Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/2668
Title: Fate and transport of lignin in the soil-water continuum
Authors: Williams, Jonathan Simon
Issue Date: 2014
Publisher: Newcastle University
Abstract: Vascular plants comprise 20-30% lignin, constituting a considerable organic input to soils. Lignin is not necessarily preserved in soils, but the fate of its decomposition products in the wider environment is not well understood. Therefore, the overarching hypothesis tested herein was that a significant proportion of lignin is solubilised and lost from soils by transport in water. Solid phase extraction was used to extract lignin phenols from dissolved organic matter (DOM) from water outlets adjacent to major land use types (grazed grassland, deciduous woodland, and moorland) and compared to the lignin phenols from representative vegetation types, animal dungs and soils from each land use type. The phenols were identified and quantified using thermally assisted hydrolysis and methylation using tetramethylammonium hydroxide. Leachates from lysimeters treated with four vegetation types (grass, buttercup, ash, and oak) were sampled in a 22 month chronosequence, showing that some of the dominant phenols detected in the vegetation were also dominant in the respective DOM. A proportional relationship between increasing temperature and loss of representative lignin phenols in DOM was observed. Comparison of the dominant phenols in vegetation, soil and water sampled from field sites suggested specific lignin phenols could be used as biomarkers for different land uses. The concentrations of organic carbon-normalised total lignin phenols in the soils were similar to those in water, indicating that a considerable proportion of lignin in soils is lost via leaching. There was no significant difference in losses of lignin phenols between each land use type. Application of different rates of dissolved lignin to lysimeters indicated that the amount of water added was a dominant driver of transport through soil over 16 days, and that molecular structure also influenced transport rates of individual phenols. The impact of this research is that climate change (increased precipitation and warming) may significantly affect the loss of lignin by increased solubilisation and leaching from soils.
Description: PhD Thesis
URI: http://hdl.handle.net/10443/2668
Appears in Collections:School of Civil Engineering and Geosciences

Files in This Item:
File Description SizeFormat 
Williams, J. (12mth).pdfThesis4.71 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.