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Abstract 

In the arthritides, the breakdown of articular cartilage and the erosion of subchondral 

bone lead to loss of efficient joint function. Matrix metalloproteinases (MMPs) can 

collectively degrade the extracellular matrix of cartilage, and have been strongly 

implicated in cartilage destruction. MMPs are produced as inactive precursors requiring 

activation. Addition of interleukin-1 (IL-1) and oncostatin M (OSM) to bovine cartilage 

in explant culture results in a synergistic loss of the collagen matrix, accompanied by a 

dramatic increase in pro-MMP synthesis and activation. Increasing evidence implicates 

serine proteinases in pathologic tissue turnover and the transmembrane serine proteases 

fibroblast activation protein-α (FAPα), dipeptidyl peptidase IV (DPPIV) and matriptase 

were recently found to be up-regulated in osteoarthritic (OA) cartilage compared to 

normal cartilage. The aim of this work was to identify whether these transmembrane 

serine proteases have roles in cartilage collagen breakdown. 

Inhibition of IL-1+OSM-mediated collagen breakdown was not observed using 

selective FAPα inhibitors, indicating that FAPα enzyme activity per se plays no direct 

role in collagen breakdown. In contrast, DPPIV inhibition showed significant protection 

of IL-1+OSM-mediated collagen breakdown. However, the mechanism of action of 

DPPIV remains to be elucidated. 

Matriptase was demonstrated to activate pro-MMPs as well as induce MMP expression 

in OA cartilage via protease-activated receptor 2 activation. This makes matriptase a 

key protease in the pathology of OA.  

Overall, this study has identified matriptase as a key serine protease in OA pathology 

and confirmed a potential role for DPPIV in cytokine-mediated cartilage degradation. 

These findings support the need for further research in order that therapeutic 

interventions targeting these enzymes may be realised. 
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CHAPTER 1 

Introduction 

1.1 Cartilage 

Cartilage is a highly specialised connective tissue, which falls into the following three 

distinct categories: elastic; fibro-cartilage and hyaline. The composition of the cartilage 

matrix thereby determines its classification. Articular cartilage, a specialised form of 

hyaline cartilage, is found covering the ends of long bones in all synovial joint cavities. 

Articular cartilage is a unique connective tissue as it is both aneural and avascular 

(Martel-Pelletier et al., 2008, Kuettner, 1992). It contains only one cell type, the 

chondrocyte (section 1.1.1), that maintains the large extracellular matrix (ECM) 

network of the tissue. The ECM is primarily composed of proteoglycans (section 1.1.2) 

and collagens (section 1.1.3) but other minor matrix components are also present 

(section 1.1.4) (Bhosale and Richardson, 2008). 

Adult articular cartilage displays a zonal architecture (Ikemefuna et al., 2009) (Figure 

1.1). The zones are distinguished according to their differing morphologies and 

comprise: 

 The superficial zone; 

 The middle (or transitional) zone; 

 The deep (or radial) zone; 

 The calcified zone. 
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Figure 1.1 Zonal architecture of articular cartilage.  

Cross-section of cartilage showing the transition from the articular surface to the 

subchondral bone. Adapted from Newman (1998). 

 

The superficial zone is exposed to the synovium and represents the thinnest layer of the 

cartilage. This zone has the highest rate of collagen synthesis in the entire tissue and its 

chondrocytes are small and flattened surrounded by a matrix composed of thin collagen 

fibres and little aggrecan. The transitional zone has an extensive ECM composed of 

aggrecan and large collagen fibres. Here, the chondrocytes are less abundant and exhibit 

a spherical morphology (Bhosale and Richardson, 2008, Ikemefuna et al., 2009). In the 

radial zone, the chondrocytes are arranged in parallel to the collagen fibres (Martel-

Pelletier et al., 2008) and appear to form columns. The proteoglycan content here is the 

highest in the whole tissue but its cell density is the lowest. The calcified zone contains 

a small volume of cells embedded in a calcified matrix and displays low metabolic 

activity (Bhosale and Richardson, 2008, Ikemefuna et al., 2009). The chondrocytes in 

this zone display a hypertrophic phenotype, with the synthesis of type X collagen being 
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the classical marker. The large amount of collagen X in this zone confers structural 

integrity and transition to the subchondral bone by penetrating into the calcified zone, 

thereby anchoring the articular cartilage to the subchondral bone (Martel-Pelletier et al., 

2008).  

This organisation of the macromolecules enables normal, healthy articular cartilage to 

sustain extremely high pressures of up to 10 MPa (Kerin et al., 2002). 

1.1.1 Chondrocytes 

Chondrocytes are responsible for the maintenance of the cartilage matrix and have a 

high rate of metabolism. However, due to the hypocellular nature of cartilage, the 

overall metabolism of the tissue is quite low (Mankin, 1982), and due to the avascular 

nature of cartilage, chondrocytes rely on diffusion of oxygen from the synovial tissue 

(Coimbra et al., 2004, Muir, 1995). Therefore, chondrocytes must rely on anaerobic 

metabolism. Chondrocytes are known to be encapsulated within a pericellular 

environment, termed the chondron (Poole, 1997). Within the chondron, the 

chondrocytes are anchored to the type II collagen network by type VI collagen (Aigner 

and Stove, 2003). The pericellular environment is composed of two different layers: a 

glycocalyx, providing attachment for the chondrocyte, and fibrillar capsule, providing 

attachment for the ECM. The embedding of chondrocytes within this environment is 

thought to protect them from the high compression strengths in the joint during 

movement. However, the compressive force does affect cell metabolism (Urban, 1994) 

and excessive pressures to the cartilage can result in homeostatic imbalance and leads to 

cartilage degradation. 

1.1.2 Proteoglycans 

Proteoglycans are composed of a central protein core with numerous covalently 

attached glycosaminoglycan (GAG) chains. The GAG chains confer the biological 
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function of proteoglycans as their distinct physio-chemical properties provide hydration 

and swelling pressure (Gentili and Cancedda, 2009).  

The major proteoglycan found in articulating cartilage is aggrecan (Martel-Pelletier et 

al., 2008). Aggrecan has a large protein core (230 kDa) to which numerous GAGs and 

N-linked and O-linked oligosaccharide chains are covalently attached. The main GAGs 

are keratan sulphate and chondroitin sulphate. Keratan sulphate is a multi-repeat dimer 

of N-acetylglucosamine-galactose and chondroitin sulphate is a multi-repeat dimer of 

N-acetylgalactosamine-glucuronic acid (Kuettner, 1992). The protein core consists of 

three distinct globular domains, G1, G2 and G3 (Figure 1.2), which are stabilised by 

disulphide bridges. The G1 and G2 domains are located near the N-terminus and 

connected via a short interglobular domain, while the G3 domain is near the C-terminus 

and separated from the G2 domain by a long GAG attachment region. The G1 domain 

interacts non-covalently with hyaluronic acid (HA) and link protein (Martel-Pelletier et 

al., 2008) and the G3 domain is essential for the post-translational modification and 

secretion of aggrecan. The function of the G2 domain has yet to be elucidated. 

The proteoglycan content of the joint can also facilitate signalling in the joint (Gentili 

and Cancedda, 2009), as heparin sulphate can bind to a number of signalling molecules, 

including fibroblast growth factors and transforming growth factor-β (TGF-β) 1.  
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Figure 1.2 Structure of aggrecan.  

Protein structure of aggrecan showing a simplified depiction of the domain organization 

and glycosaminoglycan attachment areas. CS, chondroitin sulphate; KS, keratin 

sulphate; Ig, immunoglobulin. Adapted from Kiani et al. (2002). 

 

1.1.3 Collagens 

Collagens make up a family of closely related but distinct fibrous proteins (Gentili and 

Cancedda, 2009). There are more than 30 genes encoding collagen proteins and 

collagen-like proteins. Collagen is the predominant protein found in mammals, 

constituting the structural components of tissues and organs.  

Collagen proteins form a wide array of different structures, such as fibrils (type I, II, III) 

(Kolacna et al., 2007) and network-like sheets (type IV) (Jamshid et al., 2008). The 

characteristic amino acid sequence is Gly-Xaa-Yaa, where Xaa is proline every third 

residue and Yaa is hydroxyproline every seventh residue. The presence of glycine in 

this tri-peptide repeat helps to stabilise the collagen fibrils as it faces the interior of the 

helix, as the side chain of glycine is short and allows for tight association between the 

G1 G2 G3

CS chains

O-linked oligosaccharide

KS chains

N-linked oligosaccharide

Ig domain
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fibrils. Hydroxyproline residues help to stabilise the polypeptide chains and are critical 

to collagen formation (Kolacna et al., 2007).  

Type II collagen is the major fibrillar collagen found in articular cartilage. It is 

synthesised intracellularly as pro-α-chains which contain large pro-peptides at the N- 

and C-termini. These pro-peptides are separated from the central helix forming region 

by telopeptides and are essential for trimerisation of the pro-α-chains. Subsequently, this 

trimer is secreted from the chondrocyte and the pro-peptides are removed by 

proteolysis. The trimeric α-chains are then assembled into large collagen fibrils by 

covalent cross-linking in the telopeptide regions (Figure 1.3) (Martel-Pelletier et al., 

2008). 

Other collagen types, type IX, X and XI, co-exist with type II collagen in the 

articulating joint. Type IX is a member of the fibril-associated collagen with interrupted 

triple helix (FACIT) family of collagens and is cartilage specific. It does not form a 

fibril itself, but is found at the interface of type II/type XI fibrils. Collagen IX fibrils are 

thought to bridge the collagen network to the glycosaminoglycan network (Martel-

Pelletier et al., 2008). Type IX collagen can have chondroitin sulphate attached to the α2 

chain, and is sometimes thought of as a proteoglycan. 

Type XI collagen is another fibrillar collagen and is also cartilage specific. It is 

synthesised and secreted in a similar manner as type II collagen, except here only the C-

terminal pro-peptide is removed. Type XI collagens do not form their own unique 

fibrils, but associate with type II collagen molecules to form heterotypic fibrils. Type XI 

collagen is predominantly found in the thin fibrils of the pericellular network.  
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Figure 1.3 Collagen fibril formation.  

Collagen pro-α-chains from trimers intracellularly and are then secreted into the 

extracellular space and proteolytically cleaved. The trimers then assemble into large 

fibrils which are stabilised by cross-linking. The crosslinking is initiated by the 

oxidative deamination between lysine and hydroxylysine resides Adapted from Kadler 

et al. (1996). 

 

Type X collagen is termed a short chain collagen and its fibril is composed of 

homotrimeric α1(X) chains (Chan et al., 1995, Schmid and Linsenmayer, 1983). As 

mentioned earlier, the hypertrophic zone of the cartilage is rich in type X collagen, 

which confers both structural integrity and a transition to the subchondral bone. The 

expression of type X collagen is closely associated with hypertrophic chondrocytes and 

is often used as a marker for their presence in this zone (van der Kraan et al., 2001). 

Furthermore, it is postulated that type X collagen plays a role in cartilage mineralisation 

(Gibson and Flint, 1985). This may be due to the open lattice structure that type X 
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collagen adopts that permits vascular invasion, calcification, and remodelling to proceed 

to the next phase of bone development (Kwan et al., 1991). 

1.1.4 Non-aggregating proteins 

Biglycan, fibromodulin and decorin are examples of non-aggregating proteoglycans 

found in articular cartilage (Kuettner, 1992, Gentili and Cancedda, 2009). They share a 

similar protein structure but differ in their GAG composition. Biglycan possesses two 

dermetan sulphate side chains, whereas decorin contains one. In contrast, fibromodulin 

contains multiple keratin sulphate chains attached to the protein core. Biglycan, 

fibromodulin and decorin are characterised by their ability to interact with collagen 

proteins. Biglycan is found in the pericellular matrix and binds type VI collagen, while 

decorin and fibromodulin both bind to the type II collagen fibrils (Kuettner, 1992).  

HA is a non-sulphated GAG and the size of the HA molecules in the joint decrease with 

age (Martin and Buckwalter, 2001). As HA binds aggrecan molecules (section 1.1.2) 

and this helps to attract water into the joint after the application of a compressive load to 

the cartilage, a decrease in the size of HA results in decreased water content in the joint. 

Link protein has a structure that is analogous to the G1 domain of aggrecan. It plays a 

number of key roles in cartilage such as the binding of aggrecan to the HA filaments 

and the protection of HA from degradation. Cleavage of link protein generates the LP3 

isoform, which can act as a growth factor to promote matrix production (Martel-

Pelletier et al., 2008). 

1.2 Arthritis 

1.2.1 Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a disease characterised by systemic activation of the 

immune system, which is possibly initiated by the recognition of auto-antigens (de 
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Vries et al., 2005). Typically, RA affects about 1% of the population at a ratio of 3:1 

(female:male) and disease presentation usually occurs at the ages of 30 to 50 years 

(Majithia and Geraci, 2007). 

One of the distinguishing features of RA is the increase in the number of invasive cells 

into the joint space. There is increased thickening of the synovial lining by peripheral 

blood T cells, activated macrophages, B cells and synovial fibroblasts (Lundy et al., 

2007, Mauri and Ehrenstein, 2007, Lutzky et al., 2007, Muller-Ladner et al., 2007, 

Kinne et al., 2007). The synovial fibroblast is thought to instigate the major pathways 

that lead to joint destruction by producing inflammatory cytokines, such as interleukin-1 

(IL-1) and interleukin-6 (IL-6) (Chiu et al., 2008). The chronic activation of the immune 

system in the joint space leads to the release of inflammatory cytokines, such as IL-1 

and oncostatin M (OSM), which have been shown to synergistically increase levels of 

the matrix metalloproteases (MMPs), such as MMP-1 (Cawston et al., 1998). A further 

distinct feature of RA is the formation of locally invasive tissue, termed pannus, from 

synovial tissue. The pannus has a high level of MMP expression and invades the 

cartilage and subchondral bone, causing permanent tissue impairment (Lee and 

Weinblatt, 2001). 

1.2.2 Osteoarthritis 

Osteoarthritis (OA) is the most common form of arthritis, affecting the majority of 

individuals over the age of 65 years. However, it is a disease that is not just a disorder 

of the articular cartilage but affects most of the major tissues of the joint. The 

subchondral bone shows increased invasion into the tidemark of the cartilage and results 

in thinning of cartilage. This increased ossification in the subchondral bone is thought to 

occur due to reactivation of the secondary centre of ossification (Brandt et al., 2006). 

Cartilage damage in OA is thought to occur due to a number of different reasons such as 
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ageing, genetic factors as well as excessive loading. The degeneration of cartilage 

occurs due to an imbalance between the anabolic and catabolic pathways. Excessive 

loading of cartilage can cause increased collagen degradation and up-regulation of 

MMPs. This increase in the levels of MMPs leads to an increase in the turnover rate of 

the cartilage matrix. However, type II collagen gene expression in OA is shown to be 

up-regulated in the late stages of the disease, indicating that anabolism does occur, in an 

attempt to repair the damage (Goldring and Goldring, 2007). Nevertheless, the damage 

to the collagen network is irreversible at this point, as the chondrocyte cannot replicate 

the complex network as it did during development. 

1.3 Cytokines 

Cytokines are soluble or cell surface anchored molecules that play an essential role in 

mediating cell-cell interactions. Cytokines generally act through autocrine, juxtacrine 

and paracrine signalling by binding their specific receptors. They are important 

mediators and regulators of inflammation and cartilage degradation in the arthritides 

(Table 1.1) (Goldring and Goldring, 2004). In RA, the chronic inflammation results in 

an increased concentration of cytokines in the joint space. The cytokines can then 

interact with synovial fibroblasts or diffuse through the synovial fluid to the cartilage 

and cause an increase in the release of catabolic factors. 

  



11 
 

Catabolic Anti-inflammatory Anabolic 

IL-1 IL-4 Insulin-like growth factor-1 

Tumour necrosis factor-α IL-10 TGF-β1, 2, 3 

IL-17 IL-1 receptor antagonist Bone morphogenetic protein-2 

IL-18 

 

  

OSM 

 

  

IL-6     

Table 1.1 Classification of cytokines implicated in the modulation of chondrocyte 

metabolism. Adapted from Goldring and Goldring 2004. 

 

1.3.1 Interleukin-1 

The IL-1 family currently comprises of 11 structurally similar members with IL-1α and 

IL-1β being the best characterised members of the family (Kalliolias and C Liossis, 

2008). IL-1α and IL-1β are both synthesised as an inactive pro-form in the cytoplasm.  

IL-1α is then sequestered to the plasma membrane or the nucleus. IL-1β is processed at 

the plasma membrane by IL-1β converting enzyme (ICE) and secreted as the active 

protein. Only pro-IL-1α and the mature forms of IL-1α and IL-1β have biological 

activity.  

There are two specific IL-1 receptors, IL-1RI and IL-1RII, and both IL-1α and IL-1β 

can bind to them. IL-1RI is the biologically active receptor and contains a long 

cytoplasmic domain. Activation of IL-1RI by IL-1α or IL-1β results in the initiation of a 

number of pathways, such as the mitogen-activated protein kinase (MAPK) pathways. 

In contrast, IL-1RII is biologically inert and found on the cell surface as well as a 

soluble receptor (Arend, 2002). Henceforth all references pertaining to IL-1 will refer to 

IL-1α. 
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Numerous different groups have described involvement of IL-1 in arthritis (David et al., 

1985, Nobuyuki et al., 1988). IL-1 is secreted by a number of different cells within the 

joint space in arthritis (Cinzia et al., 1998). In RA, it is the synovial lining which is the 

major source of IL-1 production and conversely, cartilage is the major source of IL-1 

production in OA.  

Stimulation of chondrocytes with IL-1 results in the induction of a number of different 

pro-inflammatory mediators, such as IL-6 and leukaemia inhibitory factor (LIF) 

(Barksby et al., 2006). These data suggest that IL-1 is an important catabolic mediator 

in arthritic diseases. 

1.3.2 Oncostatin M 

OSM is a 28 kDa protein and belongs to the IL-6 family of cytokines (Pelletier and 

Martel-Pelletier, 2003). It is described to play an important role in the progression of 

RA. The addition of OSM to IL-1 or tumour necrosis factor-α (TNF-α) treated cartilage 

causes a reproducible increase in collagen release (Cawston et al., 1998, Hui et al., 

2003b). Interestingly, when OSM is added in combination with IL-1 there is a 

synergistic increase in collagen release and gene induction (Barksby et al., 2006, 

Morgan et al., 2006). Other members, such as IL-6 and LIF, cannot synergise directly 

with IL-1 as only the OSM-specific receptor is expressed on the surface of the 

chondrocyte (Rowan et al., 2001). However, the addition of soluble IL-6 receptor in 

combination with IL-6 does exhibit the same effect as the addition of OSM to IL-1 

treated cartilage. Elevated levels of IL-6 and sIL-6R have been documented in various 

arthritides, including RA (Houssiau et al., 1988, Robak et al., 1998). 

1.3.3 TGF-β 

The TGF-β superfamily consists of over 30 members and includes TGF-βs, activins and 

bone morphogenic proteins. There are three TGF-β isotypes in humans, called β1, β2 
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and β3, and all three isoforms are produced as inactive dimers (de Caestecker, 2004, 

Todorovic et al., 2005) and consist of the core TGF-β protein and pro-peptide, also 

known as latency-associated peptide. The mechanism of physiological activation of 

TGF-β has yet to be fully elucidated, although proteolytic cleavage and integrin-specific 

activation have been implicated (Saharinen et al., 1999, Wipff and Hinz, 2008). Active 

TGF-β can then bind its receptors and activate a number of different signalling 

pathways, including c-Jun N-terminal kinase (JNK) (van der Kraan et al., 2009). 

Historically, TGF-β has an anabolic role in cartilage (Table 1.1) as TGF-β activation 

stimulates ECM production and can counteract both TNF-α and IL-1 induced gene 

induction (Hui et al., 2001). However, recent evidence shows that TGF-β can cause 

significant MMP-13 up-regulation in aging cartilage (Blaney Davidson et al., 2009). 

This is due to a decrease in activin-like kinase (ALK) 5 receptor levels in aging 

cartilage, whereas ALK1 levels remain constant. Signalling through ALK1 leads to 

Smad1/5/8 activation and this leads to MMP-13 gene expression, but ALK5 stimulation 

leads to increased expression of cartilage matrix genes. 

1.4 Proteases 

Proteases are enzymes that hydrolyse the peptide bonds linking the amino acids in the 

polypeptide chain. Proteases are involved in a number of processes such as protein 

catabolism and specific protein cleavage. 

Based upon their catalytic mechanism, proteases can be classified into five distinct 

categories: 

 Serine; 

 Threonine; 

 Metallo; 
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 Aspartic; 

 Cysteine 

These five classes are implicated to be involved in arthritis with cysteine, aspartic and 

threonine proteases contributing to matrix degradation through intracellular pathways. 

Recently, intracellular uptake and lysosomal targeting of type II collagen has been 

characterised and using E64d, a broad spectrum cysteine protease inhibitor, caused 

collagen accumulation in lysosomes (Kjoller et al., 2004). Furthermore, cathepsin K, a 

novel cysteine collagenase, has been identified as a protease in the pathology of arthritis 

(Dejica et al., 2008), although the actual contribution of cathepsin K to cartilage 

catabolism in vivo has yet to be fully elucidated. 

Metallo- and serine proteases contribute to matrix degradation in the extracellular space 

(Cawston and Young, 2010). 

1.5 Matrix metalloproteases 

The MMPs are members of the metalloprotease family and utilise a divalent zinc cation 

to catalyse the hydrolysis of peptide bonds (Bode et al., 1993). There are 28 vertebrate 

MMP genes known to date and all MMPs share common features (Figure 1.4) 

(Sternlicht and Werb, 2001). Some of these common features include: 

 Synthesis as zymogens, with activation requiring removal of the pro-domain; 

 Cysteine switch motif PRGC(V/N)PD in the pro-domain (Nagase and Woessner, 

1999); 

 Zinc binding motif HEXXHXXGXXHS in the catalytic domain. 

1.5.1 MMP Structure 

The MMP domain structures are shown in Figure 1.4. 



 

Figure 1.4 Domain structures of matrix metalloproteinases (MMPs).  

All MMPs have a catalytic domain, which also contains the zinc-binding motif, and pro-peptide that ensures latency. Some contain a furin recognition 

motif (Fu) that specifically allows for intracellular activation by furin-like proteases . Apart from MMP-7, -23 and -26 all contain a haemopexin domain 

which determines substrate specificity and is connected by a flexible hinge domain. Other domains include the fibronectin-like domains (F) and the 

vitronectin-like domain (V). Some MMPs are anchored to the cell surface through either a TM with cytoplasmic tail (Cyt) or a GPI anchor. MMP-23 is 

structurally unique as it contains a N-terminal TM (actually an N-terminal signal anchor), a cysteine array (CA) and a immunoglobulin-like domain (Ig-

like). Modified from Cawston and Wilson (2006). 
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The pre-domain encodes a signal peptide region that targets the protein for secretion and 

is removed shortly before the MMPs are secreted (Sternlicht and Werb, 2001). 

The pro-domain is up to 90 amino acids in length and contains the conserved 

PRGC(V/N)PD sequence. This motif is conserved between all MMPs with the 

exception of MMP-23, which has the sequence ALCLLPA instead (Velasco et al., 

1999). The Cys residue in these sequences is termed the cysteine switch and stably 

interacts with the catalytic zinc ion to maintain latency of pro-MMPs (Nagase and 

Woessner, 1999, Sternlicht and Werb, 2001). MMP-11, MMP-14, MMP-15, MMP-16, 

MMP-17, MMP-23, MMP-24, MMP-25, and MMP-28 contain a pro-protein processing 

motif RXKR in their pro-domain (Milner et al., 2008). This sequence can be cleaved 

intracellularly by pro-protein convertases resulting in the secretion of active MMPs 

(Kang et al., 2002). 

The catalytic domain contains the zinc binding motif, HEXXHXXGXXHS in MMPs, 

and a conserved Met residue, which forms a Met-turn structure (Bode et al., 1993). This 

domain also contains an extra zinc ion and three calcium ions that are essential for 

stability, structure and secretion of the MMP (Iyer et al., 2007). MMP-2 and -9 are 

unique as their catalytic domains contain three repeats homologous to the type II 

domains of fibronectin (Steffensen et al., 1995). These repeats allow for high affinity 

binding of collagens and help to localise them to the ECM. 

With the exception of MMP-7, -26 and -23, all MMPs possess a C-terminal haemopexin 

domain. This domain is composed of a calcium linked four bladed β-propeller structure 

in which each blade consists of four anti-parallel β-strands and a single α-helix (Gomis-

Rüth et al., 1996). It was demonstrated that without the haemopexin domain, MMP-1 

lost its collagenolytic ability but otherwise retained other substrate specificity. Instead 
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of a haemopexin domain, MMP-23 possesses a cysteine array, but attempts to 

characterise its substrate specificity have failed so far (Velasco et al., 1999). 

1.5.2 Collagenases 

The enzymatic degradation of the native collagen triple helix, at neutral pH, was 

demonstrated in the resorbing tadpole tail (Gross and Lapiere, 1962). The “classical” 

collagenases, MMP-1, MMP-8 and MMP-13, are mainly described to cleave fibrillar 

collagen, such as type II collagen, in vivo. All three of these collagenase genes are 

expressed in arthritic cartilage (Boris et al., 1997, Lynne et al., 2001). The key defining 

feature of the collagenases is their ability to cleave the collagen triple helix at a specific 

site, about a quarter length in from the C-terminus (Highberger et al., 1979). 

MMP-1, also known as collagenase-1, fibroblast collagenase or interstitial collagenase, 

has been purified from joint tissues (Cawston and Tyler, 1979, Okada et al., 1986) and 

synovial fluid from arthritic patients (Cawston et al., 1984). As MMP-1 is expressed by 

a number of cells within the joint, it is thought to be mainly associated with RA 

(Murphy et al., 2002). MMP-1 preferentially cleaves type I collagen then type III, with 

type II collagen degradation being the slowest (Welgus et al., 1981).  

MMP-8, also known as collagenase-2 and neutrophil collagenase, was originally 

thought to be only expressed in human neutrophil precursors. However, it has now been 

shown that a number of cells, such as chondrocytes and plasma cells, produce MMP-8 

(Van Lint and Libert, 2006). MMP-8 shows the same preference for collagen cleavage 

as MMP-1 (Hasty et al., 1987). 

MMP-13, also known as collagenase-3, was originally identified from a breast 

carcinoma cDNA library (Freije et al., 1994). MMP-13 expression is mostly restricted 

to chondrocytes and is therefore thought to drive disease progression in OA, where 

cartilage degradation is mainly chondrocyte driven (Murphy et al., 2002). Biochemical 
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characterisation of MMP-13 activity has shown that it preferentially cleaves type II 

collagen over type I and type III (Knäuper et al., 1996). 

1.5.3 Stromelysins 

There are three human stromelysins, MMP-3 (stromelysin-1), MMP-10 (stromelysin-2) 

and MMP-11 (stromelysin-3) (Sternlicht and Werb, 2001). MMP-3 was first identified 

as a proteoglycanase from rabbit bone culture. It was later shown that MMP-3 can also 

degrade other matrix components such as fibronectin and type IV collagen but not 

fibrillar collagens such as type I collagen (Murphy et al., 1981, Galloway et al., 1983). 

MMP-3 is able to activate all three collagenases in vitro (Ito and Nagase, 1988, Suzuki 

et al., 1990, Knäuper et al., 1996) to a “superactive” form (Windsor et al., 1993). 

MMP-10 was thought to be differentially regulated in regards to MMP-3 (Bord et al., 

1998). However, in normal cartilage MMP-3 and -10 are co-expressed and their 

expression is decreased in OA (Kevorkian et al., 2004). MMP-10 has substrate 

specificity similar to MMP-3 (Fosang et al., 1991, Busso et al., 1998). 

The third member of the stromelysin family, MMP-11, has a structure which is slightly 

different as it contains a furin recognition site (Figure 1.4). Like other MMPs, it is 

expressed during wound healing and development (Lefebvre et al., 1995, Okada et al., 

1997), but differs from the other stromelysins in its substrate specificity, as it is unable 

of cleaving the ECM (Noël et al., 1995). MMP-11 can cleave other proteins found in the 

extracellular compartment, such as serpins (Pei et al., 1994), implicating that it has an 

indirect role in ECM degradation by increasing the activity of other proteases. 

1.5.4 Regulation of MMP activity 

The significant role MMPs have in many biological processes, from wound healing 

through to tumour metastasis and cartilage matrix degradation indicates that their 

activity needs to be highly regulated. MMP activity is regulated at several levels from 
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transcription through to their activity in the ECM. Firstly, MMPs are inducible genes, 

whose expression is tightly regulated by pro- and anti-inflammatory cytokines and 

growth factors (Rowan, 2001) and ECM interactions, for example type I collagen 

binding to integrins can induce MMP-1 expression (Vogel et al., 1997). Secondly, the 

majority of MMPs are then secreted from the cell in their latent form and require 

activation (Figure 1.5). MMPs can be activated by previously activated MMPs in the 

ECM as well as a number of serine proteases (Milner et al., 2008). MMP activation can 

also be achieved in vitro by a number of different chemicals, such as organomercurial 

compounds (Van Wart and Birkedal-Hansen, 1990). Finally, MMP activity can be 

regulated by their interaction with endogenous inhibitors, tissue inhibitors of 

metalloproteases (TIMPs), and α2-macroglobulin (Visse and Nagase, 2003, 

Tchetverikov et al., 2003). 

 

Figure 1.5 Stepwise activation of MMPs.  

Pro-MMPs can be activated by proteases (top pathway) or nonproteolytic agents 

(bottom pathway). Cleavage within the bait region by proteases partially activates the 

MMP. Chemical activation relies on modification of the cysteine switch sulfhydryl 

(SX), resulting in partial activation of the MMP and intramolecular cleavage of the 

propeptide. In either pathway, full activation is attained by complete removal of the pro-

domain y intermolecular processing. Adapted from Visse and Nagase (2003).  
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1.5.5 Tissue inhibitors of metalloproteases 

TIMPs are the endogenous inhibitors of MMP enzymes and to date four TIMP 

homologues (TIMP-1, -2, -3 and -4) have been identified. TIMPs are small proteins 

(between 21 to 30 kDa) and inhibit MMPs in a 1:1 stoichiometry. All TIMPs inhibit all 

tested MMPs, with the exception of TIMP-1 that cannot inhibit MMP-14. TIMP-3 is 

unique in the fact that it can inhibit ADAMs as well as MMPs (Sternlicht and Werb, 

2001). 

In addition to their MMP inhibitory activity, TIMPs exhibit other biological functions. 

For example, TIMP-1 caused increased erythroid cell growth (Chesler et al., 1995). 

TIMP-2 overexpression in smooth muscle cells caused a decrease in proliferation while 

TIMP-3 overexpression results in apoptosis of these cells (Baker et al., 1998). 

1.6 Serine proteases 

Serine proteases belong to the protease family that causes peptide bond hydrolysis 

through a serine residue in their active site. Serine proteases play a role in a number of 

biological processes such as inflammation, blood clotting and cell signalling as well as 

digestion. The active site of serine proteases contain the so-called “catalytic triad” 

(Sigler et al., 1968, Blow et al., 1969, Steitz et al., 1969) which consists of a conserved 

group of three amino acid residues; serine, histidine and aspartic acid. The mechanism 

of hydrolysis involves the carboxyl group of the aspartic acid and the nitrogen of the 

histidine side chain accepting the hydrogen of the active site serine. This increases the 

electronegativity of the oxygen atom in the hydroxyl group; enabling the nucleophilic 

attack of the peptide bond. Recently, research has turned to how serine proteases can 

modulate their local environment through their proteolytic activity.  
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1.6.1 Classification of serine proteases 

The sequencing of the human genome revealed that there are over one hundred and 

seventy serine proteases (Quesada et al., 2009). Not all of these proteases share a 

chymotrypsin-like serine protease fold. In fact, the differences can range from slight 

changes to the amino acids surrounding the active site serine to different catalytic triads 

(Ekici et al., 2008). For this reason serine proteases have been classified into families or 

groups of related families (often termed “clans”) (Rawlings and Barrett, 1993). This 

classification is based upon two major criteria: 

 Evolutionary divergence in catalytic activity; 

 Convergence from separate evolutionary lines. 

Previous to this classification standard it was thought that serine endopeptidases 

belonged to either the chymotrypsin family or the subtilisin family. However, the 

rigorous standards used in classifying peptidases to these criteria highlighted that there 

are a large number of distinct serine endopeptidase families. 

1.6.2 Serine protease activity in cartilage degradation 

Early evidence showed that the MMP enzymes were directly responsible for the 

breakdown of the collagen network in articular cartilage (Cawston, 1996). At that time, 

the development of broad-spectrum MMP inhibitors was thought to be a promising 

therapeutic intervention in the arthritides. However, clinical trials identified 

musculoskeletal side-effects in patients taking these inhibitors (Nemunaitis et al., 1998) 

and led to their withdrawal from the clinic. 

Bovine nasal cartilage (BNC) has been used as a model of healthy cartilage. When 

cultured in the presence of IL-1+OSM, there is significant degradation of the collagen 

matrix (Cawston et al., 1995). In this model there are substantial levels of pro-
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collagenases by day 7, although activation rarely happens before day 10 in parallel with 

collagen release (Milner et al., 2006a). However, Milner et al. (2001) showed that the 

activation of the pro-collagenases by serine proteases is a critical control point in 

cartilage collagen degradation and highlighted a novel interaction between the serine 

and metalloprotease pathways. Primarily, the addition of plasminogen to IL-1+OSM-

treated BNC showed a significant increase in collagen release at day 7. This collagen 

release was found to be metalloprotease dependent since BB94, a general 

metalloprotease inhibitor, abrogated this release. Conversely, addition of α1-antitrypsin 

(α1-AT) to IL-1+OSM-treated BNC significantly reduced collagen degradation, even if 

α1-AT was only added at day 7 of the culture period. In fact, use of another broad-

spectrum trypsin-like serine protease inhibitor, ACITIC, displayed a similar trend. While 

the data do support that plasmin is a key activator of MMPs, other unknown serine 

proteases are likely to play a greater role since plasminogen is not expressed in this 

model (Dr J. M. Milner, personal communication). 

Furthermore, Milner et al. (2003) show that furin-like enzymes played an important role 

in cartilage collagen breakdown. However, only addition of the furin inhibitor between 

days 0 to 7 protected the collagen network. Addition of the inhibitor after day 7 did not 

have any protective effect on collagen degradation. The data strongly suggest that a 

second serine protease pathway exists in IL-1+OSM-treated cartilage, directly 

influencing MMP activity. 

Both studies strongly implicate soluble serine proteases in cartilage collagen 

degradation. On the other hand, there is evidence in the literature that implicates 

degradation of type II collagen in arthritis originating in the pericellular space, diffusing 

outwards during disease progression (Hollander et al., 1995).  Recently, expression 

profiling between OA and fracture to the neck of femur (NOF) cartilage showed that 46 
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serine protease genes were up-regulated in OA (Swingler et al., 2009) and Milner et al. 

(2006b) highlighted that expression of fibroblast activation protein alpha (FAPα), an 

integral membrane serine proteinase on chondrocyte membranes, is significantly higher 

in OA compared to normal cartilage. Together these reports highlight that 

transmembrane serine proteases could play an important role in pathogenesis as their 

cell surface localisation would support a hypothesis that pericellular degradation is 

initiated by serine proteases. While many of these proteases have been studied in other 

pathologies, such as tumour progression, not all of them have been studied in the 

context of arthritis.  

1.7 Type II transmembrane serine protease family 

Cloning of the enteropeptidase cDNA revealed that it has a similar sequence to hepsin 

(Kitamoto et al., 1994) and led to the subsequent discovery of the other 16 members of 

the type II transmembrane serine protease (TTSP) family. Based on the domain 

structure and phylogenetic analysis of the serine protease domain, TTSPs can be 

separated into four subfamilies (Figure 1.6). 

Members of the TTSP family have a very unique structure with a N-terminal 

transmembrane domain followed by a variable “stem region” and finally a C-terminal 

extracellular serine protease domain of high homology to chymotrypsin (Szabo and 

Bugge, 2008). Analysis of the amino acid sequence of the TTSPs suggests that they are 

synthesised as single chain zymogens and need to be proteolytically cleaved after an 

arginine or lysine residue near the catalytic domain (Szabo and Bugge, 2008). However, 

there is strong evidence for TTSP auto-activation as they show a high preference for 

cleavage after an arginine or lysine residue (see section 1.7.2). 
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Figure 1.6 Domain structure of the human TTSP family.  

TTSPs are grouped into four subfamilies based on domain structure and phylogenetic 

analysis of the serine protease domains. All members of this family contain a 

transmembrane domain and serine protease domain. Other domains include CUB, 

C1s/C1r urchin embryonic growth factor and bone morphogenetic protein-1 domain; 

FRZ, frizzled domain; LDLA, low-density lipoprotein receptor domain class A; MAM, 

a merpin, A5 antigen and receptor protein phosphatase µ domain; SEA, a single sea 

urchin sperm protein, enteropeptidase, agrin domain; SR, scavenger receptor cysteine-

rich domain. Adapted from Choi et al. (2009). 
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1.7.1 Matriptase  

Matriptase-1 (matriptase) is a TTSP, first identified as a secreted enzyme from breast 

cancer cells (Shi et al., 1993). Further characterisation showed that matriptase is a multi-

domain transmembrane serine protease that can degrade ECM (Lin et al., 1999, Lin et 

al., 1997). 

1.7.1.1 Matriptase structure 

The intracellular region of matriptase is fifty-four amino acids in length and, in 

conjunction with the transmembrane region, is postulated to associate with the 

cytoskeleton to help localise matriptase on the cell surface (Lin et al., 1997, Takeuchi et 

al., 2000). The cytoplasmic region of matriptase also contains consensus 

phosphorylation sites for protein kinase C and/or casein kinase II (Hooper et al., 2001). 

However, the role of this phosphorylation has yet to be determined. The extracellular 

region contains the serine protease domain as well as four low density lipoprotein 

(LDL) receptor domains, two Cls/Clr, urchin embryonic growth factor and bone 

morphogenic
 
protein 1 (CUB) domains and a sea urchin sperm protein, enterokinase,

 

agrin (SEA) domain (Figure 1.6) (Hooper et al., 2001). The LDLR and CUB domains 

are thought to be associated with protein-protein interactions on the cell surface and 

activation of matriptase (Oberst et al., 2003). The SEA domain is thought to play a role 

in the non-enzymatic shedding of the protease from the cell surface (Szabo and Bugge, 

2008). The serine protease domain has been crystallised (Friedrich et al., 2002) and 

shows that matriptase has narrow substrate specificity (section 1.7.1.3).  Although, 

matriptase has the same P1 specificity as trypsin, there is a well-defined extended 

specificity profile for matriptase. This extended specificity is primarily due to the 

localisation of the benzyl side chains of phenylalanine in the P2 and P4 binding pockets 

of matriptase, which is uncommon in chymotrypsin-like proteases (Friedrich et al., 

2002). 
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1.7.1.2 Matriptase activation 

Similar to most chymotrypsin-like proteases, matriptase is produced as an inactive 

single chain zymogen (Benaud et al., 2001). Activation of matriptase occurs through 

cleavage at arginine-614 to produce the canonical active two chain protease; the two 

chains are linked by a disulphide bridge (Takeuchi et al., 2000). 

The non-catalytic domains of matriptase are known to be important for activation 

(Oberst et al., 2003). Earlier data show that matriptase can be auto-activated by serum; 

this mechanism has not been elucidated (Benaud et al., 2001). Benaud et al. (2001) 

postulated that the CUB domain plays an important role in matriptase auto-activation, as 

C1r has a similar domain and is known to auto-activate as well. These data were 

corroborated by a later study which went on to show that the LDLR and SEA domains 

are also required (Oberst et al., 2003). However, the data presented about the role of the 

LDLR domains in matriptase activation are rather complex. Point mutations in the 

LDLR domains, that stop the formation of Ca
2+

 cages within the protease, abolish 

matriptase activation. But, when the LDLR domains are deleted matriptase activation 

actually increases. 

Matriptase can be shed from the cell surface, although the mechanism is not yet known 

(Benaud et al., 2001). There are reports that matriptase requires hepatocyte growth 

factor activator inhibitor-1 (HAI-1) to be shed from the membrane (Oberst et al., 2003). 

However, conflicting data show that HAI-1 is not essential (Miyake et al., 2010) and 

that only proteolysis within the SEA domain is crucial (Szabo and Bugge, 2008 and 

references therein). As stated by Miyake et al. (2010), the requirement of HAI-1 is 

likely to ensure that matripase does not undergo auto-activation in intracellular 

compartments and self-degrade. 
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1.7.1.3 Matriptase substrate specificity 

The substrate specificity for matriptase has been determined using a positional scanning 

library and phage substrate library (Takeuchi et al., 2000). Both libraries had their P1 

amino acid fixed as arginine. The positional scanning library showed the preferred 

substrate specificity for matriptase to be either R/K-X-S-R---A or X-R/K-S-R---A, 

where X is a non-basic amino acid. However, this study showed that glycine or 

phenylalanine residues are well tolerated in the P2 position, unlike in other canonical 

serine proteases such as thrombin. Furthermore, this study went on to test the activity of 

matriptase on protease-activated receptor 2 (PAR-2) and single-chain urokinase-type 

plasminogen
 
activator (uPA). In fact, matriptase did cause a biological response when 

incubated with PAR-2 overexpressing Xenopus oocytes, as PAR-2 contains the cleavage 

sequence of S-K-G-R. In contrast, matriptase could not activate PAR-1, -3 and -4 as 

they do not contain a matriptase consensus cleavage sequence. Furthermore, matriptase 

was shown to activate pro-uPA in vitro as well. The PAR-2 and uPA activation data 

presented in this study show that matriptase may have an important role in the 

pathogenesis of arthritis (Takeuchi et al., 2000). PAR-2 has recently been shown to be 

expressed in the synovial membrane in RA (Kelso et al., 2007) and its activation led to 

a downstream cytokine release in the synovial membrane. Furthermore, PAR-2 

activation in OA cartilage caused the activation of the extracellular signal-regulated 

kinase1/2 (ERK1/2) and p38 pathways (Boileau et al., 2007) both of which are 

important in the catabolism of the cartilage matrix. The role of uPA in arthritis has been 

documented previously (Jin et al., 2003) by the injection of uPA into the joint space of 

mice which resulted in bone erosion and synovial thickening. uPA causes the induction 

of MMPs in THP-1 monocytes by activating the ERK1/2 pathway (Menshikov et al., 

2006). However, direct evidence for the involvement of matriptase in the activation of 

PAR-2 and uPA in arthritis is still lacking. 
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1.7.2 Regulation of matriptase activity 

Serine proteases are well known to cleave ECM proteins (Milner et al., 2008) and 

therefore require tight regulation of their activity. But, with the recent emergence of 

PARs (section 1.9.1), this regulation is even more important and extends to matriptase. 

HAI-1 is found to be coexpressed and colocalised with matriptase. HAI-1 is a Kunitz-

type serine protease inhibitor (Shimomura et al., 1997), which have a different 

mechanism of inhibition and different secondary structure compared to the serpins 

(serine protease inhibitors). The primary loop extends into the active site of the protease 

and forms stable, reversible interactions with the active site (Creighton et al., 1993, 

Creighton and Charles, 1987, Kemmink and Creighton, 1993). However, data recently 

generated show that matriptase activity is not solely regulated by HAI-1. The serpins α1-

AT and antithrombin III have been shown to inhibit matriptase in vitro (Janciauskiene et 

al., 2008).  

The serpins also regulate serine protease activity and are the largest superfamily of 

protease inhibitors, present in all multicellular eukaryotes (Irving et al., 2000). Whilst 

the name serpin implies that they inhibit serine proteases, there is literature showing that 

some serpins are able to inhibit cysteine proteases (Schick et al., 1998). The serpins 

share a common protein fold (Al-Ayyoubi et al., 2004, Loebermann et al., 1984), 

consisting of three β-sheets, which adopt a twisted conformation, and nine α-helices. 

The serpins also contain a reactive centre loop (RCL) that constitutes the site of 

interaction with the target protease. The RCL contains the P1 and P1’ site and attracts 

the protease to the serpin. The RCL is usually found in an exposed conformation above 

the main body of the serpin (Elliott et al., 1998). The cleavage of the RCL by a serine 

protease causes a drastic change in conformation and results in the inability of the 

protease to complete peptide bond hydrolysis, thereby trapping the enzyme (Kaslik et 

al., 1995).  
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1.8 Membrane dipeptidyl peptidases 

The dipeptidyl peptidase (DPP) class of enzymes comprises non-classical serine 

proteases that are known to cleave the peptide bond on the carboxyl side of the proline 

residue in the sequence Pro-Xaa (Xaa≠Pro). The DPP group of enzymes includes 

intracellular enzymes such as: dipeptidyl peptidase II (also known as quiescent cell 

proline amino peptidase or dipeptidyl peptidase 7); dipeptidyl peptidase 8 (DPP8) and 

dipeptidyl peptidase 9 (DPP9). As well, some are active on the cell surface: dipeptidyl 

peptidase IV (DPPIV, also known as CD26) and FAPα (also known as seprase) (Chen 

et al., 2003). 

A lot of focus has been placed on the membrane DPP enzymes, FAPα and DPPIV, 

(Gorrell, 2005, Kelly, 2005) as they have been linked to a number of pathologies such 

as tumour invasiveness (Aoyama and Chen, 1990, Monsky et al., 1994) and type II 

diabetes (Reimer et al., 2002). These are thought to occur by the modulation of 

biological processes via Pro-specific N-terminal processing of biologically active 

peptides by DPPs (Busek et al., 2007, Proost et al., 1998).  

Evidence also exists for the modulation of these DPP enzymes in the joint tissues of 

patients with RA (Ellingsen et al., 2007, Gotoh et al., 1989, Kamori et al., 1991). Recent 

evidence has shown the expression of FAPα on the surface of chondrocytes from 

resorbing cartilage (Milner et al., 2006b). Furthermore, the combined inhibition of 

DPPIV and FAPα increases the invasion of rheumatoid arthritis synovial fibroblasts into 

articular cartilage (Ospelt et al., 2010). However, the dual inhibitor used in this study 

does not highlight whether inhibition of either DPPIV or FAPα alone would show a 

similar result. 
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1.8.1 Dipeptidyl peptidase IV 

DPPIV is the most studied member of the DPP family of enzymes. DPPIV is a 110 kDa 

glycoprotein that is catalytically active only as either a type 2 integral plasma membrane 

protein homodimer or a heterodimer with FAPα (Ajami et al., 2003). However, a small 

proportion appears to circulate in the plasma, cleaved from the membrane by an 

undetermined mechanism (Gotoh et al., 1989).  

The X-ray crystal structure of the DPPIV monomer has been elucidated and shows that 

it consists of two domains, an α/β-hydrolase domain and an eight bladed β-propeller 

domain (Aertgeerts et al., 2004). There are limited data showing that DPPIV exhibits 

endopeptidase activity and can actually cleave gelatin (Bermpohl et al., 1998) although 

the rate of cleavage for the denatured collagen fibrils is slow. However, the crystal 

structure highlights that the catalytic pocket is too small to accommodate large proteins. 

Further structure data show that DPPIV also contains nine N-glycosylation sites (Engel 

et al., 2003) and this could explain the ability of DPPIV to resist trypsin-induced 

extracellular cleavage and has been shown to be important for protein localisation to the 

cell membrane (Ajami et al., 2003).  

Adenosine deaminase (ADA) is known to bind to the monomeric and dimeric forms of 

DPPIV (Ajami et al., 2003) and this association plays an important role in regulating the 

activity of the cells of the immune system by counteracting the inhibition caused by 

extracellular adenosine (Wolberg et al., 1975). The inhibition of lymphocytes by 

extracellular adenosine is thought to occur through A2a receptor signalling which 

down-regulates the expression of co-stimulatory molecules on the surface of the T cell, 

such as CD25, and blocks proliferation (Huang et al., 1997). This observation is quite 

important in diseases such as RA where there is an increase in the amount of ADA 

isoforms in the synovial fluid (Iwaki-Egawa et al., 2001). Most of the T cells that reside 
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in synovial tissue are DPPIV
+
 low and this suggests that DPPIV

+
 T cells from the 

periphery actively penetrate into the synovium (Sedo et al., 2005) to continue to 

potentiate the disease state. Recent evidence suggests that this could be occurring in RA 

since there is an increase in the expression of DPPIV on the surface of monocytes and 

lymphocytes (Ellingsen et al., 2007). 

The role of ADA binding to DPPIV and the effects this has on the co-stimulatory 

activation of T cells still remains contradictory. There is a report stating that the co-

stimulatory role for ADA is irrespective of its ability to enzymatically degrade 

adenosine (Martin et al., 1995). Meanwhile, another report states that the activation of 

CD4
+
 and CD8

+
 T cells through DPPIV-mediated signalling was not dependent on 

activation of the ADA binding site but shown to be through the CD3 pathway (De 

Meester et al., 1995) which leads to activation and proliferation of T cells. It may be 

that binding of the ADA protein induces a conformational change in the DPPIV protein 

and causes the protein to exert a greater co-stimulatory response than DPPIV in the 

absence of ADA. 

The rate of plasminogen activation is shown to be increased by the association of 

DPPIV-ADA complex with the plasminogen type 2 receptor on the membrane of 

prostate cancer cells (Gonzalez-Gronow et al., 2004). This finding is interesting in so far 

as previous data have shown that the use of the protease inhibitor, α1-AT, possibly 

blocks a component of the plasminogen/plasmin cascade in a resorbing cartilage model 

(2003, Milner et al., 2001). Although chondrocytes do not secrete plasminogen 

themselves, when looking at the disease state of RA the roles of all the cell types in the 

joint space should be taken into account as there is an increase in the concentration of 

plasminogen in the synovial fluid (Belcher et al., 1996) and cartilage (Li et al., 2005). 
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DPPIV activity is known to modulate a number of pro-inflammatory chemokines and 

cytokines and the processing of the N-terminal ends of these peptides results in changes 

to both their receptor binding and functional properties (Table 1.2). DPPIV processing 

of full-length Regulated upon Activation, Normal T-cell Expressed, and Secreted 

(RANTES) (1-68) to cleaved RANTES (3-68) causes a noteworthy functional change 

(Proost et al., 1998) such that cleaved RANTES inhibited monocyte chemotaxis in 

comparison to full-length RANTES. A similar observation is seen in vitro for stromal 

cell-derived factor-1α (SDF-1α), whereby DPPIV cleavage of SDF-1α causes a 

reduction in leukocyte chemotaxis (Busso et al., 2005). Therefore, loss of DPPIV in the 

joint space may lead to unchecked activity of these cytokines and allow for the 

inflammatory response in the joint to be maintained rather than it cessation. 
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Substrate Effect upon cleavage by DPPIV Reference 

Substance P (SP) Decreased T cell proliferation (Covas et al., 1997) 

Neuropeptide Y (NPY) 
Decreased chemoattractive ability 

and activation of mononuclear cells 

(Mentlein, 1999) 

(Schwarz et al., 

1994) 

TNF-α 
Decreased IL-1β secretion by 

macrophages and monocytes 
(Bauvois et al., 1992) 

RANTES Decreased monocyte chemotaxis 
(Mentlein, 1999, 

Proost et al., 2001) 

Macrophage 

Inflammatory Protein-1β 

(MIP-1β) 

Decreased T cell and macrophage 

chemotaxis 
(Guan et al., 2004) 

Interferon-γ-inducible 

Protein (IP-10) 
Decreased T cell chemotaxis (Proost et al., 2001) 

SDF-1α Decreased leukocyte chemotaxis 

(Mentlein, 1999, 

Busso et al., 2005, 

Proost et al., 2001) 

Monokine induced by 

interferon-γ (MIG) 
Decreased T cell chemotaxis 

(Ludwig et al., 2002, 

Proost et al., 2001) 

Eotaxin 
Decreased degranulation of 

eosinophil and basophils 

(Mentlein, 1999, 

Proost et al., 2001) 

Monocyte Derived 

Chemokine (MDC) 

Reduced chemotaxis of monocytes, 

dendritic cells, activated 

lymphocytes and NK cells 

(Mentlein, 1999, 

Proost et al., 2001) 

 

Table 1.2 Substrates cleaved by DPPIV  

  



34 
 

1.8.2 Fibroblast activation protein-α 

FAPα was originally identified as an antigen on the surface of reactive stromal 

fibroblasts (Rettig et al., 1993) and also identified separately as seprase (Monsky et al., 

1994, Aoyama and Chen, 1990). Further analysis revealed that both FAPα and seprase 

encoded the same gene product (Chen and Kelly, 2003). 

FAPα is a type II transmembrane protein of 760 amino acids which anchors in the 

plasma membrane via an uncleaved signal sequence of approximately 20 amino acids 

and has a short, amino terminal, cytoplasmic domain of six amino acids (Goldstein et 

al., 1997, Pineiro-Sanchez et al., 1997). There is a small amount of data to indicate that 

a second cytosolic version of FAPα exists (Goldstein and Chen, 2000) and that this 

form of FAPα only encodes for the C-terminal region of the enzyme. 

The structure of FAPα was modelled on a closely related protease (Cheng et al., 2002) 

and it was found that the enzyme had a similar domain structure to DPPIV. It possesses 

an eight bladed β-propeller domain near the N-terminus and an α/β-hydrolase domain at 

the C-terminus. It is postulated that a pore exists in the β-propeller domain to allow 

substrate access to the catalytic domain and this was later confirmed by X-ray 

crystallography (Aertgeerts et al., 2005). 

FAPα has gelatinase activity (Aoyama and Chen, 1990, Monsky et al., 1994, Pineiro-

Sanchez et al., 1997) as well as dipeptidyl peptidase activity (Park et al., 1999) and both 

of these functions occur in the same catalytic pocket that is located in the α/β-hydrolase 

domain. FAPα has similar dipeptidyl peptidase substrate specificity to DPPIV but the 

rate of hydrolysis is about 100-fold less (Aertgeerts et al., 2005). The dipeptidyl 

peptidase and endopeptidase specificities of DPPIV and FAPα are due solely to the 

protonation state of a glutamate residue in the active site pocket. Aspartate-663 of 

DPPIV causes deprotonation of the glutamate-206 side chain that facilitates binding of 



35 
 

charged amino terminal groups (Aertgeerts et al., 2005).  However, the comparable 

residue in FAPα is alanine-657, and is essential for the endopeptidase activity of FAPα. 

This is because alanine-657 cannot deprotonate glutamate-204 in FAPα and favours 

binding of uncharged residues in the P2 pocket of the active site. The gelatinase activity 

of FAPα is much more pronounced than that for DPPIV but there was some uncertainty 

in the literature at first as to whether FAPα could cleave native collagen I (Park et al., 

1999). It has now been shown that FAPα cannot cleave native collagen fibrils but can 

cleave substrates which have previously been partially cleaved by MMPs (Christiansen 

et al., 2007). Another interesting finding is that N-terminal truncation of FAPα can 

actually increase the gelatinase activity but not the dipeptidyl peptidase activity of the 

enzyme (Chen et al., 2006a). There is speculation that the use of detergents in this 

experimental set-up may have caused a conformational change in the membrane bound 

form of FAPα and therefore activated the proteins ability to cleave gelatin, while in-vivo 

enzymatic truncation may be required before this can occur. Furthermore, it has been 

shown that FAPα forms a complex with DPPIV on the surface of fibroblasts allowing 

for their migration on a collagenous matrix (Ghersi et al., 2002). In this environment 

there will be other proteolytically active enzymes present to cause truncation of FAPα 

and thus activate its gelatinase activity.  

1.9 Cell signalling 

Cell signalling is a complex network of communication that governs cellular actions in 

response to changes in both the local and systemic environments. Undesirable changes 

in the signalling pathways results in serious pathological consequences such as cancer 

(Shaw and Cantley, 2006, Vincan and Barker, 2008) or irregular immune responses 

(Longo et al., 2008).  
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In basic terms, classical cell signalling is the binding of a signal molecule to a 

membrane receptor on the cell surface that causes the modulation of cell function. 

However, recent evidence is starting to shed light on a novel signalling mechanism that 

involves the direct contribution of proteases to cause a cellular response.  

1.9.1 Protease-activated receptors 

One mechanism by which serine proteases can act as signalling molecules is through the 

cleavage of the PARs, which are G-protein coupled receptors (GPCR). There are four 

PARs known to date; PAR-1, PAR-2, PAR-3 and PAR-4. Most of the data published on 

the PARs have been generated from endo- and epithelial cells. The modest amount of 

data on PAR-3 comes from work generated in this manner (McLaughlin et al., 2007) 

and leads to the possibility that PAR-3 modulates signalling through its ability to bind 

to PAR-1. However, little is known about the function of PAR-3 on the surface of 

“normal” cells. Therefore, researchers have transformed cell lines such as HEK-293 to 

tease out the role of PAR-3 (Ostrowska and Reiser, 2008). Whilst this study seems to 

suggest that PAR-3 can act independently of PAR-1 to cause IL-8 release, PAR-3 lacks 

the ability to interact with G-proteins due to the lack of a cytoplasmic tail (Ishihara et 

al., 1997). Contradictory data have been published showing that PAR-3 is not able to 

signal independently of PAR-1 (Kaufmann et al., 2005). The latter was shown by the 

use of PAR-3 and PAR-1 overexpression constructs in KOLF cells (fibroblasts from 

PAR knockout mice) where PAR-3 alone showed no ability to trigger a signal response 

after incubation with TFRGAP (the tethered ligand generated by cleavage of PAR-3). 

However, a definite increase in the amount of phosphorylated p42/44 could be observed 

when PAR-1 overexpressing cells were incubated with TFRGAP indicating that PAR-1 

is important is mediating signalling with PAR-3 acting as a co-stimulatory molecule.  
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PAR-1 activation is linked to fibroblast proliferation and the release of prostanglandin 

E2 and pro-collagen (Blanc-Brude et al., 2005, Sokolova et al., 2005). Furthermore, 

PAR-1 activation has been linked to the differentiation of fibroblasts to myofibroblasts 

(Bogatkevich et al., 2001, Materazzi et al., 2007).  

PAR-1 is known to be present on the surface of synovial fibroblasts in RA (Morris et 

al., 1996) and further work has shown that PAR-3 is also expressed on the surface of 

synovial fibroblasts from patients with rheumatic disease (Hirano et al., 2002). It should 

be noted that PAR-1 up-regulation is only seen in RA, this phenomenon is not seen in 

OA or normal synovium (Morris et al., 1996). PAR-1 activation by thrombin on the 

surface of these fibroblasts causes an up-regulation of RANTES gene expression 

(Hirano et al., 2002) thus indicating that this pathway could play an important role in 

the recruitment of inflammatory T cells and NK cells to the joint space thereby 

propagating the destructive mechanisms. More recent evidence has shown that synovial 

fibroblasts from the rheumatoid joint can be induced to produce IL-6 by PAR-1 

activation (Chiu et al., 2008) through the nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-B) pathway. This IL-6 production is independent of PAR-3 and 

PAR-4 as could be demonstrated by the use of small interfering ribonucleic acid 

(siRNA) to silence these genes as well as the use of specific PAR agonists. 

PAR-2 has recently been shown to be expressed in the synovial membrane in RA 

(Kelso et al., 2007) and its activation was found to lead to downstream cytokine release. 

One possible mechanism of PAR-2 activation in RA synovium could be its cleavage by 

mast cell tryptase (Nakano et al., 2007), as a novel form of mast cell tryptase is found at 

a high concentration in RA and correlates with increased PAR-2 mRNA expression. 

However, there is the possibility that other trypsin-like serine proteases could activate 

PAR-2 as well. Mast cells could play an important role as the source of these serine 
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proteases (Palmer et al., 2007) and could cause auto-activation of the PAR-2 receptors 

resulting in the perpetuation of the PAR-2 signal. This is supported by findings that 

mice lacking mast cells were resistant to RA (Lee et al., 2002). Recently, it has been 

shown that PAR-2 activation in OA cartilage caused the activation of the ERK1/2 and 

p38 pathways (Boileau et al., 2007) and these two pathways are important in the 

catabolism of the cartilage matrix. In this study co-stimulation of OA chondrocytes with 

IL-1β and PAR-2 activating peptide had a synergistic effect on the ERK1/2 pathway.  

Little information exists about the role of PAR-4 in the context of connective tissue 

cells. Nonetheless it has been shown that lipopolysaccharide and TNFα induce 

expression of PAR-4 on human primary bronchial fibroblasts (Ramachandran et al., 

2007) and that activation of PAR-4 counters the PAR-1 mediated proliferation of these 

cells. This ability of PAR-4 to antagonise the function of PAR-1 is interesting and 

requires further insight, mainly in the context of connective tissue cells. In endothelial 

cells PAR-1 and PAR-4 have been reported to counteract each other in the regulation of 

VEGF and endostatin release from platelets (Ma et al., 2005).  

Once the PARs are cleaved they remain constitutively active as the tethered ligand is 

always available to interact with the PAR. Therefore, after the activation of 

phospholipase C has occurred, signal attenuation occurs through the recruitment of β-

arrestins 1 and 2 (Wang and DeFea, 2006, DeFea et al., 2000) resulting in the 

desensitisation and endocytosis of the receptors for their degradation. 

1.10 Scope of this thesis 

Cartilage consists of an extensive extracellular matrix, composed mainly of 

proteoglycans and collagens, in which the chondrocytes are embedded. Proteolytic 

degradation of articular cartilage leads to joint dysfunction and is a major hallmark of 
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arthritis. While the loss of proteoglycan is rapid and reversible, the breakdown of the 

collagen network is slow and essentially irreversible.  

The major extracellular proteases involved in the breakdown of the cartilage matrix are 

the metallo- and serine proteases. Data from our group have highlighted that both 

protease families function through interacting cascades (Milner et al., 2001, 2003). 

MMP expression is increased in arthritis (Kevorkian et al., 2004) and correlates with the 

excessive degradation of the collagen network (Hollander et al., 1995). The 

collagenases (MMP-1, MMP-8 and MMP-13) are the key enzymes involved in collagen 

turnover and they mediate the cleavage of fibrillar collagen into characteristic three- and 

one-quarter fragments which is the major rate-limiting step in the breakdown of the 

cartilage ECM. The activation of the pro-collagenases is a key control point with 

regards to collagen matrix breakdown (Milner et al., 2001) and data have shown that 

serine proteases are involved (Milner et al., 2001, 2003). 

In OA, collagen degradation is initially observed around the chondrocyte before 

diffusing radially (Hollander et al., 1995). The increased expression of the 

transmembrane serine proteases DPPIV, FAPα and matriptase could be key mediators 

of the arthritides. These transmembrane serine proteases could play a vital role via their 

interaction with either soluble or membrane bound MMPs and localise collagenolytic 

activity to the cell surface. Therefore, characterising the role of novel transmembrane 

serine proteases in arthritis is important as it is an area of cartilage biology that has yet 

to be fully elucidated.  

Thus the aims of this thesis are: 

 Investigate the roles of FAPα and DPPIV in resorbing IL-1+OSM-treated 

cartilage. 
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 Study the role of matriptase in cartilage matrix degradation. 
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CHAPTER 2 

Materials and Methods 

2.1 Materials 

2.1.1 Biochemical assay reagents 

Papain (from Carica papaya), 2-Amino-2-hydroxymethyl-propane-1,3-diol 

hydrochloride (Tris-HCl), calcium chloride, sodium chloride, glucose, sodium azide, L-

cysteine hydrochloride, p-dimethylaminobenzaldehyde (DAB), -mercaptoethanol, o-

phenylenediamine (OPD), phosphate-citrate capsules, L-hydroxy-proline, bovine serum 

albumin (BSA), sodium dihydrogen phosphate and disodium hydrogen phosphate were 

obtained from Sigma-Aldrich Company Ltd. (Poole, UK). Chloramine T was purchased 

from BDH (Poole, UK). 2 ml O-ring screw-cap tubes were obtained from Sarstedt 

(Leicester, UK) and 1.5 ml eppendorfs obtained from Starlabs (Milton Keynes, UK). 

Maxisorp Nunc-immuno 96-well plates were obtained from Life Technologies Ltd. 

(Paisley, UK). Flat-bottomed and V-bottomed 96-well plates were obtained from Bibby 

Sterilin (Staffordshire, UK). Flexible 96-well sample plates and Optiphase “Supermix” 

scintillation fluid were obtained from PerkinElmer (Beaconsfield, UK). GP-7- amino-4-

methoxy coumarin (AMC), Z-GP-AMC and Boc-QAR-AMC were purchased from 

Bachem (Essex, UK). The general MMP substrate, FS-6, was obtained from Merck 

(Nottingham, UK). Pro-MMP-3ΔC was a gift from Dr R. Visse (Kennedy Institute, 

London, UK). Mono S FPLC column was obtained from GE Healthcare (Chalfont St. 

Giles, UK). FAPα was purchased from R&D systems (Abingdon, UK). Recombinant 

DPPIV was a gift from Dr H. Fan (Charité - Universitätsmedizin Berlin, Germany). 

Matriptase was a gift from Prof. Richard Leduc (Université de Sherbrooke, Canada). 
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2.1.1.1 Enzyme inhibitors 

Ferring pharmaceuticals (Saint-Prex, Switzerland) kindly donated the FAPα-specific 

inhibitor FE999044 and the DPPIV-specific inhibitor FE999011. Dr B. Gilmore and 

Prof. B. Walker (Queen’s University, Belfast, UK) kindly donated the FAPα inhibitor 

Z-GP-diphenylphosphonates (DPi) and the DPPIV inhibitors YP-DPi and GP-DPi. The 

FAPα inhibitors UAMC-583, UAMC-584 and UAMC-442 and the DPPIV inhibitors 

UAMC-374, Vildagliptin and AB192 were a gift from Prof. I. De Meester (University 

of Antwerp). The DPPIV inhibitors DPPI 1c and K579 were purchased from Tocris 

Bioscience (Bristol, UK). The cathepsin K inhibitor, L-873724, was a generous gift 

from Dr C. Black (Merck). The general metalloprotease inhibitor, GM-6001, and its 

negative control were purchased from Calbiochem (Nottingham, UK). All of the above 

inhibitors were dissolved in DMSO such that the highest final concentration of DMSO 

in the cartilage cultures was 0.1%. Before use they were diluted in culture medium and 

filter-sterilised through a 0.2 µm filter before addition to cartilage explants. SAM-11 

antibody was purchased from Santa Cruz Biotechnology Inc. (Heidelberg, Germany). 

ENMD-1068 was purchased from Enzo Life Sciences Ltd (Exeter, UK) and dissolved in 

PBS. Before use ENMD-1068 was diluted in culture medium and filter-sterilised 

through a 0.2 µm filter before addition to cartilage explants. 

2.1.2 Cell and tissue culture reagents 

Dulbecco’s modified Eagle’s medium (DMEM) and fetal calf serum (FCS) were 

obtained from Gibco BRL (Paisley, UK), and L-glutamine, amphotericin, penicillin-

streptomycin, collagenase (type I from Clostridium histolyticum), hyaluronidase (type I-

S from bovine testes) and trypsin (type III, from bovine pancreas) were obtained from 

Sigma-Aldrich Company Ltd. 96-well, 24-well and 6-well tissue culture plates were 

obtained from Corning/Costar UK Ltd. (High Wycombe, UK). Sterile 100 mm square 
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petri dishes and universals (20 and 5 ml) were obtained from Bibby Sterilin Ltd. 

Syringe filters (0.2 µm) were from Pall Gelman Sciences (Northampton, UK). Sterile 

disposable scalpel blades were from Swann-Morton (Sheffield, UK). Dulbecco’s 

phosphate buffered saline (DPBS) was obtained from Lonza (Wokingham, UK) and 

sterile 100 μm cell strainers from BD Falcon (Oxford, UK). IL-1 was a gift from Dr 

Keith Ray (GlaxoSmithKline, Stevenage, UK) and recombinant OSM was produced in-

house. IL-1 at 1 µg/ml in DMEM (with 0.1% BSA) was stored at -20C. OSM at 60 

µg/ml in DPBS (with 0.1% BSA) was stored at -80C. Immediately prior to use IL-1 

and OSM were diluted in culture medium and sterile filtered through a 0.2 µm filter. 

2.1.3 Molecular Biology reagents 

RNeasy Mini Kit and deoxyribonuclease (DNase) I were from Qiagen (Crawley, UK). 

Agarose (electrophoretic grade), MMLV and Superscript III were obtained from Life 

Technologies Ltd. Dialysis membrane was purchased from Medicell International Ltd. 

(London, UK). 

All reagents required for RNA work were molecular biology grade. All RNA work was 

performed under RNase-free conditions using RNase-free reagents and materials.  

2.1.4 Protein electrophoresis  

Ammonium persulfate (APS) was obtained from BDH (Poole, UK). -mercaptoethanol, 

and N,N,N’N’-tetramethylenediamine (TEMED) were obtained from Sigma-Aldrich 

Company Ltd. 40% (w/v) acrylamide/bis-acrylamide (37.5:1) solution was obtained 

from Anachem (Luton, UK). Sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) molecular weight standards were obtained from 

Fermentas (York, UK). Silver staining kit was obtained from GE Healthcare (Chalfont 

St. Giles, UK). 
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2.1.5 Other reagents 

All other chemicals and biochemicals, unless otherwise stated, were commercially 

available analytical grade reagents obtained from Sigma-Aldrich Company Ltd., Fisher 

Scientific, Life Technologies or BDH. 

2.2 Cartilage explant culture 

Principle: Bovine nasal and human articular cartilage explants cultures are commonly 

used as a model for cartilage matrix degradation. Cartilage samples are stimulated with 

combinations of pro-inflammatory cytokines, inhibitors or proteases to influence 

cartilage homeostasis. Serum was excluded from cartilage explants as it contains 

chondroprotective agents such as IGF-1 (Luyten et al., 1988, Tyler, 1989, Hui et al., 

2001). The absence of serum does not affect tissue viability, with cartilage remaining 

responsive to fresh serum and exogenous growth factors (Hascall et al., 1983). 

2.2.1 Bovine nasal cartilage degradation assay 

Culture medium 

DMEM containing 25 mM HEPES, 2 mM L-glutamine, 100 U/ml penicillin, 100 g/ml 

streptomycin, 25 g/ml amphotericin. 

Dulbecco’s phosphate buffered saline (DPBS+) 

DPBS containing 100 U/ml penicillin, 100 g/ml streptomycin, 25 g/ml amphotericin. 

Phosphate buffer 

137 ml of 0.1 M NaH2PO4 and 63 ml 0.1 M NaHPO4, pH 6.5. 

 

Bovine nasal septum was obtained from a local abattoir after slaughter and used the 

same day or after overnight storage at 4C. The connective tissue sheath was removed 

from the cartilage and cut into 2 mm strips. Discs, 2 mm in diameter were punched out 
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of the centre of the cartilage strips using a sterilised hole punch; care was taken to avoid 

cartilage with obvious vasculature. Cartilage discs were washed twice in DPBS. In a 24-

well tissue culture plate, 3 discs per well were added in 600 l of culture medium. In a 

96-well tissue culture plate, 1 disc per well was added in 200 l of culture medium. The 

plates were then incubated overnight at 37C in 5% CO2/humidified air. 

Medium was removed from each well and replenished with 600 l fresh culture medium 

containing the appropriate cytokine(s) and test reagent(s) in a 24-well tissue culture 

plate. In a 96-well tissue culture plate each well was replenished with 200 l of fresh 

culture medium containing the appropriate cytokine(s) and test reagents(s). For each 

condition, 4 wells were used in the 24-well tissue culture plate format. Whilst, 6 wells 

per condition in the 96-well format. Plates were then incubated at 37C for 7 days. At 

day 7, supernatants were collected and cartilage discs replenished with identical test 

reagents to day 0. The experiment was continued for a further 7 days and at day 14, 

supernatants were removed and stored at -20C. At day 14, the cartilage explants were 

placed in capped Sarstedt tubes with phosphate buffer containing 4.5 mg/ml papain, 

5mM cysteine-HCl and 5mM ethylenedinitrilotetraacetic acid (EDTA). Following 

overnight (16-20 h) digestion at 65C, 450 µl phosphate buffer was added. 

2.2.2 Human articular cartilage degradation assay 

Reagents 

As described in section 2.2.1 

 

Human articular cartilage was obtained from patients undergoing total joint replacement 

surgery at the Freeman hospital provided under ethical approval and informed consent. 

The joints were stored at 4°C in DPBS+. Tissue was used up to 24 h after removal from 

the patient. Macroscopically normal cartilage was dissected and rinsed in DPBS+. Three 
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pieces of cartilage (approximately 2 mm x 2 mm x 2 mm in dimension) were treated as 

described in section 2.2.1. 

2.2.3 Hydroxyproline assay 

Principle: The hydroxyproline imino acid is found in few proteins other than collagen 

as the sequence glycine-proline-hydroxyproline occurs frequently in collagen. 

Therefore, collagen levels can be measured by assessing hydroxyproline levels. Proteins 

were acid hydrolysed into their constituent amino acids. Hydroxyproline was then 

oxidised by chloramine T to a pyrrole related compound, which was subsequently 

reacted with DAB to produce a red product. The absorbance was then measured at A560. 

Hydroxyproline was assayed using a microtitre modification of the assay described by 

Bergman and Loxley (1963). 

Acetate-citrate buffer 

420 mM sodium acetate, 130 mM tri-sodium citrate, 26 mM citric acid and 38.5% (v/v) 

propan-2-ol, pH 6. 

DAB  

4.5 M stock in 70% (v/v) perchloric acid, stored 4C. 

Chloramine T 

250 mM in dH2O, made fresh. 

 

Method 

Supernatants or cartilage digests (200 l) were mixed with 200 l of 12 M HCl in 2 ml 

o-ring screw-cap tubes. Samples were then hydrolysed in a hot-block for 20 h at 105C. 

The hydrolysates were dried in a centrifugal evaporator using an acid resistant 

integrated Savant Speed Vac (Life Sciences International, Basingstoke, UK) or Genevac 
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EZ-2 speedvac (Genevac Ltd, Ipswich, UK) for 2-3 h. Once dry, the residue was 

resuspended in 200 l dH2O and stored at room temperature until assayed. A 1 mg/ml 

stock of hydroxyproline was diluted in dH2O to give a series of standards (0-30 g/ml). 

On the day of use, 4.5 mM DAB was diluted 1:3 in propan-2-ol and 250 mM 

chloramine T was diluted 1:4 in acetate-citrate buffer. 40 l of sample or standard (neat 

or diluted in dH2O) was added in duplicate to a 96-well microtitre plate. 25 l of 65.5 

mM chloramine T was added. After 4 min, 150 l of 1.5 M DAB was added. The plate 

was then sealed with a plastic plate sealer and incubated for 35 min at 65C. The plate 

was then allowed to cool and the absorbance read at 560 nm (Sunrise microplate reader, 

Tecan). The hydroxyproline content of the samples was calculated from the standard 

curve. The release of hydroxyproline from the cartilage was then calculated using the 

following equation: 

% hydroxyproline release =  

[hydroxyproline in supernatants (g)]/[hydroxyproline in supernatants + 

hydroxyproline in cartilage digests (g)] x 100 

The % release of hydroxyproline was considered to be representative of the % release of 

collagen. 

2.3 mRNA extraction 

2.3.1 Bovine nasal chondrocyte isolation 

Principle: Bovine nasal septum was used as a source of primary chondrocytes. The 

cartilage was subjected to a three-step enzymatic digest to isolate the chondrocytes. 

DPBS+ 

DPBS + 100 U/ml penicillin, 100 g/ml streptomycin, 25 g/ml amphotericin. 
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Culture medium + 10% (v/v) FCS 

DMEM containing 25 mM HEPES, 10% (v/v) heat-inactivated FCS, 2 mM glutamine, 

100 U/ml penicillin, 100 g/ml streptomycin, 25 g/ml amphotericin. 

Hyaluronidase 

1 mg/ml in DPBS+. 

Trypsin 

2.5 mg/ml in DPBS+. 

Collagenase 

2.5 mg/ml in culture medium + 10% (v/v) FCS. 

 

Method 

Bovine nasal septum was obtained as described in section 3.2.1. The strips cut into 

small cubes and washed three times in DPBS. Before use, enzyme solutions were filter-

sterilised through a 0.2 m filter. The cartilage was incubated at 37°C for 15 min on a 

spiramixer, with hyaluronidase (3 ml/g cartilage). The supernatant was removed and the 

cartilage washed three times in DPBS. Cartilage was then incubated for 30 min at 37°C 

with trypsin (3 ml/g cartilage) on a spiramixer. The supernatant was removed and the 

cartilage washed twice in culture medium + FCS. The cartilage pieces were then 

incubated overnight at 37°C in a bacterial collagenase solution (3 ml/g cartilage) on a 

spiramixer. Tubes were allowed to stand for 15 min to permit the debris to settle. The 

supernatant was then passed through a sterile 100 μm cell strainer and chondrocytes 

pelleted by centrifugation (217 g for 5 min). Chondrocytes were resuspended in culture 

medium + 10% (v/v) FCS and 5x10
3
 cells plated into each well of 96-well tissue culture 

plates (200 μl culture medium + 10% (v/v) FCS/well). The bovine cells took 3-5 days to 

reach 70-80% confluence. Before cytokine stimulation, cells were washed twice in 
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DPBS to remove traces of serum and left for 24 h in 100 μl culture medium (serum 

free)/well.  

2.3.2 Cultivation of SW1353 cells 

Culture medium + 10% (v/v) FCS 

DMEM containing 25 mM HEPES, 10% (v/v) heat-inactivated FCS, 2 mM glutamine, 

100 U/ml penicillin, 100 g/ml streptomycin. 

 

SW1353 were maintained in culture medium + 10% (v/v) FCS and 5x10
3
 cells plated 

into each well of 96-well tissue culture plates (200 μl culture medium + 10% (v/v) 

FCS/well). The SW1353 cells took 3-5 days to reach 70-80% confluence. Before 

cytokine stimulation, cells were washed twice in DPBS to remove traces of serum and 

left for 24 h in 100 μl culture medium (serum free)/well.  

2.3.3 Extraction of RNA  

Method 

This was performed as per the manufacturer’s instructions. Briefly, after cytokine 

stimulation the plates were washed in ice-cold PBS and then 10 μl of ice-cold lysis 

buffer added per well. The lysates were then agitated for 2 min at medium speed on a 

flatbed mixer. The lysates were then transferred to V-bottomed 96-well plates and 

stored at -80°C. 

2.3.4 cDNA production from sidestep RNA extraction 

Method 

Lysates (5 µl), from section 2.3.3, were transferred to a new 96-well plate and diluted 

with 15 µl of PCR grade water. Diluted lysate (4 µl) was then transferred to a 96-well 

PCR plate and then 0.325 mM dNTPs and 0.2 μg random hexamers (Pd(N)6) added and 
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the mixture then incubated at 70°C for 5 min. The plate was then rapidly cooled on ice 

for two min. Then DTT (10 µM final concentration), RNaseOUT (5 U), MMLV (100 

U) and first strand buffer (50 mM Tris pH 8.3, 75 mM KCl and 3 mM MgCl2) added to 

the desired volume. The plate was then incubated for 50 min at 37°C and then for 15 

min at 70°C. The cDNA was then diluted with water before use for target gene 

detection and a further 1/100 fold dilution for housekeeping gene detection. 

All incubations were performed using the using the TP 600 PCR thermal cycler DICE 

(Takara). 

2.3.5 Human articular cartilage mRNA assay 

Principle: Cartilage is a highly specialised and unique tissue (section 1.1) with only a 

handful of cells embedded in a large ECM network. Interactions between chondrocytes 

and their matrix are significant and remodelling of the ECM by proteases can release 

cryptic information and bioactive molecules (Mott and Werb, 2004). A number of 

studies have studied the gene expression of chondrocytes grown in monolayer (Koshy et 

al., 2002). However, only few studies have been performed on gene expression in 

human cartilage that is actively resorbing. 

Culture medium 

DMEM containing 25 mM HEPES, 2 mM L-glutamine, 100 U/ml penicillin, 100 g/ml 

streptomycin, 25 g/ml amphotericin. 

DPBS+ 

DPBS containing 100 U/ml penicillin, 100 g/ml streptomycin, 25 g/ml amphotericin. 
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Method 

Human articular cartilage was obtained as described in section 2.2.2. The cartilage cut 

into small cubes and washed three times in DPBS. Cartilage (approximately 0.5 g) was 

then placed into a 12 well dish with 3 ml of culture medium. The plates were then 

incubated overnight at 37C in 5% CO2/humidified air to allow equilibration of the 

explants. 

Medium was removed from each well and replenished with 3 ml fresh culture medium 

containing the appropriate cytokine(s) and test reagent(s). For each condition and time 

point, 4 wells were used. At day 7, media samples were collected and stored at -20°C 

whilst cartilage chips were collected and stored at -80°C. 

2.3.6 RNA extraction from cartilage explants 

Principle: Trizol is a mixture of guanidinium thiocyanate and water-saturated phenol 

and is used to solubilise the cells and protein components in cartilage as well as nucleic 

acids. The guanidinium denatures proteins including RNases thereby protecting nucleic 

acid during extraction. The addition of chloroform during extraction and subsequent 

centrifugation separates the components into an upper aqueous phase, where the RNA 

locates to and the lower and intermediate phase where the DNA and protein mainly 

locate to (Chomczynski and Sacchi, 1987). RNA was then isolated using Qiagen mini 

columns that selectively binds to nucleic acids larger than 200 bp, while allowing 

protein to be excluded, DNase I is added to degrade contaminating genomic DNA. 

Finally, RNA is eluted with RNase-free water. 

 

Method  

Human cartilage was removed from the -80°C freezer and placed in stainless steel 

grinding vials (Retsch, Germany). The cartilage was then ground under the following 
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conditions: 5 cycles of cooling in liquid nitrogen for 3 min and then ground for 90 

seconds at 20Hz in a Retsch MM200 (Retsch, Germany). 

The powered cartilage was then placed in 5 ml of Trizol reagent (Life Technologies), 

vigorously shaken for 5 min and left at room temperature for 10 min. 

The suspension was then placed into 1.5 ml eppendorfs (Starlabs) and centrifuged at 

20,000 x g for 10 min at 4°C to remove any insoluble material. The supernatant was 

transferred to fresh eppendorfs and 450 µl chloroform added, then vortexed and left to 

incubate at room temperature for 10 min. The tubes were then centrifuged for 12,000 x 

g for 15 min at 4°C, the upper aqueous phase then transferred to a new tube and 100% 

ethanol (0.5 volume) added. This was then loaded onto a Qiagen mini column and the 

RNA purified according to the manufacturer’s instructions. Briefly, 700 µl of sample 

were applied to the RNeasy mini-spin column and centrifuged for 15 seconds at 8,000 x 

g. The flow-through was discarded and this step repeated until all the sample was 

applied to the column. The column was then washed to remove contaminants and then 

DNase I (3 U) added to the column for 15 min at room temperature. The column was 

then washed three times according to the manufacturer’s instructions. The RNA was 

eluted in diethyl pyrocarbonate (DEPC) water (30 µl). The purified RNA was 

immediately stored at -80°C. The RNA was then quantified by measuring the 

absorbance at 260 nm and 280 nm using a ND1000 spectrophotometer (Nanodrop, 

USA).  

2.3.7 Reverse transcription of cartilage explant mRNA 

Method 

Total RNA (1 µg) was diluted to a final volume of 11 μl with water and then 50 ng 

random hexamers and 0.5 mM (final concentration) dNTPs were added. This mixture 

was then incubated at 65°C for 5 min, then chilled on ice for 2 min and DTT (50 μM 
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final concentration), RNaseOUT (40 U), superscript III reverse transcriptase (200U), 

and first strand buffer (50 mM Tris pH 8.3, 75 mM KCl and 3 mM MgCl2) added to the 

desired volume. The reaction mixture was incubated at 25°C for 5 min then 50°C for 1 

h. The enzymes were then denatured by incubation at 70°C for 15 min. The cDNA was 

then diluted 1/100 for target gene determination and a further 1/5 for housekeeping 

genes. 

 

2.4 Real-time PCR 

2.4.1 Primer design 

Bovine forward and reverse primers were designed using the Universal Probelibrary 

software (Roche Applied Science, Burgess Hill, UK). PerfectProbe assay kits were 

received from PrimerDesign (Southampton, UK). TaqMan assay on demand kits were 

received from ABI (Warrington, UK). 

Primers were designed to span exon/intron boundaries to prevent the amplification of 

any contaminating genomic DNA. Primers were designed for bovine gene sequences 

and human gene sequences (Table 2.1). 
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Gene Primer (5'-3') Human Sequence Bovine Sequence 

FAPα 
Forward ATCTATGACCTTAGCAATGGAGAATTTGT ACCATGAAAAGTGTGAATGCTTCA 

Reverse GTTTTGATAGACATATGCTAATTTACTCCCAAC AGTATCTCCAAAGCTTTGAATAATCACTTTCT 

DPPIV 
Forward AGCCGTGGCGCCTGTAT CTGGTCATACGGAGGGTACG 

Reverse GTCAAGGTTGTCTTCTGGAGTTGG GGCTATTCCACACTTGAACACA 

18S rRNA 

18S rRNA 

Forward CGAATGGCTCATTAAATCAGTTATGG AGAAAGGGCTACCACATCCA 

Reverse TATTAGCTCTAGAATTACCACAGTTATCC CACCAGACTTGCCCTCCA 

Probe FAM-TCCTTTGGTCGCTCGCTCCTCTCCC-TAMRA  Not applicable 

MMP-1 

Forward AAGATGAAAGGTGGACCAAAATT CAAGCTAACTTTTGATGCCATAAC 

Reverse CCAAGAGAATGGCCGAGTTC GCATGTAGAACCGGTCTTTGA 

Probe FAM-CAGAGAGTACAACTTACATCGTGTTGCGGCTC-TAMRA  Not applicable 

 

MMP-13 
Forward AAATTATGGAGGAGATGCCCATT 

 
Reverse TCCTTGGAGTGGTCAAGACCTAA 

 
Probe FAM-CTACAACTTGTTTCTTGTTGCTGCGCATGA-TAMRA 

 
Matriptase 

ABI TaqMan assay on demands  
PAR-2 (F2RL1) 

 

MMP-3 

Forward TTCCGCCTGTCTCAAGATGATAT 
 

Reverse AAAGGACAAAGCAGGATCACAGTT  
 

Probe FAM-TCAGTCCCTCTATGGACCTCCCCCTGAC-TAMRA 
 

MMP-14 

Forward AGGCCGACATCATGATCTTCTTT  
 

Reverse AAGTGGGTGTCTCCTCCAATGTT  
 

Probe FAM-CCATGGCGACAGCACGCCCTT-TAMRA 
 

 
 
Table 2.1 Primers for real-time PCR.

5
4
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2.4.2 SYBR green real-time PCR 

Principle: SYBR green is a fluorescent dye that binds to the minor groove of the DNA 

helix. In solution the dye emits very little fluorescence, but upon binding to an 

exponentially increasing DNA amplicon, the dye emits fluorescence proportional to the 

amount of reaction product which is readily increased. 

 

Method 

SYBR green PCR reactions for bovine 18S rRNA, MMP-1 and MMP-13 genes were 

carried out in a total volume of 10 µl using 2.5µl of cDNA with 5 µl of SYBR green 

reaction mix (Clontech, Paris, France) and primers at 50 nM final concentration and 1X 

ROX reference dye. Thermal cycling conditions for these PCR reactions comprised a 

holding stage at 95°C for 10 seconds. This was followed by a three-step programme 

consisting of 95°C for 5 seconds, 55°C for 15 seconds and 72°C for 20 seconds, 

repeated for 40 cycles. 

SYBR green PCR reactions for FAPα and DPPIV genes were carried out in a total 

volume of 10 µl using 2.5 µl of cDNA with 4.92 µl of SYBR green reaction mix 

(Clontech, Paris, France) and primers at 100 nM final concentration and 1X ROX 

reference dye. Thermal cycling conditions for these PCR reactions comprised a holding 

stage of 95°C for 10 seconds. This was followed by a two-step programme consisting of 

95°C for 15 seconds and 60°C for 60 seconds, repeated for 40 cycles. 

For all reactions a melt curve analysis was then performed to confirm the amplification 

of a single specific product. All reactions were performed using the ABI PRISM 

7900HT sequence detector. 
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2.4.2 Probe based real-time PCR 

Principle: This method employs the use of a probe that anneals down-stream of a 

primer site. The probe has a reporter dye at the 5’ end and a quencher at the 3’ end. 

When the probe is intact both the quencher and reporter dye are in close proximity and 

emit little fluorescence. During extension of the primer sequence by Taq polymerase, 

the 5’ nuclease activity of Taq cleaves the probe from the DNA. The spatial separation 

of the reporter dye from the quencher increases the reporter signal. Thus with each cycle 

the fluorescence intensity increases in proportion to the amplicon product. 

 

Method  

Probe based PCR reactions were carried out in a total volume of 10 µl using 5 µl of 

cDNA with 3.3 µl of SIGMA mastermix (Poole, UK) and primers at 900 nM final 

concentration, probe at 150 nM final concentration and 1X ROX reference dye. Thermal 

cycling conditions comprised an activation stage at 95°C for 10 min. This was followed 

by a two-step programme consisting of 95°C for 15 seconds and 60°C for 60 seconds, 

repeated for 40 cycles. 

Human ST14 and F2RL1 assay on demand kits (Applied Biosystems, Warrington, UK) 

were used as described above, except 0.5 µl of the assay mix was added instead of 

primers and probe. 

All reactions were performed using the ABI PRISM 7900HT sequence detector. 
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2.5 Purification and characterisation of type II collagen 

2.5.1 Type II collagen purification 

Principle: Type II collagen is isolated using the method described by Miller and 

Rhodes (1982). After tissue homogenisation, proteoglycans need to be removed as they 

can amalgamate with collagen molecules and form insoluble aggregates at acid pH. 

Selective degradation of cross-links between the collagen molecules allows the collagen 

to solubilise in dilute acid solvents. Alternative precipitations from acidic to neutral salt 

solvents allow for purification of the collagen molecules. 

Proteoglycan extraction buffer 

4 M guanidium chloride, 50 mM Tris, pH 7.5, 0.02% (w/v) NaN3  

Collagen extraction buffer 

0.5 M acetic acid, pH 2.06, 0.02% (w/v) NaN3, 0.0005% (w/v) pepsin 

 

Method 

Human articular cartilage was used a source of human type II collagen; cartilage was 

dissected from joint tissues received from patients undergoing total joint replacement 

surgery and stored at -80°C. All tissue was collected with ethical approval and patient 

consent. 

Unless otherwise stated, all work was performed at 4°C. 

The cartilage was ground to a fine powder using the Specxmill as previously described 

(section 2.3.6). The powdered cartilage was then resuspended in proteoglycan extraction 

buffer and left to agitate for 48 h on a rocker (30 rpm). 

The suspension was then spun at 21,875 x g for 30 min and the pellet resuspended in 

collagen extraction buffer and left to shake for 24 h at 30 rpm. The solution was then 

spun at 21,875 x g for 1 h and the supernatant collected and stored at 4°C. The pellet 
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was resuspended in collagen extraction buffer and left to shake for 24 h at 30 rpm again. 

After this, the solution was centrifuged at 21,875 x g for 1 h, the supernatant collected 

and combined with that from the first spin. The pH of this solution was then brought to 

pH 7.6 with 50% (w/v) sodium hydroxide. Sodium chloride was then added very slowly 

to 27% (w/v) and the solution left for 24 h. It was then spun at 18,381 x g and the pellet 

resuspended in 0.5 M acetic acid and then sodium chloride added to a final 

concentration of 0.84 M. The solution was then spun for 1 h at 21,875 x g and the pellet 

redissolved in 0.5 M acetic acid, lyophilised (Labconco) and stored at -20°C. 

2.5.2 Preparation of dialysis tubing 

Method  

Regenerated cellulose dialysis tubing (Medicell International Ltd) with a molecular 

weight cut-off of 14kDa was boiled in 2 M Na2CO3 buffer to wash away any impurities 

and then stored in 40% (v/v) butanol at 4°C. 

2.5.3 Characterisation of enzyme activity on purified type II collagen 

Assay buffer 

50 mM Tris-HCl, pH 7.6, 1 M glucose, 200 mM NaCl, 5 mM CaCl2 and 0.02% (w/v) 

NaN3 

 

Method 

Lyophilised collagen was dissolved in 0.5 M acetic acid to a final concentration of 1 

mg/ml and then dialysed against assay buffer. In some reactions the collagen was 

denatured by incubation at 56°C for 30 min. Collagen (10 µg) was digested over a 24 h 

period at 37°C with 100 µM of enzyme. Samples were then separated on 6.5% SDS-

PAGE gels and visualised by silver staining as described in sections 2.5.4 and 2.5.5, 

respectively. 
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2.5.4 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

Principle: SDS-PAGE allows for the size-dependent separation of proteins regardless 

of their electrochemical properties. Initially, samples are mixed with loading dye and 

heated to 105°C. All proteins in the sample are then uniformly coated with SDS, 

therefore having the same charge. The lower pH of the stacking gel results in the 

concentration of the proteins into a thin band. Upon entering the resolving gel, the pH 

increases and the proteins are now separated based on their molecular weight. 

4x Lower gel buffer (LGB) 

1.5 M TrisHCl pH 8.8, 0.4% (w/v) SDS. 

4x Upper gel buffer (UGB) 

0.5 M Tris HCl pH 6.8, 0.4% (w/v) SDS. 

Upper gel  

40% (w/v) bis/acrylamide diluted to 4.5% with water and 4x UGB. 

5x Final sample buffer (FSB) 

0.625 M Tris HCl pH 6.8, 40% (v/v) glycerol, 10% (w/v) SDS, 0.5% (w/v) 

bromophenol blue, 5% (v/v) -mercaptoethanol. 

10x Running Buffer 

250 mM Tris, 2 M glycine, 10% (w/v) SDS. 

 

Method 

Electrophoresis was carried out in a Bio-Rad Mini-Protean II apparatus with 1.0 mm 

spacers and combs. Polyacrylamide-bis-acrylamide was diluted with water and 3 ml of 

4x LGB to the required percentage (Table 2.2). All solutions were allowed to reach 

room temperature before mixing. Gel mixture (12 ml) was polymerised by the addition 
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of 20 l TEMED and 60 l APS (0.1% w/v) immediately before pouring the gel. The 

lower gel was overlaid with propan-2-ol to exclude oxygen and allowed to polymerise. 

Once set the propan-2-ol was washed off and a 4.5% bis/acrylamide stacking gel laid on 

top, combs were inserted and the stacker allowed to set. Upper gel (5 ml) was set with 

10 l TEMED and 30 l 0.2% (w/v) APS. The gel kit was assembled and filled with 1x 

running buffer. Samples were prepared as follows: 1x sample buffer was added 

appropriately to samples which were then boiled at 105C for 5 min. Molecular weight 

markers were “Pageruler” protein markers (Fermentas). Proteins were electrophoresed 

at constant 60 V, through the stacking gel, and then 80 V, through the separating gel 

until the dye front had migrated to the end of the separating gel. 

 

Percentage gel (%) 40% (w/v) acryl/bis 

solution (37.5:1) (ml) 

ddH2O (ml) 4x LGB    

(ml) 

10 3.0 6.0 3.0 

6.5 1.95 7.05 3.0 

Table 2.2 Preparation of SDS-PAGE gels. 

 

2.5.5 Visualisation of protein bands 

Principle: Silver staining (Heukeshoven and Dernick, 1985) employs the use of soluble 

silver ions to detect proteins after separation by SDS-PAGE. When a reducing agent, 

such as formaldehyde, is added the silver ions are reduced and this reduction is 

enhanced in the presence of protein. Addition of sodium carbonate forms insoluble 

silver carbonate and highlights protein bands in the gel. The reaction is stopped by the 

sequestering of the silver ions by a chelating agent, such as EDTA. 
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Fixing solution 

40% (v/v) ethanol, 10% (v/v) acetic acid  

Sensitising solution 

30% (v/v) ethanol, 6.8% (w/v) sodium acetate, 0.2% (w/v) sodium thiosulphate, 0.125% 

(v/v) glutaraldehyde 

Silver solution 

0.25% (w/v) silver nitrate 

Developing solution 

2.5% (w/v) sodium carbonate, 0.0074% (v/v) formaldehyde 

Stop solution 

1.5% (w/v) EDTA 

 

Method 

Proteins were separated by SDS-PAGE (section 2.5.4) and then the separating gel 

placed in fixing solution for 1 h. The fixing solution was then removed and replaced 

with sensitising solution for 1 h. Sensitising solution was then removed and the gel then 

washed with ddH2O for 15 min and this step was repeated 3 further times. Silver 

solution was then added and left for 1 h. The gel was then washed twice with ddH2O for 

1 min. Developing solution was then added and the reaction progressing for 4 to 6 min 

until the protein bands were of sufficient visibility. The reaction was then immediately 

stopped by the addition of stop solution for 1 h. Images were captured using the 

ChemiGenius II system and associated software (Syngene, Cambridge, UK). 
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2.6 Collagenase assay 

Principle: Collagen at neutral pH and at temperatures above 25°C forms into fibrils 

where individual collagen molecules associate to form a gel. [
3
H]-acetylated collagen 

was used to measure the collagenolytic activity in supernatant from bovine and human 

cartilage explants cultures. At the end of the assay, undigested collagen fibrils are spun 

down in the centrifuge and the amount of [
3
H] in the supernatant correlates to the 

amount of collagen digested. Using APMA in the assay, one can measure total 

collagenase activity in addition to active collagenase activity. 

 

Tris buffer 

100 mM Tris-HCl, pH 7.6, 15 mM CaCl2 and 0.02% (w/v) NaN3 

10mM APMA stock solution 

35.2 mg APMA was dissolved in 200 µl DMSO and made up to 10 ml with 100 mM 

Tris-HCl, pH 8.5. Stored in the dark at 4°C for up to 3 months  

Tris-APMA buffer 

APMA was diluted to 2 mM in Tris buffer 

Cacodylate buffer 

25 mM sodium cacodylate, pH 7.6, 0.05% (w/v) Brij-35 and 0.02% (w/v) NaN3 

[
3
H]-acetylated collagen 

Type I collagen was extracted and purified from calf skin (Cawston and Barrett, 1979). 

The purified collagen was freeze-dried and stored at -20°C. When required the collagen 

was thawed and redissolved in 0.2 M acetic acid at 4°C. Collagen was radiolabelled 

with [
3
H]-acetic anhydride (925 MBq; GE Healthcare (Chalfont St. Giles, UK)) as 

described in Cawston et al. (2001). 

Trypsin 

100 µg/ml trypsin in 1 mM HCl 
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Bacterial collagenase 

100 µg/ml bacterial collagenase in cacodylate buffer 

 

Method 

To a 96-well V-bottomed plate, 50 µl of Tris assay buffer ± APMA was added to each 

well followed by 10 µl sample in duplicate (neat or duplicated in cacodylate buffer) and 

40 µl cacodylate buffer. Three sets of controls were included in the assay: 

1. Cacodylate buffer (50 µl); 

2. Trypsin (1 µg); 

3. Bacterial collagenase (5 µg). 

50 µl of [
3
H]-acetylated collagen was then added to each well. The 96-well plate was 

incubated at 37°C (16-20 h) then centrifuged at 1056 x g at 4°C for 30 min in Sorvall 

RC5C Plus centrifuge. Supernatant (50 µl) was removed and placed in a flexible 96-

well sample plate with 200 µl of Optiphase “Supermix” scintillation fluid. Counts were 

read in a 1450 Micro-Beta Trilux liquid scintillation and luminescence counter 

(PerkinElmer). Collagenase activity was measured in units/ml, where one unit can 

degrade 1 µg of collagen per min at 37°C 

Equation for calculating collagenase activity (units/ml): 

=50/(total lysis-blank) x 1000/(sample volume (µl)) x 1/(time (min)) x (sample-

blank) 

 

2.7 Enzyme activity assays 

2.7.1 Dipeptidyl peptidase activity assays 

Principle: FAPα is the only member of the DPP family that has gelatinase activity 

(Aoyama and Chen, 1990, Monsky et al., 1994, Pineiro-Sanchez et al., 1997) as well as 
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dipeptidyl peptidase activity (Park et al., 1999) and both of these activities occur in the 

same catalytic pocket that is located in the α/β-hydrolase domain. However, the 

exopeptidase activity of FAPα is reported to be 100-fold lower compared to DPPIV 

(Aertgeerts et al., 2005). Therefore, using a fluorescent N-terminally blocked substrate 

allows one to probe for the endopeptidase activity of FAPα; using a non N-terminally 

blocked peptide will probe mainly for the exopeptidase activity. Cleavage of the 

proline-AMC bond in either case will release AMC, which is highly fluorescent. 

Exopeptidase activity is probed for using a fluorescent peptide mimetic, GP-AMC, 

which closely resembles in vivo substrates. Cleavage of the proline-AMC bond will 

release AMC, which is highly fluorescent. 

 

2.7.1.1 Endopeptidase activity assay 

Assay buffer 

25 mM Tris HCl, pH 7.9, 140 mM NaCl, 10 mM KCl, 0.01% (w/v) Brij-35. This was 

filtered through a 0.2 µm filter and pre-warmed to 37°C before use. 

Z-GP-AMC 

25 mM dissolved in methanol. Stored -20°C in the dark. 

FAPα 

1.2 µM in assay buffer. Stored at -20°C 

 

Z-GP-AMC was diluted to 62.5 µM in pre-warmed assay buffer and kept at 37°C in the 

dark. FAPα (120 pM final concentration) was mixed with either 10 µl of test reagent or 

assay buffer in 96-well white walled plates at 37°C for 30 min. 80 µl of 62.5 µM Z-GP-

AMC was added to each well (50 µM final concentration) and the plate incubated for 4 

h. Fluorescence was then measured immediately (λex 360 nm, λem 460 nm) in a Perkin 

Elmer LS-50B fluorimeter. 
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2.7.1.2 Exopeptidase activity assay 

Assay buffer 

25 mM Tris HCl, pH 7.9, 140 mM NaCl, 10 mM KCl, 0.01% (w/v) Brij-35. This was 

filtered through a 0.2 µm filter and pre-warmed to 37°C before use. 

GP-AMC 

25 mM dissolved in methanol. Stored -20°C in the dark. 

FAPα 

1.2 µM in assay buffer. Stored at -20°C 

DPPIV 

9.5 µM in 10 mM Tris-HCl, pH 7.6, 200 mM NaCl, 1 mM EDTA and 10% (v/v) 

glycerol buffer. Stored at -20°C 

 

GP-AMC was diluted to 62.5 µM in pre-warmed assay buffer and kept at 37°C in the 

dark. FAPα (120 pM final concentration) or DPPIV (50 pM final concentration) was 

mixed with either 10 µl of test reagent or assay buffer in 96-well white walled plates at 

37°C for 30 min. 80 µl of 62.5 µM GP-AMC was added to each well (50 µM final 

concentration) and the plate incubated for 4 h. Fluorescence was then measured 

immediately (λex 360 nm, λem 460 nm) in a Perkin Elmer LS-50B fluorimeter. 

2.7.2 Matriptase activity assay 

Principle: Matriptase activity is probed for using a fluorescent peptide mimetic, Boc-

QAR-AMC, which closely resembles in vivo substrates. Cleavage of the arginine-AMC 

bond will release AMC, which is highly fluorescent. 
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Assay buffer 

100 mM Tris HCl, pH 9, 500 µg/ml BSA, 0.01% (w/v) Brij-35. This was filtered 

through a 0.2 µm filter and pre-warmed to 37°C before use. 

Boc-QAR-AMC 

25 mM dissolved in methanol. Stored -20°C in the dark. 

Matriptase 

3.8 µM in 50 mM Tris HCl, pH9, 1 mM β-mercaptoethanol, 400 mM NaCl, 10% 

glycerol. Stored at -20°C 

 

Boc-QAR-AMC was diluted to 62.5 µM in pre-warmed assay buffer and kept at 37°C 

in the dark. Matriptase (10 nM final concentration) was mixed with either 10 µl of test 

reagent or assay buffer in 96-well white walled plates at 37°C for 30 min. 80 µl of 62.5 

µM Boc-QAR-AMC was added to each well (50 µM final concentration) the plate 

incubated for 30 min. Fluorescence was then measured immediately (λex 360 nm, λem 

460 nm) in a Perkin Elmer LS-50B fluorimeter. 

 

2.7.3 FS-6 assay 

Principle: FS-6 is a general MMP substrate that has increased reaction rates compared 

to previous peptide analogues (Neumann et al., 2004). Dpa is an internal quencher that 

limits the auto-fluorescence of the AMC, but MMP cleavage of the Gly-Leu peptide 

spatially separates the Dpa and AMC, with fluorescence increasing proportionally. 

 

Assay buffer 

100 mM Tris HCl, pH 7.5, 100 mM NaCl, 10 mM CaCl2, 0.1% (w/v) PEG-6000, 0.05% 

(w/v)  Brij-35. This was filtered through a 0.2 µm filter and pre-warmed to 37°C before 

use. 
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FS-6 (AMC-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2) 

5 mM dissolved in DMSO. Stored -20°C in the dark 

Pro-MMP-1 

1.4 µM in 20 mM Tris HCl ,pH7.2, 0.5 M NaCl, 0.05% (w/v) NaN3, 0.01% (w/v) Brij-

35. Stored at -80°C 

10 mM APMA stock solution 

35.2 mg APMA was dissolved in 200 µl DMSO and made up to 10 ml with 100 mM 

Tris-HCl, pH 8.5. Stored in the dark at 4°C for up to 3 months  

 

Method 

Pro-MMP-1 was activated by incubating with APMA (0.67 mM final concentration) or 

matriptase (0.28 µM final concentration) for 4 h. FS-6 was diluted to 6.25 µM in pre-

warmed assay buffer and kept at 37°C in the dark. MMP-1 (0.14 µM final 

concentration) was mixed with 10 µl assay buffer in 96-well white walled plates at 37°C 

for 30 min. 80 µl of 6.25 µM FS-6 was added to each well (5 µM final concentration) 

and fluorescence read after 5 min (λex 325 nm, λem 400 nm) in a Perkin Elmer LS-50B 

fluorimeter. 

2.7.4 Hide powder azure assay 

Principle: Proteins, from bovine hide, are covalently linked to the chromogen Remazol 

Brilliant Blue R. The substrate was then incubated with active enzyme and upon 

cleavage of labelled proteins from the hide powder there is an increase in blue product 

in the supernatant. The absorbance was then measured at A595. 

 

 

 

 



68  
 

Assay buffer 

100 mM Tris HCl, pH 7.5, 0.6 M sucrose, 100 mM NaCl, 10 mM CaCl2, 0.1% (w/v) 

PEG-6000, 0.05% (w/v) Brij-35. This was filtered through a 0.2 µm filter and pre-

warmed to 37°C before use. 

Hide azure solution  

3% (w/v) dissolved in assay buffer. 

Pro-MMP-1 

1.4 µM in 20 mM Tris HCl, pH7.2, 0.5 M NaCl, 0.05% (w/v) NaN3, 0.01% (w/v) Brij-

35. Stored at -80°C 

10mM APMA stock solution 

35.2 mg APMA was dissolved in 200 µl DMSO and made up to 10 ml with 100 mM 

Tris-HCl, pH 8.5. Stored in the dark at 4°C for up to 3 months  

 

Method 

Pro-MMP-1 was activated by incubating with APMA (0.67 mM final concentration) or 

matriptase (0.28 µM final concentration) for 4 h. MMP-1 (0.14 µM final concentration) 

was mixed with 1 ml of hide powder azure solution in 1.5 ml eppendorfs and incubated 

at 37°C for 4 h on an orbital shaker (1000 rpm). Then centrifuged at 1200 x g for 5 min 

and supernatant transferred to 96-well flat bottom plate in duplicate (100 µl/well). The 

absorbance was read at 595 nm (Sunrise microplate reader, Tecan). 

 

2.8 ELISA 

2.8.1 MMP-1 ELISA 

Principle: Monoclonal MMP-1 antibody was immobilised on Maxisorb 96-well plates. 

Samples were added to the plates and any MMP-1 present would bind to the antibody. 
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A secondary antibody, which is raised against a second distinct epitope, was added. 

Tertiary antibody, conjugated with HRP, recognising the secondary antibody was then 

added. A chromogenic substrate was then added and oxidised by HRP producing a 

coloured product. 

Phosphate buffered saline (PBS) 

8.1 mM Na2HPO4, 1.5 mM KH2PO4, 154 mM NaCl, 2.7 mM KCl, pH 7.4 

Wash buffer 

8.1 mM Na2HPO4, 1.5 mM KH2PO4, 150 mM NaCl, 2.7 mM KCl, 0.25 mM thimerosol 

and 0.1% (v/v) Tween 20, pH 7.0 

Blocking buffer 

1% (w/v) BSA in PBS 

Protein diluents 

0.05% (w/v) BSA in wash buffer 

Monoclonal antibody to human MMP-1 (RRU-CL1) 

2 µg/ml in protein diluent 

Rabbit anti-MMP-1 polyclonal antibody (B-anti-CL1) 

2 µg/ml in protein diluent 

Goat anti-rabbit IgG-HRP 

Diluted 1:1000 in protein diluent 

Phosphate-citrate buffer 

Dissolve one phosphate-citrate capsule per 100 ml of ddH2O 

OPD substrate solution 

Prepared immediately before use. 1 tablet (15mg) of OPD dissolved in 12 ml of 0.5 M 

phosphate-citrate buffer, pH 5.0. 
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Method 

Maxisorb 96-well plates were coated with RRU-CL1 overnight at 4°C (100 µl/well). 

The plates were washed once with wash buffer (400 µl/well) and blocked with blocking 

buffer (200 µl/well) overnight at 4°C. The plates were then washed three times in wash 

buffer. Standards (0-80 ng/ml) were prepared by diluting recombinant human pro-

MMP-1 in protein diluent. Samples and standards (100 µl/well) were added to the plates 

in duplicate and incubated at 4°C overnight. The plates were then washed three times 

with wash buffer and then incubated at room temperature for 2 h with B-anti-CL1 (100 

µl/well). The plates were washed three times in wash buffer and incubated at room 

temperature for 1 h with goat anti-rabbit IgG-HRP (100 µl/well). The plates were then 

washed three times in wash buffer and incubated with 100 µl per well of OPD substrate 

for approximately 5 min at room temperature. The reaction was stopped by the addition 

of 3 M H2SO4 (50 µl/well) and the absorbance read at 490 nm (TECAN Sunrise plate 

reader, Reading, UK). 

2.8.2 MMP-13 ELISA 

Principle: Monoclonal MMP-13 antibody was immobilised on Maxisorb 96-well 

plates. Samples were added to the plate and any MMP-13 present would bind to the 

antibody. A biotin conjugated secondary antibody, which is raised against a second 

distinct epitope, is added. Streptavidin conjugated HRP is then added and binds to the 

biotin labelled secondary antibody. A chromogenic substrate is then added and oxidised 

by HRP producing a coloured product. 

Monoclonal coating antibody to human MMP-13 

1.25 µg/ml in protein diluent 

Biotinylated detection anti-MMP-13 antibody 

125 ng/ml in protein diluent 



71  
 

Streptavidin-HRP  

Diluted 1:1000 in protein diluents 

 

Method 

Maxisorb 96-well plates were coated with coating antibody overnight at 4°C (100 

µl/well). The plates were washed once with wash buffer (400 µl/well) and blocked with 

blocking buffer (200 µl/well) overnight at 4°C. The plates were then washed three times 

in wash buffer. Standards (0-20 ng/ml) were prepared by diluting purified recombinant 

pro-MMP-13 in protein diluent. Samples and standards (100 µl/well) were added to the 

plates in duplicate and incubated at 4°C overnight. The plates were then washed three 

times with wash buffer and then incubated at room temperature for 2 h with detection 

antibody (100 µl/well). The plates were washed three times in wash buffer and 

incubated at room temperature for 30 min with Streptavidin-HRP (100 µl/well). The 

plates were then washed three times in wash buffer and incubated with 100 µl per well 

of OPD substrate for approximately 5 min at room temperature. The reaction was 

stopped by the addition of 3 M H2SO4 (50 µl/well) and the absorbance read at 490 nm 

(TECAN Sunrise plate reader, Reading, UK). 

 

2.9 N-terminal sequencing 

2.9.1 Recombinant pro-MMP-1 isolation by ion exchange chromatography 

Principle: Ion exchange chromatography relies on the differences between molecules in 

relation to their surface charge distribution, overall charge and charge density. MMP-1 

at neutral pH displays a net positive charge and binds to the negatively charged methyl 

sulfonate group in the column. Linear increments in the ionic strength of the buffer 
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causes elution of the bound proteins, with weakly interacting proteins eluting first at 

low ionic strength and strongly interacting proteins eluting last at high ionic strength. 

 

Materials 

Mono S HR 5/5 column. 

Buffer A 

20 mM Tris-HCl, pH 7.4, 5 mM CaCl2, 0.05% (w/v) Brij-35, 0.01% (w/v) NaN3 in 

ddH2O 

Buffer B 

Buffer A including 1 M NaCl 

 

Method 

Buffers were filtered through a 0.45 µm filter before use. The Mono S column was used 

on an ÄKTAexplorer 100 system (GE Healthcare, Chalfont St. Giles, UK) at room 

temperature. Partially purified recombinant pro-MMP-1 was generously donated by Dr 

J. Milner. Samples were diluted 10-fold in buffer A. The column was washed with 5 

column volumes (CV) of ddH2O to remove the storage buffer (20% ethanol). 10 CV of 

buffer A were passed through the column to equilibrate it. The sample was loaded and 

then washed with 2 CV of buffer A to remove unbound proteins. Next, the column was 

washed with a salt gradient (0 to 1 M NaCl) using buffer B (33 mM/min). The flow rate 

throughout the procedure was 1 ml/min. A280 was measured to trace the protein peaks. 

Fractions (0.5 ml) were collected. 

 

2.9.2 N-terminal sequencing of matriptase activated pro-MMPs 

Principle: The N-terminal amino acid sequence of proteins can be determined by 

Edman degradation. Samples are incubated with matriptase and then separated by SDS-
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PAGE and transferred onto PVDF membranes. The protein bands were visualised by 

Coomassie dye staining and excised. Samples were freed from the PVDF by immersion 

in organic solvents and the protein underwent 5 rounds of Edman degradation. Briefly, 

phenylisothiocyanate was reacted with the uncharged terminal amino group under 

alkaline conditions. The derivative is then acid treated to form a thiazolinone derivative 

and extracted into organic solvent and acid treated again to form phenylthiohydantoin 

amino acid derivative. The phenylthiohydantoin amino acid derivative is then identified 

by chromatography. 

 

Buffer 

25 mM sodium cacodylate, 10 mM CaCl2, 0.05% Brij, 0.02% azide pH 8 in ddH2O 

Matriptase 

3.8 µM in 50mM Tris HCl, pH9, 1mM β-mercaptoethanol, 400 mM NaCl, 10% (v/v) 

glycerol. Stored at -20°C. 

Pro-MMP-3ΔC 

22.4 µM in 50 mM TrisHCl (pH 7.5), 0.15 M NaCl, 10 mM CaCl2, 0.02% NaN3, 0.05% 

(w/v) Brij-35, 10% (v/v) glycerol. Stored at -80°C. 

Pro-MMP-1 

1.4 µM in 20 mM Tris-HCl, pH 7.4, 130 mM NaCl, 5 mM CaCl2, 0.05% (w/v) Brij-35, 

0.01% (w/v) NaN3. Stored at -80°C. 

GM6001 

50 mM in DMSO. Protected from light and stored at -80°C. 

5x Final sample buffer (FSB) 

0.625 M Tris HCl pH 6.8, 40% (v/v) glycerol, 10% (w/v) SDS, 0.5% (w/v) 

bromophenol blue, 5% (v/v) -mercaptoethanol. 

Transfer buffer 
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10 mM Caps, pH 11, 10% (v/v) methanol in ddH2O 

Staining solution 

0.25% (w/v) Coomassie brilliant blue G250, 40% (v/v) methanol, 10% (v/v) acetic acid 

Destaining solution 

40% (v/v) methanol, 10% (v/v) acetic acid  

 

Method 

1 µM pro-MMP was incubated with 0.28 µM matriptase (± GM6001, 50 µM final 

concentration) at 37°C for 1 to 4 h. Samples were then run on 10% SDS-polyacrylamide 

gels (section 2.5.4) and transferred to PVDF membranes by semi-dry electroblotting 

(Scie-Plas V20-SDB) for 90 min at 1mA/cm
2
. 

The protein bands were then visualised by placing the membranes in staining solution 

for 20 min and then destaining for 30 min. The bands were then excised and sent for N-

terminal sequencing. N-terminal sequence analysis was performed by Dr Joe Gray 

(Pinnacle, Newcastle University, UK). 

 

2.10 Statistics 

Statistical difference between parametric groups was assessed by one-way analysis of 

variance (ANOVA) with a Bonferroni post-hoc test. All non-parametric samples were 

assessed by Mann-Whitney U test. The SPSS 15.0 software package (SPSS UK Ltd, 

UK) was used in all instances. Significance levels were indicated as * = p ≤ 0.05, ** p ≤ 

0.01 and *** = p ≤ 0.001.  
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CHAPTER 3 

Investigating the role of FAPα in cartilage homeostasis 

3.1 Introduction 

The degradation of the cartilage collagen matrix is irreversible and a major hallmark of 

the rheumatic diseases. The key enzymes involved in cartilage degradation are the 

collagenases (section 1.5.2) which belong to the MMP family. All MMPs are 

synthesised as zymogens that require removal of their pro-domain for activity (section 

1.5.4), but the exact in vivo mechanisms of MMP activation are not fully understood. 

However, evidence from within our group shows that serine proteases play an important 

role in the regulation of MMP activity (Milner et al., 2001, 2003, 2008). The inhibition 

of either furin-like or trypsin-like cascades in IL-1+OSM-treated cartilage protects the 

collagen matrix significantly from cytokine-mediated degradation. All these 

observations clearly implicate serine proteases in pathological collagen turnover. 

Data implicate that type II collagen degradation occurs around the chondrocyte before 

being detected in other zones of the cartilage (Hollander et al., 1995). Recently, novel 

transmembrane serine proteases have been discovered to be up-regulated in OA 

cartilage compared to phenotypically normal cartilage (Figure 3.1). Research on newly 

discovered serine proteases is required as their cell surface localisation of these 

proteases would support a hypothesis that they have an important role in pericellular 

degradation of cartilage. 
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*** * 

* 

** 
 

 

Figure 3.1 Expression of transmembrane serine proteases are elevated in OA 

cartilage 

Gene expression levels in hip cartilage from patients with OA (closed circles; n = 13) or 

normal controls (open squares; n = 12) of DPPIV, FAPα and matriptase were 

determined by real-time PCR and normalised to the level of 18S rRNA. Significant 

differences between the normal and OA groups were determined using a two-sided 

Mann–Whitney U test. * = p<0.05, ** = p<0.01, *** = p<0.001. Data generated by Dr 

J. M. Milner, Newcastle University, U.K. 
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FAPα (section 1.8.2) expression was originally thought to be highly restricted to sites of 

tissue remodelling, on the surface of reactive stromal fibroblasts or synoviocytes (Bauer 

et al., 2006), at sites of tumour invasiveness and not to be expressed in normal adult 

tissues (Rettig et al., 1993). However, expression of this enzyme has recently been 

detected on the cell surface of chondrocytes upon stimulation with IL-1 and OSM 

(Milner et al., 2006b). Additionally, when BNC was treated with IL-1+OSM, there was 

a strong correlation between FAPα mRNA expression and increasing collagen 

degradation (Milner et al., 2006b), suggesting a role for this enzyme in the pathology of 

inflammatory arthritis. 

The β-propeller domain of FAPα plays a role in the interaction of the enzyme with other 

membrane bound proteins such as α3β1 integrin (Mueller et al., 1999, Zhang et al., 

1999) as well as components of the plasminogen activator receptor (Artym et al., 2002). 

This association with other membrane bound proteins indicates that FAPα has the 

ability to modulate cellular functions via the recruitment of intracellular signalling 

molecules such as integrin proteins (Nakahara et al., 1998). Furthermore, there is a 

substantial body of evidence showing that FAPα associates with a large number of 

molecules on the cell surface (Kelly, 2005, Monsky et al., 1994, Artym et al., 2002). 

One study showed that FAPα can associate with uPAR at invadopodia, suggesting a co-

operative role in ECM degradation and cellular invasion in cancer. Therefore, the 

rationale was that modulation of enzymatic FAPα activity in resorbing cartilage would 

alter collagen matrix degradation in cytokine-treated bovine cartilage. 

The aims of this chapter were to: 

 determine if FAPα gene expression is regulated by IL-1 and/or OSM in primary 

chondrocytes;  

 examine if FAPα possesses type II collagenolytic or gelatinolytic activity; 



78  
 

 investigate if FAPα enzyme activity has a role in the breakdown of the collagen 

matrix in IL-1+OSM-treated cartilage, using inhibitors designed to target FAPα; 

 assess if addition of exogenous active FAPα would influence IL-1+OSM-

induced cartilage breakdown. 
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3.2 Results 

3.2.1 Regulation of FAPα gene expression in primary chondrocytes 

FAPα expression has been shown to be elevated in SW1353 cells upon IL-1 and/or 

OSM stimulation (Milner et al., 2006b). The SW1353 chondrosarcoma cell line has 

been used routinely in place of primary human chondrocytes since such cells can 

dedifferentiate when cultured in monolayer (Bonaventure et al., 1994). However, recent 

data suggest that SW1353 cells have limited potential as a model to study chondrocyte 

gene expression as long-term culture shows that they exhibit an epithelial phenotype 

(Gebauer et al., 2005). Therefore, the regulation of FAPα gene expression in primary 

cells was investigated in bovine nasal chondrocytes. 

A modest increase of FAPα expression could be observed in IL-1+OSM-treated SW 

1353 cells (Figure 3.2). In contrast to findings by Milner et al. (2006b), however, this 

increase was not significant. FAPα gene regulation by IL-1 and OSM was then assessed 

in two different populations of bovine nasal chondrocytes (Figure 3.3). The data were 

rather variable between the populations with no discernable trend. MMP-1 gene 

expression was tested in SW1353 and primary cells (data not shown) and synergistic 

induction upon IL-1+OSM stimulation was observed as previously reported (Barksby et 

al., 2006). These results highlight the differences between SW1353 and primary cells.   

TGF-β1 has been shown to induce FAPα gene expression in a number of cell lines 

(Chen et al., 2009, Rettig et al., 1994). FAPα expression was also regulated by TGF-β1 

in SW1353 cells (Figure 3.2). Whilst TGF-β1 did induce FAPα expression in SW1353 

cells even in the presence of IL-1 and/or OSM (Figure 3.2), a similar trend was not 

observable in primary chondrocytes (Figure 3.3).  
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Figure 3.2 The regulation of FAPα gene expression in SW1353 chondrocyte cell 

line.  

SW1353 cells were treated with combinations of IL-1 (1 ng/ml) and OSM (10 ng/ml) ± 

TGF-β1 (10 ng/ml) for 24 h. Total RNA was extracted and FAPα gene expression 

determined by real-time PCR and normalised to 18S rRNA levels. The data from two 

representative experiments are shown and presented as fold induction relative to control. 

Results are expressed as mean ± SEM (n=4). ** = p < 0.01. 
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Figure 3.3 The regulation of FAPα gene expression in primary chondrocytes. 

Bovine nasal chondrocytes were treated with combinations of IL-1 and OSM ± TGF-β1 

(10 ng/ml) for 24 h. Total RNA was extracted and FAPα gene expression determined by 

real-time PCR and normalised to 18S rRNA levels. The data from two experiments are 

shown and are presented as fold induction relative to control. Results are expressed as 

mean ± SEM (n=4). 
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3.2.2 Effect of FAPα enzyme activity on type II collagen 

The hypothesis being tested in this experiment was that FAPα should contribute to 

matrix degradation by hydrolysis of denatured type II collagen. FAPα has been shown 

to have gelatinolytic activity (Levy et al., 1999) and as proteolysis is thought to occur in 

the pericellular compartment (Hollander et al., 1995), a transmembrane gelatinase could 

potentially expedite clearance of matrix proteins and therefore facilitate matrix 

degradation.  

Type II collagen was extracted as described in section 2.5. To ensure that the type II 

collagen had retained its native triple helical state during the extraction, the collagen 

was treated with trypsin. The type II collagen extracted from human cartilage still 

retained the native triple helical conformation as trypsin could not cleave the native 

collagen band but did hydrolyse the denatured collagen (Figure 3.4, lanes 4 and 5). In 

the experiment shown, FAPα is only able to cleave denatured collagen and shows for 

the first time that FAPα can degrade denatured type II collagen (Figure 3.4, lane 7). 
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Figure 3.4 FAPα proteolysis of type II collagen.  

Type II collagen (10 μg) from human articular cartilage was incubated at 37°C for 24 h 

in the presence or absence of proteases in 50 mM Tris-HCl, pH 7.6, 1 M glucose, 200 

mM NaCl, 5 mM CaCl2 buffer. Lane: (1) Native collagen (N); (2) Denatured collagen 

(D); (3) 4 µM trypsin; (4) Native collagen, 0.4 µM trypsin; (5) Denatured collagen, 0.4 

µM trypsin; (6) 0.1 µM FAPα; (7) Native collagen, 0.4 µM FAPα; (8) Denatured 

collagen, 0.4 µM FAPα. Digests were reduced and analysed by 6.5 % SDS–PAGE. The 

closed arrow indicates the position of the intact α(II) chain of type II collagen. The open 

arrow indicates the position of FAPα. The patterned arrows indicate the presence of 

unknown low molecular weight contaminants. Results are representative of 2 

independent experiments. 
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3.2.3 The effect of FAPα inhibitors on resorbing cartilage explants 

The aim of these experiments was to determine if FAPα enzyme activity contributed to 

cartilage collagen breakdown in response to cytokine stimulation. Inhibitors specifically 

targeting FAPα were added to cytokine-treated BNC and collagen release measured. 

 

3.2.3.1 Collagen release upon addition of FE999044 to resorbing nasal cartilages 

In the experiment shown (Figure 3.5), cartilage treated with IL-1+OSM yielded 49.84 ± 

14.21% collagen release, while the addition of 3 µM FE999044 yielded 50.23 ± 17.12% 

collagen release and the addition of 0.3 µM FE999044 yielded 60.72 ± 4.92% collagen 

release. The data show that there was no change in collagen release when resorbing 

cartilage was treated with FE999044. 

Recombinant human FAPα was used to test if FE999044 had potential to inhibit the 

enzymatic activity of FAPα in vitro. While FE999044 showed no inhibitory ability 

against the endopeptidase activity of FAPα (Figure 3.6a), it showed a strong ability to 

inhibit its exopeptidase activity (Figure 3.6b). Furthermore, FE999044 showed no cross-

reactivity to inhibit the enzymatic activity of recombinant DPPIV in vitro (Figure 3.7). 
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Figure 3.5 Effect of FE999044 on cartilage breakdown. 

Bovine nasal cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 

ng/ml respectively) ± FE999044 or DMSO control. Media were removed on day 7 and 

fresh reagents were added until day 14 when the experiment was ceased. As a measure 

of collagen release, the levels of hydroxyproline were assayed in day 7 and day 14 

media and in cartilage digests. Shown are the cumulative collagen release (day 7 + day 

14), expressed as a percentage of the total collagen. Results are expressed as mean ± SD 

(n=4) and representative of 3 independent experiments. 
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Figure 3.6 Effect of FE999044 on the enzymatic activity of FAPα 

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) with either FE999044 (10 µM) or DMSO as a solvent 

control were incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was then 

added and left for 4 h at 37°C. Fluorescence was then measured immediately (λex 360 

nm, λem 460 nm). The A) endopeptidase or B) exopeptidase activity was calculated. 

Results are expressed as mean ± SD (n=3) and representative of 2 independent 

experiments. *** = p < 0.001 against DMSO. 
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Figure 3.7 Effect of FE999044 on the enzymatic activity of DPPIV 

DPPIV activity was determined using the quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) with either FE999044 (10 µM) or DMSO as a solvent control were 

incubated in assay buffer for 30 mins at 37°C. Substrate (50 µM) was then added and 

left for 1 h at 37°C. Fluorescence was then measured immediately (λex 360 nm, λem 460 

nm). The percentage activity was calculated. Results are expressed as mean ± SD (n=3) 

and representative of 2 separate experiments.  
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3.2.3.2 Collagen release upon addition of Z-GP-DPi to resorbing cartilage 

In the experiment shown (Figure 3.8), cartilage treated with IL-1+OSM and DMSO 

yielded 69.77 ± 7.73% collagen release. The addition of 150 µM Z-GP-DPi yielded 

65.93 ± 5.71% collagen release. No change in collagen release could be observed when 

resorbing cartilage was treated with Z-GP-DPi.  

It has been reported previously that dipeptide diphenylphosphonate inhibitors have short 

half-lives at physiological salt levels and 37°C (Lambeir et al., 1996). The activation of 

pro-collagenases in our bovine cartilage explant model is thought to occur around days 

10 to 12 (Milner et al., 2006a). However, addition of Z-GP-DPi between days 8 to 12 

inclusive showed no change in collagen release (Figure 3.9). 

Recombinant human FAPα was used to test if Z-GP-DPi had potential to curtail the 

enzyme activity of FAPα in vitro. Z-GP-DPi showed no inhibitory ability against either 

the endopeptidase activity of FAPα (Figure 3.10a), or exopeptidase activity (Figure 

3.10b). Additionally, Z-GP-DPi did not show any efficacy against recombinant DPPIV 

activity in vitro (Figure 3.11). Consequently, the use of Z-GP-DPi was discontinued as 

it exhibited no inhibitory potential. 
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Figure 3.8 Effect of Z-GP-DPi on cartilage breakdown.  

Bovine nasal cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 

ng/ml, respectively) ± Z-GP-DPi (150 µM) or DMSO control. Media were removed on 

day 7 and fresh reagents were added until day 14 when the experiment was ceased. As a 

measure of collagen release, the levels of hydroxyproline were assayed in day 7 and day 

14 media and in cartilage digests. Shown are the cumulative collagen release (days 7 + 

day 14), expressed as a percentage of the total collagen. Results are expressed as mean 

± SD (n=4) and representative of 3 separate experiments. 
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Figure 3.9 Multiple additions of Z-GP-DPi to cartilage show no protective effect.  

Bovine nasal cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 

ng/ml respectively) ± Z-GP-DPi or DMSO control. Media were removed on day 7 and 

fresh reagents added, Z-GP-DPi (150 µM final concentration) was added to the cartilage 

between days 8 to 12 (inclusive). The experiment was ceased at day 14. As a measure of 

collagen release, the levels of hydroxyproline were assayed in day 7 and day 14 media 

and in cartilage digests. Shown is the cumulative collagen release (days 7 + day 14), 

expressed as a percentage of the total collagen. Results are expressed as mean ± SD 

(n=4) and representative of 3 separate experiments. *** = p < 0.001 against IL-1+OSM 

alone. 
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Figure 3.10 Effect of Z-GP-DPi on the activity of FAPα.  

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) with either Z-GP-DPi or DMSO (0.1%) as a solvent 

control were incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was then 

added and left for 4 h at 37°C. Fluorescence was then measured immediately (λex 360 

nm, λem 460 nm). The percentage activity was calculated. Results are expressed as mean 

± SD (n=3) and representative of 2 separate experiments. 
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Figure 3.11 Effect of Z-GP-DPi on the enzymatic activity of DPPIV 

DPPIV activity was determined using the quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) with either Z-GP-DPi or DMSO as a solvent control were incubated in 

assay buffer for 30 mins at 37°C. Substrate (50 µM) was then added to each well and 

left for 1 h at 37°C. Fluorescence was then measured immediately (λex 360 nm, λem 460 

nm). The percentage activity was calculated. Results are expressed as mean ± SD (n=3) 

and representative of 2 separate experiments. 
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3.2.3.3 Collagen release upon addition of UAMC-583 and -584 to resorbing bovine 

cartilage 

In the experiment shown (Figure 3.12), cartilage treated with IL-1+OSM and DMSO 

yielded 77.55 ± 13.27% collagen release. Addition of 10 µM UAMC-583 and UAMC-

584 yielded 78.91 ± 9.87% and 69.47 ± 11.62% collagen release, respectively. No 

change in collagen release could be detected when resorbing cartilage was treated with 

any of these FAPα inhibitors.  

Recombinant human FAPα was used to test if any of the inhibitors had potential to 

reduce the enzymatic activity of FAPα in vitro. UAMC-583 and -584 showed 

significant inhibitory ability against the endopeptidase activity of FAPα (Figure 3.13a) 

but not exopeptidase activity (Figure 3.13b).  

None of the FAPα inhibitors tested showed any affect against recombinant DPPIV 

activity in vitro (Figure 3.14). 
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Figure 3.12 Effect of FAPα inhibitors on cartilage breakdown.  

Bovine nasal cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 

ng/ml respectively). At days 0, 3, 7 and 10, the inhibitors UAMC-583 and -584 (10 µM) 

or DMSO control were added to cartilage. Media were removed on day 7 and fresh 

reagents added until day 14 when the experiment was ceased. As a measure of collagen 

release, the levels of hydroxyproline were assayed in day 7 and day 14 media and in 

cartilage digests. Shown is the cumulative collagen release (days 7 + day 14), expressed 

as a percentage of the total collagen. Results are expressed as mean ± SD (n=4) and 

representative of 3 separate experiments. 
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Figure 3.13 Effect of FAPα inhibitors on the activity of FAPα.  

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) with either FAPα inhibitors (10 µM) or DMSO (0.1%) 

as a solvent control were incubated in assay buffer for 30 min at 37°C. Substrate (50 

µM) was then added and left for 4 h at 37°C. Fluorescence was then measured 

immediately (λex 360 nm, λem 460 nm). The A) endopeptidase or B) exopeptidase 

activities were calculated. Results are expressed as mean ± SD (n=3) and are 

representative of 2 separate experiments. *** = p < 0.001 against DMSO. 
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Figure 3.14 Modulation of DPPIV activity by FAPα inhibitors 

DPPIV activity was determined using the quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) with FAPα inhibitors (10 µM) or DMSO as a solvent control were 

incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was then added and left 

for 1 h at 37°C. Fluorescence was then measured immediately (λex 360 nm, λem 460 

nm). The percentage activity was calculated. Results are expressed as mean ± SD (n=3) 

and representative of 2 separate experiments. 
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3.2.4 Effect of FAPα on IL-1+OSM-treated bovine cartilage explant culture 

The hypothesis being tested in this experiment was that, if FAPα has a catabolic role in 

cartilage breakdown, the addition of active FAPα should lead to higher collagen release 

compared to IL-1+OSM treated cartilage. Milner et al. (2006a) showed that in IL-

1+OSM-treated cartilage the activation of pro-collagenases occurs around days 10 to 

12. Data from our group have highlighted that factors that expedite collagen release 

from this model are best identified at a time point soon after we expect to begin seeing 

collagen release. Therefore, the effect of exogenous FAPα was assessed at day 12.  

A modest decrease in collagen release could be observed with the addition of active 

FAPα compared to IL-1+OSM-treated bovine cartilage explants by day 12 (Figure 

3.15). However, this decrease was not significant in either experiment.  
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Figure 3.15 Effect of exogenous FAPα on cartilage breakdown.  

Bovine nasal cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 

ng/ml, respectively). Media removed on day 7 and fresh media ± FAPα (100 nM) were 

added until day 12 when the experiment was ceased. As a measure of collagen release, 

the levels of hydroxyproline were assayed in day 7 and day 12 media and in cartilage 

digests. Shown is the cumulative collagen release (days 7 + day 12), expressed as a 

percentage of the total collagen. Results are expressed as mean ± SD (n=6) and 

representative of 2 separate experiments. 
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3.3 Discussion 

3.3.1 IL-1+OSM does not regulate FAPα gene expression in primary chondrocytes  

Milner et al. (2006b) previously reported that FAPα gene expression was increased in 

OA cartilage and correlated with collagen release in IL-1+OSM-treated BNC. In 

addition, FAPα gene expression was detected in SW1353 chondrosarcoma cells 

although Gebauer et al. (2005) have described SW1353 chondrosarcoma cells to have 

limited potential as a model for gene expression in primary chondrocytes. The data 

presented here show that neither IL-1, OSM nor TGF-β1 regulate FAPα gene 

expression in primary bovine chondrocytes.  

FAPα expression was shown to be up-regulated during inflammation in RA and OA 

synovial cells (Bauer et al., 2006) and in cirrhotic livers (Levy et al., 1999). However, 

there is little information on the regulation of FAPα gene expression in these 

pathologies. Recently, the promoter sequence of FAPα has been analysed and three 

transcription factor binding sites have been identified; HOXA4 (homeobox A4), E2F1 

and EGR1 (early growth response protein 1) (Zhang et al., 2010). In this study, EGR1 

knockdown showed a fifty percent decrease in FAPα expression, while HOXA4 and 

E2F1 knockdowns did not show any effect on gene expression. EGR1 has previously 

been demonstrated to be up-regulated in OA cartilage compared to phenotypically 

normal cartilage (Wang et al., 2000). However, the role of EGR1 is arthritis remains 

unclear as EGR1 has been shown to repress the cartilage matrix genes, such as Col2a1, 

upon stimulation by IL-1β (Tan et al., 2003) or TNF-α (Rockel et al., 2009) and EGR1 

is required for maximal MMP-9 expression after TNF-α stimulation in carcinomas 

(Shin et al., 2010). Conversely, TGF-β1-stimulated fibroblasts show increased Col1a2 

and this effect was dependent on enhanced EGR1 binding to the promoter sequence 
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(Chen et al., 2006b). The enhanced EGR1 binding upon TGF-β1 stimulation could 

account for the increased FAPα expression seen in SW1353 cells. 

The data presented in this chapter show that FAPα gene expression is not regulated by 

IL-1 or OSM or TGF-β1 in primary chondrocyte culture. EGR1 was shown to be an 

early response gene to IL-1 stimulation in SW1353 chondrosarcoma cells (Vincenti and 

Brinckerhoff, 2001) and this would explain the result seen by Milner et al. (2006b). It is 

possible that EGR1 regulates FAPα gene expression in primary chondrocytes but EGR1 

may not be the major transcription factor regulating FAPα expression as Zhang et al. 

(2010) showed only fifty percent reduction when EGR1 was knocked down, indicating 

other transcription factors may be important as well. 

3.3.2 FAPα directly contributes to the degradation of denatured collagen 

FAPα possesses endopeptidase ability (Aertgeerts et al., 2005, Lee et al., 2006, Levy et 

al., 1999, Edosada et al., 2006) and can cleave gelatin derived from type I collagen 

(Aggarwal et al., 2007) as well as other macromolecular proteins such as α2-antiplasmin 

(Lee et al., 2004). Recently, Christiansen et al. (2007) showed that FAPα could cleave 

type I, III and IV collagen after the triple helix had been unwound by the action of 

MMPs. However, there was no report on the degradation of denatured type II collagen 

by FAPα until now, and alludes to the prospect that FAPα acts in concert with other 

proteases to potentiate pericellular cartilage degradation in OA (Hollander et al., 1995) 

or pannus invasion of the cartilage in RA (Lee and Weinblatt, 2001). 

In fact, FAPα is known to associate with a number of proteases and signalling 

molecules, such as MMP-2, MMP-14, uPAR and integrins, at the invadopodia of 

malignant cancer cells (Monsky et al., 1994) and DPPIV on lung fibroblasts (Ghersi et 

al., 2002). It is possible that FAPα acts as a focal point to bring transmembrane proteins 

together in order to facilitate ECM degradation.  
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3.3.3 FAPα enzyme activity does not affect cartilage degradation 

FAPα expression is usually increased in most malignant carcinomas (Garin-Chesa et al., 

1990). FAPα inhibitors are being designed to address this therapeutic need in the field 

of cancer. A study by Edosada et al. (2006) highlighted that by utilising the differences 

in substrate specificity between DPPIV and FAPα, specific inhibitors could be 

produced. The authors showed that N-blocked-boroProline derivatives exhibited high 

specificity for FAPα over DPPIV (Edosada et al., 2006, Tran et al., 2007). A second 

class of inhibitors, the dipeptide-derived diphenyl phosphonates have also been 

designed to target both FAPα and DPPIV (Lambeir et al., 1996). Unlike the boroProline 

inhibitors, modulating the N-terminal amino acids of these inhibitors did not affect the 

second order rate constant of inactivation of FAPα (Gilmore et al., 2006). 

So far the clinical use of FAPα inhibitors alone to treat carcinomas has shown little 

promise in clinical trials (Narra et al., 2007). This study was carried out using patients 

with metastatic colorectal carcinoma and highlighted that FAPα inhibition at earlier 

stages of the disease may have greater beneficial effects. However, two further studies 

using the same inhibitor in concert with traditional treatments showed no additional 

effect over the traditional treatment alone (Eager et al. 2009a, b).   

Complementary to the inhibitors, FAPα antibodies are being trialled to treat disease 

progression in advanced FAPα positive cancers (Scott et al., 2003, Tahtis et al., 2003). 

The FAPα antibodies used in these studies were shown to have minimal uptake into 

normal tissues after infusion. Furthermore, they showed no adverse side effects in the 

majority of the patients in the clinical trial. The long-term effects from targeting FAPα 

in cancer are still not known yet. The role of FAPα in the tumour microenvironment is 

complicated as FAPα positive stromal fibroblasts in the tumour environment are 

associated with increased survival (Ariga et al., 2001). However, an in vivo mouse 
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model of human breast cancer showed that FAPα expressing breast carcinoma cells 

actually increase tumour growth and microvessel density (Huang et al., 2004). 

Using FAPα specific inhibitors in IL-1+OSM-treated BNC did not diminish collagen 

release. All of the inhibitors used here, except Z-GP-DPi, did abrogate either the 

endopeptidase or exopeptidase activity of FAPα. However, without detailed information 

about the chemical structures of these FAPα specific inhibitors, no conclusions can be 

drawn as to why these inhibitors could not inhibit both activities. The active site of 

FAPα and DPPIV differs by one amino acid and this change affects the preferred 

activity of the enzyme. Aertgeerts et al. (2005) showed that Ala-657 in the active site of 

FAPα favours endopeptidase activity over dipeptidyl peptidase activity as uncharged 

residues are preferred in the P2 pocket. Steric hindrance between the inhibitor and the 

side chain of Ala-657 could result in a relatively weak binding of the inhibitor to the 

active site of FAPα. Consequently, if the substrate has a higher binding affinity to the 

active site then the inhibitor could be displaced from the active site, and explain why the 

inhibitors had no effect ex vivo.  

Addition of soluble recombinant FAPα did not influence cartilage degradation 

suggesting that FAPα enzyme activity does not play a role in the degradation of IL-

1+OSM-treated bovine cartilage. There is the possibility that the β-propeller domain of 

FAPα plays a greater role than the catalytic domain in the context of cartilage 

degradation. Monsky et al (1994) showed that FAPα was located at the invadopodia of 

melanoma cells and co-localised with a large number of other molecules, such as MMP-

2, MMP-14, uPAR and integrins. Artym et al. (2002) went on to show that FAPα and 

uPAR formed a complex on the surface of melanoma cells and that this was dependent 

on β1-chain integrin and the cytoskeleton. Furthermore, the β-propeller domain of FAPα 

has high homology to the β-propeller region of α3-chain integrin (Kelly, 2005) and this 
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domain of the α3-chain binds uPAR (Zhang et al., 2003). Articular chondrocytes 

predominantly express α5 and β1 integrin chains with α1 and α3 chains found at lower 

levels (Salter et al., 1992). Therefore, there is the distinct possibility that FAPα, in 

conjunction with integrins, could form large complexes at the chondrocyte membrane 

(Figure 3.16) and the main focal point of this hypothetical complex would be matrix 

degradation. However, these complexes could actually influence cell signalling as 

uPAR has been shown to influence signalling in conjunction with integrins and GPCRs 

(Binder et al., 2007). uPAR has also been shown to activate the JAK/STAT pathways in 

a kidney epithelial tumour cell line (Koshelnick et al., 1997) and this is thought to be 

mediated by the gp130 receptor. Data from our group show that activation of the gp130 

receptor, by OSM or IL-6 (in the presence of soluble IL-6 receptor), in cartilage can 

synergise with IL-1 and promote cartilage matrix degradation (Rowan et al., 2001). This 

suggests that FAPα may act more as a scaffold rather than a protease in terms of 

cartilage degradation. 
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Figure 3.16 Model of a putative FAPα super-complex on the chondrocyte cell 

surface 

FAPα forms complexes with uPAR (Artym et al., 2002) and through this binding comes 

into close proximity with α3β1 integrin (Zhang et al., 2003). This close association is 

likely to allow FAPα to associate with ECM proteins (Takada et al., 2007). MMP-2 has 

been shown to be closely associated with FAPα at the invadopodia of melanoma cells 

and MMP-14 is also postulated to be located there (Monsky et al., 1994). 
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3.4 Conclusion 

Milner et al. (2006b) previously reported that FAPα gene expression was increased in 

OA cartilage and correlated with collagen release in IL-1+OSM-treated BNC. The 

correlation of FAPα expression and collagen release suggested that FAPα had a 

catabolic role in cartilage matrix homeostasis. However, FAPα specific inhibitors have 

not corroborated this hypothesis as there is no change in collagen release observed with 

any of the inhibitors used (section 3.2.3). In fact, all the inhibitors, except Z-GP-DPi, 

utilised in this chapter were only able to inhibit either the endopeptidase activity or 

exopeptidase activity of FAPα, but not both. 

The cleavage of denatured type II collagen by FAPα does suggest that FAPα has a 

catabolic role in the degradation of the cartilage matrix (section 3.2.2). However, there 

is evidence for an anabolic role of FAPα as it has similar dipeptidyl peptidase activity as 

DPPIV. DPPIV cleavage of chemokines has been shown to decrease the inflammatory 

response (Table 1.2) and FAPα is likely to cleave the same chemokines, although this 

has yet to be confirmed. Taken together, the up-regulation of FAPα in OA is likely to 

have an anabolic effect with the cleavage of chemokines to dampen the inflammatory 

response and ultimately decrease MMP levels. Whilst the cleavage of denatured type II 

collagen is a catabolic process, this could be occurring to stimulate remodelling and 

repair of the surrounding matrix. As β1 integrin signalling has been shown to occur at 

the invadopodia of LOX cells (Nakahara et al., 1998), and this it has been previously 

shown that this is where FAPα localises to (Monsky et al., 1994). 

3.5 Summary 

 FAPα gene expression is not regulated by IL-1, OSM or TGF-β1 in primary 

chondrocytes. 
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 FAPα is able to cleave denatured type II collagen. 

 FAPα inhibitors targeting enzyme activity do not alter cartilage matrix 

degradation in the presence of IL-1+OSM. 

 Exogenous active FAPα does not expedite collagen breakdown from IL-

1+OSM-treated bovine cartilage. 
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CHAPTER 4 

Studying the role of DPPIV in cartilage homeostasis 

4.1 Introduction 

Recently, DPPIV (section 1.8.1) expression was found to be significantly increased in 

OA compared to normal cartilage (Figure 3.1) (Swingler et al., 2009). This corroborates 

an earlier finding that DPPIV is expressed on the surface of OA chondrocytes (Lapadula 

et al., 1995) and expression is decreased in areas where there is progressive worsening 

of the osteoarthritic lesions. Collagen-induced arthritis (CIA) in DPPIV
-/-

 mice was 

found to be more severe than in wild-type DPPIV
+/+

 mice (Busso et al., 2005). This 

down-regulation of DPPIV expression has important consequences on the joint 

environment as DPPIV is known to modulate the function of a number of inflammatory 

cytokines and chemokines (Table 1.2).  

Inhibition of DPPIV activity decreases pathogenesis in a CIA model (Tanaka et al., 

1997). At first these data appear to be contradictory to substrate data for DPPIV stated 

above, as DPPIV activity on inflammatory chemokines and neuropeptides modulates 

their function to cause a decrease in immune cell function and localisation to the joint 

space. However, data have shown that DPPIV inhibitors play a role in the up-regulation 

of TGF-β1 secretion (Reinhold et al., 2006) and this would lead to a decrease in T cell 

activity due to its immunosuppressive and chondroprotective (section 1.3.3) functions. 

As stated above DPPIV is involved in a number of immune cell functions and this 

inhibition could prevent a number of different pathways within the immune system that 

could cause this anti-arthritic effect. 
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In RA, DPPIV activity is shown to decrease in both the synovial membrane and fluid of 

patients (Gotoh et al., 1989, Kamori et al., 1991). Furthermore, there is a decrease in the 

serum levels of DPPIV that is inversely proportional to the degree of inflammation 

experienced in the joint (Busso et al., 2005), although recent data also show that DPPIV 

activity is actually higher in RA synovium compared to OA (Solau-Gervais et al., 

2007). However, the authors used homogenised synovium extracts to test for DPPIV 

activity and as a large number of T cells are shown to infiltrate the tissue in RA (section 

1.2.1), this finding is not unexpected as T cells are known to express high levels of 

DPPIV (Sedo et al., 2005).  

While previous data show that DPPIV levels decrease inversely to disease progression, 

but there are little data as to the role of DPPIV in cartilage. Therefore, the aim of this 

chapter was to elucidate the function DPPIV enzymatic activity plays in cytokine 

treated bovine cartilage.  

The aims of this chapter were to: 

 determine if DPPIV gene expression is regulated by IL-1 and/or OSM in 

primary chondrocytes; 

 investigate if DPPIV enzyme activity has a role in the breakdown of the collagen 

matrix in IL-1+OSM treated cartilage using inhibitors designed to target DPPIV; 

 examine if DPPIV possesses type II collagenolytic or gelatinolytic activity; 

 assess if addition of active DPPIV to IL-1+OSM-treated bovine cartilage would 

affect cartilage breakdown. 
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4.2 Results 

4.2.1 Regulation of DPPIV gene expression in SW1353 cells and primary 

chondrocytes 

DPPIV has been shown to be expressed on OA chondrocytes and expression is 

decreased in areas where there is progressive worsening of the osteoarthritic lesions 

(Lapadula et al., 1995). DPPIV knock-out mice with CIA have increased disease 

severity compared to wild-type mice (Busso et al., 2005). 

In SW1353 cells, stimulation with IL-1 and/or OSM caused an increase in DPPIV gene 

expression, and treatment with TGF-β1 in the presence of these pro-inflammatory 

cytokines significantly decreased DPPIV gene expression (Figure 4.1). However, 

SW1353 chondrosarcoma cells have limited potential as a model for chondrocyte gene 

expression, as mentioned previously (section 3.2.1). Therefore, the regulation of DPPIV 

gene expression was investigated in primary bovine chondrocytes to see if the result 

from SW1353 cells could be corroborated. 

MMP-1 gene expression was tested in SW1353 and primary cells (data not shown) and 

synergistic induction upon IL-1+OSM stimulation was observed as previously shown 

(Barksby et al., 2006). However, DPPIV gene expression in bovine chondrocytes was 

considerably varied between populations (Figure 4.2). While, one population of bovine 

chondrocytes showed similar DPPIV gene expression upon pro-inflammatory 

stimulation (Figure 4.2a), however the other population showed little difference (Figure 

4.2b). The effect of TGF-β1 alone on DPPIV gene expression showed a similar 

variation between the different populations, as one population showed a decrease 

comparable to SW1353 cells (Figure 4.2b) but the other an increase (Figure 4.2a). 

Therefore, the results seen with SW1353 cells were not reproducible in primary bovine 

chondrocyte cultures and highlight the differences between SW1353 and primary cells.   
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Figure 4.1 The regulation of DPPIV gene expression in SW1353 chondrocyte cell 

line.  

SW1353 cells were treated with combinations of IL-1 (1 ng/ml) and OSM (10 ng/ml) ± 

TGF-β1 (10 ng/ml) for 24 h. Total RNA was extracted and DPPIV gene expression 

determined by real-time PCR and normalised to 18S rRNA levels. The data from two 

representative experiments are shown and presented as fold induction relative to control. 

Results are expressed as mean ± SEM (n=5). ** = p < 0.01 
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Figure 4.2 The regulation of DPPIV gene expression in primary chondrocytes. 

Bovine chondrocyte cells were treated with combinations of IL-1 (1 ng/ml) and OSM 

(10 ng/ml) ± TGF-β1 (10 ng/ml) for 24 h. Total RNA was extracted and DPPIV gene 

expression determined by real-time PCR and normalised to 18S rRNA levels. The data 

from two representative experiments are shown and presented as fold induction relative 

to control. Results are expressed as mean ± SEM (n=5). *** = p < 0.001. 
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4.2.2 The effect of DPPIV inhibitors on resorbing cartilage explants 

To determine if DPPIV activity plays a role in cartilage matrix resorption, DPPIV 

inhibitors were added to IL-1+OSM-treated bovine cartilage and collagen release was 

measured. DPPIV inhibitors are now widely used in the clinic to treat type II diabetes 

and indicate that patients show good tolerance to all these compounds (Yazbeck et al., 

2009 and references therein). However, there are no data highlighting the impact that 

DPPIV inhibitors would play in resorbing cartilage. 

 

4.2.2.1 Collagen release upon addition of FE999011 to resorbing cartilage 

In the experiment shown (Figure 4.3), cartilage treated with IL-1+OSM yielded 79.16 ± 

8.86% collagen release. The addition of DMSO did decrease collagen release in this 

experiment, but this result is not reproducible between different cartilages (Prof. A. D. 

Rowan, personal communication). Addition of FE999011 over a range of 

concentrations resulted in no significant change in collagen release. 

Recombinant human DPPIV was used to test if FE999011 had potential to inhibit the 

enzymatic activity in vitro. FE999011 showed a strong ability to inhibit activity (Figure 

4.4) and therefore shows that the compound was still active when added to the cartilage 

explants. Furthermore, FE999011 showed no cross-reactivity to inhibit the enzymatic 

activity of recombinant FAPα in vitro (Figure 4.5). 
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Figure 4.3 Effect of FE999011 on cartilage breakdown. 

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively) ± FE999011 or DMSO control. Media were removed on day 7 and fresh 

reagents were added until day 14 when the experiment was ceased. As a measure of 

collagen release, the levels of hydroxyproline were assayed in day 7 and day 14 media 

and in cartilage digests. Shown is the cumulative collagen release (day 7 + day 14), 

expressed as a percentage of the total collagen. Results are expressed as mean ± SD 

(n=4) and representative of 3 separate experiments. * = p < 0.05. 
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Figure 4.4 Effect of FE999011 on the activity of DPPIV 

DPPIV activity was determined using the quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) with either FE999011 or DMSO as a solvent control were incubated in 

assay buffer for 30 mins at 37°C. Substrate (50 µM) was then added and left for 1 h at 

37°C. Fluorescence was then measured immediately (λex 360 nm, λem 460 nm). The 

percentage activity was calculated. Results are expressed as mean ± SD (n=3) and 

representative of 2 separate experiments. *** = p < 0.001 against DMSO. 
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Figure 4.5 Effect of FE999011 on the enzymatic activity of FAPα 

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) with either FE999011 (10 µM) or DMSO as a solvent 

control were incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was then 

added and left for 4 h at 37°C. Fluorescence was then measured immediately (λex 360 

nm, λem 460 nm). The A) endopeptidase or B) exopeptidase activity was calculated. 

Results are expressed as mean ± SD (n=3) and representative of 2 separate experiments.  
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4.2.2.2 Collagen release upon addition of diphenylphosphonate inhibitors to 

resorbing cartilage 

In the experiment shown (Figure 4.6), cartilage treated with IL-1+OSM and DMSO 

yielded 69.77 ± 7.73% collagen release. The addition of 150 µM YP-DPi yielded 74.18 

± 4.25% collagen release and 150 µM GP-DPi yielded 58.38 ± 10.37% collagen release. 

The data show that there was no statistically significant change in collagen release when 

resorbing cartilage was treated with either YP-DPi or GP-DPi. Recombinant DPPIV 

was used to test whether GP-DPi or YP-DPi displayed any inhibitory action in vitro 

(Figure 4.7 and Figure 4.8, respectively). The data show that both inhibitors displayed a 

strong ability to inhibit DPPIV in vitro. 

It has been previously reported that dipeptide diphenylphosphonate inhibitors exhibit 

short half-lives at 37°C (Lambeir et al., 1996). The results show that both inhibitors lost 

approximately 20 - 30% of their inhibitory potential by 48 h (Figure 4.9). Therefore, if 

DPPIV activity is associated with cartilage collagen breakdown then the addition of the 

inhibitors would need to be added at a time point preceding and during pro-MMP 

activation. The activation of pro-collagenases in the bovine cartilage explants model is 

thought to occur around days 10 to 12 (Milner et al., 2006a). Addition of either inhibitor 

between days 8 to 12 inclusive showed no change in collagen release (Figure 4.10). 

Neither GP-DPi nor YP-DPi showed cross-reactivity to inhibit the enzymatic activity of 

recombinant FAPα in vitro (Figure 4.11). 
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Figure 4.6 Effect of diphenylphosphonate inhibitors on cartilage breakdown.  

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively) ± DPi (150 µM) or DMSO control. Media were removed on day 7 and 

fresh reagents were added until day 14 when the experiment was ceased. As a measure 

of collagen release, the levels of hydroxyproline were assayed in day 7 and day 14 

media and in cartilage digests. Shown is the cumulative collagen release (days 7 + day 

14) expressed as percentage of the total collagen. Results are expressed as mean ± SD 

(n=4) and representative of 3 separate experiments. 
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Figure 4.7 Inhibition of DPPIV activity by GP-DPi 

DPPIV activity was determined using the quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) ± GP-DPi were incubated in assay buffer for 30 min at 37°C. Substrate 

(50 µM) was then added and left for 1 h at 37°C. Fluorescence was then measured 

immediately (λex 360 nm, λem 460 nm). The percentage activity was calculated. Results 

are expressed as mean ± SD (n=3) and representative of 2 separate experiments. *** = p 

< 0.001 against DMSO. 
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Figure 4.8 Inhibition of DPPIV activity by YP-DPi 

DPPIV activity was determined using a quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) ± YP-DPi were incubated in assay buffer for 30 mins at 37°C. 

Substrate (50 µM) was then added and left for 1 h at 37°C. Fluorescence was then 

measured immediately (λex 360 nm, λem 460 nm). The percentage activity was 

calculated. Results are expressed as mean ± SD (n=3) and representative of 2 separate 

experiments. *** = p < 0.001 against DMSO. 
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Figure 4.9 Time course to measure the stability of diphenylphosphonates at 37°C 

0.1 µM GP-DPi (     ) and 1 µM YP-DPi (     ) were incubated in PBS at 37°C for 4, 24 

and 48 h time points. The inhibitory activity against DPPIV function was determined 

using a quenched fluorescent substrate, GP-AMC. DPPIV (50 pM) with either GP-DPi 

or YP-DPi were incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was 

then added to each well and left for 1 h at 37°C. Fluorescence was then measured 

immediately (λex 360 nm, λem 460 nm). The percentage activity was calculated. Results 

are expressed as mean ± SD (n=3). 
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Figure 4.10 Multiple additions of diphenylphosphonate inhibitors to cartilage show 

no protective effect 

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively) ± GP-DPi or YP-DPi or DMSO control. Media were removed on day 7 

and fresh reagents were added. Either GP-DPi or YP-DPi (150 µM final concentration) 

were added to the cartilage between days 8 to 12 (inclusive). The experiment was 

ceased at day 14. As a measure of collagen release, the levels of hydroxyproline were 

assayed in day 7 and day 14 media and in cartilage digests. Shown is the cumulative 

collagen release (days 7 + day 14), expressed as a percentage of the total collagen. 

Results are expressed as mean ± SD (n=4) and representative of 4 separate experiments. 
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Figure 4.11 Effect of diphenylphosphonate inhibitors on the activity of FAPα.  

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) ± DPi (150 µM) or DMSO as a solvent control were 

incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was then added and left 

for 4 h at 37°C. Fluorescence was then measured immediately (λex 360 nm, λem 460 

nm). The percentage activity was calculated. Results are expressed as mean ± SD (n=3) 

and representative of 2 separate experiments. 
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4.2.2.3 Collagen release upon addition of UAMC-374, vildagliptin and AB192 to 

resorbing cartilage 

There was no inhibition seen for any of the inhibitors tested (Figure 4.12). Recombinant 

human DPPIV was used to test if any of the inhibitors showed any potential to reduce 

the enzymatic activity of DPPIV in vitro (Figure 4.13). All of the inhibitors significantly 

decreased DPPIV activity compared to DMSO control, confirming the inhibitors were 

active when added to bovine cartilage. 

Moreover, none of the inhibitors tested showed any inhibitory affect against 

recombinant FAPα in vitro (Figure 4.14). 
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Figure 4.12 Effect of DPPIV inhibitors on cartilage breakdown.  

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively). At days 0, 3, 7 and 10, the inhibitors UAMC-374, vildagliptin and AB192 

(10 µM) or DMSO control were added to cartilage. Media were removed on day 7 and 

fresh reagents were added until day 14 when the experiment was ceased. As a measure 

of collagen release, the levels of hydroxyproline were assayed in day 7 and day 14 

media and in cartilage digests. Shown is the cumulative collagen release, expressed as a 

percentage of the total collagen. Results are expressed as mean ± SD (n=4) and 

representative of 8 separate experiments. 
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Figure 4.13 Modulation of DPPIV activity by DPPIV inhibitors 

DPPIV activity was determined using a quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) with DPPIV inhibitors (10 µM) or DMSO as a solvent control were 

incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was then added to each 

well and left for 1 h at 37°C. Fluorescence was then measured immediately (λex 360 nm, 

λem 460 nm). The percentage activity was calculated. Results are expressed as mean ± 

SD (n=3) and representative of 2 separate experiments. *** = p < 0.001 against DMSO 

control. 
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Figure 4.14 Effect of DPPIV inhibitors on the activity of FAPα.  

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) with either DPPIV inhibitors (10 µM) or DMSO as a 

solvent control were incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) 

was then added and left for 4 h at 37°C. Fluorescence was then measured immediately 

(λex 360 nm, λem 460 nm). The A) endopeptidase or B) exopeptidase activities were 

calculated. Results are expressed as mean ± SD (n=3) and are representative of 2 

separate experiments. 
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4.2.2.4 Collagen release upon addition of DPPI 1c to resorbing cartilage 

In the experiment shown (Figure 4.15), cartilage treated with IL-1+OSM yielded 79.16 

± 8.86% collagen release. The addition of a range of DPPI 1c concentrations did not 

affect cartilage matrix degradation after stimulation with IL-1+OSM.  

Recombinant human DPPIV was used to test if the inhibitor had potential to reduce the 

enzymatic activity of DPPIV in vitro (Figure 4.16). The inhibitor significantly 

decreased DPPIV activity compared to control, confirming that the inhibitor was active 

when added to bovine cartilage. The lack of any biological effect ex vivo in bovine 

cartilage led to the discontinuation of the use of DPPI 1c. DPP 1c did not inhibit 

recombinant FAPα activity in vitro (Figure 4.17). 
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Figure 4.15 Effect of DPPI 1c inhibitor on cartilage breakdown.  

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively) ± DPPI 1c. Media were removed on day 7 and fresh reagents added until 

day 14 when the experiment was ceased. As a measure of collagen release, the levels of 

hydroxyproline were assayed in day 7 and day 14 media and in cartilage digests. Shown 

is the cumulative collagen release, expressed as a percentage of the total collagen. 

Results are expressed as mean ± SD (n=4) and representative of 6 separate experiments. 
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Figure 4.16 Effect of DPPI 1c on the activity of DPPIV.  

DPPIV activity was determined using a quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) ± DPPI 1c were incubated in assay buffer for 30 min at 37°C. Substrate 

(50 µM) was then added and left for 1 h at 37°C. Fluorescence was then measured 

immediately (λex 360 nm, λem 460 nm). The percentage activity was calculated. Results 

are expressed as mean ± SD (n=3) and representative of 3 separate experiments. *** = p 

< 0.001 against control. 
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Figure 4.17 Effect of DPPI 1c on the activity of FAPα.  

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) ± DPPI 1c (10 µM) were incubated in assay buffer for 

30 min at 37°C. Substrate (50 µM) was then added and left for 4 h at 37°C. 

Fluorescence was then measured immediately (λex 360 nm, λem 460 nm). The A) 

endopeptidase or B) exopeptidase activities were calculated. Results are expressed as 

mean ± SD (n=3) and are representative of 2 separate experiments. 
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4.2.2.5 Collagen release upon addition of K579 to resorbing cartilage 

The addition of K579 significantly reduced cartilage matrix degradation after 

stimulation with IL-1+OSM, resulting in almost complete protection of the cartilage 

matrix (Figure 4.18). 

Bovine cartilage treated with IL-1+OSM showed a significant increase in total 

collagenase levels at day 7 but no detectable increase in active collagenase levels 

(Figure 4.19a). The addition of K579 up to day 7 caused a significant decrease in total 

collagenase levels. There was a similar trend at day 14, as the addition of IL-1+OSM 

led to a significant increase in both total and active collagenase levels compared to 

control (Figure 4.19b). Again, the addition of K579 caused a significant decrease in 

total collagenase levels, and a significant decrease in active collagenase levels could be 

observed at day 14. Previous data have shown that inhibition of serine proteases leads to 

a significant decrease in collagenase levels (Milner et al., 2003). However, the 

mechanism behind this global reduction of collagenase levels has yet to be elucidated. 

Recombinant human DPPIV was used to test the potential of the inhibitor K579 to 

reduce the enzymatic activity of DPPIV in vitro (Figure 4.20). The inhibitor 

significantly decreased DPPIV activity over a range of concentrations compared to 

control. Even at concentrations as low as 50 nM, K579 reduced activity by 70%. K579 

showed no inhibition of recombinant FAPα activity in vitro (Figure 4.21). 

K579 is a nitrile based inhibitor (Prof. B. Walker, Queen’s University Belfast, UK, 

personal communication) and could potentially inhibit cathepsin K, a novel cysteine 

protease with collagenase activity (Dejica et al., 2008, Kafienah et al., 1998). L-873724 

is a selective cathepsin K inhibitor that has an IC50 in the sub-nanomolar range (Li et al., 

2006) and was added to IL-1+OSM-treated bovine cartilage. In the experiment shown, 

cartilage treated with IL-1+OSM yielded 81.56 ± 3.88% release at day 14. The addition 
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of L-873724 did not affect cartilage matrix degradation after stimulation with IL-

1+OSM (Figure 4.22) and in vitro assays using K579 showed no efficacy against 

cathepsin K (Prof. J. Mort, McGill University, Québec, Canada, personal 

communication). 

 

 

 

 

 

Figure 4.18 Effect of K579 inhibitor on cartilage breakdown.  

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively). At days 0, 3, 7 and 10, K579 (5 µM) or DMSO control were added to 

cartilage. Media were removed on day 7 and fresh reagents added until day 14 when the 

experiment was ceased. As a measure of collagen release, the levels of hydroxyproline 

were assayed in day 7 and day 14 media and in cartilage digests. Shown is the 

cumulative collagen release, expressed as a percentage of the total collagen. Results are 

expressed as mean ± SD (n=4) and representative of 6 separate experiments. *** = p < 

0.001 against untreated and ### = p < 0.001 against IL-1+OSM-treated cartilage. 
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Figure 4.19 The effect of K579 on collagenase activity from resorbing cartilage.  

Media from cartilage shown in Figure 4.18 were assayed for collagenase activity. Media 

were treated with APMA to test for total collagenase levels (pro- and active). A) Active 

and total collagenase activity for day 7 media and B) active and total collagenase 

activity for day 14 media. Results are expressed as mean ± SD (n=4) and representative 

of 2 separate experiments. *** = p < 0.001 against IL-1+OSM. 
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Figure 4.20 Effect of K579 on the activity of DPPIV.  

DPPIV activity was determined using the quenched fluorescent substrate, GP-AMC. 

DPPIV (50 pM) ± K579 (IC50 = 8 nM) or DMSO as a solvent control were incubated in 

assay buffer for 30 min at 37°C. Substrate (50 µM) was then added to each well and left 

for 1 h at 37°C. Fluorescence was then measured immediately (λex 360 nm, λem 460 

nm). The percentage activity was calculated. Results are expressed as mean ± SD (n=3) 

and representative of 2 separate experiments. *** = p < 0.001 against control. 
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DMSO 
 

 

Figure 4.21 Effect of K579 on the activity of FAPα.  

FAPα activity was determined using the quenched fluorescent substrate, A) Z-GP-AMC 

or B) GP-AMC. FAPα (120 pM) with either K579 (10 µM) or DMSO as a solvent 

control were incubated in assay buffer for 30 min at 37°C. Substrate (50 µM) was then 

added and left for 4 h at 37°C. Fluorescence was then measured immediately (λex 360 

nm, λem 460 nm). The A) endopeptidase or B) exopeptidase activities were calculated. 

Results are expressed as mean ± SD (n=3) and are representative of 2 separate 

experiments. 
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Figure 4.22 The effect of L-873724 on collagenase activity from resorbing bovine 

cartilage.  

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively). At days 0, 3, 7 and 10, L-873724 (10 nM) or DMSO control were added 

to cartilage. Media were removed on day 7 and fresh reagents added until day 14 when 

the experiment was ceased. As a measure of collagen release, the levels of 

hydroxyproline were assayed in day 14 media and in cartilage digests. Shown is the 

cumulative collagen release, expressed as a percentage of the total collagen. Results are 

expressed as mean ± SD (n=4) and representative of 2 separate experiments. 
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4.2.3 Effect of DPPIV on IL-1+OSM-treated cartilage explant culture 

The addition of K579 to IL-1+OSM-treated bovine cartilage showed a significant 

reduction in collagen release (Figure 4.18). Therefore, if DPPIV activity is playing a 

role in cartilage collagen breakdown, then does the addition of active DPPIV expedite 

collagen release for IL-1+OSM-treated cartilage? 

There was no increase in collagen release with the addition of active DPPIV to IL-

1+OSM-treated cartilage compared to IL-1+OSM alone (Figure 4.23).  

  



138  
 

 

 

 

 

Figure 4.23 Effect of active DPPIV on cartilage breakdown 

Bovine cartilage discs were cultured in medium ± IL-1+OSM (1 ng/ml and 10 ng/ml, 

respectively). Media were removed on day 7 and fresh media ± DPPIV (100 nM) were 

added until day 12 when the experiment was ceased. As a measure of collagen release, 

the levels of hydroxyproline were assayed in day 7 and day 12 media and in cartilage 

digests. Shown is the cumulative collagen release (days 7 + day 12) expressed as a 

percentage of the total collagen. Results are expressed as mean ± SD (n=6) and 

representative of 4 separate experiments. 
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4.2.4 Effect of DPPIV enzyme activity on type II collagen 

The addition of K579 to IL-1+OSM-treated bovine cartilage prevented collagen release 

(Figure 4.18). However, the addition of DPPIV to IL-1+OSM-treated cartilage failed to 

significantly increase collagen release (Figure 4.23).  

The hypothesis being tested in this experiment was whether DPPIV could degrade type 

II collagen. There are conflicting reports in the literature that claim DPPIV possesses 

gelatinase activity (Bermpohl et al., 1998), while other data suggest that DPPIV does 

not possess endopeptidase activity (Aertgeerts et al., 2005).  

Type II collagen was extracted from OA cartilage. To ensure that the type II collagen 

had retained its native triple helical state during the extraction, it was treated with 

trypsin, which confirmed that it still retained the native triple helical conformation: 

trypsin could not cleave the native collagen band but did hydrolyse the denatured 

collagen (Figure 4.24, lanes 4 and 5). In the experiment shown, DPPIV was not able to 

cleave native or denatured collagen (Figure 4.24, lanes 7 and 8). This confirms previous 

data that DPPIV does not have any gelatinase or endopeptidase activity (Aertgeerts et 

al., 2005). 
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Figure 4.24 Proteolysis of type II collagen by DPPIV. 

Type II collagen (10 μg) from human articular cartilage was incubated at 37°C for 24 h 

in the presence or absence of proteases in 50 mM Tris-HCl, pH 7.6, 1 M glucose, 200 

mM NaCl, 5 mM CaCl2 buffer. Lane: (1) Native collagen (N); (2) Denatured collagen 

(D); (3) 4 µM trypsin; (4) Native collagen, 0.4 µM trypsin; (5) Denatured collagen, 0.4 

µM trypsin; (6) 0.1 µM DPPIV; (7) Native collagen, 0.4 µM DPPIV; (8) Denatured 

collagen, 0.4 µM DPPIV. Digests were reduced and analysed by 6.5 % SDS–PAGE. 

The closed arrow indicates the position of the intact α(II) chain of type II collagen. The 

open arrow indicates the position of DPPIV. The patterned arrows indicate the presence 

of unknown low molecular weight contaminants. Results are representative of 2 

separate experiments. 
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4.3 Discussion 

4.3.1 IL-1+OSM do not regulate DPPIV gene expression in primary chondrocytes  

DPPIV gene expression has previously been reported to be increased in human OA 

cartilage compared to phenotypically normal cartilage (Swingler et al., 2009). As 

described in this chapter, DPPIV gene expression was increased in SW1353 

chondrosarcoma cells by the addition of IL-1 and/or OSM compared to un-treated cells 

but the increase upon stimulation with IL-1+OSM was less than that seen with either 

cytokine alone. When TGF-β1, with or without pro-inflammatory cytokines, was added 

to SW1353 cells, a decrease in the expression of DPPIV could be observed. However, 

Gebauer et al. (2005) showed that SW1353 chondrosarcoma cells have limited potential 

as a model of primary chondrocyte gene expression. Therefore, primary chondrocytes 

from bovine cartilage were treated with combinations of IL-1, OSM and TGF-β1 and 

DPPIV gene expression was determined. The results differed between the two different 

populations of cells and this indicates that DPPIV gene expression is not robustly 

regulated by IL-1 or OSM or TGF-β1 in primary cells. Attempts to examine the 

expression of DPPIV in IL-1+OSM-treated bovine cartilage have failed. Primers that 

work when used with RNA isolated from chondrocytes grown in monolayer; fail to 

work with RNA isolated directly from bovine cartilage. Commercially available primers 

(PrimerDesign PerfectProbe assays) have also failed to amplify DPPIV transcripts from 

bovine cartilage mRNA but do show amplification from bovine chondrocyte mRNA. 

This could be due to contamination being carried over from RNA isolation that 

interferes with detection of the DPPIV transcript. 

The promoter sequence of DPPIV has only been characterised in porcine cells and 

shows no consensus TATA-box sequence but two TATA-like sequences (Qvist et al., 

1998) and indicates that the transcription factors that initiate DPPIV gene expression 
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have yet to be elucidated. However, recent data suggest that promoter methylation plays 

an important role in regulating DPPIV gene expression in a number of different 

carcinomas (Tsuji et al., 2004, McGuinness and Wesley, 2008). Data presented in this 

chapter show that DPPIV is not regulated directly by IL-1, OSM or TGF-β1. Therefore, 

there is the possibility that the DPPIV promoter is methylated in normal chondrocytes 

and the degradation of the ECM releases cryptic peptide fragments that bind to Toll-like 

receptors. This can lead to activation of intracellular pathways (Zhang et al., 2008) that 

result in the demethylation of the DPPIV promoter resulting in the increased gene 

expression in OA (Swingler et al., 2009). 

4.3.2 Inhibition of DPPIV enzyme activity shows varied results 

The inhibition of DPPIV enzyme activity in resorbing bovine cartilage shows mixed 

results with only K579 showing any inhibitory activity when added to resorbing 

cartilage. While the other inhibitors all show significant DPPIV inhibition in vitro, there 

is no statistically significant effect on collagen release when they are added to IL-

1+OSM-treated bovine cartilage. An underlying issue could be that while the inhibitors 

show good in vitro inhibition, they cannot penetrate the cartilage matrix possibly due to 

binding to GAG or matrix proteins. Indeed, such a finding has previously been reported 

for MMP inhibitors (Janusz et al., 2006). 

Recently, there has been a large increase in the number of DPPIV inhibitors that have 

been approved for clinical use to treat type II diabetes (Lankas et al., 2005). In this 

study, the authors highlighted that vildagliptin, in addition to standard treatments, 

stabilised glycaemic control in type II diabetes treatment compared to traditional 

treatments alone. Vildagliptin has now been approved for clinical treatment of type II 

diabetes in Europe (Yazbeck et al., 2009) and a recent meta-analyses study has shown 

that DPPIV inhibitors are well tolerated by patients (Ligueros-Saylan et al., 2010). 
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Vildagliptin is reported to be a slow binding inhibitor of DPPIV with a low Ki (Hughes 

et al., 1999). However, vildagliptin showed no efficacy in preventing collage release 

from IL-1+OSM-treated cartilage, but K579 treatment did show significantly reduced 

collagen release. The DPPIV inhibitor K579 has a similar structure to vildagliptin 

(Takasaki et al., 2004) but displays better inhibitory constants as K579 forms longer 

lasting complexes with DPPIV.  

The in vivo efficacy of DPPIV inhibitors is greatly increased when supplied 

intravenously (De Meester et al., 1997), implying that the available inhibitor 

concentration at the target tissue is important. Therefore, if the other reversible 

inhibitors tested in this chapter, such as vildagliptin and UAMC-374, form short-lived 

complexes then their available concentration would a deciding factor for their potency 

in cartilage at physiological temperature. Brandt et al. (2005) showed incubating DPPIV 

with increasing concentration of vildagliptin showed an increase in the half-life of GLP-

1 and other DPPIV substrates. Therefore, if the inhibitor cannot penetrate the cartilage 

matrix, this would decrease the concentration of available inhibitor near the cell 

membrane. Additionally, if the inhibitor only forms short-lived complexes, the half-life 

of DPPIV substrates would be decreased to levels similar to uninhibited DPPIV half-

lives. Taken together this means that cartilage in the presence of an inhibitor that better 

penetrates the matrix and forms longer-lasting complexes, such as K579, could elicit 

different responses to inhibitors that cannot do either, possibly like vildagliptin.  

Therefore, K579 may affect the half-life of an unknown substrate and results in the 

protection of the cartilage matrix. But the other reversible inhibitors used in this study 

do not affect the half-life and therefore seem to have no effect in IL-1+OSM-treated 

cartilage. 



144  
 

K579 was shown to cause a decrease in pro- MMP levels seen, and this can be 

explained by a previous study showing that DPPIV inhibitors increase TGF-β1 

production (Reinhold et al., 2006). One possible mechanism for the increased TGF-β1 

production could be that DPPIV inhibitors could cause a conformational change and 

disrupt or prevent DPPIV binding to other cell surface proteins. Ishii et al. (2001) have 

shown that DPPIV co-localises with CD45 at lipid rafts and leads to the activation of 

ZAP70. Therefore, disruption of DPPIV-protein binding could elicit different responses, 

one consequence of this leading to increased TGF-β1 secretion. This phenomenon is 

likely to require DPPIV to still be bound to the membrane, as the addition of soluble 

DPPIV to IL-1+OSM-treated bovine cartilage did not show any increase in collagen 

release. 

In addition to this signalling role, DPPIV could form a “super-complex” on the surface 

of the chondrocyte in a similar fashion to FAPα (section 3.3.3) (Figure 4.25). FAPα has 

been shown to localise with a number of molecules, such as MMP-2, MMP-14, uPAR 

and integrins (Monsky et al., 1994). Ghersi et al. (2002) highlighted that DPPIV and 

FAPα dimers associate to form a complex on the invadopodia of WI-38 lung fibroblasts 

as they migrate over a collagen matrix. Additionally, DPPIV has 52% sequence 

homology to FAPα (Goldstein et al., 1997) with a similar β-propeller domain fold 

(Aertgeerts et al., 2004). Therefore, it is possible that DPPIV could be in close 

proximity to the same proteins which in turn associate with other membrane proteins, 

such as uPAR binding the gp130 receptor (Koshelnick et al., 1997). However, there are 

data to suggest that DPPIV binds to other proteins not reported to bind FAPα. 

Plasminogen binds to DPPIV and promotes an invasive phenotype in prostrate 

carcinoma cells (Gonzalez-Gronow et al. 2005a, b) , and DPPIV has also been shown to 

bind collagen through a cysteine-rich region located in the β-propeller domain (Hanski 

et al., 1988, Loster et al., 1995). In particular, the binding of collagen by DPPIV is 
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important as it would increase the rate of collagen turnover in the proximity of this 

complex. 

 

 

Figure 4.25 Model of a putative DPPIV “super-complex” on the chondrocyte cell 

surface 

DPPIV has been shown to bind collagen (Hanski et al., 1988) and associate with FAPα 

to form a tetramer on the surface of melanoma cells (Ghersi et al., 2002). This would 

bring the membrane in close proximity to the collagen network. FAPα localises with 

α3β1 integrin (Zhang et al., 2003) and this is likely to increase association to the 

collagen network (Takada et al., 2007). Localisation of MMP-2 and MMP-14 (Monsky 

et al., 1994) as well as uPAR (Artym et al., 2002) to this area increases the rate of ECM 

proteolysis. 
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Through the mechanisms highlighted above, it does not seem likely that DPPIV plays 

any direct role on the proteolysis of matrix proteins. Rather, DPPIV acts either as a 

scaffold to localise catabolic factors to sites of tissue remodelling or facilitates the 

degradation of de novo fragments produced after the action of MMPs or other serine 

proteases. It is unlikely that DPPIV can degrade larger peptides or proteins as Asp-663 

in the active site of DPPIV causes deprotonation of the glutamate-206 side chain that 

facilitates binding of charged amino terminal groups (Aertgeerts et al., 2005). In fact, 

larger peptides could be degraded by DPPIV only if they possess an unfolded N-

terminal region that can be stabilised by the negative charge of the glutamate side-chain. 

However, conflicting data show that DPPIV can degrade type I through to type V 

collagen with approximately 50% of the collagen degraded within 24 hours (Bermpohl 

et al., 1998). The data presented in this chapter show that DPPIV cannot cleave type II 

collagen and conform to data from Aertgeerts et al. (2005) that DPPIV does not possess 

endopeptidase activity. 

4.4 Summary 

 DPPIV gene expression is not regulated by IL-1 or OSM or TGF-β1 in primary 

chondrocytes. 

 K579 decreases cartilage matrix degradation in the presence of IL-1+OSM. 

 K579 significantly reduces total collagenase levels from IL-1+OSM-treated 

cartilage. 

 Exogenous active DPPIV does not expedite collagen breakdown from IL-

1+OSM-treated bovine cartilage. 

 DPPIV is unable to cleave denatured type II collagen. 
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CHAPTER 5 

Elucidating the role of matriptase in cartilage homeostasis 

5.1 Introduction 

Recently, matriptase (section 1.7) expression was found to be significantly increased in 

OA compared to normal cartilage (Figure 3.1). Additionally, the increase in matriptase 

gene expression was detectable at the protein level as well.   

Matriptase is a well characterised target in cancer as it can promote metastasis through a 

number of different mechanisms, such as activation of pro-hepatocyte growth factor 

(HGF) and pro-uPA (section 1.7.1.3). Furthermore, matriptase has been demonstrated to 

activate pro-MMP-3 (Jin et al., 2006), and addition of active MMP-3 to IL-1+OSM-

treated cartilage has previously shown to expedite collagenolysis (Milner et al., 2001). 

Therefore, the hypothesis was that up-regulation of matriptase would increase cartilage 

matrix degradation. 

The aim of this chapter was to: 

 determine the role matriptase plays in collagen degradation of human OA 

cartilage. 
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5.2 Results 

5.2.1 The effect of matriptase on IL-1+OSM-treated bovine cartilage 

In the experiment shown (Figure 5.1), the addition of matriptase to IL-1+OSM-treated 

cartilage significantly increased collagen release compared to IL-1+OSM-treated 

cartilage alone. The addition of matriptase alone to bovine cartilage has been shown to 

cause no collagen release (data not shown).  

  

 

 

Figure 5.1 Matriptase expedites collagen release from IL-1+OSM-treated bovine 

cartilage 

Bovine cartilage was cultured in medium ± matriptase (100 nM) ± IL-1+OSM (1 and 10 

ng/ml, respectively). Media were removed on day 7 and fresh reagents were added until 

day 12 when the experiment was ceased. As a measure of collagen release, the levels of 

hydroxyproline were assayed in day 7 and day 12 media and in cartilage digests. Shown 

is the cumulative collagen release (day 7 + day 12) expressed as a percentage of the 

total collagen. Results are expressed as mean ± SD (n=6) and representative of 4 

separate experiments. *** = p < 0.001. 
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5.2.2 Matriptase-mediated activation of pro-MMPs 

The addition of matriptase to IL-1+OSM-treated cartilage expedited collagen release 

(Figure 5.1). Milner et al. (2006a) highlighted that IL-1+OSM treatment produces a 

large quantity of pro-MMPs from day 3 but activation of these does not typically occur 

until after day 10.  

Jin et al. (2006) has reported that matriptase activates pro-MMP-3. However, there is no 

evidence reported for matriptase-activation of other pro-MMPs. The increased collagen 

release by matriptase was likely to be due to the activation of a pro-collagenase or pro-

collagenase activator, such as MMP-3. Therefore, I assessed if matriptase could directly 

activate pro-MMP-1or -13 to cause the increase in collagen release. 

 

5.2.2.1 MMP activity after incubation with matriptase  

In both experiments matriptase-activated MMP-1 showed significantly less activity than 

APMA-activated MMP-1. This indicates that matriptase does activate pro-MMP-1; 

however, the resulting MMP-1 species is less active than the one generated by APMA 

(Figure 5.2). Matriptase was not able to cleave either substrate tested in this experiment 

(data not shown). 

There was little change between APMA-activated MMP-3 and matriptase-activated 

MMP-3, when tested with FS-6 (data not shown). Matriptase was not able to activate 

pro-MMP-13 (Dr J. M. Milner, personal communication). 
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Figure 5.2 Influence of matriptase on MMP-1 activity in vitro. 

Pro-MMP-1 (1.4 µM) was incubated ± matriptase (100 nM) or ± APMA (0.67 mM) for 

4 h at 37°C. Activated MMP-1 was then incubated with either A) FS-6 (50 µM) or B) 

hide powder azure (3% w/v). The data from two separate experiments are shown and 

presented as activity relative to matriptase-activated MMP-1. Results are expressed as 

mean ± SD (n=5). *** = p < 0.001 
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5.2.2.2 Direct activation of MMPs by matriptase in vitro 

Matriptase has been previously reported to activate pro-MMP-3 (Jin et al., 2006), but the 

exact site(s) of matriptase cleavage has not been elucidated. The general metalloprotease 

inhibitor GM6001 was used to abrogate MMP activity, therefore any cleavage detected in 

the presence of GM6001 would be due to matriptase activity. In the presence of GM6001 

matriptase was found to cleave MMP-3 after arginine-37, -74 and -84 (Figure 5.3). 

Cleavage after arginine-37 and -84 by matriptase is to be expected as they are the 

consensus cleavage sites for other members of the S1 serine protease family, specifically 

plasma kallikrein and trypsin, respectively (Woessner and Nagase, 2000 and references 

therein). Cleavage after arginine-74 occurs within the cysteine switch domain. In the 

absence of GM6001, the only sequence found was that of the full-length active protease, 

starting at phenylalanine-83, indicating the presence of some active MMP in the 

preparation.  This corroborates the result seen in section 5.2.2.1 as MMP-3 auto-activation 

occurs at a faster rate than matriptase activation of MMP-3. Therefore, there would be no 

difference between APMA-activated and matriptase-activated pro-MMP-3 when tested 

with FS-6, as the fully active species would be generated in both cases. 

Matriptase only cleaved MMP-1 after arginine-72 in the presence of GM6001 (Figure 5.3); 

again showing that matriptase is able to cleave within the cysteine switch domain of 

MMPs. In the absence of GM6001, cleavage after threonine-64 and phenylalanine-81 

occurred as reported previously (Woessner and Nagase, 2000 and references therein). 
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Figure 5.3 Activation of pro-MMPs by matriptase. 

N-terminal sequence analyses were performed on MMP-1 and -3 after 1 – 4 h of incubation with matriptase. The data presented show several known 

serine protease cleavage sites (Woessner and Nagase, 2000) within the propeptide regions. The bait region is boxed whilst the cysteine switch region 

is underlined, whilst the sequence in italics represents the full-length mature MMP. Cleavage sites marked with large closed arrows are for 

matriptase (+GM6001), whilst those denoted by the large open arrows are matriptase (-GM6001). Ct = chymotrypsin; He = human neutrophil 

elastase; Pk = plasma kallikrein; Tp = trypsin. 
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5.2.3 The effect of matriptase on human OA cartilage 

The activation of pro-MMP-1 and -3 by matriptase causes increased collagen release 

from IL-1+OSM treated cartilage (Figure 5.1). Although Cawston et al. (1998) has 

shown that treatment of OA cartilage with IL-1+OSM is unable to stimulate collagen 

release, this is probably due to a lack of pro-MMP activation as there are large 

quantities of MMP-1 produced. Therefore, matriptase was added to human OA cartilage 

in explant culture in an attempt to stimulate collagen release as it would be able to 

activate pro-MMPs. 

 

5.2.3.1 The effect of matriptase on collagen release from OA cartilage  

Addition of matriptase to human OA cartilage resulted in significant collagen release at 

day 7 and day 14 (Figure 5.4).  

The addition of IL-1 and OSM to human OA cartilage showed no significant collagen 

release at day 7 or at day 14. These data were in-line with previous literature stating that 

only about 25% of all OA cartilage responds to pro-inflammatory cytokine stimuli 

(Cawston et al., 1998). However, the addition of matriptase to IL-1+OSM-treated 

cartilage caused significant collagen release at both time points (Figure 5.4). 

Interestingly, the collagen release was very similar between untreated and IL-1+OSM-

treated cartilage incubated with matriptase implicating that the collagen release 

mediated by matriptase was independent of the pro-inflammatory stimulus. 
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Figure 5.4 The effect of matriptase on collagen release from human OA cartilage. 

Human OA cartilage was cultured in medium ± matriptase (100 nM) ± IL-1+OSM (1 

and 10 ng/ml, respectively). Media were removed on day 7 and fresh reagents were 

added until day 14 when the experiment was ceased. As a measure of collagen release, 

the levels of hydroxyproline were assayed in day 7 and day 14 media and in cartilage 

digests. Shown are the collagen release at day 7 and cumulative collagen release 

expressed as a percentage of the total collagen. Results are expressed as mean ± SD 

(n=4) and representative of 4 separate experiments. ** = p < 0.01 against untreated and 

## = p < 0.01 against IL-1+OSM-treated cartilage. 
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5.2.3.2 The effect of matriptase on collagenase activity in OA cartilage  

Untreated OA cartilage showed no increase in active or total collagenase activity at day 

7 or day 14. However, the addition of matriptase to the culture medium showed a 

significant increase in active and total collagenase activity at day 7 (Figure 5.5a) and 

correlated with the increase in collagen release (Figure 5.4). A similar increase was not 

seen at day 14 for either active or total collagenase levels (Figure 5.5b), even though an 

increase in collagen release could be observed. 

IL-1+OSM-treated OA cartilage showed significant levels of total collagenase activity 

at both day 7 and day 14, but little or no detectable active collagenase activity was 

observable at either time point. This result shows that while pro-MMPs are synthesised 

by OA chondrocytes, they are not activated to cause collagenolysis. This is in-line with 

previously published findings that show a minority of all OA cartilages respond to 

treatment with IL-1+OSM (Cawston et al., 1998). The addition of matriptase to IL-

1+OSM-treated cartilage showed an interesting trend. At day 7, a significant increase in 

active collagenase levels was noted and this corresponds with the increase in collagen 

release (Figure 5.4). However, total collagenase activity was significantly decreased at 

day 7 when compared to IL-1+OSM-treated cartilage. 15.55 ± 1.86 units/ml of total 

collagenase activity were in the media from IL-1+OSM+matriptase-treated cartilage, in 

comparison to the 30.71 ± 5.81 units/ml in the media from IL-1+OSM treated cartilage. 

There was a slight difference in active collagenase levels at day 14 but this did not reach 

significance. The total collagenase activity in both media samples showed no 

observable difference. 
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Figure 5.5 The effect of matriptase on collagenase activity from human OA 

cartilage.  

Media from matriptase-treated cartilage shown in Figure 5.4 were assayed for 

collagenase activity. Media were treated with APMA to test for total collagenase levels 

(pro and active). A) Active and total collagenase activity for day 7 media and B) active 

and total collagenase activity for day 14 media. Results are expressed as mean ± SD 

(n=4) and representative of 2 separate experiments. *** = p < 0.001 against untreated 

and ### = p < 0.001 against IL-1+OSM-treated cartilage. 
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5.2.3.3 The effect of matriptase on MMP-1 and MMP-13 protein levels in OA 

cartilage  

The addition of matriptase to untreated cartilage caused a significant increase in MMP-1 

protein levels at both day 7 and 14 (Figure 5.6a), but there was no significant change in 

the MMP-13 levels at either time point (Figure 5.6b). Treatment of cartilage with IL-

1+OSM caused a significant increase in both MMP-1 and MMP-13 protein levels at day 

7 and 14. This result corroborates findings with the collagenase activity (section 

5.2.3.2). 

When matriptase was added to IL-1+OSM-treated cartilage, there was a significant 

decrease in MMP-1 levels at both day 7 and 14, but little change in MMP-13 protein 

levels at both time points. The low protein level observed for MMP-1 at day 7 may 

explain the significant decrease in collagenase activity (Figure 5.5). 
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Figure 5.6 The effect of matriptase on total collagenase protein levels from human 

OA cartilage.  

Media from matriptase-treated cartilage shown in Figure 5.4 were assayed for total 

collagenase protein levels. A) MMP-1 and B) MMP-13 protein levels were determined 

by sandwich ELISA. Results are expressed as mean ± SD (n=4) and representative of 2 

separate experiments. *** = p < 0.001 against day 7 untreated cartilage, ### = p < 0.001 

against day 14 untreated cartilage, +++ = p < 0.001 against day 7 IL-1+OSM-treated 

cartilage and ††† = p < 0.001 against day 14 IL-1+OSM-treated cartilage 
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5.2.4 The effect of metalloprotease and cathepsin K specific inhibitor on 

matriptase-mediated cartilage degradation 

The aim of these experiments was to test if a novel type II collagenase, such as 

cathepsin K (Dejica et al., 2008), is mediating the degradation of the matrix or if this 

was solely MMP dependent. GM6001 is a metalloprotease-specific inhibitor with in 

vitro MMP inhibition in the low nanomolar range (Levy et al., 1998). L-873724 is a 

selective cathepsin K inhibitor that has an IC50 in the sub-nanomolar range (Li et al., 

2006). 

Addition of GM6001 to matriptase-treated OA cartilage (Figure 5.7) resulted in 

significantly decreased collagen release at day 7 and day 14. But GM6001 negative 

control did not affect collagen release (data not shown). 

Cathepsin K is a cysteine protease that can cleave the triple helix of type II collagen 

(Kafienah et al., 1998). Previous work implicates that it has a role in collagen turnover 

in OA (Dejica et al., 2008). The inhibitor L-873724 is a potent inhibitor of cathepsin K 

(Li et al., 2006) and has been shown to decrease the generation of type II collagen 

fragments in situ (Dejica et al., 2008). The addition of L-873724 to OA cartilage caused 

no change in collagen release at day 7 or day 14 (Figure 5.7). 
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Figure 5.7 The effect of MMP and cathepsin K specific inhibitors on matriptase 

mediated collagen release. 

Human OA cartilage was cultured ± matriptase (100 nM). The general MMP inhibitor 

GM6001 (10 µM) and the cathepsin K inhibitor L-873724 (10 nM) were added to the 

cartilage at days 0 and 7. DMSO was added as a solvent control. Media were removed 

on day 7 and fresh reagents added until day 14 when the experiment was ceased. As a 

measure of collagen release, the levels of hydroxyproline were assayed in day 7 and day 

14 media and in cartilage digests. Shown are the collagen release at day 7 and 

cumulative collagen release expressed as a percentage of the total collagen. Results are 

expressed as mean ± SD (n=4) and representative of 4 separate experiments. *** = p < 

0.001 
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5.2.5 Matriptase induced gene expression in OA cartilage 

Matriptase is able to cause collagen release in the absence of pro-inflammatory stimuli 

(Figure 5.4) and significantly increase collagenase levels (Figure 5.5 and 5.6) from OA 

cartilage. This collagen release has been shown to be metalloprotease-dependent (Figure 

5.7). The aim of these experiments was to assess if matriptase activity could directly 

induce gene expression in OA cartilage. 

The addition of matriptase to “live” cartilage showed significant collagen release as 

seen previously (Figure 5.8), but the addition of matriptase to “dead” cartilage did not 

show any increase in collagen release compared to untreated cartilage. 

Treatment of OA cartilage with matriptase significantly increased MMP-1 and MMP-3 

mRNA levels compared to control cartilage (Figure 5.9). There was an increase in 

MMP-13 mRNA levels but this did not reach significance. This increase in MMP-1 and 

MMP-3 gene expression indicates that matriptase is able to activate cell signalling 

cascades either directly or indirectly.  

The addition of di-isopropyl phosphorofluoridate (DFP)-inactivated matriptase to OA 

cartilage did not cause an increase in any MMP mRNA levels (data not shown). This 

result highlights that matriptase activity is required to cause collagenase gene 

expression in the absence of pro-inflammatory stimuli. 
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Figure 5.8 Intracellular signalling is required for matriptase-mediated degradation 

of OA cartilage. 

OA cartilage was isolated on the day of surgery and either placed immediately at 37°C 

(Live) or freeze-thawed three times (Dead) and then left at 37°C for 24 h. Cartilage ± 

matriptase (100 nM) was left to culture for 7 days. Shown is the collagen release at day 

7 with collagen release expressed as a percentage of the total collagen. Results are 

expressed as mean ± SD (n=4) and representative of 1 experiment. *** = p < 0.001 

against control, ### = p < 0.001 against live cartilage. 
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Figure 5.9 Matriptase induced MMP gene expression in OA cartilage. 

OA cartilage was treated with matriptase (100 nM) for 7 days. Total RNA was extracted 

and MMP-1, -3 and -13 gene expression was determined by real-time PCR. 18S rRNA 

levels were determined for normalisation. The data from 2 separate experiments are 

shown and presented as fold induction relative to control. Results are expressed as mean 

± SEM (n=4). ** = p < 0.01 and *** = p <0.001. 
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5.2.6 Matriptase activates PAR-2 in OA cartilage to mediate the degradation of the 

collagen matrix  

In the absence of pro-inflammatory cytokines, matriptase alone could not induce 

significant collagen degradation in bovine cartilage (Dr J. M. Milner, personal 

communication) or human NOF cartilage (Figure 5.10). Therefore, matriptase must 

induce collagenase gene expression (Figure 5.9) through activation of a receptor found 

only in OA cartilage.  

PAR-2 is a well characterised substrate for matriptase (Takeuchi et al., 2000, Wang et 

al., 2008) and activation of PAR-2 has been shown to increase MMP expression in OA 

osteoblasts (Amiable et al., 2009). As PAR-2 expression is reported to be up-regulated 

in OA cartilage (Xiang et al., 2006), I hypothesised that matriptase-driven cartilage 

degradation was mediated through PAR-2 activation. 

Addition of matriptase to the cartilage resulted in significant collagen release at day 7 as 

previously noted (Figure 5.11). The addition of both PAR-2 inhibitors significantly 

reduced the observed matriptase-mediated collagen release almost to basal levels, 

indicating that matriptase does act through PAR-2 to mediate breakdown of OA 

cartilage. 
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Figure 5.10 The effect of matriptase on collagen release from human NOF 

cartilage 

Human NOF cartilage was cultured in medium ± matriptase (100 nM) ± IL-1+OSM (1 

and 10 ng/ml, respectively). Media were removed on day 7 and fresh reagents were 

added until day 14 when the experiment was ceased. As a measure of collagen release, 

the levels of hydroxyproline were assayed in day 7 and day 14 media and in cartilage 

digests. Shown are the collagen release at day 7 and cumulative collagen release 

expressed as a percentage of the total collagen. Results are expressed as mean ± SD 

(n=4) and representative of 1 experiment. 
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Figure 5.11 The effect of PAR-2 specific inhibitors on matriptase-mediated 

collagen release. 

Human OA cartilage explants were pre-incubated ± SAM-11 (400 ng/ml final 

concentration) or the same antibody that had been previously heat-denatured (SAM-

11
b
), or ± ENMD-1068 (10 mM final concentration) for 72 h. Subsequently, matriptase 

(100 nM) was added such that the SAM-11 antibody and ENMD-1068 were at final 

concentrations of 200 ng/ml and 5 mM, respectively, for 7 days. Shown is the collagen 

release at day 7 and collagen release expressed as a percentage of the total collagen. 

Results are expressed as mean ± SD (n=4) and representative of 3 separate experiments. 

*** = p < 0.001 against control, ### = p < 0.01 against matriptase-treated cartilage and 

+++ = p < 0.001 against heat-denatured antibody control. 
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5.3 Discussion 

5.3.1 Matriptase activation of pro-MMPs 

Milner et al. (2001) showed that activation of the pro-collagenases in IL-1+OSM-

treated cartilage was a key rate-limiting step in collagen breakdown. Plasminogen 

addition at day 0 to IL-1+OSM-treated bovine cartilage resulted in increased breakdown 

of the collagen network by day 7 compared to IL-1+OSM alone. Data in this chapter 

show that addition of matriptase at day 7 accelerated collagen release from IL-1+OSM-

treated bovine cartilage. Therefore, matriptase is likely to activate pro-MMPs that are 

synthesised upon stimulation with IL-1+OSM and this expedites collagen release. 

Jin et al. (2006) demonstrated that matriptase could directly activate pro-MMP-3 within 

3 h. However, they found that matriptase non-specifically degraded pro-MMP-1, which 

conflicts with the data presented here. Our group found that pro-MMP-1 was not 

degraded in a non-specific manner in the presence of matriptase over 24 h (Dr J. M. 

Milner, personal communication) and has significantly greater activity compared to pro-

MMP-1 alone (data not shown). In fact, N-terminal sequencing showed that matriptase 

activated MMP-1 and MMP-3 by cleaving the Arg-Cys bond in the cysteine switch 

region. After activation of pro-MMP-3 by matriptase, active MMP-3 can then cleave the 

N-terminus of pro-MMP-1 to generate a species that has higher activity (He et al., 1989, 

Murphy et al., 1987, Windsor et al., 1993). These data indicate that matriptase can 

directly activate pro-MMP-1 and pro-MMP-3. This in turn can lead to degradation of 

the collagen matrix as MMP-1 can directly cleave type II collagen (section 1.5.2) and 

MMP-3 can directly activate other pro-collagenases as well as other pro-MMPs (section 

1.5.3). 
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5.3.2 Effect of matriptase on human OA cartilage 

The breakdown of human OA cartilage by matriptase was described in this chapter. 

Human OA cartilage has previously been described to be highly resistant to pro-

inflammatory-mediated breakdown despite increased expression of collagenolytic 

MMPs (Cawston et al., 1998). Although this observation could never be fully explained, 

it is likely that there is a failure in MMP activation. 

Addition of matriptase to OA cartilage led to a significant increase in collagen release. 

These data show that matriptase activity in IL-1+OSM-treated cartilage is in-line with 

previous studies from our group (Milner et al., 2001, 2006b, 2003). However, the 

significant increase in collagen release by matriptase in the absence of pro-

inflammatory cytokines is an extremely important finding. Matriptase represents the 

most potent stimulus for OA cartilage described to date. In the absence of pro-

inflammatory cytokines, matriptase-mediated matrix breakdown could be due to the 

activation of latent growth factors or proteases. Previous in vitro data have shown that 

pro-HGF, pro-uPA and PAR-2 are matriptase substrates (Lee et al., 2000, Takeuchi et 

al., 2000), and further studies have shown that HGF induced MMP expression in 

endothelial (Wang and Keiser, 2000) and cancer cells (Monvoisin et al., 2002). The 

matriptase-mediated increase in collagenase activity and MMP protein levels in the 

absence of pro-inflammatory cytokines does highlight the possibility that activation of 

bioactive molecules might play an important role. 

5.3.3 Matriptase induced collagen release is dependent on MMP activity 

The addition of pro-inflammatory cytokines to human OA cartilage showed a 

significant increase in both total collagenase activity and protein levels. However, when 

matriptase was added in the presence of pro-inflammatory cytokines, there was a 

significant decrease in MMP-1 protein levels and collagenase activity. These data 
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implicate that the degradation of type II collagen could be mediated through a novel 

collagenase. 

Kafienah et al. (1998) demonstrated that cathepsin K, a cysteine protease, could cleave 

native type I and II collagens and that this cleavage occurred at the N-terminus of the 

triple helix. Further data generated by Dejica et al. (2008) showed that a cathepsin K-

specific neoepitope was detectable in OA cartilage. However, the data presented here 

indicate that matriptase-mediated collagen release was dependent on MMP activity and 

that inhibition of cathepsin K had little effect. 

5.3.4 Matriptase directly induces gene expression 

The data generated so far show that matriptase is a potent mediator of collagen 

degradation in OA cartilage. So far, the activation of pro-MMPs has been highlighted as 

one mechanism matriptase acts through to effect this collagen degradation. However, 

data show that matriptase can stimulate similar levels of collagen release in the presence 

or absence of pro-inflammatory cytokines. In addition, the MMP-1 protein levels are 

similar between the two conditions. The data presented here support intracellular 

signalling to be a key requirement for matriptase-mediated collagen degradation. 

MMP-1 and MMP-3 gene expression are significantly up-regulated upon the addition of 

matriptase. MMP-13 expression is also up-regulated, although this was not statistically 

significant. As stated earlier, HGF is shown to increase MMP expression in a number of 

different cell types (Monvoisin et al., 2002, Wang and Keiser, 2000) and is activated by 

matriptase (Lee et al., 2000). Increased levels of HGF have been shown in OA cartilage 

(Pfander et al., 1999) and HGF can cause induction of MMP-13 gene transcription 

through the activation of MAPK pathways (Reboul et al., 2001). However, Guevremont 

et al. (2003) showed that HGF is not expressed by OA chondrocytes but by subchondral 

bone osteoblasts and diffuses from there to the radial zone of the cartilage. 
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Pro-uPA is another substrate activated by matriptase (Lee et al., 2000) and plays an 

important role in arthritis (Li et al., 2005, Busso and So, 1997). Matriptase activating 

pro-uPA is a possible mechanism that could cause the observed collagen breakdown in 

OA cartilage. However, data from our group have shown that addition of plasminogen 

to OA cartilage has little effect on collagen release without pro-inflammatory stimuli 

(Milner et al., 2001). Furthermore, unpublished data from our group show that 

plasminogen is not expressed by OA cartilage (Dr J. M. Milner, personal 

communication). These data indicate that in our cartilage explant model the uPA-

plasmin system would cause neither collagen release nor de novo synthesis of MMP 

directly, but would be able to activate any pro-MMP present. 

Previous reports have shown that activation of PAR-2 by a PAR-2-activating peptide 

induces MMP-1 and MMP-13 gene expression in OA chondrocytes (Boileau et al., 

2007), correlating with the results presented in this chapter.  

5.3.5 Matriptase activates PAR-2 in OA cartilage 

The induction of collagenase gene expression by matriptase must involve the activation 

of intracellular signalling pathways to initiate gene transcription. Reports in the 

literature show that the expression of PARs (section 1.9.1) is significantly higher in OA 

cartilage compared to normal cartilage. One report states that all four known PARs are 

expressed by OA chondrocytes (Kirilak et al., 2006) while another just detected PAR-2 

expression (Xiang et al., 2006). 

PAR-2 activation involves proteolytic release of a tethered ligand which can be 

mimicked by use of a PAR-2-activating peptide (Hollenberg et al., 1997). Takeuchi et 

al. (2000) demonstrated that matriptase activated PAR-2 using PAR-2 overexpressing 

Xenopus oocytes but not with any other PAR expressing Xenopus oocytes. Our group 

confirmed that matriptase can activate PAR-2 in vivo (Prof. A. D. Rowan, personal 
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communication) using PAR-2 knock-out mice in synovial perfusions assays as 

described previously for β-tryptase (Palmer et al., 2007). 

ENMD-1068 is a synthetic inhibitor that has been shown to inhibit proteolytic 

activation of PAR-2 (Kelso et al., 2006) and decreased IL-1β and TNF-α expression 

from rheumatoid synovium (Kelso et al., 2007). The use of ENMD-1068 or a PAR-2 

neutralising antibody (SAM-11) significantly blocked matriptase-induced collagen 

release, further substantiating that PAR-2 activation is required for matriptase-mediated 

collagenolysis.  

Finally, when matriptase was added to phenotypically normal cartilage, there was no 

detectable change in collagen release even in the presence of pro-inflammatory stimuli. 

As PAR-2 expression is higher in OA than normal chondrocytes (Kirilak et al., 2006), 

these data indicate that the activation of PAR-2 is a key point in arthritis. 

The destabilisation of the medial meniscus (DMM) surgical murine model of OA has 

been reported to result in arthritic lesions similar to those observed in aged mice 

(Glasson et al., 2007). Due to the sensitivity of the DMM model in regards to disease 

modification, this model has been proposed to be a good choice for challenging gene 

knock-out mice with OA when compared to established models such as anterior cruciate 

ligament transection. Using this model, Ferrell et al. (2010) highlighted that PAR-2-

deficient mice do not exhibit any signs of pathology compared to wild-type mice.  

Interestingly, when OA cartilage was pre-incubated for 72 hours before the addition of 

matriptase, there was a reduction in collagen release (Figure 5.11) compared to OA 

cartilage treated immediately (Figure 5.8). This implies that upon removal of the 

mechanical forces generated during abnormal joint loading, PAR-2 expression 

decreases rapidly to a similar level found in NOF cartilage (Figure 5.10). In fact, this 

finding was corroborated using the DMM model as PAR-2 was detectable in cartilage 
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from sham-operated mice but significantly increased in cartilage from DMM mice. But 

matriptase was only detectable in the latter (Prof. A. D. Rowan, personal 

communication).  

5.4 Conclusion 

Although the factors that lead to the development of OA lesions have yet to be fully 

identified, biomechanical instability of the joint is thought to be a major contributor. 

The data presented in this chapter show that in an OA cartilage explant model, 

matriptase can act at a number of levels to mediate collagen breakdown (Figure 5.12).  

There is an increase in expression of matriptase and PAR-2 after injury to the joint. 

Activation of PAR-2 by matriptase activates stress pathways within the chondrocyte 

(Boileau et al., 2007) and leads to MMP-1, -3 and -13 gene expression. Subsequently, 

matriptase can activate MMP-1 and -3 and this finally leads to the breakdown of the 

collagen matrix. 

Inhibitors targeted to PAR-2 or matriptase are novel therapeutic directions for the 

treatment of arthritis. Takeuchi et al. (1999) showed that inhibition of matriptase 

activity decreased PC3 prostate carcinoma size. Further work showed that a synthetic 

matriptase inhibitor, CVS-3983, displayed a similar trend in another mouse model of 

prostate cancer (Uhland, 2006). Recently, Darragh et al. (2010) developed an inhibitory 

antibody that was specific for matriptase and matriptase-specific cancers. Further 

development of inhibitors, against PAR-2 and matriptase, which can overcome the 

specific issues presented by cartilage, will be highly beneficial. 
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Figure 5.12 Matriptase-mediated pathways leading to collagen matrix degradation. 

The final common pathway of collagen degradation is MMP dependent as GM6001 

completely blocks collagen release. Inhibition of PAR-2 signalling blocks cartilage 

degradation suggesting this to be a major pathway in the absence of pro-inflammatory 

stimuli. The activation mechanisms involved in vivo are likely to be more complex than 

shown here, possibly including other growth factors and serine protease zymogens. 
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5.5 Summary 

 Matriptase instigated collagen release independent of IL-1+OSM. 

 Collagenase activity and protein levels were reduced in the presence of 

matriptase. 

 The collagen release was solely dependent on MMP activity. 

 Matriptase activated pro-MMP-1 and pro-MMP-3 as determined by N-terminal 

sequencing. 

 Matriptase induced MMP-1 and MMP-3 gene expression in OA cartilage. 

 Inhibition of PAR-2 significantly reduced matriptase-mediated collagen 

degradation from OA cartilage. 
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CHAPTER 6 

General Discussion 

In the context of arthritis pathology, the main aim of this thesis has been to examine 

whether the activity of FAPα, DPPIV or matriptase promote collagen release and 

collagenase activation in resorbing bovine and human cartilages. 

6.1 General perspective 

Articular cartilage provides a friction-free surface to permit joint articulation and is an 

unusual tissue since it is hypocellular being populated by a single cell-type, the 

chondrocyte. During disease states, abnormal stimuli including abnormal loading, as 

well as pro-inflammatory stimuli such as IL-1 (Goldring and Goldring, 2007), prevail 

that lead to uncontrolled ECM turnover.  

Although, there are a large number of different forms of arthritis, RA and OA are the 

most common afflictions. RA is a disease characterised by systemic activation of the 

immune system, which is possibly initiated by the recognition of auto-antigens (de 

Vries et al., 2005). The chronic activation of the immune system in the joint space leads 

to the release of inflammatory cytokines, such as IL-1 and OSM, which have been 

shown to synergistically increase levels of the MMPs (Cawston et al., 1998). OA is the 

most common form of arthritis, affecting the majority of individuals over the age of 65 

years. Cartilage damage in OA is thought to occur due to a number of different reasons 

such as ageing, genetic factors as well as excessive loading. The degeneration of 

cartilage occurs due to an imbalance between the anabolic and catabolic pathways. 

Excessive loading of cartilage can cause increased collagen degradation and up-

regulation of MMPs. In both diseases there is an increase in the levels of MMPs leading 

to the enhanced turnover of the cartilage matrix.  
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MMPs are the key rate-limiting enzymes that degrade the collagen matrix in arthritis 

and inhibition of these enzymes would be an attractive prospect. However, broad-

spectrum MMP inhibitors have shown a clear lack of efficacy in clinical trials for the 

treatment of arthritis (Cawston and Young, 2010 and references therein). These 

inhibitors exhibited severe musculoskeletal side-effects, which were reversed when the 

compound was withdrawn (Nemunaitis et al., 1998). 

Although, synthetic MMP inhibitors have proven to be ineffective, several new 

treatments have been approved for use in arthritis. One treatment in clinical use is anti-

TNF therapy that dampens the inflammatory response, and therefore halts cartilage 

degradation (Maini and Feldmann, 2002). However, despite its clinical use, a substantial 

fraction of patients have no meaningful clinical response to anti-TNF treatments (Kievit 

et al., 2007). 

Previous data from our group showed that serine proteases play an important role in 

cartilage degradation through the activation of pro-MMPs (Milner et al., 2001, 2003). 

While sequencing of the human genome has identified over one hundred and seventy 

serine protease genes (Quesada et al., 2009), the exact serine proteases expressed in 

cartilage, and the role they play, during disease progression have yet to be fully 

elucidated. Recently, FAPα, DPPIV and matriptase expression were found to be 

increased in OA cartilage compared to NOF cartilage (Milner et al., 2006b, Swingler et 

al., 2009). The aim of this thesis was to determine the role of these novel 

transmembrane serine proteases in the context of cartilage degradation. 

6.2 Dipeptidyl peptidases in cartilage breakdown 

FAPα and DPPIV are both members of the DPP family (section 1.8) and both are 

therapeutic targets in a number of disease models. Inhibition of DPPIV has been a very 

successful strategy for the treatment of type II diabetes (Pratley and Salsali, 2007). 
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Although, targeting FAPα directly in cancer has not proven as successful (Huang et al., 

2004, Ostermann et al., 2008), its use as a biomarker for anti-cancer drug delivery 

shows promise (Bauer et al., 2004). 

Previous data implied a protective role for DPPIV in disease pathology. DPPIV is up-

regulated on the surface of OA chondrocytes (Lapadula et al., 1995) and expression is 

decreased in areas where there is progressive worsening of the osteoarthritic lesions. In 

RA, DPPIV activity is shown to decrease in both the synovial membrane and fluid of 

patients (Gotoh et al., 1989, Kamori et al., 1991). Furthermore, there is a decrease in the 

serum levels of DPPIV that is inversely proportional to the degree of inflammation 

experienced in the joint (Busso et al., 2005). FAPα expression has recently been 

detected on the cell surface of chondrocytes upon stimulation with IL-1 and OSM 

(Milner et al., 2006b). FAPα expression has also been detected on the surface of 

rheumatoid arthritis synovial fibroblasts (Bauer et al., 2006). FAPα has gelatinase 

activity (Aoyama and Chen, 1990, Monsky et al., 1994, Pineiro-Sanchez et al., 1997) as 

well as dipeptidyl peptidase activity (Park et al., 1999) and both of these activities occur 

in the same catalytic pocket located in the α/β-hydrolase domain. FAPα expression is 

involved with cell migration through collagen matrices (Ghersi et al., 2002) and 

correlates with collagen turnover in IL-1+OSM treated cartilage (Milner et al., 2006b).  

The loss of DPPIV in both RA and OA is associated with increased disease pathology 

and implies that inactivation of chemokines within the joint space is an important 

protective mechanism against cartilage matrix breakdown. However, the expression of 

FAPα during collagen remodelling implicates a catabolic role. Taken together these 

findings implicate that DPPIV and FAPα activity play different but important roles in 

cartilage biology. 
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The molecular mechanisms of how DPPIV activity affects the cartilage matrix during 

arthritis are unclear. In this thesis, soluble DPPIV has not been shown to have an effect 

on IL-1+OSM-treated cartilage (section 4.2.3). However, experiments also show that 

inhibition of membrane-bound DPPIV activity decreases collagen degradation (section 

4.2.2). Data suggest that DPPIV inhibitors play a role in the up-regulation of TGF-β1 

secretion in T cells (Reinhold et al., 2006). Ishii et al. (2001) have shown that DPPIV 

co-localises with CD45 at lipid rafts and leads to the activation of ZAP70. Therefore, 

DPPIV inhibitors could cause a conformational change and disrupt or prevent DPPIV 

binding to other cell surface proteins, such as CD45, and this leads to TGF-β1 secretion. 

TGF-β1 (section 1.3.3) has been shown to have a differential role in cartilage (Blaney 

Davidson et al., 2007). Previous data from our group show that TGF-β1 can 

significantly reduce collagen release and collagenase levels from cytokine-treated 

cartilage (Hui et al., 2003a, Hui et al., 2001) and this is thought to occur through the 

receptor ALK5 (Blaney Davidson et al., 2009). However, during aging there is a 

reduction in the levels of ALK5 and an increase in ALK1 levels and this correlates with 

increased MMP-13 production in OA. Therefore, the global reduction of collagenase 

levels seen in this thesis when K579 was added to IL-1+OSM-treated bovine cartilage 

(section 4.2.2.5) could be caused by ALK5 activation by TGF-β1 as bovine cartilage is 

a model of healthy cartilage. Nonetheless, measuring changes in TGF-β1 levels would 

be problematic as large quantities of latent TGF-β1 are stored in the normal cartilage 

matrix (Pedrozo et al., 1998). This implies that DPPIV is involved in chondrocyte 

signalling if increased TGF-β1 levels are the mechanism of cartilage protection for 

DPPIV inhibition. 

As mentioned earlier, DPPIV inhibitors are in clinical use in the treatment of type II 

diabetes. In this thesis, it has been demonstrated that inhibition of DPPIV is 

chondroprotective, but the use of DPPIV inhibitors to treat arthritis may be problematic. 
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Busso et al. (2005) highlighted that collagen-induced arthritis in DPPIV
-/-

 mice was 

more severe than in wild-type DPPIV
+/+

 mice. Furthermore, DPPIV expression is 

decreased in areas where there is progressive worsening of the osteoarthritic lesions 

(Lapadula et al., 1995).  

The endopeptidase activity of DPPIV has been evaluated in this thesis and it was found 

that DPPIV could not cleave denatured type II collagen (section 4.2.4). This contradicts 

the study by Bermphol et al. (1998) that highlighted DPPIV could cleave denatured 

collagens and rules this out as a mechanism for the decreased collagen release from IL-

1+OSM-treated cartilage by DPPIV inhibition (section 4.2.2.5). 

The role of FAPα in cartilage matrix breakdown during the arthritides remains unclear. 

Experiments in this thesis showed that inhibition of FAPα activity does not affect 

collagen degradation (section 3.2.3). Chen et al. (2006a) speculate that N-terminal 

truncation is required to enhance gelatinase activity but not the dipeptidyl peptidase 

activity of FAPα and this truncation might change the active site in vivo to alter 

inhibitor binding. This finding might also suggest why soluble FAPα does not affect 

collagen degradation in IL-1+OSM-treated cartilage (section 3.2.4). However, there is 

no direct evidence for FAPα activity to be involved in ECM degradation other than its 

localisation at the invadopodia of melanoma cells (Artym et al., 2002, Ghersi et al., 

2002) and close proximity to proteins such as MMPs. To date only a small number of 

FAPα substrates have been identified. In this thesis FAPα has been demonstrated to 

degrade denatured type II collagen (section 3.2.2). This finding is in-line with data 

published by Christiansen et al. (2007) that show degradation of denatured type I and III 

collagens, and α2-antiplasmin has been described to be another natural FAPα substrate 

(Lee et al., 2004).  
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Work presented in this thesis shows that the regulation of DPPIV (section 4.2.1) and 

FAPα (section 3.2.1) gene expression in chondrocytes does not involve pro-

inflammatory cytokines. DPPIV and FAPα have been described to be up-regulated in 

OA cartilage compared to normal (Milner et al., 2006b, Swingler et al., 2009). The 

increased gene transcription in cartilage could be due to a number of different pathways. 

Cartilage has to sustain extreme loads (section 1.1) and therefore mechanical loading 

may regulate DPPIV and/or FAPα gene expression in chondrocytes. A number of 

studies have shown that mechanical loading of chondrocytes activates a number of 

signalling pathways (Pingguan-Murphy et al., 2005, Bougault et al., 2008). Another 

pathway could be the TLR pathway and it has recently been described to play a role in 

OA chondrocytes (Zhang et al., 2008). Endogenous ligands recognised by the TLRs 

could include ECM catabolites such as heparin sulphate (Johnson et al., 2002). This 

pathway could play an important role in the bovine model as previous data from our 

group showed elevation of FAPα during breakdown of the collagen matrix (Milner et 

al., 2006b). In this model, the addition of IL-1+OSM to cartilage would initiate 

breakdown of the cartilage matrix. Pro-MMPs would be synthesised and activated, 

ECM proteins would then be degraded to reveal cryptic epitopes that could bind to an 

unidentified TLR and drive FAPα expression. 

In conclusion, experiments in this thesis have been undertaken to broaden the 

understanding of the role FAPα and DPPIV play in cartilage homeostasis. The data 

suggest that FAPα enzyme activity has little effect in our cartilage model but can 

degrade denatured type II collagen. Although FAPα can degrade denatured type II 

collagen, the importance of this finding is unclear. In the bovine model, FAPα gene 

expression is found to increase after day 10 (Milner et al., 2006b), but MMP-2 and 

MMP-9 are expressed at 10- to 100-fold higher levels than FAPα (Milner et al., 2006a) 
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at this time point. Consequently, is FAPα adding to this gelatinolytic activity at the cell 

surface? 

 Inhibition of DPPIV enzyme activity shows mixed results and needs to be explored 

further. However, questions still remain about the molecular mechanisms involved in all 

of these observations. One possibility is that the β-propeller domain of FAPα or DPPIV 

could play an important role in recruiting receptors and proteases to increase matrix 

breakdown (Figure 4.26). 

6.3 Matriptase in cartilage breakdown 

Matriptase is a member of the TTSP family (section 1.7) that is becoming a target for 

therapeutic intervention in a number of cancers (Bugge et al., 2009, Szabo and Bugge, 

2008). Matriptase expression has been shown to be up-regulated in OA cartilage 

compared to normal (Swingler et al., 2009). In a murine model of OA, matriptase 

expression is increased when the knee joint is destabilised (Prof. A. D. Rowan, personal 

communication).  In this thesis matriptase was shown to enhance the degradation of IL-

1+OSM-treated cartilage (section 5.2.1) in a manner similar to plasmin (Milner et al., 

2001). Matriptase was also demonstrated to directly activate pro-MMP-1 and -3 (section 

5.2.2). Previous data have shown that if active MMP-3 is added at day 0 to IL-1+OSM-

treated cartilage significant collagen release is seen by day 7 (Milner et al., 2001). 

Matriptase has been shown to be potent mediator of collagen degradation in human OA 

cartilage (section 5.2.3). Human OA cartilage has previously been described to be 

highly resistant to pro-inflammatory-mediated breakdown despite the increased 

expression of collagenolytic MMPs (Cawston et al., 1998). In the presence of IL-

1+OSM, matriptase is likely to activate pro-MMPs analogous to the IL-1+OSM-treated 

bovine cartilage. However, the most striking finding was that matriptase is able to cause 

collagen degradation in human OA cartilage in the absence of pro-inflammatory 
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cytokines (section 5.2.3). The extent of collagen release, typically around 30% by day 

14, was unprecedented compared to any previously used stimulus. This therefore 

represents the most potent stimulus for OA cartilage to be described to date. This result 

has not been seen previously, as plasmin was only able to cause collagen degradation in 

OA cartilage in concert with IL-1+OSM (Milner et al., 2001). 

The degradation of OA cartilage by matriptase is metalloprotease-dependent, most 

probably via MMPs (section 5.2.4) but interestingly the collagenase levels in samples 

treated with matriptase were lower than in samples treated with IL-1+OSM (sections 

5.2.3.2 and 5.2.3.3). Previous data have shown that MMPs can localise to the cell 

membrane via interaction with cell surface receptors (Emonard et al., 2005). 

Furthermore, data have recently shown that the CUB domains of matriptase facilitate 

protein-protein interactions to transmembrane proteins such as TMEFF1 and HAI-1 (Ge 

et al., 2006, Inouye et al., 2010). The functions of the non-catalytic domains of 

matriptase have not been fully elucidated in the context of arthritis, but could play an 

important role in substrate recognition or binding. Conversely, matriptase-mediated 

cartilage breakdown could cause distinct gene expression compared to IL-1+OSM 

treatment, such that uncharacterised proteins are localising MMPs to the chondrocyte 

surface and expedite collagen degradation. 

Matriptase-induced collagen breakdown is dependent on intracellular signalling events 

in chondrocytes to cause de novo MMP production (section 5.2.5). The signalling was 

via activation of PAR-2 by matriptase (section 5.2.6) as PAR-2 inhibition blocked 

collagen release from OA cartilage. PAR-2 has been shown to be elevated in murine 

models of arthritis (Busso et al., 2005). However, I have demonstrated that PAR-2 

activation has a profound impact on the cartilage matrix. This is corroborated by Ferrell 
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et al. (2010) as PAR-2
-/-

 mice show significantly less cartilage and bone erosion than 

wild-type mice in two experimental murine models of OA. 

Experiments in this thesis have shown that matriptase plays an important role in the 

breakdown of the cartilage collagen matrix by causing MMP synthesis, activation and 

finally collagen breakdown. One of the key observations has been that matriptase-

mediated activation of the PAR-2 signalling pathway is a key requirement for collagen 

breakdown from arthritic cartilage in the absence of pro-inflammatory cytokines. The 

PAR-2 pathway needs to be examined in greater detail as there is little information on 

the genes that are regulated upon PAR-2 activation. Only a report by Tanaka et al. 

(2008) has shown that IL-8 is up-regulated upon PAR-2 activation in epithelial cell 

lines. 

Matriptase inhibitors are currently being designed to suppress tumour growth and 

metastasis. However, the catalytic domain of matriptase shares a similar fold to 

chymotrypsin and therefore an inhibitor against matriptase would have to be extremely 

specific to avoid off-target effects. The matriptase inhibitor CVS-3983 has been shown 

to supress prostate cancer growth but shows slight cross-reactivity with trypsin and 

factor Xa proteases (Galkin et al., 2004). Schweinitz et al. (2009) have shown a similar 

trend where the most potent matriptase inhibitor (sub-nanomolar Ki) also displayed 

potent cross-reactivity with factor Xa. Another problem regarding the clinical use of 

matriptase inhibitors is that matriptase has been shown to play an important role in 

epithelial barrier formation and function (List et al., 2002, Buzza et al., 2010). These 

studies have used constitutive matriptase knockouts or low matriptase expression mice 

and provide strong evidence for a role in development. Recently, List et al. (2009) 

generated conditional matriptase knockout mice and showed that ablation of matriptase 

expression between 8 to 28 weeks postnatal caused a loss in epithelial integrity, 
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resulting in severe epithelial organ dysfunction. Taken together these data highlight the 

requirement for matriptase inhibitors specific and designed so as not to adversely affect 

epithelial tissues and organs in order to be of clinical relevance in the treatment of 

arthritis. 

6.4 Future work 

The work in this thesis has raised a number of questions about the role of 

transmembrane serine proteases in cartilage matrix homeostasis. Further work will be 

required to address these questions as well as confirm some of the conclusions drawn in 

this study. 

 Develop an in vitro transgenic cartilage model to assess protease function on the 

cartilage matrix. Treatment of cartilage with siRNA is prohibitively expensive 

but retroviral gene transfer has been shown to allow long-term expression of 

transgenes (Kafienah et al., 2003). In theory, chondrocytes could be transfected 

with two plasmid constructs; one plasmid would be under TET-off control and 

express TGF-β3 to help promote cartilage matrix formation in vitro. The second 

plasmid would be under the control of the enhancer cumate (Mullick et al., 

2006) and express a transgene or small homologous (sh) RNA. Initially, 

transduced chondrocytes would be cultured in the presence of cumate and 

doxycycline. This would allow TGF-β3 expression and the generation of 

engineered “tissue”, and not the transgene. Withdrawal of cumate and 

doxycycline would stop TGF-β3 expression and permit transgene or shRNA 

expression. 

 Use bimolecular fluorescence complementation to assess if DPPIV or FAPα 

associate with other proteases at the cell surface of OA chondrocytes. 

Bimolecular fluorescence complementation is based upon complementation of 
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two separately expressed fragments of GFP or derivates which are fused to 

putative interacting proteins. 

 Grover and Roughley (2006) developed a conditional cartilage-specific 

knockout mouse model. As the expression of Cre recombinase was under 

control of both the type II collagen promoter and a doxycycline response 

element, this overcame the embryonic lethal phenotype that universal gene 

knockout mice often displayed. This mouse is then crossed with another strain of 

mouse where the gene of interest lies between two loxP sites. The resulting 

progeny could then be fed on a diet supplemented with doxycycline to repress 

target gene expression. Therefore, if we generate cartilage-specific DPPIV and 

FAPα knockout mice and then initiate arthritis either by injection of collagen 

into their tail-base or by destabilization of the medial meniscus. This would 

show whether these enzymes play a role in either inflammatory arthritis or in an 

OA-like model.  

 Characterise the role of the non-catalytic domains of matriptase to test whether 

they are important in cartilage matrix breakdown. The CUB domains have been 

shown to facilitate the binding of matriptase to other transmembrane proteins. 

Inouye et al. (2010) highlight that the interaction between CUB domain II of 

matriptase and the second Kunitz domain of HAI-1 facilitates the binding of the 

first Kunitz domain of HAI-1 to the catalytic domain of matriptase. Therefore, 

expression of the individual tagged domains will allow for the identification of 

novel binding partners of matriptase and determine their functions in the context 

of arthritis. 

 Generate cartilage-specific matriptase knockout mice and initiate arthritis by 

destabilization of the medial meniscus. This would highlight whether matriptase 
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knockout would protect cartilage from degradation as shown for PAR-2 

knockout mice (Ferrell et al., 2010). 

 

6.5 Summary 

The most significant finding of this thesis is the breakdown of the cartilage collagen 

network by the transmembrane serine protease, matriptase. Studies within this 

department have provided evidence for the role of serine proteinases in the activation of 

pro-MMPs in cartilage (Milner et al., 2001, 2003). My data have demonstrated for the 

first time that matriptase plays an important role in cartilage breakdown by the 

activation of PAR-2 and pro-MMP-1 and -3. Data from our group have confirmed this 

finding in vivo using a murine model of OA. Finally, the data presented in this thesis 

show that investigating the role of dipeptidyl peptidases with pharmacological inhibitors 

is hindered by their lack of ex vivo efficacy in the context of arthritis. Consequently, the 

data from these studies require confirmation by alternative techniques.  

The findings in this thesis highlight the need to further characterise the role of novel 

transmembrane serine proteases in cartilage. Such endeavour may well realise the 

potential of serine protease inhibitors as future therapeutic agents for the arthritides. 
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