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Abstract  

 
i

Alcoholic liver disease (ALD) is a significant and growing global health problem, responsible for 

over 10000 deaths per year in the UK alone. Clinical liver failure can result from gradual, 

chronic depletion of the hepatocyte pool and replacement with fibrous tissue in cirrhosis or from 

rapid, acute hepatocellular dysfunction secondary to inflammation in acute alcoholic hepatitis 

(AAH) which carries a mortality of up to 35% on first presentation. Corticosteroid therapy has 

shown some benefit in AAH but its utility is limited by uncertainty in patient selection and poor 

clinical response in a proportion of cases. Our current understanding of AAH pathogenesis 

attributes hepatocellular dysfunction to the action of supra-physiological concentrations of pro-

inflammatory cytokines. Evidence from animal and human studies suggests that the major 

source of cytokine release is the hepatic macrophage or Kupffer cell responding to an increased 

concentration of bacterial endotoxin in portal blood following an ethanol-mediated increase in 

gut permeability. However, this enhanced and sustained inflammatory response is at odds with 

the normal response in the liver in which endotoxin tolerance allows bacterial components to be 

cleared from the blood without an inflammatory response. This study set out to investigate 

factors that determine the enhanced inflammatory response in AAH and its response to therapy. 

Genetic analysis revealed a single nucleotide polymorphism in a component of the endotoxin 

response pathway (the Toll-like receptor adapter molecule MAL) associated weakly with 

advanced disease in both ALD and the related condition non-alcoholic steatohepatitis. Different 

alleles associated with advanced disease in the two conditions, suggesting divergent 

importance of signalling pathways in their pathogenesis. Assays in AAH patients demonstrated 

that their lymphocyte steroid sensitivity was impaired relative to normal controls, correlated with 

clinical markers of steroid responsiveness, improved in recovery and could be improved by ex 

vivo supplementation with theophylline, a known recruiter of histone deacetylases. The role of 

histone modifications in the enhancement of inflammatory responses in ethanol was 

investigated in a human macrophage cell-line model which revealed increased histone 

acetylation at pro-inflammatory cytokine gene promoter regions associated with potentiated 

cytokine responses to endotoxin after culture in ethanol or its metabolite acetate. This effect 

was abrogated by knockdown of acetyl-coA synthetases, suggesting that increased synthesis of 

acetyl-coA from acetate is crucial for histone acetylation and consequent increased cytokine 

production after ethanol exposure. 

These findings suggest that while genetic predisposition may have some effect on innate 

immune responses in the pathogenesis of alcoholic liver disease, the more significant 

contribution is likely to come from gene-environment interactions such as modulation of histone 

acetylation by products of ethanol metabolism. This epigenetic relationship between metabolism 

and gene expression in inflammation, mediated by histone deacetylases such as the sirtuin 

proteins, may be a novel therapeutic target in ALD and potentially also in other inflammatory 

conditions.
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1  Introduction 

One may drink wine and be nothing the worse for it; on another, wine may 

have effects so inflammatory as to injure him in both body and mind. 

Samuel Johnson  (1776), quoted in the first clinical description of acute 

alcoholic hepatitis (Beckett, Livingstone et al. 1961). 

1.1 Introduction to Acute Alcoholic Hepatitis 

1.1.1 Epidemiology of ethanol-related liver disease 

Alcoholic liver disease (ALD) is a significant and growing health problem worldwide. Alcohol 

consumption is responsible for 4% of the global burden of disease, a proportion similar to that of 

tobacco and hypertension (Room, Babor et al. 2005; Rehm, Taylor et al. 2006). In the UK alone 

it was responsible for 8380 deaths in 2004, with the death rate having more than doubled since 

1991 (ONS 2006). The rate of increase in mortality from ALD in the UK is now the highest in 

Europe (Leon and McCambridge 2006). 

The relationship between alcohol dose and liver disease was studied in 13 285 subjects in 

Copenhagen (Becker, Deis et al. 1996). There was dose-dependent relationship between 

weekly alcohol consumption and incidence of alcohol-induced liver disease and alcohol-induced 

cirrhosis, with the relative risk of disease becoming significantly greater than 1 at 7-13 standard 

drinks per week for women and 14-27 standard drinks per week for men. These data support 

the current medical recommendations for ‘safe’ alcohol consumption in the UK of no more than 

14 drinks per week for women and no more than 21 drinks per week for men. A standard drink 

(“unit”) contains 10ml (7.9g) of absolute ethanol in the UK. There is no international standard 

drink and national standards vary, with a unit being 10g of ethanol in Ireland, 12g in France and 

Denmark and 14g in the USA (Tapson 2004).  Thus the level of drinking from the Copenhagen 

study at which risk of liver disease is increased is above 20 UK units per week for women and 

41 UK units for men. 

The distinction between ALD and the alcohol dependence syndrome is not always well 

appreciated by the general public, and the adjective ‘alcoholic’ is used indiscriminately in both 

scientific literature and the mass media to refer to any or all of alcohol addiction, alcohol-related 

physical disease and heavy drinking without disease. 58% of ALD patients have no significant 

dependence on alcohol and only 9% have severe dependence. They are a different 

demographic group from patients whose primary problem is alcohol dependence. ALD patients 

tend to drink less and are more likely to have started drinking heavily for social reasons rather 

than as a response to social or psychological stress (Smith, White et al. 2006). Thus the use of 

the term ‘alcoholic’ in relation to this disease is misleading and could be prejudicial. ‘Ethanol-
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related liver disease’ and ‘ethanol-related steatohepatitis’ are preferable terms but have not 

become common currency even within the field so the traditional names will be used here for 

clarity.  

1.1.2 Individual susceptibility 

The majority of individuals appear to be remarkably resistant to the damaging effects of alcohol 

on the liver. Above the apparent ‘safe limits’ the risk of ALD increases in proportion to intake, 

but of individuals consuming over 200g per day only 20% were found to have cirrhosis after 13 

years consumption, and 50% at 20 years (Lelbach 1975). Thus in the drinking population 

susceptibility factors are just as important to the development of disease as alcohol intake. 

Susceptibility is influenced by genetic and environmental factors, some of which have been 

elucidated (Day 2006). Twin studies suggest that genetic factors account for at least 50% of 

individual susceptibility (Hrubec and Omenn 1981) to ALD, although this may be largely 

accounted for by a shared genetic predisposition to heavy drinking (Reed, Page et al. 1996). 

The most obvious environmental influence on susceptibility is dose of alcohol, and the dose-

dependent relationship described above was replicated in the Dionysos study which surveyed 

the dietary habits and health outcomes of the entire population of two Northern Italian towns 

(Bellentani, Saccoccio et al. 1997). This also revealed an effect of pattern of drinking 

independent of absolute levels of consumption, with an increased risk of ALD associated with 

drinking outside meal times, drinking more than one variety of alcoholic beverage and drinking 

every day rather than just at weekends. The influence of diet has received some attention, with 

a diet high in fat and low in carbohydrate associated with increased risk of cirrhosis in drinkers 

(Rotily, Durbec et al. 1990), and all stages of ALD shown to be increased in heavy drinkers who 

were also obese (Naveau, Giraud et al. 1997). There has been some data to suggest that wine 

drinkers are relatively protected from liver damage (Becker, Gronbaek et al. 2002) although an 

elegant further study has demonstrated that wine drinking is associated with a healthier diet, 

which may account for the apparent benefit (Johansen, Friis et al. 2006). Cigarette smoking 

independently increases the risk of ALD, with a one packet a day habit trebling the risk of 

cirrhosis (Klatsky and Armstrong 1992). The same studies have repeatedly demonstrated a 

protective effect of coffee drinking on alcohol-related cirrhosis (Klatsky, Morton et al. 2006), the 

significance of which will be discussed later (section 1.6.5). 

In the determination of genetic susceptibility factors, the requirement for an environmental 

trigger (hazardous drinking) and the social impact of the disease mean that ALD does not lend 

itself to family linkage studies, and the majority of genetic information comes from case-control, 

candidate gene allele-association studies. These have suffered from a shortage of validation 

studies in independent cohorts and, where validation has occurred, lack of reproducibility due to 

ethnic variations and non-comparable control populations (type 1 error). Small cohort sizes 
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have resulted in underpowered studies and the risk of false negative results (type 2 error) (Day 

2006; Stickel and Osterreicher 2006). 

Female sex is the most obvious genetic risk factor for ALD, with women developing accelerated 

disease compared to men at the same level of alcohol consumption (Ashley, Olin et al. 1977). 

Alcohol is predominantly water-soluble and has a smaller volume of distribution in women who 

have a lower total body mass and a higher proportion of body fat, resulting in higher blood 

alcohol concentrations (Schenker 1997). Rodent studies suggest that there may be a female 

predisposition to endotoxaemia and lipid peroxidation, perhaps as a result of an oestrogen-

dependent increase in gut permeability, which could result in increased inflammation (Nanji, 

Jokelainen et al. 2001). A testosterone-mediated reduction in pro-inflammatory TLR4 receptors 

on macrophages may have a protective effect in males (Rettew, Huet-Hudson et al. 2008). Diet 

does not appear to be responsible for the gender difference (Wagnerberger, Schafer et al. 

2008). 

The larger candidate gene studies with positive associations have identified susceptibility 

polymorphisms in genes encoding components of the innate immune response. Study of the 

C-259T single nucleotide polymorphism (SNP) in the gene for the bacterial lipopolysaccharide 

receptor CD14 in 381 Finnish men with moderate or high ethanol consumption showed that the 

T allele was associated with increased risk of alcoholic hepatitis and cirrhosis. The relative risk 

of cirrhosis was 3.08 for CT and 4.17 for homozygous TT (Järveläinen, Orpana et al. 2001). 

However, the association was not reproduced in a UK cohort (Leathart, Day et al. 2001). The 

only positive association to have been validated in an independent population is the G-238A 

SNP in the tumour necrosis factor alpha (TNFα) promoter region. The A allele was associated 

with alcoholic steatohepatitis in 150 UK patients with biopsy-proven ALD (Grove, Daly et al. 

1997) and also with cirrhosis in 149 male Spanish alcoholics (Pastor, Laso et al. 2005). 

1.1.3 Spectrum of ALD 

The spectrum of ALD ranges from simple steatosis (fatty liver) through steatohepatitis to fibrosis 

and eventually cirrhosis (Figure 1-1 ). Progression through the stages can be asymptomatic and 

go unnoticed unless abnormal liver blood tests are detected in known or covert heavy drinkers. 

Patients may not present to health services until they experience decompensation of end-stage 

cirrhosis when the mass of remaining hepatocytes is insufficient to maintain hepatic function 

and the symptoms of liver failure, jaundice, ascites, encephalopathy and bleeding become 

apparent. Others present earlier in the spectrum with an episode of symptomatic acute alcoholic 

hepatitis (AAH) with fever, hepatomegaly, leucocytosis and clinical and laboratory features of 

liver failure (Stewart and Day 2003). 
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Steatosis 
(60-100%)

Normal
(0-30%)

Fibrosis/
cirrhosis
(<10%)

Steatohepatitis
(20-40%)

 

Figure 1-1 Histological spectrum of ALD 

Figures in brackets indicate frequency of findings in biopsy series of unselected heavy 

drinkers consuming at least twice recommended limit s (Stewart and Day 2003). 

1.1.4 Clinical features of acute alcoholic hepatitis 

The association between alcohol excess and chronic liver disease was described as early as 

1793 (Baillie 1793) and the term ‘cirrhosis’ coined 23 years later (Laennec 1819). The ability of 

alcohol to cause ‘acute necrosis of the liver’ was known at the outset of modern medical 

practice (Osler 1892) but it was in 1961 that doctors at the Royal Free Hospital, London, coined 

the term ‘acute alcoholic hepatitis’ to describe the clinical syndrome that they observed in seven 

patients in whom jaundice developed after sustained alcohol consumption (Beckett, Livingstone 

et al. 1961). They described a syndrome of jaundice, fever, anorexia, nausea and vomiting with 

tender hepatomegaly on examination and leucocytosis on blood testing. Histology showed fatty 

change with inflammatory infiltrate, bile stasis and fibrosis with established cirrhosis in four 

patients. Since then, AAH has become a well-recognised component of the spectrum of ALD. It 

is important to note that the description ‘acute alcoholic hepatitis’ is used differently by clinicians 

and pathologists, with the former using it to refer to the syndrome described above while the 

latter apply it to the constellation of histopathological features, without requirement for the 

presence of the clinical syndrome (Lucey 2002). 

AAH patents commonly present with symptoms that are not specific to the liver - abdominal 

pain, gastrointestinal upset (anorexia, nausea and vomiting, diarrhoea), lethargy and pyrexia. 
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The majority have tender, smooth hepatomegaly and may have a hepatic bruit on auscultation. 

A hyperdynamic circulation can lead to palmar erythema, high-volume pulse character and 

moderate hypotension with tachycardia. Liver insufficiency may be present and demonstrated 

by jaundice, encephalopathy and bruising, and portal hypertension can manifest as ascites and 

peripheral oedema. A proportion of patients present with complications of their liver disease 

such as variceal bleeding or spontaneous bacterial peritonitis. AAH patients are frequently 

malnourished. 

Up to 40% of patients undergo acute clinical deterioration after admission with worsening liver 

function tests (LFTs) and onset of encephalopathy, renal failure or variceal bleeding. It has been 

postulated that the withdrawal of ethanol-related calories on admission reduces liver blood flow 

leading to increased metabolic stress, or that optimum liver perfusion relied on the vasodilatory 

effect of acetaldehyde (via adenosine) which ceases when alcohol is withdrawn (Hardison and 

Lee 1966). 

1.1.5 Laboratory findings 

The most frequent positive laboratory finding in ALD is an elevated γ-glutamyltransferase (γGT) 

which is seen in over 90% of hazardous drinkers. However, this elevation is primarily due to 

microsomal induction and is largely independent of the severity of liver disease (Wu, Slavin et 

al. 1976). It has been used to monitor for recidivist drinking in abstinent patients (Pol, Poynard 

et al. 1990). Blood alcohol estimation can confirm the suspicion of hazardous drinking, with 

morning levels greater than 100mg/100ml or a level greater than 150mg/100ml without apparent 

intoxication being strongly suggestive of chronic heavy drinking (Stewart and Day 2006). 

The serum transaminase enzymes alanine transaminase (ALT) and aspartate transaminase 

(AST) are the classical markers of hepatocellular damage. However, the elevations in serum 

levels in ALD differ from those in other liver diseases in that they are generally of lower 

magnitude (AST up to five times the upper limit of normal (ULN), ALT up to twice ULN) and the 

AST:ALT ratio is greater than one in 90% of patients, and frequently greater than two (Cohen 

and Kaplan 1979). This is often used to help differentiate between alcohol and other aetiologies 

of liver injury. ALT is predominantly found in the cytoplasm of hepatocytes while AST has 

cytosolic and mitochondrial forms and a wider tissue distribution. Synthesis of both ALT and 

AST requires vitamin B6 (pyridoxine) and B6 deficiency is frequently present in chronic heavy 

drinking. However, ALT synthesis is more sensitive to B6 depletion than AST, which contributes 

to the elevated AST:ALT ratio seen in ALD. This is compounded by the presence of 

mitochondrial injury in ALD, which further raises the serum AST (Diehl, Potter et al. 1984).  

Blood parameters associated with hepatic insufficiency are low serum albumin, elevated serum 

bilirubin, low serum urea and prolonged prothrombin time. Portal hypertension and vasodilatory 

relative hypovolaemia lead to activation of the renin-angiotensin-aldosterone system and 
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consequent dilutional hyponatraemia and renal potassium loss leading to hypokalaemia. 

Macrocytosis is seen in 85% of those drinking more than 80g of alcohol daily, but folate or 

vitamin B12 deficiency is present in only a third, with the primary cause being the direct toxic 

effect of ethanol on the developing erythroblast (Wu, Chanarin et al. 1975). Falling mean 

corpuscular volume is often used as a marker of abstinence in patients undergoing treatment, 

although there are many contradictory studies of its usefulness, particularly after hospitalisation 

when it may fall whether there is abstinence or not, and in cirrhosis where it may remain 

elevated (Shaw, Worner et al. 1979) (Pol, Poynard et al. 1990). Neutrophil leucocytosis is a 

frequent feature of AAH and thrombocytopenia due to splenic and hepatic sequestration of 

platelets is common when cirrhosis and portal hypertension are present. 

The histological features of alcoholic hepatitis (Figure 1-2 ) have been extensively described 

(Galambos 1972) and debated, and an international consensus (Baptista 1981) identified the 

following features as obligatory for the diagnosis: 

Evidence of liver cell damage : usually ballooning degeneration of hepatocytes or necrosis. 

Mallory bodies are intracytoplasmic inclusions, staining purple-red on haematoxylin and eosin, 

which are frequently present but not essential for diagnosis. They consist of microtubule debris, 

principally keratin 8 and 18, ubiquitin and p62, which accumulate as a result of overload or 

dysfunction of the hepatocyte proteasome (Zatloukal, French et al. 2007). 

Inflammatory cell infiltrate : neutrophils tend to predominate 

Fibrosis : pericellular distribution produces a lattice-like or ‘chickenwire’ appearance 

Perivenular distribution of lesions : centrilobular / zone 3, though in cirrhotic liver they tend to 

be isolated to the periphery of nodules. 

The following are also seen but are not considered necessary for diagnosis: macrovesicular 

steatosis, apoptotic bodies, bile duct proliferation, cholestasis, giant mitochondria. Alcoholic 

hepatitis can occur in an already cirrhotic liver, when the features above will be accompanied 

and distorted by the architectural features of cirrhosis (Alexander, Lischner et al. 1971). 

Although both the clinical syndrome and the histological findings are well described, there is no 

correlation between the severity of the histology and the severity of the clinical presentation 

(Hislop, Bouchier et al. 1983) and the presence of the clinical syndrome does not accurately 

predict the histological features (Austin, Kaye et al. 2006). A study of 61 patients demonstrated 

that after cessation of drinking histology reverted to normal in 27%, progressed to cirrhosis in 

18%, and persisted as hepatitis in 55% for up to three years. Of those who continued to drink 

38% progressed to cirrhosis and 62% had persistent hepatitis (Mendenhall 1981). In a study of 

122 patients with alcohol-related cirrhosis, the presence of alcoholic hepatitis on biopsy actually 
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had a favourable prognostic significance, presumably because of the associated potential for 

further recovery (Pessione, Ramond et al. 2003). 

 

Figure 1-2 Histological features of alcoholic hepat itis 

Photomicrograph showing ballooning degeneration of hepatocytes with Mallory hyaline, 

neutrophil infiltration, macrovesicular steatosis a nd cholestasis . Image: PEIR, University 

of Alabama Birmingham. 

1.1.6 Natural history and prognosis 

AAH carries a poor prognosis with early death occurring from infection, hepatic encephalopathy, 

hepatorenal failure or haemorrhage. The 28-day mortality is up to 35% (Maddrey, Boitnott et al. 

1978) (Carithers, Herlong et al. 1989) (Mathurin, Mendenhall et al. 2002) (Akriviadis, Botla et al. 

2000). Histological features at presentation to not predict prognosis (Elphick, Dube et al.) so a 

number of clinical scoring systems have been devised to identify patients at high risk of death in 

whom interventions are most likely to have a net benefit. 

The first scoring system for predicting prognosis in chronic liver disease was published by Child 

and Turcotte in 1964 and estimated mortality after surgery for portal hypertensive haemorrhage 

from an aggregate score of five measures of hepatocellular dysfunction: encephalopathy grade, 

ascites, serum bilirubin, serum albumin and nutritional status (Child and Turcotte 1964). It was 

subsequently shown to predict mortality in medically-treated cirrhosis (Christensen, Schlichting 

et al. 1984). The score was modified in the 1970s, replacing assessment of nutritional status 
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with the more objective criterion of PT prolongation, as illustrated in Table 1-1  (Pugh, Murray-

Lyon et al. 1973), and it is this version which is commonly found in clinical use. 

 1 point 2 points 3 points 

Encephalopathy 
grade 

0 1-2 3-4 

Ascites Absent Slight Moderate 

Bilirubin ( µµµµmol/l) 17-34 35-50 >50 

Albumin (g/l) >35 28-35 <28 

PT prolongation (s) 1-4 4-10 >10 

 

   Percentage survival  

Total Score Grade 1 year 5 years 10 years 

5-6 A 84 44 27 

7-9 B 62 20 10 

10-15 C 42 21 0 

Table 1-1 Child-Pugh score for mortality in chronic  liver disease 

Calculation of score and grade and associated perce ntage survival (Howdle 2006) 

The hepatitis discriminant function of Maddrey was devised to predict 28-mortality in AAH and 

was derived from a cohort of 55 patients randomised to corticosteroid treatment or placebo. The 

laboratory parameters independently associated with death were the prolongation of the 

prothrombin time and the serum bilirubin (Maddrey, Boitnott et al. 1978). The same group 

refined the score to produce a modified discriminant function (mDF, Equation 1-1 ) which was 

used to identify patients with poor prognosis for a further corticosteroid trial (Carithers, Herlong 

et al. 1989). AAH patients with mDF>32 had a 35% mortality without treatment. 
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( )
1.17

6.4
bilirubin

PTPTmDF control +−=  

Equation 1-1 Modified hepatitis discriminant functi on 

PT prothrombin time in seconds, bilirubin in µµµµmol/litre (Carithers, Herlong et al. 1989) 

The model for end-stage liver disease (MELD, Equation 1-2 ) score was developed to predict 

outcome after transjugular intrahepatic portosystemic shunt stent (TIPSS) procedures for portal 

hypertension and was subsequently validated for mortality in all chronic liver disease 

(Malinchoc, Kamath et al. 2000) (Kamath, Wiesner et al. 2001). When applied to AAH and 

compared to mDF>32, cut-off values of 11 and 21 achieved similar sensitivity and better 

specificity for predicting 30- and 90-day mortality respectively (Sheth, Riggs et al. 2002) (Dunn, 

Jamil et al. 2005). In a larger study, MELD increase in the first week of hospitalisation out-

performed Child-Pugh score and mDF in predicting in-hospital mortality, and admission 

MELD>21 had the best sensitivity (91%) and specificity (85%) for death (Srikureja, Kyulo et al. 

2005). 

 

( ) ( ) ( ) ( )aetiology4.6creatininelog6.9INRlog2.11bilirubinlog8.3 ×+×+×+×= eeeMELD
 

Equation 1-2 Model for end-stage liver disease 

Bilirubin and creatinine in mg/dl, aetiology = 0 fo r cholestatic or alcoholic liver disease, 1 

for all other diagnoses (Kamath, Wiesner et al. 200 1). 

The Glasgow alcoholic hepatitis score (GAHS) was an attempt to derive an easily-calculated 

score that would predict mortality based on readily-available clinical variables. It was derived in 

a cohort of 241 patients and validated in a further 195 patients, identifying the known prognostic 

factors of bilirubin, PT and renal function, and adding age and peripheral blood white blood cell 

count (Table 1-2 ). It was found to have a slightly lower sensitivity than mDF and MELD in 

predicting mortality, but a higher specificity, and its accuracy was not affected by whether the 

diagnosis of alcoholic hepatitis was biopsy-proven or made on clinical criteria (Forrest, Evans et 

al. 2005). The GAHS can be used to compensate for the relatively low specificity of the other 

scoring systems in selecting high-mortality patients who may benefit from corticosteroid 

treatment: in patients with mDF>32, only those who also had GAHS≥9 had improved survival 

when treated with corticosteroids (Forrest, Morris et al. 2007). 
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 1 point 2 points 3 points 

Age <50 ≥50 - 

WCC (x109/l) <15 ≥15 - 

Urea (mmol/l) <5 ≥5 - 

PT ratio or INR <1.5 1.5-2.0 >2.0 

Bilirubin ( µµµµmol/l) <125 125-250 >250 

 

Table 1-2 The Glasgow alcoholic hepatitis score 

In patients with mDF>32, a total score of ≥9 is associated with a 28-day survival of 52% 

which improves to 78% with corticosteroid treatment . WCC white cell count, INR 

international normalised ratio (Forrest, Morris et al. 2007). 

GAHS and mDF can predict short-term survival, but in those who survive the acute episode 

long-term survival depends on a number of different factors. Liver function continues to be a 

significant determinant of survival, as demonstrated by the prognostic usefulness of the Child-

Pugh and MELD scores in chronic ALD (Christensen, Schlichting et al. 1984) (Kamath, Wiesner 

et al. 2001). Histological severity becomes more relevant for determining long-term prognosis, 

with the degree of fibrosis being particularly significant (Alexander, Lischner et al. 1971). A 

patient whose hepatitis resolves and leaves him without cirrhosis has a particularly good 

prognosis, whereas cirrhotics with even clinically mild hepatitis have a significantly poorer 

outcome (Goldberg, Mendenhall et al. 1986). Progression to cirrhosis occurs more frequently in 

women than men (Pares, Caballeria et al. 1986). Achievement and maintenance of abstinence 

from alcohol can reduce the risk of progression to cirrhosis, particularly in males with 

histologically mild disease, and even in those with established cirrhosis abstinence will reduce 

the risk of hepatic decompensation and death  (Mendenhall 1981) (Alexander, Lischner et al. 

1971) (Pares, Caballeria et al. 1986).  
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1.1.7 Treatment of AAH 

1.1.7.1 Abstinence 

Abstinence for alcohol is the only factor that consistently improves long-term survival (Powell 

and Klatskin 1968) (Alexander, Lischner et al. 1971) and histology (Pares, Caballeria et al. 

1986). In some, achievement of abstinence requires the input of an addiction psychiatry service 

or pharmacological adjuncts such as disulfiram, acamprosate or naltrexone. In others the 

provision of information about their illness and a structured ‘brief intervention’ counselling 

episode from a trained healthcare professional is sufficient (Kaner, Beyer et al. 2007). AAH 

patients are a different (though overlapping) population from those with alcohol dependence 

syndrome and so a reasonable proportion should achieve abstinence with clinical advice and 

brief interventions (Smith, White et al. 2006). This is confirmed by the fact that 50% of ALD 

patients will abstain or reduce their alcohol intake to a non-harmful level when advised to do so 

by a physician at first presentation, and that this reduction in intake is associated with improved 

survival (Day 1996). However, an admission with AAH is often an individual’s first presentation 

with ALD and the high mortality of AAH means that many do not survive to reap the benefits of 

abstinence. Thus there is an imperative for treatments that are effective in improving survival in 

the acute situation. 

1.1.7.2 Corticosteroids 

Corticosteroids suppress inflammation through a variety of molecular pathways but have the 

adverse effects of increased susceptibility to infection, gastrointestinal bleeding and slowed 

tissue healing, so it is vital to select the patients with the highest risk of mortality in whom the 

survival benefit of steroid therapy will outweigh the attendant risks. For this reason mDF>32 has 

generally been used to select patients for inclusion in steroid trials. Trials have generally 

included relatively small numbers of patients and produced contradictory results. An initial meta-

analysis (Christensen and Gluud 1995) suggested that there was no benefit, but a later meta-

analysis of the three largest and most recent placebo-controlled trials showed a significant 

benefit with 84% survival with corticosteroid treatment compared to 65% survival on placebo 

(Mathurin, Mendenhall et al. 2002). 

Steroid responsiveness has been shown to be greater in the group of patients with a peripheral 

blood neutrophilia and a significant neutrophil infiltrate on biopsy (Mathurin, Duchatelle et al. 

1996). In addition, it was noted that those patients who survived on steroids showed a fall in 

their serum bilirubin in the first week of treatment and the value of this ‘early change in bilirubin 

level’ (ECBL) in predicting which patients will go on to respond to therapy has been verified in 

further studies (Mathurin, Abdelnour et al. 2003) (Morris and Forrest 2005). More recently the 

ECBL has been included in a new validated prognostic score for patients on steroid treatment 

for severe AAH – the Lille model (Louvet, Naveau et al. 2007). 
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1.1.7.3 Pentoxifylline 

Pentoxifylline (Oxypentaphylline) is a methylxanthine phosphodiesterase inhibitor that is used 

for symptom relief in peripheral vascular disease because of its ability to increase RBC 

deformability and increase flow in stenosed blood vessels. It has been found to have an anti-

cytokine effect, reducing transcription of the TNFα gene. A randomised controlled trial (RCT) 

showed improved short-term survival on pentoxifylline (75%) compared to placebo (54%) in 

patients with mDF>32 (Akriviadis, Botla et al. 2000). In both this and a further study, the 

increased survival corresponded with a reduction in the incidence of hepatorenal syndrome 

(HRS) in the pentoxifylline-treated group (Karnam and Reddy 2001). A recent study found no 

benefit from switching patients to pentoxifylline if they failed to respond to corticosteroids with 

an ECBL at 7 days (Louvet, Diaz et al. 2007). 

1.1.7.4 Biological anti-TNFα agents 

TNFα is strongly implicated in the pathogenesis of AAH(Felver, Mezey et al. 1990)so there was 

hope that the novel biological anti-TNFα agents would be effective therapy. Unfortunately, in a 

RCT which randomised 36 corticosteroid-treated patients to infliximab or placebo the two-month 

mortality in the infliximab group was higher (39 v 18%, not significant), possibly due to the 

increased frequency of severe infections in that group (Naveau, Chollet-Martin et al. 2004). 

However, the dose of infliximab used was three administrations of 10mg/kg, which is at least 

twice that used in other inflammatory conditions. A pilot study of the TNFα-receptor:Fc fusion 

protein etanercept suggested tolerability and possible efficacy (Menon, Stadheim et al. 2004), 

but a further large-scale trial followed and showed increased mortality in the etanercept-treated 

group (Boetticher, Peine et al. 2008). There is evidence from animal studies that TNFα is 

particularly crucial for hepatocyte regeneration in the ethanol-exposed liver (Akerman, Cote et 

al. 1993), so the balance of anti-inflammatory and regenerative effects may not favour anti-

TNFα therapy once liver injury is established and regeneration is vital for restoration of function. 

1.1.7.5 Antibiotics 

The role of gut-derived bacterial endotoxin in ALD and the beneficial effect of gut sterilisation in 

animal models lead to a RCT of the non-absorbable antibiotic paromomycin in 50 patients. 

There was no difference in outcome between placebo and verum groups (Bode, Schafer et al. 

1997). Although antibiotics can prevent the onset of AAH in rodents, their use in established 

human disease may be too late in the pathogenic process. 

1.1.7.6 Enteral nutrition 

AAH patients are commonly nutritionally compromised at presentation. A Spanish RCT 

randomised 71 patients to 28 days of total enteral nutrition via nasogastric tube or prednisolone 
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40mg and followed them for one year. Mortality during treatment was similar in the two groups, 

though deaths in the enteral nutrition tended to occur earlier than on steroids (7 v 23 days). 

Amongst those who survive the first month, mortality during follow up was higher in the steroid 

group (37 v 8%, p=0.04) with the majority of deaths being from infection (Cabré, Rodríguez-

Iglesias et al. 2000). This suggests that corticosteroid therapy may delay mortality in the acute 

episode but nutritional replacement is necessary to improve long-term survival. 

1.1.7.7 Liver transplantation 

The scarcity of donor organs creates an imperative that they should be used where the chance 

of survival without transplantation is low and the chance of healthy post-transplantation survival 

is highest. Unlike end-stage cirrhotic ALD in abstinent patients, liver transplantation is not 

usually offered for AAH because of concerns about equitable donor organ allocation and the 

effect on public opinion of using donor organs for actively- or recently-drinking patients 

(Everhart and Beresford 1997) (Neuberger 1998). Most transplantation policies require a period 

of abstinence of at least 3 months to allow time for spontaneous recovery that would make 

transplantation unnecessary (Veldt, Laine et al. 2002) and to address concerns about recidivism 

and the physical and psychiatric co-morbidities that would reduce peri- and post-operative 

survival (Bathgate 2006).  

An initial study suggested that the histological finding of active alcoholic hepatitis in the 

explanted liver was associated with a higher rate of post-transplant recidivism, alcohol-related 

graft loss and death (Conjeevaram, Hart et al. 1999). Two subsequent larger studies have found 

no association, consistent with the low positive predictive value of histological findings for the 

presence of active drinking in apparently abstinent patients (Tomé, Martinez-Rey et al. 2002) 

(Wells, Said et al. 2007). However, is unclear whether these findings that support 

transplantation in histological alcoholic hepatitis can be extrapolated to a population of recent 

drinkers with clinically apparent and severe AAH (Lucey 2002). A French trial is under way to 

determine whether transplantation improves survival in patients with clinically severe AAH who 

fail to respond to corticosteroids with an ECBL (Mathurin 2005). 

1.2 Introduction to innate immunity 

The human innate immune system is the first line of defence against invading pathogens. Its 

remarkable ability to respond rapidly to a wide range of micro-organisms is essential for 

survival. It combats and contains infection at the point of entry, signals danger to other systems, 

and allows time for the T- and B-cells of the more finely-tuned, antigen-specific, adaptive 

immune system to become effective. In evolutionary terms, a vigorous innate immune response 

will have conferred a survival advantage to our hominid ancestors when the loss of the thick fur 

characteristic of other primates left the skin vulnerable to frequent injuries and contamination 

(Opal and Huber 2002). Although the molecular and cellular components of the innate immune 
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system differ little between mammalian species, the human response to microbial components 

is one of the most sensitive (Heumann, Glauser et al. 1998) (Smirnova, Poltorak et al. 2000). 

The disadvantage of such a vigorous response is an increased susceptibility to exaggerated 

inflammation when the innate immune system is activated systemically or locally. 

The innate response is triggered by activation of cells equipped to respond to pathogens or 

specific pathogen components – cells of the macrophage/monocyte lineage, natural killer cells, 

dendritic cells and endothelial cells. The activated cells secrete inflammatory mediators 

including cytokines (most importantly tumour necrosis factor alpha (TNFα), interleukin 1 (IL-1), 

and IL-6), chemokines (such as IL-8), prostaglandins and histamine. These mediators act on 

vascular endothelial cells to cause nitric oxide-mediated vasodilatation, increased vascular 

permeability and neutrophil recruitment into tissues. The coagulation cascade is activated 

locally with up-regulation of endothelial tissue factor and decrease in thrombomodulin and its 

antithrombotic product, activated protein C. Reactive oxygen species are generated from 

activated neutrophils, tissue effects of nitric oxide and cytokine-induced alterations in cellular 

metabolism. The cumulative effect of these responses can result in tissue damage as well as 

pathogen neutralisation (Opal and Huber 2002). 

1.2.1 Danger signals 

Until recently our understanding of inflammation lacked a description of the mechanism by 

which cells of the innate immune system recognise and respond to microbial threats. By 

definition, these cells lack the elegant (but relatively slow and energetically costly) antigen-

specific receptor systems that characterise the adaptive immune response. In recent years our 

understanding of immune reactivity has changed from the pure discrimination of ‘self’ from ‘non-

self’ epitopes to an appreciation of the importance of specific ‘danger’ signals in initiating, 

directing and modulating the immune response (Matzinger 2002). Danger signals can come 

from internal sources that indicate tissue damage or invasion, such as products of cell lysis, 

coagulation or complement cascades, or from exogenous material such as microbial surface 

molecules or genetic material. It is to these danger signals that the innate immune system 

responds. The fact that both microbial and internal danger signals can trigger the response 

explains the similarity of the sepsis syndrome to systemic inflammation with a non-infective 

precipitant such as trauma, burns or pancreatitis (Pisetsky 2007). 

Recognition of microbial danger signals requires a receptor system that responds to 

evolutionarily-conserved structural components of micro-organisms, so that an organism cannot 

use genetic variability to escape detection. The components that allow micro-organisms to 

trigger the immune response are termed pathogen-associated molecular patterns or PAMPs. 

Typical PAMPs include lipopolysaccharide and peptidoglycan from the cell walls of Gram 

negative and Gram positive bacteria respectively, bacterial flagellin and microbial DNA and 

RNA. Several classes of PAMP receptors have been discovered to date, including Toll-like 
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receptors, NOD and RIG-I receptors (Janeway and Medzhitov 2002). Different PAMP receptors 

can have pro- or anti-inflammatory effects depending on the cell type and the other stimuli 

present, and the balance of pro- and anti-inflammatory signalling determines the cellular 

response (Henson 2005). 

1.2.2 Toll-like receptors 

Toll-like receptors (TLRs) are the principal PAMP receptors in the innate immune system and 

obtained their unusual name because of their similarity to the receptor Toll (German for ‘funky’ 

or ‘cool’) in the fruit fly Drosophila. Toll was initially a cause for scientific excitement when it was 

found to be responsible for dorso-ventral body patterning in Drosophila, but in addition was later 

shown to form part of the fly’s immune defence against fungal infections. This phylogenetically 

ancient system of pathogen detection is highly conserved in evolution, with similar receptors 

occurring not only in humans and invertebrates, but also in plants such as tobacco (Armant and 

Fenton 2002). 

Eleven different TLRs have been identified in mammals. The first to have its involvement in 

pathogen recognition demonstrated, and the most studied, is TLR4 which responds to the most 

powerful stimulant of innate immune responses, Gram negative bacterial endotoxin 

(lipopolysaccharide, LPS). This was established through study of two strains of mice that fail to 

mount a septic response to large doses of endotoxin and which were shown to have a loss-of-

function mutation in the gene for TLR4 (Hoshino, Takeuchi et al. 1999). Subsequently, other 

TLRs and their ligands have been identified and these are summarised in Table 1-3 . Some 

TLRs are able to respond to microbial ligands on their own, but in many cases the response 

depends on the interaction of several different molecules at the cell surface. TLR dimers are 

required for signalling through TLR4 (homodimers of two TLR4 molecules) and TLR2 

(heterodimers with either TLR1 or TLR6, with the combination determining the ligand specificity 

of the receptor complex). In addition, LPS signalling through TLR4 requires the interaction of 

several other molecules at the receptor complex; LPS is delivered to the receptor by soluble 

LPS binding protein (LBP) and effective receptor activation requires the presence of at least two 

additional molecules, CD14 and MD2 (Takeda and Akira 2005). 

There is differential subcellular localisation of individual TLRs. TLR2 and TLR4 are expressed 

on the cell surface where they are most likely to encounter material from microbial cell walls. 

TLR3 and TLR9 are located within endosomes where they are most likely to encounter their 

ligands in the lytic products of phagocytosed micro-organisms (Takeda and Akira 2005). Human 

monocytes and Kupffer cells express a wide range of TLRs. The pattern of TLR expression in 

different peripheral blood leukocyte populations implies specific roles in each population. 

Although CD14+ cells express less TLR3, TLR9, and TLR10 than other cells, they express the 

highest levels of TLR2, TLR4, TLR5, and TLR8, and levels of TLR1, TLR6, and TLR7 are 

comparable to those of CD19+ cells (Zarember and Godowski 2002). 
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At first the triggering of immune responses by a relatively small range of receptors and ligands 

might seem crude. However, most micro-organisms present more than one TLR ligand, so it is 

likely that microbes with differing patterns of molecular motifs can cause differential activation of 

a number of TLRs, allowing differential responses to various classes of pathogen (Bekeredjian-

Ding, Roth et al. 2006). 

Toll-like receptor Ligands 

TLR1 (heterodimer with TLR2) Triacylated lipopeptides, lipomannans from 
M. tuberculosis 

TLR2 (often dimer with TLR1 or 6) Lipoproteins, peptidoglycans, lipoteichoic 
acids, yeast zymosan 

TLR3 Double-stranded RNA 

TLR4 (homodimer plus CD14 & MD2) Lipopolysaccharide, heat shock proteins, 
pneumolysin, RSV coat proteins, heparan 
sulphate fragments, fibrinogen peptides  

TLR5 Flagellin 

TLR6 (heterodimer with TLR2) Diacylated lipopeptides 

TLR7 Responds to synthetic nucleosides and 
imidazoquinoline anti-virals; native ligand is 
thought to be single-stranded RNA in 
endosomes 

TLR8 As for TLR7 

TLR9 Bacterial DNA – unmethylated CpG motifs 

TLR10 Ligand unknown but TLR10 expressed in 
lung and B lymphocytes 

TLR11 Uropathogenic bacteria in mice; absent in 
humans 

Table 1-3 Toll-like receptors and their known ligan ds 

(Takeda and Akira 2005) 
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1.2.3 TLR signalling pathways 

Understanding of the signalling pathway through which TLR ligation leads to activation of a cell 

and secretion of inflammatory mediators has advanced considerably in the last few years. The 

end product of intracellular signal transduction is activation of transcription factors which 

translocate to the nucleus and modulate transcription of target genes. The principal transcription 

factor in inflammation is nuclear factor kappa B (NF-κB) which up-regulates transcription of 

genes for inflammatory mediators such as TNFα, interleukins and COX-2. Other transcription 

factors under TLR regulation induce pro-apoptotic, anti-apoptotic and even anti-inflammatory 

gene transcription, though how the differential effects of these pathways are modulated is not 

yet well understood. 

Apart from TLR3, all TLRs signal down a common pathway accessed with slight inter-receptor 

variations via the adaptor molecule MyD88. The various signalling intermediates have been 

identified and are likely to be the targets of future immunomodulatory therapies in sepsis and 

inflammatory disease, and so are summarised in Figure 1-3 . TLR2 and 4 rely on a further 

adapter molecule, MAL (also known as TIRAP), to facilitate their interaction with MyD88 

(Fitzgerald, Palsson-McDermott et al. 2001; O'Neill and Bowie 2007). 

MyD88 recruits a kinase, IRAK-4, and facilitates its phosphorylation of IRAK-1. IRAK-1 then 

associates with TRAF-6 to activate the TAK1/TAB complex which in turn enhances the activity 

of the IκB kinase (IKK) complex. NF-κB is held inactive in the cytoplasm by its inhibitor IκB. The 

IKK complex phosphorylates IκB, leading to its degradation and the release of free NF-κB which 

can translocate to the nucleus. There NF-κB undergoes phosphorylation and associates with 

other transcription regulators to activate inflammatory gene transcription. 

TLR3 and TLR4 can also access a separate MyD88-independent pathway to inflammatory gene 

transcription using the adaptor molecules TRAM and TRIF. This pathway leads to a slower 

activation of NF-κB and also to transcription of genes for the type 1 interferons via a different 

transcription factor, IRF3 (Takeda and Akira 2005). 

NF-κB is not the only intracellular signalling pathway activated by inflammatory stimuli. 

Signalling through the mitogen-activated protein kinase (MAPK) pathways is also increased by 

TLR ligation (Guha and Mackman 2001). The three main subtypes of MAP kinases are 

extracellular signal-regulated kinases (ERK) 1 and 2, c-Jun N-terminal kinase (JNK) and p38. 

These activate other transcription factors such as activator protein 1 (AP-1, c-Fos/c-Jun) (Dong, 

Davis et al. 2002). It is the balance of the signals through each of the intracellular pathways that 

determines the combination and proportional expression of genes transcribed and hence the 

cellular response to inflammatory stimulation. This balance depends not only on the stimulus 

itself but also on the cross-talk between pathways, the presence of other molecular modulators 

of signalling and the prevailing intracellular conditions. 
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Figure 1-3 Signalling through toll-like receptor 4 and NF-κB 

Intracellular signalling through other TLRs uses th e MyD88-dependent pathway with 

small variations. LPS lipopolysaccharide, MyD88 mye loid differentiation factor 88, MAL 

MyD88 adaptor-like, TRAM TRIF-related adaptor molec ule, TRIF toll/IL-1 receptor domain-

containing adaptor inducing IFN- β, IRAK IL-1 receptor-associated kinase, TRAF6 tumou r 
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necrosis factor receptor-associated factor 6, TAK1 transforming growth factor-activated 

kinase, TAB TAK binding protein, IKK I κB kinase, NEMO NF- κB essential modulator, I κB 

inhibitor of NF- κB, NF-κB nuclear factor- κB, RIP1 receptor-interacting protein 1, TBK1 

TRAF-family-member-associated NF- κB activator-binding kinase 1, IRF3 IFN-regulatory 

factor 3, ISRE IFN-stimulated response element. 

1.2.4 Regulation of TLR signalling 

TLR activation can trigger a rapid and vigorous inflammatory response, so it is not surprising 

that TLR signalling is subject to regulation at multiple levels (Liew, Xu et al. 2005). Some 

regulatory molecules are constitutively expressed in tissues and plasma, while others are 

induced by activation of the TLR signalling pathway and so provide negative feedback 

regulation. There is negative feedback within the signalling pathway itself with the gene for the 

inhibitor IκB being under direct control of a NF-κB-binding promoter sequence, so NF-κB 

activation results in increased IκB concentration and subsequent down-modulation of the NF-κB 

effect (Han and Ulevitch 2005). 

1.2.5 TLR response tolerance 

Repeated observations have demonstrated that the natural history of an episode of sepsis 

consists of the initial inflammatory phase of vigorous innate immune responses, and then a 

period of relative immune suppression in which the individual is at increased susceptibility to 

further infections. These secondary infections tend not to elicit as vigorous an inflammatory 

response as the initial infection and can insidiously become widespread. This is paralleled by 

the responses of isolated monocytes which, after an initial stimulation with LPS, show 

diminished pro-inflammatory cytokine responses to repeat stimulation. This phenomenon of 

‘endotoxin tolerance’ has also been demonstrated with other TLR responses, with prior 

exposure to a TLR ligand producing diminished responses to the same TLR ligand (termed 

‘homotolerance’) and, in some cases, to other TLR ligands (‘heterotolerance’) (Sato, Nomura et 

al. 2000) (Dobrovolskaia, Medvedev et al. 2003). 

The mechanism of TLR tolerance is still being investigated and some of the regulators of TLR 

signalling mentioned above have been implicated in its aetiology. Other mechanisms may 

involve down-regulation of surface TLRs (Nomura, Akashi et al. 2000), although this is not a 

consistent observation (Medvedev, Henneke et al. 2001), or nuclear events that suppress the 

transcription of pro-inflammatory genes (Yoza, Hu et al. 2006). Recent work has suggested that 

endotoxin tolerance is not simply an all-or-nothing ‘off switch’ for inflammation, but rather a state 

of immune ‘reprogramming’ - a switch to more anti-inflammatory cytokine profiles with 

modulation of LPS-sensitivity, so that markedly increased doses can still induce an 

inflammatory response (Broad, Jones et al. 2006). Tolerance is certainly a complex 
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phenomenon, with LPS from different species (differing principally in the proportion and 

accessability of the biologically active lipid A moiety) and different prior stimuli inducing 

differential tolerising effects (Martin, Katz et al. 2001) (Tsujimoto, Ono et al. 2006). It is 

becoming clear that the surrounding cytokine milieu can modulate the effect of tolerance with, 

for instance, interferon-γ restoring LPS sensitivity in some systems (Adib-Conquy and Cavaillon 

2002). Additionally, the in vitro responses of individual cell types do not necessarily correlate 

with the in vivo effects; cooperative networks of cells determine the net effect, which depends 

on the pattern of TLR stimulation and the tissue environment (Morris, Parker et al. 2006). 

Endotoxin tolerance may have developed as a protective mechanism to avoid death from the 

cytokine storm associated with severe sepsis. However, endotoxin tolerance may be significant 

in situations other than sepsis. Organ systems such as the gut (Abreu, Fukata et al. 2005) and 

liver (Knolle and Gerken 2000) which are exposed to tonic levels of TLR ligands from 

commensal microbes may rely on the tolerance mechanisms to physiologically elevate their 

threshold for activation and prevent unwanted inflammation. Both homo- and heterotolerance 

can be observed in the normal liver (Slotta, Scheuer et al. 2006), and both Kupffer cells 

(Hafenrichter, Roland et al. 1994) and sinusoidal epithelial cells (Uhrig, Banafsche et al. 2005) 

contribute to the effect. Kupffer cells appear to be the principal mediators of hepatic endotoxin 

tolerance, through their secretion of the anti-inflammatory cytokine IL-10 (Knolle, Schlaak et al. 

1995). 

1.2.6 Adapter molecule polymorphisms and disease severity 

A case control study in 6106 individuals from the UK, Vietnam and Africa studied 33 SNPs in 

the gene encoding the adapter molecule MAL which interacts with TLR4 and TLR2 and 

identified an association with invasive pneumococcal disease, malaria, tuberculosis and 

bacteraemia for a SNP encoding a serine to leucine substitution at ser180 (S180L). Being 

heterozygous for S180L was protective against disease. Molecular analysis revealed that the 

S180L variant protein is unable to bind TLR2, reducing intracellular signalling and attenuating 

the inflammatory response. This suggests that wild-type homozygosity is associated with a 

more vigorous inflammatory response which can be damaging to the individual, and S180L 

homozygosity is associated with inadequate host defence and fatal invasive microbial disease, 

which would account for the absence of this combination in developing-world populations. The 

heterozygous state appears to have the host defence response ‘just right’ to eliminate 

pathogens without deleterious enhancement of inflammation (Khor, Chapman et al. 2007). 

About a quarter of the UK population are heterozygous for S180L. With strong evidence for 

involvement of TLR4 in ALD and suggestions that free fatty acids (FFA) may signal through 

TLR2 (Lee, Zhao et al. 2004) which could cause inflammation and insulin resistance in non-

alcoholic steatohepatitis (NASH) (Senn 2006), it is tempting to speculate that the SS 

homozygotes might be more susceptible to these two liver diseases. 
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1.3 Pathogenesis of acute alcoholic hepatitis 

Although the epidemiological link between ethanol consumption and liver disease is clear, the 

pathogenic mechanisms of ethanol liver injury and the variation in individual susceptibility are 

still areas of investigation. Current thinking is that in susceptible individuals AAH occurs as a 

result of the combination of cellular stress generated by the products of ethanol metabolism and 

a consequent dysregulated innate immune response to gut-derived endotoxin. 

 

 

Figure 1-4 Overview of the pathogenesis of acute al coholic hepatitis 

 

1.3.1 Ethanol metabolism 

One unit of alcohol (8g or 10ml absolute ethanol in the UK) produces a peak blood alcohol 

concentration (BAC) of 10-15mg/100ml at approximately 20 minutes after ingestion (Tapson 

2004). Absorption is by simple diffusion, predominantly in the duodenum. Ethanol is a polar 

molecule and poorly lipid soluble, so its distribution in the body depends on organ blood flow 

and water content. 90% of absorbed ethanol undergoes oxidative metabolism to carbon dioxide 

and water, principally in the liver. Ethanol metabolism follows zero-order kinetics with a rate of 

100mg/kg/hour, which is at most doubled by the enzyme-inducing effects of chronic heavy 

consumption. 
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Ethanol metabolism is a three-stage process: first, ethanol is oxidised to acetaldehyde in the 

cytoplasm, then acetaldehyde is oxidised to acetate in the mitochondria, and finally acetate is 

oxidised to CO2 and water in the peripheral tissues, primarily lung and muscle. 

 

Figure 1-5 Chemical structures of intermediates in ethanol metabolism 

 

The oxidation of ethanol to acetaldehyde occurs through three separate mechanisms. In most 

cell types the greatest contribution is made by the enzyme alcohol dehydrogenase (ADH) which 

converts ethanol to acetaldehyde using the cofactor nicotinamide adenine dinucleotide (NAD). 

 

Equation 1-3 Action of alcohol dehydrogenase 

 

The reduced cofactor NADH must be oxidised back to NAD+ in the mitochondria, which is 

associated with the oxidative phosphorylation of ADP to yield a molecule of ATP. This recycling 

of NAD by the mitochondria is the rate-limiting step in ethanol metabolism and accounts for its 

zero-order kinetics. The reduced NAD:NADH ratio means less NAD+ is available for glycolysis 

and the citric acid cycle, leading to an accumulation of acetyl co-enzyme A (acetyl-CoA) and its 

precursor, pyruvate. An alternative route for the conversion of NADH to NAD+ is the reduction of 

pyruvate to lactic acid, which can result in lactic acidosis and a shortage of pyruvate for 

gluconeogenesis with consequent hypoglycaemia.  

The second mechanism involves the microsomal ethanol oxidising system (MEOS), the 

principal component of which is cytochrome P450 2E1 (CYP2E1), a haem-containing enzyme 

localised in the smooth endoplasmic reticulum (ER), and concentrated in the Perivenular region 

of the liver. CYP2E1 has a Km 10-20 times that of ADH, so its contribution for ethanol 

O H 

H 

H 

H 

H 

H 

C C H 

H 

H 

C C 
O 

H O 

O 
H 

H 

H 

C C 

Ethanol Acetaldehyde Acetate 

CH3CH2OH + NAD+ → CH3CHO + NADH + H+ 



Chapter 1 | Introduction  

 
23

metabolism in moderate drinking is small, but the cytochrome is inducible by ethanol so its 

contribution becomes more significant in heavy and chronic consumption.  

 

Equation 1-4 Action of CYP2E1 

 

The reaction requires donation of electrons by cytochrome P450 reductase which is itself 

reduced by the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to give 

NADP+. NADPH is key to the maintenance of antioxidant defences by keeping cellular 

glutathione in its reduced form (GSH) rather than its oxidised form (GSSG). NADP+ is recycled 

to NADPH by an ATP-requiring process. 

The third mechanism of ethanol oxidation involves catalase which is located in peroxisomes. 

Acetaldehyde is metabolised to acetate by aldehyde dehydrogenase (ALDH), primarily in 

mitochondria. This process also consumes NAD+. Acetate is available for acetyl-CoA synthesis 

in the liver or can diffuse out of the liver for eventual metabolism to CO2 and water in peripheral 

tissues (Stewart and Day 2006). 

 

Equation 1-5 Action of aldehyde dehydrogenase 

 

1.3.2 Steatosis 

The macrovesicular steatosis of ALD has a number of sources. The reduced NAD:NADH ratio 

leads to accumulation of acetyl-CoA  which is diverted to synthesis of free fatty acids (FFA) and 

glycerol-3-phosphate, leading to an increase in triglycerides. Acetaldehyde inhibits peroxisome 

proliferator activated receptor (PPAR) α, which reduces β-oxidation of FFA and allows their 

accumulation. The effect of ethanol on the cellular microtubule transport system inhibits export 

of triacylglycerol from the cell. 

Steatosis is exacerbated by the proinflammatory cytokine TNFα, as demonstrated by the 

reduced steatosis in ethanol-fed mice deficient in the TNF receptor (Yin, Wheeler et al. 1999), 

CH3CHO + NAD+ + H2O → CH3COO- + NADH + 2H+ 

CH3CH2OH + ½O2 → CH3CHO + H2O 
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which suggests that inflammatory cytokines are active at the earliest stage of the disease, 

rather than being a later event in the pathogenic pathway. The severity of early steatosis 

correlates with later cirrhosis (Teli, Day et al. 1995). There is good evidence that steatosis is not 

just an associated observation but an active contributory factor to inflammatory liver injury by 

increasing lipid peroxidation under conditions of oxidative stress and sensitising hepatocytes to 

LPS-induced injury (Day and James 1998). FFA stimulation of TLR2 could potentially also 

contribute to the inflammatory response (Lee, Zhao et al. 2004). 

1.3.3 Oxidative stress 

Oxidative stress occurs when the generation of oxidising species overcomes intrinsic 

antioxidant defences, with the potential for cellular dysfunction and tissue damage. Reactive 

oxygen species (ROS) include the superoxide anion radical (SO.-), hydrogen peroxide (H2O2), 

the hydroxyethyl radical (HER) and the peroxynitrite radical (ONOO.-). The principal antioxidant 

defences are superoxide dismutase (SOD) enzymes and glutathione, which is oxidised to 

GSSG by antioxidant systems such as GSH peroxidise. Consequences of oxidative stress 

include peroxidation of polyunsaturated fatty acids in membrane lipoproteins, disrupting 

membrane integrity and leading to cell death. ROS can also form adducts to cellular proteins 

which impairs protein folding and function. Additionally ROS can initiate inflammatory signalling 

cascades with activation of NF-κB. 

Ethanol induces oxidative stress by both generating ROS and depleting antioxidant defence. 

1.3.3.1 Importance of oxidative stress in AAH 

Products of lipid peroxidation can be found in the blood and livers of patients with AAH. In the 

liver they are concentrated in the perivenular region, correlating with the distribution of liver 

injury, and in the blood their concentration correlates with the severity of the histological 

inflammation. Diets that promote oxidative stress increase liver injury in animal models of AAH, 

and animals with gene knockouts for components of antioxidant defence such as SOD and 

methionine adenosyltransferase (MAT) suffer accelerated liver injury.  Techniques to reduce 

oxidative stress in animal models of AAH all reduce liver injury, though antioxidant 

replenishment has not been shown to be effective in humans with severe AAH (Stewart, Prince 

et al. 2007), perhaps because the inflammatory process is well-established by the time of 

presentation and the window of opportunity for antioxidant replacement has passed. 

1.3.3.2 Sources of oxidative stress in AAH 

By virtue of its oxygen-splitting catalytic mechanism, CYP2E1 is a potent source of ROS and is 

upregulated in chronic heavy ethanol consumption. Incomplete catalysis can result in the 

release of the highly reactive HER instead of acetaldehyde. Inhibition of CYP2E1 with diallyl 

sulphide reduces lipid peroxidation (Albano, Clot et al. 1996). 
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The mitochondrial respiratory chain produces superoxide during the reoxidation of NADH to 

NAD+. Mitochondrial manganese-SOD-2 converts SO to hydrogen peroxide which is then 

broken down to carbon dioxide and water by GSH peroxidise. In conditions of inflammation, 

TNFα increases the rate of ROS generation from the respiratory chain. In experimental animals, 

viral transfection of SOD has been shown to reduce liver injury, NF-κB activation and cytokine 

production (Wheeler, Kono et al. 2001). 

In endotoxin-induced inflammation, inducible nitric oxide synthase (iNOS) is upregulated by LPS 

and TNFα. The nitric oxide (NO) produced binds to cytochrome c oxidase and increases SO 

production. The interaction between superoxide and NO yields the peroxynitrite radical 

(ONOO.-) which can nitrosylate proteins, altering their ultrastructure and function. iNOS-

knockout animals get reduced lipid peroxidation, fewer reactive nitrogen species and less liver 

injury in response to ethanol feeding. 

Kupffer cells (KC), the resident macrophages in the liver, are a significant source of oxidative 

stress during inflammation, producing free radicals from NADPH oxidase as part of their 

defence against microorganisms. The NADPH oxidase p47phox subunit knockout mouse 

produces fewer free radicals and had minimal liver damage in response to ethanol feeding 

(Wheeler, Kono et al. 2001). KC also secrete chemokines which recruit neutrophils to the liver, 

which in turn produce more ROS. KC cytokine output can also increase oxidative stress through 

directly hepatotoxic mediators such as TNFα which increases oxidative metabolism in 

hepatocytes but blocks electron transport, so increasing ROS generation from the respiratory 

chain. Blocking KC activity with gadolinium chloride significantly reduces the rate of lipid 

peroxidation (Niemela, Parkkila et al. 2002). 

1.3.3.3 The methionine cycle and antioxidant defence 

Glutathione (γ-glutamylcysteinylglycine, GSH) is the principal antioxidant in human cells, 

scavenging free radicals and ROS and becoming oxidised to GSSG as the thiol groups on two 

GSH form a disulphide bond. The cellular GSH:GSSG ratio is normally greater than 10. GSSG 

is restored to GSH by glutathione reductase, a process requiring NADPH. Glutathione 

reductase is abundant in cytoplasm but not found in mitochondria which must export GSSG and 

import GSH. GSH also complexes and detoxifies xenobiotics via glutathione-s-transferase and 

can be conjugated with NO to allow tissue-specific modulation of NO effects (Wu, Fang et al. 

2004). 

Ethanol diminishes the available GSH by production of ROS, by depletion of NADPH and also 

by reducing production of its precursor cysteine in the methionine cycle. The rate-limiting step in 

GSH synthesis is γ-glutamylcysteine synthetase activity but this is upregulated under conditions 

of oxidative stress via a NF-κB-dependent pathway and cysteine availability becomes the 

limiting factor. Cysteine is synthesised from s-adenosylmethionine (SAMe) in the methionine 
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cycle and transulphuration pathway. SAMe is not only the first substrate of the cycle but also a 

vital co-factor for the reactions recycling homocysteine to methionine or diverting it down the 

transulphuration pathway to make cysteine (Mato and Lu 2005). A high ratio of SAMe to s-

adenosylhomocysteine (SAH) is also required for transmethylation reactions (methylation of 

DNA, RNA, phospholipids and proteins such as histones) which are vital for cellular function (Yi, 

Melnyk et al. 2000). Ethanol reduces the SAMe:SAH ratio by three processes. Firstly, 

acetaldehyde inhibits the activity of the methionine synthetase enzyme (Kenyon, Nicolaou et al. 

1998). Secondly, ethanol reduces transcription of most of the other enzymes in the methionine 

cycle (Halsted, Villanueva et al. 2002). Thirdly, SAMe synthesis requires folate and chronic 

heavy drinking is associated with folate deficiency due to impaired absorption (Villanueva, 

Devlin et al. 2001), with a high-ethanol folate deficient diet producing steatohepatitis in 

micropigs (Villanueva and Halsted 2004). 

Methionine supplementation has been shown to reduce ethanol-induced liver injury in a rodent 

model (Parlesak, Bode et al. 1998) but SAMe replacement was ineffective in established ALD in 

humans (Mato, Cámara et al. 1999). Subsequent work on the micropig model suggested that 

the contribution of SAMe depletion to GSH depletion was small compared to the effect of 

consumption by ROS scavenging (Villanueva, Esfandiari et al. 2006) but whether this holds true 

in the protein-deficient diet of some heavy drinkers is unknown. A reduced SAMe:SAH ratio may 

also contribute to liver injury by leading to hypomethylation and consequent expression of pro-

apoptotic genes, predisposing the cell to programmed death in response to TNFα (Song, Zhou 

et al. 2004). 

1.3.3.4 Endoplasmic reticulum stress 

A more recently discovered mechanism for ethanol-induced cellular stress is the process of 

endoplasmic reticulum (ER) stress. The ER is the main site of mRNA translation and protein 

synthesis, post-translational modification and transport. Failure of normal protein folding leads 

to accumulation of unfolded protein in the ER. This ‘ER stress’ triggers an adaptive response 

known as the ‘unfolded protein response’ (UPR). The UPR upregulates ER proteins and 

increases lipid and cholesterol biosynthesis to supply more ER membrane via the transcription 

factor sterol response element binding protein 1c (SREBP1c) (Ji, Chan et al. 2006), while 

reducing the synthesis of other proteins and eventually activating pro-apoptotic mechanisms so 

that a cell overcome by unfolded protein will apoptose (Ji, Mehrian-Shai et al. 2005) (Ji and 

Kaplowitz 2006). In ALD the UPR may be triggered by elevated levels of homocysteine 

disrupting disulphide bonds in folded proteins, or potentially by acetaldehyde forming protein 

adducts which then fail to fold normally (Ji and Kaplowitz 2003). 

Under these conditions a decrease in mitochondrial GSH has been observed, and this has been 

suggested to be a result of impaired transport of GSH across the mitochondrial inner membrane 

under conditions of increased membrane cholesterol and decreased membrane fluidity as a 
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consequence of the UPR. Mitochondria lack glutathione reductase so their capacity to scavenge 

ROS depends on the rate of GSH import from the cytosol (Fernandez-Checa and Kaplowitz 

2005). The redox state of the cell can activate or modulate signalling pathways that lead to 

inflammatory or apoptotic responses (Han, Hanawa et al. 2006) and ER stress can activate the 

pro-apoptotic JNK MAP kinase through a mechanism involving the TNF receptor TNFR1 (Yang, 

Kim et al. 2006). Depletion of intracellular GSH inhibits activation and nuclear translocation of 

NF-κB and elevated GSSG inhibits its DNA binding and transactivation capacity (Mihm, Galter 

et al. 1995). Work from the Kaplowitz group suggests that the ultrastructural pattern of GSH 

depletion influences the hepatocyte response to inflammatory stimuli such as TNF: 

mitochondrial GSH depletion increases ROS in response to TNF and leads to necrotic cell 

death; depletion of cytoplasmic GSH leads to oxidation of NF-κB and reduces its DNA binding 

and pro-inflammatory, anti-apoptotic transcripts, so c-Jun transcripts predominate and the cell 

dies by apoptosis; in the absence of GSH depletion, NF-κB transcripts predominate and the 

hepatocyte is resistant to apoptosis (Matsumaru, Ji et al. 2003). Further work with ethanol-fed 

TNFR knockout mice analysed the contribution of inflammatory stimuli to the cellular response 

and established that TNFα made a significant contribution to cell death and a small contribution 

to steatosis, but elevated homocysteine and ER stress occurred independently of TNFα (Ji, 

Deng et al. 2004). 

1.3.4 Adaptive immune responses 

Some clinical features of ALD suggest that adaptive immune responses might play a role in its 

pathogenesis: abstinent patients who later return to drinking have a rapid recurrence of AAH in 

a manner suggestive of immunological memory; AAH responds to the immunosuppressive 

effects of steroids in a proportion of cases; most histological specimens show some degree of 

lymphocytic infiltration; ALD is often associated with elevated serum immunoglobulin and in 

some cases circulating autoantibodies (Stewart and Day 2003). However, the presence of 

autoantibodies does not correlate with disease severity and no HLA associations have been 

detected (McFarlane 2000). 

Self proteins can be covalently modified by the reactive products of ethanol metabolism so that 

they are no longer recognised as self and so become immunogenic antigens. Both 

acetaldehyde-adducted proteins (Holstege, Bedossa et al. 1994) and anti-adduct antibodies 

(Niemela, Klajner et al. 1987) have been identified in ALD patients, with adducts predominating 

in zone 3 of the liver and circulating antibodies being highest in AAH patients. 

The effect of ethanol-induced oxidative stress and consequent lipid peroxidation can also 

generate new immunoreactive antigens (Mottaran, Stewart et al. 2002). Reactions between 

ethanol-derived free radicals and the enzymes involved in their generation can result in adducts 

such as the hydroxyethyl radical (HER) adducted to CYP2E1. Serum from ALD patients has 

been shown to contain antibodies to both this adduct and to native CYP2E1, suggesting an 
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autoimmune response to a self protein through the phenomenon of epitope spreading.  The 

autoantibodies were associated with a loss-of-function mutation in the gene for cytotoxic T-

lymphocyte-associated protein 4 (CTLA4) which is an inhibitory regulator of immune responses 

associated with a range of autoimmune diseases (Vidali, Stewart et al. 2003). In addition to 

autoantibodies, T-cell responses to adducts have also been demonstrated in ALD patients 

(Stewart, Vidali et al. 2004).  

It has been shown that Kupffer cells are necessary for both adduct formation and liver injury in 

response to alcohol (Niemela, Parkkila et al. 2002) suggesting that the innate immune response 

is still key to the pathogenesis of ethanol-induced liver injury and the adaptive immune reactivity 

is at most a secondary response, and possibly of little pathogenic significance. More recent 

work has clarified whether the T-cell and antibody reactivity is a direct cause of liver injury or an 

immune epiphenomenon arising in an already inflamed liver. The CTLA4 polymorphism has 

been shown to correlate closely with anti-CYP2E1 autoantibodies and with the histological 

degree of lymphocyte infiltration in ALD patients. However, the CTLA polymorphism is not 

associated with the development of ALD, having the same frequency in ALD patients, disease-

free heavy drinkers and normal controls. This Mendelian randomisation approach suggests that 

the immune reactivity is due to the CTLA4 polymorphism but is not part of the pathogenesis of 

ALD (Stewart, Daly et al. 2006). 

1.3.5 Apoptosis 

There is increasing evidence that apoptotic mechanisms and DNA fragmentation play an early 

role in the pathogenesis of ALD, and are a participant in liver injury, rather than purely its end 

result.  

Not all investigations support a key role for apoptosis in ALD, and the highly disorganised 

structural changes in hepatocytes typical of alcoholic hepatitis are cited as evidence that the 

orderly deletion of cells by apoptosis is not driving pathogenesis. Animal work suggests that the 

intracellular environment of the ethanol-exposed hepatocyte favours pro-survival, pro-

inflammatory NF-κB activity over the pro-apoptotic effects of the JNK transcription factors 

(Koteish, Yang et al. 2002). 

However, increased incidence of apoptosis as identified by terminal uridine deoxynucleotidyl 

transferase dUTP nick-end labelling (TUNEL) is seen in rats that have undergone continuous 

intragastric ethanol feeding (Yacoub, Fogt et al. 1995) and in biopsies from ALD patients where 

apoptosis is greatest in areas of greatest tissue damage and around ballooning hepatocytes 

(Zhao, Laissue et al. 1997). It correlates with histological grade and serum bilirubin, suggesting 

a key role in pathogenesis (Natori, Rust et al. 2001). In AAH the apoptotic index has been found 

to correlate with mDF (Ziol, Tepper et al. 2001). 
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In a rat model, apoptosis has been shown to be an early event in ALD, detectable before any 

other evidence of liver injury (Deaciuc, Fortunato et al. 1999). Ethanol feeding has been shown 

to sensitise cells to Fas-mediated apoptotic killing (Minagawa, Deng et al. 2004). The 

antiapoptotic effect of NF-κB relies on it being maintained in its reduced state by thioredoxin and 

the NADPH depletion of chronic ethanol consumption diminishes the available thioredoxin so 

favouring apoptosis (Day 2001). Further study has demonstrated that hepatocytes of  ethanol-

fed rats appear to be in a state of ‘pre-apoptosis’ with increased TUNEL staining suggesting 

DNA fragmentation but no upregulation of apoptosis proteins. The addition of LPS resulted in a 

huge increase in TUNEL and upregulation of caspases and other protein mediators of 

apoptosis. It was suggested that in response the combined insult of ethanol and endotoxin the 

primary mode of cell death is apoptosis, and the histologically-apparent necrosis only develops 

because the apoptosis rate outstrips the rate of phagocytosis of apoptotic cells (Deaciuc, 

D'souza et al. 2001). Cellular glutathione status may also determine the mode of cell death 

(section 1.3.3.4). In addition, proteasome dysfunction occurs in chronic ethanol exposure, 

thought to be a consequence of oxidative stress or protein hyperacetylation, and this leads to 

apoptosis, probably because the inhibitory protein IКB accumulates and sequesters NF-κB, 

pushing the balance of transcription in favour of the pro-apoptotic JNK pathway (Joshi-Barve, 

Barve et al. 2003). 

Apoptosis releases IL-8 which recruits neutrophils to the liver and contributes to inflammatory 

injury (Day 2001). Apoptosis can induce further liver injury when Kupffer cell phagocytosis of 

apoptotic bodies stimulates additional pro-inflammatory and pro-fibrotic cytokine secretion 

(Canbay, Feldstein et al. 2003). Clearance of apoptotic bodies via the liver-specific 

asialoglycoprotein receptor is diminished by alcohol, leading to accumulation of apoptotic end-

products (McVicker, Tuma et al. 2002). KC from ethanol-fed rats have an enhanced cytokine 

response to these apoptotic bodies with a six-fold increase in TNFα and a 60% increase in IL-6 

(McVicker, Tuma et al. 2007). Thus apoptosis is a consequence, an enhancer and possibly a 

trigger of inflammation in the liver. 

1.3.6 Innate immune responses 

It is clear that the cellular consequences of ethanol metabolism described above are necessary 

but not sufficient to cause ALD. The other critical component is an exaggerated innate immune 

response to gut-derived endotoxin (Enomoto, Ikejima et al. 2000). The individual components of 

this response are discussed below. 

1.3.6.1 Cytokines and chemokines 

There is considerable evidence for the key role of cytokines and chemokines in ALD and, in 

particular, AAH. Serum concentrations of pro-inflammatory cytokines are elevated in ALD 

patients and are particularly high in AAH, correlating with clinical severity and prognosis. Patient 
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monocytes have an exaggerated cytokine response to ex-vivo administration of LPS. Genetic 

polymorphisms of components of the cytokine signalling mechanism are associated with 

disease or its severity. In animal models, gene knockouts for cytokines and their receptors, and 

treatment with anti-cytokine antibodies all reduce or abolish ethanol-related liver injury. The 

relevant studies are summarised in Table 1-4  and Table 1-5 . 
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Cytokine / 

chemokine 

Principal relevant findings Reference 

TNF 
Monocytes harvested from AAH patients produce twice as 
much TNF in response to LPS than controls. 

(McClain and 
Cohen 1989) 

TNF 

IL-1 

Plasma TNF and IL-1α and β measured at admission and 
30 days later in 23 severe AAH patients. 82% of patients 
with elevated serum TNF died within two years, but 100% 
of those with low TNF survived. TNF was not elevated in 
controls. IL-1 α was elevated in AAH but IL-1 β was not 
and neither correlated with survival. 

(Felver, Mezey et 
al. 1990) 

TNF 

IL-1 

TNF was found to be elevated in 21 patients with severe 
AAH compared to controls. TNF correlated with serum 
bilirubin, creatinine and probability of death but not with 
measured endotoxaemia. IL-1 was not elevated. 

(Bird, Sheron et al. 
1990) 

TNF 

IL-6 

PBMC from ethanol cirrhosis patients showed enhanced 
TNF and IL-6 production in response to LPS compared to 
control PBMC. The difference resolved after 7 days in 
ethanol-free culture. 

(Deviere, Content 
et al. 1990) 

TNF 

IL-1 

IL-6 

All three cytokines are higher in abstinent cirrhotics and 
AAH patients than in disease-free heavy drinkers, with 
concentrations correlating with markers of liver injury, 
albumin and immunoglobulins. IL-6 time courses closely 
follow acute injury and fall during recovery, while TNF and 
IL-1 are slower to fall due to the metabolic consequences 
of injury. 

(Khoruts, Stahnke 
et al. 1991) 

TNF 

IL-10 

Compared to controls, monocytes from ethanol cirrhotic 
patients produce more TNF but significantly less IL-10. 
Supplementation of IL-10 reduces TNF output and anti-
IL-10 antibodies increase TNF, suggesting that TNF 
changes are secondary to opposite changes in IL-10. 

(Le Moine, 
Marchant et al. 
1995) 

TNF 

IL-10 

Adenosine release during ethanol liver injury should 
increase IL-10 and reduce TNF but increased adenosine 
deaminase in the liver of heavy drinkers reduced this anti-
inflammatory effect. 

(Le Moine, 
Quertinmont et al. 
1999) 

TNF 
TNF was found to be elevated in alcoholic cirrhosis and 
correlates with plasma LPS, soluble TNF receptor and 
Child-Pugh grade. 

(Hanck, Rossol et 
al. 1998) 

TNF 
TNF mRNA was increased by polymeric IgA, which also 
enhanced PBMC TNF output in response to LPS. 

(Deviere, Vaerman 
et al. 1991) 

TNF 

Peripheral blood mononuclear cells (PBMC) from patients 
with ethanol cirrhosis were found to be a source of TNF 
and soluble TNF receptors with levels correlating with 
Child-Pugh grade. PBMC were in an activated state 
without addition of LPS. 

(Hanck, Glatzel et 
al. 2000) 
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Cytokine / 

chemokine 

Principal relevant findings Reference 

TNF 

IL-6 

IL-8 

IL-10 

LPS, LPS binding protein, IL-6 and IL-8 are all elevated 
relative to controls in the acute phase of AAH, and are 
particularly high in eventual non-survivors, but fell during 
recover in survivors. IL-10 was also high in non-survivors. 
TNF was undetectable in all patients. 

(Fujimoto, Uemura 
et al. 2000) 

TNF 

TNF mRNA was increased in monocytes from AAH 
patients, and increased further on stimulation with LPS. 
This was associated with increased nuclear NF-κB 
binding, primarily p65 and p50 subunits. 

(Hill, Barve et al. 
2000) 

TNF 
TNF receptor density was found to be increased by 
ethanol. 

(McClain, Hill et al. 
2002) 

TNF 
SNP at position -238 in TNF receptor gene is associated 
with cirrhosis in heavy drinkers 

(Grove, Daly et al. 
1997) 

TNF Findings above replicated in a separate cohort 
(Pastor, Laso et al. 
2005) 

IL-6 

IL-2 

IFNγ 

IL-6 was elevated in ethanol cirrhosis and has negative 
correlation with IL-2 and IFNγ which were both 
suppressed. 

(Deviere, Content 
et al. 1989) 

IL-6 
IL-6 was measured in 58 patients with severe AAH and 
found to be elevated compared to controls and to correlate 
with markers of severity and probability of death. 

(Sheron, Bird et al. 
1991) 

IL-6 
Consecutive IL-6 measurements in 30 AAH patients 
demonstrated that serum levels correlated with markers of 
severity and fell during recovery. 

(Hill, Marsano et al. 
1992) 

IL-8 
Serum IL-8 was found to be increased in 40 AAH patients 
compared to ethanol-dependent controls. IL-8 fell with 
recovery. 

(Hill, Marsano et al. 
1993) 

IL-8 

IL-8 is elevated in AAH patients relative to ethanol 
cirrhosis, other liver diseases and healthy controls. IL-8 
correlated with histological neutrophil infiltration and 
markers of severity, 

(Sheron, Bird et al. 
1993) 

IL-8 
IL-8 is released by hepatocytes and Kupffer cells in 
response to TNF and is under control of a NF-κB promoter 

(Hill, McClain et al. 
1998) 

IL-8 
Lipid peroxidation products stimulated IL-8 secretion from 
human PBMC 

(Jayatilleke and 
Shaw 1998) 
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Cytokine / 

chemokine 

Principal relevant findings Reference 

IL-8 

The effect of ethanol on increasing IL-8 production was 
shown to be dose-dependent and to begin at ethanol 
concentrations associated with light-moderate drinking. In 
heavy drinking, ethanol increased IL-8 more in women 
than in men. 

(Gonzalez-
Quintela, Campos 
et al. 2007) 

IL-8 

MCP-1 

MIP-1α 

AAH and alcoholic cirrhosis were found to be associated 
with distinct patterns of chemokine expression on biopsy, 
with AAH showing more extensive parenchymal 
chemokine staining. 

(Afford, Fisher et 
al. 1998) 

IL-10 
Il-10 gene polymorphism reduces IL-10 secretion and 
increases likelihood of liver disease in heavy drinkers. 

(Grove, Daly et al. 
2000) 

IL-18 

PBMC from patients with ethanol cirrhosis showed 
enhanced production of IL-18 mRNA and protein without 
additional LPS stimulation. It was suggested that this was 
part of a ‘pre-sensitising’ mechanism. IL-18 is secreted by 
a caspases-dependent, MyD88-independent mechanism 
(Seki, Tsutsui et al. 2001) so may be activated by cellular 
stress. 

(Hanck, Manigold 
et al. 2001) 

MCP-1 

Monocytes from AAH patients constitutively produced 
MCP-1 and had enhanced production in response to LPS, 
which was reduced by n-acetylcysteine which replenishes 
GSH 

(Devalaraja, 
McClain et al. 
1999) 

MCP-1 

MIP-1α 

Serum MCP-1 concentrations were raised in AAH patients 
and reflected severity of hepatic inflammation. Monocytes 
from AAH patients showed increased secretion of MCP-1 
and MIP-1α, suggesting both systemic and hepatic 
sources were contributing to the raised serum MCP-1.  

(Fisher, Neil et al. 
1999) 

GROα 

RANTES 

In an examination of differential chemokine expression in 
liver disease, GROα (a CXC chemokine) was found to be 
increased in biopsies from AAH patients and correlated 
with neutrophil infiltration. RANTES (a CC chemokine) 
was found to be increased in biopsies from viral hepatitis. 

(Maltby, Wright et 
al. 1996) 

Table 1-4 Human studies of cytokines and chemokines  in ALD 
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Cytokine / 

chemokine 

Principal relevant findings Reference 

TNF 

Chronically ethanol-fed rats had higher transaminases and 
higher serum TNF after iv administration of LPS than 
isocaloric non-ethanol fed controls. Acute ethanol gavage 
had the opposite effect to chronic ethanol feeding – 
inflammatory responses were suppressed. 

(Honchel, Ray et 
al. 1992) 

TNF 
Rats subjected to continuous intragastric ethanol feeding 
show increased TNF transcription in parallel with 
histological liver injury. 

(Nanji, Zhao et al. 
1994) 

TNF 

Ethanol-fed rats treated with polyclonal anti-TNF 
antibodies showed no change in cytokine transcription or 
liver steatosis but had reduced ALT and reduced liver 
inflammation and necrosis. 

(Iimuro, Gallucci et 
al. 1997) 

TNF 

TNF receptor 1 (TNFR1) knockout mice subjected to 
ethanol feeding did not display elevated ALT or 
histological liver injury, but wild-type and TNFR2 
knockouts did. 

(Yin, Wheeler et al. 
1999) 

TNF 

IL-6 

TGF 

KC transcription of TNF, IL-6 and TGF was increased in 
rats after 17 weeks of intragastric ethanol feeding, and 
was accompanied by inflammations and fibrosis on 
histology. 

(Kamimura and 
Tsukamoto 1995) 

IL-6 

IL-6 knockout mice were found to be susceptible to 
ethanol-induced steatosis and liver injury, in contradiction 
to its assumed role in pathogenesis. Ethanol-fed IL-6-/- 
mice displayed elevated products of oxidative stress and 
increased liver injury, observations which were reversed 
by administration of exogenous IL-6. IL-6 supplementation 
also reduced liver injury in ethanol-fed rats. It is suggested 
that IL-6 exerts a protective effect by upregulating anti-
oxidant metallothionein proteins. 

(El-Assal, Hong et 
al. 2004) 

MIP-2 

CD18 

ICAM-1 

Ethanol-fed rats showed increased MIP-2, increased liver 
expression of ICAM-1 and enhanced neutrophil 
expression of its ligand CD18. Liver injury was reduced by 
treatment with anti-CD18 antibodies. 

(Bautista 1997) 

Chemokines 

CXC chemokines predominate early in ethanol liver injury 
and induce neutrophil infiltration, while CC chemokines 
predominate later and attract monocytes which might 
contribute to fibrosis. 

(Bautista 2000) 

Table 1-5 Animal studies of cytokines and chemokine s in ALD 

Analysis of single cytokines in inflammatory conditions can be problematic because it is rare 

that a single cytokine is individually responsible for the inflammatory injury, but rather the 

physiological effect will depend on the net balance of the prevailing cytokine milieu. In addition, 

individual cytokines may have both harmful and beneficial effects, the balance of which will 
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depend on concentration, duration of exposure and the physiological context in which they act. 

TNFα is a powerful early inducer of inflammation, but also promotes liver regeneration. IL-6 has 

pleiotropic effects, being largely pro-inflammatory, but having anti-inflammatory effects in certain 

contexts. IL-10 is anti-inflammatory but can also promote fibrosis. 

A dichotomy exists between the observed effects of acute and chronic alcohol on cytokine 

production. The studies above show enhanced proinflammatory responses after chronic 

persistent ethanol exposure in humans, animals and cell lines. However, the effect of acute 

ethanol administration is to suppress TNFα secretion in response to LPS and downregulate 

TNF receptors in rats (Nelson, Bagby et al. 1989) (D'Souza, Nelson et al. 1994). Acute alcohol 

administration was shown to have a tolerising effect on the innate immune response to LPS in 

rat livers (Bautista and Spitzer 1996). In human cells, this has been shown to be a result of 

inhibition of p65 phosphorylation by IKKβ (Mandrekar, Jeliazkova et al. 2007). Zhang and 

colleagues investigated the time course and mechanism of the transition between anti- and pro-

inflammatory responses in the human macrophage-like cell line MonoMac6; emergence of the 

enhanced TNFα response to LPS took six days of culture in ethanol-containing media, was 

associated with increased ROS generation, and was abrogated by addition of ROS scavenging 

compounds (Zhang, Bagby et al. 2001). 

1.3.6.2 Increased gut permeability 

The stimulus for innate immune activation in ALD has been postulated to be endotoxaemia due 

to increased intestinal permeability, and this ‘leaky gut’ hypothesis is supported by 

circumstantial evidence in humans and more direct evidence in animals. In health, the tight 

junctions of the intestinal epithelium limit free movement of immunostimulatory molecules from 

the gut to the internal environment, and the liver is exposed to a low tonic level of gut-derived 

endotoxin via the portal vein, which it clears from the circulation without inflammatory response 

(Knolle and Gerken 2000). Ethanol is known to reduce gut motility and increase the intestinal 

bacterial load with small intestinal bacterial overgrowth (Bode and Bode 2003). Intestinal 

permeability has been shown to be increased in heavy drinkers with liver disease compared to 

heavy drinkers without disease and non-drinkers with other liver diseases; both gastroduodenal 

permeability to sucrose and intestinal permeability to lactulose and mannitol were elevated 

(Keshavarzian, Holmes et al. 1999). ALD patients have subsequently been shown to have 

increased intestinal permeability to large molecules such as high-molecular weight polyethylene 

glycol and bacterial endotoxin (Parlesak, Schäfer et al. 2000). 

The aetiology of the increased permeability appears to be the effect of the ethanol metabolite 

acetaldehyde on epithelial tight junctions. Acetaldehyde increases the paracellular epithelial 

permeability of the caco-2 monolayer, an in vitro model of intestinal barrier function, by inhibition 

of protein tyrosine phosphatases. The unopposed action of kinases results in hyper-

phosphorylation of the tight junction proteins zona occludens-1, E-cadherin and beta catenin 
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leading to tight junction disruption (Atkinson and Rao 2001). The acetaldehyde effect can be 

ameliorated in vitro by L-glutamine acting via an epidermal growth factor receptor (EGFR)-

dependent mechanism (Seth, Basuroy et al. 2004). The effect of acetaldehyde has been 

demonstrated in human colonic mucosa, with similar protective effects of L-glutamine and EGF 

(Basuroy, Sheth et al. 2005). It is likely that the source of acetaldehyde in the human colon is 

ethanol which has been absorbed in the proximal small bowel and then equilibrated across the 

colonic epithelium where it is metabolised by enteric bacteria which possess ADH but relatively 

little ALDH, leading to acetaldehyde accumulation (Rao, Seth et al. 2004). 

It has even suggested that the only relevant site of action of ethanol in the pathogenesis of ALD 

might be the enteric mucosa, with the tissue-damaging oxidative and metabolic stress in the 

liver being secondary solely to the increased load of bacterial components from the gut rather 

than the effect of hepatic ethanol metabolism (Bode and Bode 2005). Additional studies in 

germ-free animal models would be needed to investigate this. Strategies to improve the enteric 

barrier such as zinc supplementation have been shown to moderately reduce liver injury in 

ethanol-fed rodents (Lambert, Zhou et al. 2003), but in human experiments reduction of the 

enteric bacterial load with the non-absorbable antibiotic paromomycin, although producing a 

transient dip in measured plasma endotoxin, did not improve markers of liver damage (Bode, 

Schafer et al. 1997). It remains possible that the increased intestinal permeability may, at least 

in part, actually be secondary to the liver inflammation, with Kupffer-cell-derived cytokines 

worsening the intestinal mucosal injury. Rats whose Kupffer cells were inactivated with 

gadolinium chloride before intravenous LPS treatment demonstrated reduced small intestinal 

injury (Gong, Wu et al. 2002), suggesting that there may be a two-way relationship between 

liver inflammation and intestinal permeability, and perhaps the two processes worsen each 

other in a vicious circle of inflammation. 

1.3.6.3 Endotoxaemia 

Measurement of bacterial lipopolysaccharide in biological fluids is by no means straightforward. 

Although referred to as a single biochemical entity, LPS is a heterogeneous group of molecules 

that differ in molecular weight, degree of branching and content of lipid A, the major 

immunostimulatory component. The inflammatory potency of LPS is further modified by its 

interaction with plasma proteins which can sequester it (albumin, high density lipoprotein HDL) 

or facilitate its binding to TLR4 (LPS binding protein LBP). Hence there is no consistent 

relationship between quantity of LPS and its biological effect. Bioassays have been developed 

to quantify biologically-relevant LPS activity in terms of ‘endotoxin units’ (EU) and these have 

replaced the traditional method of determining whether a given sample is pyrogenic when 

injected into a rabbit. The most widely adopted test that attempts to achieve a degree of 

reproducibility is the limulus amoebocyte lysate assay (LAL) which in its various commercially-

available forms relies on the coagulation response to endotoxin of blood cells from the 

horseshoe crab Limulus polyphemus, more recently coupled to a chromogenic substrate. 
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Although the LAL assay is a robust tool for LPS determination in simple fluid and injectable 

medications, its accuracy and reproducibility diminish in complex matrices such as plasma, and 

its utility is further hampered in samples from jaundiced patients as the absorption peak of 

bilirubin is close to that of the chromogenic substrate. 

A study that attempted to overcome these limitations compared plasma LPS in 85 ALD patients 

(65 cirrhotic) and 15 patients with liver disease of another cause using individual standard 

curves for each sample and demonstrated significantly higher plasma LPS in the ALD group 

(Fukui, Brauner et al. 1991). A further study in cirrhotic patients alone showed that plasma LPS 

correlated with Child-Pugh score, serum TNFα and soluble TNF receptor concentration (Hanck, 

Rossol et al. 1998). A smaller study that looked specifically at AAH patients detected elevated 

LPS in 14 patients compared to healthy controls, with particularly high levels in one of two fatal 

cases and in the one patient with clinically severe disease (Fujimoto, Uemura et al. 2000). 

Another small study demonstrated elevated LPS and LBP in all stages of ALD and noted that 

HDL which can bind LPS and protect against inflammatory responses was elevated in early and 

minimal disease but reduced in advanced cirrhosis (Schafer, Parlesak et al. 2002). However, 

other work has demonstrated that plasma LPS actually correlated better with ethanol 

consumption than with disease, weakening the evidence for its pathogenic role in humans 

(Urbaschek, McCuskey et al. 2001). 

In animal studies, rats on the Lieber-DeCarli ethanol-containing diet developed hepatic steatosis 

alone while littermates on the same diet challenged with E. coli LPS developed focal necrotising 

hepatitis. Littermates given LPS challenge in the absence of ethanol developed no liver lesion 

(Bhagwandeen, Apte et al. 1987). In alcohol-fed mice plasma LPS correlated with histological 

liver injury, serum transaminases and serum TNFα, and was reduced by oral zinc 

supplementation, with evidence of reduced small intestinal mucosal injury (Lambert, Zhou et al. 

2003). A role for shifts in the balance of endotoxin-neutralising and endotoxin-potentiating 

factors was suggested by analysis of 105 ALD cases in which plasma LPS correlated with 

progression of liver injury and fell during recovery in survivors. Elevated LBP and reduced HDL 

characterised clinically severe cases. In an accompanying animal study an extra high dose of 

ethanol on top of chronic ethanol feeding mimicked this picture and was associated with 

transiently impaired LPS clearance which may be responsible for the acute liver injury (Fukui 

2005). 

1.3.6.4 Gut flora 

The apparent importance of enteral endotoxin in pathogenesis has lead to investigation of how 

manipulation of gut flora might modulate disease. Weekly enteral LPS supplementation in 

ethanol-fed rats was shown to cause portal and systemic endotoxaemia with increased TNFα, 

serum transaminases and worsening histological inflammation and necrosis (Mathurin, Deng et 

al. 2000). The probiotic lactobacillus was shown to reduce plasma LPS and reduce severity of 
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experimental liver disease in rats (Nanji, Khettry et al. 1994). In the rat intragastric feeding 

model of ALD, gut sterilisation with neomycin and polymixin B reduced measured plasma LPS 

and also serum AST and histological inflammatory scores (Adachi, Moore et al. 1995). This 

result did not translate into human therapeutics, however, with the non-absorbable antibiotic 

paromomycin failing to improve liver function in ALD despite an initial reduction in measured 

plasma LPS (Bode, Schafer et al. 1997). It remains possible that gut flora manipulation could 

have benefit in humans but by the time human ALD becomes clinically apparent the window for 

modulating the process with antibiotics has closed. 

1.3.6.5 Kupffer cells 

Kupffer cell inflammatory responses are the link between portal endotoxaemia and the elevated 

cytokines characteristic of AAH. TNFα is exclusively produced by the monocyte-macrophage 

lineage and Kupffer cells form the largest population of this line (Decker, Lohmann-Matthes et 

al. 1989). KC are present in the hepatic sinusoid lumen and the perisinusoidal space of Disse, 

maximising both their exposure to circulating material and their ability to interact with 

hepatocytes, other non-parenchymal cells and other immune cells (Roberts, Ganey et al. 2007). 

As a component of the reticuloendothelial system, KC clear cellular and other debris (including 

bacterial components) from the blood and help modulate downstream immune responses to 

such material. Their key role in ethanol-mediated liver injury in animals is clear from 

experiments in which the KC toxin gadolinium chloride virtually abolishes liver injury in a rat 

model of ALD (Adachi, Bradford et al. 1994). This was confirmed by later work which also 

demonstrated that the KC response to LPS could be potentiated by oestrogens, suggesting a 

further explanation for the increased susceptibility to ALD in females (Thurman 1998). 

The KC response to LPS can be modified by ethanol. Rat KC isolated 24 hours after ethanol 

dosing demonstrate a sensitised response to LPS in terms of calcium fluxes and TNFα 

secretion. This was associated with upregulation of the LPS co-receptor CD14 and the effect 

could be blocked by enteral antibiotics, suggesting that bacterial components actually played a 

part in ethanol sensitisation of the KC inflammatory response (Enomoto, Ikejima et al. 1998). 

Ethanol may also reduce the ability of KC to clear endotoxin from blood. Chronic ethanol 

exposure was shown to enhance secretion of proinflammatory chemokines from KC but to 

inhibit their chemotactic and phagocytic potential, resulting in reduced clearance of circulating 

innate immune stimuli (Bautista 2002). 

A critical observation in the study of AAH is the enhanced KC proinflammatory response to LPS 

seen after chronic ethanol exposure. Both rat KC and AAH patient peripheral blood 

mononuclear cells (PBMC) produce more TNFα in response to LPS stimulation than control 

cells, and this enhancement of the inflammatory response can be reduced by treatment with 

antioxidants (Hill, Devalaraja et al. 1999). A role for KC oxidant stress in this process is 

confirmed by the fact that inhibition of KC oxidant species generation either pharmacologically 
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or by genetic knockout can reduce liver injury from ethanol (Wheeler, Kono et al. 2001; 

Wheeler, Kono et al. 2001). Ethanol may induce oxidative stress in KC by similar mechanisms 

to its action in hepatocytes: KC are capable of ethanol metabolism, although at a slower rate 

than hepatocytes, and, in rat at least, the oxidant-generating CYP2E1 can be induced in KC by 

chronic ethanol exposure (Cao, Mak et al. 2002). 

1.3.6.6 TLR4 / LPS receptor complex 

Increases in KC surface TLR4 and CD14 are observed after chronic ethanol exposure 

(Enomoto, Ikejima et al. 1998; Zuo, Gong et al. 2003), though it is not clear whether this 

increase is directly responsible for the enhanced cytokine response to stimulation. What is clear 

is that the LPS receptor complex (TLR4, CD14 and MD2 interacting with LBP) is critical for the 

development of ethanol-related liver injury. C3H/HeJ mice have a complete absence of TLR4 

and when subjected to four weeks of intragastric ethanol feeding have lower ALT, significantly 

less histological liver injury and reduced TNFα expression compared to control animals (Uesugi, 

Froh et al. 2001). CD14 knockout mice have been shown to be similarly protected from ethanol 

liver injury (Yin, Bradford et al. 2001), as have LBP knockout animals (Uesugi, Froh et al. 2002). 

In humans at C-T single nucleotide polymorphism at position -159 in the CD14 promoter was 

found to be significantly associated with advanced ALD in a Finnish cohort. The T allele had an 

odds ratio (OR) of 2.48 (p=0.018) for alcoholic hepatitis and OR of 3.45 (p=0.004) for cirrhosis 

(Järveläinen, Orpana et al. 2001). However, these findings were not reproduced in two further 

cohorts in the UK and Portugal (Leathart, Day et al. 2001; Martins, Cortez-Pinto et al. 2005). 

1.3.6.7 NF-κB 

Multiple transcription factors mediate the downstream effects of TLR4 signalling and NF-κB 

remains one of the best studied and is responsible for the widest range of cellular responses to 

stimulation. Among its many cellular roles, NF-κB modulates gene expression in response to 

TLR ligation in KC and in response to TNF receptor ligation in hepatocytes. NF-κB activity as 

measured by electrophoretic mobility shift assay (EMSA) was increased in livers of rats 

subjected to intragastric ethanol feeding relative to rats on an isocaloric control diet, and was 

associated with elevated plasma LPS, increased chemokine secretion and more severe 

histological liver injury (Nanji, Jokelainen et al. 1999). A human study then demonstrated that 

monocyte NF-κB activity by EMSA was increased in AAH patients relative to controls. LPS 

treatment resulted in a greater increase in NF-κB activity in the monocytes from patients than in 

those from controls and TNFα production at both the mRNA and protein level was greater in 

patient samples. Super shift assays showed that both p50 and p65 subunits of NF-κB were 

active and able to bind their consensus sequence in the samples (Hill, Barve et al. 2000). A 

commentary on this paper suggests that AAH can be considered a “gene expression disease” in 

which “aberrant activation of proinflammatory genes perpetuates a chronic inflammatory 
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process”, and cites the efficacy of glucocorticoids in AAH in support of dysregulated NF-κB-

driven pro-inflammatory gene expression as the key pathogenic mechanism in AAH (Szabo 

2000). Glucocorticoids induce transcription of the NF-κB regulatory molecule IКBα (Scheinman, 

Cogswell et al. 1995) and the glucocorticoid receptor also interacts directly with p65, blocking its 

DNA-binding domain (Funder 1997; Wissink, van Heerde et al. 1997). 

Further evidence of a causative role for NF-κB in AAH comes from experiments in which rats 

were subjected to adenoviral transfection with the transgene for IКB superrepressor and then 

underwent ethanol feeding. The treated animals had reduced NF-κB activation, TNFα 

production and ALT relative to controls exposed to an irrelevant transgene. The protective effect 

diminished once the transgene was no longer detectable. The NF-κB inhibition had no effect on 

oxidative stress as measured by 4-hydroxynonenal concentrations, suggesting that any 

contribution from oxidative stress occurs upstream or independently of NF-κB (Uesugi, Froh et 

al. 2001). NF-κB activation has been shown to precede liver injury in the rat intragastric feeding 

model of ALD, supporting a role for it in pathogenesis of liver injury (Jokelainen, Reinke et al. 

2001). 

1.3.6.8 Neutrophils 

The infiltrate of polymorphonuclear cells is one of the most prominent histological features of 

AAH and results from the enhanced secretion of pro-neutrophilic CXC chemokines such as IL-8 

(Bautista 2002). Transmigrating neutrophils can adhere to hepatocytes undergoing cellular 

stress via β2-integrin on the neutrophil and ICAM-1 upregulated on the hepatocyte surface. 

Contact is followed by neutrophil respiratory bust and degranulation, which are both additional 

sources of oxidative stress, leading to hepatocyte death (Ramaiah and Jaeschke 2007). Recent 

evidence suggests that neutrophil responses in AAH are dysregulated, possibly as result of 

stimulation by increased circulating endotoxin, resulting in a state of persistent respiratory burst 

with impaired phagocytic capacity (Mookerjee, Stadlbauer et al. 2007). This could reduce the 

specificity of the response and result in more widespread tissue damage and impaired 

clearance of further proinflammatory products of cellular disintegration. 

1.3.7 Working model of innate immune responses in AAH 

The various findings about the role of the innate immune response in the pathogenesis of acute 

alcoholic hepatitis have been brought together, largely in the work of the late Ron Thurman and 

his group, into a working model of inflammatory responses in AAH. This states that ethanol 

encourages small intestinal bacterial overgrowth and increases intestinal permeability, resulting 

in an increased load of Gram negative bacterial endotoxin reaching the liver via the portal vein. 

There the endotoxin activates KC which have been rendered more susceptible to activation by 

the cellular effects of ethanol metabolism which include increased ROS and facilitated opening 

of calcium channels (Iimuro, Ikejima et al. 1996).The vigorous KC response releases cytokines 
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and chemokines which recruit neutrophils, alter hepatocyte metabolism and alter blood flow 

leading to centrilobular hypoxia, ROS release, hepatocyte injury and death (Thurman 1998). 

Later modifications de-emphasised the role of hypoxia, suggesting that the effect of ethanol 

metabolism and cytokines on hepatocytes was sufficient for ROS generation (Enomoto, Ikejima 

et al. 2000). 

There is, however, a paradox inherent in this endotoxin-induced inflammation in a normally 

endotoxin-tolerant organ. The liver is exposed to tonic levels of LPS in portal blood, which it 

clears appropriately from the circulation without inflammatory response (Broad, Jones et al. 

2006). Indeed, Kupffer cells are themselves key to the maintenance of hepatic endotoxin 

tolerance (Knolle, Schlaak et al. 1995; Knolle and Gerken 2000). Consequently, the liver 

inflammation of AAH is already being referred to by leaders in the field as “failure of hepatic 

endotoxin tolerance” (McClain, Hill et al. 2002; Mandrekar, Pruett et al. 2005). 

There is a further paradox in the contrast between this ethanol-induced enhancement of 

inflammatory responses and the widely documented and clinically evident suppressive effect of 

ethanol on immune responses including TLR signalling down both the MyD88-dependent and 

independent pathways (Pruett, Zheng et al. 2004). The Thurman group was the first to 

demonstrate a biphasic effect of ethanol on KC responses with early suppression (referred to by 

them as ‘tolerance’) and later sensitisation to LPS (Enomoto, Ikejima et al. 1998; Enomoto, 

Ikejima et al. 2000). They suggested that both these processes are endotoxin-dependent and it 

is conceivable that in vivo a first dose of ethanol increases gut permeability and delivers an 

increased endotoxin concentration to the KC which then become tolerant to that dose and 

unable to respond to similar concentrations until the metabolic effects of prolonged ethanol 

metabolism supervene and result in sensitisation and enhanced inflammatory responses. 

However, it is unlikely that LPS tolerance is solely responsible for the initial anti-inflammatory or 

immunosuppressive effect of ethanol. The effects of acute ethanol on membrane dynamics may 

alter TLR component clustering in lipid rafts, diminishing TLR responsiveness (Pruett, Zheng et 

al. 2004). Additionally, the impaired neutrophil phagocytic capacity observed in AAH may also 

contribute to the increased susceptibility to invasive bacterial disease in heavy drinkers despite 

the associated enhancement of cytokine responses (Mookerjee, Stadlbauer et al. 2007). 

The biphasic effect of ethanol on inflammatory responses was further investigated in vitro in the 

human macrophage cell line MonoMac6. This demonstrated that the cells did not require prior 

endotoxin exposure to undergo early ‘tolerance’ and later ‘potentiation’ of cytokine responses to 

LPS in ethanol. Acute ethanol inhibited TNFα production by a post-translational method likely to 

be inhibition of TNFα converting enzyme (TACE), but chronic ethanol exposure for six days or 

more potentiated TNFα release, a phenomenon that could be reversed by antioxidant 

supplementation (Zhang, Bagby et al. 2001). 



Chapter 1 | Introduction  

 
42

It is worth noting that, in the strict sense of the term, ‘failure of endotoxin tolerance’ in ethanol 

has not been demonstrated experimentally. This would require sequential exposure to two 

equal doses of LPS and observation that the cytokine response to the second was not 

diminished (‘tolerised’) to the same degree in the ethanol-exposed setting as in controls. 

However, the observation of enhanced cytokine responses to low doses of LPS in AAH patients 

and experimental animals, that will inevitably have had prior endotoxin exposure, would 

certainly be consistent with failure of the normal mechanisms of endotoxin tolerance and with 

the concept of AAH as a ‘gene expression disease’ in which proinflammatory gene expression 

is uncoupled from its normal regulatory mechanisms resulting in disorganised and deleterious 

inflammatory responses.  

1.4 Control of inflammatory responses in alcoholic hepatitis 

1.4.1 Factors shown to enhance cytokine output in ethanol 

Inflammatory responses are regulated at multiple levels and it is likely that the dysregulation 

seen with chronic ethanol exposure involves effects at more than one point in the inflammatory 

response mechanism. Various studies have implicated different factors in the development of 

enhanced KC responses to LPS in ethanol. 

1.4.1.1 Oxidative stress 

Oxidative stress secondary to ethanol metabolism has been clearly implicated in hepatocyte 

damage (section 1.3.3) but evidence has also accumulated that it may sensitise KC to LPS 

stimulation (Arteel 2003). It has been shown to have a role in the ethanol-dependent 

upregulation of CD14 (Wheeler and Thurman 2003), and antioxidants and glutathione 

supplementation reduced TNFα output in AAH patient PBMCs and rat KC (Hill, Devalaraja et al. 

1999). N-acetylcysteine, already in therapeutic use for paracetamol toxicity, has been 

suggested as a suitable antioxidant and GSH replenisher, but its in vitro behaviour in serum-

free conditions is different from that in serum when it auto-oxidises and develops pro-oxidant 

properties, increasing p38 MAP kinase and JNK phosphorylation (Chan, Riches et al. 2001). 

The antioxidant dilinoleoylphosphatidylcholine (DLPC) was found to reduce the TNFα response 

from ethanol-fed rat KC and this effect was associated with reduced ERK1/2 and p38 

phosphorylation, increased cytoplasmic IКBα and decreased nuclear p65. An ERK inhibitor had 

a similar effect to the DLPC but a p38 inhibitor did not, suggesting that oxidative stress may be 

increasing TNFα via ERK-dependent activation of NFКB p65 (Cao, Mak et al. 2002). 

In a rat model of haemorrhagic shock, oxidative stress has been shown to recruit TLR4 to the 

cell membrane with an associated increased responsiveness to LPS. Inhibitors of intracellular 

calcium or cytoskeletal activity reduced the effect suggesting, perhaps unsurprisingly, that 
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exocytosis had a significant role in the mechanism. Fluorescence resonance energy transfer 

(FRET) showed the TLR4 to be concentrated in lipid rafts in the plasma membrane and lipid raft 

blockers could also reduce the effect of oxidative stress on LPS sensitivity (Powers, Szaszi et 

al. 2006). One might speculate that when ethanol is the source of oxidative stress, the 

associated ER stress might increase the cholesterol content of the plasma membrane and 

hence increase lipid rafts, amplifying the effect. 

1.4.1.2 S-adenosylmethionine depletion 

SAMe depletion is already thought to play a critical role in hepatocyte injury in ALD (section 

1.3.3.3) and may also contribute to enhanced cytokine responses in KC. Rats depleted in SAMe 

by the methionine-choline deficient (MCD) diet display increased TNFα responses to LPS at 

both the mRNA and protein level with more severe histological liver injury, both of which could 

be attenuated by SAMe supplementation. SAMe supplementation lowered LPS-induced TNFα 

secretion in RAW264.7 murine macrophages and in monocytes from AAH patients in a dose-

dependent manner while concurrently increasing the anti-inflammatory cytokine IL-10 (McClain, 

Hill et al. 2002). Reduction in the SAMe:SAH ratio in mice had a similar effect on TNFα (Song, 

Zhou et al. 2004).  

Work using TNFα promoter reporter constructs suggested that SAMe down-regulates TNFα at a 

transcriptional level. This down-regulation was not affected by mutation of the NF-κB binding 

sites or by over expression of p65 or its co-activator p300 suggesting that SAMe is working 

downstream of NF-κB in the mechanism of transcriptional control. There were no associated 

changes in DNA methylation and the non-methylating SAMe metabolite 5’-methylthioadenosine 

(MTA) had the same effect on TNFα transcription as SAMe suggesting that the SAMe effect is 

not related to its role in DNA methylation (Veal, Hsieh et al. 2004). It is possible that SAMe’s 

role in replenishing antioxidant defence mechanisms and maintaining proteasome function 

(McClain, Barve et al. 2005) has a favourable effect on control of TNFα transcription 

downstream of p65/p300 activation. 

1.4.1.3 TLRs and their signalling intermediates 

Ethanol has been shown to upregulate KC TLR4 in rats (Zuo, Gong et al. 2003) and 

TLR1,2,4,6,7,8 and 9 in mice (Gustot, Lemmers et al. 2006). In the latter study antibiotics were 

shown to attenuate liver injury without reducing TLR expression, suggesting that the TLR 

upregulation was a consequence of the ethanol rather than the endotoxin. The NADPH oxidase 

inhibitor diphenylene iodonium (DPI) reduced ROS and prevented TLR upregulation, suggesting 

that the TLR expression resulted from oxidative stress. In the physiological setting TLRs rarely 

act alone but respond in concert to the various PAMPs that result from microbial ingress. The 

character of the response will depend on the variety and intensity of stimulation of the different 

TLRs with some signals potentiating the response to ligation of other TLRs and others inhibiting 
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them (‘cross-tolerance’). There is also evidence of variation in the pattern of intracellular 

signalling when TLRs are activated together (Broad, Jones et al. 2006). A study of the effect of 

acute ethanol administration on signalling suggested that it attenuated the TNFα response to 

ligation of TLR4 alone but augmented the response to simultaneous ligation of TLR2 and 4, with 

reduced ERK signalling after the single stimulus and enhanced JNK and AP-1 signalling after 

dual stimulation (Oak, Mandrekar et al. 2006). 

The biphasic effect of ethanol on inflammatory responses has been shown to correlate with 

changes in the activity of the signalling intermediate IRAK which is low in mice after acute 

exposure to ethanol and LPS at one hour, but increases when the LPS is administered after 21 

hours of ethanol feeding (Yamashina, Wheeler et al. 2000). 

The MAP kinase pathway has been investigated several times in this context. LPS stimulation 

of RAW264.7 macrophages results in increased stability of TNFα mRNA and consequent 

increased protein expression, but this effect can be reversed by inhibitors of p38 MAPK (Brook, 

Sully et al. 2000). P38 and ERK1/2 signalling have both been found to be increased after 

chronic ethanol exposure (Kishore, McMullen et al. 2001; Nagy 2003). Four weeks of ethanol 

feeding enhanced the TNFα mRNA and protein response to LPS in rats and this was associated 

with ERK1/2 activation and recruitment of egr-1 to the TNFα promoter, an effect that could be 

fully blocked by ERK inhibition. In this study ethanol actually reduced NF-κB activity and had no 

effect on AP-1 (Kishore, Hill et al. 2002). Dominant negative transgenes for egr-1 and ERK 

prevented the LPS-stimulated TNFα mRNA accumulation in ethanol (Shi, Kishore et al. 2002). 

Egr-1 is an immediate early gene that coordinates cellular responses to stressors and activates 

genes for many other pro-inflammatory proteins in addition to TNFα and may be a future 

therapeutic target in ALD (Pritchard and Nagy 2005). ERK1/2 activity and TNF production can 

also be diminished in parallel by DPI, suggesting that ROS many be driving the increased ERK 

activation (Thakur, Pritchard et al. 2006). 

The PPARγ agonist pioglitazone has been shown to reduce the enhanced TNFα production by 

70% in ethanol-fed rats. There was no associated change in gut permeability, suggesting that 

the sensitising mechanism was antagonised directly (Enomoto, Takei et al. 2003). 

1.4.1.4 Post-translational modification of inflammatory mediators 

Changes in total TNFα mRNA may result from changes in transcription rate or changes in the 

stability of the transcript. Nuclear run-on experiments in ethanol-exposed and control mouse KC 

and RAW264.7 cells suggested that ethanol did not actually significantly increase TNFα 

transcription but rather increased the half-life of the transcript resulting in increased protein 

production. This stabilisation could be prevented by a p38 inhibitor or by transfection with a 

dominant negative p38 (Kishore, McMullen et al. 2001). 



Chapter 1 | Introduction  

 
45

1.4.1.5 Adenosine signalling 

Tissue inflammation has a local negative feedback mechanism through adenosine signalling via 

A2 receptors. There are four known adenosine receptors, all G-protein coupled: A1 and A3 

inhibit adenylate cyclase, while A2A and A2B activate it by Gαs activity. A2A predominates on 

leucocytes and vascular endothelium. In conditions of inflammation and cellular stress, ATP 

consumption outstrips production and adenosine is liberated into the extracellular space. There 

it provides a feedback mechanism to limit tissue damage via A2A receptors by inducing local 

vasodilatation and reducing leucocyte reactivity through increases in intracellular cAMP (Hasko, 

Pacher et al. 2006). The biological significance of this mechanism was demonstrated in A2A 

knockout mice that had significantly increased susceptibility to liver damage by concavalin A 

and lipopolysaccharide (Ohta and Sitkovsky 2001). The cAMP drives protein kinase A (PKA) to 

phosphorylation of CREBP leading to transcriptional suppression at pro-inflammatory genes. 

KC from ethanol-fed rats show reduced Gαs protein, reduced cAMP in response to A2 agonists 

and reduced PKA activity. However, no difference in PKA nuclear translocation and CREBP 

phosphorylation could be detected between ethanol-fed animals and controls so the role of A2 

receptors and cAMP in ethanol-related inflammation remains unclear (Aldred and Nagy 1999). 

1.4.1.6 Phosphodiesterase 4B 

An alternative route to cAMP depletion is increased breakdown and recent work has identified 

phosphodiesterase 4B (PDE4B) as having a role in models of ALD. Chronic ethanol exposure 

significantly decreased cAMP in KC and peripheral monocytes and was associated with 

increased NF-κB transcriptional activity and increased TNFα mRNA and protein. The ethanol 

exposure was shown to have increased expression of the LPS-inducible PDE4B which 

degrades cellular cAMP. Selective inhibition of PDE4B with rolipram abrogated the TNFα 

response to LPS in both control and ethanol-exposed cells. The potential of selective PDE4B 

inhibitors to reduce inflammation in human AAH is likely to be under investigation soon 

(Gobejishvili, Barve et al. 2008). 

1.4.2 Similar phenomena in other organ systems 

While the co-localisation of high concentrations of bacterial endotoxin in portal venous blood  

and high rates of ethanol metabolism account for the fact that the inflammation of AAH is most 

apparent in the liver, the tissue distribution of both ingested ethanol and macrophages means 

that, if the mechanisms discussed above are genuine, one would expect to see exaggerated 

inflammatory responses after chronic ethanol exposure in other physiological systems. This is 

indeed the case, and the effects of ethanol on inflammation are apparent in both the lung and 

the pancreas. 
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The effect of heavy drinking on pulmonary inflammation was identified in the 1990s with a study 

that showed that chronic excess alcohol increases the risk of adult respiratory distress 

syndrome (ARDS) in intensive care from 22% to 43% (p<0.001), increasing to 52% in patients 

with sepsis. Patients with ARDS and alcohol excess were more likely to die than those who did 

not drink to excess (65% V 36%, p=0.003) (Moss, Bucher et al. 1996). Glutathione depletion 

was implicated in the pathogenesis of this phenomenon, with the heavy drinkers showing 

significantly reduced pulmonary GSH concentrations and a greater proportion of it in the 

oxidised form (Moss, Guidot et al. 2000). The lung cannot synthesise GSH and relies on the 

liver for its supply (Foreman, Hoor et al. 2002). A subsequent rat model of ARDS after chronic 

ethanol displayed increased lung TNFα and mitochondrial GSH depletion with increased ROS 

and apoptosis in type II alveolar cells. Inflammation in this model could be ameliorated by 

procysteine but not by n-acetylcysteine, suggesting that mitochondrial GSH depletion was a key 

factor in pathogenesis (Brown, Harris et al. 2001). Interestingly, there is even some evidence of 

a biphasic effect of ethanol on inflammatory responses in the lung with acute ethanol down-

regulating alveolar macrophage iNOS within 2.5 hours (Kato, Negoro et al. 2005). 

The pancreas also typically shows prolonged and dysregulated inflammatory responses after 

chronic ethanol exposure, but so far the mechanisms suggested have been different. NF-κB 

activation in pancreatic acinar cells relies on both PKC δ and ε. Low concentrations of 

cholecystokinin (CCK) only activate PKC δ but ethanol will activate PKC ε and so can synergise 

with CCK to activate inflammatory gene transcription in acute pancreatitis (Satoh, Gukovskaya 

et al. 2006). 

There are also other instances of enhanced cytokine responses to TLR ligands in diseases 

unrelated to alcohol. Monocytes from patients with primary biliary cirrhosis (PBC), a disease 

that features impaired mitochondrial energetics (Hollingsworth, Newton et al. 2008), have 

increased IL-1, IL-6, IL-8 and TNFα responses to a panel of TLR ligands (Mao, Lian et al. 2005). 

Acute renal failure, particularly when secondary to powerful oxidants such as in rhabdomyolysis 

or cisplatin nephrotoxicity, is also associated with macrophage hyper-responsiveness to LPS 

(Zager, Johnson et al. 2006). 

1.4.3 Contrasting effects of acute and chronic ethanol 

The biphasic effect of ethanol on inflammatory responses is not always well recognised in the 

literature, leading to unresolved controversies about whether heavy alcohol drinking is 

immunosuppressive or pro-inflammatory with limited recognition that it can be both, either 

sequentially (Enomoto, Ikejima et al. 1998) or concurrently (Mookerjee, Stadlbauer et al. 2007). 

The initial work by Enomoto et al (1998) suggested that both the early hyporesponsiveness and 

the later hyperresponsiveness to TLR ligands were abrogated by antibiotics and so were 

dependent on endotoxin. Similar animal work corroborated these findings with acute ethanol 
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administration down-regulating TLR4 in mouse liver after 2-6 hours, a decrease which could be 

prevented by gut sterilisation with antibiotics and which was not seen in RAW264.7 murine 

macrophage cell line given ethanol in the absence of bacterial components (Nishiyama, Ikejima 

et al. 2002). These findings are consistent with the established concept of endotoxin tolerance 

with acute ethanol in the whole-animal model causing an initial rise in portal endotoxaemia to 

which the KC become tolerant and hence hyporesponsive to early LPS challenge until the 

metabolic effects of prolonged ethanol exposure take effect and hyperresponsiveness 

supervenes. This would suggest that chronic ethanol causes true ‘failure of endotoxin 

tolerance’. 

However, there is contradictory evidence, some from the same group as the initial description, 

that acute ethanol can diminish inflammatory responses to LPS in cell-based models without 

prior endotoxin exposure. Work in the human macrophage cell line MonoMac6 (Zhang, Bagby 

et al. 2001) and in isolated mouse KC (Yamashina, Wheeler et al. 2000) shows that pre-

treatment with ethanol alone can blunt the cytokine response to LPS. This suggests that the 

acute effect of ethanol is not purely endotoxin tolerance, although it remains possible that the 

ethanol, a microbial product itself, contained some previously-undetected TLR ligands which 

induced tolerance. Support for a more direct, endotoxin-independent mechanism for the anti-

inflammatory effect of acute ethanol comes from a study in which it reduced responses to 

stimulation of all mouse TLRs, apparently through inhibition of a type 1 interferon autocrine 

amplification loop which is particularly important for enhancement of signalling from TLR3 and 

down the MyD88-independent pathway from TLR4 (Pruett, Zheng et al. 2004). In addition, the in 

vivo situation is certainly more complex than the single-ligand techniques used experimentally, 

with stimulation of multiple TLRs resulting in potentiation and cross-tolerance of signalling and 

the potential for ethanol to be exerting an influence at any or all of the intersections (Oak, 

Mandrekar et al. 2006). 

1.5 Steroids in the control of inflammation 

Both endogenous and exogenous (pharmaceutical) glucocorticoids are likely to influence the 

course of AAH. 

1.5.1 Mechanism of steroid action 

Glucocorticoids are able to cross the plasma membrane and bind the cytoplasmic glucocorticoid 

receptor (GR) which has its principal actions in the nucleus. The actions of the GR vary with cell 

type (Truss and Beato 1993) and depend on the presence of other transcription factors and 

regulatory elements, the phosphorylation state of the GR and the tertiary organisation of DNA 

into nucleosomes (Beato, Truss et al. 1996) as well as whether the GR is in its monomeric or 

dimeric state (Dewint, Gossye et al. 2008). In its dimeric form GR can activate gene 

transcription, for instance interacting with ERK1/2 to increase transcription of IL-10 in response 
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to LPS (Xia, Peng et al. 2005). Monomeric GR is sufficient for its role in antagonism of 

activation of pro-inflammatory genes. It can reduce NF-κB and AP-1 activity by competitive 

binding of the coactivator cAMP response element binding protein (CBP) which blocks access 

to CBP’s transcription activating histone acetyl transferase (HAT) activity (Ito, Barnes et al. 

2000). This can achieve approximately 50% suppression of transcription, but maximal 

suppression is achieved by GR recruiting histone deacetylase (HDAC) 2 which deacetylates 

chromatin and suppresses transcription (section 1.6) (Ito, Jazrawi et al. 2001). 

1.5.2 Steroid sensitivity 

In AAH corticosteroid therapy has been demonstrated to have a moderate effect on outcome in 

the group at highest risk of death, reducing mortality from 35% to 16% (Mathurin, Mendenhall et 

al. 2002). However, a sixth of patients in this group perish despite treatment, and the 

applicability of corticosteroid therapy is limited by concerns about heightened risks of sepsis and 

gastrointestinal haemorrhage. Steroid responsiveness in AAH is indicated by the early change 

in the serum bilirubin level (ECBL) (section 1.1.7.2) with those patients whose bilirubin has not 

fallen by the seventh day of treatment having a particularly high mortality and gaining no benefit 

from continuation of therapy (Mathurin, Abdelnour et al. 2003). Treatment outcomes could be 

improved by early identification of the 27% of patients who are unlikely to benefit from steroids 

or by strategies to improve steroid sensitivity in this group. 

Steroid insensitivity is not unique to AAH. It has been well characterised in inflammatory skin 

diseases and ulcerative colitis (UC) where it is evident as a reduced maximum inhibitory effect 

of dexamethasone on ex vivo phytohaemagglutinin (PHA)-stimulated lymphocyte proliferation. 

Impaired lymphocyte steroid sensitivity (LSS) in this assay reliably predicted clinical response to 

glucocorticoid therapy in acute UC with a maximum inhibition of proliferation (Imax) of 60% or 

less observed in all treatment failures and 3/5 incomplete responders but in none of those with a 

complete clinical response (Hearing, Norman et al. 1999). In that study there was no significant 

difference in LSS measured in patients three months after their acute admission, suggesting 

that reduced LSS was a function of the disease activity rather then an intrinsic property of the 

patients. However, steroid insensitivity is seen in roughly similar proportions of patients in many 

inflammatory diseases and a study that measured LSS by the same method in a healthy 

population showed a wide variation in lymphocyte steroid responsiveness, implying that at least 

some of the clinical steroid insensitivity in inflammatory disease is a result of individual 

physiology rather than a consequence of disease (Hearing, Norman et al. 1999). IL-2 has been 

implicated as a disease-specific determinant of steroid insensitivity in moderate and severe UC 

with high concentrations leading to impaired nuclear translocation of GR and increased 

glucocorticoid export via the multi-drug resistance (MDR) transporter (Creed, Norman et al. 

2003). IL-2 blockade with the monoclonal antibody basiliximab is showing clinical promise in 

reversing steroid insensitivity and improving clinical outcome in UC (Creed, Probert et al. 2006). 
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Other factors can influence steroid sensitivity, including the acetylation status of heat shock 

protein 90 (hsp90) which acts a molecular chaperone in the nuclear translocation of the 

activated GR. If hsp90 becomes hyperacetylated due to inhibition of HDAC6 its ability to interact 

with GR is impaired and this is manifest as a 100-fold shift to the right in the steroid dose-

response curve (Murphy, Morishima et al. 2005). This is of particular interest when one starts to 

consider the role of acetylation changes in AAH (section 1.6). Another molecule already studied 

in AAH is the glucocorticoid-induced leucine zipper (GILZ) which inhibits NF-κB responses to 

LPS in macrophages and which has been shown to be expressed at a lower level in the livers of 

patients with severe AAH than in heavy drinkers without AAH. 48 hours of prednisolone 

40mg/day was shown to increase GILZ expression in circulating monocytes from patients and 

reduce their LPS-induced secretion of TNFα and regulated upon activation, normal T cell-

expressed secretion (RANTES) chemokine. It was suggested that impaired GILZ expression 

could be responsible for the enhanced inflammatory responses that lead to AAH, in the form of 

reduced sensitivity to endogenous glucocorticoids (Hamdi, Bigorgne et al. 2007). 

1.5.3 Endogenous steroids 

Although it is exogenous pharmaceutical steroids that are first thought of in the context of AAH, 

there is emerging evidence that endogenous glucocorticoids are important and often relatively 

deficient in liver disease, and mechanisms that modulate steroid sensitivity will be as relevant to 

endogenous steroids as to exogenous ones. 

In septic shock, adrenal insufficiency as assessed by the short synacthen test (SST), which 

measures the increase in cortisol in response to exogenous corticotrophin stimulation, is 

associated with haemodynamic instability and poor prognosis which can be improved by 

administration of exogenous glucocorticoids (Annane, Sebille et al. 2002). Similar relative 

adrenal insufficiency has been observed in 62% of patients with acute liver dysfunction and 

correlated with severity and outcome (Harry, Auzinger et al. 2002). Corticosteroid replacement 

was found to reduce vasopressor requirements in patients with hypotensive acute liver 

dysfunction without overall increase in survival (Harry, Auzinger et al. 2003). Cirrhotic patients 

suffering severe sepsis showed blunted response to corticotrophins in 50% with the low 

responders having significantly higher mortality (Tsai, Peng et al. 2006). Relative adrenal 

insufficiency can be present in cirrhosis in the absence of sepsis or cardiovascular collapse and 

has now been observed in up to 95% of patients requiring liver transplantation leading to the 

suggestion of a ‘hepatoadrenal syndrome’ separate from the adrenal effects of sepsis (O'Beirne, 

Holmes et al. 2007).  

This evidence suggests that endogenous glucocorticoid responses to TLR-driven inflammation 

(sepsis, fulminant liver failure) are frequently inadequate in liver disease and it is possible that 

the same holds true in the TLR-driven inflammation of AAH with relative inadequacy of 

endogenous anti-inflammatory effects contributing to pathogenesis. 



Chapter 1 | Introduction  

 
50

Chronic heavy drinking has been shown to affect the hypothalamo-pituitary-adrenal axis 

producing higher peak serum cortisol and diminished diurnal variation (Badrick, Bobak et al. 

2007). This higher sustained basal exposure might render immune processes less responsive 

to additional exogenous glucocorticoid in times of physiological crisis. 

1.6 Chromatin modification in the control of inflam mation 

The initiation and perpetuation of inflammation is the result of the net effect of the multiple 

modifiable and inter-dependent processes described above on the transcription of the key 

inflammatory mediators, cytokines and chemokines. As a result, gene transcription is the final 

common pathway for nearly all pro-inflammatory processes. This transcription is intimately 

linked to and regulated by covalent chromatin modifications. When this final pathway is tightly-

regulated, the effect of perturbations in upstream signalling will be reduced, and if this final 

pathway became dysregulated the potential for chaotic, disproportionate and deleterious 

responses would be increased. This makes it a critical process in the study and treatment of 

disordered inflammatory responses. 

In its unactivated state DNA is tightly coiled around histone protein octamers and this chromatin 

is compacted into a closed tertiary structure from which the histone tails protrude but in which 

the DNA is inaccessible to polymerases that would produce gene transcription. Gene activation 

by transcription factors involves co-activator proteins with histone acetyl transferase (HAT) 

activity and these acetylate key lysine residues in the histone tails. The negatively-charged 

acetyl groups favour a conformational change in chromatin that allows RNA polymerases 

access to the DNA, facilitating gene transcription. Termination of transcription is mediated 

through histone deacetylases (HDAC) which release free acetate and allow the chromatin to 

resume its closed, untranscribed conformation (Kimura, Matsubara et al. 2005) (Figure 1-6 ). 

There is a variety of HDACs able to modulate inflammatory gene transcription including class I 

and II HDACs which can be recruited by transcriptional repressors such as the activated 

glucocorticoid receptor (Barnes, Adcock et al. 2005), and class III HDACs, known as sirtuins 

(SIRT), which are active in the presence of NAD+ and are thought to mediate the effects of 

nutrient supply on gene expression and cellular ageing (Lavu, Boss et al. 2008). 
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Figure 1-6 Histone acetylation control of inflammat ory gene transcription 

 

Transcriptional activation of a given gene will depend on the net balance of HAT and HDAC 

activity, and it is by influencing these activities that transcriptional activators and repressors 

have their effects. In the control of gene expression, acetylation changes occur downstream of 

most of the mechanisms that regulate cell signalling. Thus pathological processes that directly 

alter this ‘final common pathway’ can have a profound effect on gene expression, relatively 

independent of variations in signalling. The influence of such processes is well established in 

carcinogenesis and there is emerging evidence of their importance in inflammation.  

The effect of histone acetylation on gene transcription will depend not just on the total quantity 

of acetyl groups but also on which histone monomers are acetylated, which residues within the 

monomer are acetylated, and the number of acetyl groups at a particular residue (Grunstein 

1997). For instance, acetylation of histone H4 is a permissive event, generally necessary but 

not sufficient for transcription, so the promoter regions of genes that a given cell needs to 

activate frequently or quickly will already have a high content of acetyl-histone H4. By contrast, 

acetylation of histone H3 is an activation event and generally will only occur in high 

concentration at promoters during initiation of transcription (Eberharter and Becker 2002). Other 

covalent chromatin modifications including DNA and histone methylation and histone 
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phosphorylation or ubiquitination can also influence gene transcription by recruitment of further 

co-activator or co-repressor complexes. 

These epigenetic changes represent a level of control of gene behaviour separate from the 

activity of transcription factors and the genetic code itself. The pattern of epigenetic 

modifications will influence cell and organism phenotype, often more so than variations in the 

DNA base-pair sequence. Thus epigenetic changes are important modulators of cellular 

differentiation and behaviour and at least some components of this ‘epigenetic code’ are 

transmissible in somatic and germ line division.  

The evolutionary basis for these mechanisms is that they allow patterns of gene expression and 

responses to stimulation and signalling to be modified by environmental factors such as 

available nutrients. The phenotype changes are much faster than those brought about by 

mutation and natural selection, can alter physiology within a generation, and confer improved 

survival to the exposed individuals and to subsequent generations. Furthermore, there is 

evidence that they can respond to chemical changes in ingested plants, often the earliest 

indication of changing environmental conditions, and so adapt pre-emptively to environmental 

stress (Howitz and Sinclair 2008). However, the major selection pressure promoting these 

mechanisms will be nutrient shortage so they will have evolved to cope with famine rather than 

excess food, and may not be attuned to adapt to compensate for the effect of energy over-

supply under circumstances such as obesity, parenteral feeding and ethanol consumption. 

1.6.1 Histone acetylation in transcriptional control of inflammatory genes 

An epigenetic basis for dysregulated inflammatory responses was first studied in intestinal 

epithelial cells in investigation of the role of commensal bacterial in modulating gut 

inflammation. Butyrate, a bacterial metabolite, is a natural inhibitor of HDACs and it was 

demonstrated that this inhibition lead to increased histone acetylation and an enhanced 

response to LPS stimulation in terms of secretion of the chemokine macrophage inflammatory 

protein 2 (MIP2) (Ohno, Lee et al. 1997). The ability of dietary and bacterial short chain fatty 

acids to modulate inflammation in this way could account for the effects of diet and intestinal 

flora on Crohn’s disease and necrotising enterocolitis (Sanderson 2004). 

1.6.2 Histone acetylation and Theophylline in COPD 

A link between chromatin modifications, steroid responsiveness and oxidative stress in the 

control of inflammatory responses has been established in the smoking-related airway 

inflammation of chronic obstructive pulmonary disease (COPD). The glucocorticoid receptor 

acts in part by recruitment of HDAC2 to actively transcribed pro-inflammatory genes resulting in 

suppression of transcription (Ito, Barnes et al. 2000). This HDAC recruitment is necessary for 

maximal suppression of transcription; the GR partial agonist mifepristone, which activates the 
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GR without HDAC recruitment, achieves only 50% reduction in pro-inflammatory gene 

transcription despite effective inhibition of NF-κBp65-associated HAT activity (Ito, Jazrawi et al. 

2001). This GR-recruitable HDAC activity is significantly reduced in the presence of smoking-

associated oxidative stress, most likely because of nitrosylation of tyrosine residues in the 

HDAC molecule. However, the HDAC activity and suppression of inflammatory gene 

transcription can be restored by the addition of theophylline, a methyl xanthine drug commonly 

used as a bronchodilator because of its action in inhibiting phosphodiesterases (PDE) in 

bronchial smooth muscle leading to cAMP accumulation, protein kinase A activation and muscle 

relaxation. Interestingly, the beneficial effect of theophylline on HDAC activity occurred at 

concentrations lower than those necessary to achieve PDE inhibition or antagonism of 

adenosine receptors, the other major pharmacological action of theophylline, suggesting that it 

is acting by another mechanism (Ito, Lim et al. 2002). 

Further investigation into the theophylline effect revealed that PBMC from COPD patients show 

reduced steroid sensitivity compared to normal controls when assayed by IL-8 response to 

TNFα stimulation after treatment with increasing doses of glucocorticoid. The COPD steroid 

insensitivity could be mimicked by inducing oxidative stress in control cells with hydrogen 

peroxide. Theophylline was shown to restore normal steroid responsiveness in these cells but 

not in cells in which HDAC2 had been knocked down by RNA interference, confirming that 

HDAC2 was involved in the theophylline effect. Peroxide-induced oxidative stress was 

associated with activation of the signalling kinase AKT and theophylline inhibited this 

phosphorylation event which is normally dependent on phosphoinositide-3-kinase (PI3K). In 

smoke-exposed mice a PI3K inhibitor and knockdown of PI3Kδ each restored steroid 

responsiveness, suggesting that theophylline is restoring HDAC2 activity through PI3Kδ 

inhibition (Marwick, Caramori et al. 2009). Earlier, separate in vitro work had established that 

both theophylline and caffeine, another methyl xanthine, could inhibit PI3K lipid kinase activity 

and that PI3Kδ was the isoform most sensitive to this effect (Foukas, Daniele et al. 2002).  

However, it is worth noting that AKT signalling can increase p300 HAT activity and can be 

induced by HDAC inhibition (Liu, Denlinger et al. 2006) so there remains doubt as to whether 

PI3K activation or HDAC2 impairment is the primary event in steroid insensitivity, and as to 

where theophylline is exerting its effect. More confusingly, pharmacological HDAC inhibition can 

actually decrease inflammatory responses to TLR ligation, probably due to impaired recruitment 

of transcription factors to pro-inflammatory genes (Bode, Schroder et al. 2007), a finding which 

emphasises the need for caution in interpreting the effects of blunt interference with a global 

mechanism of transcriptional regulation on individual downstream events. 

The majority of work in COPD has focussed on the role of HDAC2 but recent work has also 

suggested there may be a contribution from the NAD+-dependent class 3 HDACS, the sirtuins 

(Yang, Wright et al. 2007). 
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1.6.3 Effect of ethanol on histone acetylation 

The enhanced cytokine responses to TLR ligation seen in AAH could have a similar origin to 

those in COPD. In addition, clinical trial data suggests at least a proportion of AAH patients 

have relative steroid insensitivity and again this could have an epigenetic basis. Ethanol 

metabolism induces oxidative stress which could lead to HDAC inhibition, hyperacetylation of 

histones and consequent increased transcription of pro-inflammatory genes. In addition, the 

hepatic end product of ethanol metabolism is acetate which in high concentrations may be able 

to influence the balance of HAT and HDAC activity to favour inflammatory gene expression. 

The specific role of histone acetylation in ethanol-enhanced inflammatory responses has yet to 

be studied. However, evidence is emerging that ethanol does increase acetylation of cellular 

proteins, including core histones. This was first demonstrated in isolated rat hepatocytes 

incubated with 5-200mM ethanol for 24h which showed a dose- and time-dependent increase in 

acetyl-histone H3 at lysine 9 (AcH3K9) as measured by immunoblotting (Park, Miller et al. 

2003). This increase was mimicked by the HDAC inhibitor trichostatin A (TSA) and abrogated 

by inhibitors of ethanol metabolism 4-methylpyrazole (ADH inhibitor) and cyanamide (ALDH 

inhibitor), emphasising the importance of ethanol metabolism at least as far as acetate in the 

mechanism. Similar studies performed in ethanol-exposed rat hepatic stellate cells (HSC) 

showed a similar dose- and time-dependent increase in AcH3K9 with a peak of 86-fold at 

200mM ethanol and 72h, perhaps slower than in hepatocytes due to the lower rate of ethanol 

metabolism in HSC (Kim and Shukla 2005). In vivo work with ethanol-fed rats confirmed the 

increased AcH3K9 in hepatocytes. This was associated with increased HAT activity which was 

shown to be particularly active for the H3K9 modification. Chromatin immunoprecipitation (ChIP) 

demonstrated that this modification was associated with the ADH1 gene, the expression of 

which was upregulated by ethanol. The increased HAT activity was not reduced by inhibitors of 

the ERK and JNK signalling pathways, suggesting that it may occur through a process distinct 

from normal upstream signalling events (Park, Lim et al. 2005). Further experiments with bolus 

ethanol injection showed that the increases in histone acetylation were greatest in liver (6-fold), 

lung (3-fold) and testes (3-fold) but there was no effect in kidney, brain, heart, pancreas, 

stomach, colon or blood vessels (Kim and Shukla 2006).  

The effect of alcohols of differing carbon chain length has been recently studied. Alcohols with 

up to eight carbons were able to increase HAT activity and H3K9 acetylation in cultured primary 

rat hepatocytes, with the peak activity induced by butanol. Inhibitors of alcohol metabolism 

abrogated the effect. The carboxylic acid metabolites of these alcohols had a similar effect on 

HAT activity but propionate and butyrate were also observed to modestly reduce HDAC activity 

(Choudhury and Shukla 2008). It appears that both HAT activation and HDAC inhibition occur 

and either or both could be responsible for the observed changes in histone acetylation. 
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Histones are not the only cellular proteins to be acetylated in the presence of ethanol. Recent 

work has shown increased acetylation of hepatocyte microtubule proteins in ethanol which was 

associated with impaired recruitment of HDAC6 and abrogated by 4-MP (Shepard, Joseph et al. 

2008). This cytoskeletal acetylation may contribute to proteasome dysfunction in AAH and to 

the formation of Mallory bodies. Another recent investigation demonstrated that total liver 

acetylated lysine in both whole liver and mitochondrial fractions was increased five-fold after six 

weeks of ethanol feeding in rodents and the mechanism was not reliant on CYP2E1 or SIRT3 

(Picklo 2008). 

1.6.4 Putative mechanisms of ethanol-induced histone acetylation 

The existing data make feasible the idea that ethanol’s enhancement of inflammatory cytokine 

responses to TLR stimulation, a key component of AAH pathogenesis, occurs as a result of 

increased histone acetylation at pro-inflammatory gene loci after prolonged ethanol exposure 

and metabolism. A mechanism which favours net increase in histone acetylation could be 

expected to produce insensitivity to endogenous and exogenous glucocorticoids and so 

facilitate prolongation and propagation of the inflammatory response. From what is already 

known, a number of mechanisms by which ethanol could increase histone acetylation might be 

postulated. 

Increased upstream signalling. As discussed above, ethanol exposure can increase TLR 

receptor density and, through oxidative and ER stress, potentiate signalling in the NF-κB 

pathway. This will lead to increased recruitment of co-activators with associated HAT activity to 

inflammatory gene promoter sites and increased histone acetylation as part of the normal 

transcription process. However, this would only cause activation-dependent histone acetylation 

and there would not be acetylation of histones before the arrival of the activating stimulus as 

observed in ethanol, and it would not result in acetylation of other proteins. It could still be 

debated as to whether the significant contribution to enhanced transcription came from 

increased transcription factor pathway signalling, increased ground-state histone acetylation 

leaving a gene ‘primed’ for greater transcription, or impaired deacetylation leading to ineffective 

termination of transcription, or whether all three mechanisms contribute to the observed effect. 

The clinical pattern of inflammation in AAH is of an inflammatory response that has been 

uncoupled form its normal regulatory mechanisms with a prolonged, ‘smouldering’ inflammation 

atypical of a classical ‘septic’ response, perhaps hinting at a role for impaired deacetylation. 

HDAC inhibition. The presence of ROS and the adducted products of oxidative reactions are 

thoroughly documented in ALD, so it is entirely conceivable that nitrosylation of HDACs and 

consequent inhibition of function occurs in AAH in the same way as in COPD. The cellular 

perturbations of ER stress, mitochondrial dysfunction and increased acetaldehyde might all 

have an additional detrimental effect on HDAC activity. In addition, ethanol metabolism results 

in significant elevations in the concentration of free acetate which may impair HDAC enzymatic 
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activity by end-product inhibition. Furthermore, ethanol metabolism results in depletion of NAD+ 

which could lead to inhibition of the NAD+-dependent class 3 HDACs, the sirtuins. Recent 

studies have confirmed that ethanol can reduce both the expression and the activity of sirtuins 

in liver (Lieber, Leo et al. 2008; You, Liang et al. 2008). 

Acetyl-coenzyme A. The acetate produced by ethanol metabolism is an obvious candidate for 

causing histone acetylation events. However, free acetate is not available for use by HAT and 

must be converted to acetyl-coA to be deployed for histone acetylation. This is achieved by 

acetyl-coA synthetase enzymes which are present in macrophages (Fujino, Ikeda et al. 2003) 

and which can increase the pool of acetyl-coA available for protein acetylation. The acetate may 

also reduce the total HDAC activity through sirtuin inhibition; free acetate will not affect NAD+ 

but once converted to acetyl-coA it can enter the Krebs cycle and convert NAD+ to NADH in the 

same way as if it had come from glycolysis or fatty acid oxidation. 

PI3K activation. PI3K activation of AKT was implicated in the HDAC2 inhibition and enhanced 

cytokine responses of COPD and there is evidence that ethanol can also increase PI3K activity 

(Liu, Tian et al. 2002). Furthermore, AKT signalling can inhibit nicotinamidase synthesis and so 

increase the cellular ratio of nicotinamide:NAD+ leading to reduced sirtuin activity (Kassi and 

Papavassiliou 2008), and the potent sirtuin activator resveratrol is a PI3K inhibitor (Frojdo, 

Cozzone et al. 2007). 

A positive feedback loop may contribute to perpetuation of inflammation through impaired 

deacetylation. The question of how concerted bursts of multiple inflammatory cytokine 

transcription could occur in sepsis despite the global moderating effect of HDAC activity was 

addressed experimentally by measuring changes in HDAC1 after stimulation with other 

inflammatory mediators. This revealed that TNFα signalling results in depletion of HDAC1 by an 

IKK2-dependent mechanism, leading to increased acetylation and transcription of other genes 

(Gopal, Arora et al. 2006). As elevated TNFα is a prominent feature of AAH and correlates 

strongly with clinical severity and outcome, its role in damping one of the critical epigenetic 

regulators of multiple gene expression might be of particular relevance. It could be postulated 

that in chronic ethanol the various impediments to HDAC activity described above will sensitise 

the cell to the effect of TNFα-induced HDAC1 depletion, amplifying its effect on cytokine gene 

transcription and contributing to the enhanced inflammatory response. 

A further contributing mechanism might be one specific to HDAC6 and SIRT2 which have a role 

in the cellular trafficking of proteins destined for autophagy and marked for lysis by 

ubiquitination. By binding the ubiquitin moiety of an unneeded, often misfolded protein and then 

deacetylating α-tubulin in the microtubule network, HDAC6 can activate transport of proteins to 

aggresomes for degradation by autophagy. Deacetylated microtubules have enhanced motility 

so HDAC inhibition by ethanol would lead to impaired intracellular transport and protein 

degradation, presumably worsening the cellular stress associated with the unfolded protein 
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response to adducted proteins. HDAC6 also has a role in maintaining HSP90 in its deacetylated 

form in which it can stabilise the glucocorticoid receptor and preserve the cellular actions of 

steroids. Consequently, HDAC6 inhibition impairs GR signalling and reduces steroid sensitivity 

(Boyault, Sadoul et al. 2007). The ability of ethanol to inhibit HDAC6 in hepatocytes and cause 

microtubule dysfunction has been demonstrated (Shepard, Joseph et al. 2008), but the 

association with steroid sensitivity has not been investigated. 

1.6.5 Probable benefits of methyl xanthines in ALD 

To suggest that the enhanced inflammatory responses seen in ethanol have a basis in HDAC 

inhibition and impaired glucocorticoid responsiveness similar to that seen in COPD implies that 

ethanol-induced enhancement of inflammation and steroid insensitivity might also respond to 

the HDAC-activating effects of theophylline. Theophylline has yet to be studied in ALD, but the 

related methyl xanthine compounds caffeine and pentoxifylline each have evidence of benefit. 

 

 

Figure 1-7 Chemical structures of methyl xanthines 

The benefits of pentoxifylline in AAH are discussed in Section 1.1.7.3. Caffeine is likely to be 

responsible for the impressive protective effect of coffee drinking against ethanol cirrhosis. This 

was most recently described in an epidemiological study of 125580 individuals followed for over 

15 years in which drinking four or more cups of coffee a day reduced the relative risk of 

alcoholic cirrhosis to 0.2 (p<0.001), a finding which was absent in cirrhosis of other causes 

(Klatsky, Morton et al. 2006). Coffee contains many biologically active compounds (including 

antioxidants and cafestol which boosts cellular glutathione) but the most plentiful and the most 

likely to be responsible for the hepatoprotective effect is caffeine. The fact that the protective 

effect was not observed with tea in this study goes against caffeine being responsible. However, 

tea consumption in the study cohort was low, and other studies have demonstrated lower 

transaminase levels in tea as well as coffee drinkers (Ruhl and Everhart 2005). 

Caffeine’s direct inhibition of phosphodiesterases (PDE) increases cAMP and consequent anti-

inflammatory signalling through PKA, and this effect is either enhanced or diminished by its 

antagonism of cell surface adenosine receptors, depending on the class of receptor expressed 

(section 1.4.1.5). Chronic caffeine exposure causes persistent A2A receptor antagonism and 
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subsequent up-regulation. It could be postulated that this would increase leucocyte sensitivity to 

the anti-inflammatory effects of adenosine, protecting coffee-drinkers from tissue damage. 

Caffeine is metabolised by hepatic CYP1A2 to its principal metabolites paraxanthine (80%), 

theobromine (15%) and theophylline (4%) which have similar but distinct effects on PDE and 

adenosine receptors. Theophylline has been shown to have an antifibrotic effect in lung, acting 

via the cAMP-PKA pathway to reduce TGF-β conversion of fibroblasts to myofibroblasts and 

suppressing collagen synthesis by reduction of COL1 mRNA in chronic obstructive pulmonary 

disease (Yano, Yoshida et al. 2006). The same group has demonstrated that this pathway is not 

only antifibrotic but also antiapoptotic in radiological contrast-induced nephropathy (Yano, Itoh 

et al. 2003). However, the circulating concentration of theophylline generated from metabolism 

of normal coffee intake is not high enough to cause detectable PDE inhibition, although the 

theophylline is generated in the liver, so local tissue concentrations may be significantly higher. 

The further anti-inflammatory mechanism of theophylline described in section 1.6.2 with 

recruitment of HDAC to silence transcriptionally-active pro-inflammatory genes was observed at 

lower concentrations than those necessary for PDE inhibition or A2A receptor antagonism (Ito, 

Lim et al. 2002). 

More recently, caffeine itself has been shown to have an antifibrotic effect on mouse liver in 

vivo. Caffeine pre-treatment reduced fibrosis in mice challenged with carbon tetrachloride 

(Chan, Montesinos et al. 2006). 

Thus evidence is accumulating to support the notion that methyl xanthines have a beneficial 

effect in inflammatory and fibrotic disease, and that they might modulate disease progression in 

ALD, but the therapeutic potential of this class in AAH and the mechanism, epigenetic or 

otherwise, through which it might act in that context remains to be discovered. 

1.7 Plan of investigation 

1.7.1 Thesis 

This investigation developed from the thesis that the augmented acute inflammatory responses 

characteristic of acute alcoholic hepatitis have both a genetic and an epigenetic basis, or, more 

generally, that the machinery of energy metabolism and host defence (both critically present in 

the liver) are linked at an epigenetic level so that the character and intensity of inflammatory 

responses reflect not only the product of receptor signalling cascades shaped by individual 

genetic background but also the susceptibility of the mechanism to environmental influences. 

This allows the organism to modulate its inflammatory response according to the prevailing or 

anticipated energy supply, which might provide a survival advantage in the face of combined 

pressures of starvation and infection. This adaptability, however, brings with it vulnerability to 

the amplifying and perpetuating effects of metabolic excesses on inflammatory responses which 
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can be exemplified by acute alcoholic hepatitis. Modulation of these epigenetic interactions has 

potential for therapeutic benefit in inflammatory disease. 

1.7.2 Hypothesis 

Three avenues of investigation were explored with separate but related hypotheses: 

• That the functional S180L polymorphism in the TLR adapter molecule MAL, a critical 

genetic determinant of TLR-triggered disease, will contribute to the pathogenesis of 

alcoholic liver disease and that other liver disease associated with excess energy 

metabolism, non-alcoholic steatohepatitis (Chapter 3). 

• That acute alcoholic hepatitis is characterised by reduction in the sensitivity of immune 

responses to glucocorticoid inhibition and that this steroid insensitivity can be 

ameliorated by the epigenetic modulator theophylline (Chapter 4). 

• That the enhanced macrophage cytokine response to endotoxin seen in acute alcoholic 

hepatitis occurs through uncoupling of cytokine gene transcription from its normal 

regulatory mechanisms by increased histone acetylation at proinflammatory gene 

promoter regions, as a consequence of the interaction of ethanol metabolism with the 

epigenetic mechanisms of transcriptional regulation (Chapter 5). 
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2 General Methods and Materials 

2.1 Laboratory Procedure 

All experimental procedures were conducted according to the Control of Substances Hazardous 

to Health (COSHH) regulations.  All laboratory work was carried out in compliance with the 

‘University Safety Policy’ and the ‘Departmental Safety Policy’.   Laboratory procedures were 

performed in accordance with the Newcastle University publications ‘Safe Working with 

Biological Hazards’, and ‘Safe Working with Chemicals in the Laboratory’. Experiments 

involving radioactivity were carried out in accordance with the regulations outlined in ‘Local 

Rules for the use of unsealed sources of radioactivity in the RVI, the Medical School, the Dental 

Hospital and the Dental School – University of Newcastle upon Tyne’ and also ‘A Basic Guide 

for Radiation Workers’.  Tissue culture was carried out in compliance with the regulations for 

containment of class II pathogens. 

2.2 Cell Culture 

All cells were grown and maintained in a humidified atmosphere at 37ºC with 5% CO2 (IncuSafe 

MCO-17AI, Sanyo, Japan). Cell lines were passaged in a containment level II microbiological 

safety cabinet (Envair, Haslingden, UK) every 5-7 days at a ratio of 1:5 depending on growth. 

Cells were grown in 25, 75 and150cm2 culture flasks (Corning, Stone, UK and Greiner Bio-One, 

Frickenhausen, Germany). Cells in suspension were pelleted by centrifugation at 400g for 5 

minutes at room temperature in a bench-top centrifuge (Sorvall legend RT, Thermo Scientific, 

Waltham MA) unless otherwise stated.  Adherent cells were washed in phosphate buffered 

saline (PBS; Lonza, Wokingham, UK) and detached by incubation with pre-warmed 167g/l 

trypsin / 67g/l ethylenediaminetetraacetic acid (EDTA; Lonza) solution for 5 minutes and then 

washed twice by centrifugation in PBS. 

2.2.1 Culture media 

Media were supplemented with 10% fetal calf serum (FCS; Lonza) from a single batch that had 

been tested for its ability to maintain cell viability and confirmed endotoxin-free. FCS was heat-

inactivated to denature complement proteins by heating to 56 ºC for 30 minutes and then sterile 

filtered through a 0.22µm membrane (Millipore, Billerica MA) before use. All media were 

supplemented with 2mM L-glutamine (Lonza). Additional supplements were made as required. 

Antimicrobials were not routinely added to media, it being thought preferable when studying 

inflammatory responses to avoid low-grade microbial contamination which might not be visually 

apparent due to the bacteriostatic effect of antibiotics but still capable of causing significant TLR 

stimulation, and to rely on scrupulous aseptic technique alone. All cultures showing signs of 

microbial contamination were destroyed and experiments repeated with fresh cultures. The 
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media used in this study were Roswell Park Memorial Institute 1640 (RPMI; Lonza) and 

Iscove’s Modified Dulbecco’s Medium with High Glucose (IMDM; ATCC, Rockville MD). 

2.2.2 Cell counting and viability 

Cells were counted using a Neubauer Improved haemocytometer (Hawksley, Lancing, UK). 

10µl of cell suspension was allowed to diffuse beneath the coverslip and examined at x20 

magnification. Cells in the central large square were counted and the total multiplied by 104 to 

give the number of cells per millilitre.  

Viability was assessed by trypan blue exclusion. 10µl of cell suspension was mixed with 10µl 

0.2% trypan blue (Sigma, Poole, UK) and examined immediately in a haemocytometer. At least 

100 cells were counted in each determination. Cells that failed to exclude trypan blue were 

classified as non-viable. 

2.2.3 Cryopreservation 

Cell lines were expanded and cryopreserved at low passage number. Approximately 2x106 cells 

were pelletted and resuspended in 2ml freezing medium (normal media supplemented with 10% 

demethylsulphoxide (DMSO; Sigma) to prevent cell damage from ice crystal formation) in a 2ml 

cryovial (Corning). Cryoinjury was further prevented by controlled cooling in an isopropanol-

jacketed freezing container (‘Mr Frosty’; Nalgene, Rochester NY) which cools no faster than 1ºC 

per minute in a -80ºC freezer. Frozen cells were transferred to liquid nitrogen (-196ºC) for long 

term storage. 

Cells were retrieved from cold storage by rapid thawing to 37ºC in a water bath, washed and 

pelleted three times to remove DMSO. Pellets were resuspended in 10ml normal media, divided 

between two 25cm2 flasks and incubated for 48h to allow growth factor accumulation before 

decanting to 75cm2 flasks and adding media to a total of 20ml. 

2.2.4 Cells 

Cultured cell lines are an established tool for the study of cellular responses. They are generally 

derived from human or animal neoplasms and the malignant transformation confers an ability to 

divide repeatedly in culture and a robustness that allows them to survive in experimental 

conditions that are only approximately physiological. Howvever, this neoplastic transformation 

and tolerance of suboptimal culture conditions increases the chance of nonphysiological 

responses which limits the utility and generalisability of such model systems. 
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2.2.4.1 THP-1 

This is a monocyte cell line obtained from the American Type Culture Collection of cell cultures 

(catalogue number TIB-202; ATCC) which was derived from peripheral blood monocytes from a 

one year old male with acute monocytic leukaemia in 1978. It was maintained in RPMI with 

2mM L-glutamine and 10% FCS. 

2.2.4.2 Monomac-6  

Monomac-6 is a monocyte-macrophage cell line obtained from the German Collection of 

Microorganisms and Cell Cultures (catalogue number ACC124; DSMZ, Braunschweig, 

Germany) which was derived from peripheral blood monocytes from a 64 year old man with 

relapsed acute monoblastic leukaemia (FAB M5) in 1985. This line differs from THP-1 and most 

other monocytic lines in that it displays features of mature macrophages without requirement for 

pre-treatment with phorbol esters (Ziegler-Heitbrock, Thiel et al. 1988). It was maintained in 

RPMI with 2mM L-glutamine, 10% FCS, 9µg/ml human insulin (Sigma), 1mM sodium pyruvate 

(Gibco, Paisley, UK) and 100µM non-essential amino acids (Gibco). 

2.2.4.3 HeLa 

HeLa is an epithelial line gratefully received from Dr Graeme O’Boyle at Newcastle University. It 

was established from the human cervical carcinoma of a 31 year old woman in 1951. It was 

maintained in RPMI with 2mM L-glutamine and 10% FCS. 

2.2.4.4 Peripheral blood mononuclear cells 

Peripheral blood mononuclear cells were separated from fresh blood taken from study subjects 

and healthy volunteers. 1µl of 1000u/ml heparin (Sigma, confirmed endotoxin-free in house) per 

ml of blood was added and mixed thoroughly. The sample was then diluted in an equal volume 

of serum-free RPMI and layered on top of Lymphoprep density gradient medium (1.077 ± 

0.001g/ml; Axis-Shield, Norway) in Leucosep cell-porous membrane tubes (Greiner Bio-One). 

Centrifugation at 800g for 20 minutes with no brake yielded a pellet of erythrocytes and 

neutrophils and partition of PBMCs at the plasma/Lymphoprep interface. These were aspirated 

and washed twice. Contaminating erythrocytes were eliminated by incubation in red cell lysis 

buffer (8.3g NH4Cl, 1.0g KHCO3, 1.8ml 5% EDTA, filter sterilised at 0.2µm and made up to 

1000ml with ddiH2O) for 15 minutes at room temperature before a final wash. PBMC were then 

maintained in RPMI with 2mM L-glutamine and 10% FCS. 

2.2.5 Mycoplasma testing 

Mycoplasma infection can modify cellular responses and is undetectable by light microscopy. 

Cell lines were screened for all known Mycoplasma, Acholeplasma and Ureaplasma species 
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every six months using the VenorGem Mycoplasma Detection Polymerase Chain Reaction 

(PCR) Assay (Minerva Biolabs, Berlin, Germany). This uses PCR primers specific for the highly-

conserved 16S ribosomal RNA coding region of the Mycoplasma genome and can detect as 

little as 1fg of Mycoplasma DNA.  

100µl of cell culture was heated to 95ºC for 5 minutes and briefly centrifuged to pellet debris. 

PCR reactions were prepared using 5µl primer/dNTP mix, 0.2µl Taq polymerase 5U/µl (Sigma), 

5µl 10x reaction buffer (100mM Tris-HCl pH 8.5, 500mM KCL and 30mM MgCl2), 35.8µl DNA-

free water, 2µl internal control DNA (191bp) and 2µl of the boiled sample or 2µl DNA-free water 

(negative control) or 2µl DNA fragment from Mycoplasma orale (278bp, positive control). PCR 

was run in a thermal cycler (Thermo Hybaid, Ashford, UK): samples were heated to 94ºC for 2 

minutes followed by 35 cycles of 94ºC for 30 sec (denaturation), 55ºC for 30 sec (primer 

annealing) and 72ºC  for 30 sec (primer extension). 8µl of PCR products were mixed with 2µl of 

5x loading buffer (70% Tris-acetate-EDTA (TAE) buffer, 30% glycerol, 0.001% bromophenol 

blue) and electrophoresed in a 1% agarose gel containing ethidium bromide (all Sigma). The 

internal control produces a band at 191bp in all completed reactions and a second band around 

270bp indicates the presence of Mycoplasma (Figure 2-1 ). 
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Figure 2-1 Mycoplasma testing by PCR 

Each reaction contains internal control DNA produci ng an amplicon of 191bp. 

2.2.6 Endotoxin testing of media and reagents 

Endotoxin (particularly LPS) contamination of media or reagents could alter cellular responses 

to stimulation either by activating cells or by inducing endotoxin tolerance. The original method 

for establishing that fluids and medications for biological or clinical use were ‘non-pyrogenic’ 

was to inject a sample into a rabbit and observe it for fever. This has been superseded by the 
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limulus amoebocyte lysate (LAL) assay based on the coagulation response of derivatives of the 

innate immune cells of the horseshoe crab. Endotoxins and even lipopolysaccharides are a 

heterogenous group of molecules, so bioassays like this which measure a biological effect of 

endotoxin rather than an absolute quantity have particular utility. However, although the LAL 

assay is well validated for simple fluids, its limitations are more apparent in complex matrices 

such as those containing serum (Broad 2007). A novel bioassay that more closely mimics the 

conditions of the experiments uses cell lines that either naturally or by transfection express 

endotoxin receptors, and this natural cellular endotoxin responsiveness is coupled to a reporter 

system that produces a colour change in the presence of an endotoxin dose sufficient to 

engage downstream signalling from TLRs.  

HEK-Blue4 cells (Invivogen, Toulouse, France) are a stably transfected clone of the human 

embryonic kidney (HEK) 293 cell line expressing the LPS receptor complex TLR4, CD14 and 

MD2 with a gene for secretable alkaline phosphatase (ALP) under the control of a NF-κB 

promoter. LPS binding results in ALP secretion which catalyses a colour change in the detection 

medium. THP-1Blue (Invivogen) are THP1 cells transfected with a similar reporter gene and so 

respond in the presence of any of a range of TLR ligands rather than LPS alone. Their 

sensitivity can be increased by treatment with phorbol myristate acetate which induces 

macrophage differentiation, or by over-expression of CD14 (THP1Blue-CD14). 

Media were tested for LPS contamination at 6-monthly intervals or before large experiments 

using HEK-Blue4 cells. Further testing using THP1Blue cells was undertaken by Dr John Taylor 

in Newcastle University Dental School Host Response Group. HEK-Blue4 cells were grown in 

the recommended medium (Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5g/l glucose, 

10% FCS, 200mM L-glutamine, 20,000U/l penicillin, 20mg/l streptomycin, 100mg/ml normocin 

and 1x HEK-Blue selection mix) to 80% confluency. Cells were detached by trypsin-EDTA, 

washed and resuspended in HEK-Blue detection medium at a concentration of 1-1.25x105 

cells/ml. An LPS standard curve was constructed using E. coli K12 LPS from 0.1ng/ml to 

100µg/ml. 20µl of each standard or sample was transferred to a 96-well plate (Sarstedt, Newton 

NC) in triplicate. 200µl of cell suspension in detection medium was added to each well with 

fresh pipette tips for each well to avoid cross-contamination and incubated at 37ºC in 5% CO2 

for 18 hours. Plates were inspected for blue colour change in the positive control wells and none 

in the negative controls. The presence of LPS in samples was detected by a blue colour change 

in the media, and quantified against the standard curve by measuring absorbance at 620nm 

(Figure 2-2 ). 

This system was able to detect LPS concentrations above 0.1ng/ml. However, the response 

saturated at 10ng/ml giving a two-log10 dynamic range which was not useful for LPS 

quantification. An additional limitation of this system is its inapplicability to biological samples 

such as serum because the ALP activity in the sample induces a colour change in the substrate 
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even in the absence of LPS. Various combinations of heat-inactivation and dilution were 

investigated but none allowed useful measurement of serum LPS. 

Standard 
curve

Ethanol 
serial 

dilutions

LPS 
serial 

dilutions

Neg control

A. Sample plate

B. Standard curve

 

Figure 2-2 LPS detection by HEK-Blue4 cells 

The standard curve illustrates the narrow dynamic r ange of this system which limits its 

use for LPS quantification. 

2.3 Ethanol 

2.3.1 Ethanol concentrations 

The blood alcohol concentration at the legal limit for driving in the UK is 80mg/dl (17.3mM, 

0.102%). Concentrations over 400mg/dl can cause loss of consciousness and death from 

respiratory suppression or cardiac arrhythmia in ethanol-naïve drinkers. However, chronic 

heavy drinkers can achieve concentrations of over 500mg/dl (108mM, 0.64%) with only 

moderate impairment of psychomotor function (Jones 1999). Concentrations in portal vein and 

liver tissue are likely to be higher but fluctuate with intake. 400mg/dl (86mM, 0.5%) was used as 

an estimate of median liver concentration in very heavy drinkers. 
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2.3.2 Ethanol measurement 

The ethanol concentration in samples and media was measured by its ability to reduce 

potassium dichromate K2Cr207 (Jetter 1950). In acidified dichromate solution the ethanol is 

oxidised to acetate and water with reduction of the chromium(VI) to chromium(III) which 

produces a colour change from yellow to greenish blue. 

Ethanol was measured using the Quantichrom Ethanol Assay Kit (BioAssay Systems, Hayward 

CA) according to manufacturer’s instructions. Samples were deproteinated by adding 125µl of 

sample to 250µl 10% trichloroacetic acid and centrifuging at 15000g for 5 minutes at room 

temperature to pellet proteinaceous debris. 100µl of supernatant was transferred to a 96-well 

plate in triplicate and 100µl acidified potassium dichromate solution added and incubated for 8-

30 minutes at room temperature until a colour change was observed. The reaction was stopped 

by addition of sodium hydroxide-containing stop solution and the blue colour measured 

spectrophotometrically at 595nm in a MRX II plate reader (Dynex Technologies, Chantilly VA). 

Concentrations were calculated from a standard curve in the range 0-2% ethanol (Figure 2-3A ). 

The suitability of the assay for cell cultures was verified using samples spiked with a known 

concentration of ethanol. 

2.3.3 Ethanol culture conditions 

The evaporation of ethanol from solution at 37°C is  significant and could lead to loss of ethanol 

from the culture media during a prolonged incubation. The decay of ethanol concentration from 

0.5% in media at 37°C was determined by serial meas urements over 72h, but had fallen below 

the detection limit of the assay of 0.1% by 24h. Sealing culture vessels to minimise evaporation 

is not an option in this situation as CO2 exclusion over 7 days would significantly limit the 

buffering capacity of the media. One solution would be replacement of fresh 0.5% ethanol 

containing media every 24h, and this has the advantage of mimicking the diurnal variation in 

most human ethanol intake. However, for suspension cells this would involve daily manipulation 

and maybe even centrifugation of cultures with attendant risks of bacterial inoculation and cell 

activation. An alternative method is the use of an ethanol vapour incubator as pioneered by the 

Kolls group (Zhang, Bagby et al. 2001). In this system the required concentration of ethanol is 

added to the culture media and twice this concentration is added to the water in the 

humidification tray of the incubator. Ethanol evaporates from the tray and fills the incubator with 

ethanol vapour which equilibrates with the dissolved ethanol in solution so that the vapour 

pressure of ethanol in the incubator maintains the ethanol concentration in culture media at the 

required level. This system was optimised for use in our specific incubator. Sterile 1% ethanol 

with 160µl/l water bath treatment (Sigma) was added to the humidification tray with variation in 

volume and replacement interval. It was found that 500ml 1% ethanol replaced every 48h and 

any time the incubator door was opened maintained cell culture ethanol concentration close to 

0.5% (Figure 2-3B ). 
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Figure 2-3 Potassium dichromate ethanol assay 

An example standard curve is shown in (A). An examp le of regular monitoring of ethanol 

concentration in media (from ACSS knockdown experim ents in section 5.2.10.2) is 

illustrated in (B). 0.5% ethanol = 86mM. 

2.4 LPS stimulation 

LPS stimulation was achieved with purified E. coli O111:B4 LPS (Invivogen) to achieve a 

predominant TLR4 stimulation. LPS was stored at 4°C  at a concentration of 10µg/ml in 

endotoxin-tested glass or polystyrene vessels to minimise loss of LPS due to adhesion to the 

vessel wall. Stocks were vortexed at full speed for 5 minutes immediately prior to use to release 

adherent LPS into solution. Dose-response curves for THP-1 and MonoMac6 cells revealed a 

stimulating concentration of 10ng/ml produced an IL-6 response in the middle of the dynamic 

range of cytokine expression so this concentration was used for subsequent experiments 

(Figure 2-4 ). A single batch of LPS was used for all experiments. 
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Figure 2-4 IL-6 dose response of MonoMac6 cells to LPS in normal media 

and 86mM ethanol 

2.5 Protein detection by Western blotting 

Western immunoblotting was used to identify the presence and estimate relative concentrations 

of intracellular proteins in samples. 

2.5.1 Preparation of cell lysates 

Lysis was achieved using proprietary extraction reagents M-PER for whole cell lysis and NE-

PER for separate nuclear and cytoplasmic fractions (both Pierce Biotechnology, Rockford IL). 

To minimise protein loss from protease release and activation, all stages were performed at 4°C 

or on ice using chilled reagents and vessels. Protease inhibitors (Roche Complete Mini tablets) 

were added to M-PER, cytoplasmic extraction reagent (CER) I and nuclear extraction reagent 

(NER). Cells were harvested and centrifuged at 400g for 10 minutes and washed twice in ice-

cool PBS to remove FCS that would interfere with later protein determination. Supernatants 

were discarded and pellets resuspended in 1ml PBS and transferred to 1.5ml centrifuge tubes. 

For whole cell lysates, cells were pelleted by centrifugation at 2500g for 10 minutes and the 

supernatant discarded. The pellet was resuspended in 1ml M-PER and mixed by pipetting. After 

gentle shaking for 10 minutes debris was pelleted by centrifugation at 15000g for 15 minutes 

and the supernatant transferred to a new cooled tube. 

For separate nuclear and cytoplasmic fractions cells were pelleted at 400g for 10 minutes and 

the supernatant aspirated to near-dryness. The pellet was resuspended in 100µl CER I and 

vortexed at maximum speed for 15 seconds then incubated on ice for 10 minutes. 5.5µl CER II 

was added and vortexed for 5 seconds, incubated for 1 minute and then vortexed for 5 seconds 

again before pelleting nuclei and debris by centrifugation at 15000g for 5 minutes. The 
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supernatant (cytoplasmic extract) was transferred to a new cooled tube and the nuclear pellet 

resuspended in 50µl NER and vortexed for 15 seconds every 10 minutes for 40 minutes. The 

sample was centrifuged at 15000g for 10 minutes and the supernatant (nuclear extract) 

transferred to a new cooled tube. Reagent volume were varied depending on pellet size and 

desired protein concentration but the ratio of CER I:CER II:NER of 200:11:100 was maintained. 

2.5.2 Determination of protein concentration 

Total protein concentration in each sample was determined by the Bradford assay (Bradford 

1976) which utilises a colour change in Coomassie reagent when its blue anionic form is 

stabilised by binding to amino groups in the protein. 1µl of each lysate was added to 250 µl of 

reagent in triplicate in a 96-well plate with gentle agitation for 10 minutes. Absorbance was 

measured at 595nm in a plate reader and converted to an equivalent protein concentration from 

a bovine albumin standard curve (Figure 2-5 ).  

 

Figure 2-5 Sample standard curve for protein determ ination by Coomassie 

reagent (Bradford assay) 

2.5.3 Sample preparation 

Samples were equalised for total protein concentration and mixed with sample buffer (0.125M 

Tris pH 6.8, 2% sodium dodecyl sulphate (SDS), 10% glycerol, 0.001% bromophenol blue, 10% 

β-mercaptoethanol) to give a final equalised total protein concentration of 2-5mg/ml. Samples 

were heated to 95°C on a hot block (Techne, Stone U K) for 5 minutes to ensure protein 
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denaturation and then cooled and briefly centrifuged before use or storage at -20°C for up to a 

month or -80°C for longer. 

2.5.4 Polyacrylamide gel electrophoresis (PAGE) 

Proteins were separated by electrophoresis in denaturing (SDS-containing) polyacrylamide 

gels. The percentage of acrylamide was varied depending on the molecular weights of the 

proteins of interest but a typical method to make four 0.75mm mini gels (Hoefer, Holliston MA) 

would consist of 12.5% running gel (7.8ml ddiH2O, 10.4ml acrylamide-bisacrylamide (Sigma), 

6.3ml buffer ‘B’ (1.5M TrisHCl pH 8.8), 250µl SDS 10%, 250µl ammonium persulphate (APS) 

10%, 12.5µl N,N,N,N-tetramethylethylenediamine (TEMED)) and 4% stacking gel (8.9ml 

ddiH2O, 2.0ml acrylamide-bisacrylamide, 3.8ml buffer ‘D’ (0.5M TrisHCl pH 6.8), 150µl SDS 

10%, 150µl APS 10%, 7.5µl TEMED). Electrophoresis buffer was made at 10x concentration 

(30.3g TrisHCl, 144.2g glycine, 10g SDS made up to 1000ml with ddiH2O) and diluted for use. 

Samples were introduced to each lane of the gel with 5µl protein molecular weight standards 

(Fermentas, Burlington, Canada) in the first lane. Electrophoresis took place at 35mA per gel, 

300V until sufficient separation of standards was achieved (20-40 minutes). 

2.5.5 Immunoblotting 

Proteins were electroblotted from the PAGE gels on to methanol-soaked nitrocellulose 

membranes (Immobilon, Millipore, Billerica MA) in N-cyclohexyl-3-aminopropanesulfonic acid 

(CAPS) buffer (2.213g CAPS, 100ml methanol, pH 11, made up to 1000ml with diH2O) at 

250mA, 300V for 2 hours or 50mA, 300V overnight in a water-cooled transfer tank (Hoefer). 

Non-specific protein binding was blocked by incubating the membrane in 5% fat-free milk 

(Marvel, Premier Foods, St Albans UK) made up in PBS with 0.05% Tween-20 (Sigma) (PBS-

Tween) for 1 hour on a rocker (Stuart, Stone UK) at room temperature. Membranes were 

probed for proteins of interest by hybridisation with appropriate primary antibodies in 5% milk 

overnight at 4°C or for 2 hours at room temperature . After three washes in PBS-Tween 

membranes were incubated with appropriate horseradish peroxidase (HRP) conjugated 

secondary antibodies in 3% milk for 45 minutes at room temperature. Hybridised protein-

antibody bands were visualised using a chemiluminescent HRP substrate (SuperSignal West 

Pico (Thermo Scientific) or Immobilon Western Chemiluminescent Substrate (Millipore) where 

increased sensitivity was required) and autoradiography. The use of a second antibody probe 

for a constitutively expressed protein such as β-actin can control for unequal loading of 

samples. 

2.5.6 Analysis of blots 

Semiquantitative analysis of relative protein concentration in autoradiographs was performed by 

band densitometry using Scion Image software (Scion Corp, Frederick MD). 
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2.5.7 Copper staining of membranes 

Membranes were stained to confirm equal loading and even transfer with copper 

phthalocyanine 3’,4’,4’’,4’’’-tetrasulfonic acid (Sigma) 0.05% in 12mM HCl and destained in 

10mM HCl until bands were clearly resolved (Figure 2-6 ). 

 

Figure 2-6 Copper stained Western immunoblot membra ne 

The copper staining confirms equal protein loading in this Western of nuclear lysates 

probed for NF- κBp65. Lanes 1-4 tolerised by poly-I:C, lanes 5-8 to lerised by LPS. 

2.6 Protein determination by immunoassays 

Quantitative measurements of secreted cytokines were initially made by enzyme-linked 

immunosorbent assay (ELISA) and later in multiplex by the MesoScale Discovery (MSD) 

platform. 

2.6.1 Enzyme-linked immunosorbent assay 

The sandwich ELISA allows specific measurement of protein concentrations over a 2-3 log10 

dynamic range. A clear flat-bottomed well is coated with an excess of a ‘capture’ antibody and 

then non-specific protein binding to the well is blocked so that only epitopes specific to the 

capture antibody will bind. The sample is incubated in the well to allow binding of the protein of 

interest and then unbound sample is washed away. A ‘detection’ antibody, ideally one that binds 

a different epitope of the same protein, is incubated and binds the captured protein. Either the 

detection antibody or a further secondary antibody is coupled to an enzyme-based reporter 

system, such as a biotinylated antibody able to strongly bind streptavidin-conjugated HRP which 
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catalyses a colour change in a substrate at a rate proportional to the concentration of captured 

protein. When the reactions are simultaneously stopped, the wavelength-specific absorbance 

reflects the concentration of analyte in each sample. Serial dilution of protein standards 

subjected to the same incubations as the samples can be used to construct a standard curve 

and derive the concentration of the protein of interest in each sample. 

 

Figure 2-7 ELISA optimisation by checkerboard titra tion 

Two dilutions of detection antibody (D), capture an tibody (C) and peroxidise (P) were 

assayed in every possible combination against 4 10x  dilutions of protein standard. The 

combination giving the best signal within the dynam ic detection range of the plate reader 

while avoiding wasting reagents is selected for sub sequent experiments. 

Cytokines were assayed using antibody pairs optimised in a ‘checkerboard’ titration to find the 

combination of concentrations of enzyme, capture and detection antibodies that gives the best 

signal and widest dynamic range while avoiding wastage (Figure 2-7 ). For the assay, capture 

antibodies were incubated in wells of a 96-well plate in coating buffer (Na2CO3 1.59g, NaHCO3 

2.53g, pH 9.4 made up to 1000ml with ddiH2O) overnight at 4°C before washing three times in 

PBS-Tween and blocking with 5% bovine serum albumin (BSA, Sigma) in PBS for 1-2 hours at 

room temperature. Cell culture supernatants and standards (seven doubling dilutions of a top 

standard of 1-2ng/ml plus a zero standard) were added in triplicate and incubated overnight at 

4°C. Where possible, all samples from a single expe riment or timepoint were assayed on the 
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same plate against the same standard curve to minimise the effect of inter-plate variations. 

Plates were incubated with detection antibody, streptavidin-HRP (both for 2 hours at room 

temperature in 0.5% BSA in PBS-Tween) and substrate (0.012% hydrogen peroxide and 

0.43mg/ml O-phenyldiamine (OPD) in 0.1M citrate buffer pH5), washing three times before each 

step. The substrate was observed for colour change and the reaction stopped with concentrated  

(2M) sulphuric acid before measuring absorbance at 490nm in a plate reader (Dynex). 

Absorbance was corrected for background and cytokine concentrations calculated from the 

standard curve using Prism 4 (GraphPad, LaJolla CA) and Excel (Microsoft Corporation, 

Redmond WA).  

2.6.2 MesoScale Discovery Platform 

MSD (MesoScale, Gaithersburg, MD) is proprietary system that adapts the ELISA principles to 

allow multiplex measurement of several cytokines from the same sample in the same well and 

to improve the sensitivity and dynamic range of the assay. In the MSD 96-well plate the capture 

antibody is bound to a carbon electrode in the floor of the well. The finely irregular surface and 

high absorptive capacity of carbon mean that a high concentration of antibody can be achieved, 

so increasing the range of detectable analyte concentrations. Wells can contain more than one 

antibody electrode, allowing multiplex cytokine measurement from each sample. Instead of a 

colour-changing enzymatic reaction, the detection antibody is coupled to an 

electrochemoluminescent label (‘sulfo-tag’) which, in the presence of the required buffer, emits 

light at a 620nm when an electric charge is applied to the carbon electrode. This light is 

detected by a charge-coupled device (CCD) camera within the MSD analyser and converted to 

an analyte concentration by use of a standard curve. The electrochemoluminescent system 

minimises background signals because the stimulus (electricity) is different from the output 

signal (light). Only the active component of the buffer is depleted by the 

electrochemoluminescent reaction; the sufo-tag is returned to its ground state allowing multiple 

cycles of electrical stimulation to increase the luminescence and hence the sensitivity of the 

assay (Figure 2-8 ). 

A. Electrode, antibody and analyte B. Electrochemoluninescence

 

Figure 2-8 MesoScale Discovery Platform multiplex i mmunoassay 
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20µl of sample or standard (seven 10x dilutions of a top standard and a zero standard) was 

added to wells in duplicate and incubated at room temperature for 2 hours with vigorous 

shaking at 200rpm in a mechanical shaker (Stuart). Sulfo-tag-coupled detection antibody 

cocktail was added in excess without washing and incubated for a further 2 hours with shaking. 

The plate was then washed three times with PBS-Tween before the addition of read buffer and 

processing in the MSD Sector analyser. Cytokine concentrations in each well were calculated 

from the standard curve using MSD Workbench software (MesoScale). 

2.7 Cell surface molecules by flow cytometry 

2.7.1 General principles 

Flow cytometry measures the physical characteristics of cells as they pass through the 

apparatus one at a time in a fluid stream. Fluorescence-activated cell sorting (FACS) is a 

refinement of the technique in which additional information is gathered from the cell’s natural or 

chemically-induced fluorescence properties, allowing identification and quantification of different 

populations of cells. 

Fluid is propelled through the analyser in two concentric streams. The core stream contains the 

cells moving in single file to intercept a stationary laser light while the faster-moving sheath 

stream maintains the cells in their precisely determined trajectory through the beam. The light is 

reflected and refracted by the cell and by its internal structures and this scattered light is 

detected and measured by the analyser. The degree of scatter in the plane of the beam is 

called forward scatter (FSC) and is proportional to the size of the cell while scatter at right 

angles to the plane of the beam is called side scatter (SSC) and is proportional to the cell’s 

granularity.  

Additional information can be gathered by labelling cells with dyes or fluorochrome-conjugated 

antibodies which allow detection of specific cell surface antigens. When a fluorochrome is 

stimulated by light of a particular wavelength it becomes excited and returns to its unexcited 

state by emission of light of lower energy and longer wavelength. The flow cytometer employs 

excitation lasers to activate the fluorochromes and the resulting fluorescence is reflected and 

filtered into photomultiplier tubes where it induces a current proportional to its intensity. The 

wavelength specificity of the photomultiplier is determined by its associated filters. The induced 

currents are amplified and digitised to give a readout of fluorescence intensity and cells can be 

grouped and counted accordingly and the median fluorescence intensity (MFI) of populations 

calculated. 

Fluorochromes must be selected so that their emission and excitation wavelengths have 

sufficient spectral separation to allow the fluorescence to be detected. Furthermore, 

fluorochromes do not emit at a single wavelength but have a spectrum that will activate different 
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detectors to different extents. This means that when more than one fluorochrome is used on a 

cell there is a chance that their emission spectra will overlap and the signal at one 

fluorochrome’s peak wavelength will be artificially increased by photons from the periphery of 

another fluorochrome’s spectrum. To mitigate against these effects an ‘electronic compensation’ 

algorithm must be set up at the outset of an experiment. The signals from single-fluorochrome 

labelled cells are compared with those from identical double-labelled cells. The degree of 

spectral overlap is calculated at each fluorochrome’s peak wavelength and the contribution from 

other fluorochrome’s subtracted from the signal at that wavelength. 

2.7.2 Staining and quantification of cell surface antigens 

FACS was performed using an LSR II benchtop flow cytometer (Becton Dickinson, Rutherford 

NJ) with FACSDiva software. Cells were harvested and washed in PBS with 5% FCS and 

transferred to FACS tubes in which they were centrifuged at 400g for 5 minutes and the 

supernatant discarded. Optimum antibody concentrations had been determined in titration 

experiments which identified the minimum concentration of antibody necessary to saturate all 

binding sites. Cells were resuspended in 200µl of primary antibody prepared in PBS/FCS and 

incubated for 30 minutes at 4°C in the dark. If the  primary antibody was not fluorochrome-

conjugated, the cells were washed twice and resuspended in 50µl of fluorochrome-conjugated 

secondary antibody, prepared and incubated as before. Cells were washed twice and 

resuspended in 250µl PBS/FCS for analysis. Non-specific binding of antibody was controlled for 

by incubating identical samples with isotype-matched non-specific primary antibodies. For each 

sample the population of normal-sized viable cells was identified and gated on a FSC/SSC plot 

and at least 10000 events recorded from this population. For double-stained cells electronic 

compensation was applied to minimise the effect of spectral overlap. MFI for each antigen of 

interest was recorded in duplicate for each experimental condition, corrected for non-specific 

binding by subtracting the MFI of the corresponding isotype control, and compared across 

samples. 

To quantify the actual number of antigen binding sites per cell (eg number of TLR4 receptors 

per cell) the same concentration of antibody was incubated with Quantum Simply Cellular kits 

(Bangs Laboratories Inc, Fisher IN) which consist of five populations of beads 7-9µm in 

diameter, one blank and four labelled with increasing amounts of anti-immunoglobulin antibody 

specific for the primary antibody used to stain the cells. Each population has a known antibody 

binding capacity (ABC) and, once the beads had been incubated and analysed in an identical 

manner to the cells, a standard curve of MFI against ABC was plotted and used to calculate the 

ABC (ie number of antigen binding sites) of the cells (Figure 2-9 ). 
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Figure 2-9 Standard curve for quantification of cel l surface TLR4 

Curve constructed using beads of known antibody bin ding capacity can be used to 

calculate the number of antibody binding sites and by inference number of surface TLR4 

per cell. 

2.8 Nucleic acid extraction 

2.8.1 DNA extraction 

DNA was isolated from cells by phenol-chloroform extraction. Cells are lysed by detergent or by 

a chaotropic agent such as guanidinium thiocyanate. The sample is mixed with a equal volume 

of water-saturated phenol at neutral pH (this will leave RNA and DNA in the aqueous phase; 

acid phenol will remove DNA from the aqueous phase or precipitate it on the interphase, and 

alkaline phenol will degrade RNA) and vortexed to mix thoroughly. The sample is centrifuged at 

15000g to separate the aqueous and phenolic phases and the upper aqueous phase is 

aspirated to a new tube. The upper aqueous phase contains the nucleic acids and the proteins 

and lipids remain in the phenol. The phenol extraction can be repeated twice to improve purity. 

Traces of phenol in the sample will interfere with downstream applications such as PCR so 

these are removed with chloroform (or chloroform:isoamyl alcohol in a ratio 24:1 to prevent 

foaming). An equal volume of chloroform is vortexed and centrifuged with the sample and the 

upper aqueous layer aspirated and then the process repeated to ensure purity. DNA is then 

precipitated from the aqueous sample by the addition of 2-3 volumes of absolute ethanol. 

Cooling the sample can enhance precipitation. The sample is centrifuged at 15000g and the 

supernatant aspirated to dryness. The DNA pellet is air-dried and resuspended in ddiH2O or TE 

buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) which maintains neutral pH and chelates divalent 

cations to inhibit any DNase activity for long term storage. 
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2.8.2 RNA extraction 

All water used in RNA work was treated with diethyl procarbonate (DEPC) to inactivate RNases. 

A 0.01% solution of DEPC in ddiH2O was incubated for 24 hours and then autoclaved to 

inactivate the DEPC. RNase contamination of reagents was minimised by careful technique, the 

use of RNase-free plasticware, the wearing of gloves and cleaning of the workspace and 

equipment with RNaseZAP (Applied Biosystems, Foster City CA). 

Two methods for RNA extraction were compared. Trizol (Invitrogen) is a single-step extraction 

reagent for RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction 

(Chomczynski and Sacchi 1987). Pelletted cells are resuspended in 1ml Trizol per 106 cells and 

incubated for 5 minutes to ensure complete dissociation of proteins from RNA. Phenolic and 

aqueous phases are then separated by addition of chloroform 0.2ml per millilitre of Trizol and 

centrifugation at 15000g. The upper aqueous phase is aspirated and can be subjected to an 

additional chloroform cleaning step if it remains turbid. RNA is precipitated from the aqueous 

phase by addition of isopropanol at half the original Trizol volume and centrifugation. The 

supernatant is aspirated and the RNA pellet washed in 70% ethanol in DEPC water before 

centrifugation, air-drying and resuspension in DEPC water. The second method involves RNA 

isolation by adsorption to silica membranes in centrifuge spin columns, the Absolutely RNA 

Microprep kit (Stratagene, LaJolla CA). Pelleted cells are resuspended in 100µl of a guanidium 

thiocyanate lysis buffer containing β-mercaptoethanol to ensure ribonuclease inactivation. An 

equal volume of 70% ethanol is added and vortexed for 5 seconds and the sample transferred 

to a spin column and forced through a silica-based membrane by centrifugation at maximum 

speed. The RNA binds to the silica and is retained. Contaminating proteins are eluted from the 

membrane by 3 centrifugation washes with salt-containing buffers and the RNA is then eluted 

into a clean tube by centrifugation with 30µl of elution buffer. The two methods were compared 

on identical samples and the RNA yield and purity were substantially higher from the spin 

column method which was also less time-consuming so this method was used for all future 

extractions. 

RNA integrity was confirmed by electrophoresis in a 1% agarose gel in tris-acetate-EDTA (TAE) 

buffer (40mM tris-acetate, 1mM EDTA, pH8; 50x stock solution contains 242g tris-HCl, 57.1 ml 

glacial acetic acid, 100ml 0.5M EDTA, pH 8, made up to 1000ml with ddiH2O) containing 

ethidium bromide to enable visualisation of RNA under ultraviolet light. 1µl samples were diluted 

to 8µl and mixed with 2µl loading buffer (70% TAE, 30% glycerol, 0.001% bromophenol blue) for 

electrophoresis at 110V, 400mA. Distinct bands of ribosomal RNA confirm integrity (Figure 

2-10). 
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28s (4718bp)

18s (1874bp)

 

Figure 2-10 Representative RNA agarose gel 

RNA integrity is assessed by electrophoresis in a 1 % agarose gel. Sharp bands for 28s 

and 18s RNA confirm integrity. 

2.8.3 Nucleic acid quantification 

Nucleic acids in solution can be quantified spectrophotometrically by their absorbance at 260nm 

with an optical density (OD) of 1.0 at this wavelength equating to 50ng/µl of dsDNA or 40ng/µl of 

RNA. Proteins have a peak optical density at 280nm and an OD260/OD280 ratio of 1.8-2.0 

confirms that protein contamination is proportionately low and sample purity is high. Nucleic 

acid samples were quantified using a Nanodrop spectrophotometer (Thermo Scientific) with a 

1µl sample, referenced to a blank sample of buffer without nucleic acid. 

2.9 Polymerase chain reaction 

The polymerase chain reaction (PCR) allows the amplification of a specific DNA sequence 

through repeated cycles of thermal denaturation, primer annealing and polymerisation using the 

unusually thermostable DNA polymerase derived from the marine bacterium Thermus aquaticus 

(Taq) whose ecological niche is on the border of hot undersea geological vents (Mullis and 

Faloona 1987). 

For larger runs (8 samples or more) a master mix was made up with the following components 

(all Bioline, London UK) in the ratio 200µl ddiH2O : 20µl 10x PCR buffer concentrate (100mM 

TRIS-HCl, pH8.3 at 25ºC, 500mM KCl, 15mM MgCl2, and 0.01% gelatin) : 2µl 100x mixed 

forward and reverse primers : 2µl 100x deoxynucleoside triphosphates (dNTP) mix : 1µl 200x 

Taq polymerase. 25µl of master mix was transferred to each reaction tube and 1µl of DNA 

sample (template) added to each with one tube left as a no-template control to ensure the 

system was free of additional DNA contamination. Samples were transferred to a thermal cycler 
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and underwent 35 cycles of denaturation at 94°C for  60 seconds, annealing at a temperature 

appropriate for the primers for 30 seconds, and extension at 72°C for 60 seconds per kilobase 

in the expected amplicon. For smaller runs a ready-made master mix (Platinum Super Mix HiFi, 

Invitrogen) was used with 1µl template and 1µl of each primer added to 45µl of mix and 

subjected to a 2 minute 94°C activation step and th en 35 cycles of denaturation at 94°C for 30 

seconds, annealing at temperature appropriate for the primers for 30 seconds, and extension at 

72°C for 60 seconds per kilobase. 1µl of each PCR p roduct was run on a 2% agarose gel 

against a DNA ladder (Fermentas) to confirm successful amplification, amplicon size and the 

absence of amplification in the no-template control. 

2.10 Quantitative reverse-transcriptase PCR 

Expression of specific genes can be compared between samples by quantitative reverse-

transcriptase PCR (qRT-PCR). This involves the conversion of mRNA to complementary cDNA 

by the action of an RNA-dependent DNA polymerase or reverse transcriptase enzyme. The 

cDNA then undergoes PCR with primers specific to the transcript of interest. Ideally, these 

primers will be exon-spanning so their complementary sequences appear only in the cDNA and 

not in any contaminating genomic DNA that may remain in the sample so only the cDNA is 

amplified. This PCR can be made semi-quantitative by stopping the reaction after a defined 

number of cycles and comparing the fluorescence intensity of the amplicons from each sample 

in an ethidium bromide agarose gel. Those samples with a higher number of transcripts (ie 

increased gene expression) will produce more PCR amplicons for a given number of cycles 

(before reagents are exhausted in the exponential phase of amplification) and this may be 

detected as increased fluorescence. 

Improved quantification can be achieved if, instead of end-point analysis, kinetic monitoring of 

PCR product synthesis in real time is employed through the use of fluorescent markers of PCR 

amplicon formation which generate a signal proportional to the quantity of product at the end of 

each PCR cycle (‘Real Time PCR’, Applied Biosystems, Foster City CA). The fluorescent 

markers can be non-specific dsDNA dyes such as Synergy Brands (SYBR) Green which 

fluoresce when bound to double stranded DNA. However, these will give increased signal in the 

presence of non-specific PCR products and primer-dimers. A more amplicon-specific readout is 

given by the use of hydrolysis probes such as TaqMan probes (Applied Biosystems). These are 

designed to bind to specific consensus sequences between the PCR primers and feature a high 

energy fluorophore at their 5’ end with a low energy quencher molecule at the 3’ end. The 

fluorophore is stimulated by a laser of appropriate wavelength but while the probe is intact no 

photons are emitted and the excitation energy is instead transferred to the quencher by Förster 

(or fluorescence) resonance energy transfer (FRET). The Taq polymerase copies the DNA 

template from its primer in the 3’-5’ direction and its 5’ exonuclease activity hydrolyses the 

probe, separating the fluorophore from its quencher and allowing it to fluoresce in response to 

stimulation. Thus fluorescence increases in proportion to the accumulation of PCR products 
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(Figure 2-11 ). In the initial cycles of the reaction the increase in fluorescent signal between 

cycles is too small to detect. This signal is designated the baseline and is the same for all 

samples. A fixed threshold (T) can be set above this line and as PCR products increase 

exponentially the signal from each sample will double with each cycle, eventually crossing the T 

value. An important parameter for the quantification of template in a sample is the sample’s 

threshold cycle (CT) which is the cycle number at which the fluorescence signal crosses the 

fixed threshold T. When all signals double with each cycle, the samples with a greater initial 

amount of template will reach T sooner and have lower CT values. 

 

Figure 2-11 Fluorescence monitoring of PCR product synthesis by use of 

hydrolysis probes 

The sequence-specific probe hybridises to the templ ate DNA strand between the forward 

and reverse primers. When excited by laser the fluo rophore (F) reporter transfers its 

energy to the quencher (Q) so no light is emitted. During chain extension the 5’-

exonuclease activity of the Taq polymerase cleaves the probe and the reporter is 

separated from the quencher, allowing it to fluores ce in response to stimulation. 

CT values will be very sensitive to small differences in the total cDNA concentration in each 

sample, so the CT values for the transcript of interest are normalised to the CT values of a 

transcript that should not vary between samples, a ‘housekeeping gene’ that is constitutively 

expressed at the same level in cells and is not influenced by the experimental conditions. The 

difference between the CT of the transcript of interest and the CT of the reference transcript for 

each sample is its ∆CT. ∆CT can then be compared between samples to give ∆∆CT, the 

corrected difference (in cycles) between the samples’ threshold crossing points. Since each 

cycle is equivalent to a doubling in the quantity of DNA, the relative quantity of DNA in one 

sample compared to another will be given by 2∆∆CT.  If all samples are compared to a reference 
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(unstimulated) sample then this sample will have a ∆∆CT of 0 and hence a relative DNA quantity 

of 1, and all other samples will produce values of transcript abundance relative to that sample 

(i.e. 3 times as many transcripts should give a value of 3). 

2.10.1 cDNA preparation 

Total RNA was extracted from samples as described above. cDNA was prepared using 

AffinityScript multiple temperature reverse transcriptase (Stratagene). Up to 5µg of total RNA 

was mixed with 3µl of random hexamer primers (0.1µg/µl) and made up to 15.7µl with DEPC 

water, incubated at 65°C and cooled to room tempera ture to allow primers to anneal to RNA. 

This was followed by addition of 2µl 10x RT buffer, 0.8µl dNTP mix (25mM each dNTP), 0.5µl 

ribonuclease inhibitor (40U/µl) and 1µl AffinityScript RT. The reaction was incubated at 25°C for 

10 minutes to allow primer extension and then at 42°C for 60 minutes for full cDNA synthesis 

before inactivating the RT at 70°C for 15 minutes. 

cDNA synthesis was verified by PCR for the constitutively expressed transcript encoding 

pyruvate dehydrogenase complex E2 inner lipoyl domain (PDCE2-ILD) and electrophoresis in 

agarose gel. cDNA was stored at -20°C for up to 4 w eeks and -80°C longer term until use. 

2.10.2 Optimisation of Real Time PCR 

The ∆∆CT method for quantification of transcripts relies on the fact that each PCR product is 

being amplified with equal reaction efficiency, and that none is proceeding faster or slower than 

the others so that initial transcript abundance is the sole determinant of CT. This was validated 

by generating dilution curves for each housekeeping gene and transcript of interest. 18s 

ribosomal RNA was selected as the endogenous control housekeeping gene in all experiments 

because expression of the more commonly used glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) has been shown to be reduced by ethanol(de la Monte, Ganju et al. 1999). 18s has 

previously been validated as an endogenous control in ethanol-exposed cells(Li, Zhang et al. 

2001). Serial 10x dilutions of cDNA were made and 2µl of each transferred to a Micro-amp 

optical 96-well reaction plate (Applied Biosystems) over ice in triplicate for each transcript of 

interest. Master mixes for each transcript of interest were made up so as to minimise the 

variation in primer, probe and polymerase concentrations between wells. Each 25µl reaction 

received 12.5µl 2x TaqMan universal PCR master mix (Roche/Applied Biosystems), 1.25µl 

primer/probe mix and 9.25µl DEPC water. Plates were sealed, briefly centrifuged to collect 

droplets, and transferred to an ABI Prism 7000 thermal cycler and sequence detection system 

(Applied Biosystems) for Real Time analysis. Polymerase was activated by incubation at 95°C 

for 10 minutes and this was followed by 50 cycles of denaturation at 95°C for 15 seconds and 

annealing/extension at 60°C for 60 seconds. 
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CT was plotted against relative cDNA concentration (log10 scale) for each transcript of interest 

and r2 and the slope of each graph was calculated (Figure 2-12 ). A slope of -3.33 indicates 

optimum PCR efficiency. It was confirmed that the lines were parallel, meaning that reactions 

were of equal efficiency and the ∆∆CT method was valid. 

 

Figure 2-12 Validation plot for qRT-PCR primers use d in this study 

Although slopes are significantly greater than -3.3 3 (suggesting some inhibition of PCR 

at higher template concentrations), all slopes exce pt that of IL-10 do not show significant 

difference, confirming that the ∆∆CT method for calculation of relative transcript 

abundance is valid for those targets. 

2.10.3 Analysis of Real Time PCR 

All primers and hydrolysis probes for cytokine and enzyme work were purchased from Applied 

Biosystems and are summarised in Appendix 2. cDNA was transferred to an optical 96-well  

plate in triplicate for each transcript of interest and master mixes were added as above to a total 

reaction volume of 25µl. Plates were sealed, centrifuged and incubated as above. Real Time 

data was captured and analysed using Prism 7000 software (Applied Biosystems). The baseline 

signal was defined and threshold set above baseline so as to intersect with the exponential 

phase of each reaction plot. CT values were calculated and imported to Excel (Microsoft 
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Corporation) for calculation of relative transcript abundance which was displayed using Prism 4 

(Graph Pad). PCR products were resolved by electrophoresis in 4% agarose gel and visualised 

by ethidium bromide fluorescence to confirm amplification. 

2.10.4 Statistical considerations 

Statistical analysis must be performed on the ∆∆CT values rather than the values of relative 

transcript abundance because the exponential element will distort the variance. ∆∆CT is ∆CT 

minus an arbitrary number so its standard deviation (SD) will not change. The standard 

deviation of ∆CT will be the square root of the sum of the variances of the CT of the transcript of 

interest and the CT of the housekeeping gene transcript. The means and standard deviations of 

the ∆CT values can then be used to test for statistical significance.  

Error bars for graphs of relative transcript abundance will be asymmetrical because of the 

exponential component and the upper and lower bars must be calculated separately. The upper 

bar will go to 2mean∆∆CT+SD and the lower bar will go to 2mean∆∆CT-SD. 
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3 Adapter molecule polymorphisms in ALD and NASH 

3.1 Introduction  

Both alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are responsible 

for a significant global health impact and evidence to date suggests that they have similar 

pathogenic mechanisms. In each there is a probable contribution to hepatocyte injury from 

reactive oxygen species, endoplasmic reticulum stress and pro-inflammatory cytokine release 

and in each probability of severe liver injury increases in the presence of obesity and insulin 

resistance (Day 2006). 

3.1.1 Role of Toll-like receptors in ALD and NASH 

An aetiological role for gut-derived bacterial endotoxin signalling through Toll-like receptors 

(TLR) is well established in ALD and evidence for a similar pathogenic component in NAFLD is 

now accumulating. In ALD gut permeability is known to be increased (Keshavarzian, Holmes et 

al. 1999; Parlesak, Schäfer et al. 2000) and plasma lipopolysaccharide (LPS) is elevated in all 

stages of the disease, correlates with severity and outcome, and falls in recovery (Fukui, 

Brauner et al. 1991; Hanck, Rossol et al. 1998; Fujimoto, Uemura et al. 2000; Schafer, Parlesak 

et al. 2002; Fukui 2005). The LPS receptor TLR4 is upregulated by chronic ethanol treatment 

(Zuo, Gong et al. 2003), and mice deficient in TLR4 or its co-receptor CD14 have less liver 

injury after ethanol feeding than wild types (Uesugi, Froh et al. 2001; Yin, Bradford et al. 2001). 

In NAFLD increased gut permeability has recently been demonstrated and increased circulating 

LPS has been detected (Miele, Valenza et al. 2009). Patients with jejunoileal bypass surgery 

have a high incidence of advanced liver disease due to non-alcoholic steatohepatitis (NASH) 

and this can be prevented by treatment of blind-loop bacterial overgrowth with antibiotics 

(Drenick, Fisler et al. 1982). The enteric bacterial load is increased in both NASH and type II 

diabetes patients (Wigg, Roberts-Thomson et al. 2001). In rodent models, TLR4 deficiency 

protects against liver injury in the methionine-choline deficient diet model of NASH (Rivera, 

Adegboyega et al. 2007) while the ob/ob mouse model displays hepatic steatosis but does not 

develop steatohepatitis until treated with LPS (Yang, Lin et al. 1997). 

3.1.2 Genetic susceptibility to ALD and NASH 

The risk factors for ALD and NAFLD (heavy drinking, metabolic syndrome) are well-established 

and extremely common yet both diseases display a relatively low prevalence of advanced 

disease relative to the prevalence of risk factors. Less than 10% of heavy drinkers will develop 

cirrhosis (Stewart and Day 2003), and even in those drinking over 200g of ethanol per day the 

incidence of cirrhosis is only 20% at 13 years and 50% at 20 years (Lelbach 1975). A similar 

pattern is seen in NAFLD where even in type II diabetic patients with two additional risk factors 
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the prevalence of NASH does not rise above 20% (Wanless and Lentz 1990; Erbey, Silberman 

et al. 2000). The inter-individual differences in disease susceptibility are the focus of ongoing 

research with identification of susceptibility factors allowing counselling of at-risk individuals and 

helping to direct attention to components of the pathogenic mechanism that have potential as 

novel targets for therapy. Evidence that a proportion of the individual excess risk of ALD has a 

genetic basis comes from the clear ethnic variation in susceptibility (Caetano and Clark 1998; 

Stinson, Grant et al. 2001; Klatsky, Morton et al. 2006) and from twin-twin concordance studies 

in 15924 male twin pairs aged 51-61 which showed that cirrhosis had a genetic risk over and 

above the genetic risk for alcoholism and suggested that approximately 50% of the variance in 

susceptibility was due to additive genetic effects (Hrubec and Omenn 1981). Support for a 

genetic susceptibility to advanced NASH comes from evidence of family clustering (Struben, 

Hespenheide et al. 2000) and from ethnic variation in susceptibility (Caldwell, Harris et al. 2002; 

Browning, Kumar et al. 2004). 

A number of candidate gene association studies have focussed on polymorphisms affecting 

LPS signalling through TLR4 (Figure 1-3 ). The ligated TLR4 activates two distinct intracellular 

signalling pathways. The principal and most rapid signalling is down the ‘MyD88-dependent 

pathway’ which is coupled to TLR4 via the adapter molecule MyD88 and a second adapter MAL 

(Yamamoto, Sato et al. 2002). The adapters recruit a cascade of intracellular kinases which 

results in translocation of the proinflammatory transcription factor NF-κBp65 to the nucleus 

where it activates transcription of genes for tumour necrosis factor α, interleukins, cyclo-

oxygenase 2 and other pro-inflammatory mediators. This pathway is shared with TLR2. The 

‘MyD88-independent pathway’ is a second, slower signalling cascade linked to TLR4 activation 

by distinct adapter molecules TRAM and TRIF. This cascade is shared with TLR3 which 

responds to double-stranded RNA within endosomes. Signalling down this pathway results in 

transcription of type 1 interferons and a slower, sustained activation of NF-κBp65 and its target 

genes (Takeda and Akira 2005). 

Polymorphisms of TLR4 and its co-receptor CD14 have been shown to be associated with 

altered inflammatory responses in humans. When studied in NAFLD the loss of function 

asp299gly mutation in TLR4 was found to protect against fibrosis and necroinflammation with 

odds ratios of 1.8 and 2.8 respectively (Bloomgarden 2005). A gain of function C-T single 

nucleotide polymorphism (SNP) at position -159 in the CD14 gene increases both soluble and 

membrane-bound CD14 and was found to be associated with increased histological severity of 

NAFLD with odds ratios of 2.4 for fibrosis and 2.1 for necroinflammation (Day 2002; Brun, 

Castagliuolo et al. 2006). Loss of function SNPs in the cytoplasmic endotoxin receptor NOD2 

which are associated with Crohn’s disease have also been found to be more common in 

advanced NAFLD with an odds ratio of 2.3 and it has been suggested that the mechanism is via 

increased small intestinal bacterial overgrowth (Bloomgarden 2005). Studies have not revealed 

any significant association between TLR4 and NOD2 SNPs and advanced ALD and of three 

studies into the CD14 SNP in ALD only one found a positive association and this was limited by 
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containing only 48 cases making a type 1 error possible (Leathart, Day et al. 2001; de Alwis and 

Day 2007). 

3.1.3 A functional polymorphism of the TLR adapter MAL 

A functional SNP has been identified in TIRAP (MIM 606252), the gene encoding MAL, the 

adapter molecule necessary for signalling down the MyD88-dependent pathway from TLR4.  

This C-T SNP (rs8177374) encodes a serine to leucine change at position 180 (S180L) which 

impairs the ability of MAL to interact with the upstream adapter MyD88. A case-control study in 

6106 individuals from the UK, Vietnam and Africa with invasive pneumococcal disease, malaria, 

tuberculosis or bacteraemia showed that heterozygous carriage of S180L associated 

independently with each of the diagnoses. Heterozygosity was protective against each 

diagnosis with homozygous mutants being of extremely low prevalence, particularly in 

developing world populations. The authors concluded that heterozygosity for the loss of function 

SNP was protective against excessively vigorous inflammatory responses which could be more 

harmful to the wild-type host than the invading microorganisms against which they were 

directed. By contrast homozygous mutants’ responses were inadequate to clear infections and 

many succumbed in early life accounting for their low frequency (Khor, Chapman et al. 2007). 

In light of the evidence for a key role for TLR4 signalling in the pathogenesis of NASH and ALD, 

a mutation that attenuates this signalling might be expected to reduce the severity of liver injury. 

It was hypothesised that the ‘low activity’ T allele would be:  

1. less common in advanced NASH compared to simple steatosis 

2. less common in advanced ALD compared to heavy drinking controls 

3.2 Specific methods 

3.2.1 Patients and Characteristics 

Patients and controls were recruited in North East England, UK, over a 10-year period and DNA 

samples were banked. To maximise statistical power all banked samples were used in this 

study. NAFLD patients were recruited from a regional specialist clinic and numbered 264. All 

NAFLD diagnoses were confirmed by clinical assessment and liver biopsy and histological 

features were scored using a modified Brunt scoring system by a single experienced pathologist 

(Brunt, Janney et al. 1999). 105 of the patients had steatosis without any fibrosis and were 

compared to the 159 with fibrosis present on biopsy. ALD patients were recruited from 

Hepatology clinics and from in-patients in a regional liver centre and numbered 382. All had 

advanced disease with cirrhosis or acute alcoholic hepatitis. Diagnoses were made by clinical 

assessment and confirmed by liver biopsy in over 80% of cases; the patients who were not 

biopsied all had clinical evidence of advanced disease (ascites, jaundice, prolonged 
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prothrombin time, hypoalbuminaemia or encephalopathy) with clear history of alcohol excess 

and exclusion of other causes of cirrhosis on blood tests (HBsAg, HCVAb, autoantibodies, 

immunoglobulins, α1-antitrypsin, caeruloplasmin, ferritin +/- HFE genotype). Biopsy features 

were scored using a semi-quantitative system by a single experienced pathologist (Section 8.4). 

Controls were recruited from patients attending a regional alcohol addiction service and had a 

history of prolonged heavy drinking (at least 80g ethanol/day for at least 10 years) without 

evidence of liver disease. Controls numbered 188 and were not subjected to liver biopsy but 

had persistently normal liver function tests (save for elevated γ-glutamyltransferase) on at least 

two separate occasions with no clinical evidence of liver disease. Heavy-drinking controls were 

used to avoid the confounding factors associated with the use of matched community controls, 

specifically identification of genes that predispose to alcoholism rather than liver disease and 

increased probability of type 2 error due to controls that possess the predisposing mutation but 

have not developed liver disease due to inadequate ethanol exposure (Stickel and Osterreicher 

2006). Patients consented to storage and testing of their genetic material.  

3.2.2 Automated genotyping 

Samples were genotyped for presence of the S180L MAL SNP by competitive allele-specific 

PCR in a commercial facility (Kbiosciences, Hertfordshire, UK). The PCR technique involves 

two pairs of primers with one of each pair overlapping the SNP at its 3’ end, one binding the C 

allele and one binding the T allele. The extreme sensitivity to 3’ end mismatches of the Taq 

polymerase used for the PCR means that primers that have hybridised to their specific 

complementary allele will be preferentially extended while those that have hybridised with a 

mismatch will not. The allele-specific primers are constructed with 5’ tail sequences specific to 

each primer. The reaction mix contains fluorescence resonance energy transfer (FRET) 

cassette oligonucleotides complementary to each primer tail. When these are intact in solution 

or bound to the tails their fluorophore is held in close proximity to a quencher which absorbs 

energy from an excited fluorophore and prevents emission of photons. However, once primer 

extension begins the endonuclease activity of the Taq cleaves the FRET cassette and the 

fluorophore is liberated from the quencher and can emit fluorescence in response to stimulation. 

The total fluorescence at each wavelength will depend on successful extension of the 

associated allele-specific primer and therefore on the presence of that allele in the DNA sample 

(Mokry and Cuppen 2008). Blind duplicates, plate-identifying blank wells and Hardy-Weinberg 

equilibrium tests were used as quality control tests. 

3.2.3 Restriction fragment length polymorphism analysis 

A validation sample of 27 was genotyped in-house by restriction fragment length polymorphism 

(RFLP) analysis. This relies on amplification of the SNP-containing sequence by PCR followed 

by digestion of the PCR products with a restriction enzyme that will cleave one allele but not the 

other. The digested products are separated by electrophoresis and examined for the presence 
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of smaller (cleaved) and/or larger (uncleaved) product, corresponding to the presence of each 

allele. In this case the SNP did not occur within a recognised restriction site so one was induced 

by site-directed mutagenesis. One primer contained a mid-sequence single base mismatch 

close to the SNP which did not significantly reduce primer hybridization but which, when 

propagated by PCR, produced a product with a sequence containing a restriction site in the 

presence of one allele but not in the presence of the other allele. Primers are described in Table 

3-1. These primers induced a BstXI restriction site in the mutant allele. 1µl of each DNA sample 

was subjected to PCR using the above primers with Taq polymerase and buffer (Bioline, 

London UK)) and dNTP (Bioline) in a thermal cycler (Techne, Burlington NJ) for 35 cycles with 

an annealing temperature of 60ºC. Products were digested with BstXI (New England BioLabs, 

Ipswich MA) in the manufacturer’s supplied buffer supplemented with 1% bovine serum albumin 

at 55ºC overnight. Digest products were separated by electrophoresis on 4% agarose (Sigma) 

gel and visualised by ethidium bromide (Sigma) fluorescence in a Gel Logic gel documentation 

system and images recorded with Kodak molecular imaging software (Carestream Health, New 

Haven CT). 

TACTGTAGCTGAATCCCGTTCCReverse

CTCCAGGGGCCGAGGGCTGCACCATCCCC[C→A]TGCTGForward

TACTGTAGCTGAATCCCGTTCCReverse

CTCCAGGGGCCGAGGGCTGCACCATCCCC[C→A]TGCTGForward

 

Table 3-1 Primers for RFLP analysis of S180L SNP in  TIRAP (MAL) gene 

The C-to-A substitution in the forward primer induc es a BstXI restriction site in the 

mutant T allele by site-directed mutagenesis. 

3.2.4 Statistical analysis 

Genotype frequencies were compared between groups and significance tested using a two-

tailed Chi-squared test (Prism4, GraphPad Software Inc, LaJolla CA) with p<0.05 considered 

significant. 

3.3 Results 

3.3.1 Patient characteristics 

Patient characteristics are summarised in Table 3-2  and Table 3-3 . The expected associations 

between advanced disease and age and features of the metabolic syndrome in NAFLD were 

observed.  
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145 (77%)264 (69%)C:C genotype

4349Mean age

132 (70%)273 (71%)Male

188382n

Heavy drinking controlsALD

145 (77%)264 (69%)C:C genotype

4349Mean age

132 (70%)273 (71%)Male

188382n

Heavy drinking controlsALD

 

Table 3-2 ALD patient and control characteristics 

115 (72%)65 (62%)C:C genotype

19 (12%)9 (9%)Metformin

24 (15%)11 (10%)ACE inhibitor / A2RB

3533Mean BMI

77 (48%)23 (22%)Diabetes mellitus

5247Mean age

92 (60%)75 (71%)Male

159105n

Any fibrosisNo fibrosis

115 (72%)65 (62%)C:C genotype

19 (12%)9 (9%)Metformin

24 (15%)11 (10%)ACE inhibitor / A2RB

3533Mean BMI

77 (48%)23 (22%)Diabetes mellitus

5247Mean age

92 (60%)75 (71%)Male

159105n

Any fibrosisNo fibrosis

 

Table 3-3 NAFLD patient and control characteristics  

3.3.2 Validation of genotype data 

The outsourced genotyping correctly identified blank wells and was fully consistent between 

blinded duplicates. Genotype frequencies did not differ significantly from Hardy-Weinberg 

equilibrium (Hardy 1908). In the alcohol group allele frequencies were C 0.854 T 0.146 and 

genotype frequencies were C:C 0.716 (Hardy-Weinberg prediction 0.729) C:T 0.272 (0.249) and 

T:T 0.011 (0.021). In the NAFLD group allele frequencies were C 0.841 T 0.159 and genotype 

frequencies were C:C 0.703 (Hardy-Weinberg prediction 0.707) C:T 0.276 (0.268) and T:T 

0.021 (0.025). Sample BstXI digests of C:C, C:T and T:T genotypes are illustrated in Figure 

3-1. The in-house validation is shown in Figure 3-2  and with a single exception was consistent 

with the outsourced sequencing. 
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Figure 3-1 Sample BstXI digests of MAL genotypes 

Two different samples of each genotype are shown. T he restriction site in the mutant T 

allele PCR product results in a smaller fragment. 

200bp�

C:C T:TC:T

�

 

Figure 3-2 Validation of genotypes 

With a single exception (arrowed) the in-house vali dation was consistent with the out-

sourced genotyping. 

3.3.3 Genotype analysis 

The ‘high signalling activity’ C:C genotype was more common in NAFLD patients whose 

biopsies showed any degree of fibrosis than in those with no fibrosis (72% v 62%, p=0.038). 

The relative risk of fibrosis for those possessing the C:C genotype in this cohort was 1.22 (0.97-

1.54) with an odds ratio of 1.61 (0.95-2.72) (Figure 3-3 ). There was no significant difference in 

genotype frequency with any other recorded histological or clinical marker. 
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Figure 3-3 Distribution of fibrotic NASH by MAL gen otype in NAFLD 

In the ALD group there was evidence that the SNP was associated with reduced inflammatory 

responses  with the C:C genotype more frequent in patients whose biopsies showed moderate 

to severe macrophage infiltration than in those in whom macrophage infiltration was mild or 

absent (77% v 62%, p=0.045) (Figure 3-4 ). The relative risk of moderate-severe macrophage 

infiltration for those possessing the C:C genotype was 1.74 (0.89-3.42) with an odds ratio of 

2.03 (0.89-4.63). However, when genotype frequencies were compared between advanced ALD 

patients and heavy-drinking controls, there was no evidence of the ‘low signalling activity’ T 

allele providing protection against ALD. In fact, the attenuated-signalling C:T and T:T genotypes 

were slightly more common in ALD patients than in controls (31% v 23%, p=0.046) (Figure 3-5 ). 

The odds ratio for possession of the C:C genotype in advanced ALD compared to heavy 

drinking controls was 0.66 (0.44-0.99). There was no correlation between genotype and the 

histological diagnosis of alcoholic hepatitis (p=0.43). 

 

Figure 3-4 Distribution of macrophage infiltration by MAL genotype in ALD 
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Figure 3-5 Distribution of ALD patients and control s by MAL genotype 

3.4 Discussion 

3.4.1 Divergent findings in ALD and NASH 

Prior evidence strongly suggests a key role for endotoxin signalling through TLR4 in the 

pathogenesis of advanced NASH and ALD (Uesugi, Froh et al. 2001; Rivera, Adegboyega et al. 

2007). The S180L SNP in the adapter molecule MAL has been shown to be functional at both 

the molecular and the population genetics level with the low signalling activity resulting from 

carriage of the T allele reducing damaging inflammatory responses to microbial components in 

a range of infectious diseases (Khor, Chapman et al. 2007). In the present study a small 

protective effect of the T allele in NAFLD was detected but there was also a paradoxical 

association between the low signalling activity T allele and the presence of advanced ALD in 

heavy drinkers. This occurred despite evidence that the high signalling activity C allele was 

associated with macrophage infiltration on biopsy in the ALD population. 

3.4.2 Limitations of this study 

There are potential explanations for these observations. Firstly, the relatively high p values raise 

the possibility of type 1 error and the associations between the SNP and advanced liver disease 

in our populations may have arisen by chance. Small sample size remains a problem in all 

candidate gene studies in ALD and NAFLD and large banks of patient DNA do not exist for 

more powerful studies. If these findings are replicated in a different cohort then the evidence for 

the importance of this SNP in ALD or NAFLD will be considerably strengthened. A further 

limitation of this approach is that it is unable to control for duration of exposure or total 

cumulative dose of alcohol or calories, or for body mass index. Similarly it cannot control for 

behavioural factors so any effects of the SNP on alcohol or total calorie intake cannot be 
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differentiated. It is also impossible to differentiate any effects of obesity in the ALD group and 

effects of drinking in the NAFLD group. The effect of patrient age on susceptibility to advanced 

disease cannot be separated out in this study, and may mask a stronger effect of a functional 

SNP in younger ALD or NAFLD patients. A larger study could stratify patients and controls by 

age, BMI and alcohol intake and examine for differential influence of the SNP across strata, but 

this is not possible with the present data set. 

3.4.3 Implications of the findings 

If S180L status does not significantly influence susceptibility to advanced NASH or ALD, does 

this cast doubt on the role of TLR signalling in these diseases? It may do, but it should be borne 

in mind that these diseases have complex pathogenic mechanisms in which TLR signalling is at 

most a component. It is possible that the presence of some TLR signalling, no matter how 

weak, is permissive for disease progression and the effect of variations in signalling strength are 

insignificant in the face of the severe cellular stress associated with alcohol metabolism or 

NASH. It is of note that the diseases surveyed in the initial establishment of the functionality of 

the SNP were ones that may rely more on TLR2 than TLR4 signalling (Khor, Chapman et al. 

2007). TLR2 is entirely reliant on the MyD88 pathway for signalling whereas TLR4 also has the 

MyD88-independent pathway which will be unaffected by the SNP (Takeda and Akira 2005). 

Hence the impact of the SNP may be reduced in diseases in which TLR4 is the more important 

receptor.  

Alternatively, if these observations describe a true differential effect of the MAL SNP in NAFLD 

and ALD, it may point to a divergence of pathogenic mechanisms with the MyD88-dependent 

pathway important in NASH and the MyD88-independent pathway important in ALD. If MyD88-

independent signalling were enhanced by ethanol then individuals with the SNP who have 

reduced signalling down the rapid MyD88-dependent pathway will be relatively protected from 

NASH but will rely on the ethanol-modifiable MyD88-independent pathway for signalling from 

TLR4 and so be more susceptible to the inflammation-enhancing effects of ethanol and hence 

to advanced ALD. 

3.4.4 The findings in context 

Recent laboratory evidence has emerged to support this differential importance of the two TLR4 

signalling pathways in NASH and ALD. The role of MyD88-dependent pathway signalling in the 

methionine-choline deficient diet rodent model of NASH has been confirmed by a study in which 

both TLR4 and MyD88 knockouts reduced liver injury, particularly when the knockout was 

restricted to bone-marrow derived cells (Szabo, Velayudham et al. 2008). However, in a similar 

study in which TLR4 and MyD88 knockout animals were fed the Lieber-DeCarli ethanol-

containing diet, TLR4 deficiency protected against liver injury but MyD88 deficiency did not, 

suggesting that MyD88-dependent signalling was not necessary for the development of ethanol 
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liver injury (Hritz, Mandrekar et al. 2008). Other work has shown that the augmented 

proinflammatory cytokine release from macrophages in ethanol-fed rodents is associated with 

increased activity of interferon regulatory factor 3 and can be abolished by knockout of the 

MyD88-independent pathway adapter molecule TRIF (Zhao, Dong et al. 2008). An independent 

study confirmed that either TLR4 or IRF3 deficiency ameliorated ethanol liver injury in mice but 

MyD88 deficiency did not (Szabo, Hritz et al. 2008). 

The effect of genetic variation in TLR signalling pathways observed here is consistent with this 

growing body of laboratory data about TLR signalling pathways in NASH and ALD. If confirmed 

in independent cohorts, these data support the role for gut-derived endotoxin in the 

pathogenesis of advanced NASH and ALD in humans, and add human genetic evidence to 

existing laboratory evidence for the differential importance of the MyD88-dependent and 

independent signalling pathways in these two diseases with implications for development of 

future therapies. 

3.4.5 Genetic susceptibility reconsidered 

Despite numerous candidate gene case-control studies in ALD, very few have demonstrated a 

significant specific genetic basis for the variation in susceptibility to advanced disease. This may 

be a consequence of unsuccessful identification of candidate genes or a result of relatively 

small sample sizes increasing the probability of type 2 error (Stickel and Osterreicher 2006). A 

hypothesis-free genome-wide association study is under way in Australia and may yet identify 

previously unexpected genetic determinants. However, it is equally possible that the genetic 

contribution to ALD susceptibility is not as great as previously thought. When the cohort of 

15924 twin pairs aged of 51-61in which a genetic component to advanced ALD was originally 

identified was re-investigated 16 years later at the ages of 67-77 a significant independent 

genetic risk for ALD could no longer be detected (Reed, Page et al. 1996). Similarly, a 

contribution from a loss-of-function SNP in the manganese superoxide dismutase (SOD2) gene 

to susceptibility to advanced ALD was significant in a younger sample but the effect 

disappeared as the cohort aged and individuals carrying the SNP died while individuals without 

the SNP also developed advanced disease (Nahon, Sutton et al. 2005). One might contend that 

ethanol is a powerful environmental toxin and that, while genetic susceptibility factors might 

influence the development of cirrhosis at an earlier time or a lower cumulative dose in a minority 

of drinkers, for the majority cumulative intake, pattern of drinking and environmental factors will 

be the major determinants of susceptibility to advanced disease. To understand these 

determinants better requires a study of gene-environment interactions at the molecular level, for 

which attention must shift from genetic to epigenetic mechanisms. 
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4 Steroid sensitivity in acute alcoholic hepatitis 

4.1 Introduction 

4.1.1 Corticosteroids, inflammation and immunity in AAH 

It is well established that AAH is characterised by a significant innate immune inflammatory 

response with high levels of pro-inflammatory cytokines, including IL-6 and TNF-α, observed in 

patients (Bird, Sheron et al. 1990; Sheron, Bird et al. 1991). There is also well documented 

antigen-specific, lymphocyte-mediated adaptive immune system activity in ALD livers (Stewart, 

Vidali et al. 2004), although the pathogenic significance of the adaptive immune response in 

ALD remains uncertain (section 1.3.4). The presence of this inflammatory element to AAH 

provides an obvious potential approach to therapy through anti-inflammatory drugs such as 

corticosteroids. Indeed, in meta-analysis corticosteroid therapy has been demonstrated to have 

a moderate effect on outcome in the group at highest risk of death, reducing one month 

mortality from 35% to 16% (Mathurin, Mendenhall et al. 2002). However, a sixth of patients in 

this group die despite treatment, and the applicability of corticosteroid therapy is limited by 

concerns about heightened risks of sepsis and gastrointestinal haemorrhage. Steroid 

responsiveness in AAH is indicated by an early change in the serum bilirubin level (ECBL) with 

those patients whose bilirubin has not fallen by the seventh day of treatment having a 

particularly high mortality and gaining no benefit from continuation of therapy (Mathurin, 

Abdelnour et al. 2003). ECBL has been incorporated into the Lille model to identify patients 

unlikely to benefit from continued corticosteroid therapy (Louvet, Naveau et al. 2007). Treatment 

outcomes could be improved by early identification of the 27% of patients who are unlikely to 

benefit from steroids or by strategies to improve steroid sensitivity in this group. 

4.1.2 Steroid sensitivity in inflammatory disease 

Steroid un-responsiveness is not unique to AAH. It has been well characterised in inflammatory 

skin diseases and ulcerative colitis where it is evident as a reduced maximum inhibitory effect of 

dexamethasone on ex vivo phytohaemagglutinin-stimulated lymphocyte proliferation (Hearing, 

Norman et al. 1999). Its prevalence is higher in chronic obstructive pulmonary disease (COPD) 

in which it has been shown to result from smoking-induced abnormalities in transcriptional 

regulation of pro-inflammatory genes. This occurred through a reduced capacity of the 

glucocorticoid receptor to recruit histone deacetylases (HDACs) to actively transcribed pro-

inflammatory genes due to the inhibitory effect of smoking-induced oxidative stress (Barnes, Ito 

et al. 2004). The traditional bronchodilator theophylline was shown to counteract this effect, 

exerting an anti-inflammatory effect by improving HDAC recruitment to silence pro-inflammatory 

genes (Barnes 2005), even at 10-5M, a concentration at which clinically useful bronchodilator 

effects do not occur.  
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4.1.3 Markers, causes and treatments for steroid insensitivity in AAH 

A biological marker for corticosteroid insensitivity in AAH could have clinical value in identifying 

earlier those patients unlikely to respond to steroid therapy who may benefit from avoidance or 

earlier cessation of steroids or rapid consideration for trials of experimental therapies. Analysis 

of steroid responsiveness at the cellular level will help identify the cause of steroid insensitivity 

and whether it occurs as a consequence of ethanol exposure and/or inflammation or is an 

inherent characteristic of individuals who develop AAH, possibly contributing to its aetiology. 

Studying the effect of known modulators of steroid responsiveness will not only help identify 

potential future therapies but will also provide hints as to the molecular basis for enhanced 

inflammatory responses and steroid insensitivity in AAH. A beneficial effect from an HDAC 

recruiting molecule such as theophylline would add to the nascent body of evidence that histone 

acetylation and impaired deacetylase activity are together a key component of the pathogenesis 

of ALD. 

This study set out to explore corticosteroid insensitivity in AAH using an ex vivo approach and to 

test the hypothesis that in vitro corticosteroid sensitivity can be improved by the actions of 

theophylline. 

4.2 Specific Methods 

4.2.1 Patients and controls 

Patients with a primary diagnosis of acute alcoholic hepatitis admitted to Newcastle upon Tyne 

Hospitals NHS Foundation Trust between October 2006 and March 2008 were invited to 

participate in the study if they fulfilled the accepted criteria for corticosteroid therapy (Maddrey 

discriminant function >32, equating to a 35% 28-day mortality without treatment (Carithers, 

Herlong et al. 1989)). Patients were excluded if they had gastrointestinal bleeding, sepsis, 

recent surgery or inflammatory disease or were already on immuno-modulatory therapy. 

Alternative causes of liver dysfunction were excluded by duplex ultrasonography and blood 

testing for hepatitis A, B, C and E, ferritin and HFE genotype, caeruloplasmin, alpha-1-

antitrypsin, immunoglobulins, thyroid stimulating hormone, antinuclear antibody, anti-smooth 

muscle antibody, antimitochondrial antibody, anti-liver/kidney microsomal antibody, anti-soluble 

liver antigen antibody and anti-neutrophil cytoplasmic antibody. Liver biopsy was performed only 

when there was thought to be a significant probability of it altering clinical management or 

outcome. In patients who were not biopsied the presence of coexisting cirrhosis was determined 

either from diagnostic imaging or from the presence of varices at endoscopy. Age- and sex-

matched controls were recruited locally. Control exclusion criteria were alcohol intake greater 

than 40 units per week for men and 30 units per week for women, active infection or 

inflammatory disease, surgery, trauma or immunomodulatory therapy. Patient and control 

characteristics are summarised in Table 4-1 . None of the study subjects were receiving 
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corticosteroid therapy at the time of their participation in the study. Patients were treated with 

oral Prednisolone 40mg daily for 28 days. Treatment was discontinued early in eight patients, 

four due to evidence of poor clinical response and four due to concern about sepsis or bleeding. 

Lymphocyte steroid sensitivity was assessed at recruitment and, for surviving patients who 

attended follow-up, at 4-weekly intervals for 6 months. The study protocol was prospectively 

approved by the Local Research Ethics Committee and informed consent was obtained from or 

on behalf of each participant.  

 AAH Patients  
(n=12) 

 

Normal Controls  
(n=12) 

Male 10 10 

Age  (years) 47 (34-60) 51 (34-65) 

Weekly ethanol  (units) 117 (20-560) 19 (7-40) 

Maddrey DF 61 (32-141)  

Biopsied 2 0 

Biopsy evidence of cirrhosis 2  

Circumstantial evidence only 4  

Table 4-1 AAH patient and control characteristics. 

Figures are mean (range). DF discriminant function 

4.2.2 Lymphocyte steroid sensitivity assay 

The lymphocyte steroid sensitivity (LSS) assay was adapted from that of Hearing et al (1999(i)). 

Peripheral blood mononuclear cells (PBMCs) are isolated and T lymphocytes are induced to 

proliferate by the action of phytohaemagglutinin (PHA), a plant lectin found in red kidney and 

cannellini beans which binds and cross-links the T cell receptor (Chilson and Kelly-Chilson 

1989). PHA-induced proliferation is inhibited by serial increasing concentrations of 

dexamethasone and proliferation at each dexamethasone concentration measured by 

incorporation of radioactive tritiated (H3) thymidine. Proliferation is plotted against 

dexamethasone concentration and a curve fitted from which Imax, the maximum percentage 

inhibition of proliferation (a measure of steroid efficacy), and IC50, the concentration of 

dexamethasone required to achieve 50% of maximal inhibition (a measure of steroid potency), 

can be calculated. Imax and IC50 can be compared between groups and correlated with clinical 

parameters. 

PBMCs were isolated from 25ml of blood by density centrifugation (Lymphoprep, Axis-Shield, 

Norway, Leucosep tubes, Greiner Bio-One, Germany) and washed three times in phosphate-



Chapter 4 | Steroid sensitivity in acute alcoholic hepatitis  

 
98

buffered saline. 4x105 cells were added to each of 24 wells of a 96-well tissue culture plate in a 

final volume of 200µl RPMI medium with 2mM L-glutamine and 10% fetal bovine serum (Lonza, 

UK). Seven triplicates were stimulated with PHA (Sigma) at a final concentration of 5µg/ml. Six 

of these triplicates were treated with dexamethasone (Sigma) in serial 1 in 10 dilutions to give 

final concentrations from 10-6 to 10-11M. For the initial patient samples the reaction was 

duplicated in the presence of 10-5M theophylline (Sigma) (Figure 4-1 ). Plates were incubated at 

37ºC in 5% CO2 for 72 hours. Proliferation was measured by incorporation of tritiated thymidine 

(Amersham Biosciences, UK). 5.29nmol (37kBq of activity) was added to each well and 

incubated for a further 16 hours. Well contents were aspirated on to filter mats (Wallac, Finland) 

by a cell harvester (Harvester 96 Mach II, Tomtec, Hamden CT) and radioactivity of the aspirate 

determined by β-counter (MicroBeta TriLux, Perkin Elmer, Waltham MA). 
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Figure 4-1 Culture plate for lymphocyte steroid sen sitivity assay 

4.2.3 Data interpretation 

Incorporated 3H-thymidine activity counts were corrected for background and normalised to 

uninhibited proliferation without dexamethasone. Proliferative response was plotted against 

dexamethasone concentration, a curve was fitted and Imax and IC50 were calculated (Prism 4, 

Graph Pad, LaJolla CA)(Hearing, Norman et al. 1999). Mean(±standard error) Imax was 

compared between groups using the Mann-Witney U test (unpaired observations) and Wilcoxon 

signed-rank test (paired observations) with p<0.05 considered to be significant. 
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4.3 Results 

4.3.1 Steroid sensitivity is reduced in AAH 

Representative control and patient lymphocyte steroid sensitivity curves are shown in Figure 

4-2. Mean ex-vivo steroid sensitivity as determined by Imax was significantly lower in AAH 

patients than in controls (67(±4.5)% v 95(±2.3)%, p<0.0005; Figure 4-3 ) suggesting a 

significantly greater level of corticosteroid insensitivity in AAH patients than normal controls. 

Groups did not differ significantly in mean IC50 (18.0(±10.1) versus 9.1(±1.7) nmol/l, p=0.98, 

(Figure 4-4 ).  

 

Figure 4-2 Representative patient and control LSS c urves 

In peripheral blood mononuclear cells from control subjects (A) and patients with acute 

alcoholic hepatitis (B) T lymphocyte proliferation was stimulated with 

phytohaemagglutinin and suppressed with increasing concentrations of dexamethasone. 

At each concentration proliferation was measured by  incorporation of a radio-labelled 

nucleotide into new cells and expressed as a percen tage of uninhibited proliferation in 

the absence of dexamethasone. For each subject the maximum inhibition of proliferation 

(Imax) and the dexamethasone concentration required to a chieve 50% of maximal 

inhibition (IC 50) were calculated. Values are mean +/- SEM. 
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Figure 4-3 Lymphocyte steroid sensitivity in acute alcoholic hepatitis 

patients and normal controls (efficacy) 

Steroid sensitivity is measured in terms of I max, the maximal percentage inhibition of 

proliferation by dexamethasone. Bars represent mean  Imax in each group. 
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Figure 4-4 Lymphocyte steroid sensitivity in acute alcoholic hepatitis 

patients and normal controls (potency) 

Steroid sensitivity is measured in terms of IC 50, the concentration of dexamethasone 

required for 50% of maximal inhibition of PHA-induc ed proliferation. Bars represent 

mean IC 50 in each group. 

4.3.2 LSS correlates with clinical markers of steroid responsiveness 

Within the AAH group mean Imax was greater in those patients who showed an early change in 

bilirubin level, an established clinical marker of glucocorticoid responsiveness in AAH, than in 

those whose bilirubin had not fallen by seven days (74(±5.8)% versus 58(±4.7)%, p<0.05, 

Figure 4-5 ) suggesting that corticosteroid insensitivity in the in vitro proliferation is a predictor of 

subsequent clinical response to corticosteroid therapy. However, when the full Lille model was 

calculated there was no significant difference in Imax between patients with Lille<0.45 (good 

prognosis) and those with Lille≥0.45 (poor prognosis) (67(±6.4)% versus 69(±4.8)%, p=0.81). 

In this study no relationships were seen between Imax and smoking status (p=0.32), reported 

weekly alcohol intake or disease severity as measured by serum bilirubin, prothrombin time, 

creatinine, albumin or discriminant function, Child-Pugh (Christensen, Schlichting et al. 1984), 

MELD (Dunn, Jamil et al. 2005) or Glasgow Alcoholic Hepatitis (Forrest, Evans et al. 2005) 

scores (r2<0.15 for each). 



Chapter 4 | Steroid sensitivity in acute alcoholic hepatitis  

 
102

no ECBL ECBL
40

50

60

70

80

90

100

p=0.0351

ECBL (any fall in bilirubin at day 7)

I m
ax

 %

 

Figure 4-5 Clinical correlation of ex vivo steroid sensitivity 

Relationship between ex vivo lymphocyte steroid sensitivity expressed as I max and early 

change in bilirubin level (ECBL), a clinical marker  of steroid responsiveness in acute 

alcoholic hepatitis defined as any fall in bilirubi n at day 7. Boxes represent the 

interquartile range divided at the median with whis kers covering the whole range of the 

data. n=5 for no ECBL, n=7 for ECBL. 

4.3.3 Measured steroid sensitivity improved during recovery from AAH 

Within the AAH group eight patients survived and seven attended for at least one follow-up 

appointment. Of these, six reported abstinence from alcohol since admission. Mean Imax in this 

group was significantly higher during recovery than at presentation (92(±4.9)% v 70(±7.4)%, 

p=0.01, Figure 4-6 ). 

4.3.4 Steroid sensitivity increased in the presence of 10-5M theophylline 

The addition of theophylline 10-5M (a concentration previously demonstrated to modulate 

inflammation in COPD (Barnes 2005)) to the lymphocyte steroid sensitivity reaction resulted in 

an increase in Imax measured at presentation (86(±6.6)% v 67(±5.0)%, p<0.05, Figure 4-7 ). In 

one caseImax fell in the presence of theophylline; this was a 54-year ols male with prior evidence 

of portal hypertension and a serum bilirubin of 530 who did not survive, but was not an outlier 

for any baseline characteristics. 
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Figure 4-6 Change in lymphocyte steroid sensitivity  after recovery from 

acute alcoholic hepatitis 

Representative steroid sensitivity curves for the s ame patient at presentation and after 

recovery are illustrated in A. Steroid sensitivity in terms of I max is plotted at presentation 

and after recovery for surviving patients attending  follow-up in B. 
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Figure 4-7 Change in lymphocyte steroid sensitivity  with addition of 

theophylline 

Representative steroid sensitivity curves for a pat ient’s lymphocytes with and without 

theophylline 10 -5M are illustrated in A. Steroid sensitivity in term s of I max  is plotted in the 

absence and presence of 10 -5M theophylline in B. 
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4.4 Discussion 

4.4.1 Improving and expanding the use of existing therapies 

Certain diseases, frequently those with substantial social or economic components to their 

aetiology, suffer comparatively low research investment despite their relatively high contribution 

to total human suffering. The prospects for development of entirely novel therapeutic 

compounds for such conditions are poor and so alternative strategies must be sought to help 

improve clinical outcome. One strategy is to rationalise the use of existing treatments to 

maximise therapeutic benefit either by improving response or minimising exposure to potentially 

hazardous unwanted effects. Another strategy is to uncover new therapeutic effects of existing 

pharmaceutical compounds which might be applicable to different disease mechanisms. Many 

of the compounds in pharmaceutical use will have more than one biological action which can be 

exploited in a different therapeutic arena. The advantages of this approach over de novo drug 

development are that compounds with an established safety profile can proceed to trials and 

licensing faster, and the lower cost, particularly of off-patent compounds, can improve patient 

access to treatment. This study has uncovered new observations about glucocorticoid 

responsiveness in patients with AAH and identified a potential new role for the off-patent 

compound theophylline its treatment. 

4.4.2 Ex vivo steroid responsiveness and its clinical correlates 

The sensitivity of mitogen-stimulated lymphocyte proliferation to glucocorticoids is a well-

established correlate of clinical steroid responsiveness in asthma, rheumatoid arthritis, renal 

transplantation and ulcerative colitis (Langhoff, Ladefoged et al. 1986; Corrigan, Brown et al. 

1991; Kirkham, Corkill et al. 1991; Hearing, Norman et al. 1999). Lymphocyte proliferative 

responses to liver derived antigens are a feature of human alcoholic liver disease (Stewart, 

Vidali et al. 2004) and steroid therapy is effective in a proportion of patients with AAH (Mathurin, 

Mendenhall et al. 2002). This study investigated ex vivo lymphocyte steroid sensitivity in 

patients with clinically severe AAH and found it to be significantly lower than in age- and sex-

matched controls. 

As is the case in steroid-resistant ulcerative colitis, the reduced steroid sensitivity in AAH was 

apparent in differences in the maximum inhibition of proliferation Imax, a measure of steroid 

efficacy, rather than in the IC50, which measures steroid potency (Hearing, Norman et al. 1999). 

This implies that steroid resistance is unlikely to be overcome simply by increasing the steroid 

dose. A limitation of measuring steroid responses in this way is that the 3H-thymidine assay 

measures reduction in DNA synthesis after steroid exposure and ignores any contribution that 

an increased rate of apoptosis might make to glucocorticoid suppression of the total lymphocyte 

pool. 
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The clinical marker of any fall in bilirubin by day 7 on treatment (ECBL) has been shown to 

identify patients who are clinically steroid responsive with a 95% 6-month survival after 

treatment, as opposed to those with no fall in bilirubin whose 6-month survival is 25% and who 

do not benefit from continuation of glucocorticoid therapy (Mathurin, Abdelnour et al. 2003). In 

our study mean steroid sensitivity as measured by Imax was significantly lower in those patients 

who showed no ECBL, suggesting that, as in UC, Imax is an ex vivo correlate of clinical steroid 

responsiveness in AAH. The Lille model was found to be a more sensitive predictor of poor 

prognosis on corticosteroid therapy than ECBL in two French cohorts (Louvet, Naveau et al. 

2007) but there was no significant difference in Imax between prognositic groups determined by 

the Lille model in this study. A larger follow-up study could compare this assay with the Lille 

model for utility in deciding about continuation of steroid therapy. Further refinement of this 

technique might allow ineffective steroid therapy to be stopped at day 4 or earlier, helping to 

minimise steroid-related morbidity. This strategy could be further refined by developing a steroid 

sensitivity assay based on inhibition of PBMC cytokine responses to LPS rather than T cell 

proliferation. This would have the advantages of measuring a response that has been more 

convincingly demonstrated to be key to the pathogenesis of AAH (Bird, Sheron et al. 1990), and 

of providing a result within, for example, 24 hours for TNFα expression as opposed to 4 days for 

lymphocyte proliferation. 

4.4.3 Origins and consequences of steroid resistance in AAH 

The significant prevalence of reduced Imax in patients relative to controls strongly indicates that 

steroid resistance is a feature of AAH. However, there is known to be wide inter-individual 

variation in steroid sensitivity with studies suggesting that up to 30% of the healthy population 

would fail to respond to steroid therapy for severe inflammatory conditions (Hearing, Norman et 

al. 1999). This raises the question of whether the patients with AAH are those who are 

intrinsically ‘steroid resistant’ (suggesting that this intrinsic steroid insensitivity might predispose 

to severe AAH in heavy drinkers) or whether steroid resistance occurs as a consequence of 

earlier events in the pathogenesis of AAH. The observation that in survivors of AAH Imax tends to 

increase (though not always normalise) during recovery suggests that steroid resistance is at 

least in part a consequence rather than a cause of the development of AAH. An interesting 

focus for further study would be whether steroid insensitivity in other inflammatory conditions 

correlates with alcohol intake, and whether heavy drinkers without inflammatory disease 

demonstrate relative steroid insensitivity by the same assay. 

Several of the pathogenic features of AAH have the potential to reduce steroid sensitivity. 

Glucocorticoid modulation of inflammatory responses results from the ability to control 

transcription of pro-inflammatory genes. Inflammatory and immune cells respond to stimuli by 

increased transcription factor activity at promoter regions of genes controlling cell activation, 

proliferation and secretion of pro-inflammatory mediators such as cytokines and chemokines. 

Transcription factors recruit co-activators including those with histone acetyltransferase (HAT) 
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activity. These acetylate the histone proteins around which the DNA is coiled. The increase in 

negatively charged acetyl groups favours a more open chromatin conformation which allows 

polymerases access to the DNA and gene transcription is initiated. One of the actions of the 

activated glucocorticoid receptor is to oppose this process by inhibiting HAT activity and 

recruiting HDACs to deacetylate the histones, causing the chromatin to revert to a closed 

conformation and transcription to cease (summarised in Figure 1-6 ). Failure of HDAC 

recruitment leads to steroid insensitivity and ongoing inflammation. The oxidative stress 

associated with cigarette smoking has been shown to have this effect in COPD (Barnes, Ito et 

al. 2004). No association between Imax and smoking history was observed in our patient sample. 

However, ethanol metabolism is itself a potent source of reactive oxygen species which may 

impair the ability of the glucocorticoid receptor to recruit HDACs to ‘switch off’ transcription of 

pro-inflammatory genes by the same mechanism described in COPD. Alternatively, the 

increased concentrations of free acetate generated by ethanol metabolism may favour 

increased histone acetylation and enhanced pro-inflammatory gene expression. This is 

investigated in more detail in Chapter 5.  

The discovery of impaired corticosteroid sensitivity has implications not only for steroid-treated 

AAH but also for our understanding of the propagation of inflammation during AAH 

pathogenesis. If the development of AAH is associated with steroid resistance then the 

inflammatory response in AAH will be similarly resistant to the moderating effects of the body’s 

endogenous glucocorticoids. Furthermore, there is evidence that patients with both acute and 

chronic liver diseases experience a high prevalence of hypoadrenalism (Harry, Auzinger et al. 

2002; O'Beirne, Holmes et al. 2007) and the effect of this relative endogenous glucocorticoid 

deficiency on inflammation will be compounded by any associated glucocorticoid resistance. 

The prevalence of relative hypoadrenalism in AAH could be investigated with a short synacthen 

test in a cohort of patients and compared with normal and heavy-drinking controls. 

4.4.4 The theophylline effect 

In this ex vivo assay, the addition of theophylline improved (but not always normalised) steroid 

sensitivity as measured by Imax. Theophylline has a similar effect on steroid sensitivity in COPD 

where it has been shown to improve HDAC recruitment at the same concentration (10-5M) 

(Barnes 2005) which is below the plasma concentration associated with a clinically significant 

bronchodilator action. The same mechanism could be responsible for the increased Imax 

observed in the AAH patient samples. Alternatively, theophylline may be exerting its effect 

through phosphodiesterase inhibition as a role has recently been demonstrated for PDE4B in 

the enhanced inflammatory responses observed after chronic ethanol exposure (Gobejishvili, 

Barve et al. 2008). A third possibility is that theophylline acts through its upregulation of anti-

inflammatory adenosine A2a receptors (Ohta and Sitkovsky 2001). However, significant 

phosphodiesterase and adenosine receptor effects are unlikely at the relatively low 

concentration of theophylline used in this study (Barnes 2005). Of interest is the fact that 
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theophylline is a hepatic metabolite of caffeine and coffee drinking has been shown to protect 

against advanced alcoholic liver disease in large epidemiological studies with an average intake 

of four cups a day reducing the relative risk of alcoholic cirrhosis by 80% compared to those 

who drank no coffee (Klatsky, Morton et al. 2006). Furthermore, pentoxifylline, another methyl 

xanthine compound similar in structure to both caffeine and theophylline with documented anti-

TNFα properties, has been shown in trials to improve survival in AAH (Akriviadis, Botla et al. 

2000) but has not been tested in combination with corticosteroids. In light of the findings above, 

it remains possible that pentoxiphylline’s efficacy is due, at least in part, to increased sensitivity 

to endogenous corticosteroids. 

4.4.5 Implications of these findings 

This study highlights the possibility for existing, inexpensive treatments to be used more 

effectively in a common and frequently fatal condition. Early and more accurate determination of 

steroid sensitivity has the potential to rationalise corticosteroid treatment to minimise unwanted 

effects and maximise clinical benefit. The potential of low dose theophylline to increase steroid 

sensitivity suggests that a clinical trial of its use in acute alcoholic hepatitis could inform and 

improve future clinical practice. The low theophylline concentration required to show an effect 

ex vivo suggests that the dose required in a clinical trial could be low (eg 200mg per day), 

reducing the risk of theophylline toxicity and reducing the need for monitoring plasma 

theophylline levels in eventual clinical practice. A further potential clinical strategy would be to 

investigate a role for IL-2 receptor blockade in improving steroid sensitivity as this has shown 

some early promise in vitro and in vivo in ulcerative colitis (Creed, Norman et al. 2003; Creed, 

Probert et al. 2006). However, the addition of a second immunosuppressant in a disease in 

which the majority of deaths, with or without steroid treatment, are ultimately due to sepsis is 

likely to be considered an unacceptable clinical hazard. 

The potential of theophylline, a known HDAC recruiter, to contribute to the control of 

inflammation in AAH lends credence to the concept that histone acetylation and HDAC inhibition 

have a role in AAH pathogenesis. This concept will be explored further in the next chapter. 
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5 Ethanol, acetate and acetylation in inflammation 

5.1 Introduction 

5.1.1 Enhanced innate immune responses in AAH 

Our current understanding of the pathogenesis of AAH attributes hepatocellular dysfunction to 

the action of supra-physiological concentrations of pro-inflammatory cytokines on hepatocytes 

that are already suffering oxidative and endoplasmic reticulum stress due to the reactive 

products of ethanol metabolism (McClain, Song et al. 2004). The major source of cytokine 

release is thought to be the hepatic macrophage or Kupffer cell responding, via Toll-like 

receptors (TLR), to the increased concentration of bacterial endotoxin in portal blood that results 

from an ethanol-mediated increase in gut permeability (Thurman 1998). 

Evidence for the role of endotoxin, TLRs and cytokines in this mechanism is well established 

(Mandrekar and Szabo 2009). Increased gut permeability is a feature of ALD and plasma 

lipopolysaccharide (LPS) is elevated in all stages of ALD, levels correlating with clinical severity 

and outcome. The principal LPS receptor, TLR4, is upregulated by chronic ethanol treatment in 

humans and both C3H/HeJ mice lacking TLR4 and animals deficient in the CD14 co-receptor 

show relative protection from ethanol-induced liver injury in comparison with wild-type animals 

(Uesugi, Froh et al. 2001; Yin, Bradford et al. 2001). AAH patients have significantly elevated 

serum cytokines, particularly IL-6, IL-8 and TNFα, with levels correlating with prognosis (Bird, 

Sheron et al. 1990; Sheron, Bird et al. 1991; Hill, Marsano et al. 1993). Their ex vivo monocyte 

responses to LPS are significantly enhanced relative to controls and this LPS hyper-

responsiveness can be reproduced in vitro by exposure of the human macrophage cell line 

MonoMac6 to ethanol for six days (Zhang, Bagby et al. 2001). 

The enhanced and sustained inflammatory response seen in AAH is, however, in complete 

contradistinction to the normal processing of portal endotoxin by the liver (McClain, Hill et al. 

2002). The liver is normally subject to tonic endotoxin exposure via the portal vein and it is 

effective at clearing this endotoxin from the blood without an inflammatory response, The 

phenomenon of ‘endotoxin tolerance’ thereby renders endotoxin-exposed Kupffer cells 

refractory to further LPS stimulation, maintaining an anti- rather than pro-inflammatory cytokine 

output (Knolle, Schlaak et al. 1995). It is therefore somewhat unexpected that the pro-

inflammatory response to endotoxin in AAH should be so disproportionately high, particularly 

considering that it is the Kupffer cells themselves which are key to maintaining hepatic 

endotoxin tolerance (Knolle and Gerken 2000). It has become increasingly clear, therefore, that 

the enhancement of cytokine gene expression and perpetuation of the inflammatory response is 

the key event in the pathogenesis of AAH (Szabo 2000) and the inflammation in AAH has been 

considered a ‘failure of endotoxin tolerance’ (McClain, Hill et al. 2002). 
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Despite its clear importance for the pathogenesis of AAH, the mechanism for enhanced 

inflammatory cytokine release in this disease remains unclear. This study addresses the novel 

hypothesis that the enhanced inflammatory cytokine response results from the direct effect of 

ethanol metabolism on the final common pathway of cytokine gene transcriptional regulation by 

histone acetylation. 

5.1.2 Histone acetylation and deacetylation 

In its un-transcribed state DNA is tightly coiled around histone protein octamers and the 

resulting chromatin is compacted into a closed tertiary structure from which the histone tails 

protrude, but in which the DNA is inaccessible to polymerases involved in gene transcription. 

Gene activation by transcription factors involves co-activator proteins with histone acetyl 

transferase (HAT) activity that acetylate key lysine residues in the histone tails. The negatively-

charged acetyl groups cause a conformational change in chromatin that allows RNA 

polymerases access to the DNA, facilitating gene transcription. Termination of transcription is 

mediated through histone deacetylases (HDAC) which release free acetate and allow the 

chromatin to resume its closed, un-transcribed conformation (Kimura, Matsubara et al. 2005) 

(Figure 1-6 ). Various HDACs are able to modulate inflammatory gene transcription, including 

class I and II HDACs which can be recruited by transcriptional repressors such as the activated 

glucocorticoid receptor, and class III HDACs, known as sirtuins (SIRT), which are active in the 

presence of NAD+ (Lavu, Boss et al. 2008). Ethanol has been demonstrated to increase total 

histone acetylation in rat liver (Kim and Shukla 2006) with increased HAT and reduced HDAC 

activity (Choudhury and Shukla 2008) and separate investigations have established that both 

SIRT expression and activity can be inhibited by ethanol in the liver (Lieber, Leo et al. 2008; 

You, Liang et al. 2008). 

5.1.3 Acetate, acetyl-coA and acetyl-coA synthetases 

Hepatocyte ethanol metabolism produces free acetate as its end-product which, largely in other 

tissues, can be incorporated into acetyl-coenzyme A (acetyl-coA) for use in Krebs cycle 

oxidation, fatty acid synthesis or as a substrate for protein acetylation (Yamashita, Kaneyuki et 

al. 2001). The synthesis of acetyl-coA from acetate is catalysed by the acetyl-coA synthetases 

(Fujino, Ikeda et al. 2003), recently re-designated acyl-coenzyme A synthetase short-chain 

family members 1 and 2 (ACSS1 (UniProt Q9NUB1) and ACSS2 (Q9NR19)) (Watkins, Maiguel 

et al. 2007). ACSS1 is found in mitochondria and expressed in, amongst others, skeletal and 

cardiac muscle and inflammatory cells but not hepatocytes. It supplies acetyl-coA predominantly 

for Krebs cycle oxidation. ACSS2 is a cytoplasmic enzyme of ubiquitous expression which is 

abundant in hepatocytes and pancreas and which largely supplies acetyl-coA for fatty acid 

synthesis and protein acetylation (Fujino, Ikeda et al. 2003). 
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The role of acetyl-coA synthesis in control of inflammation has not previously been investigated 

and could open a novel field of study into the relationship between cellular energy supply and 

inflammatory disease. This study tests the hypothesis that ethanol enhances macrophage 

cytokine production by uncoupling gene transcription from its normal regulatory mechanisms 

through increased histone acetylation, and that the conversion of the ethanol metabolite acetate 

to acetyl-coA is crucial to this process. 

5.2 Specific Methods 

5.2.1 Cell culture 

The human monoblastic cell line MonoMac6 (DSMZ, Braunschweig, Germany, ACC124), an 

established human cell-line which displays features of mature macrophages and has been 

previously used to model Kupffer cell responses in ethanol (Zhang, Bagby et al. 2001), was 

grown in RPMI-1640 medium with appropriate supplements (section 2.2). The use of a cell line 

to model human macrophage responses has technical advantages over the use of primary 

human monocytes or Kupffer cells. It allows use of a pure population without the need for 

separation processes which can produse unwanted activation of cell signalling pathways. It 

provides a genetically and epigenetically consistent cell population without the influence of 

individual human variation in nutrient supply and exposure to ethanol, glucocorticoids and TLR 

ligands. The robustness of a cell line means that it will continue to proliferate under the sub-

physiological conditions of culture media and the stress of ethanol exposure in which primary 

cells did not tolerate a 9-day protocol. However, a cell line model has limitations in this context 

and these arise from the neoplastic character of the cells. The development of malignant 

potential is associated with an ability of cells to proliferate in the face of restricted energy and 

oxygen supply and this can occur through altered flux through metabolic pathways and 

increased tolerance to the effects of oxidative stress. Furthermore, the aberrant gene 

expression characteristic of a neoplastic cell line is likely to result from alterations in epigenetic 

control of transcription. For these reasons there is no guarantee that results form this robust and 

convenient model will be generalisable, and promising data should be followed up with 

corroborative investigation in primary human cells or whole animal models. 

Ethanol exposure was achieved in fresh media with 86mM (0.5%, 400mg/dl) ethanol (VWR, 

Poole, UK). This is five times the legal blood alcohol limit for driving in the UK and equivalent to 

heavy drinking in humans (Jones 1999). Ethanol concentration was maintained by using ethanol 

vapour in the incubator to prevent evaporation of ethanol from culture media (section 2.3.3) and 

monitored by potassium dichromate reduction assay (BioAssay Systems, Hayward CA). For 

acetate culture experiments, media were supplemented with 1mM sodium acetate (Sigma) and 

replaced every 48h to minimise fluctuations in acetate concentration. 1mM is an achievable 

acetate concentration in an individual metabolising ethanol at the concentration used (Mascord, 

Smith et al. 1992). 
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5.2.2 Characterisation of ethanol metabolic pathways 

RNA extraction and qRT-PCR (section 2.10) were performed to confirm that the ethanol-

exposed cells expressed the necessary enzymes for ethanol metabolism. Primers and probes 

are detailed in Appendix 2. PCR products were resolved by electrophoresis in a 4% agarose gel 

and visualised by ethidium bromide fluorescence in ultraviolet light. 

5.2.3 LPS stimulation and cytokine determination 

After seven days incubation cells were resuspended in fresh medium at 2x106/ml and stimulated 

with E. coli O111:B4 LPS (InvivoGen) at a final concentration of 10ng/ml. For mRNA 

determination, nucleic acids were isolated in binding columns (Stratagene, LaJolla CA) and 

cytokine transcripts measured by quantitative reverse-transcriptase PCR using AffinityScript 

reverse transcriptase with random primers (Stratagene) and TaqMan polymerase, primers and 

probes in a AB7000 cycler using 18s RNA as the endogenous control (all Applied Biosystems, 

Foster City CA) (section 2.10). Primers and probes are detailed in Appendix 2. Cytokine protein 

determination was achieved by multiplex electrochemoluminescent immunosorbent assay using 

the MesoScale Discovery System (MesoScale, Gaithersburg, MD) (section 2.6.2).  

The reversibility of the effect of ethanol on cytokine production was assessed by repeating the 

LPS stimulation and cytokine measurements on cells that had received seven days ethanol 

exposure and then been returned to normal media without ethanol for 0-7 days.  

The effects of the antioxidants Manganese(III) tetrakis(4-Benzoic acid) porphyrin chloride 

(MnTBAP, Alexis, Lausanne, Switzerland) 300µM (Szabo, Day et al. 1996) and 6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, Sigma) 100µM (Wu and Cederbaum 

1999) and of the SIRT1 activator resveratrol (Biomol, Plymouth Meeting PA)  200µM (Yang, 

Wright et al. 2007) were assessed by supplementing media with the appropriate concentration 

during the 7-day incubation with or without ethanol, and then performing LPS stimulation and 

cytokine measurement as above. 

5.2.4 TLR4 surface receptor density 

Surface TLR4 was measured by FACS (section 2.7) after staining with AlexaFluor647-

conjugated anti-human TLR4 antibody (eBioscience, San Diego CA, diluted 1 in 2.5) and 

quantified by calibration with Quantum Simply Cellular beads (Bangs Laboratories Inc). 

5.2.5 TLR4 response tolerance 

The ability of ethanol incubation to overcome tolerance to LPS stimulation was investigated by 

incubation of MonoMac6 cells for seven days with and without 86mM ethanol. One flask of each 

condition was given a first stimulation with LPS 10ng/ml and another flask left unstimulated. 
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After 12 hours cells were washed, resuspended in the appropriate medium and returned to the 

incubators for 72 hours. Cells were then washed, counted and transferred to 24-well plates at a 

density of 106/ml for a second LPS stimulation: one triplicate of each condition was left 

unstimulated, one triplicate was given LPS 10ng/ml and one triplicate LPS 100ng/ml. Plates 

were incubated for 12 hours and then supernatants harvested and assayed for TNFα by ELISA 

(antibodies and standards from PeproTech, Rocky Hill NJ) (section 2.6). 

5.2.6 Immunofluorescence microscopy 

After 0-6 days in 86mM ethanol, cells were adhered to slides by centrifugation at 1000rpm for 3 

minutes (Cytospin3, Shandon, Runcorn, UK). Adherent cells were fixed and permeablised in 

ice-cold methanol for 10 minutes, acetone (both VWR) for 30 seconds, washed three times in 

PBS and transferred to 0.5% triton X-100 (Sigma) for 10 minutes before washing and briefly air-

drying. Slides were blocked overnight in 5% BSA at 4°C, then washed and incubated with 

primary antibodies to total acetyl lysine (Cell Signalling Technology, Danvers MA, 1 in 200), 

acetyl-histone H3 (Upstate, Lake Placid NY, 5µg/ml) and acetyl-histone H4 (Upstate, 10µg/ml) 

in 0.5% BSA at 4ºC for 18 hours. Slides were washed and incubated with FITC-conjugated 

secondary antibody (goat anti-rabbit IgG, Sigma, 1 in 200) for 2 hours at room temperature in 

the dark and counterstained with DAPI (Vectashield Hardset, Vector Laboratories, Burlingame 

CA). The effect of ethanol metabolism on the staining pattern was assessed by incubation in 

86mM ethanol supplemented with the alcohol dehydrogenase inhibitor 4-methylpyrazole 1mM 

(Sigma). 

5.2.7 Chromatin immunoprecipitation 

Chromatin immunoprecipitation (ChIP) was used to detect ethanol-induced changes in histone 

acetylation at specific pro-inflammatory cytokine gene promoter regions. The principle of the 

assay is that chromatin is digested into individual mononucleosomes (single histone octamers 

with their associated DNA). Antibodies specific for a given histone modification are used to 

precipitate mononucleosomes from the chromatin solution, producing a precipitate that is 

enriched with DNA segments that were associated with histones displaying the modification (eg 

acetylated histone H3). DNA is extracted from the precipitate and analysed for the gene 

promoter region of interest by quantitative (Real Time) PCR (Figure 5-1 ). The degree of 

enrichment for the promoter region of interest can then be compared between treatment groups. 
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Figure 5-1 Chromatin immunoprecipitation (ChIP) 

Mononucleosomes are separated by nuclease digestion  and then precipitated using an 

antibody specific for the chromatin modification of  interest. The resulting precipitate will 

be enriched with DNA from promoters associated with  the modification, which can be 

quantified by qPCR. Figure adapted from one by Dr J elena Mann (Newcastle University). 

ChIP experiments were performed with Dr Jelena Mann, Cell Signalling Group, Newcastle 

University Institute of Cellular Medicine, who optimised the nuclease digestion, designed the 

primers and analysed the Real Time data. All buffers were supplemented with 5mM sodium 

butyrate to prevent deacetylation during the preparation and extractions were performed at 4°C 

in the presence of protease inhibitors to minimise protein loss. 

1            2     3            4     5             6    7

 

Figure 5-2 Chromatin digestion for ChIP 

For each condition the left lane contains DNA from undigested chromatin and the right 

lane DNA from nuclease-digested chromatin. A single  sharp band confirms digestion to 

mononucleosomes. Lane 1 markers; lane 2,3 butyrated  HeLa; lane 3,4 Monomac6 normal 

medium; lane 6,7 MonoMac6 86mM ethanol. 
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Cells were subjected to gentle lysis by stirring in 0.5% Tween-40 in TBS buffer (10mM Tris-HCl 

pH7.5, 3mM CaCl2, 2mM MgCl2, 5mM Na butyrate) for 45 minutes followed by release of nuclei 

in a Dounce homogeniser. Intact nuclei were isolated by sucrose density centrifugation and 

equalised to a DNA concentration of 0.5mg/ml in digestion buffer (0.32M sucrose, 50mM Tris-

HCl pH7.5, 4mM MgCl2, 1mM CaCl2, 5mM Na butyrate, protease inhibitors). Chromatin was 

digested by micrococcal nuclease (Amersham, Little Chalfont, UK) 50U/ml at 37°C to yield a 

mononucleosome suspension. After 5 minutes digestion was halted by the addition of EDTA to 

a final concentration of 5mM. A 50µl aliquot of each sample underwent phenol extraction and 

electrophoresis to confirm adequate digestion (Figure 5-2 ).  DNA concentration was measured 

spectrophotometrically and 300µg aliquots were diluted with twice the volume of incubation 

buffer (50mM NaCl, 20mM Tris-HCl pH 7.5, 5mM EDTA, 20mM Na butyrate, protease inhibitors) 

and were pre-cleared with 100µl Zysorbin staphylococcal protein A membranes (blocked with 

salmon sperm DNA and acetylated BSA) (Invitrogen) by incubation at 4°C for 20 minutes on a 

turntable (Stuart). The membranes were pelleted by centrifugation and three aliquots of each 

supernatant, each containing 100µg DNA, were incubated with 10µl of anti-acetyl H3 antibody, 

anti-acetyl H4 antibody or irrelevant isotype control antibody (all Upstate) overnight on a 

turntable at 4ºC. Antibody-bound mononucleosomes were precipitated out using Zysorbin as 

above and the precipitates were washed by being allowed to settle through three buffers of 

increasing salt concentrations to remove any unbound protein or DNA (50mM Tris-HCl pH7.5, 

10mM EDTA, 5mM Na butyrate, 50mM/100mM/150mM NaCl). Antibody-mononucleosome 

complexes were eluted from Zysorbin in incubation buffer containing 1% SDS to give 

mononucleosome-containing supernatant from which DNA was extracted using the phenol-

chloroform method (section 2.8.1) and precipitated in ethanol at -20°C overnight with 0.3M 

sodium acetate and 1µl glycogen to improve the yield. The washed and air-dried DNA pellet 

was redissolved in TE buffer. 

The DNA extracts underwent conventional PCR with an annealing temperature of 55°C and 

primers for the promoter regions of the IL-6 and TNFα genes. The PCR products were resolved 

in a 2% agarose gel and visualised by ethidium bromide fluorescence in ultraviolet light. The 

relative concentrations of IL-6 and TNFα promoter DNA in the extracts were quantified by SYBR 

Green Real Time PCR and compared between ethanol-exposed and control cells for each 

histone modification. Primers are detailed in Table 5-1 . 

TTTCATTCTGACCCGGAGAC TTGGGGAAAGTGAGGTCATC Reverse

TGTCCAGGGCTATGGAAGTC GAGCAGTGGCTTCGTTTCAT Forward

TNFαIL6

TTTCATTCTGACCCGGAGAC TTGGGGAAAGTGAGGTCATC Reverse

TGTCCAGGGCTATGGAAGTC GAGCAGTGGCTTCGTTTCAT Forward

TNFαIL6

 

Table 5-1 Primers for IL-6 and TNF α ChIP 
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5.2.8 HAT and HDAC activity 

HAT and HDAC activity were determined in nuclear lysates (section 2.5.1) from cells after 

seven days culture in 86mM ethanol, 1mM sodium acetate or normal medium. 

5.2.8.1 HAT activity 

HAT activity was measured by an ELISA-based method (Millipore, Temecula CA) in which wells 

of a 96-well plate were coated with unacetylated histone H3, except for a standard curve which 

was coated with known quantities of acetylated histone H3. Wells were blocked with 3% BSA 

and then incubated for 25 minutes at 30°C with nucl ear extract containing 40µg total protein in 

the presence of HAT buffer, an excess of acetyl-coA and sodium butyrate to inhibit any HDAC 

activity in the sample. One triplicate was given this cocktail without the nuclear extract as a 

control. In addition, two tripilicates containing lysate from cells that had not been exposed to 

ethanol or acetate were treated with 86mM ethanol and 1mM acetate during the incubation to 

investigate the effect of acute exposure on HAT activity. After incubation wells were washed 

and acetylation was measured as captured protein would be in an ELISA with an anti-acetyl 

lysine detection antibody coupled to HRP producing absorbance at 450nm in a 

tetramethylbenzidine (TMB) substrate. The quantity of protein acetylated by the lysate was 

quantified by use of the standard curve in Prism 4 (Graph Pad). 

5.2.8.2 HDAC activity 

HDAC activity was measured by colour change on deacetylation of an acetylated substrate 

(Biomol) according to the manufacturers’ instructions. A standard curve was constructed by 

serial dilutions of a deacetylated standard substrate and transferred to a 96-well plate in 

triplicate. Other triplicates received fully acetylated substrate in the proprietary buffer and 5µl 

(7.5µg total protein) nuclear lysate. Again, one triplicate received control lysate with 86mM 

ethanol and another control lysate with 1mM acetate. The plate was incubated at 37°C for 30 

minutes before reactions were stopped by the addition of the HDAC inhibitor trichostatin A 

(TSA) 2µM and 50µl of a developer solution sensitive to the deacetylated substrate added to 

each well. The developer was incubated for a further 15 minutes before the plate was read at 

405nm and the results imported to Prism 4 for quantification of deacetylated substrate from the 

standard curve. 

5.2.9 ACSS1 and 2 determinations 

ACSS1 and 2 transcripts were measured by qRT-PCR as above. Protein determination was by 

Western blotting (section 2.5) using anti-ACSS1 (Abnova, Taipei, Taiwan) and anti-ACSS2 

(Atlas, Stockholm, Sweden) primary antibodies with anti-beta-actin (Abcam, Cambridge, UK) 

used to confirm equal loading. Secondary antibodies were HRP-conjugated goat anti-mouse 
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IgG and goat anti-rabbit IgG (Sigma) and bands were identified using SuperSignal West Pico 

chemiluminescent substrate (Thermo Scientific, Rockford IL) for ACSS2 and Immobilon 

Western chemiluminescent substrate (Millipore, Billerica MA) for ACSS1. Band densitometry 

was performed using Scion Image (Scion Corp, Frederick MD). 

5.2.10 ACSS 1 and 2 knockdown 

To confirm that conversion of acetate to acetyl-CoA is crucial to the acetylation-mediated 

potentiation of inflammatory responses in ethanol, short hairpin RNA (shRNA, Sigma) 

knockdown of ACSS 1 and 2 was performed. shRNA is introduced into target cells as a DNA 

vector which becomes integrated and produces the shRNA via RNA polymerase III under the 

influence of a U6 promoter. The hairpin constructs are cleaved to small interfering RNAs 

(siRNA) which activate the RNA induced silencing complex (RISC) to degrade the 

corresponding mRNA and prevent translation of the target molecule. Stable knockdowns can be 

constructed by the co-transduction of a gene for resistance to the toxic effects of the antibiotic 

puromycin. 

5.2.10.1 Optimisation of shRNA knockdown 

Amenability to knockdown was assessed in MonoMac6 cells by termination of protein synthesis 

with cycloheximide 10µg/ml for 0-5 days. Cell lysates were assayed for persistence of ACSS1 

and 2 by Western blotting as above and this demonstrated no detectable protein three days 

after termination of protein synthesis, suggesting that knockdown should be effective in 

reducing ACSS1 and 2 protein (Figure 5-3 ). 

β-actin �

42kDa

ACSS2 �

80kDa

ACSS1 �

76kDa

Days                      0           1           2            3 4           5            

Figure 5-3 Persistence of ACSS1 and 2 in cyclohexim ide 

Cycloheximide inhibits protein synthesis. Absence o f ACSS 1 and 2 after 3 days 

suggests that cellular levels are dependent on new synthesis and so should be amenable 

to knockdown. 
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Figure 5-4 Killing curves for MonoMac6 cells in pur omycin 

MonoMac6 cells were cultured in the indicated range  of puromycin concentrations and 

percentage viability was assessed at 24 hour interv als by trypan blue exclusion. 5 µg/ml 

was selected as the minimum concentration likely to  achieve 100% kill in 5 days. 

A puromycin kill curve was constructed to identify the minimum concentration of puromycin 

necessary to kill all untransduced cells. Viability at each concentration was assessed on a daily 

basis by trypan blue exclusion (Figure 5-4 ). 5µg/ml was selected as the appropriate 

concentration for selection of stably transduced lines. 

The shRNA vector for ACSS 1 or 2 was delivered by lentiviral particles. Hexadimethrine 

bromide (Sigma) can increase transduction efficiency by neutralising the charge repulsion 

between virions and sialic acid moieties on the cell surface but is toxic to some cell lines. 

MonoMac6 cells were tested for hexadimethrine bromide toxicity by trypan blue exclusion at the 

recommended concentration of 8µg/ml and showed no loss of viability.  

A multiplicity of infectivity (MOI) of 5 (i.e. 5 lentiviral particles per cell) was initially selected and 

achieved successful transduction. Five candidate vectors were provided for each target and 

were assayed in triplicate on 1.6x104 cells in a 96-well culture plate. Vectors were added to cell 

suspensions in the presence of hexadimethrine bromide 8µg/ml and incubated at 37°C in 5% 

CO2 for 18 hours. Suspensions were then aspirated, washed in fresh media and pelleted by 

centrifugation to remove remaining viral particles that could stimulate inflammatory responses. 

Cells were resuspended in fresh media and viability measured by trypan blue exclusion before 
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returning to the incubator for a further 24 hours. Suspensions were then aspirated and assayed 

for ACSS1 and 2 mRNA knockdown by qRT-PCR. Vectors producing the most effective 

knockdown were selected for larger scale transduction (Figure 5-5 ). 
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(B) ACSS2 knockdown
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Figure 5-5 Testing of ACSS 1 and 2 knockdown constr ucts 

ACSS1 and 2 transcripts were assayed by qRT-PCR. Co nstructs 45380 and 45565 were 

selected for creation of stable knockdowns. 
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5.2.10.2 Creation and assay of stable knockdowns and controls 

1.6x105 cells were transduced in triplicate as above at a MOI of 5 with the selected vectors to 

achieve knockdown of ACSS1, ACSS2 and a double knockdown ACSS1+2. To control for the 

effect of shRNA generation on cellular function in accordance with the principles laid down by 

the Horizon symposium (2003), control cells were transduced with a vector for an irrelevant 

shRNA transcript at 5MOI to control for the single knockdowns and at 10MOI to control for the 

double knockdown. 48 hours after transduction, viability was confirmed by trypan blue exclusion 

and cell suspensions were transferred to 25cm2 culture flasks in selection medium containing 

puromycin 5µg/ml. Cell were propagated into 75cm2 flasks and after 5 passages in selection 

medium they were assayed for stable knockdown by qRT-PCR and Western blotting (Figure 

5-6). 
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Figure 5-6 Stable knockdowns after 5 passages in se lection medium 

Knockdowns were assayed after 5 passages in puromyc in 5µg/ml by qRT-PCR (A) and 

Western blotting (B) which confirm knockdown at bot h the mRNA and the protein level. 

Stable knockdowns and controls were subjected to ethanol incubation and LPS stimulation as 

above and cytokine output was assayed by MSD. Stability of the ethanol culture system was 

confirmed in transduced cells by dichromate assay. Cytokine responses to LPS from 

transduced cells were compared to un-transduced and to the appropriate irrelevant transcript 

control. 
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5.2.11 Statistical analysis 

Numerical results were expressed as means of at least three samples and statistical 

significance assessed by the Mann-Whitney U-test. Statistical testing of Real Time results is 

discussed in section 2.10.4. 

5.3 Results  

5.3.1 Ability of MonoMac6 to metabolise ethanol 

qRT-PCR confirmed that ethanol-exposed MonoMac6 cells expressed transcripts for forms of 

ADH, ALDH and CYP2E1 sufficient for metabolism of ethanol in a similar way to human 

macrophages (Wickramasinghe 1986) (Figure 5-7 ). 
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Figure 5-7 Ethanol metabolising enzymes expressed b y MonoMac6 cells 

qRT-PCR products resolved in 4% agarose gel after 4 5 cycles amplification. CYP2E1 

cytochrome P450 2E1, ADH alcohol dehydrogenase, ALD H aldehyde dehydrogenase. 

5.3.2 Enhancement of inflammatory cytokine responses by ethanol 

Monomac6, an established human macrophage cell-line modelling Kupffer cell responses in 

ethanol (Zhang, Bagby et al. 2001), was maintained in a validated constant-exposure ethanol 
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culture system at an ethanol concentration of 86mM, equivalent to human blood concentrations 

after heavy drinking. This system demonstrated enhancement of the cytokine response to E coli 

LPS 10ng/ml compared to cells grown in normal medium. This was not seen with acute ethanol 

exposure but after seven days culture in ethanol significant augmentation of IL-6, IL-8 and 

TNFα release following LPS exposure (Figure 5-8A ) was observed. Cytokine mRNA 

expression was also increased (Figure 5-8B ). The effect of ethanol on cytokine output was 

reversible with transfer of hyper-responsive cells from ethanol to normal medium causing the 

cytokine response to LPS to normalise within four days (Figure 5-9 ). The culture system 

adopted therefore replicates previous reports of the augmentation of inflammatory cytokine 

release in the context of chronic ethanol exposure in animal models and human patients with 

AAH, and demonstrates that this results, at least in part, from an increase in the level of 

inflammatory cytokine gene transcription. 

 

Figure 5-8 Enhanced cytokine responses to LPS in et hanol and acetate 

Monomac6 cells were cultured in normal media or in the presence of 86mM ethanol (A, B) 

or 1mM acetate (C) for 7 days and then stimulated w ith E. coli LPS 10ng/ml. Cells were 

harvested for cytokine mRNA determination by qRT-PC R at 60minutes (B) and 

supernatants for cytokine protein determination by multiplex immunoassay at 48 hours 

(A, C). Values shown are mean + SEM for 3 independe nt determinations. 
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Figure 5-9 Recovery of normal cytokine response aft er ethanol removal 

Monomac6 cells were cultured with 86mM ethanol for 7 days, washed and transferred to 

normal media for 0-7 days before stimulation with L PS 10ng/ml. Supernatants were 

harvested for cytokine protein determination by mul tiplex immunoassay after 48 hours. 

5.3.3 Increased TLR4 but maintained endotoxin tolerance in ethanol 

FACS analysis demonstrated increased surface TLR4 after seven days culture in 86mM ethanol 

and this was increased further by exposure to LPS (Figure 5-10 ). ELISA demonstrated an 

enhanced TNFα response to a single LPS 10ng/ml stimulation in the ethanol-exposed cells, 

consistent with the findings of the MSD analysis above. However, in cells that had received 
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earlier LPS exposure 72 hours previously, the TNFα response to re-challenge with LPS was 

strongly suppressed in both the presence (p=0.004) and absence (p=0.009) of ethanol, despite 

high levels of TLR4 expression in both groups (Figure 5-10 ). Stimulation with a higher LPS 

concentration of 100ng/ml did not induce a TNFα response in tolerised cells. This suggests that 

cells became tolerant to LPS in both the presence and absence of ethanol. Although this 

preservation of tolerance at a cellular level is not consistent with the prolonged inflammation 

seen at a whole organism level, it does confirm that increased surface expression of TLR4 is 

not the key determinant of the enhanced cytokine responses seen in ethanol. 
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Figure 5-10 LPS tolerance and changes in surface TL R4 in ethanol 

LPS-naïve cells  show an enhanced TNF α response to LPS in 86mM ethanol compared to 

normal media, but in LPS-exposed cells the response  to a second LPS stimulus is 

tolerised in both ethanol and normal media (left pa nel). Ethanol culture is associated with 

increased surface TLR4 but the response to a second  LPS stimulus shows tolerance 

despite even greater TLR4 expression in both ethano l and normal media (right panel). 

5.3.4 Global acetylation increases in ethanol 

The next investigation examined whether the enhanced inflammatory responses associated 

with chronic ethanol exposure were associated with increased histone acetylation. 

Immunofluorescence microscopy for total acetylated lysine residues, acetyl-histone H3 and 

acetyl-histone H4 revealed a time-dependent increase in acetylation over six days culture in 

86mM ethanol (Figure 5-11 ). Co-culture with the inhibitor of ethanol metabolism 4-MP in the 

ethanol-containing medium reduced the acetylation staining to baseline, suggesting that ethanol 

metabolism rather than simply ethanol exposure was responsible for the acetylation changes. 

This observation demonstrates that ethanol metabolism by mononuclear cells is associated with 

increased histone acetylation, with a time course similar to the cytokine enhancement, and 

which is dependent on the metabolism of ethanol. 
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Figure 5-11 Global histone acetylation changes in e thanol  

Monomac6 cells were cultured in 86mM ethanol and ex amined for acetylation 

modifications (green) after 0-6 days by immunofluor escence microscopy. Modifications 

stained were total acetylated lysine residues (top row), acetylated histone H3 (middle 

row) and acetylated histone H4 (bottom row). Nuclei  were stained blue with DAPI. The 

effect of ethanol metabolism on the modifications w as demonstrated by co-culture with 

the alcohol dehydrogenase inhibitor 4-methylpyrazol e (4-MP) for 6 days (right column).  

5.3.5 Increased histone acetylation at specific cytokine gene promoters 

The immunofluorescence microscopy had revealed global increases in histone acetylation. To 

determine whether this specifically included increased acetylation of the crucial promoter 

regions of pro-inflammatory cytokine genes chromatin immunoprecipitation was performed on 

cells cultured in ethanol and control cells cultured in normal medium. The immunoprecipitates 

produced by anti-acetyl-histone H3 and anti-acetyl-histone H4 antibodies from the monococcal 

nuclease-digested chromatin of ethanol-exposed cells were enriched for DNA from the promoter 

regions of the IL-6 and TNFα genes relative to immunoprecipitates from unexposed cells 

(Figure 5-12 ). This confirmed that increased histone H3 and H4 acetylation was present at 

these pro-inflammatory cytokine gene promoters after 7 days culture in 86mM ethanol, 

providing a mechanism for increased cytokine transcription in response to LPS stimulation. 
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Figure 5-12 Promoter-specific histone acetylation c hanges in ethanol  

Histone H3 and H4 acetylation at IL-6 and TNF αααα promoters after 6 days in 86mM ethanol 

was studied by chromatin immunoprecipitation. Immun oprecipitates generated using 

anti-acetyl-histone H3 and H4 antibodies were assay ed by qPCR for enrichment of 

promoter regions of IL-6 and TNF αααα genes relative to precipitates from cells cultured  in 

normal media. Enrichment of the precipitate from a given sample with DNA from the IL-6 

and TNF αααα promoters reflects the degree to which these were associated with histones 

bearing the modification of interest. (A) PCR produ cts from amplification of 

immunoprecipitated DNA with primers for the IL-6 an d TNFα promoter regions resolved 

in 2% agarose gel. (B) Relative concentrations of I L-6 and TNFα promoter DNA in the 

extracts quantified by SYBR Green Real Time PCR and  compared between ethanol-

exposed and control cells for each histone modifica tion. 
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5.3.6 Reproduction of the ethanol effect by acetate 

A potential mechanism for the effect of ethanol exposure on histone acetylation status would be 

through increased exposure to acetate (the principal hepatic metabolite of ethanol). In order to 

address this mechanism the extent to which co-culture with acetate could replicate the ethanol 

effect on histone acetylation was explored. When cells were cultured in 1mM acetate for seven 

days and then stimulated with LPS an augmentation of cytokine release was observed similar in 

magnitude to that seen in the ethanol-exposed cells for IL-6, IL-8 and TNFα (Figure 5-8C ). That 

exposure to acetate can replicate the enhanced cytokine responses seen following prolonged 

ethanol metabolism suggests that exposure to acetate (or one of its metabolites) is likely to be 

critical for increased histone acetylation in the context of ethanol exposure/AAH. 

5.3.7 HAT and HDAC activity  

It was then tested whether ethanol or acetate were acting by influencing the balance of HAT 

and HDAC activity in the cells. Addition of 86mM ethanol or 1mM acetate to fresh lysate of 

MonoMac6 cells significantly reduced HDAC activity within 30 minutes and produced a non-

significant increase in HAT activity, a situation favouring net increase in histone acetylation 

(Figure 5-13 ).  

 

Figure 5-13 HDAC and HAT activity in ethanol and ac etate 

Monomac6 nuclear lysates were incubated with contro l media, 86mM ethanol or 1mM 

acetate for 30min at 37ºC. Substrate deacetylation or acetylation was quantified as 

described in the text. Values shown are mean + SEM for 3 independent determinations. 
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Nuclear lysates from cells cultured in 86mM ethanol or 1mM acetate for seven days suggested 

a trend towards reduced HDAC and increased HAT activity but this did not achieve statistical 

significance (Figure 5-14 ). 

 

Figure 5-14 HDAC and HAT activity after 7 days in e thanol and acetate 

Monomac6 cells were incubated in control media alon e or with 86mM ethanol or 1mM 

acetate for 7 days. HDAC and HAT activity of nuclea r lysates was quantified as described 

in the text. Values shown are mean + SEM for 3 inde pendent determinations. 

5.3.8 Induction of ACSS1 and 2 by ethanol and acetate 

Free acetate has little metabolic activity and is more likely to influence cellular responses as the 

metabolically active acetyl-coA, synthesised from acetate by ACSS1 and 2. ACSS 1 and, to a 

lesser extent, ACSS 2 transcripts were more abundant in cells incubated in 86mM ethanol for 

seven days than in control cells (Figure 5-15A ). At the protein level, Western immunoblotting 

identified induction of ACSS1 from six days culture in ethanol. A similar induction was observed 

in 1mM acetate but was apparent at 24 hours (Figure 5-15B ). Although an increase in ACSS 2 

was identified by band densitometry this was not sufficient to be apparent on visual examination 

of the blots and is therefore likely to be artefactual. These findings demonstrate, for the first 

time, that macrophages have the potential to increase synthesis of metabolically active acetyl-

coA during ethanol exposure, making additional acetyl-coA available for use by HAT enzymes 

and the Krebs cycle. 
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Figure 5-15 Induction of ACSS 1 and 2 by ethanol an d acetate 

(A) Monomac6 cells were cultured in normal media or  media with 86mM ethanol for 7 

days and assayed for ACSS1 and 2 mRNA by qRT-PCR. V alues shown are mean + SEM 

for 3 independent determinations. (B) Monomac6 cell s were cultured in 86mM ethanol or 

1mM acetate for 0-7 days before lysis and proteins were separated by SDS-PAGE and 

identified by immunoblotting for ACSS1 and 2 with ββββ-actin to control for differences in 

loading. Increases in band density over untreated c ells were quantified relative to ββββ-actin 

by band densitometry.  
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5.3.9 Effect of antioxidants and sirtuin activators 

The antioxidants MnTBAP and trolox did not show any consistent effect upon cytokine output in 

this model system. Co-culture with the SIRT1 activator resveratrol reduced the LPS cytokine 

response virtually to zero in both ethanol-exposed and control cells. This lead to suspicion that 

the resveratrol was contaminated with LPS and producing a tolerance effect. 

5.3.10 ACSS 1 and 2 knockdown abrogates the effect of ethanol 

Western immunoblotting confirmed stable knockdown of ACSS1, ACSS2 and the double 

ACSS1+2 knockdown at the protein level (Figure 5-16A ). The enhancement of cytokine output 

after incubation in 86mM ethanol was markedly diminished by ACSS knockdown, most 

significantly in the double ACSS1+2 knockdown cells. Cytokine output from the double 

knockdown cells was significantly lower than from the cells transduced with irrelevant transcript 

shRNA constructs at an equal multiplicity of infectivity (Figure 5-16B ). These findings 

corroborate the idea that the augmented inflammatory cytokine response seen in alcoholic 

hepatitis occurs as a direct consequence of the metabolic effects of ethanol exposure modifying 

the transcriptional regulation of these cytokines via acetate and its conversion to acetyl-coA. 
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Figure 5-16 Effect of ACSS1 and 2 knockdowns on inf lammatory cytokine 

responses in ethanol 

Effective knockdown of ACSS1 and 2 protein expressi on was confirmed by Western 

blotting with β-actin as a loading control (A). Stable knockdowns,  controls and 

untransfected cells were cultured in 86mM ethanol f or 7 days and then stimulated with E. 

coli LPS 10ng/ml. Supernatant cytokines were determined by MSD immunoassay at 48 

hours. Cytokine output was compared between knockdo wns and their relevant controls. 

Values shown are mean + SEM for 3 independent deter minations. 
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5.4 Discussion 

5.4.1 Cytokines, tolerance and potential tissue effects 

The enhanced cytokine response to bacterial endotoxin in AAH, ethanol-fed animals and 

ethanol-exposed cells is already established, and the MonoMac6 cells studied here displayed 

the same enhanced TNFα response reported elsewhere (Zhang, Bagby et al. 2001). The 

multiplex assay technology available allowed demonstration of a similar pattern of enhancement 

in IL-6 and IL-8, both shown to be of pathological significance in human AAH (Sheron, Bird et al. 

1991; Sheron, Bird et al. 1993).  

The disease-related cytokine pattern has been described as a failure of normal hepatic 

endotoxin tolerance (McClain, Hill et al. 2002), and this is an appropriate term for what is 

observed at the whole-organ level. However, although this cell line based model showed 

enhancement of cytokine transcription and release in ethanol, it also displayed normal tolerance 

to a second LPS stimulus. This may have been unexpected, but it is in keeping with the 

hypothesis that ethanol’s key effect is at the level of gene expression rather than TLR receptor 

signalling. The majority of the endogenous regulatory molecules currently thought to play a role 

in the establishment of TLR response tolerance act on signalling intermediates in the TLR/NF-

κB pathway and as such will silence inflammatory pathways upstream of any chromatin 

changes (Liew, Xu et al. 2005). It is conceivable that changes in the balance of acetylation and 

deacetylation mechanisms cannot alter gene expression when tolerance diminishes the 

initiation effect of activating transcription factors. 

This persistence of a strong tolerising effect of prior LPS exposure in this model requires 

discussion as this could negate the effect of ethanol’s enhancement of cytokine release in the 

physiological context of fluctuating continual LPS exposure from portal venous blood. Indeed, 

repeated LPS exposure might be considered to be a more physiological stimulus than a single 

dose. The term ‘endotoxin tolerance’ is used to describe phenomena in isolated cells, organ 

systems and whole organisms that are associated but not necessarily equivalent. In the isolated 

cell internal regulators of receptor signalling pathways and autocrine and paracrine effects of 

anti-inflammatory mediators can be enough to silence the cytokine response to a second LPS 

stimulus (Knolle, Schlaak et al. 1995; Liew, Xu et al. 2005). However, in a more physiological 

microenvironment stimulation of multiple TLRs by the mixture of microbial products in portal 

blood might overcome intracellular tolerance mechanisms (Broad 2007). Furthermore, the 

anatomical positioning of inflammatory cells and the flow of their surrounding fluid might reduce 

the autocrine effect of anti-inflammatory mediators. There is a substantial literature supporting 

the concept that macrophages from ethanol-exposed humans and rodents do not behave in a 

tolerised manner despite increased circulating LPS (Section 1.3.6). Further work to dissect out 

determinants of tolerised responses in these cells would include detailed timecourse 
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experiments, exposure to multiple TLR ligands, measurement of IL-10 and modulation of the 

cells’ microenvironment by frequent media changes or use of a flow culture system. 

Even with multiplex cytokine measurements, in vitro models like this can only inform us about 

the likely dysregulation of cytokine production in the inflamed, ethanol-exposed liver. They 

cannot tell us how this disordered cytokine milieu will affect the organ (or the organism) as a 

whole. It would be entirely reasonable to suggest that global hyperacetylation of the sort 

suggested by the immunofluorescence staining could influence most cellular mechanisms and 

enhance expression of multiple genes, including anti-inflammatory mediators, implying that the 

net effect of the prevailing cytokine milieu may not necessarily be pro-inflammatory. Findings 

with respect to the anti-inflammatory cytokine IL-10 are not presented above for simplicity but it 

showed similar enhancement at the mRNA and protein level with increased promoter histone 

acetylation on ChIP after ethanol incubation. It cannot be assumed, however, that increased IL-

10 would ‘cancel out’ the effect of proinflammatory cytokines. Indeed, it is equally possible that 

the combined effects of augmented and unmodulated pro- and anti-inflammatory influences 

would be particularly deleterious for hepatocytes, hepatic stellate cells and endothelial cells. 

The profibrotic effects of some anti-inflammatory mediators are well established (Purohit and 

Brenner 2006). Furthermore, the same mechanisms that lead to enhanced expression of 

cytokine genes in macrophages may also act in other liver and immune cells to influence the 

expression of genes downstream of the cytokine receptors and hence the cellular response 

(activation, migration, apoptosis etc) to those cytokines. Only in vivo studies will help to answer 

these questions.  

5.4.2 Increased histone acetylation 

The observation of increased histone acetylation in a macrophage cell line after ethanol 

treatment is consistent with the findings of other groups that have recently demonstrated that 

ethanol increases histone acetylation in hepatocytes (Park, Miller et al. 2003), hepatic stellate 

cells (Kim and Shukla 2005) and whole rat tissues (Kim and Shukla 2006). There is also recent 

evidence that ethanol can reduce total HDAC activity (Choudhury and Shukla 2008).  However, 

the present study is the first demonstration of ethanol modulation of gene expression in 

inflammatory cells by a mechanism dependent on histone acetylation. This increased 

acetylation could, in principle, arise through a number of routes. Ethanol metabolism, 

particularly at higher concentrations, produces a significant burden of reactive oxygen species 

(ROS) (Wheeler, Kono et al. 2001) and endoplasmic reticulum (ER) stress (Ji and Kaplowitz 

2006). ROS can directly activate transcription factors such as NF-κBp65 (Cao, Mak et al. 2002) 

and oxidative and ER stress can favour a pro-inflammatory transcription factor milieu (Han, 

Hanawa et al. 2006). NF-κBp65 will recruit HAT co-activators to pro-inflammatory gene 

promoters and increase histone acetylation. Additionally, oxidative stress is known to inhibit 

HDAC recruitment to actively transcribed chromatin (Barnes, Ito et al. 2004). However, critically, 

these data have shown that exposure to acetate, the principle hepatic end-product of ethanol 
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metabolism, can fully mimic the effects on cytokine production seen with ethanol. As cytokine 

potentiation can occur without the ROS-generating metabolism of ethanol to acetate then 

oxidative stress cannot be solely responsible for the enhanced inflammatory response to 

ethanol. Antioxidants have been demonstrated to reduce the effect of ethanol on TNFα 

secretion in this model by another group (Zhang, Bagby et al. 2001) but the present study failed 

to corroborate these findings. 

These data demonstrated that both ethanol and its metabolite acetate could reduce HDAC 

activity in a cell-free system. Free acetate is the end product of histone deacetylation, so 

acetate may increase histone acetylation through end-product inhibition of HDACs. Acetate may 

also increase histone acetylation through increased HAT activity. This could be through 

increased substrate supply (though for this acetate must be in the form of acetyl-coA) or 

indirectly through reduced HDAC activity. HDACs have a role in deacetylation of NF-κBp65 

leading to a reduction in its ability to recruit HAT co-activators, so reduced HDAC activity can 

lead to increased HAT recruitment (Quivy and Van Lint 2004). 

5.4.3 ACSS, acetyl-coA and sirtuins 

Ethanol and acetate might also influence total HDAC activity by modulating the activity of 

sirtuins. These are class III HDACs whose activity is dependent on the presence of NAD+ and 

which are increasingly recognised as a vital link between energy supply, gene expression, 

cellular activity and cellular ageing (Lavu, Boss et al. 2008). In this study the SIRT1 activator 

resveratrol did appear to inhibit cytokine responses to LPS in both ethanol and normal medium, 

although its mechanism of action in this case has not been fully elucidated. Metabolism of 

ethanol to acetate results in NAD+ depletion which will reduce sirtuin and hence total HDAC 

activity. Free acetate will not affect NAD+, but once converted to acetyl-coA it can enter the 

Krebs cycle and convert NAD+ to NADH in the same way as if it had come from glycolysis or 

fatty acid oxidation. Acetate is converted to acetyl-coA through the action of the ACSS 1 and 2 

enzymes whose activity is also dependent on sirtuin activity (North and Sinclair 2007). Acetyl-

coA synthetases can be induced by acetate in prokaryotes (Bräsen and Schönheit 2004), 

although free acetate can also downregulate ACSS 1 and 2 through reduced SREBP 

transcription (Sakakibara, Yamauchi et al. 2006). These experiments demonstrated 

upregulation of ACSS 1 in this human cell line by acetate and, at a slower rate, by ethanol. 

Knockdown of ACSS 1 and 2 by shRNA significantly diminished ethanol’s enhancement of 

cytokine responses to LPS and this implies that the supply of acetyl-coA from free acetate by 

ACSS enzymes makes a significant contribution to the increased inflammatory cytokine 

responses seen after chronic ethanol exposure.  

Consideration should be given to the relative rates of metabolism of ethanol and acetate in 

different cell types. Ethanol metabolism in hepatocytes is rapid and inducible with plentiful 

alcohol and aldehyde dehydrogenases and cytochrome p450 2E1, but the majority of the 
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resulting acetate diffuses out of the hepatocyte (Yamashita, Kaneyuki et al. 2001). Acetate is 

metabolised in other tissues where it is converted to acetyl-coA by ACSS1 and 2 and either 

enters the Krebs cycle to yield carbon dioxide and water or is deployed for fatty acid synthesis 

or protein acetylation. Although the macrophage does metabolise ethanol (Wickramasinghe 

1998), it cannot achieve the high rates of the hepatocyte, but it can produce acetyl-coA from 

acetate due to plentiful ACSS1 (Fujino, Ikeda et al. 2003). One could therefore speculate that in 

an ethanol-exposed whole liver the major determinant of enhanced cytokine production from 

Kupffer cells might be exogenous acetate released in high concentration by nearby ethanol-

metabolising hepatocytes, rather than the lower concentrations generated within the Kupffer cell 

itself. This would mean that the effect observed in vitro in this isolated macrophage cell line 

would be magnified in the physiological setting. 

In summary, these findings are evidence for a mechanism of enhanced inflammation in acute 

alcoholic hepatitis in which acetyl-coA synthetases are upregulated and convert the ethanol 

metabolite acetate to an excess of acetyl-coA which increases pro-inflammatory cytokine gene 

histone acetylation by increased substrate concentration and, potentially via NAD+ and sirtuins, 

HDAC inhibition, leading to enhanced gene expression and perpetuation of the inflammatory 

response. The clinical implication of these findings is that modulation of ACSS or specific HDAC 

or sirtuin activity might affect the clinical course of alcoholic liver injury in humans. If HDAC 

activators or inhibitors of ACSS 1 and 2 can modulate ethanol-associated histone changes 

without affecting the flow of acetyl-coA through the normal metabolic pathways then they would 

have potential as therapeutic options in acute alcoholic hepatitis. 
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6 Final discussion 

6.1 Aims and outcomes of the project 

This study was designed to explore the thesis that the augmented acute inflammatory 

responses characteristic of acute alcoholic hepatitis have both a genetic and an epigenetic 

basis and occur as a result of the interaction of metabolic and inflammatory processes at the 

level of gene expression. Investigation was developed around three principle hypotheses. 

• That the functional S180L polymorphism in the TLR adapter molecule MAL, a critical 

genetic determinant of TLR-triggered disease, will contribute to the pathogenesis of 

both alcoholic liver disease and that other liver disease associated with excess energy 

metabolism, non-alcoholic steatohepatitis (Chapter 3). 

Investigation confirmed an association between the MAL polymorphism and both cirrhotic ALD 

and advanced fibrotic NASH. Unexpectedly, different alleles associated with advanced disease 

in the two aetiologies. The C allele, associated with strong pro-inflammatory signalling from 

TLR2 and TLR4, was more common in advanced NASH while the T allele, associated with 

attenuated signalling, was more common in advanced ALD. It was postulated that this 

divergence could be due to individuals carrying the T allele relying more on an alternative 

(MyD88-independent) signalling pathway which is more susceptible to modulation by ethanol. 

Unexpected as they were, these findings corresponded with recently-published molecular 

biology work that suggested differential importance of the two signalling pathways in models of 

NASH and ALD. 

The relatively high p values associated with these findings highlighted the possibility of a type 1 

error, and it remains possible that future validation experiments in a separate cohort will not 

confirm the association between the polymorphism and advanced disease. This would not be 

unusual in ALD in which multiple studies have succeeded in identifying very few convincing 

genetic determinants. It is suggested that the genetic component to ALD susceptibility is likely 

to be small and significant only in those who develop advanced disease at an early age or 

relatively low cumulative ethanol dose. It is likely that environmental and epigenetic effects are 

the more significant determinants of ALD susceptibility in the population. It is particularly 

intriguing that several of the principal environmental factors influencing ethanol cirrhosis – 

smoking, diet/obesity/insulin resistance and caffeine intake – now have identifiable potential to 

influence histone acetylation, by HDAC inhibition, sirtuin inactivation and HDAC recruitment 

respectively. 

• That acute alcoholic hepatitis is characterised by reduction in the sensitivity of immune 

responses to glucocorticoid inhibition and that this steroid insensitivity can be 

ameliorated by the epigenetic modulator theophylline (Chapter 4). 
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Measured ex vivo lymphocyte steroid sensitivity was observed to be significantly suppressed in 

AAH patients relative to normal controls and relative to the surviving patients after recovery. The 

in vitro addition of theophylline to the assay significantly improved steroid sensitivity. 

Confirmation of these findings and refinement of the technique in a larger cohort could influence 

therapy in AAH by minimising ineffective corticosteroid exposure and exploring the therapeutic 

potential of theophylline. 

It was inferred that impaired steroid sensitivity was acquired in the pathogenesis of AAH. The 

effect of 10-5M theophylline on this pathogenesis-related phenomenon, the fact that one of the 

few chemical effects of theophylline likely to be evident at this concentration is HDAC 

recruitment, and the fact that similar theophylline-responsive steroid insensitivity in COPD has 

an association with histone acetylation and HDAC inhibition all lent credibility to the theory that 

ethanol-driven HDAC inhibition and increased histone acetylation were aetiological factors in 

AAH. 

• That the enhanced macrophage cytokine response to endotoxin seen in acute alcoholic 

hepatitis occurs through uncoupling of cytokine gene transcription from its normal 

regulatory mechanisms This occurs through increased histone acetylation at 

proinflammatory gene promoter regions, as a consequence of the interaction of ethanol 

metabolism with the epigenetic mechanisms of transcriptional regulation (Chapter 5). 

In a cell-line model ethanol was confirmed to enhance cytokine responses to endotoxin at both 

the protein and the transcriptional level. Ethanol was demonstrated to have increased global 

protein and particularly histone acetylation, including in chromatin at the promoter regions of the 

specific cytokine genes. The effect of ethanol on cytokine responses was reproduced by 

acetate, the end product of ethanol metabolism, suggesting that acetate is involved in AAH 

pathogenesis. Acetyl-coA synthetases which produce metabolically active acetyl-coA from free 

acetate were demonstrated to be upregulated by ethanol and acetate and knockdown of these 

enzymes abrogated the effect of ethanol on cytokine production. This suggested that acetyl-

coA, the key molecule of cellular energy release and storage, was also key to the modulation of 

inflammatory responses by ethanol. 

The data indicated that this process was associated with reduced HDAC activity and there was 

circumstantial evidence for the involvement of the NAD+ dependent HDACs, the sirtuins. Acetyl-

coA can provide the substrate for histone acetylation but also deplete NAD+ by its Krebs cycle 

metabolism. This could result in sirtuin inhibition, reduction in the rate of histone deacetylation 

and enhanced gene expression (Figure 6-1 ). The identification of a possible pathway from 

ethanol through acetate, ACSS, acetyl-coA, sirtuins and histone acetylation to enhanced gene 

expression and inflammatory responses is a novel concept, and one whose implications widen 

when it is considered that other sources of acetyl-coA including carbohydrates and triglycerides 

might also be able to modulate gene expression via the same pathway. 
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Figure 6-1 Potential roles of acetate, ACSS1 and 2 and sirtuins in ethanol-

induced enhancement of inflammatory gene expression  

Acetate is generated from ethanol metabolism in the  inflammatory cell and in adjacent 

hepatocytes and may reduce HDAC activity by end-pro duct inhibition (light green 

arrows). Acetyl-coA synthetases (ACSS) convert the acetate to acetyl-coA, the form in 

which it is a substrate for Krebs cycle metabolism and for histone acetylation by HATs 

(red arrows). Both ethanol and acetyl-coA metabolis m deplete NAD+, leading to 

inactivation of sirtuin (SIRT) HDAC activity and he nce reduced total HDAC activity (navy 

arrows). Reduced HDAC activity prolongs the acetyla tion of NF- κBp65 and hence its 

ability to recruit HATs to inflammatory genes in re sponse to inflammatory stimuli (dark 

green arrow).  The net effect of changes in HDAC an d HAT activity is to increase and 

prolong histone acetylation and hence inflammatory gene transcription. Active sirtuins 

also increase ACSS activity (North and Sinclair 200 7), which may provide a negative 

feedback limb in this pathway (dashed navy arrow). 

6.2 Implications of the findings 

The role of histone acetylation and epigenetics in the effects of alcohol has developed into a 

new and burgeoning field of study during the course of this project (Shukla, Velazquez et al. 
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2008; Shepard and Tuma 2009).The project’s findings could add to this field, providing 

additional evidence for the role of epigenetics in ALD, reporting a role for histone acetylation in 

ethanol’s enhancement of inflammatory responses for the first time, and postulating new 

therapeutic mechanisms in theophylline, Acetyl-coA synthetase inhibition and sirtuin activation. 

While the others require much more detailed laboratory investigation, theophylline, an 

established therapy with a known safety profile, is well placed for use in initial clinical studies in 

steroid-treated AAH. 

The measurement of ex vivo steroid sensitivity has the potential to improve use of existing 

treatments by avoiding ineffective corticosteroid exposure, and hopefully identify early those 

patients who should be offered clinical trials of new therapeutic agents. However, the technique 

will require considerable development, refinement and validation before it can find use as a 

clinical decision-making tool. 

In the last 20 years much of the research in ALD has focussed on the effect of ethanol on 

receptors, pathways and signalling intermediates and a clear role in modulation of signalling, 

largely through induction of oxidative and ER stress, was emerging. New discoveries regarding 

the role of ethanol in transcriptional regulation do not make its effects on signalling pathways 

irrelevant. The presence of TLR4 and NF-κB have been shown to be critical for the 

development of ethanol-induced liver injury and it would seem unlikely than even a 

hyperacetylated inflammatory gene promoter would initiate significant tissue damage in their 

absence. However, it may become clear that the signalling effects of ethanol are necessary but 

not sufficient for the development of liver injury and its downstream effects on gene expression 

may have equal importance. In therapeutic terms, it is possible that specific modulators directed 

at this downstream component of the pathogenic mechanism might be better tolerated with 

fewer off-target effects that might limit their clinical usefulness. However, it is unlikely that all the 

clinical effects of chemical interference with mechanisms of gene expression will be benign and 

predictable. 

The close coupling of energy metabolism and modulation of inflammation and gene expression 

hinted at by these findings and by the very existence of sirtuins is likely to be a fascinating and 

fertile area of research in the years to come. It has been shown that through their NAD+ 

dependence sirtuins mediate the positive effects of calorie restriction on longevity, metabolism, 

mitochondrial function and insulin sensitivity, promote physical activity and moderate illness 

behaviour in animals (Baur, Pearson et al. 2006; Lagouge, Argmann et al. 2006). Sirtuin 

activation can mimic the cellular effects of calorie restriction and therefore has potential as a 

therapeutic strategy in diseases associated with energy over-supply, particularly type II diabetes 

mellitus and the metabolic syndrome (and by inference NASH), but could potentially also 

mitigate the effects of ethanol-induced increases in acetyl-coA and decreases in NAD+. 
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6.3 The findings in context 

The findings and discussion above beg the question of what the evolutionary basis could be for 

such a deleterious response to plentiful energy supply. 

Nutritional excess may be common now but has not been a frequent event during evolutionary 

time. More often starvation has been the driver for natural selection, and phenotypes that can 

survive and function despite starvation have been more likely to pass their genetic traits on to 

subsequent generations. During times of calorie deficiency, individuals would benefit from 

mechanisms that limit unnecessary gene expression and the energy-consuming effects of 

vigorous inflammatory responses. Increased aerobic capacity, physical activity and reduced 

illness behaviours would allow them to persist longer in the search for food. Longevity in the 

face of starvation increases the animal’s chance of surviving long enough to encounter a mate 

and pass on its genetic material. Where nutrition is plentiful, individuals will live closer together 

and often compete to mate. The priorities change to strength development, protein synthesis 

and effective inflammation, healing responses and illness behaviour to limit activity and promote 

recovery. After mating the genetic imperative for longevity becomes less important. 

With this in mind it is understandable that mechanisms responding to nutritional excess might 

lead to enhanced inflammation, reduced lifespan and lassitude, all features of the metabolic 

syndrome as well as NASH and ALD. Interestingly, another liver condition, primary biliary 

cirrhosis (PBC) is associated with autoimmunity and lassitude and recently has been 

demonstrated to be associated with impairment of mitochondrial biogenesis, which could be 

postulated to lead to failure of NAD+ regeneration and accumulation of acetyl-coA 

(Hollingsworth, Newton et al. 2008). 

6.4 Future directions 

Clinical directions for this work include evaluation of theophylline as an adjunctive treatment in 

corticosteroid-treated AAH and refinement of biomarkers of steroid responsiveness in this 

condition. Small molecule sirtuin activators are already being studied in type II diabetes and 

have shown some early promise in reduction of steatosis in a rodent model of NASH 

(Yamazaki, Usui et al. 2009). Clinical trials in human NASH would be a possible next step. 

Scientific directions include studying histone acetylation, gene expression and activities of 

sirtuins and ACSS in human patients and animal models of ALD and NASH. Evaluation of small 

molecule sirtuin activators in models of ALD might inform future clinical studies. Detailed study 

of the relationship between energy metabolism and inflammation could inform future work 

beyond the field of liver and ethanol-related disease. 
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6.5 Synthesis 

Even the most basic multicellular organism, the social amoeba Dictyostelium discoideum, 

shows specialisation of cells that mediate both of the crucial aspects of interaction with the 

environment – nutrition and host defence (Chen, Zhuchenko et al. 2007). This co-localisation of 

metabolism and immunity is phylogenetically preserved and anatomically localised in the liver. 

However, it is only in recent years that the importance of the liver and hepatic metabolism in 

immunity and inflammation has emerged as a field of study (O'Farrelly 2004). The findings of 

this project emphasise the importance of this metabolism-inflammation interaction in the 

pathogenesis of a common human disease. The potential role of acetyl-coA, the key molecule 

of cellular energetic and biosynthetic pathways, in the modulation of the inflammatory changes 

associated with acute alcoholic hepatitis further reinforces the intimate relationship between 

metabolism and immunity and the role of the liver as the intersection of these vital processes. 
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8 Appendix 

8.1 Antibodies used in this study 

Antigen Host / 

class 

Conjugate Manufacturer Catalogue# Lot# Working 

dilution 

Application 

Β-actin rabbit - Abcam ab8227-50 426698 1 in 5000 WB 

ACSS1 mouse - Abnova H00084532-B01 08263 1 in 1000 WB 

ACSS2 rabbit - Atlas HPA004141 R04111 1 in 2500 WB 

TLR4 mouse 

IgG2aκ 

AlexaFluor647 eBioscience 51-9917-73 E019647 1 in 2.5 FC 

acetyl-

lysine 

rabbit - Cell Signalling 

Technology 

9441S 7 1 in 200 IF 

acetyl-

histone H3 

rabbit - Upstate 06-599 31994 5µg/ml IF 

acetyl-

histone H4 

rabbit - Upstate 06-598 31991 10µg/ml IF 

Table 8-1 Primary antibodies 

WB Western Blotting; FC flow cytometry; IF immunofl uorescence 
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Antigen Host / 

class 

Conjugate Manufacturer Catalogue# Lot# Working 

dilution 

Application 

Mouse 

IgG 

goat 

IgG 

HRP Sigma A3673 087K6014 1 in 5000 WB 

Rabbit IgG goat 

IgG 

HRP Sigma A6154 086K60142 1 in 5000 WB 

Rabbit IgG goat 

IgG 

FITC Sigma F1262 105K6070 1 in 200 IF 

Table 8-2 Secondary antibodies 

HRP horseradish peroxidase 

 

Antigen Host / 

class 

Conjugate Manufacturer Catalogue# Lot# Working 

dilution 

Application 

Isotype mouse 

IgG2aκ 

AlexaFluor647 eBioscience 51-4724-80 E020012 1 in 10 FC 

Table 8-3 Isotype control antibodies 
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8.2 Real Time primers and probes  

 Target Exon-spanning Assay ID Lot# PCR efficiency 

18s - Hs99999901_s1 467721 -2.775 

TNFα Yes Hs00174128_m1 465479 -2.493 

IL-6 Yes Hs00174131_m1 466829 -2.723 

IL-8 Yes Hs99999034_m1 609148 -2.834 

ACSS1 Yes Hs00287264_m1 531983 -2.629 

ACSS2 Yes Hs00218766_m1 545764 -2.626 

CYP2E1 Yes Hs00559367_m1 607568 - 

ADH1A No Hs00605167_g1 551822 - 

ADH1B Yes Hs00605175_m1 545306 - 

ADH1C Yes Hs00817827_m1 580597 - 

ADH4 Yes Hs00167415_m1 550113 - 

ADH5 Yes Hs00605185_m1 548804 - 

ADH6 Yes Hs00167423_m1 522585 - 

ADH7 Yes Hs00609447_m1 568774 - 

ALDH1A1 Yes Hs00946916_m1 622474 - 

ALDH1A2 Yes Hs00180254_m1 551423 - 

ALDH1A3 Yes Hs00167476_m1 542499 - 

ALDH1B1 Yes Hs00377718_m1 523325 - 

ALDH1L1 Yes Hs00201836_m1 575091 - 

ALDH1L2 Yes Hs00402876_m1 516746 - 

ALDH2 Yes Hs00355914_m1 573637 - 

ALDH3A1 Yes Hs00964880_m1 549124 - 

ALDH3A2 Yes Hs00166066_m1 316445 - 

ALDH3B1 Yes Hs00997594_m1 549124 - 

ALDH3B2 Yes Hs00167496_m1 520692 - 

ALDH4A1 Yes Hs00186689_m1 442990 - 

ALDH5A1 Yes Hs00542449_m1 549124 - 

ALDH6A1 Yes Hs00194421_m1 291558 - 

ALDH7A1 Yes Hs00609622_m1 546589 - 

ALDH8A1 Yes Hs00224021_m1 506316 - 

ALDH9A1 Yes Hs00997881_m1 593337 - 

ALDH16A1 Yes Hs00292269_m1 520333 - 

ALDH18A1 Yes Hs00913261_m1 549531 - 

Table 8-4 Primers and probes 

All primer/probe sets supplied by Applied Biosystem s with FAM reporter dye and a non-

fluorescent quencher. 
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8.3 Lymphocyte steroid sensitivity graphs 
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Figure 8-1 Individual lymphocyte steroid sensitivit y plots for patients and 

controls 
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8.4 Histological scoring systems used in this study  

Characteristic 0 1 2 3 

Fat type  macrovesicular microvesicular mixed 

Fat score <5%hepatocytes 5-33% 33-66% >66% 

Ballooning none focal abundant  

Mallory bodies none few abundant  

Apoptotic bodies none few abundant  

Polymorphs absent focal increase generalised increase aggregates 

Lymphocytes absent focal increase generalised increase aggregates 

Macrophages normal numbers Mild - Kupffer cell 

prominence 

Moderate - 

generalised increase 

Servere - aggregates 

Plasma cells absent present   

Eosinophils absent present   

Cirrhosis absent present   

Table 8-5 Scoring system for alcoholic liver diseas e biopsies 
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8.5 Presentations of data from this study 

American Association for the Study of Liver Disease  Annual Meeting; San Francisco CA, 

31 October – 4 November 2008 

Enhanced inflammatory responses in alcoholic liver disease: is acetate the key? (Oral 

presentation) 

A ‘loss-of-function’ mutation in TIRAP, the gene encoding the toll-like receptor adapter 

molecule Mal protects against fibrosis in NAFLD but not ALD. (Oral presentation) 

British Association for the Study of the Liver Annu al Meeting; Edinburgh, 10-12 

September 2008 

Enhanced inflammatory responses in alcoholic liver disease: is acetate the key? 

(Poster) 

A ‘loss-of-function’ mutation in TIRAP, the gene encoding the toll-like receptor adapter 

molecule Mal protects against fibrosis in NAFLD but not ALD. (Poster) 

American Association for the Study of Liver Disease  Annual Meeting; Boston MA, 2-6 

November 2007 

Ethanol-induced histone acetylation: a novel mechanism for enhancement of 

inflammation in alcoholic hepatitis? (Presidential Poster of Distinction) 

British Association for the Study of the Liver Annu al Meeting; London, 12-14 September 

2007 

Ethanol-induced histone acetylation: a novel mechanism for enhancement of 

inflammation in alcoholic hepatitis? (Poster) 

American Gastroenterological Association / British Society of Gastroenterology Joint 

Research Workshop: Inflammation, Repair and Fibrosi s; London, 4-5 September 2007 

Ethanol-induced histone acetylation: a novel mechanism for enhancement of 

inflammation in alcoholic hepatitis? (Oral presentation) 

European Association for the Study of the Liver Ann ual Meeting; Barcelona, 11-15 April 

2007 

Effects of ethanol on endotoxin-mediated cytokine release: sensitisation via TLR4 but 

normal tolerance (Poster) 
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British Society of Gastroenterology Annual Meeting;  Glasgow, 26-29 March, 2007 

Lymphocyte steroid sensitivity in severe alcoholic hepatitis (Plenary poster) 

 

 

 

 


