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ABSTRACT 

The distribution of Phanerozoic sediment-hosted mineral deposits appears 

to be influenced by latitudinal zoning. The palaeolatitudes of the host rocks 

were determined using standard palaeomagnetic procedures - the most reliable 

results being for the Mesozoic and Cenozoic with early Palaeozoic 

palaeolatitudes least reliable. The palaeolatitudes derived from Tarling and BP 

palaeogeographic reconstructions are in general agreement i. e. +/- 10°, 

although greater discrepancies occur for India and Central America. It is shown 

that some types (e. g. sandstone copper, sandstone lead) have a preference for 

low latitude arid regions whilst conditions in the equatorial and temperate 

rainfall belts were more favourable to the formation of other deposits (e. g. 

sandstone uranium-vanadium, oolitic ironstone). Using climatic modelling 

assuming uniformitarianism of the principles governing the Earth's atmospheric 

and oceanic circulation patterns, the climatic conditions affecting the 

distributions of sediment-hosted deposits were evaluated. It is concluded that 

local climatic effects are influential in the genesis of limestone base-metal, 

oolitic ironstone, sandstone copper, sandstone lead, shale base-metal, 

sedimentary exhalative, sandstone uranium-vanadium, manganese, laterite and 

phosphate deposits. These climatic conditions affect the nature and degree of 

chemical weathering, erosion, abundance of organic matter, ground water 

chemistry and volume in a particular region. However in some instances, such as 

placer deposits, the major control on deposit distribution was the availability 

and distribution of source rocks. Such palaeolatitudinal/palaeoclimatic control 

on the distribution of some deposit types places genetic constraints upon their 

formation. It also has obvious implications in the evaluation of potential 

sites for exploration and development. 
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CHAPTER ONE 

INTRODUCTION 

A number of Phanerozoic sediment-hosted mineral deposit types have a close 

spatial and temporal association with certain types of so-called climate- 

sensitive lithologies (e. g. evaporites and red beds). An examination of the 

present and palaeo-distributions of such climate-sensitive lithologies has 

suggested that they show a strong preference for certain latitudinal belts, 

presumably a response to the climatic conditions prevailing during deposition. 

It follows that there may also be a palaeolatitudinal control upon the 

distributions of some sediment-hosted mineral deposit types. Such a hypothesis 

will be tested here with the view to limiting the various theories as to their 

genesis. 

The hypothesis described above has been proposed by numerous authors but 

it has not yet been fully tested and justified. Strakhov (1970) related the 

origin and distribution of copper-lead-zinc deposits to arid regions. Renfro 

(1974) suggested that sabkha-type environments produce conditions conducive to 

the formation of some mineral deposit types (e. g. sandstone coppers) which 

obviously indicated a strong climatic influence. This sabkha model has been 

taken up extensively by other workers e. g. Smith (1976) in relation to North 

Texas copper deposits and Rawson (1976) for uranium exploration. In addition 

the importance of a particular climatic regime (warm, tropical to sub-tropical) 

as one control in the formation of some primary mineral deposits has been 

proposed by numerous workers e. g. Wopfner and Schwarzbach (1976); Van de Poll 

(1978); Heckel and Witzke (1979); Cronin, Cannon and Poore (1983). 
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Sediment-hosted mineral deposit types were selected for examination as the 

host rocks for the mineralisation may also show similar palaeolatitudinal 

controls upon their formation as those described above. Frequently the host 

rocks are massive limestones, channel sandstones with abundant organic debris 

(e. g. fossil log jams) or evaporites thought to have been formed in coastal 

sabkha environments. The processes involved in the formation of sediment-hosted 

deposits listed below are also thought to be the result of latitudinal 

position, at least in part. At the Earth's surface the action of both the 

atmosphere and the hydrosphere alters minerals and forms new ones that are more 

stable under the existing conditions. Sediment-hosted deposits are derived from 

pre-existing material by processes of weathering, erosion, transportation, 

deposition, diagenesis and consolidation. A different source of materials and 

variations in the processes of formation may yield different types of deposit. 

Also the process of sedimentation itself may involve the concentration of 

metals into mineral deposits. The relative importance of climatic control is 

therefore relevant to the evaluation of ore genesis models. 

The relative economic importance of deposits was not used as a constraint 

on data selection. Such a factor would have introduced a political/economic 

bias that may have influenced the results. It would also have been very 

difficult to assess the economic worth of deposits as factors which make them 

economic in one instance may make them uneconomic in another. The research has 

been confined to deposits of Phanerozoic age as the palaeomagnetic data which 

provide the basis of this work is extremely unreliable for the Proterozoic era. 

Although Palaeozoic palaeomagnetic data are also questionable it was decided 

that the level of reliability was sufficiently high for tentative conclusions 

to be drawn. 
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The determination of palaeolatitudes involves the use of standard 

palaeomagnetic studies based upon the permanent magnetisations in rocks 

(Chapter Two). The remanent magnetisation preserves the direction of the 

geomagnetic field at the time magnetisation was introduced into the rock. From 

this the palaeolatitude can be calculated. 

It has already been mentioned that there is a connection between latitude 

and climate. The validity of making such a connection will be examined in 

detail (Chapter Four). There are many basic assumptions concerning the Earth's 

magnetic field, its dynamics and its patterns of circulation which must be made 

before such conclusions can be drawn. Despite these problems if a latitudinal 

control upon the formation of some mineral deposit types can be shown to exist, 

then it may be possible to explain anomalous occurrences by local variations in 

the predicted climatic conditions that prevailed during the formation of that 

deposit. 

One of the consequences of this project will be the assessment of whether 

or not the classification of deposits can be elucidated by their apparent 

palaeolatitudes of formation. If it is not possible to classify deposits in 

such a way then their genesis cannot be related to palaeoclimatic factors and 

this thesis will be independent of the debate about the origins of these 

deposits so the classification will not actually matter. However if different 

groups of deposits show different palaeolatitudinal distributions, or if no 

palaeolatitudinal control is observed, then it will have implications for the 

genetic debate. Of course it is not possible to predict the outcome of the work 

so the classification of mineral deposits is a fundamental part of the thesis 

and will be developed with the exclusion of genetic constraints. 
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The palaeolatitudinal distributions of two varieties of volcanogenic 

mineral deposits (porphyry copper and epithermal gold) were determined in an 

effort to ascertain whether there was a bias inherent in the methods so that 

all mineral deposits show a latitudinal control upon their formation, 

regardless of origin. These deposit types were chosen as test subjects as there 

is no obvious reason why their distribution should be climatically controlled. 

The results for these volcanogenic deposits may test the reliability of the 

data collection and processing as the same methods were used as for the 

sediment-hosted deposits. 

In conclusion the main purpose of this research is to determine whether a 

relationship exists between latitude, climate and the distribution of 

Phanerozoic sediment-hosted mineral deposit types. To reiterate: latitude has 

an effect upon climate (influencing both the atmospheric and the oceanic 

circulation patterns). It has also been shown by several workers that there is 

a latitudinal control upon the distribution of certain sediments. From the 

association between latitude and climate it follows that the distribution (and 

therefore formation? ) of these sediments must be climatically dependent. There 

is an association of some mineral deposit types (e. g. sandstone copper, 

sedimentary exhalative, sandstone uranium-vanadium) with these so-called 

climate-sensitive lithologies so the distribution of these mineral deposits may 

also be climatically controlled. The testing of this hypothesis forms the basis 

of this research. 
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This work aims to determine whether any Phanerozoic sediment-hosted 

mineral deposit types lay within specific latitudinal zones. If such a 

latitudinal control is shown to exist, possible reasons for this will be 

proffered. It will also be noted if there is a significant shift in the 

distributions with time which may represent variations in global climatic 

conditions. 
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CHAPTER TWO 

PALAEOMAGNETISM AND PALAEOMAGNETIC METHODS 

The permanent magnetisation of igneous, metamorphic and sedimentary rocks 

has enabled inferences to be made concerning changes in the direction and 

intensity of the geomagnetic field in past geological times and also the 

movements of the continents relative to the poles. The basic principles of 

palaeomagnetism and palaeomagnetic methods are well known and documented in 

several textbooks (Irving, 1964; McElhinny, 1973; Tarling, 1983). A brief 

outline is given here to assist understanding of the methods and discussions to 

follow. 

2.1 Naturally Occurring Types of Remanent Magnetisation. 

The natural remanent magnetisation of rocks (NRM) is due to their content 

of accessory ferromagnetic minerals, as much as a few percent in certain 

igneous rocks but often less than half of one percent in many sediments. Two 

groups of ferromagnetic minerals are especially important, the anhydrous ferric 

oxides magnetite and haematite and their mutual solid solutions with titanium: 

that is the magnetite (Fe3O4)-ulvospinel (Fe2TiO. ) and the haematite (Fe203)- 

ilmenite (FeTiO3) solid solution series. It has been demonstrated 

experimentally that on cooling from high temperatures, an igneous rock acquires 

a magnetic moment, termed thermoremanent magnetisation (TRM), which is normally 

aligned in the direction of the ambient field. The critical temperature at 

which this moment begins to be acquired is known as the curie temperature and 

varies according to the composition of the ferromagnetic minerals involved. 

Therefore, the TRM of igneous rocks (e. g. lavas, sills and dykes) is due to the 
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magnetisation of ferromagnetic minerals acquired during cooling in the 

geomagnetic field from the temperatures at and below their Curie temperatures. 

Depositional or detrital remanent magnetisation (DRM) is acquired by the 

physical rotation of magnetic particles during deposition as part of a 

sediment. In addition gravitational and dynamic forces also operate on all 

detrital particles and may cause deviation away from the ambient field 

direction. 

Chemical remanent magnetisation (CRM) is acquired as a magnetic mineral 

nucleates and grows in a magnetic field. The acquisition of a remanence by 

means of crystal growth at constant temperature is exactly analogous to the 

acquisition of a thermoremanence. The nature of the chemical remanence will be 

affected by the temperature at which the chemical growth takes place and the 

duration for which the field is applied over any given volume range. A well 

known and widespread occurrence of CRM is in the diagenetic growth of haematite 

grains in red sandstones. 

The real surprise is not that rocks acquire a primary magnetisation when 

originally forming, but that they are able to retain it over tens, hundreds or 

even thousands of millions of years. The basic reason for this is that many 

rocks contain very small magnetic grains with very high coercive forces (the 

reverse magnetic fields needed to demagnetise the material) - high enough to 

protect the original magnetic directions against many of the vagaries of 

subsequent geologic history. Rock magnetisation may be very weak but they can 

also often be very stable and hence may divulge information on the direction 

(and in fewer instances the strength) of the Earth's magnetic field in the 

past. Geological tests have been devised to determine whether or not these 

original magnetisations had been altered. one of the main stages in the 

demagnetisation procedure is the assessment of the stability of the specific 

components of remanence which have been identified. Various stability indices 

(e. g. Tarling and Symons, 1967; Briden, 1972; Stupavsky and Symons, 1978) were 



8 

amongst the earliest statistical methods developed for distinguishing specific 

vectors and establishing their stability. 

These primary magnetisation generally decay very slowly, depending on the 

composition and grain sizes of their magnetic minerals. Over geological time 

the magnetic particles within a rock also gradually acquire new magnetisation 

in the direction of the prevailing geomagnetic field. In general, such 

secondary viscous magnetisations are mostly directed along the present 

geomagnetic field and can be effectively removed by partial demagnetisation 

through heating or placing samples in alternating magnetic fields. However a 

major problem arises when secondary magnetisation are due to prolonged CRM. 

The process of diagenesis (during which most consolidated sediments acquired a 

magnetic remanence) is variable, even for similar rock types. For example in 

red sandstones it can apparently occur rapidly after deposition or it may be 

delayed for 100 million years after deposition. Also, the passage of 

groundwaters through permeable rocks may lead to the continual re-setting of 

CRM as magnetic minerals are removed and new ones are crystallized. So studies 

of remanence of sediments, particularly consolidated ones, must be combined 

with a petrological investigation of the relationships of the magnetic minerals 

present. Even then the interpretation of the time of acquisition of the 

remanence may be unclear. 

2.2 Separation and Identification of Remanent Components 

In order to dissect the natural remanence (NRM) of a sample into primary 

and secondary components partial demagnetisation techniques must be used. These 

methods require precise controls that are difficult to obtain in the field, so 

it is usual practice to collect samples and to undertake measurements of their 

susceptibility and remanence in the laboratory. The remanence must be examined 

for its stability and the possible age of its components, thus defining the 
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directions and intensity of the geomagnetic field for some specific time, 

usually that at which the rock formed. 

Palaeomagnetic analyses involve dissecting the NRM - the total of all 

magnetisations carried by a rock - into its components and establishing their 

sequence of acquisition. Standard methods of dissecting the natural remanence 

include partial incremental (stepwise) demagnetisation by heating (TH) or in 

alternating magnetic fields (AF). The precision with which the components are 

defined will obviously vary according to their magnitude relative to all other 

components and the noise level of the demagnetisation procedures. It is 

generally expected that the directional definition within any one specimen will 

usually be within a few degrees, about 2-3° (Tarling, 1983). 

Once the NRM has been analysed, the next problem is to obtain a relative 

or absolute age for each magnetic component. This may become increasingly more 

difficult with increasing geological age as the NRM may become more complex. 

The stable magnetic component of remanence may now be defined, but it is still 

necessary to assess the likely time at which it was acquired. None of the tests 

(section 2.4, iv) can be considered conclusive on their own. Most are negative 

tests in the sense they may exclude certain components which do not fulfill the 

requirements. Components that do fit them may not automatically be considered 

primary. 

2.3 Definition of a Palaeomagnetic Pole 

The remanent magnetisation in a rock is described by the basic parameters 

of direction and intensity. The magnetic vectors include the declination with 

respect to true north and the inclination from the horizontal. The average 

vectors in rocks of any specific age can be used to calculate the position of 

their corresponding palaeomagnetic pole on the standard geocentric axial dipole 

model for the average geomagnetic field. Although this model is itself derived 
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from palaeomagnetic data it has been accepted as axiomatic. (This is discussed 

in greater detail in Chapter Four, section two). All rocks magnetised at the 

same time should have the same palaeomagnetic pole position if geomagnetic 

secular variations have been averaged out. 

The palaeomagnetic pole is calculated from the direction (irrespective of 

polarity) and geographical co-ordinates using formulae which can be found in 

standard text books such as McElhinny (1973) and Tarling (1983). As the 

palaeomagnetic and palaeogeographic poles essentially correspond, the 

palaeolatitude can be derived by measuring the angular distance between the 

site and the palaeomagnetic pole. However because the geocentric axial dipole 

field is rotationally symmetrical about the palaeogeographic pole, the absolute 

palaeolongitude is indeterminate. Thus from the basic remanent magnetisation 

parameters of direction and intensity, the site palaeopole and corresponding 

palaeolatitude are derived. The poles are then evaluated according to the 

criteria outlined in the following section. 

it is a generally accepted hypothesis that the tectonic plates comprising 

the Earth's surface move relative to each other. Thus although the Earth's axis 

of rotation remains fixed in space, the pole position appears to change 

relatively to each tectonic block through time. Successive determinations of 

the positions of the poles relative to any one block therefore lie on a curve - 

referred to as the apparent polar wandering path (APW). Each block will have a 

unique APW path which represents its movement relative to the Earth's axis of 

rotation. The change in position of the block through a given time period can 

be defined by a single angle with a single axis, the axis being specified in 

terms of latitude and longitude co-ordinates of its pole. This is in accordance 

with Euler's Theorem which states that the motion of a tectonic plate can be 

represented by rotation about an axis through the Earth's centre and a point on 

the surface. 
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The palaeomagnetic data are sparse and unevenly distributed in space and 

time, leaving doubt over the positions of the major plates for some time 

periods, especially those of Mesozoic age and older. Where palaeomagnetic data 

are sparse for a continent for a particular time period, positions are 

necessarily inferred through interpolation between older and younger data and 

are thus relatively approximate. There are a number of geological criteria 

which must be adhered to when such continental distribution and orientation is 

determined. These include; 

i) the correlation of faunal provinces, 

ii) the identification of accretionary flysch wedges to determine continental 

outlines as accurately as possible for a specific age, 

iii) care is taken to prevent overlap of the plate in question with others, 

iv) the correlation of climatic belt patterns and tectonic trends. 

Examples of the application of these constraints are found in Ziegler et al 

(1977 and 1979). 

2.4 Selection of Palaeomagnetic Data. 

The problems of selection are outlined in Tarling (1985b) and are only 

briefly summarized here. The selection of palaeomagnetic data is critical to 

the polar wander paths produced for a tectonic block, so certain criteria are 

used in an effort to minimize the degree of subjectivity involved in the 

evaluation of the data. The following eight points constitute the criteria 

which palaeomagnetic data would ideally fulfill. 

(i). The magnetisation isolated comprises only one component of remanence. 

The presence of one component is accepted when an identical direction is 

recognised on two or more successive increments of the partial demagnetisation 
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process. A certain degree of caution must still be exercised as even this 

single vector could still be a summation of vectors. 

(ii). The magnetisation is stable to thermal (TH) and/or alternating field (AF) 

demagnetisation. 

The component of remanence defined above must have a coercivity or 

temperature spectrum which corresponds to a relaxation time at least comparable 

to the geological age of the rock. This is the length of time each element 

(domain) within a grain takes to acquire a magnetisation with a component in 

the direction of the external field. In other words the magnetisation must be 

capable of having retained a record of the geological field since the rock was 

formed. The growth of authigenic, secondary minerals (e. g. haematite or 

magnetite) long after rock formation may produce a chemical remanence at the 

time of the exsolution or oxidation. This could possess an even greater 

stability than that in the pre-existing magnetic minerals and hence produce 

inaccurate results. 

(iii). The samples are magnetically isotropic and homogeneous, that is, the 

observed vectors are true reflections of the geomagnetic field in which they 

were acquired. 

The occurrence of anisotropy in rocks with a natural thermal remanence 

i. e. igneous and some metamorphic rocks, can be determined by giving the 

specimen a laboratory thermal remanence in a known field direction. The 

acquired direction is then compared with the applied field direction. 

Unconsolidated sediments may possess a magnetic anisotropy associated with the 

alignment of larger grains during deposition, although the stable remanence may 

well be carried by the smaller, interstitial grains. 

Consolidated sediments may undergo major chemical changes during 

lithification which could erase all pre-existing depositional features and then 
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they may acquire a chemical remanence relating to the time of lithification. It 

is thus difficult to ascertain the magnitude of any anisotropic corrections 

which should be applied to the remanent directions in sediments. 

Inhomogeneity (i. e. uneven magnetisation) can occur on many levels from 

the atomic scale e. g. as impurities and defects in magnetic grains to uneven 

distribution of such magnetic grains in rocks. The effects of the 

inhomogeneities depend on their scale. If this is small relative to the size of 

individual samples, then these are generally reduced by spinning during 

measurement. However the measurement Terror, will be greatly increased if the 

inhomogeneity is on a scale comparable to the sample size. 

(iv). The age of remanence is known. 

It is necessary to attempt to date the time of acquisition of the 

different components for any interpretation of past field strengths and 

directions. Recent viscous magnetisation are easily identified as they have 

directions similar to the present geomagnetic field and they generally have 

lower magnetic stability to demagnetisation. The high temperature and high 

coercivity components are generally considered the most likely to represent the 

oldest geomagnetic field direction in the rock but this is only true if 

haematite was not produced at some later time. Haematite normally has both high 

coercivities and blocking temperatures, if of common grain size dimensions. 

The most effective tests to determine the age of magnetisation are local 

consistency in fold, tilt, contact and conglomerate tests (Graham, 1949) in 

which magnetisation of samples taken from rocks in different attitudes are 

compared. If the components are of the same inclination, relative to bedding, 

then this suggests that the components were acquired before the rocks were 

disturbed. The fold/tilt test can only be carried out where identifiable 

tectonic deformation has occurred and it is essential that the magnetisations 
have not been affected by the actual tectonic processes themselves. In all of 
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these tests it is important to establish that the consistent directions do not 

correspond with a known, but younger, direction of remagnetisation, such as may 

be caused by extensive penetrative oxidation or widespread burial without 

significant tectonic distortion. 

(v). When sampling an adequate number of samples must be taken from a wide time 

range to reduce, by averaging, orientation and measurement errors and 

geomagnetic secular variations. Aberrant/anomalous samples must also be 

discarded. 

It is essential to sample sufficient sites to average out all past changes 

in the geomagnetic field with time scales of less than 100 years. Examination 

of the present geomagnetic field (assuming this field is typical) indicates 

that normal secular variation amplitudes of the field cause a scatter which may 

exceed 20°. In order to reduce this scatter to an acceptable value the sampling 

must extend over several ten thousand years. 

In consolidated sediments adequate sampling over a wide time range is 

relatively easily achieved as chemical changes during diagenesis are likely to 

be protracted, even within a single sample. In contrast, lava and dyke 

complexes generally acquire their remanence during cooling over short periods 

of time (maybe a few tens of years) and so will often provide only 'spot' 

readings of the geomagnetic field. Such rock types may require extensive 

sampling of a large number of different flows before the secular variations can 

be averaged out and a true determination of the average dipolar field achieved. 

However some lavas also acquire a chemical remanence over a longer period if 

deuteritic exsolution is prolonged. These can then be treated similarly to 

consolidated sediments. 

(vi). The sites being combined are located in autochthonous areas if the 

tectonic interpretation is to be extended over a wide region. 
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Even if the observed remanence can be related directly to the time of 

formation of the rock itself, the results may only apply over a limited area. 

The basement rocks of the sites sampled must not have moved relative to each 

other. If they have moved their precise movements must be known. This problem 

is illustrated in a nappe where the remanent directions may be resolved to show 

the motion of the nappe whilst the tectonic movements of the basement rocks 

remain obscured. 

(vii). Any tectonic change, since the acquisition of any magnetisation of known 

age, is known and can be corrected for. 

This normally means that the bedding plane tilt of any shales closely 

associated with the rocks being studied has been determined and that the 

mechanism of tilting is known. If tilting is in the form of a single rotation 

about a horizontal axis, then the tilt correction is simple. However, it is 

often difficult to determine whether or not rotations about a vertical axis 

have also occurred and further complications arise if internal deformations 

(plastic or rigid) have taken place during deformation. 

(viii). Samples which become magnetised during polarity transitions or at other 

times of non-dipole geomagnetic behaviour have been detected and eliminated. 

The component isolated must have been originally present in the rock, 

prior to laboratory analysis. There are three main areas which may influence 

this; 

a) For example, the use of mu-metal screening around magnetometers often 

results in a concentration of magnetic fields near the magnetometer entrance. 

b) In thermal demagnetisation methods any stray magnetic fields during cooling 

must be sufficiently small ((3nT) that they have no detectable affect on the 

natural remanence. If new magnetic minerals are also formed as a result of the 
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heating, then the presence of any weak fields may influence the measured 

results even further. 

c) Alternating magnetic field demagnetisation methods are prone to produce a 

variety of laboratory induced components, such as anhysteretic, gyro and 

rotational remanences. However, they are free of the chemical changes affecting 

the thermal demagnetisation techniques. 

In conclusion, if the samples are collected as described, properly tested 

and all the precautions listed are taken, then the palaeopole and 

palaeolatitude for a given site can be reliably determined and the apparent 

polar wandering path for a particular continent deduced. Within this study the 

site palaeolatitude is of major concern as it largely dominates the climate, 

sedimentation and erosion in a region and hence may affect the distribution of 

sediment-hosted mineral deposits. Therefore the fact that any errors in the 

reported palaeomagnetic studies will result in errors in the palaeolatitude 

determinations for that locality must be emphasized. 
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CHAPTER THREE 

CLASSIFICATION OF MINERAL DEPOSITS 

3.1 Introduction 

To be useful a classification of mineral deposits must be as simple as 

possible and, perhaps most importantly, usable in the field. However, different 

types of deposits grade into each other, thus no classification can be either 

complete or inflexible. In the past the vogue, especially among American 

geologists, was to classify all deposits in terms of a magmatic solution origin 

(for example, Lindgren, 1933) as mentioned by Jacobsen (1975) with reference to 

copper deposits. When authors such as Garlick (1961) suggested syngenetic 

processes of ore formation it marked a significant change in thinking. This 

change in attitude was reflected in the new classifications that emerged which 

were based upon these 'new' ideas of mineral deposit formation. In contrast the 

Europeans had long thought of the "bedded ores" (e. g. Falun, Rammelsberg, 

Bleiberg) as syngenetic. 

The classification of mineral deposits is still a matter of great 

discussion. There is a considerable literature which either encompasses all 

mineral deposit types, for example, Wolf (1981) and Gustafson and Williams 

(1981), or specific metallic mineral deposit types, as in Dahlkamp (1978) 

concerning uranium deposits; Jacobsen (1975) with reference solely to copper 

deposits. 

The general classification of mineral deposits used here (Table 3.1) 

includes both metalliferous and non-metalliferous groups but does not involve 

interpretative genetic constraints. A classification based upon the genesis of 

mineral deposits has to be evaluated with great care as discrimination between 

the interpreted ore-forming processes and the characteristics of the ore type 
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itself is vital. Nonetheless some distinction is needed between primary and 

secondary ores is necessary although it is essentially subjective. 

In the study of sediments, the separation of primary and secondary 

processes, and hence primary and secondary mineral deposits, is very difficult. 

This is partly because primary deposits are often in such chemical 

disequilibrium with their environment that they are radically changed during 

diagenesis. It is also due to the fact that there is still considerable debate 

as to the origin of many of these types of mineral deposits. The formation of a 

mineral deposit is largely reliant upon a wide variety of processes acting in 

concert. The individual processes involved are common e. g. precipitation, 

sedimentation, mechanical and chemical concentration of metals and replacement. 

But their concerted effort in a specific area in both time and space is not. 

These processes do not necessarily always occur in unison but even in 

sequential occurrence they constitute a remarkable coincidence. So it is 

imperative to decipher this sequence of events if the genesis of a mineral 

deposit type is to be determined. Once the genesis is deduced then a 

classification based upon genetic constraints will be of value. However, until 

these problems are resolved such constraints are excluded from this 

classification. 

Once a mineral deposit has been defined as either primary or secondary, it 

is further classified according to the nature of the host rock and the type of 

mineralisation that is present. These constraints are objective and non-genetic 

so they invoke no controversy (Table 3.1). A primary sediment-hosted mineral 

deposit is the product of sedimentary processes at, near, or above the 

sediment-water interface. These deposits are themselves sediments so they can 

show all sedimentary features. Whilst some deposits may be confined to specific 

geotectonic settings, the main controls on this type of deposit are the 

physical and chemical conditions of sedimentation - hence palaeoclimate and 

palaeogeography may be particularly important. 
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A secondary sediment-hosted mineral deposit (Table 3.1) is one which is 

not obviously a sediment itself nor has it a clear igneous source for the 

mineralisation. Secondary sedimentary deposits appear to be more closely 

related to basin evolution and fluid migration than primary deposits and they 

may also be more closely controlled by geotectonic processes, particularly 

those which affect the temperature and routes of migrating fluids. Therefore 

geotectonics and environment may be particularly important constraints on 

secondary ore formation. 

Table 3.1 CLASSIFICATION OF MINERAL DEPOSITS 

PRIMARY DEPOSITS 

PLAU, Placer Gold 

PLDI, Placer Diamond 

PLBN, Placer Tin 

PLOX, Placer Oxide (Cr, Ti, Fe) 

SECONDARY DEPOSITS 

SSCU, Sandstone Copper 

BHBM, Shale Base-Metal (Cu, Pb, Zn) 

SSPB, Sandstone Lead 

SHUR, Shale Uranium 

PLOT, Placer Others 
(e. g. Platinum) 

PAPL, Palaeoplacer (Au, U) 

FEFM, Iron Formation 
(oxide - carbonate) 

MNFM, Manganese Formation 

MNNO, Manganese Nodules 

OOFE, Oolitic Ironstone 

SDEX, Sedimentary Exhalative 
(Pb, Zn, Ba) 

CALU, Calcrete Uranium 

PHOS, Phosphate 

MEVA, Marine Evaporites 

CEVA, Continental Evaporites 
(Li, B, Na) 

LSBM, Limestone Base-Metal 
(Pb, Zn, Ba, F) 

SSUV, Sandstone Uranium-Vanadium 

LATO, Laterites (Ni, Cr, Fe, Mn, Al) 

goes, Gossan 

SUPE, Supergene Enrichment 

SULF, Sulphur 
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The following section is a summary of the main characteristics of each 

deposit type - as defined for this project. Discussion of their mode of origin 

will be attempted in a later chapter. There does appear to be a continuum of 

deposit types. Even if this ultimately proves to be coincidental it is still 

true that some examples may be classed in more than one group. Amongst these 

are included the Copperbelt ores of Zambia and Zaire (classed in this thesis as 

SSCU or SHBM); the uranium deposits of the Colorado Plateau (SSUV); the 

Kupferschiefer of Europe (SSCU and BHBM). Each of these deposits will be 

described in the subsequent sections. In an attempt to give an orderly 

description of the classification mineral deposit types have been grouped 

according to their mineralisation i. e. U, Al and Ni, Mn, Fe, Phosphate, Cu, Pb 

and Zn. Placers have been grouped in a separate section and each mineral type 

discussed separately. 

3.2 The Classification in Detail. 

3.2.1 Uranium 

Abundance and Distribution 

Table 3.2 shows uranium is present in low concentrations in most 

rocks. There is an enrichment in granites relative to other igneous rocks. 

Granites and rhyolitic ashes are commonly cited as sources of the uranium in 

orebodies. Among sedimentary rocks concentrations are also low, except in black 

shales where uranium can be concentrated up to ore grade. The greater mobility 

of uranium in comparison to thorium is evident in the Values for Th/U in 

natural waters which are much lower than in most rocks. In general the uranium 

content increases with magmatic fractionation in the more silicic alkalic rocks 

and increases with organic matter in sedimentary rocks e. g. black shales. A 
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more detailed synopsis on distribution and availability, is given by Bowie 

(1976,1979). 

Table 3.2. Abundance of U and Th in Common Rocks and Natural Waters. 

IIII 
I Rock Types and Natural Waters U (ppm) I Th/U 1 
III 
IIII 

Igneous Rocks 
I ultramafics I 0.02 1 5.0 

basalt 0.50 1 3.1 
andesite I 2.0 I 2.4 

i granite 1 4.0 I 4.9 
IIII 
IIII 

Sedimentary Rocks 
I quartz arenite I 0.45 1 3.5 1 
I greywacke 1 2.1 1 3.2 1 

arkose 1 1.5 1 3.3 
1 shale II 

grey and green 1 3.2 1 4.9 I 
I red and yellow 1 2.0 1 6.5 

black 
average I 53.0 1I 
Chattanooga 79.0 I 

1 Alum Shale 1 168.0 I 
I Ohio Shale 1 50.0 I 0.19 
1 limestone I 2.2 I 0.7 I 
1 dolomite 1.0 I 

phosphorite 1 300 - 50 <0.1 I 
IIII 
III1 
I Natural Waters 1I1 
I seawater 16- 0.3 I <0.03 I 
I ground water 10 - 0.3 II 
1 river water 1 10 - 0.03 I <0.03 I 
IIII 

Source: Maynard, 1983. 

Classification of Uranium Deposits 

Uranium deposits have been separated into four groups; palaeoplacer Au-U 

(PAPL), shale-hosted (SHUR), caicrete uranium (CALU) and sandstone-hosted 

(ssUV) deposits. Of these four groups, CALU deposits are Recent in age and have 

not been included in the thesis (section 3.4.1) and PAPL deposits are mentioned 
in the section concerned with placer deposits as the host rocks for the 
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mineralisation are quartz-pebble conglomerates thought to have been detrital in 

origin. The remaining two classes were chosen to reflect the dominant host rock 

for mineralisation. 

Sandstone-hosted Type (SSUV) 

Two varieties of deposit are included within this group which are 

recognized by both the geometry of the deposit and the style of mineralisation. 

a) Roll-front variety: These occur as small orebodies, for example, in non- 

marine Mesozoic to Cenozoic sandstones of Wyoming, Colorado, New Mexico and 

Utah. 

b) Tabular Variety: These lack the definite oxidized/unoxidized boundary within 

the ore body which is obvious in the roll-front type. These orebodies are 

nearly concordant with bedding, containing copper and vanadium in addition to 

uranium. The uranium is associated with either woody material or pyrite in the 

rocks. These presumably acted as localized reductants, for example in the 

Grants Region, New Mexico, USA (Granger et al, 1961; Turner-Peterson, 1985). 

Shale-hosted Type (SHUR) 

Bell (1978) defined a black shale as a dark coloured, very fine-grained 

sediment without reference to fracture or fissibility habit, or degree of 

induration. Highly organic-rich layers, lenses and veins, which may be 

remobilized organic material, are often present e. g. kolm in the Alum Shales. 

The dark colour of the shales that host the low-grade uranium is directly 

related to their organic content, which may be greater than two percent (Bell, 

1978). The shales are also characterized by laminations and a lack of 

bioturbation, the latter only occurring in less uraniferous and carbonaceous 

layers. Examples of SHUR deposits include the Alum shales of Sweden and the 

Phosphoria Formation of Western USA. One of the more notable characteristics of 
SHUR deposits is that some of the shales Possess phosphatic nodules or have 
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thin, phosphatic horizons. In the Phosphoria Formation, as the name suggests, 

the phosphatic layers are well developed, up to one metre thick. They contain 

an average of 100-200 ppm U30. (Maynard, 1983). The palaeolatitudinal 

distribution of SHUR deposits as a single group has not been determined as many 

of the examples collected are Cambrian in age for which no palaeogeographic 

reconstruction is available here. Also a number of SHUR deposits have been 

incorporated in to the PHOS group due to their high phosphate content. 

Some authors, for example, Nash (1981) and Maynard (1983), proposed that 

there are five distinct types of uranium deposit which have a sequential 

distribution with time. This is a popular view and a brief explanation follows 

as a modified version of such a classification has been adopted here. (i) The 

oldest group, Proterozoic conglomeratic gold-uranium deposits (PAPL), possess 

pyrite and uraninite which are regarded as detrital in origin. Well-known 

examples of major deposits of this type are found in the Witwatersrand of South 

Africa and Elliot Lake, Canada. (ii) The vein, or unconformity, deposits occur 

in younger Proterozoic rocks, such as the Athabasca Sandstone of Western Canada 

and in rocks of similar age in Australia at Ranger and Jabiluka in the Northern 

Territory. These are amongst the largest and highest grade uranium deposits 

known. These have been incorporated into the more general class, SSW. (iii) In 

the Phanerozoic era uranium mineralisation occurs in black shales such as the 

Alum Shale, Scandanavia and the Chattanooga Shale, eastern USA. The black 

shales have large tonnages, but the grade is low - about ten percent that of 

other types - and are therefore uneconomic. These are obviously covered in the 

SHUR group in the classification here. The older SSUV deposits of the roll- 

front and tabular varieties are also included here. (iv) The fourth group are 

the sandstone-hosted deposits of Mesozoic to Cenozoic age in the USA. They are 

individually fairly small, and are also incorporated into the SSUV class. (v) 

The Tertiary to Recent calcrete deposits of Australia and South West Africa. 
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These are surficial accumulations which differ in having uranyl vanadates as 

the chief ore minerals. 

The classification for uranium deposits outlined earlier was chosen in 

preference to that of Maynard as the latter relied too heavily upon the 

categorization of deposits according to their supposed genesis. This was in 

conflict with the caveat laid down in the introduction to this chapter that no 

genetic constraints would be introduced into the classification of any deposit 

type. 

3.2.2 Aluminium and Nickel 

The laterite group of deposits encompasses both nickeliferous laterites 

and aluminium karst bauxites. Nickel and aluminium are enriched to ore grade by 

soil processes in many parts of the world. 

Abundance and Distribution 

Virtually all of the world's aluminium and perhaps one third of its nickel 

comes from these deposits (Lelong et al, 1976). Indeed, Edwards and Atkinson 

(1986) suggest that lateritic nickel accounts for about sixty-five percent of 

the known land-based nickel reserves in the freeworld countries. The aluminium 

deposits overlie a variety of rock types, but lateritic nickel is associated 

exclusively with ultramafics, reflecting the relative abundances of the two 

elements (Table 3.3). 

Deep weathering under humid tropical conditions is necessary for the 

formation of both of these types, and aluminium ores are widely distributed in 

parts of the world having such climates now, or which had them in the Tertiary. 

The main type (approximately forty percent) of aluminium karst deposits is that 

found in countries which border the Mediterranean Sea (Edwards and Atkinson, 

1986) and Jamaica. 
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Most crustal rocks (Table 3.3) contain a high proportion of aluminium- 

bearing minerals, so bauxites are formed from many rock types e. g. limestones, 

Jamaica; kaolinitic sands and clays, Weipa, Australia; nepheline syenites, 

Arkansas, USA. Production of lateritic nickel is largely confined to New 

Caledonia, Indonesia and Greenvale, Queensland. Smaller deposits are found in 

Oregon, USA, Cuba and the Dominican Republic. It has been noted (Golightly, 

1981) that the major lateritic nickel deposits have formed from the mid- 

Tertiary to the present, although some deposits which occur outside the modern 

laterite soil belt, including those of Greece and Yugoslavia, are older and lie 

beneath a Cretaceous and Tertiary cover. 

Table 3.3. Abundance of Ni and Al in Common Rocks and Waters. 

I Rock Types and Waters 

I Igneous Rocks 
I ultramafics 

peridotite 
basalt 
andesite 
granite 
nepheline syenite 

I Sedimentary Rocks 
I sandstone 
I orthoquartzite 
I arkose 

greywacke 
shale 
black shale 

I limestone 
I carbonate 
I Sediments and seawater 
I Pacific Mn nodules 
I Pacific deep-sea sediment 
I (CaCO3 - free) 
I near-shore clay 
I seawater 
I Natural Waters 
I seawater 
I river water 
I springs in granite 
Source: Maynard, 1983. 

x. I Ni (ppm) 1 A1Z03 
tI 
fI 
1 1450 f 
II4.0 
{ 130 14.1 
I 18 f 18.2 

10 t 13.9 
f1 21.3 
II 
II 
If1.1 
I 8.7 
I 40 13.5 
I 70 14.7 
I 50 
I5I 
tI2.5 
II 

3120 I 
I 300 
It 
I 40 I 

0.0005 1 
II Al ppm 
II0.001 
i10.240 

1 0.018 

I A190, xI 
I/ FezOs I 
II 
II 
I 0.3 I 
1 1.1 I 
1 1.9 I 
1 4.9 I 
I 4.6 I 
II 
II 
I 1.6 I 
I 3.5 I 
I 2.1 I 
1 1.8 I 
II 
I1 
I 5.0 I 
I 
i 
i 

i 
I 
I 

II 
II 
II 
II 
II 
II 
II 
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Classification 

Aluminium Karst Bauxites. 

The aluminium karst bauxites (Bardossy, 1982) overlie highly irregular, 

karstified limestone and dolomite surfaces. Bardossy recognized six different 

types of karst bauxites, based on their depositional characteristics. All of 

these are included in this study. 

Nickeliferous Laterite Deposits. 

The nickeliferous laterite deposits of greatest economic importance have 

developed on peridotite bedrock. The nickel has been concentrated by the 

leaching of forsteritic olivine, serpentine or nickeliferous magnetite in the 

same rock. Golightly (1981) classified nickeliferous laterite deposits into 

four main types on the basis of the serpentine content of the host rock and the 

presence or absence of an intermediate zone in the laterite profile. Briefly, 

these classes are as follows; 

Type Ia - laterites developed over unserpentinized peridotite, 

Type Ib - laterites developed over partly serpentinized peridotite, 

Type Ic - laterites developed over fully serpentinized peridotite. 

The fourth class consists of profiles with silica boxwork or nontronite zones. 

The latter typically occur in less humid tropical climates with a marked dry 

season, whereas Types Ia -c are characteristic of the humid equatorial zone or 

other locales with a very high rainfall and minimal dry season. 

Within this report no such classification has been adhered to and all 

varieties of nickeliferous laterites have been included so as not to bias the 

results. 
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3.2.3 Manganese 

Manganese is more abundant in basic than in acid igneous rocks (Table 3.4) 

as expected from its similarity to iron. With regard to sedimentary rocks, 

CaCO3-free deep-sea clays contain considerably more MnO than any other 

sediment. 

There are a number of types of manganese deposit which are thought to have 

different origins and are hosted by a variety of rock types. In this study, 

attention was only centred on two classes, the clastic-hosted and carbonate- 

hosted syngenetic groups as there may be a palaeolatitude control on their 

formation. They are reminiscent of some metallic mineral deposits in that they 

formed syngenetically in sediments. 

One type of deposit, the volcanic-sedimentary accumulations, have not been 

included here as they are outside the scope of this investigation. Neither have 

their metamorphosed equivalents, for example, the Kalahari Desert deposits 

(Roy, 1981). The manganese deep-sea nodules, which are a special type of 

syngenetic manganese deposit covering the floor of many deep ocean basins, 

constitute another class which has been excluded from this discussion. These 

nodules are uneconomic at present, and their exploitation is riddled with 

technical, economic and legal problems (Archer, 1976), although they are a huge 

potential source of Cu, Ni and Co as well as Mn. Glasby (1977) and Glasby and 

Read (1976) gave an extensive summary of this particular deposit type. 

The fourth class are of Supergene origin in which the original type of 

accumulation of manganese is obscured by surficial oxidation. These are 

excluded as too few examples were collected to allow evaluation of any latitude 

control on formation. Lastly those deposits which occur in Proterozoic rocks 

and are similar to the large banded iron formations have been excluded on the 

ground of age of formation of these deposits. 

Sediment-hosted manganese deposits include both carbonate and oxide 

minerals and lateral zoning of the sediment facies can be distinguished. Oxide 
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ores occur nearest the continental margin, then the oxide-carbonate ore facies, 

and lastly, the carbonate ores furthest from the shore. Perhaps the most well- 

known examples of elastic-hosted manganese deposits are that at Nikopol and 

Chiatura in the USSR, which contain between seventy-five and eighty percent of 

the world's present proven reserves. The manganese horizon of this early 

Oligocene accumulation is oxide in the north changing to carbonate in the 

south, corresponding to an increase in water depth as described above 

(Varentsov and Rakhmanov, 1980). 

Stratiform manganese deposits in carbonate host rocks are found in the 

Mesozoic of Morocco, Lower Cambrian carbonates of the Appalachians and Pre- 

Cambrian rocks of India (Roy, 1981). The Moroccan ore lies between elastics 

which are a coarse, near-shore to continental red-bed sequence and carbonates 

which are mostly fine-grained dolomites (Varentsov, 1964). An arid climate at 

the time of deposition has been inferred from the association with red-beds and 

gypsum. 

Table 3.4. Abundance of Mn in Common Rocks. 

IIII 
I Rock Types I MnO (ppm) I Mn/ Fe I 
IIII 
I 
I Igneous Rocks 

III 
III 

I granite I 260 0.015 
granodiorite I 390 I 0.017 
diorite I 1390 I 0.019 I 
gabbro I 1390 I 0.016 

1 peridotite I 1050 I 0.016 I 
I 
III 

I Sediments and sedimentary rocks I 
greywacke I 690 I 0.020 I 
quartz sandstone I 170 I 0.030 I 

I shale 1 600 1 0.013 
black shale 1 150 1 0.008 1 

I limestone 1 550 1 0.12 
I deep-sea clay (CaCO, - free) 1 5700 1 0.095 I 

seawater 1 0.0013 1I 
IIII 

Source: Maynard, 1983. 
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3.2.4 Iron 

Abundance and Distribution. 

Iron is one of the most abundant metals, so it is a major constituent of 

most rocks (Table 3.5) and its ores are rock types in their own right. Igneous 

rocks, although varying in total iron, have about the same proportion of Fell- 

to Fe*-. In contrast, sedimentary rocks show a wide range of oxidation states, 

indicative of the presence of environments of differing oxidation potential. 

Therefore it is in sediments that the greatest potential for iron enrichment 

exists, and most iron ores are sedimentary. 

Deposits of sedimentary iron ore are copious throughout the strati- 

graphical column, occurring in every shield area of the world, and in all the 

Phanerozoic systems with the exception of the Triassic (Taylor, 1967). Among 

Phanerozoic formations perhaps the Ordovician-Silurian (e. g. Clinton Ores) and 

Jurassic systems (e. g. Northampton Ironstone) are the richest as they represent 

periods when conditions were especially favourable for the deposition and 

preservation of ferruginous sediments within a great number of isolated basins 

(James, 1966). 

Table 3.5. Abundance of Iron in Common Rock Types. 

Rock Types FeO %t Fe20, %I Fe203 I 
ItI FeO+FezO31 

1IItI 
I Igneous Rocks tI 

alkali-olivine basalt I 7.9 I 4.2 1 0.35 t 
tholeiitic basalt 1 9.5 I 3.2 1 0.25 I 

f granodiorite 1 2.6 1 1.3 1 0.33 1 
granite I 1.5 1 0.8 I 0.35 I 

Sedimentary Rocks tiI 
I sandstone 11f 
I quartz arenite 1 0.2 1 0.4 I 0.67 1 
1 lithic arenite 1 1.4 I 3.8 I 0.73 1 
I greywacke 1 3.5 I 1.6 I 0.31 I 
f arkose I 0.7 I 1.5 1 0.68 1 
I Shales and Slates III 
I red I 1.26 I 5.36 1 0.81 1 
1 green I 1.42 1 3.48 1 0.71 1 
t black 1 4.88 1 0.52 1 0.10 1 
Source: Maynard, 1983. 
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Classification. 

There are numerous classifications of sediment-hosted iron deposits. For 

example Sokolov and Grigor'ev (1977) distinguished seven types of deposit and 

Kimberley (1978) formulated six. He produced a detailed classification of iron 

formations based upon the palaeoenvironment of their deposition. The 

palaeoenvironments were deduced from the characteristics of enclosing rocks and 

from sedimentary features e. g. textures and sedimentary structures, of the 

iron-rich rocks. An iron formation is described as a mappable rock unit 

composed mostly of ironstone, with the uppermost and lowermost beds being 

ironstone. 

Kimberley (1978) noted that the distribution of various types of iron 

formation with time reflects the relative abundance of particular geological 

environments at the time of deposition. Volcanic environments were most common 

in the early Precambrian; continental-shelf environments dominated the Middle 

Precambrian (FEFM) and inland-sea environments in the Phanerozoic (OOFE) and 

this sequential distribution with time was evident in the collection of 

examples of sediment-hosted ferriferous chert-rich and chert-poor rock types. 

Iron formations (FEFM) are those classified by Kimberley (1978) as 

Metazoan-poor, extensive, chemical-sediment-rich, shallow-sea iron formations 

(MECS-IF) and examples belonging to the oolitic ironstone group (OOFE) are 

those of the sandy, clayey and oolitic, shallow-inland-sea iron formation type 

(SCOS-IF). The production of iron from ore deposits is now almost entirely from 

these two types; as of 1970, they constituted more than ninety percent of the 

world's production (Maynard, 1983). The main characteristics of each type are 

briefly described below. 
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Iron Formations (FEFM) 

These are the 'Iron Formations' of James (1954 and 1966) and they globally 

constitute significant proportions of the Lower to Middle Proterozoic 

sequences. There are two main varieties of FEFM, the Algoma type of volcanic 

association and the larger Lake Superior type which is considered here. Both 

have a shallow-shelf orthoquartzite-carbonate association. Well developed 

banding of light and dark coloured interbeds is characteristic of this deposit 

type. The lighter bands of micro- to crypto-crystalline silica, or chert, 

alternate with bands rich in ferriferous minerals such as haematite, magnetite, 

greenalite, siderite, stilpnomelane, minnesotaite, grunerite, pyrite and 

ankerite (Kimberley, 1978). An oolitic texture is occasionally found in North 

American FEFMs (Gross, 1965) but it does not predominate in any FEFM 

(Kimberley, 1978). These Precambrian banded, cherty FEFMs in the Lake Superior 

region were deposited on broad continental shelves, and deposits of the 

supratidal, intertidal and subtidal zones can be recognised in the well-known 

carbonate-oxide facies of the FEFMs (Lougheed, 1983). 

The main examples are found in: - 

Transvaal, South Africa (Button, 1976) 

Lake Superior region (Bayley and James, 1973) 2000ma 

Sokoman Formation, Labrador (Knoll and Simonson, 1981) 1900ma 

Hamersley Basin, W. Australia (Trendall, 1975) 

Oolitic Ironstones (OOFE) 

The oolitic ironstones have a variety of names and have been 

described previously by many authors. They are the Clinton-type or Minette-type 

iron formation of Gross (1965); the Phanerozoic ironstones of James (1966) and 

the sandy, clayey, oolitic, shallow-inland sea iron formations (SCOS-IF) of 
Kimberley (1978). They are characterized by widespread ooliths - most commonly 

of chamosite or goethite. James and Vanhouten (1979) described OOFEs from 
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northeast Colombia and Venezuela as multi-layered, essentially spherical, 

symmetrical ooids of goethite and rarely with small amounts of chamosite. 

Occurrences of OOFEs are most common in the Phanerozoic, although some 

Precambrian examples have been described (Button, 1976a). However they are not 

evenly distributed throughout the Phanerozoic apparently being concentrated in 

two major time spans. The first spans the Ordovician to the Silurian; for 

example, Clinton deposits of USA and the Wabana beds, Newfoundland ores 

(Douglas, 1974). The second period is from the Jurassic to Early Cretaceous 

with the so-called Minette ores of Europe (e. g. Dunham et al, 1978). 

OOFEs are fairly common with individual deposits usually smaller than 

Precambrian FEFMs (Maynard, 1983) from which they differ in possessing an 

oolitic rather than a banded texture, having a lower chert content and a 

different mineralogy. The most abundant iron minerals are goethite, chamosite 

and siderite and other minerals commonly found include apatite, kaolinite, 

dolomite, calcite, detrital quartz and phosphates. Locally, magnetite or pyrite 

may predominate (Kimberley, 1978; Ferguson et al, 1983; Maynard, 1983). 

Kimberley (1979) noted the concentration of some elements which occur in 

certain iron-poor oolitic sediments as well as in iron-rich beds. He cited the 

manganiferous oolites with minor associated OOFE in Nikopol (Varentsov, 1964) 

and the oolitic phosphorite of the Permian Phosphoria Formation (McKelvey et 

al, 1959; and Sheldon, 1963) amongst others. 

3.2.5 Phosphate Deposits. 

Many phosphate deposits are local in character and are found as special 

phases within formations of a different nature, as described in the section on 

SHUR and OOFE deposits e. g. the Phosphoria Formation (McKelvey et al, 1959; 

Sheldon, 1963; Maynard, 1983). Examples of the SHUR variety have been included 

in the PHOS group as the phosphatic horizons and nodules are well developed. In 

contrast, other PHOS deposits occur on a much larger scale and constitute 
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independent marine formations covering a considerable area, as described later. 

The phosphate content of a rock is expressed as a percentage of P, Om and any 

rock which contains greater than 18% P208 is known as a phosphorite (Maynard, 

1983); most of which are marine in origin or result from weathering of marine 

deposits. 

Phosphorites contribute more than 80% of the world's production of 

phosphate rock (Maynard, 1983). They have therefore been the subject of 

numerous studies. The main publications are Bushinski (1969a) for Asian 

deposits; the British Sulphur Corporation (1964 and 1971) for a world survey of 

phosphate deposits and the U. S. Geological Survey Professional Papers , A-F 

(1959). More recent work has been carried out by Summerhayes et al (1972 and 

1973) and Parrish (1982), Parrish and Curtis (1982), Parrish et al (1983 and 

1986). 

There are a variety of PHOS deposits. To illustrate the extent of this 

diversity five examples were selected at random and their characteristics 

summarized below. 

1) The Miocene Sechura deposits of Peru are marine and pelletal in form with an 

average P306 content of 20% (Cheney et al, 1979) whereas 

2) the seafloor phosphorites of Agulhas Bank are phosphatized limestones with 

carbonate and goethite zones in addition to phosphate. The latter is present as 

cement filling fractures and voids (Baturin and Dubinchuk, 1974). 

3) The Ordovician Maquoketa Shale, Iowa has a basal, silty layer phosphorite 

layer with up to 22.5% P2Os, although the average is 13% P20s. In places, 

however, the shale becomes a phosphatic dolomite containing 17% P2015 (Brown, 

1974). 

4) Cathcart (1977) described a late Precambrian or early Cambrian deposit near 

Patos de Minas, Brazil where the phosphorite is laminated, consisting of black, 

elongated apatite pellets and quartz grains of average 13% P30s. 
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5) D'Anglejan (1967) recorded a bedded phosphorite in recent continental shelf 

sediments of Baja California, Mexico. He suggests that the lithology present at 

Baja, that of carbonate-fluorapatite with opaline silica and reducing muds, is 

reminiscent of the well-known chert-carbonaceous shale-phosphorite association 

found in ancient deposits. 

Not only are the phosphorites divergent in their nature, but so are the 

'dilutents' (non-phosphatic matrix and their interbeds) and the associated 

sediments, as noted by Cook (1976). These include the following: - 

a) mudstone and shale e. g. southeast Idaho; Maquoketa shale, northeast Iowa 

(Brown, 1974), b) chert e. g. northeast Utah, Karatau, c) limestone and dolomite 

e. g. northwest Queensland (Cook, 1972b); Agulhas Bank (Baturin and Dubinchuk, 

1974), d) sand and sandstone e. g. central Florida (Riggs, 1979). 

Abundance and Distribution. 

Cook (1976) stated that phosphate ore originates from three sources: 

a) igneous apatite accumulations such as those associated with the nepheline 

syenites and carbonates of South Africa and the Kiruna occurrence. 

b) guano-derived deposits e. g. Nauru and Christmas Island, 

c) marine sedimentary phosphate deposits. 

Only the sedimentary PHOS deposits will be discussed here, as those of 

igneous association are not relevant to this research and land-based guano- 

derived deposits have their own characteristics related to a unique biomass 

influence. The principal deposits of guano are formed on rocky islands 

frequented by sea birds, the greatest accumulation being found in the dry Trade 

Wind belts e. g. the West Ind; es and islands of the Pacific Ocean. Although the 

distribution of these deposits is apparently constrained by atmospheric 

circulation patterns, and hence latitude (see Chapter 4, section 4.5.1) there 

are no fossil examples so they have not been discussed here. Marine sedimentary 

(sediment-hosted) PHOS deposits are known to occur in every continent except 
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Antarctica and range from Precambrian to Recent in age. A few attempts have 

been made to show there is a worldwide cyclicity in the deposition of 

phosphate. For example Strakhov (1969) suggested that worldwide phosphate 

maxima occurred during the Late Cretaceous to Early Tertiary, Permian, Early 

Cambrian, Sinian (Riphean) and the Proterozoic. Cook (1976) disputed these 

interpretations on the grounds of the huge disparity in duration of these so- 

called maxima. Bushinski (1969b) also disputed this concept and suggested that 

phosphate accumulates in response to localized phenomena. 

There is, however, a general consensus amongst workers that phosphorites 

have been deposited in extensive phosphogenic provinces during specific time 

intervals (Figure 3.1). Bushinski (1969b) determined the following provinces: 

1) Late Precambrian of central and southeast Asia, 

2) Cambrian of central and southeast Asia, extending into northern Australia 

(Bushinski, 1969a; Howard and Hough, 1979), 

3) Permian province of North America (McKelvey et al, 1959). There are 

relatively few Permian deposits but their total phosphate content is boosted by 

the enormous deposits of the western Phosphate Field of the U. S. (Cook and 

McElhinny, 1979), 

4) Jurassic to Lower Cretaceous eastern European province, 

5) Upper Cretaceous to Eocene Tethyan province of the Middle East (Sheldon, 

1967) and North Africa extending to West Africa (Birch, 1979) and the northern 

part of South America, 

6) Miocene province of southeast N. America (Gibson, 1967; Riggs, 1979). 

There are apparent hiatuses of phosphate deposition during the Oligocene, 

Triassic and the Silurian to Lower Carboniferous periods (Cook and McElhinny, 

1979). 
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Classification. 

A number of common features of the PHOB deposits may be used as a basis 

for a classification scheme although no two deposits are precisely the same. 

one of the most widely used classifications is that devised by Cook (1976) 

which is as follows; 

1) Geosynclinal or West-Coast Type e. g. the western phosphate field of the U. S. 

(McKelvey et al, 1959), 

2) Platform or East-Coast Type e. g. North Carolina (Gibson, 1967); Baja 

California, Mexico (D'Anglejan, 1967), 

3) Weathered or Residual Type e. g. brown rock deposits of Tennessee; Northern 

Pakistan (Ghaznavi et al, 1983). 

The difficulty with such a classification is that deposits commonly have 

characteristics of more than one type and the genetic implications in the three 

terms are undesirable, as mentioned with reference to some uranium deposits. An 

alternative scheme to that presented above was developed by Parker (1971) and 

comprised the two conglomeratic and three non-conglomeratic classes briefly 

described below; 

Non-Conglomerates 

NI Phosphatized glauconite- and quartz-poor microfossiliferous limestone. 

NII Phosphatized microfossiliferous limestone rich in goethite. 

NIII Phosphatized microfossiliferous limestone, highly glauconitic and quartz- 

rich in a micrite/fluorapatite cement. 

Conglomerates 

CI Rich in glauconite with pebble inclusions of phosphatized foraminiferal 

limestone and a cement similar to a NII rock. 

CII Low in glauconite, highly microfossiliferous, with abundant goethite. 
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It is important to stress that these rock types form a continuous series. 

Birch (1979) successfully used this scheme to classify the phosphatic rocks off 

the western margin of South Africa and noted that these classes were merely 

designed to group together rocks which were deposited under similar conditions 

and to indicate whether there had been any reworking or transportation. 

The PHOS deposits used in this study have not been subdivided (other than 

to determine whether or not they were marine sediment-hosted) for two main 

reasons. Firstly the dilemma of which of the major types of classifications 

(Parker, 1971 or Cook, 1976) to choose had to be overcome. Secondly once one 

had been chosen it would be extremely difficult to follow such a rigid 

classification when there are so many varieties of PHOS deposits. However care 

was taken to note if the different groups within the classifications were 

reflected in the results i. e. were there marked ranges of palaeolatitude for a 

particular PHOS deposit type? 

3.2.6 Placer Deposits. 

Placer deposits comprise alluvial, eluvial and colluvial material which 

contain economic quantities of some valuable material. Those containing gold, 

platinum, diamonds and tin (cassiterite) are amongst the most important types. 

These surficial deposits are formed by the separation of light, friable 

minerals and heavy, chemically resistant minerals from weathered debris and the 

mechanical concentration of these mineral particles. The mechanical agent is 

usually alluvial (streams) although it may also be marine, aeolian, lacustrine 

or glacial. Therefore for a mineral to occur as a placer mineral it must be 

highly resistant to water and abrasive action and be a heavy mineral (see Table 

3.6). The latter is a term generally applied to minerals which sink in 

bromoform (S. G. 2.9). 

Placer formation is favoured by prolonged sediment reworking causing heavy 

mineral concentration while transporting the remaining sediment downstream. 
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Placers might therefore be expected to be associated with surfaces of fluvial 

degradation in drainage basins and in alluvial fan sequences of depositional 

basins (Schumm, 1977) which is frequently the case. 

Table 3.6. Physical Properties of the more common Placer Minerals. 

IIIII 
I MINERAL I HARDNESS I SPECIFIC I PRINCIPAL PLACER I 
II MOH'S NO. I GRAVITY I ENVIRONMENT I 
IIIII 
IIIII 
ICassiterite SnOs I6-7I6.8 - 7.1 I Eluvial, fluvial, marine I 
IIIII 
IIIII 
IDiamond CI 10 I 3.52 1 Beach, fluvial, eluvial 
IIIII 
IIIII 
IGarnet 1 6.5 - 7.5 I 3.5 - 4.3 1 Fluvial, eluvial 
I R^3R°'2SisO, s IIIIIII 

III 
IGold Au 1 2.5 -31 19.3 I Fluvial, eluvial, beach I 
III II 
IIIII 
IIlmenite FeTiOs I5-614.5 -5I Beach sand 
IIIII 
I111I 
magnetite Fes04 1 5.5 - 6.5 1 5.1 - 5.18 I Beach sand 
IIIII 
IIIII 
monazite 15I4.9 - 5.3 1 Beach sand 1 
I(Ce, La, Y Th)PO4 II1I 
IIIII 
III1I 
IPlatinum Pt 14-4.5 1 14 - 19 1 Fluvial 1 
III1I 
IIIII 
IRuby & Sapphire I9i3.95 - 4.10 1 Fluvial, eluvial 
I AlzOs III 
IIIII 
IIII1 
IRutile TiOz 16-6.5 1 4.2 1 Beach sand I 
IIII 
IIIII 
IZircon ZrSiO4 1 7.5 1 4.5 - 4.7 I Beach sand I 
IIII1 

Modified fron Hails (1976), Table 1 and Edwards and Atkinson (1986), Table 5.2. 
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Placer deposits are formed by natural surface processes so they have a 

wide geographical distribution. The majority are of Tertiary and Quaternary age 

which may be due to poor preservation of older deposits and the changes in sea 

level since the Quaternary. 

Classification. 

There are various classifications of placer deposits. Hails (1976) used a 

division which combined the mode of occurrence with depositional environment so 

placer deposits were divided into the following groups: marine (offshore), 

alluvial (stream) including river terrace, beach, eluvial (slope), residual and 

fossil. Emery and Noakes (1968) devised a classification consisting of three 

groups, each one being characterized by a combination of its physical 

properties and environment of deposition. These were the heavy heavy minerals 

(such as gold, tin and platinum) in stream deposits; light heavy minerals (such 

as ilmenite, rutile, zircon and monazite) usually occurring as beach deposits 

and the gem class (mainly diamonds) commonly found in alluvial environments. 

The classification presented here is not based upon the geological 

environment of a particular deposit. It is solely concerned with the dominant 

mineral (e. g. gold, diamonds etc. ) or mineral type (e. g. oxides) present in the 

placer deposit. However Edwards and Atkinson (1986) suggested that it is common 

for some minerals to be concentrated in a specific placer environment whilst 

others (e. g. gold) occur within the entire spectrum of placer deposits (refer 

to Table 3.6). 

Placer Gold Deposits (PLAU). 

Gold is the most ubiquitous of metallic placer minerals and is found in 

many parts of the world. Young PLAU deposits are composed of unconsolidated or 

semi-consolidated sand and gravel possessing small quantities of gold or other 

heavy minerals. Most are stream deposits which occur within present day 
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valleys, or on beaches or terraces of pre-existing rivers (Hails, 1976). Giant 

PLAUs (e. g. Otago and Westland, New Zealand; Colombia; California) occur on 

Pacific Coast margins and appear to have formed during the Tertiary in similar 

tectonic and sedimentary environments (Henley and Adams, 1979). Other PLAU are 

formed by the secondary mechanical concentration or reworking of earlier, 

extensive auriferous placers e. g. those of southeast Australia (Sutherland, 

1985). 

Placer Diamond Deposits (PLDI). 

Diamantiferous gravels (e. g. Vaal River, South Africa) are of considerable 

economic importance although they are not common. The primary source rocks for 

diamonds are kimberlites which themselves have a strong geographical 

association with cratonic areas (Dawson, 1980) so the distribution of PLDI 

deposits is restricted to these source areas. In some regions (e. g. Ghana and 

Brazil) there are economic PLDI deposits but the primary sources for the 

diamonds have not been established. However the association with Precambrian 

shield areas still remains (Wilson, 1982). Although most diamantiferous placers 

are alluvial or eluvial (e. g. Minas Gerais, Brazil; Venezuela; Namibia), there 

are major marine concentrations off the west coast of southern Africa. 

Placer Tin (PLSN). 

This category is dominated by detrital cassiterite deposits and by far the 

largest proportion of tin ore is obtained from alluvial deposits For example 

South Island, New Zealand and the southeast Asian Tin Belt (Hails, 1976). 

Approximately 65% of the world's tin is produced from PLSN deposits in 

Malaysia, Thailand and Indonesia where alluvial deposits predominate, although 

some of eluvial origin are found (Edwards and Atkinson, 1986). Other deposits 

of residual origin are found in the Rondonia district of Brazil which provide 

up to 60% of that country's production. 
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Cassiterite (SnO2) is the most important ore mineral being both very hard 

and heavy (see Table 3.6). It tends to concentrate naturally in surficial 

deposits derived from tin-bearing granites (in which it occurs as a primary 

mineral) andthet{ associated metamorphic rocks. 

Placer Oxides (PLOX). 

This group consists mainly of deposits with titanium and tungsten ore 

minerals. The titanium-bearing minerals include; 

a) Rutile (TiO2) which is found as an accessory mineral in igneous rocks, 

pegmatites and metamorphosed limestones e. g. the Eastern Australian rutile 

province (McKellar, 1975); Richard's Bay, South Africa; Eneabba deposit, 

Western Australia (Lissiman and Oxenford, 1975). 

b) Ilmenite (FeTiO3) which occurs as an accessory mineral in basic igneous 

rocks and veins e. g. as Holocene beach deposits, West Coast, New Zealand (NZ 

DSIR 1969/70); Capel area, west Australia (Welch et al, 1975); Lakehurst area, 

New Jersey, U. S. (Puffer and Cousminer, 1982). 

eý Scheelite (CaWO. ), the tungsten-bearing placer mineral, is derived from 

veins and contact-metamorphic deposits e. g. Otago, New Zealand where detrital 

scheelite is frequently associated with detrital gold (NZ DSIR 1969/70). 

Placer "Others" (PLOT). 

This class consists mainly of deposits containing minerals of the platinum 

group. For example osmiridium is found with alluvial gold in Tertiary 

conglomerates of New Zealand (NZ DSIR 1969/70). It also includes deposits with 

gemstones (excluding diamonds) e. g. those deposits occurring in the Mato Grosso 

and Minas Gerais districts of Brazil (Franco, 1981). 
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Palaeoplacer Gold-Uranium (PAPL). 

Palaeoplacer gold-uranium deposits may be defined as the lithified 

equivalents of placer deposits (Utter, 1980). The principal examples are 

located in the Witwatersrand Basin of South Africa (Au-U); the Blind River- 

Elliot Lake district of Ontario, Canada (U); the Jacobina district, Bahia, 

Brazil; the Tarkwa region of southwest Ghana (Au). 

The lower age limit for the occurrence of these giant PAPL deposits is 

3100 m. y., the youngest age is 1900 m. y., and it is notable that upper 

Proterozoic conglomerates (that is 1600-1700 m. y. ) are conspicuously devoid of 

PAPL ore deposits (Pretorius, 1981). The South African deposits are of Archaean 

age (2500-2750 m. y. ), the Tarkwa deposit, Ghana is Lower-Middle Proterozoic 

(1900 m. y. ) and the Canadian and Brazilian deposits are considered to be Lower 

Proterozoic (Pretorius, 1976). These economic deposits are of limited 

geographical distribution and are confined to the age ranges given above so 

they appear to represent a rather specific type of preserved placer. 

A notable feature of PAPL deposits is the resemblance between the host 

rocks from the principal districts. These oligomict conglomerates consist 

predominantly of quartz and chert pebbles in a sericite/chlorite matrix so they 

are mineralogically mature although texturally immature (Clemmey, 1981). Thin 

seams of carbonaceous material, thought to represent organic plant remains 

(Pretorius, 1975), are common and may be associated with high values of uranium 

and gold (Simpson and Reales, 1981). 

Although the mineralogy of the PAPLs is dominated by quartz, they contain 

a diverse assemblage of accessory resistate and sulphide minerals e. g. platinum 

group metals, silver and thorium (Pretorius, 1981). Pyrite is the dominant 

sulphide in all but the. Ghanian deposit where haematite, ilmenite and magnetite 

constitute the assemblage. Fresh, unoxidized pyrite is present as coarsely 

crystalline grains and as fine-grained concretions in the Witwatersrand example 

(Simpson and Bowles, 1977). 



44 

The sedimentary facies of PAPL sequences is generally accepted as parts of 

a fluvial fan which prograded into a water-filled intermontane basin 

(Pretorius, 1975). A detrital origin for uraninite grains in Canadian deposits 

has been demonstrated (Roscoe, 1969) and for a variety of ore particles of the 

Witwatersrand (Utter, 1980). 

The position of the ore-bearing conglomerates within the sedimentary 

sequence has similarities in the Brazilian, Canadian and Ghanian deposits as 

they all possess three mineralised conglomerate horizons which are found near 

the base of the sequence. However in the Witwatersrand Basin mineralised 

sediments occur throughout the succession from bottom to top with the main 

proportion of ore-bearing horizons occurring in the upper part of the 

Witwatersrand Supergroup (Edwards and Atkinson, 1986). 

The source of the detrital material for the PAPLs is thought to be the 

Archaean granite-greenstone basement terrain on which the sedimentary sequences 

rest, as suggested by Pretorius (1976) with regard to the Witwatersrand 

deposits. He considered the gold was derived from ultramafic and mafic igneous 

rocks of the greenstone belts whilst the uranium was drawn from the granites 

that intruded them. 

3.2.7 Sediment-Hosted Stratabound Base-Metal (Cu. Pb, Zn) deposits. 

There have been a plethora of classifications for sediment-hosted 

stratiform base-metal deposits beginning with Stanton (1972) and others in the 

early 19705 and continued by wolf (1976 and 1981), Samama (1976), Gustafson and 

Williams (1981), Morganti (1981) and Bjorlykke and Sangster (1981). 

Morganti (1981) recognized a number of mineral deposits containing zinc, 

lead, copper, barium and/or precious metals which occur in predominantly 

clastic sedimentary sequences where volcanic rocks are not demonstrably related 

to ore formation. These are referred to as sedimentary-type stratiform deposits 

e. g. Meggen, McArthur River, Mufulira. These were then further divided into 
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three sub-classes based on gross sedimentation related to major tectono- 

stratigraphic environments, as follows; 

1) intracratonic basin sulphide deposits, 

2) flysch basin sulphide and barite deposits, 

3) platform-marginal basin sulphide deposits. 

Other workers, for example Bjorlykke and Sangster (1981), classified 

stratiform sediment-hosted deposits according to the dominant type of 

mineralisation i. e. copper, lead or zinc, the major host rock and its 

associations. A modified version of this classification has been adopted here. 

Bjorlykke and Sangster presented the subclasses which have been used in this 

classification. 

1) Red-bed copper deposits 

2) Sandstone lead deposits 

3) Carbonate-hosted lead-zinc deposits 

(SSCU) and (BHBM) 

(SBPB) 

(LSBM) 

Cupriferous shales were incorporated into group one together with the 

sandstone-hosted copper deposits whereas they have been placed into a separate 

class in this thesis i. e. as shale-hosted base-metal (SHBM) deposits. 

Sediment-hosted copper deposits (SSCU and SHBM) appear to have 

sufficiently distinctive characteristics to separate them from sediment-hosted 

lead-zinc deposits. The term sedimentary-exhalative is used here for those 

lead-zinc deposits of syngenetic or diagenetic type (SDEX) whereas epigenetic 

deposits are commonly described as being of Mississippi Valley-Type i. e. 

carbonate-hosted lead-zinc group (LSBM). A description of the major 

characteristics of each of the five deposit classes will be given later. 
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It has been suggested by some workers, for example Rose (1976), that 

different deposit types may be related e. g. the Kupferschiefer, Germany, the 

Zambian Copperbelt and some copper-uranium deposits in the United States. He 

suggested that the same chemical relationships may apply in view of their low 

temperature of deposition and certain geological features (e. g. sulphides, 

organic matter, occurrence near evaporites and red beds). In contrast, 

Bjorlykke and Sangster (1981) concluded that SSCU, SSPB and LSBM deposit types 

were clearly separate entities in terms of their tectonic and sedimentary 

environments and also that they were probably formed at different stages of 

continental evolution. In this instance each mineral deposit type has been 

regarded as a separate entity to avoid the application of genetic constraints 

upon the classification. However it will be noted in a later chapter if any 

relationship between deposit types becomes apparent from scrutiny of their 

latitude of formation. 

Availability and Distribution of Copper. 

Copper has a fairly uniform distribution in intermediate to basic igneous 

rocks (see Table 3.7). Among sedimentary rocks carbonates are noticeably low in 

copper which is reflected in the nearly exclusive association of commercial 

deposits with clastic rocks. Note that the carbonaceous shales have nearly 

three times the amount of copper found in other shales, showing the importance 

of reducing conditions for precipitating copper in sediments. By far the 

largest concentration is in pelagic clays where copper is associated with 

cobalt and nickel in iron-manganese nodules. This is likely to be an important 

source of copper along with a number of other metals in the future (see section 

3.2.3). Silver has a similar distribution as copper but it is not as strongly 

depleted in seawater, carbonate rocks and quartz arenites. 
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Table 3.7. Abundance of Copper and Silver in Common Geological Materials. 

IIIII 
Rock Types and Sediments I Cu (ppm) I Ag (ppb) Cu/Agx1000 

IiIII 
IIIII 
I Igneous Rocks II 

peridotite I 47 I 60 1 0.78 1 
basalt I 90 I 100 1 0.90 
andesite I 53 I 80 0.66 

1 granite 13 1 37 0.35 I 
III1I 
IIIII 
1 Sedimentary Rocks 1 

shale It 
I average I 35 II 
I red 1 150 II 
I green II 190 I 
I black I 95 I 290 I 0.33 I 
I sandstone IIII 
I quartz arenite I 30 III 
I arkose iIII 
1 greywacke 1 11 1 250 I 0.044 1 
I limestone I6I 125 I 0.048 1 
IIIII 
I 
I Sediments, seawater 
I pelagic clay 
I seawater 

IIII 
IIII 
I 251 III 
I 0.0015 1 0.32 1 0.0047 I 
IIII 

Source: Maynard, 1983. 

Distribution and Availability of Lead and Zinc. 

Lead is uniform by distribution in sedimentary rocks while zinc is 

somewhat enriched in carbonaceous shales (see Table 3.8). Both are remarkably 

low in carbonate rocks suggesting that carbonate-hosted ores are externally 

derived. The concentration of lead in most natural waters is exceedingly small, 

except in highly saline ones. Therefore it would seem unlikely that lead-zinc 

deposits formed by direct precipitation from seawater or other normal surface 

waters. 
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Table 3.8. Concentration of Pb and Zn in some Rocks and Natural Waters. 

IIII 
Rock Types and Natural Waters I Zn (ppm) I Pb (ppm) I 

IIII 
II1I 
I Igneous Rocks 
I peridotite 1 56 0.3 I 
I gabbro I 100 I 3.2 I 

diorite 1 70 I 5.8 
granodiorite I 52 1 15.0 I 

I granite I 48 1 24.0 { 
IIII 
IIII 
I Sedimentary Rocks I 

sandstone II 
quartzose, arkose I 30 I 10.0 

{ greywacke I 95 1 20.0 
I shale II 
t average I 100 -I 
{ carbon-rich I 200 I 24.0 I 
I carbon-poor I-I 23.0 
I carbonates I 20 I 5.0 
IIII 
IIII 
I Modern Sediments II 
I marine mud 1 90 1 23.0 I 
i pelagic clay 1 140 I 55.0 I 
IIII 
I 
I Natural Waters 
I seawater 
I interstitial water 
I Salton Sea brine 
I deep formation brine, Canada 
I Atlantis II Deep brine 
I deep formation brine, Mississippi 

I1I 
II1 
I 0.005 1 0.00003 1 
1 0.012 I-I 
I 780 1 80.0 I 
I 750 I-1 
I 5.4 I 0.6 I 
1 155 1 30.0 I 
III 

Source: Maynard, 1983. 

Sandstone Lead Deposits (SSPB) 

SSPB deposits are relatively rare as lead and zinc are usually found in 

carbonates and shales although in countries such as Sweden they constitute an 

important resource. The Laisvall deposit of Sweden is perhaps one of the most 

well documented examples of this type and a considerable amount of work has 

been done on many aspects of this deposit (Rickard et al, 1975,1979 and 1981). 
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In SSPBs the host rocks to the lead are basal quartzitic sandstones which 

usually constitute part of a sedimentary sequence lying on Precambrian basement 

as at Vassbo, Sweden (Christofferson et al, 1979). 

SSPBs are characteristically low grade, lead dominant, pyrite free and 

silver poor (Bjorlykke and Sangster, 1981). Minerals of the ore association are 

usually galena, sphalerite, calcite, fluorite and barite and they occur as 

cement, infilling the pore spaces in the sandstone. A common feature of SSPBs 

is a high grade core surrounded by a lower grade halo and, if zinc is present, 

it occurs in a position stratigraphically higher than lead. This is most 

obvious at Laisvall with zinc being dominant in the Upper Sandstones to the 

northwest and very minor in the galena-rich Lower Sandstones (Rickard et al, 

1979). 

The depositional environments for these deposits range from continental to 

shallow marine. It is considered to have been an open tidal beach environment 

at Vassbo (Christofferson et al, 1979) and on a stable platform at the shallow 

tidal margin of the Proto-Atlantic at Laisvall (Bjorlyyke and Sangster, 1981). 

The L'Argentiere deposit and related occurrences are found in a detrital 

terrigenous complex (Samama, 1976) and the Moroccan deposits occur in a 

sequence of coarse arkosic detrital sediments. 

Sandstone-Copper (SSCU) and Shale Base-Metal (SHBM) Deposits. 

Sediment-hosted copper deposits are fairly common, contributing about 30% 

of the Earth's copper reserves (Jacobsen, 1975). Production is dominated by two 

major cupriferous provinces, the Zambian Copperbelt of Upper Proterozoic age 

and the German-Polish Kupferschiefer of Lower Permian age. About one-third of 

the deposits are hosted by sandstones and the remaining two-thirds by 

calcareous shales (Edwards and Atkinson, 1986). They range from Precambrian to 

Recent in age and the most important deposits are those lying in Late 
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Proterozoic and Late Palaeozoic rocks which correlate closely with widespread 

desert environments of sedimentation (Kirkham, 1986). 

Both SSCU and SHBM deposits are considered in this section as a number of 

the ore deposit examples used in this thesis may be classified into either 

group e. g. the Kupferschiefer, White Pine, Michigan and the Zambian Copperbelt. 

Gustafson and Williams (1981) noted that in some of the established SHBM 

deposits (e. g. the Polish and East German Kupferschiefer) the majority of 

copper is actually sandstone-hosted and about 40% of the ore in the Zambian 

Copperbelt is also sandstone-hosted. 

A list of five varieties of sedimentary copper deposits was presented by 

Maynard (1983) and it illustrates the problem of classification of these copper 

deposits. In the following list the classes into which the individual examples 

have been placed in this thesis are given in brackets to show the disparity 

between this classification and that chosen by Maynard. 

Type (Maynard) Type (Grainger) Example 

Supergene Not included Chincarilla, Chile 

Epigenetic in Sandstone SSCU New Mexico (8SCU) 

Red-Bed Evaporite SSCU Creta, Oklahoma (SHBM) 

Epigenetic in shale SHBM White Pine, Michigan (SSCU) 

Nevada Black Shales (SHBM) 

Controversial SHBM &/or SSCU Kupferschiefer (SM, SSCU) 

Zambian Copperbelt (SHBM, SSCU) 

Shale Base-Metal Deposits (SHBM) 

A number of examples of SHBM deposits are briefly described below to 

illustrate the diversity of deposits included within this group. 

Johnson (1976) reported on stratiform Permian copper deposits of 0.5-4.5% 

Cu grade in southwest Oklahoma hosted by laminated silty shales. The major 
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examples are at Creta and Mangum where the mineralisation (chalcocite and 

malachite) occurs in two horizons within the Flowerpot Shale. The host rocks 

form part of a near-shore red-bed evaporite sequence with the highest copper 

concentrations found in grey shales immediately overlain by gypsum deposits 

(Hagni and Gann, 1976). Smith (1976) considered that most of the copper-bearing 

shales had been deposited on tidal flats. 

Poole and Desborough (1981) described a black shale facies in Ordovician 

and Devonian rocks of Nevada consisting of mudstone, siltstone, chert and minor 

carbonate strata. These beds are highly metalliferous with up to 5000ppm 

vanadium, 350ppm selenium, 10ppm silver and 500ppm chromium residing in organic 

matter - the shales contain up to 20 weight % organic carbon. They have a high 

molybdenum content (1000ppm) which is generally found as molybdenite or in 

organic matter. Zinc (1800ppm) occurs in sphalerite. Many of the metalliferous 

beds are oil shales and it is assumed that anoxic environments of deposition 

and diagenesis were necessary for the accumulation of such significant metal 

and oil concentrations. These host shales were deposited on a continental rise 

along the western margin of Palaeozoic North America. 

'Kupferschiefer' is the stratigraphic name given to a mineralised marl 

which covers most of northern Europe extending from England to Poland. It is 

extremely thin (generally less than im) and is rich in lead and zinc as well as 

copper in contrast to the Permian shales of Oklahoma described earlier. The 

Lower Zechstein shales of southwest Poland host lead mineralisation (Haranczyk, 

1970) whereas the Kupferschiefer in other deposits in the Sudetic Foreland is 

copper-bearing (Preidl and Metzler, 1984). Copper concentrations higher than 

0.3% are thought to be mainly restricted to near-shore regions of the Zechstein 

Sea, whereas zinc concentrations are more abundant and occur in a belt some 

distance from the coast. Lead is intermediate in abundance and occurrence 

(Wedepohl et al, 1978). They suggested that a considerable distance from the 

former shoreline 0 150km) the metal accumulations are more typical of black 
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shales with reasonably high V, Mo, U etc. in bituminous marls low in Zn, Pb and 

Cu. 

The Rotliegendes sands comprise the units beneath the Kupferschiefer. 

Where these sands are red they are known as Rote Faule -a term which is 

generally used to describe the red colouration of rocks upwards to the Werra 

Anhydrite (Maynard, 1983). The Rote Faule contains varying quantities of 

haematite (where the Fe3- ion is responsible for the colouring) and it is 

notable for its extreme deficiency in copper (Jung and Knitzschke, 1975). In 

areas where the Rotliegendes is white (due to the presence of the Fea. ion, or 

the iron has been removed by leaching) it is referred to as the Weiss Liegende 

and copper mineralisation is prevelant. For example in certain areas of the 

Kupferschiefer of Poland economic concentrations of base metals are present in 

white sandstone (Rotliegendes; 50% Cu), black shale (Kupferschiefer; 20% Cu) 

and in the base of the overlying carbonates (Zechstein limestones; 30% Cu) - 

Kucha and Pawlikowski, 1986. 

The Zambian Copperbelt can be divided into two sub-provinces, Northern 

Zambia and Southern Shaba. In Zambia the predominantly clastic host rocks are 

metamorphosed from chlorite to garnet grade and are often highly deformed 

(Fleischer et al, 1976). The sequence was deposited over a much rougher 

palaeotopography than the Zairean succession and the sediments unconformably 

overlie prominent granite hills, some of which are capped by stromatolitic 

bioherms (Garlick, 1981). The Zairean sub-province has a mainly dolomitic 

lithology, the host rocks being unmetamorphosed and relatively flat-lying 

although they are cut by numerous thrust faults. Both regions show evidence of 

hypersalinity during deposition; magnesite is common in Zaire dolomites with 

anhydrite common in Zambia. Annels (1974) considered this to be important in 

ore genesis. The deposits of the two provinces have similar mineralogy with 

copper and cobalt sulphides abundant while lead and zinc are conspicuously rare 

(Bartholome, 1974). 
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Within the Zambian province mineralisation is hosted by two different 

lithologies one of which constitutes the "ore shale trend" to the southwest of 

the region with mineralisation hosted by fine grained clastics (SHBM deposits). 

For example the Nchanga area where a marine transgression over conglomerates 

and arenites is manifested by a black, carbonaceous shale. At Nkana North Limb 

the mineralisation lies within siltstones, argillites, dolomitic argillites and 

argillaceous dolomites (Annels, 1974). Evaporites, particularly gypsum and 

anhydrite, are frequently found in close proximity to the ore-bearing horizon. 

Sedimentary structures such as dessication cracks are also found in many areas 

e. g. Chibuluma (Edwards and Atkinson, 1986). 

SSCU deposits are found around the Mufulira region where three stratabound 

ore bodies are hosted by a fine grained carbonaceous wacke interbedded with 

barren dolomites (Van Eden, 1974). The copper-bearing sediments of this deposit 

type sometimes have a significant carbon content and, in keeping with this, the 

graphitic carbon content of the Mufulira greywackes varies from 1 to 2% 

(Annels, 1979). Algal structures, such as those of the cupriferous dolomitic 

shale of the Copperbelt, are also characteristic and they have been found as 

biostromes and bioherms in the Mufulira deposits (Garlick, 1981). 

Sandstone-hosted Copper Deposits (SSCU) 

In addition to the group of SSCU deposits which could also be classed as 

SHBM deposits there is a group which appears to be similar to SSUV roll-front 

deposits. They generally tend to be confined to shallow lagoonal or lacustrine 

environments restricted to continental basins as described by Caia (1976) for 

Lower Cretaceous deposits of Africa. One region where these deposits occur has 

been described in detail and other regions mentioned briefly. 

There are numerous small copper deposits associated with fluvial and 

transitional marine environments of Permian age in New Mexico e. g. the Scholle 

and High Rolls districts, USA (Lapoint, 1976). Copper-bearing minerals 
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(typically chalcocite) replace woody, organic debris in fluvial sandstones 

which represent small channel deposits. Those in transitional marine 

environments are found as a replacements of algal mats and mineralisation 

occurs near oxidation fronts showing transitions from red to grey sediment. The 

Triassic deposits of New Mexico (e. g. Nacimiento Mine) are much larger and less 

arkosic than those of Permian age and copper-bearing iron sulphides in the 

Chinle Formation have partly replaced, or are closely associated with, 

carbonaceous fossil material, mainly logs (Woodward et al, 1974). Red-beds of 

early diagenetic age are always associated with these SSCU deposits (Lapoint, 

1976) but the genetic relationships between the deposits in New Mexico and 

those, such as the Kupferschiefer, are not known (Lapoint, 1986). 

The mineralisation in Lower Cretaceous conglomerates, sandstones and 

siltstones is thought to be controlled by palaeochannels of variable size and 

is closely associated with residual organic matter (Caia, 1976) as described 

above for occurrences in New Mexico. The late Cretaceous to mid-Tertiary 

deposits of the Corocoro Basin, Bolivia are also characterised by the 

replacement of organic material by copper-bearing minerals (Entwistle and 

Gouin, 1955) and their distribution and orientation have been compared to those 

of SSW deposits in the past (Ljunggren and Meyer, 1964). The last group of 

deposits of this type used as examples in this thesis are the copper-silver 

occurrences in Carboniferous strata of southeast New Brunswick and northwest 

Nova Scotia. They are found in grey channel deposits and grey-green interbeds 

in the mainly arkosic Hopewell Group and the presence of organic debris again 

appears to be the controlling influence upon mineralisation (Van de Poll, 

1978). 

Finally, a few more examples should be added to the list of SSCU deposits 

which appear to be related to SHBMs, especially with reference to their mode of 

origin. Renfro (1974) proposed a sabkha (intertidal and supratidal) model for 

the depositional environment for these deposits to explain the sedimentary 
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associations of red-bed - dark shale with copper - evaporites that are 

frequently seen. This model has been accepted by Smith (1976) for the Permian 

deposits of Texas and by Chartrand and Brown (1984) for Coates Lake deposit, 

Redstone area, NWT, Canada. 

Sedimentary Exhalative Deposits (SDEX). 

Large sediment-hosted lead-zinc deposits form a distinctive group 

characterized by stratiform, syngenetic ores. This group has been discussed in 

relation to SSCU and SHBM deposits by many authors who suggested the entire 

group were varieties of one class incorporating all sediment-hosted stratiform 

deposits of copper, lead and zinc (e. g. Morganti, 1981 and Gustafson and 

Williams, 1981). However other authors such as Badham (1981a) and Large (1980 

and 1981) considered SDEX deposits as a separate group. Only deposits with 

dominant lead-zinc mineralisation have been included in this class. Those which 

possess more copper than lead and zinc and are hosted by argillaceous rocks 

have been classed as SHBM deposits and those hosted by coarser elastics have 

been classed as SSCU. 

SDEX deposits are of restricted geographical and temporal distribution and 

there appear to be two main periods of SDEX mineralisation, the middle 

Proterozoic (1400-1600 m. y. ) and the Lower Middle Palaeozoic (320-500 m. y. ). 

The Proterozoic deposits are generally larger than those of Palaeozoic age 

(Large, 1981). 

The general characteristics of SDEX deposits have been presented by a 

number of authors e. g. Large (1980 and 1981); Gustafson and Williams (1981); 

Morganti (1981) and a summary of the salient features of SDEX deposits given by 

Large (1981) is listed here with additional references. 

1) stratiform sulphides occurring in one or more lens-like bodies e. g. McArthur 

River, Russell et al (1981). 
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2) Stratiform sulphides are concordantly interbedded with marine sediments of 

different lithologies e. g. Meggen and Rammelsberg, Krebs (1981). 

3) Stockwork or vein-type mineralisation is common e. g. Tom deposit, Carne 

(1976); Meggen, Krebs (1981). 

4) Distinct lateral and/or vertical zonation of sulphides is often seen e. g. 

McArthur River, Russell et al (1981); Meggen and Rammelsberg, Krebs (1981). 

5) Sulphides may be in massive and laterally persistent beds e. g. Rammelsberg 

and McArthur River, Large (1981). 

6) Characteristically simple mineralogy : pyrite and/or pyrrhotite, sphalerite, 

galena, minor chalcopyrite; marcasite and arsenopyrite occasionally also 

present. High Fe and Ag sulphide contents common e. g. high Ag in Rammelsberg, 

Mount Isa and Lady Loretta (Large, 1981). 

7) Barite often overlies mineralisation or occurs as a lateral stratigraphic 

extension e. g. Chaudfontaine, Dejonghe (1979). 

8) Thin tuffite horizons are found within host rocks in many deposits e. g. Mt. 

Isa, Lady Loretta, McArthur River, Large (1980); Kanchanaburi Province, W. 

Thailand, Diehl and Kern (1981). 

9) Many deposits are spatially associated with a growth fault e. g. Mt. Isa, 

Tynagh, Large (1980); Central Pyrenees deposits, Pouit (1978). 

10) Host rocks are mostly shales (which may be carbonaceous), siltstones and to 

a much lesser extent, carbonates e. g. Irish deposits, Russell et al (1981). 

11) Many are associated with evaporite sequences, massive limestones or have 

evidence of a past arid climate e. g. Mt. Isa, Lady Loretta, Pyrenees, McArthur 

River, Large (1980); Kanchanaburi Province, W. Thailand, Diehl and Kern (1981). 

12) Mineralisation is associated with carbonaceous matter in many deposits e. g. 

Dzhezkazgan, Meggen, Mt. Isa, Large (1981); Lady Loretta, Loudon et al (1975). 

SDEX are not classed with LSBM deposits as they are considered to be 

syngenetic in nature. They have an early timing of mineralisation relative to 
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deposition of host rocks, a greater conformity of mineralisation with the hosts 

(lacking in LSBM deposits) and higher iron and silver contents. 

Carbonate rocks hosting the Irish deposits of Lower Carboniferous age are 

included in the SDEX class. It was thought by workers such as Large (1981) that 

they are characterised by submarine exhalative features e. g. their conformity 

with host rock stratigraphy (Sangster, 1976). However it must be noted that 

deposits such as Silvermines have been regarded (Taylor and Andrew, 1978) as 

partly exhalative (Upper 6 zone) and partly replacive (Lower G ore zone). Also 

the main part of the Tynagh orebody has been considered to be replacive but the 

iron formation and surrounding manganese halo have been accepted as clear 

evidence of syngenetic precipitation (Badham, 1981a). The fact that Irish 

deposits possess some characteristics which may be indicative of a secondary 

sedimentary origin e. g. a dominant cross-cutting mineralisation, has led to the 

notion that these deposits may represent a transitional type between SDEXs and 

LBBMs (e. g. Edwards and Atkinson, 1986). 

The Irish SDEX deposits differ from another controversial type, the Alpine 

LSBM deposits, in having a more complex mineralogy with the addition of silver 

and copper to the extractable metals. They also have a distal, tuffaceous Fe-Mn 

deposit which is lacking in the Alpine deposits. 

Although Proterozoic deposits are not within the scope of this research it 

is worth noting that many of the most important SDEX occurrences are 

Proterozoic in age (Gale, 1983 and Lambert, 1983). 

Limestone Base-Metal Deposits. 

Carbonate-hosted strata-bound lead-zinc deposits make up some of the 

world's major ore deposits and have long been considered as a single class, the 

Mississippi Valley type, named from the region where some of its principal 

examples are located. Limestone base-metal deposits mainly occur in the Tri- 

State, southeast Missouri and Upper Mississippi Valley districts of the United 



58 

States and some Alpine and Silesian areas of Europe. As a group they exclude 

skarns and other replacement deposits e. g. the lead-zinc bodies at Bingham, 

Utah which may be related to nearby intrusions (Sangster, 1976). 

These deposits are characteristically of Phanerozoic age. Both Stanton 

(1972) and Sangster (1976) mention the paucity of LSBM sulphides in Proterozoic 

rocks. This is particularly significant in view of the relatively long time 

range of this era. 

LSBM deposits are stratabound and generally thought to have been emplaced 

after lithification of the host rocks, mineralisation having been largely 

controlled by pre-ore structures. The ores normally consist of sphalerite, 

galena, fluorite and barite in varying proportions and contain minor pyrite, 

Sb, Cu, Ag and Cd in dolomitic carbonates (Badham, 1981a). The common 

characteristics of LSBM deposits are given by Jackson and Beales (1967), Heyl 

et al (1974) and Sangster (1976). Only a brief summary of their salient 

features is given here i. e. those points which have been used to classify 

examples as LSBM deposits. These are: 

a) The host rocks commonly form part of a thick carbonate pile, close to facies 

fronts with basinal argillaceous rocks (Badham, 1981b) and with a close spatial 

association to evaporite sequences. 

b) They consist primarily of bedded replacements and veins. The ore fills 

former open spaces that took the form of karst cavities, high porosity zones in 

bioherms, or faults (Maynard, 1983). 

c) There is an association between ores and dolomitization, although the 

relationship of these two events with time has not been satisfactorily 

established (Kyle, 1981; Sass-Gustkiewicz et al, 1982). 

d) Many of the deposits are known to be associated with petroleum, oil and H, S 

(sour gas) which are thought to have a control on the environment of deposition 

of the metals (Dozy, 1970; MacQueen and Thompson, 1978). 
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e) Their mineralogy is simple and the precious metal content is low i. e. 

galena, sphalerite, pyrite, fluorite with minor Co, Ni, Ag, Cu, Cd, In, 6e, Ga 

(Kyle, 1981). 

f) There is a general absence of igneous rocks as potential sources of ore 

solutions (Jackson and Beales, 1967). 

g) ore is frequently related to positive structures including basement "knobs", 

calcareous sand banks and algal reefs (Sangster, 1976). 

h) Solution activity, brecciation, slumping, collapse and thinning are common 

(Ohle, 1985). 

There has been much debate over the classification of deposits in the 

Alpine Mesozoic Geosyncline of Central Europe known as the Alpine-type deposits 

(Brigo et al, 1977). They possess many features generally considered to be 

epigenetic e. g. vein fillings, breccia cementation and massive replacement 

bodies. However some authors such as Sangster (1976) considered Alpine-type 

deposits to be more akin to SDEXs than LSBMs with regard to their form relative 

to the host rocks e. g. lenticular bodies containing low grade ore are found in 

various host rocks. Despite this they have been classified as LSBMs here in 

agreement with Large (1976) who assessed that the deposits do not share many of 

the features which are generally accepted as characteristic of submarine 

exhalative mineralisation. He interpreted many of the syngnentic features as 

deposition of sulphides in karst and large solution cavities e. g. bedded ores 

at Bleiberg have been shown to be cave-filling and are clearly epigenetic. 

3.3 New Approaches to the Problem 

Eugster (1986) presented a new approach to the problem and suggested that 

copper-lead-zinc deposits could be classified with respect to their geochemical 

environment as represented by the pH, the temperature of the mineralising 



60 

fluids and the nature of the host rocks. He proposed four major groups of 

deposit types, each of which is described briefly below, with examples; 

a) MVT. Mississippi Valley Type. Hot acid brines, carbonate host rocks. e. g. 

Tri-state District, USA. Classified as Limestone Base-Metal (LSBM) deposits 

here. 

b) KST. Kupferschiefer Type. Cool acid brines, shale host rocks. e. g. 

Kupferschiefer; Zambian Copperbelt; Creta, Oklahoma, USA; Cretaceous deposits 

of Angola. Classified as Shale Base-Metal (SHBM) deposits here. 

c) GRT. Green River Type. Alkaline solutions, lacustrine environment. e. g. 

McArthur River; Mt. Isa; Dugald River. Classified as Sedimentary Exhalative 

(SDEX) deposits here. 

d) BHT. Sandstone-hosted Type. Placed in a class related to KST. Classified as 

Sandstone Copper (SSCU) deposits here. 

Eugster admitted that much more work needed to be done to refine this 

approach which is still in its infancy as it required a reasonably large number 

of deposit groups to accomodate all the different variations upon a deposit 

type. The classification used in this thesis bears more than a passing 

resemblance to the groups of Eugster. It is still, in part, based on the 

temperature of the metal-bearing solutions i. e. cool (primary deposits) or hot 

(secondary deposits) and the nature of the host rock to the mineralisation. The 

similarities continue in that some individual deposits have been placed into 

equivalent classes (although the titles of those classes are different). 

Brown (1986) pointed out that efforts to determine the genesis of 

stratiform sediment-hosted copper deposits are frustrated by the improper usage 

of terms when describing mineral deposits. He inferred that when workers allude 

to a type locality, such as the Kupferschiefer-type' of Eugster, it is 

inadequate to do so when a particular deposit is dominated by features not seen 

at that type locality as this is potentially misleading and confusing to other 

workers. 
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3.4 Omissions 

A number of mineral deposit types shown in the classification in Table 3.1 

have not been considered in the thesis. These are given in the following 

sections, with reasons for their omission from the discussion. 

3.4.1 Paucity of examples. 

MNNO manganese nodules CALU calcrete uranium 

GOBS gossan SUPE supergene enrichment 

SULF sulphur CEVA continental evaporites 

The mineral deposit types listed above have not been included because too 

few examples were collected during the initial literature search. 

3.4.2 Marine Evaporite Deposits (MEVA). 

MEVA deposits are those whose origin can be directly related to processes 

of precipitation and recrystallization from saturated solutions. There is a 

great deal of literature on the subject of the palaeolatitude of evaporite 

deposition (e. g. Irving and Briden, 1962; Briden and Irving, 1964; Gordon, 

1975; Meier, 1981) and MEVA in general (e. g. Stewart, 1963; Davison, 1966; 

Sonnenfeld, 1984) so only a brief precis of the considerable work which has 

already been carried out will be given here. 

Most modern evaporites are accumulating within fifty degrees of latitude 

north and south of the equator (Gordon, 1975) and the distribution within this 

belt is bimodal. Irving and Briden (1962) stated the full range of MEVA 

occurrence is from 31°S to 83°N, but that 73 % of deposits lie between 300 to 

60° N (Figure 3.2). With regard to this particular phenomenon, evaporite 

deposits therefore have a special significance as palaeolatitudinal indicators 

because of their limited distribution. From this palaeoclimatic conditions can 
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are available. Column c)-the palaeolatitudes (Lp) of deposits in 
column b. (After Irving and Briden, 1962, Figure 2). 
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be inferred due to restricted conditions under which evaporites develop. 

Although a number of local factors can cause excessive evaporation, atmospheric 

circulation has an overwhelming influence on the global distribution of modern 

evaporites and there is no reason to assume that it was otherwise for ancient 

evaporite deposits - assuming, of course, the principle of uniformitarianism 

(Gordon, 1975; Ziegler et al, 1984). (See also Chapter Four, section 4.6.1). 

When ancient evaporites are analyzed in terms of latitude of formation 

their original distributions are found to follow the present day model very 

closely, at least as far back as the Permian, and possibly to the beginning of 

the Phanerozoic (Irving and Briden, 1962; Gordon, 1975; Meier, 1981). There is 

a pronounced asymmetry in evaporite occurrence during later Phanerozoic times, 

with more prominent deposition in the northern hemisphere attributable to the 

greater proportion of land mass relative to the southern hemisphere during this 

time (Meier, 1981). However these results may also be influenced by better 

preservation of, and more widespread data on, younger rocks. In contrast, 

Gordon (1975) noted that during earlier Phanerozoic times there was more 

prominent evaporite deposition in the southern hemisphere, again a reflection 

of the greater concentration of land. But in both cases the land area per 

hemisphere has been deduced from palaeomagnetically guided reconstructions with 

their inherent assumptions and errors. Therefore such interpretations of the 

data must be regarded with some caution. 

The Permian to the Present 

cordon (1975) emphatically stated that evaporites developed between 

latitudes 50°N to 50°S during the period from the Permian to the present. Only 

one percent of Triassic and two percent of Cretaceous occurrences are 

exceptional and extend respectively to about 52° to 54° from the equator at 

that time. Meier (1981) noted that during the Triassic to Jurassic, the main 

evaporite belt lay between 200 and 40°N and concluded that from the beginning 
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of the Jurassic the northern evaporite main belt was positioned south of the 

50°N latitude. A zone of low evaporite frequency lay at, or near, the equator 

and the majority of deposits are distributed as follows (Gordon, 1975). 

00 - 10° = 13.5% : 100 - 20° = 31.4% : 20° - 30° = 24.2% . 

Cambrian to Carboniferous. 

For this period Gordon (1975) found that deposition occurred within 50° of 

the equator with the exception of about 2% of Devonian evaporites which were 

laid down between 50° and 53° from the equator and 16.5% of Carboniferous 

evaporites deposited between 50° and 62° from the equator. Cambrian to 

Ordovician results are unusual in that 4% of occurrences were south of 80°. 

However, Meier (1981) also admitted difficulty in producing a useful 

interpretation for the Cambro-Ordovician part of his histograms and found 

latitudes limiting Palaeozoic salt deposits ranged from 80°N to 40°S. According 

to Meier (1981) the main maximum of salt deposits is found between 30° to 50°N, 

whereas the majority of evaporite deposits occur in a zone between 30°N and 

70°N from the Ordovician to the Permian. 

In general similar conclusions can be drawn from the Cambrian to the 

Carboniferous and the period from the Permian to the Recent, although the 

southern hemisphere belt does not stand out so prominently as the northern one. 

The weakness of these southern belts tends to obscure the equatorial low- 

frequency zone in the evaporite distribution which is a distinct feature 

(Gordon, 1975). The poorer definition of the pattern is probably due to poorer 

quality palaeomagnetic data and uneven land distribution between the northern 

and southern hemispheres. 
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3.4.3 Proterozoic Deposits. 

PAPL palaeoplacer (Au - U) 

FEFM iron formation 

SHUR shale uranium 

The mineral deposit types listed above are all from the Proterozoic era 

and as such should not be covered in the scope of this project. 

3.5 Conclusion 

Finally as every author seems to develop his own particular 

classification, it would be hoped that such a subjective approach would have no 

influence upon the conclusions drawn from this research. When the project was 

originally formulated one of the aims was to assess whether or not it is 

possible to clarify some of the confusion that exists around the classification 

of deposits by classifying them by their apparent palaeolatitude of formation. 

If it is not possible to classify deposits in such a way this thesis will be 

independent of the debate about the origins of these deposits and so the 

classification will not actually matter. However, if different groups showed 

different results, then this would have implications for the genetic debate. 

Initially, however, it was not possible to predict such an outcome so the 

classification was an important part of the ground work done at the onset of 

the project. 
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CHAPTER FOUR 

BASIC ASSUMPTIONS 

The basic principles of palaeomagnetism have been outlined (Chapter Two) 

and the classification of mineral deposits has been discussed (Chapter Three). 

It is now appropriate to examine the assumptions concerning the Earth and its 

dynamics which were made at the onset of the research as any subsequent 

conclusions will be drawn in the knowledge of the caveats that follow. These 

factors have to be assumed before the relationship between palaeolatitude (and 

so palaeoclimate) and the formation of mineral deposits can be assessed. 

4.1 Uniformitarianism 

Gould (1967) divided uniformitarianism into two separate varieties, 

substantive and methodological. The former demanded a "uniformity of material 

conditions or of rates of processes" which he dismissed as untrue and so 

ignored. Methodological uniformitarianism comprised the two assumptions; 

a) "natural laws are constant in space and time and 

b) no hypothetical unknown processes can be invoked if observed historical 

results can be explained by presently observable processes. " 

These assumptions were considered by Gould to be ineffective as they were too 

simplistic and based on induction. 

uniformitarianism in its methodological form is still used today and has 

been assumed in this thesis in the absence of evidence to the contrary. This is 

not an entirely naive approach as the concept has been frequently applied to 

palaeoclimatology and "the present as the key to the past" has been widely used 

as the basic premise upon which a range of research has been based. Some degree 
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of success has been achieved in climatic modelling using this method, for 

example Barron (1985) and Scotese and Summerhayes (1986). However Frakes (1979) 

considered that while the principles governing the motions of the atmosphere 

and oceans must have been extant since the Proterozoic, the gross physical 

changes in the Earth and possibly the Sun, demand that rates of heat flux have 

been characterised by change. He argued that the evidence for that change 

existed in the abundantly fluctuating nature of the palaeoclimatic record and 

hence the Uniformitarian Principle had been invalidated. It is appreciated that 

questions can be raised as to the validity of using this principle so the 

factors that may temper its usefulness are discussed later. However it has been 

assumed here that the principles have remained constant throughout the 

Phanerozoic although their effects probably have not. 

4.2 The Earth as a Geocentric Axial Dipole. 

The conclusions which can be drawn from any application of palaeomagnetic 

methods to determine palaeolatitudes and the relative displacement of different 

tectonic blocks must be dependent, at least in part, upon the model for the 

average geomagnetic field which was initially adopted. In this case the 

generally accepted hypothesis that the time-averaged palaeomagnetic field is 

that of a geocentric axial dipole (GAD) has been adopted. To determine this 

field the actual variation in the geomagnetic field must be averaged for a 

length of time comparable to any secular variations that may have occurred. It 

is known that this model is probably invalid during polarity transitions, or 

attempted transitions, as the dipole component diminishes at this time (Park, 

1983; Tarling, 1985) but such intervals are usually eliminated from the data 

used to calculate the pole positions. 

The simplest model for the Earth's present geomagnetic field is a dipole 

field. This hypothetical dipole is geocentric, but inclined at about 11.5° to 
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the geographic axis so the geomagnetic and geographic poles do not coincide at 

the present day. Nonetheless this model has been assumed for progressively 

earlier time periods. The wisdom of accepting that this model for the Earth 

throughout the Phanerozoic can be tested in a number of ways. 

1) The geocentric dipole aspect of the model can be examined by showing the 

consistency between pole positions calculated with such an assumption and those 

without (Tarling, 1983), but it is more difficult to test for the axial nature 

of the model (see (3) below). It has been shown that good agreement exists 

among poles from rocks of roughly similar age across continental areas, 

indicating that the model is correct back to at least the Carboniferous period 

(Morel and Irving, 1981). They argued against the use of a non-dipole 

geomagnetic field to explain possible discrepancies in apparent polar wander 

paths for the latest Carboniferous to the early Triassic. 

2) World-wide field measurements relating to the last few tens of millions of 

years, when plate motions can be considered to have been insignificant, may be 

used to authenticate the GAD model (Tarling, 1975). Park (1983) felt the 

Earth's field of the past 20 million years approached the GAD model when it had 

been averaged over periods of several thousand years. 

smith (1981) considered a number of widely separated sites less than 7,000 

years old and plotted the palaeomagnetic north poles so determined. They were 

grouped around the geographic pole rather than the present geomagnetic pole and 

so demonstrated that for the past 7,000 years at least the Earth's magnetic 

field had been mainly dipolar. But in order to calculate the pole positions 

from declination and inclination measurements the initial assumption of field 

dipolarity was essential. Circularity in this argument was avoided by the fact 

that the dipole assumption led to a close grouping of the palaeomagnetic poles 

and so proved the point on grounds of consistency. If the field had not been 

mainly dipolar for that period of time the calculated poles would have been 

scattered all over the globe. However calculated poles from terrestrial igneous 
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rocks erupted during the past 25 million years have shown a tendency to occur 

on the far side of the present rotational pole and also slightly to the right 

of it (Wilson and Ade-Hall, 1970; Wilson, 1970 and 1971). This can be modelled 

by a northward displacement of the dipole 200 to 300 kilometres along the 

Earth's rotational axis. This departure must be accepted for it has been 

determined from rocks of vastly different ages e. g. 2 and 30 million years, but 

the age range is unlikely to have been allowed for significant plate motions. 

But it does only correspond to a net shallowing of the inclination at the 

locality by 1-2° relative to the expected dipole inclination. The observed 

dipole off-set is therefore small and it is thought by some (e. g. Tarling, 

1983) that it does not seriously detract from the GAD as a working hypothesis 

and could be due to a slight, but systematic, shallowing of the inclination in 

palaeomagnetic studies. 

3) Comparison of palaeolatitudes calculated on the geocentric axial dipole 

model with those indicated by other palaeolatitude estimators (Briden and 

Irving, 1964; Tarling, 1975) also provides a test for the GAD model. The 

consistency of many palaeoclimatic indicators with palaeomagnetically 

determined palaeolatitudes suggests that the average field has been axial, 

probably within 5° to 10° for most of geological time (Tarling, 1983). Drewry 

et al (1974) were convinced of the GAD model for the Earth's field for Permo- 

Triassic times by comparison of the dipole axis with independent estimates of 

the spin axis. Their results were obtained from the long-term positions of the 

Earth's climatic belts, which in turn were inferred from the distribution of 

climatically-controlled sediments. They concluded that the excellent agreement 

between the expected positions of such climate-sensitive sediments as 

evaporites and tillites and their inferred positions shows that, to a first 

approximation, the Phanerozoic geomagnetic field had been a geocentric dipole 

whose axis was coincident with the Earth's rotation axis. However if the 

position of the axis had changed relative to the ecliptic the palaeoclimatic 
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-significance would be less. For example if the pole axis was in the equatorial 

plane then six months summer and six months winter would be experienced 

throughout the globe. 

The GAD assumption is unaffected by the possible presence of true polar 

wander (TPW) e. g. the relative movement of the lithosphere as a whole with 

respect to the mantle, or of the mantle relative to the core. Such movements 

would affect equally all the calculated poles of a given age and so would not 

affect geological conclusions based on these poles (Park, 1983). 

To summarise, it has been assumed that the GAD model for the Earth's 

geomagnetic field is acceptable for the Phanerozoic. However this assumption 

has been the crux of this thesis as all the palaeomagnetic methods used have 

been based upon it. If this model were proven to be incorrect, then all 

conclusions drawn from these methods would be invalidated or would require re- 

evaluation. It is possible that the GAD model is invalid at some times, but 

this has been assumed to be sufficiently rare as not to effect the conclusions. 

4.3 Uniformitarianism and the Earth's Heat Budget. 

The solar energy input to the Earth's atmospheric system is not constant 

as daily and seasonal cyclic variations in incident radiation are known to 

occur. Variations extending over periods of years e. g. sunspot and Milankovitch 

cycles have also been recognised. The latter are thought to be the best known 

causes of climatic change over thousands of years (e. g. Herbert and Fischer, 

1986). Although the sun's radiation was not necessarily constant over 

geological time, it is considered to be sufficiently invariable to be included 

in a climatic model in this thesis. From this model the energy transfer 

necessary to explain the Earth's present climate can be inferred (Frakes, 

1979). The transfer of this heat energy from the Earth to the atmosphere and 

then from the equatorial zone to high latitudes has probably varied only within 



71 

narrow limits throughout geological time. To support this assumption concerning 

the solar constant, in agreement with Bambach et al (1980), it is argued that 

as the Sun is a stable main-sequence star so it is not unreasonable to assume 

that its radiation intensity has not altered greatly in the last 600 million 

years. (However a variation of +/- 10% is probable, Tarling, pers. comm. ). 

Frakes (1979) held a similar view and considered the radiant energy of the Sun 

to have been maintained, within relatively narrow limits, near its present 

level since the beginning of the Phanerozoic. This is shown by similarities of 

the earliest life forms to modern species. If it is assumed that the Earth has 

always been spherical, that its axis of rotation has been approximately 

perpendicular to the ecliptic and that it has always orbited at a similar 

distance from the Sun then the heat budget of the earth can be regarded as 

essentially fixed. This heat budget is characterised by excess heating in the 

equatorial region, heat transfer by atmospheric and oceanic circulation towards 

the poles, and cooling in the polar regions. Although the Earth's present 

climate is probably atypical of past geological periods, particularly those 

with vast expanses of shallow seas and no ice sheets, the equator-to-pole 

temperature differential which drives the atmospheric circulation must always 

have been in existance. So the rainfall belts have probably remained at 

relatively constant latitudes while surface temperatures probably have not 

(Habicht, 1979; Ziegler et al, 1981). Some workers (e. g. Tarling pers. c(xmm. ) 

believe that if no ice sheets were present the rain belts would have a 

different latitudinal extent, although latitudinal zoning would remain a 

feature. 

In conclusion the heat budget of the Earth, and its distribution through 

the circulation patterns, have been assumed to have been approximately constant 

throughout the Phanerozoic. However it does not necessarily follow that climate 

zones have also remained constant during that period. Nonetheless, it still 

seems probable that climatic latitudinal zoning existed although the precise 
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latitudinal extent of climatic belts may have varied significantly. The 

influences upon climate of geography and changes in the circulation patterns 

are also very great and will be discussed in section 4.5. 

4.4 Uniformitarianism and the Earth's Rotation. 

The constancy of the Earth's obliquity and its speed of rotation, have 

already been used to question the validity of accepting the Uniformitarian 

Principle. It has been assumed that neither have affected atmospheric and 

oceanic circulation patterns (and hence climatic regimes) too drastically 

despite the fact that they must have altered slightly during the Phanerozoic 

e. g. the Earth's rotational period was probably some 400 days per year 400 m. 

y. ago. The reasons for these assumptions have been given below. 

4.4.1 Rotation. 

it is thought that the Earth's rotation was faster in the past (Wells, 

1963; Scrutton, 1965 and 1978; Mohr, 1975; Rosenberg and Runcorn, 1975) and has 

slowed through time by tidal friction (e. g. Sundermann and Brosche, 1978). 

Scrutton (1978) suggested a rotational speed for the Palaeozoic some 15 to 20 % 

faster than it is today. The resultant stronger Coriolis force would have lead 

to a compression of the zonal pattern of circulation equatorward by about 40 to 

6° latitude in each hemisphere. At a particular rotational speed more than 

three zonal cells would be required for the heat exchange between the equator 

and each pole to be effected. However Hunt (1979) suggested the rotational 

speed would have to be considerably higher than that postulated for the 

Palaeozoic in order for the present zonal pattern to break down. Scotese and 

Summerhayes (1986) suggested that an increase in the number of cells would only 

be produced by an increase in the Earth's rotational speed in excess of one and 

a half times its present rate. 
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The compression of the zones has probably not exceeded 20 % since the 

beginning of the Palaeozoic era (Ziegler et al, 1979) which equates to about 6° 

latitude assuming a Hadley cell of 30° width. As the error in positioning the 

continents on palaeogeographical reconstructions is probably 5° to 10° it was 

felt that little would be gained by trying to modify the zonal pattern for each 

of the Phanerozoic periods with this compressional factor. On this basis the 

present regime of climatic zones has been accepted here as a model for past 

periods. 

4.4.2 Obliquity. 

The atmospheric pressure system of the Earth derives from both the uneven 

incidence of solar radiation on the spherical Earth and the inclination of its 

axis of rotation. At present, this always points in the same direction in 

space, relative to the ecliptic, irrespective of the Earth's position in orbit, 

so the amount of radiation striking the outer atmosphere is variable both with 

latitude and time of year. Variations in the Earth's obliquity and other 

orbital parameters have been recognised by workers such as Milankovitch (1941), 

Hays et al (1976) and Berger (1976,1978 and 1980) who acknowledged their 

potential influence on palaeoclimate. However cycles resulting from these 

variations are short-lived ((10' years) on a geological time scale and their 

effects may be difficult to recognise in the geological record largely due to 

imprecision in correlation (Parrish, 1982). 

As there appears to be no physical or astronomical evidence why obliquity 

should have changed significantly it has been assumed here that the tilt of the 

rotational axis (at 23.5° to the orbital plane) was the same in the past as it 

is at present . However some workers have used large scale variations in 

obliquity to explain the apparently anomalous distributions of climate- 

sensitive lithologies. Wolfe (1978 and 1980) proposed an obliquity near to zero 

to explain the high latitude occurrence of some apparently warm climate plants 
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in Eocene sediments while Williams (1975 and 1976) suggested an obliquity of 

900 to account for Eocambrian tillites with an apparent low latitude 

distribution at the time of deposition. These appear to be drastic solutions to 

problems which may be explained in terms of distribution of continents, 

variations in palaeogeography and orography, or in the actual age of the 

sediments. 

4.5 Climate. 

It has been mentioned that all climates are a result of the way solar 

energy reaches the Earth and is distributed by the oceans and the atmosphere. 

These circulation systems are driven largely by the thermal gradient causing 

heat exchange between the equator and the poles. Climate can be described as 

the average weather conditions of a region throughout the seasons. It is 

expressed in terms of the means, extremes and frequencies of weather elements 

such as atmospheric pressure, temperature, humidity, rainfall, cloudiness, wind 

speed and direction. The climate of a particular area is governed by its 

latitude, its position relative to continents and oceans and by local 

geographical conditions. There are numerous local exceptions to predicted 

climates at certain latitudes as these climates can be modified by such factors 

as altitude and proximity to mountains. 

Nairn (1973) distinguished three main climatic variations; 

1) short term climatic fluctuations, about some mean value, attributable to 

astronomically controlled insolation differences. 

2) longer term trends in mean climatic values (usually defined by temperature) 

e. g. the onset of glaciation brought about by the movement of a land mass to a 

polar location. 

3) regional climatic changes that do not significantly alter the average global 

climate. For example the Cretaceous opening of the Atlantic profoundly modified 
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the climate in that region but may not have caused an appreciable variation in 

the climate of eastern Asia. 

It is not the purpose of this chapter to investigate fully the 

complexities of weather and climate. General books on the subject include 

Sellers (1965), Lamb (1977), Critchfield (1983) and Houghton (1984). However, 

for the purposes of this thesis it is essential to evaluate any relationship 

that may exist between latitude and climate. A brief description of the present 

climatic regimes has thus been given, together with some explanation of 

atmospheric circulation patterns and the consequent climatic zonations. 

4.5.1 Present Climatic Regimes. 

On an Earth with a homogeneous surface, the wind systems would be wholly 

zonal i. e. parallel to latitude (Lorenz, 1967). This circulation pattern is 

shown in Figure 4.1, with hot air rising at the equator and cool air sinking at 

the poles. Complete direct heat exchange is prevented by the Coriolis force 

caused by the Earth's rotation which deflects moving air or water to the right 

in the northern hemisphere and to the left in the southern hemisphere. The 

meridional circulation shown in the diagram can be described as tricellular 

(Smith, 1981). The Hadley Cell comprises warm air rising from the equator which 

forms an equatorial low pressure zone known as the doldrums. This air cools and 

sinks near 300 latitude forming the subtropical high pressure belt. Air moving 

equatorward from this high pressure zone is deflected forming the Tropical 

Easterlies (the Trade Winds). The Ferrel Cell occurs in mid-latitudes and 

comprises air which moves poleward away from the mid-latitude high pressure 

belt forming the Westerlies. This cell is driven by frictional coupling between 

the Hadley Cell and the third cell. This is the weak Polar Cell of dry air 

sinking at the poles which forms a weak polar high pressure zone. Air flowing 

out of this zone constitutes the Polar Easterlies. Between these and the 

westerlies is a low pressure belt of rising air. 
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Figure 4.1. Schematic representation of the global wind and 
pressure belts. H-high pressure. L-low pressure. The effects 
of the differential heating of continents and oceans have 
been omitted. (Modified from Drewry et al, 1974, Figure 14). 
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This zonal pattern experiences slight seasonal shifts which displace the 

main pressure belts by approximately 100 latitude. Another important feature of 

the pressure system is the displacement of high pressure cells towards the 

eastern side of ocean basins. This results in important longitudinal variations 

in climate (Scotese and Summerhayes, 1986). 

Oceanic and atmospheric circulation systems are related so it is to be 

expected that zonal oceans (i. e. those which girdle the Earth parallel to 

latitude) have zonal circulation; for example, the Circum-Antarctic Ocean. This 

is evident throughout present oceans although clustering of continents in the 

northern hemisphere obscures the pattern (Ziegler et al, 1981b). 

4.5.2. Factors affecting Ideal Circulating Patterns. 

The presence or absence of polar ice, the temperature at the sea surface, 

the equator-to-pole gradient and geography affect the transfer of heat from one 

place to another over the surface of the globe. The affect of regional and 

global geography upon climatic patterns has been described below in some 

detail. The geography of a particular period is vital to this research in view 

of its influence upon climate and in the determination of palaeolatitude. 

4.5.2.1 Effects of Global geography. 

High and low pressure zonal belts may be disrupted as a result of the 

different thermal regimes of oceans and land masses. The high pressure systems 

centred at about 300 latitude are intensified over the oceans as water is 

cooler than the adjacent land at this latitude. The oceanic currents associated 

with these high pressure belts are composed of warm equatorial currents driven 

by the trade winds and the cool westerly currents at mid-latitudes. These are 

then linked to boundary currents adjacent to continents. The western boundary 

currents (e. g. the gulf Stream) carry warm equatorial waters polewards and the 

eastern boundary currents (e. g. the Peru Current) carry cool water from mid- 
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latitudes towards the equator. As a result the boundaries between the climatic 

zones occur at different latitudes on the opposite sides of oceans (Ziegler et 

al, 1981b). At the same latitude an ocean can be 10°C warmer on one side than 

the other (Parrish and Ziegler, 1980). For example, in July at a latitude of 

20° south, the Atlantic is 23°C off eastern South America whereas it is 16°C 

off southwest South Africa. 

A more extreme climatic asymmetry must occur when a large continental land 

mass exists e. g. during the late Permian when the presence of the 

supercontinent Pangaea resulted in an extraordinarily long fetch for the 

equatorial current. It is thought (Parrish, 1982) that when this current 

reached the western side of the Tethys it would have been forced into two Gulf 

Stream-type boundary currents flowing north and south. These would have carried 

very warm water into high latitudes, thereby creating a wide tropical zone on 

that side of Pangaea. The late Permian world was characterised by very great 

asymmetry, with tropical fauna extending to 40° to 50° latitude north and south 

in eastern Pangaea (Ziegler et al, 1981b) assuming correct interpretation of 

palaeomagnetic data for that period. 

Low pressure systems are likely to form when a continental margin lies 

near to 60° latitude, for example around the southern tip of Greenland and the 

margin of Antarctica in the southern hemisphere at present. Land is cooler than 

the adjacent ocean at this latitude so air tends to sink relative to the air 

over the ocean. This effect locally intensifies the zonal belt of low pressure 

predicted for that latitude by the zonal model and creates cold water oceanic 

gyres. 

In association with these different oceanic temperatures on opposite sides 

of continents at the same latitudes there are also quite different climates as 

summarised by Bambach et al (1980). On the eastern side of continents the 

tropical humid zone widens as the prevailing easterly winds bring moisture from 

the ocean. The zone is narrow on the western side confined to a region of 
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intense heating where surface air is rising and losing moisture. In contrast, 

the wet belts in temperate latitudes are much broader on the windward west- 

facing margins of the continents. 

Arid zones occur closer to the equator in the belts of easterly winds on 

the rain-starved western sides of continents and extend poleward in mid- 

latitude regions of prevailing westerly winds on their similarly rain-starved 

eastern sides so the limit of arid belts rise in latitude across the continents 

from west to east as shown in Figure 4.2. These features are all manifested in 

modern climatic regimes in the northern hemisphere. For example the arid belt 

rises from low latitudes in the Sahara in eastern Africa to high latitudes in 

the Gobi Desert of western Asia. France and Austria are at the same latitude as 

the Gobi Desert in the belt of the prevailing westerlies. 

4.5.2.2 Effects of Regional geography. 

a) Continentality. 

one of the major consequences of the difference in thermal regimes between 

land and sea is the greater range of surface temperatures experienced in the 

interior of large continents, both diurnally and seasonally (Frakes, 1979). A 

continental climate is characterised by extremes of temperature, relatively 

small rainfall and low humidity. It is experienced in the interior of large 

continents and by their neighbouring islands if they are exposed to prevailing 

winds from the interior during the winter. The term 'continentality' refers to 

the extent to which such conditions exist on any landmass and quantitative 

estimates of continentality are derived from recorded temperature ranges, 

humidity values and latitude. In this instance, the term 'continent' has been 

applied to a reasonably large land mass, for example the European, African or 

Asian continents of today and not to smaller continental areas such as the 

microcontinents Madagascar, New Zealand and Indonesia whose climates may be 

dominated by maritime influences. 
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b) Orographic Influences. 

The presence of mountains can greatly influence the climate of an area for 

a number of reasons. For instance they control the precipitation in a region as 

the air is forced to rise over the mountains and so is able to hold less 

moisture. In the coastal mountains of middle latitudes the windward flank 

receives abundant rainfall whereas on the leeward side the passing air has so 

little moisture that deserts are frequently developed e. g. western North 

America, western South Argentina and parts of inner Asia (Rasool, 1984). The 

effect of mountain ranges upon precipitation patterns has been shown by 

comparison of Figure 4.3 (patterns on a continent of uniform low relief) with 

Figure 4.4 which shows the global precipitation patterns when mountain ranges 

have been added to the continental masses. 

Desert conditions may also be caused by the absence of water vapour in the 

air, the absence of rain-inducing disturbances, or by a combination of both 

factors. The best examples of these circumstances are the down wind sides of 

cold oceanic currents, inner continental regions which are remote from sources 

of water vapour and regions such as central North America which are often 

humid, but rainless, because of the absence of cyclonic activity (Hare, 1977). 

A pertinent example of the influence of mountains upon climate is that of 

distribution of climate-sensitive sediments off the coast of China described by 

Scotese and Summerhayes (1986). It also illustrates why caution must be 

exercised in the interpretation of such sediments. This particular effect of 

local geography upon climate was used by Hay et al (1982) with reference to 

late Triassic to Jurassic palaeoclimatology. Air rising over eastern coastal 

ranges cools, becomes saturated with moisture, rains result and conditions are 

then favourable for coal formation on the seaward/windward facing slopes. Once 

over the mountains the now dry air is heated as it descends into the rift 

valleys and is able to take up moisture from the valley floor, creating 

conditions favourable for the accumulation of evaporites - as in Death Valley, 
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Figure 4.3. Schematic rep re scm tat i on of the distribution of 
annuaI precipitation can a IIypotheiical continent of I ow 
and uniform relief. (After Robinson, 1973, Figure l. b). 
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California at present. This hot dry air then rises over adjacent ranges, cools, 

becomes saturated and the cycle begins again. So as a consequence of the local 

geography two rock types with very different conditions of formation are found 

in close proximity and a knowledge of that local geography is needed to 

interpret the significance of this sediment distribution. 

Another consequence of the presence of mountain ranges is the phenomenon 

known as albedo. This is the proportion of solar radiation falling on a non- 

luminous body which the latter reflects. The accumulation of high albedo (45 to 

95%) snow and ice at high elevations on mountains further complicates the role 

of mountains in climatology. So does the fact that it varies considerably with 

the angle of the slope. opposite effects should be felt in deserts but the bare 

ground may reflect up to about one-half of incoming sunlight, so this must also 

be taken into consideration (Frakes, 1979). 

4.6 Climate and Climate-Sensitive Lithologies. 

It has long been recognised that the accumulation of certain kinds of 

sediments and sedimentary rocks were favoured by specific climates. For example 

coals usually occur in humid climates; evaporites in arid; reefs in tropical, 

and tillites in glacial (Briden and Irving, 1964; Robinson, 1973; Drewry et al, 

1974; Habicht, 1979; Ziegler et al, 1981 and 1984; Scotese and Van der Voo, 

1982). Hence climate plays an important role in controlling the distribution of 

different rock types in sedimentary basins. 

Previously in this chapter it has been assumed that the broadly zonal 
distribution of climates seen today has persisted throughout the Phanerozoic. 

It has also been assumed that the global, regional and local factors which 

affect the climate of today also influenced climates of the past. If this were 

not the case it would be very difficult to explain why tillites, carbonates, 
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coals and evaporites were concentrated in the past in the similar narrow 

latitudinal belts to which they are confined today. 

4.6.1 Lithologies used to infer Palaeoclimates. 

Evaporites are commonly used as a key to the history of aridity on the 

globe. The assumption is that ancient deposits are analogous to modern 

rainfall-deficient, subtropical belts of high evaporation. It has also been 

assumed that the number of evaporite deposits which have been completely 

removed from the rock records by extensive dissolution is sufficiently small 

not to have statistically affected the results. Briefly, most modern evaporites 

have a bimodal distribution within 50° north and south of the equator and 

evaporite maxima generally lie between 10° to 30° north and south (Meier, 

1981). Few evaporites appear to accumulate in the low pressure equatorial zone 

i. e. from 10°N to 10108. Northern evaporite limits reach 50°N (Meier, 1981) 

although most major deposits have formed within 40° of the equator (Tarling, 

1981). A summary of the work done on the value of evaporites in the inference 

of past latitudes can be found in Chapter Three, section 3.4.2. 

The fact that reef limestones are strongly controlled in their global 

distribution by surface water temperature makes them excellent palaeoclimatic 

indicators (Frakes, 1979). The majority of modern bioherms are restricted to 

the tropics and subtropics at latitudes of less than 300 north and south and in 

waters warmer than 21°C (Habicht, 1979). However some reefs do occur in 

Norwegian fjords at present although these are single-species types whereas 

those in lower latitudes are usually multi-species types. Other factors, for 

example suspended matter in the water column, availability of suitable shallow 

platforms for deposition and light penetration to the sea floor (Ziegler et al, 

1984) also limit the extent of reef distribution. However some of these may be 

more closely related to tectonics than climatic environment and may interfere 

with interpretations of palaeoclimate. 
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Coal is useful in recognising areas of high precipitation such as the 

equatorial rainfall belt and the modern distribution of peat bogs suggests 

generally high latitude and temperature sites of accumulation (Habicht, 1979). 

Low latitude occurrences are thought to result from the partial destruction of 

woody materials by 'oxidation and bacterial activity' (Frakes, 1979). Coal may 

also accumulate in semi-arid areas of poor drainage given a high water table. 

These exceptions place limitations on the usefulness of peat and coal deposits 

as climatic indicators. Parrish et al (1982a) stated that temperature also 

modified coal distribution and that coals are under-represented at the equator. 

Habicht (1979) considered coals would only be relevant as temperature 

indicators when supplemented with botanical evidence. 

Red-beds were among the first sedimentary deposits to be considered 

climatic indicators as their colour was assumed to reflect specific conditions 

of deposition i. e. a hot, arid, oxidizing environment. However the development 

of red pigment in most red-beds was complex and has proved difficult to 

decipher. The predominant clay minerals in red-beds are illite and chlorite and 

so provide no specific clue to the climate in the source area or at the place 

of deposition (see section 4.6.2). The palaeomagnetic evidence of the 

distribution of red-beds relative to their pole position corroborates the 

palaeogeographical data which suggest that most red-beds (evaporites and 

aeolian sandstones) accumulated less than 30° north and south of the 

palaeoequator (Briden and Irving, 1964; Kruseman, 1967; Schenk, 1969). One 

major problem in the evaluation of the palaeoclimate indicated by red-beds is 

that the reddening usually attributed to sandstones that have formed in hot 

desert environments may often have developed many millions of years after their 

deposits. The reddening can thus be a misleading indicator of the likely 

palaeolatitude at which such sandstones were deposited (Tarling, 1981). 

In the late 1800s and early 1900s many geologists believed that ancient 

red sandstones were of desert origin because many of the world's tropical 
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deserts are typified by red sand dunes (Crosby, 1891; Barrell, 1908). However 

later it was thought (e. g. Van Houten, 1948 and 1964; Krynine, 1950) that most 

red-beds formed in a climate of heavy, but seasonal, rainfall and tropical, 

lateritic weathering. Under this humid-tropical-red-bed hypothesis the presence 

of desert dunes at present had to be explained. They were interpreted as relics 

of past wetter climates or as having inherited their colour from older red 

sedimentary rocks. Walker (1967a, 1967b) claimed that red-beds could develop 

diagenetically in hot arid or semi-arid climates mainly by intrastratal 

weathering of heavy minerals during deep burial, aided by ageing. The 

hypothesis that the haematite pigment in red-beds forms in situ after 

deposition and is not derived from the erosion of red tropical (lateritic) 

soils is at variance with the views of Van Houten and Krynine. Walker (1974) 

later claimed that red-beds could form diagenetically in moist tropical 

climates by alteration processes similar to those producing red-beds 

diagenetically in deserts. But it was not possible to differentiate red-beds 

formed in moist climates from those formed in deserts. More recently Parron and 

Nahon (1980) considered Mesozoic-Cenozoic red-beds in France and some West 

African basins (Senegal and Ivory Coast) were the result of in situ lateritic 

weathering of glauconitic sediments. 

It is well known that many major red-bed occurrences are associated with 

extensive evaporite deposits e. g. those of Permo-Triassic age in Europe and 

North Africa; those of Carboniferous to Triassic age in the western interior of 

the United States. The presence of these evaporites indicates that regionally 

arid climates prevailed during deposition (Walker, 1976). Thus the evaporites 

have important implications in the interpretation of the origin of the 

associated red-beds. This association does not prove that all red-beds form in 

desert environments (Walker, 1974) but suggests that arid climates are 

particularly favourable for their formation. The association of red-beds with 
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sabkha evaporites is thought to be of significance in the search for sulphide 

deposits (Dean, 1979). 

So red-beds per se are not reliable indicators of the climate either in 

the source area or in the depositional basin. The general consensus is that 

other characteristics of ancient red-beds e. g. fauna, flora and association 

with evaporite minerals or with aeolian sandstones should provide the most 

reliable evidence of the climate at the time of deposition. 

4.6.2 The Effect of Climate on Sedimentation. 

The lithologies usually found in particular climatic zones as seen today 

are mentioned below. These same climatic patterns are thought to be reflected 

in the distribution of lithofacies through the Phanerozoic as the continents 

migrated between climatic zones. 

a) The Tropical Zone spans the area between 23.5° N and S and includes the 

equatorial wet zone and about half of the subtropical dry zone. The low 

latitude hot wet zone is represented by thick elastics, coals and carbonates. 

It is best developed along the east coasts where prevailing winds bring 

moisture and heated surface winds towards the continent. Desert zones occur on 

the western sides of continents centred at 200 N and S; dry belts are 

represented in the geological records by evaporites. 

b) The Temperate Zone is commonly defined as the area between the tropics and 

the Arctic Circle and is generally wet except where mountains or broad land 

areas dissipate the moisture. Thick elastics and coals occur in temperate rainy 

belts, especially on the windward, western sides of continents above 40° 

latitude. 

c) The Polar zone is the area above the Arctic Circle represented in part as 

tillites in the geological record. 

good consistency through the Mesozoic and Cenozoic in terms of latitudinal 

occurrence of coals and evaporites has been determined (Gordon, 1975 and 
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Parrish et al, 1982b). Although the latitude positions of continents during the 

Palaeozoic are less well constrained, similar lithofacies patterns have been 

demonstrated (Ziegler et al, 1981). 

The distribution of the clay mineral content in sediments and soils shows 

a distinct global zonation which is related to climate. One particular type of 

clay mineral, montmorillonite, may be significant in the study of sediment- 

hosted mineral deposits because of its capacity for adsorption of moisture and 

its ability for base exchange. The kandite group (e. g. kaolinite, chamosite, 

greenalite) forms in areas where rainfall exceeds evaporation and leaching is 

intense. The latter is an important factor as excessive silica ions must be 

removed to maintain a high Al: Bi ratio. This group is dominant in tropical and 

equatorial rivers and seas. The smectite group (e. g. montmorillonite, 

nontronite) occur in regions where evaporation exceeds precipitation and 

leaching is negligible. It is also essential that alkaline conditions should 

prevail to maintain a low Al: Si ratio. Clay minerals in sediments of middle 

latitudes are dominated by the illite group (e. g. illite, glauconite) where a 

non-acid, potassium-rich environment occurs. Rainfall and the consequent 

leaching should only be moderate and intermittent. The chlorite group of clay 

minerals are found mainly in high latitude sediments being relatively unstable 

and chemical weathering is more subdued in these regions (Greensmith, 1978 and 

Smith, 1981). In areas of subaerial weathering and soil formation the 

prevailing physical and chemical environments are important in determining the 

type of clay mineral which occurs. However changes in the climate of the source 

area and hence these environments may be ultimately reflected in the clastic 

clay mineral content of the derived sediments. 

one of the major problems of using palaeoclimatic indicators to infer 

palaeoclimates is the grouping of data over too long a time interval, as 

pointed out by Robinson (1973). This problem is illustrated in Figure 4.5 

showing the differing climatic zones of a continent of long latitudinal extent 



90 

ý 
ý 

O 

G 
O 

.ý 
1J 
ro 
ý 
. r., a. 
., v 
Q) 
tý 
a 

1-1 
ro 
:i 
a 
a 
ý 
,ý 0 

C 
0 

". 4 
U 

.,. ý 
ý+ 
41 

73 
"- "v E 
ý .c.. 

.a 00 

ý 
"ý 

ý 
f. /) 3 00 

Z LI) 

I 
111 
111 

ý 
E 
ý 

= 

+- 
aa 

3 

D 

O "ý 
.C Lz. 
ý 

V) C`1 

u rý 

al . -+ 
G 

4-J 
GO 
O cn 
J r: 

.4 

.n O 

4J 
41 
w 
d 
ý 

ýv -v 

(1) ro 
_[-- -. 4 ü 
O '+-1 
C.. O 

C 
0 

'H "ri 
OU 

U 

UW 
.b 
O <ü r. 

'L1 <C 
v 
N fn 

"ý G 
"-ý O 

Cl 4 
N 00 
tJ OJ 
H L+ 

n 

II) 
N 
ý 
on 

.ý 
CL+ 



91 

as it moves through the various climatic regimes. Evaporites tend to form in 

the dry subtropics around 30° latitude and as a continent moves through that 

latitude region, it may have evaporites deposited over much of its area. 

However, the evaporites would be diachronous and the use of evaporates from an 

entire period might lead to a modelling of a dry zone that is too wide. 

This type of problem prompted Meyerhoff (1970) to conclude that the 

distribution of palaeoclimatic indicators does not support continental drift. 

He argued that continents have been fixed during the Phanerozoic and changes in 

latitudinal extent of climate-sensitive lithologies simply reflected major 

shifts of subtropical high pressure zones. 

4.7 Climate Modelling and its Uses. 

Scotese and Summerhayes (1986) listed seven main parameters upon which 

past climates may be modelled. They were derived from models of atmospheric 

circulation and rainfall patterns devised by Parrish and others from Chicago 

(numerous papers by Parrish and Zeigler given in the bibliography). In addition 

to their usefulness in modelling, these parameters serve as reminders of the 

many variables which may affect the climate of a particular region at a certain 

time in the past. For this reason they have been included here. 

1) The zonal system of high and low pressure belts is best developed over the 

oceans, especially if they are of large extent. 

2) The difference in thermal behaviour of land and sea generates seasonal 

winds, for example monsoons. 

3) High and low pressure systems are intensified over continents as the effect 

of the different thermal behaviour between land and sea becomes exaggerated. 

4) In contrast with (3), milder climates occur in water-dominated continental 

settings because of the ameliorating effect of the ocean, for example the 

Mediterranean Sea. 
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5) High mountains may form effective barriers between pressure systems. 

6) The Hadley cells are seasonally displaced due to the Earth's obliquity at 

the junction of the Trade Winds i. e. the Intertropical Convergence. 

7) High pressure systems are intensified off the western coast of continents. 

There are three types of climate model currently in vogue. Outlines of 

these approaches have been given to highlight the problems involved in the 

determination of palaeoclimates. 

4.7.1 Direct Measurement Models. 

Quantitative data on important climatic parameters can be entered into 

existing numerical climate models derived from an understanding of present 

atmospheric and oceanic circulation systems, for example the dynamic climate 

simulation models of Barron et al (1981). These models take into consideration 

such variables as the Earth's rotation, the sun's insolation and the amount of 

cloud cover in addition to other important physical factors, for example 

continent positions, continental area and topography. One of the more useful 

aspects of this model type is that it can simulate temperature as well as 

pressure. However, as Barron (1985) acknowledged, these models are still very 

much in the development stage and have a limited application. 

For the Cretaceous and younger, interpretations from isotopic data suggest 

sea surface palaeotemperatures and palaeogeographical and biogeographical data 

are more widespread and reliable than are those for earlier periods. Bo 

research has been restricted to the latter part of the Phanerozoic, for example 

Barron and Washington (1982 and 1984) and Barron (1985). Unfortunately data for 

the Palaeozoic are so sparse and unreliable that the direct approach of dynamic 

modelling is not feasible at present. 
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4.7.2 Inference Models. 

These models are based on the notion that the distribution of sediments 

and organisms may be used to infer palaeoclimatic patterns. Heckel and Witzke 

(1979) presented a Devonian palaeogeographical reconstruction based solely on 

the distribution of lithic palaeoclimatic indicators such as marine carbonate 

sediments and marine-derived evaporites. Supplementary data from phosphorites, 

bauxites and coal were used in conjuction with tectonic considerations. It was 

assumed that evaporites and reefs were climatically controlled deposits and 

that there was a constancy of general physical principles of atmospheric 

circulation patterns. Care must be taken when using these models as they are 

based largely on circular reasoning. There can be no real test of these models 

as data and model are combined. 

4.7.3 Theoretical Models. 

This approach does separate the model from the data, the former being 

based on palaeogeography and the more general principles of atmospheric 

circulation. It has been adopted by Parrish (1982) and Ziegler (1981a, 1981b 

and 1984) and by Scotese and Summerhayes (1986) for their parametric model of 

palaeoclimates. It is possible to independently test the model using 

palaeoclimatic indicators. A comparison is made between the observed 

distribution of climatically controlled sediments or organisms and that 

predicted from the model. An advantage is that the approach may be used when 

palaeoclimatic data are sparse but no predictions about the Earth's thermal 

regime are possible. 

Generally there is good correspondence between the predictions of Scotese 

and Summerhayes and those of Barron et al despite the two approaches being 

radically different. This correspondence gives support to the use of such 

climate modelling to determine the climatic conditions of a region in the past 
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and the atmospheric and oceanic circulation systems which may have created that 

climate. 

4.8 Conclusion. 

The intention of this chapter was to show that the Uniformitarian 

Principle can be applied to palaeoclimatology. However, it must be used with 

the proviso that numerous factors hinder uninhibited application of this 

principle and these need to be taken into consideration. 

In accepting that the Earth's climatic belts have had a similar 

latitudinal extent throughout the Phanerozoic many assumptions have been made 

including the uniformity of atmospheric circulation, constancy of the Earth's 

rate of rotation and its obliquity. With the aid of such climatic assumptions 

it has been possible to predict regions of upwelling (Parrish and Curtis, 

1982); the distribution of evaporites and coals (Parrish et al, 1982b); the 

distribution of petroleum source rocks (Barron, 1985); and they have been 

useful in the parametric approach to climate modelling adopted by Scotese and 

Summerhayes (1986). These successes lend credence to the assumption that 

uniformitarianism with regard to palaeoclimatology is, in part, acceptable. 

However the use of geological data is limited as there are frequently 

insufficient data to interpret climatic conditions fully. This shortage may 

result from poor preservation, alteration or dissolution of materials or it may 

arise from the fact that many climatic parameters (e. g. atmospheric pressure) 

leave no discernible mark on the rocks. 

The relationship between palaeoclimatology, latitude and mineral deposits 

must now be examined. Workers such as Briden and Irving (1964) found a 

palaeolatitudinal control upon the distribution of certain sediments. It has 

been shown that latitude has an effect upon climate influencing atmospheric 

circulation (the position of an area in the cellular circulation system), 
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oceanic circulation patterns, temperature and precipitation. It follows that 

the formation of these sediments must be palaeoclimatically dependent (Frakes, 

1979; Habicht, 1979; Parrish et al, 1982; Ziegler et al, 1984). It has been 

noted (Chapter 3, section 3.2.7) that there is a close relationship between 

some mineral deposit types (e. g. SSCU, BDEX, BBUV) and some climate-sensitive 

lithologies (e. g. red-beds and evaporites). Therefore the distribution of such 

mineral deposit types must also be palaeoclimatically influenced. If this is 

so, then mineral deposit distribution (and possibly genesis) must also be 

palaeolatitudinally controlled and thus allows a more meaningful genetic 

classification to be considered. Hence the purpose of this research. 

With the acceptance that palaeoclimate is directly related to 

palaeolatitude, it must also be accepted that this is a very complex 

relationship and many factors may affect this correlation; for example local 

geographical effects upon the distribution of climate-sensitive lithologies and 

the asymmetry of climatic conditions on opposite sides of a continent. However 

if a latitudinal control upon the formation of some mineral deposit types can 

be shown to exist, then it may be possible to explain anomalous occurrences by 

local variations in the predicted climatic conditions that prevailed during the 

formation of that deposit. 
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CHAPTER FIVE 

METHODS 

5.1. Literature Search. 

Data collection was achieved through an extensive literature search from 

many sources including numerous journals, text books and BP Minerals Internal 

Reports. Information from the latter was restricted due to a confidentiality 

clause associated with the reports, but the data extracted, for example 

location of established ore deposits, were generally known so no 

confidentiality has been violated. 

All the references used to compile the data-sets can be found in the 

bibliography flagged with a 'D'; those flagged with a 'T' were used for the 

text. Obviously, some references were used for both. This notation was used in 

order to facilitate the use of the bibliography for future workers. 

Non-economic deposits have been included within this study as the grade 

and tonnage of deposits were not always reported within the references. It is, 

in any case, difficult to assess the potential economic value of individual 

deposits as parameters which may make a deposit economic in one instance may 

make it uneconomic in another. An economic constraint upon data selection would 

thus have introduced economic and political biases which would have influenced 

results. To set strict limitations on the size of deposits to be included 

within this study would have been extremely difficult and could have been 

potentially misleading. It is not the value of the deposit that is of interest 

in this work, it is its presence. Economic deposits are anomalous by their 

nature and to consider only these deposits may lead to the loss of important 

information regarding the genesis of some mineral deposit types. Nonetheless 
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most data were available for deposits on a large and economic scale and so 

there was unintentional bias towards such deposits. 

Figure 5.1 shows the present distribution of all the mineral deposits used 

in this thesis on a world map. It is worth noting the patchy, uneven 

distribution of the examples, illustrating the way in which exploration and 

research have been centred on some areas, such as North America and Europe, 

rather than others (e. g. areas of South America). It may also be a reflection 

on the amount and quality of information available, for instance, data from the 

USSR can be very sparse. 

5.2. Data Assembled for each Deposit. 

The following four sets of data were compiled for each mineral deposit. 

(i) Ore Deposit Type. 

Each example was classified according to the criteria defined in Chapter 

Three. The classification of each deposit was purely subjective and other 

authors have their own criteria for selection of data. However some grouping of 

deposits had to be made in order to facilitate handling of the data. The 

grouping chosen emphasizes the descriptive features of the deposit types and 

avoids, where possible, genetic presumptions. 

(ii) Present Day Co-Ordinates. 

The co-ordinates for each deposit were obtained from the Times Atlas or 

from the maps displayed in the original references. 

(iii) Ages of Host Rock and Mineralisation. 

The age of the host rock for deposits considered to be syngenetic is vital 

as this corresponds to the age of mineralisation. However the ages of the host 

rocks and the mineralisation should be very different for epigenetic deposits. 
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KEY: Figure 5.1. 

SDEX Sedimentary-exhalative (Pb, Zn, Ba) 1 

LSBM Limestone Base-metal (Pb, Zn, Ba, F) 2 

SSCU Sandstone Copper 3 

SSPB Sandstone Lead 4 

SSW Sandstone Uranium-Vanadium 5 

SHUR Shale Uranium 6 

SHBM Shale Base-Metal 7 

PLAU Placer Gold 8 

PLDI Placer Diamonds 9 

PLSN Placer Tin 10 

PLOX Placer oxide 11 

PLOT Placer "Others" 12 

PAPL Palaeoplacer (Au, U) 13 

OOFE Oolitic Ironstone 14 

FEFM Iron Formation 15 

MNFM Manganese Formation 16 

MNNO Manganese Nodules 17 

PHOS Phosphate 18 

MEVA Marine Evaporites 19 

CEVA Continental Evaporites 20 

SULF Sulphur 21 

LATO Laterite (Ni, Al) 22 

GOSS Gossan 23 

CALU Calcrete Uranium 24 

SUPE Supergene Enrichment 25 



99 

0 
0 
CD 

0 
0 
Cr) 0 0 

Z) 
M 

0 O 
0 

t 
" 

s''i '/ o 
o' . 

r 
% � A 

11-e- 

� 1ý 

., . N 
IýN" 

N 
N 

" N 

N 
N 

A 

IN N 
NN 
N NN 

N 
N 

N 
N 

ý " 
O 

N 
,ý 

1O 

'A 

NM 

N 

p 
Np 

p 
p01 

' 
"ý 

N 

N 

N 
^N 

Nf 
!! p 

S 
O^ 

p ý .^ � 
f 

" 

^ 

m 

f 

ý 

^ K: z 

fl 

ýý 

" 
" 

, 

p 

.r 
i ý^N 

0 

ppp 

p 

A 
A 
N 

ý^ 

" 1 

" 
`ý 

ý` 
O 

p O ! '. ý 
4 N fN 

tV Il' 

YQ 

o0 
^ 

{- 

N 
N 

ýp 
W 

p 
o 

N 
Y 1N 

" ý 
P 

eý p� 
^ 

fNp 

yýl 

^ 
NN ' 

^a 

L ` N p 
v 

ilk 

16 

ý ,. 

(0 M 
0 
O 
M 

e 
O 
m 

u 

. r., 0 
H 

ý 
., ý 
u 

0 44 

b a! 1J 
u 

ý 
0 
V 

Vl 
J-º 
ý 
N 
0 
a 
ai 

b 

. --I cd 
H 

ý 
. -a 
ýd 

W 
0 

q 
0 

".. i 
iý 

. p+ 

1.1 
N 

.ý 
'L! 

4.1 

al 
y 
aº 
H 

ý-i 
vi 

H 

.ý ý 

. -: 

0) to 
tu 

IJ 

ý 

a 
.,., 
Co 
cd 

N 

J 

O 

b 
-i 
Co $4 
d 

a. ý " 
a 
d la P. 
aý 
N 
H 
d 

ý 

z 



100 

In many of the cases only rarely were the age of both the host rock or the 

mineralisation cited so a compilation of data from several sources was often 

necessary. 

(iv) Lithological Associations with possible Climatic Implications. 

Any study of mineral deposits and their surrounding rocks rapidly shows an 

association between certain types of sediments. For example red beds and 

evaporites commonly occur in the host rocks of sedimentary-exhalative and 

sandstone-hosted copper deposits. This relationship is repeatedly found: 

Gustafson and Williams (1981) noted that of twenty eight deposits cited in 

their paper only five (Meggen, Rammelsberg, Laisvall, Howard's Pass and Broken 

Hill) lacked obvious evidence of evaporites or evidence of aridity in the 

associated sedimentary environments. Although some deposits are apparently 

devoid of an association with evaporites care must be taken to note any 

evidence of the presence of metamorphic evaporites. Such metamorphic evaporites 

are to be found at Broken Hill and are in close proxim%tý to both the 

Howards's Pass and Laisvall deposits. 

The main climate-sensitive lithologies which were noted specifically for 

their possible inference as to the climate at the time of their deposition were 

red beds, evaporites, coal and tillites. Other lithologies, such as limestones, 

may also be used as palaeoclimatic indicators. They do have a less restrictive 

climatic inference (see Chapter Four, section 4.6.1) but a valid one, 

nonetheless. 

5.3 Preparing Data for Computation. 

5.3.1 Co-Ordinates. 

The present day co-ordinates of each example have been converted into 

their decimal equivalents to the nearest 0.10 for computer plotting and 

analysis. All co-ordinates (even those from present day examples) were 
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subjected to this conversion to maintain a standard format. In accordance with 

convention, North and East Co-Ordinates are positive; South and West Co- 

Ordinates are negative. Therefore the co-ordinates 39° 46'N 116° 15'W become 

39.8 -116.2. 

A number of mineral deposit localities have been eliminated from the 

original list. Individual data points were not evenly distributed, some areas 

having received more attention from geologists than others. It was therefore 

necessary that the data from closely spaced localities should be filtered in 

order to avoid over-emphasising the well-studied regions. It was difficult to 

restrict sample size to kilometres (rather than a percentage of a degree 

latitude and longitude) while collecting the data at source, as the scale of 

maps displayed varied greatly between references and frequently no scale was 

shown on the diagram. Therefore all data within a twelve minute (12') latitude- 

longitude square were considered as one data point. The twelve minute filtering 

square was chosen so that any deposit within 0.2 of a degree latitude-longitude 

of another is eliminated, once the co-ordinates have been converted to their 

computer format. The area covered by such a filter square is approximately 400 

sq. km. at the equator. The area encompassed by such a square will vary 

according to its latitude, but most deposits are in mid latitudes so it was 

considered to be a constant way to filter data once collection was completed. 

The sample size of 0.2° is a fairly fine filter when considering mineral 

deposits, some of which may have extensive occurrences e. g. phosphates, 

sedimentary-exhalative or shale-hosted base-metal deposits (such as the 

Kupferschiefer). However other deposits, for example some sandstone-coppers, 

are found only within narrow environmental constraints such as palaeochannels, 

so the filter needed to be fine enough to show the incidence of these mineral 

occurrences. 

Ore districts, such as Grants District, New Mexico (SSW deposits) and 

Mississippi Valley District (LSBM deposits) usually contain many ore deposits, 
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or mines, within a relatively small area. In such cases, only a few deposits 

were chosen to represent the extent of the area covered. Generally, an attempt 

was made to select deposits rather than individual mines. The latter are 

parochial economic conditions while the former are the results of geological 

processes which are considered here. 

Any sampling bias present at this stage may affect the intensity of the 

distribution, but not its range. 

5.3.2 Sorting of Data for Plate Movement Program. 

Once the data had been converted to a format suitable for computer 

analysis, and deposits of the same age and palaeolatitude had been eliminated, 

the data were sorted into the age range categories shown in Table 5.1, based on 

age of mineralisation. Only one example of deposits with the same age and 

palaeolatitude was retained to prevent a bias in the results. The concentration 

will be affected but such filtering should have eliminated too close sampling 

of the deposits so giving a more unbiased representation of the distributions. 
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Table 5.1: Subdivisions of Phanerozoic Time used for Deposit Age Ranges. 

AGE RANGE I ROTATION I* GEOLOGICAL PERIOD COVERED I ACTUAL AGE I 
I FOR THESIS I POLE (NY)I (APPROX. ) I RANGE " 

(m. y. ) II (m. y. ) I 
III1 
IIII 

0- 25 01 Present Day 0- 25 I 
III1I 
IIIII 

26 - 75 I 50 Eocene I 26 - 65 I 
IIIII 
IIs{I 
I 76 - 110 1 100 Cretaceous 66 - 144 I 
IIIII 
IIIII 
1 111 - 160 1 130 s Upper Jurassic 1 145 - 181 I 
I{1II 
IIIII 
1 161 - 225 1 200 I Lower Jurassic 1 182 - 213 I 
IIIII 
IIIII 
1 226 - 275 250 1 Permo-Triassic 214 - 286 
sIIII 
IIIII 
1 276 - 325 I 300 1 Upper Carboniferous 1 287 - 320 { 
IIIII 
IIII1 
1 326 - 375 1 350 1 Lower Carboniferous 1 321 - 360 I 
II1I{ 
III 
1 376 - 425 I 400 I Lower Devonian 1 361 - 408 I 
IIIII 
IIIiI 
1 426 - 505 1 450 1 Ordovician and Silurian 1 409 - 505 1 
I1111 

*According to "Subdivisions of Phanerozoic Time", Cambridge University Press, 
1982,2nd. Edition. Based on information published in "A geologic Time Scale" 
by W. B. Harland et al (1982), Cambridge University Press. 
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Nine datafiles were produced, each representing a specific age range from the 

Eocene (50 m. y. mid-point) to the Ordovician and Silurian (450 m. y. mid-point). 

The age categories are loosely based on 'Subdivisions of Phanerozoic 

Time'(British Petroleum Company p. l. c., 1982). They were also influenced by the 

reconstructions available on the Newcastle Plate Movement Program. The actual 

ages differ from the thesis age ranges in Table 5.1. The former are those of 

the "Subdivisions of Phanerozoic Time" whereas the ages represented by the 

geological periods have been adapted for the thesis ranging from 25 m. y. 

younger to 25 m. y. older than the plate rotations which are available. 

Each of the nine datafiles were then divided into groups appropriate to 

the plates on which they originated, as in Table 5.2. For example, a mineral 

deposit located in Brazil with an age of mineralisation of 36 m. y. would be 

placed into the Eocene datafile (according to Table 5.1) divided as part of the 

S. American plate and rotated according to the values for the 'South America' 

plate, Eocene (50 m. y. ) shown in Table 5.2. 

5.4. Global Palaeogeographical Reconstructions. 

5.4.1. Definition of Plate Boundaries. 

The continental plates shown in the palaeoreconstructions presented in 

Figures 6.15 a-j are represented by their present day coastlines and major 

geological boundaries. In fact the shelf margins (loosely defined by the 2000m 

bathymetric contour) were used to "fit" the continents together. Some of the 

present day land masses, for example Australia, can be treated as a single 

block or plate, whereas others must be subdivided along sutures determined from 

geological evidence such as ophiolites, accretionary flysch wedges and other 

sediments indicative of a former ocean. 
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Table 5.2: Total Rotations for each continent. 

1I1 
I PLATE 1 TOTAL ROTATION USED I 
III 
11 LAT. I l. A. tL'r. I POLE 
IEOCENE (50 MY) IIII 
IIII1 
tEurope 1 -59.4 1 101.8 1 18.0 1 
INorth America 1 0.0 1 94.5 1 15.5 1 
(Central America 1 0.0 1 94.5 I 15.5 1 
IAfrica 1 -42.0 1 117.1 1 21.6 1 
IIndia 1 -28.0 1 -175.5 1 36.5 1 
IAustralia 1 5.7 1 -168.8 1 37.8 1 
ISouth America 1 19.2 1 88.3 1 10.2 1 
IArabia 1 -43.7 1 133.7 1 25.2 1 
INew Zealand 1 -23.7 1 -166.9 1 37.1 I 
1Sunda land 1 -14.4 1 -78.8 1 40.6 1 
1Siberia 1 -59.4 1 101.8 1 18.0 1 
IIIII 
IIIII 
IIIII 
ICRETACEOUS (100 MY)I III 
1I1II 
IEurope 1 -55.5 1 103.7 1 31.7 1 
INorth America 1 0.0 1 95.1 1 21.6 1 
ICentral America i 0.0 1 95.1 1 21.6 1 
1Africa 1 -49.1 1 132.3 1 47.0 1 
iIndia 1 -24.0 1 173.2 1 90.3 1 
IAustralia 1 -22.1 1 -168.6 1 42.3 1 
1South America 1 -20.3 1 89.0 1 10.8 1 
INew Zealand 1 -54.0 1 -172.8 1 60.6 1 
ISiberia 1 -55.5 1 103.7 1 31.7 1 
III11 
I1I11 
1III1 
IUPPER JURASSIC (130 MY) I1I 
1I11I 
IEurope 1 51.2 1 132.3 1 10.2 1 
INorth America 1 76.0 1 119.0 I 40.8 1 
ICentral America I 76.0 1 119.0 1 40.8 1 
fAfrica 1 0.0 1 169.0 1 34.0 1 
iIndia 1 -2.7 1 159.0 1 95.7 1 
ISouth America 1 81.8 1 -23.5 1 40.7 1 
INew Zealand 1 -31.8 1 -174.9 1 32.8 I 
ISundaland I 51.2 1 132.3 1 10.2 1 
ISiberia 1 51.2 1 132.3 1 10.2 1 
111I1 
1i11I 
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Table 5.2: Total Rotations for each Continent. 

III 
I PLATE I TOTAL ROTATION USED I 
III 
II LAT. Lo CG .I Pot--E 
ILOWER JURASSIC (200 MY) III 

IEurope 
INorth America 
(Central America 
IAfrica 
lIndia 
ISouth America 
lArabia 
ISundaland 

IIII 
t 66.9 1 42.5 1 40.5 I 
I 76.8 I 44.2 I 65.5 1 
I 62.8 1 109.7 I 49.5 I 
1 0.0 I 169.0 1 23.0 I 
1 -6.1 1 -156.3 1 86.6 I 
1 67.1 I 28.6 1 43.5 1 
t -6.5 I 175.4 1 27.6 I 
I 8.1 I -106.9 I 38.7 I 
IIII 

III 
IIII 
IPERMO-TRIASSIC (250 MY) II 
IIIII 
Europe I 0.0 1 76.3 1 45.6 

ITurkey 1 0.0 1 76.3 1 45.6 
ILaurentia 1 28.5 1 67.5 1 54.5 1 
I6ondwanaland 1 -21.8 1 130.0 I 63.4 1 
ISundaland 1 -21.8 1 130.0 I 63.4 1 
IChina/Japan I -21.8 I 130.0 I 63.4 1 
II1II 
I I-_ III 
I 

I{I 
I 0.0 I 72.7 1 
I 0.0 1 72.7 1 
1 0.0 1 72.7 1 
{ 26.1 1 63.6 I 
1 -12.7 1 128.4 1 
1 -12.7 1 128.4 1 
1 -12.7 1 128.4 I 
I 29.6 I 94.0 1 
III 
III 

III 

50.7 I 
50.7 1 
50.7 1 
58.8 I 
74.5 i 
74.5 I 
74.5 I 
39.8 1 

(UPPER CARBONIFEROUS (300 MY) II 

Europe 
I Southern Europe 
ICentral Europe 
ILaurentia 
16ondwanaland 
ISundaland 
IChina/Japan 
ISiberia 
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Table 5.2: Total Rotations for each Continent. 

III 
I PLATE I TOTAL ROTATION USED I 
III 
11 LAT 1 L; -Na e"" 1 
SLOWER CARBONIFEROUS (350 MY) II 
I 
Iuurope 
ISouthern Europe 
ICentral Europe 
I Turkey 
ILaurentia 
IGondwanaland 
IChina/Japan 
ISiberia 

II i 

I 

1 -13.6 I 58.0 1 
1 -16.7 I 79.0 1 
1 -12.4 1 76.5 I 
1 -10.8 I 120.8 1 
1 0.0 I 60.0 1 
I -15.8 I 111.1 I 
1 -15.8 I 111.1 I 
I 0.0 I 62.0 I 
111 

1III 
11II 
ILOWER DEVONIAN (400 MY) II 
IIII 
IEurope I -9.7 1 66.0 I 
ISouthern Europe I -9.4 1 66.3 I 
ICentral Europe 1 -8.7 1 67.5 I 
ITurkey I -26.8 I 104.9 I 
ILaurentia 1 6.1 1 55.0 I 
I6ondwanaland 1 -7.7 I 82.5 1 
ISundaland 1 -7.7 I 82.5 1 
IChina/Japan 1 -7.7 1 82.5 I 
ISiberia I 3.8 I 64.5 I 
1111 
I 

i 
III 
Ii 

IORDOVICIPW & SILURIAN (450 MY) 
III 
IEurope 
ISouthern Europe 
ICentral Europe 
I Turkey 
ILaurentia 
I6ondwanaland 
ISundaland 
IChina/Japan 
I Siberia 
I 

1 9.7 I 
1 13.5 1 
1 22.0 I 
I 7.2 I 
I 9.0 I 
1 -17.7 I 
1 -6.8 1 
1 -17.7 I 
I 11.4 1 
II 
I1 

POLE 

148.3 I 
74.8 I 
75.4 I 
72.2 I 
74.5 
90.2 I 
90.2 I 
62.0 I 

86.5 1 
87.5 I 
90.9 I 
69.7 I 
87.3 1 
89.0 I 
89.0 I 
89.0 1 
66.2 1 

II 
II 
II 

55.0 1 92.7 1 
75.2 1 85.9 1 
58.5 I 99.4 I 
80.0 I 85.4 I 
50.0 I 96.6 I 
75.0 I 124.6 1 
58.6 I 130.0 1 
75.0 1 124.6 I 
43.7 1 96.8 I 

1I 
I1 
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A complete list of the major continental units used for all the 

Phanerozoic reconstructions is as follows: 

Laurentia 

North America 

South America 

Africa 

Madagascar 

Turkey 

E. Antarctica 

Siberia 

Europe 

Central Europe 

Southern Europe 

Nova Scotia 

Central Asia 

W. Antarctica 

Australia 

Arabia 

India 

Nafnam 

Greenland 

Newfoundland 

W. Antarctic Peninsula 

Sundaland 

New Zealand 

China/Japan 

Alaska 

Gondwanaland 

Central America 

Although a detailed description of each plate is not necessary, a number of 

the plates listed above require clarification as to their constituent parts, 

some of which may vary with time. 

A number of the plate outlines are particularly poorly defined (e. g. 

Sundaland). However such uncertainties do not have a drastic effect upon the 

results of this research as only a small proportion of deposit examples occur 

in this region. In contrast the definition of the southern boundary of 

Laurentia is particularly relevant as a large number of examples occur on this 

plate. A detailed description of this boundary and the problems associated with 

its definition are given by King (1975a and b; 1977). 

The plates for the Silurian and Devonian reconstructions can be found in 

Tarling (1985c); those for the Carboniferous in Tarling (1985a) and a 

discussion on the fragmentation of Gondwanaland in Tarling (1980). Other 

problems associated with the palaeogeographic reconstructions (e. g. the 

tectonic interpretation of the Mediterranean region during the Mesozoic and 

Cenozoic) may be found in Tarling (1983) together with possible solutions. 
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Laurentia (LAUREN) 

Comprising North America, Greenland, Scotland, Mexico, California, Alaska 

and Florida. 

Central America (CENTAM) 

The microplates of Mexico, Yucatan, Honduras and Baja California are 

treated separately from North America from the mid Mesozoic onwards to avoid 

overlap with South America. This whole area is extremely complex geologically 

with some evidence of Cretaceous fault motion. However the actual coupling of 

plates is unclear. 

N. America and N. Africa (NAFNAM) 

Comprising the eastern coastline of North America, roughly the 

Appalachians and Caledonides, and part of West Africa. This region is Acadian 

in age, having been formed by the collision of N. America and Africa. 

Consequently it is only found in the Ordovician and Silurian reconstruction. 

Northern Europe (EUR) 

Comprising Northern Brittany, Sweden, Poland, Ukraine, Germany (excluding 

the Bohemian Massif), Norway, Finland, Denmark, Belgium and Holland. Also 

included in this plate are the British Isles excluding Scotland and Ireland 

north of the Caledonian suture. 

Central Europe (CEUR) 

Comprising the Armorican Peninsula, Massif Central, Vosges-Black Forest 

and the area leading south towards the Bohemian Massif. The Czechoslovakian 

data referring to the Bohemian Massif are of poor quality, so there is a 
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tendency to leave this area as a separate block. The problem is its 

palaeoposition relative to other land masses. 

Southern Europe (SEUR) 

Comprising the Iberian Peninsula (Spain and Portugal), Sardinia, Corsica, 

Balkan Peninsula, Hungary and the Menderes block, the area to the south of 

Bulgaria, Kabylie block in Algeria, the area from the Bohemian Massif 

northwards to the region encompassed within Central Europe. It is questionable 

whether or not Italy and Sardinia should be included here or as part of Africa. 

The geology of Italy is extremely complex so the determination of whether 

blocks are allochthonous or autochthonous is very difficult. Hence the position 

of Italy during the Mesozoic and Cenozoic is a problem. The positions of 

Corsica and Sardinia are also difficult to determine as magnetic overprinting 

has obscured much of the evidence (Tarling, 1983). Italy has been rotated as if 

it were part of Africa in Cretaceous times. 

Gondwanaland (GOND) 

Comprising Africa, Madagascar, Arabia, South America, India, Australia, 

Antarctica, New Zealand and Iran. 

Siberia (SIB) 

This unit is quite well defined as being that part of Asia bordered to the 

west by the northern part of the Ural Mountains; to the east by the Verkhoyansk 

Mountains; the northern boundary being the Arctic continent and the southern 

one being the Kazakhstan block. The problem with this unit is the southern 

boundary, more specifically, its relationship with the Kazakhstan block. Major 

fault lines are found within this area, many of which were active in the 

Mesozoic and Cenozoic and which may also have been active in Palaeozoic times. 

This leads to complications in reconstructing the history of the area and the 
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problem is confounded by the presence of other lineaments which may well 

represent previous oceanic areas. 

Central Asia (CENTAS) 

Comprising the area to the east and south of Kazakhstan, but excluding 

India. 

"Sundaland" (SUNDAE) 

Comprising Malaysia, Thailand, Vietnam, Cambodia, Kalimantan, Borneo and 

the western side of Papua New Guinea - the eastern part being considerably 

younger. This probably comprised separate units at different times. 

China/Japan (CHI/JAP) 

The southern and northern parts of China are treated as a single unit, 

although they were only joined together in late Palaeozoic or early Mesozoic 

times. There are numerous granite intrusions present in certain areas, thought 

to be indicative of previous sutures, implying the two regions of China were 

separate entities. 

5.4.2. Phanerozoic Mean Rotation Poles. 

A rotation pole has been defined in Chapter Two, together with an outline 

of the criteria for the selection of these poles. The rotation poles as shown 

in Table 5.3 constitute a fundamental dataset critical to the production of 

reconstructed maps, and thence palaeolatitudes. 

The mean pole positions used for the reconstructions are those cited in 

Tarling (1983) from which Table 5.3 was taken. The poles upon which the 

rotations were based are given in the left hand column, while alternat(W poles 

are given in the right hand column. 
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I 
I 
I 
I 

AGE 

Table 5.3: Phanerozoic Mean Pole Positions. 

11 14 II111 
INI LATI- I LONGI- 10495 1NI LATI- I LONGI- 104 95 1 
I1 TUDE I TUDE III TUDE I TUDE II 
II11IIIII 
IIIIIII 
IIIIIII 
IIIIIII 
I 51 68.4 I 185.1 I 5.81 1I 
1 131 73.4 1 98.6 1 9.61 II 
1 401 60.8 1 96.1 I 3.11 11 
1 431 44.5 I 116.3 I 2.71 11 
1 331 37.6 1 125.1 1 3.41 1I 
1 41 -18.8 1 133.9 1 36.41 271 39.4 I 
1 EI 0.0 I 120.0 1- I 131 13.6 I 
1 41 -13.9 1 114.4 116.81 151 20.9 1 

II 
II 
II 
1I 
II 
II 
II 
II 

128.0 1 13.91 
127.8 1 16.01 
136.0 122.31 

INOR? H AMERICA 
I 
ICretaceous 
IJurassic 
IYriassic 
IPermian 
ICarboniferous 
IDevonian 
IBilurian 
IOrdovician 
i 
t 
t 

IfI1IIIII 
IIIII1I{i 

IEUROPE 
I 
Irretaceous 
(Jurassic 
ITriassic 
{Permian 
I Upper 
I Middle 
I Lower 
ICarboniferous 
I Upper 
I Middle 
I Lower 
IDevonian 
Isilurian 
IOrdovician 
I 
I 
I 

IIIIIIIII 
IIIIIIII1 
IIIIIIIII 
I EI 72.0 1 173.0 1- I- I 72.0 1 
1 EI 67.0 1 155.0 1-I1 
1 691 54.7 1 159.8 1 4.21 1I 
111I1I1 
1 731 44.4 I 166.3 1 1.31 I1 
1 211 39.1 1 163.3 1 3.91 II 
1 621 40.8 1 165.6 1 2.01 II 
I11II11 
1 371 39.3 1 162.7 1 2.81 I 
1 241 28.8 1 174.4 1 4.31 1 
1 171 12.9 1 137.8 116.11 11 
1 EI 10.0 1 145.0 I- 1I1 
1 EI 5.0 I 150.0 1- 1- 1 -0.5 1 
1 EI 0.0 1 150.0 1- I- I 15.6 1 
iIII1II 
IIIIIII 
IIII11I 

ISIBERIA (ANGARA) IIIIIII 

IIIIII 
ICretaceous 
IJurassic 
ITriassic 
IPermian 
ICarboniferous 
IDevonian 
ISilurian 
10rdovician 
I Middle 
I Lower 

i 

1 331 76.1 1 175.7 I 4.81 
1 161 76.7 I 143.2 1 13.31 
1 671 49.3 1 147.4 1 2.61 
1 361 45.4 1 146.5 1 6.41 
1 EI 30.0 1 150.0 1-I 
1 EI 25.0 I 155.0 I-1 
1 81 -4.3 I 121.2 1 19.01 
1II1I 
1 111 -21.8 1 129.7 I 4.01 
1 121 -40.2 I 132.3 1 6.61 
11111 

ii 
It 
1{ 
ii 
ii 
iI 
tI 
ii 
1i 
ii 
it 
tI 

173.3 I 5.01 
II 
II 
II 
II 
II 
1I 
II 
II 
II 
1I 
II 

135.0 1 7.91 
148.7 1 8.11 

I (URA)I 
iý 
ýi 
ýi 

ii 
ii 
ii 
ii 
ii 
ii 
ii 
ii 
ii 
ýi 
ii 

IIIIIIIII 
* o(g5: Ti1FAE t5 A 95°h PQoß/461 u'N TºýAi -%E 'fRuc ME ktJ DIR7< CTt ýnl LIES WrrtkiN 

7t+>; cor4E OF cpNHbvt, ýcE AR*uNO `TFºE ObSCRvý MEIhý . ^ºµE SNAItER TººE vAl4i 

eF pCC%S T)-f6 kML£ *E4-\A6L'f -CM (AEAN Arb (+vfN I, TIMA-ffD. 
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AGE 

I SOUTH AMERICA 

ICretaceous 
IJurassic 
ITriassic 
IPermian 
ICarboniferous 
Devonian 
Silurian 
Ordovician 

IAFRICA 

ICretaceous 
IJurassic 
ITriassic 
IPermian 
ICarboniferous 
IDevonian 
Silurian 
Ordovician 

IINDIA 

ILower Tertiary 
ICretaceous 
IJurassic 
ITriassic 
IPermian 
Carboniferous 

IDevonian 
ISilurian 
I 
I 

Table 5.3: Phanerozoic Mean Pole Positions. 

1I11I1I11 
INI LATI- I LONAI- 10[95 IN1 LATI- 1 LON6I- I0z95 1 
1I1IIIIII 
IIIIIIIII 
I11III1II 
I1IIIIIII 
II1II1II 
1 121 85.6 1 203.0 I 4.61 1I11 
1 81 86.6 1 41.0 110.51 1I1I 
I 91 84.1 1 69.1 1 5.91 191 85.5 I 46.1 I 7.61 
I 61 60.0 1 173.5 I 6.41 171 77.2 1165.8 I 6.91 
I 71 60.7 I 169.2 1 11.51 81 58.3 1175.8 1 30.61 
I 61 -4.5 I 135.5 1 27.61 III1 
1- 1-1-I-I1I1 
1 71 -16.6 1 159.4 127.41 71 -9.7 1159.0 126.71 
IIIIIIIII 
IIIIIIII1 
IIIIIIIII 
IIIIIIII 
IIIII1II 
1 131 68.3 I 237.3 1 6.51 IIII 
1 171 67.9 1 251.8 1 5.81 1I1 
1 101 66.0 1 246.9 1 9.01 III 
1 31 37.6 1 229.4 129.11 51 44.4 I 237.4 1 17.61 
1 EI 20.0 1 220.0 1- II1I 
1110.5 1 205.0 1- 1i1I 
I- I-1- I- III1 
1 11 -14.0 I 156.0 I- I 31 60.5 1 159.8 1>90.01 
IIIIII1II 
1IIIIIIII 
III1IIII 
IIiIII11 
IIIIIIII 
1 121 29.3 I 275.4 1 13.91 11II 
1 261 20.6 I 282.3 1 11.21 II1I 
1-1-1- 1- 11I1 
I 41 13.8 1 304.4 1 19.31 1I1I 
I 71 -6.5 1 309.3 189.21 1111 
1- 1-1-I-I1I11 
I 21 2.4 1 327.5 1>90.01 I11I 
1 11 -30.0 1 348.0 1- 11I1I 
1IIII111I 
111111111 
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{ AGE 
{ 

IAUSTRALIA 

Cretaceous 
IJurassic 
[Triassic 
IPermian 
ICarboniferous 
IDevonian 
{Silurian 
IOrdovician 
I 

ANTARCTICA 

ICretaceous 
IJurassic 
IOrdovician 

URA = Urals 

TV 

Table 5.3: Phanerozoic Mean Pole Positions. 

IIIIIIIII 
INI LATI- I LONGI- I0195 INI LATI- I LON6I- lo/, 95 I 
1I TUDE I TUDE III TUDE I TUDE II 
IIIIIIIII 
IIIIIiIII 
IIII1IIII 
IIIII1III 
I 41 53.7 I 336.8 1 10.11 iII1 
1 91 48.0 I 345.0 110.11 IIII 
1 31 46.5 1 339.7 1 24.31 II1I 
1 31 41.7 1 307.4 110.51 I111 
1 21 33.7 I 315.0 1 47.31 61 69.4 1 337.0 127.91 
1 11 41.5 1 228.5 1-I 61 68.5 I 197.3 1 27.21 
I 21 36.0 I 219.1 140.71 I111 
1 31 27.0 1 207.2 1 20.11 41 24.4 1 213.4 1 18.71 
II: IIII 
IIIIIII 
IIIIIII 
IIIIIII 
IIIIIII 
I 51 83.7 I 130.3 I 8.41 61 85.1 1 
1 71 51.6 1 39.1 I 7.51 I1 
I 31 (13.8 1 202.4 1 25.71) I1 
1111I1I 
1111111 

II 
II 
II 
II 

93.8 
II 
110.11 
1I 
II 
II 
II 

...... This data must be used with some reservations, as with most 

palaeomagnetic data, as no allowance was made for anisotropy and much of the 

data have not been adequately analysed for the presence of multicomponents. 

Additionally, thermal demagnetisation has not always been used, or when used, 

the effects of chemical changes are not always recognised in the original 

study. However, proper criteria would eliminate most of the available data. " 

(Tarling, 1983, p223). 

Tarling's pole positions and the palaeogeographies determined from them 

were used in preference to those of other workers for the following reasons. 

The palaeomagnetic data had been selected and processed using the methods 

outlined in chapter Two when possible. Some of the pre-Permian 
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palaeogeographies of other workers are based largely or entirely on 

interpretations of palaeomagnetic evidence with limited or no effective use of 

palaeontological and other types of geological evidence (e. g. Smith et al, 1973 

and 1981). However the palaeomagnetic data may be unreliable as discussed more 

fully in Chapter Seven. To overcome any errors the Tarling palaeogeographies 

are based upon a combination of palaeomagnetic data, the distribution of 

climate-sensitive lithologies (Tarling, 1980) and the distribution of certain 

fossil species (Turner and Tarling, 1982). This introduces a degree of 

subjectivity into the construction of palaeogeographic maps which may lead to 

errors in the positioning of continents due to errors in the interpretation of 

the distributions of climate-sensitive lithologies. Conversely, if a number of 

geological factors are taken into account, the application of such geological 

constraints to palaeogeographic reconstructions may lead to a more sensible 

positioning of the continents. Hence the Tarling reconstructions were used. 

In addition to the Tarling maps those of BP based on the 

palaeoreconstructions of workers in Chicago have also been used as a 

comparison. Ziegler et al (1979) give a full discussion of the choice of plate 

boundaries used in these palaeoreconstructions and possible queries in the 

position of some of the plates. Unfortunately only Mesozoic and Cenozoic 

palaeogeographies were available so a comparison of two complete sets of 

Phanerozoic results was not possible. 

5.4.3. Map Projection. 

The global reconstructions in Figures 6.15 a-j were generated by the 

computer program. The Plate Movement Program was written by Tarling and it 

provides most Phanerozoic palaeogeographic reconstructions, with the exception 

of the Cambrian period, which is currently under revision. In this program 

individual plates, or parts of plates, are defined in latitude and longitude 
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co-ordinates and rotated according to the appropriate rotation into their 

previous positions and then replotted. 

The reconstructions were plotted using a Molleweide Projection, an equal 

area map in which latitude lines remain parallel. It encompasses the entire 

surface of the globe, centred on the 0° meridian which is an arbitrary 

reference as absolute values of palaeolongitude are indeterminable. Palaeogrid 

lines have been removed from the maps in order to allow distinction of 

individual points more easily. However, for reference purposes, a list of the 

mineral deposit palaeolatitudes can be found in Appendix I. The continental 

outlines were based on present day coastlines and some major geological 

features for location purposes. 
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CHAPTER SIX 

RESULTS 

The purpose of this research was to determine if there existed a 

palaeolatitudinal control upon the formation of certain mineral deposit types 

and to use this to evaluate some of the more widely accepted models of mineral 

genesis. The main characteristic sought within the distribution patterns was a 

limitation of the range of a particular deposit type to low latitudes i. e. 30- 

(350 including error bars) north and south of the equator. Such a confinement 

to these so-called low latitudes was not chosen arbitrarily: it is generally 

quoted as that of the formation of evaporite deposits (Frakes, 1979 and 

Habicht, 1979). As many mineral deposit types are associated with evaporate 

deposits and other climate-sensitive lithologies thought to be related to low 

latitudes, this limit upon palaeolatitude was considered to be particularly 

important. Hence the range was tested for each of the deposit types described 

in Chapter Three. However any palaeolatitude control must be of interest so 

other obvious distribution patterns have also been noted. 

In the following chapter the full ranges of mineral deposit distribution 

have been described noting whether palaeolatitudes are from north or south of 

the equator, rather than regarding the absolute palaeolatitudes irrespective of 

hemisphere. This method was chosen as it cannot be assumed that the geography 

and climatic conditions at a specific latitude are identical in both 

hemispheres as such conditions are greatly influenced by the distribution and 

relative proportions of land mass to oceans. 
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6.1 The Palaeolatitude Distribution of all Deposits Examined 

The scatter graphs Figures 6.1a and 6.1b (minimum and maximum age- 

determined palaeolatitudes respectively) show the distribution of 

palaeolatitudes for all the mineral deposit examples used plotted against their 

age of mineralisation. Both graphs show the characteristics listed below. 

a) The palaeolatitudes range from 73° south to 65° north. 

b) There is a marked gap in the distribution between 30° north and 30° south 

from 200 to 150 million years, that is the Triassic to Lower Jurassic. Three 

main explanations are proposed for this hiatus: 

1. the land area in the region during that period of time was a small 

proportion of the total land mass of the Earth, 

2. few sediments were deposited in this region from the Triassic to the 

Lower Jurassic period, 

3. the deposits which originally formed may have been eroded. The 

phenomenon of selective preservation of mineral deposits must always be taken 

into account in the consideration of distribution patterns. 

c) There is a slight suggestion of clustering of the points; 

(i) from the equator to 10° north between 280 and 220 million years, 

(ii) from 200 million years to the present in the region 20° to 50° north. This 

probably represents the paucity of all sediments of this age in the southern 

hemisphere. It may also be due to more widespread exploration in most northern 

continents relative to those in the southern hemisphere. 

d) In the southern hemisphere from 360 to 150 million years a marked decrease 

in the latitudinal range of mineral deposits is apparent i. e. the most southern 

position occurs between 30° and 35° south. In the northern hemisphere the most 

northern limit is 30° N within the age range 450 to 220 million years. This 

could be due to the influence of continental distribution; i. e. a greater 
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proportion of continental land area in the northern than in the southern 

hemisphere during more recent times. 

e) Figure 6.1a shows two hiati in the deposit distribution pattern between 100 

million years and the present in the two latitudinal bands; 15° to 30° north 

and from the equator to all southern latitudes. However these gaps are 

indistinguishable in the maximum plot, Figure 6.1b, so the maximum ages for 

these particular deposits may be more appropriate assuming a low latitude 

control upon the formation of certain deposit types. At this stage a new aspect 

of the possible palaeolatitude control on the formation of mineral deposits has 

been introduced. It may be that such a control could be used to solve certain 

geological problems - in this instance the correct age of mineralisation. 

In conclusion there is a suggestion of a palaeolatitude control upon the 

mineral deposit types under consideration as these diagrams illustrate an 

uneven distribution of examples. In particular the deposits have a limited 

palaeolatitude range and there are areas (in both time and latitudinal extent) 

where either a paucity or a concentration of deposits occurs. An examination of 

the distribution of individual mineral deposit types may outline any possible 

palaeolatitude control hinted at in this more general approach. 

The Form of the Diagrams 

Before describing the results it is necessary to explain the form of some 

of the diagrams. A number of the examples had poorly defined ages of 

mineralisation: i. e. a wide range between the oldest and youngest possible 

ages. Such deposits had to be rotated more than once; for example the Irish 

SDEX deposits (e. g. Keel) dated as 360 to 320 million years old. Their 

palaeolatitudes were determined from both the 300 and 350 million year 

palaeogeographic reconstructions, giving values of 3.5°N and 19.2°S 

respectively. So the problem of assessing and illustrating two or more 
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different palaeolatitude values had to be overcome. The histograms of 

Palaeolatitude versus Frequency (% of examples) for each mineral deposit type 

illustrate one possible solution to this problem. There are two diagrams, a 

histogram of the palaeolatitudes determined from the minimum ages of 

mineralisation and one of the palaeolatitudes deter}ned from the maximum 

mineralisation ages. These will be referred to as the minimum and maximum 

histograms and both are displayed on a single page to aid comparison. In the 

majority of cases both hemispheres have been shown. However for some mineral 

deposit types the whole range of palaeolatitudes from the southern and northern 

hemispheres have been displayed to highlight pattax'ns in the distribution. 

The annotation four the histograms Figures 6.2 - 6.14 also needs some 

clarification . -The. numborVof deposits represented by each column is given at 

the top. The letter at-. the base "of each column refers to the list of deposits 

which comprise that particular column - given on the same diagram or on the 

facing page. The figures in brackets shown with these column headings are the 

ages of the reconstructions from which the palaeolatitudes were determined (in 

millions of-years). The striped section of a column denotes deposits with a 

palaeolatitude in the northern hemisphere, the shaded section represents 

palaeolatitudes in the southern hemisphere. 

6.2 CARBONATE-HOSTED D, £POSIT TYPE' 

6.2.1 Limestone Base-MgtB1 Cºepösijg t LBBM) 

The- palaeol`atitudes'determined for LBBM deposits` extend from 301 south to 

50° north and more examples plot in the northern than the southern hemisphere 

(Figure 6.2. i). The two peaks in the distribution are more obvious from the 

histogram (b) than the histogram (a) (Figure 6.2. ii). These peaks are found in 

the equatorial rainfall belt i. e. between 10° south and 10° north and the 

temperate rainfall belt, 25° to 50° north. It appears that a latitudinal 
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a) Maximum age 
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control upon the formation of LSBM deposits is likely as the minimum histogram 

shows approximately 63% of deposits lie within 30° of the equator and almost 

71% occur from 35° north to 35° south. The maximum histogram also shows this 

low latitude control as 82% of LSBMs lie in both the 30° and 35° north/south 

latitudinal zones. 

Those LSBMs which do not lie within 30° to 35° of the equator (Figure 

6.2. ii) are listed below with suggestions for their apparently anomalous 

palaeopositions at the time of formation. 

1) Column i, histogram (b) 

a) The Tunisian example is in the 35°-40° column at present but lies in the 

20°-25° column after its maximum rotation (50 m. y. ). If the 30° to 35° 

palaeolatitudinal control on LSBMs exists then the maximum age of the deposit 

must be considered to be the more 'correct'. 

b) The examples from Illinois and Kentucky lie outside the 30° latitudinal 

boundary in histograms (a) and (b) occurring in the 35°-40° column (after a 100 

m. y. rotation). The palaeogeographical reconstructions for this age are 

considered to be relatively reliable. The age of the deposits is also 

reasonably well known. In addition, the palaeolatitudes derived from the BP 

reconstructions are near to 40° so another explanation is needed for their 

position. These deposits may plot at higher palaeolatitudes than expected due 

to the warmer global climatic conditions which prevailed at that time relative 

to the present or local palaeogeographic effects. 

2) Column j, histogram (b) 

a) The Bulgarian deposit determined from a 200 m. y. rotation plots in the 40°- 

45° column. The age of this deposit is reasonably reliable but its position 

could be in some doubt because of differential plate motion in this region of 

Europe. However if the position of this area were incorrect then a number of 

other results would then be in doubt. The BP reconstruction produced a 

palaeolatitude of 35° which is more in keeping with the latitudinal limits of 
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the majority of LSBMs. Perhaps the BP palaeoposition for this continent is more 

'valid' than that of Tarling. 

b) The Czechoslovakian deposits determined from a 200 m. y. rotation plot in the 

40°-45° column. However the palaeolatitude determined from a 250 m. y. rotation 

occurs in the 5°-10° column in histogram (a). So the oldest age would be more 

acceptable in order for these LSBMs to comply with the 350 palaeolatitude limit 

suggested by the other examples. 

3) Column k, histogram (b) 

The Polish deposits plot in the 45°-50° column with a 200 m. y. rotation, 

but in the 5°-10° column after 250 m. y. rotation. However the age of these 

deposits is in some doubt as there-may be three periods of, mineralisation: the 

end of the Palaeozoic (250 m. y. ), the Muschelkalk to the Mid Jurassic (243-180 

m. y. ) and around 5 m: y. ago (Sass-6ustkiewicz et al, 1982). So no satisfactory 

explanations can be offered for the palaeopositions of these deposits. But if 

there is a palaeolatitude control then the end of the Palaeozoic age seems the 

most likely. 

6.2.2 Oolitic Ironstone Deposits (OOFE) 

The OOFE palaeolatitudes extend from 50° north to 5010 south (Figure 6.3) 

with two obvious sub-sets i. e. 0° tb. 15° and 30° to 50° north/south of the 

equator. There is a marked absence of deposits fro; n, 15,0 to 300 north and south 

which is also ref]. ected:,, in the BP results. The majority of OOFEs (about 70x) 

lie in the mid-latitude sub-set of 300 to 5O0 north and south. More 

palaeolatitudes plot in the northern than in the southern hemisphere. 

It is only possible to draw tentative conclusions about this particular 

mineral deposit type as a small sample has been examined (n = 26). However 

there is a clear latitudinal control upon the formation of OOFEs with a similar 

range to that seen in the LSBM results. The correlation could be with 
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equatorial and temperate rain belts, particularly if the latter were somewhat 

further equatorial than at present. 

6.3 CLASTIC-HOSTED DEPOSIT TYPES 

6.3.1 Sandstone Copper Deposits (SSCU), 

From Figure 6.4. i the palaeolatitudes determined for SSCUs have a range of 

60° extending from 35° south to 25° north. All the deposits lie within the 

latitudinal zone from 35° north to 350 south. Two sub-sets, can be distinguished 

from histograms (a) and (b), Figure 6.4. ii, although. they'do differ slightly. 

The latter shows a marked lack of deposits in the equatorial rain belt from 5° 

to 150 south and 041 to 5° north and in histogram (a)'the hiatus is from 20° 

south to 5° north. The results suggest a concentration of SSCUs in,. the warm 

arid belt i. e. 150 to 350 north and south. However the overall distribution of 

SSCUs in both histograms is very similar which indicates that the age 

determinations of SSCUs are reasonably precise. These data support the 

syngenetic or diagenetic model of SSCU'formatioi asthe ages of mineralisation 

are close to those of deposition. The alternative school of thought is that 

these deposits are epigenetic so these data presented here refute this 

hypothesis. 

There is an obvious palaeolatitudinal control upon the formation of BBCUs 

which is similar to that for LSBMs. There are 89% SSCUs within 30° north/south 

of the equator and 100% SSCUs occur within the 350 north/south zone. The 

palaeolatitudes determined from the BP palaeogeographical reconstructions are 

in accordance with these results (see Appendix D. It is possible to state with 

a certain degree of confidence that the occurrence of SSCUs is confined to 

strict latitudinal limits which are at variance to those of LSBM and OOFE 

deposits. 
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Figure 6.4(ii). Palaeolatitude Vs. Frequency for SSCU deposits from 
Tarling reconstructions. 
For figure legend see Figure 6.2(ii). 
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6.3.2 Sandstone Lead Deposits (SSPB) 

Many of the SSPB examples originally collected are Cambrian in age but no 

reliable palaeogeographical reconstruction of this age is available so the 

sample size is restricted (n = 10). It is therefore difficult to draw any firm 

conclusions concerning this particular deposit type. The SSPB palaeolatitudes 

plot from 450 north to 25° south-(Figure 6.5A),, the majority of which lie in 

the northern hemisphere. Seventy percent SSPBs occur within the latitudinal 

zones spanning 30° and 35° north and south of the equator. Only one diagram was 

needed for Figure 6.5. ii as the age determinations for the SSPBs were 

relatively precise. Gaps in the distribution occur from 15° south to the 

equator and between 25° and i400 north (Figure 6.5. ii).,. So with deference to the 

limited number of deposits examined, it is possible to say that a latitudinal 

control upon the formation of SSPBs is apparent. 

The West German deposits from the Oberpfalz area (columns e/E Figure 

6.5. i) form a sub-set at noticably higher latitudes than the other SSPB 

examples. The palaeolatitudes determined from the Tarling (200 my. ) 

reconstruction cluster around 44° north whereas those from Bps (200 m. y. ) map 

centre around 39° north. These reconstructions should be relatively reliable so 

the reliability of the age of mineralisation ofthese, SSPB deposits may be 

questionable. When these deposits are rotated by the 250 m. y. Tarling 

reconstruction (e. g. the Mechernich deposit, '-of West Germany) the; 

palaeolatitudes plot around. -: 6- north. If there is a low latitude control upon 

their formation these deposits may-be, oldex' than previously thought. Conversely 

the SSPB deposits may be formed'within different-latitude limits to those 

deposits previously described. 

6.3.3 Shale Base-Metal Deposits (SHBM) 

The palaeolatitudinal extent of SHBM deposit (Figure 6.6. i) is 4510 north 

to 350 south, with the majority of deposits plotting in the northern 
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hemisphere. There are two main gaps in the distribution i. e. 300 south to 0° 

and 20° to 40° north indicating a suppression in the warm, arid regions. The 

minimum histogram illustrates (Figure 6.6. i) that 89% of the SHBM sample lie 

within the 30° north/south of the equator whilst 94% occur within the 35° belt. 

The results shown in the maximum histogram illustrate a greater tendency for 

deposits to occur in low latitudes as 94% occur within 3Q° north/south and 100% 

within the 350 belt. This latitudinal control is as obvious as for SSCU 

deposits. However any conclusions made concerning SHBMs must be made with some 

caution as the sample size is small (n = 18). 

The deposit from Slovenia, Yugoslavia (Figure 6.6. i, minimum plot, column 

e) has a palaeolatitude outside the 350 limit, at 45°. However the same deposit 

plots well within the latitude belts from the 250 and 300 m. y. reconstructions. 

This deposit would appear to be a good candidate for a revision of the age of 

mineralisation of a deposit assuming a low latitude control upon deposit 

formation. At present the deposit has been given a wide age range i. e. 286 to 

213 m. y. The older ages are therefore preferable to maintain the 35° latitude 

constraint upon formation. 

6.3.4 Sedimentary-exhalative Deposits (SDEX) 

The palaeolatitudinal extent of SDEXs is 300 north to 45°'south and, as 

with most of the-deposit types previously described, there are more examples in 

the northern than the southern hemisphere (Figure 6.7. i). The high value 

between 200 and 25 south on both histograms may be due to the concentration of 

SDEXs in the Pyrenees. This may also apply to the Irish deposits (column f, 

minimum plot; column e, maximum plot). No sub-sets can be defined (Figure 

6.7. ii). 

From the results the distribution of SDEXs appears to be confined to the 

low latitude region i. e. less than 30° north and south. The minimum histograms 

reveal that 76% of SDEXs lie between 30° north and south of the equator and 85% 
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Figure 6.6(i i). Palaeolatitude vs. Frequency for SH13M deposits from 
Tarling reconstructions. 
For figure legend see Figure 6.2(ii). 
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between 350 north/soüth: -The maximum histogräm has sbX. SbEXs between 300 north 

and south and 89% between 35° north/south. The SDEXs which occur in higher 

latitudes are listed below and reasons for their apparently anomalous 

palaeopositions offered. 

1) Figure 6.7. ii, histograms (a) snd (b1 columna 

The deposits of the French and Spanish Pyrenees plot around 45° and 25° 

south on the Tarling (400 m. y. ) and (450 m. y. ) reconstructions respectively. 

These results are in question for two main reasons. Firstly, these SDEXs range 

from Ordovician to Devonian in age. They were plotted on the only available 

reconstructions i. e. 400 and 450 m. y., so the palaeolatitudes may not be truly 

representative of the-location of the deposits at the=time of formation. Also 

in this instance the alternative (older) palaeolatitudes are likely to be 

inaccurate as they are determined from a reconstruction which may be itself 

unreliable. In contrast to these results are those from the BP reconstructions. 

The palaeolatitudes for these particular SDEX deposits are less than 30° south 

according to the 400 m. y.. rotation and greater than 300 south from the 450 m. y. 

map. 

2) Figure 6.7. ii. histograms (a) and (b), column b 

The Lower Devonian West Lerman deposits (e. g. Meggen) are on the 

borderline of the 350 latitude zone when derived fromithe 400 m. y. map. However 

the 350 m. y. rotation produces a palaeolatitude of 21° south. The Meggen 

deposit is dated as late Middle Devonian i. e. 380 to 374 m. y. which would have 

a palaeolatitude of 28° south extrapolated fromtheresults of the older (400 

m. y. ) and younger (350 m. y. ) reconstructions. 

3) Figure 6.7. ii, histogram (b), column a 

The Spanish SDEX, deposit La Troya has a palaeolatitude greater than 4041, 

south determined from the 400 m. y. map, whereas at 450 m. y. it plots just over 

30° south. This is not an instance where more precise dating of a deposit is 

possible as an older reconstruction produced the more appropriate result. The 
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age of mineralisation of this deposit is in some doubt and may be older than 

450 m. y. If this is the case then this palaeolatitude is invalid. 

The Anterselva deposit of Italy has been dated as 408-360 m. y. However the 

350 m. y. rotation produced a palaeolatitude of 24° south whereas the 400 m. y. 

rotation gave 35° south. If the 30° latitude constraint is applied then the 

younger age for this deposit is more likely. 

6.3.5 Sandstone Uranium-Vanadium Deposits (SSW) 

The palaeolatitudes-of SSW deposits (Figure 6.8. i) extend from 504, north 

to 65° south: The majority of deposits occur in mid-latitudes i. e. 30° to 50° 

rather than low latitudes. Unlike other mineral deposit types-only one third. 

(minimum histogramYand 43% (maximum histogram) of SSUVslformed between 30° 

north and south of the equator. In the region from 35° south to 350 north, 46% 

to 49% SSUVs occurred (minimum and maximum histograms, repectively). It is 

possible to say there is a latitudinal control upon the formation of SSW 

deposits although the palaeolatitudes are such that they do not conform to the 

same strict latitudeel. mits, as other deposit types. There appears-to. be a 

suppression of SSUVs in the hot, arid regions of the low latitudes and a 

concentration of deposits in the equatorial and warm temperate rain belts. 

Two peaks can be observed in the distribution, 0° to 50 north and south., 

and 25° to 50° north,, -but the latter is confined to the northern hemisphere 

(Figure 6: 8. M. This result could be due to the fact that more examples plot 

in the. northern titan, the sourthern hemisphere so, peaks in the distribution 

patterns are emphasised. In addition this asymmetry of distribution, may reflect 

a sampling bias. The palaeolatitudes for SSWs determined from the BP 

reconstructions follow a similar trend to that described for Tarling's results. 

Although many of the deposits plot in even higher palaeolatitudes with the BP 

programs. 
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Figure 6.8(ii). Palaeolatitude vs. Frequency for SSUV deposits from 
Tarling reconstructions. 
For figure legend see Figure 6.2(ii). 
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The conclusion that SSW deposits are confined to different latitude 

limits than some other deposit types e. g. LSBM, SSCU, SSPB has been drawn 

because neither the age of the deposits nor the palaeogeographic reconstruction 

reliability can be brought into question. Many of the SSW examples are 

relatively young i. e. less than 100 m. y. old (e. g. the North American, Indian, 

Japanese and Pakistan deposits). Also the older deposits have relatively 

precise ages in comparison to some examples for the other mineral deposits 

types. The 100 and 50 m. y. reconstructions are based upon results from 

palaeomagnetic data of 'young' rocks so they should be reasonably accurate. 

Also, particularly in the case of the North, American deposits, palaeomagnetic 

data from this continent< area considered to be amongst the most reliable in use 

at present. 

6.4 PLACER DEPOSIT TYPES 

6.4.1 Placer Gold Deposits (PLAUý 

The latitudinal range of PLAU deposits is 125° extending from 65° north to 

600 south. More examples: plot in the southern than in the northern hemisphere. 

The majoritY (about 60%Y°are foind; in mid-latitudes i. e. 40 to 60° (Figure 

6.9): There is another,, ismaller, peak in the distribution around the 60° to 65° 

region. From'the'data it'appears that PLAUs are not confined to'the low 

latitude region but are concentrated in the warm temperate rainfall belt. This 

is illustrated by both the maximum and minimum histograms (Figure 6.9) which 

show that only 18% of PLAU deposits lie between 300 north and south of the 

equator and 20t between 35° north/south. 

These conclusions are drawn from present day latitudes rather than 

palaeolatitudes because of the very young age of most of the PLAU deposits so 

their reliability cannot be in question. For those deposits which must be 

rotated the BP reconstructions produce similar palaeolatitudes to those of 
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Tarling. This is ex cteR ash 'yösang c relaa'blerecons" rucUions were used. 

Unfortunately the 1db m. y. reconstruction from BP was not available so a more 

comprehensive comparison of results is not possible. 

6.4.2 Placer Diamond Deposits (P3. dI k' 

From Tarling's reconstructions PLDIs have palaeolaii. tudes of formation 

with a range of 125° which extend from 50° north to 75' south. Within the 

distribution two spb-sets can be observed, 00 to'15° and 40° to 60° and two 

troughs (Figures 6.10). The latter occur from 35° to 400 north-and south and 

60° to 70° south. A greater proportion of'PLDI examples have palaeolatitudes 

south of the equator than north of it which may reflect the distribution of 

diamond-bearing source rocks. 

Some latitudinal cöntrol upon the formation of PLDIs is suggested by their 

distribution pattern with a concentration of-deposits in-the temperate and 

equatorial rainfall belts. The latitudinal belt from 30°-north to 30° south 

contains approximately 66% of PL, DIs whilst nearly two-thirds occur in the 

broader latitudinal region 35° north and south of the equator. These results 

are supported by data from BP reconstructions. Those PLDIs which plot in the 

highest palaeolatitudes"(colim ns 1&m, Figure 6.10) are amongst the oldest 

examples. The reliability of, the age of the,; depvsits, and the proposed 

palaeogeography become questionable at these ages. Hence the palaeolatitudes 

themselves may be in doubt. The formation of PLDI deposits does appear to be 

confined to the 300 north/south constraint as' the'-majori. ty (60%) are found 

within this latitudinal zone. However a. -substantial proportion of the PLDI 

sample does occur in higher palaeolatitudes so perhaps this conclusion should 

be drawn with a degree of caution. Indeed it may beepossible to explain the 

distribution of PLDIS in terms of the distribution and accessibility of 

diamond-bearing source rocks. 
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6.4.3 Placer Tin (PLSN). Placer Oxide (PLOX) and Placer 'Other' (PLOT) Deposits 

The results for the PLSN, PLOX and PLOT deposits are illustrated in Figure 

6.11. These histograms are virtually composed of the present latitudes of the 

deposits as most are less than 1 m. y. old. Maximum and minimum age-derived 

palaeolatitude diagrams are therefore not required so there is only one 

histogram per deposit type. 

Placer Tin Deposits 

PLSN deposits occur from 50° south to 300 north, a range of 80° of 

latitude. The peak in the distribution between 40° and 45° south may be a 

sampling bias representing the concentration of deposits in New Zealand. The 

other peak occurs in equatorial latitudes i. e. 0° to 5° north/south and is also 

probably an effect of the distribution of tin source rocks. There is a marked 

gap in the PLSN distribution in the warm arid belt between 5° and 25°. 

Approximately 42t PLSNs are found between 300 north and south and 40% PLSNs 

occur between 350 north and south. 

Placer Oxide Deposits 

PLOXs occur from f0° south to 400 north, a range of 90° of latitude with 

very few examples found in equatorial latitudes i. e. less than 15° north and 

south. There are approximately 30t PLOX deposits in the zone between 30° north 

and south and 41% from 35° north to 35° south of the equator suggesting a 

suppression in the warm, arid belt too. 

Placer 'Other' Deposits 

The range of PLOT deposits is--120° extending from 50° south to 70° north. 

As with PLOXs few deposits occur in equatorial latitudes i'. e. less than 15° 

north and south of the equator. However 52t of the PLOT sample occurs in the 

30° north and south latitude region, whilst 56x are found between the latitudes 

of 35° north and south so there is a concentration in the warm, arid belt. Only 

one deposit (NWT, Canada) plots in very high latitudes: the remainder do not 

occur above 50°. 
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Figure 6.11. Palaeolatitude vs. Frequency for PLSN, PLOX and 
PLOT deposits from 'far ling reconstructions. 
For figure legend see Figure 6.2(i). 
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To summarize, all three deposit types are confined to within 500 of the 

equator, except the one PLOT example in Canada previously noted. The largest 

proportion of each of the samples was collected from the southern hemisphere 

and the peaks in the distribution patterns may be due to the large collection 

of samples from New Zealand. However the distributions may also reflect the 

occurrence of source rocks. The results do not show a 300 latitude constraint 

upon the formation of these placer deposit types, although they do show a 

concentration in mid-latitudes i. e. 35 to 600. 

It is difficult to generalize about placer deposit distribution although 

they appear to be confined to low and mid-latitudes, few occurring above 60°. 

Placer deposits are uncommon inýpolar zones and the colder regions of the 

temperate rain belt. The number of PLAU, PLOT and PLOX deposits is suppressed 

in the equatorial rain belt i. e. 15° north and south of the equator, which may 

be a reflection of the greater chemical activity characteristic of this region. 

However the converse is true for the PLDI and PLSN deposits. 

In conclusion the placer deposits do not obviously obey any specific 

latitudinal constraint upon their formation. The dominant factor in placer 

distribution may be the availability of the source rock which marks the 

influence of any other effect that may exist. For example the peak in the 

distributions around 40° is due to the concentration of these deposits in New 

Zealand. 

6.5 'OTHER' DEPOSIT TYPES 

6.5.1 Manganese Formations (MNFM) 

The MNFM sample size is very small (n = 13) so the results must be 

interpreted with caution. The palaeolatitudes extend from 500 north to 50° 

south, a range of 1000 (Figure 6.12). As with many other deposit types more 

examples plot north of the equator than south of it. The so-called 'peaks' in 
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the distribution occur in both histograms and extend from 1010 to 25° and from 

300 to 50° north/south of the equator. 

A latitudinal control upon the formation of MNFMs appears to be likely, 

especially with regard to a limit on the highest palaeolatitudes in which they 

occur. No MNFM deposits plot at palaeolatitudes greater than 50° north and 

south however this may be a reflection of the economics of exploration near 

industrial areas. Less than half (46.5%) MNFMs lie within 30° north and south 

of the equator in both histograms (Figure 6.12) whereas just less than two- 

thirds (62%) of MNFM maximum ages occur in the 35° north/south belt. The 

minimum histogram shows 46.5% MNFMs are found in the 350 north/south region. 

A concentration of MNFM deposits in low latitudes is not observed in these 

with an obvious suppression in the equatorial rainfall belt. The BP derived 

palaeolatitudes are largely in agreement with the results given here although a 

discrepancy exists concerning the palaeopositions of the land mass now 

represented by China and Japan. But even if these alternative BP 

palaeolatitudes are correct, they still occur within the limits set by the 

other MNFM deposits derived from both the Tarling and BP reconstructions. 

6.5.2 Laterite Deposits (LATO) 

The palaeolatitudinal extent of LATOs has been determined as 55° north to 

65° south, a range of 120° of latitude. More LATO palaeolatitudes plot in the 

northern than the southern hemisphere. Two troughs can be observed in the 

distribution (Figure 6.13); 50 to 15° and 25° to 350 north and south. The 

number of LATO deposits dramatically reduces from 45° onwards. The BP 

determined palaeolatitudes vary slightly from those of Tarling but the general 

distribution pattern is still maintained. The troughs at 5° to 150 and from 25° 

to 350 are still recognisable and the latitudinal limits upon LATO distribution 

are very similar in the two sets of results. 
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A-palaeolatitude control on the distribution of F, ATOs is evident from the 
results. Approximately' 73 to 76% LATÖs occur' within 35° north and south of the 

equator (minimum and maximum histograms respectively) and two-thirds of all 

LATOs lie within 30° of the equator irrespective of the age of the deposits 

from which the palaeolätitudes are derived. Many present day examples occur in 

--higher-low to mid latitudes. implying a wider latitudinal limit on their 

distribution than for other mineral deposit types. For example the deposits of 

-Oregon, USA with a latitude-of 500 at 50 m. y. and those of the Ukraine at 43° 

north 50 m. y. ago. However there is a reduction in the number of LATO deposits 

in the temperate rainfall belt. 

Figure 6.13 (minimum-histogram) shows one example which is at a much 

higher latitude than the others. The palaeolatitude, for this Pakistan deposit 

has-been determined from the-rotation figures of India for 130 m. y. The BP 

rotation of the same age gave a palaeolatitude of 340 south which is more in 

accordance with the other observed results. Therefore the palaeoposition of the 

land mass on the Tarling reconstruction may be at fault. 

The maximum histogram (Figure 6.13)-also has an anomalous example - the 

deposit from Kandahar, Afghanistan (130 m. y. rotation). However when this 

deposit is rotated by 100 m. y. the palaeolatitude is 340 i. e. within low l. 

latitude limits. The deposit its dated as 1'44-97 m. y., so if the low latitude 

control is correct and is"applied, the younger age for the deposit may be morel 

appropriate. The BP determined palaeolatitude for this deposit at 130 m. y. is 

130 north and for _loo m. y. is. ý18° north, -both of which are vastly different 

from the latitudes determined from Tarling's reconstructions. This is one of 

the few occasions when a major discrepancy occurs in the palaeoposition of a 

region containing mineral deposit examples. 
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6.5.3 PhosphateDeposits (PHOS) 

The palaeolatitudes of PHOS deposits extend from 600 north and 70° south 

(Figure 6.14), a range of 130° latitude. The majority of deposits are found in 

latitudes less than 40° north and south with the main peak occurring between 

25° and 40°. 

The minimum histogram reveals 56% PHOS between 30° north and south and 70% 

within 350 of the equator. The maximum histogram shows 58% PHOS between 30° and 

74t between 35° north and south. The deposit with the highest palaeolatitude is 

from Puerto Rico determined from a 450 m. y. rotation with figures from! 

Laurentia. The choice of Laurentian rotation figures may be the reason for such 

a high palaeolatitude. However if the use of the Laurentian figures for this 

region is valid such a result may be due to the age of the deposit. As 

mentioned earlier the unreliability of palaeomagnetic data from which the 

reconstructions are produced is a major factor with deposits of this age. 

There appears to be a latitudinal control upon the formation of PHOS 

deposits. However they do show a wider range of palaeolatitudes than other 

deposit types, ' for example LSBMs and BSCUs. The highest concentration of PHOS 

deposits is in the warm, arid and warm temperate climatic belts of the higher- 

low to mid latitudinal range i. e. 15° to 40° north and south. 

In the classification of PHOS deposits, Chapter Three section 3.2.5, the 

question was posed as to whether particular types of PHOS deposits were 

confined to certain palaeolatitudinal regions. However due to the reasons given 

in that chapter e. g. problems with the identification of these separate PHOS 

groups as many deposits tend to have characteristics of more than one group, 

such a detailed interpretation of the palaeolatitudinal distribution has proved 

difficult. Only a broad outline of the distribution has been given here. 
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6.6 STATISTICS 

The data are too sparse for complicated frequency tests to be applied to 

individual deposit types. Hence the statistical tests have been kept to a 

minimum. 

6.6.1 The Arithmetic Mean, Median and Mode. 

The mean has been calculated for each mineral deposit type (Table 6.1) as 

the representative of a homogeneous group of which the members are recognisably 

similar. Equal weight was given to each latitude occurrence. The values for the 

mean vary from 23° south (PLSN) to 22° north (SSUV, minimum age). Those 

deposits with a mean value in the southern hemisphere include SSCU, SDEX and 

all the Placer deposits. The deposit types whose mean value is found north of 

the equator are LSBM, OOFE, SSPB, SHBM, SSW, MNFM, LATO and PHOS. Two mineral 

deposit types have a mean value very near to the equator i. e. SSCU and PHOS 

suggesting an even number of deposits in each hemisphere after rotation. 

Table 6.1 also shows the modal values for each deposit type. A mode is 

defined as the most commonly occurring value and is thought to be "typical" of 

the distribution in question. This is a method of determining a measure of the 

central tendency which is not upset by extreme values in the distribution. The 

modal values vary from the equatorial region (0-5°) for LSBM (min), SSCU (min), 

SSUV (max) and PLDI (min and max) to upper middle latitudes (50-55°) for PLDI 

(min) deposits. The modes for each deposit type are similar to their median and 

mean values as would be expected. Some deposit types e. g. OOFE (min) have three 

modal values reflecting their concentration in both equatorial and temperate 

rainfall belts. The PLDI deposits have two modal values which are very 

different (i. e. 0-5° and 50-55°) which may be due to their requirement for 

specific diamond source rocks. Both the arithmetic mean and modal values are 
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valid. However the mode would form a very poor basis for any calculations of an 

arithmetical nature (e. g. standard deviation) as it has excluded arithmetical 

precision in the interests of presenting a typical result. In contrast the 

arithmetic mean may be untypical of the distributions in order to be 

numerically accurate (Moroney, 1951). 

Many distributions are such that very great differences exist between the 

largest and smallest members. They also exhibit a marked lack of symmetry, the 

samples tending to cluster nearer to one extreme than the other. To calculate 

the averages for distributions of this type using the arithmetic mean would be 

misleading. For example, in this case with the data arranged north and south if 

the proportion of deposits in higher palaeolatitudes was high enough to affect 

the statistics, then the average palaeolatitude would increase appreciably. 

Such an average could not be taken as truly representative of the population in 

general. For examples such as the one described it is evident that a measure of 

central tendency is needed which is unaffected by the relatively few extreme 

values in the 'tail' of the distribution. This measure is known as the median 

and is the value in the central position of the distribution (Table 6.1). The 

median values for all the mineral deposit types used in this thesis vary from 

41° south (PLAU) to 350 north (SSW, minimum ages). Those deposit types with a 

median value in the southern hemisphere are SSCU, SDEX and all the Placer 

deposits. Those with a central position of the distribution in the northern 

hemisphere are LSBM, OOFE, SSPB, SSW, MNFM, LATO and PHOS. This division of 

the results into the northern and southern hemispheres is the same as that for 

the mean values. Hence the palaeolatitude distribution of the mineral deposit 

types must not be concentrated in one extreme or the other i. e. towards high or 

very low latitudes. 



158 

The median is the latitude at which the land area to the north and south 

of it are equal only if the rate of mineral deposition is proportional to the 

surface area. If these factors are proportional then the symmetry of 

distribution of deposits is only important if the distribution of continental 

mass is even in both hemispheres. Hence the equator need not necessarily be the 

median of the distribution. 

6.6.2 Skewness in the Distributions 

When plotted on a histogram some distributions are symmetrical about their 

central value while other distributions are skewed i. e. show marked asymmetry. 

Such distributions are divided into two groups, as described below with 

particular reference to this research. 

a) If the 'tail' of the distribution reaches out into the higher values of the 

variate (i. e. palaeolatitude) the distribution is said to show positive 

skewness e. g. LSBM (min and max), SHBM (min and max) and PLOX. 

b) If the 'tail' extends towards the lower values (i. e. lower palaeolatitudes) 

it is said to be negatively skewed e. g. OOFE (min and max), SSCU (min and max), 

SSPB, SDEX (min), PLAU, PLOT, LATO and PHOS. 

The mineral deposit types whose distributions cannot be classed as either 

positively or negatively skewed include; SSCU (max), SDEX (max), SSUV (min and 

max), PLSN, PLDI (min and max) and MNFM (min and max). 

Skewness can only be observed in those histograms which have been compiled 

from a combination of results from both hemispheres. 

6.6.3 Standard Deviation and the Coefficient of Variation. 

The Standard Deviation (s) has been calculated for each mineral deposit 

type (Table 6.1). However the results may be misleading as this test is most 

suitable for distributions which are unimodal i. e. those with one peak and a 
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specific symmetry in the distribution. The formula for the standard deviation 

is; 

S=vL (X - X)ý 

n 

where s is the standard deviation, n is the number of samples, x is the 

arithmetic mean and x are the individual values. The standard deviation values 

calculated for the majority of deposit types were very similar i. e. for LSBM, 

SSPB, SDEX, SSW, PLDI, PLSN, PLOX, PLOT, MNFM, LATO and PHOS (max). The SSCU 

and SHBM deposits have 's' values lower than that of the group above - indeed 

SHBMs have the lowest 's' value of all the deposit types. OOFE5 and PHOS (max) 

deposits have an 's' value of similar size, which is above that of the general 

group. The PLAUs have the highest variability in terms of distribution of 

palaeolatitudes. 
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Table 6.1: Mean, Median, Mode And Standard Deviation for each Deposit Type. 

IIIIIIII 
I MIN DEPOSIT I NO. OF I MEAN I MEDIAN I MODE I STANDARDICOEFFICIENTI 
I TYPE IEXAMPLESi(degrees)I(degrees)1 (degrees) iDEVIATI0N1 OF I 
11I1I I(degrees)IVARIATION %I 
IIIIIIII 
I LSBM MIN I 39 I 14.3 I 4.3 1 0-5 1 21.6 I 20.7 1 

MAX I 39 I 9.5 I 5.4 1 +/-5-10 I 19.5 1 19.6 I 
IIi11 -35-40 &III 
I OOFE MIN I 26 1 9.3 I 7.7 1 40-50 1 33.7 I 33.9 1 
i MAX 1 26 1 9.8 I 7.7 1 45-50 1 34.1 I 34.2 1 
IIIIIIII 
I SSCU MIN I 28 1 -0.6 1 -3.6 1 -0-5 1 18.6 1 20.8 1 
1 MAX 1 28 i -6.9 I -21.0 I -20-25 I 18.2 I 21.9 I 
1IIII1I1 
I SSPB MIN &1 10 I 14.4 1 13.0 I 40-45 1 23.6 I 22.6 I 
1 MAX IIIIIII 
IIIIIII 
I SHBM MIN 1 18 1 9.2 1 8.8 1 5-10 1 11.2 1 11.3 

I 

i 
MAX I 18 1 6.9 1 8.5 1 5-10 I 10.0 1 10.3 

IIIIIII 
1 BDEX MIN 1 54 I -8.9 1 -5.2 1 -20-25 I 23.4 I 23.7 I 
I MAX I 54 1 -11.0 I -21.0 1 -20-25 I 22.2 1 22.0 I 
11IIII1I 
I BBUV MIN I 57 1 22.2 1 35.0 1 40-45 1 27.7 1 24.7 I 
I MAX 1 57 I 17.9 I 29.9 I 0-5 1 27.3 I 25.3 1 
II1IIIII 
I PLAU MIN I 49 1 -12.6 I -41.2 1 -40-45 I 42.2 1 54.4 
I MAX I 49 I -13.2 I -41.2 1 -40-45 I 42.9 1 55.9 I 
1I1I1 0-5 &II 
I PLDI MIN 1 78 I -16.4 1 -11.5 1 -50-55 I 28.6 1 38.9 
1 MAX I 78 I -16.6 1 -11.0 I 0-5 I 28.8 1 39.2 I 
III1IiII 
1 PLBN MIN &1 24 1 -23.3 1 -39.0 1 -40-45 1 23.2 1 34.8 I 
I MAX IIIIII 
IIIIIII 
I PLOX MIN &1 27 1 -22.8 I -37.2 I -35-40 I 27.0 I 40.2 
i MAX IIIIII 
iIIIIII 
I PLOT MIN &I 27 I -22.8 I -28.5 I -15-20 1 26.1 I 38.8 
1 MAX IIIIII 

I 
I 

I 
i 

IIIIIIII 
I MNFM MIN I 13 I 21.2 I 23.5 1 40-45 I 28.1 I 25.3 I 
1 MAX I 13 I 16.5 I 24.1 I 20-25 I 27.2 I 25.5 I 
IIIIIIII 
I LATO MIN 1 94 1 13.1 I 18.8 I 35-40 I 25.1 1 24.4 
1 MAX 1 94 1 10.4 1 18.1 1 15-20 1 26.6 1 26.5 I 
IIIIIII i 
I PHOS MIN 1 121 I 3.2 I 15.8 1 25-30 I 30.6 I 32.8 I 
I MAX 1 121 I 1.5 I 9.4 I 25-30 1 29.9 1 32.7 I 
N. B. A negative sign denotes a latitude in the southern hemisphere. All results 
are based on palaeolatitudes arranged both north and south of the equator i. e. 
90°N to 90°S. 
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To test whether the distribution of palaeolatitudes of one mineral deposit 

type is relatively more variable than that of another, Pearson's Coefficient of 

Variation (v) has been calculated for each deposit category (Table 6.1). The 

test is defined as; 

v= 100 .s 

X 

where v is the coefficient of variation and the other symbols are as for the 

previous equation. Expressed as a percentage of the mean palaeolatitudes, the 

PLAU and PLOX deposits show the greatest variability. The PLDI, PLSN, PLOT, 

OOFE and PHOS groups have similar coefficients of variation which are below 

that of the other two. Those deposit groups with the lowest variability include 

LSBM, SSCU, SSPB, SHBM, SDEX, SSUV, MNFM and LATO. As with the standard 

deviation values the PLAU deposits are the most variable. However, in general, 

the carbonate- and clastic-hosted mineral deposit groups are the least variable 

in terms of the percentage of mean palaeolatitudinal occurrence. 

6.7 Relative Distributions of Land Mass and Mineral Deposits 

The results for each deposit type concerning the percentages of deposits 

in certain latitudes at specific periods in the Earth's history can only be 

interpreted correctly if the proportion of land mass in those latitudes at that 

time is known. If the percentage of mineral deposit occurrence is the same as 

the percentage of land mass it is not possible to demonstrate whether any 

palaeolatitude control upon the distribution of the deposits exists e. g. the 

occurrence of 60t land mass and 60% mineral deposits within 30° north and south 

of the equator for a specific time precludes the determination of any 

palaeolatitude influence that may exist. Table 6.2 was produced in an effort to 

solve this dilemma. Briefly the results of this investigation using Tarling's 

reconstructions are as follows. 
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Table 6.2: % Continental Mass: % Mineral Deposits for each Rotation 

IIII 
II NORTHERN HEMISPHERE I SOUTHERN HEMISPHERE I 
IIII 
IIIIIII 
I PERIOD IROTATION X CONT AREA X MIN DEPS IX CONT AREA IX MIN DEPS I 
I NAME tM. Y. > IIIIIIIII 

IIIII{ 
I PRESENT 10I 65.7 I 34.3 

MIN AGES 11 47.2 II 52.8 I 
IMAX AGES II 41.9 1 58.1 I 

iII1III 
I EOCENE I 50 1 60.4 39.6 
{ IMIN AGES 11 53.1 II 46.9 I 

IMAX AGES 1 57.3 II 42.7 I 
IIIIIII 
I CRET 1 100 I 53.6 II 46.4 I 

MIN AGES 1I 68.3 11 31.7 I 
i IMAX AGES I1 69.8 I1 30.2 
IIIIII 
I U. JUR I 130 61.4 1 38.6 I1 

IMIN AGES 1I 70.8 I1 29.2 1 
{ MAX AGES t1 68.2 II 31.8 I 
IIIIII 
1 L. JUR 1 200 58.9 II 41.1 iI 

IMIN AGES I1 100.0 1I0.0 I 
{ MAX AGES fI 96.4 tI3.6 I 
{IIIIIi 
I PERMO - 250 1 43.8 II 56.2 I 
I TRIASS IMIN AGES 11 66.2 II 33.8 I 

MAX AGES II 74.3 II 25.7 { 
IIIIIII 
1 U. CARB 300 I 34.6 65.4 t{ 
1 IMIN AGES II 41.7 1 58.3 I 

IMAX AGES 11 37.1 11 62.9 { 
I1I11I1 
1 L. CARB I 350 I 22.0 II 78.0 1I 
I IMIN AGES 1I 34.4 1 65.6 

IMAX AGES 1 11 21.6 1 78.4 
IIII1II 
I L. DEV 1 400 I 16.7 11 83.3 1I 
1 MIN AGES II 25.9 II 74.1 I 
I MAX AGES II 18.2 I1 81.8 I 
IIIIII 
I SIL &I 450 1 18.1 II 81.9 1 
I ORD IMIN AGES 1I 38.3 I1 61.7 
1 MAX AGES 11 37.5 11 62.5 
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a) Table 6.2, Northern Hemisphere, 0- 450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. These show the percentage of mineral 

deposits is greater than the percentage of land mass in the northern hemisphere 

from the Cretaceous (100 m. y. ) to the Ordovician/Silurian period (450 m. y. ). 

The exception to this trend is at present when the percentage of land mass is 

greater than that of mineral deposits. This phenomenon may be caused because at 

present only syngenetic deposits are seen. The secondary (epigenetic) deposits 

that will form in rocks of the present age have yet to do so and therefore 

cannot be considered. Hence the apparent lack of deposits relative to land 

mass. The proportions of both these criteria for the 50 m. y. and 130 m. y. 

periods are very similar. 

ii) Maximum Age-Derived Palaeolatitudes. The percentages of continental mass 

and mineral deposit occurrence are very similar for the Eocene (50 m. y. ), upper 

Jurassic (130 m. y. ) and Upper Carboniferous to Lower Devonian (300-400 m. y. ) 

periods. There is a greater proportion of land in the northern hemisphere than 

the percentage of mineral deposits at the present time but the converse is the 

case for the Cretaceous, Lower Jurassic (200 m. y. ), Permo-Triassic (250 m. y. ) 

and Ordovician/Silurian periods. 

b) Table 6.2, Southern Hemisphere, 0- 450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The proportion of surface area is 

greater than the rate of mineral deposit formation for the Cretaceous, Upper 

Jurassic, Permo-Triassic, Lower Carboniferous (350 m. y. ) and the 

Ordovician/Silurian periods. The reverse is true from the present to 50 m. y. 

ago and very similar proportions of surface area and mineral deposit occurrence 

result for the Upper Carboniferous (300 m. y. ) and Lower Devonian (400 m. y. ). No 

palaeolatitudes were determined in the southern hemisphere for mineral deposits 

of Lower Jurassic age. 

ii) Maximum Age-Derived Palaeolatitudes. The only period when the percentage of 

mineral deposits is greater than the continental mass in the southern 
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hemisphere is at present. Very similar percentages resulted for the Eocene and 

the Upper Carboniferous to Lower Devonian periods. From the Cretaceous to the 

Permo-Triassic and during the Ordovician/Silurian periods the proportion of 

land mass is greater than that for mineral deposits. 

To sum up, when the Earth is divided into the northern and southern 

hemispheres the percentages of mineral deposits and of continental mass are not 

identical. In general they do follow similar trends i. e. if there is a greater 

surface area in the southern hemisphere then the majority of mineral deposits 

occur in the same hemisphere e. g. during the Upper Carboniferous. The 

exceptions are at the present and during the Pernio-Triassic period. 

Up until now this research has been centred upon the division of the Earth 

into three zones, each of 600 of latitude. To be consistent the relative 

proportions of continental mass and mineral deposits have been calculated for 

these latitude zones so a more detailed comparison of their relative 

distributions is possible (as shown in Table 6.3) than from Table 6.2. 

a) Table 6.3, >30°N, Section A, 0-450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. There are three periods when the 

percentage of land mass is greater than mineral deposit occurrences (the 

Present, Permo-Triassic, Upper Carboniferous) and two periods (Lower Jurassic 

and Lower Devonian) when the reverse is true. The surface area and rate of 

mineral deposit formation are proportional from the Eocene to the Upper 

Jurassic period (50-130 m. y. ). No deposits of Lower Carboniferous age plot in 

this area and no continents occur in this region on the Ordovician/Silurian 

reconstruction. 

ii) Maximum Age-Derived Palaeolatitudes. There are three periods when the 

percentage of land mass is greater than the percentage of mineral deposit 

occurrences (the Present, Eocene and Upper Carboniferous) and two when the 

reverse is true (Upper and Lower Jurassic). An agreement between the surface 
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Table 6.3: % Continental Mass: % Mineral Deposits for each Rotation 

II 
II 
II 
III 

III 
NCLE DATA >300 NI NCLE DATA 300-300 I NCLE DATA >300 B I 

(SECTION A) I (SECTION B) I (SECTION C) i 

i i I I I I 
I PERIOD IROTATION % CONT x MIN Ix CONT IX MIN x CONT Ix MIN I 
I NAME I (N. Y. ) I AREA IDEPOSITSI AREA IDEPOSITSI AREA IDEPOSITSI 
IIIIIIIII 
IIIIIIIII 

PRESENT 10 53.6 I 19.9 II 26.4 1 
I IMIN AGES 11 21.6 11 45.6 11 32.8 I 
I MAX AGES 1I 16.2 1I 44.9 I 38.9 
IIIII11I 
1 EOCENE 1 50 1 39.4 1I 40.4 1I 20.2 I 
1 IMIN AGES 34.7 I1 44.9 II 20.4 I 
I IMAX AGES 11 25.3 I1 61.3 11 13.3 1 
IIiIIII11 
1 CRET I 100 1 31.5 1I 43.5 1I 25.0 
I IMIN AGES 11 30.2 II 52.4 I1 17.5 I 

MAX AGES 32.1 I 43.4 I 24.5 1 
I1IIIII11 

U. JUR 1 130 1 35.5 I1 39.5 11 25.0 
IMIN AGES II 41.7 I1 45.8 1I 12.5 I 

1 IMAX AGES 11 51.5 I1 36.4 1I 12.1 
IIIIIII1I 

L. JUR 1 200 1 27.0 1 47.2 II 25.8 
1 IMIN AGES 1 66.7 1I 33.3 1I0.0 1 
I IMAX AGES 11 67.9 I1 28.6 113.6 
iI111I111 

PERMO -I 250 1 18.6 11 45.0 1I 36.4 
I TRIASS iMIN AGES 113.1 I1 92.2 I14.6 1 
1 IMAX AGES I10.0 1 1100.0 110.0 
IIIIIIII 
I U. CARB 1 300 1 10.8 1I 36.4 1I 52.8 I 
1 IMIN AGES 112.1 11 91.7 I16.3 1 

MAX AGES 112.9 11 80.0 I1 17.1 
IIIIIIII 
1 L. CARB I 350 1 6.3 1 39.4 1I 54.3 1 
1 MIN AGES II0.0 I1 71.9 1I 28.1 1 
1 MAX AGES I10.0 1 86.3 I1 13.7 
I1111I11 
I L. DEV 1 400 1 6.4 11 45.0 1I 48.6 11 
1 IMIN AGES I1 11.1 1I 29.6 11 59.3 1 
1 MAX AGES II6.0 11 33.3 11 60.6 1 
111111I1 
1 SIL &1 450 1 0.0 I1 52.1 1I 47.9 1 
1 ORD IMIN AGES 1I6.4 II 59.6 11 34.0 1 
1 IMAX AGES 117.1 11 64.3 11 28.6 
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area and rate of mineral deposit formation exists for the Cretaceous and Lower 

Devonian periods. No deposits of Permo-Triass or Lower Carboniferous age plot 

in this area and no land occurs on the Ordovician/Silurian reconstruction above 

300 north. 

b) Table 6.3,30°N - 3041S, Section B, 0-450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. During the Lower Jurassic and Lower 

Devonian periods the percentage of land mass is greater than that of mineral 

deposits. However at present, in the Cretaceous, Permo-Triassic, Lower and 

Upper Carboniferous periods the converse is the case. The two factors are 

virtually proportional for the Eocene, Upper Jurassic and Ordovician/Silurian 

periods. 

ii) Maximum Age-Derived Palaeolatitudes. These results are similar to those for 

the minimum age-derived palaeolatitudes. But the proportions of land mass and 

mineral deposits are only similar for the Cretaceous and Upper Jurassic 

periods. Another difference is that there is a greater percentage of mineral 

deposits than land mass for the Ordovician/Silurian period. Also during the 

Permo-Triassic all the mineral deposits were formed in this area. 

c) Table 6.3, >300S, Section C, 0-450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The percentage of land mass is greater 

than that of mineral deposits from the Cretaceous to the Lower Carboniferous 

and in the Ordovician/Silurian period. There were no deposits of Lower Jurassic 

age which plotted in this area. The percentage of mineral deposits is greater 

than that of land mass only in the Lower Devonian period and at present. The 

relative proportions of land mass and mineral deposits are remarkably similar 

for the Eocene period. 

ii) Maximum Age-Derived Palaeolatitudes. The percentage of land mass is greater 

in the Eocene, from the Upper Jurassic to the Lower Carboniferous and during 

the Ordovician/Silurian period. However the reverse is true for the Lower 

Devonian and at present. No mineral deposit examples of Permo-Triassic age plot 



167 

in this area and the distribution of land and rate of mineral deposit formation 

are proportional for the Cretaceous period. 

It has been mentioned that the errors in the determination of the 

palaeolatitudes probably give an average error bar of 5° upon the values. So 

the relative distributions of land and mineral deposits have been calculated 

for the broader latitude zone from 350 north to 350 south (Table 6.4) to see if 

this division influences the results shown in Table 8. 

a) Table 6.4, >35°N, Section A, 0-450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The percentage of land mass is greater 

than that of mineral deposits at present, in the Cretaceous, Permo-Triassic and 

Upper Carboniferous periods. The percentage of mineral deposits is about twice 

that of the land mass for the Lower Jurassic and Lower Devonian periods. The 

relative distributions of land mass and mineral deposits are virtually the same 

for the Eocene and Upper Jurassic. No deposits of Lower Carboniferous age plot 

in the area above 35° north and the Ordovician/Silurian map has no land mass in 

this region. 

ii) Maximum Age-Derived Palaeolatitudes. The general trend shown is that the 

percentage of land mass is greater than that of mineral deposits e. g. for the 

present to the Cretaceous and in the Lower Devonian. The reverse is true for 

the Upper and Lower Jurassic periods. No deposits of Permo-Triassic, Lower or 

Upper Carboniferous age plot in this area and no land occurs in this region on 

the Ordovician/Silurian reconstruction. 

b) Table 6.4,35°N -_3508, Section B. 0-450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The overall pattern shown by deposits 

in this area is that the percentage of mineral depsits is greater than the 

percentage of land mass. The exception is the Lower Jurassic period. There is a 

strong correlation between the relative distributions of land and mineral 

deposits in the Eocene, Lower Devonian and Ordovician/Silurian. 



168 

Table 6.4: % Continental Mass: % Mineral Deposits for each Rotation. 

III 
NCLE DATA >35° NI NCLE DATA 35°-35° I NCLE DATA >35° SI 

I (SECTION A) I (SECTION B) I (SECTION C) 
IIIIIIII 
I PERIOD IROTATION IX CONT I% MIN X CONT IX MIN IX CONT x MIN 

NAME (N. Y. ) AREA IDEPOSITSI AREA iDEPOSITSI AREA IDEPOSITSI 
IIIIIIII 
IIIIIIII 
I PRESENT 101 50.0 1I 24.4 1 

.1 
25.7 1 

1 MIN AGES 1I 15.6 1I 58.0 1I 26.4 
I IMAX AGES 1 12.1 1 57.0 1I 30.8 
IIIIIIII 
I EOCENE I 50 I 35.0 1I 46.5 II 18.6 

IMIN AGES I1 32.0 II 48.0 II 20.0 
IMAX AGES 11 16.2 I 70.3 11 13.5 

IIIII1II 
1 CRET I 100 1 31.8 I 48.0 II 20.2 1 
{ MIN AGES 1I 23.0 I 59.0 II 18.0 
{ IMAX AGES 11 24.1 II 55.6 1I 20.4 
{I1IIIII 
I U. JUR 130 32.4 1 43.7 11 24.0 11 
{ IMIN AGES 11 31.3 I1 56.3 II 12.5 1 
{ IMAX AGES II 25.8 II 46.2 I1 10.8 
{IIIIIII{ 
1 L. JUR 1 200 1 24.9 II 51.0 11 24.1 1 
{ MIN AGES I1 63.9 1I 33.3 II2.8 1 
{ MAX AGES I1 67.9 32.1 I10.0 1 
IIIIIIII 
I PERMO -1 250 15.4 I 49.1 II 35.1 
I TRIASS IMIN AGES II1.5 I1 93.9 114.5 t 
{ IMAX AGES I 0.0 I1 100.0 I10.0 
iIIIIIII{ 
I U. CARB 1 300 I 10.0 11 42.7 I1 47.4 I{ 
I IMIN AGES 112.0 I1 89.8 1I8.2 
I MAX AGES 1 0.0 1 86.1 I1 13.9 
IIIIIIII 
I L. CARB I 350 1 5.2 11 45.3 1I 49.6 1{ 
I MIN AGES 1 0.0 II 80.6 1I 19.4 1 
1 MAX AGES 1 0.0 1 88.2 1I 11.8 
111111II 
1 L. DEV I 400 1 4.8 I1 51.6 i1 43.7 I 
I IMIN AGES 117.4 11 51.9 I1 40.7 
1 MAX AGES 1I3.0 1I 51.5 I1 45.5 
IIII1II1 
1 SIL &I 450 1 0.0 11 59.4 I1 40.6 1 
I ORD IMIN AGES 1I4.3 1I 66.0 I1 29.8 1 
I MAX AGES 113.6 11 71.4 11 25.0 
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ii) Maximum Age-Derived Palaeolatitudes. The periods which show correlation 

between percentages of land and mineral deposits are the Cretaceous, Upper 

Jurassic and Lower Devonian. Otherwise the results are the same as those for 

the minimum age-derived palaeolatitudes. However during the Permo-Triassic 

period all the mineral deposits occurred in this equatorial region. 

c) Table 6.4, >350S, Section C, 0-450 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The percentage of land mass is greater 

than that of mineral deposits for the Lower and Upper Jurassic, Lower and Upper 

Carboniferous and in the Ordovician/Silurian period. The converse is true for 

the Permo-Triassic. There is some correlation of the relative distributions of 

land mass and mineral deposits in the Lower Devonian and from the Cretaceous to 

the present. 

ii) Maximum Age-Derived Palaeolatitudes. There is a higher proportion of land 

mass than mineral deposits for the majority of periods i. e. Eocene, Upper 

Jurassic, Lower and Upper Carboniferous and the Ordovician/Silurian period. The 

only exception is at present. Some correlation occurs in the Cretaceous and 

Lower Devonian between the two proportions and no deposits of Lower Jurassic or 

Permo-Triassic age plot in this area. 

Previously all results determined from Tarling's reconstructions have been 

compared with the data derived from BP palaeogeographic reconstructions. So the 

relative distributions of land mass and mineral deposits according to the BP 

maps are given in Table 6.5. 

a) Table 6.5, >30°N, Section A. 50-200 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The percentage of land mass is greater 

than the percentage of mineral deposits in this area from the Eocene to the 

Lower Jurassic period. 

ii) Maximum Age-Derived Palaeolatitudes. The relative distribution of 

continental mass and mineral deposits are very similar for the Cretaceous and 
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Table 6.5: % Continental Mass: % Mineral Deposits for each rotation. 

IIII 
I BP DATA >30°N IBP DATA 30°N-30°S I BP DATA >30°S 1 
Ii (SECTION A) I (SECTION B) I (SECTION C) I 
iIII 
IIIIIIII 
I PERIOD IROTATION Ix CONT IX MIN % CONT % MIN Ix CONT IX MIN I 
I NAME (M. Y. ) I AREA IDEPOSITSI AREA IDEPOSITSI AREA IDEPOSITSI 

III 
1III1II 

I EOCENE 1 50 1 52.5 I 16.5 II 31.0 I 
I IMIN AGES i1 40.0 I1 50.0 II 10.0 1 

IMAX AGES I1 28.4 11 59.5 I1 12.2 I 
I1IIII1II 
iIIIIiII 
i CRET I 100 I 42.5 11 21.3 II 36.2 1I 
I MIN AGES 11 35.6 II 47.5 I1 16.9 I 

MAX AGES 11 38.5 I 42.3 1I 19.2 I 
IIIIIIiIi 
II1I1III 
I U. JUR 130 I 39.7 II 21.3 I1 39.0 1I 
I IMIN AGES 11 30.8 I 53.8 II 15.4 
1 MAX AGES II 38.6 1I 52.9 1I8.6 1 
1I1IiIIII 
IIII1IIII 
I L. JUR I 200 1 50.8 II 24.2 11 25.0 1I 
1 IMIN AGES II 58.3 II 41.7 110.0 I 
I IMAX AGES 1I 60.7 11 39.3 I10.0 1 
IIIIIII 

Upper Jurassic periods. The proportion of land mass is much larger than the 

percentage of mineral deposits in this area during the Eocene. The reverse is 

true for the Lower Jurassic period. 

b) Table 6.5,30°N - 30°8, Section B, 50-200 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The results for this area i. e. 300 

north to 300 south are notable as the percentage of mineral deposits is greater 

than the percentage of land mass for every period from 50 to 200 m. y. ago. 

ii) Maximum Age-Derived Paleolatitudes. These produce exactly the same resul 

as those described for minimum age-derived palaeolatitudes. 
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c) Table 6.5. >30118, Section C, 50-200 m. y. 

i) Minimum Age-Derived Palaeolatitudes. The Eocene to Upper Jurassic periods 

show that the percentage of land mass is much greater than that of mineral 

deposits for latitudes above 30° south. No mineral deposit examples of Lower 

Jurassic age plot in this area. 

ii) Maximum Age-Derived Palaeolatitudes. These palaeolatitudes give exactly the 

same results as those described above for the minimum age-derived 

palaeolatitudes. 

6.8 The Results in Tabular Form 

The palaeolatitudes are listed in tabular form in Appendix I. A table was 

compiled for each mineral deposit type comprising all the examples used. Data 

on each example includes the mine/deposit name, its location, present co- 

ordinates (computer coded as described in Chapter 5, section 5.3.1), age of 

mineralisation in millions of years and the palaeolatitudes determined from the 

Tarling and BP reconstructions. The column headed 'ROTATION' requires more in 

the way of an explanation. The number on the left hand side of the column i. e. 

50,100... 450 indicates the age of the reconstruction from which the 

palaeolatitude was determined. The abbreviated continental names on the right 

hand side of the column represent the continental mass upon which the deposit 

was thought to have been situated at the time of formation. This procedure has 

been described in Chapter 5, section 5.3.2. The accession numbers (A. No. ) were 

used for the correlation of data during the research and are of no relevance to 

the conclusions. 
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6.9 The Results in Diagrammatic Form. 

The palaeogeographic reconstructions of Tarling labelled Figures 6.15 a-j 

represent 50 million year time slice maps from 0 to 450 m. y. ago. The 

palaeolatitudes plotted are those determined from the minimum ages given for 

the deposits. These maps are not fully described here. Instead the results for 

individual deposit types as shown in the previous histograms have been 

discussed in detail. 

6.10 Conclusion 

Considering the northern and southern hemispheres together SSCUs have the 

narrowest latitudinal range of occurrence i. e. 35° from the equator. BSPB, SHBM 

and SDEX deposits have a range of 45°, LSBMs, OOFEs and MNFMs occur within 50° 

of the equator. PLAUs are found within 60°, SSUV and LATOs 65°, PHOS 70° and 

PLDI deposits occur up to 75° of latitude from the equator. From the standard 

deviation and coefficient of variation the variability of the distributions of 

most of the sediment-hosted deposit types discussed in this thesis is very 

similar. 

The deposits which show the greatest variabilities are the placers, OOFE 

and PHOS groups which are clearly syngenetic in origin. However within those of 

least variability the MNFM and LATO groups are the only types which are 

generally considered to be syngenetic. The remainder are thought to be 

epigenetic to varying degrees i. e. LSBMs are considered to be epigenetic 

whereas SSCU could be early dpagenetic. It is difficult to assess the 

significance of these data. The sample size of many of the mineral deposit 

groups is very small (i. e. < 30) so the reliability of the statistics may be 

questionable. Secondly, many of the placer and LATO deposits are 1 m. y. old or 

younger whereas the majority of deposits with least variability are older than 
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50 m. y. so the statistics have been calculated on palaeolatitudes derived from 

palaeogeographic reconstructions rather than from actual latitudes. However it 

may be that syngenetic deposits encounter more numerous occasions where all the 

conditions of formation are met and so the frequency and latitudinal extent of 

deposit occurrences is greater. But the conditions of the formation of 

epigenetic deposits are more limited and more strictly confined hence there is 

less variability in their palaeolatitudes of distribution. 

Table 6.2 shows the percentages of land mass and mineral deposits in the 

northern and southern hemispheres for each geological period. The general trend 

is that there is a similar proportion of land mass to mineral deposit 

occurrence in each hemisphere for a given period. However latitudinal zones of 

60° produce a different trend. It is evident from Tables 6.3 and 6.4 that the 

rate of mineral deposit formation within certain latitudes is not directly 

related to the percentage of continental mass in the same latitude zone. This 

is also true for the data derived from the BP maps shown in Table 6.5. These 

results indicate that the distribution of mineral deposits in each 60° latitude 

zone is uneven otherwise the trend shown in Table 6.2 for the northern and 

hemispheres would be repeated in the narrower latitudinal belts. The findings 

clearly substantiate the case for a palaeolatitude control upon the formation 

of some mineral deposit types. 

A number of Ordovician/Silurian deposits are anomalous. This is probably a 

reflection of the poor quality of the data available for deposits of this age - 

in terms of mineralisation and deposit age estimates and also the 

palaeomagnetic data from which palaeogeographic reconstructions were derived. 

In general the discrepancy between the two sets of palaeolatitudes (i. e. 

those of Tarling and BP) is very small. There is only one instance when a 

palaeolatitude plots in both the northern hemisphere and the southern 

hemisphere i. e. from the 130 m. y. reconstruction with regard to the region now 

represented by Afghanistan and Pakistan. However these results are questionable 
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Table 6.6: Summary table showing ranges of palaeolatitudes derived from minimum 

arxi maximum ages of deposits. 

IIII 
DEPOSIT MINIMUM AGE 11 MAXIMUM AGE 

TYPE NORTH I SOUTH II NORTH I SOUTH 
IIý II It 
II 11 II 

LSBM 50° 1 30° II 50° 1 30° t 
I f{ II 

1II 11 II 
I OOFE 1 500 I 501" 11 50° I 50° 1 

II II II 
II II II 

SSCU 1 25° I 350 11 20° t 35° I 
II {I II 

{I1 II iI 
SSPB 45° 1 25° 11 45° I 25° 

II II II 
III I' II 

SHBM 1 45° 1 35° 11 20° { 350 t 
{II II II 

II II II 
I SDEX 1 30° 1 45° 11 30° 1 45° 1 

I1 II II 
II II II 

I SSUV 1 45° I 65° 11 50° 1 65° 1 
II II II 
II II II 

I PLAU 1 65° 1 60° II 65° 1 60° 1 
{II II II 

II II {I 
PLDI 1 50° 1 750 11 50° 1 754" I 

II II I1 
II II II 

PLSN 1 20° I 50° 11 20° 1 50° I 
II II II 

tII II II 
PLOX 1 45° I 50° II 45° I 50° 

II II I 
II II I 

I PLOT 1 700 1 50° 11 70° 1 50° 1 
I1 11 I 

{I{ II I 
I MNFM I 50° t 50° II 45° 1 50° 

II II I 
Ii II I 

{ LATO 1 55° I 65° II 55° I 65° 1 
tII II I1 
{II II { 

PHOS 1 60° 1 700 11 550 1 70° 1 
11 11 1 
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as there was uncertainty as to whether this region should be rotated with the 

main African continent or the Indian subcontinent. Generally the greatest 

discrepancy in palaeolatitude sets was for the Indian results, probably due to 

inadequate palaeomagnetic observations. The other area from which differing 

results are produced is Central America. Again this is to be expected because 

of uncertainty of which continent to rotate this region with. The other area 

composed of micro-continents is Sundaland (i. e. Indonesia, Thailand etc. ) which 

may be a potential source of error shows very few discrepancies between the 

results from Tarling and BP. Otherwise the two sets of palaeolatitudes are +/- 

10° of each other. 

An examination of the palaeolatitudes for specific regions reveals there 

are no particular regions which have anomalous palaeolatitudes on a series of 

contiguous time slices. However the area known as Europe today at 200 m. y. is 

notable as many mineral deposit types which are generally in low latitudes plot 

at higher latitudes than would be expected. These include LSBM 45°N; OOFE 450N; 

SHBM 420N; SSPB 44°N; MNFM 43°N. Generally the BP palaeolatitudes determined 

for the same area at that time are still outside the expected low latitude 

limits for these deposit types despite being about 5° lower than the Tarling 

determined palaeolatitudes. This may be due to the prevailing climatic 

conditions of the Earth at that time (see Chapter Eight, section 8.2.2.3). 

In conclusion there is a strong indication that there is a palaeolatitude 

control upon the formation of some types of Phanerozoic sediment-hosted mineral 

deposits. However the palaeolatitudinal range of different deposit types is 

seen to vary considerably as summarized below. 

Some deposits are concentrated (at least in part) in the equatorial 

rainfall belt and they include the LSBM, OOFE, SHBM, SDEX, SSUV, PLDI and PLSN 

deposits. Conversely the BSCU, PLAU, PLOT, PLOX, MNFM and PHOS groups are 

suppressed in numbers in this region. The warm arid climatic belt from 1511 to 
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40° shows a concentration of SSCU, PLOT, MNFM and PHOS deposits but very few 

examples of the SSPB, SHBM, SSUV, PLSN and PLOX groups occur in this latitude 

zone. Finally OOFE, SSUV, PLAU, PLDI, MNFM and PHOS deposits all show peaks in 

their distribution in the warm temperate rainfall belt (about 40° - 55°). 

In the introduction it was mentioned that a low latitude control upon the 

formation of mineral deposits was particularly important for the reasons 

outlined. So observations from the data on this matter are detailed below. A 

30° latitude limit upon the distribution of deposits at their time of formation 

does appear to exist for a number of deposit types examined here. Many of the 

examples which do not occur within this area (e. g. some LSBM deposits) are 

found within the error bars which may be in the order of 5° of latitude. One 

group of deposits which do not show the expected latitude control upon their 

formation are the SSUV deposits. The mineral deposit types which particularly 

illustrate the low latitude control upon their formation are the LSBM, SSCU, 

SSPB, SHBM and SDEX groups (Figures 6.16 a and b). A remarkably large 

proportion of these deposits plot within the zone 35° north and south of the 

equator -a trend which is observed in both the minimum and maximum age-derived 

palaeolatitude plots. Reasons for the anomalous positions of some of the 

examples have been given previously. In Chapter Three, section 3.2.7, a 

question was posed as to whether a continuum of stratabound base-metal (Cu, Pb, 

Zn) deposit types existed. These results seem to indicate that there is at 

least one genetic control upon some groups of mineral deposits which may be 

applicable to all types. 
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CHAPTER SEVEN 

DISCUSSION: PART ONE: PALAEOMAGNETISM 

The palaeomagnetic techniques used, the selection of data and the 

assumptions which have been made during the course of the research must now 

be more fully evaluated in view of the results which they have produced. 

7.1 Errors 

The total effect of the errors involved in the thesis is not only 

unknown but is also very difficult to determine. The different types of error 

occur in many aspects of this research and are given below. 

7.1.1 Errors in the Palaeomagnetic Methods 

In view of the difficulties associated with the selection of 

palaeomagnetic data as detailed in Chapter Two, it must be emphasised that 

much subjective evaluation is involved in such an analysis and selection 

procedure. These assessments should be most likely to agree when the data 

have also been objectively analyzed. However such objective information is 

not always available, particularly for earlier palaeoreconstruction studies 

(Tarling, 1985b). 

it is obvious that any successful application of palaeomagnetism must 

depend upon being able to show that the assumptions which are made are fully 

justified. With regard to palaeomagnetism these concern: 

i) the long term nature of the geomagnetic field, 

ii) the origin of the permanent magnetisations of rocks, 
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iii) the magnetic stability of rocks. 

The above have been described and discussed in both Chapter Two and Chapter 

Four, section 4.2 and it is not necessary to examine these assumptions 

further. With the acceptance of the above, the sources of error within 

palaeomagnetic techniques must now be outlined. 

7.1.1 (a) Errors in Laboratory Techniques. 

In laboratory determinations the following criteria are particularly 

important if a standard, relatively reliable procedure is to be achieved and 

maintained. 

D Preferably a minimum of five separate sites (N = 5) must have been 

sampled, with approximately five samples (n = 5) collected from each site 

thus tending to reduce the effect of secular variations and other geomagnetic 

fluctuations. 

ii) These samples have been subjected to either alternating field (AF) or 

thermal (TH) demagnetisation procedures to establish their magnetic stability 

and number of magnetic components. 

iii) oC 95° for each site must not exceed 10°. 

iv) The remanence of each individual rock specimen must have been accurately 

measured i. e. the direction of each vector must be within 5°, and its 

intensity within 5%. Such a requirement is conventionally met if the 

intensity of magnetisation is at least ten times that of the noise level of 

the magnetometer being used. The requirement is also satisfied if the 

specimen is magnetically homogeneous. However in some circumstances repeat 

measurements allow the vector to be defined despite a lower intensity and 

detailed sampling may also allow small-scale inhomogeneities to be averaged 

out (Tarling, 1985b). 

Such criteria are inadequate as inhomogeneous and anisotropic data may 

have been included, but such properties are frequently either not measured or 
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not reported (Tarling, 1983). Also these criteria are not themselves beyond 

question e. g. the minimum number of observations is much too small to ensure 

adequate averaging of secular variations. In addition to the inadequacies in 

these criteria it is also impossible to apply them rigidly e. g. much of the 

data from the USSR are not readily available in sufficient detail to make 

full evaluation. In these and many other cases the construction of the polar 

wander path has necessarily included the large element of subjective 

assessment mentioned in the introduction. This is discussed more fully in 

section 7.1.1. d. 

7.1.1 (b) Errors in the determination of Primary Magnetisation 

While magnetic stability is a necessary prerequisite if the primary 

(original) magnetisation is to be retrieved from a sample, secondary 

magnetisation could readily have arisen that may have a higher stability 

than the primary remanence. The original magnetisation may be unstable to 

later physical (e. g. temperature or pressure) or chemical processes and so be 

eliminated or modified over time. If the original magnetisation survives it 

may coexist with later, secondary magnetisations and be difficult to isolate 

and identify (Park, 1983). Determining whether the natural remanent 

magnetisation or residual permanent magnetisation of a sample is primary or 

not is often difficult and greatly influences the inferred palaeolatitude. 

Therefore the two basic problems with the interpretation of remanences are 

firstly whether any primary magnetisation remains in the sample to be 

detected and secondly is it possible to isolate this primary remanence from 

all secondary components? 

In particular, any chemical changes that result in the creation of new 

haematite crystals are likely to be associated with a chemical remanence that 

may have an extremely high coercivity and high blocking temperature. If the 

primary remanence is carried by magnetite (of lower coercivity and lower 
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blocking temperature) the secondary component will then have the highest 

stability. It is therefore essential to establish, if possible, the actual 

ages of the different components of remanence (Tarling, 1983). 

To determine whether the magnetic minerals of a rock are of primary or 

secondary origin the textures of the minerals should be examined. Those 

minerals formed at high temperatures commonly have different textures from 

those that have formed by low-temperature oxidation (Haggerty, 1976). In 

addition the textural relationship of the minerals in a sedimentary rock will 

frequently allow an assessment of the sequence of diagenetic and post- 

diagenetic changes that have occurred. Identification of the minerals 

carrying the remanence can then be related to the petrological information 

and realistic evaluations can then be made of the probable age of any stable 

magnetisations associated with formation of specific minerals. However this 

is reliant upon new minerals being formed at the same time as the stable 

magnetisation. Such a method is invalid if the magnetisation alone is 

affected by later processes and no minerals are formed during these 

processes. 

Chemical demagnetisation techniques, such as passing acids through 

permeable sediments to preferentially remove some components of the rock, may 

also aid in the determination of a magnetisation associated with detrital 

grains (Collinson, 1967). In the case of sediments carbonate cements can be 

readily removed together with the magnetisation associated with the primary 

grains (Henshaw and Merrill, 1980). The main difficulty with this technique 

is the necessity for high permeability e. g. in low permeability sediments the 

magnetisation associated with surface detrital grains may be lost by chemical 

action whilst the interior cement of the sample may be largely unaffected. 

Also the technique does not discriminate between detrital grains unchanged 

since their deposition and those which have been replaced or oxidized in situ 
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but are still detrital grains. Petrological studies remain essential for such 

distinctions to be made. 

A major test to establish which components are primary is the fold/tilt 

test which allows dating of the remanence relative to the time at which the 

tectonic movements took place. In most cases a remanence that has survived 

tectonic disturbance is likely to have been acquired very early in the rock's 

history but it could still have been acquired as a result of chemical changes 

after the rock had originally formed. Tarling (1983) considered that the 

largest source of error in orientation and sample collection may be in the 

assessment of the tectonic correction by which the observed directions of 

remanences are converted to their original orientation when their primary 

remance was acquired. In the selection of palaeomagnetic data Tarling (1983) 

noted that frequently it was assumed that observed magnetisation of samples 

were primary if no field or tilt tests were available to determine otherwise. 

On the occasions this assumption was made an element of unquantifiable 

unreliability was introduced into the results. 

One of the major uncertainties in most palaeomagnetic studies is 

therefore distinguishing whether the magnetic ages of the rocks sampled are 

the same as the ages of the rocks themselves. If this can be established then 

the next major source of error is usually in the determination of the 

correction required for tectonic disturbances since the magnetisation was 

acquired. 

7.1.1 (c) The Importance of Autochthonous and Allochthonous Tectonic Regimes. 

Fundamental to any conclusions drawn using palaeomagnetic data to 

determine the palaeolatitude of a particular region is the reliability of the 

polar wander path for that particular tectonic block. It is vital to 

establish that the rocks under consideration do actually belong to the same 

tectonic unit for which the curve has been derived. Such a dilemma is faced 
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when areas of considerable crustal mobility (e. g. within orogenic zones) are 

examined as small elements within the area may have moved as discrete 

separate units. 

Some mineral deposit types are commonly found in rift zones but 

individual fault blocks may have been rotated separately as in the Lebanon 

where the blocks are on a scale of 50 x 200 km (Freund and Tarling, 1979). 

While in other areas, such as Alaska, tectonic units may have been translated 

over several hundreds or thousands of kilometres (Tarling, 1983). Even in a 

localised case considerable errors would be induced if the behaviour of any 

one block was thought to reflect the total regional pattern of fault motion. 

In folded terrain the supracrustal layers may be highly mobile so can move 

separately from the basement (allochthonous) or they may be rigidly attached 

to the basement (autochthonous). For autochthonous tectonic blocks, samples 

from any one locality will provide information on the behaviour of the entire 

block, but this will obviously not be the case in an allochthonous region and 

the degree to which such areas are truly autochthonous, when compared with 

the continental craton, is not usually known. 

In conclusion it is imperative to ensure that sites for rock sampling 

are all located in the same autochthonous tectonic block so that they are 

unlikely to have moved relatively to each other since they were originally 

magnetised. The definition of the areal extent over which rocks of identical 

age yield an identical palaeomagnetic pole should reduce errors caused by 

this type of inaccuracy but such studies have not yet been attempted for most 

orogenic areas of the world. However it is interesting to note that the 

recognition of allochthonous terrains may also be important. For example such 

recognition in the U. B. cordilleras was consequent upon discrepancies within 

palaeomagnetic data. These misfits thus led to the development of the 

microplate and accreted terrain hypothesis. 
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7.1.1 (d) Evaluation of the Pole Positions used for the 

Palaeogeographic Reconstructions. 

The selection of the palaeomagnetic data used to construct the 

Phanerozoic polar wander curves for most continents fulfilled the criteria 

given in Chapter Two as far as possible and they are described more fully in 

Tarling (1983,1985a, 1985b). The pole positions used to create the 

palaeoreconstructions from which the palaeolatitudes were taken are also 

given in Tarling (1983). The pole positions and confidence limits were 

calculated on total data whenever possible i. e. using all the pole 

determinations for sites located on that cratonic block of the continent and 

reputed to be of that specific age. This method was considered practicable 

for poles corresponding to ages of less than 300 m. y. 

A greater element of subjectivity was introduced into the interpretation 

of results when the poles for any particular time had an oval distribution. 

This could represent either a progressive movement of the continent relative 

to the pole during that time interval or the presence of more than one 

magnetic component. If the oval distribution tended to 'string' to younger 

parts of the polar wandering curve it was interpreted as being indicative of 

the presence of later components of magnetisation. Hence a mean pole position 

was estimated to lie within the oval, but at a point furthest from the 

younger part of the curve. Alternatively when the poles were found to be 

widely dispersed, then either the mean direction was used or the pole was 

assessed from a consideration of the distribution pattern relative to the 

known younger parts of the polar wandering path. 

Other authors have simply averaged the pole positions. With regard to 

the choice of poles for Silurian and Devonian continents Livermore et al 

(1985) found that the quality of available poles for these continents 

differed between continental fragments. As a consequence they did not attempt 

to apply vigorous selection criteria to every pole but endeavoured to find 
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the most reliable data available for each continental fragment. Ziegler et al 

(1982) selected poles for Mesozoic and Cenozoic reconstructions from 

summaries of Irving (1960-1965) and McElhinny (1968-1978) palaeomagnetic data 

but they assessed the pole positions using the same criteria as Tarling i. e. 

those data that were obtained from samples that were insufficiently 

demagnetised, those that were from unstable tectonic areas or those which did 

not exhibit a primary remanence were rejected. 

Tarling (1983) considered that another subjective element in the 

assessment of pole positions, and hence a potential source of error, is the 

assumption that continental block movements only showed considerable change 

if the continent had collided with another continental block. (Most workers do 

not make this assumption). A sudden change in the direction of the motion 

along a polar wandering curve was normally considered to be associated with 

the time of an orogenic event in that continental block. e. g. the end 

Cretaceous Laramide orogeny could be expected to be related to a change in 

the North American polar wandering curve. 

The polar wandering curves used in this project to construct the 

palaeoreconstructions are therefore subjective evaluations, especially for 

geological periods older than 300 m. y. However each curve has been assessed 

individually i. e. without consideration of implications for continental 

reconstructions. The exception is Antarctica which is of no consequence to 

this research as no mineral deposit examples were taken for that region. 

Virtually no pre-Permian palaeomagnetic data can be considered to meet fully 

the basic criteria required to establish that they represent a true average 

geomagnetic field direction for specific, known times. On this basis, any 

reconstructions based upon such observations must be strongly qualified by 

the need for further palaeomagnetic study. Many pole positions must still be 

interpolated between more reliable data e. g. those for the Lower 

Carboniferous are determined from Devonian and Upper Carboniferous or Permian 
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data, and thus require to be evaluated against any other available controls 

(see section 7.1.2). Detailed reviews of the available data have been given 

by many authors (e. g. Morel and Irving, 1978 and 1981; Scotese et al, 1979; 

Ziegler et al, 1979; Van der Voo, 1982; Tarling, 1983) and so are not 

repeated here. 

7.1.2 Errors involved in the production of Palaeoreconstructions. 

The main source of error which affects the reliability of the 

reconstructions and hence the palaeolatitudes determined from them is the 

reconstruction of the reassembly. The projection of that reassembly as a map 

can give a misleading appearance of data although no real errors are involved 

in the construction. The Mollweide Projection was chosen in an effort to 

minimize the projection errors, being a type of equal-area projection in 

which the entire surface of the earth is depicted in one map. All parallels 

of latitude and the central (Greenwich) meridian are straight lines. Other 

meridians are curved and curvature increases towards the marginal meridians. 

The area delimited by two adjacent parallels and meridians is equal to any 

other area similarly enclosed. Therefore there is no distortion of areas (as 

occurs in the Mercator Projection) and the Mollweide-type is considered more 

suitable for showing global distributions of phenomena such as mineral 

deposits. 

It has been shown (see section 7.1.1) that there are numerous potential 

sources of error in the selection and evaluation of palaeomagnetic data and 

that ultimately the reconstructions produced are of largely unknown 

reliability. Palaeomagnetic data alone are not yet sufficient to produce 

accurate palaeocontinental reconstructions for all periods. Indeed a number 

of different palaeogeographic reconstructions have been proposed for the 

Palaeozoic by various authors. Each set of reconstructions has been 

approached in a different manner e. g. Smith et al (1973 and 1981) and Morel 
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and Irving (1978) use palaeomagnetic evidence alone; Scotese et al (1979) and 

Bambach et al (1980) gave palaeomagnetic evidence first priority, applying 

palaeomagnetic rather than palaeoclimatic data when discrepancies arose. All 

these palaeomagnetic-based reconstructions basically rely on the same data 

and yet are significantly different from one another indicating that the data 

provide fewer constraints on interpretation than may previously have been 

supposed (Boucot and Gray, 1983). As palaeomagnetism does not yet provide an 

infallible reconstruction other criteria can be used to aid such problems 

particularly in terms of the relative longitudinal positions between 

continents. Among the earliest reconstructions applying palaeoclimatic and 

tectonic information together with palaeomagnetic data were those presented 

by Ziegler et al (1977a) in a study of the Silurian. The relative 

longitudinal positions of the continents can often be deciphered by studying 

the distributions of flora and fauna (e. g. McKerrow and Cocks, 1976; Ziegler 

et al, 1981b). Similarly the closure of ocean basins and the timing of 

continental-continental collisions place important constraints on the 

relative position of these palaeocontinents and must be taken into account in 

any palaeoreconstruction (Scotese et al, 1985). 

Any of the disciplines mentioned would introduce additional potential 

sources of error other than those of palaeomagnetic data if they were used to 

assist in the development of palaeogeographical reconstructions. The only 

real test of the reliability of palaeomagnetic data is the geological "sense" 

(i. e. palaeoclimatic and biogeographical) which they make when applied to the 

production of palaeogeographic reconstructions. However if these geological 

aspects are used in the interpretation of palaeomagnetic data and the 

subsequent palaeogeographical reconstructions then the test becomes invalid 

for the argument is circular. However in this case the main aim of the 

research was not to establish the absolute reliability of the palaeomagnetic 

data but whether the level of known reliability at present allows the testing 
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of the different models for the origin of mineral deposits from their 

palaeolatitudinal distributions. It is apparent from the discussion in the 

following chapter concerning climate and mineral deposit formation that the 

present reliability is sufficient for the purposes of this research. Each 

discipline is discussed in the following sections with an evaluation of the 

possible discrepancies which their application would introduce. 

7.1.2 (a). The Palaeolongitude Problem. 

The derivation of unique palaeoreconstructions would remain difficult 

even if well-dated, reliable palaeomagnetic records were available for more 

geographical regions and more finely divided time intervals. This is because 

of the longitudinal indeterminacy of palaeomagnetic data. It has been shown 

(see Chapter Two, section 2.3) that it is possible to put reconstructions 

into their former latitudes from the inclination and declination of the 

magnetic field preserved in continental rocks of the appropriate age but it 

is not so for the absolute longitudinal positions of fragments. 

The problem of estimating the relative longitude separation of the major 

continents for the Late Mesozoic and Cenozoic (i. e. 180 m. y. ) is assisted by 

the use of ocean floor data. However there are even greater difficulties with 

continental position during the Palaeozoic (i. e. prior to 245 m. y. ) because 

virtually all the Palaeozoic ocean floor has been destroyed in subduction 

zones. 

There are a number of solutions to the longitude problem which are 

briefly discussed here. Using the criterion of minimum motion between 

continents in time (e. g. Morel and Irving, 1978) both Mesozoic and Palaeozoic 

reconstructions have been made and the resultant maps were not too dissimilar 

to those based on ocean floor spreading (Irving, 1977). 

An alternative to this method has been given in Chapter Two. When two 

continents are fixed with respect to each other their relative Positions can 
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be found by superimposing their apparent polar wander paths. Theoretically 

these should be identical, which is a rare occurrence. The problem in using 

this method for an arbitrary period is the evaluation of how much of the 

difference between two similar apparent polar wander paths is due to errors 

of measurement and how much to relative continental motion (Smith, 1985). 

Livermore et al (1986) considered that most of the contrasts between 

competing models for the Pangaean configurations were due to differences in 

palaeolongitude of the component fragments, so they used a version of the 

apparent polar wander path method to re-evaluate the palaeomagnetic data 

available for these configurations. They decided to examine the apparent 

polar wander paths of the component continental blocks for a longer period of 

time than was usual in an attempt to discount some of the models. A time 

window of 20 m. y. for data grouping was chosen as the minimum presently 

permitted by the number and quality of the available data. One conclusion 

that was drawn from this approach is that comparison of apparent polar wander 

path segments was preferable to the simple averaging of supposedly 

contemporaneous poles - an approach occasionally used by Tarling as described 

in section 7.1.1 (d). 

Zonenshain et al (1985) wanted to estimate the true width of the 

Palaeozoic oceans (which can be estimated using kinematic data for Mesozoic 

and Cenozoic oceans) and to determine true plate motions. It was considered 

that the only good criterion for the determination of absolute motions is hot 

spot traces produced when plates pass over mantle plumes. Smith (1985) noted 

that provided hot spot traces were available for all continents, they could 

be placed in the same frame independently of any other data so solving the 

longitude problem. Livermore et al (1984) tested this approach for the past 

90 m. y. and showed that the differences in latitude inferred from the 

palaeomagnetic and the hotspot reference frames are less than 7°. This 

discrepancy progressively increases to nearly 20° for the past 90-180 m. y. 
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but this is possibly due to the fact that the Jurassic and Cretaceous hotspot 

frames are not well known. Also hot-spot frames are not static e. g. those of 

the mid-Atlantic and mid-Indian oceans must move in response to plate 

tectonic motions if they are to maintain a mid-oceanic position. However 

Zonenshain et al (1985) admitted that the accuracy of the reconstructions 

produced by this approach is hardly very high i. e. approximately 20% for the 

amount and direction of motion in the Late Palaeozoic and Early Mesozoic 

times. The accuracy decreases to no less than 30% in older reconstructions 

i. e. Lower Palaeozoic times. However the first reconstructions of absolute 

plate motions using hot spot trajectories in Cenozoic and Late Mesozoic times 

showed good coincidence with plate kinematic and palaeomagnetic data. This is 

to be expected as the argument is largely circular in that these three 

aspects are not mutually exclusive. It has been suggested (Zonenshain et al, 

1985) that the Euler pole and hot spot methods could be combined in cases of 

incomplete data to find the best solution. 

It is accepted that the longitude problem is not critical to this 

research the results of which are only concerned with the palaeolatitudes 

derived from the reconstructions. However it is advisable to be aware of any 

potential errors or discrepancies which may affect the positioning of 

continental fragments in palaeogeographic reassemblies. 

7.1.2 (b) The Influence of Palaeoclimatic Evidence on Reconstructions. 

The use of palaeoclimatic indicators to assist in the development of 

palaeoreconstructions has become increasingly important e. g. Robinson (1973); 

Drewry et al (1974) and Ziegler et al (1977). Robinson (1973) highlighted the 

effect of precipitation on sedimentary rocks and contrasted climatic 

gradients derived from these observations with temperature - this also has 

some influence on the deposition of certain sedimentary rocks. The occurrence 

of thick clastic sequences, coal swamps and glacial tillites in the rock 
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record are thought to represent the effects of high precipitation rates, 

while dry climates are indicated by the occurrence of evaporates and desert 

sands. There is a negative association of precipitation and the formation of 

carbonates: water temperature seems to be the overwhelming factor in 

carbonate formation (Ziegler et al, 1979). 

The notion that there is a direct relationship between palaeoclimatic 

conditions and certain lithologies has already has been mentioned and 

discussed in Chapter Four (see section 4.6). The discussion is not repeated 

here other than to emphasize the assumptions inherent in accepting that such 

a relationship exists i. e. that present precipitation patterns, circulation 

patterns and the limits of the resultant climatic regimes were the same in 

the past as at present. However it must be mentioned that the argument 

involved in the association of climate with certain lithologies is largely 

circular. The palaeodistributions of such climate-sensitive lithologies as 

evaporites and red beds have been determined using palaeomagnetic studies 

which have themselves been tested using palaeoclimatic parameters. In order 

to avoid incorrect interpretation of the presence of such lithologies, 

palaeoclimatic evidence must only be used in conjuction with other geological 

evidence (i. e. biogeography, tectonic constraints) to produce 

palaeoreconstructions. Therefore palaeoclimatic evidence is only used to 

support conclusions drawn from these other geological sources (see sections 

7.1.2 a, c, d). 

One example of the use (and supposed success) of the determination of 

continental orientations using palaeoclimatic, in addition to palaeomagnetic 

data, is that for the Silurian period (Ziegler et al, 1977). It was 

considered that the influence of climate on lithology would be particularly 

marked during periods when epeiric seas were widespread such as during the 

Silurian. Sedimentation would be dominantly autochthonous and so reflect the 

climate at the depositional site (e. g. evaporites, reefs, carbonates). They 
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argued that long river systems could not develop during such times as few 

large land areas were found in low latitudes so climatic patterns would be 

more zonal than cellular. Hence the transport of clastic sediments from wet 

to dry belts would be precluded and even allochthonous deposits, especially 

thick sequences of coarse elastics, would be useful as palaeoclimatic 

indicators. Ziegler et al considered Silurian northern hemisphere atmospheric 

circulation to have been similar to present southern hemisphere patterns 

because of the lack of significant land influence on climate. The climatic 

zonal pattern (e. g. the hot-wet zone from 10°N to 1008) was confirmed by 

Silurian sediment distribution on the palaeocontinents (e. g. Laurentia, 

Baltica, Siberia) whose orientations had previously been established from 

palaeomagnetic measurements. 

Although Tarling (1985c) accepted that palaeoclimatic evidence is 

probably the second most reliable factor in forming reassemblies (after 

palaeomagnetism) he cautioned that it was not advisable to make too simple 

assessments. For example, local palaeogeography can have a drastic effect 

upon the latitudinal extent of any of the palaeoclimatic indicators e. g. the 

accumulation of a 'thick limestone reef' would be prevented if there was a 

high argillaceous discharge in the vicinity despite the presence of. 

satisfactory climatic conditions for reef development. Tarling also 

reiterated the fear that the present may not be the ideal key to the past 

with regard to climatic latitude belts. This aspect of the use of 

palaeoclimatic indicators in the formation of reassemblies was also noted by 

Boucot and gray (1983). They cautioned that climatic features of the Cenozoic 

and Mesozoic may depart substantially from pure association with latitude in 

many places and that, by analogy, they may also have done so in the 

Palaeozoic. However Boucot and gray also claimed that the use of all 

available climate-correlated criteria in establishing Palaeozoic geography 

would provide estimates about latitude with which to independently check the 
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information provided by remanent magnetisation. Boucot (1985) did use 

palaeoclimatic indicators to reject the late Silurian palaeogeographic maps 

of Bambach et al (1980) and Smith et al (1981) as the presence of major 

evaporitic bodies in equatorial regions was considered to be unlikely. 

In conclusion palaeoclimatic information must be interpreted very 

cautiously when reconstructions based on palaeomagnetism are evaluated. The 

value of reconstructions based upon lithofacies data on top of other 

considerations (Ziegler et al, 1977) must also be in question. However all 

aspects of geological information (including that inferred from 

palaeoclimate-sensitive lithologies) must be resolved before satisfactory 

reconstructions can be produced. Another circular argument must be emphasised 

at this stage. In many cases one major test for the geocentric axial dipole 

model for the Earth's magnetic field upon which palaeomagnetic studies are 

based is on the distribution of palaeoclimatic-sensitive lithologies. 

7.1.2 (C) The use of Palaeobiogeography in the making of Reassemblies. 

Palaeobiogeographical criteria provide information about marine and 

terrestrial regions which maintained reproductive communication because of 

similarities of their biota i. e. it has the objective of defining 

palaeobiogeographical provinces that have specific spatial and temporal 

constraints. For the marine environment the reproductive communication most 

commonly depends on surface current circulation which is directly related to 

the mean wind circulation patterns. These are themselves dependent upon the 

relative positions of continental landmasses and proportions of continents to 

oceans. For the continental environment similarities of biota commonly imply 

the availability of both floral and faunal migration routes. 

Therefore the global fauna and flora of the past and the present are not 

distributed in a random manner and probably have never been uniformly and 

homogeneously distributed. There are two orders of biogeographical controls 
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the first being north-south correlated: temperature, light and other physical 

variables are related to the motion of the Earth relative to the Sun, namely 

seasonality and latitude. Organisms with different tolerances to these 

variables are latitudinally organized. Second order distribution patterns are 

longitudinally distinct groupings of organisms that are reproductively 

isolated by physical barriers e. g. ocean currents, land and salinity barriers 

(Boucot and Gray, 1983). Hence a study of first and second order 

biogeographical data should aid in the construction of reassemblies. 

Conversely palaeomagnetic constraints can assist in the distinctions between 

these controls. 

The use of biogeography was introduced relatively early in the study of 

palaeogeographical reconstructions. Examination of Permian fauna (Vine, 1973; 

Waterhouse and Bonham-Carter, 1975) indicated that China, with its relatively 

diverse fauna was probably lower in latitude than shown in previous Pangaean 

reconstructions and not part of Eurasia until the Mesozoic. Much later Boucot 

(1985) used biogeographical information to question maps of the late Siluriam 

produced by Bambach et al (1980) and Smith et al (1981). He discussed both 

reassemblies on the grounds that surface current circulation patterns 

consistent with the postulated palaeogeography were unable to explain the 

high level of endemism postulated for that time. 

The palaeontological criteria can be extremely informative, not only in 

terms of establishing continental positions, but also for an understanding of 

the nature of the organism being considered. Turner and Tarling (1982) 

considered the well-known distributions of the Siluro-Devonian agnathans, 

particularly the thelodonts, in relation to the available palaeomagnetic 

data. They concluded that the evidence appeared to be more consistent with 

these having a dispersal pattern that required land connections i. e. they 

lived predominantly, or even entirely, in fresh or brackish water at low 

latitudes and were unable to cross ocean barriers. A problem of using 



205 

biogeographical, and indeed other geological evidence, is that such 

assessments as those made above can be largely self-fulfilling when 

considering areas for which no reliable palaeomagnetic data are available. 

This emphasizes the importance of using evidence from different geological 

disciplines, such as biogeography, in conjuction with palaeomagnetic data. 

Another limitation of the use of palaeontological criteria is that few 

authors have examined more than one taxonomic group for more than one or two 

periods (Ziegler et al, 1979) and most of the early studies recognize only 

three or four provinces at any one time (Middlemass et al, 1971; Hallam, 

1973; Hughes, 1973; Ross, 1974). 

The remarkable distributional diversities of flora and fauna also cause 

severe difficulties in the interpretation of biogeographical evidence e. g. 

the present Indo-Pacific Province spans about 180° of longitude. Conversely 

sharp environmental gradients (e. g. those along shelf margins) may persist in 

the same region for a long period of time so causing faunal changes that give 

no indication of the scale of geographical separation which occurred (Ziegler 

et al, 1979). Despite these problems biogeographical patterns have proven 

useful in determining the east-to-west order of the continents in the same 

latitudinal belt e. g. Bambach et al (1980) determined longitudinal 

separations between continents by integrating biogeographical relationships 

and plate motion constraints. They considered that the relative sequence of 

the continents around the equator in the Late Cambrian was clear from 

biogeographical evidence. Hence space constraints alone were used to fix the 

longitudinal positions of continents within rather narrow limits. 

So the distribution of faunal provinces provides a useful check on the 

latitudes predicted by palaeomagnetism and can also put some constraints upon 

the longitudinal separation of continents. It is well known that 

biogeographical barriers are due to both climate and geographic distance but 

the interpretation remains difficult. An important need is the development of 
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a set of biological criteria for recognizing the major climatic zones as it 

is difficult to differentiate between tropical, subtropical, temperate and 

polar fauna and flora. Ziegler et al (1981b) reduced the problem by basing 

climatic 'assignments' upon latitude and the orientation of coastlines and 

landmasses rather than on direct evidence from the fossil record. However 

they did also refer to obvious features such as distribution of coral reefs, 

occurrence of diversity gradients and presence of seasonal growth rings in 

trees to confirm their climatic assignments. Ziegler et al also cautioned 

that another factor which must be considered is the influence of east-west 

asymmetry in ocean current and temperature regimes. 

7.1.2. (d) Tectonic constraints upon Palaeogeographic Reassemblies. 

The definition of criteria for recognizing ancient continental 

boundaries (e. g. Dewey and Bird, 1970; Burke et al, 1977) enabled the use of 

varied tectonic lineaments in addition to palaeomagnetic data in making 

Palaeozoic palaeogeographical reconstructions (e. g. Morel and Irving, 1978; 

Scotese et al, 1979; Bambach et al, 1980). Tectonic and stratigraphic 

information from outcrop and subsurface data can be used to suggest former 

proximity of now separated continental fragments and also to provide 

information on the timing of tectonic events. 

The occurrence of such features as mountain belts with strongly folded 

rocks and ophiolite belts indicates which previously separated regions were 

brought together by plate tectonic processes, under the assumption that such 

features mark major separation of the sutured terrains (Boucot and gray, 

1983). Where such belts cross a continent (e. g. the Ural Mountains in 

Eurasia) two former continents appear to have collided and been sutured 

(Bambach et al, 1980). Unfortunately the presence of these belts does not 

give an indication of the scale of the original separation of the continents. 

This latter may be hinted at by an evaluation of K/Na volcanics in the area 
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to give an idea of the amount of subduction which has occurred. The rifted 

margins of once-associated continents are represented by other geological 

features, especially belts of basaltic igneous rocks associated with elongate 

basins bordered by normal faults. Ziegler et al (1979) assumed that 

subduction zones of the past would have had continuity from continent to 

continent. All the major Palaeozoic continents have had active andesitic 

volcanic chains along at least one of their margins as they have been defined 

that way. So the reconstructions were arranged on the assumption that most of 

the compressive margins were in continuous belts. They showed it was possible 

to do this within the constraints provided by both palaeomagnetic and 

biogeographic data. 

Tectonic constraints clearly limit the areal extent over which 

individual palaeomagnetic data can be extrapolated as shown by the example 

cited previously (Turner and Tarling, 1982). One of the solutions to explain 

the distribution of Siluro-Devonian agnathans would be for a separation of 

the Gondwanan continents into east-west components but then there must be 

evidence for these two parts having become joined in the late Palaeozoic. 

There is no evidence for such a suture therefore this reconstruction would 

not be realistic and can be discarded (Tarling, 1985c). 

7.1.3. Problems with Dating. 

Possibly the greatest source of error in this research is the 

determination of the ages of the mineral deposits, the palaeoclimatic 

indicators and the palaeomagnetic remanences. It is difficult to quantify the 

total effect of these errors, as with most aspects of this research such an 

evaluation would involve a large degree of subjectivity. A brief summary of 

radiometric dating techniques is given as an introduction to this section, 

other methods are briefly discussed when they are mentioned in the text. 
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For the 07Rb to 07Sr decay scheme it is extremely important when 

measuring that all the samples had the same initial ratio at the time (t) 

that is being determined. Experiments show that this condition is most 

frequently met by igneous rocks crystallizing from the same magma. It is 

sometimes true for metamorphic rocks if the metamorphism was sufficiently 

pervasive to homogenize the "''Sr/0'8r ratios, but it is much less likely to 

occur among sediments with variable amounts of detritus and cements from 

different sources. 

Serious errors in the interpretation of results will arise if at any 

stage since time (t) the trace element ratio changes by the introduction or 

removal of elements from the system. Provided that the samples are fresh and 

unaltered such an assumption appears to be justified for Rb/Sr and Sm/Nd 

decay schemes (Smith, 1981). Uranium, however, is readily oxidized to a 

highly mobile state so that the U/Pb ratios measured for igneous rocks are 

rarely the same as those acquired during crystallization. This problem may be 

avoided by combining equations for the two U/Pb decay schemes, forming a 

relationship between 2O'Pb/204Pb and e117Pb/204Pb in which the uranium 

contents need not be known. The initial presence of 'daughter' elements of 

non-radiogenic origin may also give rise to unreliable results. 

The more important radioactive decay schemes now used for dating 

purposes are: 

1) The U/Pb decay scheme usually involves the use of zircon which may contain 

minute traces of uranium and the amount of primary lead (i. e. the amount of 

non-radiogenic lead) is very low and the mineral itself is highly resistant, 

preventing the leaching of uranium. 

2) The Pb/Pb scheme is reasonably reliable if the material used was initially 

free from 2O7Pb and **'Pb (as 'O'Pb accumulates approximately six times as 

fast as 'O'Pb). Non-radiogenic lead (204Pb) is always found associated in 

lead ores with **'Pb and a4"7Pb. 
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3) The 40K/4OAr system is difficult to use because of the abundance, under 

normal circumstances, of non-radiogenic exc3o%i. good results are produced 

even though argon is a gas which might be expected to escape from the system. 

It is possible to use minerals which contain only small quantities of 

potassium. This method has been tried for glauconte dating as attempts to 

date such authigenic minerals in sediments have yielded inconsistent results. 

The Rb/Sr technique is mainly used for Precambrian rocks as the half-life is 

notably long. It is a particularly valuable method for metamorphic rocks. 

Although rubidium and strontium are not abundant elements, contamination with 

primary strontium or loss of rubidium or strontium from the system are both 

rather unlikely occurrences, and so this method is fairly reliable. 

7.1.3 (a). Dating of Mineral Deposits. 

The ways in which rocks acquire a magnetisation can be used to determine 

the thermochemical history of a mineral deposit and may assist in the 

determination of both absolute and relative dating. Most mineral deposits 

either contain ferromagnetic minerals (e. g. pyrrhotite (Hans and Krs, 1968), 

magnetite or haematite) as major constituents or they contain them in 

significant quantities as accessory minerals (e. g. chromite (FeCra04), 

Kropacek and Krs, 1968); the tin mineral cassiterite which has varying 

amounts of iron bound into its lattice (Hans and Krs, 1965). A study of the 

origin of the magnetisation of these minerals can be used to investigate the 

physical conditions under which the ores were deposited. If the geomagnetic 

field changes are reasonably well documented for other rocks in the region, 

it should be possible to obtain relative or absolute dates for the mineral 

deposit by direct comparison of their direction of remanence with those rocks 

of known ages (Tarling, 1974). For example Evans and Evans (1977) used 

remanences in haematite to date mineralisation in the Mendip ore field. 
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A common application of the palaeomagnetic method is in determining 

whether a mineralisation is syngentic or epigenetic. Thus if the remanence 

directions of the ore and its host differ, the ore was formed epigenetically. 

But if the directions coincide either the ore and host remanences were formed 

syngenetically or both were subsequently remagnetised. The latter could be 

detected by testing whether the magnetisations were primary or secondary. 

This method may also be applicable to LSBM deposits where radiometric ages 

based on galena may be misleading (Park, 1983). Early studies of haematite 

bodies in the Lake Superior region (Symons, 1967a and b) have shown that some 

ore bodies have directions similar to intrusive rocks and that these 

remanence directions are probably residual weathering products. The accuracy 

of this method of absolute dating is very difficult to evaluate as precise 

pre-Permian polar wander curves have not yet been determined for most 

continents. Hence these dates are subject to the uncertainties inherent in 

palaeomagnetic methods, most of which have been previously discussed. 

A specific example of the application of palaeomagnetic methods to 

determine the age of mineral deposits is the much cited work of Beales et al 

(1974) on Mississippi Valley-type (LSBM) ore deposits. Four deposits were 

sampled and the direction and intensity of the HRM were measured. only two of 

the samples had measurable, although very weak, NRM in both host and ore 

deposits, which proved to be highly stable upon AF demagnetisation. The 

results showed that the pole positions for the ores and their corresponding 

hosts were identical within the statistical uncertainty, strongly suggesting 

that the ore and the host were of roughly the same age. However later work 

(Wu and Beales, 1981) suggested that the late Cambrian age for one deposit 

had suffered considerable post-depositional re-setting and/or overprinting. 

Using the palaeolatitudinal control upon the formation of LSBM deposits 

suggested in Chapter Six it may be possible to resolve the dilemma of the age 

of these deposits. From Figures 6.15 g (300 m. y. reconstruction) and 6.15 j 
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(450 m. y. reconstruction) the palaeolatitude for the younger age of the 

deposits appears to be the more valid. It is more in keeping with the general 

low palaeolatitudinal range of LSBMs given in Chapter Six, section 6.2.1. 

than the palaeolatitude derived from the older suggested age (i. e. the 

Ordovician). Hence the results here support the conclusion of Beales et al 

(1980) and Wu and Beales (1981) that the mineralisation for LSBMs from the 

Viburnum Trend, southeastern Missouri is dated about 300 m. y. 

The relative ages of mineralisation may be revealed by the conglomerate 

test which can indicate whether the mineralisation associated with the ore is 

primary or secondary (Park, 1983). Mineralisation is often associated with 

conglomerates or breccias because of their permeability to ore-bearing 

fluids. The test has been applied to the copper mineralisation of the Copper 

Harbour Conglomerate, Michigan (Palmer er al, 1981). The results showed the 

mineralisation was pre-folding, possibly produced during the formation of 

secondary minerals and the acquisition of a secondary, chemical remanent 

magnetisation. 

An alternative method of dating mineral deposits would be to use the 

radiometric techniques previously outlined, but these have limited 

application. The problem with many mineral deposits (e. g. some LSBMs) is that 

the leads in such deposits are normally of complex origin and they cannot be 

readily dated isotopically and so are unable to define the age of 

mineralisation (Sangster, 1976a). Several examples of the dating of mineral 

deposits using various radiometric techniques follow with comments on the 

solutions to the problems inherent in each method. 

1) Richards et al (1985) studied the Pb-Cu-Zn mineralisation in the 

Northampton Block, Western Australia using both Rb/Sr and Pb isotope 

techniques. It was hoped that the Rb/Sr method on hydrothermally altered 

dolerites would date the sulphide mineralisation and that the Pb model ages 

on galenas would provide independent dating of the mineralisation. However 
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only the first of these aims was fulfilled although the Pb isotope data, in 

addition to the Rb/Sr data, enabled deductions as to the U, Th and Pb 

abundance changes during regional metamorphism and a possible source of the 

lead. 

2) K/Ar dating of clays has been shown to be a powerful method for 

constraining the ages of some SDEX ore deposits, although many of the age 

data did not precisely define times of ore deposition (Halliday and Mitchell, 

1983). K/Ar ages of clay concentrates from samples associated with SDEX 

mineral deposits in Ireland indicated that most, if not all, of the major ore 

deposits were formed during Carboniferous times e. g. Tynagh, Silvermines, 

Tara, Gortdrum. However in some areas Halliday and Mitchell considered that 

hydrothermal activity occurred during the Triassic and possibly the Permian. 

They also suggested that previous models which invoked major mineralisations 

during Mesozoic or Tertiary times were rendered invalid. The use of fine 

clays for dating necessitates cautious interpretation because the K/Ar age 

can be lowered relatively easily by tectonic and hydrothermal processes, 

although the clays should not lose argon spontaneously (Halliday, 1977). 

Hence the K/Ar ages should be regarded as minima for the timing of ore 

deposition. It was considered by Halliday and Mitchell in their study of 

Irish SDEXs that the ages might be erroneously high only where insufficient 

heat, stress or chemical modification had occurred to cause argon degassing 

from the pre-existing components. However a number of the studies have 

indicated that an excess of argon should not be a problem in dating clays 

(e. g. Mitchell and Halliday, 1976). 

3) The U and Pb isotopes of samples from the Deilmann orebody, Key Lake 

deposit, Canada were measured by Trocki et al (1984). They proposed a two 

stage model of U and Pb evolution which precluded the hypothesis previously 

held that the 1350 m. y. event was a redistribution of U mineralisation that 

was emplaced during the Hudsonian orogeny. Their data showed that Pb loss (or 
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U gain) occurred in high grade rocks and the opposite was true for low grade 

rocks. Some of the results obtained provided evidence of preferential 

movement of 236U intermediate daughters out of uranium minerals and into the 

matrix. 

The movement of isotopes into and out of systems was also addressed by 

Santos and Ludwig (1983) in analyses of U/Pb isotopes in samples of ore from 

Highland Mine, Powder River Basin, Wyoming. They concluded that the greater 

discordance and lower apparent ages from the two coffinite samples were 

consistent with the greater daughter isotope leakage generally associated 

with colloform pitchblende and coffinite compared to whole rocks (Ludwig, 

1979). The U/Pb apparent ages of the whole rocks should be regarded as 

minimum ages because of a probable loss of lead as well as radioactive 

daughters from the ores but Santos and Ludwig deemed it unlikely that the 

true ages of the deposits could be older by more than a factor of two greater 

than the 20'Pb/23 U apparent ages (3 m. y. ). 

It is clear that in more recent times radiometric dating methods are 

frequently used to determine the age of mineralisation of some mineral 

deposit types. There is a degree of uncertainty in using these methods such 

as the deduction of the isotopic composition for the initial Pb of samples 

which are resolved in individual ways e. g. Santos and Ludwig (1983) chose 

their initial Pb isotope from analyses on barren sandstones from 

stratigraphically equivalent rocks of the Wind River Formation. Also the ages 

which result have to be evaluated in the light of whether a sample has lost 

isotope elements or if they are representative of an older time of 

mineralisation. 

More precise dating is possible using reversals of the polarity of the 

geomagnetic field. It is possible to match polarity sequences, or if the 

approximate age is already known, the presence of reversals may allow more 

precise dating than either normal palaeomagnetic or radiometric methods. Very 
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high precision dating is possible through most of the Cenozoic as the 

polarity sequence is well documented from oceanic magnetic anomaly patterns 

(Tarling, 1974). 

There is an aspect of the dating of deposits which is more specific to 

this research than the other, more general, sources of error which have been 

outlined here. Some of the deposits have been rotated through more than one 

set of reconstructions e. g. Meggen SDEX deposit, Germany which is dated as 

375 m. y. This deposit has been rotated using the values for palaeogeographic 

reconstructions for 400 m. y. and 350 m. y. which are either 25 m. y. too old or 

too young. obviously the rate of continental plate motion has a bearing upon 

the distance a continental fragment can move in a given period of time (see 

Chapter Six, section 6.3.3), but such a discrepancy in the ages of 

reconstructions available for the rotation of deposits such as this must 

introduce great errors into the palaeolatitudes which result. The direction 

of continental movement is also important as only north-south movement can be 

detected with some degree of accuracy using palaeomagnetic studies. To 

quantify the absolute east-west movement of a continent is very difficult 

because of the palaeolongitude problems outlined in section 7.1.2 a. Hence 

discrepancies derived from the palaeomagnetic data are proportional to the 

relative plate motion vectors. 

Related to the dating problem is the question of the duration of the 

formation of an ore deposit. In this case, if the deposit took less than 25 

m. y. to form, then to use rotation figures 25 m. y. older or younger is 

inappropriate. Lastly, if a deposit took 25 m. y. to form then it is a 

considerable period of time over which conditions (physical, chemical, 

climatic) must be assumed to have remained stable. 

The scatter graphs (Figures 7.1 - 7.6) have been drawn to illustrate the 

variation between some mineral deposit types with regard to the precision of 

the determination of their ages of mineralisation. It is difficult to 
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evaluate how much errors in age determinations affect the total results and 

one possible way to avoid these errors would have been to weight all the 

mineral deposit examples according to their age reliability. However when the 

cumulative effect of all the other errors involved in this study is 

considered such a weighting seems unnecessary. It would also have involved, 

once again, a large element of subjectivity which should be avoided whenever 

possible. 

When there is doubt in the age of mineralisation for a particular 

deposit and a palaeolatitudinal control of some type upon the deposit type 

distribution has been proposed, it may be possible to suggest a more 

appropriate age for the deposit from the tie lines on the scatter graphs. For 

example, consider the Bulgarian and Polish LSBM deposits (tie lines e, f, h) 

in Figure 7.1. Perhaps these deposits should have an age close to 250 m. y. 

rather than being dated near 200 m. y. as at present. Their palaeolatitudes 

would then be more in keeping with the majority of the LSBMs. The 

palaeolatitudes produced for the Polish deposits (tie line h) seem to be 

questionable for the continental fragment appears to have moved through a 

considerable latitudinal distance in approximately 50 m. y. This is unlikely 

in view of the figures given in the discussion previously (see Chapter Six, 

section 6.3.3). The Bolivian SHBM deposits (Figure 7.4) have an age range of 

150 m. y. so no firm conclusions can be drawn from their palaeolatitudes as 

regards general SHBM distribution. However it appears from the graph that the 

oldest age is most appropriate to enable these deposits to conform with the 

latitudinal distribution of the other SHBMs. From the SDEX scatter graph 

(Figure 7.5) only the Mae Sod deposit of Thailand appears worthy of comment 

in that the deposit has a very poorly defined mineralisation age range of 100 

m. y. it is difficult to draw any firm conclusions about the Mae Sod deposit 

as its palaeolatitudes all lie within the range for the majority of BDEXs 

regardless of age. Hence the most likely age of the mineralisation cannot be 
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determined using the most appropriate palaeolatitude i. e. one in the typical 

range of SDEXs. 

Half of the BSUV deposits (Figure 7.6) show a large age range but the 

tie lines cannot be used to assist in determining which of the ages are more 

likely to be the most appropriate. SSUVs are concentrated in both the 

equatorial and temperate rainfall belts but the age ranges encompass both of 

these zones (e. g. tie lines d, g, D. So it is not possible to select which 

age is likely to be the more accurate on the basis of palaeolatitude for SSUV 

deposits. The SSCU deposits appear to be quite precisely dated (Figure 7.2) 

and those examples with less precise ages of mineralisation have narrow 

ranges relative to other deposit examples e. g. LSBM and SSUV. The SSPB 

deposits (Figure 7.3) are all very precisely dated. 

7.1.3 (b) Problems of Dating in Palaeomagnetic Methods. 

The palaeomagnetic methods have been described (Chapter Two) and 

possible errors which they may introduce into the results have been discussed 

earlier in this chapter (see section 7.1.1). It is now necessary to evaluate 

the accuracy and reliability of the dating of the remanences and whether or 

not these correspond to the age of the rock under examination. 

The importance of the identification and study of primary, as opposed to 

secondary, remanences in the palaeomagnetic techniques has been emphasized. 

Red sandstones and siltstones provide the main sources for palaeomagnetic 

data from sedimentary deposits but the origin of their remanence, on which 

any interpretation rests, is controversial (see Chapter Four, section 4.6.1). 

If a stable remanence has been identified in an igneous rock then a K/Ar 

radiometric age of the rock itself may be of use in assessing the age of the 

remanence. However this method assumes that the rocks examined have behaved 

as closed chemical systems since their formation. Rocks from which reliable 

K/Ar ages have been determined are unlikely to have been subjected to 
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temperatures in excess of 300°C because this usually affects the argon 

retentivity (Dodson, 1973). Such rocks are therefore unlikely to have 

acquired a high temperature viscous component of remanence. However care must 

still be taken in the acceptance of K/Ar ages as chemical changes may have 

affected the magnetic minerals in the rock but not those minerals containing 

the potassium and argon. Hence it is extremely difficult to differentiate 

'reliable' K/Ar dates from 'unreliable' ones (Tarling, 1983). 

The date of the acquisition of remanent magnetisation in a rock of 

unknown age can be determined by comparison with the records of variation in 

the intensity and direction of the magnetisation itself. This dating may be 

carried out in three main ways summarized below from Tarling (1975). The rate 

of continental motion relative to the average geomagnetic pole is thought to 

have been in the order of 0.3°/ m. y. during the Phanerozoic. If an average 

geomagnetic pole position for rocks of unknown age can be determined with a 

reliablilty of +/- 5° then the average accuracy of dating should be 

approximately +/- 15 m. y. This method combines variations in observed 

relative motions from virtually nil to some 3°/ m. y. so the accuracy of the 

dating depends on the actual relative motions involved at each time. The use 

of a combination of sea-floor spreading and continental paleomagnetic studies 

is particularly useful at times in the Cenozoic. Occasionally discrepancies 

occur between the dates of events e. g. the extrusion ofcontinental basalts 

in the Faroes, Greenland and Britain and corresponding sea-floor anomalies. 

It is not clear whether these age differences reflect inaccuracies in the 

technique or if these results are genuine. Lastly studies of secular 

variations of the Earth's magnetic field may be useful for dating purposes. 

Very short term geomagnetic changes are preserved in rapidly deposited 

material e. g. lake varves, and can be dated by conventional 14C or other 

short-lived isotopes. These should give accurate absolute dating of sediments 

but are only really useful for Recent deposits. 
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It has been established that reliable ages for samples and remanences 

are absolutely necessary to reduce errors. However it is also important to 

determine whether the age of the magnetisation corresponds to that of the 

rocks themselves. This aspect of palaeomagnetism has been introduced by 

Irving and Strong (1984) who produced evidence against a large-scale 

Carboniferous strike-slip fault in the Appalachian-Caledonian orogen. They 

considered that the palaeolatitudinal off-set of Acadia (the eastern part of 

the northern Appalachians) relative to cratonic North America was almost 

certainly not tectonic but is purely an artefact of the wrong assumption of 

the equivalence of rock and magnetisation ages. They proposed that Kiaman 

(i. e. late Carboniferous and Permian) overprinting is widespread in 

Newfoundland and that observations from these secondary magnetisation agree 

with those from late Devonian and early Carboniferous rocks of the North 

American craton. This is taken as confirmation of the proposal that 

magnetisation of the cratonic early Carboniferous rocks are actually Kiaman, 

and not early Carboniferous in age. Confusion may have arisen because it has 

been shown (Irving and Parry, 1963) that the Kiaman palaeofield was almost 

continually reversed so uniform secondary magnetisations could have been 

acquired over a long period of time without the complications of reversals. 

Three proposed sources of the secondary magnetisation are: 

(i) secondary haematite was a common product Medley, 1968) of seasonal 

rainfall and a depressed water-table on the Pangaean supercontinent i. e. 

desert weathering, 

(ii) mild heating during the Hercynian-Appalachian orogen could have 

converted oxyhydroxides of iron to haematite (Hodych et al, 1984), 

(iii) uplift and cooling following deep burial could have caused the 

acquisition of viscous partial thermoremanent magnetisation (Chamalaun and 

Creer, 1964). 
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Livermore et al (1986) incorporated all of the factors mentioned here to 

evaluate some Pangaean configurations. They noted a clear off-set in age 

along common apparent polar wander paths of North America and Europe, 

suggesting a possible error in intercontinental correlation of up to 20 m. y. 

or widespread magnetisation of the North American formations after a similar 

period of time. Also paths for South America and Africa follow broadly 

similar northward routes, but with quite large divergences for some time 

windows e. g. 260 to 280 m. y. Livermore et al suggested that part of these 

differences may be attributable to dating errors for individual results and 

also to rapid polar wander. However as the discrepancies appear to be 

systematic a more fundamental problem concerning the accuracy of the 

stratigraphic correlations (upon which most of the assigned ages are based) 

was proposed. Also many poles were derived from studies of non-fossiliferous 

red sediments for which the mechanism of remanence acquisition remains to be 

clearly demonstrated. It was concluded therefore that if there were 

systematic errors in the correlation of the poles then the reconstructions 

under scrutiny could be viewed as artefacts of the numerous dating errors. 

7.1.3 (c) Problems in Dating Palaeoclimatic Indicators 

It has been noted that a number of mineral deposit types are closely 

associated with certain palaeoclimate-sensitive lithologies which may be used 

to date the deposits themselves. However the determination of absolute age 

within narrow limits is rarely possible; +/-5t of a mean value being the norm 

(Frakes, 1979). Relatively young deposits may be generally dated with more 

confidence than older Palaeozoic ones because the Cenozoic time scale is more 

closely subdivided. Also the precision of radiometric techniques, although 

still in the order of 5%, allows finer resolution in terms of absolute years. 

There are a few problems with the application of palaeomagnetic 

techniques in dating deposits of palaeoclimatic significance e. g. red beds 

with a highly controversial origin of remanence. Limestones and dolostones 
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generally have only a weak remanence and the remanence of the purer varieties 

has only been adequately measured during the last few years. Most of the 

diagenetic changes in these lithologies have associated migration of iron- 

bearing compounds, as evidenced by the growth of haematite and goethite rims. 

This means that the processes and mineralogy of such changes can be examined 

and possibly dated magnetically (Tarling, 1983) but restricts the 

interpretation of such observations at this stage of understanding. The 

formation of evaporites in basins is generally accompanied by some detrital 

grains, if only blown in by winds from the surrounding deserts. It is 

expected that the original remanences will be strongly distorted by the 

extensive recrystallization and mobility of these evaporite materials so few 

studies have been made on evaporites. Peat deposits usually contain detrital 

grains so it should be possible to date them. But sulphur is present in 

association with the organic matter and is combined by bacterial activity 

during diagenesis to form pyrite which often replaces fossil remains 

(Casagrande et al, 1979) so many of the original iron compounds are converted 

to non-magnetic forms. However changes in acidity and oxidation states may 

lead to the formation of magnetite or haematite during later stages of 

diagenesis. Therefore there is some potential for palaeomagnetic dating of 

such processes (Noltimier and Ellwood, 1977). 

As palaeomagnetic and radiometric methods are fairly inadequate, 

palaeontological and other means of dating are more commonly used. In dating 

palaeoclimatic indicators by fossils it is particularly important to be aware 

that environmental changes and consequent migrations of certain forms are of 

great significance. Some forms serve as guides to geologically instantaneous 

changes in surface water temperature e. g. the Neogene of the North Atlantic 

and Southern Ocean. For correlation purposes, as opposed to strict dating, 

other environmental factors are sometimes used e. g. extent and thickness of 

lichen growth on Quaternary tills aids relative age and correlation with 
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dated deposits (Frakes, 1979). The use of palaeontological data is most 

useful for marine sediments: however even this method has some limitations. 

For example extreme climates such as desert or polar regimes are not 

conducive to life and hence most strata of these regions in the geological 

record can be dated only within wide limits due to the paucity of fossil 

types and numbers. 

The use of magnetic reversals in geochronology gives a precise method of 

dating as such reversals occur on a global basis and are geologically 

instantaneous, taking some 2000 to 8000 years to occur (Tarling, 1983). This 

makes a reversal a time-marker which is more precise than that of fossil 

extinctions which may be strongly diachronous when comparing different 

regions of the Earth. Also the reversal sequence for the last 7 m. y. is 

sufficiently well-known and well-dated to allow age determinations of a much 

greater resolution than fossil zonation (in some cases down to about 200,000 

years). Although the reversal sequence is known in some detail back to the 

earliest Mesozoic, precise dating beyond about 10 m. y. is not yet possible 

because the lengths of polarity cycles are of the same magnitude as the 

accuracy of dating methods by the K/Ar technique (at 10 m. y., at least +/- 

0.10 m. y. ), Frakes, 1979. Reversals may be most useful to support previous 

findings e. g. to determine the extinction rates of certain organisms; to 

check radiometric methods of dating sediments (Ku et al, 1968); to check the 

degree of bioturbation mixing of oxygen and other isotopes (Hutson, 1980). 

Oxygen isotopes provide another means of dating which has a wide 

application in dating palaeoclimatic indicators but, as with magnetic 

reversals, they are reliant upon calibration against an absolute time scale 

and are most useful as supportive evidence for other methods. The abundance 

of 100 relative to 160 in the ocean has changed over time as 160 has a 

greater mobility than "0 in evaporation and so is concentrated in polar snow 

and ice. The isotope stratigraphy has been extended back to cover the last 
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few hundred thousand years (Shackleton and Opdyke, 1973). However there are 

obvious limitations with this, and other, dating methods in that the age 

ranges over which they are applicable are extremely narrow. 

7.2 Biases 

There are some biases which have been unintentionally introduced into 

the methods used here and hence into the results of this project. For example 

a decision was made that attention would not involve purely economic deposits 

because it would be difficult to assess which deposits were economic and 

those which were not as the economic state of a deposit is not fixed due to 

changing global trading markets. Also there are marked differences in 

economic criteria in different regions as mentioned with regard to PORCU 

deposits of Sumatra (see Chapter Nine, conclusions). However some of the 

references used to assemble data did have such a bias e. g. Cook (1976) 

excluded non-marine PHOS occurrences from his study as they were considered 

to be uneconomic. 

7.2.1 Northern Continents 

A study of the mineral deposit palaeolatitudes indicates a possible bias 

in that there is a concentration of mineral deposits in the northern 

hemisphere in comparison to the southern hemisphere. A number of reasons can 

be put forward to explain such an imbalance in the results. Firstly the 

northern continents have probably been the focus of more intense exploration, 

largely for economic reasons. Secondly the bias may have been a reflection of 

the poor quality of palaeomagnetic data for many of the southern continents, 

with the possible exception of Australia. This poorer quality data would 

influence the reliability of palaeolatitudes as it is involved in the 

development of apparent polar wander paths for continental fragments and also 

in the dating of deposits, as pointed out previously. Thirdly the 
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distribution of Phanerozoic rocks is an important influence on the 

distribution of mineral deposits and this project was purely concerned with 

deposits younger than 550 m. y. old i. e. Phanerozoic in age. There is a large 

proportion of Pre-Cambrian rocks in many southern continents e. g. South 

American, Australian, Indian and African cratonic blocks, so an apparent lack 

of Phanerozoic mineral deposit examples is to be expected. This concept is 

supported by the lack of Phanerozoic examples from areas in the northern 

hemisphere such as the Baltic and Laurentian shields. 

Lastly the imbalance in the palaeolatitude distributions may also be a 

result of a bias in the distribution of total land area. There are more 

continents in the northern hemisphere, if land area versus time is plotted, 

especially in more recent times. This factor has already been mentioned in 

the results (see Chapter Six, section 6.7). Table 6.2 illustrates that for 

the Lower Jurassic to the Present time the majority of land mass has been 

north of the equator. This bias is emphasized by the fact that there are 

fewer mineral deposit examples in the older geological periods when the 

majority of land mass was in the southern hemisphere. The relative paucity of 

deposits in these older periods may be due to selective preservation of 

younger deposits or the bias in data collection to northern continents 

mentioned earlier. Table 6.2 shows the imbalance in total land area is 

reflected by an imbalance in mineral deposit distribution. Generally there is 

agreement between the percentage of total land mass in the northern and 

southern hemispheres and the corresponding percentage of mineral deposits for 

a given geological period. The notable exception is during the Permo-Triassic 

period when a slight discrepancy occurs in the relative distributions of land 

mass and mineral deposits. However the distribution of mineral deposits 

during this time may be greatly influenced by the unusual climatic conditions 

associated with the Pangaean supercontinent (as discussed in Chapter Eight, 

section 8.2.2.3). The uneven distribution of land mass could also have a 
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marked effect on palaeoclimate. The effect of strong asymmetry in the 

proportion of land in the northern hemisphere as compared to the southern 

hemisphere would probably be to draw the equatorial peak toward the land- 

dominated hemisphere e. g. at present the intertropical convergence zone 

occurs about 5° north of the equator. There is a tendency for the evaporite 

belts to occur closer to the equator in the early Palaeozoic than in the late 

Palaeozoic which parallels a general increase in continentality (Ziegler et 

al, 1981). However this phenomenon may be due to the decrease in the Earth's 

rotation which would have the effect of shifting the position of the sub- 

tropical high pressure cells further from the equator through time (Ziegler 

et al, 1979). 

7.2.2 A Bias towards Low-Latitude Palaeomagnetic Poles 

There is one aspect of palaeomagnetic methods which has not been 

mentioned with regard to this project and it has yet to be resolved. There is 

a profusion of palaeomagnetic poles with low latitudes i. e. they have a bias 

for sites which occur in the palaeo-equatorial zone or, conversely, there is 

an apparent aversion to high latitudes. There are a number of possible 

explanations for this; 

(i) this may mean that contrary to the present, the ancient land masses had a 

greater affinity for the equatorial region, 

(ii) or high latitude poles do not exist, 

(iii) or they are not reported, 

(iv) or they are discriminated against in the construction of polar paths. 

The difficulty in finding high latitude poles could arise from one or 

more of the following causes as summarized from Lapointe et al (1978). 

1) Inadequate (and biased) sampling. The palaeomagnetic record is far from 

complete so it is possible that the gaps within the record repetitiously 
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obscure a certain feature and introduce a bias. Only an examination of the 

full record can provide an answer to this question. 

2) Tectonic Effect. It was assumed that over geological time there was a 

uniform distribution of poles over the surface of the Earth. One 

determination out of seven should then yield a high latitude (600) pole, from 

the proportion of the Earth's surface (13X) above 600 latitude. However the 

pole position would only be accurately determined if the sampling area can be 

relocated exactly. Any error in the relocation of the land mass to its exact 

original location and orientation would result in a surplus of low latitude 

poles. 

3) Interpretation of High Latitude Poles. 

a) It may be that the interpretation of palaeomagnetic directions which are 

near to the present Earth's field direction influences the bias e. g. in some 

palaeomagnetic studies of North American rocks such magnetisation have been 

attributed to recent magnetisation. However these interpretations can be 

brought into question as rock surfaces in the higher latitude continents have 

been scoured by Pleistocene glaciers and so it is expected that Recent 

remagnetisations would be rare. It is therefore necessary to establish 

whether such high latitude poles are due to Recent magnetisation or are 

genuine ancient poles. 

b) When expected and observed pole percentage ratios are near to 100, then a 

uniform distribution of poles does occur, or there is a bias in that the 

number of high latitude poles is too high in comparison with some other 

regions. It may be then that recent magnetisation have been mistaken for 

remagnetisations. Much remagnetisation does appear to take place at low 

latitudes because rock surfaces in tropical regimes are commonly covered by 

deep lateritic weathering profiles. Such weathering often develops remanence 

carriers of high thermal and alternating field stability which could be 

correctly associated with remagnetisations (Creer, 1968). An interpretation 
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based on these results would lead to an obvious bias of palaeomagnetic poles 

to the equatorial zone. To conclude the remagnetisation of sediments in low 

latitudes would produce a predominance of low palaeolatitudes only. However 

the Permo-Triassic weathering in North America, Siberia and Europe occurred 

when the palaeomagnetic pole itself was in the present equatorial belt and 

such remagnetisations give more low latitude poles. Care must be taken to 

determine if such remagnetisations have occurred in the interpretation of 

palaeolatitudes from palaeogeographies of this era. 

Conclusion 

It is obvious, that much of the uncertainty associated with 

palaeomagnetic results comes from doubts about the validity of the 

palaeomagnetic poles. Individual workers have produced apparent polar wander 

paths based upon their own unique interpretation of the poles which has 

resulted in a proliferation of apparent polar wander curves, many 

interpreting essentially the same data. The main discrepancies in 

palaeomagnetic results are due to; 

a) a database insufficient to represent adequately the Lower Palaeozoic, 

b) inadequate analysis of individual magnetisations which may have been 

wrongly identified as primary, 

c) incorrect dating of magnetisation by various methods. 

Any review of palaeomagnetic data of any age is now constrained by the 

quantity and diversity of published determinations which may include many 

observations undertaken before present modes of treatment and analysis became 

available. However to filter the palaeomagnetic data using the proper 

criteria outlined in Chapter Three would probably eliminate much of the 

currently available Palaeozoic observations. For the Lower Palaeozoic 

reconstructions palaeomagnetic data are sparse hence subjective evaluations 

must still form a major contribution for these times. The differences between 
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individual interpretations depend on the extent to which other constraints 

(palaeoclimatic, palaeomagnetic and structural) are incorporated into the 

model. However it must be remembered that none of these disciplines can 

provide unambiguous reconstructions. For example palaeomagnetic data cannot 

distinguish longitudinal differences, climatically-dependent lithologies 

cannot distinguish between northern and southern hemispheres and biogeography 

is influenced by numerous factors (e. g. ocean current circulation). Obviously 

the incorporation of such elements further increases the degree of 

subjectivity involved in the formation of palaeogeographic reconstructions 

for time periods with a limited number of reliable palaeomagnetic 

observations. 

Despite all these shortcomings and the large leeway for interpretation 

of palaeomagnetic results, palaeomagnetism has a reasonably sound theoretical 

basis which has been justified by Cenozoic and Mesozoic results. The latter 

have provided important direct evidence for the movement of continents from 

the construction and correlation of continental APW paths and continental 

movement is indirectly supported by the evidence for sea-floor spreading. 

Both sea-floor spreading and continental drift taken together provide strong 

proof of palaeomagnetism's validity through the correlation of the "magnetic 

stripe" pattern of the oceanic crust with the dated magnetostratigraphic 

record of reversals on land. In conclusion the application of palaeomagnetic 

methods as described to mineral deposit studies was deemed to be be valid as 

the reliability of the palaeogeographical reconstructions is of a 

sufficiently high standard to use them as a basis for research. Such an 

assessment is justified on the grounds of consistency. For example in this 

case the two sets of palaeolatitudes used (derived from Tarling and BP 

palaeoreconstructions) were very similar as discussed in Chapter Six, despite 

the different approaches in the interpretation of the palaeomagnetic data. 

Also the present distribution of some lithologies (e. g. evaporites) 
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correlates well with their palaeo-distribution derived from palaeogeographic 

reconstructions so confirming a certain degree of reliability in the methods 

described. Consequently the palaeo-distributions of mineral deposit types 

which have been used as the basis for discussion in this study can be used 

with some confidence. 
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CHAPTER EIGHT 

DISCUSSION: PART TWO 

CLIMATE AND PHANEROZOIC SEDIMENT-HOSTED MINERAL DEPOSITS 

8.1 The Possible Influences of Climate on Mineral Deposit Formation. 

It is a conclusion of Chapter Six that there appears to be a 

palaeolatitudinal control upon the distribution of most sediment-hosted 

mineral deposit types considered here although the range of latitude over 

which such a control is excerised varies between deposit types. In Chapter 

Four (see section 4.8) it was argued that latitude has a considerable effect 

upon climate, influencing atmospheric and oceanic circulation patterns, 

temperature and precipitation. By association, the distribution of sediment- 

hosted mineral deposit types must also be palaeoclimatically controlled. 

Therefore the effects of the influence of climate upon weathering, 

sedimentology and the formation of mineral deposits must now be evaluated. 

There are a number of ways in which climate may be important to ore 

deposition, as given below. 

8.1.1 The Influence of Climate on Weathering, Soil Formation and 

Sedimentology. 

Weathering represents the response of minerals which were in equilibrium 

at a variety of depths within the lithosphere to conditions at or near the 

lithosphere-atmosphere interface. Here they are in contact with the 

atmosphere, hydrosphere and biosphere giving rise to largely irreversible 
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changes involving an increase in volume, a decrease in density and particle 

size and the production of new minerals which are more stable under the 

interface conditions. 

There are two basic types of weathering; mechanical and chemical. The 

former involves those processes such as disintegration and comminution of the 

original rock whereas chemical weathering refers to those processes involving 

decomposition or chemical alteration. Although one or other of these types is 

often related to certain environments this merely indicates their relative 

importance and does not imply that either is totally absent. 

Climate has a considerable affect upon weathering influencing the rate 

of release of a given element from its parent minerals and its transport to a 

depositional site. It may result in an increased concentration of some metals 

in situ e. g. nickeliferous laterites and aluminium bauxites. Several workers 

have attempted to define the relationship between climate and weathering; one 

of the best known schemes is that of Peltier (1950). This began with the 

assumptions that mechanical weathering is almost entirely due to freeze-thaw 

activity and secondly that chemical weathering is so dependent on the 

presence of water that its intensity should bear a fairly simple relationship 

to precipitation. Peltier also contended that chemical weathering is 

accelerated by high temperature and dense vegetation cover and that some 

regions could be too hot or too cold for freeze-thaw to be fully effective. 

By these arguments he delimited climatic regions characterized by distinctive 

combinations of mechanical and chemical weathering as shown in Figure 8.1. 

Chemical Weathering. 

This is particularly effective under conditions of plentiful moisture, 

high temperature and abundant vegetation. It therefore reaches its maximum in 

the tropical zone. A secondary maximum is found in moist temperate latitudes, 
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although the rate here is less than one-twentieth of that in the tropics 

(Rice, 1977). 

A measure of mineral susceptibility to chemical weathering is given by 

the bond strengths (k cal/mol) between oxygen and the following common 

cations given in increased order of bond strengths: K', Na-, H', Ca*-, Mgt-, 

Fee-, A13-, Al"', Si"-. In general, minerals rich in silicon-oxygen bonds are 

the most resistant to chemical weathering (Chorley et al, 1984). The chemical 

susceptibility of clays, after weathering of the silicates, is also due to 

their structure of tetrahedral layers of oxygen and silicon; octahedral 

layers of hydroxyls, aluminiums, magnesiums etc. and of linking K-, Na-, Mg2- 

and Cat- ions. Increased, continued weathering may selectively remove these 

ions, together with silicon and oxygen, leaving only A13-, Fee- and (OH)- in 

extreme conditions to yield either bauxite minerals (bohemite and gibbsite), 

laterites (goethite) and iron oxides (haematite and limonite). 

Montmorillonite and illite clay minerals have the loosest structures based on 

two tetrahedral layers linked to one octahedral layer. The former (especially 

Na-rich montmorillonite) is prone to absorption of water and expansion. 

However illite expands very little and is characteristic of alkaline marine 

conditions and environments where leaching is not excessive. 

As mentioned earlier the presence of water is crucial to the degree of 

chemical weathering. Pure water percolating through a rock is capable of 

inducing three main chemical processes; solution, hydration and hydrolysis. 

By virtue of dissolved carbon dioxide and oxygen, rain water can regularly 

induce two further processes, carbonation and oxidation. Although these 

subjects have been described separately it is very rare for one process to 

operate alone and their overall effectiveness is largely the result of 

interactions between various chemical reactions. The vital importance of 

solution lies in its role of transporting the products of other weathering 

processes. Many solutions are dependent upon external factors for their 
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maintenance e. g. the solubility of ferrous iron and manganese rises rapidly 

under slightly acidic conditions, but it requires pH 4 or less to render 

alumina soluble. This explains why in different localities the weathering 

residue from the same rock can vary widely. It also accounts for 

reprecipitation as the properties of the solvent change during migration 

through the soil and weathered mantle e. g. ferricrete, calcrete and silcrete. 

During hydration many different minerals can incorporate water in their 

molecular structure e. g. haematite may become limonite; montmorillonite may 

swell greatly on becoming hydrated. The swelling factor is one of the most 

important aspects of hydration and it is believed to be a major cause of the 

crumbling of coarse-grained igneous rocks by the progressive expansion of 

their hydrated minerals: 

silicate-0 + H20)silicate (OH)2. 

This reaction may progress to a stage when monomeric silicic acid is 

produced: 

silicate Si O+ 3H20*silicate (OH). + Si(OH)". 

Surface hydration mechanisms of this type explain rapid dissolution of quartz 

in warm, humid climate soil profiles. 

The process of hydrolysis can best be described using the following 

example. This reaction involves a virtually complete disruption of the 

original silicate lattice of orthoclase and the removal of potassium metal 

ions. The rearranged silicon and aluminium ions can accomodate more water so 

the final product is the hydrated clay mineral kaolinite. The sodium- and 

calcium-rich feldspars, olivine, augite and hornblende are all decomposed in 

a similar manner. Hydrolysis is accelerated by impurities in the water, 

especially the presence of carbon dioxide: 

2KAlSi3O. + 2H20--- )Al=Si20. (OH)4 .+ K*O + 48i02. 

orthoclase kaolinite soluble soluble 

potassic acid silica 
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The combination of an element with oxygen dissolved in water is one of the 

most frequently observed weathering phenomena e. g. iron when released by one 

of the other chemical processes is rapidly oxidized to the ferric state in 

the form of haematite or limonite (its hydrated equivalent). 

Carbonation (i. e. chemical alteration by carbonated water) is possible 

because dissolved atmospheric carbon dioxide turns rainfall into a weak 

carbonic acid with an average pH of around 6. When the water percolates 

underground carbon dioxide is rapidly dissolved from soil air. Experiments 

have shown that orthoclase decomposition is greatly accelerated in COs-rich 

water, apparently due to the ready ionization of weak carbonic acid into 

hydrogen and bicarbonate ions: 

2KAlSi3O. + 2HaO + CO2 ---- ) A12Sis0s(OH)4 + KQC03 + 4Si0s. 

orthoclase kaolinite potass. soluble 

carbonate silica 

Weathering of other main feldspar groups also results in the development of 

clay minerals with Na2CO3 from the soda-rich minerals and Ca(HCOa)s from the 

calcium-rich minerals. The dissolution of limestone is another example of 

chemical alteration by carbonation: 

CaCO3 + H*C03 --->Ca*- + 2(HCO3)-. 

The calcium and bicarbonate ions may then be removed in solution. The amount 

of dissolved CaCO3 that may be transported by the water is very sensitive to 

variations in the amount of dissolved carbon dioxide. 

Mechanical Weathering. 

There are four major processes which may lead to the disintegration of 

the bedrock; dilatation, thermal expansion, crystal growth and organic 

activity. 

1) Dilatation: As surface erosion and unloading removes the top of the rock 

column the confining pressures on deeply buried rocks diminish and the block 
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may adjust to this by upward expansion in the form of closely spaced joint 

systems and sheeting structures e. g. Colorado Plateau sandstones with 30 

metre joints in the Monument Valley (Rice, 1977). The main significance of 

these joint systems is the opportunity they afford for deep penetration by 

other weathering agencies. 

2) Thermal Expansion: Stresses are induced by the thermal gradients just 

below rock surfaces by solar heating. As rocks are generally poor thermal 

conductors, quite high thermal gradients are achieved, especially in deserts 

and at high altitudes. Purely thermal stresses seem insufficient to break up 

surface rocks, even in desert conditions, but long term effects have yet to 

be investigated. The existence of pronounced chemical alteration, 

particularly in shady sites where more moisture is available, and the 

expansion of exfoliation shells on boulders, shows that chemical weathering 

can still be relatively important even in arid areas. This is probably 

because night condensation still occurs. The products of desert weathering 

however differ from those of more humid areas being generally coarser and 

with a lower proportion of clay or organic material. The swelling of certain 

clay minerals due to absorption of water is another cause of surface 

disintegration. It is particularly effective in shales, mudstones and 

greywackes due to their high clay mineral content. 

3) Crystal Growth: The most important influence of crystal growth on rock 

disintegration is ice crystallization which can produce a closed, high - 

stress system as the solution enters the solid solution phase and 

crystallization begins from the outside. Even where optimum conditions (rapid 

freezing, 80t moisture saturation) are not present, considerable frost damage 

can result from repeated cycles of freezing and thawing. In addition to ice 

crystallization the crystallization of salts (e. g. sodium chloride, gypsum, 

calcite) is important in rock disintegration under certain conditions. 

Permeable rocks such as sandstone and chalk are particularly susceptible to 
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disintegration by salt crystal growth whereas igneous rocks are much less so. 

This type of weathering is particularly effective in polar and desert areas. 

In high latitudes snowflake nuclei provide salt which tends to accumulate 

near rock surfaces because melting and run-off are minimal. In arid regions 

the excessive evaporation causes salts to be drawn up from depth in capillary 

films and crystallization to occur at the surface. Some workers have 

suggested that the precipitated salts may further contribute to rock 

shattering by expanding under the intense daytime heating of desert areas 

since they have higher thermal expansion coefficients than most rocks (Rice, 

1977). 

4) Organic Activity: The effect of organic activity on weathering is 

discussed in section 8.1.9 in order to discuss all aspects of the role of 

organic activity in mineral deposit formation in one section. 

it appears that it is only in deserts and extreme northern latitudes 

that climatic controls encourage relatively vigorous mechanical weathering. 

Strakhov (1967) stressed that tectonic uplift may affect the relative 

influence of mechanical weathering. He argued that with increased relief 

amplitude, mechanical denudation in the form of surface wash becomes so 

intense that it finally suppresses chemical weathering altogether. However to 

achieve this state in the humid tropics demands exceptionally rapid uplift 

and is therefore much more likely to be achieved in temperate latitudes where 

chemical weathering is less active. 

The importance of weathering in ore deposit genesis must be viewed with 

respect to two other main aspects of mineral deposit formation i. e. syn- 

diagenetic concentration and geochemistry of the basement (Saurama, 1973). The 

concentration in situ of certain metals in very specific and localized 

sedimentary environments is the major factor without which many economic 

deposits would not exist. Also it appears that from studies of basement 

geochemistry of regions from which mineralized formations were derived that 
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the richer a basement so the richer are the resulting detritic formations. It 

is difficult to assess the relative importance of these three factors as the 

separation of syngenetic processes from the other two is more obvious than 

separating the influence of basement geochemistry from that of weathering. 

Samama (1973) used the following example to illustrate this problem. Simple 

mechanical erosion of a copper-rich basement (x5 the clark) would produce a 

certain supply rate of copper. If weathering was influenced by high 

precipitation a majority of the copper would have been leached out before 

erosion so the rate of copper supply would be nearly normal i. e. less than x5 

the clark. However if the weathering was of the monosiallization type a 

weathered cover x3 to x5 richer than the fresh rock would result i. e. x15 to 

x20 higher than the clark and so the rate of supply of copper to the 

sedimentary basin would be extremely high. 

Depth of Weathering. 

Figure 8.2 illustrates the range of climatically controlled weathered 

deposits which vary from very shallow in Arctic soils, to 1-3 metres in 

temperate regions and over 100 metres in some cases in the humid tropics. The 

thickness of weathered bedrock on slopes where transport of weathered 

material is limited depends on the balance between the depth of the weathered 

profile and the degree of transport limitation. The first factor is dependent 

itself upon rock resistance, jointing, permeability and climate. The 

transport limitation is due to the angle of slope, amount of surface run-off, 

rate of creep, frequency of slides, wetting/drying and frost heaving (Chorley 

et al, 1984). Thus the thickest weathered mantles occur in areas of moderate 

to low relief, gentle slopes, good drainage, unimpeded through-flow and 

rapidly weathered bedrock. However some deep soils in temperate regions may 

also be a relict of past tropical climates. 
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8.1.2 The Role of Water Chemistry in Weathering and Mineral Deposit 

Formation. 

The waters of the hydrologic cycle dissolve a variety of minerals as 

they pass through the various stages of that cycle. The main inorganic 

constituents of natural waters are hydrogen (H'), carbonate (CO3-), 

bicarbonate (HC03-), chloride (Cl-), sulphate (S0. '-), hydroxyl (OH-), 

silicate , SiO2, Mg'', Na' and V. Smaller quantities of iron as Fee' 

and Fe'', A134,02, CO* and hydrogen sulphide (H2S) are also present. The 

total concentration varies from 1mg/litre to 100g/litre e. g. seawater 

contains around 35g/litre. Uplift of an area to a zone of weathering starts 

chemical reactions and the nature of the resulting minerals depends on the 

composition of the aqueous phase present (Curtis, 1977) - see Figure 8.3. 

1) Rainfall is chemically active due to some of its water molecules being 

split into H' and OH- ions by the solution of Co. in the atmosphere and due 

to its dissolving of sea salts carried into the air (Chorley et al, 1984). 

Precipitation contains very little in the way of dissolved solids although in 

sea areas it will carry Na' and Cl- ions with Mg*' and SO"2- derived from the 

salt in sea spray. Since the atmospheric precipitation includes NaCl cycled 

directly from the oceans as aerosols, bicarbonate and sulphate are judged to 

be the critical anions of weathering (Curtis, 1977). In inland areas there is 

a very much smaller amount of dissolved solids, the little there is being 

derived from dust or pollution. 

2) Soils in general are commonly neutral or acid, so acid anions must be 

generated during weathering. To produce realistic weathering equations it is 

necessary to establish how these common acid anions are introduced into the 

profile. Plant root respiration and microbiological degradation of plant 

debris maintains high CO2 partial pressure in soil pore space so reversible 
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dissolution and dissociation take place: 

H20(1) + COz(g)ý=HsCO, (ag), -H`(aq) + HC0s-(äq). {1} 

This CO2 dissolved in precipitation forms carbonic acid (H2CO3) which reacts 

with soil minerals by hydrolysis converting the frame- and sheet-silicates 

into clays. The result on fresh volcanic or alluvial soils is that the soil 

is leached and converted to an acid type. In humid tropical weather 

conditions sods are extensively leached of Ca, Mg, Na, K and Si. The 

residuum is enriched in Al and Fe, water giving kaolinite and soil 

sesquioxides (hydrated oxides of Fe and Al). Acid igneous rocks, sediments 

and metamorphic rocks are all similarly altered and quartz is often 

completely removed. However under cool, humid climatic conditions quartz is 

relatively more stable and tends to accumulate in podsols (Curtis, 1977). 

Given equation 1 above the weathering of anorthite can now be expressed: 

CaAl, Si, O. (s)+3H20(1)JCO, (g)---)Al2Si, Os(OH)4(s)+Ca='(aq)+2HCO3-(aq). (2) 

Whether or not the soil would be acid depends on the relative rate forward of 

the reactions 1 and 2. High activities of the reactants (water and C0, ) and 

low activities of dissolved Ca and bicarbonate (the solution products) favour 

this reaction. These conditions are found in areas of high rainfall, organic 

productivity and good drainage (for solute removal). Higher temperatures 

increase reaction rates and organic productivity. Therefore the fact that 

chemical weathering is most intense in well drained areas of humid and 

subtropical regions is not surprising. 

As mentioned earlier sulphate is also an important ionic species. The 

key reaction involving sulphate is the oxidation of sulphides of which pyrite 

is the most abundant: 

2FeS2(5) + 4H20(1) + 7'/202(g)--ýFe2O3(s) + 8H'(aq) + 4450+°-(aq). (3) 

pyrite haematite 
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Ferric iron is very stable and is highly insoluble in soil systems. Therefore 

the solution products form sulphuric acid which is very active in metal 

cation replacements similar to equation 2. 

The equations 1 and 3 show the introduction of acids to soil profiles, 

the rate of generation of acids is one of the most vital controls of 

weathering. All these reactions involve dissolved species so the removal of 

the aqueous phase should drastically reduce reaction rates. It may be thought 

that chemical weathering is not important in hot desert environments, however 

pore solutions are often present and chemical weathering in hot arid regions 

contributes more to the total weathering than was once thought. 

3) Small gold crystals of very high purity have been found intimately 

associated with iron oxide in the laterite profiles in the Yilgarn Block, 

Western Australia. These suggest that Au and Ag may have been dissolved, 

transported and redeposited during lateritization. Experimental evidence 

(Mann, 1984) suggests that very acid chloride solutions are generated in 

lateritic prof lies by ferrolysis (the oxidation and hydrolysis of Fe) and 

these are responsible for the dissolution of the Au and Ag. In the deep and 

well developed laterite profiles the oxidation of pyrite (an accessory 

mineral which may contribute strongly to the ferrolysis process) probably 

occurs as two discrete reactions. The first of these occurs at the weathering 

bedrock front: 

2FeB2 + 2H2O + 0z -= 2Fes' + 48042- + 4H". 

The second reaction is the oxidation of the ferrous ion at, or near, the 

water table: 

2Fe2' + 3H3O + '/s0s----)2Fe00H + 4H'. 

As a consequence of this ferrolysis reaction the zone becomes exceedingly 

acid and ground water seepages with pH values less than 2.5 are common in 

areas such as Darling Scarp (Mann, 1983). 
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Whenever such ferrolysis occurs hydrogen ions must be produced and an 

acidic profile should develop. However if bicarbonate ions are present (from 

the weathering of basic rocks) this acid production may be neutralized. This 

is not thought to have occurred in the Yilgarn block because substantial 

laterite cappings and ferruginous ions are observed. So the development of 

low pH and the redistribution of Au and Ag in lateritic weathering profiles 

appear to be more common over granitic and gneissic basement as these 

processes may be inhibited by the presence of carbonate in the weathering 

zone of basic rock sequences. 

4) An evolution in groundwater chemistry can be described (Smith, 1981). In 

deep confined aquifers the water composition will be affected by SO. '- and 

cation exchange with sodium-rich clay minerals will lead to a decline in Ca 

and mg and a rise in Na. Calcite may be precipitated as an intergranular 

cement at this stage. In deeper zones Cl- increases at the expense of SO. '- 

and HCO3 - so sulphide minerals may precipitate. In deeper parts of regional 

confined aquifers the resulting NaCl-rich brines are sometimes hot and may be 

more concentrated than seawater. 

5) Red beds are fully discussed in a separate section (8.1.8) but one or two 

points are worth mentioning with regard to the influence of water chemistry 

in red beds and mineral deposit formation. Mildly oxidizing saline 

groundwaters are commonly proposed as the metal-bearing solutions in red beds 

(Rose, 1976; Gustafson and Williams, 1981). Metal complexing with chloride 

ions for Cu and Ag, or phosphate and bicarbonate ions for U, is given as the 

mechanism for increasing the metal-carrying capacity of such solutions (Rose, 

1976; Langmuir, 1978). However these metal complexes must be sufficiently 

stable to inhibit metal adsorption by ubiquitous secondary iron oxides 

(Zielinski et al, 1983). Also low sulphide ion concentrations and high Eh are 

required to inhibit the formation of relatively insoluble sulphides of Fe, 

Cu, Pb and Zn or low valence oxides of U and V. The leaching results of 
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Zielinski et al indicate more effective liberation of Fe, Pb and Zn during 

red-bed bleaching (leading to dissolution of secondary iron oxides) than 

during more oxidative leaching. This contrast is less dramatic on Cu and Co 

so variable ratios of Fe + Pb + Zn/ Cu + Co in sediment-hosted stratiform 

deposits may, in part, indicate metal fractionation related to the Eh of 

leach solutions. However it must be noted that such metal fractionation is 

only a contributory factor to the high Co content of some SBCU deposits. 

Those areas of White Pine, the Zambian Copperbelt and the Kupferschiefer with 

high Co occur above basal mafic volcanics (Badham, pers. comm. ) so source rock 

also influences mineral deposit chemistry. 

8.1.3 The Role of Water Volume in Metal Concentration and Mineral 

Development. 

The importance of the availability of water, its volume, circulation and 

periodicity, to the rates and products of weathering has been stressed by 

Trudgill (1976). He noted that, in arid regions, the small amount of 

available water, the return of water to the surface by capillary rise 

accompanying evaporation, and the paucity of organic matter slows down 

weathering rates. Here, and in waterlogged situations, montmorillonite, 

illite and chlorite are the resulting clay products. The smectite group (e. g. 

montmorillonite, nontronite and beidellite) is especially notable for the way 

in which it takes up and loses water (i. e. its adsorption properties) and for 

its base exchange properties so it may be particularly important to mineral 

deposit formation. Smectites develop only when certain conditions are met, 

such as evaporation should exceed precipitation; leaching should be 

negligible and alkalic conditions should prevail so that a low Al: Si ratio is 

maintained. Consequently their occurrence is favoured by a semi-arid, warm 

climate. In humid regions with good drainage, intensive leaching and abundant 
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vegetation, deep weathering results leading to the production of kaolinite 

or, in tropical regions, gibbsite or goethite. Chemical weathering is most 

active in wet climate as water is essential to processes such as hydration, 

hydrolysis and carbonation (Small, 1972). 

1) Weathering rates are controlled by the amount of water input into the 

weathering mass, water output, water chemistry, organic factors (e. g. 

solution and chelation) and by the susceptibility of given minerals to 

weathering. In environments classed as weathering-limited, transport 

processes (e. g. run-off and wind action) are more rapid than weathering 

processes so little or no soil can develop. However in transport-limited 

environments weathering rates are more rapid than transport processes and 

soil or debris cover develops. Clearly moisture and associated vegetation 

cover may have as important an effect upon weathering as the gross influences 

of climatic regime and rock type (Brunsden, 1979). Chorley et al (1984) 

describe two types of experiments involving the efficacy of water upon 

weathering. The first showed that the most effective way of weathering a 

coarse granite block was to use wetting and drying in association with 

thermal changes. Other tests show that certain rock types (e. g. chalk, 

limestone and sandstone) are more susceptible to salt weathering than others 

(e. g. igneous rocks and black shale). The samples were wetted in a salt 

solution and then dried. The most effective salt used was Na: SO. º and the rate 

of disintegration appeared to be related to water absorption capacity. This 

weathering mechanism is particularly applicable in deserts and coastal arctic 

areas. 

2) The speed of mechanical weathering by freeze-thaw methods increases 

rapidly after wetting so it is greatly affected by an increase in water 

volume. 

3) The rate of chemical weathering is dependent upon the relation between the 

rate of chemical solubility at a given mineral face and the rate of water 
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flow against that face (Trudgill, 1976) e. g. in a high solubility and slow 

flow environment, chemical equilibrium is achieved and the weathering rate is 

controlled by the solubility level i. e. the saturation value of the solution. 

However under lower solubility and faster flow conditions the weathering rate 

is controlled by the rate of flow and the solution velocity (i. e. the rate of 

achievement of the saturation value). 

4) Trudgill (1976) also noted that the effect of the velocities of 

percolation on the products of weathering could be shown by the weathering of 

albite. In areas of bad drainage stagnant conditions develop with low 

percolation velocities. Equilibrium is quickly reached and not all Na' and 

Mgt' cations are flushed out so those remaining react with A12' and Si� to 

give montmorillonite. In this way the initial weathering of anorthite 

produces montmorillonite and 3Ca(OH)2 in solution: 

Mgt' + 3NaAlSi3O. + 4H2O '2NaO. *Al1. *Mgo. 89i44Oj0(0H)O + 2Na' + H48i04. 

albite montmorillonite [in solution] 

In those areas with better drainage and higher percolation rates the Na' 

and Mgt' are dissolved and removed. But Als' and Si*- dissolve more slowly to 

form kaolinite: 

2H' + 2NaAlSi3O. + 9H20 )Al: Sis0s(OH)4 + 2Na' + 4H4SiO,. 

albite kaolinite [in solution] 

Where rapid drainage occurs, percolation velocities are faster than 

solution velocities and only Ala' remains to give bauxite while Na', Mg°', 

Ca", Si" are all removed: 

H' + NaAlSi3Os + 7HsO --->Al(OH)s + Na' + 3H4SiO4. 

albite gibbsite [in solution] 

Thus, given suitable weathering material, tropical rugged relief, 

intense rainfall and rapid drainage tends to produce gibbsite. However in a 

similar way orthoclase can be weathered to illite and if continued leaching 
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occurs, kaolinite may result: 

5KAlSi3O. + 4H` + 4HC03- + 16H2O 

othoclase KAleSi. rOzo(OH)4 + 8H4SiO4 + 4V + 4HC02'. 

illite 

2KAl`Si, O20(OH)4 + 2H' + 2HC03 + 13H2O 

illite 5Al2Si2Os(OH). + 4H. SiO. + 2K" + 2HC0, -. 

kaolinite soluble potassium 

carbonate 

5) It is well known that clay minerals have significant but different 

capacities to bind by adsorption, ion exchange and complexing a host of 

metals and non-metals (Weiss and Amstutz, 1966). It is therefore interesting 

to note that the distributions of different types of clay minerals in the 

Niger Delta have been interpreted as consequences of water volume in the 

region i. e. severe leaching, a rapid rate of infiltration of sediments, 

permeability, shale dewatering and marine/non marine water influence 

(Olorunfemi et al, 1985). In the sandy central delta area, permeability and 

porosity are high so this region has the highest groundwater flow rates and 

constant meteoric water flushing. With normal compaction and high leaching by 

meteoric water of cations, residual kaolinite and halloysite (2HsO) deposits 

develop. In the eastern delta high Al-smectites, illite and mixed layer 

illite-smectite dominate. Weathering of volcanic rocks produces Mg-deficient 

smectites (mainly beidellites). However the occurrence of these clay minerals 

is also thought to be due to high organic and carbonate contents: the latter 

acting as a cement, suggesting lower porosity and permeability than the 

central delta so meteoric water flow rates are low and leaching is less 

effective. Shale dewatering (a normal consequence of compaction) also 

contributes cations (CaO-, Mgs", K') to smectites and illites which are found 

at depth. olorunfemi et al (1985) concluded that it was possible to relate 
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the clay mineralogy of the Niger Delta to the hydrology or groundwater flow 

net as well as interaction with sea water. With a particular model-type, 

given the permeability and flow rates, the rainfall and flow volumes of the 

various tributaries, the observed clay mineral distribution patterns were 

satisfactorily explained. 

6) Solution is an important weathering process for all rocks, but it is 

especially destructive to the carbonate sedimentary rocks. The susceptibility 

of limestone to weathering partly depends upon its purity, but even more on 

the absolute amount of water available. Therefore in desert areas limestone 

outcrops form residual hills and escarpments, whereas other rocks are more 

rapidly denuded (Chorley, 1969). 

8.1.4 The Effect of Run - Off on Weathering. 

Run-off is that portion of the rainfall which ultimately reaches 

streams. It consists of the water which flows off the surface, instead of 

sinking into the ground, together with some of the water which originally 

sank into the ground and joins it later in the stream. The run-off is faster 

and greater; 

1) during heavy rain than during a protracted drizzle, 

2) on clay soils than on sandy soils because of lower permeability, 

3) on frozen soils than on frostless soils for the same reason, 

4) in treeless areas than in forests. 

Although chemical weathering is dominant in humid regions, the speed of 

(water) erosion affects its influence; slow erosion allows chemical reactions 

to occur, whereas faster erosion, through increased run-off, may inhibit 

chemical reactions. Also the concentration of metals during chemical 

weathering is favoured by relatively arid climates. The lack of water volume 

means that material is not diluted and flushed quickly through potential 
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depositional surroundings. Hence the amount of free percolation in the 

weathering mass is crucial in determining the rate and completeness of 

removal of chemically weathered constituents. In this respect evenly 

distributed persistent showers are more effective than occasional high - 

intensity storms or alternate wet/dry seasons (Chorley et al, 1984). 

8.1.5 The Position of the Water Table. 

The water table is the upper surface of a zone of unconfined groundwater 

below which the pores of a rock are saturated with water. This surface is 

uneven and variable in depth, rising during wet weather and falling in dry 

weather conditions. 

1) The level of water table may have a direct influence upon whether or not 

nickeliferous laterite deposits develop. This level is influenced itself by 

topography which plays an important role in the distribution of economic 

deposits. Ideally major enrichment of saprolite occurs immediately above and 

below the rim (inflection point) on slopes where the water table is low at 

the plateau edge. Meteoric circulation can occur to greater depths and is 

forced through the saprolite zone. A higher water table in regions of 

flatter-lying land elsewhere on the plateau, or the lowland areas, prevent 

nickel enrichment (Edwards and Atkinson, 1986). 

2) It has been suggested (Granger, 1968) that the position of U deposits in 

the San Juan Basin Mineral Belt, New Mexico was defined by the intersection 

of the palaeo-ground water table (which was periodically fluctuating) and the 

uplifted Morrison aquifers. He speculated that soluble carbonaceous material 

was carried downward into exposed Morrison Formation sandstones by meteoric 

water and precipitated at the water table. The extensive kaolinization in 

arkosic sandstones immediately below the Dakota deposit strongly suggests 

that solutions rich in organic acids flowed into the underlying rocks when 
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the water table was lowered enough to allow drainage from the swamps above. 

Granger proposed that the precipitation occurred at the water table because 

the humate was soluble in meteoric or vadose pore waters, but not in the 

phreatic groundwaters. 

3) For some deposits the level of water table may have an indirect influence 

upon ore formation. Deposits such as LBBMs are preferentially deposited in 

solution and karst cavities so groundwater movement is significant to their 

formation. The water table is the level at which cave passage formation, with 

concommitant roof collapse, is sometimes thought to be most rapid (Williams, 

1969). 

8.1.6 Temperature Influence on Weathering. 

Temperature has its maximum effect on accelerated erosion indirectly 

through its influence on plant cover and the weathering processes. Its effect 

on mechanical weathering is obviously very great. Frost weathering can occur 

only where there are atmospheric freeze-thaw cycles. Insolation weathering 

requires considerable diurnal fluctuations of temperature. Freezing and 

thawing directly alter the structure of the soil and thus make it more 

susceptible to the action of wind or running water. When frozen for a 

continuous period, the soil is largely spared from erosion so the tundra and 

taiga soils are free from accelerated erosion, partly owing to the long 

periods of freezing temperatures. 

Chemical weathering operates most effectively in very warm climates for 

the intensity of chemical reactions is approximately doubled for every rise 

in temperature of 100C (Small, 1972). However if these higher temperatures 

decrease the amount of infiltration this can operate to decrease the 

weathering rates as the processes of chemical weathering are reliant upon 

water and so are most active in wet climates. Biochemical weathering is also 
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influenced by soil temperatures as humic acid is produced most effectively by 

moderate soil moisture of neutral pH under high soil temperatures (see Figure 

8.4). These acids (C4oH240, s) are active in chelation and decompose silicates 

and amphiboles. Fulvic acids (i. e. humic acids derived from peats) are 

especially important agents of weathering (Chorley et al, 1984). Hence soil 

zones formed by different climates exhibit different humus characteristics. 

Tundra soils from near the Arctic Circle have a low humic acid content, low 

microbiological activity and hence low cation exchange capacity. In contrast, 

chernozen soils (e. g. from southern U. S. S. R. ) have high humic acid contents, 

microbiological activity and high cation exchange capacity. 

Temperature changes in the soil are as important as in the air above 

during soil formation (Critchfield, 1983). They are conducted downward slowly 

in the soil so that at about two or three feet depth diurnal variations are 

not experienced. There is little or no seasonal variation in temperature 

about sixteen metres below the surface. The structure of the soil may affect 

its conductivity as air is a very poor conductor i. e. dry, loose soil 

conducts heat more slowly than wet, compact soil and solid rocks. 

8.1.7 Evaporation and Evaporites. 

Tropical deserts develop where the potential rate of evaporation exceeds 

that of precipitation and rainfall is too low or too spasmodic to support 

vegetation. These regions usually occur in trade wind belts north and south 

of the equator in the subtropical arid zones i. e. 20° to 30° north and south 

and in the rain shadow of mountain ranges. The transfer of water vapour in 

the atmosphere is polewards at latitudes higher than 20° and equatorwards at 

lower latitudes so exaggerating the effect of evaporation greater than 

precipitation as water vapour is transferred out of the subtropical arid zone 

(Smith, 1981). About half of the area of deserts comprises outcrop subject to 
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erosion and deflation. The rest consists of fluvial, lacustrine, paralic and 

aeolian sandstones and evaporites. Desert fluvial sediments rarely reach the 

sea so warm, clear coastal waters are ideal for manufacture of organic 

carbonates (see Figure 8.5). The fluvial sediments which do reach the sea are 

formed into off-shore bars by longshore currents behind which evaporitic 

lagoonal conditions commonly develop. These lagoons become sabkhas as they 

are filled with algae-bound marine and wind-blown sediments. It seems likely 

that the sporadic occurrence of deserts in the past was controlled by the 

size of continents, their location relative to the equator, the presence of 

ice caps and the freedom of circulation of global oceanic water e. g. the 

Permo-Triassic was a time of extensive deposition of evaporite and dune 

activity (Glennie, 1987). 

Evaporation is the net transfer of water molecules into the air which 

only occurs if there is a vapour-pressure gradient between the evaporating 

surface and the air i. e. evaporation is nil when the relative humidity of the 

air is 100%. The second control is that an external source of heat must be 

available as the process necessitates a source of latent heat. Once 

evaporation has begun, its rate is affected by wind speed, since air movement 

carries fresh unsaturated air to the evaporating surface. The temperature of 

this surface also affects the evaporation rate as at higher temperatures more 

water molecules can leave the surface due to their greater kinetic energy. 

Salinity depresses the rate in proportion to the solution concentration e. g. 

for sea water the rate is about 2- 3% lower than for fresh water (Barry, 

1969). 

It is known that when the moisture supply in the soil is limited, plants 

have difficulty in extracting water and evaporation (E) falls short of its 

maximum value (PE). One view is that the potential rate is maintained until 

the soil moisture content drops below some critical value. Another is that 

the rale, of evaporation decreases progressively with diminishing soil 
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moisture. Undoubtedly the soil type and climatic conditions are important as 

the maximum soil moisture content free drainage (known as field capacity) 

ranges from 25mm in shallow sandy soil to 550mm in deep clay loams (Barry, 

1969). Chang (1965) considered that a rapid decline in E/PE is likely in 

sandy soils with a vegetation cover under arid conditions whereas a heavy 

soil with vegetation cover in a humid cloudy region would produce different 

changes in the ratio. 

A broad stratigraphic and regional association between evaporite 

deposits and stratabound base metal deposits of SSCU and SHBM types has been 

recognized for many years (Davidson, 1965; Renfro, 1974; Rose, 1976). There 

are also indications that LSBM deposits and evaporites may be related (White, 

1967; Johnson, 1972; Carpenter et al, 1974). Evaporites may serve as a source 

for NaCl2 and CaC12 brines which leach metals from sediments. Theide and 

Cameron (1978) showed Cu, Pb and Zn were concentrated in certain horizons 

i. e. shale, dolomite and anhydrite of the Elk Point evaporite sequence, 

Saskatchewan. They concluded that an evaporating basin provides an effective 

mechanism for concentrating these three metals in an evaporite sequence. Such 

a sequence could then be an important repository of large amounts of Cu, Pb 

and Zn and be the source of chloride-rich brines capable of transporting 

metals to evaporite-associated deposits e. g. SSCU, SHBM and LBBMs. However 

previous workers assumed that metal sources were outside the evaporite 

sequences (e. g. Carpenter et al, 1974). 

On a general level the influence of evaporites in the formation of 

stratiform metalliferous deposits is manifold. For instance at any stage in a 

chemical reaction evaporation enhances solute concentration in a solution. In 

dry seasons the evaporation of soil moisture leads to seasonal concentrations 

of the dissolved minerals which are usually washed away in the wet seasons. 

However in arid climates there may be precipitation of nodular carbonates 

(Smith, 1981). A certain amount of sulphate reaches the surface cycle by the 
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I EVAPORITE PAN 

COASTAL EVAPORITE PAN 

I 

COASTAL SABKHA 

Figure 8.6. Diagrammatic cross-sections which illustrate the characteristics 

of a coastal sabkha as opposed to a coastal evaporite pan. 
(After Renfro, 1974, Figure 5b). 
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units by reaction with organically produced methane during diagenesis. 

(After Jacobsen, 1975, Figure 11). 
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dissolution of evaporite salts. Although this plays no part in such processes 

as chemical weathering, it does give a source of sulphur for reduction to 

sulphide during mineral deposit development (Curtis, 1977). 

The Role of Babkhas. 

Sabkhas form in hot, arid climates where evaporation greatly exceeds 

precipitation. It has frequently been proposed that coastal sabkhas play an 

important role in the genesis of certain types of metalliferous deposits; 

LSBM (Bush, 1970; Renfro, 1974: Davis, 1977; Lange and Murray, 1977): SSCU 

(Renfro, 1974; Long and Angino, 1976; Smith,. 1976): SSW (Rawson, 1975). 

Sabkhas are evaporite flats which form along the subaerial*landward margins 

of regressive seas (Figure 8.6) where the groundwater table lies at, or very 

close to, the land surface (Kinsman, 1969). From the diagram the evaporative 

discharge of water creates a subsurface hydraulic gradient toward the sabkha 

and groundwater solutes may be deposited at, or near, the sabkha surface. 

Figure 8.7 offers an idealized model for the origin of stratiform sulphides 

in calc-arenites involving evaporites, although not in a sabkha depositional 

environment. This is discussed in section 8.2.2.1. However, Figure 8.8 shows 

the evolution of a hypothetical stratiform mineral deposit forming in the 

coastal region of a shallow, but already extensive, marine lagoon or saline 

inland sea. Obviously a hot, arid climate with a large evaporation debit is 

inferred. The metals are derived from underlying terrigenous red beds and are 

transported from the red bed source to the sabkha trap by seaward migrating, 

low pH-Eh water of meteoric origin. Renfro (1974) considered that the areal 

extent, grade and thickness of the metalliferous dposit are dependent upon 

the following: 

1) metal content and quantity of "source" water, 

2) quantity of available reductant (e. g. organics), 

3) duration of the sabkha process, 
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4) amount of "source" water that the host sediment ultimately transmits, 

5) lateral extent of sabka off-lap. 

Annels (1974), in suggesting an origin for the Zambian Copperbelt, 

proposed that hypersaline brines forming in a sabkha environment precipitated 

anhydrite which was reduced by bacterial action to form early diagenetic 

pyrite. Adsorbed metals in the clay fraction were thought to have been 

released during diagenesis and circulated in the brine to littoral zones 

where they were precipitated in contact with anhydrite and hydrocarbons. 

Annels also considered that the dolomitization of calcite and limestones 

supports a Mg-rich brine. However Jacobsen (1975) suggested a serious defect 

in the sabkha process as developed by Renfro. According to Jacobsen the 

derivation of the metal content from dilute quantities in sea water is 

insufficient to give rise to the extremely high metal contents of some calc- 

arenite sequences (Rickard, 1973). 

More recent investigations of trace-metal data from a number of 

hydrologically different types of modern marine sabkhas (Long et al, 1985) 

indicated that these environments do not have elevated trace-metal 

concentrations compared to recent near-shore marine sediments. They concluded 

that sabkhas are not active loci of trace-metal enrichment today. Although 

metal enrichments are not found, localized metal (Zn, Cu, Pb) accumulation in 

the sediment can be detected in the cyanobacterial mats associated with these 

sediments (Lyons and Gaudette, 1985). The role of organics in metal 

enrichment and accumulation is discussed in section 8.1.9. The lack of metal 

enrichment in these sediments was attributed to the relatively young 

geological ages of these sabkha environments or to unique geochemical 

processes such as continual extraction of the metals from the sediment by 

subsurface brines. However it has been emphasized above that the metal 

enrichment of sabkhas is a diagenetic process. Hence the sampling of modern, 
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young and thin sabkhas which have not yet developed a mature profile is 

unlikely to test the sabkha model of mineral deposit formation fairly. 

The Generation of Chloride-bearing Brines. 

The metals are thought to be widely dispersed in large volumes of 

evaporites and the transfer of metals into ore-forming brines requires the 

operation of mechanisms on very large scales. 

Compaction: The expulsion of interstitial brines from the evaporite sequence 

during compaction would produce very large volumes of brine as modern 

evaporites have porosities greater than 50t (Carpenter et al, 1974) whereas 

those of ancient evaporites are near zero. This mechanism was proposed by 

Carpenter et al (1974) with metals from an outside source. However Vine and 

Tourtelot (1970) noted that black shales of hypersaline brines are deficient 

in heavy metals compared to normal marine black shales and suggested that 

metals could be removed during compaction of sediments. 

Conversion: Brines may be generated by the release of water involved in the 

conversion of gypsum to anhydrite. It is thought that 0.486 cubic metres of 

water would be released per cubic metre of gypsum replaced (Borchert and 

Muir, 1964). This water would rapidly become a saturated Cl-Na-Ca-SO4 brine 

through contact with, and dissolution of, NaCl-rich members of the evaporite 

sequence. It has been suggested (Thiede and Cameron, 1978) that metals may be 

freed from the dehydration reaction in a ratio similar to that determined for 

anhydrite yielding a Pb: Zn: Cu ratio of 5: 2: 1. Added to these would be metal 

from dissolved halite at a Zn: Pb: Cu ratio of 4: 1: 1. The brine produced may 

therefore be a saturated Cl-Na-Ca-SO, brine containing Pb and Zn as the 

significant metals. 

Solution: The postdepositional solution of evaporites may be a third means of 

collecting metals. Gorrell and Alderman (1968) estimated that 1.25-2.5 x 1012 

tons of salt have been lost from the Elk Point Basin. This amount of salt 



268 

containing concentrations of metals seen in halite would yield up to 7.5 x 

100 tons of Cu and Pb and 2.6 x 106 tons of Zn. The dissolution of potash- 

rich members of the sequence would yield Zn: Pb: Cu in the ratio of 3: 2: 1, 

whereas the dissolution of halite would yield the same metals in the ratio 

4: 1: 1. Groundwaters moving through the sequence would become near-saturated 

Cl-Na-Ca-K-Mg-SO4 brines (Thiede and Cameron, 1978). 

Brine Chemistry and its influence on Metal Transport. 

Ca-Na-K Chloride Brines. In saturated solutions of Na or K chloride at 18°C 

most chlorides dissolve in only small amounts with zinc chloride being an 

exception. However very saline Na-Ca chloride brines are potent solvents for 

base metals (White, 1968; Barnes, 1974). Most stable zinc complexes at 

ambient temperatures have the formula 2NaCl. ZnCl2 and appear to be non- 

resistant to sorption and precipitation processes (Sonnenfeld, 1984). The 

solubility of galena increases noticably at 25° - 90°C in sodium chloride 

brines with a reduced sulphur concentration and a pH of 8- 13 (Hamann and 

Anderson, 1978). Galena is usually relatively insoluble in brines at 

atmospheric pressure. 

Complexing. This aids the transport of metals considerably, however the 

composition of the complex is again vital: 

1) Lead carbonate is the dominant complex in sea water (Byrne, 1981) but 

sufficient quantities of carbonate ions are not available in more 

concentrated brines. 

2) Bisulphide complexes are not important near ambient temperatures (Herr and 

Helz, 1978). The possibility of Pb transport as bisulphide or sulphide 

complexes at temperatures of 100°C has been questioned (Hamann and Anderson, 

1978). Clearly, these two complexes have very limited spheres of influence in 

the transport of metals. 
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3) Slightly acidic Pb and Zn chloride complexes with a low sulphur content 

can lead to substantial accumulations by a slight reduction in the pH 

(Anderson, 1973). The metals may then travel as simple chloride or as 

compound organ-chloride complexes. The formation of such complexes appears 

to increase the reactivity of the compounds: 

e. g. Pb complexes with humic acids increase the solubility of galena (Lelen 

and Goni, 1974), 

e. g. Cu and Zn form soluble metallo-organic complexes that keep copper in 

solution even in the presence of sulphide precipitation (Hallberg et al, 

1980), 

e. g. dichloride and trichloride complexes of Cu increase its solubility by up 

to two orders of magnitude (Rose, 1976). 

In addition to metals from inflowing seawaters the metal content of 

evaporites is influenced by cations adsorbed onto suspended clays within the 

sequence (Ongley et al, 1981). Hence shale and evaporitic dolomite have 

increased metal contents than halite and carnallite (Sonnenfeld, 1984). 

To Deposit Metal Sulphides. 

In dilute solutions the pH above which metals precipitate increases in 

the following order according to Pasztor and Snover (1983): 

(Sn'', Zr, Fe") < Al (Zn, Cu, Cr") < (Fe'', Pb) < (CO" , Ni'", Ca) < Mn' < Mg''. 

The mobilized metals precipitate where they encounter waters with a supply of 

sulphide ions e. g. those associated with H2S (sour gas) of carbonate or 

evaporite provenance and where the environment changes to a negative Eh and a 

high pH. A zonation of the metals which is so obvious in many mineral 

deposits occurs because the critical concentration of hydrogen sulphide 

varies for each metal and is dependent upon the temperature of the solution 

(Ganeyev, 1976). The distance of migration of a metal is inversely related to 

its solubility (Sonnenfeld, 1964). Where adequate amounts of sulphur are not 
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available in a brine of high ionic strength, the complexed metals may even be 

precipitated in native form e. g. Pb from Jurassic Louann Salt (Carpenter et 

al, 1974). 

In conclusion the hypersaline brines of evaporites concentrate base 

metals faster than they concentrate major cations and probably by biogenic 

means. Evaporitic precipitates therefore become major repositories of metals 

such as Cu, Pb and Zn which are found both in their crystal lattice (e. g. Fe 

and Mg in gypsum) and in point distribution (the base metals). The 

incorporation of these metals is thought to be a function of the rate of 

precipitation (Thiede and Cameron, 1978). The remobilization of such metals 

occurs upon recrystallization of the precipitate, and they probably travel as 

chloride complexes and are redeposited in surrounding porous strata in the 

presence of hydrogen sulphide or by replacement of pre-existing sulphides 

e. g. diagenetic pyrite at McArthur River, Australia (Williams, 1978). 

8.1.8 The Influence of Red Beds in Mineral Deposit Formation. 

Before discussing the possible role of red beds in mineral deposit 

formation it is necesssary to accept the assumption that red beds may be 

indicative of arid climates especially when they are found in close 

stratigraphic association with evaporite deposits. Walker (1967a and b) 

suggested that terrestrial water associated with sabkha evaporites bordering 

the northwest Gulf of California is sufficiently oxygenated to cause in situ 

oxidation and reddening of terrigenous elastics. Recently investigations 

(Zielinski et al, 1983) into the development of red pigmentation in a red bed 

sequence in northern Baja California have been carried out to study the 

mobility and distribution of heavy metals. This was based on the generally 

accepted view that in soils and sediments secondary oxides of Fe, especially 

hydrated forms, may concentrate metal ions (e. g. Wedepohl, 1970). The 
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mechanism of uptake is adsorption, the degree of which is dependent upon the 

type and degree of crystallinity of the iron oxides, the solution chemistry 

(pH, Eh, concentration of ions and complexing agents) and the relative 

concentrations of oxide host and adsorbed species (e. g. Vuceta and Morgan, 

1978). The increased permeability in a water-saturated environment promotes 

efficient interaction between mineral grains and co-existing solutions, by 

increasing both rate of mineral alteration and effective transport distance 

of dissolved species. High intergranular permeability probably aids the above 

so coarser grained red beds may be more susceptible to changes which result 

in growth or destruction of secondary iron oxides and so influence metal 

sorption or desorption (Zielinski et al, 1983). The leaching results also 

suggest that under equivalent leaching conditions the rate of metal 

liberation should be greatest in young red beds which contain a higher 

proportion of more reactive, hydrous iron oxides. Older red beds may react 

more slowly because of the greater proportion of crystalline iron oxides. 

However these older red beds provide a potentially greater amount of metals 

via iron oxide dissolution as the total abundance of secondary iron oxides 

and hence the percentage of metals associated with them increase with age. 

The results of this research suggest that the development of red beds which 

are well flushed by suitable oxidizing or reducing pore fluids may be sources 

of significant quantities of heavy metals. 

8.1 9 The Influence of the Biomass on Metal Deposit Formation. 

A number of sediment-hosted base-metal sulphide deposits have organic 

carbon contents considerably above average for shales and it appears that so- 

called "organic" processes could have played a significant, or even critical, 

role in the concentration of the ore metals (Roberts, 1973). Organic matter 

also plays an important role in the transport of metal complexes (Barker, 
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1982) and has been cited as important in the formation of strata-bound and 

stratiform ore deposits (Anderson and Macqueen, 1982; Macqueen and Powell, 

1983). 

The Effect of Biomass on Weathering. 

Mechanical Weathering: Biological stresses which induce physical weathering 

are of two main classes; faunal and floral. Animals only really have an 

important role in disturbing the detritus already produced and thereby 

enhancing the efficacy of other weathering processes. However earthworms can 

bring an average of 43 tonnes/hectare/year to the surface i. e. a 5mm layer. 

This figure may be exceeded in parts of the tropics and the activity of 

termites may be twice that of earthworms (Chorley et al, 1984). 

Plant root growth may also generate important stresses since the 

cellulose of cell walls is stronger than many metals so growing plant roots 

in favourable situations have the capacity to wedge open bed-rock joints. 

Tree tap-root systems commonly extend to depths of three metres and fine tree 

roots extend to more than twice this depth (Chorley et al, 1984). It might 

therefore be supposed that root growth is a major means of physical 

disintegration but in practice the actual force exerted by roots is difficult 

to evaluate as the overall role of roots involves two contrasting activities. 

Firstly they act as a stabilizing agent by binding weathered materials 

together and thereby retarding the exposure of fresh rock. In contrast they 

occasionally have a very disruptive effect such as when large trees are blown 

over. 

The significance of colloidal plucking (gelatine drying in a tumbler is 

capable of detaching small flakes of glass) in the field has yet to be 

ascertained. it may be an important means of rock disintegration as a 

considerable fraction of soil organic material exists in colloidal form. 
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However it is possible that whilst effective on concave materials it does not 

operate on the convex form of the typical rock grain (Rice, 1977). 

Chemical Weathering: Biological agencies affect chemical weathering by 

affecting the rates of processes e. g. the control on the quantity and quality 

of percolating water exercised by vegetation. The vegetation cover will 

regulate the amount of precipitation reaching ground level by interception. 

It will also influence the rate at which water moves through soil horizons by 

the production of humus (Rice, 1977). Maximum solution, weathering and 

leaching are usually associated with high intensity and high frequency of 

precipitation except where the surface is protected by layers of tall 

vegetation. Under the latter conditions leaching losses to rivers may be 

generally small (e. g. in undisturbed tropical rain forests) but otherwise 

they are at a maximum in hot and wet conditions. Temperate biohomes have 

generally small leaching losses, except for calcium (Chorley et al, 1984). 

The most fundamental effect of organic activity on chemical weathering 

is the influence on water quality with regard to the supply of carbon 

dioxide. Oxidative bacteria decomposing organic residues, together with the 

respiration from plant roots, regularly raise the carbon dioxide 

concentration in soil air to between 0.2 - 2.0%. The actual amount of carbon 

dioxide varies in response to the following factors; 

1) Temperature - bacterial action declines rapidly as the soil temperature 

falls below 10°C, 

2) Water content - organic activity falls significantly when the moisture 

content sinks to less than 10%. 

3) Soil aeration, 

4) Vegetation cover. 

Carbon dioxide has important consequences for the solubility of such 

weathering products as the iron and aluminium compounds. 
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Biochemical Weathering: Organic material operates within almost all 

weathering zones to produce a very complex set of biochemical processes 

including cation root exchange, reduction, chelation and production of 

organic acids. By these means weathering rates may be increased up to ten 

times those of distilled water by weak complexing acids (e. g. acetic) and up 

to one hundred times by strong complexing acids (e. g. citric and tartaric). 

Many anaerobic bacteria obtain part of their oxygen by reducing iron 

from the ferric to the ferrous form. One consequence is to produce ferrous 

compounds which are significantly more soluble in water. This is a major 

method by which iron can be mobilized and removed from the soil (Rice, 1977). 

Chelation involves the union of metallic cations with the hydrocarbon 

molecule and is a fundamental process in sustaining plant life. The roots are 

surrounded by a concentration of hydrogen ions which can exchange with the 

cations of Ca, Mg, K etc. in adjacent minerals through clay colloids. These 

metallic cations are then absorbed into the plant by chelation. The resulting 

so-called co-ordination compound is soluble in organic solvents but not in 

water. Copper concentrations of 3- 10% in a peat from southeast New 

Brunswick have been attributed to chelation of copper (Fraser, 1961). This 

peat contains 60 - 80% organic matter. 

Microbiological degradation products include many organic acids, 

themselves very effective in mobilizing metal cations. The role of organic 

acids in weathering is well known e. g. tartaric acid dissolves both silicate 

minerals and clay many times faster than deionized water; clay minerals 

faster than silicate minerals and A13. more rapidly than Si" in clay. Humic 

acids (e. g. CACH24012) are active in chelation and decompose silicates 

(especially amphiboles). Microfloral acids (e. g. oxalic and citric) from 

fungi and lichens attack silicates and clays and produce carbon dioxide. 

Bacterial acids (e. g. lactic and acetic) attack a wide range of minerals 
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including magnesium carbonates, calcium and magnesium silicates, feldspars 

and kaolinite (Chorley et al, 1984). 

Sources of Organic Matter. 

At present marine organisms contribute approximately 60% of the total 

organic productivity donating mainly proteins, lipids and carbohydrates (from 

phytoplankton). Terrestrial plants make up the majority of the remainder 

giving resins, waxes, lignins and carbohydrates in the form of cellulose. 

Rates of primary productivity in aquatic environments are affected by the 

amounts of light present as photosynthesis takes place in the upper sixty to 

eighty metres of the water column. The rate of photosynthesis is at a maximum 

in areas of upwelling and near river mouths where abundant nutrients are 

available. Estimated organic productivity values are as follows (Krey, 1970): 

open marine waters average 50g carbon/sq. m. /yr; coastal waters average 

approximately 100$ carbon/sq. m. /yr; western margins of continents with 

maximum values which may reach 300g carbon/sq. m. /yr. However it is considered 

(Barnes et al, 1984) that preservation of organic matter is probably more 

important than productivity in determining the organic contents of sediments. 

Drganic Matter as a source of metals. 

Biological studies have shown that metals bonded to certain organic 

ligands are present in all living matter and unusual accumulations may occur 

(Peterson, 1971). It has been stated that the total content of Co, Cu, Mn, 

Mo, Ni and Zn in plants alone is greater than in orebodies (Boychenko et al, 

1968). Micro-organisms can concentrate elements from sea water with 

concentration fractions of up to 10' (Trudinger and Bubela, 1967). When 

organisms die some of these metal-organic compounds resist bacterial action 

so producing an association of biogenically derived metals with carbonaceous 

matter in the consolidated sediment. The preference of metals for certain co- 



276 

ordinating groups is evident (Saxby, 1976). In general carboxylate groupings 

form their strongest bonds with Ca" and MgO-; nitrogen atoms favour Fe", 

Co2', Cu2" and Zn2', while sulphur ligands prefer Cue` (Livingstone, 1965). A 

complexed metal may sometimes assist in the coupling of different ligands 

e. g. porphyrins and amino acids (Hodgson et al, 1970). During diagenesis of 

the sediment most metal-organic compounds will decompose. Eventually the 

metal content in the sediment will be more concentrated than in the original 

living matter with the release of metal as organic matter is lost as Co., 

volatile hydrocarbons or soluble organic compounds. The porphyrin nucleus is 

very stable and does not decompose at normal sediment temperatures (Saxby, 

1969), although the original metal has generally been replaced by V or Ni to 

give a more stable complex. The resonating ring of chlorophyll is stable 

until extreme conditions are encountered (e. g. temperatures greater than 

500°C) but ring substitutes are probably lost or hydrogenated and the Mg atom 

is replaced (Saxby, 1976). 

Preservation of Organic Matter. 

The preservation of organic matter is a function of the oxygen content 

of the environment. Estimates of the preservation of primary organic matter 

in the surficial sediments of marine environments average about 0.1% (Menzel 

and Ryther, 1970). This value is even lower for subaerial environments as the 

high oxygen content of the air favours chemical oxidation and aerobic 

microbial decomposition. The preservation of organic matter in regions of 

rapid terrestrial sediment deposition (e. g. deltas and continental slopes and 

rises) is relatively high because of the limited diffusion of oxygen into the 

sediments (Barnes et al, 1984). generally organic material in rivers is 

broken down by oxidizing bacteria using atmospheric oxygen. However if the 

organic content is too great it accumulates on the river bed and the water 

becomes anoxic. Further decomposition occurs if sulphate-reducing bacteria 
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use 50.62- in the water as an oxygen source. Hydrogen sulphide results. The 

maximum preservation (about 4%) occurs in anoxic environments (Deuser, 1971) 

where anaerobic microbial processes result in less complete decomposition of 

the organic matter. The products are again subject to oxidation during 

bacterial sulphate reduction. It can be concluded from this that rapid 

sedimentation limits exposure to oxygen and thus favours the preservation of 

organic matter. Terrigenous organic components are also better preserved than 

those from aquatic sources (Meyers et al, 1984). 

Concentration of Metals by Organic Matter. 

Complex Formation: A wide range of range organic molecules e. g. amino acids, 

alcohols, heterocyclic compounds containing nitrogen and sulphur are capable 

of binding metals through co-ordinate bonds involving nitrogen, oxygen and 

sulphur atoms are present in many aqueous environments. The presence of 

metal-organic componds in hydrothermal ore forming solutions has been 

verified by fluid inclusion studies (Kranz, 1968). Baker (1973) suggested 

another mechanism for the formation of metal complexes in a solution. This 

involved the attack on a particular mineral by percolating waters containing 

a specific organic ligand. As mentioned earlier humic acids are effective 

agents in the weathering and transport of certain metals e. g. Cu, Al, Fe, Zn 

and pb (Ong et al, 1970). 

Physical Adsorption: Physical adsorption is a weak force by which metallic 

ions are attracted to soluble, colloidal or particulate organic material, so 

that the ion is easily replacable. It has been shown that it is possible to 

concentrate large quantities of metals on certain naturally occurring organic 

materials. Studies of the reactions of Cu'-, Pb'" and Zn*- in aqueous 

solutions with organic matter derived from fresh samples of green filamentous 

algae show that under suitable conditions, a significant proportion of the 

metals is removed from the solution by sorption onto the particulate organic 



278 

matter of the algal suspension (Ferguson and Bubela, 1974). They found that 

the presence of relatively small amounts of Na+ and Mgt' in solution reduces 

the sorption to an appreciable extent in even strong brines. This may be a 

means for the selective precipitation of Pb2 from brines rich in Pb2' and 

Zn2' ions. 

Chemical Precipitation: A third mechanism of metal concentration during 

sedimentation involves the reaction of carbonaceous material with metals or 

metal complexes dissolved in percolating groundwaters or hydrothermal fluids. 

In particular if the metallic ion can be reduced and precipitated as an 

insoluble species, an association of metal with carbonaceous material will be 

achieved, at least until the latter has been oxidized. Such a process can 

account for many carbonaceous U deposits where it has been suggested that U 

in soluble U" complexes in groundwaters is precipitated as a result of 

reduction to U"' by carbonaceous shales (Saxby, 1976). 

Diagenesis of Organic Matter. 

V, 
The low temperature shallow burial diagenesis of organic matter is known 

as eogenesis (Barnes et al, 1984). Eogenetic changes greatly affect the 

physical structure and chemical stability of organic matter and influence the 

formation of humic compounds and hence form metal complexes which act as 

metal transport agents in groundwater systems. The processes are also 

influenced by a change in the Eh of pore waters which abruptly decreases from 

the oxic to the anoxic zone and is accompanied by a slight increase in the 

pH. This results in an enrichment of bicarbonate and ammonia and the loss of 

carbon dioxide leading to the precipitation of carbonates and the dissolution 

of amorphous silica. These reflect the breakdown of organic matter and very 

general activity of anaerobic micro-organisms. Iron, copper, lead and zinc 

may be precipitated as sulphides. 
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1) Generation of sulphides: Organic matter contributes to the concentration 

of metals but its role in generating sulphide ions (Krouse and McCready, 

1979) which are vital to the formation of sediment-hosted base-metal sulphide 

mineral deposits is very important. At low temperatures sulphate-reducing 

bacteria can produce hydrogen sulphide by reaction of other iron minerals and 

reduced sulphur species. The latter is formed in the initial step: - 

8042- + 2CH20 ýHS' + HCO3_ + H2COs. 

The factors which limit the amount of pyrite development are the amount of 

organic matter that can be metabolized by sulphate reducing bacteria; the 

available iron compounds that are within the sediment and the maximum rate at 

which sulphate can diffuse into sediment from the overlying depositional 

water (Berner, 1970). Typical conditions for the existence of sulphate- 

reducing bacteria are: Eh (+350 to -500mV), pH (4.2 - 10.4), pressure (1 - 

100 atm), temperature (0 - 1000C), salinity (, 1 - 30% NaC1), presence of an 

energy source and trace elements (Ca, Mg, K, Fe, P, Cl, N) (ZoBell, 1963). 

The formation of completely biogenic sulphide ores has been questioned from a 

consideration of the rates of sulphate reduction, organic matter production 

and ore deposition (Rickard, 1973). 

2) Fermentation: This process occurs whenever sulphate-reducing bacteria are 

inactive e. g. in anoxic fresh-water sediments or in rapidly deposited marine 

sediments below the depth of diffusive sulphate penetration. It is limited to 

the availability and amount of utilizable organic matter (Curtis, 1977). The 

common product of fermentation is methane. 

3) Carbonates: oxidative bacteria close to the sediment-water interface, 

sulphate-reducing bacteria (down to a few metres) and fermentation bacteria 

(below the level of complete sulphate depletion in more rapidly deposited 

sediments) all produce bicarbonate. This is found in the diagenetic 

carbonates calcite, dolomite, ankerite and siderite. Shallow burial 
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environments therefore must be considered as likely locations for 

recrystallization and precipitation of various carbonate minerals with 

carbonate being supplied by biogenic primary carbonates and bacterial 

degradation of organic matter (Curtis, 1977). 

Organic Matter in Sabkhas and Evaporites. 

The inward flow of waters into an evaporite basin is very rich in biota 

whereas the bottom brines are hostile to life forms. As the brine becomes 

more concentrated, the number of species which can survive decreases and 

there is a concurrent decrease in oxygen solubility. This leads to an 

elimination of bottom-dwelling forms and anaerobic bacteria proliferate. The 

organic matter which now enters the evaporite basin is not oxidized and so 

accumulates in the brine. Ultimately it attaches to precipitates, is 

deposited in the sediment, or is flushed through a suitably permeable 

substrate. 

Babkhas are usually bordered by intertidal mudflats and lagoons on the 

seaward margin which are coated by blue-green algal mats. Beneath the upper 

surface is a zone of interbedded decaying algae and detrital sediment. 

Through time sabkhas prograde seaward over these algal mats which become 

saturated with hydrogen sulphide by anaerobic bacteria upon burial. 

Ultimately terrestrial formation water must pass upward through these 

strongly reducing algal mats to reach the evaporation surface (Renfro, 1974). 

Initially such terrestrial waters are characterized by low pH and high Eh so 

they can mobilize and transport metals such as Cu, Ag, Pb and Zn. However 

when the waters pass through the hydrogen sulphide enriched algal mats these 

metals are reduced and so precipitated as sulphides. There is a zonation in 

the suite of metals from landward to seaward according to their relative 

solubilities in the presence of hydrogen sulphide. 
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More recently, Long et al (1985) have found that modern marine sabkhas 

do not have elevated trace-metal concentrations compared to recent near-shore 

marine sediments and are therefore not active loci of trace-metal enrichment. 

However they do acknowledge that localized metal accumulation in the sediment 

can be detected. This is again centred on the cyanobacterial mat associated 

with evaporite sediments which are thought to play an important role in the 

initial concentration of metals such as Zn, Cu and Pb. During burial and 

subsequent diagenesis the metals can be reconcentrated (Lyons and Gaudette, 

1985). The lack of metal enrichment in sediments of modern marine sabkha 

systems has been attributed by Long et al (1985) to either the relatively 

young geological ages of these environments hence diagenetic processes have 

not yet concentrated metals or the intervention of a specific geochemical 

process e. g. the continual extraction of the metals from the sediment by 

subsurface brines. 

In general the biota within a concentrated brine in an evaporite basin 

accumulate some metals in their bodies and release them upon decay. Such 

metals may initially enter the crystal lattice of evaporite minerals but are 

removed by recrystallization and then travel into the subsurface with 

migrating hypersaline brines. 

Conclusion. 

From the previous sections the importance of climate to mineral deposit 

development is undeniable. It has been shown that climate affects the degree 

of weathering, the amount of available organic matter for reduction, 

evaporites for a sulphur source and the volume and chemistry of potential 

metal-transporting fluids. 

There are two main varieties of sediment-hosted mineral deposits which 

are under examination here; syngenetic (primary) and epigenetic (secondary) 

deposits. The influence of climate on mineral deposit development may also be 
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divided. For syngenetic deposits it appears that syn-ore climate is a vital 

factor e. g. for adequate weathering of source rocks, release of metals and 

transport in an adequate solution. However for epigenetic deposits, both syn- 

and pre-ore climates may be influential. Pre-ore climatic conditions would 

dictate the products of such a climate in sediments which may control the 

later processes e. g. influence depositional conditions (the presence of 

evaporites, organic matter). However syn-ore climate affects other factors 

which are influential in ore development such as quantity and quality of 

groundwaters for metal transportation. 

Climate is only one of many possible enhancements (e. g. initial metal 

source, metal enrichment, suitable depositional environment) that must occur 

to allow mineral deposit formation. In some instances the climate may have 

appeared to have been suitable, but no mineral deposits have developed 

because another of the necessary enhancing mechanisms did not function. An 

example of the necessity for a combination of enhancements was inadvertently 

stressed by Ferguson and Bubela (1974). Their results suggested that certain 

types of particulate algal matter could sorb sufficient quantities of metal 

to form an ore deposit only if the weight of organic matter available was of 

a similar order of magnitude to that of the inorganic sediment in the 

deposits. However as metal sorption is an equilibrium reaction, the metal 

"saturation" values could be reached only in solutions with initial metal 

contents at least two orders of magnitude above those of seawater. The 

magnitude of these enrichment factors indicated that the saturation values 

could be achieved only in solutions already enriched in metals. So regardless 

of other factors that may be involved (e. g. climate) if the initial solution 

was not carrying sufficient metals, or the depositional environment was not 

sufficiently rich in organic material, then no accumulations of metals could 

occur. 
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8.2 Individual Deposit Types Discussed. 

8.2.1 Carbonate-hosted Deposit Types. 

8.2.1.1 Limestone Base-Metal Deposits (LSBM). 

The main characteristics of LSBMs have been given in Chapter Three, 

section 3.2.7 and so are not discussed here. However the genesis of these 

deposits should now be mentioned in order to introduce the possible influence 

of climatic conditions upon their formation. There are three aspects of the 

origin of LSBM5 which have been the centre of controversy for many years. 

Firstly, the ore is frequently found in close association with dolomitization 

but it is not known how closely these two events are related in time i. e. was 

the dolomitization caused by the precipitating ore fluids or did the increase 

in porosity associated with dolomitization simply prepare favourable pathways 

for later, unrelated ore deposits? Secondly was the ultimate source for the 

metal-bearing brines the adjacent sedimentary basin to the deposits i. e. due 

to fluid expulsion of basinal shales? Alternatively they could be surface 

waters that acquired salinity as a result of evaporation during a period of 

hot, semi arid climatic conditions and/or by contact with evaporites in the 

lagoonal facies of LSBM deposits. Lastly the dilemma is whether or not the 

metals and the sulphur for reduction were transported to the depositional 

site in the same fluid. The problem is that it is not possible to transport 

metal chloride complexes and reduced sulphur species in the same solution as 

they would react. Hence it is thought that two independent fluids using 

different pathways must meet and mix in order to precipitate sulphide 

minerals. 

Hoagland (1976) listed seven essential requirements for the formation of 

LSBMs which included such factors as the coincidence of time and space i. e. 

the necessity for a two-fluid system to mix within the channels for a 
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sufficiently long period of time to produce such large LSBMs as found today, 

and conditions which could produce and sustain a hydraulic gradient capable 

of driving metal-rich brines from source area to the discharge area. The 

first point i. e. mixing of two fluids has very little to do with climate, 

although the second i. e. hydraulic gradient and heat flow may be greatly 

influenced by climatic enhancements (see section 8.1.3). The different facies 

of LSBMs are discussed below in terms of the possible influence of climate on 

certain features (see Figure 8.9). 

The Open Sea/Basinal Facies. 

The conditions in the basin which may be affected by climate are the low 

clastic input (so shales with a high clay mineral content dominate), the clay 

type itself (see section 8.1.3) and high biological productivity. The latter 

increases the organic content of the associated rocks which may also 

influence the metal content of the shales and hydrocarbon development. The 

ore fluid for LSBM5 is generally considered to be a chloride-rich saline 

brine at 50° to 150°C (Roedder, 1976) expelled from the basinal shales 

(Hoagland, 1976; Dunmore and shear-man, 1977). Such waters may become 

enriched in heavy metals if they have a sufficiently high chloride content 

(perhaps from the dissolution of evaporites) and basin geometry is such that 

sufficient quantities of water are able to flow through the shales to allow a 

high degree of metal release by solution. These metal-bearing brines have 

been reported from sedimentary basins (Carpenter et al, 1974) with 15% NaCl, 

and containing 100ppm Pb and 350ppm Zn at 90° - 160°C. Long and Angino (1982) 

have also noted substantial leaching of metals from shales by brines. However 

Ohle (1980) questioned that shales were the major metal source arguing they 

were very impermeable when lithified. He also doubted that their relatively 

high metal content could be made available once the initial flush of water 

had occurred. 
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The utilization of waters expelled during compaction of underlying 

sediments to move brines upwards to suitable depositional sites was proposed 

by Noble (1963). However this was questioned (Lange and Murray, 1977) on the 

grounds that underlying rocks may have become compacted by the time of 

mineralisation e. g. the southeast Missouri Lead district (Snyder and 

Gerdemann, 1968). Bethke (1986) argued that compact-driven flow may be a 

dominant ore-forming process in districts associated with shaly, rapidly 

subsiding basins (e. g. ouchita Basin) because compaction-flow would be rapid 

and over-pressuring common. However he suggested that in other instances e. g. 

the Upper Mississippi Valley district, gravity-driven flow would be more 

effective because of the moderate flow velocities of metres per year through 

deep aquifers, permeability structures and high heat flow. Compact-driven 

flow in this area would not be effective in transporting heat within the 

basin because migrating fluids moved too slowly to avoid conductive cooling: 

the basin was not over-pressured during subsidence because of low burial 

rates, low shale content and the presence of deep aquifers. So if the theory 

of basinal shales as the origin of metal-bearing brines is correct the 

climatic influences mentioned at the onset are obvious. However even if 

alternative sources are sought climate may still be influential (see below). 

The influence of climate on biological productivity has been discussed 

previously so the possible genetic roles of organic matter in the formation 

of LSBMs are to be examined. They provide a source for metals in their 

initial concentration as metal-organic complexes which are then released 

during thermal maturation. Organically bound sulphur (0.2 - 2%) may also be 

utilized in metal sulphide formation. A proportion becomes available as H*S 

through bacterial attack during consolidation of the sediment. The residue is 

gradually released during thermal breakdown of the buried organic matter 

(Brooks, 1971). Skinner (1967) proposed that hot brines carrying metal 

chloride complexes caused release of H2S by thermal degradation of sulphur- 
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containing organic compounds. This may be less important than bacterial 

sulphate reduction but still accounts for the metal sulphide-organic matter 

association seen in LSBMs. The relationships between bitumen and a sulphide- 

bearing barite deposit in the Lodeve Basin, France have been examined 

(Connan, 1977). It was concluded that the degree of bacterial biodegradation 

of bitumens was linked to the abundance of sulphides (e. g. galena and 

bornite) in the vicinity. In this case biodegradation by sulphate-reducing 

bacteria was regarded as the sulphur source for the deposit. The transport of 

metals as organic complexes might assist in a reduction of large volumes of 

fluids required to develop these deposits (Anderson, 1975) by alleviating the 

low solubility of chloride complexes (Macqueen, 1979). 

The association of many LBBMs with hydrocarbons has been frequently 

mentioned (e. g. Dozy, 1970; Macqueen and Thompson, 1978). These hydrocarbons 

may provide an important source of hydrogen sulphide i. e. supplied directly 

by reduction of sulphur-bearing compounds such as resins or asphaltenes in 

the petroleum (Macqueen, 1979). An alternative source of H*S is from 

sulphate-reducing bacteria which feed on petroleum, oil or bituminous 

sediments and which produce continuous volumes of H! 8 (Jackson and Beales, 

1967). Such bacteria can be active up to temperatures around 80°C (Dunmore 

and Shearman, 1977). 

The Reef/Carbonate Facies. 

One of the most consistent features of LSBMs is the ubiquity of 

limestones as hosts for the mineralisation. In most deposits dolomites are of 

regional importance within the mining district and in a few cases e. g. the 

Tri-State district of east Tennessee, dolomites are restricted to the 

vicinity of the ore body (Sangster, 1983). Alternatively the ore may be 

restricted to the environment of dolomitization as mentioned earlier. 
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The formation of carbonate sediments is enhanced by certain climatic 

conditions e. g. warm sea water, so it is to be expected that a plot of the 

LSBM deposit host rocks shows a preference for low latitudes (Dunmore and 

Shearman, 1977; this thesis). As the warmer climates of low latitudes also 

encourage the development of reefs, an association between reefs and LSBMs is 

to be expected too. The formation of carbonates is considered to be limited 

by factors which influence the development of hermatypic corals and 

calcareous green algae which are among the most important carbonate 

contributors (Milliman, 1974). Both these organism types depend on light for 

photosynthesis hence clarity and depth are considered important. However 

temperature is also often assumed to be a limiting factor because present 

hermatypic reefs do not occur poleward of the 18°C minimum isotherm (Wells, 

1957). Ultimately the above are controlled by insolation and the refractive 

index of sea water. Ideally in low latitudes, 100% of the radiation is 

refracted into the sea, above 300 of latitude the amount of refracted light 

diminishes rapidly and above 65° all light is reflected back into space. The 

carbonate belt does not expand poleward during warmer intervals (e. g. the 

Cretaceous) which suggests that light refraction, and not temperature, is the 

limiting factor for carbonate environments (Ziegler et al, 1984). This is 

obviously a latitudinal phenomenon and some climatic conditions as a 

consequence of latitude may also reduce the effective radiation in a number 

of ways. Firstly, surface roughness (in the form of waves) influenced by 

prevailing winds and cloud cover combine to reflect about 20% of the low 

latitude radiation. Also turbid conditions associated with clastic run-off 

dominate the western sides of oceans in tropical and subtropical zones, so 

carbonates are resticted to shallow shelf margin sites. On the eastern side 

of oceans, turbid conditions associated with upwelling and high surface 

productivity restrict carbonate formation to protected inner shelf situations 

(Ziegler et al, 1984). 
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The role of carbonates in LSBM development is manifold. Carbonate rocks 

are often enriched in hydrogen sulphide which is an effective metal sulphide 

precipitator (Macqueen, 1979). They are also often rich in organic matter, 

whose uses have been previously discussed in full and whose presence may also 

enhance the H3S content, or the organics may serve as a metal source. Perhaps 

the most important role of carbonates is that concerning their porosity. 

Hoagland (1976) stressed that a carbonate host rock environment with 

sufficient open space to permit the necessary volume of ore minerals to be 

deposited was essential to LSBM formation. Carbonate sequences are usually 

lithified early with a high initial porosity and permeability e. g. crinoidal 

bioherms (Hagni, 1976). These zones are usually connected to both the basinal 

shales (fore-reef zone) and the evaporites in the back-reef area and can thus 

easily accomodate products of their greater compaction (Badham, 1981b). 

The development of secondary permeability and porosity during 

dolomitization or karstification may be even more important than the initial 

porosity of carbonates. Prominent erosional surfaces which represent 

extensive karstification characterize all major LSBM deposits. These usually 

occur less than a few hundred metres above the ore body with the exception of 

southeast Missouri district (Sangster, 1983). The probable significance of 

these features is that they have provided sites of high permeability for the 

passage of metal-bearing brines. Hagni (1976) noted that part dissolution of 

limestone originated through groundwater action associated with the 

development of karst topography on the post-Mississippian, pre-Permian 

erosion surface of some Tri-state deposits. This subsurface groundwater 

activity aided in the development of additional solution-related fractures 

which facilitated the introduction of subsequent mineralisation solutions. 

Kyle (1981) also described palaeo-solution structures related to subaerial 

exposure of the reef barrier complexes in the Pine Point deposit which were 

important ore hosts. These features were also thought to have been caused by 
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dissolution of limestones by meteoric water and which were then filled with 

dolostone by the mixing of fresh and sea water during a period of subaerial 

exposure. 

Where leaching of carbonate beds has occurred it appears to have taken 

place prior to, or during, ore deposition (Heyl, 1983). In some cases this 

has resulted in sagging and collapse of the overlying beds thereby further 

increasing permeability. Brecciation and open-space filling is a very 

important process in LSBM formation, where solution of carbonate by ore- 

related brines has allowed collapse and brecciation of the overlying beds 

(Ohle, 1985). The reef environment is therefore particularly important 

because it influences the porosity of the host rocks and may act as a source 

of metals, organic matter and hydrogen sulphide. Thick carbonate/reef growth 

is obviously climatically dependent because of light penetration, water 

temperature and a low clastic input. 

The Lagoonal Facies. 

Dunsmore and Shearman (1977) suggested that the proximity of evaporitic 

sediments to reef carbonates was a prerequisite for LSBM formation. Although 

this has not been proven as some deposits do not show such an association, 

there are a number of advantages to LSBM development because of the presence 

of evaporites. If evaporites are an integral part of LSBM development then 

the absence of any evidence of leached evaporites in some deposits requires 

an explanation (Ohle, 1980). Evaporites may provide large volumes of 

refluxing brines for the carbonates. Lange and Murray (1977) proposed that 

tongues of very dense hypersaline brine seeped downward by ref lux from over- 

lying evaporite deposits and displaced any existing pore fluid. This 

mechanism required a two stage evaporite development. The first stage 

provided the deep brine which became heated and initially dissolved the 

metals whilst the second stage provided the refluxing brine. These evaporite 
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brines may contain Mg to aid dolomitization and hence porosity (Badham, 

1981b). Carpenter et al (1974) suggested that chloride-bromide and potassium- 

bromide relationships in brines of the central Mississippi region indicated 

that they originated from evaporation of sea water past the point of halite 

deposition. The brines probably originated as interstitial fluids in the 

Louann Salt and were expelled upwards as a result of loading by younger 

sediments. 

Another role for evaporites in LSBM development may be as a source of 

base metals, particularly if they are interbedded with shale deposits 

(Badham, 1981b). Olade and Morton (1985) proposed that the most probable 

source of mineralising fluids for the Benue Valley, Nigeria was the 

evaporitic shale deposited contemporaneously with, or prior to, the main 

mineralising event (Ford, 1981). Thiede and Cameron (1978) provided evidence 

that certain components in an evaporite sequence contain appreciable Cu, Pb 

and Zn contents. The possibility that evaporates may be an important metal 

source and an alternative to basinal shales, is supported by the highly 

saline nature of LSBM fluid inclusions. However there is little doubt that 

evaporites are a likely source for the sulphur to precipitate ore metals as 

sulphide (Dunsmore and Shearman, 1977; Kyle, 1981). The lagoonal facies of 

LSBMS indicates that a climatic influence may be of importance in that the 

formation of evaporites is particularly temperature dependent as evaporation 

must exceed precipitation. Also if they are a metal source, then the metal 

content of the lagoon environment must be high due to hot, chemical 

weathering of the hinterland e. g. ore metals for the Benue Trough, Nigeria 

are thought to have been leached from alkali feldspars from surrounding 

regions (Grant, 1971). 
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8.2.1.2 Oolitic Ironstone Deposits (OOFE). 

The main point of discussion concerning the genesis of OOFEs is the 

relationship of oolites associated with an agitated, well-oxygenated 

environment in tropical climates with iron which is usually expected to be 

deposited in quiet, low-oxygen water. OOFEs are not environmentally 

diagnostic so an interpretation of their depositional environment must be 

based upon fauna and any notable sedimentary structures. A low diversity of 

fauna composed of large numbers of individuals often indicates abnormal 

salinities e. g. Ostrea at the present day is found in lagoons and enclosed 

bays which are kept at moderate salinities 030ppt) by tidal renewal (Parker, 

1960). The great abundance of Deltoideum and the scarcity of other fossils in 

the OOFEs in the Upper Oxfordian of southern England is suggestive of the 

restricted conditions under which these deposits were formed (Talbot, 1974). 

The presence of belemnites and ammonites also shows these OOFEs must have 

been connected to the open sea, whereas other lithologies which occur (e. g. a 

muddy sediment with much burrowing and little turbulent reworking) is in 

keeping with deposition in a calm, sheltered environment. The occurrence of 

an Aponogeton-like plant impression in beds immediately above OOFEs at Bida 

in the Middle Niger Valley was considered by Adeleye (1973) to confirm 

tropical conditions during OOFE sedimentation as its modern representatives 

are restricted to tropical and subtropical zones. 

No general model has been developed for the formation of OOFEs which 

explains fully all the various features shown by these deposits. This may be 

due to an absence of modern analogues. The problem has been approached in two 

ways; the origin of the ooliths and the possible sources of the iron. 

Sources of the Iron. 

The main problem of iron source and transport is based upon the fact 

that the Fe'- ion is insoluble and the Fe" ion is soluble at Eh and pH 
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conditions of the Earth's surface. Hence Fe occurs as a residue in weathering 

profiles (e. g. as laterite) or is transported elastically and so is 

unavailable for oolites. 

It is unlikely that the iron was derived from sea water in which its 

concentration is generally very low at present i. e. less than O. Olppm. There 

is no obvious spatial or temporal association of volcanics and OOFEs so 

volcanism is also not thought to have played a direct role in the origin of 

OOFEs and an alternative source of the iron is required. One of the most 

popular hypotheses is Fe may be derived from adjacent land areas by the 

normal processes of weathering and erosion (e. g. James, 1966; Hallam, 1975). 

Indeed Lunar and Amoros (1979) suggested that iron for the OOFEs of northwest 

Spain may have been derived from the continent. Adeleye (1973) proposed that 

the prevailing tropical climate in southwest Nigeria caused intense chemical 

weathering of the igneous and metamorphic basement complex which supplied 

iron to the OOFEs and that some secondary ferruginous matter may have been 

derived by leaching of older, alluvial swamp deposits of the Middle Niger 

Valley. The released iron and its associated terrigenous clasts were 

considered to have been eroded from source by normal fluviatile processes. 

The Upper Calcareous Grit Fe-bearing sediments of southern England are 

thought to have been deposited in locally restricted water bodies of reduced 

salinity which suggests that the iron was indeed derived from rivers draining 

adjacent land masses (Talbot, 1974). 

Weathering of some rocks, particularly under humid conditions may lead 

to the liberation of large quantities of iron which accumulate as insoluble 

residues in oxide and hydroxide form e. g. laterites. If it is assumed that 

transport of iron to the depositional site is mainly by river water, two 

possible mechanisms can be proposed (Talbot, 1974). Firstly Carroll (1958) 

suggested that large quantities of iron could be carried as iron oxide 

adhering to the surface of clay minerals. Such oxide-coated clay minerals are 
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very common products of subaerial rock weathering and soil formation. 

Ferguson et al (1983) proposed that ferric oxyhydroxide coatings on quartz 

grains in the aquifer system explained the high iron concentration in ground 

water and low iron contents in sediments at the same level in Fisherman's 

Bay, South Australia. The second mechanism is to transport the iron as 

colloidal suspensions in solutions. The quantity of organic matter available 

probably plays an important role in this process as large amounts of iron may 

be carried as, or adsorbed by, organic colloids (Gross, 1965). Boyle et al 

(1977) noted that such iron oxide-organic matter colloids were rapidly 

precipitated in estuaries and are thus in accordance with the model of semi- 

restricted, near shore basins for OOFE development. Such suspensions would 

best develop during chemical weathering of a land mass of low relief with 

dense, swampy vegetation cover and a humid tropical or subtropical climate. 

According to some models of sedimentation (e. g. Muller and Forstner, 1973) 

the formation of large iron deposits requires a preconcentration of iron on 

the land before transportation of the continental iron materials to the basin 

occurs. Such a preconcentration can be related to the leaching out of iron 

during the development of a podsol. Muller and Forstner (1973) considered 

this kind of regime would not require a well developed flora when combined 

with climatic factors that produced a slow decomposition of organic matter. 

There are two possible ways in which the transported iron may then be 

released to form OOFE deposits. Firstly the Fe'" particles may be transported 

to the basin where upwelling of anoxic basinal waters onto the aerated shelf 

caused reduction during diagenesis and the Fes" ions are released (Borchert, 

1960). This reduction of the Fe'- may also be caused by downward moving 

ground water from overlying organic-rich muds (Kimberley, 1979). An 

alternative method of making Fe available is by weathering of Fe minerals and 

transport of Fes- to the basin by ground water under abnormally low pH 

conditions. The source of Fe is clearly problematical. However which ever of 
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the solutions given above ultimately proves to be the most appropriate, all 

are potentially influenced by the prevailing climatic conditions at the time. 

The Origin of the Ooliths. 

one hypothesis for the origin of ooliths is that they are detrital, 

being eroded soil ooliths and pisoliths from lateritic terrains (Siehl and 

Theirs, 1978). Nahon et al (1980) described OOFEs from West Africa and 

suggested they were formed by lateritic weathering of sedimentary rocks, 

especially glauconite-rich sandstones based on similarities with ooids 

characteristic of exposure crusts in carbonate rocks (Carozzi, 1973). These 

deposits have been shown to be related to the so-called "Continental 

Terminal" which is considered to be the product of the lateritic weathering 

of Mesozoic-Cenozoic marine sediments (Tessier et al, 1975). These OOFEs with 

an Fe-rich argillaceous matrix described above would represent palaeoexposure 

crusts in a tropical climate. However these conclusions may be difficult to 

justify as many ooids formed on skeletal parts of marine organisms. 

Kimberley (1979) revived the hypothesis that the oolites were originally 

calcareous. They were initially composed of aragonite and were replaced by 

downward-percolating meteoric waters to chamosite and goethite. The third 

theory of oolitic origin is that chamositic ooliths formed in relatively 

quiet water (Knox, 1970) whilst goethitic ooliths were formed in more 

agitated waters (James and Van Houten, 1979). Alternating bands of chamosite 

and goethite have been explained by reworking of ooliths from one 

depositional environment to another and back again (Maynard, 1983). 

Possible climatic conditions at the time of OOFE formation have been 

mentioned. Lunar and Amoros (1979) suggested that the fine-grained sediment 

texture and mineral composition of the deposits of northwest Spain indicated 

they were accumulated in a cold, humid climate with a predominance of 

chemical over mechanical alteration. The semi-arid climatic regime of the 
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Spencer Gulf, South Australia greatly influences the OOFE deposit development 

of Fisherman's Bay (Ferguson et al, 1983). Surface run-off from the coastal 

plains is severely limited so drainage is mainly subsurface. Seaward 

groundwater flow therefore occurs largely through aquifer systems in the 

surface aeolian sands and the underlying Pleistocene sands and clayey sans, 

(see Figure 8.10). In Fe-rich areas the regressive coastal zone is 1km wide, 

consisting of intertidal marshes of cyanobacteria. The prevalence of tropical 

conditions during OOFE sedimentation in the Middle Niger Valley is confirmed 

by the presence of kaolinitic pellets, oolites and pisoliths (Adeleye, 1973). 

Recent kaolinitic sediments are almost exclusively restricted to tropical and 

subtropical zones (Rateev et al, 1969). Talbot (1974) deemed that hot, humid 

conditions prevailed during the production of Oxfordian OOFEs in southern 

England with sufficient rainfall to maintain sediment-transporting rivers and 

to support a land flora. The temperatures had to be high enough to allow 

hermatypic coral growth and permit the widespread precipitation of calcium 

carbonate in ooids and grapestones. These climatic conditions would be 

expected to have promoted deep weathering of land areas and perhaps the 

development of Fe-rich suspensions. 

The derivation of iron from the adjacent land mass and transportion to 

site of deposition by river water is hinted at by the results shown in 

Chapter 6, section 6.2.2. OOFEs showed a marked lack in number in the 

tropical arid zone, suggesting the necessity of surface precipitation for 

river transport of iron. 

8.2.2 Clastic-Hosted Deposit Types. 

8.2.2.1 Sandstone-Copper Deposits (SSCU). 

Strata-bound copper deposits appear to form a single genetic group which 

tend to be confined to shallow 1agoonal or lacustrine environments. The host 
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rocks are characteristically terrigenous and supra-tidal to sub-tidal 

sandstones with abundant evidence for fairly broad tidal flats and features 

of transgressive cycles (Jacobsen, 1975). Evaporites and pyritic shale 

sediments are frequently associated with the cupriferous sequence, if not 

actually part of it and red-bed type sediments are found in some areas. 

Kirkham (1986) suggested that SSCU host rocks were deposited in arid and 

semi-arid areas (because of interbedding with evaporites) within 200 to 30° 

of the palaeoequator. He stressed that SSCUs show a close relationship to 

environment of sedimentation even though most are probably products of 

diagenetic oxidation-reduction processes. Silver is frequently associated 

with these deposits (Maynard, 1983) so Cu and AS are discussed together. 

Geochemistry of Copper. 

At low temperatures the geochemical behaviour of Cu and AS is dominated 

by Eh-PH changes. At surface temperatures in aerated fresh water Cu is 

soluble in significant amounts (lppm) only at pH values less than about 6.0 

(see Figure 8.11). As Fe is less soluble under these conditions this is an 

effective mechanism for separating Cu from Fe. Figure 8.11 also shows that 

under reducing conditions Cu can precipitate as a sulphide or native Cu. 

Hence Cu will tend to migrate from areas of oxidation and concentrate in 

areas with reducing conditions. The redox behaviour of AS is very similar to 

that of Cu (Maynard, 1983). 

The transportation of Cu and Ag relies heavily upon chloride-complexing 

which greatly enhances the solubility of these metals (White, 1968). Rose 

(1976) has shown that the solubility of Cu in particular is greatly enhanced 

by the formation of such complexes as CuCl: - and CUC13- (see Figure 8.12). 

Contact of these chloride solutions with pyrite or H28 will precipitate 

various Cu and Cu-Fe sulphides. The possible importance of organic complexing 

to SSCU genesis and of slightly acid solutions caused by oxidation of 
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2 4 68 10 
pH 

Figure 8.11. Hh-pH diagram for copper oxides and Rulphides 

showing region of solubility under oxidizing conditions 

at pH less than 6. (After Maynard, 1983, Figure 3.1). 



300 

0.8 

0.6 

0.4 

L 
W 

0.2 

III 

Cu29 
C 

l 

CtICl2 

cu +2 

ý 
V 
ý 
U 

0.0 

-02 

CuzS 

0.5 0.4 0.3 0.2 0.1 
log a CI - 

Figure 8.12. Effect of C1 complexing on copper solubility. 

(After Maynard, 1983, Figure 3.3). 



301 

silicates and oxides should be recognized. Also the significance of 

adsorption of Cu and other heavy metal ions on haematite and colloidal Fe 

oxides (Rose, 1986). In fact Maynard (1983) noted that the transport of 

sufficient Cu to form large orebodies in the absence of chloride complexing 

would be difficult to envisage unless some pre-existing enrichment e. g. 

supergene alteration of porphyry coppers, was present. 

Models of SSCU genesis. 

perhaps the most widely accepted theory as to the genesis of SSCU 

deposits is that of syn-diagenesis with evaporates. However other models have 

also been proposed. 

The Epigenetic Theories: Ahlfeld (1967) distinguished between ores associated 

with organic remains (Colorado Plateau) and those ores in red-beds devoid of 

such remains (Corocoro, Bolivia). He suggested that metals were introduced 

after diagnesis by circulating saline groundwaters. These were thought to 

contain CuSO4 in a slightly reducing environment as evidenced by presence of 

sulphides in cell structures of plant remains. Smith (1976) also proposed an 

epigenetic origin for SSCUs - in this instance for deposits of North Texas. 

Cu in the form of chloride complexes was thought to have travelled vertically 

along faults or fractures and spread out laterally along porous sandstone 

beds. Deposition may have occurred when mineralising solutions came into 

contact with H29 in organic-rich zones e. g. tidal channel-fill facies and 

algal mat facies. However the main problem with this theory is that no 

evidence of faulting or fracturing has been detected in the area of the 

study, unless the faults were of an opening and closing nature in which case 

they would not be recognized. 

A second epigenetic theory involving thermal diffusion and metasomatic 

processes has also been investigated (Carrels et al, 1949). Micro-porosity 

may be developed in lithified, deeply buried rocks as a result of 
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intergranular micro-fissurat ion during which fluids are released and the 

solubility of metals is increased (Dandurand et al, 1972). Such a process 

involving principally diffusion would necessitate very slow movement of Cu, 

and the presence of H2S for a long time and so may not be a satisfactory 

explanation for some SSCU deposits e. g. those of the Ban Angelo Formation, 

North Texas (Smith, 1976). 

The Sabkha Process: This model attributes the formation of evaporite- 

associated SBCUs to syngenetic and diagenetic processes of coastal sabkhas 

(Renfro, 1974). A hot, arid climate with a large evaporation debit is 

inferred in the coastal region of a shallow, marine lagoon or saline inland 

sea. The land area of the model has relatively low topographic relief 

dominated by typical desert landforms e. g. dunes, alluvial fans and sheet- 

wash plains. It is underlain by unconsolidated terrigenous elastics. With 

regard to the sabkha process only, the composition of the continental 

elastics is irrelevant as long as they are porous and permeable. During 

transgression (Figure 8.8) the hydrogen sulphide-laden algal facies must on- 

lap the sterile, oxygenated sediments of the adjacent land. When 

sedimentation and subsidence reach equilibrium, transgression ceases and a 

sabkha develops immediately landward resting directly upon terrigenous 

clastics of the desert. Eventually regression occurs and the sabkha progrades 

basinwards across a wedge of strongly reducing, organic, inter-tidal, 

lagoonal sediment. The dilute metalliferous solution must pass upward from 

its oxygenated source beds through the overlying hydrogen sulphide-charged 

algal mat in order to reach the sabkha surface. This algal mat causes the 

trace metals in the ascending water to be precipitated as sulphide minerals. 

Climatic Enhancements encouraging SSCU development. 

1) Climate: The sabkha model outlined above requires the mobilization and 

transport of trace amounts of Cu, AS. Pb and Zn from continental red-beds by 
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low salinity terrestrial formation waters of low pH and high Eh. Rose (1976) 

has shown that low-salinity waters are-relatively ineffective in transporting 

dissolved Cu, so unless the terrestrial formation waters of Renfro's sabkha 

model were saline, Cu would not be sufficiently soluble in them to give rise 

to deposits of appreciable size. Ferguson and Burne (1981) tested the 

feasibility of aspects of these genetic models through an investigation of 

interactions between saline red-bed groundwaters and peritidal carbonates of 

the Spencer Gulf, South Australia. They concluded that terrestrial chloride- 

rich groundwaters capable of transporting high concentrations of Cu, Pb and 

Zn are generated within continental red-beds of semi-arid climates. 

Groundwater sediment interactions within the red-bed aquifers were capable of 

mobilizing extensive quantities of metals from Fe-oxide grain coatings. 

Strakhov (1970) proposed a tectonic-climatic model whereby Cu sulphides 

were leached from actively dissected highland that lies in a moist climatic 

zone. Woodward et al (1974) favoured a model similar to that of Strakhov 

where Cu is carried in solution by water draining into an arid intermontane 

basin where Cu mineral deposition occurs. The association of Cu ores with 

coarse-grained elastics appears to be related to changes of water pH in 

streams moving from humid to arid environments. 

Van de Poll (1978) concluded that from the available evidence the 

palaeoclimate during Carboniferous sedimentation of eastern Canada was of 

subequatorial monsoon type with seasonal changes in precipitation rates. 

During Windsor time the prevailing climate was arid. The gradual increase in 

preservation of plant remains by Late Mississippian-Early Pennsylvanian time 

indicated a return to more humid climatic conditions with seasonal changes in 

precipitation rates and warm subtropical temperatures. This suggests that the 

SSCU deposits of Windsorian age in eastern Canada experienced a clear 

palaeoclimatic control upon their formation. 
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2) Biomass: 

a) Algal Mats: The importance of algal mats to the sabkha-diagenetic model of 

SSCU genesis has previously been emphasized. These are associated with semi- 

arid/arid environments in which sabkhas are formed and they act as reduction 

zones in which sulphide minerals are deposited. The recognition of abundant 

carbonized debris of algal mats in the sediments at Mufulira, Zambia led 

Garlick (1981) to conclude that the bulk of the mineralisation was by 

syngenetic deposition of sulphides associated with decaying transported algal 

material in marine lagoons. 

b) Plant Remains: In areas of more humid climatic conditions abundant plant 

debris is more important to the deposition of SSCU deposits in a manner 

similar to its role in SSW formation. Caia (1976) described two types of 

SSCUs in the Lower Cretaceous sandstones of Africa, the first being 

characterized by fine plant debris with 5-6x Cu related to the abundance of 

vegetable debris. Where no such debris occurs the host rocks are barren. The 

second type of ore deposit recognized by Caia contains coarse plant debris 

e. g. branches and tree trunks. Large scale deposition of sulphide minerals in 

Triassic sandstones of New Mexico is associated with fossil log-jams within 

palaeochannels (Woodward et al, 1974) and fossil plant remains have also been 

cited as the focus for mineralisation in the SSCU deposits of the Corocoro 

Basin, Bolivia (Ljunggren and Meyer, 1964). In the Carboniferous SSCUs of 

eastern Canada plant remains are not commonly found. However where they occur 

Cu sulphide mineralisation is also present. This association led Van de Poll 

(1978) to conclude that the presence of organic debris appeared to be the 

controlling influence in the clastic red-bed, Colorado Plateau type of SSCU 

deposit. 

3) Evaporites: The presence of evaporites is virtually essential to the 

definition of SSCUs as the association is so frequently found. For example 

the Flowerpot Shale at Creta, Oklahoma is interlayered with, and overlain by, 
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evaporites (Johnson, 1974); in the Permian of New Mexico evaporites, 

including halite, are common (Rose, 1976); in the Corocoro Basin, Bolivia 

gypsum and halite occur in the units containing SSCUs (Ljunggren and Meyer, 

1964) and in SSCUs of Nova Scotia, New Brunswick and the Redstone area, 

Canada evaporites are also known (Kirkham, 1974). Anhydrite occurs as a 

cement in footwall quartzites at Mufulira, Zambian Copper belt (Annels, 

1974). Garlick (1972) concluded it had formed interstitially during exposure 

of muddy sand flats or from detrital gypsum accumulated with wind blown sand 

dunes. it is envisaged that the original nodular anhydrite formed during 

early diagenesis under conditions of supersaturation of CaSO4 in a supratidal 

sabkha environment. 

As mentioned in section 8.1.7 the value of evaporites to the deposition 

of sulphides is mainly two fold; evaporitic groundwater promotes Cu 

solubility and evaporite sulphate and organics provide sources of sulphur for 

reduction to sulphide. 

4) The source of copper: The hot climatic conditions proposed for the time of 

SBCU deposition would be responsible for intense chemical weathering of the 

surrounding hinterland. Woodward et al (1974) proposed the ultimate source of 

Cu may have been older deposits in Precambrian rocks of the Uncompahgre 

highland in northern New Mexico and Colorado. Ljunggren and Meyer (1964) 

suggested Cu-bearing Tertiary basalts of the Altiplano or porphyry copper 

deposits of the western Andes as the source of Cu for BBCUs in the Corocoro 

Basin. Samama (1973) concluded that only the heavy metals which had been 

enriched during weathering on the continent could be found concentrated in 

the depositional basins. The source of Cu could also be the Fe oxides in red- 

beds as outlined in section 8.1 S. 

The Exotica orebody, Chile lies at 22° 20*S and is found some 2km. below 

the Chiquicamata porphyry copper orebody (Mortimer et al, 1977). The Exotica 
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gravels are well-stratified thin beds of coarse sands and angular fragments, 

channels within the gravels are infilled with Fortuna gravels. The 

cementation in the upper parts of the alluvium by gypsum and iron oxides is 

light and irregular. However near the bedrock surface the cement is of gypsum 

and copper oxide minerals. Mortimer et al (1977) considered the genesis of 

the Exotica mine to be dependent upon the existence of the Chiquicamata 

mother deposit and, to a lesser degree, upon the prevailing climatic 

conditions. If the climate was more "pluvial" the water-table would have been 

much nearer the ground surface, the zone of leaching, oxidation and 

enrichment in the porphyry deposit would not have been so deep and the 

volumes of solution generated would probably have been less. Also any Cu that 

was dissolved would have been in a solution too weak to be an effective 

reagent. However if the climate were extremely arid, chemical weathering 

would be much less active and sufficient Cu would not have been released to 

form the Exotica deposit. The semi-arid climate which prevails at present 

with infrequent but heavy rains would be ideal for the release of sufficient 

Cu and the derivation of a sufficiently large volume of solution to form a 

SSCU deposit. It would also create a suitable permeable piedmont gravel 

deposit for movement of Cu-bearing solutions and to act as host for the 

deposition of Cu minerals. 

Figure 8.13 shows that Cu sulphide minerals may have been transported in 

river sediment and deposited as at Chanaral Beach, mouth of the Rio Salado, 

northern Chile at present. One implication from the occurrence of such 

"sulphide placers" is that Cu orebodies may have a placer origin (Clemmey, 

1978). Rapid erosion of a supergene blanket during a rhexistatic period is 

thought to be responsible for the release of natural sulphide. The results in 

Chapter Six, section 6.3.1 indicate that BSCUs occur from 0°-35° from the 

palaeoequator. Hence they appear to form in both humid and arid climatic 
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zones where a source for Cu is available and sporadic periods of evaporation 

and precipitation occur. 

8.2.2.2 Sandstone Lead Deposits (SSPB). 

Sandstone lead mineralisation is usually hosted by basal quartzitic 

sandstones with some organic matter. Depositional environments range from 

continental e. g. Yava, Canada to shallow marine e. g. Baltic Shield deposits. 

It is thought (e. g. Rickards et al, 1979; Bjorlykke and Sangster, 1981) that 

these form a separate group of mineral deposits from either SSCU or LBBM, 

although they have certain features in common with both. 

Genesis of SSPBs 

The genesis of SSPB deposits has been explained by two major models; 

Groundwater Transport Model: Jerome et al (1965) and Saurama (1976) described 

the model in five basic steps for the origin of the L'Argentiere deposit of 

France; 

1) prolonged weathering of the basement, 

2) progressive formation of a pediment by active mechanical sedimentation, 

3) metal enrichment of saline groundwater percolating through the pediment; 

weathering becomes more intense so K-feldspars are destabilized and Si, Pb 

and Ba are released, 

4) precipitation of metals at the contact between groundwater and marine 

water at the edge of the basin. Precipitation of Si is probably due to re- 

equilibration of the oversaturated water (20 - 80ppm SiO2) in the pediment. 

In the most reducing zone (caused by the presence of organic matter) SO. '- is 

completely reduced as SO- and HS- and Pb and Zn are precipitated as 

sulphides. In less reducing zones both S'- and S0. '- are present, Pb and Zn 

are precipitated as sulphides and barium is precipitated as sulphate, 
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5) lastly there is diagenetic and epigenetic reorganization of the ore 

minerals. 

Basin Brine Model: Such a model was proposed by Rickard et al (1979) for the 

genesis of Baltic Shield SSPB deposits and comprises three basic steps; 

1) dewatering of sediments in the basin. Water would have a high salinity and 

metal content, the latter carried as chloride complexes, 

2) metal bearing brines would then move upwards and outwards through 

permeable sandstones to the margins of basins, 

3) precipitation of metals occurs because of decreases in temperature and 

pressure and/or mixing with sulphide-bearing groundwater. 

This model has many similarities to that for LSBMs by Jackson and Beales 

(1967), however they invoked compaction as the principal driving force 

whereas Rickard et al (1979) proposed compression by overriding nappes. In 

favour of this model is the apparent similarity in the composition of fluid 

inclusions in SSPB deposits to that from recent basin brines (Rickard et al, 

1979). However Bjorlykke and Sangster (1981) considered that such a 

similarity could be readily explained by a late diagenetic resetting of the 

inclusions as suggested previously by Bernard (1973). A common feature of 

SSPB deposits is the presence of an overlying shale (e. g. Christofferson et 

al, 1979). It is an obvious source of reductant (to precipitate sulphides) 

and possibly sulphur. This shale may also act as a permeability barrier which 

would restrict mineralising fluids to the host sandstone channels. Hence the 

shale overlying SSPB deposits may be an integral part of the SSPB genetic 

model. 

Source of Lead from Continental Weathering? 

The basement rocks to BSPBs are usually granites or granitic gneisses. 

In some cases (e. g. the L'Argentiere and Oberpfalz deposits) the basement has 

a higher average lead content than the average granite as cited by Wedepohl 



310 

(1974). It has been proposed (Christofferson et al, 1979) that the SSPBs at 

Vassbo were deposited during a marine transgression over a deeply weathered 

basement. This basement has a characteristic morphology of basal SBPBs i. e. 

it is a nearly perfect peneplain with very few irregularities. Saurama (e. g. 

1976) suggested that such deep weathering was responsible for determining the 

chemistry of the L'Argentiere deposit of France (i. e. Pb and Zn without Cu, U 

and V). He distinguished two geochemical areas within the Lower Triassic 

Formation; one with Cu and U and another in which Cu is virtually unknown. 

Such differences could not be explained in terms of local palaeogeographical 

conditions or by the geochemistry of the basement. Instead Banana (1973) 

evoked a climatic opposition between an area of pre-Triassic weathering 

conditions in which Cu and partly Zn and Pb were concentrated in the 

weathering profile and another area with conditions of bisiallitization when 

Pb was more selectively concentrated. Hence the physiographic conditions 

prevailing between the end of Permian and the beginning of Triassic 

sedimentation could have produced a drastic separation of Cu (and U) which 

are completely leached out and Pb (and Zn) which are enriched in the residual 

formation. in more detail (Saurama, 1969) suggested that the following 

weathering processes influenced deposition of SSPB at L'Argentiere. 

1) The basement first experienced constant weathering which was limited to 

the destabilization of the most unstable mineral species i. e. the 

plagioclases and ferromagnesian minerals were destroyed. Cu, U and partly Zn 

were leached out whereas Pb and Ba were concentrated in resistates with K- 

feldspars. The weathering products were illite, kaolinite, vermiculite and 

montmorillonite-illite interstratified clays. 

2) The weathering process continued and leaching of K-feldspars by 

percolating waters yielded Si, Ba and Pb. This selectively enriched water 

carried these elements to the basin margins where deposition occurred. 
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The Contribution of Organic Matter to SSPBs. 

Terrestrial organic debris generally as plant remains is found in most 

of the Phanerozoic deposits (e. g. Moroccan, German and L"Argentiere) although 

the Cambrian deposits of the Baltic Shield only have very minor carbonaceous 

material (Bjorlykke and Sangster, 1981). The presence of such organic debris 

would have maintained chemically reducing conditions in the sandstones. This 

is supported by the characteristic grey colour of SSPB deposits. As with 

other deposit types precipitation of metals directly from groundwater would 

take place under conditions of low Eh and high H2S content such as those 

found in a sandstone with abundant terrestrial organic debris e. g. at Yava 

where the grey or white host sandstones are rich in plant debris and are 

underlain by carbonates and evaporites. In this instance rising, sulphate- 

rich groundwater flowing through the organic-laden host sandstones may have 

produced sufficient bacteriogenic H2S to precipitate Pb as sulphides from 

groundwater (Bjorlykke and Sangster, 1981). The spread of sulphur isotope 

values within individual deposits has lead some authors (e. g. Rickard et al, 

1979) to conclude that sulphur was probably not part of the metal-bearing 

solution. It may have been present as marine sulphate in connate water 

already trapped in the sediments. Bayer et al (1970) suggested a possible 

source of sulphur in the Mechernich-Maubach area of Germany would be 

bacterial reduction of gypsum in the Muschelkalk followed by downward 

transport of H2S by groundwater. The presence of even low concentrations of 

biogenically produced sulphide would preferentially precipitate galena and 

allow most of the to present to remain in solution and pass toward the marine 

basin (the solubility of galena is approximately 10' less than that of 

sphalerite under reducing conditions). 
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Palaeoclimate and SSPB formation. 

It has been reported (Bjorlykke and Sangster, 1981) that all SSPBs for 

which palaeomagnetic data are available show a low latitude (0° - 30°) 

position at the time of formation. The results presented in this project are 

similar in that the majority of deposits occur in low latitudes, although not 

all are confined to within 30° of the palaeoequator. It appears that 

palaeoclimatic conditions for the formation of SSPBs varies somewhat with the 

majority being deposited in a semi-arid, warm environment. For example 

evaporites associated with Lower Triassic and Cretaceous deposits suggest 

such a climate. However abundant organic debris in Yava, Canada, Oberpfalz, 

West Germany and Kroussou, West Africa may indicate more humid climatic 

conditions. It has even been suggested that SSPBs in the Baltic Shield were 

deposited in a relatively cool climate based on evidence from their fossil 

assemblages (Bjorlykke and Sangster, 1981). Unfortunately no Cambrian 

palaeogeographic reconstruction was available for this research to support or 

refute such a suggestion. 

Samama (1973) proposed that SSPBs occur in arkosic formations 

characterized by the lack of iron hydroxides and the scarcity of wood 

fragments which indicates a drier climate (arid tropical) corresponding to 

weathering of the bisiallitization process. Such an arid climate would 

produce illite as a stable phase in highly saline ground water. However 

Bjorlykke and Sangster (1981) suggested that the evidence indicated humid 

palaeoclimatic conditions for the formation of Baltic Shield, Oberpfalz and 

Yava deposits. (As calculations show that weathering rates aremore critical 

than the metal-transporting capacity of the groundwater, highly saline 

solutions are not necessarily required for the formation of the ore). One of 

the most important aspects of Bjorlykke and Sangster's groundwater table 

model for SSPBs (see Figure 8.15) is the maintenance of a stable and 

prolonged interface between laterally moving groundwater (with the metals) 
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and the basin water in which HSS production occurs. If the groundwater influx 

was too high, sulphate reduction would be inhibited by the relatively 

oxygenated fresh groundwater. However if groundwater influx was too low then 

insufficient metal would be available to support the model. Obviously such 

fluxes are directly influenced by climatic and physiographic conditions. 

Christofferson et al (1979) concluded that SSPB mineralisation in both 

the Vassbo and Laisvall areas was controlled by the palaeopermeability of the 

host sandstones. These are thick, coarse, relatively pure sandstones 

deposited in channels on the palaeosurface. They have a much greater 

permeability than the under-lying, finer-grained calcite-cemented sandstone 

or the overlying Alum Shale. Hence any solution entering the region after 

sedimentation would have preferentially moved along this horizon. The lack of 

mineralisation in some porous sandstone horizons above basement highs is due 

to a reduction in solution flow because of the relative thinness of these 

horizons. This permeability control was highlighted by Rickard et al (1979) 

as the common denominator between SSW, SSCU and BSPB deposits. 

The results (Chapter Six) suggest that both arid and humid conditions 

are suitable for SSPB development although the sample size was too small to 

show that the majority preferred one set of climatic conditions to another. 

Evaporation in a dry climate would increase the salinity of the groundwater 

and thereby increase its base metal content - an advantage if a low volume of 

groundwater was present as in arid regions. An increase in the base-metal 

content of the groundwater would be achieved in a more humid climate by a 

high rate of weathering and a higher volume of water. 

In all areas the SSPBs appear to be the result of prolonged periods of 

stable tectonic conditions which caused deep chemical weathering and produced 

regional peneplanation. Ultimately Pb would be released from the breakdown of 

K-feldspars and transported to the site of deposition in tidal sands by 

highly saline groundwaters, or a large volume of less saline waters in humid 
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conditions. Deposition of metals as sulphides occurred in sufficiently 

permeable sandstones of low iron content in a reducing environment probably 

by abundant organic matter. Whether the sulphur and the metals were 

transported in the same, or different, solutions is still a matter of debate. 

The relationship between SSPB, SSCU and LSBM deposits has been 

frequently referred to e. g. Garlick (1969) thought some SSPB and SSCU 

deposits were closely related; Heyl et al (1974) suggested that the Laisvall 

SSPB deposit was a variety of LSBMs. Bjorlykke and Sangster (1981) considered 

that these three groups were separate deposit types although it was proposed 

that they illustrated basin development. SSCUs were hosted by rapidly 

deposited, immature rift-generated feldspathic red-bed sandstones with early 

release of Cu from the more readily altered mafic minerals during mild 

chemical weathering. Peneplanation from prolonged weathering in stable 

tectonic conditions led to a slow marine transgression onto the continent, 

the development of relatively pure quartzitic sandstones and the deposition 

of lead sulphides in SSPB"deposits. Bjorlykke and Sangster (1981) considered 

the Zn-rich nature of seawater (Goldberg, 1975) to be reflected in the Zn- 

dominated nature of LSBMs. The Zn concentration would be enhanced by 

groundwater passing through the pediment environment. If the more continental 

sandstone environment filtered Pb and precipitated it in preference to Zn as 

mentioned earlier, then groundwater reaching the marine environment would 

tend to have a high Zn/Zn+Pb ratio. 

8.2.2.3 Shale-hosted Base-Metal Deposits (SHBM). 

There appears to be a close association between SHBM and SSCU deposits 

in a number of deposits e. g. the Zambian Copper belt and the Kupferschiefer 

of Europe, which has led to the theory that there may be a genetic 

relationship between the two. The major characteristics of SHBMs have been 

given in Chapter Three, section 3.2.7 together with a detailed description of 
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the association mentioned above. However one of the features of SHBMs that 

should be emphasized is the regular occurrence of evaporites and red-beds 

with these deposits. Naturally such a close stratigraphic relationship is of 

interest to this study because of the inferences regarding climatic 

conditions at the time of ore deposition that may be made. 

Genesis of SHBM deposits 

Exhalative Model: Brown (1981) proposed that stratiform copper deposits 

(SSCUs and SHBMs) originated from exhalative-related processes similar to 

those which form SDEX deposits (see Figure 8.14). In favour of this 

hypothesis he cited the repeated association of predominantly mafic volcanics 

and/or sills with some deposits e. g. White Pine. For this particular deposit, 

rapid clastic infilling of a rift may have been accompanied by circulation of 

exhalative metalliferous brines into the host rocks during a minor waning 

phase of felsic volcanism which may also explain the high Co content. In the 

Redstone area, NWT, Canada disseminated copper mineralisation in tidal-flat 

units may be due to the introduction of thermal cupriferous brines associated 

with rift-margin faults (Brown, 1981). Later Brown (1986b) noted that some 

features of stratiform copper deposits (such as overgrowths and replacement 

textures) indicated that metal deposition was postsynsedimentary so excluded 

a direct exhalative model for metal emplacement. He proposed a model of pene- 

exhalative hydrothermal activity for SHBM deposits in which the metalliferous 

fluids encountered porous oxidized strata (e. g. red-bed clastic units) before 

reaching the sediment-water interface. These ascending ore-fluids would form 

a reservoir typically confined beneath very fine-grained highly impermeable 

beds rich in organic. matter as described above for SSPB deposits. Such grey 

beds contain sulphides (or sulphates which may be reduced biogenically during 

very early diagenesis) and form a chemical sink for copper. Brown also 

proposed that copper was introduced from the adjacent red-beds by 
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infiltration or diffusion. Dunham (1964) suggested that heavy metal 

enrichment in the Kupferschiefer was due to submarine exhalations similar to 

those of the present Red Sea. The concentration of metals from submarine 

hydrothermal springs was also proposed as a model for SHBM genesis by Degens 

and Ross (1969). 

Other Syngenetic Models: These include the concentration of metals; 

1) from open sea waters (Brongersma-Sanders, 1968), 

2) from seawater where a lagoon and aerobic sea are separated by a barrier 

(Haranczyk, 1972), 

3) by cation exchange between oxic and anoxic waters with a continental 

source of metals (Wedepohl et al, 1978). Wedepohl (1971) favoured a source of 

metals from surrounding red-beds for the Kupferschiefer. 

Epigenetic Models: These include the concentration of metals; 

1) by means of the sabkha process (Renfro, 1974) as described for SBCU 

deposits in section 8.2.2.1, 

2) from brines descending from the associated evaporites which leach base 

metals from magmatic sulphides at depth and redeposit them in host rocks 

(Davidson, 1965 for the Kupferschiefer deposit). A major objection to this 

model is the very large lateral extent of this particular deposit (Vaughan, 

1976), 

3) from solutions ascending from the "molasse intraorogenic deeps" (Rentzsch, 

1974), 

4) during diagenesis of the tidal-flat sediments with the sulphide supplied 

from modified connate waters and metals supplied from hypersaline brines from 

below. Such tidal-flat deposits are thought to be excellent traps for 

sulphophile metals because of their high organic matter and sulphate 

contents, low iron content, high initial porosity and their association with 

evaporites and chloride-rich brines (Bartholome et al, 1973), 



319 

5) by the mixing of two brines Mucha and Pawlikowski, 1986 for the 

Kupferschiefer-type deposits of Poland). The upper cold brine (pH >7) 

originated from overlying evaporites and was rich in Na, Ca, C1 and BO.. The 

lower hot brine (pH (7) formed in sediments in the central part of the 

Zechstein Basin and was rich in Mg, K, Cl, B04 and CO3. This brine became 

enriched in heavy metals by leaching of rocks underlying the Zechstein host 

rocks. 

The palaeolatitudes of BHBM deposits examined here reflect that a 

certain degree of climatic control may exist on the formation of these 

deposits, although the results are not conclusive owing to the unreliability 

of some of the palaeogeographic reconstructions (see section 6.3.3). However 

a low latitude control is inferred and supported by the lithologies 

associated with SHBM deposits. 

The Red-bed Association. 

Gustafson and Williams (1981) mentioned that sulphides in the 

Kupferschiefer occur within a few metres of the underlying Rotliegend red- 

beds over areas of thousands of square kilometres. Galena and sphalerite are 

common in the underlying reduced sandstones which contain varying amounts of 

copper mineralisation (see Figure 8.16). Indeed the majority of 

Kupferschiefer ore is in this bleached sandstone (known as the Weissliegende) 

beneath the Kupferschiefer shale. Both the Zambian Copper belt and the 

Kupferschiefer were classed by Gustafson and Williams (1981) as being first 

marine transgressions over red terrestrial successions. The deposits occur at 

the base of the overlying reduced marine sedimentary rocks and the red 

elastics lie on an eroded basement. They are thought to have been deposited 

in an arid environment as evidenced by the presence of anhydrite and gypsum. 

However above the Weissliegende the reduced sandstone, ore grades in the 

shale are at a maximum which is evidence for the diagenetic reduction of the 
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red sandstone by the mineralising fluid. Annels (1984) listed features of the 

Zambian Copperbelt in common with intracratonic rift environments (as 

reviewed from Rowlands, 1974; Rowlands et al, 1978,1980; Lambert et al, 

1980) the following infer particular climatic conditions; 

1) evidence of saline to hypersaline waters and thus an arid climate, 

2) abundance of evaporitic mineral phases and nodular concretions of 

anhydrite, 

3) the presence of stromatolites, 

4) continental non-marine to prograding marine sabkhas. 

The Evaporite Association. 

The Flowerpot Shale in Permian Cu-bearing shales of southwest Oklahoma 

is characteristically reddish-brown with thin interbeds of gypsum (80-90% of 

evaporite sediments), dolomite (10%), siltstone, sandstone and greenish-grey 

shale (Johnson, 1976). At Rokana in the Zambian Copper belt Clemmey (1978b) 

interpreted the orebody zoning sequence as resulting from several cycles of 

shallow submergence and emergence in a very quiet epeiric marine or 

lacustrine environment with a climate conducive to evaporitic conditions. The 

association of the Kupferschiefer with evaporites has been mentioned 

previously with regard to models of genesis. Wedepohl et al (1978) considered 

that evidence of a dry climate during the Lower Permian was given by the 

occurrence of typical red-bed and evaporite lithologies within the sequence. 

Low Detrital Supply. 

It appears likely that a low clastic supply (due to high relief or low 

rainfall) to the depositional site is important to minimize dilution. Annals 

(1984) proposed low relief hinterlands to the depositional basins of the 

Zambian Copperbelt, the latter being slowly subsiding with a balance between 

subsidence and the supply of detritus. This aspect of SHBMs was also 
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mentioned by Wedepohl et al (1978) with reference to the Kupferschiefer. They 

considered that the moderate and equal thickness of the Kupferschiefer bed 

from England to Poland indicated that the topography and climate did not 

allow much erosion of the areas adjacent to the Kupferschiefer depositional 

basin, resulting in low detrital accumulation. Poole and Desborough (1981) 

recommended a relatively slow rate ((10m/m. y. ) of detrital deposition and/or 

chemical precipitation to enable the accumulation of low temperature black 

shales in Ordovician and Devonian rocks of Nevada, USA. These three examples 

suggest that a more arid than humid climate would be favourable for SHBM 

development. 

The organic Association. 

In a review of the literature on deposits which have been classed here 

as BHBM the association with organics is repeatedly mentioned e. g. Preidl and 

Metzler (1984) described Cu-bearing shales of the Sudetic Foreland deposited 

in lagoonal areas in which an oxygen deficiency was associated with a great 

amount of organic matter. Indeed the Kupferschiefer itself may be described 

as an oil shale of marine algal origin. Poole and Desborough (1981) proposed 

a high organic carbon content (>5 wt. %) for Ordovician and Devonian black 

shales of Nevada consisting of high sapropel content (mostly from marine 

algae) and low detrital land plant material (unlike SSCU deposit). Vaughan 

(1976) suggested that euxinic bottom conditions existed at the time of 

deposition of the Kupferschiefer together with abundant organic matter 

suitable for enabling bacterial sulphate reduction. This role of bacteria for 

the reduction of sulphate ions in sea water was also proposed as a mechanism 

for producing sulphides by Johnson (1976) for Permian Cu-bearing shales of 

southwestern USA and by Saxby (1976) for BHBM deposits in general. 

Brongersma-Sanders (1969) suggested that the metals were derived initially 

from ocean water and were concentrated by living plankton as metal complexes, 
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as outlined in section 8.1.9. Coveney (1979) also suggested organic activity 

as a source for Zn in Carboniferous black shales of Missouri and Kansas. The 

presence of organic matter has been used by Kucha and Pawlikowski (1986) to 

explain metal zonation in Polish Kupferschiefer-type SHBM deposits. They 

suggested that low pH due to oxidation of organic matter (producing carbonic 

acid) in the host shale and the top of the white sandstone promoted Cu 

concentration. The horizon above this shale, enriched in H2S1 favoured PbS 

deposition. The uppermost zone of the deposit was within the base of the 

upper cold brine originating from overlying evaporites, so high pH conditions 

existed and ZnS minerals were precipitated. 

It is obvious from the above that organic matter plays an important role 

in the genesis of SHBM deposits. However this organic matter may be algal in 

nature unlike the large, plant debris associated with certain BSCU deposits. 

Quiet depositional conditions with low clastic supply and abundant organic 

activity are required for SHBM deposits and especially conditions where 

evaporites may develop. Hence a more arid climate is inferred with evaporites 

providing organics and sulphate, a low clastic supply minimizing dilution and 

intense weathering of hinterland perhaps supplying the metals. But the SHBM 

palaeolatitudes show a tendency for SHBMs to occur between 0° and 100 north 

and south of the palaeoequator. According to present conditions at these 

latitudes this suggests that a more humid than arid climate prevailed during 

SHBM formation. However the majority of the SHBM examples used in this 

research are Permo-Triassic (250 m. y. ) in age. The presence of the 

supercontinent Pangaea across the equatorial region during this time may have 

greatly influenced the climatic conditions experienced by particular 

palaeolatitude zones. 

The phenomenon of continentality (see section 4.5.2.2) must have 

influenced the climatic conditions experienced over the supercontinent of 

Pangaea. The main characteristics of low humidity, extremes of temperature 
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and low clastic supply would have occurred particularly towards the interior 

of the continent. These conditions are very similar to those proposed above 

as being the most favourable for SHBM formation. Another consequence of the 

vast, continuous land area is that a monsoonal circulation was probably 

dominant (Robinson, 1973). The term "monsoon" means alternating circulation 

between high pressure in the winter and low pressure in the summer e. g. as 

experienced in the interior of Asia today. During the Permo-Triassic the 

contrast between high and low pressure belts which occurs during the northern 

summer at present may have occurred in both summer and winter due to the huge 

latitudinal extent of Pangaea. The low pressure cell in the northern summer 

over northern Pangaea (caused by high temperatures) would have contrasted 

with a continental high in the south and vice versa during the southern 

summer. Such an extreme form of monsoonal circulation would have kept the 

equatorial region very dry and maximized the seasonality of the coastal 

regions of the Tethys (Parrish et al, 1982). 

8.2.2.4 Sedimentary-Exhalative Deposits (SDEX). 

Amongst the most well-known and extensively researched SDEXs are a 

number of Proterozoic age e. g. Mt. Isa, Hilton, McArthur River and Sullivan. 

So any discussion on the genesis of SDEXs must include mechanisms proposed 

for these deposits, regardless of their age. However it should be remembered 

that only Phanerozoic examples have been included in the results given in 

Chapter Six, section 6.3.4. The SDEX sedimentary host rocks are very variable 

and range from dolomites through dolomitic siltstones e. g. Mt. Isa to silty 

argillites and shales e. g. Rammelsberg (Large, 1981b). It is not clear 

whether active volcanicsm played a major role in their genesis, but evidence 

of contemporaneous volcanic activity is commonly found in the immediate host 

rocks or in stratigraphically younger rocks e. g. glass shards in the McArthur 

River deposit (Lambert, 1976); tuffites within the host sequence at Tynagh 
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(Morrissey et al, 1971). The questions concerning SDEX genesis which are 

still to be resolved echo those given for other deposit types. Namely, the 

source of the metals and the sulphur and nature of the metal-bearing ore 

solutions. 

Source of Sulphur. 

The sources of sulphur for SDEXs are generally discussed with reference 

to sulphur isotope studies. One of the most popular hypotheses proposes a 

dual sulphur source and was first used to explain the different isotopic 

behaviour of pyrite to galena/spalerite in the Rammelsberg deposit (Anger et 

al. 1966). It has subsequently been used by Smith and Croxford (1973) for 

McArthur River; and by Taylor and Andrew (1978) and Coomer and Robinson 

(1976) for Silvermines. It has been suggested (Large, 1981b) that the sulphur 

in SDEX galena, sphalerite and pyrrhotite is deep-seated being introduced to 

the site of mineralisation by the same hydrothermal solution that transported 

the metals. However as with other sediment-hosted deposit types already 

described (e. g. LSBMs) the problems of transporting metals (as chloride 

complexes) with sulphur (for reduction to sulphide) in the same solution 

without reacting needs to be resolved, so casting doubt on this hypothesis. 

The ultimate source of sulphur is probably sea water sulphate which Hajash 

(1975) thought to be inorganically reduced at temperatures greater than 200°C 

during convective circulation through the underlying prism. Sea water was 

also given as the source for sulphate in the Vulcan deposit (Mako and Shanks, 

1984) which was reduced by thermal decomposition of organic matter during 

maturation of hydrocarbons. The pyrite-sulphur may be the product of biogenic 

reduction of sea water sulphate for McArthur River (Smith and Croxford, 1973) 

and Tynagh (Boast et al, 1981). 
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Source of Metals. 

There are a number of possible sources for SDEX base-metals. 

1) Russell (1983) suggested that the thick sediment pile at Mt. Isa was the 

source of metals which were leached by descending sea water acidified by 

early reaction with clays and feldspars. 

2) Leaching from sediments and volcanics. Bischoff and Seyfried (1978) showed 

that sea water trapped in basalt tends to become increasingly acid at higher 

temperatures and is therefore able to leach metals from the basalt. Williams 

(1978) suggested that metal-rich solutions were expelled from the sedimentary 

pile. These solutions ascended up major faults as the result of compaction 

e. g. at McArthur River (Rye and Williams, 1981). 

3) Subaqueous metal-rich fluids released during volcanic activity (Murray, 

1975). Large (1976) proposed that some of the Pb and Zn may be derived from 

an isotopically homogenous magmatic source e. g. at Sullivan, the presence of 

cassiterite may be indicative of partial melting of continental crust (Carson 

and Mitchell, 1977). 

A Volcanic Origin for SDEXs? 

Coats et al (1980) proposed a hydrothermal origin for the metal-bearing 

brine of the Aberfeldy deposit which may have been associated with igneous 

activity; 

a) thermal energy associated with a rising basic magma could have stimulated 

leaching of the underlying crust by meteoric or connate waters, 

b) the brine could be of juvenile origin derived from unrecognized or 

concealed igneous source rocks. 

The heating of groundwater by igneous activity has been proposed by other 

workers e. g. Russell (1968) and Lambert and Scott (1973) whereas Kraume et al 

(1955) implied direct introduction of magmatic solutions in SDEX formation. 

However one of the major problems with the proposals is that directly beneath 
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most SDEXs there is generally a lack of plutons of either sufficient size to 

heat the groundwater or of appropriate composition to exsolve Pb and Zn 

solutions (Russell et al, 1981). With reference to the Mt. Isa deposit 

Russell (1983) mentioned that the mineralisation occurred for a considerable 

period of time. However if the Sybella granite acted as a heat source and was 

the driving mechanism of convection then it would be expected that 

mineralisation would lessen with time. The widespread and long-lasting nature 

of the mineralisation and the lack of significant alteration pipes beneath 

the ores or of any evidence of local hydrothermal circulation all point to a 

non-volcanic origin. However the homogeneous, non-radiogenic Pb isotope 

values for some SDEXs does suggest a magmatic source for at least some of the 

ores (Badham, 1981a). 

Models of SDEX genesis. 

The two most popular theories of SDEX genesis at present include the 

basinal compaction (Gustafson and Williams, 1981) and the hydrothermal 

convection models (Russell, 1983). 

Basinal Compaction Model: Pb and Zn are extracted from silicates in the 

surrounding rocks by highly saline formation water. These metal-bearing 

brines are then expelled towards the surface along fault zones during 

compaction (Gale, 1983). This model fits most neatly for deposits which have 

evaporites within their immediate stratigraphy (e. g. McArthur River) so that 

highly saline fluids were almost certainly present within the sediment during 

the early stages of diagenesis. The evidence that metals in the HYC deposit 

emanated from fault zones (Williams, 1978) lends further credence to the 

model. However Edwards and Atkinson (1986) highlighted one of the most 

important problems with the basin compaction model: if it is assumed that a 

geothermal gradient of 40°C/km existed the bulk of the ore fluid would be 

expelled at temperatures between 70 to 100°C. But it has been suggested that 
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the temperature of the McArthur River ore fluid was in the range 1200 to 

240°C (Rye and Williams, 1981). 

Hydrothermal Convection Model: Russell (1978 and 1983) is perhaps the most 

vigorous exponent of the downward-penetrating convection cell model of SDEX 

ore formation. He suggested that SDEX deposits are characterized by 

foundering of the sea floor due to extensional strain in the upper part of 

the crust. This led to enhanced permeability which allowed convective 

circulation at relatively low temperatures. Continued cooling and fracturing 

of the rocks resulted in convection extending to increasing depths (Russell 

et al, 1981). However there are problems with this model, too. There is 

little evidence of foundering in such deposits as Mt. Isa, indeed the 

Urquhart Shale suggests uniform conditions of sedimentation (Edwards and 

Atkinson, 1986). Also Pine and Batchelor (1984) have shown that downward 

growth of microfaulting associated with hydraulic injection is dependent upon 

the presence of a strongly jointed rock. Edwards and Atkinson (1986) cast 

doubt as to whether the partly lithified rocks of SDEXs would have had 

sufficient rigidity for joint formation. 

Climatic Enhancements for SDEX formation. 

The SDEX deposits examined in this research show a concentration in low 

latitudes, and although there is an preference for warm arid regions, they 

appear to have formed in humid, equatorial regions too. These warm 

environments encourage extensive chemical weathering of the hinterland to 

give a high metal input into the sea basin. 

In some SDEX deposits there are evaporites in the stratigraphy or 

evidence of the presence of the previous existence of evaporites. For example 

Croxford and Jephcott (1972) proposed an arid palaeoclimate for the McArthur 

River deposit. They considered the scapolite-rich rocks of the Cloncurry-Mt. 

Isa district (Edwards and Baker, 1954) to be metamorphosed evaporites. 
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Further evidence of hypersalinity (due to aridity) is indicated by locally 

abundant barite at McArthur River and Mt. Isa which may have been transported 

by saline waters (Davidson, 1966; Dunham, 1966; White, 1968). Also at Mt. Isa 

halite infillings of shear zones are found in dolomite rich rocks. Mathias 

and Clark (1975) suggested that Cu deposits of Mt. Isa represented dolomite- 

chert facies indicative of an oxygenated, shallow water environment. They 

also proposed that some of the silica-dolomite may be original algal material 

found in semi-arid environments. Where evaporites do occur they are important 

as a likely source for the vast amount of sulphur that is eventually fixed as 

sulphide and for the high salinity required to move metals at relatively low 

temperatures. Strongly seasonal climates, with extended dry periods, but not 

necessarily complete year-round aridity can produce hypersaline lake waters 

that would be an adequate supply for SDEX deposition (Gustafson and Williams, 

1981). Also evaporites in the vicinity of SDEXs have been cited as a source 

for chloride-rich brines derived from their dissolution (Walker et al, 1978). 

However the presence of evaporites has not been established in every case 

(e. g. Meggen, Rammelsberg and Sullivan) so it appears that this may not be a 

vital aspect of SDEX formation, just another enhancement for some deposits. 

Russell (1983) suggested an indirect role of evaporitic brines via density 

flow and trap, in addition to their direct role in shallow water deposits. 

In other deposits there is some evidence of shallow water conditions, 

such as stromatolitic carbonates and reefs with their climatic implications 

as described for LSBMs e. g. Meggen, Lady Loretta. However the deposits 

themselves are confined to small basins characterized by carbonaceous, finely 

laminated silts and carbonates lacking evidence of biogenic activity in the 

photic zone (Finlow-Bates and Large, 1978). 

The "third-order" basins in which SDEXs are characteristically found 

(Large, 1981b) are themselves situated within larger, fault-bounded basins 

(see Figure 8.17). These faults appear to have acted as conduits for early 
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mineralisation in many deposits e. g. Irish examples (Badham, 1981a). The host 

rocks in these basins are usually fine-grained elastics i. e. shales and 

siltstones which show no evidence of having been deposited in high energy 

sedimentary environments such as ripple marks, cross-bedding or erosive 

channel margins. Instead they are characteristic of sediments from quiet, 

euxinic environments (Large, 1980). Precipitation of FeB2f ZnS and PbS is 

thought to have occurred in dense cooling brines beneath a sulphate-sulphide 

reduction zone with carbonates being formed from the brine at very high 

salinities or precipitated from warm overlying marine waters (Coats et al, 

1980). The mineralogy of these shales is also very important to metal 

deposition, as a high clay mineral (e. g. montmorillonite) content in shales 

considerably increases their metal adsorption properties. In section (8.1.1) 

it was shown that the prevailing climatic conditions at the site of erosion 

could affect the mineralogy of the weathering products. The presence of 

shales in these basins also suggests a low elastic supply to the basin (again 

as a function of climate) and they minimize dilution of metal concentration 

within the basin. Badham (1981a) mentioned that early erosion on the 

continental side of the basin would probably result in rapid peneplanation 

leading to a cessation of the clastic supply in the absence of any organic 

processes. Also as basin evolution progresses central areas become distal or 

separated from sources of elastic sediments. 

In the vicinity of Tom, McArthur River and Meggen autochthonous shales 

in the depositional basins have relatively high concentrations of organic 

carbon (up to 5%) as compared with the rest of the sedimentary sequence, 

perhaps reflecting a high productivity zone (Large, 1980). This is in keeping 

with the theory of biogenic reduction of seawater sulphate in the reducing 

environment of the depositional basin as a source for pyrite-sulphur. The 

bacterial reduction of sulphate to sulphide is thought to be affected by such 

fatcors as sulphate concentration, temperature, pH, f03, concentration of 
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bacteria and availability of nutrients (Saxby, 1976) many of which are 

influenced indirectly by the climate. 

One aspect of SDEX mineralogy is particularly important because it is of 

immense economic importance and so is of genetic concern - whether or not the 

deposits contain significant quantities of Ag e. g. Rammelsberg with 120g/T 

(30-35°), Mt. Isa with 149g/T, Meggen with 3g/T (20-250/35-400), Tynagh with 

28g/T (0-5°/15-20°). Unfortunately no rigid pattern can be discerned in the 

SDEX palaeolatitudes which can distinguish between the Ag-poor and Ag-rich 

types. There is a slight suggestion that Ag-rich deposits occur in more arid 

environments than Ag-poor ones, but this is not an obvious association. 

It has been suggested that there is a genetic link between SDEX and LSBM 

deposits e. g. Mako and Shanks (1984) with reference to the Vulcan prospect 

deposit. They suggested that both deposit types could be the result of 

basinal fluids migrating up active faults at the carbonate platform to shale 

basin transition. The primary distinction is that in LSBMs the mineralising 

fluid is introduced into a lithified carbonate host whereas in the shale 

basin the fluid is exhaled onto the sea floor during deposition of the host 

sediments. 

8.2.2.5 Sandstone-hosted Uranium-Vanadium Deposits (SSUV). 

As mentioned earlier in the classification (Chapter Three, section 

3.2.1) there are two varieties of U accumulation of particular interest to 

this research; the roll-front and tabular types. The host rocks are mainly 

fluviatile sandstones. The dominant sedimentary forms are alluvial fans 

within which braided streams are the main channels for sediment transport and 

deposition. Most workers consider that U has been introduced into the host 

fluviatile sandstones shortly after deposition by migrating, well-oxygenated 

meteoric water. Some of the factors of importance to the development of SSUV 

include source rock, rates of uplift in the source area, sediment supply, 
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rainfall, stream gradient, vegetation growth and rates of sediment 

accumulation. 

The Geochemistry of Uranium. 

The transport of U is in the 6' or, less coamomly, the 5' states and its 

solubility can be greatly enhanced by the formation of complexes with other 

ions in solution. U"' (as U044") complexes with the following in order of 

decreasing strength of association; C034-, HP044-, OH-, F-, H2PO4- and 8044-. 

The strongest complexes for the uranous (4') species are OH-, HP042-, F- and 

SO4-. 4At the concentrations found in most natural waters (Table 3.2) 

carbonate and phosphate complexes are the most effective transporting agents 

with fluoride becoming more important at low pH (Maynard, 1983). Lukacs and 

Florjancic (1974) proposed that U was transported as complex uranyl carbonate 

ions, as the uranyl-hydroxide ions and as colloidal aggregates of uranyl 

solutions in oxidizing solutions with a pH value of 7 and B. 

The geochemical behaviour of U is largely controlled by three factors: 

1) Oxidation-reduction reactions are a crucial factor in the development of 

most U ores i. e. low Eh leads to the precipitation of uraninite or coffinite. 

2) The amount of CO2 in the system. There is a sharp increase in U solubility 

resulting from carbonate complexing (Figure 8.18). Uranium is also enriched 

by dissolution of dispersed metals by oxidizing solutions. 

3) If appreciable amounts of V or phosphate are present uranyl deposits can 

form under oxidizing conditions. Carnotite (the least soluble uranyl mineral) 

may be deposited under neutral to slightly acid conditions implying it would 

be impossible to transport V and U in the same solutions (see Figure 8.19). A 

more detailed outline of U geochemistry can be found in Langmuir (1978) and 

Nash et al (1981). 
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Origin of Roll-Front SSW Deposits. 

These are elongate and occur intermittently along an interface between 

oxidized and reduced sandstone (see Figure 8.20). They are thought to have 

originated from the downdip movement of oxidizing U-carrying groundwaters, or 

from remobilized U already contained within the sandstones. The U minerals 

were then precipitated when the waters encountered reducing conditions. These 

reduced facies are probably controlled by organic matter or sulphide species. 

Examples include the Tertiary and Cretaceous beds of Wyoming, South Dakota 

and southern Texas. 

Origin of the Tabular SSW Deposits. 

Tabular bodies are discrete masses of U surrounded by reduced sandstone 

which are themselves scattered throughout oxidized sandstone. They are more 

closely related to large carbonaceous deposits of organic debris than roll- 

front deposits. There are two common theories as to their origin; 

1) U was originally deposited together with sandstone under reducing 

conditions with later remobilization of secondary importance. 

2) Later oxidizing solutions containing dissolved U precipitated this U on 

encountering pockets of sandstone rich in organic matter. Examples of tabular 

SSWs include those deposits of the Jurassic and Triassic beds of Colorado, 

Utah, Arizona and New Mexico. 

one of the most important questions concerning the origin of SSUVs is 

the nature of the reductant which causes reduction of U'" to U4" and hence 

precipitation of U deposits. Throughout much of the Colorado Plateau the 

carbonaceous material of tabular deposits is coalified wood (Edwards and 

Atkinson, 1986). However in the Grants Mineral District the U is associated 

with tabular layers of organic-rich material which is thought to be humate 

and is regarded as epigenetic (Adams et al, 1978). 
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Another query concerns the two different forms of SBUV deposits. However 

it appears from the results that these two forms do not show a disparity in 

latitude so the climatic influence is unlikely to be one which dictates 

whether a roll-front or tabular BSUV deposit develops i. e. these are 

parochial features of the depository whose spatial differences are subject to 

the same climatic controls. 

The major role of organic matter is to fix U by reduction of uranyl 

species in solution. Uraninite and stable organo-uranyl compounds are thus 

formed, with concommitant dehydrogenation of the organic matter. The 

influence of organic matter, regardless of its origin, is obviously great 

upon the development of SSUVs. This influence manifests itself in a number of 

different ways i. e. humic acids and humates, bacterial activity, particulate 

organic matter and larger deposits of carbonized wood. For tabulate deposits 

(Brookins, 1976) has shown that no uranyl species are thermodynamically 

stable in the presence of carbonaceous matter. Uranyl ions were thought to be 

transported in relatively reducing groundwaters rich in sulphate and with 

minor hydrogen sulphide. These ions vertically diffused into a more reducing 

zone or were vertically mixed with groundwater locally slightly discordant 

with the long axis of the tabular zone. A characteristic feature of pebbly 

sandstones in the U deposits of the Phu Wiang Basin, Thailand is the presence 

of carbonized and silicified plants and other organic remains (Gocht and 

pluhar, 1981). The plant material occurs as debris, the grade of 

mineralisation evidently increasedAthe content of organic material. 

Anaerobic bacteria combine with C and H in organic matter to extract o 

from sulphate ions in groundwater. A resulting waste product is H28 which 

acts as a reductant. This is another role of the biomass in SSW deposit 

development. For roll-front deposits the most important factor in the 

formation of SSUVs is the different roles of separate populations of bacteria 

on either side of the front (Rackley, 1976). Within the reduced zone 
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anaerobic bacteria breakdown carbonaceous material to form CO3 and H3 which 

produce low Eh conditions and result in U precipitation. A separate species 

of bacteria (Desulfovibrio) utilizes CO2 and inorganic sulphate to create 

methane and hydrogen sulphide. Hence organic matter acts as reductants for U. 

Within the oxidized zone aerobic bacteria create high Eh conditions within 

which uranyl species are the stable form of U and sulphide minerals are 

oxidized to sulphates. Soluble sulphate migrates into the reducing zone thus 

contributing to the continuing cycle of the geochemical cell. 

In the Colorado Plateau two types of carbonaceous matter occur within 

the sandstone and conglomerate (Kimberley, 1978b). Those deposits associated 

with particulate organic matter which was co-sedimented with sand and gravel 

(e. g. Triassic, Chinle Formation) are relatively less voluminous than those 

associated with humates (e. g. the Jackpile deposit, near Laguna, New Mexico) 

which have precipitated from through-flowing ground water. Turner-Peterson 

(1985) also proposed that humate, as a pore-filling organic material closely 

associated with primary ore played an important role in the development of U 

deposits in the Grants mineral region of New Mexico. The basic premise was 

that humate originated as Manic acids dissolved in the pore waters of 

greenish-grey lacustrine mudstones. During compaction waters carried the 

humic acids into adjacent sandstone beds where the humates were deposited. 

The close association of uranium with pore-filling organic matter and the 

high probability that localization and concentration of U was controlled 

entirely by the organic material place considerable significance on the 

origin of the organic matter for understanding the genesis of the BSUVs. A 

humic, as opposed to a hydrocarbon, origin for the organic matter is 

attractive because of the strong affinity of humic substances for U (Turner- 

Peterson, 1985). 

Because humate is apparently one of the main ore controls for primary 

BSUVs an important question in modelling ore genesis is the specific source 
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of the humate. Squyres (1980) proposed that it was derived from indigenous 

organic detritus (e. g. carbonized and silicified logs). Indeed most workers 

believe the humate was derived from within the Morrison Formation itself. 

However Granger (1968) proposed that erosion subsequent to the deposition of 

the Morrison Formation resulted in swampy areas which may have supplied the 

dissolved humic acids. The timing of such a humic-acid influx has been 

suggested as being: 

1) syngenetic (Granger et al, 1961; Squyres, 1980) - although this fails to 

explain the observed infilling of secondary voids in detrital grains by 

humate, 

2) closely following Morrison sedimentation (Moench and Schlee, 1967), 

3) after deposition (Granger et al, 1961; Galloway, 1980). Granger (1968) 

proposed that the humic acids were introduced during deposition of the 

overlying Dakota Formation some 30 - 40 m. y. later, 

4) both 2) and 3) with several intervening periods (Brookins, 1976). 

A number of different climatic environments have been proposed for SSW 

deposits. Wright (1979) maintained the host sandstones were deposited by 

streams in a semi-tropical humid region where the characteristic luxuriant 

growth of these areas was apt to be washed into the streams and buried. He 

proposed that the level of the water table was crucial to the preservation of 

the plant matter. A continuation of humid conditions would have kept the 

water table level high and preservation would be more likely. However 

destruction of plant matter results from a drop in the water table which may 

have been caused by climatic changes from humid to arid conditions or by a 

shift from sedimentation to erosion. However Wright (1979) considered that 

swamp and bog environments with abundant plant growth that may produce coal 

are not favourable to the development of BSWs. In contrast to this Barthel 

(1974) proposed a swampy environment of SBWs in the Lodeve Basin, France. 

Haynes (1975) described SSWs in the Lake Frome area of Australia which now 



341 

experiences an arid climate with an average rainfall of 17cm. However he 

emphasized that although the rivers in this region are ephemeral, during 

floods they are still capable of transporting large volumes of debris. He 

suggested that such ephemeral rivers could achieve much more erosion and 

deposition than more evenly regulated streams in less arid areas. 

one of the main points raised by most workers (e. g. Barthel, 1974; 

Langford, 1974) is the importance of alternating wet/dry periods in the 

development of SSUVs. An entirely arid or very humid environment is not 

thought to be conducive to U precipitation. The rainfall must be sufficient 

for the development of a fluvial system and luxuriant plant growth, although 

not too great as to remove all the plant debris. Langford (1974) mentioned 

that on an aggrading continental surface organic material can be preserved by 

burial whereas on an erosional surface plant remains decay in place or are 

swept away. Intermittent rainfall, as in wet/dry zones, would increase 

channelization which is vital in providing suitable depositional environments 

for SSUVs and would also focus groundwater migration routes. The climate 

during deposition of U is also important as groundwater flow through the 

permeable sandstones is essential so a completely arid climate would not be 

favourable. During the wet period the fluvial channels were developed, sands 

deposited and organic debris laid down, hence preparing the conditions 

necessary for SSW deposition. However at the onset of the dry period, 

oxidizing U-rich waters invaded the reducing environment and U was deposited. 

M°Laurin (1979) proposed that a ubiquitous reducing environment during humid 

and tropical climates would preclude the solution and transport of U. Using 

this as a premise he predicted that the most favourable latitudes in which 

SSUVs would occur would be from 30° to 40° latitude where climatic conditions 

would be more temperate to subtropical. 

The source of U is considered to be weathering of the adjacent 

hinterland in the majority of cases. The most common sources include tuffs 
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and volcanics (Gocht and Pluhar, 1981), granites and keratophyric basement 

(Lukacs and Floriancic, 1974). A climate of high temperatures and relatively 

low rainfall would promote the weathering of such minerals as zircon, 

monazite, glass and hence release U, so an origin in the colder, high- 

latitude regions is unlikely. 

All the constraints set out above on climatic conditions favourable for 

SSUV deposition are reflected in the distribution of SSUVs (see Chapter Six, 

section 6.3.5). There is an obvious suppression in the number of SSUVs found 

in the hot, arid zones whereas peaks in the distribution occur in the 

equatorial and temperate warm, humid rain belts. There is a peak around the 

equator in which deposits apparently formed in a continually tropical, wet 

zone. Perhaps the chemical weathering essential to release U. the development 

of fluvial channels and luxurious plant growth were the dominant controls on 

formation. The lack of deposits in a dry zone may be compensated for by 

efficient drainage in some tropical areas. 

Rawson (1975) suggested that the conditions found in sabkhas could cause 

the deposition of U minerals in the carbonate material which progrades onto 

decaying algal mats etc. He proposed that the U-bearing groundwater would be 

drawn upwards through the zone beneath the sabkha. The U would be deposited 

when the reduced environment of decaying algal matter would be reached e. g. 

Todilto Formation of Jurassic age in the Grants region, New Mexico where 

organic layers in limestone have been replaced by uraninite. Such a theory 

may explain the few deposits which do apparently occur in the lower latitudes 

where a more arid climatic regime exists. 

The evolution of land plants in the Silurian may have had two favourable 

effects on SSUV deposition, according to Wright (1979). Firstly it became 

possible for significant volumes of plant matter to be incorporated into 

fluvial depositional systems. Secondly the land plants tended to slow down 

the effects of rapid run-off and erosion and hence more time was available 
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for chemical reactions during intense tropical weathering. Certainly roll- 

front and tabular SSUVs do appear to be more common in Phanerozoic than 

Precambrian times, although such a distinction may be due to selective 

preservation of younger deposits. It may also be due to the failure to 

recognize these deposit types in older rocks. Stanworth and Badham (1982) 

emphasized that some uranium deposits from the East Arm, Great Slave Lake, 

Canada were secondary diagenetic in origin and were not detrital 

accumulations as had previously been thought. 

In general the main model of SSW genesis (see Figure 8.21) is that U is 

leached from either granite or tuffs and transported along permeable 

palaeochannels in sandstones by oxygenated meteoric water. Uranium 

concentration is related to either adsorption by carbonaceous material or 

rapid changes in redox conditions. The main factors include uplift of the 

source area with the eventual exposure of uraniferous rocks, a climate which 

favours chemical weathering and luxuriant vegetation cover, and the 

preservation of permeable sediments with an appropriate content of organic 

matter, pyrite and clay minerals. 

8.2.3 Placer Deposit Types. 

Placers may be defined as surficial mineral deposits formed by 

mechanical concentration of mineral particles from weathered debris. The 

mechanical agent is usually alluvial but it may also be marine, aeolian, 

colluvial (creep) or glacial. As a general rule placer formation is favoured 

by prolonged sediment reworking causing heavy mineral concentration while 

transporting other sediment downstream. Hence exploration for eluvial, 

colluvial and fluvial deposits should, in part, be concentrated in looking 

for evidence of a prolonged weathering regime and a dynamic transport system 

with favourable conditions for deposition (Macdonald, 1983). Placers might 
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therefore be expected to be associated with surfaces of fluvial degradation 

in drainage basins and in alluvial fan sequences of depositional basins 

(Schumm, 1977). Placers may also be found in areas where multiple periods of 

reworking have occurred due to sea level fluctuations which may increase the 

chance of enrichment (Henley and Adams, 1979). 

8.2.3.1 Placer Gold Deposits (PLAU). 

According to Henley and Adams (1979) the formation of PLAU deposits 

involves two complex stages. The first stage is the hydrothermal 

concentration of trace Au in the crust into epigenetic deposits (e. g. quartz 

veins) and does not seem to have been influenced by climatic conditions. The 

weathering, erosion and mechanical concentration of the Au into alluvial 

deposits constitutes the second stage and is clearly related to climatic 

processes. This includes the secondary mechanical concentration or resorting 

of earlier auriferous gravels e. g. California. For all examples the basic 

control upon PLAU formation is that the supply of Au depends on the supply of 

sediment from which it can be concentrated. In the north Westland area of New 

Zealand the richest placers are to be found downstream of terminal moraines 

formed during Pleistocene glaciations. The auriferous gravels of California 

were first accumulated on a deep weathered and lateritized peneplain as glass 

sand and clay deposits. Reworking of these gravels during Pleistocene valley 

glaciations and their associated fluvioglacial transport resulted in 

deposition in terrace formations (Henley and Adams, 1979). In both the above 

examples climatic conditions have obviously played an important role in the 

initial accumulation of the Au supply. 

Although an original sediment supply is vital for PLAU formation, Schumm 

(1977) emphasized that fluvial reworking of eroded sediment to form placers 

is more likely during a period of low sediment supply. Hence very high rates 

of erosion are not particularly favourable for placer development as the 
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large volume of sediment produced reduces the opportunity for mineral 

concentration. Such an alteration of periods of rapid sedimentation with 

those of lower erosion rates during which sediment is reworked could be 

produced by changes in tectonic movements of the source and depositional 

areas (Sutherland, 1985). Indeed, Henley and Adams (1979) noted an 

association of PLAU deposits with Mesozoic and Cenozoic mountain ranges 

particularly around the Pacific Ocean. These areas are typified by high 

relief, considerable tectonic and igneous activity and variable rates of 

erosion and deposition. 

An indirect effect of water volume on fluvial placer formation is upon 

the distribution of Au within a palaeodrainage system e. g. the Carbon Leader 

Placer, Witwatersrand, South Africa (Buck and Minter, 1985). The central area 

of the system was characterized by greater fluvial current velocities than 

the marginal zones, hence were coarser-grained, and higher concentrations of 

Au occurred. The margins had weaker fluvial processes and so comprised finer- 

grained facies with poorer concentrations of PLAU. 

8 . 2.3.2 Placer Diamond Deposits (PLDI). 

As the primary source of diamonds in economic quantities are the igneous 

intrusions known as kimberlites (Dawson, 1980) it is to be expected that 

PLDIs have a strong geographical association with these sources. Kimberlites 

are usually found within cratonic areas and there is a clear correspondence 

of PLDIs with these regions (Sutherland, 1985). Therefore PLDIs occur in 

areas with slow and extended up- or downwarping with little erosion. 

Obviously the degree of erosion on cratons depends upon the time period under 

consideration (Sutherland, 1985) and also the prevailing climatic conditions. 

An examination of the distribution of PLDIs with regard to cratonic areas 

also shows a notable preference for the lower latitudes within these areas 

e. g. there is a marked lack of PLDI deposits in the Canadian and Scandanavian 



347 

Shields suggesting an absence of suitable source rocks, whereas the majority 

of deposits occur in the South American and South African lower latitude 

cratonic regions. Berbert et al (1981) described PLDI from western Minas 

Gerais and mentioned the dominance of intense chemical weathering in the area 

with extreme weathering surfaces. However even though PLDIs occur in many 

continental clastics in Brazil from the end of the Lower Proterozoic to 

Recent times the source remains elusive (Badham, pers. comm. ). 

The effect of changing magnitude and frequency of discharge variations 

in humid tropical river systems in response to major climatic shifts has been 

stressed by Baker (1978). Hall et al (1985) have applied this to explain the 

formation of Birim (West African) PLDI deposits in terms of palaeoclimatic 

changes during the late Quaternary suggesting that Quaternary environmental 

changes produced associations between diamond grades and chronostratigraphic 

units comprising floodplain gravels. 

As with PLAU deposits water volume has an effect upon the morphology of 

PLDI deposits. A notable feature of the Birim Placer, West Africa is the 

association of medium- to coarse-grain size diamonds with coarse-grained e. g. 

pebble and cobble, gravels (Hall et al, 1985). This suggests that diamond 

concentration is enhanced by trapping and protective storage in the coarser 

gravels which have larger spaces between the clasts into which larger 

diamonds can penetrate (Prokopchuk, 1969). Fluvial transport also has an 

influence upon deposit formation as diamond size distribution is 

progressively modified with increasing travel distance from the source. The 

quality of the diamonds also improves as inferior types are destroyed. 

It would seem that PLDI distribution is affected by a combination of the 

distribution of source rocks in cratonic areas on the globe and climatic 

conditions i. e. humid tropical and subtropical zones where fluvial transport 

and intense chemical weathering dominate. 
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9.3.3 Placer Tin (PLSN), Placer Oxide (PLOX) and Placer 'Other' (PLOT) 

Deposits. 

Placer Tin Deposits. 

Cassiterite (SnO3), the most important tin ore mineral, is hard, heavy 

and highly resistant to weathering (see Chapter Three, Table 3.6). It 

therefore tends to concentrate naturally in superficial deposits derived from 

tin-bearing granites (in which it occurs as a primary mineral) and its 

associated metamorphic deposits e. g. the southeast Asian tin belt. Apart from 

the obvious pre-requisite of a high initial concentration of tin from a tin- 

bearing source rock, the other factors which have led to large deposits 

include deep, rapid, tropical weathering which has released large quantities 

of primary tin and the preservation of placers resulting from low terrain by 

low velocity streams (Hails, 1976). Cassiterite may be concentrated by 

chemical weathering which selectively removes feldspar, and to a lesser 

degree quartz, downslope. Hails (1976) considered that such tropical 

weathering was the most important process involved in the formation of the 

southeast Asian tin belt. The PLSN deposits of the Bangka and Billiton 

Islands are thought to have formed in a different way. It has been proposed 

(Adam, 1933; Aleva, 1985) that these deposits were the normal residue found 

on weathered surfaces within the humid tropics so they were more residual in 

nature with relatively little influence of fluvial transport. They were not 

considered to be the result of chemical weathering and subsequent erosion and 

mechanical transport e. g. some deposits in the Malaysian Peninsula and 

Thailand (Aleva et al, 1973). 

Placer Oxide Deposits. 

Climate is indirectly responsible for many PLOX deposits e. g. ilmenite 

in late Pleistocene beach deposits on the west coast of New Zealand which 

were deposited during interglacial high stands (NZ, DSIR, 1969). The 

occurrence of monazite in some deposits has been attributed to its relative 
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stability in the weathering profile (Hails, 1976). It is resistant to 

mechanical abrasion so concentrates at the site of weathering and in streams 

e. g. in North and South Carolina, USA. Monazite tends to be 

disproportionately concentrated in alluvial gravel in accordance with the 

hypothesis that heavy resistate accessory minerals are proportionately more 

abundant in gravel than in sand, silt or clay (Overstreet et al, 1968). 

The concentration of titanium placers in beach deposits of South 

Carolina and Georgia is thought to be due mainly to the prevailing climatic 

conditions which are conducive to the development of thick, well-drained 

saprolites over granitic or gneissic source rocks (Puffer and Cousminer, 

1982). By analogy the Ti-Fe PLOX deposits of the Cohansey Formation, New 

Jersey are also thought to have been formed under conditions found in South 

Carolina and Georgia at present. The development of saprolites is considered 

to be an important early stage in the origin of Ti-Fe oxide beach placers 

along the west coast of Australia and West Africa (Force, 1976). The 

relatively insoluble Ti-Fe oxides were concentrated in an easily eroded 

residue during saprolite development whilst more unstable minerals were 

weathered and removed. Silicates e. g. garnets, which may contaminate the PLOX 

deposit are also weathered during saprolite development (Dryden and Dryden, 

1946). The beach sands from Charleston, South Carolina to Miami, Florida, USA 

contain 1% garnet compared with 26% for northeastern Atlantic beaches such as 

Long Island (Martens, 1935). 

Placer 'Other' Deposits. 

One of the major factors in the concentration of Be in PLOT deposits is 

the extreme insolubility of the most abundant Be minerals e. g. beryl, 

chrysoberyl and phenacite. However it is important in the formation of such 

PLOT deposits that the Be-bearing silicate minerals have not been transported 

for large distances from the source region. If such weathering and 

transportation does occur over a long distance and an extended period of time 
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the Be-bearing minerals would decompose and the Be would be adsorbed onto Al- 

rich clays (Rupasinghe et al, 1984). Hence such PLOTs as emerald deposits are 

more likely to be found in humid tropical or subtropical areas with locally 

restricted transport (which may be due to dense vegetation cover). 

Once again source rock is an important development in PLOX and PLOT 

development but climatic conditions and depositional environment are also 

other important influences. The necessity of saprolite development for PLSN, 

PLOX and PLOT deposits explains the lack of such deposits in the warm, arid 

zones as shown in the results (Chapter Six, section 6.4.3). 

Sutherland (1985) emphasized that climate influenced many of the 

variables which are relevant to placer formation e. g. weathering, rates of 

erosion, nature of sediment supply and opportunities for sediment reworking. 

These factors were discussed in terms of broad morphogenetic zones and for 

this reason this discussion is summarized below. 

Humid Tropical Regions: These are characterized by high temperatures, 

constant stream flow and a dense vegetation cover which inhibits the direct 

influence of many mechanical erosional processes. If semi-arid conditions 

with fluvial activity sufficient to erode the decomposed regolith and 

transport liberated heavy minerals alternated with humid conditions, 

increased vegetation cover would reduce sediment supply and encourage 

reworking of material from fluvial systems developed in semi-arid periods. 

The extensive and deep chemical weathering of the bedrock which is 

characteristic of humid tropical regions influences; 

i) the separation of weather-resistant minerals, 

ii) the formation of a dominantly clay-sized regolith, 

iii) chemical denudation and mass loss of as much as 40t of the rock by 

solution prior to any mechanical erosion (Thomas, 1974). 
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Semi-Arid to Arid Regions: These zones experience very high run-off rates due 

to irregular but intense rainfall and limited interception by sparse 

vegetation cover. Rock weathering is therefore dominated by mechanical rather 

than chemical breakdown. Fluvial activity is effective in these areas because 

of the high sediment load carried in rivers creates a relatively high density 

fluid in which heavy particles can be more easily transported. However such 

fluvial activity is very ephemeral and reworking is less likely than in other 

environments. 

Humid Temperate Regions: These are more common in the northern than in the 

southern hemisphere because of the relative distributions of land and sea. 

Such areas are characterized by deep arenaceous weathering profiles with very 

little alteration to clay minerals (00%) and a perennial river flow which is 

strongly moderated by the vegetation cover. The arenaceous weathering 

profiles produce large volumes of bedload sized material which may rapidly 

dilute heavy minerals from source. Also there is a low overall sediment yield 

from these areas because of the vegetation cover (Strakhov, 1967) so release 

of placer minerals from the bedrock is restricted. In general these areas are 

not those with optimum characteristics for placer development (Macdonald, 

1983). 

Cold Non-glacial Regions: Such areas are underlain by continuous or 

discontinuous permafrost, have a thin soil layer, limited vegetation cover 

and experience a seasonal snow melt. Hence there is a brief period of highly 

concentrated fluvial activity in late spring and early summer and weathering 

is dominated by mechanical processes. An important influence of permafrost is 

that it prohibits widespread "stripping- of pre-existing deposits or 

regoliths created during the Tertiary when release of primary minerals was 

more effective because of the milder climate. However if these earlier 

sediments have been reached by the periglacial fluvial system, rich placer 

deposits may develop e. g. Yukon River, Alaska (Boyle, 1979). 
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Glacial Regions: High grade placer deposits can occur within formerly 

glaciated areas. There are three points worthy of note; 

i) Generally fluvioglacial sediments are deposited rapidly with little 

sorting, and are usually unable to rework sediments of established drainage 

patterns so heavy mineral concentration is not common. Some deposit examples 

include PLAU in bench deposits near Nome, Alaska (Cobb, 1973). 

ii) In ice-shed areas and towards the margins of ice sheets, the ice and 

glacial sediments may play a protective rather than an erosive role. Hence 

deeply weathered bedrock or pre-existing placers may be preserved e. g. in the 

Caribou area of British Columbia (Boyle, 1979). 

iii) Glaciers may disperse heavy mineral with little sorting over 

considerable distances producing large volumes of very low grade sediment 

that may be reworked by post-glacial processes e. g. PLAU deposits in the 

North Saskatchewan River, Canada (Boyle, 1979). 

The importance of climate to the formation of placer deposits cannot be 

stressed too greatly as each of the five morphogenetic regions is capable of 

producing placer deposits, although some e. g. humid tropical zones, are more 

favourable than others e. g. humid temperate and cold non-glacial regions. 

Evans (1981) proposed that the normal processes of lateritization may be 

important in upgrading the Au content of ultrabasic rocks and therefore 

increase their suitability as a source for placer deposits. In addition Welch 

et al (1975) suggested that rapid uplift of lateritized terrain under 

relatively wet climatic conditions was an important pre-requisite to the 

accumulation of heavy mineral sands. Puffer and Cousminer (1982) utilized 

palynological evidence from a lignite band to show that at the time of 

formation of Ti-Fe oxide-rich mineral sands in the Lakehurst area, New Jersey 

the region experienced a subtropical climate. A humid climate is favourable 

for eluvial placer development as enrichment in placer minerals is partly 

caused by the removal of soluble minerals by groundwater and partly by the 
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transport of the lighter minerals by running water and wind action. Climate 

also plays an important role in the formation of fluvial placers. Under dry 

conditions the valley system can be fed from the products of rock 

decomposition, whereas in a wet climate the feed to the valley is restricted 

to the products of the river system erosion, although land slides may 

contribute. In a hot/wet climate the land is protected by a cover of 

vegetation which will restrict the movement of soil and rock towards the 

drainage system. Such humid, subtropical conditions are ideally suited to 

saprolite development which has been shown to be very important in the 

formation of some placer types (Fairbridge, 1968). The solubility of silica 

is greatly increased by increased temperatures so saprolites are more likely 

to develop in warm than in cool climates. (A temperature increase from 10° to 

30°C will increase the solubility of quartz by a factor of 1.9; Siever, 

1962). 

Changes in climatic conditions have also been cited as influential 

controls on placer accumulation (e. g. Hall et al, 1985; Sutherland, 1985). 

For example variations in sea level during Plio-Pleistocene times due to 

climatic changes resulted in several periods of marine transgression and 

regression throughout the globe. These fluctuations led to the reworking of 

extensive zones of elastic sediments and created placer beach sand deposits 

in many areas (Edwards and Atkinson, 1986). 

8.2.4 'Other' Deposit Types. 

8.2.4.1 Manganese Formations (MNFM). 

These examples are confined to Phanerozoic sedimentary Mn deposits in 

which metals were mainly derived through the weathering of rocks. They occur 

in present day marine and lacustrine basins. There are two main varieties of 
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MNFM which are of particular interest to this research; those associated with 

clastics and those associated with carbonates. 

clastic-hosted MNFMs. 

The major concentration of clastic-hosted MNFMs occurred in the 

Oligocene in the southern European region of the USSR: classic examples are 

to be found at Nikopol and Chiatura. Nikopol-type deposits are localized as 

beds of Mn oxides and carbonates near the base of the marine ore-bearing 

sequence. They are characteristically associated with silt-clay or, more 

rarely, sandstone. In the Mn deposits of Nikopol and Bol'shoi Tokmak the ore- 

bearing sequences occur transgressive(y on the crystalline basement. The ore 

horizon hosts a variable shallow-water faunal assemblage e. g. gastropods, 

crabs, sea-urchins, solitary corals. Surficial enrichment of ore beds, 

particularly of carbonate ores by weathering is common. This oxidation- 

enrichment zone was formed in the Oligocene before the accumulation of the 

overlying plastic green clay beds (Gryaznov and Danilov, 1976). The Mn 

deposits in Georgia, USSR (e. g. Chiatura) contain an average of 35% Mn with 

oolitic (and pisolitic) varieties common. Higher oxide ores are interlayered 

with coarser-grained clastic rocks that show a minimum content of organic 

carbon. Conversely carbonate ores are interlayered with very fine-grained 

detritus which have the richest organic carbon content. Edilashvili et al 

(1974) concluded that in the western part of the Chiatura deposit Mn oxide 

ore deposition occurred during a period of minimum terrigenous input on a 

submarine rise in shallow water. 

Most of the studies of the Nikopol-type MNFM deposits concluded that 

they were formed from products of a weathered zone of older rocks in a stable 

tectonic condition (Roy, 1981). Varentsov and Rakhmanov (1980) considered the 

accumulation rates of the ore to be low, Mn supplied from the weathered zone 

as organ-metallic compounds and precipitated by oxidation. The water of the 
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Chiatura Basin was assumed to have a low salinity (Sokolova, 1964). However 

the presence of stenohaline bivalves, sea urchins and solitary corals in the 

ore horizons of the Nikopol Basin have been interpreted as being indicative 

of normal salinity. Both the Nikopol (Selin, 1964 cited in Gryaznov, 1970) 

and Chiatura (Sokolova, 1964) Basins are thought to have had a sub-tropical 

temperature regime. Hence Mn deposition at both sites occurred in a humid 

climate. However the Mangyshlak deposit is thought to have been deposited at 

the boundary of humid and arid zones and the ores north of the Urals were 

deposited in more temperate climates (Varentsov, 1964). Shterenberg et al 

(1965) concluded that ore deposition in all the Oligocene basins of the USSR 

coincided with a sharp change in climate from humid subtropical to cooler and 

drier temperate conditions. This is supposed to have led to separation and 

concentration of Mn with respect to Fe at source and/or in the depositional 

environment due to changes in the weathering process. The altered climatic 

conditions would also allow the prolific development of Mn-oxidizing 

organisms. Thus these huge MNFM deposits were formed by a coincidence of 

suitable climatic, biological and physiographical conditions (Roy, 1981). 

Carbonate-hosted MNFMs. 

These bodies may be either oxides or carbonates and are associated with 

limestone-dolomite formation and red carbonate-terrigenous formation (Roy, 

1981) e. g. the Permo-Triassic MNFM deposits of Narguechoum, Morocco. The ore 

horizon is successively overlain by red arkosic sandstone, red clay and 

finally a Lower Jurassic massive, sandy dolomite. However dolomite 

intercalations in the ore horizon are absent but for a thin layer at the 

bottom of the ore bed. This deposit is therefore confined to a red, 

terrigenous formation apparently deposited in an arid climate and an 

evaporite facies (Roy, 1981). 
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MNFMs related to the transgressive limestone-dolomite sequence are found 

at Imini (Upper Cretaceous) and Bou Arfa (Lias) in Morocco. Two or three 

persistent Mn-oxide beds occur within the dolomite and at the contact of 

sandstone and dolomite horizons. The thick dolomite sequence was deposited in 

deeper parts of the basin, passing into near-shore coarse detrital 

continental-type red-beds. Once again ore deposition is considered to have 

taken place in an arid climate in evaporite facies (Varentsov, 1964). 

The bedded Mn orebodies of the Permo-Carboniferous, Lower Lias and Upper 

Cretaceous formations of Morocco are mostly accepted to be of sedimentary 

origin, derived by the supply of Mn through continental erosion during marine 

transgression. Pre-Cambrian and Carboniferous Mn-rich hydrothermal vein 

deposits are thought to be the principal Mn sources (Roy, 1981). Deposition 

of these sedimentary ore bodies took place in an arid climate and 

associations with evaporites have been recorded. It has been suggested that 

Mn deposition occurred in shallow water coastal lagoons (Vincienne, 1956). In 

view of the low detrital component and the very high Mn/Fe ratio Stanton 

(1972) suggested a highly selective biological process operated in the 

shallow-water environment to produce these orebodies. 

In the USSR carbonate-hosted MNFMs are found at Ulu Telyak in the 

western Urals. These deposits are considered to have formed in very similar 

conditions to those of Morocco. Mn deposition occurred during a marine 

transgression in shallow, lagoonal waters with a Mn source on the adjacent 

continent to the west (Roy, 1981). 

At Groote Eylandt off the northern coast of Australia a dominantly 

pisolitic MNFM has formed under shallow marine conditions. The absence of Mn 

carbonate minerals is notable but Slee (1980) suggested that the present ores 

were derived from pre-existing carbonates. Beneath the ore beds is an 

unconformable manganiferous marl which is thought to have been eroded so 

producing Mn which was transported by rivers and precipitated at the 
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shoreline. This fresh water to marine transition would result in a rise in pH 

from 6 to 8 and MnO2 should be precipitated under these strongly oxidizing 

conditions (Maynard, 1983). 

One group of MNFMs which have not been included in this research are 

those of the supergene type because too few examples were collected. However 

these deposits appear to be important to this research as they are found 

extensively in the weathering profiles of many countries, particularly in 

humid tropical and sub-tropical zones, so they appear to show a strong 

climatic control. It has been mentioned previously that the source of Mn for 

many MNFMs may have been weathering profiles of adjacent hinterland. The 

formation of these supergene deposits may illustrate how a pre-concentration 

of Mn can occur. Intense weathering in a tropical region with adequate 

drainage to give enrichment of Mn would obviously prove favourable to the 

subsequent formation of clastic- or carbonate-hosted MNFMs. These deposits 

are considered to have formed by in situ residual concentration of Mn in the 

country rock or through dissolution of the metal and its reprecipitation 

within the weathering profile. Sizable supergene Mn deposits occur in 

Precambrian rocks in Brazil, West Africa, South Africa and India. Relatively 

smaller deposits are to be found in Montana, USA; Urkut, Hungary; Janggun, 

Korea and Toyoguchi and Noda Tamagawa, Japan (Roy, 1981). 

The following generalizations were amongst others given in Roy (1981) 

for supergene MNFMs from Bricker (1965), Thienhaus (1967), Weber (1973) and 

Lelong et al (1976). These points have been singled out because of their 

possible climatic connection; 

1) Mn concentration is due to prolonged weathering in high-lying plateaus. 

2) In the upper zones of the weathering profile, pisolites and nodules 

containing minor Mn associated with Fe-hydroxide and clay are found. The 

concentration of the majority of Mn as oxide crusts takes place in deeper 

zones. So the Mn-oxide ores are effectively separated from other weathering 
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products. However in the presence of stagnant water over impermeable 

weathered rocks the dispersion of MNFMs is hindered. Thus adequate drainage 

and a flowing water supply are vital. 

3) The common agents of the supergene concentration process are meteoric 

water and air. 

The process by which Mn oxides and hydroxides were formed from a protore 

at Moanda, Gabon which has undergone severe tropical weathering illustrates 

the development of supergene Mn deposits well (Weber, 1973). Superficial 

oxygen- and C02-rich waters permeated through the protore and sulphuric acid 

was produced by oxidation of pyrite in the upper levels which yielded 

sulphates and CO2 on reaction with carbonates. Sulpho-reducing bacteria were 

considered to be active in deep horizons in the presence of sulphates and 

organic matter with the production of CO. and H. S. In such an environment the 

acidic water dissolved Mn present in the carbonates. With enrichment of 

bicarbonates and the increased pH in water, Mn-hydroxide with some carbonates 

were later precipitated at the bottom of the weathering zone. 

The climatic controls on carbonate-hosted MNFMs appear to be similar to 

those of OOFE5 i. e. low detrital input is favourable, together with a more 

arid climate in which carbonates i. e. limestones and dolomites can 

proliferate. However neither a completely arid, nor a cold, climate are 

conducive to MNFM deposition as intense chemical weathering under humid 

conditions with adequate drainage is needed to release Mn from the adjacent 

hinterland. Given the above the distribution found here is somewhat 

surprising in that some deposits occur in intermediate latitudes. However 

those are the clastic-hosted deposits of the USSR and it appears that more 

humid conditions are necessary for their development than for carbonate- 

hosted MNFMs as they do not have the close association with evaporites. As 

mentioned earlier it has been suggested that the formation of these deposits 

has been linked to climatic changes which encourage biological activity etc. 
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8.2.4.2 Laterite Deposits (LATO). 

Laterites and bauxites are the extreme end residual products of special 

climatic conditions. They are formed under oxidizing conditions in areas of 

low or moderate topographic relief with a minimum of erosion (see Figure 

8.22). Laterite consists essentially of hydrated iron oxides; bauxite of 

hydrated aluminium oxides, although aluminous laterites and ferruginous 

bauxites are found. The most common impurity in both is silica. Laterites 

(and bauxites) are widely distributed throughout the humid tropics and 

subtropics (e. g. Brazil, Jamaica, West Africa). They may also occur in 

temperate latitudes (e. g. the northern shores of the Mediterranean, Oregon, 

USA) but they are never found in regions which experience a prolonged cold 

winter (Greensmith, 1978). The climate should also be persistently warm. 

Hence the origin of laterite deposits is again dominated by chemical 

weathering and the amount of rainfall experienced by a region. Slightly 

different factors dictate whether laterite or bauxite deposits are formed. 

These include parent rock composition and variations in climatic conditions. 

Aluminium-rich Laterites i. e. Bauxites. 

Aluminium bauxites are residual soils resulting from extreme leaching in 

a humid tropical environment. For example the Trombetas bauxites of the 

Amazon Basin, Brazil occur in an area where rainfall is seasonal with an 

average of 2.5 metres with 70 to 80% occurring during the wet season. However 

temperature shows little seasonal variation because of the latitude and the 

diurnal range is only 10°C (Greig, 1977). Bauxites require high drainage 

rates with sufficient drainage to allow Na, K, Ca and Mg to be removed e. g. 

in the Trombetas region the clay which constitutes the uppermost layer of the 

weathering profile is permeable and drains rapidly even after heavy rainfall. 
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Bauxites are thus favoured by periods of intense chemical weathering but 

little erosion so that residual products may accumulate. The development of 

bauxites is also influenced by the mineralogy of the parent rock, although 

this is not quite as important a factor as with laterite deposits. If the 

silica is contained in aluminosilicates (e. g. feldspars or clays) it passes 

into solution relatively readily and hence is leached from the developing 

soil profile under humid conditions. In contrast it has been shown that 

quartz dissolves extremely slowly and so persists in tropical soils. 

Therefore bauxites tend to form over quartz-poor rocks such as syenites, 

basalts and limestones (Maynard, 1983). 

To maintain the enrichment of Al relative to Fe a mechanism for 

separation is needed. A low-Fe bauxite may simply be due to a low-Fe parent 

rock. But gibbsite is more soluble than goethite so low-Fe bauxites may be 

formed from a high-Fe parent rock (e. g. basalt) by leaching of the Al and 

reprecipitation lower down in the profile. Indeed many basins have a cap of 

Fe-rich laterite over the bauxite zone (Maynard, 1983). Another mechanism of 

separation is by removal of Fe from lateritic soils under reducing 

conditions. The presence of Fee- minerals (e. g. siderite and chamosite) in 

some examples shows that such a reduction does occur (White, 1976). A 

potential source of reductant is the abundant plant debris characteristic of 

these climatic environments which occurs either within or immediately above 

the bauxitic layers. 

Nickeliferous Laterites. 

Nickeliferous laterite deposits comprise in situ lateritic weathering of 

a Ni-rich parent rock. Consideration of the relative abundances of Ni and Al 

(Table 3.3) shows that sedimentary Ni accumulations can only occur in 

association with pre-existing Ni concentration of ultrabasic igneous rocks. 

Ni enrichment in the laterite profile is therefore largely derived from 
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olivine or serpentine. There are variations possible in the form of the 

weathering profile as it comprises four zones. The absence of certain of 

these zones is indicative of the prevailing climatic conditions, as described 

below; 

1) Profiles without an Intermediate Zone. Weathering profiles without 

intermediate zones (i. e. nontronite or silica boxwork zones) are 

characteristic of the humid, tropical climate regimes and other areas with 

very high rainfall and a minimal dry season. They may result from extensive 

leaching so super-saturation conditions for smectite clays in the basal 

saprolite zone are not reached. Efficient drainage in a constantly wet 

profile would keep solutions sufficiently undersaturated to prevent the 

formation of smectite or quartz, except as a replacoient for olivine. 

2) Profiles with an Intermediate Zone. These typically occur in less humid, 

tropical climates with a marked dry season. Hence they result from relatively 

slow, inefficient leaching which leads to supersaturation conditions for 

smectite clays in the saprolite zone. The replacment of serpentine by 

smectite and quartz may occur if solutions remain in the weathering profile 

sufficiently long to achieve supersaturation in smectite or quartz. Such 

conditions would occur at a water table or during the dry season when 

solution movement downward is minimal. Obviously evaporative concentration 

would enhance this effect (Golightly, 1981). Thus nickeliferous laterites 

with nontronite or extensive silica boxwork zones may result from tropical 

wet-dry climates or elsewhere from retarded drainage (Golightly, 1981). 

In the formation of bauxite and nickeliferous laterites perhaps the most 

essential climatic feature is a well-marked division of the year into wet and 

dry seasons. During the former extensive leaching of the rock occurs. During 

the dry season the solution containing the leached ions may be drawn to the 

surface by capillary action, evaporation occurs and the salts which remain 

may be washed away during the following wet season. Thus the zone from the 
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lowest level to which the water table falls to the highest level it reaches 

is progressively depleted of the more easily leached elements e. g. Na, F, Ca 

and Mg. A solution containing such ions may have the correct pH to dissolve 

silica in preference to Al or Fe oxides. Thus the residuum consists mainly of 

these two oxides, the predominant one dependent upon the parent rock 

composition. An essential property of the rock is that it should maintain a 

porous structure during the leaching process, allowing free circulation of 

fluids. 

The results show a broad spread of latitude of LATO formation, up to 50° 

latitude from the equator so the distribution covers the tropical, 

subtropical and temperate climatic regions. There are peaks in humid tropical 

areas (bauxites and nickeliferous laterites without an intermediate zone) and 

from 15° to 25° north and south i. e. the wet-dry tropical zone (nickeliferous 

laterites with an intermediate zone). Another hiatus occurs between 350 and 

40° north i. e. the humid continental warm summer regime. This zone only 

occurs in the northern hemisphere as in the southern hemisphere water surface 

dominates over land area at these latitudes (Critchfield, 1983). The number 

of LATO deposits drastically reduces at latitudes greater than 450 from the 

palaeoequator because the temperatures are too low to maintain the high rates 

of chemical weathering and the precipitation is too low for the huge water 

volumes necessary for extensive leaching of weathered profiles. Hence the 

distribution of laterite deposits as shown in the results may be explained in 

terms of climatic influence upon their formation. 
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8.2.4.3 Phosphate Deposits (PROS). 

There is general agreement amongst workers that the formation of primary 

PHOS deposits is mainly due to upwelling of cold, oceanic currents (e. g. 

Gulbrandsen, 1969; Cook, 1976; Parrish et al, 1986). It should be first 

explained that upwelling simply raises water from below that photic zone 

loom) to above it (doom). In the photic zone, light penetrates and permits 

photosynthesis and phytoplankton remove dissolved P for metabolic use. The 

concentration of P in surface water is therefore about 10ppb. If off-shore 

wind blows this water away from the coastline it has to be replaced by water 

that upwells from depth and this typically has about 70ppb P or more. The 

solubility of phosphate in sea water increases with decreasing pH and 

temperature and so it is to be found concentrated in deep, cold sea water. 

When such waters are forced to upwell by divergence or other means along 

continental shelves, sea life flourishes and P is taken up. Also in this 

shallow environment the waters are warmed, resulting in the deposition of 

phosphate both inorganically and biochemically (Brown, 1974). Such a 

situation is found today along the southwest coast of southern Africa on the 

Agulhas Bank (Parker, 1971; Summerhayes, 1972,1973; Birch, 1973). In areas 

of upwelling high pelagic biological activity occurs so the shelf and slope 

sediments are rich in organic carbon and biogenic carbonate. Phosphate-rich 

microenvironments are created in the sediment interstices by solutions 

derived from dead phyto- and zooplankton protoplasm. When these solutions 

then came into contact with a sediment with a high surface area/volume ratio 

which is susceptible to replacment (e. g. micrite) phosphatization would 

proceed (Dingle, 1974). Upwelling has been shown to be capable of fixing 

sufficient P to make a phosphorite (McKelvey et al, 1959). It is fixed in the 

biomass which sinks on death and undergoes sub-oxic diagenesis by bacteria 

and the contained P is released as the organic matter is oxidized. Eventually 
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pore water phosphate concentrations rise enough to precipitate francolite 

directly or to favour replacement of carbonates and so phosphorite is formed. 

Cold oceanic currents affect phosphate abundance of oceanic zones over 

considerable distances at the present time (Cook, 1976). Assuming the present 

principles of atmospheric circulation such currents presumably occurred in 

the past, although to a greater or lesser degree depending on the size of 

polar ice caps and oceanic/continent configuration as determined by 

palaeogeography. Sheldon (1964) found that the majority of important PHOS 

examples were deposited within 400 of the palaeoequator. Within this range at 

present most cold oceanic currents are associated with coastal upwelling 

(Cook, 1976). Freas and Eckstrom (1968) summarized the conditions conducive 

to upwelling, amongst them are the points given below which have been 

selected on the grounds of being latitudinally or climatically influenced. 

They found that upwelling was most likely to occur; 

1) In the trade wind belts at low latitudes between 00 to 25°, 

2) Along the north and west coasts in the northern hemisphere and south and 

west coasts in the southern hemisphere between 0° and 25°, 

3) Along the coasts of land masses with dry climates e. g. Peruvian PHOS 

deposits with the Sechura Desert as hinterland and southwest Africa with the 

Namib Desert (Cook, 1976), 

4) Along coasts in the belt of westerlies approximately between 20° and 40°. 

To conclude, the most widely accepted theory on the origin of PHOB 

deposits has been given in Cook (1976) with regard to the formation of 

nodular and pelletal PHOS deposits and is summarized below. 

1) An influx of nutrient-rich water, generally by upwelling, into a shallow- 

marine region (maximum water depth 500m) with a slow rate of terrigenous 

deposition occurs, often in a warm arid climate e. g. at Baja California, 

Mexico at present with an annual precipitation average of 12cm and a desertic 

vegetation of shrubs along the coast (D'Anglejan, 1967). 
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2) This is followed by the development of a prolific biota, 

3) Then the formation of anoxic organic-rich bottom sediments occurs and the 

loss of C, N and H from dead organisms either before, or immediately after, 

burial, 

4) Interstitial waters rich in P form below the sediment/water interface by 

leaching of phosphate from organic remains as a consequence of low pH and 

high alkalinity in the sediments, 

5) Localized patches of apatite develop by phosphatization, 

6) Reworking of sediments may occur. 

The importance of climate to the development of PHOS deposits is very 

clear. An important condition permitting appreciable phosphatization is the 

rate of supply of detritus (6ulbrandsen, 1969; Dingle, 1974). The supply of 

detrital material must be low so that drowning of the incipient phosphorite 

enrichments by rapidly accumulating particulate detritus is prevented. Such 

conditions are met in arid regions with a low rate of detritus supply due to 

limited erosion and a lack of significant continental run-off and aeolian 

dust movement (Manheim et al, 1975). Brongersma-Sanders (1969) however noted 

that the process of upwelling and the associated presence of cold nearshore 

waters may be responsible for the aridity of the hinterland and the 

development of coastal deserts adjacent to PROS deposits e. g. the Atacama and 

Namib Deserts. 

It appears that a greater degree of phosphatization of sediments occurs 

in areas of very low phosphate concentration in surface waters with a slow 

rate of sedimentation, than in areas of very high phosphate concentration 

characterized by rapid sedimentation (Cook and Mayo, 1977). This emphasizes 

the main difficulty in postulating an estuarine source for the phosphate in 

PHOS deposits i. e. that there is a generally high rate of sedimentation in 

estuaries and in most cases this will produce nothing more than a very 

slightly phosphatic mud or sand. Hence an estuarine source for PHOS is only 
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conceivable in circumstances where the great bulk of the river sediment is 

prevented from reaching the estuary (Cook, 1976). This clearly supports the 

theory of a marine source for the P in PHOS deposits. 

The low sediment supply also assists in the development of a prolific 

biota in the upwelling oceanic waters. The influence of such a biomass upon 

the deposition of PHOS deposits is very great. One of the primary controls on 

phosphate solubility may be alkalinity, which is, in part, the result of the 

abundance of organic matter (Cook, 1976). The biota also act as concentrating 

mechanisms for phosphate as the prolific phytoplankton population releases 

phosphate at the sediment/water interface after sinking on death (Howard and 

Hough, 1979). In addition to supplying phosphate, the breakdown of organic 

matter should also lower pH, simultaneously promoting calcite 

undersaturation. 

A number of PHOS deposits are associated with evaporites, a classic 

example being the Phosphoria Formation (McKelvey et al, 1959). Hite (1976) 

suggested that this is a direct association, with phosphate being 

precipitated as a result of interaction of P-rich continental brines with 

cold ocean waters. It has also been suggested that if periods of global 

aridity have occurred (due to broadening of trade wind belt) then they may 

have promoted periods of phosphogenesis. However Cook and McElhinny (1979) 

considered the association between PHOS and evaporites to be purely a plate 

tectonic one. They claimed that evaporites are the result of two processes; 

the movement of an area to a low latitude location and the initiation of 

rifting which may form a salt basin. They proposed that whether phosphate was 

synchronous with, immediately followed, or occurred much later than evaporite 

deposition was dependent primarily upon plate movements. 

At the other extreme it has also been proposed that there is an 

association between PHOS deposits and glaciation. Data presented by Sheldon 

(1980,1981) and Sheldon and Burnett (198ta and b) show one correlation 
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between periods of glaciation and the distribution of west coast type 

phosphorites and another correlation between periods of no glaciation and a 

predominance of equatorial phosphorites. Cook and McElhinny (1979) considered 

that glacial periods may have been an important influence on phosphate 

deposition due to an intensification of upwelling caused by a greater 

temperature differential (Gardner, 1973) during such times. The deep ocean 

waters may also have had a greater concentration because of their lower 

temperatures during glacial periods. They also suggested that the onset of 

glaciation may have initiated oceanic overturn. On the other hand the major 

periods of phosphogenesis in the Mesozoic and early Cenozoic are totally 

devoid of any association with glacial episodes (Cook and McElhinny, 1979). 

Also it has been shown (Burnett, 1977) that Pleistocene phosphate off Peru 

and southern Chile have radiometric ages corresponding to interglacial 

periods when oceans were warmer, sea level higher and there was mechanical 

upgrading of PHOS deposits. 

So phosphorites are thought to form in zones of upwelling in warm, arid 

climates for a number of reasons. Firstly the only efficient ways of removing 

p from sea water are biological or by adsorption to clays and/or oxides. 

Phosphorites rarely have evidence of clays or oxides (except phosphatic iron 

formations) but much evidence of associated organic matter. Secondly deep 

ocean water ()10Om) is essential for PHOS development. If the use of surface 

water was to be invoked vast volumes would be necessary (perhaps by a factor 

of 100 times that postulated for deep waters) and there is no way of 

stripping even lppb from it. Thirdly since a biological mechanism for 

phosphate concentration seems to be essential, the fixation process must 

occur within the photic zone, the only area other than black smoker vents, 

where primary production of phosphate occurs (R. Miller, pers. comm. ). 

Not all upwelling is wind-driven. Some may be topographically-induced 

(as any sea floor obstruction in the path of a current may cause it to rise), 
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although this may also be augmented by winds (Blanton et al, 1981). However 

most upwelling is wind-driven, the most effective being the Westerlies and 

Trades either side of the equator. A concentration of PHOS deposits in these 

zones would be expected and is observed today. PHOS deposit formation is most 

abundant in low-latitude locations with a preference for subequatorial (10° - 

200) locations rather than equatorial (01 - 10°) sites (Cook and McElhinny, 

1979) although this is not so evident in the results given here (Chapter six, 

section 6.5.3). Cook and McElhinny (1979) also described a bimodal 

distribution with modes at 100 to 40°, particularly from major deposits in 

the Jurassic, Cambrian and, to a lesser degree, the Permian. They explained 

intermediate latitude PHOS deposits (>40111) as being formed in response to 

dynamic upwelling as currents were forced over topographic high. The bimodal 

distribution is not clear in these results, perhaps because the sample size 

was too small, but the peak around 25° to 40° is clear. This is probably due 

to the upwelling caused by the Westerlies in these latitude bands. 

It is evident that for most PHOS deposits to form a coastal portion of a 

continent must drift into a low latitude location. However this is no 

guarantee that strong upwelling will be produced as the continent-ocean 

figuration is also of great importance. According to Cook and McElhinny 

(1979) a narrow east-west seaway in an arid climatic zone at low latitude 

(e. g. the Tethyan seaway) would probably produce PHOS deposits in response to 

strong dynamic upwelling caused by the strong westerly-directed flow through 

it. PHOS deposit development may also occur in broad north-south seaways in 

response to oceanic upwelling on the east side of the ocean. 

In conclusion the distribution of PHOS deposits may be explained in 

terms of being climatically controlled in that they are deposited in response 

to upwelling, usually related to the Trade and Westerlies wind belts on 

either side of the equator. On a smaller scale, a warm arid climate is 
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preferred as such conditions promote high productivity, insignficant 

continental run-off and low sediment supply to the sea. 

Conclusion. 

It has been shown that the separation and concentration of elements in 

the surface cycle is due, in part, to weathering and diagenetic processes 

e. g. the massive differentiation of many primary rock types into residual and 

solution products in lateritic weathering. Hence the role of chemical 

weathering in the breakdown of the Earth's crust is of great importance to 

the development of many mineral deposit types. The concentration of the 

elements released by such weathering processes into economic accumulations 

is largely dependent upon the involvement of the biomass in weathering and 

diagenesis. The influence of microbiological factors lies mainly in 

controlling the input of anions (e. g. HCO3-, HS-, PO4'-, organic acid anions) 

into soil or sediment systems. 

The results show that the majority of mineral types included in this 

study have an apparent latitudinal control upon their formation, with a 

preference for low- and mid- latitudes. However the range of latitude over 

which examples occur varies between mineral deposit types. For example the 

distributions of the LSBM, OOFE, SHBM, SDEX, SSUV, PLDI and PLSN deposits 

show a peak in the equatorial rainfall belt whereas the SSCU, PLAU, PLOT, 

PLOX, MNFM and PHOS deposits are apparently suppressed in numbers in this 

region. However the OOFE, SSW, PLAU, PLDI, MNFM and PHOS deposits all show 

peaks in distribution in the warm temperate rainfall belt (about 40-55° north 

and south of the equator). Generally all deposit groups show a marked 

suppression in number above 500 latitude and in a number of cases no examples 

are found in higher latitudes. This suggests that chemical weathering (which 

decreases in intensity under cooler climatic conditions) does indeed play an 
important role in determining whether or not mineral deposits can develop. 
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However climate is only one of a number of possible enhancements that 

must occur for mineral deposits to form. Amongst these other coincidences are 

a source for the metals and palaeogeographic configurations (the latter 

favourably influence atmospheric and oceanic circulation patterns - see 

Chapter Four, section 4.5.2.2) as well as climatic conditions and weathering 

characteristics as a consequence of these patterns (see Chapter Eight, 

section 8.1). Each of these three aspects must be optimum for a deposit to 

form. 

The formation of mineral deposits is therefore reliant upon the 

coincidence of several factors, one of which is climate. Nonetheless the 

influence of climate is sufficiently great to be reflected in the palaeo- 

distributions of deposits. For example some deposit types (e. g. OOFE and 

SSUV) require a high precipitation rate for their development. It promotes 

the release and transport of Fe in the first instance and provides the 

depositional environment in the second. Such a dependence is therefore 

reflected in the distribution of such deposits, a large number of which occur 

in the equatorial and temperate rainfall belts. 
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CHAPTER NINE 

TEST CASES 

The palaeolatitudinal distributions of some types of volcanogenic mineral 

deposits were determined in an effort to ascertain whether all mineral deposits 

show a latitudinal control upon their formation, regardless of origin. The 

results for the volcanogenic deposits may test the reliability of the data 

collection and processing as the same methods were used as. for the sediment- 

hosted deposits. 

Two types of volcanogenic mineral deposits were chosen as test subjects 

for this research as there is no obvious reason why their formation should be 

latitudinally/climatically controlled; porphyry copper (PORCU) and epithermal 

gold (EPIAU) deposits. A considerable amount of literature is also available 

for these deposit types so data collection was easier. Finally many of the 

examples are dated as Mesozoic and Cenozoic so the palaeomagnetic data from 

which the palaeolatitudes were determined should be more reliable than if the 

deposits were Palaeozoic in age. - 

9.1 Methods. 

The same procedure as described in Chapter Five (Methods) for sediment- 

hosted mineral deposits was used to determine the palaeolatitudinal 

distribution of the PORCU and EPIAU mineral deposit examples. 



373 

9.2. Results. 

Porphyry copper deposits show a range of distribution from 0° to 85° north 

and south of the palaeoequator, the majority plotting in the northern 

hemisphere as shown by the mean and median (Table 9.1). This is a reflection of 

a bias in the collection of data from a limited number of areas i. e. mainly 

USA, Canada and to a lesser extent Queensland, Australia. The majority of 

deposits occur in the mid to high latitudes i. e. 300 to 80° as shown in Figure 

9.1. The plot of palaeolatitudes from the minimum ages of the deposits shows 

65% in this latitude range with 66% of examples in the maximum-age derived 

plot. In both minimum and maximum histograms there is also a peak in the 

equatorial humid zone i. e. 5°N to 10°S (24% of examples in both diagrams). 

However there is an apparent lack of deposits in the hot, arid climatic zones 

between 10° and 30° north and south of the palaeoequator. 

Table 9.1: Mean. Median and Standard Deviation for PORCU and EPIAU Deposits. 

MIN DEPOSIT NO. OF MEAN MEDIAN STANDARD 1COEFFICIENT 
TYPE (EXAMPLES (degrees) I (degrees) DEVIATION IOF VARIATIONI 

i 90°N-90°S I 
IIIIIII 

PORCU MIN 1 168 1 21.6 37.8 1 40.8 I 36.6 I 
I MAX 1 168 1 18.0 36.6 1 43.2 1 40.0 1 
IiIIIII 

t 
EPIAU MIN I 59 1 18.9 28.7 1 27.0 1 24.8 1 

MAX I 59 21.4 1 33.5 28.6 1 25.7 1 
IiII 

(All latitudes are in the northern hemisphere). 

The palaeolatitudinal range of EPIAU deposits is 0° to 65° with the 

majority in mid latitudes i. e. 30° to 60° (minimum-age derived plot - 58%; 

maximum-age derived plot - 58%). The majority of deposits plot in the northern 

hemisphere as shown by the mean and median in Table 9.1 which again reflects 

the limited number of areas from which the examples were collected. Most 



Figure 9.1: Porphyry Copper Deposits 

Minimum Age Plot 

a- Malaysia & Phillipines (50) 
Queensland, Australia (200,300) 

b- Alaska, USA (350) 
Queensland, Australia (250) 
Peru (50) 

c- Peru (0) 
Sulawesi, Indonesia (50) 

d- New Brunswick & Quebec, Can(350) 
Peru 

e- New Brunswick, Canada 
Newfoundland, Canada 
Chile & Peru 

f- Argentina 
Chile 
Kazakhstan, USSR 

g- Idaho, USA 
Argentina 
Chile 
Papua New Guinea 
Kazakhstan, USSR 

h- Arizona, USA 
B. C., Canada 
Mexico 
New Mexico & Texas, USA 

i- Alaska, USA 
Arizona, USA 
B. C., Canada 

j-B. C., Canada 
Maine, USA 
Nevada, USA 
Queensland, Australia 
Utah, USA 
Washington, USA 

k- Alaska, USA 
Montana, USA 
Queensland, Australia 

1- Alaska, USA 
B. C., Canada 
Vancouver I., Canada 
Washington, USA 

m- Alaska, USA 
B. C., Canada 
Queensland, Australia 

o- Alaska, USA 
Queensland, Australia 
Vancouver I., Canada 

p- Alaska, USA 
Yukon, Canada 

q- Alaska, USA 

(50) 
(350) 
(350) 

(50) 
(0) 

(50) 
(300) 
(200) 

(0) 
(0) 

(50) 
(300) 

(50,130) 
(200) 

(50) 
(50) 

(200) 
(50) 

(200) 
(200) 
(450) 
(100) 
(100) 

(50) 
(0) 
(0) 

(50) 
(400) 

(0) 
(50,130) 

(50) 
(50) 

(0) 
(50,100) 

(130) 
(0) 

(130) 
(130) 

(50,100) 
(50) 

(50,100) 
(100) 

Maximum Age Plot 

A- Malaysia & Phillipines (50) 
Queensland, Australia (200,300) 

B- Alaska, USA (350) 
Queensland, Australia 
Peru 

C- Peru 
Sulawesi, Indonesia 

D- Quebec, Canada 
Peru 

E- New Brunswick, Canada 
Chile & Peru 

F- Argentina 
Chile 
Kazakhstan, USSR 

G- Idaho, USA 
Argentina & Chile 
Papua New Guinea 
Kazakhstan, USSR 

H- Alaska, USA 
Arizona, USA 
B. C., Canada 
Mexico, 
New Brunswick, Canada 
Newfoundland, Canada 
New Mexico, USA 
Texas, USA 

I- Arizona, USA 
B. C., Canada 

J-B. C., Canada 
Maine, USA 
Nevada, USA 
Utah, USA 
Washington, USA 

K- Montana, USA 
Queensland, Australia 
Washington, USA 

L- Alaska, USA 
B. C., Canada 
Vancouver I., Canada 
Washington. USA 

(250) 
(50) 
(0) 

(50) 
(350) 

(50) 
(350) 

(50) 
(01 

(50) 
(300) 
(200) 

(0); 
(50) 

(300) 
(250) 

(50.130) 
(2(K)) 
(50) 

(400) 
(400) 

(50) 
(50) 
(50) 

(200) 
(200) 
(450) 
(10t3) 
tW) 

( 0) 
(50) 

( 4tK')) 
(50) 

(0) 
(50,130) 

(50) 
(50) 

M-B. C., Canada (50,100) 
Queensland, Australia (130) 

N- Alaska, USA (50,130) 
Queensland, Australia (130) 
Vancouver I., Canada (130) 

0- Alaska, USA (50,100,130) 
Yukon, Canada (50) 

P- Alaska, USA (50,100) 
Q- Alaska, USA (100) 
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examples were collected from the USA and Canada with such of the remainder from 

New South Wales and Queensland, Australia. Peaks in the distributions (Figure 

9.2) occur in warm, temperate rainfall belt and all but one of the examples 

used occur in latitudes less than 5541 north and south of the palaeoequator. 

There is an apparent lack of deposits in the equatorial zone from 10° north to 

10° south in both the minimum and maximum histograms (Figure 9.2). 

The palaeolatitudinal distributions of the PORCU and EPIAU deposits do not 

show an obvious skewness with the "tail" of the distributions towards either 

low or high latitudes. For PORCU deposits the standard deviation (s) is as high 

as for the PLAU deposits i. e. the largest 's' value determined of all the 

sediment-hosted deposit types. However that for EPIAU deposits is very similar 

to that of SSUV and other placer deposit types i. e. smaller 's' values than for 

the PORCU deposits. The Pearson Coefficient of Variation test which shows the 

relative variabilities of distributions indicates that the distribution of 

PORCU deposits shows the average variation of sediment-hosted deposits i. e. 

about that of PLDI deposits. However EPIAU deposit distribution shows a lower 

variability similar to that of SSUV, SDEX, MNFM and LATO deposits. Once again 

this may reflect the limited sampling of EPIAU deposits from few areas and a 

narrow age range. 

2.3 Porphyry Copper (PORCU) Deposits. 

PORCU deposits are closely associated with intrusions and usually show 

extensive hydrothermal argillic, propylitic, phyllic and potassic alteration 

aureoles (see Figure 9.3). The copper  ineralisation occurs commonly in the 

latter two zones and may be associated with Mo or Au. Kesler et al (1975) 

proposed that two types of PORCU deposit occur; continental and island-arc 

types. The former variety is characterized by Cu and Mo mineralisation 

associated with intermediate to acidic stocks in belts of volcanic and plutonic 



377 

cý 
` 
0 
0 
a, 
EN 

L 

Cý 

"- v 
v 
ý 
v L 

U 

v 

U 

U 

cti 

U 

U 
4-J 0 ;4 

f 
ý 

�-4 
a. 
Fý 
0 
ý 

s. 
v 
a 
a 
0 
U 

G 
9, O 
1+ . rl 

.n ro " a sý.. ý+ vri 
o .J 

aý a 
ý4 ro a w Gq 

"ý .a0 00 [+r 

0 41 - 

co^ 
ýN rn 

cn\ 

I 
C. C ro c 

a. "ý "ý o 
, tA V 

0bom 
v ati Nua, Na 

c 
ýv oü 

"- ý, uýa ,ý 
V1 

ýC 
>, _. v ", 4 w 

C -ý o°a, I 

ý-a fl- U) YM -*- d 
11I 

(. c. 



378 

rocks (Stringham, 1966). It is thought that the emplacements of the intrusive 

hosts, copper mineralisation and alteration are almost contemporaneous 

occurring at depths of a few kilometres (Lowell and Guilbert, 1970). The 

island-arc type of PORCU deposit is usually associated with subvolcanic, 

intermediate composition intrusions e. g. diorite, dacite and andesite porphyry 

within calc-alkaline volcanic suites (Bryner, 1968). 

Both the continental and island-arc varieties are usually found in calc- 

alkaline igneous belts in seismically active areas along Benioff zones, some 

200km. behind subduction zones (Sillitoe, 1972; Dummett, 1978). The exceptions 

being those PORCU deposits of southwest USA which appear not to show this 

characteristic association with subduction (Lowell, 1974; Noble, 1974). 

The Influence of Climate on PORCU Distribution. 

Climate plays an important role in the preservation and exposure of PORCU 

deposits. For example the high level PORCU deposits in active mountain forming 

regions such as Iran and the Andes are thought to be preserved by the arid 

climate (Jacobsen, 1975). In addition Mitchell and Garson (1972) suggested that 

high level PORCU deposits in the island-arc region of the west Pacific have 

been removed by erosion in areas where older volcanogenic deposits occur. Noble 

(1974) has shown that erosion accounts for the distribution of PORCUs in the 

southwest USA. It should also be noted that copper deposits in high rainfall 

regions e. g. Phillipines, New Guinea are usually less than 16  . y. old which 

suggests more rapid exposure in these regions and illustrates that effect of 

climate on present distribution. 

The dominant influence on the formation of PORCU deposits is generally 

thought to be the position of presently active and palaeo- Benioff zones. But 

the distribution of PORCUs shown here (Figure 9.1) suggests that they did not 

form in the arid latitudinal belts. However the lack of examples in these areas 
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is probably due to a corresponding lack of land mass in these zones at the time 

of PORCU formation. It must be noted that some of the largest PORCU deposits 

known are located in particularly arid regions e. g. the Chuquicamata and El 

Teniente deposits of Chile. Hence the results given here suggest that climate 

did not influence PORCU formation. 

9.4 Epithermal Gold (EPIAU) Deposits. 

Two main types of epithermal volcanic-hosted precious metal deposits which 

form at low to moderate temperatures in near surface environments can be 

distinguished; the acid-sulphate type (e. g. Goldfield, Nevada) and the 

adularia-sericite type (e. g. Round Mountain, Nevada). The latter are 

considerably more abundant than the former (Heald et al, 198? ). Detailed 

descriptions of the characteristics of both types can be found in Hayba et al 

(1985) and Heald et al (1987). Only a brief review is given here. 

A third type of EPIAU deposit characterized by quartz-fluorite-carbonate- 

adularia-roscoelite alteration with Au commonly found as tellurides has been 

described (Bonham and Giles, 1983). These major telluride deposits (e. g. 

Cripple Creek, Colorado) are genetically related to alkalic igneous rocks, are 

low in sulphur and their unique mineral assemblage suggests that they 

constitute a distinct class of deposits. Hence examples of this type have not 

been included in this study. 

The Acid-Sulphate-Type EPIAU Deposits. 

These deposits are also referred to as high sulphur types (Bonham Jr., 

1986). They are found associated with the margins of calderas, those in ring- 

fracture volcanic domes in particular (e. g. Summitville and Goldfield, Nevada) 

and this appears to be a genetic factor (Heald et al, 1987). The primary host 

rock is almost exclusively rhyodacite, commonly porphyritic (Ashley, 1982) and 
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the ages of host and ore are very similar. Acid-sulphate type EPIAU deposits 

are characterized by argillic alteration and the mineralising fluids are 

thought to have been dominantly meteoric, possibly with a significant magmatic 

component, at temperatures of 200° to 300°C (Hayba et al, 1985). The salinity 

of these fluids is of greater variability than the mineralising fluids of the 

adularia-sericite type deposits, ranging from 1 to 24 wt. % NaCl e. g. 7 to 21 

wt. % at Summitville and 5 to 18 wt. % NaCl at Goldfield (Bruha and Noble, 1983). 

Acid-sulphate type EPIAU deposits form in the upper core of volcanic domes 

which are flooded by meteoric waters as they cool (see Figure 9.4A). The 

mineralising fluids are thought to have evolved from the interaction of 

meteoric waters with magmatic volatiles derived from the source magma of the 

dome. The less common occurrence of these deposits rather than the adularia- 

sericite type EPIAU deposits is probably related to genetic environment. They 

appear to require a physical proximity to the heat source, a restriction of the 

host rock composition to rhyodacite and a certain composition of magma source 

i. e. sufficiently oxidized to produce SO2 as the magma degasses (Heald et al, 

1987). 

The Adularia-Sericite-Tvue EPIAU Deposits. 

These deposits are also referred to as low sulphur types (Bonham Jr., 

1986). They commonly occur along the margins of calderas (Hayba et al, 1985) 

and are hosted by silicic to intermediate volcanics i. e. andesitic to rhyolitic 

composition. These deposits are characterized by sericitic to argillic 

alteration and there are distinct differences in ages of the host rock and the 

ore i. e. >1 m. y. The  ineralising fluids are thought to have been dominantly 

meteoric in nature, between 20010 and 300°C (Hayba 1983) with variable salinity 

e. g. Eureka, Colorado 0 to 3.6 wt. % NaCl; Creede, Colorado 5 to 12 wt. % NaCl 

(Woods et al, 1982). 
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Figure 9.4. Idealized cross-sections of two types of EPIAU 
deposit genesis in a geothermal system. A) Acid- 
sulphate Type B) Adul ari a-se ri ci to Type. 
(Modified after Henley and Ellis, 19t? 'l; Heald et aI, 
1987, Figure 4). 
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Adularia-sericite type EPIAU deposits appear to form in systems where 

surficial ground waters mix with deeper, heated. nearly neutral pH chloride 

brines in a lateral flow regime (see Figure 9.4B). Several different fluids may 

be involved in ore deposition e. g. at Creede, Colorado three fluids have been 

identified (Bethke and Rye, 1979). The characteristics of these fluids may have 

changed as both boiling and mixing have been documented (e. g. Hayba. 1984). The 

extensive meteoric lateral flow regime in which these deposits form may be high 

above or off-set from a heat source at depth. A greater number of this type as 

opposed to the acid-sulphate type of deposits exists because the heat source 

can be remote and the host rock may have a wider range in composition (Heald et 

al, 1987). 

The Influence of Climate on EPIAU Distribution. 

Heald et al (1987) stated that older EPIAU deposits are less common than 

Tertiary examples probably because of destruction by erosion and metamorphic 

overprinting. 

Berger and Eimon (1982) proposed three end-member models which explain the 

range of observed characteristics of EPIAU deposits; the hot-springs 

deposition, the stacked-cell convection and the closed-cell convection models. 

In each case one of the geological factors cited as being essential for EPIAU 

formation was the relatively unrestricted flow of meteoric water into an area 

of continuous high heat flow. Meteoric waters as the dominant source for the 

hydrothermal mineralising fluids have also been implied by the low 010 values 

for Tonopah and Bodie deposits (Sheppard, 1977). Also 0-isotope studies on the 

Comstock Lode (Taylor, 1973; O'Neil and Silberman, 1974) indicate that low- 

salinity meteoric solutions played a dominant role in the transportation and 

deposition of minerals. Giles and Nelson (1982) stated that economic 

concentrations of Au require initial high gold solubility, unrestricted 

recharge of meteoric water into a region of steady. high heat flow. They also 
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considered that among primary processes of ore deposition is local ground water 

mixing. The importance of meteoric waters in formation may be reflected in the 

palaeolatitudinal distribution of EPIAU deposits i. e. a large proportion of 

examples occurs in warm temperate zones. However there are only a few examples 

in equatorial latitudes and a number of deposits occur in the arid latitude 

belt. So the distribution of EPIAUs given here does not suggest a strong 

climatic influence on their formation. 

Conclusion. 

The worldwide distribution of EPIAUs is similar to that of PORCUs and in a 

number of cases EPIAUs occur in close proximity to PORCUs e. g. Ely and Bingham, 

western USA, Taiwan and Mexico. However in other regions there is an absence of 

PORCU deposits e. g. Sumatra. Hutchinson (1983) considered this discrepancy to 

be related to erosion - deeper erosion than that in the vicinity of some EPIAUs 

is necessary to expose the PORCU deposits beneath. An economic factor should 

also be considered here as it influences the distribution of these deposits. In 

Sumatra a PORCU deposit with no gold is unlikely to be economic. Hence the 

apparent paucity of PORCUs in this region is due to the fact that such gold- 

poor deposits have not been evaluated and mined. Thompson et al (1986) also 

highlighted the relationship between PORCU and EPIAU deposits. They concluded 

that formation of epithermal gold-silver mineralisation e. g. the Temora 

deposit. within the high sulphur environments was related to the upper levels 

of PORCU systems in the Lachlan fold belt during the Middle Silurian. Heald et 

al (198? ) considered that certain characteristics of acid-sulphate type 

deposits suggest that these deposits are more likely to be associated with 

PORCU systems than the adularia-sericite type. Such characteristics are the 

alteration and mineral assemblages, high copper contents and associated 
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porphyritic rocks. However Henley and Ellis (1983) inferred that EPIAU ores in 

a calc-alkaline stratovolcano are more likely to be associated with porphyry 

ores at depth than are ores in silicic volcanic terrain. 

If there is a genetic relationship between the two types then the 

differences in their palaeolatitudinal distributions as shown here need some 

explanation. There is only one EPIAU deposit above 55°N (Cinola, Canada; Figure 

9.2) whereas PORCU deposits occur up to 85°N (see Figure 9.1). However many of 

the PORCUs are older than EPIAU examples so EPIAU deposits may have been 

present when the continents were at lower latitudes and have since been eroded 

from the geological record. 

To conclude a comparison of the palaeolatitudinal distributions of PORCU 

and EPIAU deposits does not suggest that the two deposit types are genetically 

related. However the differences in their distributions may be explained as 

above. It is clear from a study of the models of PORCU genesis that one of the 

main controls upon their distribution may be the position of the palaeo- or 

present Benioff zone. The apparent lack of PORCUs in arid climatic zones  ay 

reflect the distribution of land mass during their development as the supergene 

process which occurs in arid regions aids PORCU development producing some of 

the richest and most economic deposits e. g. Chuquicamata deposit, Chile. As the 

distribution of neither PORCU nor EPIAU deposit types illustrates a strong 

climatic control their usefulness as "Test Cases" for this research is 

confirmed. 
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CHAPTER TEN 

CONCLUSIONS AND COMMENTS 

A number of basic assumptions concerning the Earth and its dynamics were 

made at the onset of the research and any subsequent conclusions were drawn 

in the knowledge of the caveats that follow. Firstly it was argued that the 

time-averaged magnetic field of the Earth had acted as a geocentric axial 

dipole throughout the Phanerozoic. This model is probably invalid during 

polarity transitions as the dipole component diminishes during such times. 

However these intervals have been assumed to have been sufficiently rare and 

short-lived as not to affect the results and conclusions. Other assumptions 

involved the constancy of the Earth's obliquity and its speed of rotation. It 

has been assumed that differences in the Earth's rotational speed between the 

present and the Ordovician/Silurian were not sufficient to require the 

abandonment of the six-cell zonal model of circulation as described in 

chapter Four, section 4.4. Hence neither aspect has affected atmospheric and 

oceanic circulation patterns (and thence climatic regimes) too drastically 

despite the fact that they must have altered slightly during the Phanerozoic. 

The relationship between mineral deposit types and climatic conditions 

that prevailed during the period of their formation, as inferred from 

palaeolatitude, is also based upon a number of assumptions. Firstly any 

possible differences in the equator-to-pole temperature gradient since the 

Ordovician/Silurian would not have been sufficient to invalidate the use of 

principles of modern atmospheric circulation. Secondly the heat budget of the 

Earth and its distribution through circulation patterns have been assumed to 

be approximately constant throughout the past 550 m. y. However it does not 
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necessarily follow that climate zones (as confined to particular latitude 

bands) have also remained constant during that period. Nonetheless it still 

seems probable that climatic latitudinal zoning existed although their 

precise latitudinal extent may have varied. 

It is concluded that the Uniformitarian approach to the problem of 

palaeoclimatology is valid in that some authors have successfully predicted 

regions of upwelling (Parrish and Curtis, 1982); the distribution of 

evaporites and coals (Parrish et al, 1982b) and petroleum source rocks 

(Barron, 1985) using this method. These successes obviously lend credence to 

the conclusion that uniformitarianism with regard to palaeoclimatology is, in 

part, acceptable. The use of geological data however is limited as they are 

frequently insufficient to interpret climatic conditions fully. This shortage 

may result from poor preservation, alteration or dissolution of materials or 

it may arise from the fact that many climatic parameters (e. g. atmospheric 

pressure) leave no discernible mark on the rocks. Once the assumptions 

concerning the constancy of the Earth's atmospheric circulation model 

throughout the Phanerozoic have been accepted the relationship between 

palaeolatitude and palaeoclimatology has also been established. 

Within this study the site palaeolatitude is of major concern as it 

largely dominates the climate, sedimentation and erosion. It must therefore 

affect the distribution of sediment-hosted mineral deposits and any errors in 

the palaeomagnetic studies will result in errors for the palaeolatitudinal 

determinations. The palaeomagnetic data selected by Tarling were subjected to 

the procedures outlined in Chapter Two with the knowledge of the potential 

errors inherent in these studies as described (Chapter Seven). It is 

understood that the reliability of the palaeogeographic data decreases with 

increasing age i. e. the Palaeozoic reconstructions are not as reliable as 
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those for the Mesozoic and Cenozoic. However in light of the other 

assumptions that have had to be made, it was deemed that the level of 

reliability was sufficiently high to base research on palaeolatitudes 

determined from the palaeogeographic reconstructions. The two sets of 

palaeolatitudes used in this study (i. e. those derived from Tarling and BP 

palaeogeographies) were generally in close agreement which suggests that a 

certain level of reliability in palaeomagnetic data selection, processing and 

interpretation has been achieved. 

The results given in Chapter Six show there is a clear palaeolatitudinal 

control upon many types of sediment-hosted mineral deposit. However the 

palaeolatitudinal range of the various deposit types varies considerably. 

Those deposit groups which show a concentration (at least in part) in the 

equatorial rainfall belt include LSBM, OOFE, SHBM, SDEX, SSW, PLDI and PLBN 

deposits. Conversely the SSCU, FLAU, PLOT, PLOX, MNFM and PHOS groups are 

suppressed in numbers in this region. The warm arid climatic zone ranging 

from 15° to 40° shows a concentration of SSCU, PLOT, MNFM and PHOS deposits 

but very few examples of SSPB, SHBM, SSW, PLSN and PLOX groups. Finally 

OOFE, SBUV, PLAU, PLDI, MNFM and PHOS deposits all show peaks in their 

distribution in the warm, temperate rainfall belt (about 40° to 55° north and 

south of the equator). 

Those deposits which have a preference for the low latitude zone in 

particular are the stratiform, sediment-hosted (Cu, Pb, Zn) types 

representative of the LSBM, SSCU, SSPB, SHBM and SDEX groups. The SBW group 

shows a predeliction for the lower-mid latitudes in addition to the 

equatorial belt. 
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One trend common to all the mineral deposit types examined here is a 

limit to the lower and mid latitudes i. e. very few deposits occur in 

latitudes higher than 600 north and south of the equator. This suggests that 

the higher temperatures, greater degree of chemical weathering and 

availability of organic matter in lower as opposed to higher latitudes favour 

mineral accumulation and deposit development. 

It is evident that the rate of mineral formation within certain 

latitudes is not directly related to the percentage of continental mass in 

the same latitude zone (see Tables 6.3 and 6.4). However a comparison of 

these relative distributions in the northern and southern hemispheres for 

each geological period show that they are very similar. Therefore the 

distributions of mineral deposits and continental mass within each hemisphere 

are uneven. These findings further substantiate the case for a 

palaeolatitudinal control upon the formation of some mineral deposit types. 

Any conclusions made concerning the following mineral deposit groups 

must be notably tentative as the sample number is small (i. e. n( 30; OOFE, 

SSPB, SSCU, SHBM, PLSN, PLOX, PLOT and MNFM). However the general trends 

shown by their palaeolatitudinal distribution may still be of interest. 

The separation of primary and secondary mineral deposits is very 

difficult. A primary sediment-hosted deposit is the product of sedimentary 

processes at, near, or above the sediment-water interface. The deposits are 

themselves sediments so they can show all sedimentary features. The main 

controls on this type of deposit are the physical and chemical conditions of 

sedimentation - hence palaeoclimatology and palaeogeography may be of 

particular interest. Secondary sediment-hosted mineral deposits are those 

which are not obviously a sediment nor have they a clear igneous source for 
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the mineralisation. They appear to be more closely controlled by geotectonic 

processes, particularly those which affect the temperature and routes of 

migrating fluids. So geotectonics and environment may be particularly 

important constraints on secondary ore formation. Hence the development of 

the two main varieties of mineral deposits (i. e. syngenetic/primary and 

epigenetic/secondary) may be influenced by climate in different ways. With 

regard to the former, syn-ore climate appears to be of greatest importance, 

whereas both syn-ore and pre-ore climates would be influential in the 

deposition of epigenetic deposits. In the latter case, the products of 

climate in sediments may control later processes (e. g. permeability and zones 

of reduction produced by the presence of organic matter). 

In the introduction it was proposed that the classification of mineral 

deposits might be elucidated by an examination of the different 

palaeolatitudinal ranges of the distributions of different deposit groups - 

if such a discrepancy were observed. It can now be concluded that the 

classification, as given in Chapter Three, was fundamentally important to the 

discussion as different groups do show different palaeolatitudinal ranges. 

However the more detailed aspects of the classification which were outlined 

(such as the various types of PHOS deposits) were not important as these 

individual groups could not be segregated within the results. With regard to 

the sediment-hosted stratiform (Cu, Pb, Zn) deposits it was prudent to 

classify them as separate deposit types as supported by the results. They do 

all show a low latitude control but Pb-Zn rich deposits are concentrated in 

rainfall belts (e. g. LSBM, SHBM, SDEX) whilst Cu-rich types (e. g. SSCU) show 

a concentration in the more arid zones. These results suggest that a genetic 

constraint exists upon the distribution of these deposit types. It may be 

that the Pb-Zn types preferentially occur where microbiological activity is 

at an optimum and the clay mineral content of the host rocks is high. In 
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contrast the development of Cu-rich deposit may be more reliant upon the 

presence of oxides and evaporites. There are obvious exploration implications 

of these conclusions. For example SSCU deposits would be more likely to be 

found in lithologies indicative of warm arid climatic conditions than those 

deposited in a very wet environment. Hence it would be prudent to determine 

the palaeolatitude of the area which is to be explored at the time when the 

mineralisation occurred in order to ascertain the likelihood of finding a 

deposit. 

In Chapter Eight an attempt was made to show the potential importance of 

climate on mineral deposit development. Climate affects the degree of 

weathering, the amount of available organic matter for reduction, evaporites 

for a sulphur source and dictates the volume and chemistry of potential 

metal-bearing transporting fluids. However climate is only one of many 

possible enhancements (i. e. initial metal source, metal enrichment, suitable 

depositional environment) that must occur in order to produce the conditions 

necessary for ore formation. Hence if the initial solution was not 

sufficiently metal-rich or the depositional environment was not sufficiently 

rich in organic matter, then no metal accumulations could occur. 

In particular the benefits of the prevailing climatic conditions in low 

to mid latitudes are of importance to ore formation. Arid zones are 

characterized by the occurrence of evaporites which may provide chloride 

brines for transport of metals by complexing and a sulphur source for 

reduction to sulphide. They also have a low clastic input to depositional 

sites which precludes dilution of the metal supply. The rainfall belts of low 

to mid latitudes assist the development of other deposit types i. e. those 

which require channel sandstones as hosts for mineralisation, a large volume 

of ground water for initial release of metals and their transport to the 
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depositional site and a large amount of organic debris. In both zones 

chemical weathering is dominant over physical weathering which aids the 

release of metals from their source rocks. 

one feature of some mineral deposits is a close association with so- 

called climate-sensitive lithologies. However interpretation of this 

association must be made with some caution. Recent red beds are known to form 

under humid tropical conditions in tectonically unstable regions in addition 

to arid conditions. Also modern evaporites are thought to be primarily found 

in low-latitude, warm climatic zones with evaporation in excess of 

precipitation. However aridity is not necessarily confined to high 

temperature regions, it may also occur under temperate or cool conditions. 

The effect of local palaeogeography in the production of an unexpected 

distribution of such lithologies has been described (Chapter Four, section 

4.5.2.2). From these examples it is apparent that the presence of climate- 

sensitive lithologies in association with mineral deposits does not 

conclusively indicate the climatic conditions at the time of formation. 

However the presence of red beds or evaporites can confirm conditions 

inferred by the palaeolatitudes. 

In Chapter Four (section 4.3) it was mentioned that the latitudinal 

extent of rainfall belts may have varied due to the presence or absence of 

ice sheets on the globe. However this phenomenon is not reflected in the 

results by a reduction in the latitudinal extent of mineral deposits towards 

the equator. An examination of the distribution of five deposit types which 

show a marked palaeolatitudinal control (Figures 6.16 a and b) only reveals a 

reduction in latitudinal extent of examples during the Permo-Triassic period. 

This may reflect the influence of the supercontinent Pangaea upon atmospheric 

and oceanic circulation and hence palaeoclimate (see Chapter Eight, section 
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8.2.2.3). However such a distribution is the opposite to that which would be 

expected i. e. a broadening of the latitude range of warm climates. Gulf 

streams would have carried warm waters to high latitudes on the Tethyan 

margin whilst currents on the western side of the continent would have 

produced the opposite effect. Unfortunately no evidence of such extreme east- 

west climatic asymmetry, which may be produced by such a huge north-south 

land barrier, can be observed in Figures 6.1 a and b or Figures 6.16 a and b. 

The palaeolatitudinal distribution of two volcanic-hosted mineral 

deposit types (i. e. PORCU and EPIAU) were determined to ascertain whether all 

mineral deposits show a latitudinal control upon their formation, regardless 

of origin. The results showed that both distributions did not reflect a bias 

for certain latitudinal belts. Hence it was concluded that climate did not 

greatly influence the development of both PORCUs and EPIAUs. Such a 

conclusion supported the use of these deposit types to test the reliability 

of the data collection and processing methods used for the sediment-hosted 

deposit types. 

Early on in this project an attempt was made to determine the 

palaeolatitudinal distributions of deposits of Proterozoic age i. e. PAPL, 

FEFM, SSCU, SHBM and SHUR deposit types. However the results were too 

inconsistent to have any value to this discussion due to the poor reliability 

and selection of palaeomagnetic data and so they have not been presented 

here. Despite this, future research into the distribution of these types is 

strongly recommended. They may be able to contribute to the discussion on the 

reliability of Proterozoic reconstructions, the quality of the palaeomagnetic 

data and the problem of whether to accept the Uniformitarian Principle or not 

- more specifically, the debate as to the origin of these deposits includes 
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discussion on the possibility of a Proterozoic anoxic/oxic atmosphere at the 

time of formation. 

Many ore deposits are found in regions where microplates dominate such 

as Indonesia and Mexico. This suggests that the high tectonic energy 

conditions of these areas facilitate mineral deposit development. High heat 

flow characteristic of such regions would also assist in the warming of 

metal-bearing solutions. The tectonic environment generally associated with 

mineral deposit formation is one of rifting and transgression over shallow 

continental margins; the first criterion may be provided by microplate 

activity. A greater degree of subduction may also provide the primary release 

of metals for later concentration as deposits. 

one implication of the palaeolatitudinal control on the formation of 

mineral deposits is that it may be used to solve certain geological problems. 

In particular the correct age of mineralisation of a deposit may be discerned 

if a palaeolatitude determined for one age is more appropriate (i. e. within 

the range of the majority of palaeolatitudes for that deposit type) than that 

for another age. However care must be taken to classify the deposit correctly 

and so compare with the relevant palaeolatitudinal distribution. Such an 

application of the theory has been discussed in Chapter Seven, section 7.1.3 

(a) with reference to the dating of LSBM deposits of southeast Missouri. 

Another implication may be in the resolution of palaeogeographic 

reconstruction problems such as the position of Thailand during the Mesozoic. 

However it was not possible to use the palaeolatitudinal control on the 

formation of SDEXs to solve this problem because of lack of data as explained 

in Chapter Seven, section 7.1.3 (a). Such a use of the theory is difficult to 

apply at this stage and may be more successfully applied when the 
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palaeolatitude influence on deposit distribution has been more clearly 

defined . 

One use of the control in the understanding of mineral deposit formation 

can be illustrated with reference to SSCU deposits. One school of thought 

consider these deposits to be mainly syngenetic or diagenetic in origin -a 

hypothesis supported by the results given here. The epigenetic school of 

thought is refuted by the data presented here. 

The significance of these results is that they may assist in the 

evaluation of genetic models of mineral deposit formation and the discovery 

of any genetic relationships between mineral deposit types. In addition such 

palaeolatitudinal controls on the distribution of some mineral deposits may 

be useful in the assessment of potential sites for exploration. 
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Limestone Base Metal Deposits 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

1327 IHallouf Deposit, Djebel, 
I ITunisia 

i 
i 

I 

i 

III 
I PRESENT IA6E MINZ'NIROTATION 
I CO-ORDS I (N. Y. ) I (N. Y. 
III 
11 
1 36.2 9.9 1 
11 
11 
11 

1331 I6ombe Deposit, Benue Trough, I 10.3 10.2 1 
I INigeria II 
IIII 
IIII 
1332 IAkwana Deposit, Benue Trough. i 7.8 9.3 I 
I INigeria II 
I i II 
III1 
1333 lAbakaliki Deposit, I 6.3 8.1 I 
Il Benue Trough, Nigeria II 
I i II 
II1I 
1286 Marion, Kentucky, USA 137.3 -88.1 I 
III 
III 
1287 IRosiclare, Illinois, USA 1 37.5 -88.3 1 
11I 
II1 
1305 IBoccheggiano & 6avorrano 1 43.3 11.1 I 
I Mines, Tuscany, Italy I 
III 
I1II 
1328 IBou Beker-Touissit District, l 34.5 1.8 I 
I Morocco 
III1 
IIII 

III 
IPALAEIB. P. I 

) I-LAT. IPALATI 
III 
II 

11 -5I0 136.21 I 
50 Afr 121.41 22.01 

IIII 
II 

85 - 70 150 Afr I -4.31 -3.81 
1100 Afr 1 -9.41 -4.21 
III 
IIII 

85 - 70 150 Afr 1 -6.71 -6.01 
1100 Afr 1-11.31 -6.31 
1III 
III 

85 - 70 1 50 Afr 1 -8.11 -7.21 
1100 Afr 1-12.21 -7.41 
IIII 
III 

97 - 88 1100 N. AmI 35.41 38.71 
1III 
II1 

97 - 88 1100 N. AmI 35.61 38.91 
1II1 
II1 

5& 200 10 143.31 I 
1200 Eur 1 38.11 27.71 
1II1 
II1I 

5& 200 10 134.51 I 
1200 Afr 126.81 22.01 
1I11 
1111 

1329 IBedianne Deposit. Touissit- 134.7 -2.4 124 & 200 10 134.71 I 
I IBou Beker Area, Morocco 11 1200 Afr 1 28.41 23.51 
IIIIIIII 
II 
1330 IOued Mekta, Touissit- 
I 18ou Beker Area, Morocco 
II 
11 
1312 IChorozow, Poland 
i 
I 

I 

i 

IIIII 
134.5 -1.8 124 & 200 I01 34.51 
11 1200 Afr 128.01 23.11 
II1III 
IIIII 
150.3 18.9 1 213 1200 Eur 146.61 42.21 
IIII1I 
IIIIII 

1306 ISedimochislenitsi Ore Area. 143.0 23.4 1 213 1200 Eur 141.01 35.71 
I IBulgaria lIIIII 
IIIIIIIi 
IiIIIIII 
1307 IChechlo Deposit, Poland 151.3 15.5 1 213 1200 Eur 1 46.71 42.21 
11111111 
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Limestone Base Metal Deposits cont..... 

II 
IA. N01 
II 
II 
I1 

DEPOSIT/MINE NAME 
AND LOCATION 

1308 IWiktor Emanual, Poland 
II 
II 
1309 IZawiercie, Poland 
II 
II 

IIIIII 
I PRESENT fA6E MINZ'NIROTATIONIPALAEIB. P. I 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. IPALATI 
IIIIII 
IIIIII 
150.5 19.3 1 213 1200 Eur 146.91 42.61 
I11III 
iI 
150.7 19.5 I 
II 
II 

II11 
1313 I1rzebionka & Matylda Mines, 150.2 19.3 1 
I Inr. Chrzanow, Austria II 
I1 
II 
1314 IBleiberg-Kreuth Deposit, 
I IGailtalek Alps, Austria 
II 
II 
1315 IMezica Deposit, Northern 
I IKarawankes, Yugoslavia 
II 
II 

II 
II 
1 46.6 13.7 I 
II 
II 
II 
146.5 14.9 I 
II 
II 
II 

213 

213 

231 

231 

1316 IRaibl (Cave del Predil) Dep, I 46.5 13.6 1 
I IUdine, Italy I 
III 
IIII 
1317 IBalafossa Deposit, Belluno 1 46.6 12.7 1 
I Iprovince, Italy 
III 
II 
1318 IPila Deposit, Tribec Mts, 1 48.5 18.6 1 
I ICzechoslovakia 
IIII 
II1 
1319 lArdovo Deposit, Juhoslovenskyl 48.4 20.3 1 
1 IKras Mts, Czechoslovakia II 
II 
iI 
1321 IMaluzina Deposit, Nizke 
I ITatry Mts, Czechoslovakia 
II 
II 
1323 iNW of Polkowice & Lubin, 
I IPoland 
II 
II 
1324 IBolzano Basin, Italy 
II 
II 

231 

231 

238 

238 

II 
II 
148.9 20.0 I 238 
II 
II 

II11 
1200 Eur 146.91 42.61 
1250 CEurl 9.21 I 
IIII 
III1 
1200 Eur 146.61 42.21 
1250 CEurl 8.91 I 
1111 
III 
1250 SEurl 4.21 
1I1 
1I 
111 
1250 CEurl 4.31 
1I1 
I11 
1I1 
1250 SEurl 4.01 
1I 
III 
11I 
1250 SEurl 3.91 
II 
III 

i 
ý 
t 
t 
` 
i 
i 
ý .ý 
i 
i 

IIII 
1200 Eur 1 44.91 40.61 
1250 CEurl 7.11 I 
1111 
II1 
1250 CEurl 7.51 
1II 
1I1 
IiI 
1250 CEurl 7.81 
11I 
111 

IIIII 
151.5 16.2 1286 - 2481250 CEUrl 9.31 
I1 1300 CEurl 5.41 
1IIII 
II1II 
146.6 11.2 1 286 - 2481250 SEUri 3.61 
11 1300 SEUrl -0.41 
11111 



460 

Limestone Base Metal Deposits cont..... 

IIIIII1 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS (N. Y. ) I (N. Y. ) I-LAT. I 
II11II 
IIIIIII 
1325 IBozen-Trient Province, Italyl 46.7 11.31 286 - 2581250 Seurl 3.71 
1II 1300 Seur1 -0.31 
1IIIII 

IIIII 
1290 IPicher, Oklahoma, USA 1 37.0 -94.9 I 320 1300 Lauri -9.51 
IIIIII 

II1III 
1294 10ronogo, Missouri, USA 137.2 -94.5 I 320 1300 Lauri -9.71 
1III1II 
IfIII11 
1292 IBaxter Springs, Kansas, USA 1 37.0 -94.0 1 320 1300 Lauri -0.41 
iIIIIII 

IIIII 
1293 ICranby, Missouri, USA 1 36.9 -94.3 I 320 1300 Lauri -0.31 
IIIIIII 
IIiII1I 
1289 ICoaKnerce, Oklahoma, USA 1 36.9 -94.9 1 320 1300 Lauri 0.01 
IIIIIII 
IIIII11 
1291 16alena, Kansas, USA 137.0 -94.7 1 320 1300 Lauri 0.01 
II1I 1350 Lauri -9.71 
I1IIII1 
111IiII 
1295 IJoplin, Missouri, USA 1 37.1 -94.5 1 320 1300 Lauri 0.01 

I1I 1350 Lauri -9.81 
11iI1I1 
IIIII1 
1297 IPine Point, NWT, Canada 1 60.9-114.2 1 320 - 3101300 Lauri 25.31 

111 1350 Lauri 10.71 
11IIIII 
IIIIIII 
1326 IMirgalimsai Deposit, 144.4 52.2 1 352 1350 Eur 1 -8.91 
I IKazakhstan, USSR III 
1IIiIII 
I1I1I1I 
1296 IMagnet cove Deposit, 1 45.0 -65.0 1 360 - 3201300 Lauri -4.41 

INova Scotia, Canada 11 1350 Laurl-21.71 
III11II 
IIIIIII 
1298 IRobb Lake Deposit, BC, Canadal 56.9-124.8 1 408 - 3601350 Lauri 15.51 
1III1II 
III1i 
1299 I6alena, Illinois, USA 1 42.4 -90.4 I 408 1400 Lauri-26.01 
IIIIIIi 
IiIIIII 
1300 IPlatteville, Wisconsin, USA 142.7 -90.5 1 408 1400 Laurl-25.8I 
IIIIIII 
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Oolitic Ironstone Deposits 

IIIIIII1 
1A. N01 DEPOSIT/MINE NAME I PRESENT 1A6E MINZ'NIROTATIONIPALAEIB. P. I 

I AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. IPALATI 
IIIIIII 
IIIIIII1 
1574 IFisherman's Bay, SA, Australial-33.6 138.0 I1-0I0 1-33.61 I 
IIIIIIII 
III1IIII 
1580 ICucuta Deposit, Colombia l 7.9 -72.5 1 11 -5I017.91 
IIIIIIII 
III1IIII 
1581 ILagunillas Deposit, Venezualal 10.1 -71.3 1 24 - 11 I0 110.11 
IIIIIIII 

IIII1 
1575 IBida District, Middle Niger I 9.1 5.7 I 73 - 65 1 50 Afr I -5.01 -3.91 
I Valley, Nigeria III 

IIIIIII 
IIIIIII1 
1576 ILokoja District, Middle Nigerl 7.2 6.7 1 73 - 65 150 Afr I -7.01 -6.01 
1 IValley, Nigeria IIIII 

IIIII 
IIIIII11 
1577 lIllo District, Middle Niger 111.3 4.2 I 73 - 65 150 Afr I -2.61 -1.31 
I IValley, Nigeria IIII1 
1IIIII1 

II1II1I 
1582 IPaz de Rio Deposit, Colombial 6.2 -72.7 1 42 - 38 150 S. AmI 2.71 7.91 
1IIIIII 

IIIIII I 
1583 ISabanalarga Deposit, Colombial 10.6 -74.9 1 42 - 38 150 S. AmI 7.41 12.71 
1IIIII1 

IIIIII 
1597 IWadi Fatima, Saudi Arabia 1 21.5 39.6 I 54 - 38 1 50 Arabl 3.81 1.51 
IIIIIIiI 

1IIiIII 
1596 ISouth Kelsey, Lines, Englandl 53.5 -0.4 1 131 - 1251100 Eur 137.11 45.41 

11I 1130 Eur 1 48.41 39.41 
I1IIIIII 
Il1IIIII 
1571 ISturminster, Newton, Dorset, I 50.9 -2.3 1 159 - 1561130 Eur 1 45.91 36.81 
I {England IIIIII 
II1II1iI 
II1II11I 
1572 IWestbury, Wiltshire, Englandl 51.3 -2.2 1 159 - 1561130 Eur 146.31 37.21 
IIIiIIII 

IIII1II I 
1573 IRed Down, Highworth, 151.6 -1.7 1 159 - 1561130 Eur 1 46.61 37.51 
1 IWiltshire, England IIIIII 
I_ IIIIIII 
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Oolitic Ironstone Deposits cont...... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IAGE NINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) 1-LAT. IPALATI 
IIII1I1I 
IIIIIIII 
1589 IBoulby, nr. Brotton, i 54.6 -0.9 1206 - 1941200 Eur 146.11 41.01 
1 IYorkshire, England IIIIII 
IIIIIIII 

i i IIIIII 
1590 Mr. Grantham, Lines, Englandl 52.9 -0.6 1206 - 1941200 Eur 144.51 39.11 
1IIII1I{ 
1IIIII1I 
1591 Inr. Banbury, Oxon, England 1 52.1 -1.3 1 206 - 1941200 Eur 143.61 38.01 
1t1IIIII 
1{III1I1 
1592 Mr. Northampton, Northants, 152.2 -0.9 1 181 - 1751200 Eur 143.81 38.31 
I IEngland IIIIII 

t I IIIIII 
IIIIIIII 
1593 ICorby, England 152.5 -0.7 1 181 - 1751200 Eur 1 44.11 38.61 
II 
II 
1595 Inr. Towcester, Northants, 
I lEngland 
II 
II 
1594 Inr. Scunthorpe, Lincs, 
I lEngland 
t i 

i I I I i I 
IIIIII 
152.1 -1.0 1181 - 1751200 Eur 143.71 38.11 
IIIIII 
IIIIII 
IIIIII 
153.6 -0.6 1 206 - 2001200 Eur 145.2 140.01 
I11111 
i I 

IIIi 
1569 IBirmingham Red-Ore District, I 33.5 -86.8 1 
1 IAlabama, USA II 

iI I 
III 

I 
I 

IIII 
III 

420 1400 Laurl-33.1I 
iII 
III 

III 
1570 IBell Island, Conception Bay, 1 47.7 -53.0 1 505 - 4681450 Laurl-47.31 
I INewfoundland, Canada ItI 
IIIIIII 
III{{ 
1584 ISan Bernardo Deposit, 142.4 -6.1 1 468 - 4881450 Seurl-37.01 
I ILeon Province, Spain III 
IIIIIII 
IIIIIIi 
1585 IVivaldi Deposit, 142.5 -6.6 1 468 - 4481450 Seurl-37.11 
I ILeon province, Spain III 
II1IIII 
IIIiIII 
1586 IVivero Deposit, Spain 1 43.6 -7.6 1 468 - 4581450 Seurl-36.41 
i 
i 

i 
i 

II1I{ 

Iiiit 
1588 1Villalba, Lugo Area, Spain 143.3 -7.8 1 468 - 4581450 Seurl-36.71 
III1III 
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Sandstone Copper Deposits 

II 
IA. NO1 DEPOSIT/MINE NAME 
II AND LOCATION 
II 
II 
1185 IPisakeri Mine, Bolivia 
II 

II 
II 
1186 IVeta Verde, Bolivia 
II 
II 
II 
1187 IChacarilla, Bolivia 
II 
II 
II 

IIIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. IPALATI 
IIIIII 
IIII11 
1-17.1 -68.3 I 20 - 10 I0 1-17.11 1 
111 50 S. Ami-20.91-16.01 
IIIII1 
IIIII1 
1-17.4 -68.4 i 20 - 10 I0 1-17.41 I 
1I 150 S. AmI-21.21-16.3I 
1IIIII 
IIIIII 
1-17.5 -68.2 I 20 - 10 I0 1-17.51 I 
Ii 150 S. AmI-21.41-16.51 
IIII1I 
1IIIII 

1188 ICorocoro, Bolivia 1-17.2 -68.5 1 20 - 10 I0 1-17.21 I 
I1iI 150 S. Ain I-21.01-16.11 
IIIIIIII 
IIIIiIII 
1176 ICachoeiras Deposit, Cuanza, I-11.0 14.0 1 90 1100 Afr 1-30.41-26.61 
I IAngola IIIIII 
IIIIIIIi 
IIIIIIII 
1177 IAin-Sefra, Algeria 132.7 -0.6 I 90 1100 Afr 1 15.21 20.71 
1I1IIIII 
IIIIIIII 
1178 IJ. Bou-Kechba Deposit, Algerial 34.0 -2.5 1 90 1100 Afr 1 17.11 22.51 
I I i I I-III 
IIIIIIII 
1179 IMazzer Deposit, Morocco 1 33.5 -3.2 1 90 1100 Afr 116.91 22.31 
IIIIIIII 
IIIIIIII 
1180 IMerija Deposit, Morocco 1 34.0 -3.0 1 90 1100 Afr 117.31 22.91 
IIIIIII{ 
II1III1I 
1181 {English Mine, Angola 1-12.6 13.4 1 119 - 97 1100 Afr 1-31.61-28.11 
1IIIIIII 
II1IIII1 
1182 ICachoeiras de Binga, Angola 1-11.0 13.8 1 119 - 97 1100 Afr 1-30.31-26.51 
IIIIII11 
II111III 
1183 IZenza Deposit, Angola 1 -9.3 14.2 1 144 - 1191100 Afr 1-29.41-24.91 
1111 1130 Afr 1-21.71-25.91 
IIIIIIII 
IIIII1Ii 
1184 INovo Redondo Deposit, Angolai-11.2 13.9 1 144 - 1301130 Afr 1-23.11-27.41 
I1_IIIIII 
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Sandstone Copper Deposits cont.... 

IIIIII11 
IA. N01 DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 

1 AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIIiI 
IIII11I I 

1163 lEureka Mine, New Mexico, USAI 36.2-106.7 1 231 - 2131200 N. Aml 23.51 14.91 
III 1250 Lauri 11.51 

IIIIiII 
I1IIIIII 
1164 INacimiento Mine, New Mexico, l 36.0-106.8 1 231 - 2131200 N. AmI 23.41 14.81 

IUSA 1I 1250 Lauri 11.41 1 
1IIItI1 
IIIIIIII 
1165 IBlue Bird Prospect, 135.8-106.9 1 231 - 2131200 N. Amt 23.31 14.71 
1 New Mexico, USA I1 1250 Lauri 11.21 
111IIIII 
IIIIIIII 
1166 ISan Miguel Mine, New Mexico 135.2-106.9 1 231 - 2131200 N. AmI 22.61 13.91 

IUSA 11 1250 Lauri 10.91 I 
IIII1I 

III1III 
1167 IStauber Mine, New Mexico, USAI 34.8-105.0 1 231 - 2131200 N. AmI 22.01 13.41 

11I 1250 Lauri 9.61 1 
1iIIIIII 
IIIIIII 
1168 IPintada Mine, New Mexico, USAI 35.0-104.8 1 258 - 2551250 Lauri 9.61 
1I1IIII 
1IIIII 
1169 iRayo District, New Mexico, 134.5-106.5 I 258 1250 Lauri 10.21 
1 IUSA IIII 
IIIIIII 
IIIIIII 
1171 ICourtney Mine, New Mexico, 1 33.0-105.7 1 268 1250 Lauri 8.71 
1 IUSA IIII 
IIIIIII 
IIIIIII 
1170 IBlue Star Mine & Cole Mine, 134.5-106.4 1 268 1250 Lauri 10.21 
1 New Mexico, USA IIIII 
IIIIIII 
IIIIII1 
1156 Westville, Nova Scotia, 1 45.6 -62.7 1 340 - 3101300 Lauri -4.31 
1 Canada 11 1350 Laurl-22.11 
IIIlIII 
IIIIIIl 
1157 IScotsburn, Nova Scotia, 1 45.8 -62.9 1 340 - 3101300 Lauri -4.2I 
1 ICanada 1I 1350 Laurl-22.01 
IIII1II 
IIIIIII 
1158 IMemramcook, New Brunswick, 146.0 -64.6 1 340 - 3101300 Lauri -3.51 
I ICanada 1I 1350 Lauri-21.01 
IIIIIII 
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Sandstone Copper Deposits cont..... 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
Ii$III1 
IIII1II 
1159 lAntigonish, Nova Scotia, 145.6 -62.0 1 340 - 3101300 Lauri -4.51 
1 ICanada I1 1350 Laurl-22.4$ 
IIIIIII 
IIII11I 
1160 $Dorchester, New Brunswick, 145.9 -64.5 1 340 - 3101300 Lauri -3.61 
1 ICanada II 1350 Laurl-21.91 
IiIIIII 
IIIIIII 
1161 IAlbert, New Brunswick, 1 45.7 -64.8 1 340 - 3101300 Lauri -3.81 
I ICanada I1 1350 Laurl-21.21 
IIIIIII 
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Sandstone Lead Deposits 

II 
IA. NOI 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

IIIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 

IIIIIIII 

II IIIIII 
{4 IBou-Sellam Deposit, Morocco 133.5 -4.0 I 90 1100 Afr 117.21 22.51 
I1111111 
II 

5 IKroussou Deposit, Morocco 
II 

II 

IIIIII 
I -1.5 10.0 1 90 1100 Afr 1 20.11-15.61 
11III1 
111111 

16 ILoeto Deposit, Angola 1-11.7 13.8 1 130 1130 Afr 1-23.41-28.01 
I1111111 

II IIIIII 
I7 IWallau Deposit, Oberpflaz 150.9 8.5 1 225 - 2191200 Eur 1 44.71 39.41 
I (Area, West Germany 
fI 
II 

IIIIII 
IIIIII 
IIIIII 

I8 tEschenbach Deposit, 1 49.7 11.7 1 225 - 2191200 Eur 144.31 39.21 
1 {Oberpflaz Area, West 6ermanyl 11t{I 
I11III1I 
III1IIII 
I9 IFreihung Deposit, 149.5 11.9 1 225 - 2191200 Eur 144.21 39.01 
1 IOberpflaz Area, West Germany {I{II{ 
II11IIit 
I1III1I 
11 IWarnock Mine, High Rolls 1 33.0-105.7 1 268 1250 Lauri 8.71 
I IDistrict, USA II1II 
I 
I 

I 

i 
I I Iii 

iii I i 
12 IL'Argentiere Deposit, Francel 44.5 4.3 1 245 - 2381250 Ceurl 0.31 

i 
i 

I 
I 

iIII1 
IIIII 

110 IMechernich, West Germany 150.6 6.6 1 248 - 2431250 Ceurl 6.61 
I I III1i 
IIIIIII 
I 11 lBoumia. Morocco 132.6 -5.0 I 310 1300 6ondl-18.81 
IIIIII1 
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SHALE BASE METAL DEPOSITS 

II 
IA. NOI DEPOSIT/MINE NAME 
II AND LOCATION 
II 
II 

IIIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIIIII 
IIIIII 

1110 IBlovenia, Yugoslavia 146.4 16.2 1 286 - 2131200 Eur 1 42.31 36.81 
IIII 
IIII 
IIIf 
IIII 
1111 (Medicine Hounds, Texas, USA 134.2 99.6 1 
IiII 
IIII 
1112 told Glory, Texas, USA 133.1 100.0 1 
II 

i i 
1113 ICrowell, Texas, USA 
I I 
II 
1115 IMangtm, Oklahoma, USA 
II 
II 
1117 lEisleben, East Germany 
II 
II 
1118 IMansfeld, East Germany 
II 

i I 

iI 
II 
I 34.0 99.7 I 
II 
II 
i 34.9 99.5 I 
II 
II 
151.4 11.5 I 
II 
II 
151.6 11.5 I 
II 
II 

1119 IWitzenhausen, West Germany 1 51.3 9.8 1 
i 
I 

i 
I 

1120 IWalkenreid, West Germany 
1 i 
II 
1121 ILinsburg, West Germany 
II 
II 
1122 IHuggel, nr. Osnabruck, 
I (West Germany 
i I 

11 
1123 IGronigen, Holland 
11 
11 
1124 (Durham, England 
I1 
11 
1125 ILubin, Poland 
II 

1I 
II 
I 51.6 10.1 I 
II 
II 
1 52.6 9.3 I 
II 
II 
152.3 8.0 I 
II 
iI 
II 
153.2 6.6 I 
II 
II 
154.8 -1.6 I 
II 
II 
151.4 16.2 I 
11 

1250 Ceurl 4.61 I 
1300 Ceurl 0.81 I 
IIII 
III 

255 1250 Laurl 4.91 
111 

255 

255 

255 

258 

258 

258 

258 

258 

258 

258 

258 

258 

1250 Lauri 
II 
II 
1250 Lauri 

1I 
1250 Lauri 
II 
II 
1250 Ceurl 
II 
II 
1250 Ceurl 
II 
II 
1250 Ceurl 
II 
I1 
1250 Ceurl 
II 
II 
1250 Ceurl 
II 
II 
1250 Ceurl 
II 
II 

1250 Eur I 
II 
II 
1250 Ceurl 
II 
II 
1250 Ceurl 
II 

4.61 

4.81 

5.11 

i 
8.31 

i 
8.41 

1 
7.81 

i 
8.21 

I 
9.01 

I 
8.51 

9.11 

9.71 

9.21 
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Shale Base Metal Deps cont.... 

IIIIII1 
IA. NOI DEPOSIT/MINE NAME I PRESENT 1AGE MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) 1-LAT. I 
III11II 
III1II1 
1129 IChicote Grande, Bolivia 1-17.2 -67.0 I 300 1300 Gondl 17.11 
IIII111 
II11$II 
1130 IToropaica, Bolivia 1-20.3 -65.7 1 300 1300 Gondl 14.61 
1iIIII1 
$IIII1I 
1131 ICordillera Real (North and 1-19.0 -66.0 1 300 1300 Gondl 15.51 
I ISouth), Bolivia lII1I 
I1IIIII 
IIIIIII 
1126 IFrances Lake, Selwyn Basin, 1 61.3 -129.01 458 - 4381450 Lauri-21.61 
I ICanada I II1$ 
II1IIII 
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Sedimentary Exhalative Deposits 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. 
1I AND LOCATION I CO-ORDS I (N. Y. ) (N. Y. ) II-LAT. IPALATI 
IIIIII11 
IIIIIIII 
1981 IReocin Deposit, 143.3 -4.1 1 119 - 1131100 Eur 127.51 32.61 
I ISantander Province, Spain III1I 
I1IIIIII 
IIIiIII 
1977 ISidi-Lahlen, S. of Taourit, 134.4 -2.9 1 213 - 1881200 Afr 128.31 23.41 

IMorocco 
1I 
I1 
1978 (Beni Tadjit Area, Morocco 
II 
II 
1979 ITalsint Area, Morocco 
II 
II 

IIIIII 
IIIIIt 
IIIIII 
132.2 -3.5 1 213 - 1881200 Afr 126.61 21.41 
I11II1 
IIIIII 
132.5 -3.5 1 213 - 1881200 Afr 1 26.81 21.71 
IIIIII 
111111 

1980 IMibladen-Aouli, Nr. Midlet, 1 32.7 -4.7 1 213 - 1881200 Afr 1 27.51 22.21 
I Morocco I1II11 
IIIII1II 
IIII1IiI 
1982 iMae Sod, Thailand 1 16.7 98.5 1 248 - 1441130 8undl 13.51 5.61 
I I I 1 1200 Sundl -3.21 37.01 
1III 1250 Sundl-24.91 
I1III III 
IIIIII 
1913 IRed Dog, De Long Mountains, 1 68.5 -64.0 I 300 1300 Lauri 17.71 
f IAlaska, USA II1I 
IIIII1I 
IIIIII 
1910 IKansas City Area, Kansas, UBAI 39.0 -95.0 1 320 - 2861300 Lauri 1.71 
IIIIIII 
I1I11II 
1911 IChamberlain Creek Syncline, 134.5 -93.7 1 333 - 3201300 Lauri -2.51 
1 (Arkansas, USA II 1350 Lauri-11.61 
IIIIII1 
I1IIIII 
1912 IFancy Hill District, 134.5 -94.4 1 333 - 3201300 Lauri -2.11 
1 IOuchita Mts, Arkansas, USA 11 1350 Lauri-11.11 

i I III1I 
IIIII1 

1914 IRubiales Deposit, Spain 1 42.6 -6.7 1 360 - 2861300 Seurl -7.51 
I11 1350 Seurl-28.11 

I IIIIII 
1III11 

1915 Keel Deposit, Ireland 1 54.0 -10.1 1 360 - 3201300 Ceurl 3.51 
111I 1350 Ceurl-19.21 
IIIIIII 
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Sedimentary Exhalative Deposits cont.... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

1916 ITynagh Deposit, Ireland 
II 
II 
II 

IIII i 
I PRESENT IA6E MINZ*NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
IIIII 
IIIII 
153.2 -8.4 1 360 - 3201300 Ceurl 2.81 
1I 1350 Ceurl-20.11 
IIIII 
IIIII 

1917 ISilvermines Deposit, Irelandl 52.8 -8.2 1 360 - 3201300 Ceurl 2.41 
1111 1350 Ceurl-20.51 
II I I III 
IIIII11 
1918 INavan Deposit, Ireland 1 53.6 -6.7 1 360 - 3201300 Ceurl 3.41 
IIII 1350 Ceurt-19.71 
IIIIIII 
I1IIIIt 
1919 IBallinalack, West Meath, 1 53.6 -7.5 1 360 - 3201300 0eurl 3.31 
1 lIreland II 1350 Ceurl-19.71 
IiIIIII 
I1IIII1 
1920 IPontebba-Sappada, 1 46.6 13.0 1 360 - 3201300 Seurl 0.11 
I lAustria-Italy 11 1350 Ceuri-23.71 
I 

i 
I 
I 

ýIItt 
I1It1 

1906 ITom & Jason Deposits, Yukon, I 63.2-130.2 1 374 - 3601350 Lauri 18.41 
1 ICanada IIII 
1IIIIII 
IIIfI1f 
1966 INarharla Deposit, Kimberley, 1-17.2 124.7 1 374 - 3601350 6ondl -2.81 
1 Australia IIIII 
III1iII 
IIIIII 
1973 IDzhezkazgan, Kazkhstan, USSRI 47.8 67.4 1 374 - 3601350 Sib 123.81 
I 

i 
i 
I 

iiIii 
tfIII 

1974 lAtasu, Kazakhstan, USSR 148.7 71.6 1 374 - 3601350 Sib 126.71 
I 
I 

I 
I 

IIIII 
IIIII 

1924 IChaudiontaine Deposit, 1 50.6 5.7 1 374 - 3671350 Ceurl-22.21 
1 IBelgium III1I 
I 

i 
I 
I 

IIIII 
IIIII 

1925 IBooishot Drill Hole, Belgicml 51.0 4.8 1 374 - 3671350 Ceurl-21.91 
III1II1 

ii IIIII 
1926 IHeibaart 1 Drill Hole, 1 51.4 4.7 1 374 - 3671350 Ceurl-21.51 
I IBelgium I1111 
IIIII1I 
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Sedimentary Exhalative Deposits cont.... 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT AGE MINZ'NIROTATIONIPALAEI 
1I AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) 1-LAT. I 
IIIIIII 
IIIIIII 
1975 IAchisai Deposit, Kazakhstan, l 43.2 68.9 1 380 - 3521350 Sib 123.51 

IuSSR 11 1400 Sib 1 21.01 
I1IIiII 
III1I1I 
1929 IMeggen Deposit, West 6exmanyl 51.1 8.1 1 386 - 3741350 Ceurl-21.41 

I11 1400 0eur1-35.21 
IIIIIII 
IIIIII1 
1921 lAnterselva Deposit, Italy 1 46.6 10.7 1 408 - 3601350 Seurl-24.01 
1III 1400 Seurl-34.61 
IIIIII1 
IIIIIII 
1930 IRammelsberg Deposit, 1 51.9 10.4 1 387 - 3801400 Ceurl-33.91 

IWest Germany IIII 
IIII1 

iIII1II 
1937 ISarrouyes Deposit, 1 42.7 0.5 1 394 - 3871400 Ceurl-45.01 

ICentral Pyrenees, France IIIII 
IIIIII1 
IIIIIiI 
1939 IPene det Pouri, 1 42.9 0.1 1 394 - 3871400 0euri-44.91 

ICentral Pyrenees, France IIII 
IIIIIII 
111I1II 
1940 IArrens Deposit, Pyrenees, 1 42.9 -0.2 1 401 - 39414000eur 1-45.01 
1 1France II 1450 Ceurl-24.81 
I1IIII1 
IIIIII1 
1934 IFrohnleiten-Peggau District, l 47.2 15.3 1 408 - 3871400 Seurl-32.41 

IFrance I1II 
IIIIIII 
IIIIII1 
1935 Ischrems Deposit, Styria, 1 48.8 15.1 1 408 - 3871400 Seurl-31.21 

lAustria l1III 
IIIIII1 
1IIIII1 
1931 IBodennec, Britanny, France 1 48.6 -3.7 1 408 - 3871400 Ceurl-40.21 
IIIIIII 
III1III 
1932 ILa Porte aux Moines, Britannyl 48.4 -2.9 1 408 - 3871400 0euri-40.31 
I IFrance IIIII 
IIII1I 
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Sedimentary Exhalative Deposits cont..... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

1933 iNerbiou, Hautes Pyrenees, 
I (France 
I1 
1I 
1941 ISaube Deposit, Pyrenees, 
1 (France 
I1 
I1 
1969 (Phu Mai Tong District, 
I IThailand 
II 
I1 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) i-LAT. I 
IIIII 
I1III 
1 43.0 -0.1 1 408 - 3871400 Ceurl-44.91 
IIII 
IIII 
IIII 
142.7 1.1 1 408 - 4011400 Ceurl-44.91 
11 1450 Ceurl-24.21 
IIIII 
IIIII 
1 16.8 101.0 1 420 - 3801400 Sundl 11.11 
IIIII 
IIIII 
IIIII 

1907 IVulcan Prospect, Logan Mts., i 62.3-128.2 1 421 - 3871400 Lauri 1.71 
1 ICanada IIIII 
I I 
II 
1946 IReichertleiten Alun, 
I IScharrn Alm, Austria 
II 
II 

IIIII 
IIIII 
147.6 12.5 1 438 - 4081400 Seurl-33.11 
1I 1450 Seurt-25.21 
IIIII 
IIIII 

1948 lEstaing Deposit, Pyrenees, 143.0 -0.2 1 448 - 4381450 Ceurl-24.71 
I IFrance IIIII 
I I i 
II1 
1950 ICheze Deposit, Pyrenees, 1 42.9 
1 Trance I 
II1 
III 
1951 lArtigues Deposit, Pyrenees, 1 42.8 
1 IFrance 
III 
III 
1952 ILiat Deposit, Pyrenees, 1 42.8 
I IFrance I 
III 
III 
1956 IBulard Deposit, Pyrenees, 142.8 
I IFrance I 
III 
III 

IIII 
II1I 

0.0 1 448 - 4381450 Ceurl-24.61 
iI I 

III 
IIII 

0.6 1 448 - 4381450 Ceurl-24.31 
II11 
IIIi 
I1II 

0.8 1 448 - 4381450 Ceurl-24.11 
IIII 
IIII 
IIII 

1.0 1 448 - 4381450 Ceurl-24.01 
III 
1III 
IIII 

1957 IBosost Deposit, Spain 1 42.8 0.7 1 
1I11 
III1 

448 1450 Seurl-34.21 
IIi 
III 

1905 (Logan Mts., Yukon, Canada 162.5-129.3 1 458 - 4381450 Lauri -9.41 
IIIIIII 
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Sedimentary Exhalative Deposits cont... 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT 1A6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) I-LAT. i 
IIIIIII 

IIIII 
1963 ICrabioules Deposit, Pyrenees, I 42.7 0.5 1 458 - 4481450 Ceurl-24.41 

IFrance IIIi 
III111 

IIII1I 
1976 ILa Helvecia, Argentina 1-29.5 -68.8 1 468 - 4581450 Gondl 7.11 
IIIIIII 
IIIIII 
1904 ISummit Lake, Yukon, Canada 162.6-129.6 1 505 - 4381450 Lauri -9.21 
1IIIiII 
IIIIIII 
1970 IBo Noi District, 1 15.3 98.7 1 505 - 4681450 Sundl 9.61 
1 IMeklong Highlands, Thailand I1III 
IiIIIII 
II1III1 
1971 IBo Yai District, 114.3 99.1 1 505 - 4681450 Sundl 10.61 
f IMeklong Highlands, Thailand IIII 
IIIIIII 
IIIIIII 
1972 IBawdwin District, Burma 1 23.1 97.3 1 520 - 4781450 Sundl 3.21 
I111II1 
IIIIIII 
1945 ILa Troya, Asturin Province, 142.0 -6.5 1 590 - 4081400 Seurl-43.41 
I ISpain II 1450 Ceurl-29.31 
IIIIIII 
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Sandstone U-V Deposits 

II 
IA. NOI 
II 
II 

i I 

DEPOSIT/MINE NAME 
AND LOCATION 

1272 IKalka Deposit, 
I (Himachal Pradesh, India 

I 
I 
I 

IIIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. IPALATI 
IIIIII 
II 
1 30.8 76.9 15-0 

:i 
Ii 
Ii 

1273 IRamshahr-Kalka-Morni Region, I 30.6 76.7 1 
II I India 

i 
I I 
1274 (Jammu Region, India 
1I 
II 
1I 
1275 (Himachal Region, India 
1I 
II 
II 
1276 (Haryana Region, India 
It 
1t 
It 
1258 lYotsugi Deposits, Honshu, 
I IJapan 
II 

1I 
I1 
132.7 74.9 1 
II 
II 
II 
1 31.7 77.2 1 
II 
II 
II 
128.8 76.2 1 
II 
II 
Ii 
135.1 134.1 1 
II 
II 

5-0 

5-0 

5-0 

5-0 

I I I I 
I01 30.81 I 
150 Ind 1 1.41 -6.91 

IIII 
101 30.71 I 
150 Ind I 1.31 -7.01 
IIII 
I1II 
I01 32.71 
1 50 Ind I 3.71 -4.61 
11II 
I1I1 
I01 31.71 1 
150 Ind 1 2.21 -6.01 
1II1 
111I 
I01 28.81 1 
150 Ind I -0.41 -8.71 
1I1I 
I11 

10 101 35.11 
111 
111 

III11 
1259 INakatsugo Deposits, Honshu, 134.9 133.9 I 10 I0 
I IJapan I1I 
I i I1 
IIII 
1271 IBaghal Chur Deposit, 130.3 70.4 1 
I IBulaiman Range, Pakistan II 
1 I II 
II1I 
1265 ISulaiman Range, Pakistan 1 29.9 70.3 1 
1 I II 
II1I 
1267 ISulaiman Range, Pakistan 129.7 70.1 I 
III1 
IIII 
1268 ISulaiman Range, Pakistan 129.4 70.0 1 
I 
I 

i 
i 

I1 
11 

1261 ITsukiyoshi Deposit, Tono Mini 39.3 141.5 I 
1 (Japan II 
IIII 

II 
135.01 
11 

1I1 
III 

14 -1I0 130.31 
1I1 
III 
I1I 

14 -110 129.91 
III 
II1 

14 -1I01 29.71 
I1I 
1II 

14 -1I0 129.61 
I11 
1I1 

14 - 11 10 139.31 
1Ii 
I11 
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Sandstone U-V Deposits cont.... 

IIIIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
{I AND LOCATION I CO-ORDS I (N. Y. ) I(M. Y. ) I-LAT. IPALATI 
IIIiIIII 
IIIIIIII 
1262 IMisano Deposit, 1 39.5 141.7 1 14 - 11 10 139.51 1 
1 I6ifu Prefecture, Japan IIIII 
I{IIIIII 
I{IIIIII 
1263 IJorinji Deposit, 139.4 141.3 1 14 - 11 10 139.41 1 
I I6ifu Prefecture, Japan IIIIII 
IIII1II1 
I1IIIII 
1248 IBeverley Deposits, 1-30.3 139.7 1 24 -5I0 1-30.31 1 
I ISouth Australia, Aust. IIIII 
IIIIIIII 
IIIIIIII 
1196 IPumpkin Buttes, Wyoming, USA1 43.9-105.8 I 38 - 10 10 143.91 1 
1111 150 N. Aml 47.31 63.51 
1I1I1I1I 
{IIIII1I 
1197 IMonunent Hill District, 143.3-105.3 1 38 - 10 101 43.31 I 
1 IWyoming, USA I1 150 N. AmI 46.61 62.41 
1IIII1II 

iII1$II 
$198 Box Creek District, Wyoming, $ 43.1-105.1 I 38 - 10 I0 143.11 

IUSA II 150 N. Aml 47.41 63.61 
III{II1I 

{IIII1$ 
1199 IRosS District, Wyoming, USA 1 43.5-105.9 I 38 - 10 I0 143.51 

11I 150 N. Aml 47.01 62.91 
I$IIII1I 

1I1$1II 
1249 ICurnaawna channel, 1-31.7 139.6 1 65 - 25 1 50 Austt-54.3I-63.7$ 

IFrome Lake Area, Australia IIIIIf 
{1II1III 
I1IIiII 
1257 IPhu Wiang Deposits, 1 16.7 102.2 I 125 1130 Sund{ 13.81 6.61 
I IKhorat Plateau, Thailand I1III 
IIIII$I1 
II1Ii1I 
1208 IRadiun King Mine, Red Canyoni 37.5-110.3 1 144 - 65 150 N. Aml 42.51 55.31 
I IUtah, USA II 1100 N. Aml 43.71 46.31 
1111 1130 N. AmI 41.71 46.61 
IIIIIII I 
IIIIII11 
1210 lAtomic No. 1 Nine, 137.8-110.3 1 144 - 65 1 50 N. AmI 42.81 55.71 
I white Canyon, Utah, USA I 1100 N. AmI 44.01 46.71 
1III 1130 N. AmI 42.01 47.01 
III1III1 
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Sandstone U-V Deposits cont..... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEIB. P. I 
Ii AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) I-LAT. IPALATI 
IIIIIIII 
1 
1212 

i 
t 
t 
ý 

IIIIIII 
(Rusty Mine, White Canyon, 1 37.5-110.1 1 144 -65 150 N. AmI 42.61 55.51 
(Utah, USA I1 1100 N. AmI 43.81 46.51 
111 1130 N. AmI 41.81 46.81 
IIIIII1 

1215 
i 
i 
t 
i 

IIIIIII 
IHappy Jack Mine, White Canyoni 37.7-110.1 1 144 - 65 150 N. Ami 42.71 55.61 
lUtah, USA I1 1100 N. AmI 43.91 46.61 
I 11 1130 N. AmI 45.41 46.91 
I1IIIII 

1216 
I 
1 
I 

IIIIIII 
monument No. 2 Mine, Arizona, l 36.9-109.8 1 144 - 65 150 N. AmI 41.81 54.31 
IUgA I1 1100 N. AmI 43.01 45.41 
111 1130 N. AmI 41.11 45.71 
IIIIIII 

IIIIII11 
1217 IBig Four Mine, 1 36.9-110.2 1 144 - 65 1 50 N. AtnI 41.91 54.51 
I Monument Valley, AriZOna, UBAI 1 1100 N. AmI 43.21 45.61 
II i 1 1130 N. Ami 44.61 45.91 
IIII1III 
III1I{II 
1219 moonlight Mine, 1 37.0-110.3 1 144 - 65 1 50 N. AmI 42.01 54.51 
1 Monument Valley, Arizona, USAI 1 1100 N. Aml 43.31 45.61 
1I1I 1130 N. Aml 44.71 46.01 
111IIIII 
III1IIII 
1221 ITaylor-Reid Mine, I 37.2-110.3 1 144 - 65 1 50 N. Aml 42.11 54.71 
1 IMonument Valley, Utah, USA I1 1100 N. Aml 43.41 45.81 
1I1 1130 N. AmI 41.31 46.11 
11II1II 
IIIII1II 
1224 IMoki Mine, Needles County, 1 38.2-109.7 1 144 - 65 1 50 N. AmI 43.01 56.11 
1 lUtah, USA I1 1100 N. Amt 44.11 46.91 
111 1130 N. AmI 42.31 47.21 
IIIIIII 
IIIII1I1 
1225 161ade-Abe mine, Elk Ridge, 1 38.0-109.8 1 144 - 65 1 50 N. AmI 42.71 55.11 
1 lUtah, USA i1 1100 N. AmI 43.91 46.61 
1111 1130 N. AmI 45.11 46.91 
11I111I1 
11I1I1{ 
1226 IEast Payday Mine, Elk Ridge, I 37.8-109.8 1 144 -65 1 50 N. Aml 42.71 55.61 
1 IUtah, USA I1 1100 N. AmI 43.81 46.81 
1111 1130 N. Aml 42.01 46.51 
11111111 



477 

Sandstone U-V Deposits cont..... 

IIIIIII 
IA. NO1 DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEIB. P. I 

I AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
III11III 
III1II1 
1227 ILucky Lady Mine, Elk Ridge, 1 37.6-109.8 1 144 -65 1 50 N. AmI 42.61 55.51 
I IUtah, USA I1 1100 N. AmI 43.71 46.71 

11 1130 N. AmI 41.91 46.41 
1I1111I1 
IIIIIIII 
1201 IBlack Hills, Wyoming, USA 1 44.3-105.2 1 144 -125 1100 N. AmI 47.81 53.51 
1111 1130 N. AmI 47.61 52.71 
1IIII1II 
IIIIIIII 
1202 IGrants Region, New Mexico, 135.2-108.0 1 150 - 1301130 N. AmI 39.11 42.81 
1 IUSA IIIII1 
IIII1I! 
IIIIIIII 
1204 ILaguna District, Grants Dist.! 35.0-107.6 1 150 - 1301130 N. AmI 38.91 42.41 
1 New Mexico, USA I1III 
IIIIII1I 
IIIIIIII 
1205 IChurch Rock, Grants District, I 35.5-108.7 1 150 - 1301130 N. Aml 39.51 43.51 
1 New Mexico, USA IIIIII 
I! II1III 
III1I1II 
1206 ISmith Lake, Grants District, I 35.4-108.1 1 150 - 1301130 N. AmI 39.31 43.11 

INew Mexico, USA IIIII1 
!I1I111I 
1III1II 
1207 IAmbrosia Lake, Grants Dist., 1 35.3-107.7 1 150 - 1301130 N. AmI 39.21 42.91 
1 New Mexico, USA iIII1 
IIIIiIII 
IIIII1II 
1239 IMecsek Mountains, Hungary 1 46.2 18.2 1 248 1250 Ceurl 4.91 1 
1111IIII 
111IIIII 
1278 IChirmatekri, India 1 23.3 82.4 1 248 1250 Gondl-28.31 I 
III1I1I1 
IIIIIIII 
1228 IRifle-Garfield Deposit, 1 39.5-107.8 1 248 - 1441130 N. AmI 43.31 47.91 
1 IColorado, USA 11 1200 N. AmI 26.91 18.51 
I1I1 1250 Lauri 14.51 1 
1I1I1I11 
1I11II11 
1235 INr. Fieberbrun, Tyrol, 147.5 12.5 1 248 - 2131200 Eur 141.71 36.81 
1 lAustria lI 1250 Seurl 4.81 1 
11111111 



478 

Sandstone U-V Deposits cont..... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

1240 IZirovski Vrh Deposit, 
I IYugoslavia 
II 
II 
1238 IVal Rendena Mine, 
I ILombard Deposits, Italy 
II 
II 
1241 IMurtschenalp, Verrucano, 
I IHwitzerland 
Ii 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. 1 
IIIII 
IIIII 
146.1 14.4 I 253 1250 Ceurl 3.91 
1III1 
1III1 
IIIII 
1 46.0 11.0 1 258 - 2481250 Seurl 3.01 
1I1II 
11111 
II 
147.1 9.1 1 
Ii 
I1 

III 
260 1250 Ceurl 3.71 

1II 
I11 

IIIII11 
1279 IFigueira Area, Parana Basin, 1-23.7 -50.7 1 265 - 2551250 Gondt -1.51 
I (Brazil I1III 

iii- --I 
I1{ 

IIIIIII 
1242 IObermoschel, West Germany 149.7 7.8 I 268 1250 Ceurl 6.01 
IIIIIII 
III1III 
1236 ILaguepie-Monesties District, I 44.1 2.0 1 270 1250 Ceurt -0.41 
1 IFrance II 1300 Ceurl -4.81 
iIII1II 
IIIIIII 
1244 ISt. Affrique, Massif Central, l 44.0 2.9 I 270 1250 Ceurl -0.41 
I IFrance 11 1300 Ceurl -4.71 
IIIIIII 
IIIIIII 
1245 IBrive District, 145.1 1.5 1 270 1250 Ceurl 0.51 
1 Massif Central, France IIIII 
IIIIIII 
IIIIIII 
1246 IRodex District, 144.3 2.6 I 270 1250 Ceurl -0.11 
I Massif Central, France IIIII 
I 
I 

i 
i 

IiiiI 

I1Iii 
1252 1Fraserburg, south Africa 1-31.8 21.5 1 280 - 2501250 Gondl-64.71 
II11 1300 Gondl-62.41 
I 
I 

i 
i 

ýii1i 
IiiI1 

1253 (Beaufort West, South Africa 1-32.3 22.6 1 280 - 2501250 Gondl-64.41 
11II 1300 Gondl-62.91 
III111 
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Sandstone U-V Deposits cont.... 

IIIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
IIIIIII 
IIIII11 
1243 ILodeve Basin, Massif Central, l 43.7 3.3 1 286 - 2701250 Ceurl -0.61 
I IFrance 11 1300 Ceurl -4.91 
II111I 
III1If 
1247 INorthern Black Forest, 154.0 34.7 1 320 - 2901300 Ceurl 13.41 
I IEast Germany IIII 
IfIIIII 
IIIIIII 
1250 Mount Eclipse, NT, Australial-23.0 133.0 1 360 - 2861300 Gondl-11.11 
IIII 1350 Gondl 4.51 
IIIIIII 
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Placer Gold Deposits 

I I 
DEPOSIT/MINE NAME 

AND LOCATION 
iA. NOI 
II 
II 
II 

IIIII 
I PRESENT iA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
I 
I 

i iii 
iii i 

1340 IQuebrada Ceibo Grand, Belizet 16.6 -89.2 I 
1 IMexico I{ 
I{II 
IIII 
1341 IYu-Mini & Tia-Ndiato, Oaxaca{ 16.8 -97.5 I 
I IMexico II 
IIII 
IIII 
1342 IBacubirito, Sinaloa, Mexico 1 25.8-107.9 I 
I1II 

1- 0I01 16.61 
1I1 
1II 
III 

1- 0I01 16.81 
III 
III 
III 

1- 0I01 25.81 
I11 

IIIII11 
1343 IViznaga, Mexico 131.7-116.1 I1-0I0 131.71 
IIIIIII 

II IIIII 
1344 IRio Bobos, Guatemala 115.4 -88.7 I1-0I0i 15.41 
IIIIIII 

i 
iiiii 
iIiii 

I IIIII 
1345 ILa Canoa, Guatemala 114.9 -90.4 1 1- 010 114.91 
i 
I 

I 

i 
1346 IRio Guayape, Honduras 114.7 -86.0 I 1- 0I01 14.71 
IIIIII 
1IIIII 
1347 ILower Buller R., West Coast, 1-41.8 172.0 11-010 1-41.81 
1 ISI, New Zealand IIII 
IIIIIII 
IIIIIII 
1348 IHokitika Deposit, West Coast 1-42.7 171.0 I1-0I0 1-42.71 
I 1SI, New Zealand IIII 
IIIIIII 
I1IIIII 
1349 IWestport Deposit, West Coastf-41.8 171.6 11-0I0 1-41.81 
1 ISI, New Zealand IIII 
II1IIII 
IIIIIII 
1350 ICharleston Deposit, 1-41.9 171.4 I1-0I0 1-41.91 
I 1West Coast, SI, New Zealand I 1II 
IIIIIII 
IIIIIII 
I351 IKumara, West Coast, SI, I-42.6 171.2 I1-0I0 1-42.61 
I 1New Zealand IIIII 
IIIIIII 
IIiIIII 
1352 ILower Grey R. Valley, SI, 1-42.6 171.4 11-0I0 1-42.61 
1 INew Zealand IIIII 
1IIIIII 
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Placer Gold Deposits cont..... 

II 
IA. NOl DEPOSIT/MINE NAME 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 

II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
IIIIII 
III11 
1353 Mont d'Or Claim, Ross, SI, 1-42.9 170.8 11-01 
1 New Zealand III 
I{III 

0 
i 

i 
i 

1-42.91 
I 
I 

I 
I 

IIII1 
I354 IPort Pegasus, Stewart Islandt-47.1 167.7 I1-0I0 1-47.11 

INew Zealand It11 
1IIIIi 

IIIIIII 
1355 {Tin Range, Stewart Island, 1-46.7 167.8 I1-010 1-46.71 
{ INew Zealand 11I 
IIIII11 
IIII1I 
1356 IOrepuki Area, Southland, SI, 1-46.4 168.3 I1-0I0 1-46.41 
1 INew Zealand I1II 
IIIIIII 
IIIIIII 
1372 Muller District, West Coast, I-41.7 172.1 I1-010 1-41.71 
I ISI, New Zealand IIIII 
IIIIII 
IIIIIII 
110021Nr. Wau, Papua New Guinea I -7.4 146.7 I1-010I -7.41 
1IIIIII 

IIIIII 
1357 IWairau Valley, Marlborough, 1-41.4 173.4 I2-0I0 1-41.41 
1 ISI, New Zealand IIII 
IIIIII 
IIIIII 
1358 IGolden Block Lodes, 1-40.5 172.6 I2-010 1-40.51 

lAnatori R., SI, New Zealand IIII 
IIIIIII 
IIIIIIi 
1359 ITakaka, Leslie & Karamea R. *s1-41.2 172.5 12-0I 0* 1-41.21 
I 1SI, New Zealand IIII 
tI1III 
IIIIIII 
1360 Muller R., Maruia Tributary, 1-41.7 172.4 I2-0I0 1-41.71 
1 ISI, New Zealand IIII 
II1IIt 
IIIIIII 
1361 Marlborough Sounds District, 1-41.1 173.9 I2I0 1-41.11 
1 ISI, New Zealand I1III 
II{III1 
iIIIII1 
1362 IPreservation In1et, Southlandl-46.1 168.0 I2I0 1-46.11 
1 ISI, New Zealand {IIII 
III{II 
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Placer Gold Deposits cont...... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
II1iiIII 
IIIIIII 
1335 IQuartz Creek, Klondike, 1 63.8-139.1 I3-1I0I 63.81 
I IYukon, Canada I{II{ 
IIIIIII 
I I IIIIII 
1336 Bonanza Creek, Klondike, 163.9-139.4 I3-1I01 63.91 
I IYukon, Canada IIIII 
IIIIIII 

i I IIIII 
1337 IHunker Creek, Klondike, 1 64.0-139.1 13-1I01 64.01 
I IYukon, Canada IIIII 
IIIIIII 
IIIIIII 
1338 ISulphur Creek, Klondike, 1 63.7-138.8 I3-1I0 163.71 
1 IYukon, Canada IIIII 

I- IIIIII 
IIIII 
1339 IDominion Creek, Klondike, 1 63.5-138.8 I3 1I 
1 IYukon, Canada II 
II-III 

i i i I i 
1363 (Hauraki Goldfield, 1-37.1 175.8 1 14 -2I 
1 IS. Aukland, NI, New Zealand IIi 
I111I 
IIIII 
1366 $Ballarat Deposit, Victoria, 1-37.6 144.0 I 26 -1I 
I (Australia II1 
I I 
1I 
1367 IBendigo Deposit, Victoria, 
I lAustralia 
II 
1I 
1365 ILa Chiripa (Doradito), 
I INayarit, Mexico 
I 
II 
1364 I6rey Mouth District, SI, 
I INew Zealand 
II 
I1 
1368 (Alexandra, Otago, SI, 
I New Zealand 
II 

III 

I 
I 

I 
t 
{ 
I 

III 
0 163.51 1 

III 
I1I 
III 

0 1-37.11 I 
I1 I 
II 
II 

0 1-37.61 
II 
I1 

1 
I 
I 
I 

IIIII1 
1-36.8 144.3 I 26 -5I0 1-36.81 1 
1III1I 
I111I1 
IIIIII 
122.2-105.2 I 38 -2I0 122.21 I 

I 150 NZ 1 26.61 34.31 
I1IIII 
I1IIII 
1-42.5 171.2 1 60 -0I0 1-42.51 I 
I11 50 NZ 1-49.81-51.61 

1I11I 
11IIII 
1-45.2 169.4 I 65 -1I0 1-45.21 I 
1I1 50 NZ 1-52.51-50.11 

11111 
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Placer Gold Deposits cont...... 

ýIIIIII 
IA. NO{ DEPOSIT/MINE NAME I PRESENT 1AGE MINZ'NIROTATIONIPALAEIB. P. I 
1i AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATf 
fIIIIIII 
1{IIII11 
1369 lida Valley, Otago, SI, 1-45.0 169.9 I 65 -110 1-45.01 I 
I INew Zealand II1 50 NZ 1-52.11-49.81 
11IIIIII 
IIIIII11 
1370 IBannock Burn, Otago, 81,1-45.1 169.2 I 65 -110 1-45.11 "I 
I INew Zealand I1 150 NZ 1-52.61-49.91 
IfIIIIII 

i I IIIIII 
1371 IWaikaia District, Otago, SI, 1-45.7 168.9 1 65 -1I0 1-45.71 I 
1 New Zealand II 150 NZ 1-53.11-50.81 
1II1IIII 
1IIIIIII 
1373 16lenore Deposit, Otago, SI, 1-46.1 169.9 I 88 - 65 150 NZ 1-52.81-51.31 
1 New Zealand II 1100 NZ 1-59.31 1 
IIIII1II 
IIIIIII 
1375 INaseby Deposit, Otago, SI, 1-45.0 170.2 1 144 - 97 1100 NZ 1-58.51 
I New Zealand II 1130 NZ 1-49.31 
1111111 

i i IIIII 
1-42.0 171.3 1 144 - 1251130 NZ 1-46.51 
1I1II 
1III1 
1-42.5 171.2 1 144 - 1251130 NZ 1-46.91 
IiIII 
1I1iI 
1II1I 

1376 1Fox R., SI, New Zealand 
I 

i 
I 
I 

1377 IAhaura, West Coast, BI, 
1 New Zealand 
II 
I I 
1378 IKoiterangi, West Coast, SI, 1-42.7 171.1 1 144 - 1251130 NZ 1-47.11 
I New Zealand II 
IIII 
IIII 
11021IFairbanks District, Alaska, 165.0-147.7 1 
I IUSA II 
I 
I 

I 
I 

I10221Lena R., Siberia, USSR 
II 
II 
11023IAmur R., Siberia, USSR 
I 
II 
I1024IMaagdalena R., Colombia 
II 
II 
I10251Yuba R., California, USA 
II 

II 
II 
164.5 127.0 

II 
53.5 122.5 1 

II 
II 
I 8.5 -74.0 I 
II 
II 
139.2-121.7 I 
11 

0 

1 

1 

0 

0 

iII 

0 

0 

0 

I1 
II 
165.01 
II 
II 
I1 
164.51 
11 
iI 
1 53.51 
1I 
11 

018.51 
II 
II 

0 139.21 
I1 
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Placer Diamonds 

II 
IA. NOI DEPOSIT/MINE NAME 
II AND LOCATION 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 

IIIIIIi 
IIIIiII 
1445 ICocalinho, Goias, Brazil 1-14.7 -51.0 11-0I0 1-14.71 
IIIIIII 
IIIIIII 
1446 ISono R., Goias, Brazil 1-10.0 -47.5 I1-010 1-10.01 
IIIIII 
IIIIII! 
1447 INear Craolandia, Goias, 1 -7.9 -47.1 11-0I0I -7.91 
I Brazil IIII1 
IIIIIII 
IIIIIII 
1448 ICacu, Claro R., Goias, Brazill-18.6 -51.1 I1-010 1-18.61 
1IIIIII 
III11I 
1449 IVerissimo R., Brazil 1-19.7 -48.3 11-0I0 1-19.71 
IIIIII1 
IIIII1I 
1450 Ilmperatriz, Tocantins R., 1 -5.5 -47.5 I1-0101 -5.51 
I IBrazil IIIII 
II1IiII 
IIIIIII 
1451 IPiui, Minas Gerais, Brazil 1-20.5 -46.0 I1-010 1-20.51 
1II1IIt 
IIII1II 
1452 ITibagi, Parana, Brazil 1-24.5 -50.5 11-010 1-24.51 
1111I1I 
II11III 
1527 IBenton Harbor, Michigan, USAI 47.1 -86.4 15-1I01 47.11 
IIIIIII 
III111I 
1528 IKenosha, Wisconsin, USA 1 42.6 -87.8 15-1I0 142.61 
11IIII 
IIIIIII 
1529 ILorain, Ohio, USA 1 41.5 -82.2 I5-110 141.51 
IIIIIII 
III1III 
1530 IGary, Indiana, USA I 41.6 -87.3 I5-1101 41.61 
1IIIIII 
IIII1iI 
1460 IHottentot Bay, Namibia 1-26.0 14.8 I 20 I0 1-26.01 
1IIIIII 
I1III1I 
1461 tOrange Mouth, Namibia 1-28.6 16.4 I 20 10 1-28.61 
1II1III 
I1IIIII 
1462 ILuderitz, Namibia 1-26.6 15.2 I 20 I0 1-26.61 
IIIIIII 
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Placer Diamond Deposits cont.... 

II 
IA. NO1 DEPOSIT/MINE NAME 
II AND LOCATION 
II 
I1 
1459 IBingara, NSW, Australia 
it 

II 
I PRESENT IA6E MINZ' 
I CO-ORDS I (N. Y. ) 
ii 
II 
1-29.8 150.6 I 53 
11 

III I 
1463 West Oubangui Deposits, 1 4.3 15.6 I 
1 ISangha R., Central Afr. Rep. I 1 
II1I 
IiII 
1464 west Oubangui Deposits, 1 4.3 16.7 1 
I IMambere R., Central Afr. Rep. I 
IIII 
IIII 
1465 West Oubangui Deposits, 1 3.8 17.8 I 
i ILobaye R., Central Afr. Rep. l I 
IIII 
IIII 
1466 (East Oubangui Deposits, I 6.5 22.0 I 
I IBria Region, Central Afr. Rep. I I 
III( 
IIIf 
1467 Mast Oubangui Deposits, 1 7.3 21.9 1 
1 IMouka Region, Central Afr. RepI 
I 

i 
I 
I 

1i 
II 

1468 (East Oubangui Deposits, I 8.1 22.3 1 
1 louadda Region, C. Mr. Rep. II 

i I II 
II1I 
1469 IBakwanga District, Katanga 1 -6.2 23.6 1 
1 [Province, Zaire II 
1 i 
11 
1510 16ilbues, Piaui, Brazil 
11 
1i 
11 

Ii 

ii 

IIII 
NIROTATIONIPALAEIB. P. I 

I (N. Y. ) I-LAT. IPALATI 
IIII 
IIII 
150 AuSt1-46.41-53.11 
IIII 
IIII 

71 1 50 Afr 1-10.91-10.91 
III 
1III 
II1I 

71 150 Afr 1-11.01-11.11 
i1II 
IIII 
IIII 

71 150 Afr 1-11.51-11.91 
III 
IIII 
II1I 

71 150 Afr I -9.11-10.01 
IIiI 
IIII 
I1II 

71 1 50 Afr I -8.31 -9.21 
IIII 
IIII 
iIII 

71 1 50 Afr 1 -7.61 -8.41 
11I1 
III1 
IIiI 

72 150 Afr 1-21.91-23.31 
II1 
IIII 
IIII 

I -9.8 -45.4 1121 - 77 1100 S. AmI-16.91-14.51 
I1 1130 S. AmI -9.91-12.71 
IIIIII 
IIIIII 

1511 ICoromandel, Minas Gerais, 1-18.4 -47.2 1 121 - 77 1100 S. Aml-25.01-23.61 
I IBrazil II 1130 S. Am1-18.71-21.51 
IIIiIIII 
IIIIIIII 
1513 IPatos de Minas, Minas Geraisl-18.6 -46.5 1 121 - 77 1100 S. AmI-25.31-23.71 
I IBrazil 1I 1130 S. Ami-18.81-21.71 
IIIIIIII 
IIIIIIII 
1514 IEstrela do Sul, Minas Geraisl-18.7 -47.7 1 121 - 77 1 50 S. AmI-25.41-21.31 
I IBrazil II 1100 S. AmI-25.21-23.91 
1III 1130 B. AmI-19.01-21.81 
IIIiII11 
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Placer Diamonds deposits cont.... 

III1IIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) I-LAT. IPALATI 
IIIf 
IIII 
1470 IHopetown, Orange R., S. Afr. I-29.6 24.1 I 
IIII 
11II 
1471 IChristiana, Vaal R., S. Afr. 1-29.9 25.2 1 
I I 
II 
1472 IBloemhof, Vaal R., S. Afr. 
II 
I1 
1473 IWedbnrg, Vaal R., S. Afr. 
I I 
I I 

II 
II 
1-27.6 25.6 I 
I1 
1I 
1-28.3 24.7 I 
II 
11 

1476 IAlexander Bay, Orange R., 1-28.7 26.5 1 
1 IS. Afr. I 
III 
III 
1477 IKimberley, Vaal R., S. Afr. I-28.7 24.8 I 
1III 
IIII 
1478 IKlerksdorp, Vaal R., B. Afr. I-26.9 26.6 1 
II 
II 
1479 IMigdol, upper Harts R., 
I is. Afr. 
I1 
II 
1480 IRiet R., South Africa 
1I 
1I 

II 
I1 
1-26.9 25.4 1 
11 
11 
I1 
1-28.9 24.2 1 
11 
I1 

1515 ICaruachi Deposit, Venezuela 1 8.1 -62.9 I 
IIII 
IIII 
1516 IBan Pedro de la Brocas, 1 7.0 -62.9 1 
I (Bolivar Province, Venezuela II 
I I 
II 
1517 ICuchivero R., Venezuela 
II 
II 
1518 ICoura R., Venezuela 
II 
II 
1520 IVentuari R., Venezuela 
II 

I1 
1I 
I 6.9 -65.7 I 
1I 
1I 
1 6.2 -64.7 I 
II 
II 
1 5.0 -66.3 1 
11 

90 

90 

90 

90 

90 

111 

111 

111 

111 

85 

85 

85 

85 

85 

I I I i 
II 

1100 Afr 1-51.21-52.41 
1Ii 

II 
1100 Afr 1-50.21-50.51 
I11 

11I 
1100 Afr 1-50.01-50.31 
III 
III 
1100 Afr 1-50.31-50.91 
IIII 
II1I 
1100 Afr 1-47.11-47.91 
III1 
1IiI 
I1I 
1100 Afr 1-50.71-51.51 
III1 
IIII 
1100 Afr 1-49.81-49.61 
I11 
11I 
1100 Afr 1-49.31-49.21 
I1II 
III 
IIII 
1100 Afr 1-50.61-51.51 
I111 
I1I 
1100 S. AmI 3.51 3.61 
1I1I 
IiI 
1100 S. AmI 2.51 2.51 
I1I 
I1I1 
II1 
1100 S. AmI 2.81 2.51 
I1I1 
II11 
1100 S. AmI 2.01 1.81 
11II 
11I 
1100 S. AmI 1.01 0.51 
1111 
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Placer Diamonds Deposits cont... 

IIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT ZAGE 
II AND LOCATION I CO-ORDS I 
I 

i 
i 

i 
II 
I1 

1521 ISuapure R., Venezuela 1 6.6 -67.0 1 
I 
I 

i 
I 

I1 
11 

1454 IPhenix City, Alabama, USA 132.5 -85.0 1 
1III 
IIII 
1455 ICharlotte, North Carolina, 135.3 -80.8 1 
I IUSA II 
IIII 
IIII 
1456 IColumbia, South Carolina, USAI 34.0 -81.0 I 
IIII 
IIII 
1458 IRichmond, Virginia, USA 1 37.6 -77.4 I 
IIII 
IIII 
1483 ITshikapa Region, West Kasai I -5.7 20.8 I 
1 IProvince, Zaire II 
III{ 
IIII 
1484 ITshikapa Region, Bandundu I -5.8 19.2 I 
1 IProvince, Zaire I1 
IIII 
IIII 
1485 IBougande Area, Baghsalogo 1 13.0 -0.1 I 
I IRegion, West Africa I1 

i 
i 

I 

i 
II 
!I 

1486 IDunkwa Region, Ghana 1 6.0 -1.7 I 
I 
I 

I 

i 
ii 
ii 

1487 IAboissa District, Ivory Coastl 5.4 -3.2 I 
I1II 
II1I 
1488 ICavally Deposit, Ivory Coastl 6.2 -8.2 1 
1II1 
II1I 
1489 ITienko District, Ivory Coastl 10.1 -6.9 1 
i i II 
IIII 
1490 IBomi Hills, Liberia 1 6.9 -10.9 I 
IIII 
IIII 
1491 IKatata Region, Liberia 1 6.6 -10.3 1 
IIII 

IIII 
MINZ'NIROTATIONIPALAEIB. P. I 

I (N. Y. ) I-LAT. IPALATI 
IIII 
IIII 

85 1100 S. AmI 2.71 2.21 

150 

150 

150 

150 

136 

136 

137 

137 

137 

137 

137 

137 

137 

IIII 
IIII 
1130 N. AmI 32.71 30.31 
IIII 
IIII 
1130 N. AmI 34.71 31.51 
1I1 
II1I 
III 
1130 N. Amt 33.51 30.41 
1II 
IIII 
1130 N. AmI 36.41 32.91 
{III 

II 
1130 Afr 1-22.11-25.91 
11II 

II1 
III 
1130 Afr 1-21.31-25.21 
11I 
iI1I 
I11I 
1130 Afr I 4.81 1.51 
III 
I1I 

III 
1130 Afr I -0.21 -3.61 
1II 
1II 
1130 Afr 1 0.11 -3.31 
I! II 
111I 
1130 Afr I 3.61 0.01 

I11! 
1130 Afr I 6.11 2.61 
IiII 
IIII 
1130 Afr I 5.71 2.01 
IIII 
IiI1 
1130 Afr I 5.11 1.51 
1111 



488 

Placer Diamonds Deposits cont.... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIII 
IIII 
1492 ISanniquelli District, Liberial 7.4 -8.7 1 
III1 
IIII 
1493 ISansanto Deposits, Kenieba 1 13.0 -11.4 I 
1 IRegion, Mali II 
IIII 
IIII 
1494 IZeerust Area, Lichtenburg 1-25.5 26.1 I 
I IDistrict, S. Afr II 
IIII 
IIII 
1495 ILichtenburg District, Westernt-26.1 26.2 1 
I ITransvaal, S. Afr II 
IIII 
IIII 
1507 IBarito R., Kalimantan, Borneol -2.7 114.9 I 
IIII 
IIII 
1508 ILandak R., Kalimantan, Borneol 0.0 109.4 1 
III 
III 
1509 IKapuas R., Kalimantan, Borneol -2.2 114.3 I 
IIII 
IIII 
1512 IMonte Carmelo, Minas 6erais, I-18.7 -47.5 I 
I IBrazil I 
IIIt 
IIII 
1496 INgamo Area, Zimbabwe 1-19.1 27.5 i 
1III 
IIII 
1497 16welo District, Zimbabwe 1-19.4 29.9 1 
I 
i 

i 
I 

ii 
Ii 

1498 1Willoughby's Spur, Zimbabwe 1-19.6 29.7 1 
IIII 
IIII 
1522 IRio Abaete District, Brazil 1-19.2 -45.4 1 
IIII 
IIII 
1523 I6rao Mongol District, Minas 1-16.5 -42.8 1 
1 I6erais, Brazil II 
1III 
IIII 
1524 IBagagem District, Minas 1-14.6 -48.1 1 
I I6erais, Brazil II 
II-II 

137 

137 

137 

147 

150 

150 

150 

IIII 
III 
1130 Afr I 4.91 1.31 
1II 
III 
1130 Afr 1 11.01 7.51 
I111 
1III 
1II 
1130 Afr 1-41.41-50.11 
II1I 
I1I 
III 
1130 Afr 1-41.91-50.91 
1II 
IIII 
III 
1130 Sundl -4.21 -7.71 
I1I1 
1111 
1130 Sundl -2.11 -7.01 
III1 
IIII 
1130 Sundl -3.71 -7.5I 
IIII 
I111 

121 - 771100 S. AmI-25.21-23.71 
1130 S. Aml-19.01-21.81 

300 

i 
i 

i 
I i 

300 

300 

350 

350 

350 

1300 Gondl-70.61 

i I 

I 

I 
III 
1300 Gondl-72.81 
III 
1II 
1300 Gondl-72.71 
{II 
III 
1350 6ond1 -9.11 
1II 
II{ 
1350 6ondl-11.51 
III 
{Ii 
III 
1350 Gondl -6.41 
1II 
111 

I 
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Placer Diamonds Deposits cont...... 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I (N. Y. ) I(M. Y. ) I-LAT. I 
IIIIII 

IIII i i 
I 
I 

1525 IDiamantina Deposits, Minas 1-18.3 -43.6 I 350 1350 Gondl-10.81 
I I6erais, Brazil IIII1 

IIIIII 
IIIIIII 
1526 IAripuana Deposits, Mato I -9.2 -60.7 I 350 1350 Gondl 6.31 
1 I6rosso, Brazil IIII 
IIIIII 
IIIIIII 
1501 IKleinzee, Southern 1-29.7 17.0 I 400 1400 6ondl-58.01 
I INamaqualand, S. Afr IIIII 
I1IIIII 
I1IIIII 
1499 INababiep, Buffels R., 1-29.6 17.8 1 65 & 400 150 Afr 1-49.41 

INamaqualand, S. Afr I1 1400 6ond1-57.61 
IIIII1I 
III1III 
1502 IZwartlintjies R., Southern 1-30.3 17.4 1 65 & 400 150 Afr 1-50.31 
I 1Namaqualand, S. Afr 1I 1400 Gondl-57.41 
IIIIII 
IIIIIII 
1503 18poeg R., Southern 1-30.5 17.4 165 & 400 150 Afr 1-50.51 
I INamaqualand, S. Afr 11 1400 6ondl-57.11 
IIIIIII 
IIIIIII 
1504 I6roen R., Southern 1-31.5 17.8 1 65 & 400 1 50 Afr 1-52.01 
I INamaqualand, S. Afr 1I 1400 6ondl-56.11 

I iIIII 
IIIII1I 
1505 IBitter R., Southern 1-30.9 17.6 165 & 400 150 Afr 1-51.11 
1 INaosaqualand, S. Afr II 1400 6ondl-56.71 
II1iIII 
IIIIIII 
1506 101ifants R., Southern 1-31.7 18.1 1 65 & 400 1 50 Afr 1-52.41 
I INamaqualand, S. Afr I1 1400 6ond1-55.81 
III1III 
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Placer Tin Deposits 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT tA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
II1III 
II1III 
1379 ISapioris, Durango, Mexico 125.2-104.9 I1-0I0 125.21 
11I11I1 
IIIII1I 
1380 IMountain Pine Ridge, Belize, 1 17.1 -88.9 11-0101 17.11 
1 IMexico I1II 
IIIIiI1 
IIIIIII 
1381 IWest Coast, SI, New Zealand 1-43.5 169.5 11-0I0 1-43.51 
1IIIIII 
IIIIIII 
1382 IWest Coast, SI, New Zealand 1-43.7 169.9 11-00 1-43.71 
II1II1 
IIIIII1 
1384 IWest Coast, SI, New Zealand 1-43.0 170.6 11-010 1-43.01 
II11III 
IIIIIII 
1385 IWest Coast, SI, New Zealand 1-42.8 170.8 11-0I0 1-42.91 
1IIII11 
IIIIIII 
1386 IWest Coast, SI, New Zealand 1-42.5 171.2 I1-0I0 1-42.51 
1IIIIII 
1I1III1 
1387 IWest Coast, SI, New Zealand I-42.5 172.1 1 1- 010 1-42.51 
IIIIIII 
III1III 
1388 IWest Coast, SI, New Zealand 1-42.4 171.7 11-010 1-42.41 
111I1II 
IIIII11 
1390 IWest Coast, SI, New Zealand 1-42.3 171.4 11-010 1-42.31 
1IIIIII 
1I1IIII 
1393 IWest Coast, SI, New Zealand 1-41.9 171.7 11-010 1-41.91 
III11II 
IIIII11 
1394 IWest Coast, SI, New Zealand 1-41.7 172.0 11-010 1-41.71 
I11III1 
IIIIIII 
1100716ibsonvale, NSW, Australia 1-33.7 146.7 11-0I0 1-33.71 
1II1111 
III{III 
I10091Mount Wills, Victoria, 1-36.6 147.5 11-0I0 1-36.61 
1 lAustralia IIII1 
IIIIIII 
IIIIIII 
1395 Inr. Port Pegasus, Stewart I., I-47.1 167.8 12-010 1-47.11 
1 INew Zealand IIII 
IIIIIII 
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Placer Tin cont...... 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEI 
1I AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. I 
IIIIIII 
IIIIIII 
1396 IMount Garnet, nr. Herberton, I-17.4 145.9 1 10 -0I0 1-17.41 

Queensland, Australia 1IIII 
IIIIII1 
IIIIIII 
1397 Blue Tier Area, Tasmania 1-41.4 147.1 1 10 -010 1-41.41 
IIIIIII 

IIIIII 
110101Tandjung Pandan, Billiton, I -2.7 107.6 I010 1-2.7 I 

llndonesia iIIII 
IIIIIII 
IIIIIII 
I1011ITg. Modong, Billiton, I -2.7 108.0 I0I0 1-2.7 I 

lIndonesia lIIII 
IIIIII 
IIIIIII 
11012IToboali, Bangka I., Indonesial -3.0 106.4 1010 1-3.0 I 
1IIIIII 
IIIIIII 
I10131Belinju, Bangka I., Indonesial -1.6 105.8 10I0 1-1.6 1 
IIIIII1 
IIIIIII 
I1014ISelangor, Malaya, Malaysia l 3.3 101.5 I010 13.3 1 
IIIIIII 
IIIIIII 
I1019IIpoh, Malaysia l 4.6 101.1 10I0 14.6 I 
IIIIIII 
IIIIIII 
110201Telok Anson, Malaysia l 4.0 101.2 10I014.0 1 
111111I 
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Placer Oxide Deposits 

IIIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I(M. Y. ) (N. Y. ) {-LAT. I 
IIIIIII 
IIIII1I 
1398 ICoyutlan, Colima, Mexico 118.1-104.0 110I0 118.11 
III 
IIII1II 
1399 IManzanillo, Colima, Mexico 1 19.0-104.3 110I01 19.01 
IIII1II 
I1IIII 
1400 ICuilapan, Oaxaca, Mexico 117.0 -96.8 110I01 17.01 

11 
II1III1 
1401 ILaguna de los Micos, Hondurasl 15.8 -87.6 I1-010 115.81 
iIIIIII 
I1IIIII 
1403 IWaiuku State Forest, NI, 1-37.2 174.7 {1-0I0 1-37.21 
I INew Zealand 1 
IIIII1I 
IIIIII1 
1404 IKaramea Beaches, West Coast, 1-41.2 172.1 1 1- 0I0 1-41.21 
I SI, New Zealand II 

III11I 
IIIIII 
1405 IWest Port, West Coast, SI, 1-41.8 171.6 I1-0I0 1-41.81 
I INew Zealand II 
IIII 
IIII1I 
1406 IFiordland, SI, New Zealand 1-45.0 167.5 I1-010 1-45.01 
111I1II 
IIIII1I 
1407 Stewart Island, New Zealand 1-46.7 168.0 I1-0I0 1-46.71 

I1III1 
I{1III 
1408 lWanganui, NI, New Zealand 1-39.9 175.0 I1-0I0 1-39.91 

II1II 
IIII1 
1409 ITaranaki, New Plymouth, NI, 1-38.0 174.8 11-010 1-38.01 
t INew Zealand {1I 
IIIi1Ii 
I1IIIII 
1410 IOrepuki, Southland, SI, 1-46.4 168.2 I1-0I0 1-46.41 
I INew Zealand IIII1 
II1IIII 
1IIIIII 
1411 10repuki, Southland, SI, 1-46.2 167.6 I1-0I0 1-46.21 
I INew Zealand 1IIIf 
IIIIIII 
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Placer Oxide Deposits cont.... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

1412 {Raglan, Ni, New Zealand 
I i 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. I 
IIIII 
II1I1 
1-37.8 174.9 I1-0I0 1-37.81 
11111 

IIIIIII 
1413 West Port Beaches, West Coastl-41.8 171.6 I1-0I0 1-41.81 
I ISI, New Zealand IIIII 
IIIIIII 
IIIIIII 
1100311uggerah, NSW, Australia 1-33.3 151.4 11-010 I-33.31 
I i IIIII 
IIIIIII 
I1004IBonny Hills, Australia 1-31.5 152.4 11-010 1-31.51 
I 
I 

I 

i 
IIIII 
IIIII 

11005IMoreton I., Queensland, Aust. 1-27.3 153.0 I1-0I0 I-27.31 
I1I1III 
IIIIIII 
I1008IEneabba, West Australia, Austi-30.0 115.0 11-010 1-30.01 
I 

i 
I 
I 

1414 IMuriwai-Whatipu, NI, 
I INew Zealand 
II 
II 
1415 IManukau Peninsula, NI, 
I INew Zealand 
II 
I I 

IIIII 
I1III 
1-38.7 177.9 I2-010 1-38.71 
I1I1I 
I1I11 
I111I 
1-37.0 174.5 I2-0I0 1-37.01 
1I1I1 
I1III 
IIIII 

1416 IKawhia-Aotea, NI, New Zealandi-37.8 174.6 12-0I0 1-38.01 
11II1I1 
IIIII1I 
1402 ILakehurst Area, NJ, USA 1 40.0 -74.3 15-010 140.01 
I I 
II 

III11 

IIIII 
1418 ITaharoa-Marakopa, NI, 1-38.4 174.6 15-010 1-38.41 
1I New Zealand IIIII 
IIIIIII 
IIIIIII 
1419 IGral. Zepeda, Mexico 1 25.4-101.5 1 144 - 88 1100 0. RmI 29.61 
111111I 

i i IIIII 
I1015IPulmoddai area, Sri Lanka I 9.2 80.9 I0I0I9.21 
I111111 
I I IIIII 
110171Richard's Bay, Natal, S. Af. 1-28.8 32.1 1010 1-28.81 
I11111I 
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Placer Other Deposits 

1IIII1I 
1A. N01 DEPOSIT/MINE NAME PRESENT AGE MINZ'NIROTATIONIPALAEI 

1 AND LOCATION CO-ORDS I(M. Y. ) I(M. Y. ) I-LAT. 1 
IIIII1I 
I1IIII 
1420 ICuiaba, Mato Grosso, Brazil 1-15.5 -56.1 11-010 1-15.51 
IIIIII1 
IIIIII 
1421 ICoxipo R., Mato Grosso, 1-15.3 -56.0 I1-0I0 1-15.51 
I IBrazil IIII 

IIIIII 
{IIIII 
1422 IJauru R., Mato Grosso, Brazill-18.5 -54.3 11-0I0 1-18.51 
1I11I1I 
IIIIIII 
1424 IOuro Preto, Minas Gerais, 1-20.9 -43.5 11-010 1-20.91 
1I Brazi lIIIII 
IIIIIII 
IIIIII 
1425 ICubarao, Santa Catarina, 1-28.5 -49.0 11-0I0 1-28.51 
1 IBrazil IIIII 
IIIIIII 
IIIII11 
1426 ITeofilo Otoni, Minas Gerais, I-17.9 -41.3 I1-010 1-17.91 
I Ierazil IIII{ 
IIIIIII 
IIIII1I 
1427 IPedra Azul, Minas Gerais, 1-16.0 -41.3 11-010 1-16.01 
1 IBrazil IIIII 

IIIII1 
IIIIIII 
1428 ICampo Belo, Minas Gerais, 1-20.9 -45.3 I1-0I0 1-20.91 
1I Brazi lIIII 
IIIIIII 
IIIIIII 
1429 IDiamantina, Minas Gerais, 1-18.3 -43.6 I1-010 1-18.31 
II Brazi lIIII 
IIIIII 
IIIIIII 
1430 IGovernador Valaderes, 1-18.8 -41.9 11-010 1-18.81 
I IMinas Gerais, Brazil IIIII 
IIIIIII 
IIIIII 
1431 IMuzo, Colombia l 5.6 -74.1 i1-010I5.61 
1111III 
IIIII1I 
1432 ITrueno, Nacimiento, Sonora, 1 28.2-109.7 I1-010 128.21 
1 IMexico IIIII 
IIIII11 
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Placer Other Deposits cont.... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

1433 IYamba Lake, NWT, Canada 

t 
I 

I 

i 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. I 
IIIII 
IIIII 
165.2-111.4 I1-0I0 165.21 
I1III 
IIIII 

1434 IMt. Arthur Tableland, Nelson, 1-41.2 173.0 I1-0I0 1-41.21 
1 ISI, New Zealand iIIII 
IIIIII{ 
II1IIII 
1435 I6lenorchy District, Otago, 1-44.9 168.4 I1-0I0 1-44.91 
! ISI, New Zealand III1I 
IiI{1II 
I i I i IIi 

1- 010 1-41.41 
III 
I1I 
III 

1- 0I0 1-45.41 
III 
III 
I11 

1436 IDun Mountain, Lee R., Nelson, i-41.4 173.3 I 
1 ISI, New Zealand I 
III 
III 
1437 IMacraes Flat, Otago, SI, 1-45.4 170.4 1 
I New Zealand II 
I 

i 
i 
i 

II 
II 

1438 INr. Hokitika, West Coast, BI, 1-42.7 171.0 I1-0I0 1-42.71 
I INew Zealand IIII 
IIIIII 
IIIIII 
1439 INr. Reefton, West Coast, BI, I-42.1 171.8 11-0I0 1-42.11 
1 INew Zealand IIII{ 
!I11III 
{IIIIII 
1440 IOrepuki District, Southland, 1-46.3 167.7 11-010 1-46.31 
1 I8I, New Zealand I{II1 
IIII1I1 
IIIIII 
1441 IMangles Valley, Murchison, 1-41.7 172.4 1 1- 010 1-41.71 
i 18I, New Zealand I11I{ 
II11I1I 
II! 1{II 
1442 IMangaorongo R., NI, 1-38.3 174.7 11-010 1-38.31 
I INew Zealand IIIII 
IIIIII1 
IIIIIII 
I443 IOwharoa, W. of Waihi, NI, I-37.4 175.8 11-010 1-37.41 
1 INew Zealand II1II 
IIIIIII 
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Placer Other Deposits cont.... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEiB. P. I 
II AND LOCATION I CO-ORDS I (N. Y. ) I(M. Y. ) I-LAT. IPALATI 
III11III 
IIfIIIII 
110061Cape1, W. Aust., Australia 1-33.6 115.4 11-0I0 1-33.61 I 
IIIIIIII 
IIIIII11 
1444 I6olden Bay, Nelson, 8I, 1-40.6 172.8 1 65 I 50 NZ 1-47.61-49.71 
1 1New Zealand IIIIII 
IIII1III 
IIIIIII 
110161Pulmoddai area, Sri Lanka I 9.2 80.9 10I019.21 
1IIIIII 
IIIII1I 
11018IRichard's Bay, Natal, S. Af. I-28.8 32.1 1010 1-28.81 
IIIII1I 
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Manganese Deposits 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT LAGE MINZ'NIROTATIONIPALAEIB. P. I 

I AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 

IIIIIII 
IIIII i I I 

1677 lAutlan, Jalisco, Mexico 1 19.9-104.3 1 38 -2101 19.91 I 

111I1 50 C. AmI 24.11 31.41 

III1IIII 
III{IiII 
1690 ITchiatura Deposits, USSR 1 42.3 43.3 1 38 - 24 10_1 42.3i 

-- -1 I I1 150 EUr i 33.91 35.31 

IIIIIII I 
IIIIIIII 
1691 INikopol Deposits, USSR 1 47.6 34.4 1 38 - 24 I01 47.61 I 

1111 150 Eur 138.71 41.21 

tsýýý ýI I 
11 
1692 IBolshe Tomak Deposit, USSR 
I 

IIIIIi 

1 47.2 35.7 1 38 - 24 101 47.21 1 
11 150 Eur 138.41 40.91 

iý111III 

I1IIIIiI 
1693 IVarna District, USSR 1 43.2 27.9 1 38 - 24 101 43.21 1 

111I1 50 Eur 134.21 35.71 

I1II1III 
IIIIIIII 
1679 IGroote Eylandt, Australia 1-14.0 136.0 1 96 - 94 1100 Aust1-47.41-41.91 

I1IIIIII 
II 
1694 IImini mine, Morocco 
II 
II 
II 
1680 IMolango, Hidalgo, Mexico 
II 
II 
II 
II 
1695 IUrkut District, Hungary 

II 
1696 lEpleny Mine, Hungary 
II 

1697 IMolango Mine, Mexico 

II 
II 
1698 ILeiping District, China 

II 

I1 
1699 ITsunyi District, China 
II 
II 

I 

I 

IIIIII 
130.7 -6.9 1 144 - 97 1100 Afr 115.91 20.71 
1I 1130 Afr 1 22.91 20.11 
111111 

i 20.8 -98.7 

147.1 17.7 

147.2 17.9 

1 20.8 -98.7 

123.5 109.5 

1 27.5 106.5 

IIII 
1 243 - 1441130 C. AmI 23.51 23.51 
I 1200 C. AmI 21.51 2.61 
1 1250 Laurl -4.51 I 
1I1I 
11111 
1 213 - 1881200 Eur 143.31 38.11 
1I1II 
IfIII 
1 213 - 1881200 Eur 1 43.51 38.41 
1111 
1I11 
1 213 - 1881200 0. Am1 21.51 2.61 
11111 
111I 
1 286 - 2581250Chi/JI-12.81 
I I3000hi/JI-17.21 
IfI1 
IIII 
1 286 - 2581250Chi/JI-11.91 
I I3000hi/JI-17.5I 
IIII 
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Laterite Deposits 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT ZAGE MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. I 
IIIII1I 
IIIII I i 
1 48 ISamar Island, Phillipines 1 12.0 125.0 12-0101 12.01 
1II1III 
IIIIIII 
1 49 IRennell Island, Solomon Is., I-11.7 160.2 12-0I0 1-11.71 
IIIIIII 
II1IIII 
1 50 IWagina Islands, Solomon Is., 1 -7.4 157.7 12-0101 -7.41 
I1IIIII 
IIIIIII 
1 51 INiue Island, Tonga Group 1-19.0-169.9 I2-010 1-19.01 
1IIIIII 
III1III 
1 52 ILau Islands, Fiji 1-17.2-179.0 12-010 1-17.21 
1IIIIII 
1IIIIII 
1 53 IMare Island, Loyalty Group 1-21.5 168.0 12-010 1-21.51 

I1IIIi 
IIIII1 

1 54 ILifou Island, Loyalty Group 1-21.0 167.0 12-0I0 1-21.01 
IiII1II 
IIIII1I 
1 64 ICayman Grand island, 1 19.3 -81.2 15-2I0 119.31 

ICayman Islands IIIII 
1II1III 
iIIII11 
1 59 ILa Vega, Dominion Republic 1 19.2 -70.5 1 11 -2I0 119.21 

IIII1I 
IIII1I1 
160 ISt. Marc, Haiti 119.1 -72.7 I 11 -210 119.11 
I111I1i 
III1III 
1 61 INew Port, Manchester Plateau, t 17.9 -77.3 I 11 -210 117.91 
1 IJamaica III11 
IIIII1I 
IIII1II 
1 62 IBog Walk, 1 18.1 -77.0 1 11 -2101 18.11 

ISt. Catherine Plateau, Jamaical I1II 
II1III I 
1IIIII 

1 63 IClarendon Plateau, Jamaica 1 18.0 -77.4 I 11 -2101 18.01 
IIIIIII 
IIIIIII 
1 57 ICockpit County, Jamaica 118.3 -77.7 1 24 -0101 18.31 
1IIII11 
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Laterite Deposits cont.... 

IIIIIIII 
IA. NOi DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIIIIIII 
II11IIII 
1 55 Mang Son, Vietnam 1 21.8 106.7 1 24 -2101 21.81 t 
I11IIIII 
IIIIIIII 
156 ICao Bang, Vietnam 1 22.7 106.3 1 24 -2101 22.71 1 
1IiIII11 
III1iIII 
1 58 IBrown's Town, St. Ann Plateaul 18.5 -77.4 I 24 -2I01 18.51 1 
I IJamaica IIIIII 
II 1_ I_ IIII 
II 
178 IMontufar, Guatemala 
II 
II 
II 
1 79 INiquegua (Eximbal), 

IGuatemala 
II 
II 
1 90 IParaiso, Mexico 

II 
{ 

1 91 IVaquerias (El Sabinal), 
I IHidalgo, Mexico 

II 
192 Riddle, Oregon, USA 
II 
II 
II 
193 IMoa, Cuba 
II 
I1 
II 
194 ILivingston, Guatemala 
II 
II 
II 
195 IKosovo, Yugoslavia 
II 
II 

I1I 
15.4 -89.1 1 38 -210I 15.41 I 

I 150 C. AmI 15.81 22.81 
{I1111 
IIIIII 
1 15.5 -89.4 1 38 -2101 15.51 1 

1 50 C. Am1 16.01 23.01 
1II1I1 
111I1I 
1 24.7-104.0 1 38 -210I 24.71 

1 150 C. AmI 28.71 36.81 
1I1I1I 
I1I11I 
120.3 -98.6 1 38 -210 120.31 

11 50 C. Aml 23.01 30.51 
1I1I11 
111III 
1 42.9-123.4 I 50 -010 142.91 I 

I1 50 N. Ami 50.91 67.71 
II1II 
1IIIII 
1 20.7 -74.9 1 50 -0101 20.71 
1I1 50 C. AmI 17.11 24.51 
IIIII 
I1III 
1 15.8 -88.7 I 50 -0101 15.81 I 
1I1 50 C. AmI 16.11 23.11 
{I1I{1 
II1I1I 
1 42.6 21.1 I 50 -010 142.61 
1I 150 Eur 133.51 34.81 
111111 
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Laterite Deposits cont.... 

IIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT LAGE MINZ'NIROTATIONIPALAEIB. P. 

I AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIIII 

IIII 
96 IMarmara, Greece 1 38.8 22.1 1 50 -0I0 138.81 1 

11 150 Eur 129.71 19.31 
1IIIIII 
IIIIIIIi 
197 IKharkov, Ukraine, USSR 1 50.0 36.2 1 50 -010 150.01 
I111 50 Eur 141.21 44.51 
I11IIIII 
IIIIIIII 
198 IOrsk, Urals, USSR 1 51.2 58.6 I 50 -010 151.21 1 
1111 150 Eur 1 43.81 48.11 
III11I11 
I11III1I 
199 IGreenvale, Queensland, 1-18.9 145.1 1 50 -010 1-18.91 1 
1 IAustralia l1 150 Austl-41.21-43.81 

IIIýIýý i 
II 
1100 IBuhiga, Burundi 
I i 

IIIIII 
1 -3.0 30.1 I 50 -0I0I -3.01 i 
I11 50 Afr 1-19.01-21.11 

ýIIIIII i 
IIIIIII 
1101 Ni'. IMankono, Ivory Coast 1 8.0 -6.1 I 50 -0I0I8.01 
I11I 150 Afr 1 -4.21 -1.71 
II! 1III 

III!! 11 
1102 IThio, New Caledonia 1-21.6 166.2 I 50 -010 1-21.61 I 
11II 150 Sundl-52.51 
IIIIIIII 

i i IIIIII 
1103 ISulawesi, Indonesia 1 -2.8 121.5 1 50 -010I -2.81 
II1I 150 Sundl-11.71 

IIIIIII 
IIIIIIII 
1104 IGebe Island, Halmahera, 1 -0.1 129.5 1 50 -010I -0.11 i 
I llndonesia lI 150 Sundl-14.41 I 
IIII1II 
III1IIII 
1106 ISan Fernando de Atabapo, I 4.0 -67.7 I 50 -0I014.01 
I IVenezuala II1 50 S. Am1 -0.21 4.91 
1I1IIIII 
IIIII1lI 
1107 ITunja, Colombia I 5.5 -73.4 1 50 -01015.51 I 
1II1 150 S. AmI 2.21 7.41 
11111111 
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Laterite Deposits cont.... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT LAGE MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. IPALATI 
IIIIIII 
II 
1108 IBarro Alto, Brazil 
I I 

III i I 
I 
I 

1-15.1 -48.9 1 50 -010 1-15.11 I 
I11 50 S. AmI-21.71-17.31 

ýi: IIII I 
IIIIIII1 
1109 ILiberdade, Minas Gerais, 1-22.0 -44.4 1 50 -010 1-22.01 1 
I Brazil II1 50 S. Aml-29.11-25.41 
IIIIIII 
IIIIIII 
169 lGramsh, Albania 1 40.9 20.2 1 50 - 42 150 Eur 131.81 22.01 
I1I1III 
II11III 
1 68 IJammu, Kashmir, India 1 32.7 74.9 1 65 - 45 1 50 Ind 1 3.71 -4.61 
1I1IIIII 
IIIIIIII 
166 lArkalyk, Kazakhstan, USSR 1 50.3 66.8 I 65 - 50 1 50 Sib 1 43.71 48.01 

1IIIIIII 
II{IIII 
1 67 ISargodha, Pakistan 1 32.1 72.7 I 65 - 54 150 Ind I 3.61 -4.81 
iIIIIII 
IIIIIIII 
1 65 1Tatarsk, Novosibirsk, USSR 1 55.2 76.0 1 65 - 55 1 50 Sib 1 49.51 56.51 
I1I111II 
1IIIIII1 
170 lEbro Massif, Catalonia, 1 44.7 9.2 1 65 - 55 150 Eur 1 35.71 31.11 
1 ]Spain III1I 
IIIII1I1 
IIIIIIII 
1 72 ISalzburg, Tirol, Austria 1 47.9 13.0 1 91 - 88 1100 Eur 130.51 36.41 
111I11II 
IIII1III 
1 71 IAriege, Pyrenees, France 1 43.1 -1.0 I 98 - 88 1100 Eur 1 27.01 30.81 
11II1III 
III1IIII 
1 80 ISpinazzola, Apulia, Italy 141.0 16.1 I 98 - 88 1100 Eur 123.51 22.81 
11111111 
IIIIIIII 
1 89 ITurgat Area, USSR 149.6 63.4 1 113 - 88 1100 Sib 134.51 37.61 
I1IIIIII 
IIIIIIII 
1 86 INaurzumsk, Kazakhstan, USSR 151.5 64.5 1 113 - 91 1100 Sib 136.51 40.01 
11111111 
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Laterite Deposits cont... 

II 
IA. NOI DEPOSIT/MINE NAME 
II AND LOCATION 
II 
I I 
187 IChadobets, USSR 
I 
I 

I 

I 
1 88 IKeul, Angara Area, USSR 
I I 
II 
185 IMegara, Greece 
I i 

IIIII 
I PRESENT IAGE MINZ'NIROTATIONIPALAEIB. P. 
I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIII 
IIIII 
158.7 98.9 1 113 - 91 1100 Sib 1 49.91 55.71 
IIIII 
IIIII 
158.4 102.7 1 113 - 91 1100 Sib i 50.51 56.31 
1I1I11 
11111I 
1 38.0 23.3 1 113 - 98 1100 Eur 120.21 24.11 
11111 

IIIIIIII 
1 77 ISalair, Altay-Sayan Region, 154.2 85.9 1 119 - 97 1100 Sib 142.91 46.61 
1 IUSSR IIIIII 
IIIIIIII 
II 
1 81 IOrsk, Urals, USSR 
II 
II 
1 82 (Chelyabinsk, Urals, USSR 
II 
II 
183 IAlapayevsk, Urals, USSR 
II 
II 
1 84 1Uralsk, Kazakhstan, USSR 
II 
II 
1 75 ISt. Paul de Fenouillet, 
I (Pyrenees, France 
II 
II 
176 INurri, Sardinia 
II 

i I 

IIIIII 
51.2 58.6 1 119 - 97 1100 Eur 135.41 39.11 

11111 
11I11 

55.2 61.4 1 119 - 97 1100 Sib 139.71 44.41 
I1III 

1111I1 
157.9 61.7 1 119 - 97 1100 Sib 1 42.31 48.11 
1I111I 
1III11 
1 51.3 51.3 1 119 - 97 1100 Eur 1 34.71 38.91 
I11I1I 
11111I 
1 42.8 2.5 1119 - 98 1100 Eur 126.31 32.01 
11II1I 
IIII1I 
11111I 
1 39.7 9.2 1 119 - 98 1100 Eur 122.6I 30.11 
IIiIII 
IIIII1 

174 IMorella, Maestrazgo, 140.6 -0.1 I 119 - 1131100 Eur t 24.41 28.11 
1 ICatalonia, Spain ItII1 
IIII1I1 
III! {I1 
1 45 IChimkent, Kazakhstan, USSR 1 42.3 69.1 1 138 - 1311130 Sib 136.71 24.71 
i 
I 

i 
I 

147 (Kandahar, Afghanistan 
II 

i 

IIIIII 
IIIIII 
1 31.0 65.5 1 144 - 97 1100 Ind 1-34.51 17.61 
tI 1130 Ind 1-63.81 12.81 
IIIIII 
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Laterite Deposits cont... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME PRESENT 1A6E MINZ'NIROTATIONIPALAEiB. P. I 

II AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 

IIIiIiI 
IIIIIIII 
173 IKansaysk Area, Tadzhikistan, I 40.5 69.7 1 144 - 97 1100 Sib i 26.61 27.71 

I IUSSR 1 1130 Sib 1 35.01 22.91 

11111I1I 
1IIIIIII 
1 46 IViasenica, Yugoslavia 1 44.2 19.0 1 144 - 98 1100 Eur 126.51 31.41 

i i I1 1130 Eur 138.11 25.71 
III11I 
11IIIII 
1 44 IPadurea Craiului, Rumania 144.3 23.8 1 144 - 1251130 Eur 1 38.11 25.41 
1IIIIII 
I1IIIII 
140 IRovinj Vrsar, Istria, 1 45.1 13.7 1 150 - 1441130 Eur 1 39.21 20.71 
1 Yugoslavia lIIII 
IIIIIII 
IIIIIIII 
1 41 ICrimea, USSR 1 45.0 33.7 1 156 - 1501130 Eur 138.61 25.61 
1111I1I1 
1I111111 
1 42 IAtlanti, Helicon Range, 1 38.6 23.0 1 163 - 1561130 Eur 1 32.41 19.41 
I Greece IIIIII 
IIIIIIII 
IIII1III 
143 IEuboia island, Greece 138.8 23.5 1 163 - 1561130 Eur 1 32.61 19.71 
11111111 
II 
1 38 IVanoise, France 
II 

IIIIII 
145.4 6.8 1188 - 1631130 Eur 139.91 28.71 
I1 1200 Eur 1 39.11 32.71 

IIIIIIIt 
I I IIIIII 
139 ICampellpore, Pakistan 133.8 72.4 1 188 - 1631130 Ind 1-61.81-35.41 
II11 1200 Ind 1-31.81-16.21 
11111111 
II 
137 ISkopelos Island, 
I Ipelagonian Zone, 

IIIIII 
139.2 23.7 1 213 - 1881200 Eur 137.51 22.71 

Greece IIIIII 
IIIIIII 
IIIIIII 
135 Merman, Central Plateau, Iranl 30.3 57.1 1 231 - 2131200 Arabl 5.91 
1111 1250 Gondl-28.01 

I 
,' 

13.51 
1 
i 
! 

IIIIII1 
IIIIIII 
136 (Yazd, Central Plateau, Iran 1 31.9 54.4 1 231 - 2131200 Arabi 8.01 
II11 1250 Gondl-26.51 

14.71 

IItIIII 
f 
I 
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Laterite Deposits cont.... 

IIIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. IPALATI 
I1IIIIII 
IIIIIII 
1 34 lAlbanian Alps 142.4 19.7 1 238 - 2251200 Eur 1 36.31 
1111 1250 Ceurl 1.81 

I 

I1IIIiI 
IIIIIII 
133 IVolos, Pelagonian Zone, 139.4 23.7 1 248 - 2131200 Eur i 37.71 
I IGreece 11 1250 Seurl 0.31 

i 

IIIiII 
III11I 
130 IMenderes Massif, Turkey 1 39.8 26.8 1 258 - 2431250 Turkl 1.81 
IIIIII 
IIIIIII 
1 22 IChura Gali, NW Frontier, 134.3 73.4 1 258 - 2431250 Gondl-21.31 

IPakistan I1I 
IIIIIII 
IIIIII 
1 23 IBukan, Iran 1 36.5 46.2 1 258 - 2431250 Gondl-21.61 

IIIIIII 
iIItIII 
1 28 i8amos, Aegean Islands 1 37.7 26.9 1 258 - 2431250 Seurl -0.11 
IIIIIII 
IIIIIII 
1 29 INaxos, Aegean Islands 1 37.1 25.4 1 258 - 2431250 Beurl -1.21 
I111111 
IIII 
1 25 (Lang Son, Vietnam 1 21.8 106.7 1 258 

1 
21.41 

i 
ý 
i 

22.91 

i 
- 2481250 Sundl-15.81 

ýIIIII 
IIII 
126 ICao Bang, Vietnam 122.7 106.3 I 
I111 

258 
I I 

I 
I 

- 2481250 Sundl-15.51 
i i I 

III1I1I 
1 27 ISisophon, Kampuchea 113.6 103.0 1 258 - 2481250 Sundl-24.11 
11I1II1 
IIIIIII 
1 31 IAlanya, Western Taurus, Turkeyl 36.5 32.0 1 258 - 2481250 Turkl 0.91 
11I1III 
1111III 
132 lAdama, Eastern Taurus, Turkeyl 38.6 28.3 1 258 - 2481250 Turkl 1.21 
1111I1I 
IIIIIII 
121 1Vienna, Gasconade County, 1 38.2 -92.0 1 333 - 3001300 Laurl -0.41 
1 IMissouri, USA 11 1350 Laurl-11.01 
IIIII11 

I 
I 
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Laterite Deposits cont... 

II 
IA. NOI 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. I 
IIIII 

IIIIIII 
120 IKuei-Yang, Kweichow Province, l 26.6 106.7 1 333 - 305I3000hi/JI-17.8I 
I IChina II I350Chi/JI-15.6I 
IIIIII1 
IIIIIII 
1 19 ITobyssk, Timan Range, USSR 1 63.2 53.1 1 352 - 3331350 Eur 1 27.01 
I 
I 

i 
I 

1 18 IKulkuduk, Bukantau, USSR 
I i 
II 
II 
1 16 1Kunming, Yunnan Province, 
I IChina 
I 
I 

I 
I 

117 (Hsu-Ch'ang, Gun District, 
I (China 
II 
Ii 
115 (Chitral, Hindukush Range, 
I (Pakistan 
i 
I 

I 
I 

1IIII 
II11I 
l 42.5 63.3 1 360 - 3001300 Sib 124.51 
i1 1350 Sib 1 -5.01 
I11I1 
IIIII 
1 25.1 102.7 1 360 - 32013000hi/JI-21.71 
I1 1350Chi/j1-19.41 
II1II 
IIII1 
1 34.0 113.8 1 360 - 32013000hi/JI -8.81 
II 1350Chi/JI -8.11 
IIIII 
IIIII 
1 35.9 72.0 1 387 - 3741350 Gondl-38.0I 
1I 1400 Gondl-13.31 
IIIII 
IIIII 

114 ITselinograd, Kazakhstan, USSRI 51.2 71.5 1 468 - 4381450 Sib 1 20.31 
111111I 
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Phosphate Deposits 

IIIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. I 
IIIIII 
IIII11 
1773 INo. 209 Bore (135m), Off-shoret -7.7 -81.2 i1-0101 -7.71 
1 IPeru IIII 
IIIIII 
IIIIIII 
1774 No. 212 Bore (300m), Off-shorel -9.2 -78.8 11010I -9.21 
1 IPeru IIII1 
IIIIIII 
IIIIIII 
1775 No. 221 Bore(1000m, Off-shore)I-15.1'-75.8 11-0I0 1-15.11 
1 IPeru IIII 
IIIIIII 
IIIIIII 
1766 IOff-shore, Baja California, 1 26.4-113.4 I2-010 126.41 
I Mexico IIIII 
IIIIIII 
IIIIIII 
1767 10ff-shore, Baja California, 1 25.8-112.6 12-0I01 25.81 
I IMexico IIIII 
IIIII11 
1 
1768 
1 

IIIIII 
(Boca de las Animas, Baja 125.7-112.1 12-0I0 125.71 
(California, Mexico IIIII 

1IIIIII 
IIIIIII 
1769 IBoca de Solidad, Baja 1 25.2-112.2 2-010 25.21 
1 ICalifornia, Mexico I111 
IIIII1 
IIIIIII 
1770 10ff-shore, Baja California, 1 25.6-113.1 12-0I0 125.61 
I IMexico I1I1 
IIIIIII 
IIIIIII 
1771 10ff-shore, Baja California, 125.1-112.7 I2-0101 25.11 
1 IMexico IIII 
IIIIIII 
IIIIIII 
1772 lAgulhas Bank, Cape of 1-35.8 22.5 12-010 1-35.81 
1 IGood Hope, S. Africa IIIII 
IIIIIII 
IIIIIII 
1728 IIpswich, Suffolk, England 1 52.1 1.2 I5-2101 52.11 
IIIIIII 
IIII1II 
1729 INotojima Island, Japan 137.2 137.0 I 11 -5I01 37.21 
111111i 
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Phosphate Deposits cont..... 

IIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT ZAGE 
II AND LOCATION I CO-ORDS I 
IIII 

III I 

III 
MINZ'NIROTATIONIPALAEI 

M. Y. )I (M. Y. ) I-LAT. I 
IIi 
III 

1730 lUsetsu Area, Noto Peninsula, l 37.4 137.2 1 11 -51 
i 
i 

I Japan 
i 

11 
1747 10ff-shore, S. Africa 
II 
II 
1748 10ff-shore, nr. Saldanha, 
I IS. Africa 
I 
I 

I 
i 

1749 toff-shore, nr. Cape Town, 
I IS. Africa 

i 
I 

I 

i 

III 
III 
III 
1-30.8 15.5 i 24 -2I 
III 
II1 
1-32.8 17.5 1 24 -2 
III 
III 
III 
1-34.3 18.0 1 24 -2I 
III 
I1I 
III 

1750 10ff-shore, nr. Agulhas Bank, I-35.5 19.0 { 24 -2I 
I IS. Africa {II 
IIIiI 
IIIII 
1751 10ff-shore, E. Agulhas Bank 1-35.7 21.5 1 24 -2I 
1 IS. Africa III 
II-1I{ 

0 

0 

0 

0 

0 

0 

1 37.31 
t 
11 

1-30.81 
1I 
II 
1-32.81 

I1 
1-34.31 
1I 
11 
II 
1-35.51 
II 

I1 
1-35.71 
II 

IIIII11 
1752 10ff-shore, W. of Cape Recife, 1-34.3 23.0 I 24 -2I0 1-34.31 
1 IS. Africa IIIII 
1IIIIII 
IIII1II 
1753 fOff-shore, W. of Cape Recife, I-34.3 24.0 1 24 -210 1-34.31 
I IS. Africa IIIII 
IIIIIII 
IIIIIII 
1776 IWillemstad, Table Mountain, { 12.1 -68.7 1 24 -2I0 112.1I 
1 ICuracao IIIII 
IIIIII I 
IIIIIII 
1735 10cala Hard Rock, Florida, USAI 29.2 -82.1 I 24 -5I01 29.21 
1111111 

i I I i III 
1736 (Savannah, Georgia, USA 1 32.1 -81.1 I 24 -5101 32.11 
1IIII11 
IIIII11 
1737 ISt. Augustine, Florida, USA 1 29.9 -81.3 1 24 -5I0 129.91 
1111111 
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Phosphate Deposits cont.... 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT TAGE MINZ'NIROTATIONIPALAEOI 
II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I -LAT. I 
IIIIIII 
11 
1738 Waldo, Florida, USA 

i i 
II 

i i 
129.8 -82.2 I 
II 
II 

1739 IMacclenny, Florida, USA 1 30.3 -82.1 1 
I 

i 
I 
I 

Ii 

tý 
1740 (Thelma, Georgia, USA 1 30.8 -82.8 1 
i 
I 

i 
I 

t1 
1I 

1741 Melbourne, Florida, USA 1 28.1 -80.6 1 
I 
Z 

I 
I 

It 
Ii 

1742 IFort Ogden, Florida, USA 1 27.1 -81.9 1 
I 

i 
I 
I 

iý 
{{ 

1743 Mulberry, Florida, USA 1 27.9 -82.0 1 
11I1 
11I1 
1744 IBeaufort, Newington, Georgia, I 32.6 -81.5 1 
1 IUSA II 
IIII 
II11 
1745 IFrying Pan, Off-shore, 1 33.8 -77.7 1 
I (North Carolina, USA 1I 
1 
I 

i i I 
I 

1746 IAurora, Pungo R., 
I INorth Carolina, USA 

I i 
1 35.3 -76.8 1 
I 

I11 
24 -510I 29.81 

11I 
111 

24 -5101 30.31 
1I1 
1iI 

24 -5101 30.81 
111 
1II 

24 -5I0I 28.11 
111 
1II 

24 -5101 27.11 
II1 
111 

24 -5101 27.91 
111 
II1 

24 -5I01 32.61 
1II 
III 
I1I 

24 -5101 33.81 
III 
III 
III 

24 -5101 35.31 
III 

II1IIi! 
III ,1I! I 
1755 ILangebannweg, S. Africa 1-32.9 18.1 I 24 -5I0I -32.91 
II1I1I! 
1I1I1II 
1756 IBomgat, nr. Saldanha, 1-33.0 17.9 1 24 -510I -33.01 
1 IHoedjiespunt, S. Africa IIIII 

II 
I I 

I 
I 

I 

i 
I 

1757 IHondeklipbaai, Namaqualand, 1-30.3 17.3 1 
1 18. Africa I 
IIII 
III 
1758 IYsterplatt, E. of Cape ? own, I-33.9 18.5 1 
I IS. Africa I 
IIII 

tIt 
iii 

24 -5I0I -30.31 
1Ii 
1Ii 
III 

24 -510I -33.91 
111 
111 
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Phosphate Deposits cont.... 

IIIIIIII 
IA. N01 DEPOSIT/MINE NAME PRESENT IAGE MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIIIIIII 
IIIIIII1 
1759 IMinchales, Sechura, Peru 1 5.9 -80.5 I 24 -510I5.91 1 
1IIII111 
I11I11I1 
1765 ILee Creek's Mine, 1 35.3 -77.1 1 22 - 19 101 35.31 
1 INorth Carolina, USA IIIIIIIIIII 

IIIIIII 
1777 IS. Hilario (North), Mexico 124.5-111.0 I 38 -2I01 24.51 
11111 50 C. AmI 30.31 36.31 
II111I11 
I1III1I1 
1778 IS. Hilario (South), Mexico 1 24.3-111.2 1 38 -2101 24.31 1 
111I1 50 C. Amf 30.11 36.11 
11111III 
IIII11I1 
1779 Western Desert, 1 33.2 39.0 1 52 - 50 1 50 Arabi 15.51 13.21 
I I(Northern Limit), Iraq IIIII 
I1IIIIII 
III1IIII 
1780 Western Desert, 132.3 39.4 1 52 - 50 150 Arabi 14.61 12.31 
1 I(Southern Limit), Iraq IIIIII 
IIIIIII 
III1IIII 
1781 IGa'ara, Iraq 1 33.7 40.4 1 73 - 65 150 Arabi 15.91 13.51 
11111111 

i I 
1782 IRutba Deposit, Iraq 
t 
I 

IIIIII 
133.0 40.3 1 73 - 65 150 Arabl 15.21 12.91 

IIIiIII 
I 

1761 ITaplow, London, England 
I I 

III1II 
151.5 -0.1 I 88 - 65 150 Eur 142.81 46.71 
11 1100 Eur 1 35.11 42.81 

IIIIIIII 
I1IIIIII 
1760 lArnager, Southern Bornholm, 1 55.0 14.8 1 97 - 91 1100 Eur 1 37.51 45.11 
1I Denmark IIIIII 
IIIIIIII 
IIIIII11 
1762 Woburn, Beds, England 1 52.0 -0.6 1 119 - 91 1100 Eur 135.71 43.51 
II11III1 
11II1111 
1764 INr. Cambridge, Cambs, Englandl 52.2 0.1 1 119 - 91 1100 Eur 1 35.81 43.71 
II11III1 
I111IIII 
1783 IChapopote 1&2, Nuevo Leon, I 25.7 -99.7 1 144 - 88 1100 C. AmI 29.21 29.21 
1 IMexico 1I 1130 C. AmI 28.51 28.91 
111I1111 
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Phosphate Deposits cont..... 

III1IIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT iA6E MINZ'NIROTATIONIPALAEIB. P. I 
II AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. IPALATI 
IIIIIIII 
IIIIII1I 
1784 IMitra & Arteaga, Nuevo Leon, I 24.8-100.8 1 243 - 1441130 C. AmI 27.81 28.51 

IMexico 
iI 
II 
Ii 
1785 (Sierra Gomez-Farias, 
I ICarboneras, Mexico 
II 
II 
II 
1786 ISierra la Catana, Mexico 
II 
II 
II 
II 
1787 (Unknown, Idaho, USA 
II 
II 
1788 (Unknown, Oregon, USA 
II 

1789 (Unknown, Oregon, USA 

ýi 
it 

i 1200 0. AmI 25.91 6.81 
I 1250 Lauri -0.31 i 

{I11I1 
II1II1 
1 24.9-101.0 1 243 - 1441130 C. Aml 27.91 28.61 

1 1200 C. AmI 26.11 6.91 
1 1250 Lauri -0.11 1 

IIIIII 
IIIIII 
1 25.2-101.3 1 243 - 1441130 C. AmI 28.21 29.01 

1 1200 C. AmI 26.51 7.21 
11 1250 Lauri 0.41 1 
IIIIII 
iIIII 
143.0-112.0 1 258 - 2481250 Lauri 19.21 
IIIIf 
IIIII 
i 43.0-118.0 1 258 - 2481250 Lauri 22.51 
1I1II 
IIIII 
1 46.0-117.0 1 258 - 2481250 Lauri 23.81 
11III 
IIIII 

1790 lUnknown, Western Australia 1-18.0 125.0 1 263 - 2481250 Gondl-24.3I 
I Australia lIIIi 
IIiIIII 
IIIIIII 
1791 lUnknown, B. C., Canada 1 52.0-118.0 1 263 - 2531250 Lauri 27.91 
IIIiIII 
II1IIII 
1792 lUnknown, Queensland, Australial-24.0 150.0 1 263 - 2531250 Gondt -6.71 
I1I1II1 
IIIII11 
1793 lUnknown, Kiangsi, China 1 29.0 116.0 1 286 - 2481250Chi/JI -4.81 
I1I1 I3000hi/JI -9.41 
1I1IIII 
IIIIIII 
1794 IUnknown, British Columbia, 1 57.0-133.0 1 286 - 2481250 Lauri 37.91 
1 ICanada 11 1300 Lauri 32.21 
I 
I 

I 

i 
ýII1i 
IiiIi 

1795 1Unknown, Komi, USSR 164.0 58.0 I 286 - 2481250 Eur 132.01 
ittt 1300 Eur 1 28.91 
III111I 
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phosphate Deposits cont..... 

IIIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEI 

AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. 1 
IIIII 

IIIIIII 
1796 IUnknown, Islamabad, Pakistani 34.0 73.0 1 286 - 2481250 Gondl-21.71 

l11 1300 Gondl-33.11 
IiIIIII 
IIIIIiI 
1797 lUnknown, Western Australia, 1-27.0 116.0 1 286 - 2631250 Gondl-35.61 
I lAustralia 11 1300 Gondi-27.01 
I1111II 
III1III 
1798 IUnknown, Kampuchea 1 11.0 104.0 i 296 - 2861300 Sundi-27.61 
I11IIII 
IIIIIII 
1799 IUnknown, Vietnam 1 21.0 106.0 1 296 - 2861300 Sundl-21.21 

IIIII 
IIIIIII 
1800 IUnknown, Kansas, USA 1 38.0 -95.0 1 315 - 2861300 Lauri 0.91 
1I111IIIII 

1801 Unknown, Alberta, Canada 1 51.0-115.0 1 315 - 2961300 Lauri 20.11 
I111III 
1IIIIII 
1802 IUnknown, Texas, USA 1 32.0 -97.0 1 320 - 3151300 Lauri -2.61 
1Ii111 
1IIIII 
1803 IUnknown, Idaho, USA 1 42.0-112.0 1 330 - 3201300 Lauri 18.91 

11 1350 Lauri -4.51 
11111IIIIl 

1804 IUnknown, Yukon Territory, 168.0-132.0 i 360 - 3201300 Lauri 35.11 
I ICanada 11 1350 Lauri 18.81 
IIIIiII 
IIII1Ii 
1805 lUnknown, Tennessee, USA 1 36.0 -88.0 1 360 - 3201300 Lauri -4.1I 

I1I 1350 Lauri-14.81 
IIIIIiI 
II1IIIi 
1806 IUnknown, Islamabad, Pakistani 34.5 73.0 1 360 - 3521350 Gondl-38.61 
IIIIII 
I111III 
1807 IUnknown, Islamabad, Pakistani 34.0 73.0 1 374 - 3601350 Gondl-39.61 
iIiII1I 
I1IIIII 
1808 IUnknown, Iran 1 32.0 56.0 1 374 - 3601350 Gondl-49.4I 
IIIII11 
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Phosphate Deposits cont.... 

II 
IA. NOI DEPOSIT/MINE NAME 
I1 AND LOCATION 
II 
II 
1809 iUnknown, Bushehr, Iran 
11 
it 
1810 (Unknown, Tehran, Iran 
11 
11 
1811 (Unknown, Azarbaijan, Iran 
! 
I 

I 

i 

IIII 
I PRESENT iAGE MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
IIII1 
IIIII 

28.0 52.0 1 374 - 3601350 Gondl-54.61 
IIII1 
IIIII 
1 35.0 52.0 1 374 - 3601350 Gondl-48.31 
IIII1 
IIIII 
1 38.0 47.0 1 374 - 3601350 Gondl-46.81 
IIII1 
IIIII 

1812 IUnknown, Pennsylvania, USA 140.0 -77.0 1 374 - 3601350 Lauri-19.41 
IIII1II 
III{II1 
1813 IUnknown, Kazakhstan, USSR 1 48.0 75.0 1 374 - 3601350 Sib 128.81 
11I1III 
IIII1II 
1819 IUnknown, Chelyabinsk, USSR 1 54.0 58.0 1 387 - 3741350 Eur I 1.01 
II1I 1400 Eur I -5.81 
III111{ 
11 
1914 IUnknown. Cilicia, Turkey 
i 
i 

i 
i 

II 
1815 IUnknown, Guipuzcoa, Spain 

II 
II 
II 
1817 Unknown, Finnmark, Norway 
II 
I 
I 
1818 Unknown, Kirgiziya, USSR 

i 
I 

I 
i 

IIIII 
1 37.0 35.0 1 408 - 3601350 Turkl-33.61 
I{ 1400 Turkl-24.31 
1IIII 
1IIII 
1 43.0 -2.0 1 408 - 3601350 Seurl-28.11 
11 1400 Seur1-41.61 
IIIII 
IIIII 
1 69.0 25.0 1 408 - 3601350 Eur I 2.01 
1i 1400 Eur 1-11.11 

III1 I 
IIIII 
1 42.0 76.0 1 408 - 3601350 Sib 128.21 
I1 1400 Sib 125.81 
11111 

IIIIIII 
1820 IUnknown, Krasnoyarskiy Kray, I 68.0 89.0 1 408 - 3871400 Sib 1 32.11 

IUSSR 
II 
II 

I: II 
IIII 
IIII 

1821 (Unknown, Pennsylvania, USA 1 40.0 -77.0 1 408 - 3871400 Lauri-35.41 
IIIII 
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Phosphate Deposits cont.... 

II 
IA. NOI 
II 
I1 

I 
DEPOSIT/MINE NAME I PRESENT 

AND LOCATION I CO-ORDS 
I 

IIII 
IAGE MINZ'NIROTATIONIPALAEI 
I (M. Y. ) I (M. Y. ) I-LAT. I 
IIII 

IIIIIiI 
1822 IUnknown, Islamabad, Pakistan 134.0 73.0 1 408 - 3871400 Gondl-12.91 
I1III1I 
II1IIII 
1823 lUnknown, Krasnoyarskiy Kray, 1 67.0 100.0 1 408 - 3871400 Sib 136.41 

IUSSR 
II 
II 
1824 lUnknown, Chelyabinsk, USSR 
II 
1I 
II 
1825 IUnknown, Clywd, Wales 
II 
II 

t1 
1826 IUnknown, Kiangsi, China 
I 

i 
I 

I 

i 
I 

1II 
IIIII 
i1l 
1 54.0 58.0 1 428 - 4141400 Eur -5.81 
1 1450 Eur 1 6.81 
11IiI 
IIIII 
1 53.0 -3.0 1 438 - 4081400 Ceurl-35.81 
I1 1450 Ceurl-21.61 
IIIII 
IIIII 
129.0 116.0 1 438 - 40814000hi/JI 23.61 
I1 1450Chi/JI-13.51 
IIIII 
IIIII 

1827 iUnknown, Kazakhstan, USSR 1 43.0 65.0 1 438 - 4081400 Sib 1 18.21 
I1I1 1450 Sib 120.81 
1I1I1II 
IIIIIII 
1828 (Unknown, Amur Oblast, USSR 1 53.0 129.0 1 438 - 4081400 Sib 1 56.21 
1111 1450 Sib 1 32.31 
IIIIIII 
IIIIIII 
1724 ILlangyog Area, Clywd, Wales 1 52.8 -3.4 1 458 - 4381450 Eur 1-27.81 
I 
I 

I 
I 

1725 IDubuque County, Iowa, USA 
I 

i 
I 
I 

1726 IDubuque County, Iowa, USA 

i I 
1I 
1727 IDubuque County, Iowa, USA 
II 
it 
1829 (Unknown, NSW, Australia 
II 
II 
1830 (Unknown, Wisconsin, USA 
II 

IIIII 
IiIIi 

42.5 -90.8 1 448 - 4381450 Lauri-37.91 
IiIII 
IiII 

42.5 -90.6 1 448 - 4381450 Laurl-38.31 
IIIII 
I1I1 
1 42.3 -90.4 1 448 - 4381450 Laurl-38.01 
IIIII 
iIII 
1-36.0 148.0 1 458 - 4381450 Gondl 48.41 
IIIII 
IIIII 
1 43.0 -91.0 1 458 - 4381450 Lauri-37.51 

IIII 
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Phosphate Deposits cont..... 

IIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEI 
I AND LOCATION I CO-ORDS (M. Y. ) I (M. Y. ) I-LAT. 1 
IIIIIII 
IIIIII 
1831 Unknown, Kristianstad, Swedenl 56.0 14.0 1 478 - 4381450 Eur 1-17.61 
11I1I 
IIII1i 
1832 IUnknown, NT, Australia 1-23.0 130.0 1 478 - 4581450 Gondl 31.11 
I11II1I 
IIIII1 
1833 IUnknown, Kazakhstan, USSR 1 42.0 73.0 1 478 - 4581450 Sib 126.41 
IIIIIII 
IIIIIII 
1834 IUnknown, Krasnoyarskiy Kray, l 67.0 92.0 1 478 - 4581450 Sib 1 15.81 
1 IUSSR IIII 
IIIIIII 
IIIIIII 
1835 IUnknown, Evenkiyskiy Nats. 1 62.0 97.0 1 478 - 4581450 Sib 1 21.21 
1 IOkrug, USSR I1I1 
IIIIIII 
II11III 
1836 IUnknown, Krasnoyarskiy Kray, l 58.0 107.0 1 478 - 4581450 Sib 126.71 
1 IUSSR IIII 
IIIIIIi 
IIIII1I 
1837 IUnknown, Yukutskaya, USSR 161.0 118.0 1 478 - 4581450 Sib 1 24.71 
I1IIIII 
IIIII1I 
1838 IUnknown, Evenkiyskiy Nats. 1 63.0 92.0 1 478 - 4581450 Sib 119.21 
1 IOkrug, USSR IIII 
IIIIII1 
IIIIIII 
1839 lUnknown, Irkutskaya Oblast, 1 57.0 102.0 1 478 - 4581450 Sib 126.81 
{ IUSSR IIII 
IiIIIII 
I1IIIII 
1840 IUnknown, Taymyrskiy, USSR 1 74.0 90.0 1 478 - 4581450 Sib I 9.41 
IIIIIII 
IIIIIII 
1841 Unknown, Oklahoma, USA 1 35.0 -98.0 1 505 - 4381450 Lauri-36.61 
IIIIIII 
IIIII11 
1842 IUnknown, Szechwan, China 129.0 103.0 1 505 - 438I450Chi/JI -3.11 
111III1 
IIIIIII 
1843 Unknown, Kentucky, USA 1 37.0 -86.0 1 505 - 4381450 Laurl-44.11 
IIIIIII 
IIIII11 
1844 Unknown, Alabama, USA 1 33.0 -86.0 1 505 - 4381450 Laurl-46.41 
IIIIIII 
IIIII11 
1845 IUnknown, Nova Scotia, Canadal 44.0 -66.0 1 505 - 4381450 Laurl-48.6I 
IIIII1I 
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Phosphate Deposits cont.... 

II 
IA. N01 DEPOSIT/MINE NAME 
{{ AND LOCATION 
II 
II 
1846 (Unknown, Gwynedd, Wales 

11 
1847 IUnknown, NSW, Australia 
11 
i{ 
1848 1Unknown, NT, Australia 
i1 
{{ 
1849 1Unknown, Puerto Rico 
1i 
I1 
1850 (Unknown, Leningrad, USSR 
II 
I1 
1851 (Unknown, Kirgiziya, USSR 
II 

1IIII 
I PRESENT IAGE MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. I 
IIII1 
IIIII 
i 53.0 -4.0 1 505 - 4781450 Ceurl-22.11 
IIII1 
IIIi1 
1-15.0 130.0 i 505 - 4781450 Gondl 28.61 
111II 
IIIi1 
1-36.0 148.0 1 505 - 4781450 Gondl 48.41 
I11II 
IIIII 
118.0 -67.0 1 505 - 4781450 Lauri-68.91 
IIIII 
IIIII 
1 59.0 29.0 1 505 - 4781450 Eur 1 -9.01 
IIIII 
IIIII 
1 42.0 78.0 1 505 - 4781450 Sib 1 29.41 
11111 
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APPENDIX TWO 
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Porphyry Copper Deposits 

IIIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IAAE MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I(M. Y. ) I (N. Y. ) I-LAT. I 
IIIIIi1 
IIIIIII 
120911Dry Creek, Alaska, USA 1 56.5-158.4 1 3.3 I01 56.51 
I1I1I11 
1111I11 
I2089IAttu, Alaska, USA 152.9-172.8 1 5.9 101 52.91 
11II1II 
IIIIIII 
120941Mesatchee, Washington, USA 1 47.5-121.4 1 6.2 101 47.51 

IIIIII I 
II 
12090IPyramid Mt., Alaska, USA 

i 

IIIII 
155.6-160.7 1 6.3 10 155.61 

IIIIII 
II 
12096INorth Fork, Washington, USA 

IIIII 
147.6-121.6 1 9.9 10 147.61 

iIIIII i 
IIIIIII 
120921Ear1, Washington, USA 1 46.3-122.1 1 16 101 46.31 
111111I 
I 
12093IMiddle 

IIIII 
Fork, Washington, USAI 47.5-121.4 1 18 101 47.51 i 

IIIIII 
IIIIII 
12095IQuartz Creek, Washington, USAi 47.7-121.6 1 18 I0 147.61 
1II1I1 
1I1111 
12097I61acier Peak, Washington, USAI 48.2-120.9 1 22 10 148.21 
1111111 
IIIIIII 
I2032IMcCoy, Washington, USA 146.4-121.8 1 24 10 146.41 
I I I11 50 N. Am1 53.81 
II11I1I 
iIIIIII 
I2012IJimmy Lake, Alaska, USA 1 61.7-153.2 1 26 10 1'61.71 
1III 150 N. AmI 74.91 
I1I1III 
IIIiIII 
I2038IRoss Lake-Davis, Washington, l 49.0-121.1 I 30 150 N. AmI 56.01 
I tUSA IIIII 
IIIIIII 

i i IIIII 
I2037IVesper, Washington, USA 1 48.0-121.5 I 32 150 N. AmI 55.21 
1111111 

i i II1II 
I2050IBingham, Utah. USA i 40.5-112.1 I 37 150 N. AmI 45.81 
I111111 
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Porphyry Copper Deposits cont.... 

iI1IIII 

IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) I-LAT. I 
1II1II 
1IIIII 
120511Battle Mt., Utah, USA 140.7-117.1 1 39 150 N. AmI 47.31 
11111I 
III1III 
120311Catface, Vancouver I., Canadal 49.2-126.0 I 48 1 50 N. AmI 57.41 
111111 
II IIIII 
I2035IMonument, Washington, USA 1 48.8-120.5 I 49 150 N. Ami 55.71 
1111111 
I i 
12028IBerg, B. C., Canada 
II 
II 
I2030IGranisle, B. C., Canada 
II 
II 
I2025IMorrison, B. C., Canada 
II 
II 
I2041IMorenci, Arizona, USA 
II 
Ii 
I2040ITyrone, New Mexico, USA 
II 
II 
12013IJay Creek, Alaska, USA 

IIIII 
1 53.8-127.5 1 50 150 N. Am1 62.01 
1IIII 
IIIII 
1 55.0-126.3 1 50 1 50 N. AmI 62.81 
I11I1 
IIIII 
155.0-127.1 I 52 150 N. AmI 63.01 
II111 
II1II 
1 33.1-109.4 I 55 150 N. AmI 38.11 
IIIII 
1IIII 
132.7-108.3 1 56 1 50 N. AmI 37.61 
111II 
I1II1 
1 62.2-153.7 1 57 101 62.21 

IIiI1 50 N. AmI 75.51 
11I1I11 
I1II1Ii 
12042ICananea, Sonora, Mexico 131.0-110.3 1 59 150 N. AmI 36.31 
I111111 
I i IIIII 
12009IDutton, Alaska, USA 1 60.7-153.9 I 59 I0 160.71 
1I1I 150 N. AmI 74.11 
1II11I1 
IIIIIII 
12043IMiami-Inspiration, Arizona, 133.4-110.9 I 60 150 N. AmI 38.81 
I IUSA IIIII 
IIIIII1 
IIIIIII 
12046IPima-Mission, Arizona, USA 132.9-109.8 I 60 150 N. AmI 38.01 
I111111 
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porphyry Copper Deposits cont.... 

IIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 

I AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. i 
IIII1 
IIII 

12026IMaggie, B. C., Canada 1 50.7-121.3 1 61 150 N. AmI 57.61 
I11III 
III1 

120471Esperanza, Texas, USA 1 31.1-105.7 1 62 1 50 N. AmI 35.21 
I1I1I1I 
IIIIIII 
12039ISanta Rita, New Mexico, USA 1 32.8-108.1 1 63 150 N. AmI 37.51 

111IIII 
IIIIIII 
12044IRay, Arizona, USA 1 33.2-111.0 I 63 150 N. AmI 38.61 

1I1III 
IIIIIII 
I2045ISilver Bell, Arizona, USA 1 32.4-111.5 1 63 1 50 N. AmI 38.01 
II1I1II 
IIIIIII 
120521Ajo, Arizona, USA 1 32.0-112.6 I 63 150 N. AmI 37.91 

II1IIII 
IIIIIII 
121261Copper Basin, Arizona, USA 1 34.5-112.9 I 64 1 50 N. AmI 40.31 
III1II1 
IIIIIII 
I200111reasure Creek, Alaska, USA 1 62.9-149.3 I 65 -210 162.91 

1I1 150 N. AmI 75.31 
11IIIII 
IIIIIII 
12002IMaclaren, Alaska, USA 1 63.2-146.7 I 65 -2I01 63.21 
I11I1 50 N. AmI 75.01 
1IIIIII 
III1III 
12003IKaskawulsh, Alaska, USA 1 66.5-139.0 1 65 -2I0 166.51 

1I1 150 N. AmI 75.81 

I11IIII 
IIIIIII 
12004IRainy Hollow, Alaska, USA 159.6-136.6 I 65 -2I01 59.61 

11I 150 N. AmI 69.51 
I1IIII1 
IIIIIII 
12005I6reat Hog Basin, Alaska, USAI 56.5-132.1 1 65 -2101 56.51 
1III 150 N. AmI 65.61 
IIIIIII 
IIIIIII 
120071Unalaska, Alaska, USA 153.9-166.5 I 65 -2101 53.91 
1II1 150 N. AmI 69.11 
I111111 
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Porphry Copper Deposits cont.... 

IIIIIII 
1A. NOI DEPOSIT/MINE NAME 1 PRESENT IA6E MINZ'NIROTATIONIPALAEOI 
{ AND LOCATION I CO-ORDS (N. Y. ) I (N. Y. ) I -LAT. i 

1III 
1IIII 

12008IWarner Bay, Alaska, USA 1 56.2-158.4 I 65 -2101 56.21 
11 150 N. Ain i 70.51 

1II1II 
II1IIII 
12010IKijik, Alaska, USA 160.3-154.4 1 65 -210I 60.31 
1111 150 N. AmI 73.91 

iiIiii 
I11IIi 

1 
1 
120111Hayes glacier, 

i I 
Alaska, USA 161.6-152.5 1 65 -2I0I 61.61 

I1 150 N. AmI 74.71 
I1IIIII 
IIIIIII 
I20141Kuskokwim, Alaska, USA i 61.4-153.2 i 65 -2I01 61.51 
1I1I 150 N. AmI 74.81 
1111III 
I I 
I2015IIvanof, Alaska, USA 
I I 

IIIII 
155.9-159.4 I 65 -2I0I 55.91 
111 50 N. AmI 70.41 

11IIII1 
I1IIIII 
12033IFortune, Washington, USA 1 47.4-121.1 I 65 -2I0 47.41 

11I 150 N. AmI 54.61 
II1I1II 
IIIIIII 
I21281San Manuel, Arizona, USA 133.0-110.8 1 67 1 50 N. Ami 38.41 

IIIIi1 
IIIIIII 
I2049IButte, Montana, USA 146.0-112.5 1 69 150 N. AmI 51.01 
II11II1 
IIIIIII 
12027ICasino, Yukon, Canada 162.7-138.8 1 70 1 50 N. AmI 72.71 

I1iI11 
IIIIIII 
12036IMazama, Washington, USA 1 48.6-120.4 1 70 1 50 N. AmI 55.51 
IIIII11 
IIIII1I 
I20481Bagdad, Arizona, USA 1 34.6-113.2 1 71 1 50 N. AmI 40.51 
11111I1 
IIIIIII 
12127IIthica Peak, Arizona, USA 135.7-114.4 I 72 1 50 N. AmI 41.91 
I11111I 
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porphyry Copper Deposits cont.... 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT 1ACE MINZ'NIROTATIONIPALAEI 
I{ AND LOCATION I CO-ORDS (N. Y. ) II (N. Y. ) I-LAT. I 
IIIII11 
IIIIIII 
12062IFish Lake, B. C., Canada 1 50.8-133.1 1 77 1100 N. AmI 63.41 
IIII1II 
IIIIIII 
I2061IPurcell Mt., Alaska, USA I 66.2-157.5 I 80 1100 N. AmI 83.01 
1II11I1 
IIIIIII 
12065IHuckleberry, B. C., Canada 153.8-127.2 1 80 1100 N. AmI 63.71 

IIIIII I 
IIIIIII 
I2059IIndian Mt., Alaska, USA 166.1-153.8 I 81.5 1100 N. AmI 81.61 
IIIIIII 
IIIIIII 
12060IZane Hill, Alaksa, USA 1 66.3-156.1 1 81.9 1100 N. AmI 82.51 

IIIIII i 
IIIIIII 
12064I0x Lake, B. C., Canada 153.7-127.0 I 83 1100 N. AmI 63.61 
11I1III 
IIIIIII 
12055IMonte Cristo Creek, Alaska, 162.2-143.0 I 109 1100 N. AmI 75.51 
I IUBA IIIII 
II11I1I 
IIIIIII 
12063IBond Creek, Alaska, USA 162.0-142.8 1 109 1100 N. Amt 75.41 
I 
I 

i IIIII 
II 
139.2-114.9 1 
11 

III 
111 1100 N. Am1 46.91 

I11 
1I 

111 1100 N. AmI 48.31 
III 
III 

111 1100 N. AmI 74.71 
III 
1II 

114 1100 N. AmI 74.71 
II 
II 

114 1100 N. AmI 74.81 
iIi 
II1 

125 - 1151100 Austl-46.61 
1130 Austl-64.51 
II1 
III 

125 - 1151100 Austl-47.11 
1130 Austl-64.01 
III 

I 
I2053IE1y, Nevada, USA 

i I 
IIII 
I2054IYerington, Nevada, USA 139.0-119.2 I 
IIII 
IIII 
12056IHorsield, Alaska, USA 162.0-141.2 I 
IIiI 
IIII 
I2057IPtarmigan Creek, Alaska, USAI 62.0-141.0 1 
I i II 
IIII 
I2058IBaultoff, Alaska, USA 1 62.2-141.2 1 
IiII 
IIII 
I21371Bändy Creek, Queensland, 1-20.0 148.7 1 
I lAustralia I 
IIII 
IIII 
12138IFinley Creek, Queensland, 1-20.1 147.8 1 
1 {Australia I 
III 
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porphyry Copper Deposits cont... 

IIIIIII 
IA. N01 DEPOSIT/MINE NAME I PRESENT LACE MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 

iiIiii i 
IIIIIII 
12141IRoma Peak, Queensland, 1-20.3 148.2 1 125 - 1151100 Austl-47.01 
I IAustralia 11 1130 Austl-64.41 
1III 
IIII 
I2144IAndromache R., Queensland, 1-20.6 148.4 I 
i fAustralia I 
IIII 
IIII 
I2145IPentecost I., Queensland, 1-20.4 149.0 I 
I lAustralia I 
III 
III 
12129IMount Vista, Queensland, 1-20.5 147.9 1 
1 IAustralia I 
III 
IIII 
121301Mount Poole, Queensland, 1-20.7 147.9 I 
1 lAustralia I 
IIII 
IIII 
12131114ount Leslie, Queensland, 1-20.9 147.9 I 
1 Australia I 
III 
IIII 
I2132IBlenheim, Queensland, 1-21.1 148.2 I 

IAustralia II 
IIII 
IIII 
I2133IEungella, Queensland, 1-21.2 148.5 1 
I lAustralia II 
IIII 
III 
I2134IMount Gotthart, Queensland, 1-21.4 148.3 
1 Australia I 
III 
II 
I21351Mount Hess, Queensland, 1-21.6 148.4 
I lAustralia 
III 
III 
12136IMount Flora, Queensland, 1-22.0 148.5 
I IAustralia 
II 

II 

125 - 1151100 
1130 

125 - 1151100 
1130 

125 1130 

125 1130 

125 1130 

125 1130 

125 1130 

125 1130 

125 1130 

125 1130 

I 
I 
I 
I 
1 
I 
I 
ý 
I 
1 
I 
1 

I 
II 

Austl-47.21 
Austt-64.81 

II 
II 

Austl-46.71 
Austl-64.91 

II 
II 

Austt-64.51 
IIII 

Austl-64.61 

II 

Austl-64.8I 
II 
II 
iI 

Austl-65.11 
II 
tI 
II 

Austl-66.11 
II 
II 
II 

Austl-65.51 
tt 
1I 

Austt-66.01 
II 
It 
II 

Austl-64.51 
11 
II 
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porphyry Copper Deposits cont.... 

IIIII 
IA. N01 DEPOSIT/MINE NAME PRESENT IA6E MINZ'NIROTATIONIPALAEI 
1 AND LOCATION I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
IIII1II 
IIIIIII 
12067IBrenda, B. C., Canada 1 49.9-120.0 1 140 1130 N. AmI 55.31 
IIIIIII 
IIIIIII 
12006ICostello Creek, Alaska, USA 1 63.2-149.5 1 144- 65 1 50 N. AmI 75.61 
11I 1100 N. AmI 78.51 
t111 1130 N. Aml 71.91 
III1II1 
IIIIIII 
120171Co, Alaska, USA 162.7-138.5 1 144 - 65 1 50 N. Aml 72.61 

1I 1100 N. Aml 74.21 
II1I 1130 N. Aml 70.21 
1II111I 
II11I11 
I2018ICockfield, Alaska, USA 1 62.5-138.5 1 144 - 65 150 N. AmI 72.41 

1I 1100 N. AmI 74.11 
1II 1130 N. Am1 70.11 

1III1I1 
1II1IIi 
I2019IDennis, Alaska, USA 1 63.4-142.4 1 144 - 65 1 50 N. AmI 74.11 
II11 1100 N. Aml 76.01 

I11 1130 N. AmI 71.41 
1111111 
11I11I1 
12020ITazuus, Alaska, USA I 63.5-141.3 1 144 - 65 1 50 N. Aml 74.01 
1I1I 1100 N. Aml 75.71 

II 1130 N. Aml 71.31 
II11I1I 
II11III 
12022IMt. Nansen, Alaska, USA 162.0-137.1 1 144 - 65 150 N. Aml 71.71 
II1 1100 N. Am1 73.21 
111 1130 N. AmI 69.41 
I1IIIII 
IIIIIII 
120231West Cape, 1 63.5-171.5 1 144 - 65 150 N. Aml 78.91 
I ISt. Lawrence Island, Alaska, I1 1100 N. Aml 84.91 
1 IUSA 11 1130 N. AmI 73.21 
I1IIII1 
1IIIIII 
1202416ranite Mt., Alaska, USA 1 65.3-161.4 1 144 -65 1 50 N. Ami 79.71 
1II 1100 N. AmI 83.91 
II1I 1130 N. AmI 74.81 
IIIIII 
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porphyry copper Deposits cont.... 

1 
65.81 

IIIIIII 
IA. NOI DEPOSIT/MINE NAME I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
II AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) I-LAT. I 
IIIII1I 
IIIIII 
12066IIsiand Copper, Vancouver I, 159.6-127.5 I 153 1130 N. AmI 
I ICanada IIII 

iIti11 
IIIIII 
12069IBisbee, Arizona, USA 131.4-109.9 1 163 1130 N. AmI 

{ 
I 
I 

35.71 
I 
I 

1II1II 
II 
I2075IDuckling 

IIII 
Creek, B. C., Canadal 55.9-125.4 1 170 1200 N. AmI 45.21 

1 
I 

IýIIII 
II IIII 
I2070ILiard, B. C., Canada 1 57.3-130.8 1 182 1200 N. AmI 47.91 

I 
I 

IIIIII 
II ItII 
1207416alore Creek, B. C., Canada 157.1-131.4 1 182 1200 N. AmI 47.31 

I 
I 

IIIII I 
IIIIII 
I2076ICopper Mt.. B. C., Canada 149.3-121.6 1 193 1200 N. AmI 38.31 

I 
' 

iiiiti 
II 
I2077IAfton, B. C., Canada 

IIII 
1 50.6-120.5 1 198 1200 N. AmI 

III11I 
11IIII 
12071I6uichon Batholith, B. C., 1 50.5-121.0 I 200 1200 N. AmI 
I ICanada III1 
III{11 
i1IIII 
I2073ICuddy Mt., Idaho, USA 1 45.2-116.2 1 200 1200 N. AmI 
IIIII{ 
IIIIIi 
12072I6ibraltar, B. C., USA 152.5-122.3 I 204 1200 N. AmI 
iIIIII 
II1III 
I2146IWaitara, Queensland, 1-21.8 148.8 I 210? 1200 Austl 
I IAustralia IIII 

i I 

i I 
I2147IFunnel Creek, Queensland, 
I (Australia 

III1 
I1II 
1-21.7 149.1 I 210? 1200 Austl 
IIII 

39.41 
1 
1 

39.41 
1 
1 
1 

33.51 
1 
1 

41.51 
1 
1 

2.51 
1 
1 
1 

2.81 

i 
t 
i 

IiIIIi 

i I IIII 
I2148I6reen Hill, Queensland, 1-21.7 149.4 I 2107 1200 Austl 
I (Australia IIII 

2.91 
1 

IIIIIII 
IIIIIiI 
121491Knight Island, Queensland, 1-21.4 149.7 1 210? 1200 Austl 3.31 
I fAustralia lIIII 
IIIIIII 
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porphyry Copper Deposits cont.... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

12150IYeppoon, Queensland, 
I (Australia 
II 
II 
12151INative Dog, Queensland, 
I (Australia 
II 
II 
12152IEnoggera, Queensland, 
I (Australia 
I 
I 

i 
i 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
it 
I1 

i 
I 

I 
I 

I 

i 
1-23.0 150.8 I 220 1200 AUStl 2.51 
I1I11 
IIIII 
IIIII 
1-24.7 151.9 I 220 1200 Austl 1.51 
II1I1 
I1II1 
IIII{ 
1-27.4 152.8 I 230 1250 Gondl -6.41 
11III 
11111 
11III 

12153IMount Crosby. Queensland, 1-27.6 152.7 I 230 1250 Gondl -6.51 
I lAustralia IIIII 
IIIIIII 
IIIIIII 
12154IBald mountain, Queensland, 1-28.3 152.0 1 230 1250 6ondl -7.51 
I IAustralia ltI1I 
I1111I1 
I11IIII 
12155ICania. Queensland, Australial-24.6 151.0 1 235 1250 Gondl -6.31 
I i IIIII 
IIIIIII 
I2158IAndnramba, Queensland, 1-27.1 152.1 I 2407 1250 Gondl -6.81 
1 IAustralia IIIII 

r i 
II 
12159IMoonmera, Queensland, 
I (Australia 
I I 
II 
12069IMeClean Arm, Alaska, USA 
I1 
1 
I 

I 
I 

12161IRiverhead, Queensland, 
I (Australia 
I 
I 

i 
i 

III1I 
IIIII 
1-23.6 150.6 I 245 1250 Gondl -6.11 
1II1I 
1IIII 
II1II 
154.8-130.2 1 248 - 2131200 N. HmI 44.91 
I1 1250 Laurl 35.61 
111II 
1III1 
1-24.0 150.9 1 250 - 2351250 Gondl -6.01 
11III 
1i111 
I1I1I 

I2164IMunholme Creek, Queensland, 1-24.5 151.1 1 250 - 2351250 6ondl -6.11 
1 lAustralia lIIII 

IIIf11 
1IIIIII 
I2165IRidler Creek, Queensland, 1-24.4 151.3 1 250 - 2351250 Gondl -6.01 
I lAustralia IIIII 
IIIIIII 
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Porphyry Copper Deposits cont.... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

I2174ICoalstoun, Queensland, 
I (Australia 
I i 
II 
121751Mount Stuart, Queensland, 
I (Australia 
I 
I 

I 
I 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) 1-LAT. I 
IIIII 
1IIII 
1-25.6 151.9 1 258 - 2481250 Gondl -6.11 
IIIII 
11111 
II 
1-19.4 146.8 1 
II 
II 
II 

121761Kelly's Mountain, Queenslandl-19.7 147.3 I 
1 lAustralia II 
IIII 
I i I 

265 

265 

i 
121771Beak's Mountain, Queensland, i-19.9 147.7 1 265 
1 (Australia II 
I 
I 

I 
I 

II 
II 

12179IRocky Creek, Queensland, 1-20.4 147.9 I 265 
1 (Australia It 
IIII 
IIII 
121801? own Creek, Queensland, 1-20.4 146.8 I 285 
1 (Australia I1 
IIII 
IIII 
12181IMount Robin, Queensland, 1-20.6 147.0 I 285 
1 (Australia I1 
IIII 
IIII 
12182IMount Wyatt, Queensland, 1-20.8 147.3 1 285 
1 (Australia 1I 
IIII 
IIII 
12183IWyarra Hills, Queensland, 1-21.1 147.6 I 285 
1 (Australia II 
IIII 
IIII 
12184IMount Lookout, Queensland, 1-21.4 147.7 1 285 
I Australia l1 
I1II 
IIII 
121851Mountian Maid, Queensland, 1-17.0 144.2 I 
I Australia lI 
IIII 

285 

II1 
1250 Gondl -6.91 
II 
11I 
1II 
1250 Gondl -6.61 
111 
I11 
1II 
1250 Gondl -6.41 
III 
I1I 
1II 
1250 Gondl -6.51 
II 
I1I 
111 
1300 6ondl 1.91 
II 
1II 
I1I 
1300 Gondl 2.01 
III 
11I 
11I 
1300 Gondl 2.21 
I1 
11I 
I1I 
1300 0ond1 2.41 
I1 
III 
1I1 
1300 Gondl 2.31 
II1 
II1 
I11 
1300 Gondl 0.71 
1II 
III 
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Porphyry Copper Deposits cont.... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

I2186IRuddygore, Queensland, 
I (Australia 
II 
II 
12187IEureka Creek, Queensland, 
I (Australia 
I 
I 

I 
I 

IIIII 
I PRESENT IA6E MINZ'NIROTATIONIPALAEI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I-LAT. I 
II 
II 
1-17.2 144.6 I 
II 
II 

i i i 
I1I 

285 1300 6ond1 1.01 
III 
I I I 

IIIII 
1-17.2 145.0 1 285 1300 Gondl 1.31 
III11 
IIIII 
I1III 

I2188ICarbonate creek, Queensland, I-17.4 145.1 I 285 1300 Gondl 1.41 
I lAustralia lIII 
IIIIII 
IIIIIII 
I2189IKoombooloomba, Queensland, 1-17.8 145.6 1 285 1300 6ondl 1.71 
I lAustralia III1 
I 
I 

I 
I 

I2190INitchaga, Queensland, 
I (Australia 
I 
I 

I 

i 

IIIII 
IIIII 
1-18.0 145.5 I 285 1300 8ondt 1.51 
1IIII 
IIIII 
IIIII 

12192IYuccabine, Queensland, 1-18.3 145.7 i 285 1300 Gondl 1.61 
I IAustralia 1Ii1 
11IIII1 
IIIII1I 
121941Mount Darcy, Queensland, 1-18.3 143.3 1 310 1300 6ond1 -0.61 
I lAustralia 1I1i 
IIIIIII 
IIIII11 
121951Mount Turner, Queensland, 1-18.5 143.5 1 310 1300 6ond1 -0.41 
1 lAustralia liIi 
III1III 
III1II 
12081I6aspe, Quebec, Canada 1 49.0 -65.5 I 350 1350 Laurl-18.2$ 
I1I1{I{ 
IIIIIII 
120801Evandale, New Brunswick, 1 45.6 -66.1 I 364 1350 Laurl-20.71 
I ICanada IIIII 
IIIIII1 
IIIIIII 
12084IChandalar, Alaska, USA 167.5 -48.2 1 370 1350 Laurl -5.91 
I 
I 

I 

i 
iiIii 
II1i1 

I21961Titov, Queensland, Australiat-18.0 146.4 1 394 1400 t3ondt 51.31 
I11IIII 
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Porphyry Copper Deposits cont.... 

IIIIIII 
IA. NO. I DEPOSIT/MINE NAME I PRESENT I AGE MINZ'NIROTATION IPALAEOI 
Ii AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I -LAT. I 
IIIIIII 
II I i 
12197 Turkey Gully, Queensland, 1-20.0 146.4 I 394 1400 Gondl 50.31 
I lAustralia lIIli 
I1 11 11 ll 
i I IIIII 

i 

12199 Means, Queensland, Australia 1-20.1 146.5 1 394 1400 Gondl 50.41 
111III 
IIIIII1 
12200 lCasieron, Queensland, 1-20.2 146.3 1 394 1400 Gondi 50.21 
1 Australia iI11i 
IIIIIII 
II1IIII 
12078 lEagle Lake, New Brunswick, 1 45.2 -66.4 1 408 - 3601350 Lauri -20.91 
1 Canada 1I 1400 Lauri -36.41 
1111111 
11i1IiI 
12082 IRecontre East, Newfoundland, 1 47.5 -55.2 1 408 - 3601350 Lauri -23.11 
1 ICanada 11 1400 Lauri -37.61 
fIff 
IIII 
12083 lwoodstock, New Brunswick, 

Kanada 

11 
11 
12085 1Catheart, Maine, USA 
1s 
11 
12086 Sally Mountain, Maine, USA 

II 
12201 IV Teniente, Chile 

iI 
12202 Los Pelambres, Chile 
II 

12203 IMichiquillay, Peru 
II 
i1 
12204 IHualgayoc, Peru 
II 
II 
12205 IMorococha, Peru 

I 
I 

I 

I 
I 

i 

i 
I 

i 46.0 -67.6 1 408 - 3601350 Lauri -19.81 
11 1400 Lauri -35.31 
11IIi 
IIIII 
1 45.6 -70.2 I 457 1450 Lauri -45.81 
IIIiI 
IIIII 
1 45.6 =70.3 1 505 - 4381450 Lauri -45.71 
11I1I 
IIIII 
1-34.2 -70.8 1 11 -2f0 
111 
11I 
1-32.1 -70.9 1 11 -210 
f1f 
111 
1 -7.0 -78.8 1 21 10 
111 
111 
1 -6.8 -79.0 1 24 -510 
f1f 
1ff 
1-11.5 -76.5 1 24 -510 
111 

I -34.21 
I1 
II 
I -32.11 
I 

_1 II 
1 -7.01 
11 
II 
I -6.81 
! 
__I II 

-11.51 1 
II 
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Porphyry Copper Deposits cont..... 

IIII 
IA. NO. I DEPOSIT/MINE NAME PRESENT AGE MINZ'NIROTATIONIPALAEOI 

AND LOCATION I CO-ORDS I (M. Y. ) I (M. Y. ) I-LAT. i 
IIIIIII 
IIIiIII 
12206 IFarallon Negro-Mivida dist., 1-27.5 -67.1 I 24 -5101 -27.51 

lArgentina III 
IIIIIII 
IIIIIII 
12207 IParaaillos dist., Argentina 1-32.8 -69.8 1 24 -5101 -32.81 
1I1II11 
11I11I1 
12208 IPotrerillos, Chile 1-26.2 -69.7 1 42 - 24 1 50 S. AaI -29.81 
1111II1 
1111III 
12209 El Salvador, Chile 1-26.2 -69.9 1 42 - 24 1 50 S. Aml -29.71 
1111111 
111Ii11 
12210 IChuquicamata, Chile 1-22.2 -69.4 42 - 24 1 50 S. Aml -25.81 
1111111 
111111I 
12211 iE1 Abra. Chile 1-22.0 -69.0 1 42 - 24 1 50 S. Aml -25.71 
1111II 
IIIi11I 
12212 IToquepala, Peru 1-17.2 -70.9 1 65 - 54 1 50 S. Aml -20.71 
1iI1II1 
IIi1III 
12213 ICuajone, Peru 1-17.0 -71.0 1 65 - 54 1 50 S. Aml -20.41 
iIIIiII 
IIIIIII 
12214 IQuellavero, Peru 1-17.1 -71.0 1 65 - 54 1 50 S. AsI -20.51 
111IiII 
III11I1 
12215 ICerro Verde, Peru 1-16.4 -71.9 1 65 - 54 1 50 S. Aml -19.71 
IIIIi1I 
IIIIII1 
12216 IPanguna, Bougainville, PNG 1 -6.0 155.0 1 c. 65 1 50 Sundl -33.51 
111Il11 
111I1II 
12217 1Plesyumi, New Britain, PNG 1 -6.0 155.0 1 c. 65 1 50 Sundl -31.51 
11II1II 
IIIIIII 
12218 IManut dep., Sabah, Malaysia 1 6.0 117.0 1 c. 65 1 50 Sundl -2.01 
iIIIIII 
IIiIIiI 
12219 ITaysan dep., Luzon I., 1 16.5 121.5 1 c. 65 1 50 Sund1 3.61 
1 IPhillipines IIIII 
IIIII1I 
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Porphyry Copper Deposits cont 

IIIIIII 
IA. NO. I DEPOSIT/MINE NAME I PRESENT AGE MINZ'NIROTATIONIPALAEOI 
II AND LOCATION I CO-ORDS (N. Y. ) II(M. Y. ) I -LAT. I 
IIIIIII 
IIIIIII 
12220 ISipalay, Negros, Phillipines 1 10.0 123.0 1 c. 65 150 Sundl -2.51 
IIIIIII 
1II1Iii 
12221 ITapadaa, Sulawesi, Indonesia 1 -2.0 120.0 c. 65 1 50 Sundl -10.11 
1I1IIII 
IIIIIII 
12222 IAlaalyk deposit, Kazakhstan, 1 42.3 68.5 1 296 - 2861300 Sib 1 26.61 
1 1USSR IIII 
IIIIIII 
IIII1II 
12223 IKounrad deposit, Kazakhstan, 1 47.3 75.0 1 296 - 2861300 Sib 1 33.41 
1 IUSSR I1III 
IIIIIII 
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Epitheraal Gold Deposits 

II 
IA. NO1 DEPOSIT/MINE NAME 
Ii AND LOCATION 

II 
II 
$2119IFlorida Canyon, Nevada, USA 

II 
II 
I2120ICo. stock Lode, Nevada, USA 

II 
II 
I2121IGoldfield, Nevada, USA 

II 
II 
12117ITonopah-Divide, Nevada, USA 
II 
II 
I2118ISu.. itville, Colorado, USA 
II 
II 
I2098ICinola, Queen Charlotte I., 
I ICanada 
iI 
II 
121031Delaigar, Idaho, USA 
II 
II 
Ii 
I2099IRound Mountain, Nevada. USA 
iI 
II 
I I 

IIIII 
I PRESENT IAGE MINZ'N IROTATIONIPALAEOI 
I CO-ORDS I (M. Y. ) I (M. Y. ) I -LAT. I 

IIII 
40.6-118.2 1-0I0 

IIII 
IIII 

39.0-119.6 12 I0IIIII 

37.7-117.2 I 20 -5I0i 
IIII 
II 

38.1-117.2 20 - 15 01 
IIII 
I1 

37.4-106.6 1 21 0IIII 

153.3-132.5 1 24 -510 
I1I 50 N. AmI 

IIII 
1 43.0-116.8 I 24 - 15 I01 
iII 50 N. AmI 
IIII 
1III 
1 38.7-117.1 1 25 10I 
11 150 N. AmI 
IIII 
IIII 

12123IRelief canyon, Nevada, USA 1 40.0-119.8 1 30 10 1 
1111 150 N. AaI 

40.61 

39.01 

{ 
37.71 

38.1{ 
{ 

37.41 

53.31 
62.81 

43.01 
49.41 

38.71 
45.41 

s 

40.01 
47.31 

i1II1II 
IIIIIII 
12104IAlligator Ridge, Nevada, USA 139.8-115.8 1 30 -5I0I 39.81 
1I111 50 N. AmI 46.11 
11IIIII 
IIIIIII 
I2105IJerritt Canyon, Nevada, USA 1 41.0-115.8 1 65 101 41.01 
i I II1 50 N. AmI 47.21 

II11Ii I 
IIIIIII 
12100iPicacho, California, USA 1 33.0-114.6 1 65 -2101 33.01 
I i II 150 N. Am1 39.31 

iiiiii i 
IIIIIII 
12101IBuckhorn. Nevada. USA 140.1-116.6 I 65 -2I0I 40.11 
II1I1 50 N. AmI 46.61 
1111111 
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Epithermal Gold Deposits cont..... 

II 
IA. NOI 
II 
II 
II 

DEPOSIT/MINE NAME 
AND LOCATION 

52102{Borealis, Nevada, USA 
II 

I PRESENT 
I CO-ORDS 
I 
Z 

IIII 
LAGE MINZ"N IROTATIONIPALAEOI 
I (M. Y. ) I (M. Y. ) I -LAT. I 
I 
I 

III 
1I1 

1 38.5-118.6 1 65 -2101 38.51 
111 50 N. AsI 45.61 

IIII1II 
fIfIfII 
121241Golden Sunlight, Montana, USAI 46.0-112.5 1 65 -5101 46.01 
II 
II 
II 
121061Taylor, Nevada, USA 
i 
I 

I 
I 

II 
I2108IPinson, Nevada, USA 
II 
II 
II 
I2125IWindfall, Nevada, USA 
II 

II 
II 
II 
12107INenzel Hill, Nevada. USA 
II 
II 
I i 
12122IHasbrouck, Nevada, USA 
I i 

t 
I1 
II 
121091Quesnel"s R., BC, Canada 
II 
II 

t21101Cracow, Queensland, Aust. 

II 
121121Drake, NSW. Australia 
II 
II 
121111Mt. Rawdon, Queensland, 
I Australia 

fI 150 N. Aml 51.01 
II11I 
fi1II 
139.0-115.5 1 70 -65 101 39.01 

11 50 N. Aml 45.31 
IIII1 
IIIIi 
1 41.0-117.7 1 85 - 20 1 50 N. AMi 47.71 

1 1100 N. Aml 49.51 
1I11I 
I11I1 
1 39.5-116.0 1 85 - 20 101 39.51 

11 50 N. Aml 45.91 
1 1100 N. Aml 47.61 

fI11i 
!iIII 
1 40.3-118.1 1 86 - 58 1 50 N. Aml 47.11 

I 1100 N. AMI 49.01 
I11II 
III11 
1 37.9-117.8 1 100 -210I 37.91 
f11 50 N. AMI 44.81 

1 1100 N. Ani 46.81 
1I1II 
I1I1I 
1 53.0-122.5 1 231 - 188 1200 N. Am1 40.81 
1I 1250 Laurl 30.71 
II1II 
IIII1 
1-25.3 150.3 1 258 - 231 1250 Gond1 -7.21 
1111I 
IIIII 
1-28.9 152.4 1 260 - 240 1250 Gondl -7.51 
1IIII 
III1I 
1-25.2 151.5 1 286 - 248 1250 Gondt -6.21 

1 1300 Gond1 4.31 
I1111 
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Epithenal Gold Deposits cont... 

I 
1A. N01 DEPOSIT/MINE NAME 

1 AND LOCATION 

I1 
12113IYalwal, NSW, Australia 

II 
II 
12114IPaMbula, NSW, Australia 

II 

121151Temora, NSW, Australia 
II 

121161Peak Hill, NSW, Australia 
II 
ii 

122231Chinkuashih, Taiwan 
II 
II 
122241Pachuca Ag deposit, Mexico 
II 
II 
12225IBaguio, Luzon, Phillipines 
II 
II 
122261Tui mine, Hauraki, N. Z. 
II 
II 
12227IVatukoula, Viti Levu, Fiji 
II 
II 
I2228IHuachocolpa Dist., Peru 

Ii 
122291Lepanto Mine, Bontoc, Luzon 
iI 
II 
12230IFinlandia vein, Lim, Peru 
II 
II 
122311Monte Cristo, El Salvador 
II 
II 
122321San Sebastian, El Salvador 
II 

I 
I PRESENT iAGE MINZ'N ROTATIONIPALAEOI 
I CO-ORDS I (N. Y. ) (N. Y. ) I -LAT. I 
IIIII 
III11 
1-35.3 150.4 380 - 360 1350 Gondl 16.91 

1 1400 Gondl 43.51 
11I11 
11111 
1-37.0 150.0 1 380 - 360 1350 Gondl 16.11 

I 1400 Gondl 42.11 
II1I 
IIIi 
1-34.4 147.5 1 420 1400 Gondl 42.51 
1I11I 
11III 
1-32.8 148.2 1 438 - 400 1400 Gondl 44.01 
1 1450 Gondl 48.61 

11I 
I11I 
1 24 0 121.0 1101 24.01 
1III 
1111I 
1 19.8 -98.8 I310I 19.81 
11iIi 
IIIII 
1 17.0 121.0 15101 17.01 
11III 
II1II 
1-37.0 175.8 1 
i 
I 

I 
I 

1-17.5-177.8 1 
I 
I 

i 
I 

?-2.5 

5-4 

I0I -37.01 
111 
II1 
101 -17.51 
I1I 
III 

1-11.2 -77.6 8-4I01 -11.21 
1IIII 
iIIII 
1 16.9 12.8 11 -310I 16.91 
I1111 
11111 
1-12.0 -77.0 10 I01 -12.01 
11II1 
II1II 
1 13.? -88.3 1 24 -2I01 13.71 
111I1 
IIIII 
1 13.8 -87.7 1 24. - 2I01 13.81 
I1111 
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Epitheraal Gold Deposits cont...... 

1A. NO1 DEPOSIT/MINE NAME 
AND LOCATION 

i 
1 
122331Limon, Costa Rica 
I! 

122341La India, Costa Rica 
II 
II 
I2235ISanto Domingo, Nicaragua 
II 
I1 
122361Rodalquilar area, Spain 

I 

PRESENT 

1i 
11 
122371Sanru dep., Hokkaido. Japan 
11 
ss 
12238IDate, Hokkaido, Japan 
ti 
122391Mutsu, Honshu, Japan 
II 
SS 
122401Kawazu, Honshu, Japan 
II 
IS 
I2241IBajo, Kyushu, Japan 
II 
II 
I2242IGuanajuato Ag dep., Mexico 
II 
SI 
I2243IAngangueo Ag dep., Mexico 
II 
II 
I2244ICosala Ag dep., Mexico 
II 
II 
I2245ITayoltita Ag dep., Mexico 
I 
II 
I22461Acari district, Peru 
II 

i I 
12.8 -86.8 

II 

12.8 -86.2 I 
II 
II 
112.2 -85.1 { 
II 
II 
1 36.9 -2.5 1 
II 
Ii 

44.2 141.8 1 
II 
II 
1 42.4 140.5 
11 
II 

40.5 140.1 1 
II 
II 
134.7 138.8 1 
II 
II 

33.5 131.5 1 
II 
I1 
1 20.5-101.3 1 
II 
II 

19.2-100.0 1 
II 
II 
1 23.8-106.9 1 
II 
II 
123.5-106.0 1 
II 

1-15.2 -74.7 1 
1 

IIII 
LAGE MINZ'N IROTATIONIPALAEOI 

CO-ORDS 1 (N. Y. ) 
I 

24-2 

24-2 

24-2 

24-5 

24 - 5 

24-5 

24-5 

24-5 

24-5 

30 - 27 

I (M. Y. ) I -LAT. I 
I 
I 
I 
I 

i 
I 
I 
I 
I 
I 
I 
I 

i 
I 
I 

s i 
t 
i i 
i 
ý i 
i 
i i 
ý 
i i 

23.91 
III 
III 

0 

0 

0 

0 

0 

0 

0 

0 

0 

II 
12.81 

Ii 
I 12.81 
11 
11 

12.21 
II 
II 
I 36.91 
1I 
I1 
1 44.21 
11 
1I 
I 42.41 
11 
II 
1 40.51 
11 
II 
1 34.71 
11 
II 
1 33.51 
II 

150 C. AN I 

30 - 2? 1 50 C. AmI 22.31 
I 11 
II1 

30 1 50 C. AmI 28.71 
1II 
II1 

30 1 50 C. Am1 28.01 

144 

III 
III 
1130 S. AmI -18.11 
II 



535 

Epitheraal Gold Deposits cont..... 

II I IIII 
IAGE MINZ'N IROTATIONIPALAEOI 
I (N. Y. ) I (N. Y. ) I -LAT. I 

IA. NO DEPOSIT/MINE NAME I PRESENT 
II AND LOCATION I CO-ORDS 
ii 
i1 
12247ITocopilla district, Chile 
I1 
1I 
I2248ICarrizal Alto, Chile 
iI 
II 
12249IHuantajaya, Chile 
II 
II 

I 
i 

I 
i 

1-22.1 -70.5 I 
II 
II 
1-28.3 -71.2 1 
1I 
i1 
1-20.2 -70.3 1 
11 
11 

1225OIArqueros, Chile 1-30.0 -71.5 1 
IIi 

IIII 
122511Punta del Cobre dist., Chile 1-27.5 -70.5 I 
1111 
1111 
I2252ILa Africana, Chile 1-33.8 -71.3 1 

IIi 
IiI1 
12253ITres Puntas diet., Argentina 1-47.0 -66.0 1 

111 

144 

144 

144 

144 

144 

144 

144 

1II 
1I1 
1130 S. Aml -24.61 
1I1 
I1I 
1130 S. AmI -30.81 
III 
III 
1130 S. Aml -22.71 
111 
1I1 
1130 S. Aml -32.51 
I1I 
1II 
1130 S. Aml -29.91 
1iI 
111 
1130 S. Aml -36.31 
1II 
III 
1130 S. AuI -48.91 
III 
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ADDENDUM 

The examiners advised inclusion of the following examples omitted from the 

thesis when originally submitted. The material in no way detracts from the 

thesis and only adds to conclusions previously stated. This completes the 

database. 

Additional References for oolitic ironstone Exa oles. 

D 
MORON. 0.. (1977). Les giseents de fer de la France. 
In: A. Zitzmann (Ed). The Iron Ore Deposits of Europe and Adjacent Areas. 
Hannover, Bundesanstalt fur Geowissenschaften und Rohstoffe. Volume 1,143- 
159. 

D 
HUNTER, R. E., (1970), Facies of iron sedimentation in the Clinton Group. 
In: G. W. Fisher, F. J. Pettijohn, J. C. Reed, Jr. and K. N. Weaver (Eds), Studies of 
Appalachian Geology: Central and Southern. New York, Wiley-Interscience, 101- 
121. 

D 
NEUMANN-REDLIN, C., WALTHER, H. W. and ZITZMANN, A., (1977), The Iron Ore 
Deposits of Europe and Adjacent Areas. Hannover, Bundesanstalt fur 
Geowissenschaften und Rohstoffe, Volume 1,165-186. 

D 
WOPFNER, H. and SCHWARZBACH, M., (1976), Ore Deposits in the light of 
palaeoclimatology. 
In: K. H. Wolf (Ed), Handbook of Strata-bound and Stratifora Ore Deposits, 
Amsterdam, Elsevier, Volume 3,43-92. 
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Oolitic Ironstone Deposits (continued). 

II 
IA. NO. I DEPOSIT/MINE NAME 
II AND LOCATION 

II 
13001 IAchtal-Kressenberg area, 
I Inr. Traunstein, FRG 

IIIII 
I PRESENT IAGE MINZ'NIROTATIONIPALAEOI 
I CO-ORDS I (N. Y. ) I (N. Y. ) I -LAT. I 
IIIII 
IIIII 
1 47.9 12.7 1 50 - 45 1 50 Eur I 38.81 
11111 

IIIIIII 
I I 
13002 IHollfeld, Oberpfalz, 
I i 

FRG 
IIIII 
149.5 12.4 I 9? - 65 1 50 Eur I 40.41 
11 1100 Eur 1 32.11 

IIII1II 
II1IIII 
13003 Peine, Harz Foreland, FRG 1 52.3 10.3 1 97 - 65 1 50 Eur 1 43.31 

1 1100 Eur I 35.01 
i111I11 
I1II111 
13004 IMeckelfeld, nr. Hamburg, FRG 53.5 10.0 1 144 - 97 1100 Eur 1 36.31 

1 1130 Eur 1 47.81 
1iII1II 
II11III 
13005 Salzgitter, FRG 1 52.1 10.4 1 144 - 1251100 Eur I 34.81 

I1 1130 Eur 1 46.41 
1iI1111 
I11II11 
13006 IHansa, Harz Foreland, FRG i 51.9 10.5 1 163 - 1441130 Eur I 46.21 
1III1II 
II11III 
13007 inr. Minden, FRG 1 52.3 8.9 i 169 - 1631130 Eur 1 46.61 
I1111II 
IIIIIII 
13008 ISalzgitter, FRG 1 52.1 10.4 1 175 - 1441130 Eur 1 46.41 

111 1200 Eur 1 46.21 
1I11I11 
IIIIIII 
13009 Gifhorn, FRG 1 52.5 10.5 1 175 - 1441130 Eur 1 46.81 

111 1200 Eur 1 46.61 
1111111 
III11 
13010 INr. Metz, France 1 49.1 6.2 1 188 - 1441130 Eur 1 43.61 

f 1200 Eur 1 42.51 
IIIIIII 
111III1 
13011 INr. Belfort, France 1 47.6 6.8 1 188 - 1441130 Eur 1 42.11 
111I 1200 Eur 1 41.21 
11I1III 
IIIIIII 
13012 INr. Ehingen, FRG 1 48.3 9.7 1 188 - 1441130 Eur 1 42.61 
11I1 1200 Eur 1 42.51 
I111111 
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Oolitic ironstone Deposits cont..... 

IIIIIII 
IA. N0.1 DEPOSIT/MINE NAME I PRESENT IAGE MINZ'NIROTATIONIPALAEOI 
II AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) I-LAT. I 
IIIIIII 
IIIIIIi 
13013 IStaffhorst, nr. Nienburg, FRGI 52.6 9.2 1 188 - 1631200 Eur 1 46.41 
Ii 
II 
13014 INr. Freiburg, FRG 
i 
II 
13015 IAalen-Wasseralfingen. FRG 
II 
11 
13016 IGeislingen. FRG 
Ii 

IIiII 
IIIII 
1 50.9 13.3 1 188 - 1811200 Eur 1 45.81 
III11 
11111 
1 48.8 10.1 1188 - 181 120 Eur 1 43.11 
11111 
111I1 
1 48.6 9.8 1188 - 181 1200 Eur 1 42.81 
11111 

IIII1II 
13017 lHersbruck, nr. Nurmberg, FRG 1 49.5 11.4 1 188 - 1811200 Eur 1 44.01 

I i 
S I 
13018 INordlinger Ries, FRG 
II 
II 
13019 IToul, France 
II 
I1 
13020 IVitry-le-Francois, France 
II 
1 
13021 Verdun, Meuse, France 
II 
II 
13022 lOrne, France 
II 
II 
13023 ILangres. France 
II 
11 
13024 Keilberg. FRG 
II 
I 
13025 (Echte. Harz Mts. FRG 
ii 
ii 
13026 iLenglern, FRG 
II 

IIIII 
IIIII 
1 48.8 10.. 51 188 - 1811200 Eur 1 43.21 
11111 
11I1i 
1 48.7 5.9 i 194 - 1881200 Eur 1 42.01 
111 11 
IIIII 
1 48.? 4.5 1 194 - 1881200 Eur 1 41.71 
1IIII 
3III 
1 49.2 5.4 1 194 - 1881200 Eur 1 42.41 
11I1 
11I1 
1 48.7 0.0 1 194 - 1881200 Eur 1 40.71 
1I1 11 
IIIII 
1 47.9 5.3 1 194 - 1881200 Eur 1 41.11 
1111 
1I1I1 
1 49.0 12.1 1200 - 1941200 Eur 1 43.71 
i1II1 
11iI1 
1 51.1 5.9 1 200 - 1941200 Eur I 44.31 
1IIII 
1IIII 
1 51.5 9.9 1 200 - 1941200 Eur 1 45.51 
1111 
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Oolitic Ironstone Deposits cont..... 

1A. NO. I DEPOSIT/MINE NAME 
AND LOCATION 

13027 ipriederike, Harz Mts, FRG 

13028 Balingen, Wurttemberg. FRG 

II 
13029 IFourmies, Ardennes. France 

II 
13030 IDielette, France 

11 
13031 ISt. Brieuc, France 

13032 IHerkimer, N. Y., USA 
II 
II 
11 
13033 ! Lockport, N. Y., USA 
II 
II 
I1 
13034 Rochester, N. Y., USA 
II 
II 
11 
13035 (Blue Mountain, Penn., USA 
II 
II 
1I 
13036 IBloomsburg, Penn., USA 
II 
II 
I! 
13037 (Cumberland, Maryland. USA 
II 
II 
11 
13038 IBluefield, W. Virginia, USA 
II 
II 

III{ 
1 PRESENT LAGE MINZ'NIROTATIONIPALAEOI 

CO-ORDS (M. Y. ) I (M. Y. ) -LAT. I 
IIII 
I1IiI 

51.9 10.5 1 206 - 2001200 Eur 1 46.11 
111I1 
111I1 
1 48.7 9.0 1 213 - 2061200 Eur 42.71 
11III 
111I 
1 50.0 4.0 1 387 - 3801400 Eur 1 -32.61 
i11 
111I1 
1 49.5 -1.9 1 394 - 3871400 Eur 1 -34.31 
11111 

1 
1 48.5 -2.8 1 401 - 3941400 Eur 1 -35.41 
111II 
11111 
i 43.0 -75.0 1 438 - 4211400 Lauri -34.31 

1 1450 Lauri -46.01 
1II11 
1111I 
1 43.2 -78.7 1 438 - 4211400 Lauri -32.31 

1450 Lauri -44.21 
II111 
I1111 
1 43.2 -77.7 1 438 - 4211400 Lauri -32.81 
11 1450 Lauri -44.61 
111I1 
1I111 
1 45.2-119.0 1 438 - 4211400 Lauri -35.91 

I 1450 Lauri -18.31 
1II1I 
1I11I 
1 41.0 -76.5 1 438 - 4211400 Lauri -35.01 

1 1450 Laurl -46.91 
11Il1 
III11 
1 39.7 -78.7 1 438 - 4211400 Lauri -34.71 
11 1450 Lauri -46.71 
II1II 
1IIiI 
1 37.3 -81.1 1 438 - 4211400 Lauri -34.81 
I1 1450 Laurl -47.01 
IIIII 
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Oolitic Ironstone Deposits cont..... 

IIIIIII 
IA. NO. I DEPOSIT/MINE NAME I PRESENT IAGE MINZ"NIROTATIONIPALAEOI 
II AND LOCATION I CO-ORDS I(M. Y. ) I(M. Y. ) I -LAT. I 
IIIIII I 
IIIII11 
13039 IMessac, Anjou, France 1 47.8 -1.8 1 450 1450 Eur I -30.11 
IiiIiII 
IIIIIII 
13040 ILe Bois dep., Anjou. France 1 47.7 -0.9 1 450 1450 Eur 1 -29.71 
III1iiI 
II It IIII 
13041 ILa Ferriere, Normandy, Francel 48.6 -0.7 1 450 1450 Eur 1 -29.11 
IIiIIII 
IiIiIII 
13042 lEstrees, Normandy, France 1 48.9 -0.2 1 450 1450 Eur 1 -28.61 
11IIII1 
IIIIIII 
13043 ISt. Andre, Normandy, France 1 49.7 1.0 1 450 1450 Eur i -27.51 
1111111 
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Other Additional References. 

D 
DENHOLM. L. J., (1967), Lode structures and ore shoots at Vatukoula, Fiji. 
Proc. Australasian Inst. Min. Metall, 222,73-83. 

D 
GONZALES, A. G., (1956). Geology of the Lepanto Copper Mine. Mankayan. Mountain 
Province. Bur. Min. Phillip. Spec. Proj. Ser., No. 16,17-50. 

D 
GUSTAFSON. L. B., (19? 8). Sore major factors of porphyry copper genesis. Econ. 
Geol., 73,600-607. 

D 
HUANG, C. K., (1955), Gold-copper deposits of the Chinkuashih Mine, Taiwan, 
with special reference to the mineralogy. Acta. Geol. Taiwan, 7,1-20. 

D 
NIELSEN, R. L., (1976), Recent developments in the study of porphyry copper 
geology -a review. Can. Inst. Min. Metall. Special Volume 15,487-500. 

D 
NISHIWAKI, C., MATSUKUMA, T. and URASHIMA, Y.. (1971), Neogene gold-silver 
ores in Japan. Proc. IMA-IAGOD Meeting 1970: IAGOD Voltsee, Soc. Min. Geol. 
Japan, Special Issue 3,409-417. 

D 
SILLITOE, R. H.. (1976), Andean  ineralisation: a model for the  etallogeny of 
convergent plate margins. Geol. Assoc. Can. Special Paper 14.59-100. 

D 
SILLITOE, R. H., (1977), Metallic mineralization affiliated to subaerial 
volcanism: a review. Geol. Soc. London Special Publication 7,7-16. 

D 
SUTHERLAND BROWN, A. and CATHRO, R. J., (1976), A perspective of porphyry 
deposits. Can. Inst. Min. Metall. Special Volume 15,7-16. 


