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Abstract

Poly(ADP-ribose)polymerase (PARP) is a nuclear enzyme involved in the repair of

DNA single strand breaks via the Base Excision Repair pathway (BER).

Temozolomide, a DNA alkylating agent recently licensed for the treatment of gliomas

and melanoma, produces DNA lesions which are targets for BER. Preclinical studies

demonstrate that PARP inhibitors increase the cytotoxicity and antitumour activity of

temozolomide suggesting that PARP inhibitors may have a clinical role as chemo

potentiating agents.

This thesis describes the protocol development of a First-in-Human phase I clinical

trial of AGO 14699, a potent PARP inhibitor, in combination with temozolomide in

patients with advanced solid malignancies discussing the rationale for the study

design, definition of pharmacodynamic (PD) endpoints and starting dose. A two part

trial escalating first the dose of AG014699 then that oftemozolomide was designed

with PD endpoints for part 1 and classical toxicity endpoints for part 2.

The development and validation of two PARP activity assays to measure enzyme

activity and inhibition in human peripheral blood lymphocytes (PBLs) and

homogenised tumour biopsies are discussed. An established tumour cell line (L1210)

was evaluated to provide Quality Assurance, and preparation, storage and transport

stability of samples investigated. The first assay developed relied upon measuring

incorporation ofe2p] NAD+ into poly(ADP-ribose) (PAR), this assay proved robust

but depended upon the availability of large numbers of PBLs, limiting its clinical

application. An alternative assay based on detection of PAR with a monoclonal

antibody and electronic digitisation of the chemiluminescence signal was validated

and then assessed in a phase II mechanistic study of temozolomide alone in patients

with advanced malignant melanoma. This small study provided additional validation

for the assay and also data on DNA damage and repair after temozolomide which can

be used as control data to interpret the pharmacodynamic results of the First-in

Human study.
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Chapter 1

Introduction



1.1 Background

Cancer is a major cause of morbidity and mortality in both children and adults. The

disease has enormous implications both for suffers and their families in terms of

physical, emotional and financial changes in their lives. For the National Health

Service the treatment of tumours and care of patients in the terminal phases of the

disease have major resource implications. In the last year total deaths from cancer

have overtaken those for heart disease as the major cause of adult mortality.

Improvement in cancer survival has been identified by the government as a key area

for action (1992). There are estimated to be >250,000 new diagnoses and >150,000

deaths per year in the United Kingdom (www.cancerresearchuk.org).

Treatments for cancer include surgery, radiotherapy, cytotoxic chemotherapeutic

drugs, biological agents, the newer targeted therapies - the signal transduction

modifying agents and supportive/palliative care. The majority of patients will receive

a combination of these treatment modalities for their tumour over the course of the

disease.

Over the last 50 years there have been great advances in the use of cytotoxic

chemotherapy, and high cure rates are achieved in a number of childhood cancers,

lymphoma and germ cell tumours. However the majority of adult solid tumours are

incurable with chemotherapy alone, and in the metastatic setting this treatment

remains palliative. The efficacy of cytotoxic drugs is limited by toxicity, in particular

myelosupression, lack of specificity and cancer cell drug resistance. A variety of

resistance mechanisms have been described or proposed, including decreased drug

uptake into cells, increased drug efflux (for example multi-drug resistance mediated

by P-glycoprotein expression), inactivation of the drug, alteration of the cellular

target, development of tolerance and repair of the drug-induced DNA damage

(DeVita, Hellman et al. 1997).

The development of better agents with which to treat cancer is a major goal both for

the pharmaceutical industry and also within academic research laboratories. It is

estimated that in the field of anticancer drug development there are approximately 500

compounds in development (Budman, Calvert et al. 2003). New agents are identified
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by screening natural products against tumour cell line panels, target identification and

rational drug design, or the use of computational drug design to improve existing

drugs or identify new compounds.

One potential target for the improvement in the efficacy of existing cytotoxic

chemotherapy would be inhibition of the DNA repair machinery. It is known that the

DNA damage caused by many chemotherapeutic agents is rapidly repaired, both in

normal tissues and the tumour. Inhibition of this repair in conjunction with

administration of DNA damage either by chemotherapy or radiotherapy could be a

mechanism for improving treatment outcomes.

The Drug Development Unit within the Northern Institute for Cancer Research has

been developing inhibitors ofpoly(ADP-ribose)polymerase (PARP) including PARP

1, an enzyme involved in DNA repair, as a mechanism for potentiating the

cytotoxicity of both chemotherapy agents and radiation. The work reported in this

thesis has been performed within the Drug Development Unit and included

establishing optimum study design and the pharmacodynamic endpoints of PARP-l

inhibition. This introduction gives an overview of DNA repair mechanisms, PARP-l

and its role in DNA repair, the preclinical development of a potent PARP inhibitor

and discusses the development oftemozolomide, an oral monofunctional DNA

alkylating agent, which will be used in combination in the First-in-Human study of

the PARP-l inhibitor in cancer.

1.2 DNA repair mechanisms

Throughout the life of a mammalian cell there are various situations in which DNA

may be damaged, either by exogenous toxins, exposure to ionising radiation and from

endogenous sources such as products of cellular metabolism. It is estimated that the

average rate of damage is about 104 events per cell per day (Ames and Gold 1991). It

is therefore essential that the cell has mechanisms in place to preserve its genomic

integrity. There are reported to be at least 5 distinct pathways by which the cell can

detect and repair much of this damage; direct repair, mismatch repair (MMR), base

excision repair (BER), nucleotide excision repair (NER), non-homologous end joining
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(NHEJ) and homologous recombinational repair (HHR) (reviewed in (Lindahl, Karran

et al. 1997; Hansen and Kelly 2000; Christmann, Tomicic et al. 2003).

Direct repair describes the mechanism where the modified base is repaired by direct

reversal of the alteration without removal of the base itself. The main component of

the direct repair pathway is the alkytransferase protein which will be discussed in

detail in section 1.9 in relation to temozolomide.

Nucleotide excision repair is thought to be coupled with transcription, sometimes

termed "transcription-coupled repair" (TCR) and involves at least 11 proteins

(reviewed in (Wood 1996; Lindahl, Karran et al. 1997). A helix distorting lesion is

recognised by a three protein complex, other proteins are recruited and the DNA

backbone incised by XPF and XPG nucleases. An oligonucleotide of 25-32 bases is

released and the gap filled and DNA re-ligated. Its evolutionary role is thought to be

linked to the correction ofUV (sunlight) damage to DNA (Lindahl, Karran et al.

1997), and inherited lesions in this pathway are responsible for the photosensitivity

disorder xeroderma pigmentosum.

Double strand breaks are repaired by homologous recombination repair (HRR) or

non-homologous end-joining (NHEJ), the major proteins in these pathways being Rad

51, NBS, MREII, XRCC3 and BRCAI and BRCA2 (HRR); and Ku70, Ku86 and

DNA-PK in NHEJ (reviewed in (Bernstein, Bernstein et al. 2002).

The study reported here involves progress towards a phase I study of a PARP

inhibitor in combination with temozolomide, a DNA methylating agent used in the

treatment of melanoma and brain tumours ((Newlands, Stevens et al. 1997).

Temozolomide methylates DNA at 0 6-guanine, N7-guanine and N3-adenine in a ratio

1:14:2. 06-methylguanine is repaired by 06-alkylguanine-DNA alkyltransferase

(OGAT, ATase, MGMT) but ifunrepaired becomes a target for MMR. N7
_

methylguanine and N3-methyladenine are repaired by BER. PARP-l is known to

have a role in BER. Hence these three mechanisms of DNA repair are discussed in

more detail below.
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1.2.1 Base excision repair

The base excision repair pathway is divided into short patch and long patch repair.

Despite these names BER involves removal of relatively short stretches of DNA,

between 1 and 15 nucleotides. Short patch base excision repair involves removal of

one base only whilst long patch repair removes 2-15 nucleotides; however they share

a common pathway. It is thought that short patch repair is involved in the repair of

methylation induced DNA damage whereas long patch repair corrects oxidative

damage (Hansen and Kelly 2000) these mechanisms having evolved to correct

endogenous DNA damage (Lindahl, Karran et al. 1997).

Short patch BER involves the removal of the incorrect or damaged base by a DNA

glycosylase, in eukaryotes 3-methyladenine DNA glycosylase (MPG) repairs N7
_

methylguanine, N3-methyladenine and N3-methylguanine adducts, all of which are

formed by temozolomide ((Friedberg, Walker et al. 1995). Removal of the damaged

base generates an apurinic/apyrimidinic (AP) site which is cleaved by an AP

endonuclease/3' phosphodiesterase leaving a single strand break. Replacement of the

damaged base and religation of the DNA involves recruitment of a complex including

DNA polymerase {3, DNA ligase I or III/XRCC I (X-ray repair cross-complementing

1), PARP-l (Masson, Niedergang et al. 1998) and/or PARP-2 (Schreiber, Arne et al.

2002). The steps in the process are summarised in figure 1.1 (adapted from (Lindahl,

Karran et al. 1997), the role of PARP-l in the process will be discussed in more detail

below.

Long-patch repair is thought to be involved in the repair of oxidised or reduced AP

sites and is thought to be a minor, sub-pathway. 2-15 bases are excised, subsequent

repair involving DNA polymerases 0, E and {3, PCNAIRF-C, FEN I and DNA ligase I

(Hansen and Kelly 2000). There is no known role for PARP-l in this process.

5



Figure 1.1

S'- P "T" P -,- PIP "T" P,-- P~ 3'
G eGA ~

e G Q eTA
3·....L p....L p....L P~ P..J... I'...1-p- 5'

5
.to

~
AI

)...
C' oC>

~
DNA polymerase It 0 or E, PCNA. 0 -4)..,
and other acclllS&ory factors '1 ..

5-P..- P "T" P -r P "T" P -rOH\- 3'
G t t • • T
eGG eTA

3·....L p....L p..J.. p....L p....L p-Lp_~'

~ AP endonue\ea$e
P

OH ~
~-p..../ P-rP-rP-rP-r 3'

G C a A T
eGG eTA

3·..J.. p....L p..J.. p...L p..J... p..J...P_ 5

DNA polymerue Il

0+
5' - P -r P -{ P -r P -r P -r P -r 3'

Gte G " T
eGa CT.

3·-L p...L. p-J-I'....L p..L p....Lp_ 5'

DNA hgaM 111!XRCCl ~ oD"'ase IWFEN 1, peNA,
V ... nd DNA ~gase I

5 - P -r p -r P -,- P .... P ""I P -r J'
Gte GAT
eGG eTA

3·....L P ........ p....L p..J..."..J... p-L p- S'

!>·-P-rP-rP-rP-,-p..,-P-:- 3'
Gte , • T
C to GeT "

3·....L p...J.. p..J... p....L p....L p....L p_~'

Figure 1.1 Schematic representations of the steps involved in BER, the common initial pathway

dividing into short-patch repair on the left and long-patch repair on the right.

1.2.2 Mismatch repair

Mismatch repair (MMR) recognises incorrectly paired oligonucleotides resulting in

their excision and the generation of a 100-1000 nucleotide gap in the daughter strand

with the incorrectly paired base, leaving the correct (in most cases) template strand

intact. The gap in the daughter strand is filled and the DNA ligated to complete the

repair process. MMR repair is defective in some inherited forms of cancer

(Hereditary non-polyposis coli, HNPCC; (Lynch, Smyrk et al. 1996)) and in a number

of sporadic cancers and is thought to lead to genetic instability and resistance to DNA

damage by a number of chemotherapeutic agents including temozolomide, 6

thioguanine, cisplatin and carboplatin (Fink, Aebi et al. 1998).
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MMR repair was initially studied in bacteria and the major members of the pathway

characterised in Escherichia coli as MutS, MutL and MutH. Homologues of these

enzymes have now been characterised in mammalian species and are termed the MSH

and MLH genes, MSHI-6 (Fishel and Wilson, 1997) which act as heterodimers.

MLH 1 inactivation is common in human tumours. MSH2 and MSH6 heterodimers

preferentially recognise single base mispairs (Drummond, Li et al. 1995) and bind to

the 0
6
-methylguanine residues formed by temozolomide. However it is the mispaired

thymine residue in the daughter strand which is excised and the 0 6-methylguanine

residue is left intact for further mis-pairing (Fink, Aebi et al. 1998). Loss of MMR

confers "methylation tolerance" and resistance to temozolomide. The consequences

of this are discussed in section 1.8 and the interaction between MMR and PARP-l

inhibiton in section 1.8.4

1.3 Poly(ADP-ribose)polymerase (pARP)

Poly(ADP-ribosyl)ation of nuclear and intra-cellular proteins occurs in most

eukaryotic cells in response to a variety of cellular stresses and was first reported in

1963 (Chambon, Wei I et al. 1963). It is now known that this process is due to a

family of enzymes known as poly(ADP-ribose) polymerase or PARP enzymes, 18

members of the family have been indentified so far. PARP 1,2, 3, V-PARP and

Tankyrase being the most intensively investigated (reviewed in (Smith 2001), with

PARP-l (EC 2.4.2.30) the most abundant and best characterised.

All the members of the family cloned so far show marked homology (25-60%

homology with PARP-l), with the NAD+ binding cleft being highly conserved

(Simonin 1993), figure 1.2 adapted from (Smith 2001). PARP-l (EC 2.4.2.30) is very

highly conserved between species; in particular the catalytic region shows 1000/0

homology between vertebrates and 92% homology among all species (de Murcia and

Menissier de Murcia 1994).
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Figure 1.2

(a)

Ankynn

PAR?homology domain

I '-"Sr I

Figure 1.2 a) Schematic primary structures of PARP-1 to -5, homology to PARP- 1 largel y limited to C

terminal region including catalytic domain . b) Amino acid identity of cata lytic domains, conserved

regions highlighted.

The family of enzymes has multiple roles within the cell, being involved in the

maintenance of genomic stability, regulation of DNA repair, telomere replication and

cellul ar transport (reviewed in (Burkle 2001; Chiarugi 2002) , and even longevity

(Burkle 2000). Their common action is to form long, often branched polymers of

ADP-ribose from NAD+on acceptor molecules, which include glutamate residues on

the PARP enzyme itself - automodification. The common mechanism of action of all

PARP enzymes is shown in figure 1.3, NAD+binds in the catalytic site and is cleaved

to release nicotinamide and ADP -ribose. This monomer subunit is attached to other

subunits to form long branched or linear polymers.
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Figure 1.3
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Figure 1.3 Catalytic mechanism of PARP enzymes. a) PARP cleaves AO+releasing nicotinamide and

covalently attaches linear and branched polymers of AOP-ribose, which may > I00 units long, to

acceptor proteins. b) charge distribution on polymer

PARP-1 is a protein of 1014 amino acid residues, which has three functional domain

(figure 1.4 from (Burkle 2001); the D A biding fragment (DBD) which contain tv 0

zinc finger motifs involved in D A strand break recognition and a nuclear location

signal, the central auto-modification domain which includes a BRCA-1 C-tenninal
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domain (BRCT) and the C-terminal catalytic fragment which binds TAD- (reviewed

in (Shall 2002). In humans the gene coding for PARP-I, designated ADPRT, lies on

chromosome Iq41-1 q42 (Cherney, Mc Bride et a1. 1987). The crystal structure of the

purified catalytic fragment of chicken PARP -1 has been identified (Ruf, Murcia et a1.

1996). Human PARP-1 can now be produced from c-DNA cloned in baculovirus

expression vectors (Knight and Chambers 2001).

Figure 1.4

Autornodihcation
domain

DNA-binding doma in NAO-·b inding doma in

A B c o E F

206 234 383 524 656
859908 1' 0"

cli ve ue

Figure 1.4 Functional domains of PARP-l

PARP -1 is a very abundant nuclear enzyme being present at the density of one

enzyme molecule per 1 kb DNA (Burkle 2001 ). It is constitutively expressed in

eukaryotic cells but has low basal activity unless activated by genotoxic stresses.

DNA binding increases the activity of the enzyme 500-fold. PARP-1 binds to DNA

strand breaks via the two zinc fingers at the aminoterminal DBD, its activity being

dependent on such binding (Boulikas 1991). The enzyme acts as a homodimer

(Mendoza-Alvarez and Alvarez-Gonzalez 1993) catalysing the transfer of ADP-ribose

from the substrate NAD+ to nuclear acceptors. These acceptors include histones,

topoisomerases, DNA polymerases I and II, Ca2+ and Mg 2
+-endonucleases and D A

ligases, p53 , but in particular the PARP-1 enzyme itself (reviewe d in (Davidovic,

Vodenicharov et a1. 2001 ). Long pol ymers of up to 200 units, often high ly branching,

are formed, Modified PARP-1 is released from the DNA, this is presumed to be due

to the electrostatic repulsion of the now highly negatively charged complex and

results in inactivation of the enzyme. The po lymer is rapidly degraded by poly (ADP

ribo se) glyco hydrolase (PARG) (Davido ic, Vodenicharov et al. 2001; Ro i, Denegri
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et al. 2002) releasing PARP-l for further activation. Although it was originally

proposed that PARP could not remove the final ADP-ribose residue, this being

removed by ADP-ribosyl protein lyase (Oka, Veda et al. 1984), recent studies using

purified PARG and PARG inhibitors suggest that PARG alone can degrade the entire

polymer (Jacobson M, PARP Conference, Lisbon, 2003).

There is much debate over the potential roles of PARP-1 and poly(ADP-ribosylation)

in the cells. The rapid production of polymer in response to DNA damage has led to

the suggestion that PARP-l plays an important part in the signalling of DNA damage

and, in fact, acts as a "molecular nick sensor", recruiting appropriate repair enzymes

(de Murcia and Menissier de Murcia 1994). There is compelling evidence for the

involvement of PARP-l in BER and increasing data suggesting a more complex

function in the regulation of DNA repair and induction of apoptosis.

1.4 Role ofPARP-l in DNA repair

1.4.1 Base excision repair

The fact that poly(ADP-ribosylation) plays a role in the recovery of proliferating cells

from DNA damage was demonstrated over 20 years ago (Durkacz, Omidiji et al.

1980). It is known that PARP-l is involved in the process ofbase excision repair

(BER) and PARP-l is part of the base excision repair complex (Molinete, Vermeulen

et al. 1993; Lindahl, Satoh et al. 1995; Dantzer, Schreiber et al. 1999). PARP-1 is

activated within minutes of DNA damage (Bernardi, Negri et al. 1995) and the

synthesis of poly(ADP-ribose) has been shown to be directly proportional to the

number of single and double DNA strand breaks (D'Amours, Desnoyers et al. 1999).

PARP-l has been shown to bind to single strand breaks via the second zinc finger (f

II), a single strand break introduces flexibility into the damaged region of DNA, and a

characteristic "V"-shape to the molecule is seen on dark-field electron microscopy.

PARP-l binds specifically to the centre of this "V", accentuating the distortion (de

Murcia and Menissier de Murcia 1994) and potentially easing access for the other

elements of the BER pathway.
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The polymer complex formed is very short lived, having a half life in vivo of

approximately 1 minute (Alvarez-Gonzalez and Althaus 1989). The close association

with PARG means that there is a dynamic system where PARP-1 is rapidly activated

by the DNA damage, polymer is formed, down stream processes are activated and

PARP-1 is released from the DNA. The polymer is then rapidly degraded by PARG

to free PARP-1, in the case of automodification, for further activation. The number of

PARP-1 molecules per cells means that the enzyme is ideally placed to act as a "nick

sensor", and then be released to detect other DNA damage (Masutani, Nozaki et al.

1995). This process causes a rapid depletion of cellular NAD+ and imposes a high

energy cost on the cell indicating its importance

It is proposed that PARP-1 has a role in regulating the response to DNA damage via a

"shuttling model", where the enzyme is closely associated with DNA, detects and

binds to strand breaks (Satoh and Lindahl 1992). This causes PARP activation and

formation of negatively charged polymer. Automodification of the enzyme means it

becomes progressively more negatively charged, a "point of repulsion" is reached

when it no longer can associate with DNA. Polymer is removed from the released

enzyme by PARG allowing further shuttling to signal DNA damage (Lindahl, Satoh et

al. 1995; D'Amours, Desnoyers et al. 1999). PARP-1 binds strongly to DNA, having

a high affinity for single strand breaks but also blunt ended DNA double strand

breaks, where it is proposed it may act to prevent inappropriate recombination prior to

DNA repair (D'Silva, Pelletier et al. 1999).

Poly(ADP-ribosylation) of histones also occurs in response to DNA damage.

Attachment of the negatively charged polymer leads to electrostatic repulsion and

opening up of the chromatin and allowing access of the BER complex, followed by

subsequent degradation of PAR and re-association of the histones with DNA

(reviewed in (D'Amours, Desnoyers et al. 1999) suggesting another mechanism by

which this enzyme is involved in DNA repair.

Further evidence to support a role for PARP-1 in BER has come from the studies by

Masson and colleagues (Masson, Niedergang et al. 1998) where a two-hybrid system

was used to demonstrate the close physical association of PARP-1 and XRCC 1,

which is a scaffold protein in the BER complex. XRCC 1 is know to interact with
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DNA ligase III and DNA polymerase {3, and the identification of its third partner as

PARP-1 has led to a new model comprising the BER multi-protein complex (figure

1.5).

Studies where PARP-l activity has been reduced, either by chemical inhibitors, trans

dominant inhibition of PARP-1 by overexpression of the PARP DNA binding domain

(DBD), depletion ofPARP by antisense-RNA or mutation of the PARP-1 gene and

the generation of PARP-1 knockout mice, have provided more evidence for a role of

PARP-1 in BER. Data from studies with all of these mechanisms of PARP inhibition

have shown increased sensitivity to agents that cause DNA damage that is repaired by

BER - alkylating agents, ionising radiation, oxidative damage but not those repaired

by other pathways, for example ultraviolet light.

HeLa cell lines depleted in PARP have been generated by induction of PARP

antisense RNA expression. These cells perform very limited DNA repair in response

to methylmethanesulfonate (which generates single strand breaks) induced DNA

damage (Ding and Smulson, 1994). Overexpression of the DBD has been established

in a number of cell lines. This causes trans-dominant inhibition of PARP-1 possibly

by blocking the DNA binding of the enzyme. This inhibition causes increased

sensitivity to DNA alkylating agents (N' -nitro-N-nitrosoguanidine, MNNG)

(Molinete, Vermeulen et al. 1993) and ionizing radiation (Kupper, Muller et al. 1995)

with a reduction in PARP activation, an increase in cell doubling time, G2/M

accumulation and reduction in cell survival (Schreiber, Molinete et al. 1992). All

these data provide further evidence for a critical role of PARP in BER repair of DNA

damage (reviewed in (Dantzer, Schreiber et al. 1999).

PARP-/- (PARP-1 knockout mice) have been developed in three laboratories by

homologous recombination in embryonic stem cells (Wang, Auer et al. 1995; de

Murcia, Niedergang et al. 1997; Masutani, Nozaki et al. 1999) disrupting exons 2, 4

and 1 respectively. These animals are phenotypically normal but are substantially

deficient in BER and hypersensitive to ionising radiation and DNA alkylating agents

(de Murcia, Niedergang et al. 1997; Wang, Stingl et al. 1997; Masutani, Nozaki et al.

1999) and have altered responses to cellular stress (Wang, Stingl et al. 1997). Cell

lines from these animals show increased genomic instability (Simbulan-Rosenthal,

13



Haddad et al. 1999). In a cell-free DNA repair assay extracts from mouse embryonic

fibroblasts (MEF) from PARP-/- animals showed impaired repair of DNA sing1e

strand breaks associated with a reduced expression of factors involved in long patch

BER (Sanderson and Lindahl 2002). All these data indicate that there is an alteration

in BER in these animals (Shall and de Murcia 2000).

Production ofpoly(ADP-ribose) polymers has been demonstrated in PARP-/- cells

(Shieh, Arne et al. 1998). The subsequent identification of the many other members

of the PARP family, has helped explain these results. It has been shown that PARP-2

is also a DNA damage-dependent poly(ADP-ribose) polymerase (Arne, Rolli et al.

1999) and that this family member is involved in BER (Schreiber, Arne et al. 2002)

and it is likely that the polymer production in response to DNA damage observed in

PARP-/- cells (Shieh, Arne et al. 1998) is due to this enzyme. PARP-/- cells can

repair irradiation induced DNA damage in an NAD+-independent manner. Addition

of purified PARP-1 to this cell free system led to a restoration of the NAD+-dependent

process of BER (Vodenicharov, Sallmann et al. 2000). PARP-1 deficient cells have

impaired short patch BER (50% normal) and dramatically reduced long patch repair

(80-90% reduction).

In summary, PARP-1 is now known to be a critical part of the BER pathway, binding

to the single strand break, signalling damage to other members of the repair pathway

and then being released to detect and signal further damage (figure 1.5). It has

recently been proposed that the degradation ofpoly(ADP-ribose) is the unique source

of ATP used by DNA ligase during base excision repair (Oei and Ziegler 2000).

1.4.2 Interactions of PARP-l and p53

There is increasing evidence for an interaction between PARP-1 and p53 (a tumour

suppressor protein) to promote effective repair of DNA damage and it is known that

p53 is an acceptor protein for poly(ADP-ribosylation) (reviewed in (Bernstein,

Bernstein et al. 2002). Human PARP-l and p53 have been shown to form a complex

which does not involve their active domains (Wesierska-Gadek, Wojciechowski et al.

2003). Mice deficient in p53 and PARP-l have a high frequency of epithelial

carcinomas and brain tumours suggesting that there may be an interaction to maintain
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genome integrity. p53 is also known to act in BER by stabilising the interaction

between DNA polymerase (3, Ref-1 and abasic DNA (Offer, Milyavsky et al. 2001).

The intimate association ofPARP-1 and p53, may indicate a more subtle role in

modulating the role ofp53 in apoptotic cell death (Chiarugi 2002). It is known that

poly(ADP-ribosylation) occurs in response to an apoptotic stimulus (Bernardi, Negri

et al. 1995). Poly(ADP-ribosylation) of p53 alters its binding to DNA (Malanga,

Pleschke et al. 1998), PARP-/- MEFs show decreased p53 accumulation and

activation following ionising radiation (Valenzuela, Guerrero et al. 2002) whereas

irradiation of PARP+/+ cells strongly induces p53 (reviewed in (Bouchard, Rouleau et

al. 2003). Trans-dominant inhibition ofPARP-1 by over expression of the DBD

attenuated p21 induction and suppresses the p53-mediated G1 arrest response to

ionising radiation (Wieler, Gagne et al. 2003); similar results having been previously

observed using chemical inhibitors (Masutani, Nozaki et al. 2000).

These data have led to a more complex model for regulation ofBER (figure 1.5 from

(Hoeijmakers 2001), p53 committing cells to cell cycle arrest and DNA repair or

apoptosis depending on the extent of DNA damage.
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Figure 1.5
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Figure 1.5 Schematic diagram of BER. Damaged base is excised by glycosylase; recruitment of

signalling enzymes and Ref- l, an AP endon uclease, generates a single strand break. The BER

complex, including PARP-I is recruited and repair occurs.

1.5 Role of PARP-l in Apoptotic and Necrotic Cell death

PARP -1 activation is protective in proliferating cells because of its role in DNA

repair, however in non-proliferating cells excessive activation of the enzyme leads to

cell death. Exposure of quiescent cells to ischaemia or bacterial endotoxins causes

widespread liberation of reactive oxygen species (ROS). Consequent DNA damage

leads to over activation ofPARP-1 , NAD+depletion and necrotic or at least caspase

independent, non-apoptotic, cell death . Maintenance of AD+prevents this type of
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cell death (Ying, Garnier et al. 2003). It has been suggested that the decrease in pH

associated with proton release from hydrolysis ofNAD+ may also contribute to the

cell death (Affar, Shah et al. 2002). PARP-1 knockout mice are resistant to these

insults, with a decrease in the size of the necrotic area after cerebral artery ligation,

reduced myocardial reperfusion injury and enhanced survival after endotoxic shock

(reviewed in (Burkle 2000). Similar results have been reported using chemical

inhibition of PARP-1.

PARP-1 is an early target for caspase-3 and -7 in apoptosis, being cleaved at the

DEVD motif in the nuclear location sequence (Soldani and Scovassi 2002) and

inactivated. The N-terminal p24 fragment retains its DNA binding ability without any

catalytic ability acting, in effect, as an inhibitor ofbase excision repair. There is

evidence that the C-terminal p89 fragment can interact with intact PARP-1 and thus

blocks intact enzyme homodimerisation which is essential for activity. Thus once the

apoptotic destruction of PARP-1 by caspases has commenced there is a rapid

inhibition of further DNA repair and the consequent energy consumption. This

observation is confirmed in experiments where uncleavable PARP-1 was transfected

into PARP-/- cells and apoptosis was delayed (Oliver, de la Rubia et al. 1998).

It would appear that early in apoptosis poly(ADP-ribosylation) contributes to

activation ofp53 and downstream effectors including the recruitment of AIF from the

mitochondria (Conde, Mark et al. 2001; Yu, Wang et al. 2002; Du, Zhang et al. 2003)

therefore also being involved in caspase-independent programmed cell death. The

caspase-dependent cleavage of PARP-1 during ATP-dependent apoptosis has a role in

channelling energy consumption into programmed cell death rather than DNA repair.

In summary PARP-1 activation participates in DNA repair and recovery at low levels

of DNA damage and over activation of the same enzyme appears to contribute to cell

death in high DNA damage states, the proposed interaction of these two processes is

shown diagrammatically in figure 1.6 (taken from (Bernstein, Bernstein et al. 2002).

Both the apparently conflicting roles for PARP-I in the cell are potentially targets for

drug modification in human disease states. These possible clinical uses and the

development of PARP-1 inhibitors will be discussed below.
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Figure 1.6
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Figure 1.6 Diagrammatic representation of the interaction between ADP-ribosylation, energy use and

outcome after excessive DNA damage

1.6 Development ofPARP-1 inhibitors

PARP-1 inhibition is an attractive method for studying the significance of this enzyme

in biological systems. Many inhibitors have been designed around nicotinamide,

which is a by-product of PARP-mediated NAD+ cleavage, and is itself a weak PARP

1 inhibitor. The first nicotinamide analogues were the benzamides. Inhibition of

PARP by 3-aminobenzamide (3-AB) was reported over two decades ago by Whish

with an inhibitory constant (K) of 1.8 ± 0.2 11M in L1210 cells (Purnell and Whish

1980). However to inhibit PARP sufficiently to retard DNA repair in intact cells

millimolar concentrations of 3-AB are needed. 3-AB is not a specific PARP
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inhibitor, having activity against mono (ADP-ribosyl) transferases and de novo purine

sythesis, and more specific and potent PARP inhibitors would be required both for

study of enzyme activity but also for any potential clinical applications. Considerable

effort has been put into finding specific PARP-1 inhibitors (reviewed in (Griffin,

Pemberton et al. 1995; Li and Zhang 2001; Southan and Szabo 2003).

The newer more potent PARP inhibitors have been designed based on interaction and

inhibition at the NAD+ binding site. Extensive studies of structure-activity

relationships revealed key desirable features (reviewed in (Griffin, Pemberton et al.

1995). It was proposed that a potent PARP inhibitor should have an unsubstituted

aromatic or polyaromatic heterocyclic structure; a carboxamide group restricted to the

anti-position; at least one amide proton for hydrogen bonding and a non-cleavable

bond at the equivalent of the 3'-position of 3-AB. X-ray crystallography of inhibitors

in the NAD+ binding site has complemented structure activity relationships and

allowed the identification of 3 critical hydrogen bonds.

Banasik screened more than 170 compounds available commercially as poly- and

mono(ADP-ribose) inhibitors. His group identified several potent inhibitors, e.g.

naphthalilides and dihydroxyisoquinolines, all ofwhich have the carbamoyl function

incorporated within a ring system (Banasik, Komura et al. 1992).

These advances allowed the second generation of PARP inhibitors to be developed,

the bicyclic lactams (PD128763 and NU1025) and benzimidazole-4-carboxamides

(NU1085), which showed much greater potency over 3-AB with ICsos in the

nanomolar range (reviewed in (Li and Zhang 2001), also figure 1.7).
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Figure 1.7
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Figure 1.7 Small molecule inhibitors of PARP-1, including the molecule NU 1025 and NU 1085

identified during the Newcastle PARP inhibitor development programme. Year of discovery given

above, relative potency to 3-AB shown.

X-ray crystallography ofPD128763, NU1025, naphthaliamide and benzamide with

PARP-1 showed restriction of rotation of the carboxamide improved binding (Ruf, de

Murcia et al. 1998).

Part of the drive to develop potent, specific PARP inhibitors has been based on the

observations that inhibition of PARP can potentiate the cytotoxicity of anticancer

drugs. Durkacz et al first reported that ADP-ribosylation was involved in DNA

excision repair and that inhibition of the enzyme enhanced the cytotoxicity of

demethyl sulphate, a DNA alkylating agent, in 1980. At the end of this seminal paper

the authors suggested that this "potentiation of cell killing by alkylating agents and

PARP inhibitors may be of use in the treatment of human leukaemia" (Durkacz,

Omidiji et al. 1980).

There is now considerable academic and commercial interest in the development of

PARP inhibitors suitable for use in humans. Interest continues in the field of cancer

treatment, where inhibitor use would be envisaged in combination with cytotoxic

20



agents to enhance the tumour response to chemotherapy or radiotherapy by preventing

repair of induced DNA damage. The in vitro observations that PARP-l inhibitors

potentiate the cytotoxicity of anti-cancer drugs and ionising radiation, and the fact that

in vivo PARP-l knock out mice show increased sensitivity to these agents has

stimulated the development of specific PARP-l inhibitors as potential chemo- and

radiosensitisers

However there is expanding interest in other clinical fields consequent on the

observation of the protective effects of PARP inhibition or the PARP knockout

mutation in cerebral ischaemia, endotoxic shock, inflammatory disorders and

reperfusion injury (reviewed in (Tentori, Portarena et al. 2002; Virag and Szabo

2002). The activation ofPARP-l and its putative role in necrotic cell death has led to

the development of PARP-l inhibitors to prevent such activation and decrease

resultant cell death. It has been suggested that such agents could be used as a

neuroprotective agent after ischaemic stroke and traumatic brain injury, could be

cardioprotective after myocardial infarction, and could be used in the treatment of

Alzheimer's disease and endotoxic shock (reviewed in (Tentori, Portarena et al. 2002)

- see figure 1.8.
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Figure 1.8
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Figure 1.8 PAR? acti vat ion in apoptotic and necrotic cell death and potential cli nical applications of

PAR? inhibitors

1.7 Development of AG014699

The Medicinal Chemistry Department and Drug Development Group, Cancer

Research Unit, University of Newcastle Upon Tyne has identified, using rational dru g

design, quinazolin-4-[3H]one (e.g. NU 1025 ) and benzimidazole-4-carboxami de(e.g.

NU 1085 ) derivati ves which are potent inh ibitors of PARP-1 (Griffin, Pemberton et al.

1995 ). NU 1025 and 1085 have been shown to potentiate the cytotoxicity of

alkylating agents, bleomycin (a free-radical producing glycopeptide which cause

ingle and double strand breaks) and ionising radiation in a murine leukaemia cell line
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(L1210) «Bowman, White et al. 1998); (Boulton, Pemberton et al. 1995) but not the

thymidylate synthase inhibitor nolatrexed or gemcitabine (a nucleoside analogue).

Potentiation of camptothecin (a topoisomerase I poison) but not etoposide (a

topoisomerase II poison) was reported in the same experimental system (Bowman,

Newell et al. 2001). Camptothecin forms both protein-associated and non-protein

associated single strand breaks which would bind and activate PARP-1. Etoposide is

associated with the formation ofprotein-associated double strand breaks which would

not be a stimulus to PARP-1. The enhancement of both temozolomide and topotecan

(a clinically active topoisomerase I poison) cytotoxicity has been confirmed in a panel

of human common tumour cell lines independent ofp53 status and tissue of origin

(Delaney, Wang et al. 2000).

Following the successful development ofpotent PARP-1 inhibitors in Newcastle a

collaboration was established with Agouron Pharmaceuticals (now part of Pfizer

GRD) to improve these agents and move them forwards to clinical trials (Canan

Koch, Thoresen et al. 2002; Skalitzky, Marakovits et al. 2003) as chemo-potentiating

agents. New compounds have been developed using x-ray crystal structure-based

design and structure activity relationships to improve both potency and solubility

(Skalitzky, Marakovits et al. 2003). Crystallographic analysis of one of the earlier

inhibitors (NU1085) bound in the PARP catalytic site (see figure 1.9) led to the

development of a new class of inhibitors, the tricyclic lactam indoles (Canan Koch,

Thoresen et al. 2002). These compounds are ~1OOOx more potent than 3-AB, Ki ::; 5

nm, and potentiate temozolomide and topotecan cytotoxicity at sub-micomolar

concentrations. In particular AG 14361 showed impressive in vitro activity, had

suitable pharmacokinetic properties and was a potent radio- and chemo-sensitiser in

vivo (Calabrese, Almassy et al. 2004).
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Figure 1.9

Figure 1.9 Co-crystal struct ure of NU 1085 and NA O+ binding site of chicken PARP-l

The clinical candidate, AG014699, and a range of back-up compounds were generated

and preclinical evaluation carried out both at Pfizer GRD (formulation and

toxicology) and in Newcastle (preclinical efficacy and pharmacodynamics). It was

proposed that the PARP-l inhibitor AGO 14699 (structure shown in figure 1.10) would

enter clinical trials early in 2003.

Figure 1.10
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Figure I. 10 Structure of AGO 14699
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A proposal for two phase I combination clinical trials, with temozolomide and

irinotecan respectively, was put to the New Agents Committee of Cancer Research

UK in 2001. The proposal was approved and these new agent trials will be run

through Cancer Research UK's Drug Development Office. The First-in-Human

clinical trial of the PARP-l inhibitor AGO 14699 will be in combination with

temozolomide.

The mechanism of action of temozolomide, its early clinical development and

evidence of the interaction with PARP-l are discussed below, completing the

introduction to this thesis. The further preclinical data pertinent to the protocol

development for the clinical trial of AG014699 and temozolomide will be discussed

in chapter 2.

1.8 Temozolomide

1.8.1 Chemistry and mechanism of action

Temozolomide (CCRG 81045; M&B 39831; NSC 362856; SCH 52365) is an

imidazotetrazine. It is one of a family of compounds synthesised by Stevens and

colleagues (Stevens, Hichman et al. 1987) which exhibited a broad spectrum of

activity against murine tumours. The lead compound, mitozolomide, entered clinical

trials but its further development was halted after severe and unpredictable

myelosuppression was reported (Blackledge, Roberts et al. 1989). Preclinical studies

with temozolomide showed good experimental antitumour activity with lower toxicity

which was schedule dependent (Stevens, Hichman et al. 1987). Temozolomide is an

orally available drug that is rapidly absorbed with 100% oral bioavailability, peak

plasma levels being achieved at 1.2 hours after oral dosing (Danson and Middleton

2001). In the plasma the drug undergoes spontaneous breakdown to the active

component, 5-(3-methyl) I-trizen-l-yl-imidazole-4-carboxamide (MTIC) at

physiological pH in aqueous solution (Stevens, Hichman et al. 1987). This is in

contrast to the original lead drug in this family, dacarbazine, which requires metabolic

activation in the liver with demethylation of the parent drug to release MTIC (figure

1.11).
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Figure 1.11
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Figure 1.11 Structures of dacarbazine (DTIC) and temozolomide, and the active, DNA methylating

species, MTIC

MTIC is unstable and degrades into its methyldiazonium ion, a reactive methylating

compound. This acts as a major groove-directed DNA-alkylating agent, preferentially

binding to the middle guanine residue of a GGG sequence (Stupp, Gander et al. 2001).

Temozolomide generates methyl adducts, the predominate species being N7
_

methyl guanine (70%), N3-methyladenine (9.2%) and 0 6-methylguanine (5%)

(Newlands, Stevens et al. 1997). It is the 0 6-methylguanine products, which although

in the minority, that appear to be responsible for the cytotoxicity oftemozolomide

(Tentori, Graziani et al. 1995; Hickman and Samson 1999). 0 6-methylguanine is not

lethal to cells per se but during DNA replication tends to mispair with thymine. This

mis-pairing is recognised on the daughter strand by the MMR pathway and the

thymine excised. However, unless the original 0 6-methylguanine lesion is repaired

by removal of the methyl adduct thymine is likely to be re-inserted. Repetitive futile

rounds of mismatch repair causes a state of chronic strand breaks and the MutS

branch of MMR signals G2/M cell cycle arrest and the initiation of apoptosis (Karran

and Hampson 1996; D'Atri, Tentori et al. 1998; Fink, Aebi et al. 1998).
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1.8.2 Repair of temozolomide induced DNA damage

1.8.2.1 N
7
-methylguanine and N3-methyladenine repair

The N-methylpurines formed are promptly repaired by the base excision repair

pathway. The modified base is excised by methylpurine glycosylase (MPG) resulting

in an abasic site. This initiates the BER repair pathway as discussed in section 1.2.1

with the close involvement ofPARP-l activation in this pathway (see section 1.4). It

is thought that unrepaired N7-methylguanine lesions are well tolerated, however the

N
3
-methyladenine adduct is mutagenic and cytotoxic if not rapidly repaired (Lawley

and Phillips 1996).

1.8.2.2 0 6-alkylguanine DNA-alkytransferase and MMR

Repair of 0 6-methylguanine lesions requires the activity of 0 6-alkylguanine-DNA

alkyltransferase (OGAT, ATase). ATase is the main component of the Direct Repair

Pathway, an efficient mechanism of DNA repair where the altered base is corrected

without removal or disruption of the phosphodiester backbone. Overexpression of

ATase in mammalian cells confers resistance to DNA alkylating agents (reviewed in

(Margison, Koref et al. 2002), and is a major factor in tumour resistance to alkylating

agents. Patients with brain tumours with low-ATase activity demonstrate a higher

response rate to DNA alkylating agents, carmustine (Belanich, Pastor et al. 1996) and

to temozolomide (Friedman, McLendon et al. 1998); however ATase levels have not

been found to be a predictor of response in melanoma patients (Middleton, Lunn et al.

1998) whereas patients with tumours staining positively for MMR proteins were more

likely to respond (Friedman, McLendon et al. 1998). The transfer of the methyl group

to ATase inactivates the enzyme and enzyme levels in peripheral blood lymphocytes

in patients treated with 5 days oftemozolomide show a progressive depletion (Lee,

Thatcher et al. 1994). It may be that the schedule dependency of temozolomide is

related to cumulative depletion. Attempts have been made to exploit this observation

by the development of inhibitors of ATase (PaTrin2) which improves the therapeutic

index of temozolomide in tumour xenografts (Middleton, Kelly et al. 2000) and is

currently in phase II trials.
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In the absence of direct repair by ATase the mis-paired thymine is excised by the

mismatch repair system but leaving the 0 6-methylguanine in place and therefore

subsequent mispairing occurs during repair. It is thought that the repeated attempts to

repair this lesion generates double strand breaks and triggers apoptosis (Tentori,

Turriziani et al. 1999); figure 1.12 adapted from (Margison, Koref et al. 2002). The

hypersensitivity of ATase'" cells to DNA alkylating agents can be "rescued" by the

introduction of MMR deficiency (Karran and Bignami 1992), these double deficient

cells will tolerate high levels of 0 6-methylguanine without undergoing apoptosis.

MMR mutation in cell lines has been shown to confer resistance to temozolomide,

even in the presence of low ATase levels. In MMR proficient cells inhibition of

ATase with 0
6
-benzyguanine increases sensitivity to temozolomide (Liu, Taverna et

al. 1999) but is ineffective in MMR-deficient cells.

Figure 1.12
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Figure 1.12 Repair of06-methylGuanine either by ATase or the consequences of MMR of the lesion,

S(1) and S(2) indicating the first and second rounds of replication following damage.

Tumour cell lines which are deficient in elements of the MMR pathway are resistant

to the cytotoxic effects of a number of DNA damaging agents (reviewed in (D'Atri,

Tentori et al. 1998). These authors studied MMR proficient and deficient cell lines
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and have shown that induction of p53 and signalling for apoptosis following

temozolomide treatment involves MMR.

1.8.3 Temozolomide and PARP-l inhibition

There is an increasing body of evidence that the inhibition of PARP-1 and consequent

deficiency in BER will increase the cytotoxicity of temozolomide. Inhibition of BER

will cause persistence of strand breaks caused by the more abundant N3_

methyladenine lesions in addition to the normally predominant cytotoxic lesion 0 6_

methylguanine. 3-methylpurine DNA glycosylase (MPG) catalyses the first step in

the repair ofN3-methyladenine, subsequent recruitment of the BER complex

including activated PARP-1 completing the repair.

Co-administration of potent PARP-1 inhibitors developed in Newcastle enhances the

cytotoxicity of temozolomide and the persistence of DNA single strand breaks in

L1210 cells (Boulton, Pemberton et al. 1995; Bowman, White et al. 1998), and in a

panel of other common tumour cell lines (Delaney, Wang et al. 2000) as discussed

above. These data have been confirmed in other studies.

Leukaemic cells resistant to temozolomide due to high ATase levels and MMR

deficiency were treated with the combination oftemozolomide and NU1025 (Tentori,

Turriziani et al. 1999). A three fold reduction in the growth inhibitory ICso

concentration for temozolomide was observed in the presence of the PARP-1 inhibitor

and increased rates of apoptosis in the treated group were detected by flow cytometry.

More pronounced effects were seen when the temozolomide and NU1025

administration was fractionated (Tentori, Portarena et al. 2001), the authors proposing

that this was due to the fact that more extensive DNA damage was introduced. These

experiments have been extended into in vivo situations and enhanced the survival of

mice bearing cranial lymphomas. The animals were treated with intra-peritoneal

temozolomide plus or minus intra-cerebral NU1025. The combination treatment

enhanced survival, particularly when the dose was fractionated, temozolomide alone

being ineffective (Tentori, Leonetti et al. 2002).
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Treatment of glioma cell lines with temozolomide ± 3-AB again demonstrated

increased cytotoxicity for the combination, with a reduction in the growth inhibitory

ICso for temozolomide (Tentori, Portarena et al. 2002). This enhancement was more

marked in glioma cells known to be deficient in MMR. Me-Lex (MeOS02(CH2h

lexitropsin) is a methylating agent which selectively causes N3-methyladenine lesions.

These lesions are cytotoxic and repaired by BER. Increased sensitivity of activated

human PBLs to Me-Lex is caused by treatment with NU1025 (Tentori, Portarena et al.

2002).

Chemopotentiation of temozolomide has been demonstrated by the PARP-1 inhibitor

CEP-6800 both in tumour xenografts and cell lines. CEP-6800 is a 3-aminomethyl

carbazole imide which inhibits both PARP-1 and PARP-2 (Miknyoczki, Jones-Bolin

et al. 2003). Potentiation oftemozolomide, irinotecan and cisplatin has been observed

in their models. Increased DNA damage after temozolomide/PARP inhibitor

treatment was demonstrated using a COMET assay over 24 hours following

treatment, and PAR accumulation in combination treated xenografts was decreased

over control treated animals (temozolomide or irinotecan alone) at 4 hours after

dosing. Treatment ofU251MG glioblastoma xenografts with a combination ofCEP

6800 (30 mg/kg) and temozolomide (34 mg/kg) caused complete regression of the

tumours by day 28. Similar potentiation of the activity of temozolomide has

subsequently been described in combination with AG14361 (Calabrese, Almassy et

al. 2004).

Studies on the combined effect of inhibiting ATase and PARP-1 have been performed

in leukaemic cell lines (Tentori, Orlando et al. 1997). Leukaemic cell clones deficient

in ATase were transfected to re-express the enzyme. These cells were originally

sensitive to temozolomide, re-introduction of ATase increased their resistance, and

this effect could be reversed with the ATase inhibitor 0 6-benzylguanine. Combined

treatment with temozolomide and a PARP inhibitor increased sensitivity to

temozolomide in both the ATase deficient and proficient cells. In cells which are

mismatch repair deficient, 0 6-methyl guanine lesions are tolerated; inhibition of PARP

and thus BER will cause N3-methyladenine to become the predominant cytotoxic

lesion.
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In a panel of human tumour cell lines temozolomide cytotoxicity was potentiated both

by 0
6
-benzylguanine and 3-AB treatment in MMR proficient cells, but only by 3-AB

in MMR deficient cell lines (Wedge, Porteus et al. 1996). Similarly colon cancer cell

lines which were mismatch repair deficient (RCTl16) or MMR wild type (SW480)

show differential sensitivity to temozolomide, treatment in combination with a PARP

inhibitor (PD128763) increased sensitivity to temozolomide in both the proficient and

deficient cell lines. Triplet treatment with temozolomide, PD128763 and 0 6_

benzylguanine was synergistic in the wild type cells, the addition of the ATase

inhibitor having no effect in the MMR deficient cells (Liu, Taverna et al. 1999).

These findings have been reproduced in paired cells lines, both MMR proficient and

deficient (Curtin, Wang et al. 2004). The effect of AG14361 on temozolomide

induced growth inhibition was investigated in RCT-Ch3, A2780 and CP70-ch3

(MMR-proficient) and HCTl16, CP70 and CP70-ch2 (MMR-deficient) cell lines.

AG 14361 enhanced temozolomide activity in all the MMR-proficient cell lines, but

was more effective in MMR-deficient cells such that temozolomide resistance was

overcome. In the same paired cell lines inhibition of ATase by benzylguanine

enhanced the cytotoxicity oftemozolomide in the MMR-proficient cells only.

The potentiation of temozolomide by PARP inhibitors may be clinically important as

loss of mismatch repair occurs frequently in many common sporadic solid tumours

(small and non-small cell lung cancer, pancreatic, gastric, colorectal, ovarian,

endometrial, cervix and breast cancers) and in the majority of cases of hereditary non

polyposis colon cancer (reviewed in (Tentori, Portarena et al. 2002).

1.8.4 Clinical use of temozolomide

A phase I trial of temozolomide, initially comparing both intravenous and oral

schedules, identified the maximum tolerated dose as 200 mg/mvday for 5 days of a 28

day cycle (Newlands, Blackledge et al. 1992). There was no significant difference in

plasma pharmacokinetics between oral and intravenous dosing and the oral route is

recommended. Maximum plasma levels were achieved 0.7 hours after dosing.

Toxicity included mild nausea compatible with oral dosing and dose dependent
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myelosuppression which was dose limiting. Responses were seen in melanoma and

malignant glioma encouraging further development. Patients with brain tumours are

usually excluded from phase I studies of novel anticancer agents because of concerns

relating to informed consent and the lack of penetration of drugs to the brain.

However, the preclinical observations that temozolomide crossed the blood brain

barrier in mice justified their inclusion in this trial.

Phase II studies have been conducted in malignant brain tumours (Bower, Newlands

et al. 1997; Yung, Prados et al. 1999; Brada, Hoang-Xuan et al. 2001; Harris,

Rosenthal et al. 2001) and metastatic melanoma ((Bleehen, Newlands et al. 1995), all

using a dose of200 mg/mvday for 5 days in a 28 day cycle. Reported response rates

of 8% with disease stabilisation in a further 43% ofpatients with glioblastoma

multiforme (GBM) at first relapse (Brada, Hoang-Xuan et al. 2001) and 35% in

patients with anaplastic astrocytoma are described. A randomised comparison of

dacarbazine and temozolomide in GBM found in favour of the latter with equivalent

response rates (5%), but improved median (7.3 v 5.8 months) and progression free

survival (21 v 8% at 6 months) for temozolomide. It is in this disease, with its poor

prognosis, that temozolomide is licensed and recommended for treatment in the

United Kingdom (NICE, 2001; (Dinnes, Cave et al. 2002).

Myelosuppression was the major adverse effect of temozolomide in all the studies in

brain tumours. 6-10% ofpatients developed CTC grade 3 or 4 thrombocytopaenia

and fewer than 5% developed significant neutropaenia or anaemia (Dinnes, Cave et al.

2002).

Phase II (Bleehen, Newlands et al. 1995) and phase III (Middleton, Grob et al. 2000)

studies of temozolomide have been performed in patients with metastatic melanoma.

The reported response rate in the phase II study was 24% with a median survival for

responders of 14.5 months (compared to 5.5 months overall). Severe

myelosuppression was observed in 9% subjects, otherwise toxicity rates were low.

The phase III randomised study of temozolomide v DTIC in metastatic malignant

melanoma did not show a significant difference is response rate between the two

treatment groups (13.5% v 12.1%). Once again the new agent was well tolerated with
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eTC grade 3 or thrombocytopaenia occurring in 11% of the temozolomide treated

group. The nadir occurred late in the 28 day cycles, at 20-21 days post treatment.

Temozolomide is licensed for use in malignant brain tumours in Europe. The

equivalence of the phase III trial in melanoma means that its uptake in this disease in

Europe has been small although world wide this is a major market for the drug.

There is, therefore, a potential clinical use for PARP inhibitor temozolomide

combinations. Potentiation of temozolomide cytotoxicity may improve its efficacy in

licensed indications or the change in emphasis of the cytotoxic lesion may alter the

range of sensitive human tumours.

1.9 Summary

The introduction to this thesis has attempted to cover the background to the

experimental work described herein. A brief summary of the proposed mechanisms

of DNA damage repair, in particular base excision repair, is given to explain the

rationale for the development of PARP-1 inhibitors as possible chemo- or radio

potentiating agents. The development of the tricyclic lactam indoles is summarised.

A novel PARP-1 inhibitor in this class, AG014699, entered clinical trials in

combination with temozolomide in 2003.

The main points covered in the chapter are listed below

1. The action of many chemotherapeutic agents used in the treatment of

human tumours can be compromised by a variety of mechanisms,

including DNA repair.

2. Temozolomide is a DNA methylating agent in clinical use. The

predominant DNA lesions formed by temozolomide, 0 6-methylguanine,

N3-methyladenine and N7-methyladenine are repaired by ATase, MMR

(06
) and BER (N3 and N7

) respectively.

3. PARP-1 is an enzyme involved in BER and p53 mediated responses to

DNA damage.
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4. Potent inhibitors ofPARP-1 have been developed, leading to a clinical

candidate, AG014699, which is ;;:::1000x more potent than the early

inhibitors.

5. Tumour xenograft and cell line studies show that the antitumour activity

and cytotoxicity of temozolomide is enhanced by co-administration of a

PARP-1 inhibitor.

The next chapter will discuss the preclinical evaluation of AGO14699 and related

compounds in relation to the protocol design and development for the phase I study in

humans. Chapters 3-5 describe the laboratory experimental methods used and the

experiments undertaken to validate a suitable pharmacodynamic assay for use in the

clinical trial. Chapter 6 summarises a phase II study of temozolomide alone in

patients with malignant melanoma which provides clinical data to validate the

laboratory assays.
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Chapter 2

Protocol development of Phase I clinical protocol for first-in-human
use of a PARP-l inhibitor in combination with a cytotoxic agent
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2.1 Introduction

The role of PARP-1 in base excision repair and its potential in combination with

temozolomide has been discussed in chapter 1. As part of the Northern Institute for

Cancer Research Drug Development programme potent novel PARP-1 inhibitors have

been developed. One of these, AG014699, has been identified as the potential clinical

candidate and has moved forwards into a First-in-Human clinical trial. The phase I

clinical trial is based in the United Kingdom with Newcastle as the coordinating

centre. The other participating investigators and centres are Professor Harris and Dr

Middleton in Oxford and Professor Johnson and Dr Wilson in Belfast.

The initial proposal which was considered and accepted by the New Agents

Committee (NAC) of Cancer Research UK (formerly Cancer Research Campaign)

comprised two trials with AGO14447, one in combination with irinotecan, a

topoisomerase I inhibitor, and one with temozolomide. It is this latter trial that is

critical to the work described in this thesis, the trial with irinotecan is planned for a

later phase of the clinical development. The nomenclature of the compound for

clinical use was subsequently changed, AGO14699 is the phosphate salt of the parent

compound AGO14447 (8-Fluoro-2-(4-methylaminomethyl-phenyl)-1,3,4,5

tetrahydro-azepino[5,4,3-cd]indol-6-1). During the clinical trial the drug is referred to

and prescribed as AG014699, however the compound measured in pharmacokinetic

studies in AGO14447.

The initial proposal to the New Agents Committee proposed the clinical development

of AG14361. At a late stage of the preclinical planning stage AG014447/AG014699

was discovered. This agent is more potent and more water soluble and was finalised

as the first clinical candidate. The late change in trial agent means that some of the

early pharmacodynamic assay development was done using AG14361 as the drug

reference. All final validation has been done using AGO14699. The chemical

structure of AGO14699 is shown in figure 1.10, this is a yellow solid, molecular

weight of 421.36. The compound is water soluble, and is stable for at least 30 days

either in the solid form or in solution in 50/0 dextrose (Pfizer, unpublished

observations). Crystallographic analysis of AG014447 bound to the inhibited target

enzyme revealed that the drug binds to the active site of PARP-1, forming 3 hydrogen
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bonds. The K; determined using 32p_NAD+ incorporation into polymer by purified

full-length human PARP, is 1.4 nM (unpublished AgouronlPfizer data). AG014699

inhibits oligonucleotide-stimulated PARP-l activity measured using a e2p] NAD+

incorporation assay in permeabilised SW620 cells (ICso= 24 nM). Analysis of the

time course of inhibition after exposure to 0.4 mM AG014699 showed >60%

inhibition of PARP-l up to 2 hours post-treatment confirming its tight binding and/or

cellular retention (Suzanne Kyle, personal communication).

A large part of this MD project has involved authorship of the first draft of the phase I

clinical trial protocol, and subsequent modifications and review in collaboration with

colleagues from the other centres involved, Cancer Research UK and Pfizer. The

toxicology summary of the protocol (section 1.2.4) was written by Professor Herbie

Newell and Sections 7.1.2.1 and 5.1, the pharmacokinetic processing of and

pharmaceutical information on AG014699 was written by Dr Poe Hsyu of Pfizer

GRD. The approved protocol is currently recruiting patients into part 1 of the trial.

In this chapter of the thesis the salient preclinical studies will be discussed and the

protocol design assessed in detail.

2.2 Preclinical efficacy study

During the preclinical assessment of AGO14699 a number of critical efficacy studies

were carried out in Newcastle. The design and results of these are summarised below

as these were instrumental in decisions made during the development of the phase I

trial protocol. The practical work for this efficacy study was performed by Chris

Calabrese, Suzanne Kyle, Huw Thomas and Mike Batey.

There were two arms to the studies: an efficacy arm and a PKlPD arm.

2.2.1 Efficacy

Groups of 5 CD-1 nude mice were inoculated subcutaneously with 1x107 SW620

colon cancer cells. The implanted tumours were allowed to develop; when they were

palpable (approx 4x4 mm, -day 10 after inoculation) treatment was started. The
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When the new clinical candidate AGO14699 was identified as the agent which would

be taken first into clinical trials the experiment described above was repeated using

this new inhibitor. Groups of 5 mice were again treated for 5 days with control

vehicle, temozolomide alone at a dose of68 mg/kg and 136 mg/kg oftemozolomide

in combination with 0.1 mg/kg, 1 mg/kg or 10 mg/kg AGO 14699. An additional

group of animals was treated with 10 mg/kg AGO 14699 alone to establish whether

this dose was toxic and/or efficacious as a single agent and as a control for

cannulation effects.

The results are shown in figure 2.2; temozolomide alone delayed tumour growth by

about 22 days (time to RTV4 in treatment group - time to RTV4 in control) whereas

AGO 14699 alone at the highest dose used had no effect on tumour growth compared

to control. Treatment with the combination of temozolomide 68 mg/kg with

AG014699 0.1 mg/kg caused a modest potentiation of the response to temozolomide.

A ten-fold increase in dose of inhibitor to 1 mg/kg caused xenograft cures, as had

been demonstrated previously with 15 mg/kg AG 14361. However, increasing the

dose of PARP-l inhibitor by another ten-fold in combination with temozolomide was

toxic and all animals had to be sacrificed. This dose of AGO 14699 alone was not

toxic.

Figure 2.2
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2.2.2 PK and PD

In the second phase of this pre-clinical efficacy study similar groups ofnude mice

were established but the animals sacrificed at intervals after treatment and blood and

tumour samples taken for pharmacokinetic and pharmacodynamic assessment.

Groups of 5 animals were implanted with 1 x 107 SW620 colorectal cancer cells.

Treatment was started when the tumours were larger than in the efficacy study to aid

sampling. No tumour was allowed to grow to greater than 10 mm diameter to avoid

problems with tumour necrosis causing inhomogeneity. Treatment with temozolomide

± AGO14699 was started approximately 15 days after implantation when the tumours

had reached 7 x 7 mm. The same combinations and doses of treatment were used,

although animals received a single dose only prior to sacrifice. Samples were taken at

0.5, 6 and 24 hours.

Animals were sacrificed by cervical dislocation and blood withdrawn immediately by

cardiac puncture for pharmacokinetic analysis. Whole blood was centrifuged to

obtain plasma and the concentration of AG014447 (the parent compound present in

the plasma) measured by HPLC. The tumour xenografts were removed and snap

frozen in liquid nitrogen prior to homogenisation and measurement of AGO 14447

concentration and PARP activity by e2p] NAD+ incorporation (assay described in

chapter 3).

Having confirmed the efficacy of AGO14699 in potentiating temozolomide this

PK/PD study had a critical influence on two aspects of the phase I trial design; the

definition of a PARP inhibitory dose (PID) and the recommended starting dose of

AG014699. The basis of these decisions will be discussed further below (section 2.4

and 2.5), the relevant PK/PD results are summarised below.

2.2.2.1 PKlPD at efficacious dose

Plasma and tumour levels of AG014447 were measured in 5 animals at each time

point after dosing. The times points chosen were 30 minutes, 6 hours and 24 hours

after intra-peritoneal injection of 1 mg/kg AG014699. The selection of the times was

based on previous preclinical evaluation of the pattern of PARP inhibition with
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similar inhibitors (Calabrese, Almassy et al. 2004) and also the clinical use of

temozolomide. The 30 minute time point was chosen to give a peak plasma level.

The 6 hour time point coincides with a time at which temozolomide would have

formed the maximum number of strand breaks (Danson and Middleton 2001), and

therefore demonstration of PARP inhibition at this time would provide support for the

proposal that PARP inhibition, and thus inhibition of BER, would be instrumental in

the potentiation of the cytotoxic drug. In clinical use temozolomide is given every 24

hours for 5 days and it would be envisaged that the PARP inhibitor would be given on

a similar schedule. The 24 hour time point gives an estimate of the AG014699

retention and PARP activity immediately prior to the planned re-dosing time.

The pharmacodynamic and pharmacokinetic results for animals dosed with 1 mg/kg

AG014699 is summarised in figure 2.3. This is the dose which maximally potentiated

temozolomide in SW620 xenografts. Plasma levels of AG014447 (yellow bars) were

between 110-120 ng/ml30 minutes after injection falling rapidly to <10 ng/ml at 6

hours and were undetectable at 24 hours. AG014447 levels in tumour (red bars) were

undetectable at 30 minutes, around 50 ng/g tissue at 6 hours with evidence of

retention in the tumour at 24 hours. This confirms the published data on AG14361

(Calabrese, Almassy et al. 2004).

PARP activity (blue bars), expressed as a percentage of the mean activity measured in

matched control tumours, was assessed by measuring the incorporation ofe2p] NAD+

into acid precipitated material. This assay is published (Boulton, Pemberton et al.

1995; Calabrese, Almassy et al. 2004) and discussed in detail in chapter 4.

Significant (>500/0) inhibition ofPARP activity was observed in tumours at 30

minutes, despite the drug levels being below the limit of detection at this time. At 6

hours the activity was 50% inhibited with a return towards baseline by 24 hours. The

relevance of all these results to the PARP phase I combination study will be discussed

below.

41



Figure 2.3

Plasma and tumour [447] and tumour PARP activity
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Figure 2.3 Plasma and tumour AG014447 levels (mean ± SD, n=5) left y axis 30 minutes, 6 and 24

hours after 1 mg/kg AG014699 i.p , tumour PARP acti vity as % control right y-axi s (mean ± SO, n=5).

2.2.2.2 PKlPD at toxic dose

An identical experiment was performed dosing animals with 10 mg/kg AG014699,

the dose of inhibitor which potentiated the toxicity of temozolomide to such an extent

that animals had to be sacrificed after 5 days dosing.

The results are shown graphically in figure 2.4. Plasma levels of AG014447 30

minutes after dosing were approximately 10-fold those seen in the previous

experiment (1500-2000 ng/ml cf 110-120 ng/ml) , and had fallen to ~ 50 ng/ml by 6

hours. Drug was still detectable in the plasma at 24 hours (1.5 ng/ml ). Tumour drug

levels were also higher ( ::::::200 ng/g tissue) and did not show a significant decline over

the 24 hours. PARP activity in the tumours was less that 10% of control values at

both 30 minutes and 6 hours after dosing; significant PARP inhibition (~80%) was

still found at 24 hours, the point at which re-dosing would occur during treatment.

The plasma levels of AG014447, the degre e ofPARP inhibition and leve l of toxicity

observed were all instrumental in the defining of the starting dose of AGO 14699 in

human trials and the defini tion of PK endpoints (see section 2.5).
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Figure 2.4

Plasma and tumour [447] and tumour PARP activity
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Figure 2.4 Plasma and tumour AGOl4447 levels (mean ± SO, n=5) left y axis 30 minutes, 6 and 24

hours after I rng/kg AGOl4699 i.p , tumour PARP activity as % control right y-axis (mean ± SO, n=5).

2.3 Protocol development

2.3.1 Summary of protocol design

Any novel anti -cancer agent must be registered with one of the regulatory authorities

before it can enter into standard clinical treatment. Before registration is permitted a

programme of preclinical drug toxicity assessment and rigorous clinical trials must

take place. Preclinical repeated-dose toxicity studies of a defined duration, depending

on the proposed length of treatment of patients, are required in one rodent and one

non-rodent species by US and European regulations (Farrell, Leighton et al. 2003).

These studies should use similar schedules and duration to those planned in the Early

Clinical Trial. The results from the toxicity studies are used to predict possible

toxicity and to define starting dose.
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The trial outline proposed and approved in the NAC application was a phase I

combination study of AGO 14699 with temozolomide in patients with advanced solid

malignancies. Development of anti-cancer drugs, which may have serious and life

threatening toxicities, involves the treatment of patients rather than healthy

volunteers. This places a burden of careful study design on researchers to minimise

the chance of serious toxicity whilst avoiding treating large numbers of patients at a

sub-therapeutic dose.

Phase I clinical trials aim to determine the toxicity profile of new drugs or

combinations and establish acceptable doses for subsequent studies. It is hoped that

preliminary evidence of activity will also be seen, however the chances of this are

small given the disparate and resistant tumour types enrolled. The overall response

rate in phase I anticancer drug trials is reported as 4-6% (reviewed in Horng, Emanuel

et al. 2002). The specifics of trial design will vary between trials, depending on

whether the trial is a single agent phase I, a cytotoxic combination study or involves

one of the biological targeted therapies; however the general principles in study

design are similar. The starting dose is defined from the results of preclinical toxicity

studies. Cohorts of between 1-3 patients are treated at each dose level and toxicity

assessed, if no significant toxicity is observed the dose is increased by a previously

defined factor and a new cohort of patients recruited. When toxicity is observed the

cohort is expanded and subsequent dose escalation may be in smaller increments. In

combination studies the individual drugs may be escalated alternately or in sequence.

The maximum tolerated dose is thus defined. A variety of dose escalation schemes

exist including standard and modified Fibonacci, continued reassessment (O'Quigley,

Pepe et al. 1990), accelerated titration (Simon, Freidlin et al. 1997), and

pharmacologically guided dosing. All the schemes aim to minimise the numbers of

patients treated at low ineffective doses whilst safely defining dose limiting toxicity

(Rubinstein and Simon 2003).

The initial proposal for the first in human study of AGO14699 is summarised in the

protocol concept sheet below (figure 2.5) which was submitted as part of the early

negotiations over trial set-up before my involvement with the project. This is the

working template from which the protocol evolved and illustrates the starting point

from which the protocol was written. A number of changes have been made and these
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changes and the rationale for the starting dose and primary endpoint defmitions are

discussed below.

Figure 2.5

Protocol Concept Sheet
Phase 1/ Pharmacokinetic / Pharmacodynamic Study ofPARP Inhibitor (AGO14447)

in combination with temozolomide

Primary Objectives To determine a PARP-inhibitory dose of AGO 14447 using PK and PD
endpoints for PARP inhibition.
To determine the MTD oftemozolomide in combination with this PARP-
inhibitory dose

Secondary To evaluate the single-agent and combination pharmacokinetics of
Objectives AGO14447

To document any responses in melanoma patients included in the study.
Study Design Single-Agent AG014447 days 1-5. Combination AG014447 +

temozolomide day 15-19. PK studies at all dose levels.
Part 1: Open to all patients. Continues until PK studies indicate potentially
PARP-inhibitory levels.
Part 2: Melanoma patients only, obligatory post-treatment biopsy for
measurement of PARP inhibition.

Drugs Time 0 minutes: AG014447 by 30 minute iv infusion
Time 60 minutes: Temozolomide orally.

Dose Escalation AGO 14447. Starting dose determined from preclinical toxicology / PK /
PD studies. Final dose determined by clinical PKlPD studies. Escalation
in 50% dose increments.
Temozolomide: Starting dose 100, 126, 159,200 mg/m2 (50% of starting
and geometric increments).
3 patients per dose level.
~3 week follow up on all patients before escalation

Inclusion Criteria Part 1: Patients ~ 18 years of age with advanced cancer for which no
satisfactory treatment exists, PS 0-2, Standard anticancer Phase 1 Lab tests
Part 2: As Part 1, but also must have malignant melanoma with at least
two lesions and consent to post-treatment biopsy.

Exclusion Criteria Brain metastasis
Serious intercurrent disease

Statistical Design Consider use of 2-drug modified continual reassessment method
Pharmacodynamic PARP activity in leucocytes
correlates PARP activity in tumour biopsies (Part 2)

PARP protein level in biopsies (Part 2)

Pharmacokinetics Both agents

Toxicity History and physical examination before each dose
Evaluation Full blood count, biochemistry, liver function and toxicity assessments

weekly
Efficacy Responses in assessable patients using RECIST criteria.
Evaluation Apoptosis measurements in biopsies
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Following a prolonged period of drafting and discussion of the trial design the final

format of the agreed clinical trial is summarised as follows. Treatment under part 1 of

the protocol commenced in June 2003.

The First-in-Human trial is an open-label, non-randomised, dose escalation phase I

combination study in two parts, escalating first the dose of AGO14699 then that of

temozolomide. A Modified Fibonacci scheme is being used to increase the dose of

the inhibitor, with the subsequent dose escalation of temozolomide being based upon

the clinical use of temozolomide, the available tablet sizes and thus increasing

towards the established maximum tolerated dose of temozolomide alone in equal

increments. The dosing strategy including the proposal for test "single agent" dose is

discussed in the following sections.

2.3.2 Dosing plan for the two parts of the study

Part 1 - Fixed dose temozolomide, escalating dose of AG014699

Patients with advanced solid malignancies of any type for whom no standard therapy

exists and who are of a reasonable performance status, physically and on blood

indices, are being recruited to this part of the study. Patients receive one half the

standard dose of temozolomide throughout this part of the trial, i.e. 1Oumg/m''. The

PARP-1 inhibitor is given by intravenous infusion one hour before temozolomide

dosing. Treatment started at a low, safe dose of AGO 14699 with cohorts of 3 patients.

Dose escalation of AGO14699 has been initially been by dose doubling. If any grade 2

toxicity is seen according to Common Toxicity Criteria (CTC version 3.0),

subsequent dose increments will be smaller (30% or less), a modified Fibonacci dose

escalation. This part of the trial will be complete when a PARP-1 inhibitory dose

(PID) of AG014699 is reached, and not on the basis of observed toxicity unless this is

severe and unexpected. The basis of this decision is discussed further below.

Phannacokinetic and pharmacodynamic samples are being taken on the first cycle in

every patient.

Part 2 - Fixed dose AG014699, escalating dose of temozolomide

Patients with advanced metastatic malignant melanoma will be recruited to part 2 of

the trial. These patients will be asked to have a biopsy of a melanoma lesion before
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and after dosing with the combination so that the degree of DNA damage (strand

break number) can be assessed and also tumour AG014699 pharmacokinetics and

phamacodynamics can be measured. The starting doses of this part will be

Temozolomide 100 mg/m' and the PARP-1 inhibitory dose of AG014699. The dose

of AGO14699 will be fixed throughout this stage of the study and the dose of

temozolomide escalated until dose-limiting toxicity is seen, a lower dose level will

then be investigated to define the maximum tolerated dose of the combination. It is

envisaged that the doses oftemozolomide investigated would be 100 mg/rrr', 125

mg/rrr', 150 mg/rrr', 175 mg/m'' and up to 200 mg/rrr' depending on toxicity observed.

Pharmacokinetic and pharmacodynamic samples will once again be taken on the first

cycle in every patient. A maximum tolerated dose (MTD) will be established and this

cohort of patients expanded to at least 6 to further evaluate toxicity and allow some

indication of response.

2.3.3 Single agent dosing with AG014699 prior to cycle 1

In the initial protocol concept it was proposed that patients would receive 5 daily

doses of AG014699 on days 1-5 of cycle one, with treatment with the combination

starting on day 15 of this cycle and the total length of the first cycle being six weeks.

All subsequent cycles would be four weeks in length, without this single agent

treatment.

The reason for this schedule was to obtain single agent PARP-1 inhibitor PK data and

to look for potential toxicity of the novel agent. A PARP-1 inhibitor would not be

expected to be active against cancer cells on its own; the rationale for its action

depends on enhancing DNA damage caused by other agents. It would be ethically

difficult to carry out a dose-finding trial of the single agent alone in a population of

patients with limited life-expectancy in whom quality of life is paramount, given that

administration would be of no therapeutic benefit.

During the process of writing the phase I trial protocol the specific plan for 5 test

doses was discussed further and amended for a number of reasons. There was

concern over the delay before patients received combination therapy as the 5 day test

dosing then one week wash out period meant that there was a two week delay from
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entry into the trial and receipt of temozolomide and AGO14699. Preclinical

toxicology studies did not observe significant toxicity with AGO14699 alone at doses

predicted for clinical use apart from some local irritation at the injection sites in

smaller animal species, all toxicity appeared to be related to exacerbation of the side

effects of temozolomide in the combination studies. It was felt that a more

appropriate design would be for patients to receive one single agent AGO 14699 dose,

then PK and PD data in humans could be obtained and an assessment made for any

possible unexpected single agent toxicity.

The final study design involves patients receiving a single dose of AG014699 seven

days (range 11-6 days) prior to starting the combination therapy on cycle one only.

This dosing day is designated "day -7" ( or -6 etc) allowing cycle one of combination

treatment to start on day 1 and all cycles therefore being 28 days long with re

treatment on day 29. In the event of any dose limiting toxicity being observed,

defined in the protocol in section 2.2.2.1, the cohort of patients would be expanded to

six. This expanded cohort of patients will receive 5 single doses of AGO14699 on

days -14 to -10 of their first cycle to enable assessment of whether the observed

toxicity is due to the novel agent or the combination with temozolomide. The

minimum of 6 days between single agent treatment and starting combination is

sufficient to allow processing of the PK samples and issuing of the results from the

CRO (Contract Research Organisation) before combination dosing. PD assessment of

the degree of PARP inhibition is also possible in this time frame. This allows

investigators the possibility of discussing any unexpected handling of the drug before

embarking on the combination, a fact which may be particularly important once

toxicity has been observed in other patients in the cohort.

2.3.4 Study objectives and endpoints

The primary and secondary objectives of the study as proposed in the protocol

concept sheet were expanded during the protocol development and the additional

endpoints are listed below. It proved necessary to define clinical study endpoints for

both part 1 and part 2 of the trial. The definition in the protocol is given below and

the rationale for completion ofpart 1 of the study based on PD endpoints discussed in

section 2.4
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Additional Primary Objectives:

• to determine and establish the toxicity profile of the above combination and to

identify the dose limiting toxicity (DLT)

• to select doses of AGO14699 and temozolomide for combination use in phase

II evaluation

Additional Secondary Objectives:

• to investigate pharmacokinetics of temozolomide when given in combination

with AGO14699 and possible interactions

Clinical study end points:

Part 1

A primary endpoint of the trial is to establish a PARP inhibitory dose (PID) of

AGO14699 in adult patients using pharmacokinetic and pharmacodynamic parameters

measured in patients' blood. Development and validation of the PD assay was

ongoing during protocol drafting. Whilst it was acknowledged that, ideally, PD data

would be used to define PID an alternative PK endpoint was also defined in the

protocol. In the absence of significant toxicity, the primary PK end point will be the

dose that results in a plasma concentration of AGO14699 that exceeds by a factor of

10 the level that maximally potentiated the antitumour activity of temozolomide at 6

hours in mice (ie, 10 x 10 ng/mL= 100 ng/mL). Ifpharmacodynamic data suggest a

plateau in inhibition at a concentration lower than this, escalation may be stopped. If

toxicity is observed, clinical effects will be used to guide dosing.

Part 2

The endpoint in part 2 will be dose limiting toxicity (DLT) of the combination of

temozolomide and AG014699, based on drug-related adverse events graded according

to the NCI Common Toxicity Criteria (CTC) Version 3.0, occurring during the first

cycle of treatment. DLT will have been reached when 2 patients at a given dose level

(with up to 6 treated at that level) have experienced drug-related DLT. The maximum

tolerated dose (MTD) will be defined as a dose below that eliciting DLT. (Standard

definitions for dose limiting toxicity in phase I trials).
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2.4 Preclinical toxicology and starting dose

Before entering patient trials investigational cancer drugs are subject to pre-clinical

toxicology studies. These are aimed at screening for unexpected adverse toxicity and

also projecting a human starting dose. Classically, two toxicology studies would be

performed, one in a rodent species and one in non-rodents (Farrell, Leighton et al.

2003). The rodent study identifies a dose in mg/m' which produces severe toxicity in

10% of animals (STD lO or LD lO) . The second study should confirm that this dose

does not cause severe toxicity in the non-rodent species. The starting dose for a phase

I study in humans would normally be one-tenth of this LD lO or one-third of the toxic

dose level (TDL) in the larger animal species (reviewed in Mahmood 2003). An

alternative approach when estimating starting doses in a combination study is to

define the MTD of the combination and use one-tenth of the MTD in the most

sensitive species as the starting dose in the human study. The aim in all situations is

to start at a safe dose of a novel agent or combination but to minimise the potential for

starting at an inappropriately low dose and hence avoid treating large numbers of

patients with ineffective doses.

Single agent toxicity studies of AG014699 were performed in rats and beagle dogs.

Doses of 5, 15 and 75 mg/kg/day for 5 days were given to groups of20 male and

female rats (32, 97 and 484 mg/rrr' respectively). At doses over 15 mg/kg/day bone

marrow hypocellularity was observed with a most marked decrease in erythroid

precursors. Minimal to moderate myocardial degeneration was observed in rats

treated at the highest dose of AG014699, similar lesions were observed in dogs at 50

mg/kg in acute and multi-dose range finding studies. The concern about potential

cadiac toxicity led to the definitive single agent study being repeated in beagle dogs

utilising dose of 15, 25 and 40 mg/kg/day for 5 days. The cardiac lesions were not

reproducible in this definitive study although ECG abnormalities were observed.

Animals developed a persistent sinus tachycardia or an atrioventricular nodal rhythm.

AGOl4699 was acutely emetogenic in dogs at doses over 15 mg/kg/day.

These single agent toxicity studies used doses of AG014699 significantly above the

starting dose predicted from the combination studies. It was felt that it was unlikely

that combination dosing in humans would reach the equivalent doses and that toxicity
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from AG014699 alone was not likely. However, in response to the suggestion of

potential cardiac toxicity a new exclusion criterion of "patients with active or unstable

cardiac disease or myocardial infarction within 6 months, and patients with left

ventricular ejection fraction below the institutional limit of normal, determined by

multiple gated acquisition (MUGA) scan or echocardiogram" was introduced. All

patients will have an Echocardiogram or MUGA scan prior to entry and this will be

repeated after 4 cycle of treatment. All patients will also have serial ECGs before and

after the test dose and during treatment on cycle 1 of the combination. The ECG will

be repeated and compared to baseline before the beginning of each subsequent

treatment cycle.

Pre-clinical pharmacokinetic studies in mice, rats, dogs and monkeys indicated that

AGO14699 had a moderate to rapid clearance and a large volume of distribution. The

half-life ranged from 2.1 to 5.2 hours in the species studied. Combination

pharmacokinetic studies with temozolomide did not demonstrate a significant

pharmacokinetic interaction. Studies of elimination of radiolabelled [14C] AGO 14699

in bile-duct cannulated rats documented 49%, 31% and 17% recovery from urine,

bile and faeces respectively, with a mean cumulative recovery of 98%. The short

half-life and rapid clearance of AG014699 support the decision to dose daily

immediately prior to temozolomide. Temozolomide is very rapidly absorbed,

reaching peak plasma concentration at 1.2 hours after dosing (Newlands, Stevens et

al. 1997; Danson and Middleton 2001). In a phase I combination trial of an

established drug (temozolomide) and a novel agent which will be used for the first

time in humans it was felt that temozolomide should be given after AG014699. The

main rationale for this was that if unexpected, unpredictable acute toxicity was

observed with the novel agent management of this would not be complicated by prior

administration of a cytotoxic drug.

The proposed starting dose of AGO 14699 in combination with temozolomide was

determined by analysis of the animal toxicity and pharmacokinetics in mice, rats, and

dogs. These pre-clinical toxicology studies were performed by CTBR (Quebec,

Canada) on behalf of Pfizer GRD. An initial range finding study in rats was

performed where groups of 10 male animals were dosed with temozolomide 15

mg/kg/day for 5 days in combination with a range of AG014699 doses from 0.02 to
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2.1 mg/kg/day. Assuming a weight of200 g (Body surface area, BSA 0.031 m2) these

doses were equivalent to 100 mg/rrr' temozolomide, the proposed starting dose in the

human trial, and up to 13.5 mg/m' AG014699. No clinical toxicity or lethality was

observed at the highest dose in this range finding experiment.

An AGO14699 + temozolomide combination toxicity study was undertaken,

evaluating low- mid- and high-dose AG014699 + Temo. The same dose of

temozolomide (15 mg/kg/day x 5 days) was used as above. Low-dose AG014699 was

set at the non-toxic 2.1 mg/kg/day dose of AG014699 used in the range finding study.

The mid- and high-dose combinations were based on the same dose of temozolomide

and a half-log escalation of the AG014699 dose. Two groups of 10 male and 10

female animals were treated for 5 days, one group being sacrificed on day 6 and one

on day 29. The doses investigated are summarised in table 2.1.

Table 2.1

Treatment Temozolomide AG014699

mg/kg/day mg/mvday mg/kg/day mg/m2/day

Vehicle control 15 97 0 0

Temo only 15 97 0 0

Low-dose + temo 15 97 2.1 13.5

Mid-dose + temo 15 97 6.6 42.5

High-dose + temo 15 97 21 135.5

The toxicity observed in these animal studies was essentially a potentiation of the

expected toxicity of temozolomide, with reduction in blood indices, reduced food

consumption and loss ofbody mass and gastrointestinal side effects. These were

more marked in the high-dose AG014699 group with lethality in 3/20 animals soon

after completion of treatment. The MTD from this study was felt to be the mid-dose

of AG014699, 42.5 mg/m'. The starting dose based on one-tenth of the MTD of

AG014699 given in combination with temozolomide in rats would be 4 mg/nr'.
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However, experiments performed in the drug development laboratory in Newcastle in

parallel to the preclinical toxicology carried out by Pfizer internal operatives, have

shown that the equivalent of 3 mg/rrr' in mice produced significant PARP-l inhibition

and potentiation of the anti tumour activity of temozolomide. Full toxicology studies

could not be performed in this species because of problems related to tail vein

injection sites. The small volumes of drug required for treatment of mice meant that

infusions of AG014699 were acidic and hypertonic and caused tail vein necrosis.

This problem was not observed in the larger animal species. After prolonged

discussion with Pfizer collaborators it was decided to opt for a lower starting dose.

This was partly for safety reasons since potentiation of activity could also mean

potentiation of toxicity and the concern was that starting at 4 mg/nr' might risk

significant toxicity at the first dose level. A ten-fold increase in the dose of

AG014699 from the curative dose (1 mg/kg, 3 mg/nr') to 10 mgJkg (equivalent to 30

mg/m/) in combination with temozolomide was so toxic that the animals had to be

killed. The same dose of the individual drugs was not toxic (figure 2.4).

In addition, it was felt that there was a danger that no gradation in PARP-l inhibition

between escalations of AGO14699 would be observed if the starting dose caused

significant PARP-l inhibition. This would then introduce the question as to whether

we should reduce the inhibitor, and also might mean that the PARP inhibitory dose

(PID) was defined at an excessive dose of AG014699. This could have future

implications for the use of the drug and drug costs if it were subsequently proven that

a similar level of inhibition could be achieved with a lower dose.

After discussion of all the pre-clinical toxicity data and comparison of doses with

those used in the mouse efficacy study the starting dose of AGO14699 was set at 1

mg/m", one fortieth of the MTD of the combination in rats, with infusion one hour

before the administration of temozolomide.

2.5 Definition of pharmacodynamic endpoints

The primary endpoint of part 1 of the first in human PARP inhibitor trial is to

determine a PARP inhibitory dose of AGO14699 using pharmacokinetic (PK) and
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pharmacodynamic end points for PARP inhibition. It would be hoped to define this

dose using a measure ofPARP inhibition in the patient's peripheral blood

lymphocytes (PBLs) rather than relying on pharmacokinetic data and extrapolation

from animal PD and efficacy studies. The major laboratory work undertaken during

this MD project has been development and evaluation of PARP activity assays which

can be used to measure the degree of PARP inhibition achieved in patients. This

work is described in chapters 4 and 5.

AG014699 has been designed to act as a potentiator of cytotoxic agents and therefore

the dosing strategy will be different in a phase I trial compared to that undertaken

with a new cytotoxic drug. Classically, in phase I trials the dose of the new agent is

escalated until toxicity is seen. For AG014699 to be effective the dose needs to cause

inhibition of the PARP-1 enzyme in human cells. Preclinical toxicology data has

shown that in the animal species tested there was no significant toxicity associated

with dosing with AG014699 alone unless doses far higher than those needed to inhibit

PARP-1 and potentiate temozolomide were given. The most likely potential cause of

toxicity in part 1 of the study is therefore an increase in the toxic effects of

temozolomide.

The decision to complete this phase of the study will be based on achieving a PARP-1

inhibitory dose of AG014699, i.e. a proof ofprincipal that the action of AG014699 is

indeed inhibition of PARP-1. A PARP-1 inhibitory dose has been defined in the

protocol as that dose at which PARP-1 activity in peripheral blood lymphocytes is

reduced to 50% ofbaseline and there is a plateau in the degree of inhibition achieved

between 2 PARP escalations. This definition is based on the SW620 xenograft

efficacy experiment described above (figure 2.3). At a dose of AG014699 which

significantly potentiated temozolomide, PARP-1 was inhibited by approximately 50%

in the tumours at 6 hours after dosing. It was felt that at least this degree of inhibition

should be achieved in humans before it could be said that AGO 14699 was being given

at adequate doses. The 6-hour time point also coincides with the point of maximum

strand breaks after temozolomide and therefore PARP-1 inhibition at this time is

important. 50% inhibition was felt to be a minimum requirement; if a greater degree

of inhibition can be achieved in the absence of toxicity this would be accepted. The
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aim of this part of the study would be to obtain the maximum non-toxic inhibition

which is sustained over the period when temozolomide is causing DNA strand breaks.

Should it prove difficult to define a suitable dose of AG014699 using the proposed

pharmacodynamic endpoint a pharmacokinetic primary endpoint has been defined in

the protocol so that escalation can be stopped and part 1 of the trial concluded. The

rationale for defining a "fall back" position is two fold. The protocol was written

during development of the PD assays and it was accepted that it might not be possible

to validate a suitable PD assay and an alternative strategy was needed. Even with a

suitable assay it was felt that if doses such as these were being reached without

demonstration of significant PARP-l inhibition it would suggest that AGO14699 was

not sufficiently potent and an alternative clinical candidate should be explored rather

than continued escalation.

Part I of the trial involves escalation of the starting dose of 1 mg/rn' using a modified

Fibonacci scheme. It was initially proposed to the NAC that a continual reassessment

method would be used. This method was described by O'Quigley (O'Quigley, Pepe et

al. 1990) and aims to base dose escalation by prediction of toxicity using data from all

patients previously treated and not to base escalation decisions on the preceding

cohort only. The aim is to more accurately predict and avoid severe toxicity and

reduce the number ofpatients treated at a low, potentially ineffective dose. Following

extensive discussion it was decided that for the first part of the study a more classical

phase I trial design, with escalation of AGO14699 in combination with a fixed dose of

temozolomide would be used. The aim of this part of the study was to demonstrate

that AG014699 could be safely administered to patients and that PARP-l was

inhibited by the drug. In preclinical studies AGO14699 potentiated the toxicities

associated with temozolomide administration. For this reason in the first part of the

trial it was decided to fix the dose of temozolomide at 100 mg/m' (half the normal

adult dose) until significant PARP inhibition is achieved. Toxicity will only be seen

if AGO14699 has an unexpected toxicity on its own in humans or if it successfully

potentiates half-dose temozolomide to cause significant myelosupression.
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2.6 Precursor study rationale and links with PARP inhibitor study

Critical to the successful conduct of the phase I PARP inhibitor/temozolomide

combination protocol discussed above was the development of a pharmacodynamic

assay that could measure PARP-l activity and hence the degree ofPARP inhibition in

both human tumour biopsies and also in human peripheral blood lymphocytes (PBLs)

as a surrogate for target tissue inhibition. The methodology, development and

validation of two such assays is described in chapters 3, 4 and 5. In addition, a

precursor study was proposed prior to the phase I study to provide supporting data for

the First-in-Human PARP inhibition combination study. This precursor study is

described in detail in chapter 6 and the results presented therein, the rationale for it is

summarised below.

The major justification for this precursor study was to provide control data for the

effect oftemozolomide alone on the endpoints to be measured in the First-in-Human

study so that it could be ascertained which effects were due to the addition of

AGO14699 rather than temozolomide alone. The proposed precursor study would

treat 12 patients with advanced malignant melanoma with full dose temozolomide

(200 mg/mvday for 5 days every 4 weeks) and on the first cycle blood and tumour

biopsy samples would be taken for analysis of PARP activity and DNA damage. The

proposal had a number ofpotential benefits for the first in human trial.

1. It provided additional validation for the proposed pharmacodynamic assay

2. There are no data in the literature on the effect of cytotoxic agents, in

particular temozolomide, on PARP activity. Although treatment would

not be expected to affect PARP activity, this is not proven.

3. It was proposed that the COMET assay will be used during the precursor

study to evaluate the number of strand breaks produced by standard doses

of temozolomide in PBL and tumour samples. This would allow direct

comparison with the number of breaks caused by temozolomide in

combination with the PARP inhibitor and provide control data to support
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the proof of principle that PARP-l inhibition potentiated the action of

temozolomide by causing DNA damage to persist following the inhibition

ofBER.

4. Analysis of changes in ATase levels and N7-methyl adenine and N3-methyl

guanine formation after temozolomide would again provide control data to

be used in analysis of any similar results from the combination study.

5. The conduct of a precursor study in the same three clinical centres prior to

embarking on a First-in-Human study with complex sampling and

processing schedules has the advantage of allowing any operational

"hiccups" be identified prior to the main study.

2.7 Conclusion

This chapter describes the key preclinical experiments and toxicology which were

critical to the design of the first in-human phase I study of AG014699 and

temozolomide. This protocol was submitted to the northern MREC (multi-centre

research ethics committee) in January 2003 and approved with minor alterations to the

patient information sheets and consent forms only. Enrollment into the study

commenced in June 2003 in Newcastle, Oxford and Belfast, with the validated

pharmacodynamic assay being performed in Newcastle within NICR.
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Chapter 3

Laboratory Methods
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The materials used and standard laboratory techniques are described below. For the

pharmacodynamic assays developed during this MD thesis the final assay protocol

only is described in this methods section. Any variation/evolution of the assay

technique is given in the appropriate section.

3.1 Materials

3.1.1 General laboratory chemicals

All chemicals were obtained from Sigma (Poole, Dorset, UK) unless stated otherwise.

Dulbecco's phosphate buffer saline was prepared from tablets produced by Gibco

(Paisley, UK). Sucrose, sodium hydroxide and potassium chloride were supplied by

BDH (Lutterworth, UK) and digitonin by Boehringer Mannheim (Roche Diagnostics,

Lewes, UK). In addition a BCA protein assay kit (Pierce, Perbio Science, Rockford,

IL, USA) containing BCA albumin standard, BCA protein assay reagent A and BCA

protein assay reagent B was used for protein concentration determination. Milk

powder was obtained from Marvel Premier Brands UK Ltd (Spalding, UK), and ECL

Western Blot Detection kits from Amersham (Little Chalfont, UK). AG014699 and

AG14361 were supplied by Pfizer GRD (La Jolla, USA).

3.1.2 Tissue culture reagents

Cells were maintained in RPMI 1640 medium (Sigma) supplemented with 10% foetal

calf serum (Invitrogen, Glasgow,UK) and 1 Ulml Penicillin-streptomycin solution

(Sigma), in a Hereus incubator (Fischer Scientific, Manchester, UK) maintained at

37°C in a humidified atmosphere of 5% CO2 in air. Cell handling was performed

under sterile conditions in a Class II tissue culture cabinet. Sterile tissue culture

plasticware was obtained through Fischer Scientific (Manchester, UK). L1210 cells

used were routinely cultured in NICR, originally obtained from ATCC (American

Type Culture Collection, Manassas, VA).

3.1.3 Clinical supplies

Nycorned" Lymphoprep was obtained from Axis-Shield (Oslo, Norway) and EDTA

and Lithium heparin pre-prepared blood collection tubes from BD Vacutainer

(Plymouth, UK).
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3.1.4 Radiochemicals

e2
p] NAD+ was supplied by Amersham (370 MBq/ml, 10 mCijml) and Wallac

Optiphase HiSafe2 by Perkin Elmer (Loughborough, UK)

3.1.5 Antibodies

The 10H mouse monoclonalprimary antibody was generously supplied by Professor

Alexander Burkle, the Goat anti-mouse secondary antibody (HRP-conjugated) was

obtained from DAKO (Ely, UK).

3.1.6 Other reagents

Oligonucleotide was initially synthesised by Dr J Lunec, (NICR), subsequent supplies

were obtained from Invitrogen. Purified PAR polymer was obtained from BIOMOL

Research Lab (Plymouth Meeting, PA, USA).

3.2 Tissue culture and preparation of Quality Control samples

3.2.1 Methods

All experiments to establish and validate a suitable quality control (QC) standard for

the pharmacodynamic assays were performed using the murine leukaemia cell line

L1210. This cell line grows reliably in tissue culture under standard conditions with a

cell doubling time of 10-12 hours and has been used extensively in the investigation

of the cellular effect of PARP inhibitors. Cells were grown as a suspension to a

density of approximately 6x105/ml at harvesting to ensure they were in the exponential

growth phase. Allowing the cell density in the suspension to increase causes some cells

to enter GO. During experiments to establish and validate the assays cells were grown in

a total volume of 50-100 ml, when bulk preparation of QC samples for frozen storage

was required cells were grown in a final volume ofup to 500 ml.

Whenever fresh L1210 standards were required on the day of assay cell density was

counted using a haemocytometer and sufficient medium harvested to obtain the required

number of cells. The cell suspension was spun at room temperature at 1500 rpm for 10
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minutes to obtain a cell pellet. The pellet was resuspended in 20 ml phosphate buffered

saline (PBS), and re-centrifuged as above at 4°C to obtain a washed cell pellet. This was

stored on ice prior to use for up to one hour.

3.2.2 Preparation of QC samples for the e2p]NAD+ incorporation PARP activity

assay

QC standards for freezing were prepared as follows. The cell suspension was cultured in

large flasks so multiple aliquots of contemporaneous cells could be obtained. After

counting the suspension at harvesting appropriate volumes to obtain approximately 12 x

10
6

cells were separately centrifuged as above. The pellets obtained were resuspended in

1 ml of RPMI culture medium supplemented with 10% foetal calf serum and 100/0

DMSO and transferred to a screw capped cryotube (Nunc, Roskilde, Denmark) for

storage and frozen at -80°C. Samples were labelled with the approximate cell number,

date of storage and laboratory book reference so that the length of storage of any given

QC samples could always be ascertained. When required for assay an aliquot was

defrosted as rapidly as possible, transferred to a 30 ml Universal container and 20 ml ice

cold PBS added. After mixing the sample was centrifuged at 1500 rpm for 5 minutes at

4°C, this wash being repeated before the pellet was held on ice for up to one hour prior to

performing the assay.

3.2.3 Preparation of QC samples for immunoblot assay

QC samples for the immunoblot assay were harvested from exponentially growing

L1210 cells (cell density ~ 6x105Iml as discussed above). The cell suspension was

aliquoted such that lxl06 cells were obtained in each individual sample, the medium

spun off as above and the sample resuspended in 1 ml of medium plus 10% DMSO and

10% foetal calf serum. These samples were placed in cryovials and frozen at -80°C.

Similar documentation of the samples with date, number of cell and lab book reference

ensured tracking of the sample use. When required for assay an aliquot was defrosted as

rapidly as possible, transferred to a 30 ml Universal container and 20 ml ice cold PBS

added. After mixing the sample was centrifuged at 1500 rpm for 5 minutes at 4°C, this

wash being repeated before the pellet was held on ice for up to one hour prior to

performing the assay.

61



3.3 Lymphopreparation of human PBMCs

All procedures were carried out wearing a suitable laboratory coat and protective

gloves. All needles were disposed of into an appropriate clinical waste container, any

solutions requiring disposal were diluted with excess bleach solution prior to washing

away with excess water.

A 5 ml whole blood sample was collected into a pre-prepared Lithium Heparin or

EDTA blood tube and mixed gently to ensure anticoagulation. The sampled blood

was held on ice and processed as soon as practical, usually within minutes of

collection. The blood was diluted 1:1 with PBS and than layered over 8-10 ml of

lymphoprep in a 30 ml disposable Universal tube. The lymphopreparation was

carried out at room temperature in order to maximise the peripheral blood

mononuclear cell harvest through the Ficoll gradient.

Care was taken to avoid any mixing of the blood and lymphoprep prior to

centrifugation. The samples were centrifuged at 800xG for 15 minutes in a swing-out

rotor refrigerated centrifuge at 16°C. The centrifuge brake was taken off to avoid

disturbance of the PBMC layer during the deceleration process.

The leukocyte band, visible at the interface between plasma and the lymphoprep, was

harvested with a glass Pasteur pipette and put into a fresh 30 ml Universal tube. 20 ml

ice-cold PBS was added to the lymphocyte suspension and the cells pelleted by

centrifugation at 4°C. A second identical wash was performed to obtain a PBMC

pellet free of Lymphoprep.

When the cells were required for an immediate assay the cell pellet was held on ice

for up to one hour prior to assay. PBMCs prepared for storage were resuspended in

500 J.lI of pre-chilled RPMI plus 10% foetal calf serum + 10% DMSO. This aliquot

was transferred to a labelled screw capped Eppendorf tube and frozen. Samples were

stored at -80°C for up to 15 weeks.
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3.4 Preparation of tissue/tumour homogenates

3.4.1 Collection and storage of tumour samples

Patients with metastatic malignant melanoma who had biopsiable disease were

eligible for the TemoCOMET clinical trial described later in this thesis. The trial was

approved by The Local Ethics Research Committeee (LREC) and informed consent

obtained from all patients before any trial specific procedures were performed. Small

biopsies were obtained under local anaesthesia from metastatic lesions in these

consenting patients, before and at one time point after receiving a dose of

temozolomide.

The biopsies were collected from the operating theatre in a sterile container and

placed immediately on ice. Within 30 minutes they were snap frozen in liquid

nitrogen and stored at -80°C until homogenised for analysis

During the development of both the e2p]NAD+incorporation and immunoblot PARP

assay mouse liver was used as a surrogate tissue to establish the assay technique and

to validate some elements of the process. Livers were obtained from control/untreated

mice sacrificed as part of other on-going research in the Drug Development

Laboratory, maintained on ice until snap freezing in liquid nitrogen and storing as

described above.

3.4.2 Homogenisation of Tissue

All samples were prepared in an isotonic buffer made as described in section 3.5.1

below. For the e2p]NAD+ incorporation assay only 25 III of 100 mM dithiothreitol

(DTT) was added to each 1 ml isotonic buffer (final concentration = 2.5 mM)

immediately prior to use.

Frozen tumour or liver was defrosted on ice and the wet weight documented. For

weights over 100 mg the tissue was homogenised using a Pro 2000 (pro Scientific Inc,

Monroe, CT, USA) in 3 volumes (l mg > 1 III solution) of isotonic buffer, giving a
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homogenate with an overall dilution of 1 in 4). Where smaller samples had been

obtained they were homogenised in 99 or 999 volumes, giving final dilutions of 1 in

100 and 1 in 1000 respectively.

The homogenate was kept on ice throughout the process, homogenisation was

performed in 10 second bursts to prevent undue warming of the sample. Unless for

assay on the day of homogenis ation samples the homogenates were re-frozen to -80°C

and stored at this temperature until use. Prior to assay the samples were further

diluted with isotonic buffer where necessary to a final dilution of 1 in 40 (e2p] NAD+

incorporation assay) or 1 in 1000 (immunoblot assay).

3.5 e2
p]NAD+ incorporation PARP activity assay in Peripheral blood

lymphocytes (PBLs)

3.5.1 Stock solution preparation and storage

Stock solutions were prepared and stored for up to 3 months for the following

reagents:

Isotonic buffer (7 mM Hepes, 26 mM KCI, 0.1 mM dextran, 0.4 mM EGTA, 0.5 mM

MgCh, 45 mM sucrose dissolved in 200 ml distilled water, pH adjusted to 7.8) was

stored at 4°C and supplemented with 25 ul/ml 100 mM DTT stock immediately prior

to use (final concentration = 2.5 mM).

DTT 100 mM stock (154 mg in 10 ml distilled water) was stored at -20°C in 500 III

aliquots and defrosted when required.

Digitonin stock solution (0.15 mg/ml in water) for cell permeabilisation was stored at

4°C for up to 3 months.

Oligonucleotide was prepared from pellets of a pallindromic sequence

(CGGAATTCCG) synthesised by Dr J Lunec, Molecular Biology, NICR were stored

at -20°C. Stock oligonucleotide solution was prepared by dissolving the pellet in 500

JlI of 10 mM Tris/EDTA (pH to 7.8) and pipperting vigorously to ensure fully

dissolved. The solution was heated to 60°C in a water bath and cooled at 1°C per

minute to ensure correct reannealing. 9.5 ml Tris/EDTA buffer was added once cool to

obtain 10 ml stock. A dilution of 1/50 of the DNA solution was made and the optical

density read at 260 nm. 1 OD unit is equivalent to a concentration of 50 ug DNA/ml,
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hence the concentration of the stock solution was calculated. The stock solution was

diluted with further Tris/EDTA buffer to a final concentration of 200 ug/ml. 500 JlI

aliquots were stored at -20°C in screw top microtubes and thawed prior to the assay

procedure.

10% TCAINaPPi solution and 1% TCAINaPPi solution were prepared and could be

stored at room temperature until used as "stop" and washing solutions respectively at

the latter stages of the assay. These solutions were stable for 3 months under these

storage conditions.

NAD+ stock 600 JlM was prepared fresh on the day of assay. Aliquots of 4.5 mg

NAD+ were stored at -20°C under anhydrous conditions and an aliquot was dissolved

in 1 ml of distilled water on the day of use. 10 JlI of the NAD+ solution was made up

to 1 ml and the optical density measured at 260 nm. The molar extinction coefficient

of NAD+ is 18, thus the molarity of the stock solution was calculated using the

equation {(aD reading x 100)/18}. An appropriate dilution was made to obtain 4 ml of

600 JlM stock. 3-5 JlI ofe2p] NAD+ were added to this immediately prior to reaction.

3.5.2 Assay procedure

The principle of this assay involves the measurement of incorporation into acid

precipitable matter of 32p ADP-ribose from a e2p] NAD+ substrate by PARP-l, which

has been maximally stimulated by a blunt ended oligonucleotide. Although there is a

family of PARP enzymes which also could incorporate 32p ADP-ribose into polymers

PARP-2 is the only other PARP known to be activated by DNA breaks. PARP-2 is

not stimulated by blunt ended DNA double strand ends (G. de Murcia, personal

communication) and so this assay is specific for PARP-l. The majority of the e2
p]

NAD+ incorporated into protein during the reaction will be as poly(ADPribose) and

thus gives an indirect measure of enzyme activity when maximally stimulated in the

presence of oligonucleotide, or basal activity in its absence.

e2p] NAD+ incorporation PARP activity assays were performed using either human

peripheral blood lymphocytes or mouse L1210 cells. Any frozen cell preparation was

defrosted rapidly at room temperature and washed twice in ice cold PBS, as described

above, so that the freezing medium containing DMSO was removed.
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The prepared cell pellets were resuspended in 0.15 mg/ml digitonin stock to a density

of 3x10
7

cells per ml for 5 minutes to permeabilise the cells. 9 volumes of ice-cold

isotonic buffer were added and the sample stored on ice until assayed. No samples were

held on ice for longer than one hour before assay incubation.

A 10 JlI sample of each cell suspension was diluted 1:1 with Trypan Blue and the

number ofpermeabilised cells per ml counted on a haemocytometer for each suspension.

This accurate counting allowed correction of results obtained to counts per million cells

and allowed comparison between samples. Use of Trypan blue also allows the extent of

cell permeabilisation by digitonin to be assessed, this should be >90% with the above

method.

The assay was performed in a water bath warmed to 26°C and set to agitate at 70

oscillations per minute. The reaction tubes were set up as in the table below (table 3.1)

and allowed to come up to temperature before addition of the cell samples. In addition,

the cell suspensions were warmed in the water bath for 7 minutes prior to reaction to

ensure the process occurred at 26°C.

Table 3.1

Reagent TO + oligo - oligo Final

concentration

Oligonucleotide (200 5 JlI 5 JlI 2.5 ug/rnl

ug/ml)

e2p] 600 JlM NAD+ 50 JlI 50 JlI 50 JlI 75 JlM
stock

Water 45 JlI 45 JlI 50 JlI

Running total 100 III 100 III 100 III

Cell suspension 300 JlI 300 JlI 300 JlI :::::106 cells/tube

(:::::3x107/ml)

Reaction Total 400 III 400 III 400 III

Each cell suspension was assayed in triplicate for the TO, + and - oligonucleotide

samples. 2 ml ice cold 10% TCA + 100/0 NaPPi was added to the TO tubes prior to

addition of permeabilised cells to correct for non-specific binding of radio-label to the
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filter. Oligonucleotide is omitted in one set of samples to measure basal PARP activity in

comparison to total stimulatable activity. The permeabilised cell suspension was

vortexed briefly and the reaction started by adding 300 ~l (approx. lx IO'cells) of this to

each reaction tube. After exactly 6 minutes the enzymatic reaction was stopped by

adding 2 ml of ice cold 10% TCA + 10% NaPPi and vortexing. The tubes were then kept

on ice for at least one hour prior to filtration to allow precipitation of cellular

macromolecules including poly(ADP-ribosylated) proteins ..

Following precipitation on ice samples were filtered through a Millipore-12 funnel

manifold (Bedford, Mass, USA) attached to a vacuum. The glass microfibre filters

(Whatman Int Ltd, Maidstone, UK) were soaked in 10% TCA + 10% NaPPi and

placed rough side up on the filtration apparatus and the contents of individual assay tubes

vortexed, then added to an individual funnel on the filtration apparatus. Each tube was

washed 2x with 4 ml l % TCA + 1% NaPPi, and washings added to the funnel after

vortexing. The filters were aspirated with gentle suction, and 4 further 4 ml washes of

1% TCA + 1% NaPPi drawn through each filter. Following air drying of the filter

papers they were added to individual scintillation vials, 10 ml scintillant was added to

each vial and the vials prepared in racks for counting. Triplicate standard vials were set

up of scintillant plus 5 ~l of 32p 600 ~M NAD+. This adds 3000 pmoles ofNAD+ to the

standard vial and allows calculation ofDPM per pmol NAD+. Vials were counted on a

Wallac ~-counter (perkin Elmer Life Sciences, Loughborough, UK) for 2 minutes and

results displayed as "disintegrations per minute" (DPM).

DPM for each sample + or - oligo were corrected by background (TO) subtraction. The

values DPM per pmol NAD+ calculated from the standard vials allowed conversion to

pmol NAD+ per assay tube. The number of permeabilised cells added to each reaction

tube was calculated from the number of Trypan Blue-staining cells per ml of cell

suspension. From these reference values it was possible the express the mean

experimental values in terms of pMol NAD+ per million cells incorporated into

polymer following maximal PARP-1 activation.
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3.6 e2
p ] NAD+ incorporation PARP activity assay in Tumour/Tissue

Homogenate

3.6.1 Stock Solutions and Storage

The stock solutions used to perform a e2p] NAD+ incorporation PARP activity assay

in homogenised tissue are the same as those described above in section 3.5.1

3.6.2 Assay procedure

The stored tissue or tumour homogenate (section 3.4.2) was defrosted on ice and a

further dilution made with isotonic buffer to obtain an overall 1 in 40 dilution. The

assay was performed in a water bath warmed to 26°C and set to agitate at 70 oscillations

per minute. The reaction tubes were set up as in the table below (table 3.2) and allowed

to come up to temperature before addition of the homogenate. In addition, the

homogenates were warmed in the water bath for 7 minutes prior to reaction to ensure the

process occurred at 26°C.

Table 3.2

Reagent TO Reaction Final

concentration

jLp 600 IlM NAD+ 50 III 50 III 751lM

stock

Water 50 III 50 III

Running total 100,.11 100 JlI

Homogenate (1 in 40) 300 III 300 III

Reaction Total 400 JlI 400 JlI

It is not necessary to add oligonucleotide to these reactions as homogenisation introduces

sufficient DNA strand breaks to maximally stimulate PARP (S. Kyle, personal

communication). Each homogenate was assayed in triplicate for the TO and reaction

samples. 2 ml ice cold 10% TCA + 100/0 NaPPi was added to the TO tubes prior to

addition of homogenate to correct for non-specific binding of radio-label to the filter.
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The homogenate was vortexed briefly and the reaction started by adding 300 JlI to each

reaction tube. After exactly 6 minutes the enzymatic reaction was stopped by adding 2

ml of ice cold 10% TCA + 10% NaPPi and vortexing. The tube was then kept on ice for

at least one hour prior to filtration to allow protein precipitation.

Following at least l-hour cooling on ice samples were filtered through a Millipore

filtration manifold and the radioactivity determined and converted to pmol NAD+ by

reference to 32p NAD+ standards as described in section 3.5.2.

During the cooling phase the remaining homogenate was centrifuged at 800 xG for 5

minutes at 4°C. The supernatant was withdrawn and a Pierce protein assay

performed. The supernatant could be stored frozen at -20°C and the protein assay

performed at a later date without compromising accuracy. The protein assay was

performed as per the Pierce protocol. Bovine serum albumin standards were set up

over the range 1.2 mg/ml - 0.2 mg/ml from a 2 mg/ml stock. 1 in 5 and I in 10

dilutions of the reacted homogenate were made. 10 JlI of these unknown sample

dilutions were loaded in quadruplicate onto a 96-well micro-titre plate, incubated in

200 JlI of the freshly mixed BCA protein reaction mix (1 volume reagent B with 20

volumes reagent A) at 37°C for 30 minutes. The protein concentration in the

homogenate was read using a Titertek Multiscan MCC/340 plate reader (Thermo Life

Sciences, Basingstoke, UK). The protein concentration in the homogenate was

calculated from the mean concentrations for both the I in 5 and I in 10 dilutions. All

further dilutions and standards were made up in isotonic buffer without DTT added.

Addition of DTT interferes with the protein assay.

The amount of protein added to the reaction tubes was calculated from the protein

concentrations measured above. From these reference values it was possible the

express the mean experimental values in terms ofpmol NAD+ per mg protein

incorporated into polymer by maximal PARP-I (and PARP-2) activation.
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3.7 Immunoblot assay for measuring PAR formation as a measure of PARP-l

activity in peripheral blood lymphocytes and cell suspensions

The principle of this assay depends on the specific binding of a mouse monoclonal

antibody to the ADP-ribose polymer, a secondary anti-mouse antibody coupled to horse

radish peroxidase (HRP) amplifies the signal which is detected when luminol in the ECL

reagent is broken down by the HRP to give off light. The light emission, which is

proportional to the amount of antigen (PAR), is measured by chemiluminescence

detection.

3.7.1 Stock Solutions

Stock solutions were prepared and stored for up to 3 months for the following

reagents:

10 mM TrislEDTA was prepared by adding 0.121 g Tris and 0.292 g EDTA to 90 ml

distilled water. This was buffered to pH 7.8 with 1M NaOH and the volume made up

to 100 m!. The solution was transferred to a labelled bottle and stored at room

ternperature.

Isotonic buffer was prepared as in section 3.5.1. The solution was labelled as per the

Standard Operating Procedure and stored at 4°C for 3 months at most. DTT was not

added to the isotonic buffer prior to use.

Reaction buffer was also made in advance by adding 1.12 g Tris.HCI (100 mM) and

2.4 g MgCh (120 mM) to 90 ml of distilled water. This was again buffered to pH 7.8

with 1 M NaOH and made up to a 100 ml fmal volume with distilled water. This

solution was stored at 4°C and was considered stable for up to 3 months.

7 mM NAD+ stock solution was made up fresh on the day of experiment. Solid

NAD+ was stored desiccated in pre-weighed aliquots at -20°C. 500 JlI of distilled

water was added to an aliquot of approximately 2.5 mg NAD+. The concentration was

calculated from the optical density as described in section 3.5.1 and the stock diluted

with distilled water to obtain a 7 mM solution.

Stop solution for the assay was prepared from AGO 14699 stock solution stored in 

20°C freezer as 10 mM stock in DMSO. This stock was diluted 1 in 800 in PBS to

provide a final concentration of 12.5 JlM AGO 14699 by adding 25 JlI stock to 20 ml

PBS on the day of reaction. This solution was kept on ice until used.
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Oligonucleotide pellets of a pallindromic sequence (CGGAATTCCG) were obtained

directly from Invitrogen and stored in -20°C freezer. A Stock solution of 200 ug/ml

was prepared from the oligonucleotide pellets as described in section 3.5.1.

Digitonin (0.15 mg/ml) was prepared as in section 3.5.1.

PBS-MT was made by adding 5 g milk powder and 50 III Tween 20 to 100 ml PBS.

This solution can be stored overnight at 4°C. PBS-T was similarly prepared by adding

50 III Tween 20 to 100 ml PBS

10% TCAl2% NaPPi solution was prepared from 100 g TCA and 20 g NaPPi

dissolved in 900 ml distilled water. After stirring to dissolve all crystals the final volume

was made up to 1000 ml with distilled water. This solution is stable for 3 months at

room temperature.

3.7.2 Preparation of PAR standards

Purified PAR was supplied by BIOMOL Research Laboratories as a branched and

linear polymer, average chain length 25 ADP-ribose monomers (range 3-300). It is

supplied as 100 III of a 10 ug/ml solution. 1 ug is equivalent to 2000 pmol ADP

ribose monomer. The polymer must be stored frozen at -80°C, and repeated freeze

thaw cycles avoided.

On receipt of the PAR polymer it was placed at 4°C until aliquoting on the day of

receipt, if the stock needed to be left overnight before aliquoting it was placed in a 

80°C freezer. The supplied stock was stored as 4 III aliquots in Eppendorftubes.

These were kept frozen at -80°C and defrosted at room temperature on the day of

reaction. The aliquoted sample was diluted 1 in 80 with sterile water (adding 316 III

water) to give a new stock solution with 25 pmol of ADP-ribose monomer per 100 III

of solution. This solution was serially diluted according to the table (table 3.3) below

in Eppendorf tubes, providing enough standard for two blots. 100 III of each dilution

was added to 300 III PBS and the total volume (400 Ill) loaded into an individual well

completing one row of the manifold to provide a standard curve, range 0-25 pmol

monomer.
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Table 3.3

Final concentration Volume of preceding Volume of sterile water

dilution

25 pmol Undiluted stock

5 pmol 50 III 200 III

1 pmol 50 III 200 III

0.2 pmol 50 III 200 III

0.04 pmol 50 III 200 III

opmol oIII 250 III

3.7.3 Assay Procedure

PARP activity was assessed and the immunoblot assay validated using both human

peripheral blood lymphocytes and mouse L1210 cells. The method below describes

the assay as finally validated. Any variation to the procedure which was used during

individual experiments whist the assay was being developed will be described in the

relevant results sections in this thesis.

Any frozen cell preparation was defrosted rapidly at room temperature and washed

twice in ice cold PBS, as described above, so that the freezing medium containing

DMSO was removed. The prepared cell pellets for assay were resuspended in 0.15

mglml digitonin stock to a density of approximately 1-2 x l 0
6

cells per ml for 5 minutes

to permeabilise the cells. 9 volumes of ice-cold isotonic buffer were added and the

sample stored on ice until assayed. A 6 JlI aliquot of the cell suspension was withdawn

after vortexing, mixed with an equal volume ofTrypan Blue and the cell density counted

using a haemocytometer. The cell suspension was diluted if necessary with isotonic

buffer to achieve appropriate cell density for reaction (2.44xl0
5/ml,

(range 2-

1Oxl05/ml)).

No samples were held on ice for longer than one hour before assay incubation. The

assay was performed in a water bath warmed to 26°C and set to agitate at 70 oscillations

per minute. The reaction tubes were set up as described in the table below (table 3.4),

note the volume of reaction buffer to be added to make a final reaction volume of 100 III

was calculated knowing the cell suspension volume containing the required cell number.
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However reaction buffer was added before the cell suspension. Once prepared the tubes

were allowed to come up to temperature before addition of the cell samples. In addition,

the cell suspensions were warmed in the water bath for 7 minutes prior to reaction to

ensure the process occurred at 26°C.

L1210 QC samples were analysed with each batch of clinical samples to provide quality

control. These were prepared as described in section 3.2.3, and prior to each assay one

aliquot defrosted and permeabilised for assay as above. Triplicate samples were reacted

and analysed. These cells have greater stimulatable PARP activity so between 5,000

10,000 were loaded to ensure a reading within the limits of the standard curve.

Table 3.4

Reagent + oligo Final concentration

Oligonucleotide 5 III lOllg/ml

7mMNAD+ 5 III 350 11M

Running total 10 J.11

Cell suspension 40-60 III

Reaction buffer To make volume to 100 III

Reaction Total 100 J.11

Stop Solution 400 III 10 !1M

Final volume 500 J.11

Each sample was assayed in triplicate. The permeabilised cell suspension was

vortexed briefly and the reaction started by adding the appropriate volume as

calculated above to give10,000-20,000 PBMCs or 5,000-10,000 L1210 cells to each

reaction tube. The permeabilised cell suspension was replaced on ice. The reaction

was stopped exactly 6 minutes after addition of cells by adding 400 III of ice cold 12.5

11M AG014699 (final concentration 10 11M) and vortexing. The vortexed tube was

placed on ice and completed reaction loaded onto the blotting membrane within 1

hour. Each cell suspension being analysed for PARP-l activity was recounted using a

haemocytometer and the cell density in the reaction mixture calculated. Control (TO)

cell samples (for cell specific background), were prepared in triplicate for each patient or

L1210 QC sample. A volume ofunreacted cells (from the remaining diluted cell
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suspension) identical to that used in the reaction mixture was added to 400 ul PBS. This

preparation was loaded onto the blot alongside the reaction specimen to give an estimate

of the endogenous PAR levels within the cells.

A specific 6x4 array 24-well manifold has been designed which attaches to the base

plate of a standard 96-well dot-blot manifold (BRL, Life Technologies Inc,

Gaithersburg, MD). This allows loading of a larger volume of reaction solution, with

approximately 1 cm diameter wells.

Hybond N membrane (Amersham, Little Chalfont, UK) and filter paper (Whatmann,

Maidstone, UK) were soaked in PBS and the dot blot manifold set up with the

membrane lying on two layers of filter paper. The PAR standards were loaded across

the top row of the 6 wells. Each reaction mixture was vortexed and loaded into wells

alongside the appropriate TO samples. The manifold was aspirated with gentle

suction, and washed with 400 J.lI 100/0 TCA 2% sodium pyrophosphate, re-aspirated,

then a further wash with 800 J.lI 70% ethanol performed.

The membrane was trimmed, marked in the top right hand comer and rinsed twice in

PBS before blocking for 1 hour with PBS-MT. Overnight incubation with the primary

antibody (diluted 1 in 500 in PBS-MT) at 4°C was followed by 2 washes in PBS-T and

then incubation in secondary antibody (1 in 1000 in PBS-MT) for 1 hour at room

temperature. The incubated membrane was washed frequently with PBS over the

course of one hour then exposed for one minute with ECL reaction solution.

The exposed membrane was placed on the tray within the Fuji LAS3000 UV

Illuminator (Raytek, Sheffield, UK) and the chemiluminesence during a 5 minute

exposure measured using the imaging software (Fuji LAS Image version 1.1, Raytek).

The acquired image was analysed using Aida Image Analyser, version 3.28.001, and

results expressed in LAU/mm2
. Three background areas on the exposed blot were

measured and the mean of the background signal from the membrane subtracted from

all results. The PAR polymer standard curve was analysed using a one site binding

non-linear regression model and unknowns read off the standard curve so generated.

Results were then expressed in terms of number of cells loaded and standardised to a

given number of cells (usually 20,000).
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3.8 Immunoblot assay for measuring PAR formation as a measure of PARP

activity in homogenised tumour/tissue

3.8.1 Stock solutions

The stock solutions used to perform an immunoblot PARP activity assay in

homogenised tissue are the same as those described above in section 3.7.1

3.8.2 Assay Procedure

Where quality control (QC) standards were required L1210 mouse cells were used.

These cells were grown, stored and prepared for assay as described above (section 3.2)

and the assay reaction and blot loading performed as described in section 3.7.2.

PAR standards were prepared and used in an identical way to that described in section

3.7.2. The assay procedure described below is that validated for use in the PARPi

clinical trial. Once again any deviations from the assay procedure for an individual

experiment will be described in the relevant section of the results.

Homogenised tumour or normal tissue was either used fresh (within 1 hour of

homogenisation, being held on ice during this period) or defrosted on ice if stored at 

80°C as described in section 3.4.2. A further dilution was made with isotonic buffer

to obtain an overall 1 in 1000 dilution. The assay was performed in a water bath

warmed to 26°C and set to agitate at 70 oscillations per minute. The reaction tubes were

set up as in the table below (table 3.5) and allowed to come up to temperature before

addition of the homogenate. In addition, the homogenates were warmed in the water

bath for 7 minutes prior to reaction to ensure the process occurred at 26°C.

Table 3.5

Reagent Reaction tube Final concentration

7mMNAD+ 5 JlI 350 JlM

Reaction buffer 45 JlI
I

75



Running total 50,...1

Homogenate 50 JlI I in 2,000

Reaction Total 100,...1

12.5 JlM 699 400 JlI 10 JlM

Final volume 500,...1

Each sample was assayed in triplicate. The homogenate was vortexed briefly and 50

JlI added to each reaction tube to start the reaction. The remaining homogenate was

replaced on ice. The reaction was stopped exactly 6 minutes after addition of

homogenate by adding 400 JlI of ice cold 12.5 JlM AGO 14699 (final concentration 10

JlM) and vortexing. The reaction tube was placed on ice and entire contents loaded

onto the blotting membrane within 1 hour of reaction. Control (TO) cell samples (for

cell specific background), were prepared in triplicate for each patient or QC sample. An

identical volume (50 ul) of homogenate (from the remaining 1 in 1000 dilution of

homogenate) was added to 400 JlI PBS. This was loaded onto the blot alongside the

reaction specimen. The same manifold, membrane and procedure used to assess PARP

activity in lymphocytes was used for this experiment. PAR standards and QC samples

were made up and loaded as described in sections 3.7.2 and 3.7.3

After loading of all samples the remaining 1 in 1000 tissue/tumour homogenate was

centrifuged at 800 xG for 5 minutes at 4°C to remove any particulate matter that might

interfere with the Pierce protein assay. The supernatant was withdrawn and a Pierce

protein assay performed as per the Pierce protocol. If the protein assay was deferred

the supernatant was stored frozen at -20°C. At least 200 JlI of supernatant was stored

so that a repeat assay could be performed if necessary. Bovine serum albumin

standards were set up over the range 0.250 mg/ml- 0 mg/ml from a 2 mg/ml stock. A

lower standard curve was required and the assay run according to the "enhanced"

protocol because of the high dilution of the homogenate necessary to ensure that the

assay fell within the immunoblot polymer validated standard curve. 25 JlI of these

unknown supernatants were loaded in quadruplicate onto a 96-well micro-titre plate,

incubated in 200 JlI of the freshly mixed BCA protein reaction mix (1 volume reagent

B with 20 volumes reagent A) at 37°C for 30 minutes. The protein concentration in

the homogenate was read using a Titertek Multiscan MCC/340 plate reader.
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The chemiluminescence measured was analysed as described in section 3.7.3, the

results were expressed in terms of pmol PAR formed per mg protein loaded.

3.9 Statistical analyses

All clinical results are analysed using descriptive statistics. All other statistical

analyses have been performed using the standard statistical analyses with the Graph

pad Prism Version 3.03.
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Chapter 4

Validation of e2p ] NAD+ incorporation assay for PARP
activity in clinical samples
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4.1 Introduction

Pivotal to the design of the First-in-Human trial of a PARP inhibitor was

establishment and validation of a robust laboratory assay which measured the relative

activity of human PARP-1 before and after treatment with the inhibitor so that a

comparison of the degree of inhibition achieved could be made. The decision to

move from part 1 (AG014699 escalation) to part 2 (temozolomide escalation) is

dependent on achieving a PID (in the absence of toxicity).

An assay for PARP-1 activity in permeabilised cells has been developed in the Drug

Development Laboratory, Cancer Research Unit, University of Newcastle and

published in peer reviewed literature (Boulton, Pemberton et al. 1995). The principle

of the assay relies on the fact that PARP-1 is constitutively expressed in cells and is

stimulated by addition ofblunt ended oligonucleotide (Grube, Kupper et al. 1991).

The assay measures incorporation of [32p] ADP ribose into acid-precipitatable ADP

ribosylated cellular proteins in a given number of cells provided with a e2p] NAD+

substrate by radiochemical scintillography. The degree of PARP-1 inhibition can be

determined on post-treatment samples by reference to pre-treatment controls.

This e2p]NAD+ incorporation radiolabel PARP-1 activity assay has been described

using established tumour cell lines as a permeabilised cell suspension and also

homogenised human tumour xenografts (Calabrese, Almassy et al. 2004), but its use

with human peripheral blood lymphocytes had not been investigated or validated. In

the context of a clinical trial in human subjects it is possible to take multiple blood

samples but practically more difficult to obtain repeated tumour tissue samples. It is

therefore essential for the design of part 1 of the trial to document the degree and

duration of PARP-l inhibition achieved at the different doses of AGO 14699 in blood

cells.

In addition to the adaptation of the assay for use with a new cell preparation, it was

necessary to establish a reliable standard cell sample that could be run with every

clinical trial assay to provide quality control and establish individual test run

acceptance criteria for the assay. Assays used in clinical trials must comply with ICH
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GCP guidelines, and should also be validated to as close to ICH GLP guidelines as is

practical in an academic laboratory.

In the last two decades there has been the emergence of quantitative macromolecule

detecting technologies which allow pharmacodynamic endpoints to be used far more

widely in clinical trials. Use of the data generated by these assays for drug

registration with the regulatory authorities has brought to the forefront the difficulty

of minimising the variability ofbiological assays and of validating them for

regulatory purposes. International Workshops were held in 1990 and 2000, sponsored

by the American Association of Pharmaceutical Scientists (AAPS), to address these

issues and summary reports issued for guidance (Shah, Midha et al. 1992; Miller,

Bowsher et al. 2001). In addition, the U.S Food and Drug Administration (FDA) has

issued a guidance document (2001) and Handbooks of ICH Good Clinical Practice

and ICH Good Laboratory Practice provide further advice (1996).

Validation of a pharmacodynamic (PD) bioassay is accepted to be a difficult issue

(Shah, Midha et al. 1992; 2001; Miller, Bowsher et al. 2001), given the intrinsic

variability ofbiological samples. Additionally the difficulty of obtaining multiple

samples from a patient/human population means that much of the assay development

and validation needs to be performed using surrogate biological preparations. Shah

and colleagues suggest that when attempting to establish and validate a PD assay that

the pharmacodynamic effect should be related to the actual therapeutic endpoint of the

activity of the drug. The workshop report (1990) suggests 3 phases ofbioanytical

method validation which are shown in table 4.1. Not all the steps in pre-study

evaluation will be applicable to a given assay but the model provides a useful guide

for examining an assay for use in a clinical trial.
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Table 4.1

Phase of bioanalytical method validation

1 - Bioanalytical Method Establishment

2 - Pre-study Validation a) Specificity

b) Calibration Model

c) Precision, accuracy, recovery

d) Quality Control samples

e) Stability

f) Acceptance Criteria

3 - In-study Validation

This chapter describes the pre-study validation of an existing bioanalytical method,

including establishing a human blood cell preparation technique which provided cells

suitable for use in the radiolabel PARP activity assay. The ability to measure PARP

inhibition with a potent PARP inhibitor (AG14361) was evaluated in these cells. In

addition, quality control (QC) standards were established to be run with each

individual assay so that acceptance criteria could be defined as well as enabling inter

assay comparison. The sample handling and storage conditions were investigated to

establish whether frozen storage of samples produced any deterioration in the activity

of the PARP-l enzyme or any loss of inhibition. Similar experiments were performed

to validate use of the assay to measure PARP activity in frozen homogenised tumour

samples.

4.2 Measurement of PARP activity in human peripheral blood lymphocytes

4.2.1 Lymphopreparation and permeabilisation

4.2.1.1 Lymphopreparation

Separation of the different blood cell populations from whole blood was performed by

centrifugation through a liquid gradient. Prepared gradients are available

commercially and different cell populations can be separated. Nycomed Lymphoprep
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was used for all experiments to separate mononuclear cells from erythrocytes,

platelets and polymorphonuclear cells. The e2p] NAD+ incorporation PARP activity

assay was performed using peripheral blood lymphocytes only (PBLs) and the method

used described in chapter 3 section 3.3.

Lymphoprep'P' (Ficoll-Isopaque) is a commercially produced sterile solution

containing 9.1% (w/v) sodium diatrizoate and 5.7% (w/v) polysaccharide. It has a

density of 1.077 ± 0.001 g/ml and an osmolality of280 ± 15 mOsm. The solution

allows one step centrifugation to separate mononuclear blood cells from erythrocytes

and granulocytes (neutrophils) and was first described by Boyum (Boyum 1968). The

solution aggregates the erythocytes, increasing their sedimentation rate and with

appropriate centrifugation conditions a layer of mononuclear white blood cells (PBLs)

collects at the interface between the diluted plasma, and the ficoll-isopaque.

When designing an assay that would be used on serial blood samples taken from a

patient consideration needs to be given to the total volume of blood that can safely be

withdrawn without adversely affecting the patient's well being. It was decided

therefore that any assay developed could not depend on impractically large numbers

of cells being available to produce reliable results. Clinical trial sample analysis

would be performed on the cells harvested from 5 ml of whole blood.

The normal range for total white blood count in human blood is 4-11 x 109 per litre.

Approximately 70% of these cells will be neutrophils, and 200/0 PBLs.

Lymphopreparation of 5 ml blood typically gives a total harvest of 5.6 ± 3.5 x 10
6

cells (mean ± SD of 26 samples prepared over 2 days from healthy volunteers), an

estimated extraction of75% of the available cells.

The possibility of increasing the cell harvest by including polymorphomononuclear

cells was investigated. There were some concerns over this since it is reported in the

literature that some highly differentiated tissues do not express PARP-l, namely

gastrointestinal epithelial cells, neutrophils and epidermal cells (Chatterjee and Berger

1998), and stable cell populations do show lower enzyme levels than rapidly dividing

cells (Prof A Burkle, personal communication). A consistent finding over repeated

assessment of PBLs in parallel with L1210 control cells was that the mature blood

82



cells have lower inducible PARP-1 activity than an immortalised cell line. It was

decided to investigate whether inclusion of polymorphs would alter the measured

PARP-1 activity in nucleated blood cells.

Separation ofboth PBLs and granulocytes can be achieved using Polymorphprepr»

Axis-Shield (Oslo, Norway), a solution of 13.8% (w/v) sodium diatrizoate and 8.0%

(w/v) Dextran 500. It has a density of 1.113 ± 0.001 g/ml and an osmolality of 445 ±

15 mOsm. This solution is more hypertonic than "Lymphoprep", causing shrinkage

and faster sedimentation of erythrocytes. Two lymphocyte bands are formed and

polymorphonuclear cells can be harvested along with PBLs. The number of cells

harvested from 5 ml whole blood by this method was greatly improved, an average of

26 x 106 cells were obtained allowing loading of the required one million cells.

However, as would be predicted from the published data this led to even lower levels

of PARP-1 activity /106 cells being measured in the permeabilised white cells, since

the additional cells had low or negligible PARP-1 activity. The measured value was

10.3 ± 0.9 pmol NAD+ incorporated per million cells, 8% of the matched L1210

control value compared to approximately 30 pmol NAD+ (24%) incorporated per

million cells for pure PBL samples (see table 4.2). The absolute counts were low

meaning that there was greater potential for noise in the system as there was a less

clear differentiation between background (TO) samples and the reaction scintillation

counts. This is presumably due to the dilution of the signal from polymer in cells

expressing PARP-l because of the high proportion of cells without enzyme activity.

It was concluded that PBLs only would be used to develop the assay. This decision

meant that the number of PBLs harvested from the 5 ml sample of blood could be a

limiting factor in assay development.

4.2.1.2 Permeabilisation

To ensure the most accurate measure of maximum stimulatable PARP-l activity in

clinical samples it was felt important that cell handling times were kept to a minimum

so that the potential for loss of activity was reduced or, indeed, any inhibition of the

enzyme was not lost. Cells can be permeabilised by 30-minute ice-cold hypotonic

shock (Boulton et al 1995) or by a 5-minute exposure to 0.15 mg/rnl digitonin

(Calabrese et al, 2004) prior to transfer to isotonic buffer. Digitonin permeabilisation

would reduce cell handling time and therefore potentially be the preferred method.
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To ensure both assays gave comparable data L12l0 cells and PBLs were assayed by

both methods.

L120l cells were cultured and harvested as described in section 3.2, permeabilised

either with hypotonic buffer (9nM Hepes pH 7.8, 4.5% Dextran, 4.5 mM MgCl2, and

5 mM DTT) for 30 minutes or with digitonin (0.15 mg/ml water) for 5 minutes, or

with both hypotonic and digitonin solutions for 30 minutes. After the

permeabilisation time 9 volumes of isotonic buffer was added. The cells

permeabilised with digitonin alone were held on ice until those prepared by hypotonic

shock were available and all cell preparations assayed simultaneously. The results are

shown in figure 4.1, PARP activity is expressed in terms of the radioactivity (DPM)

per million cells. The data shown is the mean and standard deviation of triplicate

samples, and this preliminary experiment suggested that there was no difference

between the two permeabilisation techniques. (These experiments were performed

with the able assistance of Suzanne Kyle)

Figure 4.1

PARP activity in L1210 cells permeabilised by cold hypotonic shock or digitonin
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Figure 4.1 DPM for triplicate samples ofL1210 cells permeabilised either with hypotonic buffer

(HYPO), digitonin (DIG!) or both (HYPO + DIGI) with (+oligo) and without (- oligo) stimulation with

oligonucleotide. Mean +SD, n=3
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Further investigation of the affects of the two penneabilisation techniques was

performed using both L1210 cells and human PBLs. Following penneabilisation 6 III

aliquots of the cell suspension were stained with 6 III Trypan Blue and not only the

cell density in the preparation but also the percentage of cells which were

penneabilised was assessed using light microscopy and a haemocytometer. Both

penneabilisation techniques consistently produced >95% penneabilisation of the

cells.

Summary data from repeated assays on different days is shown in table 4.2,

demonstrating that there is no significant difference between the maximally

stimulated PARP-1 activity following penneabilisation by hypotonic shock or

digitonin in either L1210 cells (p= 0.91) or human PBLs (p=0.90). The degree of

PARP-1 activity is expressed in terms of pmol NAD+ incorporated into polymer per

million permeabi1ised cells in the reaction time.

Table 4.2

PARP activity (pmol NAD/106 cells/6 min)

Hypotonic shock Digitonin

L1210 121±73(4) 124 ± 48 (16)

PBls 34±10(2) 31 ± 13 (8)

Data are mean ± SD WIththe number of assays given m parenthesis, (p values calculated usmg

Students T test, unpaired, 2-tailed).

In order to determine if the penneabilisation technique affected the measurement of

PARP inhibition fresh PBLs were obtained from whole blood in a healthy volunteer

by lymphopreparation, the washed cells being resuspended in isotonic buffer and

separated into 2 portions. One sample of cells was exposed to 0.4 JlM AG14361 prior

to penneabilisation. AG 14361 is a potent PARP-1 inhibitor and PARP-1 activity is

suppressed to <10% normal with this concentration (Calabrese, Almassy et al. 2004).

The inhibited and control PBL suspensions were then again divided into 2 aliquots,

the cells pelleted by centrifugation and separate aliquots penneabilised either by

hypotonic shock or with digitonin. The results are shown in figure 4.2. Mean and
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standard error of triplicate samples is given, results again expressed as pmol NAD+

incorporated per million cells. There was no evidence that use of digitonin rather than

hypotonic shock affected the result, and the presence of the PARP-l inhibitor meant

that PARP activity was undetectable in either preparation. Further data from repeated

experiments on different days comparing the two permeabilisation techniques is

summarised in table 4.2 as discussed above.

Figure 4.2

PARP activity in PBLs permeabilised by
cold hypotonic shock or digitonin
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Figure 4.2 PARP activity in PBLS measured with 2 different penneabilisation techniques. Mean +

SEM, n=3.

On the basis of these combined results it was decided that changing permeabilisation

technique to the shorter exposure to digitonin would not affect the result of the assay.

Digitonin permeabilisation had the advantage of shortening the cell handling time

before determination of PARP activity hence reducing the potential deterioration of

the enzyme with time in isolated cell preparations. It also decreased the risk of

cumulative DNA damage due to cell handling.

All subsequent experiments and the validation of the assay have used the digitonin

permeabilisation technique.
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4.2.2 Demonstration of PARP inhibition in human PBLs

The clinical trial primary endpoint in part 1 of the temozolomide/PARPi trial is the

demonstration of PARP inhibition in PBLs from patients treated with AGO 14699. It

was necessary to demonstrate that PARP-1 could be inhibited in these cells and that

this inhibition could be measured prior to embarking on full validation of the

proposed assay.

To this end whole blood from healthy volunteers was incubated with varying

concentrations of AGO14699 at 37°C for 20 minutes. In parallel, PBLs from healthy

volunteer blood were prepared first and then exposed to the drug as a cell suspension

in tissue culture medium. AGO14699 was dissolved and diluted in DMSO to 100x the

final concentration so that the final concentration of DMSO in any incubation did not

exceed 1%. Following an incubation period of 20 minutes the drug was removed by

washing and the cells prepared, permeabilised and assayed for PARP activity. The

results are shown in figure 4.3, data are from triplicate samples giving mean and

SEM. Inhibition of the PARP-1 activity was observed when whole blood was

incubated in a known concentration of AG014699 prior to lymphopreparation (the

most similar situation to that to be experienced in patients) and also when the inhibitor

was added to a suspension of washed isolated PBLs. In both cases the inhibitor was

washed off before permeabilisation, indicating that the inhibitor can permeate the

PBL cell membrane.
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Figure 4.3
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Figure 4.3 Inhibition ofPARP-l in PBLs. Mean +SEM, n=3. prelympho = incubation with inhibitor

prior to lymphopreparation, post-lympho = incubation with inhibitor after preparation of PBLs. 50 and

100 nM refer to the concentration of AG014699.

4.3 Establishment of quality control samples

The aim of this project was to establish a validated pharmacodynamic assay for use in

an early clinical trial. As discussed in the introduction to this chapter identification of

the standard biological matrix which can act as a quality control for each assay

containing unknown samples is a critical step in any such validation (Shah, Midha et

al. 1992; Miller, Bowsher et al. 2001). In practical terms it was also important that

validation of the assay could be carried out using a surrogate but validated cell type

rather than repeatedly drawing blood from the healthy volunteer population.

It was decided to assess the mouse leukaemia cell line (L1210) for QC function.

PARP-1 activity in fresh exponentially growing L1210 cells, permeabilised with

digitonin, was measured as described above. Summary data from serial experiments

carried out on separate days is given in table 4.3. PARP activity is expressed as pmol

NAD+ incorporated per million cells. The number of repeated assays on separate days

using freshly prepared ezp] NAD+ stock in shown in column 2. The range of values

obtained is shown in column 4. The result for each individual assay is the mean of

triplicate or quadruplicate samples.
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Table 4.3

n pmol NAD+/106 CV (%) Range

cells (mean ± SD)

Fresh 20 124 ± 51 41.4 50-200

Ll2l0

Fresh 10 32 ± 12 37.3 16-55

PBLs

% Control

PBL as % 5 25 ± 8 32.6 18-37

Ll2l0

control

Comparison of the maximal PARP-1 activity obtained from repeated PBL samples is

also shown in table 4.3. The PBL result is also expressed as a percentage of the

matched L1210 control assayed on the same day. This confirms the reports that

maximal PARP-1 activity is lower in this "mature" cell population when compared to

immortalised cells, the results being in the range of 20-30°,/0 the mean L1210 value.

When a linear regression analysis was performed on 6 pairs of matched PBL and

L1210 samples, assayed in parallel? = 0.89 suggesting that a significant relationship

exists between the values and it is justified to use L1210 cells as a QC comparator for

the PBL result.

4.4 Validation of sample storage and handling techniques

The preliminary experiments reported above demonstrated that PARP activity and

inhibition of PARP-1 could be measured in human PBLs. However during the course

of the clinical trial patient samples will be obtained over a period of 12 days on cycle

I of treatment for pharmacodynamic assessment. It is planned that sample will be

taken on day -7 when the PARP-1 inhibitor is given alone and on days I and 4 when

given with temozolomide. Samples will be taken prior to treatment, at the end of the

infusion (TO), 4-6 hours post infusion, and at 24 hours. Immediate assay of each of
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these samples would not be practical and would also mean that any inter-assay

variation could affect comparison of results within one patient.

In addition, performing the study at three Cancer Research UK centres means that

storage and shipping of sample to Newcastle for PARP-1 assays is necessary.

Therefore, lymphocytes prepared at the other centres will need to be frozen and

shipped to the laboratory. It was essential to establish that the PARP enzyme activity

is stable with freezing over time. In addition it was necessary to establish that the

level of PARP inhibition in the fresh samples did not deteriorate with freezing and

storing at -80°C for prolonged periods so that there could be confidence that the

PARP-1 activity measured in patient samples after storage was a true reflection of the

inhibition of PARP-1 activity in PBLs at the time of sampling.

Initial experiments to investigate the effects of storage were performed with L1210

cells. These cells gave reproducible PARP activity results and it was planned to use

them as QC samples. Use as QC samples would be simplified if frozen aliquots of

these cells could be used in serial assays; therefore it was necessary to confirm

enzyme stability after freezing in these cells. In addition, the initial experiments to

investigate the preservation of PARP-1 inhibition with freezing were performed using

L1210 cells because of the difficulty of obtaining large numbers of PBLs.

4.4.1 PARP-l activity in fresh versus frozen L12l0 cells

L1210 cells were grown in 200 ml of medium as described in the methods (section

3.2). The cells were harvested in the exponential growth phase, washed and counted.

One sample of cells was analysed fresh on the day of harvesting and multiple aliquots

were frozen in medium + 10% DMSO. The original cell culture was maintained in a

healthy growth phase in the incubator for the duration of the experiment. At regular

intervals one of the frozen samples was rapidly thawed, washed in buffer and assayed

according to the standard operating procedure. At the same time a sample of freshly

harvested cells from the growing stock was also analysed so that results could be

expressed in terms of a fresh enzyme control assayed in the same sample run.
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The results are presented in figure 4.4 and table 4.4. Figure 4.4 shows the mean

PARP-l activity measured in triplicate defrosted samples expressed a percentage of

the mean activity from triplicate samples of the matched fresh sample. It

demonstrates that the enzyme activity is stable with storage in this manner. These

paired samples were stored over a range of 1 to 15 weeks with no evidence of

deterioration in maximally stimulated enzyme activity.

Figure 4.4 Data from paired L1210 cell samples, fresh and frozen assayed in triplicate on the same day.

Results displayed as control data expressed as a percentage of the fresh control value assayed on that

day

Repeated assays of frozen L1210 cells gave a mean PARP activity of 119±52 pmol

NAD+/l06 cells (mean±SD, n=12 with a range of 40-185, CV(%) 43).

Although there is considerable variation between individual assays the mean (and

standard deviation) PARP-1 activity of frozen samples was very similar to that

obtained with fresh samples. For all clinical trial assays batched frozen L1210 cells

are used and one sample run as QC with every clinical assay. This allows comparison

to be made between assays by comparing the relative values with respect to the QC

results. To ensure that there is consistency between batches ofL1210 QC cells
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samples were prepared in bulk batches and stored in the designated -80°C freezer. A

new batch is prepared once there are 6 samples only available and at least 2 assays run

using the old and new batch of QC samples in parallel so direct comparison between

assays remains possible. The projected recruitment time for the PARPi trial means

that banking sufficient QC samples to cover the entire 2 year period would mean that

samples would be used outwith the time frame assessed above for stability of the

PARP enzyme with freezing.

4.4.2 Preservation of PARP-l inhibition with frozen storage

Although the PARP-1 enzyme function when maximally stimulated with

oligonucleotide is preserved with frozen storage for up to 3 months it was also

necessary to establish whether there was a deterioration in the degree of inhibition

when the inhibited cells were stored for a period prior to analysis.

Exponentially growing L1210 cells (6x10s cells/ml, total volume 250 ml) were

exposed to either O.4/LM AG014361 (20 ul of 40 /LM stock AG014361 in DMSO

diluted in 1980 ul medium, final DMSO concentration 10/0) or in medium plus 1%

DMsO (control samples) for 20 minutes at 37°C, the cells were pelleted out of this

solution by centrifugation, washed in PBS and one aliquot assayed for PARP activity.

The rest of the samples were frozen in aliquots of 15 x 106 cells for subsequent

tandem assay of inhibited/control cells.

Paired samples were defrosted and analysed over a 14 week period. The results are

shown in figure 4.5. Data are expressed as the % ofPARP-1 inhibition demonstrated

in the frozen sample compared to its own control sample which had been frozen for

the same length of time. Values for PARP-1 activity are derived from triplicate

samples. There was no evidence of a loss of the degree of inhibition of the enzyme

over this period of storage.
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Figure 4.5

Maintenance of PARP inhibition with O.4~M AG14361
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Figure 4.5 Preservation of inhibition with frozen storage. Mean of triplicate samples expressed as %

matched uninhibited control

The same experimental design was used to set up a series of L1210 cell samples

inhibited with different concentrations (10 nM, 50 nM, 100 nM) of AG014699, the

clinical trial candidate. These samples were frozen and serially analysed as described

above. The practical work for this experiment was ably performed by Suzanne Kyle.

The results are shown in figure 4.6 once again there was no evidence in a

deterioration of the degree of inhibition with time.
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Figure 4.6
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Figure 4.6 Graph showing the degree of PARP -I inhibition caused by a given concentrat ion of

AG0 14699 . Data are expressed as a percentage of the control (DMSO incubation only prior to

freez ing) LI 210 samp les assayed on the same day, PARP -I activit y being measured in pmol AO+

incorporated per million cells.

4.4.3 Comparison of frozen storage temperature

In the experiment described above stored samples had been frozen by placing in a

freezer maintained at -80°C. It is more common in clinical facilities to have -20°C

storage available, particularly because of the constraints of space and the requirement

for more sophisticated monitoring and back-up facilities if -80°C storage is used.

An experiment was designed to assess what storage temperature was necessary for the

integrity of the clinical sample s. L1210 cells were grown in tissue culture in the usual

manner. The harvested cells were divided into 4 portions. These were incubated in

medium containing 10 nM, 50 nM, 100 nM AGO 14699 or 1% DMSO as a control for

20 minutes. The inhibitor solution was washed off and the sample divided into 3.

One aliquot was processed for immediate radiolabel PARP assay, and the others

resuspended in medium + 10% DMSO for freezing. One of these was placed in the 

80°C freezer as previously and the other in the -20°C freezer.

The two frozen samples were defrosted and analysed after 10 days at this temperature.

The results are shown below in figure 4.7 and figure 4.8. Figure 4.7 shows the data
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expressed as mean and SD of triplicate values in pmol AD+incorporated per million

cells. It can be seen that freezing and storage at -20°C does not preserve the samples

adequately, the standard deviation in the results is much larger than with fresh

samples or those frozen at -80°C and the degree of inhibition has not been preserved.

Figure 4.7
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Figure 4.7 Comparison of the preservation ofPARP inhibition at different storage tempe ratures. Mean

+ SO, n=3.

When the means from the above data with the inhibited samples is expressed as a

percentage of their own control value comparison can be made between the assays on

the fresh cells performed 10 days earlier with those of the frozen samples. The

pattern of inhibition measured is very similar in the fresh and -80°C frozen samples

but more variable when frozen at -20°C (figure 4.8).
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Figure 4.8
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Figure 4.8 Comparison of effect of storage temperatures on inhibition of PARP-I . Mean data from

figure 4.7 expressed as % own control value

It was concluded that freezing and storing at -20°C did not adequately preserve the

samples. Despite the resource implications it was recommended that samples should

be placed directly into storage at -80°C, and kept at this temperature until transfer to

the analysis site.

4.4.4 Enzyme stability in PBLs

The feasibility of freezing prepared PBLs for a period of days, then defrosting and

measuring PARP activity was investigated in the follo wing manner. Blood from a

healthy volunteer was drawn, PBLs harvested and one aliquot assayed and the other

frozen in medium + 10% DMSO at - 80°C for one week. At the point of thawing

further blood was obtained from the same volunteer and from an additional source.

The two fresh samples were analysed at the same time as the thawed sample and the

appropriate L 1210 control cells. Three measurements were obtained from the same

individual and assayed in triplicate; fresh week 1 = 8.7 pmol NAD+/l 06 cells, fresh

week 2 = 16.0 pmol NAD+/l06 and frozen wee k 2 12.7 pmol NAD+/l06
. These data

demonstrated the inherent variability of a biol ogica l assay, and emphasises the

difficulty of comparing between assays. However expressing the measured PARP -l

activity in PBLs in terms of the QC sample run in the same assay appeared to sugge t

that there had not been a significant deterioration in the PBL enzyme function over 1

week of storage (values of 14%, 14% and 11 % of matched QC ample re pecti ely) .
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The practicalities of the clinical trial necessitate frozen storage of blood samples,

therefore further experiments were carried out to establish the stability of the PARP-1

enzyme with more prolonged storage and also the stability of enzyme inhibition.

These experiments were carried out using L1210 cells and are described in sections

4.4.1-4.4.3 above, partly to strengthen the validity of using these as the QC samples

but also because of the practical problems in obtaining large volumes of blood to

prepare multiple frozen aliquots of PBLs from one source.

4.4.5 Temporal fluctuation in PBL PARP activity

The experiments described above had shown that PARP-1 activity can be measured in

human PBLs using the radiolabel PARP activity assay and that this assay might be

adaptable for use as a clinical trial pharmacodynamic assay. During the clinical study

blood samples are withdrawn from the patient for PD assay over a 24 hour period on

three separate days, initially on the test dosing day where AGO14699 is given alone,

then on days 1 and 4 of the combination treatment to determine the degree of PARP

inhibition achieved and any cumulative inhibition. All the samples from a 24 period

are analysed together so that results can be expressed using the baseline sample as the

control.

For this strategy to be appropriate it was necessary to establish whether there was a

temporal variation in PBL PARP-1 activity. 5 ml whole blood samples were

withdrawn from a group of healthy volunteers at TO and either 4 or 24 hours later to

correspond with the patient sampling times. PBLs were obtained by

lymphopreparation and frozen in medium + 10% DMSO. The samples were

subsequently defrosted and all analysed in one assay run so that comparison of the

absolute values was possible.

All the data obtained were close to the mean PARP activity measured in human PBLs

and within the range given in table 4.3 (see figure 4.9).
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Figure 4.9
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Figure 4.9 Mean + SO over paired PBL samples. N= 15 for baseline, n=7 at 4 hour s, n=8 at 24 hours.

For a closer evaluation of temporal variation only the data from samples where there

was an adequate (> 1 x 106Iml) harvest of PBLs was considered. There was no

evidence for a variation with sampling time in the value obtained for maximally

stimulated PARP activity in human PBLs in normal volunteers (figure 4. 10, mean and

standard deviation of triplicate measurements).

Figure 4.10
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Figure 4. 10 Individual results from human PBL assa y, mean + SO of triplicate measurements
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The results of this experiment did not suggest there was a clear variation in the

maximally stimulated PARP-1 activity in human PBLs over a 24 hour period.

However there was a great variation in the number of PBLs separated from the 5 ml

blood samples, in subjects where few cells were obtained this led to an unacceptably

large standard deviation in the results.

4.4.6 Assessment of enzyme integrity after transportation of samples

The First-in-Human trial is based at three clinical centres; all the PARP-1 activity

pharmacodynamic assays are being performed in the NICR, Newcastle. PBL samples

obtained in the different clinical centres will be transported overnight on dry ice (solid

C02, sublimation point at -78.5°C) to the NICR for analysis. It was therefore

important to establish whether treatment of the samples in such a manner would cause

deterioration in the samples.

Ll210 cells were grown to a suitable cell density in suspension. Cells were harvested,

washed and frozen in medium + 10% DMSO at -80°C. A sample of the freshly

growing cells was passaged and allowed to continue to divide for one further day.

After freezing two aliquots of the stored QC samples were packaged as for transport

in a polystyrene container filled with solid C02, left overnight on the bench top to

mimic the transport conditions of the samples. These samples was analysed in

parallel with a fresh L1210 sample and one which had remained in storage at -80°C.

Results are shown in table 4.4, PARP-1 activity being expressed in terms of pmol

NAD+ incorporated per million cells; mean, standard deviation and coefficient of

variation (%) from quadruplicate samples.
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Table 4.4

pmol NAD+/lOb cells CV (%)

(mean±SD)

Frozen L1210 54 ± 13 24.1

Fresh L1210 84 ± 13 15.2

Transport 79±26 32.7

condition L1210

(1)

Transport 67±4 6.5

condition L1210

(2)

There was no a significant deterioration in the measured PARP-1 activity with the

planned transport conditions. The samples will be considered adequately stored if

they arrive at the receiving centre still frozen and with solid COz in contact with the

vials, maintaining the temperature below -20°C.

4.5 Assay validation for use with human tumour samples

Tumour biopsies from patients with metastatic malignant melanoma will be taken

during the second part of the study and PARP-1 activity and inhibition will be

assessed in these samples. The published ezp] NAD+ incorporation PARP-1 assay is

already established to be able to measure PARP activity in tissue homogenates.

Therefore, in terms of validating the assay for the clinical trial the issues to resolved

were confirmation that freezing and storage of the tissue did not affect the measured

PARP activity, validation of the change to the assay methodology (omission of

oligonucleotide) and demonstration that PARP inhibition with AGO14699 could be

measured in tissue homogenates.

There is great practical and ethical difficulty in obtaining multiple samples from a

patient/human population. This paucity of samples is a particular problem when

small tissue biopsies are being analysed. Therefore, of necessity, assay development

and validation work must be done using surrogate tissues. All experiments have
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either been carried out using homogenised mouse liver as a readily available tissue,

and because in patients the liver is a common site of metastatic disease and hence a

potential source of samples or using human tumour xenografts in nude mice. The

close homology of PARP-1 between species makes this an acceptable manoeuvre.

4.5.1 Confirmation of activation in the absence of added oligonucleotide

When PARP-1 activity is measured in permeabilised cells a blunt-ended

oligonucleotide is added to the reaction to maximally stimulate PARP-1 by providing

multiple blunt ended strand breaks. Mechanical homogenisation of tumour samples

or visceral tissue to dissociate the cells causes sufficient DNA breakage to maximally

stimulate PARP-1 (M. Batey, MSc thesis). Maintaining the sample on ice during and

after homogenisation prevents polymer formation utilising endogenous NAD+ on

these introduced DNA strand breaks.

Whether addition of oligonucleotide was required to ensure maximal stimulation of

PARP-1 was investigated by incubating samples from the same homogenised liver

sample in the presence or absence of 5 III oligonucleotide. The results are expressed

in terms ofNAD+ incorporated per mg protein added, mean and standard deviation of

quadruplicate samples. Addition of oligonucleotide to these preparations (figure 4.11)

did not further enhance the measured PARP activity and is, therefore, unnecessary.

Figure 4.11
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Figure 4.11 Effect of adding oligonucleotide to homogenised tissue. Mean + SO, n=3. PARP activity

expressed as pmol NAO+ incorporated per mg protein
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4.5.2 Affect of freezing and storage of tissue samples

During part 2 of the clinical trial small tumour samples will be obtained from patients

under local anaesthesia and snap frozen in liquid nitrogen immediately after biopsy

with no further processing at this stage. Samples will be stored at -80°C. They will

be transferred to the assay laboratory frozen from the clinical centres. It has been

shown above that PARP-l enzyme activity and inhibition is preserved with freezing

in cell preparations. As part of the assay validation process it was necessary to

demonstrate that snap freezing and storage of tissue over time does not cause

deterioration in enzyme function.

Each liver was divided into 2, one portion processed immediately and the other snap

frozen for 1-8 weeks at -80°C prior the homogenisation and assay as described in

sections 3.4.2 and 3.6. The PARP activity (pmol/mg protein) was compared. These

paired data are shown in figure 4.12 (mean and standard deviation of triplicate

results), there was not a significant deterioration in the samples with freezing and

storage. This means that snap freezing of tumour biopsies, with subsequent frozen

transport to the laboratory is feasible in the clinical setting.

Figure 4.12
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Figure 4.12 Stored tissue results (mean + standard deviation) paired with freshly analysed sample of

same liver. No significant deterioration with storage time
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4.5.3 PARP inhibition with AG014699 in tissue

PARP-I inhibition by AGOI4699, the clinical candidate, has been demonstrated in

cell culture suspensions (LI2IO cells) and in isolated human PBLs in the sections

above. During the preclinical development and evaluation of the proposed clinical

candidate nude mice bearing human tumour xenografts (SW620 human colon cancer

cell tumours) were treated with a single intra-peritoneal dose of AGOI4699 dissolved

in sterile water. The dosages used were 0.1 mg/kg, 1 mg/kg and 10 mg/kg. Vehicle

was injected as a control. The mice were sacrificed 30 minutes later and the tumours

removed and snap frozen.

These samples were subsequently homogenised and assayed as described in section

3.7. The results are shown in figure 4.13 confirming that inhibition ofPARP-I within

the tumour can be demonstrated and that the degree of inhibition can be measured

with the described assay. The practical work for this experiment was performed by

Suzanne Kyle.

Figure 4.13
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Figure 4.13 Demonstration of inhibition of tumour PARP-1 Data derived from the mean of three

tumours analysed in triplicate, mean and standard deviation shown.

In summary, it was demonstrated that the assay could be adapted for use with frozen

homogenised tissue and that enzyme inhibition could be demonstrated. This PARP
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activity assay can therefore be used to measure the degree of PARP inhibition

achieved in the clinical trial tumour samples.

4.6 Intra-assay validity

As part of the validation procedure the intra-assay precision was investigated. This

was done to establish two facts, did analysis of the same sample give the same result

when done at the beginning and the end of the assay and what were the lower limits

for cell numbers analysed for accurate PARP activity determination?

Ll210 cells were harvested and permeabilised for the assay in the standard way. A

cell suspension density of 3 x 106 cells per ml was obtained. This solution was

serially diluted with isotonic buffer to obtain samples such that 0.75 x 106,0.66 X 106,

0.5 X 10
6

, 0.33 X 106 cells would be added to the reaction tube rather than the protocol

stipulated 1 x 106
. Six replicates of these suspensions were analysed in one assay run.

The results are summarised in table 4.5. As the cell number added to the reaction

tubes decreases the variation in the replicates increases, demonstrated by the increase

in observed standard deviation. This increase was also observed when analysing PBL

samples. Their intrinsically lower PARP activity meant that any additional variation

due to low cell numbers might compromise detection of PARP inhibition by

AGO 14699. For the purposes of assay validation it is felt that the range of values for

added cells over which the assay is reliable is 0.6-1.0 x 106
•

Table 4.5

Cell density pmolNAD+ pmol NAD+/I0 6

incorporated cells

1.0 135 ± 10 135 ± 10

0.75 108 ± 5 144 ± 6

0.66 85 ± 7 144 ± 10

0.5 63 ±20 127 ± 41

0.33 45 ±4 138 ± 11

104



4.7 Discussion

The work described above explains the steps taken to develop and then validate a

pharmacodynamic assay for potential use during the PARPi trial. These data were

also used to produce a full validation report for use of the radiolabel PARP activity

assay with human PBLs and a supplementary validation report for its use with tumour

samples. These validation reports have been reviewed and accepted by the Quality

Control section of Cancer Research UK and by Pfizer GRD.

Most published material on method validation and ICR guidelines (1996) refer to the

validation of analytical procedures, largely based around chromatographic methods.

For these procedures it is clearly possible to be much more precise than when

validating a bio-assay. The ICR guidelines list five key characteristics of an assay

which need to the demonstrated and defined; specificity, linearity, range, accuracy

and precision. FDA Guidance (2001) defines the fundamental parameters for

bioanalytical validation as being accuracy, precision, selectivity, sensitivity,

reproducibility and stability.

The principles to be used for establishing a valid method are defined in the 1990

AAPS International Workshop report (Shah, Midha et al. 1992) as being

a) Production of a specific detailed description and protocol of the

method (Standard Operating Procedure)

b) Investigation of each step in the method to determine the extent that

external variables may affect the estimation of the result

c) Validation of the method for the intended use

d) Wherever possible validation should be performed using the same

biological matrix as the intended samples

e) Within and between run accuracy should be demonstrated to allow

accuracy and precision to be assessed

f) For assays where a standard curve is included the range of the curve,

relationship between response and concentration and lower limit of

quantification must be defined
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The conference report acknowledges the difficulty of applying all these principles to a

biological assay and states that "the pharmacodynamic effect measured for

bioequivalence studies should be related to the actual pharmacologic (therapeutic) end

point of the activity of the drug".

Therefore, when validating an assay based on a biological system such as enzyme

activity it is acknowledged to be much more difficult to produce detailed and exact

validation of data. Huber (Huber 1998) states that compound analysis a precision of

better than 1% relative standard deviation is easily achieved whereas for biological

samples the precision is likely to be between 10-16%.

The pharmacodynamic effect which is measured by the [32p] NAD+ incorporation

PARP activity assay is the number of pmol NAD+ incorporated into acid precipitable

macromolecules by PARP-1 in the 6 minute reaction period. Addition of the

permeabilised cells to a plentiful supply of the enzyme substrate (NAD+) and a

powerful enzyme activator (oligonucleotide) means that NAD+ incorporation into

poly(ADP-ribose) is the major reaction product that can be precipitated by TCA. The

assay has been designed to assess inhibition of PARP-1activity by AGO14699 by

measuring a reduction in the ability to form this reaction product. It would seem,

therefore, that the radiolabel assay does fulfil this validation requirement.

Detailed Standard Operating Procedures have been produced for both the assay using

PBLs as the experimental matrix and that using homogenised tumours. Validation

has focused on the intended clinical use of the assay and wherever practical the

method has been validated using the biological matrix of the intended unknown

samples. The influence of external factors on the validity of assay results has been

investigated by studying the effects of storage and transport of the samples on both

enzyme activity but also the maintenance of inhibition.

The steps taken to address intra and inter assay variability whilst adapting the PARP

activity assay for use for analysis of clinical trial samples have included the definition

of quality control samples to be run with each assay. Within the SOP QC acceptance

limits for an assay are defined based on the multiple replicates analysed. This

provides confidence that a given assay run has produced valid readings for the
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unknown values if the QC samples lie in the expected range (118.9 ± 51.6 pmol

NAD+ per million cells).

Throughout the development and validation of this PARP-1 assay for use in the

clinical trial it became apparent that the low cell recovery from whole blood

compromised the assay results. Studies on intra-assay reproducibility described

above using L1210 cells, which have higher basal levels ofPARP-1 activity than

PBLs, showed the assay was less robust and variability increased as cell numbers

were reduced. This problem would be expected to be more marked when analysing

cells with a lower basal enzyme activity. It has been shown that inclusion of

polymorphonuclear cells would not improve the situation.

One option to increase the number of cells it is possible to add to each reaction tube is

to decrease the number of replicates within an assay, but there was concern over

reducing this to fewer than 3. During the clinical trial blood will be taken from

patients for pharmacokinetic analysis of AGO 14699 and temozolomide, and for two

pharmacodynamic assays, the PARP activity assay and also COMET analysis for

DNA strand breaks. Increasing the volume of blood drawn from the patient would

obviously increase the absolute number of cells harvested but could significantly

impact on the patient's wellbeing. This was, therefore, not considered an option to

improve assay reproducibility.

Another option would be to omit the "- oligo" triplicate set of reaction tubes, thus

reducing by 33% the number of cells needed. The "-oligo" samples give a measure of

background PARP-1 activity in the permeabilised cell population, however decisions

in the trial will be made based on the degree of inhibition measured when PARP-1 is

maximally stimulated. Omission of these replicates would still leave a requirement

for a minimum of 3.6 x 106 cells to perform the assay, leaving no scope for assay

repetition if the QC indicated an invalid run. A poor cell harvest would make

obtaining a reliable result difficult. Patients recruited into phase I anticancer drug

trials have failed standard therapy for their tumour and many have had significant

previous cytotoxic treatment and have low bone marrow reserve and blood counts at

107



the bottom of the normal range. The possibility of the low PBL harvest is greater in

the phase I trial population that when drawing blood samples from healthy volunteers.

Therefore despite the successful and accepted validation of the [32p] NAD+

incorporation PARP activity assay there remained significant concerns that in clinical

practice it might prove less robust. Chapter 5 describes the work undertaken to set up

and validate an alternative assay based upon an immunological method using far

fewer cells.
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Chapter 5

Development and Validation of Immunoblot PARP activity
assay
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5.1 Introduction

The extensive scientific interest in and diverse potential clinical uses of PARP-1

inhibitors (discussed in chapter 1) means a number of authors have described assays

which attempt to measure PARP-1 activity or inhibition. Earlier assays relied upon

radio-labelled substrate (Aboul-Ela, Jacobson et al. 1988; Boulton, Pemberton et al.

1995) or purification ofpoly(ADP-ribose) by complex chromatography (reviewed in

(Shah, Poirier et al. 1995). De Murcia's group reported an ELISA based screening

assay (Decker, Miranda et al. 1999) and more recently a non-radioactive biotinylated

NAD assay has been described (Brown and Marala 2002) which is suitable for use

with high-throughput screening (HTS) of PARP inhibitors. Dillon and colleagues

reported a 3H-NAD+FlashPlate scintillation proximity assay which again can be used

for HTS since it can be adapted for use with a 384-well plate format (Dillon, Smith et

al. 2003).

The development of monoclonal antibodies has produced a widely used tool in both

scientific research and clinical practice, with a multitude of commercially available

products and assays. The rapid emergence over the previous decade of quantitative

macromolecule detecting assays, including immunoassays, was identified in the 2000

AAPS Validation Workshop, and the issues surrounding their validation included as a

key goal in the conference (Miller, Bowsher et al. 2001).

The possibility of using a monoclonal antibody against poly(ADP-ribose) (PAR) to

detect polymer formation and thus enzyme activity with Western Blotting was first

described in 1995 (Shah, Kaufmann et al. 1995). Whilst exploring potential

alternative PARP activity assays which would allow smaller biological samples

advice and help was sought from Professor Alex Burkle. His laboratory studies

PARP-1 and its relationship to ageing. In 1999 they published a report of a

"quantitative nonisotopic immuno-dot-blot method" which allows assessment of

cellular poly(ADP-ribosylation) capacity (Pfieffer, Brabeck et al. 1999). This assay

exposed permeabilised cells to oligonucleotide and a reaction buffer containing

NAD+. The formation of PAR under these circumstances was stopped after the fixed
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period by the addition of an excess of ice-cold 3-aminobenzamide. The permeabilised

cells were then blotted onto a nitrocellulose membrane, fixed and exposed to a

primary monoclonal antibody which binds to PAR. An RRP-conjugated secondary

antibody was used to detect the bound primary and the chemiluminescence signal

detected and quantified. Pfieffer et al reported that intensity of the chemiluminescent

signal was a function of the cell number loaded and that PARP-l inhibition with 3

aminobenzamide could be demonstrated.

The primary antibody used in the assay described above in the lOR anti-PAR

antibody was generated by Dr M Miwa from a mouse hybridoma cell line

(Kawamitsu, Hoshino et al. 1984). The antibody binds to a linear structure of the

ADP-ribose polymer which is greater than 15-20 ADP-ribose monomers in length,

ethanol precipitation of antibody-bound polymer suggested that lOR binds to almost

all molecular sizes of polymer generated from rat liver PARP (Kawamitsu, Hoshino et

al. 1984). Antibody binding to polymer is inhibited by 20% by the presence of excess

monomer suggesting some cross-reaction with the monomer subunit. Species cross

reactivity is reported for human, mouse, rat, bovine and monkey poly(ADP-ribose)

(Shah, Kaufmann et al. 1995). These authors also report a "simple activity-Western

blot technique" which can detect polymerase activity in cultured cells by virtue of

detection of the reaction product. The lOR antibody is commercially available from

Alexis Biochemicals at >95% purity but in all the experiments reported below has

been generously supplied by Professor A Burkle. In the early experiments much

advice and assistance was given by Professor Burkle, his colleague Dr Pfieffer and by

Dr Paul Jowsey (NICR).

It was decided that the quantitative immuno-dot-blot method might be a suitable assay

for modification and validation as an alternative pharmacodynamic assay in the

clinical PARP inhibitor trial. The published method demonstrated linear

chemiluminescence detection for up to 120,000 cells loaded, above this cell number

there was saturation of the signal. Reliable signal detection in the linear range was

demonstrated for 15,000-30,000 cells. These experiments used IARC 273 cells, a

Epstien-Barr immortalised human B-Iymphoblastoid cell line. Clearly far fewer cells

were needed than the 6 x 105 cells for a reliable radiolabel PARP activity assay.
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5.2 Poly(ADP-ribose) detection in L1210 and PBL cell preparations

Preliminary experiments were carried out to assess whether the established QC cells

(L1210) and human PBLs could be reacted, blotted onto a membrane and polymer

detected. These initial experiments were performed using a standard 96-well

manifold rather than the custom-made 24 well manifold designed by Professor

Burkle.

Early experiments were performed using the isotonic buffer and permeabilisation

buffer described in the published method (Pfieffer, Brabeck et al. 1999). However it

was found that the long permeabilisation incubation and further centrifugation

required in this method significantly contributed to the background on the

immunoblot (see section 5.4). The method which is described in detail in chapter 3 is

the final validated protocol being used in the clinical trial. This method uses the same

isotonic buffer as in the e2p] NAD+ incorporation PARP activity assay, with the

omission ofDTT and a short permeabilisation with digitonin. In addition NAD+ was

prepared fresh on the day of each experiment and added to the reaction buffer to

ensure that there was no degradation of this substrate with storage and that it was

present in excess in the reaction, the concentration of oligonucleotide in the final

reaction has also been reduced compared to the published assay (Pfieffer, Brabeck et

al. 1999). These changes are also discussed in section 5.4.

5 ml of whole blood was taken from healthy volunteers and PBLs obtained by

lyphopreparation. Either the whole blood prior the lymphopreparation or the washed

PBLs were exposed to 100 nM AG014699 (1% DMSO only added to controls) for 15

minutes at 37°C. Whole blood was lymphopreped, the cells were permeabilised with

the published permeabilisation buffer (10 mM Tris-HCL pH 7.8,1 mM EDTA, 4 mM

MgCh, 30 mM 2-mercaptoethanol supplemented with 0.015% (w/v) digitonin), then

reacted in the presence of oligonucleotide and NAD+ for 6 minutes. The reaction was

stopped by the addition of 400 III ice cold 6.25 11M AG014361 and placing on ice.

The cell density in the reaction was counted. The dot-blot 96 well manifold was set

up, a suitable sized piece of filter paper and Hybond-N membrane were rehydrated in

PBS then clamped into the manifold. 5000, 10000 and 20,000 cells from the reaction
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mixture (diluted in PBS to a final volume of 50 ul) were loaded into the wells , fixed

and exposed to primary and secondary antibody as described in section 3.4.

After exposure to ECL for 1 minute the blot was exposed to film to see if PAR could

be detected in human PBLs with lOR and whether inhibition with AG014699 was

detectable. This experiment was repeated three times , a sample visual blot is shown

below (figure 5.1). Triplicate samples of different cell numbers have been loaded, it

can be seen that there is an increase in the amount of chemiluminescence detected as

the cell number increases, and that this is reduced in the presence of the inhibitor.

Figure 5.1
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Figure 5.1 Scanned film showing detection of PAR in PBLs , in the presence or absence of 100 nM

AG014699. Cell number loaded shown beside.

A similar experiment was performed using L 1210 cells. This was done in parall el

with a e2p] NAD+ incorporation PARP assay as part of the investigation into whether

enzyme inhibition was preserved with frozen storage (section 4.4.2 , figure 4.6) .

L 1210 cells were exposed to 0, 10, 50 and 100 nM AGO 14699 for 15 minutes at 37°C,

the inhibitor removed and samples frozen in medium + 10% DMSO. At the 8 week

time point a small aliquot of the defrosted sampl e was remo ved prior to the [32
p]

NAD + incorporation assay. This was wash ed, permeabilised and reacted as de cribed
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above. Varying cell numbers were again loaded onto the 96-well dot-blot manifold

and exposed to primary and secondary antibody.

The results are shown in figure 5.2. The se correspond to the 8 week data on fiaure
b

4.6. The increase in chemiluminescence with cell number and decrease with

increasing concentration of inhibitor are evident, the change with inhibitor was most

obvious when only 1000 or 2000 cells were loaded.

Figure 5.2

Figure 5.2 Scanned film showing detection of PAR in Ll21 0 cells inhibited with varying concentration

of AGO 14699 (shown across top of film), cell number on RHS.

Having verified that the technique worked with human PBLs and the proposed QC

cell line additional work was undertaken to establish the quantification of these

matrices using the digital chemiluminescence detector. The original report for the

technique used a customised 24 well manifold with a blotting area of >100 mm",

allowing loading of a larger volume of cells. Pfieffer and colleagues reported that

permeabilised cells tended to cluster and the larger loading area allowed averaging of

this clustering effect.

Initiall y a 24-well mani fold was borrowed from Professor Burkle 's group;

subsequently one was made in 18 mm Perspex by Forge House Group , Darlington

(figure 5.3). The chemiluminescence detection apparatus initiall y used wa a Fuji
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LAS 1000 in Professor Burkle ' s laboratory, later we purchased the LAS 3000 model

which was used in later experiments and all clinica l trial work. The image detected

was digitised then interpreted using the Aida Image Analyser, version 3.28.001

software package. An example of the output obta ined and defined as source data for

the clinical trial is shown below (figure 5.4). The final numerical output is described

as "densitometry", the camera detection unit takes a digital picture of the

chemiluminescence from the exposed blot, this digital picture is imported into the

Aida software as a grey scale image and the densities measured from this image.

Figure 5.3

Figure 5.4
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Figure 5.4 Example of output from Aida software following exposure of Fuji LAS 1000. Serial

dilution of QC cells, loading pattern being (left to right) 100,000, 50,000, 25,000, 12,500 in triplicate.

4 background areas also measured, see text.

The problem of clustering of cells and pooling of chemiluminesce nce was observed in

early experiments. This was overcome by usin g two pieces of filter paper as a base to

the Hybond-N membrane so that a tighter sea l was obtained, and also by diluting

small volume samples up to 400 ).11 with PB S prio r to loading.

Serial dilution of both LI2IO cells and human PBLs confirmed that the

chemiluminescence detected was proportional to the cell number loaded, a linear

relationship obs erved up to 100,000 LI 2I Ocells and 50,000 PBLs (figure 5.5). Data

are mean and standard deviation of triplicate samples. Pfieffer et al (1999) report

similar results with the same detection system, with a linear relation hip up to

120,000 IARe 273 ce lls. The upgrade to the Fuji LA 3000 y tern meant that th

arbitrary densitom etry units were increa ed 50 fold becau e of the increa d
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sensitivity of the machine. All clinical trial samples are being analysed on the more

sensitive machine. It must also be noted that the data in the graphs in figure 5.5 were

analysed on two separate blots, using the Fuji LAS 1000 analyser. Given the multiple

variables in any biological assay it is not possible to compare directly between assays

in terms of absolute LAD readings. The purpose of these two separate experiments

was to demonstrate the linear relationship between cell number and

chemiluminescence detected. Whenever PBLs and Ll210 cells were analysed on the

same blot it is clear that the maximally stimulatable PARP activity in Ll210 cells is

higher than that in PBLs confirming the findings with the radiolabel assay. When the

QC samples from serial patient samples were compared, corrected to LAD per 20,000

cells PBLs given a reading about 27% of the concomitantly analysed Ll210 QC

sample.

Figure 5.5
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Figure 5.5 Means and standard deviation of triplicate samples ofa serial dilution ofLl210 cells

(LHS) and PBLs (RHS).

These experiments suggested that the method was adaptable as a pharmacodynamic

assay using far fewer cells and therefore more suitable for repeated blood sampling

procedures. Further investigation was necessary however to establish a standard

curve to allow quantification of the polymer formed, to investigate the nature of any

background staining and to validate the assay to include QC samples.

117



5.3 Identification and characterisation of a poly(ADP-ribose) standard curve

In order to apply the immunoblot to clinical trial samples from sequentially treated

patients it is necessary to be able to compare between assays performed on different

days. The use of QC samples in parallel with the clinical samples allows

demonstration that the individual assay had given a valid result and the validation of

L1210 cells as QC samples for this assay is described below. It was also considered

desirable that an absolute numerical value could be given to the maximally

stimulatable PARP activity in the PBLs in terms of the amount of polymer formed to

allow such inter-patient comparison. The validated e2p] NAD+ incorporation assay

expresses results in terms ofpmol NAD+ incorporated per million cells allowing

comparison of different assays. It was hoped to establish a similar method of relating

the measured chemiluminescence to an absolute amount of substance.

Standard curves from antibody detection of in vitro synthesised polymer have been

reported (Affar, Duriez et al. 1998) showing a linear relationship between the detected

chemiluminescence and the amount of polymer loaded. They reported the reliable

detection of as little a 1 fmol ADP-ribose equivalent polymer using a digital imaging

system.

A similar method has been applied to the quantification of this assay. Purified

poly(ADP-ribose) polymer is available commercially from BIOMOL Research

Laboratories. The polymer consists of branched and linear polymer with an average

chain length of25 ADP-ribose monomers (range 3-100). The concentration of the

polymer is expressed in pmol ADP-ribose monomer equivalent and is supplied as a 10

,ug/ml solution. l,ug is equivalent to 2000 pmol ADP-ribose monomer. The product

information sheet states that the product contains <0.1% ADP-ribose, and is

completely degraded by poly (ADP-ribose) glycohydrolase (PARG).

A standard curve which included 6 values was generated, initially over the range 1-50

pmol monomer equivalent. It was suggested (Shah, Midha et al. 1992) that between

five and eight concentrations will define a standard curve in many biological assays.

The amounts of PAR loaded as each point on the standard curve were based partly on

an estimate of the amount of polymer that would be formed by 100,000 maximally
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stimulated PBLs if the mean amount ofNAD+ incorporated into one million PBLs is

24.5 pmol NAD+ as determined using the e2p] incorporation assay but also utilising a

range that allowed several standard curves to be obtained from one batch of

commercially produced PAR which is supplied in 100 ul aliquots

It is generally accepted that repeated freeze thaw cycles of the purified PAR polymer

should be avoided to preserve its integrity. Therefore a standard curve was designed

such that all polymers had two freeze thaw cycles only. On receipt of a new batch of

polymer it was aliquoted appropriately and refrozen. When required an aliquot was

defrosted and serially diluted on the day of experiment. Due to the limitations on

number of wells on the blot apparatus one standard curve was set up for each blot of

patient samples, and the number of standards limited to 6 as discussed above. This

occupied one complete row on the 6 by 4 manifold. For trial samples all the samples

from one patient in one complete 24 hour sampling period were loaded onto one blot.

Purified polymer was diluted to obtain a solution containing 50 pmol monomer

equivalent in 100 ~l solution in sterile water. This was serially diluted and a standard

curve loaded with the values 50, 25, 12.5, 6.25, 3.125, 1 pmol monomer equivalent.

These standards were loaded onto a membrane which was processed according to the

SOP. The chemiluminescence signal detected was proportional to the amount of

polymer loaded. To further investigate the relationship between chemiluminescence

and [PAR] and to determine whether the standard curve could be used to both read off

unknown results in terms of polymer formed, and then to compare these values with

those from assays performed on different days the data from serial blots processed on

different experimental days were compared. All standard curves were set up and

loaded as described above. Comparison of single standard curves from immunoblots

developed on separate days shows that there was a good correlation with the

densitometry reading obtained indicating that the polymer is stable when aliquoted

and stored as described above and gives reproducible results (figure 5.6). The best fit

for the data generated from the standard curve is non-linear. Statistical analysis was

performed by non-linear regression using a one-site binding model, which is reported

as best modelling the binding of receptor to ligand, in this case secondary antibody to

the 10H primary antibody bound to its polymer binding site. The equation used to

calculate the non-linear curve fit (one site binding) is Y=(Bmax . X)/[I<J+X]. Where X
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is the concentration of PAR, Y is the luminescence detected following exposure of the

bound secondary antibody to EeL. Bmax is the maximum chemiluminescence, the

point where the gradient of the standard curve becomes zero with all PAR present

bound to antibody complexes. K, is the equilibrium dissociation constant, the

concentration of PAR at which half is bound to antibody complex at equilibrium.

Figure 5.6

Relationship between
chemiluminescence and [PAR]

5.0x10 04

~

~ ..... N
Q) E
E Eo _
~:::J

~ ::5
Q)

c

4.0x10 04

3.0x10 04

2.0x1 0 04

1.0x10 04

Non-linear regression (one site I
binding) r

2 =0.996 I

Linear regression r2= 0.85

605040302010
0.0 x10 -oo-;=----..,----.-------,;-------,------r--------,

o
[PAR] pmol

Figure 5.6 Means and standard errors of 11 repeats of PAR standard curve, each standard being run in a

separate assay (Note: all data from cell dilution experiments and initial work on the standard curve

used a Fuji LAS 1000 digital camera. All subsequent experiments were performed with the more

sensitive upgraded Fuji LAS3000, there is a consequent change in the range of the digitised output

(LAU/mm2
) with the scale on the y-axis being much larger).

Regression analysis of the standard curve generated over the range 1-50 pmol PAR

suggested that the portion between 1 and 25 pmol was linear. There appeared to be a

saturation of the antibody binding and chemiluminescence signal between 25 and 50

pmol. This was not due to the limit of detection of the digital camera; comparison of

the densitometry values shown on the y-axis in figures 5.6 and 5.5 shows that more

intense signals can be detected and there was not a saturation of detection with

increasing cell number. The plateau effect on the standard curve may be due to the

mechanism of antibody binding to polymer.
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Initial analysis of patient PBL samples after treatment with a PARP inhibitor showed

that significant PARP inhibition was caused even with low doses of the drug. Dose

escalation decisions will be made based on the degree ofPARP inhibition caused',

therefore defining the lower limit of quantification was felt to be important. The

range of the standard curve was therefore extended to include a "blank" or no polymer

well to define the point where the standard curve cuts the y-axis, chemiluminescence

signal equivalent to this being due to noise/background, The dilutions were altered so

that most standards were at the lower end of the scale, the new standard curve being

over the range 0-25 pmol monomer equivalent, with data points at 0, 0.04, 0.2, 1,5

and 25. The same equation for best fit describes this curve.

Figure 5.7 gives the mean and standard error of 10 separate standard curves set up

using this new protocol. These were the standard curves used to derive the PAR

values measured from PBLs during the TemoCOMET study (see chapter 6). Each

individual standard curve had a coefficient of regression (r2
) of 0.95 or greater. When

the data was pooled together ~ = 1.000, confirming that when analysed using a one

site biding non-linear regression model there was a good relationship between the

concentration of PAR and measured densitometry on different days.

Figure 5.7

TemoCOMET study Standards

1.0x10 00

~

~ -N
0) E
E Eo _
~::J

~ :3
0)-e

7.5x10 05

5.0x10 05

252010 15

[PAR] pmol

5
0.0 x10-oo-l-------r---y-----r------r-----,

o

Figure 5.7 Pooled data from 10 individual standard curves run with patient samples during

analysis of samples from TemoCOMET study. Mean and SEM.
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There is a background chemiluminescence detected by the camera from the

Hybond-N membrane itself. When the data was analysed 4 readings were taken

of this background and the mean of these reading subtracted from the

chemiluminescence detected from the area of each well of the manifold. To

establish the lower limit of detection, the PAR standard was diluted further and

compared with the blank standard well (400 III PBS) in two independent

experiments. The practical work for these two experiments was carried out by Dr

Chris Jones. Firstly the 5 replicate PAR samples of concentrations 0, 0.01 and

0.05 pmol PAR were blotted onto a membrane and analysed. The limit of

detection was found to lie somewhere between 0.01 and 0.05, there was no

significantly detectable difference between 0.01 and 0 (p=0.225, unpaired t-test,

figure 5.8).

To further define the lower limit of detection 5 replicate samples over the range 0

pmol to 0.04 pmol in 10 fmol steps were loaded onto one blot and analysed in the

usual way. The results are shown in figure 5.9 where it can be seen that polymer

levels of fmol amounts can be distinguished from zero. Statistical analysis of the

groups using one-way ANOYA to establish whether the mean values of the

groups are statistically different gives p=<O.OI when comparing either all 5

groups or the three lowest groups, showing that the chemiluminescence detected

for these low standards can be distinguished from zero. It was felt, on the basis of

these two experiments, that one could be confident that the chemiluminescence

from 0.02 pmol PAR could be reliably distinguished from zero.
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Figure 5.8
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Figure 5.8 Mean and SEM of quintuplet samples of polymer, the difference between 0.01 pmol

PAR and 0 is not significant (p=0.225, unpaired t test).
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Figure 5.9 Densitometry readings from quintuplet samples, mean plus SEM shown.

Having established a standard curve which allowed the translation of

chemiluminescence detected from the unknown samples into an amount of PAR

polymer present it was necessary to establish how many human PBLs and L121 0 QC

cells needed to be loaded to detect a signal within the standard curve range. QC

samples were loaded to demonstrate that a given blot has given a valid or "expected"
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result. The amount of polymer formed within these cells when maximally stimulated

for 6 minutes should be within the standard curve.

Likewise the baseline blood sample taken prior to the PARP inhibitor infusion should

give the maximum value for that set of patient samples. This value should also lie

below the upper limit of the standard curve to avoid extrapolation being needed.

Serial dilution of volunteer PBLs or frozen L1210 cells and also the initial clinical

samples studied using this assay (from the TemoCOMET study, chapter 6) suggest

that between 5,000-10,000 L1210 cells will give values in the required range (mean

PAR per 5000 L1210 cells= 22.2 ± 5.6 pmol, CV(%) = 25%, n=6) and that between

10,000 to 20,000 PBLs (mean PAR = 15.4 pmoIIlO,OOO cells, range 5.6-20.0, n=6)

should be loaded onto the blot.

5.4 Modifications to the assay protocol during validation experiments

The aim of the PARP activity determination within the clinical trial setting is to

measure PARP inhibition following treatment with AGO14699. This measure is

obtained by quantifying the amount of polymer formed after a 6 minute period of

maximal enzyme stimulation with oligonucleotide. However, the primary antibody

against PAR, 10H, will bind to any polymer present within the permeabilised cell, not

discriminating between that formed during the reaction period and that present due to

existing DNA strand breaks. The existing polymer could potentially contribute to the

signal when PBLs are obtained from patients who have received chemotherapy and

consequent DNA damage. The effect of this endogenous polymer formation on

existing strand breaks, whether caused by chemotherapy or cell handling was

demonstrated in an experiment where a direct comparison was made between the

radiolabel PARP activity assay and the immunoblot.

Exponentially growing L1210 cells were harvested, washed and then exposed to 0 nM

(DMSO only), 10 nM, 50 nM and 100 nM AG014699 for 15 minutes at 37°C. The

cells were then washed, permeabilised and assayed for PARP activity using both the

e2p] NAD+ incorporation and immunoblot assay. It was observed that, although there

was a similar pattern of inhibition, the two curves were parallel, with that from the

immunoblot lying above (figure 5.10). On the immunoblot samples were loaded
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which had been "spiked" with an identical number of unreacted but penneabilised

cells to give a measure of this endogenous PAR. When the mean of this background

(non-stimulated) polymer signal was subtracted the two curves to come close together

and gave very similar ICso values. (13.2 cf 12.7 nM)

• Dot blot
... Radiolabel

Cso=12.7

Figure 5.10
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Figure 5.10 PARP activity as %control for parallel [32p] NAD+ incorporation and immunoblot of

LI2l0 cells inhibited with AG014699. % calculated from mean of triplicate samples.

The assay methodology was changed to include "TO" i.e. unreacted samples so that

the contribution of this endogenous polymer could be evaluated and excluded from

the measure of enzyme activity for all clinical samples. The TO samples loaded were

taken from the permeabilised cell suspension held on ice, and same number of cells

loaded into the TO wells as were placed in the reaction samples. Triplicate TO

samples were loaded from each cell suspension and the mean chemiluminescence

detected from these subtracted from the reaction samples before calculation of PAR

levels.

The initial description of the PARP immunoblot used an isotonic buffer containing 2

mercaptoethanol, and the permeabilisation step involved supplementation of this

buffer with digitonin, incubation for 1 minute then a 10 minute centrifugation step at

ODe. Two problems were encountered when analysing either L121 0 or PBLs with this
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method. Firstly the degree ofpermeabilisation was variable and could be as low as

200/0, and secondly there was a high background staining in the TO cells. It was found

that samples prepared using the same isotonic buffer as described in the e2p] :\"AD+

incorporation PARP assay and utilising 0.15 mg/ml digitonin penneabilisation

method showed ~1000/0 permeabilisation and background TO staining was much

lower. It is presumed fewer DNA strand breaks are introduced during cell handling

with the removal of the prolonged O°C centrifugation step. The assay method was

changed to adopt digitonin permeabilisation and to use the alternative isotonic buffer.

The other significant adaptation to the assay method was reduction in the

concentration of oligonucleotide in the reaction. In the published immunoblot PARP

activity assay the concentration of oligonucleotide in the final reaction volume was 50

ug/ml (or 1.95 mM). The amount present in the e2p] NAD+ incorporation assay was

much lower (2.5 ug/ml) and an experiment was undertaken to investigate whether

decreasing the amount of oligonucleotide in the reaction mixture would affect the

amount of polymer produced.

Frozen QC cells were defrosted, washed and permeabilised with digitonin. The

reaction tubes were set up with a range of oligonucleotide concentrations added to the

tubes in a final reaction volume of 100 ul in isotonic buffer. 5000 penneabilised

L1210 cells were added to each reaction tube, the reaction carried out for 6 minutes

before stopping with excess inhibitor. The contents of the tubes were loaded onto a

membrane and immunoblotted in the usual way. The results (mean and standard

deviation, n=3) are shown in figure 5.11. There was no suggestion that reducing the

amount of oligonucleotide present compromises PARP-1 ability to form polymer.
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Figure 5.11
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Figure 5.11 Relationship between densitometry and concentration of oligonucleotide in reaction.

Mean + SO, n=3.

Pfieffer and colleagues (Pfieffer, Brabeck et al. 1999) described the prototype assay

using a reaction buffer which contained 1 mM NAD+. This buffer was made in

advance and stored over a number of weeks at 4°C (Dr Ragen Pfieffer, personal

communication). When planning to establish an assay that was to be validated to

GLP-like standards and produce data that could be used for regulatory purposes there

were concerns about the stability ofNAD+ in this solution. To be able to measure

maximal PARP-1 activity the reaction solution must contain NAD+ at a concentration

which is at or near the Km for the enzyme. The protocol was modified to that

described in section 3.6 so that NAD+ was made up fresh on the day of reaction from

frozen anhydrous stocks, the molarity calculated from the optical density and

sufficient added so that the final concentration in the reaction mix was 350 ~M. Use

of a 7 mM NAD+ stock allowed as little as 5 ul to be added to the reaction mix,

giving a greater flexibility on the volumes of cell suspension that could be added,

keeping the final volume at 100 Ill. This was particularly useful if a low cell harvest

was obtained and the permeabilised cell suspension more dilute than anticipated.

The reaction phase of the assay was carried out in a water bath at 26°C. The reaction

solution containing oligonucleotide, NAD+ and reaction buffer was allowed to come

to this temperature to ensure optimal reaction conditions. Permeabilised cells were

held on ice throughout the assay to prevent autolysis. Since the cell suspension
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represents 40% of the reaction mix cells were routinely pre-warmed to 26°C for 7

minutes prior to addition so as not to cool the reaction. There was concern that the

pre-warming might contribute to an increased background chemiluminescence from

pre- formed polymer.

This potential effect was investigated using Ll210 cells. Frozen L1210 cells from the

prepared QC stocks were defrosted, washed and permeabilised. The permeabilised

cells were counted and cell suspension diluted such that 10,000 cells would be added

to the reaction in a volume of 40 ul, Triplicate reaction tubes were set up containing

oligonucleotide, NAD+ and reaction buffer to a total volume of 60 /-ll or isotonic

buffer only as a control. All tubes were warmed to 26°C. One aliquot of

permeabilised cells was held on ice until addition to the reaction volume or isotonic

control, and one portion of cells was pre-warmed for 7 minutes prior to addition to the

reaction to allow temperature equilibration.

The immunoblot was loaded with control cells which had been held on ice throughout

the experiment (TO) and the 4 different experimental preparations, ice cold cells

blank reaction, ice cold cells - full reaction mix, pre-warmed cells - blank reaction,

pre-warmed cells - full reaction mix. The results are shown in table 5.1. There were

three findings, firstly there was minimal PAR formation due to endogenous ADP

ribosylation at existing strand breaks when cells were maintained on ice. Secondly

that pre-warming of the cells is essential if a true measure of maximal PARP-1

activity is required. There was a 25% reduction in the maximally stimulated value

when pre-warming was omitted. Finally the pre-warming step did not increase the

endogenous PAR per se (pre-warm isotonic control).

Table 5.1

Cells Reaction mixture Densitometry (LAV/mmz) per

10,000 cells

Ice cold TO 156±131 !

IIce cold Isotonic only 353±485
I

.

Ice cold Full reaction mix 11..J.61±990
I

Pre-warm Isotonic only 84±137 I

Pre-warm Full reaction mix
i

15161±561
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The result found in this experiment was confirmed by Dr Chris Jones using both

freshly grown and frozen stocks ofL1210 cells, no difference being observed between

the fresh or frozen samples. Therefore, in frozen samples too, pre-warming does not

have a major impact on the endogenous PAR formation. Pre-warming of cell

suspensions is essential as loading of ice cold cells results in a 25-40% reduction in

PAR formation compared to pre-warmed cells.

The results of all the experiments described in this section were all taken into account

during the evolution of the final validated standard operating procedure for the

immunoblot PARP activity assay.

5.5 Immunoblotting for tumour/tissue samples

In part 2 of the trial tumour biopsies will be taken before and after AGO 14699

administration not only to determine PARP inhibition of the target tissue but also to

determine any correlation with PARP inhibition in PBLs from the same patient. Any

pharmacodynamic assay therefore needs to be feasible using both experimental

matrices, PBLs and homogenised tissue.

Studies were undertaken to investigate whether the immunoblot technique could be

used to detect PAR formed by a tumour/tissue homogenate, and to establish the

dilution of the homogenate required so that the chemiluminescence detected would lie

within the standard curve.

The experimental protocol was used as described in section 3.8. 50 ul of homogenate

were added to 5 ~l 7 mM NAD+ and 45 ul reaction buffer in all experiments.

Oligonucleotide was not necessary in the reaction as explained above (section 4.5.1 ).

The principle of the assay is the same as for the determination of PARP activity in

permeabilised cells in that it measures the amount of polymer formed in a fixed period

by the PARP enzyme in the homogenate in the presence of added substrate (NAO+).

The reaction is stopped with excess AGO 14699 and the product detected as described
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in section 5.2. Pre-existing polymer, formed in response to DNA damage in the

presence of endogenous NAD+, is corrected for by the subtraction of the measured

chemiluminescence from an identical volume of un-reacted homogenate (TO). The

data is expressed in terms ofpmol monomers ofADP-ribose detected in polymer per

mg protein added to the reaction.

All experiments undertaken to establish and investigate the use of the immunoblot

with homogenised tissue were performed using homogenised mouse liver as a

surrogate sample. It was not ethical or possible to get tumour biopsies to perform this

validation work. The established quality control (QC) standards (L1210 cells) will be

run with each assay so that individual test run acceptance criteria can be defined as

well as enabling inter-assay comparison.

Mouse liver was snap frozen in liquid nitrogen and maintained at -80°C until

homogenisation. This mimics the treatment of tumour samples. When thawed prior

to homogenisation the wet weight was determined and the specimen homogenised in

3 volumes of isotonic buffer giving an initial dilution of 1 in 4. This preparation was

serially diluted to obtain 1 in 100, 1 in 1,000 and 1 in 10,000 dilutions. These were

incubated with reaction buffer as described above and blotted. Triplicate samples

were loaded, including triplicate TO (unreacted homogenate) from each dilution. As

can be seen in table 5.2, there was a high background chemiluminescence signal

measured in the TO samples as expected. This is due to endogenous polymer

formation due to DNA damage induced by the homogenisation procedure. This

background signal could be kept to a minimum by ensuring that, except during the

pre-warm phase and reaction phase of the assay all tissue homogenate was kept on ice

to prevent enzyme activity (personal observation, data not shown).

Subtraction of the TO endogenous staining gives a clearer picture of the amount of

additional polymer that can be made by the enzyme in the presence ofNAD+ at the

dilutions investigated (column 3, table 5.2). There did not appear to be a linear

relationship between the dilution of homogenate and chemiluminescence signal over

this range of dilutions, suggesting that there may be saturation of the signal at higher

concentrations.
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Table 5.2

Homogenate Densitometry (LA /mm' xI0 5
)

dilution Endogenous PAR Total PAR PAR formed

during reaction
I

1:100 10.22 18.18 7.96 I
1:1, 000 3.22 6.53 3.31

1:10,000 0.15 0.32 0.17

To establish the optimum dilution of homogenate, such that PAR forma tion fell

within the range of the standard curve, serial dilutions of frozen mouse liver

homogenate were reacted as described abo ve and the standard PAR polymer curve

loaded onto the blot. 1 in 100 , 1 in 1,000 and 1 in 2,000 dilu tions were et up. The

mean PAR formed (after subtraction of background) was measured and i shov n

below (figure 5.12)
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Figure 5.12 Mean + SEM of triplicate readings of serially diluted homogenised Ii er.
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liver (1230 pmol NAD+/mg protein cf 39.0 pmol NAD+/mg protein), this was also

observed with xenografts analysed with the immunoblot (Chris Jones, personal

communication). Preliminary results from the TemoCOMET study (data in table 5.-+.

trial discussed in chapter 6) had suggested the measured PARP-l activity was

significantly higher in human tumour samples than in normal tissue when compared

on a per mg protein loaded basis. It was therefore felt safer to opt for a higher

dilution rather than to risk all baseline samples being without the range of the standard

curve.

Table 5.3

Preparation Mean PAR ± SEM (pmol)

Mouse liver 1 in 100 8.37 ± 0.59

Mouse liver 1 in 1000 0.3 ± 0.04

Mouse liver 1 in 2000 0.16 ± 0.02

Table 5.4

Summarised results from individual tumours/livers analysed by the different PARP-I assays.

n=number livers/tumours studied, each measured in triplicate.

Liver Tumour

Mean±SD Mean±SD

Radiolabel assay (pmol NAD+/mg 39 ± 9 (n=9) 1229 ± 26 (n=3)

protein)

Immunoblot (pmol PARlmg protein) 26 ± N/A (n=l) 828 ± 599 (n=9)

. .

Previous experiments using the [32p] NAD+ incorporation PARP activity assay had

established that PARP-l enzyme activity within tissue cells was stable with frozen

storage, and also that PARP inhibition was maintained with storage (see sections -+.5.3

and 4.5.2). It was felt unnecessary to repeat these studies with the immunoblot assay.

As part of the parallel laboratory studies, which are being performed along side the

PARP inhibitor clinical study, nude mice bearing SW620 human colon cancer

xenografts were treated with a single intra-peritoneal injection of AG014699 and

sacrificed at various times after doses. Groups of 3 mice were treated. Xenograft
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homogenates from these mice were diluted to 1 in 1000 or 1 in 2000 and an

immunoblot performed as per the protocol. It was clearly possible to measure the

degree ofPARP inhibition in these samples, which varied with dose (figure 5.13).

These data are generously supplied by Dr Chris Jones.

Figure 5.13
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Figure 5.13 PARP activity expressed as a % that measured in matched controls in SW620 xenografts

treated with AG014699. Mean + SEM of three tumours, each measured in triplicate

Having established that the immunoblot could be used as a PARP-1 activity assay in

both human PBLs and tissue samples further experiments were undertaken to

elucidate the nature of the antibody binding. These are described below.

5.6 Investigation of the nature of 10H antibody binding/chemiluminescence

detection

10H is a monoclonal antibody which is reported to bind to poly(ADP-ribose) polymer

15-20 ADP-ribose monomers in length. The published characterisation of the

antibody has been discussed in section 5.1. The objective whilst developing this

assay has been to accurately and reliably obtain a measure of PARP-1 activity in the

presence or absence of inhibitor. The measure of activity is quantified by allowing the
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enzyme to synthesise polymer in a maximally stimulated state for a defined period of

time.

There will be some polymer present in cells, particularly if there is any DNA damage

(either due to cytotoxic drug or cell handling procedures). The TO samples loaded in

triplicate for each cell suspension allow for any antibody binding and detection of this

background polymer to be excluded from the quantitative assay results.

The contribution of non-specific binding of the either the primary or secondary

antibody to the membrane or the some component within the cells loaded to the

chemiluminescence detected was investigated. Any non-specific binding will be a

possible cause of inaccuracy in quantification of unknowns. The potential

contribution of the secondary antibody to this was investigated by setting up two

identical blots by loading L12l0 cells which had been inhibited with AG014699 and a

standard curve. One blot was incubated in primary antibody over 48 hours whilst the

other was stored in PBS. The blots were then returned to the same container for the

secondary antibody incubation and washes. After staining with EeL there was no

detectable pattern of staining coinciding with the location of the manifold on the

secondary only blot.

By carefully lining up the marked areas of the identical blots it was possible to

compare the digitally measured chemiluminescence from 5 wells on the intact blot

where the signal was strongest (those loaded with L12l0 cells) with the same areas on

the secondary only blot. Despite being certain that these would be areas where there

were cells present, indicated by the dense chemiluminescence on the complete blot,

there was very little detection from the secondary-only blot. It was calculated that for

these wells any contribution to the densitometry reading over and above background

from non-specific signal due to secondary antibody was 0.18± 0.03% (mean ± SD,

n=5) .

The signal detected from background areas (areas not loaded with cells) was very

similar for both blots described above and represents luminescent pixels detected

from the nitrocellulose membrane. The low background densitometry suggests that

non-specific binding of either antibody to the nitrocellulose membrane is low. To
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correct for any such binding the mean of three background areas is automatically

subtracted from all densitometry readings. With the evolution in assay methodology

during the validation process and despite the introduction of the more sensitive Fuji

LAS 3000 this background detected remains a small contribution to the overall

densitometry. When the mean background figure for 12 successive experiments was

compared to the chemiluminescence detected from 12.5 pmol PAR the background

contribution to the chemiluminescence was in the order of 6%.

The nature of the TO background signal, i.e. endogenous polymer, was examined by

adding a known number (100,000) ofpermeabilised cells to each standard. Antibody

binding to a known amount of polymer was compared in the presence or absence of

these cells. The chemiluminescence measured in the spiked standards was higher

than that from the control standards but the correlation between chemiluminescence

and concentration of PAR was unchanged (table 5.5, r2=0.95 and 0.96, non-linear

regression one site binding). This suggested that the primary/secondary antibody

complex detected by EeL in the cells was binding to a consistent feature in those cells

which was the same antibody interaction as the known standard, i.e. the polymer.

Table 5.5

LAD xlO5

[PAR] standard Standard alone Standard + cells Cells alone

(pmol)

1.5 0.03 0.7 0.7

3.125 0.1 1.2 1.2

6.25 0.3 1.7 1.4

12.5 0.6 1.8 1.3

25 0.9 2.6 1.7

50 0.9 2.4 1.5

The specific background binding of the primary antibody to any existing polymer

(endogenous, i.e. TO samples) was further investigated by exposing permeabilised

fresh L1210 cells to purified PARG enzyme (2 mll/ul) in the presence and absence of

excess PARP inhibitor. Purified PARG was obtained from BIOMOL research

laboratories Inc (catalogue N° SE-179, Lot ~ P6321). 2.5 JlM AGO 1..+699 or an
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equivalent 0.25% DMSO alone as control was added to aliquots of 100,000

permeabilised LI2l0 cells on ice (final total volume 400 Ill). The addition of

AGO14699 was to prevent further polymer formation during the exposure to PARG.

The permeabilised cells were warmed to 37°C and 6 mD PARG added. 1 D PARG is

defined as the amount of enzyme which will produce 1 nmol ADP-ribose per minute

of reaction at 37°C in a solution of 10 11M [32p] PAR. No oligonucleotide was added.

After incubation for 5, 10 or 30 minutes the cells were placed back on ice and blotted.

The cells where PARP-I had been inhibited prior to warming to a temperature at

which mammalian enzymes are functional gave a very low signal for polymer. This

low signal was further reduced by approximately 30% after incubation with purified

PARG, providing evidence that species bound by lOR is degraded by PARG and

therefore likely to be PARP. It proved much more difficult to significantly reduce the

much higher signal in non-inhibited control cells with the commercial PARG

preparations available.

5.7 Evaluation of PARP knockout cells or animal tissue using immunoblot

The gene coding for PARP-I has been successfully inactivated in mice and PARP-l-/

BalbC mice are readily available. In addition there are established cells lines from

these mice which can be studied in vitro. This provides a further mechanism for

investigating the nature of the chemiluminescence staining detected using the

immunoblot. The other members of the PARP enzyme family are intact in the PARP

1 knockout animals/cells, so poly(ADP-ribose) can be formed in response to the

correct stimulus. PARP-2 is the only other PARP enzyme in the cells known to be

activated by DNA damage, however PARP-2 activity is not stimulated by blunt ended

oligonucleotide, the activator in the permeabilised cell assay (de Murcia, personal

communication).

In the first series of experiments PARP-l-/- cultured mouse fibroblasts were grown in

Eagles medium and harvested at a cell density of 8 x 106
/ml, L1210 cells were used

as a positive control as there were no available stocks of PARP-l +/+ cells. The cells

were harvested, washed and permeabilised with 0.15 mg/ml digitonin as described

before. Triplicate samples were set up including + oligo (oligo, reaction buffer,
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NAD+) - oligo (NAD+, reaction buffer and PBS control) and inhibited (~AD~, oligo,

reaction buffer, with AG014699 stop solution added prior to permeabilised cells).

Following cell warming and the 6 minute reaction period blots were loaded including

a PAR standard curve, TO samples in triplicate (permeabilised cell suspension only,

pre-warmed then replaced on ice) and each reaction tube. 100,000 cells were loaded

per replicate; larger numbers were used because of the expected low levels of polymer

formation by the PARP-1-/- cells. It was accepted that 100,000 L1210 cells would

take the chemiluminescence out of the range of the standard curve, however the

known linear relationship between cell number and chemiluminescence at this number

of cells meant a valid measure of polymer formation could be made and enabled

comparison of like numbers of cells for the positive and negative groups.

The data from the PARP-1-/- and L1210 cells are shown in table 5.6. Mean and

standard error of triplicate samples are given. It can be seen that the levels of

chemiluminescence detected from PARP-1-/-cells were very low when compared to

similar data from the positive controls. There was some background (TO) endogenous

polymer present, it would appear that there was some increase in the polymer present

when the cells were warmed to 26°C for the reaction, the differences between the

+oligo, - oligo and inhibited columns were not statistically significantly different from

one another (p=0.09, one way ANOYA). Polymer in these cells would largely be

formed by PARP-2, which is not stimulated by blunt ended oligonucleotide. In this

experiment the amount of polymer formed by 100,000 PARP-1-/- cells in the

presence of oligonucleotide was 2.5 ± 1.2 pmol; in the absence of oligonucleotide it

was 1.2 ± 0.5 pmo1l100,000 cells with a similar amount being made in those cells

where the PARP-1 inhibitor was added to the reaction mix prior to the addition of the

cells (1.7 pmo1l100,000 cells). This compared to an average polymer formation of

22.0 pmol by 5000 L1210 positive control cells (440 pmoVIOO,OOO Ll210 cells) in

the presence of oligonucleotide, indicating <1% of the measured polymer formation

was due to PARP-2 activity.
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Table 5.6

LAU/mm2/IOO,OOO cells

Ll210
I

PARP-/-
I

TO 50697 1941

+oligo (-TO) 146719 ± 53122 3964 ± 1426

- oligo (-TO) 73218 ± 99499
i

1539 ± 627 i
I

+699 (-TO) -5228 ± 18313 1889 ± 1176 l
These preliminary experiments suggested that the polymer detected using the

immunoblot was largely formed by PARP-1 when stimulated by oligonucleotide.

Studies using the PARP-1-/- knockout model were extended to include a comparison

of PARP-l activity in mouse PBLs and homogenised liver from matched groups of

PARP-l-/- mice and PARP-l+/+ mice treated with saline vehicle or AG014699.

These experiments were performed as part of the validation process for the

immunoblot PARP activity assay in homogenised tissue, and also to establish whether

PARP activity and inhibition could be measured in mouse PBLs after

lymphopreparation.

PARP-l-/- and PARP-l +/+ male and female mice were obtained from Gilbert de

Murcia and housed under standard conditions. Groups of three PARP-1-/- male and

female mice were sacrificed by cervical dislocation, then immediately exsanguinated

by cardiac puncture. A total of 4-5 ml of whole blood was obtained from the group,

pooled and then diluted 1 to 1 with PBS and lymphopreped using the method

described for human blood in chapter 3. The PBLs were frozen in medium + 10%

DMSO as described in the method. Groups of three PARP-1+/+ male and female

mice were treated with a single intra-peritoneal injection of AGO 14699 dissolved in

sterile water (or vehicle control) 30 minutes prior to sacrifice. Blood was obtained

and prepared as described above. Murine PBLs are smaller than human PBLs, and

mouse-specific lymphoprep is available. However, for reasons of expediency and

consistency the human lymphoprep was used to prepare the mouse cells. The

difference in density between the two lymphopreparations is small, and adequate cell

harvests were made with the human preparation.
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From one animal in each group the liver was removed and snap frozen for later

homogenisation and assay.

The results from the mouse PBLs for all groups is shown in figure 5.14, all values are

expressed in terms of pmol PAR formed by 106 cells in the 6 minute reaction time.

Mean and SEM of triplicate readings are given. It can be seen that in the control

PBLs from PARP-1-/- mice there was again little polymer formation when stimulated

with blunt ended oligonucleotide. The measured polymer formation appeared higher

in the male animals when compared to the females in all treatment groups. This

observation is, however, based on a small sample size and did not reach statistical

significance. There was no evidence of a variation of PARP activity in human PBLs

with gender. Inhibition of PARP-1 with AGO 14699 was demonstrated, being more

profound in male compared to female animals at both doses of AG014699.

Figure 5.14
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Figure 5.14 Polymer formation in mouse PBLs in PARP -/- animals and PARP +/+ animals treated

with AG014699. Mean and SEM of triplicate samples expressed as per million cells

Frozen livers were defrosted, weighed and homogenised as described in section 3.7.

An initial dilution of 1 in 1000 was made with isotonic buffer. However the PARP

activity in the inhibited livers was undetectable with this standard dilution. The

samples were re-assayed using a 1 in 100 and 1 in 50 but once again PARP activity

was undetectable. The results from the standard I in 1000 dilution are shown in

figure 5.15.
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Figure 5.15

50
- c0._

§.~ 40

~Q.
~ t» 30
.~ E-o ~

co Q) 20
a..Q.
r::t:r::t:

~ ~ 10

o

Figure 5.15 Mean and SEM of triplicate reading from homogenised liver from PARP -/- and PARP

+/+ animals (+/- 699)

Data are expressed in terms of pmol PAR formed in the reaction period per mg

protein in the homogenate. Polymer formation was detectable in the homogenised

liver from PARP-1-/- animals using the immunoblot assay. This value represents

polymer formation during the reaction period as background TO (endogenous

polymer) chemiluminescence was subtracted in the usual manner. Homogenisation

introduces multiple DNA strand breaks, both single and double; during the reaction

period PARP-2 will be active in the presence of substrate (NAD+) and an activation

stimulus. This explains why in these knock out animals there was more polymer

formation in the homogenised liver than was detectable in permeabilised PBLs where

the stimulus to PARP activity is exogenous blunt ended double stranded

oligonucleotide. The amount of polymer formed during the reaction period (3.0

pmol/mg protein) was similar to that detectable in the unreacted homogenate (6.0

pmol/mg protein) which had been held on ice during preparation, warmed to 26°C for

7 minutes, and then replaced on ice. It is accepted that the warming period will allow

polymer formation using endogenous NAD+, hence the exclusion of this polymer by

the subtraction of the TO samples. In the case of the PARP-1-/- liver homogenate, the

amount polymer formed during the reaction period is low and the background

polymer detected similar, indicating that low PARP activity overall is seen in these
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cells compared to PARP-1 +/+ animals where the background polymer formation was

7.3 pmol/mg protein and that formed in the presence of added NAD- was 26.3

pmol/mg protein. All these observations are preliminary because of the small number

of animals studied.

It was unexpected that the degree of PARP inhibition in liver would be so great in the

animals treated with AGO14699 at 1 mg/kg and 10 mg/kg. Previous experiments

studying the degree of inhibition in human tumour xenografts in these animals had not

showed such dramatic inhibition at this time point. This marked inhibition, greater

than that observed in the PBLs could be due to first pass metabolism of the

AG014699. The drug was given as an intra-peritoneal injection; the liver will

therefore be the first organ to be exposed to inhibitor and would be expected to have

the most marked PARP-1 inhibition. It may also reflect the observed lower PARP

activity in normal liver compared to tumour xenografts. This observation is given

support by the finding that normal human liver biopsies have lower poly(ADP

ribosylation) capacity than biopsies from hepatocellular carcinomas (Shiobara,

Miyazaki et al. 2001).

5.8 Discussion

The results presented in this chapter describe the development and subsequent

validation of an immunoblot PARP activity assay for use with human samples, both

PBLs and homogenised tumour. The established and validated radiolabel PARP

activity assay was initially considered for use in the PARP clinical study, however

there were problems with this assay which have been discussed in chapter 4 (section

4.7). It was because of these problems that a robust assay using fewer PBLs was

sought. The issues pertaining to validation of a pharmacodynamic biological assay

were also examined in section 4.7. During development of this new assay an attempt

has been made to address the principles to be used for establishing a valid method

defined in the 1990 AAPS International Workshop report (Shah, Midha et al. 1992);

see discussion of chapter 4. The way each of these principles has been addressed is

discussed below.
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a) Detailed Standard Operating Procedures have been produced for all

procedures.

b) The nature and degree of non-specific antibody binding, both of the primary

and secondary antibodies has been investigated. Levels of this are low, and have been

excluded from the calculation of polymer formed by the subtraction of background

chemiluminescence before generation of the standard curve and reading of results.

The major difference between this and the e2p] NAD+ incorporation PARP activity

assay is that the primary antibody (1OR) will bind to any polymer present, whether

formed during the reaction period, during cell preparation or prior to blotting on the

membrane. Attempts have been made to reduce this endogenous background by

maintaining all cells on ice except during the warming and reaction phases, and

changing the permeabilisation technique to minimise cell handling. The loading of

identical numbers of unreacted cells allows exclusion of any endogenous polymer

from the analysis of enzyme activity thus reducing the influence of these variables.

Without these TO samples there would be much greater for potential variation

between samples, in particular when considering PBLs. The lymphopreparation

method introduces some DNA damage, the fact that during the clinical trial this will

be done at three centres, by different personnel and with potential variation in the time

whole blood is held on ice before processing would mean that the scope for variation

in endogenous polymer would be very high and it is important to exclude this.

c) The pharmacodynamic effect which is measured by the immunoblot PARP

activity assay is the number ofpmol polymer formed during the 6 minute reaction

period over background endogenous polymer. The assay, therefore, directly measures

the product of PARP activity and is specific for PARP-l alone (PBLs stimulated with

oligonucleotide) or with a minor contribution form PARP-2 (homogenates). The

activity of the drug which the assay has been designed to assess is inhibition of the

PARP-l enzyme and thus a reduction in the ability to form polymer.

The nature of lOR binding is well established in the literature. Attempts have been

made to examine this further in the immunoblot assay by the addition of additional

PARG to alter the balance between polymer formation and breakdown, and also by
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the use of PARP knockout animals and cells. It would appear that the primary

antibody binds to purified polymer in a reproducible way, and that it binds to the

reaction product formed when permeabilised cells are incubated with a powerful

PARP-1 activator (oligonucleotide) and the PARP enzyme substrate (NADj. It is

therefore concluded that the major ligand-receptor binding species detected with

chemiluminescence is poly(ADP-ribose) bound to 10H antibody. This conclusion is

supported by the work of Affar et al (Affar, Duriez et a1. 1998) who demonstrated the

detection of purified poly(ADR) using a similar immunoblot using both 10H and a

polyclonal antibody against PAR, L896-1 O.

e) One issue for concern with the immunoblot assay is the degree of variation

between assays. There was reasonable reproducibility with replicate samples

performed on the same day within the same assay, and between standard curves but

considerable variation could be seen between different assay runs studying activity in

similar cell samples (for example QC cells). This highlights again the difficulty of

standardising a biological assay, Miller et al (Miller, Bowsher et a1. 2001) state that

"detection of a macromolecular analyte generally occurs in a complex biological

milieu ....methods tend to have poorer batch-to-batch reproducibility. During analysis

of clinical trial samples attempts have been made to reduce factors which typically

affect reproducibility (listed in Huber 1998), by defining a detailed SOP with

consumable sources prescribed, one operator for all samples and use of a water bath

to avoid room temperature variation. It is impossible to exclude all external variables,

different personnel who prepare the blood samples, transport of these samples may

take varying times and inter-patient variability is an unknown quantity at any given

dose of the PARP inhibitor. It is recognised that inter-assay variation is the greatest

source of imprecision in immunoassays (Findlay, Smith et a1. 2000). The AAPS

Bioanalytical Methods validation workshop reached a consensus opinion that minimal

acceptance limits for ligand-binding assays should be set at 30% for accuracy (mean

bias) and precision with greater limits being permissible if agreed upon by the end

users of the data.

f) A standard polymer curve has been established which is reproducible and

allows quantification of the results in terms of pmol polymer formed. The validation

143



of the assay has been audited by Cancer Research UK and by Pfizer GRD and found

to be suitable for regulatory purposes and to be performed to GLP-like standards.

The established QC cell line (L1210) has been validated for use in this assay, the

more sensitive nature of the assessment means far fewer cells need to be blotted, only

5,000-10,000 cells being required to produce polymer within the limits of the standard

curve. PARP-1 activity in tissue homogenates again can be measured with the assay,

a 1 in 1000 dilution of the homogenate being required rather than 1 in 40 for the

radiolabel PARP activity assay.

Choice and definition of the reference standard are known to have a large impact on

the integrity of bioanalytical data (Miller, Bowsher et al. 2001) and it is suggested that

the reference sample be procured from a certified reference standard or commercial

supplier. The standard curve should contain 5 to 8 points, excluding blanks, with

single or replicate samples and covering the entire range of expected concentrations

(Shah, Midha et al. 1992; 2001). The mathematical model used to describe the

standard curve should be that which best describes the fit, rather than enforcing a

linear model. It is recognised that the concentration-response curve for a typical

ligand-binding assay is seldom linear throughout its range, but more frequently

hyperbolic (Findlay, Smith et al. 2000; Miller, Bowsher et al. 2001). In the

immunoblot assay the standard curve is of the appropriate number of points, it is

reproducible between assays (see figure 5.9). The number ofL1210 QC cells and

human PBLs which should be applied to give PAR formation within the standard

curve has been defined. When samples fall outside these limits the blot will be

repeated with an appropriate number of cells.

In conclusion an immunoblot method for the detection and quantification of,
poly(ADP-ribose) has been developed and validated. An appropriate standard curve

has been identified, QC samples established and the working range of the assay

defined.

Having established this pharmacodynamic assay potentially suitable for use with

clinical samples whilst the PARP inhibitor clinical protocol was still under

development it was felt that it would be valuable to be able to confirm the assay
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validation using some clinical samples. At an early stage of the PARP inhibitor trial

protocol development the possibility of running a short pilot study prior to the main

trial protocol was discussed with the PARP development team. It was felt that such a

trial would be valuable for a number of reasons, and a phase II protocol using full

dose temozolomide alone in patients with metastatic malignant melanoma was

submitted to the Local Research Ethics Committees of the three centres who would be

participating in the main clinical study. Eligible patients would agree additional

blood tests on the first cycle for analysis of PARP activity and DNA damage and to

two tumour biopsies under local anaesthetic. It was hoped that the trial would address

the following points:-

1 It would allow the confirmation of PARP activity assay validation with

analogous clinical samples

2 It would give comparative data on DNA damage after temozolomide with

and without a PARP inhibitor

3 It would allow the three centres to work together before committing to a

clinical trial with complex pharmacokinetic and pharmacodynamic

sampling schedules.

This phase II preliminary study was conducted in 12 patients with malignant

melanoma, the further rationale for this trial and the results are discussed in chapter 6.
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Chapter 6

Clinical and Laboratory results for a Phase II mechanistic
study of temozolomide in advanced malignant melanoma
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6.1 Introduction

During the protocol development and preclinical evaluation of the PARP inhibitor

clinical candidate, AG014699, it was felt that a clinical study evaluating both D~A

damage and PARP activity after a standard dose of temozolomide in patients would

provide valuable information which could be used to interpret the results of the First

in-Human PARP inhibitor study. The effect oftemozolomide alone on the two

pharmacodynamic endpoints defined for the trial had not been determined and a phase

II study was designed to address these issues.

The mechanism of action of temozolomide has been discussed in chapter 1 of this

thesis. It is an orally available mono-functional DNA alkylating agent which is used

to treat gliomas and malignant melanoma. Temozolomide is rapidly absorbed and

undergoes spontaneous breakdown in the plasma to form the active species MTIC

(monomethyl triazene 5-(3-methyl-l-triazeno) imidazole-4-carboxamide). This forms

a number of DNA methylation products including 06-methylguanine, N7
_

methylguanine and N3-methyladenine. There is evidence that the cytotoxic lesion is

0 6-methylguanine (Stevens, Hichman et al. 1987) which is repaired by ATase

(Margison, Koref et al. 2002); N7-methylguanine and N3-methyladenine lesions

rapidly being repaired by BER (as discussed in chapter 1). It is thought that the

potentiation of temozolomide cytotoxicity observed in preclinical work with potent

PARP-I inhibitors is largely due to the inhibition of BER increasing the level of

cytotoxicity due to incomplete processing ofN7-methylguanine and N3-methyladenine

lesions.

The First-in-Human study of a PARP inhibitor will be in combination with

temozolomide and a primary endpoint of the study includes the demonstration of

inhibition of PARP-l in human PBLs and tumour samples. It is not known what the

effect of dosing with temozolomide alone or indeed any cytotoxic agent has on basal

cell PARP activity. This enzyme is widely expressed throughout human tissues. It

would not be expected that chemotherapy-induced DNA damage would significantly

alter the PBL's ability to form poly(ADP-ribose) but there was no data from human

studies in the literature available. A secondary PD endpoint of the First-in-Human

study is the measurement of DNA strand breaks. It was also felt useful to evaluate the
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DNA damage caused by temozolomide in human PBLs as a surrogate tissue , but also

in tumour samples if pos sible . It was planned that this work would be carried in The

Cancer Research Laboratories in Oxford under the supervision of Dr Mark Middleton.

To address these issues a small phase II study in pat ients with metastatic malignant

melanoma was designed and submitted to the Local Research Ethics Committees at

the same three clinical centres cooperating during the First-in-Human PARP inhibitor

trial. The study was entitled "Temozolomide induced DNA damage in Advanced

Malignant Melanoma: A phase II study". The study was approved by the local ethics

committees and accrual began in June 2002.

Malignant melanoma is becoming increasingly more common as seen in figure 6.1.

The disease is more common in women than in men (57% versus 43%), the incidence

rising with age. Despite this it is the third most common cancer diagnosed in those

aged 15-39 (source www.cancerresearchuk.org).

Figure 6.1
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It is estimated that 1600 lives a year are lost due to this disease, 1% of all cancer

deaths. The number of deaths and age specific mortality in the UK for 2001 is hewn

in figure 6.2. Survi val and risk of recurrence after primary resection are strongl y

associated with thickness of the tumour at the time of diagn osis. 5 year survival in

prim ary melanomas less than 1.5 mm thick is greater than 90% whereas 5 year

survival in tum ours thicker than 3.5 mm is approximately 45%.

Figure 6.2
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There has been some improvement in the 5 year survival over the last 15 years, this

has been largely due to improved awareness of the disease allowing primary resection

to be curative in a larger number of cases. There is some evidence that high dose

adj uvant interferon following resection of high risk malignant melanoma increas es

progress ion free and overall survival (Kirkwood, Ibrahim et al. 2001) but this therapy

has yet to be widely adopted in the United Kingdom. Treatment options for patient

with advanced metastatic disease are limited, with palliative chemotherapy with

dacarbazine (DTI ) or temo zolomide being the standard therapy, with re pon e rat

in the order of 15-20%.
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The trial reported in the chapter offers patients treatment with a standard regimen for

malignant melanoma, all the patients were aware that therapy would not be curative

and at best would improve the length and quality of their survival. Patients with

asymptomatic brain metastases were allowed to enter into the study. There is some

evidence that temozolomide will cross the blood brain barrier more effectively than

the parent drug DTIC (Stevens, Hickman et al. 1987). There is, however, no

published clinical data to support this proposal. The phase II study of temozolomide

in malignant melanoma included 4 patients with brain metastases, a partial response

was seem only in one patient who had a small solitary brain lesion (Bleehen,

Newlands et al. 1995), patients with brain metastases were excluded from the phase

III study (Middleton, Grob et al. 2000). It was felt that patients with brain metastases

should not be excluded from this trial if their performance status was adequate to

justify palliative chemotherapy because of this theoretical benefit

Trial coordination, patient recruitment and analysis of PARP activity in both PBLs

and tumour biopsies were undertaken as part of this MD thesis. Analysis of DNA

strand breaks following treatment were performed by Anna Olsen in Oxford, and

changes in 06-alkylguanine-DNA alkyltransferase (ATase) levels analysed by Dr

Geoff Margison in Manchester. Data from these experiments are included for

completeness and to aid discussion of the study results.

6.2 Study Design

6.2.1 Protocol design

The study was a non-randomised trial involving 12 patients with advanced malignant

melanoma who had had no prior therapy for their metastatic tumour. All patients

received temozolomide at a dose of200 rng/mi/day for 5 days of a 28 day cycle.

Response to therapy was assessed every 2 cycles and patients were treated until

progression. Inclusion criteria included age ~18years, histologically proven

advanced metastatic melanoma, assessable disease, and adequate haematological and

biochemical parameters. Patients could have received previous radiotherapy or

adjuvant therapy with biological agents, must use an acceptable method of birth

control and give written informed consent to all study procedures. Patients with

uncontrolled vomiting such as to make treatment with an oral agent impractical or
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those who had received a biological therapy with 4 weeks of starting treatment were

excluded. In addition subjects who were known to be pregnant or breast feeding, or

HIV positive were not entered.

The primary objectives for the study were defined as:-

1 To assess DNA damage (06 and N7 methylation of guanine and single

strand breakage) in tumour biopsies and peripheral blood lymphocytes

after a single 200 mg/rn'' dose of temozolomide

2 To determine PARP activity and ATase activity in these tissues after

dosing

The secondary objectives were stated as:-

To determine tissue DNA repair capacity by observing changes in repair

protein level over time

2 To relate biological measures to clinical outcomes (toxicity and tumour

response)

6.2.2 Sampling schedule and methods

To achieve these objectives patients were consented to undergo a complex schedule of

additional blood tests on days 1 and 2 of the first cycle of treatment only. Patients

were assessed clinically on day 1 of every cycle and attended for weekly full blood

counts and toxicity monitoring throughout the study. In addition, the first 9 patients

treated agreed to two tumour biopsies under local anaesthetic, one prior to starting

treatment and a second biopsy either 4 or 24 hours after the first dose of

temozolomide. Repeat radiological assessment or clinical measurement by the same

method as that performed at baseline was performed every two cycles. All toxicity

was graded according to eTC criteria (version 2.0).

At each major sampling time point (baseline, 4-6 and 24 hours) 55 ml of whole blood

was drawn and divided between the various analysis sets, 5 ml being placed in pre

chilled heparinized tubes and processed for temozolomide PK, and the rest being

anticoagulated in pre-prepared EDTA vacutainers and processed as described in table

6.1. Patients treated in Newcastle had temozolomide PK samples taken at the three

PD time points only. The six patients treated in Oxford had a more extensive
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temozolomide pharmacokinetic sampling schedule (pre, 30, 60, 120, 240, 360 and

1480 minutes after treatment) and the same PD sampling.

Table 6.1

Sampling time Pre-treatment
I

4-6 hours
I

-- -
24 hours

PARP activity 10 ml whole blood diluted with PBS and lymphopreped as
,

described in section 3.2
I

I

COMET assay 20 ml whole blood lymphopreped without dilution in PBS,

stored in PBS + 10% DMSO at -80GC

ATase assay 10 ml whole blood lymphopreped without dilution in PBS,

stored as a washed cell pellet at -80GC

DNA 10 ml whole blood frozen at -80GC

concentration

Temozolomide PK Plasma from 5 ml blood acidified in phosphoric acid and stored

at 20GC in pre-weighed containers

Following sample preparation at the clinical sites all temozolomide PK samples and

PBLs for PARP activity were transferred on dry ice to NICR, Newcastle, for

processing. COMET samples were transferred to Oxford and ATase and DNA

concentration samples to Manchester.

Where tumour biopsy specimens were available these were collected from the theatre

into sterile ice cold PBS. The sample was kept on ice and processed for storage as

soon as possible. The specimen was divided into two using a sterile scalpel blade,

and one half wrapped in aluminium foil, labelled and snap frozen in liquid nitrogen

before storing at -80GC for PARP activity analysis. The other half of the sample was

minced using crossed scalpels in a small volume of ice cold medium + 100/0 DMSO +

20% foetal calf serum. The suspension was centrifuged to precipitate larger particles

and the supernatant removed and frozen at -80GC. These samples were transferred to

Oxford for analysis using a COMET assay to assess the number of strand breaks

formed after treatment with temozolomide. Data from these samples was extremely

variable due to the problems with isolating intact tumour cells from the melanoma

tumour biopsy. Once it became clear that it would not be possible to perform this
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assay on these samples the final few patients were recruited to the study without

mandatory biopsies.

6.2.3 Laboratory methods

PBLs and tumour samples for PARP activity analysis were analysed as described in

sections 3.6 and 3.7. Temozolomide plasma concentrations were measured using a

published High Performance Liquid Chromatography method (HPLC) (Shen,

Decosterd et al. 1995). The pharmacokinetics of the drug have been characterised by

non-compartmental analysis with the calculation of the area under the plasma

concentration time curve (AVC).

6.2.2.1 Sample analysis performed outside NICR

The assays for DNA concentration, DNA methylation and COMET analysis were

performed by co-investigators on the clinical trial. Brief summaries of the methods

are given below although the practical work for these assays was outside the scope of

this thesis.

COMET analysis

The COMET assay is an established method for measuring DNA damage within

individual cells (Olive, Chan et al. 1988). Single cells are suspended in a thin layer of

agarose, lysed and an electrical current applied across the slide. Alkaline conditions

in the assay allow separation of the DNA strands so single strand breaks can be

estimated. Negatively charged DNA is drawn towards the anode by electrophoresis,

the distance moved being proportional to the size of the fragment of DNA.

Fragmentation of the DNA due to strand breaks therefore results in greater migration

in a given time and the "comet" or "tail" is formed ahead of the embedded nucleus.

The amount of DNA damage can be expressed either in terms of Olive Moment, the

product of tail length and the proportion of total DNA in the tail, or simply as % tail

DNA (Fairburn, Olive et al. 1995).

The method used was a modification of that described by Olive et al (Olive, Chan et

al. 1988) with assay conditions optimised for measuring substantial DNA damage

after chemotherapy. Stored PBMCs/tumour suspensions were thawed, diluted 1:4 in

phosphate buffered saline (PBS), and mixed with an equal volume of 20/0 low melting

153



point agarose at 40°C. One ml of the suspension was layered onto polylysine coated

slides (BDH Laboratory supplies; Poole, U.K.), lowered into lysis buffer (0.3~1

NaOH/ 1M NaCl/ 0.1% N-lauroylsarcosine, pH 11.5) and left in the dark for one hour

to lyse cells and remove most of the proteins. Salt was removed with 2 x 30 minute

washes in 0.3M NaOH/ 2mM EDTA. This wash time provides 1 hour DNA

unwinding time which has been shown to be important in the detection of DNA

damage. The slides were electrophoresed at 40 rnA for 25 minutes in the lysis buffer

at pH 11.5 and the DNA was stained with 1% propidium iodide and examined under a

confocal microscope (MRC 600, excitation wavelength 480 nm, magnification x 100).

The area and mean pixel intensity of the head and the tail of the comets were

measured to determine the percentage DNA in the tail for each individual cell. In each

patient sample a total of 50 cells, from 2 slides, were measured and the mean DNA

damage determined from all the cells examined.

DNA methylation (06methyl guanine)

The method used has been previously published (Middleton, Lee et al. 2000). Briefly

DNA was isolated from whole blood using a modified phenol extraction method.

DNA concentration was estimated as below. Various quantities of DNA, made up to a

standard final concentration with calf thymus DNA, were incubated with recombinant

human ATase under substrate limiting conditions at 37°C for 1 hour before the

addition of an excess of eH]methylated DNA substrate and further incubation for 30

minutes. The radioactivity transferred to protein was plotted against sample DNA

concentration and the concentration required to halve the radioactivity transferred

determined. This was compared with the corresponding value with a standard DNA

preparation to determine the sample 0 6-methylguanine content, which was expressed

as finole/mole deoxyguanosine.

ATase measurement

The method involved measuring eH]methyl group transfer to ATase protein from

eH]methylated DNA substrate under protein limiting conditions (Lee, Thatcher et al.

1991). The substrate provided was diluted to a concentration of 100 ug/ml and 100 ml

incubated at 37°C for 30 minutes with varying amounts (up to 200 ul) of tissue

extract. At least three different volumes were used for each extract. In each case, the
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total volume was made up to 300 ul with bovine serum albumin (BSA) 1 mg/ml in

buffer 1. After incubation 100 ul BSA 10 mg/ml in were added with perchloric acid

(100 ul of 4 M acid and 2 ml of 1 M). The mixture was incubated at 75°C for 50

minutes to hydrolyse the DNA substrate. Protein was recovered by centrifugation at

2100g for 10 minutes at room temperature. The resulting pellet was resuspended in -+

ml 1M perchloric acid and centrifuged at 21OOg for a further 10 minutes at room

temperature. The second pellet was resuspended in 300 ml NaOH 10 mM and 3 ml

Ecoscint scintillation fluid added (Mensura Tech) before thorough mixing. Samples

were counted over 5 minutes each on a Rackbeta (LKB) scintillation counter. Counts

per minute were plotted against the volume of extract used and specific activity

calculated from a minimum of three points on the linear part of the curve. Activity

was expressed as fmoles eH]methyl transferred to protein per ug DNA in the extract.

DNA concentration measurement

The quantitative fluorescent DNA stain Hoechst 33258 was prepared as follows: 1 ml

Hoechst 33258 (bisbenzamide; Sigma, UK) 1 mg/ml diluted 1 in 100 in double

distilled water and added to 1 ml lOx TNE buffer (100 mM Tris, 10 mM EDTA, 2

mM NaCl, pH 7.4) and 9 ml double distilled water. The DNA content was measured

by adding 2 III of extract to 2ml of dye solution and measuring the fluorescence in a

TKO 100 mini-fluorometer, which was calibrated using a calf thymus DNA standard

with each use. Measurements were taken in duplicate for each sample, with the

machine reading giving an estimate of DNA concentration in ug/ml.

6.3 Patient demographics and clinical data

6.3.1 Patient demographics

12 patients with advanced metastatic malignant melanoma were recruited. 5 female

and 7 male patients were treated with temozolomide. The mean age of the patients

was 57, and the predominant site of metastatic disease was in the liver. All patients

had undergone previous surgical excision of their primary tumour and had

subsequently developed metastatic disease. The median time to development of

metastatic disease was 24 months. However, excluding the one patient whose disease

recurred more than 13 years after the primary was excised, the mean time to
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development of metastatic disease is much shorter, 10.8 months, range 1-44. These

data are summarized in table 6.2. The performance status of all patients was good on

entry into the study.

Table 6.2 Patient demographics

Number %

Mean age (range) 57 (39-82) -

Male/female 7/5 -

WHO Performance status at entry (0/1/2) 4/6/0 (2 not -

stated)

Site of metastatic disease Liver 8 67

Lung 5 42

Bone 1 8

Skin/lymph nodes 6 50

Brain 2 17

Four patients had received adjuvant biological therapy and one patient adjuvant

radiotherapy to the axilla, this is documented in table 6.3. 2 patients had received

radiotherapy in the palliative setting, one to whole brain following resection of an

isolated brain metastasis and one to a painful bone lesion. All patients were

chemotherapy naive.

Table 6.3 Previous therapy

N° of patients

Adjuvant high dose interferon 4

Adjuvant radiotherapy 1

Palliative radiotherapy 2

No previous therapy 6

Although this is a small study this patient group would appear representative of

patients who accept palliative chemotherapy for metastatic malignant melanoma.
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6.3.2 Treatment and toxicity summary

All patients completed their first cycle of treatment, allowing collection of all the

planned pharmacokinetic and pharmacodynamic blood samples. Two patients were

withdrawn after one cycle of treatment with early progressive disease, in previously

resected brain metastases and liver metastases respectively, one patient withdrew after

the first cycle because he could not tolerate oral medication but not due to nausea. 9

patients received at least 2 cycles of treatment and had objective response assessment.

The number of cycles given is summarised in table 6.4.

Table 6.4

Number of Cycles 1 2 4 6 >6

Number of 3 5 2 0 2

patients

The treatment was well tolerated with no incidence of greater than eTC grade 1

nausea and vomiting. Fatigue was the most commonly reported adverse event with

two patients grading this as grade 2. One patient required a dose reduction for

myelosupression with grade 2 neutropaenia and grade 3 thrombocytopaenia on the

first cycle. Her second treatment was delayed by 10 days and she received a dose

reduction to 150 mg/rn/day as per the protocol. One patient had a prolonged

response to temozolomide and went on to receive a total of 9 cycles of full dose

treatment without significant myelotoxicity being observed, having two brief,

uncomplicated records of grade 3 neutropaenia during the 9 months treatment. All

eTC grade 3 toxicity and greater is listed in table 6.5.

Table 6.5

Toxicity N° patients with CTC 0/0 of cycles given (32)

grade 3/4 toxicity

Thrombocytopaenia 1 3

Neutropaenia 2 6

Headache (disease related) 1 3
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The degree of toxicity observed is in line with that published (references as below).

The phase II study of temozolomide in metastatic melanoma reported mild toxicity

with 3% grade 4 thrombocytopaenia and 3% grade 3 neutropaenia with no grade 4

neutropaenia. Grade 1 nausea was the most common adverse event, reported in 30%

ofpatients (Bleehen, Newlands et al. 1995). The larger phase III study of

temozolomide against DTIC reported 2% grade 4 neutropaenia and 5% grade 4

thrombocytopaenia (Middleton, Grob et al. 2000). Nausea was again the commonest

non-haematological toxicity, but was mild in the majority of cases, being grade 2 in

one patient, grade 1 in two patients only; there was no vomiting reported.

6.3.3 Response data

All patients were assessed for response after every two cycles of treatment unless they

had been withdrawn from treatment because of clinical deterioration and early disease

progression. Response was assessed either by clinical measurement of skin

lesions/lymph node recurrence or by radiological documentation of disease. Where

radiological assessment of response was made the same scanning modality was used

throughout treatment, and scans were evaluated according to WHO Guidelines.

9 out of 12 patients were assessable for response. Three patients did not receive their

second cycle of treatment as documented above and are therefore not assessable for

response. 5 patients demonstrated progressive disease after 2 cycles and were

withdrawn from treatment. A further 2 patients had disease stabilisation after 2 cycles

but progressive disease after 4 months of treatment. 1 patient had a prolonged

response achieving a PR and received 8 cycles of treatment and 1 patient had an

excellent response to treatment with a complete radiological response in her lung

metastases, and resolution of subcutaneous metastases. Her scan showed continuing

response after 6 cycles of treatment, she had suffered no haematological toxicity and a

decision was made to treat with 3 further cycles of temozolomide. A CT scan after 9

cycles confirmed the resolution of lung metastases, but showed a fracture through an

isolated pelvic bone metastasis. She was withdrawn from the study at this point to

receive palliative radiotherapy to this painful area.

158



The overall response rate was 22%, with a clinical benefit rate (response plus disease

stabilisation for at least 2 months) of 44% in the assessable patients. However

including those with early proven progressive disease the response rate fell to 18%

with 36% clinical benefit.

The phase II study of temozolomide in metastatic melanoma reported a response rate

of21% with an overall clinical benefit rate of36% (Bleehen, Newlands et al. 1995).

In the phase III study comparing temozolomide with DTIC the overall response rate

to temozolomide was 13.5% and 12.1% to DTIC, with clinical benefit in 31.4% and

27.9% of patients respectively (Middleton, Grob et al. 2000).

6.4 Plasma temozolomide pharmacokinetics

Plasma temozolomide levels were measured in all patients. A limited sampling

schedule only was passed by the ethics committee in Newcastle so 5 of the 6 subjects

recruited in this centre had acidified plasma samples for temozolomide analysis at

base line, 4 and 24 hours after temozolomide dosing on day 1 of cycle 1 only (4 hour

data included in table 6.6). PK samples were not available for one patient recruited at

this centre. Limited conclusions can be drawn from these data. The 6 patients

recruited in Oxford had more extensive pharmacokinetic sampling and concentration

time plots can be calculated. These are shown below in figure 6.3. The limited data

available shows a pattern of absorbtion and rapid clearance similar to that observed

and published in the phase I (Newlands, Blackledge et al. 1992), and phase III studies

oftemozolomide (Middleton, Grob et al. 2000) although in the later study PK

sampling was done on day 4 of treatment.
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Figure 6.3
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Figure 6.3 Plasma temozolomide concentrations against time from dosing. Co ncentration /time curve

for 6 patients. Note pat ient HR35 received second dose oftemozol omid e before 24 hour PK sample

take n.

Plasma temozolomi de concentrations 4 hours after drug administration for all patients

are given in table 6.6. In all patients no temozolomide was detectable by HPLC

measurement before treatment and in 11 patients 24 hours after first dose and before

receipt of the second dose ; consistent with the published clearance of this drug (NB 1

patient inadvertently took his tablets prior to the 24 hour sample). The values

measured at 4 hours are consistent with those found in the patients with more

extensive sampling.
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Table 6.6 Plasma temozolomide at 4 hours in aU patients

Patient code Plasma temozolomide concentration

at 4 hours (ug/ml)

SA11* 3.67

HS12* 3.72

RQ13* 2.12
--

UD14* 2.70

JOCP16* 2.55

CN31 3.50

AN32 2.52

TB33 1.79

JR34 2.23

HR35 1.04

DB36 2.82

* Limited sampling patient

6.5 PARP activity in human PBLs and the effect of temozolomide

Isolated PBLs were obtained from all patients at baseline, 4 and 24 hours after the

first dose of temozolomide. When the study was initiated it was hoped that the

radiolabel PARP assay used in all the preclinical studies would be suitable for a

clinical PD assay. It became clear that low cell harvests compromised the

reproducibility of the radiolabel PARP activity assay and the immunoblot assay was

developed during the recruitment of this precursor study. The first 3 patient samples

were initially analysed using the radiolabel assay, the cell recovery was so low that a

range of between 0.015 x 106 to 0.366 X 106 cells could be loaded. All these values lie

outside the validated range of cell numbers for the assay. PBLs were prepared from

10 ml whole blood in this study, it was proposed that only 5 ml of blood would be

available for lymphopreparation during the Phase I PARP inhibitor study to minimise

the total blood volume drawn from patient whilst maximising the number of different

PK and PD assays. The problem of low cell harvest would be more acute with the

lower volume of blood therefore it became clear that a change in assay technique was

required.

161



The duplicate samples from these first three patients were analysed on a prorotyp of

the immunoblot assay. The assay methodology was identical to the final validated

version and appropriate QC samples loaded; however the purified PAR standard

curve had not been established at this stage so polymer formation can not be

expressed in terms of pmol PAR formed for these three patients. It is, however,

possible to compare changes in pol ymer formation over the baseline value, expre mg

chemiluminescence detected as a percentage baseline.

All other patient samples were analysed using the final validated protocol for the

immunoblot with QC samples and a PAR standard curve (sect ion 3.6). All samples

from each patient were loaded in triplicate onto one blot so the any variation in

processing and washing was eliminated. A typical blot and Aida output are show in

figure 6.4.

Figure 6.4

No Grp Grp Name Type Area Integral Inlegral- Bkg InlegraVArea Integl1ll/ArH-Bkg
[mm'] [LAUI [LAU] [LAUInvn'J (LAU/lnm')

1 0 Group 0 184.8 113577469 0 99348230.2 614469 .20 537487.13

2 0 Group 0 186.0 64482856.0 50167660.5 346766.06 269783.99

3 0 Group 0 186.0 28997359.0 14682163 .5 155931.51 78955.50

4 0 Group 0 184 .8 17069522.0 2840283 .2 92348.38 15386.31

5 0 Group 0 184.8 145281730 2989342 78599.35 1617.27

6 0 Group 0 186.0 1425554 7.0 -59646 .5 7666 1.30 -320.77

7 1 0 Group 0 186.6 14790280.0 425320.0 79261.37 2279.30

8 1 0 Group 0 186.6 1 14853923.0 488963 .0 79602.43 2620.36

9 1 0 Group 0 186.6 I 14958252.0 593292 .0 I 80 161.S4 3179 .48

10 0 Group 0 186.6 52721424.0 383564640 282535.04 205552 .96 1

11 0 Group 0 186.6 53292030 .0 38927070.0 I 285592.93 20861085

12 0 Group 0 186.8 61337679.0 469727 19.0 328709.10 I 25172753 I

Figure 6.4 Illustrative blot showing standard curve (wells 1-6), TO samples (7-9, 13-15,19-21 ).

triplicate patient samples (10-12, 16-18, 22-24) and QC samples (25-30). Areas 31-34 represent

background areas for the blot subtracted from all readings. The Aida digital readout is illustrated

below the blot, the final column of data (Integral/Area-bkg, LAU/mm2
) is used in all subsequent

calculations.

The results from all 12 pati ent s are summarised in table 6.7. Data are e pre d both

as amount of PAR form ed per 106 PBL s and also as a percentage of the ba elin lev I

for eac h individual patient.
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Table 6.7

Patient Mean PAR formed per 20,000 As % baseline

ID PBMCs/pmol monomer equiv

Baseline 4 hours 24 hours Baseline 4 hours 24 hours !

CN31 100 275 No cells

in sample

AN32 100 91 I 43

TB33 100 No cells 105

in sample

JB34 20 130 10 100 603 55

HR35 135 695 195 100 515 144

DB36 20 100 15 100 447 75

SAIl 90 75 20 100 84 20

HSl2 165 225 70 100 136 42

RQl3 170 205 275 100 122 165

UDl4 285 555 500 100 197 177

JRl5 185 1160 100 100 636 55

JOCPl6 120 80 No cells 100 66 No cells

in sample in sample

The mean baseline PARP activity in this patient population who had not previously

received chemotherapy was 130 ± 185 pmol/l 06 cells (mean ± SD) with a range 20 

285. These values are similar to those observed in healthy volunteers with a mean

PAR formation of 160 ± 145, range 15-615 pmol/Iu" cells (Dr Chris Jones, personal

communication). A significant increase in PARP activity was detected at 4 hours

(p=0.033: 2-tailed Wilcoxon signed rank test) at the time when temozolomide

induced DNA strand breaks would be expected to peak. There was no statistical

difference between the paired baseline and 24 hour samples.

6.6 PARP activity in homogenised human tumour biopsies
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9/12 patients consented to tumour biopsies under local anaesthesia before and at one

time after receiving their first dose of temozolomide. Patient RQ13 had a groin node

biopsy prior to treatment which bled significantly after the procedure and required

hospitalisation. It was felt inappropriate to ask him to undergo a further biopsy and

risk of re-bleeding.

All experiments were performed using the method described in section 3.7. The

results following immunoblotting of the tumour homogenate are shown in table 6.8.

Data are expressed in term of the mean amount of PAR formed per mg protein in the

tumour homogenate from triplicate samples.

Table 6.8

Patient ID Mean PAR formed per mg As % baseline !

protein(pmol monomer equiv)

Baseline 4 hours 24 hours Baseline 4 hours 24 hours

eN31 463.4 495.5 100 106.8

AN32 2.5 -

TB33 1.65 18.4

JB34 2754.2 29.3 100 1.1

HR35 818.6 2926.2 100 375.7

DB36 606.1 2875.0 100 474.5

SAIl 1311.2 258.7 100 19.7

HSl2 3609.1 2058.9 100 57.2

RQl3 3596.2 No biopsy

taken

Note TB33 had melanotic tumour, results given but companson not made, see below. AN32 baseline

biopsy too small to homogenise

There was a considerable range of values for PARP activity in the homogenised

tumour samples. This could be due to true variation in the amount of PARP active in

the tumour, or due to the biopsy process.

Where two biopsies were obtained these were either different subcutaneous nodules,

or in the case of two patients liver biopsies with a tru-cut needle. Tumour
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heterogeneity would mean that, even if the same lesion had been biopsied there could

be significant variation in the amount of viable tumour in the sample. To allow

comparison between samples all data were expressed in terms ofmg protein added to

the blot. The protein concentration varied between tumours with a range of 0.031

0.55 mg/ml in a 1 in 1000 homogenate. The majority of values lay at the lower end of

this scale. One patient (TB33) had a very melanotic tumour and it may be that the

pigment interfered with the protein assay giving an unreliable reading. Although

there was variation in protein concentration between patients, when the two samples

from the same patient were compared there was no significant difference in the

protein concentration of their biopsies (p=0.81, Wilcoxon signed rank test, 2-tailed p

value). The variation in protein levels should not, therefore affect the comparison of

PARP activity between tumour biopsies on the same patient.

When tumour PAR formation was expressed as a percentage of the control there was

no clear pattern of change in PARP-1 activity at either 4 or 24 hours after dosing.

Although the ability to form polymer varied between tumours comparison of the

paired samples showed no significant difference after a dose of temozolomide (p ::::l,

Wilcoxon signed rank test, 2-tailed p value).

6.7 Investigation of DNA damage and repair

6.7.1 COMET assay for DNA breaks

Initially both PBLs and tumour samples were prepared for analysis of DNA strand

breaks by COMET assay. However it proved impossible to obtain a suitable

preparation of isolated tumour cells and there are no data from this matrix. Frozen

PBLs were transferred from the clinical centres to the laboratory in Oxford where the

COMET assays were performed by Dr Anna Olsen. The summarised results are

shown below.

The results from the 12 patients treated are shown in figure 6.5. giving the mean Olive

moment at the three time points from individual patients. The mean of 50 COMETs

with the standard error of the mean is shown. In the 6/10 of patients the expected rise

in DNA damage was observed 4 hours after dosing with temozolomide with a fall
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towards baseline at 24 hours, prior to the next dose. The mean values confirmed a

general trend towards increased strand breaks at 4 hours (table 6.9). However, due to

the variability of the data this increase was not significant (p=0.15: Student's t test).

Figure 6.5
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Figure 6.5 Olive tail moments for patient samples at baseline, 4 and 24 hours after 200 mg/rrr'

temozolomide. Mean and SEM, 50 COMETs measured. Data from 10 patients, 2 sets of samples

unsuitable for analysis

Table 6.10

Time point Mean Olive moment 95% confidence interval

Baseline 12.2 6.1-18.2

4 hours 15.7 10.5-20.9

24 hours 12.3 7.1-17.5

6.7.2 ATase

PBLs were prepared by lymphopreparation and washed cell pellets frozen for ATase

measurement. All assays were performed by Dr Geoff Margison at the Paterson

Institute for Cancer Research, Manchester. As discussed in chapter 1 0 6-alklguanine

alkytransferase (ATase) is a DNA repair protein which is endogenously expressed and
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removes methyl groups from 06methyl guanine after exposure to temozolomide.

ATase levels would be expected to fall after induction of DNA damage by

temozolomide as this protein is also the acceptor for the methyl group in the repair of

cytotoxic lesions and once methylated becomes a target for proteolytic degradation

(D'Incalci, Citti et al. 1988; Lee, Thatcher et al. 1994).

The results obtained from the patient samples are summarised in figure 6.6, mean and

SEM are given, with ATase activity expressed in terms of fmol/ug DNA. The

expected fall was seen at 4 hours and levels had not recovered to baseline by 24 hours

post treatment.

Figure 6.6

o

20

<'
Z
C
C)-~
~ 10
~-

Baseline 4 hours 24 hours

Time post dose

Figure 6.6 Mean and SEM of ATase activity in human PBLs after temozolomide dosing (n=8)

Comparison of change in ATase level at 4 hours and pre-treatment is shown in figure

6.7, no correlation has been observed with these samples.
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Figure 6.7
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Figure 6.7 Correlation between Initial ATase level and the change 4 hours after treatment with

temozolomide. ATase expressed in fmol/ug DNA, (n=7)

6.8 Discussion

This chapter reports the clinical and laboratory results of a small phase II study of

temozolomide in patients with advanced metastatic melanoma. The study was

proposed as a precursor study to the main PARP-1 inhibitor/ternozolomide

combination study to obtain clinical data to aid validation of the laboratory methods

to be used in that study. Additionally it was intended to provide control data for the

PD endpoints for the First-in-Human study of AG014699 in combination with

temozolomide.

The clinical efficacy and toxicity data obtained in this study is in line with that in the

published literature meaning this small study is representative of the typical toxicities

and responses reported. The dose limiting toxicity of temozolomide is

myelosupression (reviewed in (Newlands, Stevens et al. 1997) and other toxicities are

mild. This was borne out in this study where only one patient required a dose

reduction for myelosupression and otherwise the treatment was well tolerated. The

response rate observed was similar to that published for the phase II and phase III

trials of this drug (Bleehen, Newlands et al. 1995; Middleton, Grob et al. 2000) with a

number of patients deriving clinical benefit from the treatment. The relatively high
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rate of early withdrawal from the study (after 2 or fewer cycles) confirms the poor

prognosis of this disease, rather than being a reflection on toxicity of the treatment.

The limited pharmacokinetic results are consistent with the well established profile of

this compound (Newlands, Blackledge et al. 1992; Danson and Middleton 2001). All

patients absorbed the oral preparation rapidly, and no subject showed prolonged

retention of the drug in the plasma. It is unfortunate that the only patient who showed

significant myelosupression on the first cycle had their PK sampling omitted.

PARP-l activity was measured in PBLs from all patients and in tumour samples in 9

out of 12 patients. The variation in this untreated patient population was similar to

that observed in healthy volunteers. An important piece of information gained from

these results is that PARP-l activity shows a small but significant increase at 4 hours

after a single exposure to temozolomide. It is unclear why this should be, there being

no other data available measuring PARP-l activity in patients receiving

chemotherapy.

PARP-l retains its activity following a round of activation, automodification and

removal of the polymer. Therefore, it would not be expected that this enzyme would

be depleted following DNA damage. In fact, a small rise in maximally stimulated

PARP-l activity was observed is this study. There is no comparable data in the

literature. In a study of the potentiation of temozolomide by the novel PARP inhibitor

CEP 6800 a similar increase in PAR accumulation in xenografts was observed 4 hours

after treatment with a single dose of temozolomide or irinotecan compared to vehicle

control (Miknyoczki, Jones-Bolin et al. 2003). These authors measured endogenous

PAR in xenografts as a measure of enzyme activity. This differs from the

experiments reported above where the ability of the enzyme to form polymer ex vivo

was measured

PARP-l is a nuclear enzyme which is constitutively expressed in the majority of

human cells with an average of one copy per 1000 base pairs. Following activation

by DNA single strand breaks there is rapid synthesis and degradation of polymer and

proposed re-cycling of the enzyme. The half-life ofpoly(ADP-ribose) is known to be

a matter of minutes, with the polymer rapidly removed from its acceptor proteins by
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PARG. Given the high endogenous expression of enzyme and this dynamic

equilibrium it would not be expected that further enzyme would be synthesised in

response to DNA damage. It could be either that there are inactive PARP-1 enzymes

sequestered within the cell which are released following temozolomide that could

explain the small rise in maximal ability to form polymer or post-translational

modification (?phosphorylation) that activates PARP-1 after temozolomide exposure.

The vital piece of evidence gleaned from this study is that there was no fall in PARP

1 activity with cytotoxic drug treatment. In the first in human PARP inhibitor study

the primary endpoint is proof of PARP inhibition by the novel agent. For ethical

reasons a combination study with a cytotoxic agent is being proposed rather than a

single "novel agent" study. Hence it was important to prove that the cytotoxic

treatment on its own would not cause a depletion of PARP-1 activity and hence

potentially confound the results of the inhibitor study. The fact that a small rise is

observed will allow greater certainty of the effect of AGO14699 when PARP

inhibition is achieved in human PBLs with this drug.

PARP activity was also measured in human tumour samples. There was wide

variation in the amount of PARP activity detected in the tumour biopsies, reflecting

the heterogeneity of tumours. Preclinical data in human tumour xenografts indicated

that there were high levels of PARP activity in tumours when compared with a

"standard" tissue such as liver when PARP activity was measured using the e2p]

NAD+ incorporation PARP activity assay and with the immunoblot (table 5.5). There

is also evidence to confirm this from human liver biopsies, where normal liver shows

lower levels of PARP-1 activity than hepatocellular cancer (Shiobara, Miyazaki et al.

2001). The majority of the melanoma biopsies obtained in this study also showed

comparatively high levels ofPARP enzyme activity. If this high PARP activity

contributes to tumour resistance to temozolomide then it is hoped that use of a PARP

inhibitor in combination with temozolomide will allow increased tumour effect

without increased toxicity.

Pre-clinical evidence shows that inhibition of PARP and hence BER following

temozolomide treatment increases peak levels of strand breaks and the persistence

from repair of intermediate N-methyl purines (Boulton, Kyle et al. 1999). However,
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results from the analysis of DNA single strand breaks with the alkaline COMET assay

show a disappointing level of variation with this method. Nevertheless it would

appear that there was some evidence of the expected rise in the amount of DNA

damage after temozolomide and that this was repaired over the 24 hour period before

repeat dosing. It is hoped that further validation of this method will allow its use in

studies to support the First in human study of a PARP-l inhibitor with temozolomide.

The inherent variability in the assay is an important reason why this

pharmacodynamic endpoint was defined as a secondary not primary endpoint in the

PARP-l inhibitor study.

The primary endpoints of the study have been achieved with the assessment of the

DNA damage caused by full dose temozolomide and measurement of PARP-l and

ATase activity after treatment. These enzymes are involved in the two major DNA

repair pathways utilised by cells after temozolomide to repair methylated DNA, BER

and direct repair. ATase is inactivated by this process hence a fall in levels after

treatment is observed, to approximately 60% at 4 hours.

In the phase II study reported here ATase levels fell by ::::40% 4 hours after

temozolomide therapy. Similar observations were made by Lee et al (Lee, Thatcher

et al. 1994) who found that where ATase levels were measured in PBLs from 8

patients after dosing with temozolomide (150 mg/m) depletion of ATase was

observed within 4 hours of the first dose of temozolomide with a median nadir of

52.9% baseline 2-6 hours post-treatment with levels not returning to normal by 24

hours. This earlier study showed an eight-fold variation in pre-treatment levels of

ATase (69 to 593 fmol/mg protein) The different units of measurement do not allow

direct comparison with the values found in the current study for the majority of

patients, pre-treatment values range from 12.6-22.8 fmol/ug DNA. In the final 4

patients data was expressed in terms of fmoVmg protein and a similar range is

observed to that published (81-535). A similar time course of depletion in tumours

has been demonstrated in a mouse xenografts model (Middleton, Kelly et al. 2000)

with complete depletion of the enzyme by 4 hours after a single i.p. injection of 100

mg/kg temozolomide. When animals received 5 daily doses oftemozolomide (same

dose and route) ATase recovery was not complete until day 16 after treatment.

Previous studies have demonstrated a relationship between the extent of ATase
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depletion and the pre-treatment values in patients receiving temozolomide (Lee,

Thatcher et al. 1994). However, in the study reported here, there was no correlation

between initial ATase activity and the extent of its depletion (see section 6.7.2), which

was largely a reflection of the limited samples points. .

The secondary objectives of the TemoCOMET trial included relating the biological

measures of DNA damage and PARP activity to clinical outcome. This has proved

difficult because of sample handling problems, however limited conclusions can be

drawn. In terms of toxicity there was little significant toxicity observed in this small

group ofpatients. The drug was well tolerated. A correlation has been demonstrated

between level of DNA damage and toxicity, in particular nausea (Braybrooke,

Houlbrook et al. 2000). No significant emetogenesis was observed in this study. The

one patient who developed dose limiting myelosupression had low mean Olive

moments without a significant increase after temozolomide (patient JR15).

4 patients demonstrated clinical benefit with disease stabilisation for 4 months or

more. Two of these patients had baseline ATase levels at the bottom of the range

observed (13.3 and 12.2 fmol/ug DNA) and one at the upper end (17.7 fmol/ug

DNA), no data is available for the patient who had a prolonged response due to a

sample transport problem. The two patients who had early progression of disease

(after 1 cycle of treatment) had high/normal initial ATase levels (20.7 fmol/ug DNA

and 219fmol/mg protein respectively) and high PARP-1 activity at baseline (135 and

120 pmol PARI106 cells). A correlation has previously been demonstrated between

high tumour ATase activity and poor response to temozolomide in patients with

malignant glioma (Friedman, McLendon et al. 1998) but no correlation with response

in biopsy samples from patients with metastatic melanoma (Middleton, Lunn et al.

1998).

In conclusion this Phase II study has provided a valuable forum for the clinical centres

to work together, ironing out problems in the complex sampling schedules which it

planned to use as part of the dose defining process in the novel PARP inhibitor study.

Additional data in human samples has been obtained to complete the validation of the

immunoblot as a suitable method for measuring PARP-1 activity to an acceptable

standard of accuracy. It has also been shown that PARP-1 activity shows a small
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increase after doing with temozolomide, meaning that there will be greater certainty

that any measured decrease in the inhibitor study is due to AG014699.
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Chapter 7

Summary
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7.1 Introduction

Inhibition of PARP was suggested as a potential clinical drug target in 1980, when the

first evidence that poly(ADP-ribosylation) was involved in DNA repair was reported

(Durkacz, Omidiji et al. 1980). Development of potent PARP inhibitors was identified

as one of the Newcastle University Cancer Research Unit's drug development targets

in 1990. Over the next 13 years potent inhibitors were developed, latterly in

collaboration with Agouron Pharmaceuticals (currently part of Pfizer GRD) and the

clinical candidate to emerge from this research entered First-in-Human clinical trials

in 2003.

The work described in this thesis was performed during the late stages of the drug

development project and included the drafting of the First-in-Human phase I trial

protocol and close involvement with the design of this trial. Laboratory studies were

based around the validation of an established assay of PARP activity for use as a

clinical pharmacodynamic method and the subsequent development of a quantitative

immunological PARP-1 activity assay based on polymer detection. A small phase II

clinical trial has been supervised to obtain suitable clinical samples which have

provided additional validation evidence for the assays but also clinical data to support

the subsequent First-in-Human PARP-1 inhibitor trial.

7.2 Protocol development

The development of the phase I clinical trail protocol for a combination study of

AG014699, a novel, potent PARP-1 inhibitor and temozolomide is discussed in

chapter 2. The final design was for a 2 part study, escalating first the dose of

AGO 14699 until PARP-1 inhibition was proven and subsequently escalating the dose

oftemozolomide to define a maximum tolerated dose. The majority of the work

performed during the early stages of this MD project involved authorship of the first

draft of the trial protocol, liaison with other investigators and final collaboration with

the teams both in the Drug Development Office, Cancer Research UK, and at Pfizer

GRD to produce a protocol for submission to Cancer Research UK's CIRB, the

Northern MREC and LRECs for Belfast, Oxford and Newcastle.
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There are a number of features in the final study design which are atypical, these have

been discussed in chapter 2 and are summarised below.

Unusual features of the study

1. Starting dose of AG014699 was not defined as is usual in a phase I trial as

i/ro" of the toxic dose low (TDL) in most sensitive species. Efficacy data

was taken in to account to suggest a lower starting dose which is 1I40th

TDL in rats.

2. The decision to stop escalation in part 1 of the study is defined by

pharmacodynamic indices rather than toxicity. It would not be anticipated

that AG014699 and half-dose temozolomide would cause significant

toxicity before a PARP inhibitory dose was reached. If significant PARP

inhibition is observed in PBLs, sustained out to 6 hours after dosing and

with a plateau in magnitude between 2 dose levels escalation of

AG014699 would stop at this point and phase 2 of the study entered even

if no significant toxicity were reported.

3. Single agent dosing with AG014699 is planned in a run-in period prior to

starting the combination to allow the generation of PK and PD single agent

data and avoiding the ethical difficulties of proposing a study of the novel

agent alone when this would be predicted to be ineffective.

7.3 Pharmacodynamic assay validation

The majority of the work undertaken has been directed towards establishing and

validating a pharmacodynamic assay which can be used with clinical samples, both

PBLs and tumour biopsy specimens.

Initially an assay based on the incorporation ofe2p] NAD+ into poly(ADP-ribose)

which was already well established in the Drug Development Laboratory, NICR was

adapted and validated for use with human PBLs. This assay proved robust and was

suitable for analysis ofPBLs and homogenised tumour, whether analysed on the day

of harvest or after storage for up to 3 months. However, during the validation process
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it became clear that the variability in results was unacceptably high if low numbers of

cells were harvested, subsequent experiments have suggested that similar increased

variability was an issue with tumour biopsy specimens that have been diluted below 1

in 80 and work is on-going to clarify this.

In the light of the problems with low cell harvest an alternative assay was sought and

an immunoblotting technique, first reported by Professor Burkle's group, adapted for

use with human PBLs and tumour homogenate. The various stages of this assay were

examined and modified to reduce potential variability, a standard polymer curve

established to allow quantification of results and the direct comparison of data from

different patient samples.

The salient facts established during the validation of these two assays are listed below.

Salient features established during assay validation

1. PARP enzyme activity in isolated cells, snap frozen tissue or homogenised

tumour is not destroyed by freezing at -80°C for up to three months,

allowing storage and transport of clinical samples from disparate clinical

sites for analysis. Additionally, the degree of enzyme inhibition with

AG014699 and AG014361 appears to be preserved when frozen, meaning

there is no concern that variation in storage time might affect the degree of

inhibition measured in clinical samples.

2. The e2p] NAD+ incorporation PARP activity assay is a robust assay

giving reproducible results providing sufficient cell numbers are available

for analysis.

3. A mouse leukaemia cell line, L1210, has been established as suitable cells

to use as QA samples to validate an individual assay run.

4. Purified poly(ADP-ribose) can be commercially obtained and used to set

up reproducible standard curves allowing quantification of the immunoblot

and hence inter-blot comparison.

5. Studies using PARP-l "knock-out" animals have demonstrated that PARP-

1 activity is detected and measured with the immunoblot.
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7.4 Assay evaluation within a phase II clinical trial

Having established a potential PD assay which could be used in the First-in-Human

PARP inhibitor clinical trial a phase II mechanistic study of temozolomide in patients

with advanced malignant melanoma was written and submitted to LREC in

Newcastle, Belfast and Oxford. The aims of this study were to investigate indices of

DNA damage and PARP activity following full dose temozolomide in a small cohort

of patients.

The clinical and laboratory results of this study are discussed. The observed toxicity

and response rates were comparable with those reported in the literature,

temozolomide at a dose of 200 mg/m2 x 5 days every 28 days was well tolerated and

>30% patients gained a clinical benefit from treatment.

Pharmacodynamic assays were performed using isolated PBLs. Maximally

stimulatable PARP-I activity increased slightly 4 hours after temozolomide dosing,

falling to baseline prior to re-dosing on day 1 of cycle I. COMET assay analysis of

DNA single strand breaks suggested that these peak at 4 hours after dosing consistent

with reports in the literature. ATase levels fell after temozolomide exposure and had

not recovered by 24 hours.

The critical piece of data generated by this study was that maximally stimulated

PARP-I activity did not fall following treatment with temozolomide. During the

First-in-Human PARP inhibitor trial study endpoints rely on the demonstration of the

degree ofPARP inhibition caused by AG014699, it would be more difficult to define

these endpoints if they were confounded by changes in enzyme activity due to the

chemotherapeutic agent.

7.5 Conclusions and future directions

The development of 2 different pharmacodynamic assays alongside the authorship of

the phase I protocol in which the assays would be used allowed the maximum

consideration of the practical issues surrounding the treatment of patients at a

vulnerable stage in their lives whilst ensuring that scientifically valid endpoints were
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defined, appropriate sampling times were selected and translational research was

facilitated.

The conduct of a "run-in" study not only provided valuable information but also

encouraged co-ordination between the centres and built up an understanding between

key personnel in the three centres. This meant that a good working relationship was

established before the centres embarked on a complicated trial taking a drug from a

new class of agents into the clinical for the first time with all the associated risks.

The final few patients were recruited on to the TemoCOMET study as the First-in

Human study of AG014699 and temozolomide commenced in June 2003. This study

is recruiting successfully, PARP inhibition has been demonstrated in PBLs using the

immunoblot assay and the study should move into its second stage early in 2004.

On-going laboratory work is focussing on the reproducibility of the assay, in

particular that of the standard polymer curve and the background polymer staining in

homogenised tissue samples. It is planned that a second phase I combination study of

AG014699 with irinotecan will start soon after completion of the temozolomide

combination study.
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