Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/1826
Title: Characterisation of human mtRF1 and C12orf65 : what are their roles in mitochondrial protein synthesis?
Authors: Pajak, Aleksandra
Issue Date: 2013
Publisher: Newcastle University
Abstract: Mitochondria have their own protein synthesis machinery that synthesises the oxidative phosphorylation components encoded by their mtDNA. This translation process consists of four main phases: initiation, elongation, termination and ribosome recycling. Termination and its control have been the least investigated. Recently, however, the termination factor, mtRF1a, has been characterised as sufficient to release all the nascent proteins from the mitoribosome. Furthermore, bioinformatics has identified three additional members of this mitochondrial release factor family namely, mtRF1, C12orf65 and ICT1. The latter is now known to be incorporated into the mitoribosome but its exact function remains unclear. My project has therefore focussed on characterising the remaining two factors; mtRF1 and C12orf65, and investigating their possible involvement in mitochondrial protein synthesis. It has been demonstrated that protein synthesis is not perfect and bacterial ribosomes not infrequently stall during translation. This can result from limiting amounts of charged tRNAs, stable secondary structures, or truncated/degraded transcripts. Ribosome stalling has been shown to cause growth arrest. In order to prevent that and maintain high efficiency of mitochondrial protein synthesis such stalled complexes need to be rapidly recycled. Bacteria have developed at least three distinct mechanisms by which ribosomes can be rescued. Contrastingly, despite the presence of truncated mRNAs in mitochondria, no such quality control mechanisms have been identified in these organelles. This study investigates the potential role of mtRF1 and C12orf65 in quality control of protein synthesis in mitochondria. Both mtRF1 and C12orf65 demonstrate conservative motifs which would suggest their potential role in ribosome rescue. My findings indicate that the conserved motifs in mtRF1 are crucial to maintain normal cell metabolism and that its mutated forms negatively affect cell growth. Since these motifs are required for ribosome dependent peptidyl-tRNA hydrolysis, the data presented strongly imply that mtRF1 plays a crucial role in intra-organellar protein synthesis.
Description: PhD Thesis
URI: http://hdl.handle.net/10443/1826
Appears in Collections:Institute for Ageing and Health

Files in This Item:
File Description SizeFormat 
Pajak, A. 13.pdfThesis4.72 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.