Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/3689
Title: High-performance tsunami modelling with modern GPU technology
Authors: Amouzgar, Reza
Issue Date: 2017
Publisher: Newcastle University
Abstract: Earthquake-induced tsunamis commonly propagate in the deep ocean as long waves and develop into sharp-fronted surges moving rapidly coastward, which may be effectively simulated by hydrodynamic models solving the nonlinear shallow water equations (SWEs). Tsunamis can cause substantial economic and human losses, which could be mitigated through early warning systems given efficient and accurate modelling. Most existing tsunami models require long simulation times for real-world applications. This thesis presents a graphics processing unit (GPU) accelerated finite volume hydrodynamic model using the compute unified device architecture (CUDA) for computationally efficient tsunami simulations. Compared with a standard PC, the model is able to reduce run-time by a factor of > 40. The validated model is used to reproduce the 2011 Japan tsunami. Two source models were tested, one based on tsunami waveform inversion and another using deep-ocean tsunameters. Vertical sea surface displacement is computed by the Okada model, assuming instantaneous sea-floor deformation. Both source models can reproduce the wave propagation at offshore and nearshore gauges, but the tsunameter-based model better simulates the first wave amplitude. Effects of grid resolutions between 450-3600 m, slope limiters, and numerical accuracy are also investigated for the simulation of the 2011 Japan tsunami. Grid resolutions of 1-2 km perform well with a proper limiter; the Sweby limiter is optimal for coarser resolutions, recovers wave peaks better than minmod, and is more numerically stable than Superbee. One hour of tsunami propagation can be predicted in <1 minute using 1350 m or coarser resolutions. Run-time is reduced by >50 times on a regular low-cost PC-hosted GPU, compared to a single CPU. For 450 m resolution on a larger-memory server-hosted GPU, performance increased by ~70 times. Finally, two adaptive mesh refinement (AMR) techniques including simplified dynamic adaptive grids on CPU and a static adaptive grid on GPU are introduced to provide multi-scale simulations. Both can reduce run-time by ~3 times while maintaining acceptable accuracy. The proposed computationally-efficient tsunami model is expected to provide a new practical tool for tsunami modelling for different purposes, including real-time warning, evacuation planning, risk management and city planning.
Description: PhD Thesis
URI: http://hdl.handle.net/10443/3689
Appears in Collections:School of Civil Engineering and Geosciences

Files in This Item:
File Description SizeFormat 
Amouzgar, R. 2017.pdfThesis9.25 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.