussed later in Section 6.2.3. 

Despite the apparent organisation of the observed soil moisture measurements, 

regression correlation coefficients with the terrain analysis calculations were poor. 

Overall, potential solar radiation was the best predictor (R2 of 0.27) which showed that 

earthwork orientation, and the subsequent influence of solar radiation, was the 

dominating factor on soil moisture distribution. This was an unusual finding as previous 

work has shown potential solar radiation to be less dominant in wetter conditions 

(Tenenbaum et al., 2006; Western et al., 1999a; Isard, 1986). The influence of this 

metric was a result of the west to east orientation of the transport corridor, with 

earthworks having predominately north and south slope facing aspects. Despite its 

influence here, potential solar radiation is unlikely to have the same control in transport 

corridors with other orientations, which was demonstrated in the earthwork scale study 

when the test embankment was rotated. Therefore, characterisation of soil moisture 

distribution using potential solar radiation may have to be tailored to suit specific 

orientations. This could be tested by applying the methods used in this study to transport 

corridors with a variety of earthwork orientations and comparing against observed soil 

moisture measurements. This was not considered in the initially choice of study site as 

preference was given to a stretch of railway with a history of instability.  

A potential flaw in the calculation of potential solar radiation is that it does not 

take into account the vegetation canopy. Dense vegetation canopies, particularly broad-

leafed deciduous trees, mask the soil surface below, limiting the amount of direct solar 

radiation that can reach the soil surface as well as intercepting rainfall. Future 

refinement of the DEM used to make this calculation but this would involve the use of 

optical ray tracing models (Disney et al., 2000) which require a high degree of 

parameterisation and are therefore beyond the scope of the present study. The use of full 

waveform lidar could provide an interesting direction for future study. This technology 
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can provide more detailed information about the vegetation canopy (Hyde et al., 2005) 

and have been shown to provide accurate measures of canopy geometry using the 

aforementioned ray tracing models (Hancock et al., 2008). 

Although poor, a TWI calculated using the AnuDEM interpolated DEM 

provided a better predictor of soil moisture (R2 of 0.23) compared to the IDW DEM (R2 

of 0.19). This supported the suggestion that the AnuDEM interpolation technique is 

better suited to making hydrological calculations (Hutchinson, 2008) but the small 

correlation coefficients give this statement little gravity. The TWI calculation showed a 

gradual decrease downslope implying a linear increase in soil moisture content. 

However, the soil moisture measurements showed values to remain relatively constant 

with a sharp rise at the toe of the earthwork slopes (Figure 5.9). In order to capture this 

trend the TWI was expressed by the natural logarithm, which improved correlations 

with soil moisture for the AnuDEM DEM to an R2 of 0.33. This was a potentially 

significant finding as other studies using the TauDEM version of the TWI calculation 

(Tenenbaum et al., 2006) have not considered solving the non linear relationship with 

soil moisture. Furthermore, expressing the metric by the natural logarithm is simple to 

compute and does not introduce multiple additional parameters such as cubic and 

quadratic expressions.  

Combining the natural logarithm of the TWI and potential solar radiation using 

stepwise multiple regression produces an R2 of 0.65. This was comparable to other 

studies, such as Western et al. (1999a), who found a combination of TWI and potential 

solar radiation explained up to 61% of the variation of soil moisture during wetter 

conditions. The difference with the present study is that the characterisation of soil 

moisture has been made at a fine spatial resolution of 1 m compared to Western et al. 

(1999a) with a grid resolution of 5 m. This implies that the terrain analysis metrics used 

in this study and by Western et al. (1999a) are robust at both DEM grid resolutions. In 

addition, the grid resolution used on this study is sufficient for monitoring transport 

corridor earthworks with widths typically in the order of tens of metres (Section 2.5).  

The correlation coefficient for the multiple regression model (0.65) was also a 

marked improvement on the correlations between observed soil moisture and the 

individual terrain analysis calculations (between 0.27 and 0.33). Other studies, such as 

Tenenbaum et al. (2006), have used TWI as the sole predictor of soil moisture 
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distribution, achieving correlation coefficients of approximately 0.56. The findings 

made in this study show that this correlation could have been improved if potential solar 

radiation were taken into account. Moreover, this would have been possible using the 

same DEM used to calculate the TWI. Tenenbaum et al. (2006) found best results using 

a relatively coarse DEM, with a grid resolution of 11.25 m. They also compared 

observed soil moisture to a TWI calculated using a much finer, 0.5 m DEM. This 

produced poorer correlations ranging from an R2 of 0.56 during wetter conditions and 

no correlation during dry conditions. This study has shown that a reasonable 

characterisation of soil moisture can be made at a comparable spatial resolution of 1 m.  

One potential explanation for the poor correlations found by Tenenbaum et al. 

(2006) at this spatial scale is that they were applying the terrain analysis calculations 

within an urbanised catchment. Urban areas provide more complex hydrological 

environments to model due to the potential range of permeable and impermeable 

surfaces which is not taken into account by the terrain analysis metrics. Hydrological 

features within an urbanised catchment also occur at different scales which may not be 

captured by even high spatial resolution (< 1 m) DEMs. For instance, kerbs act as a 

barrier forcing water down the sides of roads (Hollis, 1988) but are often less than 

20 cm in height which tends to be beyond the vertical accuracy achieved by airborne 

lidar campaigns (Hodgson and Bresnahan, 2004).  

Tenenbaum et al. (2006) found best correlations when the TWI was averaged 

around a 11 x 11 kernel. Therefore, these results may be misrepresentative of the 

accuracy of a resulting map of predicted soil moisture with a grid resolution matching 

the input DEM. This study did not average TWI values around a kernel, meaning 

observed correlations with soil moisture are representative for a map of predicted values 

with a grid resolution of 1 m.   

A GWR model was built to predict observed soil moisture using the terrain 

calculations, natural logarithm of TWI and potential solar radiation. This helped to 

improve the correlation coefficient to an R2 of 0.76. Therefore, a locally fitted 

regression was better than global regression for describing the relationship between soil 

moisture distribution and the terrain analysis attributes. The improvement in correlation 

coefficient reflects the complex spatial relationship between soil moisture and the 

terrain analysis metrics. For example, whilst there is a general negative trend between 
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potential solar radiation and observed soil moisture, the relationship changes downslope 

as observed soil moisture tends to gather at the toe of earthwork slopes. This was an 

important finding as previous studies have not considered a spatially local model to 

describe the relationship between terrain analysis calculations and soil moisture. Future 

work should therefore consider spatially variable relationships, in order to refine 

existing terrain analysis calculations. This is particularly poignant when considering a 

parameter (soil moisture) which has consistently been stated as having innate spatial 

variability (Famiglietti et al., 1999; McBratney and Webster, 1986; Hawley et al., 

1983), where studies attempting to model its distribution have largely relied on global 

models (Tenenbaum et al., 2006; Western et al., 1999a). 

Monte Carlo significance testing showed that potential solar radiation was the 

only parameter that had a spatially significant relationship (with 99% confidence) with 

soil moisture. The spatial dependence between soil moisture and potential solar 

radiation reflects the influence of the predominately north and south facing slopes. This 

is demonstrated by the GWR model residuals which were shown to be an average of 4.6 

(% volumetric soil moisture content) on the south facing slope compared to -4.2 on the 

north facing slope, with an average residual of -0.8 (Section 5.1.3). As a result, future 

work should consider the localised relationships between potential solar radiation and 

soil moisture, in order to make better informed predictions of soil moisture distribution.  

6.2.2 Vegetation reflectance analysis  

The analysis undertaken here could not be assessed at the earthwork scale due to the 

relatively homogenous nature of vegetation on the test embankment. Therefore, the 

results discussed here are irrespective of the hyperspectral analysis results found at the 

earthwork scale. The work carried out here was the first reported attempt to map 

Ellenberg biological indicator values in UK transport corridor environments. As a 

results, separate sections (6.2.2.1 and 6.2.2.2 respectively) discuss the observed 

Ellenberg values and the mapping of these values using airborne imaging spectroscopy. 

An additional section (Section 6.2.2.3) addresses the use of this technique as a predictor 

of soil moisture distribution.   
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6.2.2.1 Observed Ellenberg indicator values 

Thirty-three plots were used to measure species abundance in order to derive weighted 

average Ellenberg indicator values. The variation in species found in the species 

abundance plots demonstrated the heterogeneous nature of vegetation cover within the 

transport corridor. However, slope stability models, including SLIP4EX (Greenwood, 

2006) and SHETRAN-FLAC (Kilsby et al., 2009; Rouainia et al., 2009; Ewen et al., 

2000), characterise vegetation cover as a single category, normally bare soil, grass, or 

trees. Although this study is not concerned with the relationship between slope stability 

and vegetation, the observed variation in vegetation type found in the study area 

suggests that these models insufficiently describe the actual distribution of vegetation 

cover over a transport corridor earthwork slope. This is of particular significance where 

vegetation type changes down a slope profile from shallow root types (grasses and 

wildflowers) to deep root types (tall shrubs and trees) which have shown to have 

different influences on slope stability (Glendinning et al., 2009).  

 The number of plots used to measure species abundance was based on a species-

area curve constructed from observations made within a modified-Whittaker plot 

following Stohlgren et al. (1995) and Mueller-Dombois and Ellenberg (1974). It later 

emerged that four of the plots could not be used due to misclassification of vegetation 

type or inaccurate soil moisture measurements (Section 3.3.2.1). On reflection, it would 

have been better practice to over sample in case any plots needed to be discarded. As a 

result, it is possible that the full range of vegetation species, and subsequent Ellenberg 

values, was not sampled. This could have implications on the success of the mapping of 

Ellenberg values where it is necessary to use observations that cover the full range of 

the parameter that is being sampled, and may account for some of the uncertainties 

found in the modelling process. In addition, it was noted in Section 6.2.2 that an 

improved validation of the Ellenberg values could have been made if an additional set 

of data could be collected. However, this would have required additional vegetation 

abundance data which was not possible as validating soil moisture data has to be 

sampled within a day, preferably within the space of just a few hours, due to the 

temporally variable nature of this parameter (Famiglietti et al., 1998). This could have 

been possible with additional labour on the ground and remains a potential for future 

studies with more resources. 
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6.2.2.2 Mapping Ellenberg values 

PLS regression was used to link the CASI spectra to the Ellenberg moisture indicator 

values. Prior to analysis, the spectra was transformed using the Log10(1/R) 

transformation. Similar to the findings made in the earthwork scale study (Section 

6.1.2.3), the initial Martens’ uncertainty test (Martens and Martens, 2000) did not show 

any bands to be significant. The uncertainty test also failed to show any significant 

predicting bands when the spectra was transformed using the first derivative, a 

transformation which produced meaningful predictive bands in the earthwork scale 

study (Section 6.1.2.3). This further reinforces the uncertainty over which 

transformation technique, if any, should be used in hyperspectral remote sensing of 

vegetation. Therefore, an alternative approach was adopted whereby predicting bands 

were selected using stepwise regression (Næs et al., 2002). This identified eight 

significant bands from the Log10(1/R) transformed spectra which were also found to be 

significant using the Martens’ uncertainty test. Again, this implies uncertainty over the 

correct procedure for applying PLS regression in vegetation spectroscopy. Future work 

should be directed at addressing these shortcomings as the results from both the 

earthwork and transport corridor scale studies have indicated a strong potential for the 

use of PLS regression. 

PLS regression using the significant bands from stepwise regression produced a 

strong correlation with the Ellenberg indicator values, with an R2 of 0.85. The latter 

model used eight components to describe the relationship between Ellenberg moisture 

values and the significant CASI bands. Normally, it is held that a large number of model 

components would make it unstable for making predictions outside the training area 

(Næs et al., 2002). However, this model was chosen specifically due to its high cross 

validation correlation coefficient (R2 of 0.64). The large number of components 

required to create a meaningful model represents the multi-dimensionality of the 

relationship between the Ellenberg moisture values and the predicting CASI bands. Næs 

et al. (2002) explained that using near infrared reflectance data, good predictions can 

normally be made using a few components. However, this is related to chemical 

spectroscopy studies where relationships may be simpler than studies examining 

vegetation reflectance. Therefore, future studies using PLS regression to estimate 
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vegetation parameters from spectral reflectance should consider a greater number of 

model parameters than expected.  

Analysis of the mapped Ellenberg moisture values revealed trends that were 

consistent with field observations of vegetation type. This was encouraging as it further 

supported the stability of the PLS model. In addition, field observations showed a trend 

between high predicted soil moisture and an overall denser canopy. This canopy has a 

larger leaf area, associated with vegetation species such as Brambles and Stinging 

Nettles. The larger leaf area of these vegetation types restricts evaporation from the soil 

surface below the canopy, leading to overall wetter soils than the relatively less dense 

canopies of grasses and wildflowers towards the east of the earthwork. Although this 

was not the intention of the Ellenberg mapping procedure this could prove to be a useful 

finding. Specifically, slope stability models, such as SHETRAN-FLAC (Kilsby et al., 

2009; Rouainia et al., 2009; Ewen et al., 2000), characterise soil moisture based on the 

dominating vegetation cover (bare ground, grass or trees) and their relative impact on 

the interception of rainfall due to leaf area. The observations of leaf area made here are 

purely subjective but it would be interesting to pursue this matter further by attempting 

to predict leaf area index using the CASI imagery (Boegh et al., 2002). However, this 

would have involved extensive field observations and as a result, was beyond the 

timescale of the present study. 

6.2.2.3 Comparisons between observed soil moisture measurements and mapped 

Ellenberg values 

The mapped Ellenberg moisture values were compared against observed soil moisture 

measurements, producing an R2 value of 0.4 (significant at the 99% confidence level). 

This was poorer than the results found in similar studies, such as Schmidtlein (2005), 

who found an R2 value of 0.58. This difference was due to the range of observed 

Ellenberg moisture values found over the study site. The present study found a 

relatively limited range of 4.8 to 6.8, compared to Schmidtlein (2005) with a range of 

4.3 to 9.5. The greater range found in the latter study was due to the presence of raised 

bogs and wet fens which are unlikely to be found on transport corridor earthworks. 

Despite the smaller range in observed values, the correlation coefficient demonstrated 

that the mapped Ellenberg moisture values can provide some explanation of the 

distribution of soil moisture over earthworks. However, as the correlation was not 
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strong the suggestion was that additional metrics, the terrain analysis metrics, are 

required to make a reasonable characterisation of soil moisture. This was similar to the 

findings discussed in Section 6.2.1 which showed that the terrain analysis calculations 

were poor predictors on their own and needed to be incorporated to produce any 

meaningful predictions. Other attempts to map soil moisture distribution using terrain 

analysis such as Western et al. (1999a) also concluded that best correlations are found 

when a combination of metrics are used. However, studies using mapped biological 

indicator values, such as Schmidtlein (2005), tended not to consider the integration of 

other remotely sensed metrics. This study shows that the estimation of soil moisture 

using mapped Ellenberg values can be improved by integrating terrain analysis 

calculations, as discussed in Section 6.2.3.   

One major limitation of the Ellenberg mapping procedure is that it was not 

applied to woodland areas. Such areas were not considered following the example of 

Feldmeyer- Christe et al. (2007) and Schmidtlein (2005). As mentioned in Section 

3.3.2.1, this was because tall tree canopies not only complicate the spectral signal with 

bidirectional reflectance and shadowing (Wolf et al., 2010) but also mask smaller 

species on the forest floor that may be a better indicator of soil moisture conditions. 

Consideration could be given to the incorporation of radiative transfer models into the 

Ellenberg mapping procedure. Such models are used to model spectral reflectance over 

vegetation canopies in an attempt to remove the complications caused by issues such as 

bidirectional reflectance (Cescatti, 1997). This improves the signal from the vegetation 

canopy and has been shown to improve the characterisation of vegetation using 

remotely sensed data (Jacquemoud et al., 2009). This was not explored as such models 

require a number of input parameters (Section 2.2.2) which may detract from the 

potential operational use of these techniques. 

6.2.3 Integrated model 

The terrain analysis work showed that metrics derived from remotely sensed data have 

little predictive power on their own. This was confirmed by R2 poor regression 

correlation coefficients of 0.33 for the natural logarithm of the TWI and 0.27 for the 

calculation of potential solar radiation. However, when the two metrics were integrated 

using stepwise multiple regression the R2 value improved to 0.65 with 99% confidence. 
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The inclusion of mapped Ellenberg moisture values further improved this correlation, 

although marginally, with an R2 value of 0.67. As discussed earlier in Section 6.2.1.2, 

this is comparable to the best correlations found in other studies (Tenenbaum et al., 

2006; Schmidt and Persson, 2003; Western et al., 1999a) but in this case predictions 

were made at a spatial resolution sufficient for monitoring transport corridor 

earthworks. In addition, and perhaps more significantly, these predictions were made 

over densely vegetated areas, a characteristic that has restricted the use of other remote 

sensing techniques, including thermal inertia mapping, active and passive microwave 

systems, and spectral reflection from the visible, near and shortwave infrared (Chapter 

2).  

A map of predicted soil moisture, made using the integrated multiple regression 

model (natural logarithm of the TWI, potential solar radiation, mapped Ellenberg 

values) clearly showed the influence of the TWI with a gradual increase in predicted 

moisture running down the profile of earthwork slopes. Furthermore, the influence of 

the TWI resulted in a number of points within a cutting earthwork where contribution 

from neighbouring fields has directed flow into the earthwork. It is important that these 

features have been retained as slope stability studies, such as Pack et al. (1998), depict  

areas of potential instability by moisture concentration in areas of topographic 

convergence. Similarly, Perry et al. (2003b) explained that the infiltration of water into 

cutting earthworks from surrounding areas can result in the cess heaving process. This 

is a significant slope process whereby infiltration of water into an earthwork softens the 

clay foundations, weakening the soil above. The integrated model also showed the 

influence of the potential solar radiation calculation, suggesting that effects of cess 

heaving will be accentuated on north facing slopes where predicted soil moisture 

contents are higher that the south facing slope. 

The correlation coefficients for the multiple regression models show that the 

inclusion of mapped Ellenberg values only slightly improved the overall prediction of 

soil moisture (improvement in correlation coefficient from 0.65 to 0.67). Potential users 

of this work could therefore conclude that a reasonable characterisation of soil moisture 

can be made using just the terrain analysis calculations. This could have greater 

operational potential as the terrain analyses require just one airborne dataset (lidar) and 

relatively little field work, compared to the extensive vegetation sampling associated 
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with the Ellenberg values. However, the integrated model showed subtle variations in 

modelled soil moisture which originate from the mapped Ellenberg value metric. When 

this particular metric is taken out of the integrated model, leaving the natural logarithm 

of the TWI and potential solar radiation, this pattern is lost. Potential users of this 

methodology must carefully consider whether these subtle variations are important to 

justify the use of the Ellenberg mapping procedure. In terms of slope stability analysis 

this could be crucial as small scale areas of increased moisture may represent areas of 

water inundation from water sources such as leaking pipes, ponds or lakes, blocked 

drains, and increases in groundwater level (Preuth et al., 2010; Perry et al., 2003b; 

Fukuoka, 1980), which might otherwise not be detected by the terrain analysis metrics.  

Predicted soil moisture using the integrated model was validated against 

additional soil moisture measurements giving an R2 of 0.48 which was significant at the 

99% confidence level. The reason for this relatively poor correlation may be due to the 

fact that the validating measurements were gathered following a period of relatively dry 

weather when the degree of topographic organisation was not at its greatest. In addition, 

some of the measurements were taken on earthworks containing a mixture of fly ash and 

ballast which were shown to produce erroneous measurements. This was because the 

presence of ballast created pockets of air within the soil matrix being sampled which 

would change the electromagnetic impedance recorded by the probe to estimate soil 

moisture content.  

The measurements were taken using a portable Theta impedance probe (Section 

3.2.1.2) which have been used in a number of studies into the spatial distribution of soil 

moisture, including Cosh et al. (2005), Famiglietti et al. (1999), Western et al. (1999a), 

and Tenenbaum et al. (2006). However, these studies do not refer to any difficulties in 

obtaining meaningful measurements. This implies that transport corridor earthworks 

containing fly ash and ballast present an additional challenge to the study of soil 

moisture. Calibration of the Theta probe prior to data collection did not take into 

account this type of material (Section 4.1.7) as permission was not given to take soil 

samples from the transport corridor earthworks. Future work should endeavour to 

capture the full variability in soil type, particularly in transport corridor environments. 

However, this would require extensive field sampling which would have detracted from 
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the original aim of this study, to provide a more efficient characterisation of soil 

moisture distribution.   

Due to the lack of confidence in the validating soil moisture dataset, the 

integrated model was also validated using cross validation. This procedure 

demonstrated an RMSE of 5.48% (volumetric soil moisture) for the original model 

calibration and an RMSE of 5.89% for the cross validation, suggesting model error does 

not change significantly when applied to new observations. Although this supports the 

overall robustness of the model it is not as reliable as testing the model against actual 

observations. In addition, no consideration has been given to error propagation 

throughout the modelling process. Future work should consider systematically 

removing samples from the metrics used in the integrated model to test its sensitivity. 

For example, the PLS regression model used to map the Ellenberg values was not 

validated against additional field observations. Therefore, tests could be done to remove 

particular observations and see how this affects the overall PLS model. In turn, the 

resulting mapped Ellenberg values could integrated with the other metrics to test for 

differences with the original integrated model. If the original model was stable, 

differences with the new model would be expected to be small. This analysis was not 

carried out due to the extensive processing that was undertaken for each remotely 

sensed metric. In order to carry out a rigorous analysis of error propagation this would 

take a great deal of processing time and was not within the time frame of the present 

study. 

6.2.4 Implications for mapping slope stability  

The overall aim of this study was to characterise soil moisture as an indicator of slope 

instability in transport corridor environments. Although the characterisation of soil 

moisture has been achieved, there has been little mention of its application in mapping 

slope stability. This work has been carried out as part of the wider EPSRC (Engineering 

and Physical Sciences Research Council) funded project ‘Remote asset inspection for 

transport corridor environments’ (reference number EP/D023726/1). The aim of this 

project was to provide an assessment of slope instability by extracting a number of key 

parameters using a range of remote sensing devices (Miller et al., 2009). These 

parameters include slope gradient, slope aspect, vegetation type, and soil moisture. 
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Following other slope stability studies (Borga et al., 2002; Pack et al., 1998) soil 

moisture was characterised using a TWI.  

Specifically, the remotely measured slope parameters, slope gradient and 

vegetation type, are used as an input into a finite element numerical modelling 

procedure. This procedure involves the coupling of the SHETRAN hydrological and the 

FLAC TP geotechnical models, to simulate the response of different slopes to a range of 

different climate scenarios (Kilsby et al., 2009; Miller et al., 2009; Rouainia et al., 

2009). The influence of soil moisture, here modelled using a TWI, is later incorporated 

using a weighting factor based on wetter soils having a greater risk of slope instability. 

As this study has shown, the calculation of TWI provides a limited characterisation of 

soil moisture distribution, particularly as the calculation was made using a DEM 

interpolation technique (IDW) that is not ‘hydrologically correct’, unlike AnuDEM 

(Hutchinson, 2008). In addition, non linear relationships between the TWI and soil 

moisture were not considered. Therefore, the findings made in this study, using an 

incorporated TWI, potential solar radiation, and mapped Ellenberg values model, can 

help to improve the characterisation of the soil moisture parameter for input into the 

wider ‘Remote asset inspection for transport corridor environments’ project. 

Since this study was conducted, the UK railways operator Network Rail has 

expressed an interest in using some of the developed methods. Specifically, there has 

been growing concern over the impact of blocked or defective drainage, leading to 

concentrations of soil moisture and risk of instability for transport corridor earthworks 

(Hall, 2009). Particular interest has been given to the potential for using mapped 

Ellenberg values to identify areas abundant in hydrophilic vegetation species which may 

be indicative of defective drainage. This would help to direct ground based network 

inspectors to assess areas with potential risk of soil moisture concentration. Further 

development may also include the use of a TWI to identify areas of moisture 

convergence that are not currently logged as having drainage installed in earthwork 

structures or in surrounding land. 

6.3 Summary 

This summary is divided into three distinct sections. The first addresses the overall 

success of characterising soil moisture in transport corridors using the developed 
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methodology. The second refers to the implications of the findings made in this study 

with specific reference to slope stability analysis in UK transport corridors. The third 

looks at the wider implications of this study in terms of benefitting other applications.  

6.3.1 The success of characterising soil moisture 

This chapter has discussed the implications of the results found in this study. This has 

included an assessment of individual techniques for characterising soil moisture at both 

an earthwork and transport corridor scale. At an earthwork scale, the terrain analysis 

calculations were shown to be poor predictors of soil moisture distribution. These poor 

results were the result of a combination of poorly organised observed soil moisture 

measurements and the lack of topographical variability that existed on the test 

embankment. This implies the terrain analysis technique is only applicable to areas with 

variable terrain. In addition, the soil moisture measurements have shown that future 

studies need to consider the time since the last rainfall event in order to obtain 

meaningful soil moisture observations.  

 The vegetation spectral analysis, however, was more encouraging. This work 

showed that a reasonable characterisation of changes in soil moisture content could be 

determined from vegetation reflectance. Furthermore, this experiment showed the 

potential for applying these techniques to an airborne sensor. However, further work 

needs to be carried out to assess the potential for these techniques to be applied to more 

complex vegetation covers, which exist over real world transport corridors. 

 At a transport corridor scale the individual terrain analysis calculations also 

demonstrated generally poor correlations with observed soil moisture measurements. 

Despite this, important findings were made. The calculation of TWI was shown to be 

better suited to the AnuDEM interpolated DEM. This is significant as this interpolation 

technique is not always adopted in studies that use calculations of TWI. In contrast, the 

calculation of potential solar radiation was shown to work best when applied to an IDW 

interpolated DEM which better represents fine scale topographic features. This is again 

an important finding as studies tend to use one interpolation technique to generate a 

DEM, regardless of the type of analysis it is being used for. 

 The analysis of vegetation reflectance over the transport corridor has revealed 

that Ellenberg indicator values can be robustly mapped for a UK transport corridor. This 
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is a feat that has yet to be reported in the literature and represents a progression in 

deriving land surface parameters at a high spatial resolution using remotely sensed data. 

In terms of characterising soil moisture, the mapped values showed fair, but by no 

means strong, correspondence with observed soil moisture. However, when they were 

incorporated with the terrain analysis metrics, the correlation with soil moisture was 

comparable to other studies at a coarser spatial resolution. In addition, these predictions 

were made over densely vegetated areas that have previously restricted other remote 

sensing techniques.   

6.3.2 Implications in slope stability studies 

As well as providing a reasonable characterisation of soil moisture, this study has 

demonstrated a number of implications in association with slope stability studies. 

Observed soil moisture was shown to gather towards the toe of earthwork slopes, 

resulting in a non linear relationship with the wetness index. The TWI also predicted 

areas in which moisture is contributed to cutting earthworks from surrounding fields. 

These areas of convergence, and subsequent concentration of soil moisture, raise their 

susceptibility to instability due to the potential for higher pore water pressures. In 

addition, this susceptibility is shown to increase on north facing slopes where soil 

moisture was shown to be higher.   

This study has also raised questions over the integrity of current slope stability 

models. Firstly, soil moisture was shown to vary considerably downslope whereas 

models such as SHETRAN-FLAC characterise soil moisture by a single value. This is a 

generalisation which could have implications on modelling of the internal structure of 

earthworks as variability in surface soil moisture is likely to reflect a variation in pore 

pressure down the soil profile. Secondly, in the example of SHETRAN-FLAC, soil 

moisture is characterised by the dominating vegetation cover. This is again assumed to 

be constant, whereas field observations of vegetation species distribution in this study 

have demonstrated great variability. Although all models must make assumptions, the 

generalisations made by these models are unrealistic representations of conditions in 

transport corridors and are likely to affect the subsequent modelling undertaken for the 

‘Remote asset inspection for transport corridor environments’ project that this work 

contributes to. 
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This study has shown potential for characterising soil moisture in vegetated 

transport corridors at a high spatial resolution (1 m). As reported in the literature review 

(Chapter 2) this has so far eluded the remote sensing community where efforts have 

largely been focussed on using microwave systems. Although techniques using these 

systems have provided higher correlations with soil moisture compared to this study 

(Baghdadi et al., 2006) they are made at the expense of a relatively poor spatial 

resolution which is too coarse for the monitoring of transport corridor earthworks. In 

addition, best results have been restricted to bare or sparsely vegetated areas which is 

contrary to the nature of earthwork infrastructure (Glendinning et al., 2009).  

6.3.3 Implications for other applications 

This study has focussed on the characterisation of soil moisture as an indicator of slope 

stability in transport corridors. However, mapping soil moisture has a wide range of 

applications. Walker et al. (2004) summed up the importance of measuring soil 

moisture by explaining that “the measurement of soil moisture content can be extremely 

useful, if not essential, in hydrologic, environmental and agricultural applications” 

(pages 85-86). Specifically, this study has helped to develop a methodology for 

characterising soil moisture at fine spatial scales (1 m) over vegetated areas. This has 

the potential to be applied to a host of different applications.  

One example for the application of the methods developed in this study is for 

mapping malarial mosquito habitats. Research has shown that surface water habitats for 

certain species of mosquito (Anonpheles) in Eastern Africa tend to be smaller than 

40 m2 (Mutuku et al., 2009; Mushinzimana et al., 2006; Mutuku et al., 2006). This fine 

scale has meant that previous studies using broader spatial resolution sensors, such as 

Landsat TM (Bogh et al., 2007), have not been able to represent a large proportion of 

these habitats (Mushinzimana et al., 2006). The methods presented in this thesis could 

potentially be used to provide an improved classification of such habitats by 

incorporating information about moisture convergence, using a TWI, and vegetation 

characteristics, using mapped Ellenberg values.  

Another application that could benefit from the methods developed in this study 

is in precision farming. Steps are continually being made to improve the spatial 

resolution of measuring soil parameters in the agricultural sector, particularly over large 
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areas (Bishop and McBratney, 2002). TWIs have been successfully used to estimate soil 

moisture distribution for farmland by Schmidt and Persson (2003). However, the 

findings made in the present study at both an earthwork and transport corridor scale 

(Sections 6.1.1.1 and 6.2.1 respectively) have shown that the calculation of TWI is 

better suited to a DEM interpolated using a thin plate spline routine (AnuDEM) rather 

than kriging as used by Schmidt and Persson (2003). In addition, the results have 

indicated that this estimation could be improved by incorporating a calculation of 

potential solar radiation.  

The estimation of species richness for landscape conservation could also benefit 

from the developed methods. Luoto et al. (2002) demonstrated that species richness 

could be estimated over agricultural areas in Finland using a mixture of terrain analysis 

using a TWI and vegetation classification using broad band satellite imagery (Landsat 

TM). As with the previous example in precision agriculture, improvements could be 

made to their methodology by calculating TWI using a AnuDEM interpolated DEM, 

although it should be noted that Luoto et al. (2002) do not state the interpolation method 

used. More significantly, the methods developed for mapping Ellenberg values in this 

thesis may provide an improvement to the overall measure of species richness. This 

notion is based on previous work in the ecological literature which advocates the use of 

biological indicator values, such as those developed by Ellenberg et al. (1991), as an 

indicator of biodiversity and species richness (Diekmann, 2003; Ellenberg et al., 1991). 

Mapping these values over large areas using remotely sensed imagery could therefore 

provide major developments in this area.  
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7 Conclusions 

The overall aim of this study was to explore the potential for using remotely sensed 

datasets to characterise soil moisture for a transport corridor. In order to achieve this 

overall aim, a number of objectives were set: 

1. Identify and review existing techniques for characterising soil moisture from 

remotely sensed data and critically assess their operational capability in the context 

of transport corridor environments. 

2. Carry out a proof of concept study for the techniques deemed applicable in objective 

one using ground based instruments at an earthwork scale and assess their potential 

for being scaled up to a transport corridor scale. 

3. Based on the findings made in objectives one and two, apply the techniques to a 

transport corridor using airborne remotely sensed datasets. 

4. Design a method for integrating the most successful techniques into an overall model 

for characterising soil moisture in transport corridor environments. 

This concluding chapter explains how each of the objectives have been achieved. 

Specific reference is given to the key findings made and their implications for 

characterising soil moisture in transport corridor environments. Suggestions are also 

given as to how the findings made in this study can help to direct future work, as well as 

how this work might contribute to other applications. The final section of this chapter 

provides a short concluding statement to this thesis.     

7.1 Objective 1 

Objective 1 was addressed by the literature review in Chapter 2. This revealed a number 

of existing techniques that have been shown to have great potential for characterising 

soil moisture. In particular, the use of passive and active microwave system has proved 

to have the greatest potential for mapping soil moisture over wide areas (Famiglietti et 

al., 1999). However, these techniques share inherent limitations that render them 

inapplicable for use in monitoring transport corridor earthworks. Their primary 

limitation relates to the poor spatial resolution that these sensors often provide, which is 

too coarse to make characterisations over earthworks with widths in the region of tens 

of metres. An additional limitation is that the microwave signal from the soil is strongly 
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perturbed by the presence of vegetation (Notarnicola et al., 2006). As a result, studies 

are often restricted to areas with low homogeneous vegetation canopies or bare earth 

(Schmugge et al., 2002), whereas transport corridor earthworks tend to be covered in 

dense heterogeneous vegetation. 

 Chapter 2 identified techniques using two sources of remotely sensed data that 

have the potential to overcome the limitations associated with microwave sensors, 

airborne laser scanning and airborne imaging spectroscopy. Techniques applied to the 

former involve terrain analysis calculations that exploit the relationship between soil 

moisture distribution and topography, such as TWI and potential solar radiation. These 

calculations have been successfully applied to high spatial resolution (1 m) DEMs 

derived from airborne lidar (Tenenbaum et al., 2006) but have not been assessed within 

UK transport corridor environments. The techniques applied to imaging spectroscopy, 

including derivative stress ratios, continuum removal analysis, red edge position 

estimation, and mapping of biological indicator values, also have the potential for being 

applied to fine spatial resolution data (~1 m). Here, the techniques use measures of 

canopy spectral reflectance to make inferences about the vegetation which act as a 

surrogate for characterising the soil moisture below. This overcomes the limitations 

associated with techniques using other sensors that are restricted by the presence of 

vegetation, such as microwave systems and thermal sensors. Few reported attempts 

have explicitly attempted to characterise soil moisture using these spectral analysis 

techniques but some studies have shown a link with plant stress induced by 

waterlogging (Smith et al., 2004a; Pickerill and Malthus, 1998). The potential for 

characterising a number of environmental parameters, including soil moisture, by 

mapping biological indicator values has also been demonstrated (Schmidtlein, 2005) but 

not in the context of a UK transport corridor. 

7.2 Objective 2 

This objective was chiefly addressed by the test embankment study. Here, a proof of 

concept study was carried out to test the ability of the techniques identified in 

objective 1 for characterising soil moisture in a controlled environment using ground 

based sensors. This study could be divided into two distinct parts: terrain analysis using 

terrestrial laser scanning and the analysis of vegetation reflectance using a field 
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spectrometer. Varying success was found with the terrain analysis work. Although 

important findings were made, which helped to inform the implementation of these 

methods to the transport corridor scale, the poor correlations found with observed soil 

moisture meant that claims made did not have much statistical backing. This meant that 

many of the methods had to be evaluated once more at a transport corridor scale. The 

vegetation reflectance work, however, revealed more statistically significant findings 

meaning conclusions could be drawn with more confidence. The key findings from both 

experiments are summarised below. 

7.2.1 Terrain analysis 

Generally, poor correlations were found between the terrain analysis metrics and 

observed soil moisture. Despite this, important lessons had been made concerning their 

suitability for being scaled up to a transport corridor: 

1. Validating soil moisture measurements must be taken during wet conditions to 

maximise the degree of topographic organisation. In addition, sufficient time 

needs to be given after a rainfall event before collecting measurements to give 

moisture enough time to become spatially organised. 

2. The terrain analysis calculations, particularly TWI, were sensitive to DEM 

interpolation method. This study found that the thin plate spline interpolation 

method called AnuDEM (Hutchinson, 2009) provided a better characterisation 

of soil moisture distribution than kriging. 

3. The terrain analysis calculations were also found to be sensitive to DEM grid 

resolution. A spatial resolution of 1 m was found to be sufficient for taking into 

account fine scale topographic features such as the test embankment panel 

membranes. 

4. Improvements could be made to the prediction of soil moisture using the terrain 

analysis metrics by incorporating the calculation of TWI with potential solar 

radiation using stepwise regression (R2 of 0.26). 

5. A locally fitted model using GWR is better suited to describing the relationship 

between the terrain analysis metrics and soil moisture than global regression, 

resulting in an improved in correlation coefficient from 0.26 (global regression) 

to 0.56 (GWR). This improvement was mainly a result of the spatially variable 



212 
 

relationship between potential solar radiation and observed soil moisture due to 

the predominantly north and south facing slope aspects. 

 

This study suggests that if the above criteria are followed, an improved characterisation 

of soil moisture can be made using digital elevation data. Although this study has 

focussed on the use of high spatial resolution DEMs, the same methodology is 

transferable at broader scales, outside the context of transport corridor environments. 

Examples were given in Chapter 2 of this thesis where broad scale DEMs have been 

used as an input to a range of hydrological and slope stability studies (Baum et al., 

2005; Gritzner et al., 2001; Pack et al., 1998). The findings made in this study are likely 

to have implications for such studies, particularly where the availability of free 

elevation data is increasing (for example http://edc2.usgs.gov/geodata/index.php) and 

spaceborne lidar campaigns are reaching near global coverage (Rosette et al., 2008). 

7.2.2 Vegetation reflectance 

The aim of this experiment was to test the ability of the spectral analysis techniques 

identified in objective 1 to predict changes in soil moisture. Artificial soil moisture 

change was successfully induced through a periodic wetting of a small plot on the test 

embankment. Despite this, there was no obvious change in the vegetation spectra in 

response to these changes. In contrast, many of the spectral analysis techniques 

(derivative stress ratio, Lagrangian and linear interpolated red edge position analysis, 

NDVI) demonstrated good correlations with observed soil moisture (R2 between 0.57 

and 0.66). Additionally, the techniques applied to CASI simulated spectra showed 

similar correlations with observed soil moisture (R2 of 0.57 to 0.68). This was an 

important finding as it demonstrated the potential for scaling these techniques up to an 

airborne sensor and, therefore, for application to real world transport corridors.  

 The derivative ratio uses vegetation reflectance values taken at specific 

wavelengths in order to represent the double-peak feature indicative of vegetation stress 

(Smith et al., 2004b; Zarco-Tejada et al., 2003). The wavelengths used in this study,  

702 nm and 725 nm were taken from Smith et al. (2004b) but were developed for 

identifying a different source of plant stress using different vegetation types to those 

used in this study. This study has shown that this specific stress ratio can also be used to 
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characterise changes in soil moisture over the vegetation on the test embankment (R2 of 

0.61). In addition, this ratio was also tested using wavelengths centred on the default 

band position of the CASI sensor, 700 nm and 728 nm. Again, good results were found 

(R2 of 0.66) indicating this technique can potentially be scaled up to an airborne sensor. 

These findings are promising for the development of a universal stress ratio although 

future work may help to further test the robustness of this ratio over a range vegetation 

types and sources of plant stress. 

 The novelty in using the spectral analysis techniques is that many have not been 

studied with direct reference to changes in soil moisture. Despite this, the techniques 

themselves are not new. In an attempt to further fulfil objective 2 and fully test the 

potential for using the spectral reflectance of vegetation to characterise soil moisture, a 

new technique was developed based on PLS regression modelling. It is generally 

accepted that spectral reflectance measurements should be linearised using the 

Log10(1/R) transformation prior to PLS regression (Reeves, 2009). However, this study 

found that this suppressed the signal from the red and near infrared regions of the 

spectrum, which are indicative of vegetation. 

An alternative transformation was explored using the derivative of the spectra 

following Næs et al. (2002). This maximised the signal from the red and near infrared 

regions of spectrum, as well as suppressing the normally noisy bands in the blue region. 

The resulting PLS regression model demonstrated a strong fit with observed soil 

moisture and was shown to be stable under cross validation, with an R2 of 0.72. 

Although this model can only be applicable to the vegetation found on the test 

embankment, the results show great potential for using such a technique. Furthermore, 

this model could have a significant bearing for modern highways earthworks, as they 

tend to be seeded with the same mix of grasses and wildflowers that were used on the 

test embankment (Glendinning et al., 2009).  

7.3 Objective 3 

The earthwork scale study sought to achieve objective 2 by providing a proof of concept 

for the techniques identified for objective 1. In doing so, this helped to set out optimal 

methods for applying the techniques to airborne remotely sensed dataset for a transport 

corridor. In addition, there were some techniques that could not be applied to the test 
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embankment, notably, mapping Ellenberg biological indicator values. Therefore, the 

reliability of their application could only be based on previous studies and have been 

tested for the first time in the context of transport corridor environments here. The key 

findings made when achieving this objective are summarised below. 

 Similar to the test embankment study, the terrain analysis metrics were found to 

be sensitive to DEM interpolation. The AnuDEM routine again proved to be the best 

interpolation method for representing moisture distribution using TWI. This is an 

important finding, particularly where previous studies, such as Schmidt and Persson 

(2003), have used other methods (kriging) to interpolate a DEM for the calculation of 

TWI. 

 The correlation coefficient between TWI and observed soil moisture could be 

improved by expressing the TWI as the natural logarithm (from 0.23 to 0.33). This 

accounted for the non linear increase in soil moisture down earthwork slopes. Although 

correlations between observed soil moisture and the terrain metrics, TWI (expressed as 

the natural logarithm) and potential solar radiation, were poor (R2 of 0.33 and 0.27 

respectively), a reasonable correlation could be found when the two were integrated 

using stepwise regression (R2 of 0.65). This finding implies that other studies, such as 

Tenenbaum et al. (2006), could have improved their estimations of soil moisture 

distribution by incorporating a calculation of potential solar radiation. 

 The relationship between soil moisture and the terrain calculations could be 

further improved by using a locally fitted regression model. GWR using the natural 

logarithm of TWI and potential solar radiation produced a correlation coefficient of 

0.76. Similar to the analysis undertaken at the test embankment (Section 7.2.1), this was 

because the relationship between potential solar radiation and soil moisture distribution 

varied significantly over space, a result of the north and south facing earthwork slopes. 

 The observed soil moisture measurements used for drawing comparisons with the 

remotely sensed metrics were found to be highly variable over space. Specifically, soil 

moisture was shown to increase non linearly down earthwork slopes, similar to the 

findings made in the test embankment study (Section 7.2.1).  However, some slope 

stability models characterise soil moisture as a single value for an entire slope. This 

generalisation is likely to have implications on accurate modelling of the internal 

structure of earthworks. In addition, observed species abundance within the transport 
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corridor indicated a heterogeneous vegetation cover with a mixture of grasses, 

agricultural weeds, wildflowers, trees and shrubs. Existing slope stability models tend to 

characterise slope vegetation as a single cover and are therefore inadequate for 

application in transport corridor environments.  

 Ellenberg indicator values for soil moisture can be mapped in transport corridor 

environments using airborne CASI data. This is the first reported attempt to do so for 

values extended for the UK by Hill et al. (2000). By mapping Ellenberg values using 

imaging spectroscopy this study found that the Log10(1/R) transformation advocated by 

spectro-chemical studies (Reeves, 2009) is inadequate for application in multivariate 

vegetation spectral reflectance analysis. This study advises the use of the derivative of 

the spectra which provides a transformation routine that accentuates the red and near 

infrared and suppresses the typically noisy blue regions of the spectrum. Subsequent 

mapping of the Ellenberg values showed that high values coincided with the distribution 

of hydrophilic (water loving) vegetation types. This could be an important finding for 

network operators as earthwork inspectors are required to identify such species as 

indicators of water ingress into earthworks from sources such as leaking ponds or water 

pipes (Perry et al., 2003b) which may not be detectable using the terrain analysis 

metrics.  

 As discussed in Section 6.3.3 the mapping of Ellenberg indicator values has the 

potential to benefit applications outside the context of slope stability studies. This is 

largely due to the fact that Ellenberg values provide an indication of soil nitrogen 

content, pH, soil chloride concentration, light regime, temperature, continentally, as 

well as soil moisture (Schaffers and Sýkora, 2000). Knowledge of the distribution of 

these variables could be significant for a range of applications, particularly in the 

agricultural sector (Knops and Tilman, 2000) and water resources (Kang and Lin, 2007; 

Alexander et al., 2000). 

7.4 Objective 4 

The work carried out in order to achieve objective 3 demonstrated that the individual 

remotely sensed metrics, potential solar radiation, TWI and mapped Ellenberg values, 

were poor predictors of soil moisture with correlation coefficients below 0.35. This was 

because the information provided by the individual metrics were insufficient for 
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describing the complex nature of soil moisture distribution. Therefore, objective 4 was 

set out to provide a more informed characterisation of soil moisture by incorporating 

these metrics. The method for incorporating these metrics was stepwise regression, 

providing a simple model that can be applied outside the model calibration area, as well 

as ensuring the predicting variables used in the model are statistically significant. 

 Best results were found using a stepwise regression model incorporating TWI, 

potential solar radiation and mapped Ellenberg values, producing a correlation 

coefficient of 0.67. The results of this model demonstrated the influence of potential 

solar radiation with an increase in soil moisture content predicted for the north facing 

slopes. The influence of TWI indicated soil moisture to concentrate towards the toe of 

earthwork slopes. Perhaps more significantly, the TWI also showed areas of 

topographic convergence where moisture is predicted to contribute to cutting 

earthworks at specific points from neighbouring fields. In terms of slope stability 

analysis, this is an important finding as studies have noted the coincidence between 

areas prone to slope instability and areas of topographic convergence (Pack et al., 1998).  

 The influence from mapped Ellenberg values was more subtle. For example, 

there was a coincidence between an increase in observed soil moisture content and the 

abundance of hydrophilic vegetation (Section 7.3). When this metric was taken out of 

the integrated model, leaving just the terrain analysis metrics, this information was lost. 

Despite this, the improvement in correlation coefficient from 0.65 to 0.67 showed that 

the inclusion of mapped Ellenberg values only slightly improved the overall prediction 

of soil moisture. Therefore, a reasonable characterisation of soil moisture can be made 

using just the terrain analysis calculations. These calculations are applied to just one 

source of remotely sensed data, lidar, which therefore has greater potential for becoming 

operational due to reduced data acquisition costs and relatively little field work. 

However, the subtle variations in soil moisture predicted by the Ellenberg values may 

represent areas of water inundation from sources not detectable by the terrain analysis 

metrics, such as leaking pipes (Section 6.2.3).  

 The overall aim of objective 4 by providing an integrated model to characterise 

soil moisture was achieved using stepwise regression. As discussed, the relative success 

of this procedure is supported by a reasonable correspondence between the model and 

observed soil moisture. Stepwise regression was used because it only takes into account 
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metrics that make a significant improvement to the correlation with observed values 

without introducing many additional parameters. It is also quick to compute and can be 

applied as an equation to remotely sensed metrics measured outside the model training 

area. However, in order to further fulfil this objective different modelling procedures 

could have been explored. For example, stepwise regression does not provide a 

thorough measure of model error. As discussed in Section 3.3.3, this could have 

particular bearing in the present study as error propagation might occur where the 

remotely sensed metrics with their own levels of error are integrated, therefore 

compounding subsequent errors. A Bayesian approach to modelling has been discussed 

as a method to potentially overcome these issues. Although this approach may be 

interesting to explore, this method was not thoroughly explored here as this type of 

conditional modelling has the tendency to be less accurate locally (Dungan, 1999) 

which could be significant when concerned with a component that is highly variable 

over space such as soil moisture content. 

 Other modelling procedures cited in Section 3.3.3 include neural networks. This 

type of modelling may provide a more intelligent and informed model of soil moisture 

distribution and may well prove valuable to explore in the future. However, such an 

approach was not considered as although fast computation times are expected for the 

final model, training times can be very lengthy (Mather, 2004) which may be 

problematic when dealing with high spatial resolution data over large areas. In addition, 

models can become ‘over trained’ losing their effectiveness over areas outside the 

training area (Mather, 2004). 

7.5 Future research  

The results presented in this thesis have identified a number of directions for future 

research. The following provides a summary of these key points. 

• Observed soil moisture contents were found to be highly variable over space. 

Specifically, soil moisture was shown to increase non linearly down earthwork 

slopes, similar to the findings made in the test embankment study (Section 

7.2.1).  However, some slope stability models characterise soil moisture as a 

single value for an entire slope. This generalisation is likely to have implications 
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on accurate modelling of the internal structure of earthworks and should be 

addressed in future work. 

• Measurements of soil moisture content using the Theta soil moisture probe over 

fly ash and ballast that has proven to be problematic. Future work should 

consider the reliability of this piece of equipment, particularly in a transport 

corridor environment. 

• A reasonable characterisation of soil moisture can be made (R2 of 0.66) over 

controlled plots on the test embankment using derivative stress ratios developed 

by Smith et al. (2004b). Future work should be directed at further testing the 

robustness of this technique over different vegetation and plant stress types. 

• A number of spectral analysis studies have employed the log10(1/R) 

transformation (Schmidtlein, 2005; Smith et al., 2003; Smith et al., 2002). This 

study has found mixed results when applying this transformation technique. This 

uncertainty has been little explored in vegetation spectroscopy and shows that 

such transformations, which were designed in spectro-chemical studies (Reeves, 

2009; Næs et al., 2002), should not necessarily be applied in vegetation analysis. 

This raises the need for a study to assess the impact of different transformation 

techniques on the hyperspectral reflectance analysis of vegetation, similar to the 

review conducted by Reeves (2009) for chemical spectroscopy.  

• In addition to soil moisture, Ellenberg values also provide an indication of light, 

acidity, nitrogen content, and salinity. If these parameters were mapped with 

similar success to the moisture values in this study, then it would provide a 

significant tool for a range of land management applications. One such 

application is in water resources, where the development of the EU Water 

Framework Directive (Chave, 2001) require river basins to be characterised. 

Mapping Ellenberg values using imaging spectroscopy could provide an 

invaluable tool for providing such characterisations over wide areas.  

• This study mapped Ellenberg values using airborne CASI imagery. The 

acquisition of such data can be costly but satellite borne sensors, such as 

WorldView 2 and Rapid Eye, could provide a cheaper alternative, at the expense 

of a coarser spatial resolution (1.8 m and 6.5 m respectively). 
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• The integrated model developed in this study showed reasonable correspondence 

with observed soil moisture (R2 of 0.67). This model was created using stepwise 

regression creating a simple model that could be applied to areas outside the 

model training area. However, future work should consider different modelling 

strategies to characterise soil moisture using the remotely sensed metrics to give, 

for example, a better measure of the model errors. Proposed modelling 

directions include conditional modelling using Bayesian theory and neural 

networks. 

• A reasonable characterisation of soil moisture has shown to be possible using 

the terrain analysis calculations (R2 of 0.65) which are applied to just one source 

of remotely sensed data. This is an attractive proposition considering the costs 

associated with airborne data collection. However, the information provided by 

mapping Ellenberg values may provide crucial information regarding sources of 

increased soil moisture not detectable by terrain analysis. Potential users of the 

methods presented in this thesis must carefully consider this point before 

discounting the collection of CASI imagery and species abundance data for the 

mapping of Ellenberg values. Future work could help to reinforce these claims 

by examining imagery over areas of known leaks, similar to Pickerill and 

Malthus (1998). 

• Mapping Ellenberg indicator values was limited to non-forested areas. This is 

restricting an otherwise potentially important technique for a multitude of 

applications and should therefore be given careful consideration in a more 

detailed study using canopy radiative transfer modelling to help improve the 

signal over complex vegetation canopy structures. 

• Network Rail have expressed an interest in using mapped Ellenberg indicator 

values for identifying blocked or defective drainage. The methods developed in 

this study can be used to implement this procedure over entire transport 

networks. This could be achieved by increasing the number of species 

abundance observations over the whole range of existing vegetation stand types 

and linking them to airborne hyperspectral imagery using PLS regression. To 

ensure the success of this method, however, the future work outlined in the 

previous point should be addressed.  
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• This study contributes to the wider ‘Remote asset inspection for transport 

corridor environments’ project. Presently, soil moisture is quantified using a 

TWI calculation applied to a DEM interpolated using IDW. The results of this 

study have shown that the calculation of TWI can be improved by applying it to 

a DEM interpolated using the AunDEM routine and by expressing the metric as 

the natural logarithm. More significantly, this study has shown that vast 

improvements can be made to the accuracy of characterising this parameter if an 

integrated model, using a TWI, potential solar radiation, and mapped Ellenberg 

values, is used. Future work in this project should therefore be directed at 

utilising the integrated model designed in this study to refine the weighted 

assessment of risk. 

7.6 Concluding statement  

Many of the techniques used in this study have been previously developed. The novelty 

here is that often these techniques have not been assessed in the context of 

characterising soil moisture and very few have discussed the applicability to transport 

corridor environments. In addition, this study has examined multiple sources of 

remotely sensed data and thought about novel ways of exploiting the data provided by 

these technologies. In carrying out this work this study has provided a methodology for 

characterising soil moisture with reasonable accuracy at a high spatial resolution over 

vegetated areas, two assets that have so far eluded the remote sensing community. 

 As discussed throughout this thesis, soil moisture is spatially and temporally very 

variable and is therefore difficult to model. As a result, it is important to develop models 

that are informed by a number of sources to help represent the numerous processes that 

govern the distribution of soil moisture. In light of this, a simple statistical model has 

been developed in this study to integrate remotely sensed metrics to provide an 

improved characterisation of soil moisture. The emphasis now is to employ this model 

in the wider ‘Remote asset inspection for transport corridor environments’ project that 

this study contributes to so that improved assessments of instability risk can be made. 

 In Section 6.3 reference was made to a quote from Walker et al. (2004) stating 

the importance of measuring. As a result, the methods developed in this study have the 

potential to benefit a number of different applications including mapping malarial 
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mosquito habitats, precision farming, and mapping species richness. Events during the 

last winter (2009/10) have reiterated the importance of measuring soil moisture in the 

context of slope stability analysis in UK transport corridors. Specifically, in November 

2009 following a period of heavy rainfall there were a number of reports of landslides 

causing disruption, delays and even a derailment on various UK road and railway 

networks (BBC, 2009a; 2009b; 2009c). Fortunately nobody was hurt during these 

events and the only damage caused was economic. However, this reinforces the 

importance of this study to help target areas of potential instability and prevent these 

events occurring.    
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Appendix 1: Flow diagrams of methods  

This appendix provides an extension to the flow diagram of methods shown at the start 

of Chapter 3 (Figure 3.1).  The diagram given in Figure 3.1 (and repeated below) is 

designed to give the reader an overview of the methods used in this study. This includes 

five distinct sections, or work packages, which are labelled: (1) Terrestrial laser 

scanning, (2) field spectroscopy, (3) lidar data, (4) CASI data, and (5) integrated model. 

Following this initial overview, five more flow diagrams are given which provide a 

breakdown of the methods used in each of these distinct sections. All these methods are 

described in Chapter 3 but these diagrams will hopefully provide the reader with a clear 

structure of the methods used in this study to aid repeatability and improve clarity.  
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3. Lidar data 
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4. CASI imagery 
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Appendix 2: Geographically Weighted Regression  

Section 3.2.1.4 refers to a type of locally variable regression known as Geographically 

Weighted Regression (GWR) which may not be familiar to all readers. The following 

provides a description of GWR. 

 The theoretical background to GWR can be explained in terms of the ordinary 

least squares, or global, regression model. This can be defined as: 

 

s � ��h��. . . ��tht � u 

 

where y is the dependent variable, x1 to xp are independent variables, β1 to βp are 

estimated coefficients, and ε is the error term (Wang et al., 2005). GWR allows for the 

estimate of local parameters rather than just the global parameters and can therefore be 

expressed as: 

s � �+�v, w�h��. . . ��j�v, w�hj � u 

 

where β0 is the intercept and (µ, v) represents the coordinates of each observation. 

 In GWR, the parameters are estimated by weighting a contributing point based on 

its proximity to the point of interest. In this way, the weighting of an observation is no 

longer constant, but varies over space, with those observations closer to the point of 

interest having a higher weighting. The parameter estimation can be expressed as: 

 

�n�v, w� � �^x��v, w�^���^x�v, w�s 

 

where, β*(µ,v) is an estimate of β, X is the matrix of independent variables, and W(µ,v) is 

the weigh matrix which ensures that observations closer to the point of interest have 

more influence than those further away (Wang et al., 2005). 

 The model weighting can take the form of a number of different models, 

depending on the type of variable being analysed (Fotheringham et al., 2002). Often a 

Gaussian function with a fixed kernel bandwidth is used (Figure 1). However, this 

approach can be problematic as, by assuming a constant bandwidth across a study area, 

the degree of spatial variation can be exaggerated (Foody, 2003). To overcome this, a 

kernel with an adaptive bandwidth can be employed (Foody, 2003; Fotheringham et al., 
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2002). Here, a bi-square function is used to specify the weight of the jth observation at a 

specific location of interest, regression point i is, 

 

i�y � z1 � {4�y/|}5~5
 when 4�y � | 

i�y � 0 when 4�y � | 

 

where dij is the Euclidian distance between the locations of the sites and b is the kernel 

bandwidth.  

 

Figure 1. Graphical representation of the local neighbourhood, defined by kernel 

bandwidth, over which regression analysis is perform. In this example, the two 

neighbourhoods are of different sizes, meaning the calculation has a kernel with an 

adaptive bandwidth (note that the large circle is located over less dense points 

compared to the smaller circle). The curved lines running from the centre of the two 

neighbourhoods represent the relative weighting used in the regression analysis. In 

this case the weighting is defined by a Gaussian function. 

 

 The kernel bandwidth size can have an important influence on the model. For 

example, where kernel sizes are too big the GWR model can be no different from its 

global equivalent, and where kernels are too small, they may not estimate the 

parameters sufficiently where data is scarce (Wang et al., 2005). To account for this, a 

measure of how well the model fits the data can be made, such as the Akaike 

Information Criterion (AICc), which is used to compare the fit of the GWR model 

against the measure of fit for the global regression model (Foody, 2003). Fotheringham 

et al. (2002) define the AICc as: 
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�� ; � 2� log��Vn� � � log��2<� � � � � � �6�2�
� � 2 � �6�2�� 

 

Where, n is the sample size, σ*  is the estimated standard deviation of the error term (ε), 

and tr(S) is the trace of the hat matrix S (Wang et al., 2005). The c part of AIC refers to 

the fact that the criterion is corrected (Fotheringham et al., 2002). Wang et al. (2005) 

explains as a general rule that the lower the AICc number, the more the estimate 

represents reality. By using this rule, one would expect the AICc value for the GWR 

model to be lower than the value for the global regression model. As part of the GWR 

validation, an F test is performed using the results of the global regression, with the null 

hypothesis being that GWR makes no improvement on the estimation of the 

independent variable (Wang et al., 2005). 
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Appendix 3: Simulation of the CASI sensor 

Spectral reflectance data collected using the ASD field spectroradiometer was used to 

simulate the response from the CASI sensor. This was done using the equations 

provided in Section 3.2.2.4. The following diagram shows how these calculations work 

for hypothetical data. The data used corresponds to CASI band 1. This is centred over 

the wavelength 398 nm and has a spectral range of +/- 4 nm.  

 
1. Calculate the standard deviation (σ) based on the FWHM (Field Width Half 

Maximum) using: 

V � W�XY
2√2 ln 2 

Therefore, 

V � 4
2√2 ln 2 � 1.7 

 

 
2. Calculate the Gaussian point spread function for each wavelength covering the 

spectral range (FWHM) around the band centre 

 

Gaussian PSF �  �^���_`a _b �c
5dc  

 

Where, xi is the wavelength of interest and x0 is the position of the central 

wavelength. For CASI band 1, with a wavelength of 398 nm this corresponds to 

the following values: 
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xi (nm) xo (nm) Gaussian PSF 

394 398 0.06 

395 398 0.21 

396 398 0.50 

397 398 0.84 

398 398 1.00 

399 398 0.84 

400 398 0.50 

401 398 0.21 

402 398 0.06 

 
 

3. The Gaussian point spread function is normalised by dividing by the total of all 

the Gaussian point spread values. The sum of the values in the above table 

equates to 4.23. Therefore the normalised point spread values are: 

 
xi (nm) Normalised PSF 

394 0.01 

395 0.05 

396 0.12 

397 0.20 

398 0.24 

399 0.20 

400 0.12 

401 0.05 

402 0.01 

 
 

4. The normalised point spread function values are then used as a multiplier to 

simulate the response of the CASI sensor from field spectroscopy 

measurements.  An example of this is given below using hypothetical field 

spectroscopy data: 
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xi (nm) Normalised PSF 
Field spectroscopy 

(% reflectance) 
Simulated CASI 

response 

394 0.01 3.70 0.05 

395 0.05 3.76 0.19 

396 0.12 3.73 0.44 

397 0.20 3.85 0.77 

398 0.24 3.86 0.91 

399 0.20 3.67 0.73 

400 0.12 3.65 0.43 

401 0.05 3.73 0.19 

402 0.01 3.87 0.06 

 
 

5. Finally, CASI simulated spectra for the central wavelength 398 nm can be 

calculated by summing the simulated CASI response. For the example above, 

this equates to 3.77%. 

 

This process is repeated for each CASI band to simulate the entire response from the 

CASI sensor. 
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Appendix 4: CASI radiometric correction 

Radiometric calibration of the CASI imagery was carried out by applying the empirical 

line method (Smith and Milton, 1999) to coincidental field spectroscopy measurements 

taken over three 6 x 6 m tarpaulin targets (black, grey and white) (Section 3.3.2). The 

following table shows the regression equations for each band with relative R2 

correlation coefficient:  

 

CASI Band Central 
wavelength (nm) Regression equation R2 correlation 

coefficient 
1 398 y = 0.0072x - 5.7759 1 
2 405 y = 0.0075x - 2.7677 0.9994 
3 413 y = 0.0094x - 4.0857 0.9993 
4 420 y = 0.0109x - 6.2091 0.9999 
5 428 y = 0.0126x - 5.5489 0.9993 
6 435 y = 0.0124x - 5.0131 1 
7 444 y = 0.0113x - 4.6365 0.9994 
8 452 y = 0.01x - 3.0913 0.9999 
9 462 y = 0.0103x - 3.8989 0.9999 

10 471 y = 0.0105x - 3.0749 1 
11 482 y = 0.0105x - 3.0558 0.9998 
12 493 y = 0.0108x - 3.128 0.9999 
13 504 y = 0.011x - 2.7955 0.9997 
14 517 y = 0.0112x - 2.4983 0.9997 
15 530 y = 0.0109x - 2.4335 0.9996 
16 544 y = 0.011x - 2.6015 0.9997 
17 559 y = 0.0112x - 2.326 0.9999 
18 575 y = 0.0118x - 2.2385 0.9998 
19 592 y = 0.0122x - 2.1158 0.9999 
20 610 y = 0.0122x - 2.0664 0.9998 
21 630 y = 0.0126x - 1.6787 0.9999 
22 652 y = 0.0132x - 1.6441 0.9996 
23 675 y = 0.0131x - 1.4088 0.9997 
24 700 y = 0.0149x - 1.6909 0.9998 
25 728 y = 0.0163x - 2.7653 0.9997 
26 758 y = 0.0157x - 3.6425 0.9998 
27 790 y = 0.0143x - 3.7689 0.9997 
28 824 y = 0.018x - 4.1063 0.9997 
29 862 y = 0.0164x - 4.0208 0.9998 
30 901 y = 0.0224x - 3.9166 0.9997 
31 943 y = 0.051x - 4.7153 0.9996 
32 988 y = 0.0254x - 4.5207 0.9997 
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Appendix 5: Modified-Whittaker species sampling 

Species type was recorded over a number of sub plots in order to calculate a species-

abundance curve. The names and occurrence of each species are detailed in Table 1. 

The location and size of the sub plots are identified in Figure 1, which is also referred to 

in Section 3.3.2.1.1. 

 

 

Figure 1. Diagram of the modified-Whittaker plot used to sample vegetation species 

type for construction of a species-area curve. Plot labels refer to the list of species 

name and occurrence reported in Table 1. 
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English name  Latin name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 M1 M2 L1 Total area  
Stinging Nettle Urtica dioica 1 1 1     1  1 1 1  1 
Creeping Thistle Cirsium arvense 1 1   1    1 1 1  1 1 
Cleavers Galium aparine 1       1 1 1 1  1 1 
Bramble Rubus fruticosus agg. 1 1 1        1  1 1 
Heath Bedstraw Galium sterneri  1 1  1 1       1 1 
Red Campion Silene dioica  1 1       1 1   1 
Common Dog Violet Viola riviniana     1  1       1 
Ribwort Plantain Plantago lanceolata     1 1 1    1  1 1 
Birdsfoot Trefoil Lotus corniculatus     1         1 
Tufted Vetch Vicia cracca      1  1  1   1 1 
Common Knapweed Centaurea nigra agg.      1 1      1 1 
Common Sorrel Rumex acetosa      1  1     1 1 
Common Ragwort Senecio jacobaea        1   1  1 1 
Rosebay Willowherb Chamerion angustifolium           1 1 1 1 
Germander Speedwell Veronica chamaedrys            1 1 1 
Elder Sambucus nigra             1 1 
Bracken Pteridium aquilinum             1 1 
Dog Rose Rosa canina             1 1 
Spear Thistle Cirsium vulgare             1 1 
Hawthorn Crataegus monogyna             1 1 
Dandelion Taraxacum officinale             1 1 
Pale Lady's Mantle Alchemilla xanthochlora             1 1 
Meadow Cranesbill Geranium pratense              1 
Ox-eye Daisy Leucanthemum vulgare              1 
Smooth Hawksbeard Crepis capillaris              1 
Field Forgetmenot Myosotis arvensis              1 
Hogweed Heracleum sphondylium              1 
Field Scabious Knautia arvensis              1 
Himalayan Balsam Impatiens glandulifera              1 
Continued overleaf…                
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Great Burnet Sanguisorba officinalis              1 
American Willowherb Epilobium ciliatum              1 
Meadow Foxtail Alopecurus pratensis          1    1 
Common Bent-Grass Agrostis capillaris    1 1 1 1 1 1   1 1 1 
Yorkshire Fog  Holcus lanatus 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Cocksfoot Dactylis glomerata      1 1 1 1   1 1 1 
 Total 5 6 5 2 7 8 6 8 5 7 9 6 21 35 

 
Table 1. List of plant species found in the modified-Whittaker plot. Location and size of the plots are reported in Figure 1. 
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Appendix 6: Species abundance sampling for Ellenberg values 

Species abundance was sampled in 96 quadrats measuring 1 x 1 m. This data was used 

to calculate weighted average Ellenberg values for each site. Table 1 shows a list of all 

the plant species recorded and their corresponding Ellenberg value for the indication of 

soil moisture. Higher values corresponding to higher wetness. 

 

English name Latin name  Ellenberg value 

American Willowherb Epilobium ciliatum  6 

Betony Stachys arvensis  5 

Birdsfoot Trefoil Lotus corniculatus  4 

Bracken Pteridium aquilinum  5 

Bramble Rubus fruticosus agg.  6 

Brown Bent-Grass Agrostis vinealis  6 

Cleavers Galium aparine  6 

Cocksfoot Dactylis glomerata  5 

Common Bent-Grass Agrostis capillaris  4 

Common Knapweed Centaurea nigra agg.  5 

Common Ragwort Senecio jacobaea  4 

Common Sorrel Rumex acetosa  5 

Common Toadflax Linaria vulgaris  4 

Creeping Buttercup Ranunculus repens  7 

Creeping Thistle Cirsium arvense  6 

Crested Dog's-Tail Cynosurus cristatus  5 

Curled Dock  Rumex Crispus  6 

Daisy Bellis perennis  5 

Dog Rose Rosa canina  5 

Elder Sambucus nigra  5 

False Oat-Grass Arrhenatherum elatius  7 

Field Horsetail Equisetum arvense  6 

Germander Speedwell Veronica chamaedrys  5 

Greater Plantain Plantago major  5 

Hawthorn Crataegus monogyna  5 

Heath Bedstraw Galium sterneri  4 

Himalayan Balsam Impatiens glandulifera  8 

Hogweed Heracleum sphondylium  5 

Lesser Clubmoss Selaginella selaginoides  7 

Lilac  Syringa vulgaris  5 

Ox-eye Daisy Leucanthemum vulgare  4 

Red Campion Silene dioica  6 

Red Dead-Nettle Lamimum purpureum  5 

Continued overleaf… 
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Ribwort Plantain Plantago lanceolata  5 

Rosebay Willowherb Chamerion angustifolium  5 

Rough Chervil Chaerophyllum temulum  5 

Spear Thistle Cirsium vulgare  5 

Square-stalked St. John's Wort Hypericum tetrapterum  8 

Stinging Nettle Urtica dioica  6 

Tall Fescue Festuca arundinacea  6 

Tufted Vetch Vicia cracca  6 

White Campion Silene latifolia  4 

White Clover Trifolium repens  5 

White Dead-Thistle Lamimum album  5 

Yorkshire Fog  Holcus lanatus  6 

 
Table 1. List of plant species identified in the quadrats used for determining species 

abundance to calculate weighted average Ellenberg value. 


