
SCHOOL OF COMPUTING SCIENCE

Constructing a Tractable Reasoning Framework upon a
Fine-Grained Structural Operational Semantics

Thesis by

Joseph William Coleman

In partial fulfillment of the requirements
for the Degree of Doctor of Philosphy

January 2008

i

Abstract
The primary focus of this thesis is the semantic gap between a fine-grained structural oper-
ational semantics and a set of rely/guarantee-style development rules. The semantic gap is
bridged by considering the development rules to be a part of the same logical framework as
the operational semantics, and a set of soundness proofs show that the development rules,
though making development easier for a developer, do not add any extra power to the log-
ical framework as a whole. The soundness proofs given are constructed to take advantage
of the structural nature of the language and its semantics; this allows for the addition of
new development rules in a modular fashion.

The particular language semantics allows for very fine-grained concurrency. The lan-
guage itself includes a construct for nested parallel execution of statements, and the seman-
tics is written so that statements can interfere with each other between individual variable
reads. The language also includes an atomic block construct for which the semantics is an
embodiment of a form of software transactional memory.

The inclusion of the atomic construct helps illustrate the inherent expressive weakness
present in the rely/guarantee rules with respect to termination properties. As such, two de-
velopment rules are proposed for the atomic construct, one of which has serious restrictions
in its application, and another for which the termination property does not hold.

ii

iii

Acknowledgments
The willingness of Cliff Jones to accept me as a student a second time in light of my
tendency to generate pages of inscrutable formulae and proofs is astounding, and I am
deeply grateful for it. His advice and enthusiastic technical discussions have been both
beneficial and thoroughly enjoyable.

My wife, Chriss, has been wonderful, especially during the final stages of the write-
up of this thesis. Her support, and her attempts to get my mind off the thesis, have been
invaluable.

This work was supported in part by RODIN project (funded under the EU IST-6 pro-
gramme) and the “Splitting (Software) Atoms Safely” project (funded by the UK EPSRC).

iv

v

Contents

I Chapters 1
1 Introduction 3
2 Structural Operational Semantics 9

2.1 Introduction . 9
2.2 The Language . 10
2.3 Software Transactional Memory . 17
2.4 Constraints on the Semantic Model . 22
2.5 References . 23

3 Rely/Guarantee Conditions 27
3.1 Introduction . 27
3.2 The Development Rules . 32
3.3 References . 39

4 Proof Methodology 41
4.1 Logical Tools . 41
4.2 Augmented Semantics . 49
4.3 Property Definitions . 52

5 Preparatory Lemmas 59
5.1 Miscellaneous . 59
5.2 Composition and Isolation . 63
5.3 Behavioural . 66
5.4 Convergence . 68

6 Proving Soundness 71
6.1 Overall Theorems . 71
6.2 Partial Satisfaction Behavioural Lemmas 73
6.3 Partial Satisfaction Post Condition Lemmas 81
6.4 Convergence Lemmas . 86

7 A Development Example 95
7.1 Atomicity Via Data Reification . 100
7.2 Atomicity Via Software Transactional Memory 105
7.3 Comparison of the Developments . 109

8 Conclusions 113
8.1 Recapitulation . 113
8.2 Reflections and Future Work . 113

9 Bibliography 119

II Appendices 125
A Language Definition 127

A.1 Semantic Model . 127
A.2 Augmented Semantic Model . 130

B Rely/Guarantee Rules 131
B.1 Framework Assumptions . 131

vi Contents

B.2 Meta Rules . 131
B.3 Development Rules . 131

C Collected Lemmas 133
C.1 Behavioural . 133
C.2 Convergence . 134
C.3 Isolation & Composition . 135
C.4 Miscellaneous . 136

D Full Proofs 139
D.1 Theorem PSAT . 139
D.2 Guarantee Condition . 140
D.3 Post Condition . 146
D.4 Theorem SAT . 153

E Selected VDM Syntax Definitions 159
F Index of Rules, Lemmas, and Proofs 161

1

Constructing a Tractable Reasoning

Framework upon a Fine-Grained Structural

Operational Semantics

2

3

1 — Introduction

This thesis is concerned with the development of concurrent software as it is a task which
has proven to be surprisingly difficult. Our aim, broadly, is to provide tractable reasoning
tools which can be used in the development of concurrent software; tractable in this in-
stance is taken to relate to the ease with which a software developer can apply these tools
in their work. To this end we provide a rely/guarantee reasoning framework which is capa-
ble of dealing with fine-grained concurrency, and in particular, can reason about a language
in which expressions are not evaluated in an atomic manner. The semantic model of the
implementation language also includes a construct which is intended to provide explicit
control over the granularity of execution, and the tools we provide must support that.

At a more abstract level, we are concerned with the soundness of the reasoning frame-
work and the semantic gap between results derived in the framework and their validity in
the language used by the software developer. To address this we aim to provide soundness
proofs which use the semantic model of the development language directly. This approach
is a marked improvement over soundness proofs which use another semantic model –such
as Aczel traces [Acz82, dR01]– as that only “moves” the semantic gap from between the
development rules and the semantic model of the implementation language to between the
two semantic models.

We start from the position that formal and tractable methods are required for the de-
velopment of concurrent software, and these methods must have practical application if
they are to be interesting. Key to ensuring that these formal methods have applications
–aside from tractability– is to reduce the semantic gap between the method and the pro-
gramming language to which the method is applied. Tractable methods allow for systems
to be designed by modelling their behaviour, and by iterative analysis of the model. Key to
tractability is “compositionality” –see Section 3.1– which allows for reasoning about the
individual elements of a model in isolation.

There are two main paradigms for the design of concurrent systems: those dependent
explicitly on shared-variables for process interaction, and those dependent on message-
passing; these are extremes of a continuum, of course, as there are systems that use both
notions. Both of these paradigms allow for interference between processes, but they do so
in different ways: shared-variable systems allow interaction through the values of shared
variables; message-passing systems through the order and synchronization of messages.
Neither paradigm is able to eliminate fully the problems that arise due to interference; it is
possible to construct what is essentially a shared variable in message-passing systems, and
to emulate message passing in a shared-variable system. This equivalence is well-known;
Lauer and Needham demonstrated this in [LN79].

We concentrate on shared-variable systems, and the particular model used in this work
is fixed by a fine-grained structural operational semantics. The adjective “fine-grained” is
in reference to the smallest observable event in the semantic model; in particular, the model
given in Chapter 2 is designed to mirror the behaviour of common concurrent languages.

4

To clarify the term “fine-grained” with an example, consider the pseudo-code fragment:

x ← 1;(
x ← x + 1; x ← x + 1

)∥∥∥(x ← x + x + x
)

There are at least four separate levels of granularity at which this code could be executed:
each branch of the parallel executed as one step; each assignment as one step; assignments
in two steps with expressions evaluated in one step; and assignments in multiple steps, with
expressions taking at least one step per variable. We will consider each in turn.

At the coarsest level of granularity, with each branch of the parallel executed in one
step, there are two possible final values for x : 5 and 9. The latter is a result of executing
the left-hand branch first, and the former is a result of executing the right-hand branch first.
This extremely coarse-grained interpretation is not particularly interesting as it allows no
real opportunity for interference.

Statement-level granularity, with each assignment executing in a single step, allows for
interference as execution of the statements in the parallel branches may interleave. The
resulting values for x now include 7 in addition to 5 and 9, and the new value may occur
when the right-hand branch executes between the two assignments in the left-hand branch.

Executing assignments as two steps gives a finer level of granularity, and adds 3 and
4 to the set of possible final values for x . The new values are obtained in the cases where
an assignment has evaluated its expression before another assignment has finished; for
example, if the first assignment of the left-hand branch and the assignment in the right-
hand branch both evaluate their expressions –but not write the result to x– then the effect
of one of the assignments will be lost.

The last interpretation –requiring at least one step per variable in the expression– has
the finest granularity of this example, and adds 6 and 8 to the set of possible results for
x . These results arise through the individual instances of variables in the expression being
read in different overall states. It is possible, in this interpretation, for the right-hand branch
to read x in such a way as to become (x ← 1+2+3) simply by reading the first instance of
x immediately, then each successive x after one of the assignments in the left-hand branch.

It should be noted that what is sometimes referred to as the “At Most One Assignments”
rule –discussed in Section 9.2 of [Sch97]– does not allow for programs that we consider
interesting. We are interested in programs that would violate this rule.

It is clear that the granularity of the model has a profound effect on the amount of
interference that is possible during program execution. The semantic model in Chapter 2
allows the behaviour found in the fourth interpretation here, and so does the behaviour of
common concurrent languages such as C and Java.

Using the semantic model of a language alone to reason about the behaviour found in
fine-grained languages is possible, but it is not always simple. This provides the motivation
for the use of development methods that can extend the model, in particular, rely/guarantee-
style reasoning.

Rely/guarantee-style reasoning allows the behaviour and results of a program (or com-
ponents thereof) to be reasoned about at an abstract level without needing to know the
exact structure of the program. This is the style of framework we use in Chapter 3 to ex-

Chapter 1. Introduction 5

tend the semantic model of Chapter 2; this form of extension follows the ideas of [CM92]
and [KNvO+02].

The ability of rely/guarantee-style reasoning to compose and –in development– de-
compose programs is essential to the method’s tractability. Most of the compositions (e.g.
sequential and conditional execution) are straightforward, as the composed subprograms
have no opportunities to interfere with each other. Parallel composition of programs, how-
ever, requires more care as the composed subprograms generally do interfere with each
other. The characterization of the maximum interference between two processes allows us
to determine whether or not it is safe to run two programs in parallel without needing to
know any detail regarding how the programs execute. The Comp-Par, Isolation-Par-L, and
Isolation-Par-R lemmas –covered briefly in Chapter 5– express this succinctly.

We present a second tool as a means of reasoning about the concurrent behaviour of
programs in the form of an atomicity construct in the language model of Chapter 2 and
accompanying development rules in Chapter 3. This atomicity construct is modelled on
software transactional memory, which is useful as an alternative to locking protocols for
resource management. The atomicity construct, as modelled, allows the contained program
to assume that it is isolated from external interference; however, this benefit comes at the
cost of potential restarts.

The extension of the semantic model of Chapter 2 with the rely/guarantee development
rules in Chapter 3 has the potential for a meta-semantic gap which must be addressed. In-
deed, the use of a development method –such as rely/guarantee development rules– with
any semantic model has this issue. As a way of closing this meta-semantic gap, in Chap-
ter 6 we use the lemmas in Chapter 5 to prove that each of our proposed development
rules is sound with respect to our semantic model. Issues of logical completeness of the
rely/guarantee development rules are deliberately untouched, except to note that the de-
velopment rules presented herein are not complete, nor is completeness possible for the
semantic model used here without losing the convergence property covered in Chapter 4,
as well as the features that make rely/guarantee-style reasoning a tractable method.1

Much of this thesis is an elaboration of work done in [CJ07]; however, many of the
details are improvements or refinements of the original ideas. The portions of this thesis
that deal with software transactional memory are completely novel, as are the particulars
of the convergence proofs. Also, a number of the rules in Chapter 3 have been improved
relative to the versions in [CJ07].

Notational Conventions

This thesis does, for the most part, use the notational conventions and symbols common
to VDM-style specification, especially as found in [Daw91]. Some the definitions of the
less obvious operators are reproduced in Appendix E. Beyond this, however, there are
some notational conventions that have been adopted in this work that are less common; a
description of them follows in this section.

1See the discussion on “ghost variables” in Section 3.1.2.

6

Predicates in this work are denoted by the letter P , using subscripts where multiple
predicates are necessary. Predicates are considered to be both a total function that maps the
domain to the Boolean values, as well as the characteristic set containing all of the elements
of the domain of the predicate for which the predicate maps to true. Thus, predicate
application written as [[P]](σ) and the set membership test written as σ ∈ [[P]] have the
same meaning (though we prefer the former to the latter). The use of Strachey brackets,
[[·]], around the predicate denotation arises from the common case where a predicate is
defined in terms of an expression over individual identifiers in a state mapping.

The semantic model of the next chapter defines state objects in terms of a mapping
from identifiers to values, and we use a shorthand notation in the predicate definition that
has a variable identifier, say x , standing in for the application of the state mapping to the
identifier, which would be σ(x). Thus a predicate that is true for all states where the value
x maps to is greater than zero might be written in definition as P 4 x > 0, and in use when
applied to a state as either [[P]](σ) or [[x > 0]](σ).

Relations are pervasive in this work and typically denoted by the letters G , Q , R, and
W where the relations range over state objects, and are often denoted as lettered arrows
–such as s−→– where it is a semantic transition relation. The semantic transition relations
are defined in terms of inference rules; this is dealt with in Chapter 2. Relations over states
are typically defined in terms of identifiers in the same manner as predicates. As with
predicates, the notation for relations over states also treats the logical terms [[R]](σ, σ′) and
(σ, σ′) ∈ R as equivalent.

VDM post condition definitions tend to be over pairs of states, rather than the single-
state post conditions found in standard Floyd/Hoare logics; related to this is the VDM
convention of “hooking” identifiers that are to be given their value for the prior, left-hand
state. Thus, if a relation is defined as R4 x < ↼−x –the value of x monotonically decreases–
it can be taken to mean

[[x < ↼−x]] ≡
{

(↼−σ , σ) ∈ Σ× Σ
∣∣∣ x ∈ dom↼−σ ∧ x ∈ domσ ∧ σ(x) < ↼−σ (x)

}
The standard map operators of VDM are used on relations where the definition is unam-

biguous in a relation context. Thus the dom and rng operators are used, but the override
(†) operator is not. We define the field operator, fld , to be the union of the domain and
range. Relational composition is denoted using the � glyph, and the usual definition is
given in Appendix E.

Predicates may be used in the context of a relation directly. The denotation [[P]](↼−σ , σ)
is considered to be equivalent to [[P]](σ), and whole predicates may be hooked in a manner
similar to identifiers, giving the denotation [[

↼−
P]](↼−σ , σ) equivalent meaning to [[P]](↼−σ).

This allows logical statements that are a mixture of relations and predicates, such as
↼−
P ∧ R ⇒ P which is the equivalent of [[P]](↼−σ) ∧ [[R]](↼−σ , σ) ⇒ [[P]](σ).

The universal relation –which ranges over everything and includes every possible pair
of things– is denoted simply as true, punning on the Boolean value.

The class of partial identity relations are denoted by the letter I , possibly with a mean-
ingful subscript. An unadorned I is the complete identity relation. If there is a subscript

Chapter 1. Introduction 7

on the glyph, such as Is , the subscript must be a set of identifiers, and the relation is taken
to range over state mappings. So the relation given as [[x = ↼−x ∧ y = ↼−y]] can be denoted
as I{x ,y}, and in general a definition may be given as

Is ≡
{

(↼−σ , σ) ∈ Σ× Σ
∣∣∣ s ⊆ dom↼−σ ∧ s ⊆ domσ ∧ s C↼−σ = s C σ

}

8

9

2 — Structural Operational Semantics

2.1 Introduction

The formalism chosen to present language semantics in this thesis is Structural Operational
Semantics (SOS). The choice is motivated by a belief that the formalism presents a clear
and concise description of a language’s execution model that is directly useful to software
designers.

Part of the justification for such a bold statement arises from the practice of using a
SOS formalism: the emphasis is placed on what the language does –the execution model–
rather than on the properties it exhibits.

Furthermore, the particular practice that SOS definitions have of using inference rules
allows the model to be adapted to a reasoning framework in a direct manner — we will see
more of this in Chapters 3 and 6.

The basic structure of a SOS model consists of four major parts: the abstract syntax; the
context conditions; the semantic objects; and the semantic rules which define the transition
relations.

The abstract syntax of a language gives the structure of all possible programs in the
language by defining the “building blocks” that are used to construct a program. This
is similar to the function that a BNF1 specification serves, but without concern for the
concrete syntax.

The abstract syntax does, of course, define a set of structures that can be a proper su-
perset of all valid possible programs. To restrict this we have the context conditions which
define the subset of possible structures which are valid programs. Context conditions are
typically expressed as a predicate over the abstract syntax. It should be noted that context
conditions have the same expressive power as the static analysis phase of a compiler, and
essentially the same trade-offs between complexity and analytical ability.

The semantic objects provide the additional structures that are needed at “run-time”;
these structures are involved in the dynamic behaviour of the language. These additions
allow us to model the overall system of which the language is a part: this includes the
abstract model of the memory store; anything else the language is able to manipulate;
and structures which are simply a collection of simpler semantic objects. Thus, a tuple
containing an entire description of a system at a specific point during execution –called a
configuration– is also a semantic object.

Finally there are the transition relations as defined by their semantic rules. The tran-
sition relations are really the core of the whole model: they define the behaviour of a
language by giving pairs of configurations. The pair of configurations represents an atomic
step of the system, with respect to the system’s observable behaviour. Because we use an
unconstrained relation instead of a function, a given configuration may transition to sev-
eral, possibly different, new configurations — this is critical for developing a model of

1Backus-Naur Form

10 2.2. The Language

non-deterministic language structures.

2.2 The Language

This section has two goals: first, to clarify and expand on the preceding introduction with
a concrete example of a language definition; and second, to present the language that un-
derlies the development rules and proofs that follow in Chapters 3 and 6. That said, this
section only presents the relatively standard portion of the language: specifically, the con-
struct that allows for arbitrarily large atomic actions is presented in Section 2.3 along with
a general discussion of software transactional memory.

The language has been kept to a minimum of orthogonal elements as its purpose is to
illustrate some of the more vexing problems faced by programmers using common multi-
threaded programming languages. As such, many of the problems with interference can
be expressed in this language in a simplified form; though issues such as aliasing, complex
data structures, and so on are interesting, they are not required to show the basic issues in-
volved in shared-variable concurrency languages and the development of programs therein.

To achieve this goal of illustrating the fundamental problems, this language is designed
to allow a high degree of interference between parallel threads. As this language allows
shared-variable concurrency, this necessitates expressions that are evaluated over multiple
steps so that interference can be observed during evaluation. This, in turn, gives rise to a
semantic model with very “small” transitions: each one does little on its own. Expression
evaluation in languages like C, C++, and Java is very fine-grained: it is possible for the
value of a variable to change during the evaluation of an expression that contains that
variable. In pathological cases, this means that reading from the same variable twice in
an expression has the potential to return two different results. The obvious result of this is
that comparing a variable to itself –something which, intuitively, should give an equality
result– may end up indicating that the variable is not equivalent to itself. Less obviously,
this can generate hard-to-reproduce errors in a program due to variable read/write timing.
The transitions in this language capture the sort of behaviour exhibited by languages like
C, C++, and Java by allowing the system state to change between reads of a variable.

The concurrency model of the language is based on the notion of interleaving execution
steps. A program in the language is a tree-like structure and the construct that allows
parallel behaviour represents its concurrent sub-programs simply as branches. A single
transition of the language semantics may only make changes at the leaves of a program’s
syntax tree. Upon encountering a parallel construct a non-deterministic choice is made as
to which branch is followed in that transition; during the next transition, a fresh choice will
be made as to which branch to follow. This non-determinism matches the model presented
to the programmer in current languages as there is no general way to predict which thread
will execute next.

On physical machines that do not permit simultaneous actions, the semantic model
of the language maps closely to the actual execution models of current languages. On
machines that do permit simultaneous actions –such as current multicore CPU machines–
this semantic model fits as the physical machine still enforces consistency at the variable

Chapter 2. Structural Operational Semantics 11

wf -Expr : (Expr × Id -set)→ {BOOL, INT, ERROR}
wf -Expr(e, ids) 4

cases e of
e ∈ B→ BOOL
e ∈ Z→ INT

e ∈ Id ∧ e ∈ ids→ INT
mk -Dyad(op, left , right)→ let ltype = wf -Expr(left , ids) in

if ltype = wf -Expr(right , ids) ∧
ltype 6= ERROR

then cases (op, ltype) of
(+, INT)→ INT
(−, INT)→ INT
(<, INT)→ BOOL
(=, INT)→ BOOL
(>, INT)→ BOOL

(=,BOOL)→ BOOL
(∧,BOOL)→ BOOL
(∨,BOOL)→ BOOL
others ERROR
end

else ERROR

others ERROR
end

Figure 2.1: Context condition for expressions.

read/write level. The resolution of two simultaneous writes to the same variable is simply
modelled in the semantics by two writes happening consecutively.

Several things have been omitted from this language as they distract from the focus on
shared-variable concurrency and software transactional memory. First, the memory store
is global and static: there are no hiding mechanisms that would create local variables; nor
are there any mechanisms to create or destroy variables during program execution. These
mechanisms are not required for the rely/guarantee development that is done later in this
work. Procedures and functions –callable program blocks with and without side-effects,
respectively– are not a part of the language. Their introduction poses no serious difficulty,
but does generate a lot of unnecessary bookkeeping. Finally, input and output from sources
external to the program are simply not included as there is no use for them in the context
of this work.

The remainder of this section will examine the language in detail by covering the ex-
pressions, then each statement in turn. As the constructs are covered, their interactions
with the already-described portion of the language will also be noted.

Expressions in the language are represented by the Expr type.

Expr = B | Z | Id | Dyad

The most basic elements of an expression are the members of the Boolean and Integer
sets. An expression that has been reduced to one of these elements is considered to be fully
evaluated, and as such, is always well formed; the well-formedness function in Figure 2.1,
wf -Expr , reflects this.

12 2.2. The Language

The well-formedness function is –unusually for a well-formedness function– not a
predicate. It exploits the fact that all valid expressions are typed and, conversely, all invalid
expressions do not, by definition, have a type. Thus the wf -Expr function returns the type
of an expression if the expression is well-formed, and ERROR otherwise. Note also that
wf -Expr is a total function as it is defined on all possible members of Expr . It is trivial to
generate a predicate using wf -Expr by wrapping it in a lambda expression:

λe, ids · (wf -Expr(e, ids) 6= ERROR)

Identifiers in an expression, though terminal with respect to the structure of said ex-
pression, are only valid and well-formed if that particular identifier is in the context in
which the expression will be evaluated. In terms of the context condition that means that
the identifier must be a member of the set of valid identifiers, ids .

Assuming that the identifier is in ids , the context condition will return INT, indicating
that not only is this a valid expression, but also that it should be considered an integer
for expression evaluation. The well-formedness function returns INT for identifiers as the
language semantics uses a memory store that only contains integer values. If, on the other
hand, the identifier is not in ids , then the context condition will return ERROR.

The language semantics assumes a memory store that only contains integer values, and
further, it is a simple mapping from identifiers to values. This drastic simplification of the
memory store allows us to focus on actions, rather than values, when the store is involved
in a construct’s behaviour. In this work Σ will be used to represent the set of all possible
stores, and variations on σ will represent specific stores.

Σ = Id m−→ Z

The semantic transition for expressions, e−→, is a relation between pairs and expres-
sions, where the pair consists of an expression and a state. The transition represents simple
expression reduction by either reading the value of an identifier from the store or perform-
ing operations on constant values.

e−→ : (Expr × Σ)× Expr

The semantics of an identifier in the language is encapsulated in a single rule of the
expression transition relation, e−→. This rule takes a pair consisting of an identifier and a
store and simply applies the store to the identifier to retrieve a value. The important effect
of this rule is that in this language variable reads are atomic, as the whole read is done in a
single step.

Id-E
(id , σ) e−→ σ(id)

The last component of the Expr type is the Dyad structure, representing binary oper-
ations.

Dyad :: op : + | − | < | = | > | ∧ | ∨
a : Expr
b : Expr

Chapter 2. Structural Operational Semantics 13

The op field of the Dyad indicates which operation is to be done, and the left and right
fields contain expressions which will yield the values which will be operated upon. This
language deliberately contains a limited number of defined operations; adding more to the
language is straightforward.

The portion of wf -Expr that deals with the Dyads looks a bit involved, but is mostly
bookkeeping to ensure that the subexpressions are both well-formed and of the correct type
for the indicated operation. Note that the resulting type of an operation is solely dependent
on which operation it is, and completely independent of the types of the subexpressions.

Dyad-L
(left , σ) e−→ left ′

(mk -Dyad(op, left , right), σ) e−→ mk -Dyad(op, left ′, right)

Dyad-R
(right , σ) e−→ right ′

(mk -Dyad(op, left , right), σ) e−→ mk -Dyad(op, left , right ′)

Dyad-E
left , right ∈ Z

(mk -Dyad(op, left , right), σ) e−→ [[op]](left , right)

The three rules required to define the evaluation of a Dyad exhibit some fascinating
properties that are fundamental to the behaviour of the overall language. First, note that
the choice between the Dyad-L and Dyad-R rules is non-deterministic. The non-deterministic
choice between the left and right subexpressions means that the order in which the variables
are read is unconstrained by the language semantics. In turn, this means that any proofs
done using the semantics must not depend on any particular order of evaluation.

The elimination of the Dyad (and, thus, the actual performance of the indicated oper-
ation) cannot happen until both the left and right operands have been fully evaluated —
as is shown in the antecedent of the Dyad-E rule. The rule is just a simple reduction of the
Dyad , through the meaning of the operation (i.e. [[op]]), to a final value.

An examination of the type signature of the expression transition reveals that expres-
sions in this language cannot produce any side-effects as a result of evaluation. Preventing
this is both an absence of side-effect producing constructs in the Expr type, as well as the
fact that the transition does not have a store component on the right-hand side of the arrow,
meaning that there is nowhere to denote a modified store.

There are eight kinds of statement in this language, and they are enumerated in the
Stmt type.

Stmt = Assign | Atomic | If | Par | Seq | STM |While | nil

Each of these kinds will be described in turn, but their explanation is presented best in the
context of the whole system.

The overall semantic transition in a SOS is a relation over configurations of the system,
and this relation defines the entire behaviour of that system. A configuration is, in the
case of this language, simply a pair consisting of a statement and a store. The relation for
this language, s−→, is symmetrical in that its “right-hand” object is also a configuration;
the symmetry is not strictly necessary, but it does simplify the definition of the transitive

14 2.2. The Language

wf -Stmt : (Stmt × Id -set)→ B
wf -Stmt(stmt , ids) 4

cases stmt of
nil→ true

mk -Assign(id , e)→ id ∈ ids ∧ wf -Expr(e, ids) = INT
mk -Atomic(body)→ wf -Stmt(body , ids)

mk -If (b, body)→ wf -Expr(b, ids) = BOOL ∧
wf -Stmt(body , ids)

mk -Par(left , right)→ wf -Stmt(left , ids) ∧
wf -Stmt(right , ids)

mk -Seq(left , right)→ wf -Stmt(left , ids) ∧
wf -Stmt(right , ids)

mk -STM (orig , σ0, body , σ)→ wf -Stmt(orig , ids) ∧
wf -Stmt(body , ids) ∧
domσ0 = domσ = ids

mk -While(b, body)→ wf -Expr(b, ids) = BOOL ∧
wf -Stmt(body , ids)

others false
end

Figure 2.2: Context conditions for statements.

closure of the transition relation, which in turn makes it easier to reason about multiple
transitions.

Config = Stmt × Σ

s−→ : Config × Config

The easiest/simplest statement is nil — pragmatically it is just the representation of
“nothing left to do”. The nil statement is a completed program; it has no internal structure
of its own. By definition it is well formed, and the applicable portion of wf -Stmt in
Figure 2.2 reflects this. As it represents a completed program, there are no semantic rules
for this statement (i.e. there is never a configuration composed of nil and some state that is
in the domain of the transition relation).

The Assign construct is the only other non-recursive construct (in the sense of not
containing another statement) in the Stmt type. Coincidentally, and conveniently, it is also
the only construct which can directly modify the store.

Assign :: id : Id
e : Expr

The construct has two fields: id , which identifies the element in the domain of the store
for which the range will be changed; and e , which contains the expression which, when
evaluated, will yield the replacement value. The portion of the context condition for the
Assign construct in Figure 2.2 requires that the target identifier be within the set of valid
identifiers, and that the expression be valid and yield an integer.

The design choice that this language exhibit fine-grained interference behaviours re-
quires that there be two semantic rules to define the transitions that are possible from an

Chapter 2. Structural Operational Semantics 15

Assign construct.

Assign-Eval
(e, σ) e−→ e ′

(mk -Assign(id , e), σ) s−→ (mk -Assign(id , e ′), σ)

The first rule, Assign-Eval, models the process of expression evaluation within the con-
struct. As such, it takes as an antecedent one transition step of the expression relation,
using the initial expression and the current store as the left-hand parameter. The right-hand
parameter –a reduced form of the initial expression– is used to form the overall right-hand
system configuration by replacing the initial expression in the left-hand system configura-
tion.

Assign-E
e ∈ Z

(mk -Assign(id , e), σ) s−→ (nil, σ † {id 7→ e})

The second Assign rule, Assign-E, is where the store modification actually happens.
Once the expression has been reduced to a value it is no longer possible to perform a e−→
transition on it. Thus, all that remains to be done is actually change the value of the store
at the target identifier to the value of the expression.

The semantics of Assign as presented result in a gap between the last Assign-Eval

transition and the final Assign-E transition. The gap allows transitions that apply to other
threads within the overall program to modify the memory store; this can lead to situations
where the target variable is mutated long after the expression has completed evaluation.

The language does, of course, provide a construct for conditional execution.

If :: b : Expr
body : Stmt

The If construct is a basic one-branch conditional, allowing its body to be executed
only in the case where the test, b, has evaluated to true. The portion of the context con-
dition in Figure 2.2 requires that the test be both well-formed and evaluate to a Boolean
value, and that the body be well-formed within the same context as the overall If .

If-Eval
(b, σ) e−→ b′

(mk -If (b, body), σ) s−→ (mk -If (b′, body), σ)

Like the Assign construct, the decision to have the language behave with a fine-grained
semantics for expression evaluation means that the definition of the rules for an If construct
includes a rule that evaluates the test expression one step at a time. It is, therefore, possible
to interfere with the store between these evaluation steps.

If-T-E
(mk -If (true, body), σ) s−→ (body , σ)

If-F-E
(mk -If (false, body), σ) s−→ (nil, σ)

Once the test has been completely evaluated to a Boolean value, it remains to reduce
the whole If construct to either just the contained body if the test evaluated to true, or to

16 2.2. The Language

nil if the test evaluated to false.

Looping in this language is achieved through the While construct, which has the same
structure as the If construct.

While :: b : Expr
body : Stmt

Not surprisingly, this construct has the same requirements in its portion of the context
condition in Figure 2.2 as that of If : the test must be well formed and Boolean valued, and
the body must also be well formed.

While
ifbody = mk -Seq(body ,mk -While(b, body))

(mk -While(b, body), σ) s−→ (mk -If (b, ifbody), σ)

The semantic rule for the While , however, is of a very different form than those for
If . The semantics of the while loop are almost completely dependent on that of the If
construct. What the While rule does is rewrite the program, “unrolling” the loop once;
the result forms the new configuration. The resultant If construct is evaluated normally:
if the test evaluates to true, then the body is executed once and we have the original loop
construct, ready to be unrolled and tested again; if the test evaluates to false, then the whole
structure just reduces to nil. This rule is the simplest means of specifying the behaviour of
a while loop in a fine-grained semantics.

As an aside, it is not possible to “infinitely expand” the While construct using this
rule. When the construct has been unrolled once, the usual While rule cannot be applied
again unless the test evaluates to true and execution of the body has completed. Once that
has happened, however, applying the While rule again is precisely the correct thing to do.

Sequential composition of statements in the language is provided by the Seq construct.

Seq :: left : Stmt
right : Stmt

There is nothing surprising in this construct’s context condition: it simply requires that
both the left and right contained statements are well formed. The semantic rules for this
construct are straightforward.

Seq-Step
(left , σ) s−→ (left ′, σ′)

(mk -Seq(left , right), σ) s−→ (mk -Seq(left ′, right), σ′)

Seq-E
(mk -Seq(nil, right), σ) s−→ (right , σ)

The first, Seq-Step, just performs one step of the left statement and then wraps the result
of that inside a Seq formed with the right statement from the original. Once the left
statement has reduced to nil, the Seq-E rule then just unwraps the right statement, leaving
it on its own. The right statement is then executed in the normal manner, but without the
now-extraneous structure of the original Seq around it.

Parallel composition of statements is an important feature of the language and is sup-
ported via the Par construct.

Chapter 2. Structural Operational Semantics 17

Par :: left : Stmt
right : Stmt

Structurally, Par is almost exactly the same as Seq — the only difference is in the
name. It should be no surprise that the context condition for this construct is the same as
that for Seq .

Par-L
(left , σ) s−→ (left ′, σ′)

(mk -Par(left , right), σ) s−→ (mk -Par(left ′, right), σ′)

Par-R
(right , σ) s−→ (right ′, σ′)

(mk -Par(left , right), σ) s−→ (mk -Par(left , right ′), σ′)

Par-E
(mk -Par(nil,nil), σ) s−→ (nil, σ)

The semantic rules for Par , though similar, define very different behaviour. The Par-L

and Par-R rules have a similar effect as the Seq-Step rule in that they take a sub-statement,
execute one step, then rebuild the construct using the newly reduced sub-statement and
parts from the original. That there are two rules –one for each of the left and right fields
of the Par– that could both be applied to a given Par as the source of both this construct’s
parallel behaviour and its non-determinacy. The simple fact that there are configurations
to which both rules could be applied, and that the rules only execute a single step, is what
allows the interference to play a role in the system.

Once both of the left and right sub-statements have reduced to nil then the whole Par
construct can be reduced to nil. This is in contrast to the Seq construct, which eliminates
the Seq as soon as the left sub-statement has finished.

The remaining constructs –Atomic and STM – are covered in the next section, as they
represent atomic blocks as implemented by a form of software transactional memory.

2.3 Software Transactional Memory

Software Transactional Memory (STM) can be loosely described as an attempt to adapt the
database transactional model for use as a programming construct available for use in shared
memory-based algorithms. Semantic models of atomic blocks based on STM mechanisms
give systems that are conceptually simpler than lock-based models in terms of reasoning,
and these models are a good fit for use with the Rely/Guarantee formalism we will examine
in Chapter 3.

In general this transaction model allows for a set of state-modifying actions to be
grouped together such that actions excluded from said group only see the results of that
group’s actions either all together or not at all. In a database environment, these actions
may involve updates to several tables/rows. In a STM transaction, a more likely example
could be the result of swapping the values of two variables.

Software transactional memory, then, as the name indicates, operates on blocks of

18 2.3. Software Transactional Memory

memory — the system store. The necessary operations of STM are commit and retry;
there is also the potential for abort, though the last is not treated in this work. There is also
the ability to mark the beginning and end of a STM, of course, but that is really a structural
notion rather than an operation.

Initialization of a transaction generally involves making a copy of the portions of the
state on which the transaction depends. For a very conservative transaction system, this
could potentially be the whole state. A more optimistic system would record only the
values on which the transaction depends, and this could be shown to be behaviourally
equivalent to the conservative model, given that the transaction would abort only on inter-
ference. A very optimistic system might do nothing at initialization, and only record values
of variables at their first read.

The semantics for the STM construct in this language is a fairly conservative one in that
it captures the values of all of the variables in the store before the body of the transaction
begins execution. It is not maximally pessimistic, however, as it does allow the transaction
to continue execution even when variables unrelated to the transaction are changed. It
does, however, enforce a sort of temporal consistency over the values of the variables by
not being so optimistic as to capture only the value of a variable at the point of first use.

At a high level of abstraction this model of the STM construct allows the user of the
language to depend on the fiction of atomicity. Any program placed inside the STM con-
struct will appear to produce all of its changes to the state in a single transition; however,
at the operational level the semantics merely holds the alterations aside until the program
is complete.

The commit operation ends the current, innermost transaction and allows the changes
that have been made to the store to become visible to the containing scope. Other con-
currently running transactions could, potentially, be invalidated by this operation if they
depended on variables that had been modified by the transaction. At the point where a
transaction commits, it does need to ensure that the changes it would make are still valid
— this is done by checking that the variables on which that transaction depends have not
changed in the interim.

Though the language in this work does not have an equivalent to the abort operation,
the effect of the abort operation is useful to illustrate the retry operation which will follow.
The abort operation is a sort of complement to commit in that it provides a means of
exiting a transaction, but instead of allowing that transaction’s changes to become visible,
it just throws them away. The state after a transaction aborts is unaffected by an aborted
transaction’s exit, and is exactly the same as the state immediately prior to that exit. As
this operation is an exit, it places control flow at the end of the transaction block.

Last of the operations, retry, is similar to abort in that it also throws away any changes
that the transaction would have made; however, unlike abort, retry also restarts the trans-
action from its beginning. In one respect the retry operation can act like a loop, causing the
transaction body to be executed multiple times. Unlike a loop, though, if the transaction is
retried, there is no change to the external state due to execution of the body.

From this description it is clear that there are strict restrictions on the domains in which
STM can be deployed. Roughly, it can only be deployed on things whose effects are fully

Chapter 2. Structural Operational Semantics 19

reversible and concealable: usually this restriction allows only pure memory operations.
Thus, blocks of actions that include input/output, human interaction, or message passing
outside of the transaction are banned. The semantic model provided is restricted to pure
memory operations, which allows us to focus on the immediate effects of this STM model.

Of the traditional ACID –Atomic, Consistent, Isolated, Durable– properties that are
used in the database literature, the most important for STM systems is isolation. Through
that property this mechanism can achieve the appearance of atomicity in its behaviour with
respect to external processes; consistency relative to conditions on the behaviour of the
process (see Chapter 3); and as much durability as is possible in a volatile memory store.

The isolation property is inherent in STM transactions as the very point of this mecha-
nism is to hide the changes the transaction makes until it commits, as well as ensuring that
the transaction body will not “see” external changes at all. This isolates the changes the
transaction makes from its environment; in the other direction, the transaction is isolated
from changes through the retry operation. In the STM language considered in the next
Section, the retry operation is automatically triggered by an external change — this means
that while the overall transaction will arguably become aware of the change, its reaction
will be to restart the transaction’s body to preserve the appearance of executing in a stable
environment.

Related to the effect of retry and how it achieves isolation is the topic of interference.
As with post conditions and guarantees, this is dealt with in detail in Chapter 3; however,
described in terms of interference, a transaction reacts by restarting, and so the body of the
transaction can effectively rely on there being no interference.

The STM model –in general and in the particular model used here– has the ability to
nest STM structures within larger STM structures. This allows for a clean compositional
model and eliminates any need for special rules in the semantics. Nesting STM structures
is useful in the semantics as it is possible for a parallel construct to be placed within an
atomic construct; though the contained parallel construct has no interference, the branches
of the parallel construct may still interfere with each other.

2.3.1 Atomic/STM Language Elements

This section introduces the remaining constructs of the language, Atomic and STM ,
which give a model of the operation of one form of software transactional memory used to
implement atomic blocks.

Atomic :: body : Stmt

STM :: orig : Stmt
σ0 : Σ

body : Stmt
σ : Σ

Pragmatically, the STM construct is not intended to appear in a program that has not
performed any execution at all, but for the sake of convenience, it has been included in the
abstract syntax. The STM construct is very unusual in that it contains semantic objects
–named σ0 and σ– in its construction.

20 2.3. Software Transactional Memory

In the language model there is a fairly clear separation between the parts of the con-
figuration that represent dynamic, changeable information about the system, and the parts
that, though they generally reduce, can be considered static. To wit, the static part is the
program text –the statement– and the dynamic part is the memory store. The design of
the language model carefully keeps these two components separate, and this distinction is
greatly helped by the lack of block-like scoping construct. The only point where there is
an arguable violation of this separation is in the expressions, as their evaluation effectively
records data about the previous states. The argument fails in that to extract this history
information you also need to know the prior, unevaluated expressions which were reduced
to the current construct. And, since a user of the language could –in all cases– have pro-
grammed the partially evaluated expression indirectly, it becomes moot.

The static/dynamic distinction is violated by the STM construct. It contains two el-
ements of the type used to represent the memory store, which is inherently dynamic. Of
these two elements, the first, σ0, records the state of the memory store when the transac-
tion is initialized. Admittedly, this value is never altered during the lifetime of the STM
construct, but it is used in all of the rules specific to that construct, and it is, nonetheless, a
dynamic object. The second, σ, is the delta mapping, and there is no question that this ele-
ment does behave as a dynamic object — its purpose is to accumulate the dynamic changes
to the state so that they may be isolated from the environment. It would be difficult for a
user of this language to program a STM construct directly, though there is nothing that
expressly forbids it.

The semantic model of this language just “bites the bullet” and includes the dynamic
state as part of the (otherwise) static program text. Part of the justification is that the
program text represents the work that remains to be done, and part is a practical observation
on the difficulty of tying specific pieces of a dynamic state to a specific sub-tree of the
program text.

The structure of the language as designed includes the STM construct as part of the
Stmt type. The alternative would have been to make the STM construct properly a se-
mantic object rather than a part of the abstract syntax. An issue with this approach is the
fact that to construct a configuration we then have to “lift” the statement type to include
a semantic object. Notationally, that is rather awkward — it has to be taken as implicitly
given that all of the fields that were just statements now have a broader type. Furthermore,
lifting the statements to include semantic objects means that the context conditions have a
narrower range of applicability — unnecessarily so.

Having noted this mixing of static and dynamic data in the STM language, we can
move to the first of the rules that require it.

STM-Atomic
(mk -Atomic(body), σ) s−→ (mk -STM (body , σ, body , σ), σ)

The STM-Atomic rule is essentially just an initialization step, setting up the STM con-
struct so that the language can actually execute the transaction. The body of the Atomic
construct and the initial state, σ, are used for the first two fields of the STM , establishing
the original text of the transaction, and the state against which external changes will be

Chapter 2. Structural Operational Semantics 21

checked. The last two fields are also filled with the original body and state, but these fields
will change as the STM is reduced. The third field –holding the copy of the original body
that will change– records the remaining work to be done as the transaction is executed.
The last field is the delta mapping, and is used to record the changes to the original state
which are made by the body as it is executed.

STM-Step

(Vars(orig) C σ0) = (Vars(orig) C σ)
(body , σs) s−→ (body ′, σ′s)

(mk -STM (orig , σ0, body , σs), σ) s−→ (mk -STM (orig , σ0, body ′, σ′s), σ)

A single step of a transaction has a surprising amount of bookkeeping to do at this level
of semantic description. The first antecedent of STM-Step establishes that the variables the
transaction depends upon have not changed since the beginning of that transaction; it does
this by comparing the original state to the current state, but only on the variables found
in the original body. The second antecedent provides the form of the result of one step
of execution of the body, but to do so it must set the state in which the body executes to
that of the delta mapping held by the STM construct, ignoring the external state entirely.
In the resulting STM object the delta mapping is replaced by the target state provided by
the second antecedent, and the body is replaced from the same source. The target state of
the overall transition is unchanged from the source: this gives the construct the property of
completely isolating the behaviour of the body of the STM object from its environment.

STM-E
(Vars(orig) C σ0) = (Vars(orig) C σ)

(mk -STM (orig , σ0,nil, σs), σ) s−→ (nil, σ † (Vars(orig) C σs))

The STM-E rule represents the commit operation of a transaction. Its use is implicit,
triggered by having a nil body, and only requires that none of the variables in the delta
mapping (as restricted by the variables in the original body) have changed in the external
state. If that antecedent holds, then the resulting configuration has a nil program text, the
target state is the source state overwritten on the variables of the original body from the
delta mapping. This causes the changes made by the execution of the body to become
visible outside that transaction.

STM-Retry
(Vars(orig) C σ0) 6= (Vars(orig) C σ)

(mk -STM (orig , σ0, body , σs), σ) s−→ (mk -Atomic(orig), σ)

The last rule specific to STM in this semantic model is the STM-Retry rule; it deals with
the retry operation. A transaction should only need to retry if some part of the state on
which it is dependent has been altered. This requirement is captured in the antecedent,
allowing this rule to fire in precisely that case; note that STM-Step and STM-E cannot fire in
those cases. When this rule does hold, however, we want the transaction to throw away all
of the changes it would have made and revert to a configuration that is ready to attempt
execution again. Thus, the right-hand configuration is now the original Atomic construct
that the STM object started out with.

This language has no inbuilt notion of error recovery. If the externally dependent state
changes during a transaction, then the transaction must retry: there is no provision for the

22 2.4. Constraints on the Semantic Model

program to examine the external state dynamically and determine that it is harmless.

2.4 Constraints on the Semantic Model

The SOS model presented in this chapter conforms to a number of constraints in its design
which are necessary for the construction of the rely/guarantee rules of Chapter 3 and their
corresponding soundness proofs in Chapter 6.

The domain of the overall semantic relation includes all configurations which consist of
a program which satisfies the wf -Stmt predicate (Figure 2.2) and a suitable state,2 and all
of the configurations transitively reachable from the well-formed program configurations,
minus those configurations whose program text is nil. Verifying that this is true for the
semantic model given can be done by first checking that every construct has at least one
rule, and then checking that the rules for each given construct cover the set of possible well-
formed constructs. This constraint on the semantic relation has the effect of eliminating
concerns about the definedness of the semantic relation in the context of this work.

As the overall semantic relation is essentially the union of its semantic rules we must
take care to ensure that the individual rules do not conflict with each other. Though we
support non-determinism in the model at the rule level by allowing multiple rules to apply
to the same configuration –that is, we allow the domains of individual rules to overlap– we
must be careful to ensure that no two rules allow the same transition. Allowing this leads
to an ambiguity which would invalidate a step in the proofs of Chapter 6 as we depend on
being able to identify the semantic rule to which a particular transition belongs.

There is a similar constraint to the ambiguity mentioned above which anticipates the
augmented semantics introduced in Section 4.2: the semantic relation must not have any
steps which do not alter the program component of a configuration. All of the transitions
in the semantic model must alter the program component; introducing a transition which
does not do so prevents the augmented semantics from being able to distinguish between
program transitions and interference transitions.

The semantic rules which make up the semantic model used in this work can be grouped
into two major themes: elimination rules, which replace the top-level construct in a con-
figuration with either one of its components or nil; and wrapping rules, which wrap the be-
haviour of a component in the top-level construct. There are two rules –While and STM-Atomic–
which do not fall into these categories, however: they replace the top-level construct with
another construct entirely. In an unrestricted form rules which rewrite the program in the
configuration can make reasoning about the semantic model extraordinarily difficult. The
two rules mentioned here do so only in a superficial manner, however, and do not alter any
of the components of the original construct; furthermore, they are only applicable in very
constrained situations.

The addition of new constructs into the language poses no special problems so long
as the accompanying semantic rules collectively cover the reachable instantiations of the
construct (i.e. those accepted by the then-modified wf -Stmt predicate and those transi-
tively reachable from that initial set). Also –per the constraint on ambiguity– the newly

2I.e. a state with a domain which contains the set of all of the identifiers used in the program.

Chapter 2. Structural Operational Semantics 23

introduced rules must not produce any transition which is already in the semantic model.
Removing a construct from the language requires that we check that, once again, all reach-
able remaining constructs are still in the domain of the now-reduced semantic relation.
Modification of the structure or behaviour of a construct is essentially equivalent to remov-
ing the old form of the construct and then adding the new form of the construct.

There is an idiosyncrasy of the While construct in this particular semantic model:
the While rule gives the behaviour of the construct in terms of the If and Seq constructs.
This design choice was made for the sake of clarity despite the dependency it introduces.
Modelling the behaviour of the While construct could have been done through the use of
an auxiliary construct in much the same way as the behaviour of the Atomic construct is
given using the STM construct. Doing so would eliminate the dependence on constructs
which are conceptually separate from the While , but would add little to the exposition.
However, as the dependence is present in the model there is a practical dependency in the
rest of the thesis in that results regarding the While construct depend on the If and Seq
remaining unaltered. Given that the semantic model is regarded as fixed in the rest of this
work, this dependency is not a problem.

2.5 References

Structural Operational Semantics

McCarthy proposed abstract interpreters for programming languages in [McC63], and ap-
plied it to micro-ALGOL in [McC66]. The latter is contained in [Ste66], which also con-
tains a fascinating record of the discussion that followed the presentation of the paper. The
critical idea in this, however, is that language semantics can be given by describing the
effect of the language’s construct on a state — this is the essence of operational seman-
tics. As micro-ALGOL is a deterministic language the abstract interpreter could be written
as a simple recursive function; languages with non-deterministic constructs require more
complex approaches. This notion of operational semantics as inspired by McCarthy was
applied to PL/I in work by IBM Vienna group; the definitions gave rise to massive technical
reports — the most useful overview is in the paper by Lucas and Walk [LW69]. Though an
impressive piece of work, this semantics was described using VDL, and the notation did
not lend itself to straightforward reasoning techniques.

The work in this chapter follows the tradition of structural operational semantics as
introduced by Plotkin in what has come to be referred to as his Århus Notes [Plo81]. The
Århus Notes have since been edited, corrected and republished in [Plo04b]. Plotkin’s work
is the basic starting point for SOS and the examples contained therein have an implicit
emphasis on modelling the language rather than proving properties about the language.

The origins of SOS are recounted in [Plo04a] where the links between SOS and denota-
tional semantics in the Scott-Strachey style [Sto77] are noted (among other connections).
A shorter summary of the trends in language semantics can be found in Jones [Jon03b]
which also includes a set of examples for modelling various language concepts in SOS.
Jones also mentions the connection between the VDL semantics of PL/I mentioned above

24 2.5. References

and its connection to McCarthy’s abstract interpreters. The links between VDL and the
denotational semantic aspects of VDM are described in [Jon01].

There are two notable texts that introduce SOS: the first by Riis Nielson and Niel-
son is [RNN07] (which is an updated version of [RNN92]), and the second by Winskel
is [Win93]. The former is arguably the better introduction to SOS, but both suffer –for
the current purpose– from the fact that the texts as a whole are more interested in program
correctness and verification than they are in modelling. This focus allows the texts to also
cover denotational and axiomatic semantics in an integrated way, but unfortunately ends
up using very coarse-grained examples which are outside of the area where SOS really
shines.

Software Transactional Memory

Software transactional memory has its roots in hardware transactional memory architec-
tures, in particular work by Herlihy and Moss [HM93]. The first proposal to implement
transactional memory in software was by Shavit and Touitou in [ST95]. Shavit and Touitou
specifically extend Herlihy and Moss’ work to the software domain and propose a detailed
pseudo-code implementation for it. Unfortunately, as their implementation was intended
to be done on top of an existing language, there are no real semantic underpinnings to
their work. Their implementation also required that the set of objects affected by the STM
transaction was statically declared.

Later work by Herlihy et al. [HLMS03] gives the first implementation of dynamic
STM, removing the need to declare the transactional objects in advance. The objects af-
fected by the STM in their work must be controlled by a container object, however, which
does leave some limits in place. The implementation of their STM mechanism is done by
a software library –rather than integrated into the language– which means that the actual
semantics of the STM is defined by the code rather than a proper formal description.

Parallel work by Harris and Fraser [HF03] gives a STM mechanism which appears to
be integrated into the language through use of Hoare’s conditional critical regions [Hoa72].
This version of STM is intriguing as it adds a language construct to the Java language, and
uses a modified compiler and virtual machine to actually implement the STM mechanism.
The lack of formal semantics, however, makes it difficult to see precisely how the mecha-
nism works.

The paper that has had the most influence on the Atomic/STM semantics in this chap-
ter is [HMPJH05]. Critically to this thesis, the work of Harris et al. is the first to propose
STM as a fully integrated language construct — all but one of the other papers propose
implementing STM as a software library in the language. As there is a proper operational
semantics in [HMPJH05] (albeit in a slightly different style than the SOS used here), a
brief comparison between their STM design and the one used in this chapter follows. It
should be noted, first, that their semantics has been written in the context of the Haskell
language, which, being a purely functional language, imposes a different set of constraints
than are present in the imperative language presented in this chapter.

The first major difference between the two semantic models is that theirs is presented

Chapter 2. Structural Operational Semantics 25

at a much coarser level. Not only are transitive steps used in their semantic rules directly,
but their semantics explicitly disallows the interleaving of the steps of an atomic action
with steps from other threads.

Transactional variables in their semantics must be of a designated type — this is due,
in part, to the functional nature of Haskell and its treatment of mutable variables. In the
semantic model of this chapter all variables are transactional, and thus usable in a STM
transaction without any need for any special designation.

The modelling of STM retry events is fundamentally different between the two seman-
tics: their model uses an explicit mechanism which is available to the programmer, and
the model in this chapter only allows implicit retry transitions. Their model requires that
a STM transaction not execute if the initial state is such that it would result in a retry; this
appears in their model as an absence of a rule that allows a transition to a retry, and their
implementation is essentially required to tentatively execute the transaction to find out if it
would retry. The model in this chapter, however, allows STM retries as an implicit result
of the state in the STM construct and the overall state becoming inconsistent relative to
the transaction’s dependent variables.

That their semantic model requires that a STM transaction not execute if it result in a
retry means that their model incorporates a form of angelic non-determinism in the way
threads are chosen for the next transition. We wholly avoid this in our semantic model, by
explicitly giving a semantic mechanism that allows transactions to be interleaved; it may
be that the implementation of their semantic model follows an approach that is similar to
our semantic model, but this is speculation.

Finally, two things that their semantics includes (where our model does not) are a
notion of alternation between possible STM transactions and a mechanism for dealing with
fault handling. The first –alternation– is a fascinating approach but adoption here would
require invasive changes to our semantic model. The latter is necessary in their work due
to Haskell’s fault handling system, but is completely out of scope in this thesis.

In addition to the material above, there are a few papers that focus primarily on the
implementation of STM in various contexts [MSS05, CH05, MSH+06]. While the first of
these –[MSS05]– gave a sense of some of the trade-offs faced in the design of potential
implementations of STM, none of the three had much to offer to the design of the semantics
for the Atomic/STM construct in this chapter.

26

27

3 — Rely/Guarantee Conditions

3.1 Introduction

This section presents an overview of the rely/guarantee framework used in this work, and
discusses some of the implications of the particular framework used. Section 3.2 presents
a set of possible rules to cover the constructs presented in the language of Chapter 2, and
some of those constructs are given multiple rules to cover slightly different situations. That
a construct might have multiple rules is completely within the spirit of the rely/guarantee
method; furthermore, it is recognized that it is simply not possible to create an exhaustive
set of rules that covers all possible situations.

3.1.1 Overview

The rely/guarantee method is a set of attitudes towards the development of software that
grew out of the need to reason about the interference a program must tolerate, both from
external sources and from within the program itself. It arises, as discussed in Section 3.3
out of Hoare Logic, VDM, Owicki/Gries’ work, and directly from Jones’ thesis.

Very much at the centre of this is the desire to be able to reason compositionally about
concurrent programs and this entails reasoning about the interference that different, par-
allel, parts will generate. This is accomplished through relations that pair the states from
immediately before and after an atomic action in the system. These relations are elements
of a specification that distinguishes between the behaviour a program must conform to, and
behaviour that the environment is assumed to exhibit.

To explain how rely/guarantee reasoning works, we will start with the computational
model. Though left implicit in the previous chapters for the sake of clarity, it helps here.

From the description of the semantic model in Chapter 2, we can consider computation
as a sequence of steps (or transitions), as shown in Figure 3.1. In this figure, the line repre-
sents a notion of time; each circle on the line represents a particular system configuration;
and the “jumping” arrows are steps of the system. The diagram is best interpreted as a
single possible computation from a given starting configuration.

Atomic actions

Individual configurations

Figure 3.1: Abstract model of computation.

Each successive configuration on the bold line in this figure differs from the prior ones
(even though they are represented as circles without any differentiating internal structure).

28 3.1. Introduction

Some will differ in changes to the state, some by changing the remaining program text, and
some on both points. All steps, however, do cause some form of change.

We now distinguish the steps as belonging to one of two categories: those of the pro-
gram, and those of the environment. This is shown in Figure 3.2, with the program steps
above the line, and the environment steps below the line.

Program actions

Environment actions

Figure 3.2: Abstract model of computation distinguishing interference.

The words “program” and “environment” are used as labels when we consider a system.
These labels are simply shorthand, allowing a quick means of referring to either the portion
of the system that we are developing at that point (the program) or the portion of the whole
system about which we are making assumptions (the environment). It should be understood
that, if we consider a closed system containing only a multi-threaded program, when we
focus on a single thread of execution, it becomes the program and the rest of the threads are
considered the environment. In this sense there is a pleasant symmetry present, dependent
only on the viewpoint from which the whole system is considered.

Neither of the figures here have more than a single arrow between any pair of consecu-
tive configurations. This omission is deliberate to match the semantic model of Chapter 2:
the semantic model allows only one transition between a pair of configurations, thus con-
straining the computational model.

There may be occasions where there is more than one possible action that may follow
a given configuration. In these cases a single action will be chosen non-deterministically
from those possible, and the system will proceed from the following configuration.

The semantic model of Chapter 2 uses VDM-style record notation to describe the struc-
ture of a language’s abstract syntax, and VDM operators and pattern matching notation to
manipulate these constructs in the rule definitions. It should come as little surprise, then,
that the rely/guarantee specifications use a notation similar to VDM’s operation specifica-
tions.

The template in Figure 3.3 gives the general form of a rely/guarantee specification.
There are eight elements to the specification; the first, of course, names the specified sys-
tem. The rd and wr keywords give lists of the variables that this program will (respectively)
read from and write to. Following that is the pre keyword, which gives the system’s pre
condition. The rely and guar keywords give the rely and guarantee conditions, and the
post keyword gives the post condition.

It is worth noting that the rd and wr keywords affect the actual guarantee and post
conditions: they are constraints on the overall behaviour of the specified program. As
a consistency constraint on rely/guarantee specifications, we assume that if a variable is

Chapter 3. Rely/Guarantee Conditions 29

SYSTEMNAME

rd x : X , y : Y , . . .
wr s: S , t : T , . . .

pre P
rely R

guar G
post Q

Figure 3.3: A template for rely/guarantee specifications.

not mentioned in either a rd or wr keyword then it neither affects nor is affected by any
program that conforms to the specification.

If the name SYSTEMNAME from Figure 3.3 is allowed as a stand-in for the even-
tual system/program it represents, we can write the corresponding “specification state-
ment” [Mor88] as (P ,R) ` SystemName sat (G ,Q). This specification statement could
be read as “the pre condition, P , and rely condition, R, entail that the program S will
satisfy the behaviour guarantee condition, G , and the post condition, Q”. As usual, un-
packing a logical sentence is a bit of a mouthful — it’s unlikely that it will be expanded
again.

There are a few constraints on the elements of a rely/guarantee specification which
follow from its roots in VDM. First, the pre condition must be total, and thus defined for
all possible states, and the post condition must be total over the domain characterized by
the pre condition. The rely and guarantee condition must be total over the domain which
can be found by starting with the domain characterized by the pre condition and taking the
transitive closure of the union of the rely and guarantee relations; stated more directly, the
domain of the rely and guarantee must be equivalent, and must be a superset (or equal to)
the union of their ranges.

It should also be noted that Figure 3.3 does not presuppose any particular logical for-
malism by its structure. This work follows the usual approach of rely/guarantee work and
uses the logic of partial functions (LPF) –a weakening of first-order predicate calculus– so
that undefinedness may be dealt with in a reasonable manner. The use of LPF in this work
is primarily intended to allow the use of prior work in VDM and rely/guarantee reasoning,
such as [BFL+94].

The rely/guarantee framework has limits on its expressive range — this is implicit in
the fact that we will later prove a set of development rules in the framework sound relative
to a semantic model, but that we also maintain that completeness relative to that model is
not practically feasible.

In particular the interpretation of the rely and guarantee conditions as outer bounds
on behaviour means that these conditions tend to be imprecise. Even given a condition
that contains precisely and only the behaviour desired we must still deal with the fact
that the condition is reflexive. This reflexivity means that the conditions cannot be used
directly to show that some behaviour occurs. To give a trivial example, consider a condition
that constrains a variable to decrease only monotonically. Using this condition alone to
reason about the variable does not allow us to conclude that the variable will change at
all: the reflexive nature of the condition implies only that the variable may change in

30 3.1. Introduction

value. To conclude that it must change value one is required to use either the semantics
directly, or use the post condition of the specification of which the condition is a part.
The former approach can be cumbersome –and one reason why we are investigating the
use of rely/guarantee at all– and the latter approach is of no use if you need to know that
the variable has changed at a given point during the specification, rather than after it has
completed.

3.1.2 Implications

The basic approach to the rely/guarantee rules used here is to treat them as potential com-
ponents of a usable development framework. As such, the desire is for rules that fit the
particular situation at hand, rather than forcing all developments to use a fixed, immutable
set of rules.

As a direct consequence of this philosophy, it turns out that the rules of a rely/guarantee
framework are highly adaptable. Admittedly, there is a trade-off between the restrictiveness
of the rules against their ease of use. The more restrictions that are in a rule’s antecedents,
the easier it becomes to prove soundness. Conversely, the less restrictions, the easier it
becomes to prove that a given specification is valid. It’s an interesting trade-off, but it
plays well on the developer’s actual knowledge of the system, allowing the developer’s
informal assumptions to be incorporated into the formal design.

So, not only is it possible to create more rules for this language at need in a straightfor-
ward manner, but it is also possible to generate rules for any language that has an accurate
SOS model.

Behavioural specifications –as given by the rely and guarantee conditions– are a matter
of specifying the set of possible actions that a process may effect. There are two things
that are difficult to specify through the use of the transitive and reflexive relations that the
rely/guarantee framework prefers: first is an “order” on the actions in the relation (such
that some things precede others); and second is encoding the notion that some action must

happen.

These expressive weaknesses in the rely/guarantee framework can be circumvented
through the use of “ghost” or “auxiliary” variables. Ghost variables are similar to vari-
ables held in the system’s state, except that they are completely inaccessible to the system,
and they never appear in any final implementation of the specification. Unrestricted use
of ghost variables, however, destroys the compositional nature of rely/guarantee specifica-
tions, even given the reflexive and transitive restrictions enforced in this particular frame-
work. All of the work in this thesis assumes that ghost variables are not used.

In particular, it is possible to use a ghost variable to record the history of the com-
putation; given this history one can then encode a notion of what will happen next into a
specification. Doing so, however, destroys the compositional nature of the rely and guaran-
tee conditions, and leaves anyone who wishes to use the specification in the uncomfortable
position of doing their analysis more in the spirit of Owicki’s work than in the spirit of
rely/guarantee. Once a significant portion of the program’s structure has been encoded
into the specification, what was the purpose of specifying the program in the first place?

Chapter 3. Rely/Guarantee Conditions 31

The rely and guarantee conditions are considered to be outer bounds on behaviour, and
this particular framework assumes that all of these conditions are reflexive. If we imagine
a very trivial program that never changes the state, then this means that all guarantee con-
ditions are outer bounds for this program. In the other direction, the minimum or tightest
relation that describes a trivial program that executes in one step and does alter the state
must still include the identity relation.

For any program, its specification’s guarantee conditions must include the possibility
that the program will do nothing, even in cases where it is possible to prove that it always
does something. The class of programs that are always modifying the state, however, is
extremely limited given the semantics of Chapter 2: they consist solely of single assign-
ment statements with a constant expression. Every other possible program in that semantic
model includes at least one step which does not modify the state.

One of the contributions of the Coleman/Jones joint paper that we are particularly
happy with is the insight contained in what are the Isolation-Par-L and Isolation-Par-R

lemmas in this work.1 These lemmas allow a means of reasoning about a small fragment
of a program, simply by composing the behaviour of all that surrounds it into the overall
rely condition for the fragment. Conversely, if our desire is to reason about the effect of a
program’s actions without requiring the detail of the program, we can replace that program
by its guarantee condition in a manner reminiscent of Morgan’s specification statements.

An advantage afforded by the rely/guarantee method is the ability to abstract a program
to its specification and reason about that program purely in terms of the conditions in that
specification. As an example –indeed, one that is critical later in this thesis– it is possible
to reason about one branch of a parallel construct as though it were an isolated program so
long as the guarantee of the other branch is taken as part of the rely condition of the first
branch. This is done without any regard to the actual implementation of that other branch.

The rely/guarantee rules as we use them are intended to be an extension to the logical
framework provided by the basic SOS model. Due to this, and because it is intended that
the rules be used to shorten otherwise tedious proofs based solely on the SOS definition,
the rely/guarantee rules must be proven to be sound with respect to the SOS model.

The requirement for the proof, then, is that if some property of a program is deduced
due to the use of rely/guarantee rules, then that property must also be deducible through
the SOS model directly.

3.1.3 In Context

The particular rely/guarantee framework that is used in this work makes several assump-
tions about the predicates and relations involved in the specifications and, thus, used in the
development rules.

The rely and guarantee conditions are always reflexive, even where not explicitly made
to be so. The reason behind this is both to allow for program steps that do not modify the
state, and to always allow the possibility of an environment step that does not modify the
state. Directly related to the reflexivity requirement, the rely and guarantee conditions are

1See Section 5.2.6.

32 3.2. The Development Rules

also required to be transitive. This allows for either of the program or the environment to
take multiple consecutive steps and have them considered as a single step. This simpli-
fies the logic required in the proofs as there is no mechanism to distinguish between an
environmental step that does nothing and no environmental step at all.

The pre condition of a specification must be robust relative to the rely condition. For-
mally, this is expressed as

↼−
P ∧ R ⇒ P

and is the PR-ident lemma: given a single state that satisfies the pre condition, any state that
follows it by interference (i.e. the rely condition holds between the states) must also satisfy
the pre condition. This holds only for the semantic, instantaneous predicate satisfaction,
not under multiple-state evaluation as discussed in Section 3.2.

Finally, if the post condition holds between two states, we require that further interfer-
ence that conforms to the rely condition will only result in states that still satisfy the post
condition. Formally this is expressed as

Q � R ⇒ Q

and is the QR-ident lemma: the rely condition acts as a right-hand identity with respect to
the post condition.

These assumptions are not required by rely/guarantee frameworks in general. However,
during the development of the rules presented in this work (and during the development
of the rules in [CJ07]) these assumptions played a role in nearly every rule. Though they
could have been included as antecedents in every rule, they have been “factored out” here.

3.2 The Development Rules

The purpose of this section is to present a set of useful rely/guarantee rules that are intended
to be used in software development. Except where otherwise noted, these rules are proven
sound with respect to the semantic model of the language of Chapter 2 in Chapter 6.

The set of development rules given here is not complete with respect to the seman-
tics, and no attempt is made to gain completeness with respect to the semantic definition.
This is a deliberate choice as one of the desired properties of a program developed with
rely/guarantee rules is that it terminate, and it is certainly possible to use the semantics
alone to prove things about non-terminating programs. Alternative formulations of the
development rules for the constructs are presented to demonstrate the adaptability of the
overall rely/guarantee framework to specific situations.

Before tackling the rules, however, a brief reminder is in order. The assertion (P ,R) `
S psat (G ,Q) means that given that the pre and rely conditions, P and R, are valid,
the program, S , will behave as specified in the guarantee and post conditions, G and Q .
However, Q will only be satisfied for those cases where the execution of the program
actually terminates. The stronger assertion (P ,R) ` S sat (G ,Q) includes the conditions
of the previous assertion, but has the additional property that the program will always
terminate when run in an environment that satisfies the (P ,R) assumption.

Chapter 3. Rely/Guarantee Conditions 33

The first inference rule, Weaken, does not actually have a corresponding language con-
struct, but is useful nonetheless.

Weaken

(P ,R) ` S sat (G ,Q)
P ′ ⇒ P
R′ ⇒ R
G ⇒ G ′

Q ⇒ Q ′

(P ′,R′) ` S sat (G ′,Q ′)

The purpose of this rule is to allow a program that has been developed to satisfy a
given specification to satisfy a “weaker” specification. In the case of the assumptions –the
pre and rely conditions– weaker means admitting to a smaller range of states. For the pre
condition, the set of states that satisfy the weaker pre condition will be a subset of those
that satisfy the original pre condition. For the rely condition, the set of pairs of states
that satisfy the weaker rely condition will be a subset of those that satisfy the original rely
condition. So, to weaken a specification, one thing that you can do is make the assumptions
more restrictive.

For the constraints –the guarantee and post conditions– “weaker” means less restrictive
conditions. The set of states admitted by the original guarantee (post) condition must also
be admitted by the weaker guarantee (respectively, post) condition.

Moving on to the first of the rules that actually do correspond to a language construct,
we shall start with the rules for sequential composition.

Seq-raw-I

(Pl ,Rl) ` left sat (Gl ,Ql)
(Pr ,Rr) ` right sat (Gr ,Qr)

Ql ⇒ Pr

(Pl ,Rl ∧ Rr) ` mk -Seq(left , right) sat (Gl ∨ Gr ,Ql � Qr)

Sequential composition is represented by the Seq construct, and the Seq-raw-I rule is
a very direct –if naı̈ve– way of encoding its properties in rely/guarantee terms. The first
two antecedents presume the rely/guarantee-style development of the left and right sub-
programs and identify the associated conditions therein. The third antecedent gives the
only interdependence between the left and right subprograms, namely, that the post con-
dition of the left subprogram must establish the pre condition of the right subprogram.
The consequent of the rule, then, follows from combinations of the conditions of the sub-
programs: Pl is the overall pre condition as it executes first; Rl ∧ Rr as the overall rely
condition as the overall environment must be suitable for both subprograms; Gl ∨ Gr as
the overall guarantee condition as the combined behaviour is all of the behaviours of both
subprograms; and finally, Ql � Qr as the overall post condition as the overall effect of the
two subprograms will be precisely the composition of its parts.

Unfortunately, the Seq-raw-I rule does not obviously lend itself to the kind of top-
down, decompositional development that is preferred by VDM-style development meth-
ods. It is possible, however, to use the Weaken rule to transform Seq-Raw-I into Seq-I

below.

34 3.2. The Development Rules

Seq-I

(P ,R) ` left sat (G ,Ql ∧ Pr)
(Pr ,R) ` right sat (G ,Qr)

Ql � Qr ⇒ Q
(P ,R) ` mk -Seq(left , right) sat (G ,Q)

To see how this works, we define P 4Pl , R4 (Rl ∧Rr), and G 4 (Gl ∨ Gr); and set
Ql
4 (Q ′l ∧Pr) (justified by Ql ⇒ Pr in Seq-raw-I). This allows the implications in the

antecedents of the Weaken rule to be satisfied for the left subprogram, allowing the first
antecedent of Seq-raw-I to become the first antecedent of Seq-I (modulo renaming). It must
still be verified that the left subprogram actually does establish Pr , but this is unavoidable;
this also makes obsolete the third antecedent of Seq-raw-I. The definitions also allow us to
use the Weaken rule to obtain the second antecedent of Seq-I from the second antecedent of
Seq-raw-I in a similar manner. We add the third antecedent of Seq-I by simply instantiating
the fifth antecedent of Weaken. The consequent of Seq-I is obtained by substitution of the
definitions, and a trivial application of Weaken using the third antecedent.

The full proofs of both of these rules are in Chapter 6 and Appendix D, though for the
remaining constructs we will not show the naı̈ve (raw) versions of the rules, as they are
less suitable to rely/guarantee development.

Moving on to a more general combinator of programs we come to parallel composition.

Par-I

(P ,R ∨ Gr) ` left sat (Gl ,Ql)
(P ,R ∨ Gl) ` right sat (Gr ,Qr)

Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q
(P ,R) ` mk -Par(left , right) sat (G ,Q)

The two subprograms share an interesting symmetry that is shown in the first two an-
tecedents: they both must tolerate the interference generated by the other, and so the rely
condition of each includes the guarantee of the other. Since both of the subprograms will
be starting at the same point, they have the same pre condition. However, since the two
subprograms are likely to do different things, their constraints differ from each other inde-
pendently. The third antecedent combines the behaviours of the subprograms into a single
guarantee condition, and the final antecedent combines all of the conditions of the sub-
programs to imply the overall post condition. Of the terms in the conjunct in the fourth
antecedent, the last allows for parallel programs where the constraints on behaviour are
necessary –in addition to the post conditions of the left and right branches– to obtain the
post condition.

The explanation of the final antecedent in the Par-I rule is helped by an example; we
will take a brief look at the decomposition in Chapter 7 of SEARCHES into SEARCH(odds)
and SEARCH(evens). The Q term of that final antecedent corresponds to post-SEARCHES

in this case and it is given as(
t = ↼−t ∨ (t < ↼−t ∧ pred(v(t)))

)
∧
(
∀i ∈ {1..t-1} · ¬ pred(v(i))

)

Chapter 3. Rely/Guarantee Conditions 35

The Ql and Qr terms in the final antecedent correspond to post-SEARCH(odds) and
post-SEARCH(evens); taking is as odds or evens in turn, post-SEARCH(is) is given as

∀i ∈ is · (i < t ⇒ ¬ pred(v(i)))

From this parameterized definition it is clear that an assertion of the form Ql ∧Qr ⇒ Q
would not be valid in this case: though the second parenthesized term of post-SEARCHES

is satisfied, the first is not. The addition of the guarantee conditions from SEARCH(odds)
and SEARCH(evens) is required to satisfy the first parenthesized term of post-SEARCHES.
The guarantee conditions guar -SEARCH(is) –using is as above– are given as

t = ↼−t ∨ (t < ↼−t ∧ pred(v(t)))

which clearly satisfies the first parenthesized term of post-SEARCHES. This example is
covered in more detail in Chapter 7.

The rules thus far have dealt with constructs whose behaviour is independent of the
system’s state object. The remaining constructs’ behaviour is at least partially dependent
on the state object which causes some difficulty when reasoning about expressions in a
fine-grained semantics at a logical level.

The logical expression which we use to define predicates in our specifications are ei-
ther true or false relative to a single state: we talk about whether or not individual states
satisfy a predicate. At the logical level this “evaluation” is not affected by the possibility
of interference in the semantics.

Expressions at the level of the language semantics –such as the tests of the If and
While constructs– are profoundly affected by interference. In a language with expression
evaluation semantics that are coarser than we use in Chapter 2 we would have a direct
equivalence between the value obtained from both logical and semantic evaluation of an
expression. This is referred to as single-state evaluation as it appears that semantic evalua-
tion took place using the same state object during the entire expression evaluation.

Given the fine-grained semantics of our language, however, we know that expressions
do not have to be evaluated using a single state, but rather using a succession of states that
may change from one to the next as program execution proceeds. Naturally, this is referred
to as multiple-state evaluation; and, as the states used to evaluate the expression may differ
in value for a given variable, this gives rise to the seemingly nonsensical situation where
the semantic evaluation of x < x may result in a true value.

In effect this difference between single- and multiple-state evaluation means that an
expression in the language cannot usually be lifted to its equivalent logical expression
for use in the development rules. If it can be shown that the semantic evaluation of the
expression will happen in such a way as to always give the appearance of single-state
evaluation, however, then the expression may be used in both contexts. The simplest –and
most restrictive– condition under which multiple-state evaluation will appear to be single-
state evaluation is when interference as denoted by the rely condition is constrained to be
the identity relation on the relevant variables.

The next two rules both correspond to the construct for conditional execution. Two

36 3.2. The Development Rules

rules are presented here (and proven sound in Chapter 6) as there are two extremes to the
situations in which an If construct might be used. The cases revolve around whether or
not it is important for the logical meaning of the test of the construct to remain true during
the execution of the body of the conditional.

If-b-I

(P ∧ b,R) ` body sat (G ,Q)
R ⇒ IVars(b)
↼−
P ∧↼−¬ b ⇒ Q

(P ,R) ` mk -If (b, body) sat (G ,Q)

In If-b-I the situation is that the test, b, remains true until the body of the If acts to
alter it; this is captured in the first antecedent: including b in the pre condition of the first
antecedent has the effect of requiring that the rely condition, R, cannot change the state
in such a way that any single state will cause the un-interfered-with evaluation of b to be
false. To close the hole of multiple-state evaluation, the second antecedent requires that the
actions of the environment be equivalent to the identity relation as far as the free variables
in the test are concerned. The last antecedent handles the case where the test evaluates
to false: here the post condition must be trivially fulfilled by the pre condition and the
negation of the test.

The If-I rule is similar to If-b-I but differs in that it does not require that the test be
stable under interference.

If-I

(P ,R) ` body sat (G ,Q)
↼−
P ⇒ Q

(P ,R) ` mk -If (b, body) sat (G ,Q)

With this rule, it must be the case that the post condition is satisfied in any state which
differs only by interference from those states that satisfy the pre condition. The body of the
If must also satisfy the post condition, if executed, but its execution is completely optional.

Unlike the If construct, there is only one rule for the While construct as it combines
the features of the two If rules with respect to the conditional expression.

While-I

well -founded(W)
bottoms(W) ⊆ [[¬ (bs ∧ bu)]]

R ⇒ W ∗ ∧ IVars(bs)

SingleSharedVar(bu ,R)
↼−−−−−−−¬ (bs ∧ bu) ∧ R ⇒ ¬ (bs ∧ bu)

(P ∧ bs ,R) ` body sat (G ,W ∧ P)
(P ,R) ` mk -While(bs ∧ bu , body) sat (G ,W ∗ ∧ P ∧ ¬ (bs ∧ bu))

This development rule is the most complex of the ones presented in this work, but it is
flexible enough to be applied to a large range of the applications of the While construct.

First let us consider the W relation as it is pivotal to the termination argument for the
While-I rule. The W relation is well-founded over states –as indicated by the first an-
tecedent and the fact that W is a part of the post conditions– which means that it give a
transitive but irreflexive ordering over states. The irreflexive property of W means that
there is a definite notion of progress that can be used in a termination proof. The second

Chapter 3. Rely/Guarantee Conditions 37

antecedent adds the constraint that the W -minimal states –the bottoms of W – are con-
tained in the set of states which cause the While construct’s conditional to evaluate to false
under single-state evaluation. This allows the termination proof to argue that every itera-
tion of the body of the While construct results in a state that is either a bottom element of
W (and will thus terminate) or is, at least, closer to a bottom element than the state prior
to the iteration. Part of the third antecedent establishes that interference cannot “reverse”
the progress of the While as given by the W relation. It may appear that the R ⇒ W ∗

portion of the third antecedent is implicitly true due to the QR-ident, but unfortunately, that
is not the case: it may be possible to create a state that is still related through W relative
to some initial state, but such that the new state is further from the bottoms of W .

Noting that we have only required that the bottoms of W be contained within a set
characterized by single-state evaluation, we must constrain the While construct’s condi-
tional so that it may be considered to have been evaluated as though it were done in a single
state (even though we may not know which state). This is done in two parts mirroring the
way in which the conditional has been split. The first part, bs represents the stable por-
tion of the conditional expression, and the second part, bu represents the unstable portion.
The stable portion can be considered as though it were evaluated in a single state as the R
⇒ Ivars(bs) portion of the third antecedent isolates it from interference entirely. Using
the third antecedent in this manner has the effect of also allowing the stable portion of the
conditional expression to be used as a part of the pre condition for the body of the While
construct: this was a key motivation behind splitting the conditional in the first place.

That the unstable portion of the conditional expression may be considered to have eval-
uated as though it were in a single state requires the fourth antecedent. This antecedent is
primarily a syntactic constraint on the form of bu relative to the rely condition. Specif-
ically, there may only be a single appearance of a variable in bu whose behaviour under
interference is not equivalent to the identity relation. This constraint means that the only
state which is critical to the evaluation of bu is the one in which the sole shared variable is
read.

The fifth antecedent adds a further constraint so that we can be certain that when a
state is reached wherein the conditional will evaluate to false then all subsequent states
will also be such that the conditional will still evaluate to false. It is important to note that
this antecedent is not relevant unless the evaluation of the conditional expression can be
considered to have happened in a single state; otherwise the general case of multiple-state
evaluation renders this antecedent useless for analyzing the behaviour of a program. This
antecedent frees us from having to worry about the loop terminating before satisfying its
post condition. The loop may still terminate before reaching a state in the bottoms of W
–even with this antecedent– but if it does so we know that the conditional would not have
evaluated to true again.

The last antecedent is the specification satisfaction assertion on the body of the loop. As
mentioned, splitting the conditional allows us to add the stable portion of the conditional
expression to the pre condition of the body. The post condition of the body requires that
two things hold: first, that some progress is made as a result of its execution, thus the
W rather than W ∗ term; and also that the initial pre condition holds in case the body is

38 3.2. The Development Rules

executed again; thus the P term. The stable portion of the conditional is, of course, not
required to still hold as a result of executing the body.

The next construct –assignment to variables in the state– will not in general have a
rule that easily fits all situations. However, there is one case which can be formalized
directly, and it provides some insight into the kind of direct reasoning that must be done
with assignments.

Assign-I

R ⇒ IVars(e)∪{id}
G = {(σ, σ † {id 7→ [[e]](σ)}) | σ ∈ Σ} ∪ I

Q = {(σ, σ′) | σ, σ′ ∈ Σ ∧ σ′(id) = [[e]](σ)}
(P ,R) ` mk -Assign(id , e) sat (G ,Q)

Conceptually, the rule covers a simple situation: those cases where it can be shown
that the rely condition is an identity over the target variable and those variables in the
assignment’s expression; or, simply, those cases where there is no interference to worry
about. This only covers a rather restricted set of possible situations in which an Assign
construct might be found; however, we anticipate that in the general case constructs will
have to be proven directly in terms of the semantic model.

The second and third antecedents of this rule give the guarantee and post conditions in
the form of set comprehensions over pairs of states; this turned out to be the most direct
way of specifying the conditions such that they could be used in the proofs of Chapter 6 and
Appendix D. The guarantee condition is the identity relation combined with a relation that
has the right-hand state such that its value on the target identifier is that of the evaluated ex-
pression; this gives a guarantee that allows for state mutations the Assign construct would
perform in given single-state evaluation. The post condition is similar to the guarantee, but
is carefully constructed so that interference on variables that are not in the expression is
permitted.

Thus far we have covered the “regular” constructs in the language. The remaining
constructs are Atomic and STM — these constructs are far more difficult to develop a
good formalism for as they violate many of the usual expectations.

One of the interesting effects of the Atomic/STM pair of constructs is that the overall
effect of the body of the construct is seen by the environment to have happened all in
one step. Setting aside concerns regarding termination for a moment, this suggests the
following development rule.

Atomic-psat-I

(P , I) ` body psat (true,Q ′)
Q ′ ⇒ G

↼−
P ∧ R � Q ′ � R ⇒ Q

(P ,R) ` mk -Atomic(body) psat (G ,Q)

The rule is given in terms of partial satisfaction –psat– which does not require termina-
tion. The first antecedent notes that the body may assume that there will be no interference
while it runs and gives the body no behavioural constraints as it allows a guarantee con-
dition of true. The post condition of the body does not necessarily have to be the same
as that of the overall atomic block; this simplifies reasoning about the program given the
second and third antecedents. The second antecedent requires that the post condition of

Chapter 3. Rely/Guarantee Conditions 39

the body conforms to the behavioural specification of the overall atomic block. The third
post condition explicitly places the body’s post condition in the effective computation as
observed from the atomic block and asserts that it must satisfy the overall post condition.

That the post conditions of the body and the overall atomic block are not the same has
advantages in the proofs of Chapter 6, but it also makes reasoning during program design
easier. Specifically, it allows for the post condition of the body to be more precise than the
overall post condition of the construct; for example, it is possible to require that the body
increments a variable by an exact amount while the overall post condition only requires
that the variable be increased.

In the limited situation where the atomic block is being used for read isolation –rather
than to protect against interfering writes– the following development rule is useful and
allows for full satisfaction.

Atomic-I

(P , I) ` body sat (true,Q ′)
Q ′ ⇒ G

R ⇒ IVars(body)
↼−
P ∧ R � Q ′ � R ⇒ Q

(P ,R) ` mk -Atomic(body) sat (G ,Q)

The main change relative to Atomic-psat-I in Atomic-I is the addition of the third an-
tecedent. This antecedent constrains interference so that the variables in the body are not
altered by the environment. Looking at the semantic model, this implies that the STM-Retry

transition cannot occur as the comparison of the restricted domains between the initial and
current external states will never be unequal. And without the possibility of a STM-Retry

transition, the termination of the atomic block is solely dependent on the body.

3.3 References

The obvious primary source –in the context of this work– on the rely/guarantee method of
reasoning is Jones’ DPhil thesis [Jon81]. Shorter introductions that followed soon after the
thesis are [Jon83a, Jon83b], and they are more accessible both in terms of length and ease
of acquisition. These works propose rely and guarantee conditions as an extension to a
method which uses specification, data reification and operation decomposition in a manner
that is typical of VDM development.

The use of rely/guarantee reasoning is illustrated with a case study in a paper by Col-
lette and Jones [CJ00]. The development contained therein is well motivated and rigorously
done at the level of specification. However, though their example is developed all the way
to pseudo-code of an imperative language, their work does not deal with the connection
between the development rules and the language semantics.

Another example of rely/guarantee development is examined in [Jon96], here work-
ing with a concurrent object-oriented language. This paper presents –in addition to the
rely/guarantee development– a non-rely/guarantee transformation method of developing
concurrent programs, but notes that the transformational technique has considerable weak-
nesses relative to rely/guarantee reasoning.

40 3.3. References

Considering the problem of reasoning about concurrency in general, de Roever’s im-
pressive [dR01] goes into exhaustive detail on many methods for reasoning about the de-
velopment of concurrent programs, in both compositional and non-compositional ways.
Included for each method covered are the method’s history, its relation to other methods,
examples of its use, and proofs regarding the soundness of the formal elements of the
method. It should be noted that the soundness proofs for the rely/guarantee method that
are present in de Roever’s work are based on the use of Aczel traces [Acz82]. This is an
entirely different basis for soundness than is used in the proof of Chapter 6.

An outline of the early history of reasoning methods suitable for concurrency is given
in [Jon03a]. Some highlights of the work mentioned in that work follow here.

The work of Hoare in [Hoa69] sets forth a method for developing sequential programs
in a formal manner. Hoare-style axioms have had a profound influence on subsequent
methods of formal development and their influence can be seen in Owicki’s thesis [Owi75]
and a subsequent paper of Owicki and Gries [OG76]. The Owicki-Gries methods attempts
to tackle interference directly in the formal development of concurrent programs. Its re-
liance on global reasoning to give the final interference-freedom proof, however, renders
their method distinctly non-compositional and has the risk of requiring the user to re-
develop earlier stages so as to discharge that final proof. The influence of Hoare-style
axioms can also be seen in the VDM method [Jon90]. Jones’ thesis [Jon81] works in what
is essentially the same logical framework as VDM, and placing rely/guarantee concepts
within this allows interference to be reasoned about using inference rules in a manner sim-
ilar to Hoare-style axioms.

More recent work on rely/guarantee-style reasoning includes Stølen’s thesis [Stø90]
and subsequent papers [Stø91b, Stø91a]. Stølen’s work extends Jones’ rely/guarantee
framework by adding a predicate which allows for reasoning about the conditions under
which a program may block. Other pieces of recent work on rely/guarantee-style reason-
ing include [Sti86, Xu92, Col94, Bue00, BS01], as noted in Jones’ annotated bibliogra-
phy [Jon07]. However, none of these treat the gap between the language semantics and the
development rules in the same manner as this thesis. Finally, as noted in Chapter 1, this
work is an expansion of work done in [CJ07].

41

4 — Proof Methodology
The material in this chapter has been written –as much as possible– to be clear without
needing to reference the proofs of Chapter 6; despite this, much of it remains embedded in
the context of the proofs.

4.1 Logical Tools

The purpose of this section is to introduce the format and inference system that the lem-
mas of Chapter 5 and proofs of Chapter 6 are presented in. As part of this process, the
more interesting techniques are covered and, where appropriate, the inference rule that
corresponds to our use of the technique is given.

4.1.1 Natural Deduction

Natural deduction, rather than a form of the sequent calculus, is used as the overall sys-
tem of inference in this work. The canonical reference on natural deduction is Prawitz’s
monograph Natural Deduction [Pra65], which is a formalization of natural deduction using
Gentzen’s proof-theoretic semantics [Sza69]. Natural deduction can be loosely character-
ized as the use of introduction and elimination rules as applied directly to the hypotheses
and goal in an effort to find a path of reasoning between them. Any specific deduction in
the system references the previous deductions and assumptions that justify the step.

In particular, the proofs of Chapter 6 are presented in a variant of the boxed linear
notation sometimes referred to as “Fitch-style”. The appellation “Fitch-style” arises from
the work of F. B. Fitch, in particular [Fit52]. The choice to use this format is simply
to keep things stylistically consistent with the proofs encountered in [Jon90], [JJLM91],
and [BFL+94].

An example proof is given in Figure 4.1, showing how natural deduction is used to
prove that implication distributes over logical conjunction; for simplicity, all terms are
assumed to be defined.

from A ⇒ (B ∧ C)
1 from A
1.1 B ∧ C ⇒-E(h, h1)

infer B ∧-E(1.1)
2 A ⇒ B ⇒-I(1)
3 from A
3.1 B ∧ C ⇒-E(h, h3)

infer C ∧-E(3.1)
4 A ⇒ C ⇒-I(3)
infer (A ⇒ B) ∧ (A ⇒ C) ∧-I(2, 4)

Figure 4.1: An example natural deduction proof of the distribution of
implication over logical conjunction.

42 4.1. Logical Tools

Assumptions are introduced by from keywords, which start a block giving an implicit
scope in which the assumption is valid. The overall from/infer block represents entail-
ment from the assumption and prior deductions to the conclusion, and can be used as such
directly in later deductions. The scoping effect of the from/infer block allows for a cer-
tain degree of modularity with these blocks, something that is exploited to split up the
soundness proofs.

The basic set of inference rules that are used in this work come from both [Jon90]
and [BFL+94].

4.1.2 Structural Induction

As the language definition is given using structural operational semantics, it should come as
no surprise that the logical tool that ties the proofs together is that of structural induction.
The basic idea here is that if some property is entailed by every subclass of a particular
structure, then it is entailed by all members of the structure.

For the language of Chapter 2, and given H as the desired property, the particular
instantiation of the structural induction principle is

Stmt-Indn

H (nil)
S ∈ Assign ` H (S)

H (left) ∧H (right) ` H (mk -Seq(left , right))
H (body) ` H (mk -If (b, body))

H (body) ` H (mk -While(b, body))
H (left) ∧H (right) ` H (mk -Par(left , right))

H (body) ` H (mk -Atomic(body))
∀S ∈ Stmt ·H (S)

The first two antecedents of the Stmt-Indn rule represent the base cases of the language
structure as neither the nil statement nor any Assign construct have subcomponents that are
in Stmt . The remaining antecedents represent the inductive step of the structural induction:
showing that the property holds on the composite structure on the basis that the property
holds on its components.

4.1.3 Name Binding and Quantifiers

Name binding in the proofs is pervasive, and is used to solve two problems. The first
problem is trivial, and does not –in the uses here– represent anything remotely profound:
these uses are a substitutional shorthand, and the variables named in them are considered
to be fresh, that is, otherwise unused. The second category of use is to provide a means
of accessing a specific –but arbitrary– element of a set (e.g. the domain or range of a
relation). This latter category requires the use of quantifiers, and its need comes about due
to the difference between relations in general versus their restricted form as functions.

The uses of equalities as definitions in the proofs appear in two forms: the first is in
the from line of a from/infer box; the second is as a regular numbered line in a proof
where the justification is given as “definition”. Both forms may introduce new variables
and their types are determined implicitly by the structure of the objects in the equality and

Chapter 4. Proof Methodology 43

the types of the variables that are already known. For example, if we know that Ci is a
configuration in the semantic model, the equality Ci = (Si , σi) introduces two new vari-
ables –Si and σi– that denote, respectively, a Stmt object and a state, and together they
comprise a configuration. The use of the flat equality for name binding is done carefully so
as to ensure that any newly introduced variables could be replaced with the appropriate ac-
cessor functions using the previously known variables without any change in the meaning
of the proofs.

The equality is not, however, a suitable mechanism to handle the relations that are used
heavily throughout this work. In the simple case of functions we can be certain that f (x) –a
function, f , applied to the parameter x– will always denote the same value. With relations
in general this is not true: given a relation, R, and a fixed value, x , it is not the case in
[[R]](x , y) that y always denotes the same value. In this latter example, y could denote
many different values, and using the relation naı̈vely can result in separate instances of y
denoting different values. We have a need, then, to bind y to a single one of those values,
but in a manner such that while y could denote any of the values, the specific value is
consistent through a collection of instances of y . Thus we use quantifiers to achieve this.

The first quantified form of name binding –and the less complex form that we use–
uses universal introduction. We use this method when the fact that a property holds over
all members of a set is deduced. Once we know the set that we are interested in, we just
use the set membership operator in the from line of a from/infer box. For example, we
may use Cv ∈ C v in the from line of a from/infer box, where C v is already known to
be a set. This binds Cv to be an arbitrary element of C v and all uses of Cv within that
from/infer box then refer to the same element in a consistent manner. If Cv was already
known before this particular from/infer box, then uses of Cv within the box are considered
to reference the new Cv introduced in the hypothesis of the box, and the previously known
Cv is not accessible within the box. The actual introduction of the universal quantifier uses
the same set as used in the from/infer box, and binding is handled in the usual way for a
universal quantification; the binding survives in the quantifier as the inferred property of
the from/infer box uses the reference to the bound variables directly.

As an inference rule, universal introduction has the form

∀-I
x ∈ X ` H (x)
∀x ∈ X ·H (x)

and we take the x ∈ X portion of the antecedent to be a binding in our proofs. As the
antecedent of the ∀-I rule is in the form of a sequent, this means it is translated into a
from/infer box in a natural deduction proof, thus giving the use of the ∀-I rule the follow-
ing pattern

44 4.1. Logical Tools

...
n from x ∈ X

...
infer H (x)

m ∀x ∈ X ·H (x) ∀-I(n)
...

Note, also, that the set denoted in the pattern as X will usually have been defined earlier
as a flat equality; this is just the typical usage in the proofs rather than by any necessity.

The second quantified form of name binding in the proofs uses existential elimination
to bind variables temporarily so as to derive a more general property. Existential elimi-
nation is a generalization of disjunction elimination, and the latter can be shown to be a
special case of the former. Disjunction elimination may be given as an inference rule in
the following form

∨-E

H1 ∨ H2

H1 ` H
H2 ` H

H

where the various H and Hi are self-contained properties. If H1 and H2 can be parameter-
ized such that H ′(x1) = H1 and H ′(x2) = H2 then we have a means of writing the∨-E rule
in a more general manner. Specifically, the first antecedent becomes ∃x ∈ {x1, x2} ·H ′(x)
and the last two antecedents, together, become y ∈ {x1, x2},H ′(y) ` H with the con-
straint that y is an arbitrary value in {x1, x2}. The first new antecedent is critical as it
establishes that H ′ holds for at least one of the values, and the use of the existential quan-
tifier requires that the subject set is not empty. The second new antecedent simply means
that if H ′ holds on any arbitrary parameter in the set then H must hold. Finally, we can
replace the two-element set, {x1, x2} with an arbitrary set, X , and we arrive at an inference
rule that embodies existential elimination.

∃-E

∃x ∈ X ·H ′(x)
y ∈ X ,H ′(y) ` H

H y is arbitrary

When using this rule in practice to infer H from H ′(y) it requires some care to ensure
that the inference only depends on properties which all elements of X have; properties
specific to elements of a strict subset of X cannot be used unless there is an alternate
means of making the inference for elements of the complement of that subset.

The name binding in the ∃-E inference rule is primarily in the second antecedent,
specifically in the y ∈ X portion of the left of the sequent. The implicit binding in the
first antecedent is self-contained and not an issue. In a natural deduction proof the second
antecedent translates into a from/infer box, giving rise to the following pattern for using
the rule

Chapter 4. Proof Methodology 45

C3

C4

C8C7

C5

C0

C6

C1 C2

Figure 4.2: Example graph of computational paths.

...
n ∃x ∈ X ·H ′(x)
m from x ∈ X st H ′(x)

...
infer H

p H ∃-E(n,m)
...

This usage pattern in the proofs uses the same symbol –x– in both of the lines n and m
despite the fact that the ∃-E rule uses different symbols. Practically speaking, however,
this is not a problem as the meta-semantic model ensures that the uses of x in lines n and m
do not interfere with one another. It is worth noting that the actual property given by H ′

in the proofs of Chapter 6 tends to be trivial as the motivation behind using this rule is to
define the subject set over which x ranges.

4.1.4 Pinch Sets

During the development of the proofs for the partial satisfaction properties it became appar-
ent that a given computation can usually be thought about in terms of phases. For instance,
the assignment construct has two phases: first, the evaluation of the expression takes place;
and second, the alteration of the state happens based on the fully evaluated expression.

These phases are about the semantic transitions: activities such as the evaluation of
an expression happen during the transition between two configurations in the semantics.
Thus, to define the boundary between two phases the simplest thing to do is define the set
of configurations that lie between the phases. This set is called a pinch set.

The explanation of the defining property of pinch sets is given here with reference to
the graph in Figure 4.2. This graph is of the possible computational paths from a set of
initial configurations to a set of final configurations. The graph has been simplified to the
minimum essential features; please note that a direct correspondence between the graph
and the semantics of Chapter 2 is not intended. The intention of the graph is to illustrate
the problems which must be dealt with to provide a usable definition for pinch sets.

46 4.1. Logical Tools

Each labelled node in Figure 4.2 represents a configuration, and the arcs represent
transitions. The graph is acyclic which is critical to the property definition and required
to match the situation found in the partial satisfaction properties where termination is as-
sumed. A cycle in this graph would mean that a configuration may transition to itself, and
execution of a corresponding program would not be guaranteed to terminate.

We can see that C0 and C3 are minimal in this graph, as they have no transitions leading
to them; by a similar argument, C2 and C6 are maximal. These two pairs are, respectively,
the start and end configurations of all computations in the graph. A pinch set in the graph
is a set of configurations such that all computations from a minimal element to a maximal
element must pass through at least one of the configurations of the pinch set.

This definition immediately suggests two trivial pinch sets: the first is the set of min-
imal elements, and the second is the set of maximal elements. These two sets are not all
that useful, however, so we shall leave them aside. A non-trivial pinch set could consist
of C1, C4, and C7, for which it is not hard to see that it is impossible to find a path in
the graph from a minimal element to a maximal element that does not include one of the
members of this pinch set.

Let us now give a formal statement of the defining property of pinch sets. First, we
define C i to be the set of all reachable configurations for the computation that we are
interested in. Relative to the graph, C i is simply all of the configurations in the diagram,
C i 4 {C0..C8}, and, given that this example is not precisely the semantics of Chapter 2,
the semantic relation will be represented by a blank transition arrow, −→, and is defined
by the arcs present in Figure 4.2. Given this, C p is a pinch set if and only if

∀i ∈ C i ·

 i ∈ C p ∨(∀i ′ ∈ {i ′′ ∈ C i | i −→ i ′′} · ∃p ∈ C p · i ′ −→∗ p
) ∨(∀i ′ ∈ {i ′′ ∈ C i | i ′′ −→ i} · ∃p ∈ C p · p −→∗ i ′
)


This property is read as saying that for all reachable configurations in the computation

one of the following must hold:

1. the configuration is in the pinch set; or

2. all immediate successors of the configuration are either in the pinch set or have a
successor that is in the pinch set; or

3. all immediate predecessors of the configuration are either in the pinch set or have a
predecessor that is in the pinch set.

That the set consisting of C1, C4, and C7 satisfies the above definition can be verified
by looking in turn at the individual configurations in the graph. The minimal configurations
satisfy the second term as the set of their immediate successors is the pinch set. Config-
urations C1, C4, and C7 satisfy the first term, of course, as they are the pinch set. Next,
configurations C2, C5, and C8 satisfy the third term as the set of their immediate predeces-
sors is the pinch set. And, last, C6 also satisfies the third term through the transitivity of
the semantic relation.

Chapter 4. Proof Methodology 47

Now let us examine a set that is not a pinch set to see why it fails to satisfy the property
given above. Consider a proposed pinch set consisting of configurations C1, C5, and C7

— this does not comprise a pinch set as the transition between C4 and C8 allows for a path
that does not include any of the configurations from the proposed pinch set. In terms of the
logical definition, we can see that C4 trivially fails both of the first and third terms of the
property, and more importantly, also fails the second term. This last is a little more difficult
to see, as C4 does have one successor, C5, that is in the proposed pinch set; however, the
other successor, C8, is neither in the pinch set nor does it have a successor that is. As the
term requires that all of the immediate successors lead to a pinch set element, the second
term is not satisfied due to C8. A similar set of arguments apply to C8 with respect to the
third term of the property.

It should be clear from the definition and the examples that a superset of a pinch set
remains a pinch set.

4.1.5 Well-founded Induction

Well-founded induction is a form of induction that depends upon a well-founded relation
to provide the set over which the induction ranges. By way of analogy, the familiar strong
(or complete) induction uses the “less-than” relation, <, and the natural numbers as the
inductive set.

Briefly, using H as the desired property, natural number induction can be given as an
inference rule in the form

N-Indn

[∀i ∈ {i ′ ∈ N | i ′ < n} ·H (i)
] ` H (n)

H (n)

The rule is read to mean that so long as H (n) can be deduced from the assumption
that H (i) is true for all lesser values i , then H (n) must be true for any arbitrary n . It
must be the case that H (0) is true on its own merits, as the universal quantification in the
antecedent is vacuously true.

Well-founded induction generalizes strong induction over natural numbers in that, un-
like the natural numbers, a well-founded relation does not, in general, require that there is a
single minimal element. The particular rule we use is a bit different than the one for natural
numbers as the “direction” of the well-founded relations that we use is opposite than it is
for less than; specifically, where smaller numbers are to the left with the less than relation,
states closer to the minimal states are written to the left of the well-founded relation that
we use in the development rules.

Given a well-founded relation, W, and the desired property, H, the rule for well-
founded induction is

W-Indn

well -founded(W)[∀σ′ ∈ {σ′′ ∈ fld W | [[W]](σ, σ′′)} ·H (σ′)
] ` H (σ)

H (σ)

As with the N-Indn rule, this rule is read to mean that so long as H (σ) can be deduced
from the assumption that H (σ′) holds on all values of σ′ closer to the minimal elements of

48 4.1. Logical Tools

W than σ, then H (σ) must be true for any arbitrary σ. And, once again, H must be true of
all of the minimal elements of W on its own merits as the quantification in the antecedent
is vacuously true for the minimal elements.

Applying this to the proofs on the While construct for satisfaction of the post condition
and for convergence is somewhat more complicated. This is explained in more detail in
Chapter 6, but brief descriptions follow here.

The W relation of the rule is essentially the W relation of the While-I development
rule, except that it is implicitly lifted to be a well-founded relation over whole configura-
tions rather than just over states. The W relation is applied over the configurations between
successive iterations of the loop body, so that the well-founded ordering is over configura-
tions consisting of a static While construct, and a state component. Minimal elements of
the relation are those configurations for which the state component will cause the While’s
test expression to evaluate –under interference– to false. That the test expression evalu-
ates under interference is described in the discussion regarding multiple-state evaluation in
Section 3.2 (in particular, page 35). The While-I development rule is carefully defined to
ensure that the behaviour of test evaluation is consistent with the requirements imposed by
well-founded induction.

For the proof of the satisfaction of the post condition, the property H is that execu-
tion starting from the pre condition-satisfying state will satisfy the post condition of the
While specification. That post condition includes the reflexive closure of the well-founded
relation as well as the pre condition; this implies that the post condition –and thus the H
property– will be true in the vacuous case, and from that the induction builds.

In the case of the convergence proof, the H property is that execution from the given
state always converges upon a configuration that has a nil statement component. As the
minimal elements of the well-founded relation are those states that force the loop to termi-
nate, and all iterations of the body result in a state that is closer to the minimal elements,
the induction follows directly.

4.1.6 Proof by Contradiction

Using absurdity –proof by contradiction– in the proofs is, perhaps surprisingly, the eas-
iest mechanism available to show that certain rules in the semantics cannot be applied.
The mechanism is only used in one proof: convergence of the Atomic/STM construct in
Section 6.4.2. It is, however, the most direct way of reaching the conclusion.

Two inference rules are used to allow a proof by contradiction in this work, and both
are variants of the usual rules that deal with absurdity. The first allows the introduction
of an absurdity constant; as the law of the excluded middle does not hold in the presiding
logical framework, the first antecedent is there to ensure that the proposition, H , is prop-
erly defined (eliminating the third value). The remaining two antecedents assume that the
proposition, H , is both valid and invalid at the same time; the three antecedents together
suggest that one of the hypotheses that allowed their deduction is an absurdity.

Chapter 4. Proof Methodology 49

f-I

δ(H)
H
¬H
f

Absurdity is denoted by a special glyph, f, rather than false to ensure that there is
no ambiguity between the semantic false value, the evaluated language value false, and a
logical contradiction.

To put this absurdity constant to work –as it is unlikely that the absurdity is, itself, the
target of the overall proof– we need a rule to eliminate it.

f-E

δ(H)
¬H ` f

H

As with the introduction rule, absurdity elimination requires that the proposition is
defined. Once that is covered, if the negation of the proposition leads to an absurdity, then
the proposition itself must be true.

4.2 Augmented Semantics

It is clear that the system within which a program will actually be executed will include in-
terference from sources other than the program, and that the basic operational semantics of
Chapter 2 does not include a mechanism to model this interference. This section explores
the two methods used in this work to bring external interference into the semantic model.

The rely/guarantee model of a system is, at the abstract level, just an interleaving of
actions which conform to either the guarantee or the rely condition. The semantic model
of the language is –abstractly, still– just the sequence of program steps. Assuming that the
program was developed using the rely/guarantee rules, then all of those semantic model
program steps correspond to the rely/guarantee model steps that conform to the guarantee
condition. That implies that the semantic model presented previously is only a partial
model of the systems that we are interested in, and that we need to augment the semantics
to allow for steps based on external interference.

This augmentation is done in two ways: one form of the augmented semantics provides
an explicit rule to incorporate the changes made by interference, and does so in such as way
as to always distinguish the interference steps from the program steps. This distinguishing
semantics fully implements the model assumed by the rely/guarantee framework. The sec-
ond form is the merging semantics, which incorporates interference by perturbing the state
component at the start and end of each program step. The three sets of semantics have dif-
ferent characteristics which make one or another more useful for specific proofs; however,
they all describe the same system by taking a different perspective on interference.

50 4.2. Augmented Semantics

4.2.1 The Distinguishing Augmented Semantics

The first of the two augmented semantic models is a very simple extension of the basic
language semantics. It consists of two rules that define the relation r−→

—
. The relation is

parameterized by a rely condition, so the relation for a specific rely condition, R is written
r−→
R

.

The first rule of this semantic model is a transitive wrapper that includes the entire s−→
relation of the semantics from Chapter 2.

A-S-Step
(S , σ) s−→ (S ′, σ′)
(S , σ) r−→

R
(S ′, σ′)

The A-S-Step rule means that all of the program steps of the basic semantics are a part of
the distinguishing semantics. As the rule does the inclusion at the level of individual steps,
the fine-grained concurrency already in the basic semantics is preserved and extended so
that interference operates at the same granularity.

The second rule introduces interference steps into this semantic model.

A-R-Step
[[R]](σ, σ′)

(S , σ) r−→
R

(S , σ′)

The A-R-Step rule does not cause any change to the program text as this rule does not
represent a program step. Instead, this rule changes the state component in a manner that
will satisfy the rely condition.

These two rules jointly define the distinguishing version of the augmented semantics.
The choice between the two rules is non-deterministic: it is certainly possible in this se-
mantic model to completely execute the program from start to finish without any interfer-
ence whatsoever. This does correspond to the rely/guarantee model of execution, though
the likelihood of this happening —which is not addressed by either model— is very low.

An alternative, equivalent, definition of the distinguishing semantics can be given in
terms of a union of the basic semantic relation and the rely condition lifted to configura-
tions.

r−→
R
≡ s−→ ∪{((S , σ), (S , σ′)) | S ∈ Stmt ∧ (σ, σ′) ∈ R}

This definition is less useful in the proofs, however, as it is convenient to be able to refer-
ence the A-S-Step and A-R-Step directly.

It should come as no surprise that if the rely condition is the identity relation, then
this semantic model becomes nearly equivalent to that of the basic semantic model —
certainly the set of reachable configurations from any given initial configuration are the
same for both models. The difference between the models is that this augmentation allows
identity transitions: a transition from a configuration to itself. In that respect, the set of
pairs of configurations —the semantic relation itself— of the augmented semantics is a
strict superset of that of the basic semantics.

The inclusion of identity transitions in the distinguishing semantics leads to the un-
fortunate consequence that –though harmless in this context– means this semantic model

Chapter 4. Proof Methodology 51

includes infinite sequences of configurations that differ only by their state components.
The context that renders this side-effect harmless is the overall framework assumption that
execution starvation never occurs due to external interference. For the soundness proofs of
the partial satisfaction properties, infinite sequences can be dealt with as these properties
only apply to a subset of possible computations. In the proofs of the convergence property,
we require a different semantic model.

4.2.2 The Merging Augmented Semantics

The second augmented semantics is, if anything, even simpler than the distinguishing se-
mantics. It consists of a single rule which defines the semantic relation, m−→

—
, and is param-

eterized by a rely condition. As with the previous semantic relation, this semantic relation
with a specific rely condition, R, is written m−→

R
. This rule combines the two rules in the

distinguishing semantics, merging their effects.

M-Step

[[R]](σ0, σ1)
(S , σ1) s−→ (S ′, σ2)

[[R]](σ2, σf)
(S , σ0) m−→

R
(S ′, σf)

The M-Step rule is just a basic semantic step that allows, directly, for interference to
happen immediately before and after the program step. In terms of relational composition,

m−→
—
≡ (A-R-Step � A-S-Step � A-R-Step)

that is, the merging semantics is equivalent to the specific composition of the rules from
the distinguishing semantics.

This semantic model matches that assumed by the rely/guarantee framework: despite
the appearance that interference steps happen nearly twice as often as program steps, recall
that the rely condition is both reflexive and transitive. The latter means that two (or more)
consecutive interference steps will be “seen” by the program as a single step. The former
means that, in a sense, interference does not always have to alter the state: it could leave it
unchanged.

The merging semantics does have two major differences relative to the distinguishing
semantics: first, all transitions in this semantics must alter the textual component of the
configuration; and second, it is no longer possible to distinguish the actions of the environ-
ment from those of the program (as the name indicates).

The feature in this semantic model that all transitions must alter the textual component
of the configuration means that the infinite sequences of interference steps that are possi-
ble in the distinguishing semantics are not possible in the merging semantics. It should be
noted that the merging semantic model only has this property because the basic semantic
model does: if the basic semantics allowed transitions that did not alter the textual compo-
nent, this would not be true. The net effect of this property (and the primary reason this
model exists) is to simplify the convergence proofs — to use the distinguishing semantic
model in the convergence proof one would have to formalize the assumption that external

52 4.3. Property Definitions

interference never causes execution starvation. Unfortunately, this property also makes the
proofs of the partial satisfaction properties very difficult, as they require the ability to dis-
tinguish between program steps and interference; thus there are two augmented semantic
models.

Merging the interference steps into the program steps limits the type of properties that
can be used over pairs of state components. The only ones that are necessary in the required
proofs, however, relate to the satisfaction of the post condition of (sub)programs. From
that it is possible to use well-founded induction with the While construct, and to show that
the pre condition of the right-hand component of a sequence construct is satisfied by the
resultant states from execution of the left-hand component.

Restrict the set of transitions in the distinguishing semantics to those with differing
textual components, and you have the basic semantics. You also have a subset of the
merging semantics: precisely the case where the rely condition is equivalent to the identity
relation.

Every multiple-step computation that is possible in the merging semantics is also pos-
sible in the distinguishing semantics (with “fill-in” steps). However, every finite multiple-
step computation in the augmented semantics is also possible in the merging semantics,
barring those that never use the A-S-Step rule. The result of this near equivalence is that for
every non-trivial program that we are interested in we can treat any result in one of the
augmented semantics as applying to both semantics.

4.3 Property Definitions

For the rely/guarantee rules to be considered sound with respect to the operational seman-
tics, we must prove that two properties hold: first, that the partial correctness property
holds, and second that a program developed using these rules will, during execution, con-
verge upon the nil statement. The partial correctness property, in turn, depends on two
properties: that all of the steps performed by the program conform to the guarantee condi-
tion, and that the post condition is satisfied by all pairs of initial and final states due to the
program execution.

4.3.1 Partial Correctness

The partial correctness properties of a program relative to its specification deal with the
states the program reaches under the assumption that the program does terminate. Tradi-
tionally, for sequential systems, this meant only that a program would produce, at termina-
tion, a set of states that satisfied the post condition of the specification. This requirement
stands in the rely/guarantee framework, but partial satisfaction in this context requires that
the program’s behaviour also satisfies the guarantee condition. This section defines and dis-
cusses these two properties that define partial satisfaction in the context of a rely/guarantee
framework.

The partial correctness properties are defined in terms of the distinguishing augmented
semantics; it would be possible to give an equivalent set of definitions in terms of the

Chapter 4. Proof Methodology 53

merging semantics, but the soundness proofs would be more complex.

Within

The Within property is an assertion about the behaviour of a program, looking at the
changes the program makes to the state component from the source to target configuration
of each indivisible semantic transition. As changes to the state component made by inter-
ference are not due to the program itself, they are not directly of concern to this property,
however, their affect on the actions of the program is, and so we use the distinguishing
semantics to incorporate interference into our reasoning.

At its base, Within is defined over single semantic transitions. It is then extended
to multiple transitions, and then abstractions of the notation are added to allow for as-
sumptions about the environmental context to be used. There are three versions of the
Within property as applied in different contexts. The first, denoted Within1, applies only
to pairs of configurations related through a single semantic transition. The second is de-
noted Withinm and is applied to pairs of related configurations where all of the single
steps between the two configurations satisfy the Within1 property. The third is denoted
Withins and is used to indicate that all computations from a given statement will behave
according to the specified guarantee condition.

A pair of configurations related through a single semantic transition satisfies the defi-
nition of Within if and only if

1. the transition is due to the A-S-Step rule and the state components of the source and
target configurations together satisfy the guarantee condition; or

2. the transition is due to the A-R-Step rule.

These two cases are represented in the form of inference rules for direct use in the proofs
of Chapter 6. The Within-Prog rule corresponds to the first case of the definition, and the
Within-Rely rule corresponds to the second.

Within-Rely
(C ,C ′) ∈ A-R-Step

Within1(C ,C ′,G)

Within-Prog

((S , σ), (S ′, σ′)) ∈ A-S-Step

[[G]](σ, σ′)
Within1((S , σ), (S ′, σ′),G)

It is interesting to note that, for this definition, the nature of the rely condition is wholly
irrelevant. It can also be seen from Within-Rely that any interference transition will satisfy
the definition of Within for all valid guarantee conditions: thus interference is not directly
relevant to the definition of Within .

A lemma that follows directly from the definitional inference rules is a “weakening”
lemma that allows the replacement of the guarantee condition with another, more permis-
sive, condition.

54 4.3. Property Definitions

Within-Weaken

G ⇒ G ′

Within1(C ,C ′,G)
Within1(C ,C ′,G ′)

This lemma is defined on single-step transitions, as are the definitions; because of
this, the lemma allows for free replacement of the rely condition in the semantic transi-
tion arrow. It is not hard to see that this is valid: if the rely condition is relevant to the
transition, then the transition must be due to the A-R-Step rule, and is therefore subject to
the Within-Rely portion of the definition. Otherwise the rely condition has no affect on the
transition, in which case the transition derives from the A-S-Step rule, and the pair of state
components must have satisfied the guarantee condition.

Having a definition that deals with single-step transitions is useful, but what is needed
for the proofs is a means of extending this property to multiple-step transitions.

Within-Multi

C ij = {(Ci ,Cj) | C0
r−→∗
R

Ci
r−→
R

Cj
r−→∗
R

Cf }
∀(Ci ,Cj) ∈ C ij ·Within1(Ci ,Cj ,G)

Withinm(R,C0,Cf ,G)

The essence of the definition of Within over multiple steps is stated as an inference
rule, Within-Multi. The definition itself is not surprising: a multiple-step transition satisfies
the definition of Within if and only if every possible intermediate single-step transition
individually satisfies the definition of Within .

Stepping through the antecedent in turn, the first fixes the overall multiple-step tran-
sition that is of interest. The second antecedent defines the set of all intermediate pairs
of configurations that are related by a single step of the semantic relation. It is important
for this set to include all of the configurations that are related both to the overall source
and target configurations. Finally, the third antecedent universally quantifies over all of the
intermediate pairs of configurations to make sure that they all conform to the single-step
definition of Within .

Given this notion of Within over multiple-step transitions, the Within-Weaken lemma
can be altered to give a form valid for multiple-step transitions as well. The assumption in
the single-step lemma is that the rely condition can be essentially ignored; for the multiple-
step lemma, because Withinm is sensitive to all transitions in all of the computational
paths between the source and target configurations, and since the rely condition is a partial
cause of there being multiple paths in the first place1, the multiple-step lemma requires an
additional constraint.

Within-Weaken-Multi

R′ ⇒ R
G ⇒ G ′

Withinm(R,C ,C ′,G)
Withinm(R′,C ,C ′,G ′)

The extra constraint –the first antecedent in Within-Weaken-Multi– restricts the inter-
ference allowed by the rely condition in the consequent to be wholly contained within

1With non-deterministic constructs being the other cause.

Chapter 4. Proof Methodology 55

the bounds of the interference allowed by the rely condition in the third antecedent. The
essence of this restriction is that it reduces the number of computational paths between
the source and target configurations. This reduction is a subset of the set of paths allowed
by the original rely condition, and, given that the original set satisfied the definition of
Within , the smaller set must as well.

The last form of the Within property –Withins– may be obtained through the use of
the Within-Abstract rule.

Within-Abstract

∀σ, σ′ ∈ Σ ·
(

[[P]]σ ∧ (S , σ)
r−→∗
R

(nil, σ′)
⇒ Withinm(R, (S , σ), (nil, σ′),G)

)
Withins(P ,R,S ,G)

Given a statement and a pre condition-satisfying state, if it is known that all terminat-
ing computations satisfy the Withinm property for a specific guarantee condition, then the
Withins property holds for that statement. As this only applies to terminating computa-
tions, the target configuration of the computation is omitted from the Withins property
entirely.

The statement-based Withins property may be used to infer a Withinm property by
using the Within-Concrete rule.

Within-Concrete

Withins(P ,R,S ,G)
[[P]](σ)

(S , σ)
r−→∗
R

(nil, σ′)
Withinm(R, (S , σ), (nil, σ′),G)

The antecedents of this rule require the Withins property, a state which satisfies the
contained pre condition, and a terminating computation starting from the contained state-
ment and pre condition-satisfying state. Given these elements the Withinm property fol-
lows directly.

Post Condition Satisfaction

The second property required for a statement to satisfy the partial satisfaction property is
that the post condition holds over the pair of initial and final states from all terminating
computations starting with the given statement. This assumes that the initial state satisfies
the specification’s pre condition, but is not concerned with any intermediate states between
the initial and final states.

This requirement is not complex, and comes directly from the general class of Floyd-
Hoare rule systems. The major difference in the rely guarantee framework used here (and
used in most rely/guarantee frameworks) is the insistence on post conditions of two states.

4.3.2 Convergence

The convergence of a sequence of configurations to a specific set of configurations is a sur-
prisingly difficult property to define in an accurate, meaningful way for a rely/guarantee

56 4.3. Property Definitions

framework. The framework is predisposed to dealing with events that might possibly hap-
pen; convergence is about events that must definitely happen.

Unlike the properties of partial satisfaction –which are essentially state-based– con-
vergence is based on the program text. For total correctness we need to know that all
computational paths from a given set of starting configurations will, in a finite number of
transitions, reach a configuration with a nil statement.

Though the desired property –convergence to a nil configuration– is sufficient, with
partial satisfaction, to show total correctness, the proofs become very difficult to write
using it. Thus a more general property is required that allows for convergence on an
arbitrary set of configurations, which is characterized by a set of statements. The con-
vergence property is only concerned with the statement component of configurations; the
state component is not relevant to this property. Furthermore, as we are operating within
a rely/guarantee framework, the environmental context in which a statement will be exe-
cuted is of definite importance. The environmental context must therefore be a part of the
definition.

First, we will restrict our definition of Converges to the merging semantics. The po-
tential infinitely recurring interference that is a part of the distinguishing semantics is not
actually a part of the systems that we are interested in, as we assume that (execution) re-
source starvation never occurs. And, as this property is not directly concerned with the
state components in the target configurations, distinguishing the program steps from the
environment steps is unnecessary.

There are two forms of the Converges property as used in the formal proofs. The
first, Convergesc , deals with convergence starting from a specific configuration, and is
embodied in the Conv-I inference rule.

Conv-I

C i = {Ci | C0
m−→∗
R

Ci}
C f = {(Sf , σf) ∈ Config | Sf ∈ Setf }

∀Ci ∈ C i ·
(
∃Cf ∈ C f · (Ci

m−→∗
R

Cf) ∨ (Cf
m−→∗
R

Ci)
)

Convergesc(C0,R,Setf)

A convergence property in the form Convergesc(C0,R,Setf) is read: “All computa-
tions from the configuration C0, allowing for interference bounded by R, will always reach
a configuration with a textual component that is a member of Setf in a finite number of
steps”.

The second form of the convergence property is Convergess which deals with conver-
gence starting from a given statement and states satisfying a pre condition. It is possible
to use the Conv-Abstract inference rule to obtain a Convergess property from a quantified
Convergesc property.

Conv-Abstract
∀σ ∈ Σ · [[P]](σ) ⇒ Convergesc((S , σ),R,Setf)

Convergess(S ,P ,R,Setf)

Thus, Convergess(S ,P ,R,Setf) is read: “Configurations formed from the initial
statement, S , and states satisfying the pre condition, P , when executed in an environment
where interference is bounded by the rely condition, R, will always reach a configuration

Chapter 4. Proof Methodology 57

with a textual component that is a member of the set of statements, Setf ”.

Unsurprisingly, a Convergesc property may be obtained from a Convergess property
simply by supplying a suitable state.

Conv-Concrete

[[P]](σ)
Convergess(S ,P ,R,Setf)

Convergesc((S , σ),R,Setf)

The Converges property may be weakened by enlarging the set of final statements: if
the starting point always reached an element of the smaller set, it will still always reach an
element of the larger one. This is embodied in the Conv-Weaken inference rule.

Conv-Weaken

R′ ⇒ R
Setf ⊆ Set ′f

Convergesc(C ,R,Setf)
Convergesc(C ,R′,Set ′f)

There are several interesting things that this notation allows, depending on the form
of the set of final statements. The simplest is that, if the target set of statements is the
singleton set containing nil, then this property is equivalent to the usual notion of program
termination; specifically, this is the property we desire for total correctness.

Similar to the singleton set containing nil, if the empty set is used as the target set then
of all of the configurations formed from the initial statement and a pre condition-satisfying
state, none of them are in the domain of the semantic relation. The empty set used as
a target set implies that all of the possible initial configurations have halted. This does
not imply computational divergence: that follows from the negation of the convergence
property with a singleton set containing nil. This places the Converges property in a
fairly myopic position: though it may assert that all computational paths must reach a
configuration with a textual component that is a member of the target set, it asserts nothing
about what computation may follow that configuration. In fact, in a pathological case –
such as with a looping construct– it is entirely possible that a computation path may pass
successively through many configurations containing an element of the target set.

Another interesting property of the Converges notation is that the set of target state-
ments does not have to be minimal: a Converges assertion with a set of target statements
that is equivalent to the set of all possible statements is a tautology for any combination of
valid initial statements, pre conditions, and rely conditions. This is the case even though
most of the statements in the set of all possible statements are completely unreachable
from any given initial statement. The requirement of this property is that all paths from
the initial statement will reach at least one element of the set of target statements. This
particular feature of the property allows the use of target sets that contain statements with a
quantified component where the quantification includes statements that cannot be reached
(but, for the sake of showing termination, make no difference to the argument). For exam-
ple, it allows for a target set with a variable quantified over the Boolean values in the test
expression field of the If constructs, and allows that to be useful even in situations where
it is known that one of the Boolean values cannot be reached.

Lastly, if the initial statement is an element of the target set, the Converges property

58 4.3. Property Definitions

is trivially true regardless of the environmental context. Having the initial statement in
the target set means that all possible configurations that can be formed from that state-
ment trivially satisfy the requirement that the computation must reach a configuration with
a statement component that is a member of the target set. The convergence property is
considered over the transitive closure of the semantic relation, thus the reflexive step of a
configuration onto itself is included.

All this leads to the question of what allows for the deduction of the convergence
property. The straightforward –though profoundly expensive, not to mention generally
impossible– means of doing this would be to simply simulate all possible executions of the
given program to see what happens.

It is fairly obvious, just from looking at the rule definitions in the operational semantics,
that all of the constructs in the language –except While and the Atomic/STM pair– have
reduction-based semantics, and as long as there is an element in the target set that is a
reduction of the initial statement, then the convergence property can be proven. For these
statements the proofs are essentially structural: either the construct reduces directly based
on the applicable rules, or it reduces because the applicable rules reduce a component.

Convergence properties on the While construct generally have one of two forms: either
convergence to nil or convergence to a partially evaluated unfolding of the While construct.
In the proofs in Chapter 6 we require the use of the latter to prove the former: at the very
least a While construct must become an If construct before it can reach a nil.

Arguments about the convergence of the Atomic construct to nil have a problem that
appears to be similar to that of the While construct’s iterative nature. It is possible to show
that an Atomic construct must converge on a STM construct of the form given by the
STM-Atomic rule, but it is difficult to assert that any particular successor configuration must be
reached. The key here is that, due to the nature of interference, it may be that the STM-Retry

rule can be applied at nearly any point, and also –again due to the nature of interference–
that since the STM-Retry rule may never be applied. As interference is represented as a
relation and the A-R-Step rule does not provide a mechanism for selecting any particular
state for the target configuration, this means that the behaviour of the STM construct is
profoundly non-deterministic when evaluated with an arbitrary rely condition. So, then,
the key is to somehow make the argument that the STM-Retry rule cannot be applied during
one of the attempts to execute the STM construct. With the very tight constraint that the
Atomic-I development rule adds –namely, that the rely condition cannot modify variables
that are in the Atomic construct’s body (which would, in turn, trigger the STM-Retry rule)–
this argument can be made trivially.

Knowing the conditions under which we can definitely argue convergence for the
While construct and Atomic/STM pair, we can use structural induction once again to
gain a complete convergence argument for a whole program. This is not the only possible
means to argue convergence, however: showing that the semantic relation is, itself, well-
founded with configurations formed from the target set as minimal elements is another
mechanism. Indeed, that is precisely the argument that will be used in Section 6.4 to show
that any assignment statement must terminate.

59

5 — Preparatory Lemmas
The purpose of this chapter is threefold: introduce the lemmas that are used in the formal
soundness proofs of Chapter 6 and Appendix D; give a justification for their validity, as
formal proofs are not provided; and provide a motivation for their existence and use. As
such, this chapter is more modular than those prior, and each subsection can nearly be
taken on its own. All of these lemmas are listed together in Appendix C, immediately prior
to the proofs.

5.1 Miscellaneous

The lemmas in this section do not have a common underlying theme except that they ex-
press properties held by the semantics –direct and augmented– of the language in Ap-
pendix A.

5.1.1 Rely-Trivial

For any multiple-step transition between a pair of configurations this lemma concludes that
their textual components must conform to the rely condition so long as all of the individual
steps are a result of the specified rules. The specific rely condition is given in the first
antecedent, and the rules are named in the second.

Rely-Trivial

(S , σ)
r−→∗
R

(S ′, σ′)

((S , σ), (S ′, σ′)) ∈
 A-R-Step ∪ Assign-Eval ∪ STM-Atomic ∪

If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E ∪
STM-Step ∪ STM-Retry ∪ Par-E ∪ While

∗
[[R]](σ, σ′)

All of the rules named in the second antecedent have one of two properties: either they
never modify the state component, or, for the rules that do alter the state component, they
do so explicitly according to the rely condition.

In the case of the base semantics, the antecedent will not contain the A-R-Step rule and
the rest of the rules all leave the state component unmodified. As the identity relation is a
subset of all possible rely conditions in this rely/guarantee framework, the consequent is
trivially satisfied.

For the augmented semantics that distinguishes interference, r−→
R

, we have the same
partitioning of the rules as with the base semantics. All of the rules except A-R-Step trivially
satisfy the consequent. The A-R-Step is now relevant, however, the consequent of this lemma
is the antecedent of that semantic rule, so we have trivial conformance once more.

Finally, for the augmented semantics that wraps interference around each rule step, it
is simply a case of noting that the change to the state component for the rules which would
otherwise act as an identity is equivalent to the relational composition R � I � R. And
that, of course, is precisely equivalent to R.

60 5.1. Miscellaneous

By far the most frequent use of this lemma is to show that the only changes to the state
from the beginning of execution were caused by interference, and that in turn allows for
the assertion that the pre condition still holds despite those changes.

5.1.2 Sequential-Effect

This lemma is valid under all three semantic relations, though only the
r−→∗
I

version is
shown here. This lemma requires that there be no interference –the rely condition is the
identity relation– which allows this result to be applicable under the distinguishing aug-
mented semantics, as shown, as well as both the basic semantics in Chapter 2 and the
merging augmented semantics.

Sequential-Effect
(S , σ)

r−→∗
I

(S ′, σ′)

σ′ = σ † (Vars(S) C σ′)

The conclusion of this lemma gives the relation between the source and target states,
indicating how they differ. Naturally, this lemma is used to characterize the effect that the
body of an Atomic/STM has on the state so that the effect can be shown to satisfy its
guarantee and post conditions.

The basic observation is that a program can only change a given variable if the variable
is named in the program’s syntax. Conversely, if the program never names a given variable,
then that variable cannot be changed by the program; and, given no interference, that
variable will remain unchanged over the execution of that program.

5.1.3 Frame-Rule

This lemma is directly inspired by the work on separation logic and the axiom of the same
name in that framework. The pragmatic intent of this lemma is the same: for any given
interference-free computation, only the variables in the source program text are relevant to
computation; all of the variables that are not in the program text can be of any value.

Frame-Rule

(S0, σ0)
r−→∗
I

(S1, σ1)

(Vars(S0) C σ0) = (Vars(S0) C σ′0)
(Vars(S0) C σ1) = (Vars(S0) C σ′1)
(Vars(S0)−C σ0) = (Vars(S0)−C σ1)
(Vars(S0)−C σ′0) = (Vars(S0)−C σ′1)

(S0, σ
′
0)

r−→∗
I

(S1, σ
′
1)

More concretely, it is possible to have arbitrary values in the variables not named in
the initial program text without any affect on the final result of the computation. The first
antecedent gives a ‘reference’ computation; the following two antecedents ensure that the
values of the variables named in the initial program text are the same in both pairs of states;
and the last two antecedents ensure that all of the variables not named in the program text
are unchanged through the program execution.

The restriction of this rule to interference-free computations –where the rely condition
is the identity relation– may be more restrictive than is strictly necessary; it is, however,

Chapter 5. Preparatory Lemmas 61

sufficient for the purposes of the formal proofs in Chapter 6. The interference-free con-
straint is what motivates the last two antecedents; allowing for interference would require
that the last two antecedents take interference into account, and it is very likely that the
rely condition would have to imply the identity over the variables named in the body of the
program text. This does merit future work, and is noted in the final chapter of this work.

As with the Sequential-Effect lemma, the Frame-Rule lemma is used primarily to rea-
son about the effects of an Atomic/STM body in the surrounding context while proving
the guarantee and post conditions.

5.1.4 Single-Eval-Assign and Single-Eval-If

In Chapter 3 the issue of multiple-state evaluation of expressions is discussed, and most
of the development rules are carefully designed to avoid having to depend directly on
evaluated variables because of this. The Assign-I and If-b-I rules, however, cannot avoid
this issue, and so are designed to require a context that enforces interference-free behaviour
from the environment on the variables in the expressions they depend on.

Single-Eval-Assign

R ⇒ IVars(e)

(mk -Assign(id , e), σ)
r−→∗
R

(mk -Assign(id , v), σ′)

v ∈ Z
v = [[e]](σ) = [[e]](σ′)

Single-Eval-If

R ⇒ IVars(e)

(mk -If (b, body), σ)
r−→∗
R

(mk -If (v , body), σ′)

v ∈ B
v = [[b]](σ) = [[b]](σ′)

Because of this restriction on the interference context, there are two lemmas that can
relate the final evaluated value to the semantic value as denoted under any state out of a
set of states that differ only by the permitted interference. In both of these lemmas we
require, as the first antecedent, that the rely condition implies the identity relation with
respect to the variables in the construct’s expression. Combined with the semantic transi-
tion, this allows us to conclude that the evaluated value will be the same as the semantic
meaning of the expression in either of the states denoted in the semantic transition. Note
that the final antecedent of both of the lemmas –restricting the type of v to be either an in-
teger or Boolean– matches the context conditions in the language semantics; in particular,
the restriction in Single-Eval-Assign corresponds to states that only allow integers in their
range.

The observation that motivates the lemma is simple: if nothing changes the variables
that an expression depends on, then the evaluation of that expression will be the same no
matter how much (or how little) interference occurs.

These lemmas are used to establish that the pre condition holds at the start of the
execution of the body of an If construct developed using If-b-I and that the change to
the state from an Assign construct developed with Assign-I conforms to the form of the

62 5.1. Miscellaneous

guarantee and post conditions.

5.1.5 While-interstices-pre and While-interstices-psat

These two lemmas depend on the partial satisfaction properties on the body of the While
loop. This restricts the use of the lemmas to contexts which have established the psat
property on the body; structural induction in the proofs, for example. The lemmas are
concerned with the states in the interstices between iterations of the body; an interstice, in
this context, is a configuration between successive iterations of a While loop’s body.

The meaning of the first lemma, While-interstices-pre, is that the pre condition must
hold on the interstitial states.

While-interstices-pre

[[P]](σ)
(P ∧ bs ,R) ` body psat (G ,W ∧ P)

R ⇒ W ∗ ∧ IVars(bs)

wh = mk -While(bs ∧ bu , body)
(wh, σ)

r−→∗
R

(mk -Seq(body ,wh), σ′)

[[P ∧ bs]](σ′)

There are two cases to consider for this lemma: those where the target configuration of
the last antecedent is reached without iterating through the body, and those where the body
is iterated through at least once. Note that in both cases the form of the target configuration
implies that the conditional of the While must have evaluated to true, thus giving us the
fact that bs holds for σ′. If the target configuration is reached without iterating through
the body then the pre condition holds on σ′ due to the PR-ident lemma. In the second
case –where the body has been iterated through at least once– we gain the fact that the pre
condition holds for σ′ through the post condition of the body and the PR-ident lemma.

The second lemma, While-interstices-psat, is very similar to the first, but is concerned
with the post condition of the body over pairs of states when it is known that the body
has been executed at least once. Because of the “at least once” requirement, this lemma is
defined in terms of the merging semantics rather than the distinguishing semantics.

While-interstices-psat

[[P]](σ)
(P ∧ bs ,R) ` body psat (G ,W ∧ P)

R ⇒ W ∗ ∧ IVars(bs)

wh = mk -While(bs ∧ bu , body)
C w = {(wh, σ′) | (wh, σ)

m−→∗
R

(wh, σ′) ∧ σ 6= σ′}
∀(wh, σ′) ∈ C w · [[W ∧ P]](σ, σ′)

This lemma uses the same first four antecedents as While-interstices-pre, but instead of
a simple semantic transition in the fifth antecedent, defines the set of all reachable config-
urations that have the same textual component as the initial configuration. The conclusion,
then, is that the post condition of the body must hold between the initial state and all states
in the set defined in the fifth antecedent. This conclusion relies on three things: the fact
that the W relation in the post condition is transitive; that the P term of the post condition
is a predicate, and thus only applied to the right-hand state given the application rules used

Chapter 5. Preparatory Lemmas 63

in this work; and the fact that interference does not affect the post condition due to the
QR-ident lemma.

5.2 Composition and Isolation

The set of lemmas in this section state properties about how subcomponents of programs
are related to the larger context. The composition lemmas allow a property of a subprogram
to be lifted into a property of that subprogram in its larger context. The isolation lemmas
go in the other direction, and allow a property of the larger program context to be asserted
on a subprogram.

All of these lemmas are in the same spirit as the principle of structural induction itself;
they merely specialize that for the specific program constructs.

It should come as no surprise that all of these lemmas are valid for both of the aug-
mented relations. Only the r−→

R
form is shown here, however.

5.2.1 Isolation-If and Isolation-Seq-R

The first lemma here allows the body of an If construct to be treated separately from the
enclosing construct when it is known that the expression will evaluate to a true value. The
first antecedent of this rule ensures that the second transition in the second antecedent is
not a reflexive step; i.e. it ensures that S ′ is a program text that actually follows from S .

Isolation-If

S ′ ∈ If ⇒ S ′.body 6= S
(mk -If (b,S), σ0)

r−→∗
R

(mk -If (true,S), σi)
r−→∗
R

(S ′, σj)

(S , σ0)
r−→∗
R

(S ′, σj)

The initial configuration of the consequent uses σ0 as its state because it is possible
that there was no interference during the evaluation of the test and unwrapping of the If
construct. In this case the body would start in the same state as the overall If construct.
Any other state that the body might start in will only differ from σ0 by interference, and it
is entirely possible within the augmented semantics for interference to happen before any
change is made to the body text.

Isolation-Seq-R

S ′ ∈ Seq ⇒ S ′.right 6= S
(mk -Seq(nil,S), σ)

r−→∗
R

(S ′, σ′)

(S , σ)
r−→∗
R

(S ′, σ′)

The Isolation-Seq-R is analogous to Isolation-If in that it strips off a structural wrap-
ping that never modifies the state. Like an If construct for which the test will evaluate
to true, the execution of a sequence with an empty left-hand component is effectively
equivalent to just the execution of the right-hand component.

64 5.2. Composition and Isolation

5.2.2 Seq-Equiv

The basic observation behind this lemma is that a sequence construct is just a passive
wrapper around the left-hand component. To wit, not only can you take any computa-
tion, wrap a sequence around it, and get the same behaviour over the states, but you can
also take the portion of a sequence executed by the Seq-Step rule –i.e. only the execution
of the left-hand component of the sequence– and strip off the sequence construct while
preserving the behaviour over the states. This lemma formalizes the notion that there is a
sort of “equivalence modulo structure” in behaviour between a sequence and its left-hand
component.

Seq-Equiv

(S , σ)
r−→∗
R

(S ′, σ′)

(mk -Seq(S , right), σ)
r−→∗
R

(mk -Seq(S ′, right), σ′)

It is worth noting that the right-hand component of the sequence is free in this lemma —
nothing whatsoever is said of its behaviour here. This lemma is restricted to the behaviour
of the left-hand component; the tree-like structure of the program text prevents the need to
worry about the right-hand component.

5.2.3 Isolation-While

This lemma derives from a combination of Isolation-If , Seq-Equiv and Isolation-While;
unusually for these lemmas, the presentation of the semantic transition is done as a set
membership test on the transitive closure of several semantic rules.

Isolation-While

wh = mk -While(b, body)
τ = ((mk -If (true,mk -Seq(body ,wh)), σ), (wh, σ′))

τ ∈ (A-R-Step ∪ If-T-E ∪ Seq-Step ∪ Seq-E)∗

(body , σ)
r−→∗
R

(nil, σ′)

The antecedents present what is really one execution of the body of a While construct:
the semantic rules chosen in the third antecedent are the only rules that can be applied to
the intermediate program texts that arise from the source configuration — the exclusion of
the While rule means that the actual “looping” step is precluded. The first two antecedents
are simply definitions to allow the lemma to fit within the width of a page.

This lemma is specifically adapted to all three sets proofs on the While construct, as
they are long enough without having to apply all three of the lemmas this one derives from.

5.2.4 Isolation-STM

This is the first of the lemmas in this section that actually needs to manipulate the rely
condition for the augmented semantics. As the purpose and effect of the Atomic/STM
construct is to execute its body in isolation from any and all outside interference, the con-
clusion of this lemma uses the identity relation to represent the allowed interference.

Chapter 5. Preparatory Lemmas 65

Isolation-STM

(mk -STM (orig , σ0,S , σs), σ)
r−→∗
R

(mk -STM (orig , σ0,S ′, σ′s), σ′)

(S , σs)
r−→∗
I

(S ′, σ′s)

The other thing of note is that the consequent uses the states contained in the STM
construct to the exclusion of the state-components of the antecedent’s source and target
configurations. Otherwise, this lemma is just a formal statement of what the STM con-
struct does.

5.2.5 Comp-Par

This lemma’s conclusion is essentially semantic in nature, but requires the use of the
Within property to justify it. The aim of this lemma is to lift a property of the subcompo-
nents of the parallel to the overall parallel.

Comp-Par

[[P]](σ)
Withins(P ,R ∨ Gr , left ,Gl)

Withins(P ,R ∨ Gl , right ,Gr)
(left , σ)

r−→∗
R∨Gr

(left ′, σ′)

(right , σ)
r−→∗

R∨Gl

(right ′, σ′)

(mk -Par(left , right), σ)
r−→∗

R∨Gl∨Gr

(mk -Par(left ′, right ′), σ′)

The last pair of antecedents establish the form of the consequent: they define the textual
subcomponents, state, and the rely conditions. Since these two antecedents have their states
in common they restrict the computations from the initial subcomponents to the successor
states that both can reach. The combination of the rely conditions in the consequent is a
simple disjunction as there is no means to restrict it further without more knowledge of the
actual rely conditions.

The first antecedent restricts the initial state, ensuring that the next two antecedents
are actually relevant. Those two antecedents –the second and third– establish that the be-
haviour of each subcomponent is within the interference that their opposite subcomponent
is able to tolerate. This behavioural constraint is what allows the parallel construct to be
composed of the two subcomponents at all.

The lemma itself is only used in the convergence proof of the parallel construct. There
the widening of the interference is tolerable, as the convergence property is essentially
structural in nature.

5.2.6 Isolation-Par-L and Isolation-Par-R

These lemmas are key to being able to do the guarantee and post proofs using natural
deduction and structural induction. As noted at the definition of the Par-I development rule
in Section 3.2, the interference seen by one branch of a parallel construct is the combination
of the interference seen by the overall parallel construct plus interference that arises from
the behaviour of the other branch. We can use this knowledge to isolate one of the branches

66 5.3. Behavioural

from the parallel construct by using the guarantee from the other branch and manipulating
the rely condition given to the augmented semantic relation.

Isolation-Par-L

[[P]](σ)
(P ,R ∨ Gr) ` left sat (Gl ,Ql)

(P ,R ∨ Gl) ` right sat (Gr ,Ql)
(mk -Par(left , right), σ)

r−→∗
R

(mk -Par(left ′, right ′), σ′)

(left , σ)
r−→∗

R∨Gr

(left ′, σ′)

Isolation-Par-R

[[P]](σ)
(P ,R ∨ Gr) ` left sat (Gl ,Ql)

(P ,R ∨ Gl) ` right sat (Gr ,Ql)
(mk -Par(left , right), σ)

r−→∗
R

(mk -Par(left ′, right ′), σ′)

(right , σ)
r−→∗

R∨Gl

(right ′, σ′)

Specifically, we know from the antecedent that the left- and right-hand branches of
the parallel will behave according to their respective guarantee conditions, assuming in-
terference that is a combination of the overall rely and the behaviour of the other branch.
Combine that with knowledge of the overall parallel construct’s successor configurations,
and we can then reason about the successor configurations of one branch on its own. The
rely on the consequent of both of these lemmas is expanded with the guarantee condition
of the other branch to incorporate the activity of the other branch into the consequent’s
target state component.

5.3 Behavioural

The lemmas related to the definition of Within are all straightforward. As the definition
of Within is only given for the r−→

R
augmented semantics, these lemmas are only valid

for reasoning in that context. The overall results do hold in general, however, and could
be adapted for the merging semantics. These lemmas are used primarily in the guarantee
proofs.

5.3.1 Within-Relation

The Within property is concerned with whether or not transitions conform to a guarantee
condition. This means that a transition –single- or multiple-step– that has the Within
property is comprised of pairs of states which satisfy either the guarantee or rely condition;
extending this specifically to multiple-step transitions, this means that the transition is a
sequence of pairs of states that satisfy either the guarantee or rely condition.

Within-Relation
Withinm(R, (S , σ), (S ′, σ′),G)

[[(R ∨ G)∗]](σ, σ′)

The net effect of a series of transitions that satisfy either the guarantee or rely condition
is a pair of states –the source and target state– that satisfy the transitive closure of the

Chapter 5. Preparatory Lemmas 67

disjunction of the guarantee and rely conditions. This lemma just allows for the direct
deduction of the relational satisfaction from a Withinm property.

5.3.2 Within-Rely-Trivial

The purpose of this lemma is to dispose of pairs of configurations which both have nil as
their textual component. Any sequence of configurations with nil as the textual component
for all of them will trivially behave according to the guarantee condition: as there is no
program to execute at this point, there is no behaviour.

Within-Rely-Trivial
(nil, σ)

r−→∗
R

(nil, σ′)
Withinm(R, (nil, σ), (nil, σ′),G)

The lemma derives from Within-Rely, Within-Multi and the observation that all config-
urations with nil as their textual component are only in the domain of the A-R-Step semantic
rule. That semantic rule ensures that the textual component of all successor configurations
will remain nil. All of the individual steps, then, trivially satisfy the Within-Rely definition
as the antecedent of Within-Rely is precisely that the steps be within A-R-Step. Knowing that,
the Within-Multi definition simply lifts that Within result to the whole sequence.

5.3.3 Within-Prog-Cor

This lemma is of the same spirit as Within-Rely-Trivial in that it captures a set of related
configurations which trivially conform to any guarantee condition. The purpose of this
lemma is to capture those program steps that do not change the state component.

Within-Prog-Cor

(C ,C ′) ∈
 A-R-Step ∪ Assign-Eval ∪ STM-Atomic ∪

If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E ∪
STM-Step ∪ STM-Retry ∪ Par-E ∪ While


Within1(C ,C ′,G)

For the semantic rules listed in the antecedent we know that they will always leave the
state unchanged, or they will explicitly modify it according to the rely condition. For the
former case we have trivially satisfied the guarantee condition, giving us the Within prop-
erty according to the Within-Prog definition. For the latter, we gain the Within property
according to the Within-Rely definition, just as the Within-Rely-Trivial lemma does.

Unlike Within-Rely-Trivial, this lemma is given over a single step rather than over
many steps. A version of this lemma could be written for multiple steps, deriving from an
application of Within-Multi, but none of the proofs require such a lemma.

5.3.4 Within-Equiv

The Within-Equiv lemma is intended to allow the Within1 property on a pair of configura-
tions to be transferred to another pair of configurations. This lemma is used in the proofs
to lift the Within1 property on a step of a construct’s sub-component to the step taken by
the overall construct.

68 5.4. Convergence

Within-Equiv

(S0, σ0) r−→
R

(S1, σ1)

(S ′0, σ0) r−→
R

(S ′1, σ1)

(S0 = S1) ⇔ (S ′0 = S ′1)
Within1((S0, σ0), (S1, σ1),G)
Within1((S ′0, σ0), (S ′1, σ1),G)

Even given that the state elements of the pairs are the same, there is a catch to this
transfer of the Within1 property. It matters whether or not the transition between the two
pairs of configurations was due to the A-R-Step or A-S-Step semantic rule; the same rule must
have been the cause of both transitions. The third antecedent captures this requirement as,
for single steps, the mechanism to distinguish between the two semantic rules is to check
the textual components of the source and target configurations for equality.

5.3.5 Within-Concat

As soon as we start reasoning about multiple-step transitions using the Withinm property
it quickly becomes useful to be able to concatenate the properties together over adjacent
multiple-step transitions.

Within-Concat

C i = {Ci | C0
r−→∗
R

Ci
r−→∗
R

Cf }
C p ⊆ C i

∀Ci ∈ C i ·
(
∃Cp ∈ C p · Ci

r−→∗
R

Cp ∨ Cp
r−→∗
R

Ci

)
∀Cp ∈ C p ·Withinm(R,C0,Cp ,G) ∧Withinm(R,Cp ,Cf ,G)

Withinm(R,C0,Cf ,G)

The key to this lemma –both here and in its use in the proofs– is to note that C p

is a pinch set.1 Knowing this, the lemma comes down to simply verifying that every
computational path on either side of the pinch set has the Withinm property.

5.4 Convergence

These lemmas are based on the convergence properties defined in Section 4.3.2 and are
only defined for reasoning on the m−→

—
augmented semantics though the results are valid

more generally.

5.4.1 Conv-Concat

This lemma gives the conditions under which two Converges assertions may be combined.
A frequent strategy used in the convergence proofs is to prove that a statement will always
reach a set of statements that are part of the way to nil, and then show that each statement
in that set will, in turn, converge on nil.

1See Section 4.1.4.

Chapter 5. Preparatory Lemmas 69

Conv-Concat

Convergesc(C0,R,Set0)
C i = {(Si , σi) | C0

m−→∗
R

(Si , σi) ∧ Si ∈ Set0}
∀Ci ∈ C i · Convergesc(Ci ,R,Setf)

Convergesc(C0,R,Setf)

The first antecedent gives the initial configuration and the set of target statements which
it will reach. The second antecedent defines the set of all reachable configurations from
the initial configuration for which each configuration in the set has a textual component
from the first target set. Finally, the last antecedent ensures that each of the configurations
given in the second antecedent will converge on a statement in the final target set. The last
antecedent essentially verifies the concatenation by brute force, but it fits perfectly in the
convergence proofs in Chapter 6.

5.4.2 Conv-Wrap-Seq, Conv-Wrap-Par, and Conv-Wrap-STM

These three lemmas are intended to lift a convergence result on a construct’s component to
a convergence result on the construct itself. The first of these deals with the Seq construct.

Conv-Wrap-Seq

Convergesc((left , σ),R,Setf)
Set ′f = {mk -Seq(S , right) | S ∈ Setf }

Convergesc((mk -Seq(left , right), σ),R,Set ′f)

This lemma is simple: given a convergence result on some statement, it is possible to
wrap that statement in a Seq construct and have an analogous convergence result still hold
if the target set is altered by wrapping all of its elements in a Seq construct.

The next lemma –for the Par construct– has somewhat more restrictive antecedents
than that for the Seq construct.

Conv-Wrap-Par

(P ,R ∨ Gr) ` left psat (Gl ,Ql)
(P ,R ∨ Gl) ` right psat (Gr ,Qr)
Convergesc((left , σ),R ∨ Gr ,Setl)

Convergesc((right , σ),R ∨ Gl ,Setr)
Setf = {mk -Par(Sl ,Sr) | Sl ∈ Setl ∧ Sr ∈ Setr}

Convergesc((mk -Par(left , right), σ),R,Setf)

The partial satisfaction antecedents on the left and right components are required to
ensure that they conform to their rely and guarantee conditions. The last antecedent gener-
ates a target set that is essentially the Cartesian production of the left and right target sets.
The conclusion weakens the contained rely condition directly, as it is always possible to
reduce the amount of possible interference in a convergence result.

The last of these lemmas applies to the STM construct in the restricted situation where
a retry transition cannot happen.

Conv-Wrap-STM

C0 = (mk -STM (body , σ0, body , σ0), σ)
Convergesc((body , σ0), I ,Setf)

∀τ ∈ {(Ci ,Cj) | C0
m−→∗
R

Ci
m−→
R

Cj} · τ /∈ STM-Retry

Convergesc(C0,R, {S ∈ STM | S .body ∈ Setf })

70 5.4. Convergence

The first antecedent simply names the initial configuration from which we wish to infer
a convergence property; it must contain a STM construct that has not yet started execution.
The second antecedent is a convergence result on the body of the STM construct, giving
the convergence result that we wish to lift to the STM . The last antecedent ensures that
none of the transitions –as represented by pairs of configurations– that follow from the
source configuration are due to the STM-Retry semantic rule. The conclusion uses a target set
which is, by its sparse definition, a strict superset of the actual minimal target set, as the
set includes elements which are unreachable given the semantics.

71

6 — Proving Soundness

6.1 Overall Theorems

There are two major theorems that, together, constitute the proof of soundness of the
rely/guarantee rules of Chapter 3 with respect to the language semantics of Chapter 2.
The first of these theorems is defined by the psat-I rule in Figure 6.1, and establishes the
properties that are required for partial satisfaction. The second theorem is defined by the
sat-I rule in Figure 6.1, and establishes what is necessary to lift a partial satisfaction result
to complete satisfaction.

psat-I

Withins(P ,R,S ,G)
∀σ, σ′ ∈ Σ ·

(
[[P]](σ) ∧ (S , σ)

r−→∗
R

(nil, σ′)
)
⇒ [[Q]](σ, σ′)

(P ,R) ` S psat (G ,Q)

sat-I

(P ,R) ` S psat (G ,Q)
Convergess(S ,P ,R, {nil})

(P ,R) ` S sat (G ,Q)

Figure 6.1: Theorem PSAT and Theorem SAT embodied as inference rules.

The proof for the partial satisfaction theorem is shown in Figure 6.2. The proof is a
deduction of the properties of Within and post condition satisfaction –described in Sec-
tion 4.3.1– from the assumption that the rely/guarantee development rules were used to
develop the program represented by S and the assumption that the program and a pre con-
dition satisfying state may terminate. It is important to include the second assumption: it is
used to constrain the proof to only those computations that converge on the nil statement.
We are not interested in those computations that do no converge, as in those cases there is
no final state for the post condition to be applied to.

The overall structure of the proof in Figure 6.2 (and the lemmas it depends upon) is
based on the use of structural induction; the sub-components of the language constructs
are assumed to the have desired properties, and the overall construct is shown to have the
desired property based on these and the construct’s semantics.

The first element of the hypothesis in the Theorem PSAT proof and all of the partial
satisfaction lemma proofs gives the specification statement of the program in terms of the
sat property instead of the psat property. The proofs as given work equally well with either
–and are stronger as psat versions– but the latter approach would have required a set of
parallel versions of the rules based solely on psat rather than sat.

The main strategy of this proof is to show that for all specific computations –i.e. all
computations from a specific initial configuration to a specific final configuration– that the
behavioural and post condition properties hold. Now that we know that the properties hold

72 6.1. Overall Theorems

from (P ,R) ` S sat (G,Q); Π = {(σ, σ′) ∈ Σ× Σ | [[P]](σ) ∧ (S , σ)
r−→∗
R

(nil, σ′)}
1 from (σ0, σf) ∈ Π
1.1 S ∈ Stmt h
1.2 from S ∈ Assign

infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)
h, h1, h1.2, Assign-Within, Assign-Post

1.3 from S ∈ Atomic
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)

h, h1, h1.3, Atomic-Within, Atomic-Post
1.4 from S ∈ If

infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)
h, h1, h1.4, If-Within, If-Post

1.5 from S ∈ Par
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)

h, h1, h1.5, Par-Within, Par-Post
1.6 from S ∈ Seq

infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)
h, h1, h1.6, Seq-Within, Seq-Post

1.7 from S ∈While
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)

h, h1, h1.7, While-Within, While-Post
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf) ∨-E(1.1–1.7)

2 ∀(σ0, σf) ∈ Π ·Withinm(R, (S , σ0), (nil, σf),G) ∀-I(1)
3 Withins(P ,R,S ,G) h, 2, Within-Abstract
4 ∀(σ0, σf) ∈ Π · [[Q]](σ0, σf) ∀-I(1)
infer Withins(P ,R,S ,G) ∧ ∀(σ0, σf) ∈ Π · [[Q]](σ0, σf) ∧-I(3,4)

Figure 6.2: Proof of Theorem PSAT.

for all of the pairs of initial and final configurations, we can generalize the properties to all
computations for that statement given the environmental context.

The individual boxed inferences that establish the properties per language construct,
lines 1.2–1.7, invoke lemmas which are logically a part of the overall proof. Splitting the
contents of each from/infer box out into lemmas avoids the difficulty involved in reading
and writing a proof that would have spanned a good dozen pages. Because of this split,
and the fact that these lemmas are essentially a part of the overall proof, the lemmas have
additional hypotheses not shown in lines 1.2–1.7. The additional hypotheses are of two
kinds: the first are just binding definitions, and could be substituted throughout each of the
lemmas without any real change in semantics; the second is a hypothesis to indicate that
the lemma is actually a part of a structural induction, and these appear as IH -S predicate,
indicating the Induction Hypothesis on partial Satisfaction. The IH -S predicate is applied
to all of the subcomponents of the language construct the lemma is working with.

The proof of the complete satisfaction theorem is shown in Figure 6.3. This proof de-
duces that a program developed with the rely/guarantee rules will always converge during
execution to a configuration containing nil as its textual component. This proof assumes
that the partial satisfaction properties are valid, and makes the further assumption that there
is at least one state which satisfies the pre condition of the specification. There are no as-
sumptions about the final configuration, as the task of this proof is to prove that they exist

Chapter 6. Proving Soundness 73

from (P ,R) ` S sat (G,Q); Π = {σ ∈ Σ | [[P]](σ)}; Π 6= { }
1 from σ0 ∈ Π
1.1 S ∈ Stmt h
1.2 from S ∈ Assign

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.2, Assign-Converges
1.3 from S ∈ Atomic

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.3, Atomic-Converges
1.4 from S ∈ If

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.4, If-Converges
1.5 from S ∈ Par

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.5, Par-Converges
1.6 from S ∈ Seq

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.6, Seq-Converges
1.7 from S ∈While

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.7, While-Converges
infer Convergesc((S , σ0),R, {nil}) ∨-E(1.1–1.7)

2 ∀σ ∈ Π · Convergesc((S , σ),R, {nil}) ∀-I(1)
infer Convergess(S ,P ,R, {nil}) h, 2, Conv-Abstract

Figure 6.3: Proof of Theorem SAT.

and are unavoidable.
The overall structure of this proof is almost exactly the same as for Theorem PSAT,

and the contents of the from/infer box have been split out into lemmas in exactly the same
manner, and for exactly the same reason. The hypothesis representing structural induction
in the lemmas is represented by the IH -T predicate, as it is the Induction Hypothesis on
Termination. This proof does depend on Theorem PSAT for its validity: it is not uncom-
mon in the lemmas to conclude something that follows from applying Theorem PSAT to a
computation involving a subcomponent of the language construct involved in the lemma.

6.2 Partial Satisfaction Behavioural Lemmas

All of the lemmas in this section follow essentially the same pattern: define the set of all
intermediate transitions between the source and target configurations of the hypothesis;
use case analysis on the semantic rules which govern the possible transitions to deduce
that all transitions of each possible semantic rule satisfy the single-step Within property;
introduce a universal quantifier on that property; then, finally, promote that to a multiple-
step Within property.

Establishing the single-step Within property on most of the transitions can be done
using trivial applications of the Within-Rely and Within-Prog-Cor lemmas. This comes
about due to the fact that most of the semantic rules do not alter the state component of the
configuration in any way; most of the work for single-step transitions involves showing a
structural dependence on a sub-component.

Of the lemmas for the language constructs not explicitly described in a following sub-
section we will touch on a few interesting points here. The Seq-Within lemma uses existen-
tial elimination and the post condition of a left-hand component to discharge the pre con-
dition on the latter half of the proof, allowing structural induction to infer the behavioural

74 6.2. Partial Satisfaction Behavioural Lemmas

Assign-Within
from (P ,R) ` mk -Assign(id , e) sat (G,Q); [[P]](σ0);

(mk -Assign(id , e), σ0)
r−→∗
R

(nil, σf)

1 R ⇒ IVars(e)∪{id} h, Assign-I
2 G = {(σ, σ † {id 7→ [[e]](σ)}) | σ ∈ Σ} ∪ I h, Assign-I
3 T i = {(C1,C2) | (mk -Assign(id , e), σ0)

r−→∗
R

C1
r−→
R

C2
r−→∗
R

(nil, σf)} definition

4 from (C1,C2) ∈ T i

4.1 (C1,C2) ∈ (A-R-Step ∪ Assign-Eval ∪ Assign-E) h4, inspection of r−→
R

4.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h4.2, Within-Rely
4.3 from (C1,C2) ∈ Assign-Eval

infer Within1(C1,C2,G) h4.3, Within-Prog-Cor
4.4 from (C1,C2) ∈ Assign-E; C1 = (S1, σ1); C2 = (S2, σ2)
4.4.1 S1 ∈ Assign h4.4, Assign-E

4.4.2 S1.id = id h4, 4.4.1, inspection of r−→
R

4.4.3 S1.e ∈ Z h4.4, 4.4.1, Assign-E

4.4.4 σ2 = σ1 † {id 7→ S1.e} h4.4, Assign-E

4.4.5 S1.e = [[e]](σ0) = [[e]](σ1) 1, h4, 4.4.1, 4.4.2, 4.4.3, Single-Eval-Assign
4.4.6 [[G]](σ1, σ2) 2, 4.4.4, 4.4.5

infer Within1(C1,C2,G) h4.4, 4.4.6, Within-Prog
infer Within1(C1,C2,G) ∨-E(4.1–4.4)

5 ∀(C1,C2) ∈ T i ·Within1(C1,C2,G) ∀-I(4)
infer Withinm(R, (mk -Assign(id , e), σ0), (nil, σf),G) 3, 5, Within-Multi

Figure 6.4: Proof of the behavioural lemma for the Assign construct.

property of the right-hand component of the sequence.

The If-Within lemma has to split cases corresponding to the computational paths at the
point immediately after the elimination rules of the If construct; this requires constructing
a pinch set that contains the reachable configurations with nil or the body of the If in the
textual component of the configuration. With that accomplished, the proof can proceed
in much the same manner as Seq-Within, but with the addition of a case distinction on
the textual component in the latter half. The If-Within lemma is only given using the
If-I development rule; trivial changes along the same lines as those for the post condition
lemma If-Post are all that is needed for a version of If-Within using the If-b-I development
rule.

The Par-Within lemma is pleasantly simple, with the case distinctions on the left-hand
and right-hand branches of the parallel using symmetric arguments. Further, the argument
for a step of one of the branches satisfying the single-step Within property follows directly
from the application of structural induction and the Within-Weaken rule.

6.2.1 Assign

The assignment construct has the interesting property that for this language it is ultimately
the source of all modifications from the program to the state component between any two
configurations. Happily, it also has one of the more straightforward proofs, and so it is
used here to show the general structure of the behavioural lemmas.

Chapter 6. Proving Soundness 75

Figure 6.4 contains the full proof of the lemma; as mentioned earlier, the entire lemma
should be considered as though it were substituted into Theorem PSAT in Figure 6.2. At
the topmost level, this lemma allows the conclusion that all computational paths between
two specific configurations satisfy a guarantee condition.

Looking first at just the top level lines, there are five intermediate steps. Lines 1 & 2
import the required antecedents from the Assign-I development rule, giving us the con-
straint imposed upon the rely condition by the development rule as well as the definition
of the guarantee condition that the assignment’s behaviour must match.

The first few steps where the antecedents of the development rule are imported into the
proof are common to all of the lemma proofs in this chapter. Each of these proofs is valid
only for the particular development rule it is associated with; as such, it may be argued that
the antecedents of the development rule properly belong in the overall hypothesis of the
proof. We place the antecedents on numbered lines –rather than in the hypothesis– as this
has the stylistic advantage that it is possible to refer to the antecedents directly.

Line 3 is just a definition, and could be substituted into lines 4 and 5 without any
change to the meaning and validity of the proof. This line defines the name T i to refer to
the set of all intermediate pairs of configurations related by one transition, where all of the
configurations are between the source and target configurations of the hypothesis. The set
T i gains all intermediate transitions through careful use of a combination of the regular
semantic arrow and the transitive closure of the semantic arrow. To give an example,
consider that in the extreme case it could be that C1 is the initial configuration and that Cf

is the final configuration; this can only happen if the initial configuration is able to reduce
to nil in one step, but it is possible.

The set of pairs defined in line 3 has an additional, useful property: the set of all
possible configurations which are collected as C1 form a pinch set, as does the set of all
possible configurations collected as C2. Combined with the knowledge that a pair in set T i

is a valid possible transition, we may now non-deterministically choose not only individual
configurations, but also transitions.

The pinch set defined in line 3 is then used in line 4 to infer that all of the transitions
in that set satisfy the single-step Within property. Line 5 is the natural next step of intro-
ducing a universal quantifier based on the inference of line 4, and that leads to the final
inference, giving the multiple-step Within property.

Looking inside the from/infer box numbered as line 4, then, the deduction is essen-
tially a case distinction. Line 4.1 identifies the three cases that we are concerned with: tran-
sitions based on the A-R-Step, Assign-Eval, and Assign-E semantic rules. Note that these
three semantic rules are the only ones that apply; no other semantic rule applies to any of
the transitions identified in the set of line 3. Line 4.2 is a trivial inference that is repeated
through all of the behavioural lemmas: any step that is caused by interference –represented
by the A-R-Step semantic rule– automatically conforms to the single-step Within property
due to the Within-Rely lemma. Line 4.3 makes a similar deduction to line 4.2: certain
semantic rules, including Assign-Eval, trivially satisfy the definition of Within by way of
the Within-Prog lemma. These semantic rules do not alter the state between their source
and target configurations, and since all guarantee conditions are reflexive, configurations

76 6.2. Partial Satisfaction Behavioural Lemmas

related by these transitions trivially satisfy any guarantee condition; this is recorded in the
Within-Prog-Cor lemma.

Box 4.4 addresses the core of the lemma for assignments: as the only rule for this con-
struct that does something non-trivial, it is, naturally, where all the work is. Lines 4.4.1
through 4.4.4 establish the detailed structure of the components of the source and target
configurations of this transition. This allows 4.4.5 to give the relationship between the
evaluated value present in the transition’s source configuration and the semantic meaning
of the original expression relative to the state component in the transition’s source configu-
ration. Specifically, because of the restriction placed on the rely condition by the Assign-I

development rule and imported into the lemma in line 1, it can be inferred that the evaluated
value and the semantic meaning of the expression are equivalent. Line 4.4.6 infers that the
state components of the transition’s source and target configuration do satisfy the guarantee
condition, on the basis of the prior two lines and the definition of the guarantee condition
given in line 2. Satisfaction of the guarantee condition then allows this from/infer block to
conclude that this step does satisfy the single-step Within property by way of Within-Prog.

6.2.2 While

The behavioural lemma for the While construct, surprisingly, does not directly require the
use of induction to deal with the construct’s iterative nature. This is because the top-level
of the proof is similar to that of all of the behavioural lemmas: line 1 imports the only
relevant antecedent from the While-I rule; line 2 binds a name, T i to the set of pairs of
configurations related by a single transition that are between the source and target config-
urations of the hypothesis; line 3 is a from/infer box that deduces the single-step Within
property from any pair of configurations in T i ; line 4 introduces a universal quantification
based on lines 2 & 3; and the final infer generalizes line 4 into a multiple-step Within
property. Inside line 3, lines 3.1–3.3 do the work of setting up the case distinction and
dealing with the trivial cases.

It is in line 3.4 that the main argument of this proof rests. The hypothesis of line 3.4
selects the pairs in the set T i where the configurations are related by a Seq-Step transition,
and for the sake of convenience, respectively binds the names C1 and C2 to the source and
target configurations of that transition.

All of the steps that are made by the body of the While construct are “masked” by the
Seq-Step rule; this situation arises due to the fact that the body is executed as a left-hand
component of a Seq construct. This follows directly from the SOS definition in Chapter 2,
and it can also be seen that Seq-Step transitions that follow a While construct are all due to
execution of the body.

Use of structural induction allows us to infer that all of the transitions made execut-
ing the body will satisfy the single-step Within property. However, before making that
inference, we must show that the body’s execution started in a state that satisfied the pre
condition. To this end, line 3.4.1 picks out the configuration that starts the particular iter-
ation of the body that C1 & C2 are a part of. Line 3.4.2 is the deduction from a configu-
ration marked by line 3.4.1 that the transition from C1 to C2 does satisfy the single-step

Chapter 6. Proving Soundness 77

While-Within
from (P ,R) ` mk -While(b, body) sat (G,Q); [[P]](σ0); C0 = (mk -While(b, body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P ∧ bs ,R) ` body sat (G,W ∧ P) h, While-I
2 T i = {(C1,C2) | C0

r−→∗
R

C1
r−→
R

C2
r−→∗
R

Cf } definition

3 from (C1,C2) ∈ T i

3.1 (C1,C2) ∈ (A-R-Step ∪ While ∪ If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E ∪ Seq-Step)

h3, inspection of r−→
R

3.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h3.2, Within-Rely
3.3 from (C1,C2) ∈ (While ∪ If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E)

infer Within1(C1,C2,G) h3.3, Within-Prog-Cor
3.4 from (C1,C2) ∈ Seq-Step; C1 = (S1, σ1); C2 = (S2, σ2)

3.4.1 ∃Ca ∈ Config , σa ∈ Σ·
Ca = (mk -Seq(body ,mk -While(b, body)), σa)

∧ C0
r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ (Ca ,C1) ∈ (A-R-Step ∪ Seq-Step)∗

h3, h3.4, inspection of r−→
R

3.4.2 from Ca ∈ Config , σa ∈ Σ st
Ca = (mk -Seq(body ,mk -While(b, body)), σa)

∧ C0
r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ (Ca ,C1) ∈ (A-R-Step ∪ Seq-Step)∗

3.4.2.1 [[P ∧ bs]](σa) h, 1, h3.4.2, While-interstices-pre
3.4.2.2 (body , σa)

r−→∗
R

(S1.left , σ1)
r−→
R

(S2.left , σ2) h3.4, h3.4.2, Seq-Equiv

3.4.2.3 Within1((S1.left , σ1), (S2.left , σ2),G) h, 1, 3.4.2.1, 3.4.2.2, IH-S(body)
infer Within1(C1,C2,G) 3.4.2.3, Within-Equiv

infer Within1(C1,C2,G) ∃-E(3.4.1,3.4.2)
infer Within1(C1,C2,G) ∨-E(3.1–3.4)

4 ∀(C1,C2) ∈ T i ·Within1(C1,C2,G) ∀-I(3)
infer Withinm(R,C0,Cf ,G) 2, 4, Within-Multi

Figure 6.5: Proof of the behavioural lemma for the While construct.

Within property, and the infer of line 3.4 uses existential elimination to infer the single-
step Within property regardless of the particular configuration that started this iteration of
the body.

Examining the deduction inside line 3.4.2, we see line 3.4.2.1 establishes that the pre
condition and the stable portion of the test both hold at the beginning of the current iteration
of the body through use of the While-interstices-pre lemma. As noted in Section 5.1.5,
given that the partial satisfaction property holds on execution of the body, it can be seen
that the pre condition must hold between iterations of the body due to the fact that the pre
condition is a part of the body’s post condition.

Line 3.4.2.2 also satisfies one of the required elements for structural induction, using
the Seq-Equiv lemma to give the semantic relation relative to the body from the hypothesis
of line 3.4.2. With that, we can apply structural induction to show that the single-step
transition holds on the configurations that follow from the body in lines 3.4.2.2, and the
infer of line 3.4.2 lifts that result using Within-Equiv to apply to the configurations C1 and
C2.

78 6.2. Partial Satisfaction Behavioural Lemmas

6.2.3 Atomic/STM

The overall structure of the behavioural proof for the Atomic/STM construct is, of course,
similar to the rest of the behavioural lemmas. There are two things that make this construct
unusual: first, like the assignment construct, this construct is responsible for modifying the
state component of a configuration; and second, due to the manipulation that this construct
performs on state components, the body of the construct will execute as though there is no
external interference.

The hard work of this proof (Figure 6.6) is done in the from/infer box of line 4.4, but
a few points need to be made first to give some context for this proof. Line 4.3 addresses
every program step that is not the final elimination step of the construct, and this is done
through the corollary of the Within-Prog definition. This fits –despite potentially state-
modifying actions in the body during STM-Step transitions– as the construct carefully isolates
any state modifications made by the body from everything outside of the construct. Thus,
even though the construct’s body may have altered the state, the top-level configuration
does not have those modifications applied to its state; instead the changes are accumulated
within the STM construct until a STM-Retry or STM-E transition.

The inference of line 4.4 takes advantage of this context in several ways; first however,
let us investigate the structure of this from/infer box. As with the proof of the While
construct in the previous subsection, lines 4.4.2 and 4.4.3 set up an existential elimination,
as we need to identify the start of the particular attempt to execute the body that this STM-E

transition follows. Line 4.4.1 helps with the setup of the existential elimination, but only
in so far as it gives obvious constant values to portions of S1 and S2.

The from/infer box of line 4.4.3 uses a pinch set containing the start of the particular
execution attempt of which the transition between C1 and C2 is a part. Once we have
identified the start of the current execution attempt we can then deduce that changes in the
states at the commit step (i.e. the STM-E transition) do conform to the guarantee condition.

To show that the STM-E transition satisfies the behavioural constraint –the infer of
line 4.4.3– we need to establish that the two states involved in the transition –σ1, σ2–
satisfy the guarantee condition. This is inferred on line 4.4.3.14, on the basis that the tran-
sition’s states satisfy the body’s post condition (line 4.4.3.13), and the knowledge from the
Atomic-psat-I rule that the body’s post condition satisfies the guarantee condition (line 2).
Getting to the deduction that the states of the STM-E transition satisfy the body’s post con-
dition is a bit tricky, however.

In line 4.4.3.12 we deduce that the target state component of the STM-E transition is
equivalent to the source state component overwritten by a portion –defined by the variables
in the body of the Atomic– of the accumulated state, σs , in the STM construct in the
source configuration; this comes directly from the hypotheses of lines 4.4 and 4.4.3, and the
definition of the STM-E rule. Combine that with the deduction of line 4.3.11 and line 4.4.3.13
follows by substitution.

Line 4.4.3.11 is the deduction that the body’s post condition is satisfied by the pair of
states given as σ1 and σ1 overwritten by the part of σs restricted to the variables in the
body. This deduction is possible due to the use of structural induction, in particular from

Chapter 6. Proving Soundness 79

Atomic-Within
from (P ,R) ` mk -Atomic(body) psat (G,Q); [[P]](σ0); C0 = (mk -Atomic(body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P , I) ` body sat (true,Q ′) h, Atomic-psat-I
2 Q ′ ⇒ G h, Atomic-psat-I
3 T i = {(C1,C2) | C0

r−→∗
R

C1
r−→
R

C2
r−→∗
R

Cf } definition

4 from (C1,C2) ∈ T i

4.1 (C1,C2) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry ∪ STM-E)

h4, inspection of r−→
R

4.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h4.2, Within-Rely
4.3 from (C1,C2) ∈ (STM-Atomic ∪ STM-Step ∪ STM-Retry)

infer Within1(C1,C2,G) h4.3, Within-Prog-Cor
4.4 from (C1,C2) ∈ STM-E; C1 = (S1, σ1); C2 = (S2, σ2)
4.4.1 S1 ∈ STM ∧ S1.body = nil ∧ S2 = nil h4.4, STM-E

4.4.2 ∃Ca ∈ Config , σa , σs ∈ Σ·
C0

r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ Ca = (mk -STM (body , σa , body , σa), σa)
∧ S1 = (mk -STM (body , σa , nil, σs), σ1)
∧ (Ca ,C1) ∈ (A-R-Step ∪ STM-Step)∗

h4, h4.4,
inspection of r−→

R

4.4.3 from Ca ∈ Config , σa , σs ∈ Σ st
C0

r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ Ca = (mk -STM (body , σa , body , σa), σa)
∧ S1 = (mk -STM (body , σa , nil, σs), σ1)
∧ (Ca ,C1) ∈ (A-R-Step ∪ STM-Step)∗

4.4.3.1 (C0,Ca) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry)

h4.4.3, inspection of r−→
R

4.4.3.2 [[R]](σ0, σa) 4.4.3.1, Rely-Trivial
4.4.3.3 [[R]](σa , σ1) h4.4.3, Rely-Trivial
4.4.3.4 [[P]](σ1) h, 4.4.3.2, 4.4.3.3, PR-ident
4.4.3.5 (body , σa)

r−→
I

(nil, σs) h4.4.3, Isolation-STM

4.4.3.6 σs = σa † (Vars(body) C σs) 4.4.3.5, Sequential-Effect
4.4.3.7 (body , σa)

r−→
I

(nil, σa † (Vars(body) C σs)) 4.4.3.5, 4.4.3.6

4.4.3.8 [[IVars(body)]](σa , σ1) h4.4.3, STM-E

4.4.3.9 (Vars(body) C σa) = (Vars(body) C σ1) 4.4.3.8
4.4.3.10 (body , σ1)

r−→
I

(nil, σ1g † (Vars(body) C σs))

4.4.3.7, 4.4.3.9, Frame-Rule
4.4.3.11 [[Q ′]](σ1, σ1 † (Vars(body) C σs)) h, 1, 4.4.3.4, 4.4.3.10, IH-S(body)
4.4.3.12 σ2 = σ1 † (Vars(body) C σs) h4.4, h4.4.3, STM-E

4.4.3.13 [[Q ′]](σ1, σ2) 4.4.3.11, 4.4.3.12
4.4.3.14 [[G]](σ1, σ2) 2, 4.4.3.13

infer Within1(C1,C2,G) h4.4, h4.4.3, 4.4.3.14, Within-Prog
infer Within1(C1,C2,G) ∃-E(4.4.2,4.4.3)

infer Within1(C1,C2,G) ∨-E(4.1–4.4)
5 ∀(C1,C2) ∈ T i ·Within1(C0,Cf ,G) ∀-I(4)
infer Withinm(R,C0,Cf ,G) 3, 5, Within-Multi

Figure 6.6: Proof of the behavioural lemma for the Atomic/STM construct.

80 6.2. Partial Satisfaction Behavioural Lemmas

the computation in line 4.4.3.10. To satisfy the required elements for structural induction,
we use line 1 to give the specification; line 4.4.3.4 for the state satisfying the pre condition;
and the computation in line 4.4.3.10. That σ1 satisfies the pre condition is established
by the use of PR-ident following lines 4.4.3.1–4.4.3.3; line 4.4.3.10 is a little unusual,
however.

Taking line 4.4.3.10 as a sub-goal, it can be thought of as producing a computation of a
specific form so that the post condition of the body can be deduced to hold on the states of
the configurations in that computation. This line corresponds to the pragmatic intent of the
Atomic/STM construct in the language of Chapter 2: it should behave as though the entire
execution of the body happened in the state immediately prior to the block committing its
results.

The justification for line 4.4.3.10 is the Frame-Rule lemma, on the basis of lines 4.4.3.7
and 4.4.3.9. The frame rule lemma is essentially the observation that the only portion of the
state that is in any way relevant to a computation is the portion restricted to those variables
involved in the computation. Negatively, any variable not involved in the computation is
irrelevant and cannot affect the computation.1 Thus, line 4.4.3.7 gives us a computation
of the body starting with the σa state, and line 4.4.3.9 concludes that the σa and σ1 states
have the same value for all of the variables in the body. Line 4.4.3.9 is a direct consequence
of the fact that the identity relation (restricted to the variables contained in the body) holds
between σa and σ1, as concluded in line 4.4.3.8. That, in turn, is a direct consequence of
the STM-E rule and the hypothesis of line 4.4.3.

Line 4.4.3.7 is derived by substitution from lines 4.4.3.5 and 4.4.3.6, of which the
latter is actually a direct consequence of the former. In particular, line 4.4.3.5 is result
of applying the Isolation-STM to the computation in the hypothesis of line 4.4.3, which
gives the equivalent computation of the body, free from the Atomic/STM that surrounds
it. Line 4.4.3.6 follows by the Sequential-Effect lemma, which applies to interference-free
computations, giving an equivalence between the source state component and the target
state component. This results in line 4.4.3.7 being of a suitable form to easily apply the
frame rule lemma in 4.4.3.10.

Recapitulating, then, moving from the inside out, we start with line 4.4.3.5 as the com-
putation of the body on its own. Lines 4.4.3.6 and 4.4.3.7 transform that into a form
suitable for transposition by the frame rule lemma in line 4.4.3.10. This transposition is
supported by the restricted equivalence developed in lines 4.4.3.8 and 4.4.3.9. We can then
deduce that the body’s post condition is satisfied in line 4.4.3.11, given the deduction of
the pre condition in lines 4.4.3.1–4.4.3.4. This is rewritten in line 4.4.3.13 to apply to the
required states through line 4.4.3.12. Finally, line 4.4.3.14 gives the desired property that
the guarantee condition is satisfied by σ1 and σ2, and the single-step Within property is a
direct consequence of that.

1See Section 5.1.3 for more about the Frame-Rule lemma.

Chapter 6. Proving Soundness 81

6.3 Partial Satisfaction Post Condition Lemmas

The lemmas that show that the post condition is satisfied by programs developed using the
rely/guarantee development rules all use existential elimination as their major deduction
tool. This differs from the behavioural lemmas described previously and the convergence
lemmas described in the next section as the basic nature of the post condition is different
than the behavioural property and convergence. Satisfaction of the post condition on a
specific –but arbitrary– pair of states, if true, is true regardless of the intermediate con-
figurations that the computation passed through on the way. This is in stark contrast to
the behavioural property over multiple steps, which, if true, is true because the single-step
property holds over all intermediate steps; and contrasts with the convergence property
which, like the behavioural property, asserts that a starting point always reaches a configu-
ration of a certain form.

Thus, satisfaction of the post condition allows us to show that it holds over a pair of
configurations given some arbitrary intermediate configuration, and then generalize it to
show that it must hold regardless of which intermediate configuration is chosen. We use
existential elimination to define a pinch set that all computations must pass through, and
then reason from elements of that pinch set. As some configurations may disallow certain
types of sub-computation,2 the associated branches in the proof become vacuous (but not
false!) in those situations.

Noting all of this, it must still be said that the lemmas of this section are still similar
to the lemmas for corresponding constructs in a sequential system. Interference needs to
be accounted for in these proofs, but the way in which structural induction has been used
means that, for the most part, interference is not the primary concern. What is novel here
is the use of the language structure to “push” the interference around so that we only need
to consider it where it actually makes a difference.

Two particular lemmas will be looked at in detail in the following subsections: the
first is While-Post, as it uses well-founded induction; and the second is Atomic-Post as it
involves the titular construct of this thesis. Interesting elements of the remaining lemma
proofs –found in Appendix D– are detailed here.

The Assign-Post lemma is very similar to Assign-Within as it uses the strategy of match-
ing the states in the computation to the definition of a relation, though it is the post condi-
tion in this case. This lemma is, however, much simpler than its behavioural counterpart
as it does not need to be concerned with the intermediate steps of the construct. The ex-
istential elimination usage in this lemma forms a good, basic example of how it is used in
the lemmas. The pinch set created by the existential quantifier in line 3 is actually based
around the Assign-E transition. All assignment statements will, eventually reach an assign-
ment statement with an integer as their expression; it is not possible in this language for
the construct to do otherwise. We do not, however, know which integer the assignment
will eventually reach, so we must not assume more detail other than that it will be an
integer (that much detail is justified only from the language’s well-formedness predicate,

2For example, in some situations the evaluation of the test in an If construct may always be false, precluding
the execution of the body.

82 6.3. Partial Satisfaction Post Condition Lemmas

wf -Stmt). Strictly speaking, line 3 does not define a set directly — if the quantifying
predicate is used in a set comprehension, however, it defines the pinch set in question here.
All of the reasoning that then follows in line 4 must be valid for all members of this set: in
a sense, we are doing universal quantification over that set, however, as we do not require
the members of that set in the conclusion, existential elimination is the appropriate tool.

Two proofs are provided in the appendix for the If construct: one applies to develop-
ments that use the If-I rule, the other to those using the If-b-I rule. Taken together, both
of these proofs justify the If-Post lemma: as long as the program was developed using one
of the If construct rules, then one of these deductions will hold. The primary difference
between the two deductions is that the one for If-b-I requires a more constrained pre con-
dition to hold before structural induction can be applied to the body’s actions. Otherwise
both proofs are straightforward deductions.

The Seq-Post lemma hardly warrants mentioning: it is, far and away, the simplest of all
of the deductions in Appendix D.

Of the lemmas not described in detail, Par-Post is probably the most interesting as it is
for a construct which the traditional non-concurrent proof methods simply do not address.
Despite this, the deduction for this lemma is fairly direct due to the use of rely/guarantee
conditions to characterize interference, structural induction to “push” the interference fur-
ther into the program structure, and the Isolation-Par-L and Isolation-Par-R lemmas which
allow for the manipulation of the rely/guarantee conditions in the context of the augmented
semantics.

The deduction proceeds by establishing that the four conjuncts of the left-hand side of
the implication in the Par-I rule3 hold. The first is discharged by the hypothesis; the second
using Isolation-Par-L and structural induction; the third by an argument symmetric to the
second; and the last by structural induction to obtain a behavioural result on the overall
program.

6.3.1 While

Though the structure of the proof of the While-Post lemma for the While-I rule is essentially
the same as that of all of the post condition lemma proofs, it is the use of well-founded
induction that sets this lemma apart from the rest. The first few lines in Figure 6.7 import
antecedents from the construct’s development rule, then an existential elimination is set up
on a set of configurations intermediate to all computation paths between the source and
target of the hypothesis, and the final inference is just the application of the existential
elimination rule.

The pinch set that is defined by the quantifying predicate of line 6 is precisely the set
of reachable and fully-evaluated If constructs that follow from the source configuration
of the hypothesis — the computation between the source configuration in the hypothesis
and all configurations in the pinch set amounts to the set of computations prior to the first
iteration of the body. This is accomplished by restricting the semantic relation in the last
term of the quantifying predicate to use only specific rules. This takes some care, as rules

3Specifically,
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q

Chapter 6. Proving Soundness 83

While-Post
from wh = mk -While(bs ∧ bu , body); (P ,R) ` wh sat (G,W ∗ ∧ P ∧ ¬ (bs ∧ bu));

[[P]](σ0); C0 = (wh, σ0); Cf = (nil, σf); C0
r−→∗
R

Cf ; sw = mk -Seq(body ,wh);

IH -S(body)
1 well-founded(W) h, While-I
2 R ⇒ W ∗ ∧ IVars(bs) h, While-I
3 SingleSharedVar(bu ,R) h, While-I

4 ¬
↼−−−−−
(bs ∧ bu) ∧ R ⇒ ¬ (bs ∧ bu) h, While-I

5 (P ∧ bs ,R) ` body sat (G,W ∧ P) h, While-I
6 ∃C1 ∈ Config , v ∈ B, σ1 ∈ Σ ·

C1 = (mk -If (v , sw), σ1) ∧ C0
r−→∗
R

C1
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ While ∪ If-Eval)∗

h, inspection of r−→
R

7 from C1 ∈ Config , v ∈ B, σ1 ∈ Σ st
C1 = (mk -If (v , sw), σ1) ∧ C0

r−→∗
R

C1
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ While ∪ If-Eval)∗

7.1 [[R]](σ0, σ1) h7, Rely-Trivial
7.2 from ¬ v

7.2.1 (C1,Cf) ∈ (A-R-Step ∪ If-F-E)∗ h, h7.2, inspection of r−→
R

7.2.2 [[R]](σ1, σf) 7.2.1, Rely-Trivial
7.2.3 [[R]](σ0, σf) 7.1, 7.2.2
7.2.4 [[W ∗]](σ0, σf) 2, 7.2.3
7.2.5 [[P]](σf) h, 7.2.3, PR-ident
7.2.6 [[¬ (bs ∧ bu)]](σf) 2, 3, 4, h7.2, 7.2.2

infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) 7.2.4–7.2.6
7.3 from v
7.3.1 ∃σ2 ∈ Σ ·

C1
r−→∗
R

(wh, σ2)
r−→∗
R

Cf

∧ (C1, (wh, σ2)) ∈ (A-R-Step ∪ If-T-E ∪ Seq-Step ∪ Seq-E)∗

h7, h7.3,
inspection of r−→

R

7.3.2 from σ2 ∈ Σ st
C1

r−→∗
R

(wh, σ2)
r−→∗
R

Cf

∧ (C1, (wh, σ2)) ∈ (A-R-Step ∪ If-T-E ∪ Seq-Step ∪ Seq-E)∗

7.3.2.1 (body , σ1)
r−→∗
R

(nil, σ2) h7.3.2, Isolation-While

7.3.2.2 [[P]](σ1) h, 7.1, PR-ident
7.3.2.3 [[bs]](σ1) 2, h7, h7.3, Single-Eval-If
7.3.2.4 [[W ∧ P]](σ1, σ2) h, 5, 7.3.2.1–7.3.2.3, IH-S(body)
7.3.2.5 [[W ∗]](σ0, σ1) 2, 7.1
7.3.2.6 [[W ∧ P]](σ0, σ2) 7.3.2.4, 7.3.2.5
7.3.2.7 from ∀σ′ ∈ {σ′′ | [[W ∧ P]](σ0, σ

′′) ∧ h[σ′′/σ0]}·
[[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ′, σf)

7.3.2.7.1 σ2 ∈ {σ′′ | [[W ∧ P]](σ0, σ
′′) ∧ h[σ′′/σ0]} h, h7.3.2, 7.3.2.6

7.3.2.7.2 [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ2, σf) ∀-E(h7.3.2.7,7.3.2.7.1)
infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) 7.3.2.6, 7.3.2.7.2

infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) 1, 7.3.2.7, W-Indn
infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) ∃-E(7.3.1,7.3.2)

infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) ∨-E(h7.5.2,7.3)
infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) ∃-E(6,7)

Figure 6.7: Proof of the post condition lemma for the While construct.

84 6.3. Partial Satisfaction Post Condition Lemmas

cannot be excluded in such a way as to exclude possible computational paths; however,
choosing rules such that only a portion of the computation has occurred –up to the end of
test evaluation in this case– can be very useful.

The from/infer box starting on line 7 uses the pinch set quantified in line 6, and the
fact that all configurations in that pinch set contain fully evaluated test expressions allows
for an obvious case distinction on whether or not the loop has terminated.

Line 7.2 deals with the situation where the test expression has evaluated to false, and
the loop has terminated. To show that the post condition holds, we use a combination of
the PR-ident lemma; the constraint from the While-I development rule that interference
falls within the reflexive closure of the well-founded relation; and the observation that if
the test expression evaluated to false initially, then the test expression must still evaluate to
false in the final state. That the post condition is satisfied then follows directly.

The situation in line 7.3 where the test expression has evaluated to true, however, is
rather more complicated. To show that the overall computation satisfied the post condition
we require the use of well-founded induction. The While-I development rule requires that
the W relation in the post condition be well-founded for precisely this reason.

To perform the inductive step we will need a pinch set such that the configurations
contained have the original While as the textual component, but further constrained so
that they are immediate successors to the first iteration of the body — allowing multiple
iterations of the body makes it difficult to use structural induction in this context. So, inside
the from/infer of line 7.3 we set up an existential elimination to use the pinch set. Once
inside line 7.3.2, it is straightforward to show that the computation from C0 to C2 –the
first iteration of the loop body– satisfies the post condition of the body. This is done in
lines 7.3.2.1–7.3.2.6.

The well-founded induction in this proof happens in line 7.3.2.7 and the inference of
line 7.3.2. The latter is that application of the well-founded induction rule to lines 1 (es-
tablishing the well-foundedness of W) and 7.3.2.6. The inductive step that is line 7.3.2.6
turns out to be reasonably direct, but setting up the inductive assumption in the hypothesis
of line 7.3.2.6 takes some care. The assumption itself is that all states that are closer to the
minimal elements of W will satisfy the While construct’s post condition when combined
with the final state from the overall hypothesis. The trick is to specify the set of states that
we make the assumption on: that set must be essentially isomorphic to the well-founded
relation. Thus, we define the set from which σ′ is selected from to be all those states related
through the well-founded relation W , with the additional restriction that the states must
satisfy the conditions of the overall hypothesis if the original σ0 is replaced by a state from
this set. The selected set can be thought of as a restriction of W to only those states which
are actually reachable through the semantic relation. On a syntactic note, the condition of
the hypothesis with the σ0 state substituted by the states of the set is represented by the
notation h[σ′′/σ0] in line 7.3.2.7, as writing out the properties in full takes a lot of space
and adds little clarity.

Once past the hypothesis of line 7.3.2.7, actually performing the inductive step is easy.
Fist we note that σ2 is in the set described in the hypothesis of line 7.2.3.7, and that allows
the application of universal elimination to instantiate the inductive assumption on σ2. That

Chapter 6. Proving Soundness 85

the post condition holds is a direct result of combining lines 7.3.2.6 and 7.3.2.7.2, and
is recorded in the infer of line 7.3.2.7. From there the fact that the post condition holds
cascades out of the nested from/infer boxes to the final inference.

6.3.2 Atomic/STM

The proof of the Atomic-Post lemma is similar to that for Atomic-Within. This should not
be surprising as satisfaction of the post condition, here, rests upon the same transition as
the behavioural proof does.

Atomic-Post
from (P ,R) ` mk -Atomic(body) psat (G,Q); [[P]](σ0); C0 = (mk -Atomic(body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P , I) ` body psat (true,Q ′) h, Atomic-psat-I

2
↼−
P ∧ R � Q ′ � R ⇒ Q h, Atomic-psat-I

3 ∃C1,C2,C3 ∈ Config , σ1, σ2, σ3, σs ∈ Σ ·
C1 = (mk -STM (body , σ1, body , σ1), σ1)
∧ C2 = (mk -STM (body , σ1, nil, σs), σ2)
∧ C3 = (nil, σ3)

∧ C0
r−→∗
R

C1
r−→∗
R

C2
r−→
R

C3
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry)∗

∧ (C1,C2) ∈ (A-R-Step ∪ STM-Step)∗

∧ (C2,C3) ∈ STM-E ∧ (C3,Cf) ∈ A-R-Step∗

h, inspection of r−→
R

4 from C1,C2,C3 ∈ Config , σ1, σ2, σ3, σs ∈ Σ st
C1 = (mk -STM (body , σ1, body , σ1), σ1)
∧ C2 = (mk -STM (body , σ1, nil, σs), σ2)
∧ C3 = (nil, σ3)

∧ C0
r−→∗
R

C1
r−→∗
R

C2
r−→
R

C3
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry)∗

∧ (C1,C2) ∈ (A-R-Step ∪ STM-Step)∗

∧ (C2,C3) ∈ STM-E ∧ (C3,Cf) ∈ A-R-Step∗

4.1 [[R]](σ0, σ1) h4, Rely-Trivial
4.2 [[R]](σ1, σ2) h4, Rely-Trivial
4.3 [[P]](σ2) h, 4.1, 4.2, PR-ident
4.4 (body , σ1)

r−→∗
I

(nil, σs) h4, Isolation-STM

4.5 σs = σ1 † (Vars(body) C σs) 4.4, Sequential-Effect
4.6 (body , σ1)

r−→∗
I

(nil, σ1 † (Vars(body) C σs)) 4.4, 4.5

4.7 [[IVars(body)]](σ1, σ2) h4, STM-Step

4.8 (Vars(body) C σ1) = (Vars(body) C σ2) 4.7
4.9 (body , σ2)

r−→∗
I

(nil, σ2 † (Vars(body) C σs)) 4.6, 4.8, Frame-Rule

4.10 [[Q ′]](σ2, σ2 † (Vars(body) C σs)) h, 1, 4.3, 4.9, IH-S(body)
4.11 σ3 = σ2 † (Vars(body) C σs) h4, STM-E

4.12 [[Q ′]](σ2, σ3) 4.10, 4.11
4.13 [[R]](σ3, σf) h4, Rely-Trivial
4.14 [[R � Q ′ � R]](σ0, σf) 4.1, 4.2, 4.12, 4.13

infer [[Q]](σ0, σf) h, 2, 4.14
infer [[Q]](σ0, σf) ∃-E(3,4)

Figure 6.8: Proof of the post condition lemma for the Atomic/STM construct.

86 6.4. Convergence Lemmas

As usual, lines 1 and 2 start by importing antecedents from the Atomic-psat-I4 devel-
opment rule. Lines 3 and 4 set up an existential elimination, and then the final inference
applies that elimination rule to get the post condition.

The existential assertion that is in line 3 takes some thought to unpack. Its purpose is
to identify three pinch sets, based on the computation in the over hypothesis, and in the
process, name elements of those sets. The first pinch set is all possible configurations de-
noted as C1 in line 3: these represent the start of the final (successful) attempt to execute
the body. The second, denoted C2, are those configurations immediately prior to the STM-E

semantic rule. Finally, the third, denoted C3, are those configurations immediately (ignor-
ing interference transitions) following those of the previous pinch set: the configurations
immediately after the STM-E semantic rule. Reasoning about the relationships between
these three pinch sets is sufficient to show that the post condition holds for terminating
computations. It is possible to split the quantifier in line 3 into three separate existential
eliminations, but there is no benefit to doing so.

The deduction inside line 4 can be broken down into a few sub-goals. Line 4.14 directly
implies the infer of line 4, and is, itself, just a composition of the body’s post condition
with the overall rely on either side. Gaining the rely condition on either side of the body’s
action –made visible between C2 and C3 in the computation– is trivial, and accomplished
in lines 4.1, 4.2 and 4.13.

Lines 4.3 through 4.12 can be viewed as a sort of sub-block with the goal of showing
that the body’s post condition holds between σ2 and σ3. Gaining the body’s post condition
follows exactly the same chain of logic here in Figure 6.8 as was used in the proof of
Atomic-Within in Figure 6.6, lines 4.4.3.4–4.4.3.13.

6.4 Convergence Lemmas

The remaining lemmas all deal with the convergence properties of the various constructs.
As with the behavioural lemmas, the proofs here use universal introduction as their primary
tactic as the Converges property depends upon all possible computational paths converg-
ing, and each must be examined. The general strategy in these proofs is a combination of
using structural induction on the components of a construct, and the use of the semantics
to identify target sets that a given construct must reach regardless of the environment and
the construct’s components. As an example of the latter strategy, any If construct will
eventually transition to another If construct with its test expression completely evaluated
to a Boolean value: the semantics of the language of Chapter 2 leave no other possibility.
Note that this is, of course, trivially true if the construct’s test expression is a Boolean value
to begin with.

It should also be noted that these proofs are done relative to the merging augmented
semantics rather than the distinguishing augmented semantics. The primary reason for this
is that it avoids the need to deal explicitly with infinite sequences of interference transitions.

As has been the pattern for the behavioural and post condition sections, the remainder
of this section will touch on interesting details of the convergence lemma proofs contained

4We use the Atomic-psat-I rule rather than the Atomic-I rule as the former is more general than the latter.

Chapter 6. Proving Soundness 87

in Appendix D but not examined in detail in this chapter.

We assume that all expressions in the language terminate cleanly. Though this is not
proven here, the spare definition we give to expressions –and the lack of any remotely
complex structures– makes the techniques given in Sites’ thesis [Sit74] applicable to the
task of showing that well-formed expressions always terminate.

The assignment construct in this language always terminates, regardless of the envi-
ronment it is executed in, and this can be seen by inspection of the language semantics. As
such, its convergence property is stated as a lemma in Figure 6.9 and a formal proof is omit-
ted. The outline of the proof, however, relies on the fact that since expression evaluation
converges on a constant, the Assign-Eval semantic rule converges on a configuration which
it cannot be applied to. The only rule in the language definition that applies to an Assign
construct with a constant is the Assign-E semantic rule, and that reduces the assignment to a
nil. This is, by necessity, true of any assignment and any interference constraint; if a more
constrained convergence property is required, the conclusion of Assign-Converges can be
weakened as necessary with Conv-Weaken and Conv-Concrete.

Assign-Converges
Convergess(mk -Assign(id , e), true, true, {nil})

Figure 6.9: Convergence lemma for the Assign construct.

For the If construct we use essentially the same argument as for the assignment con-
struct that the If will reach a fully evaluated test expression. Then it is a matter of case
analysis on the value of the test expression: a false value always reaches nil immediately
as the If-F-E semantic rule is the only option; a true value immediately reduces to the body
on its own through the If-T-E semantic rule. From convergence of the body we use structural
induction to show that it converges on nil, then disjunction elimination to show that the
construct as a whole must converge on nil.

The Seq construct relies almost completely on structural induction –with some logical
glue– to show that it must reach nil. As the semantic rules for the sequential construct
consist of one rule to execute the left-hand component, and one to reduce the sequential
construct to the right-hand component, the simplicity in the proof appropriately matches
the simplicity in the semantics.

The parallel construct is slightly more complicated as it relies on the definition of the
Converges property to manipulate the rely conditions correctly on the semantic relation.
The argument, however, is essentially that since both branches will reach nil (by structural
induction), then the whole construct will reach two nil statements in parallel. This will,
through the Par-E rule, reduce to a single nil on its own.

6.4.1 While

The convergence proof of the While construct –just like the While-Post proof– depends
upon well-founded induction to deal with the construct’s repetitive nature. The structure

88 6.4. Convergence Lemmas

of this proof, however, requires that the inductive assumption (and, therefore, the inductive
step) be introduced much earlier in the proof.

Lines 1–7 in Figure 6.10 introduce obvious elements of the proof: lines 1–6 are the an-
tecedents from the While-I development rule, and line 7 is the result of structural induction
on the body.

The from/infer box of line 8 comprises the inductive step: on the basis of the assump-
tion of convergence to nil on every reachable configuration of a certain form, then the
original configuration will converge to nil. Those reachable configurations must be such
that the textual component is the original While construct and the state component is a
state that is closer to the minimal elements of the well-founded relation, W ∧ P , than the
original state, σ0. The final infer of the overall proof is then just the application of the
well-founded induction rule to line 8. One of the oddities of the structure of this proof
is that, though we set up the induction very early, we do not actually use the inductive
assumption until near the very end of the from/infer box, at line 8.2.4.13.

The intermediate deductions inside line 8 break down into two major parts: first, in
lines 8.1 and 8.2 we show that the source configuration from the hypothesis, C0, must con-
verge on a fully evaluated If construct; and second, in lines 8.3–8.5, that all configurations
reachable from C0 with that fully evaluated If construct must converge on nil. This split is
necessary to ensure that the initial configuration is not a part of the reasoning that follows
much later, beginning on line 8.2.4.10.

Lines 8.1 and 8.2 are a trivial conclusion based on the While and If-Eval semantic rules. It
serves to set up the case distinction inside line 8.4, however. Line 8.4 concludes that any
configuration in the set defined on line 8.3 will converges on nil; line 8.3 defines the set
of all of the fully evaluated If constructs that line 8.2 has asserted that C0 must converge
upon. The set C v also has the interesting property the configurations it includes may come
after an arbitrary number of iterations of the body of the While loop.

Inside line 8.4 is the case analysis based on whether the test expression evaluated to
true or false. The false case corresponds to both the vacuous case of the induction –where
σ0 is a minimal element of the well-formed relation– and to the case where interference
may have caused the While to terminate early. The true case, however, corresponds only
to those cases for which σ0 is not a minimal element.

The false case is dealt with in lines 8.4.1 and is discharged easily: an If with false test
expression can only result in a nil. Note that the reason the test expression evaluated to
false is not relevant: whether σ0 is a minimal element or not, all paths that reach a false
test expression will converge on nil. The true case is dealt with in line 8.4.2 and requires
more effort as the proof requires examination of all the constructs which a While construct
is transformed into due to the While rule.

Lines 8.4.2.1–8.4.2.2 allow us to deduce that the If construct in the configuration Cv

will converge on its body. The body is a sequence containing the body of the initial While
in the left-hand component, and the whole initial While in the right-hand component.
Lines 8.4.2.3–8.4.2.5 take that sequence and deduce that its left-hand component will con-
verge on nil by use of structural induction through line 4. This requires that the pre con-
dition is established, however; that is done through the use of the While-interstices-pre

Chapter 6. Proving Soundness 89

While-Converges
from wh = mk -While(bs ∧ bu , body); (P ,R) ` wh sat (G,W ∗ ∧ P ∧ ¬ (bs ∧ bu));

[[P]](σ0); sw = mk -Seq(body ,wh); C0 = (wh, σ0); IH -T (body)
1 well-founded(W) h, While-I
2 bottoms(W) ⊆ ¬ (bs ∧ bu) h, While-I
3 R ⇒ W ∗ ∧ IVars(bs) h, While-I
4 SingleSharedVar(bu ,R) h, While-I

5 ¬
↼−−−−−
(bs ∧ bu) ∧ R ⇒ ¬ (bs ∧ bu) h, While-I

6 (P ,R) ` body sat (G,W ∧ P) h, While-I
7 Convergess(body ,P ,R, {nil}) 1, IH-T(body)
8 from ∀C ′ ∈ {(wh, σ′′) | C0

m−→∗
R

(wh, σ′′) ∧ [[W ∧ P]](σ0, σ
′′)}·

Convergesc(C ′,R, {nil})
8.1 from S ∈While; σ ∈ Σ; R′ ∈ Rely ; sw ′ = mk -Seq(S .body ,S)

infer Convergesc((S , σ),R′, {mk -If (v , sw ′) | v ∈ B}) h8.1, inspection of m−→
R′

8.2 Convergesc(C0,R, {mk -If (v , sw) | v ∈ B}) h, 8.1
8.3 C v = {(mk -If (v , sw), σv) | C0

m−→∗
R

(mk -If (v , sw), σv) ∧ v ∈ B} definition

8.4 from Cv ∈ C v ; Cv = (mk -If (v , sw), σv)
8.4.1 from ¬ v
8.4.1.1 from S ∈ If ∧ S .b = false; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {nil}) h8.4.1.1, inspection of m−→
R′

infer Convergesc(Cv ,R, {nil}) h, h8.4, h8.4.1, 8.4.1.1
8.4.2 from v
8.4.2.1 from S ∈ If ∧ S .b = true; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {S .body}) h8.4.2.1, inspection of m−→
R′

8.4.2.2 Convergesc(Cv ,R, {sw}) h, h8.4, h8.4.2, 8.4.2.1
8.4.2.3 C b = {(sw , σb) | Cv

m−→∗
R

(sw , σb)} definition

8.4.2.4 from Cb ∈ C b ; Cb = (sw , σb)
8.4.2.4.1 [[P ∧ bs]](σb) h, 6, h8.4, h8.4.2, h8.4.2.4, While-interstices-pre
8.4.2.4.2 Convergesc((body , σb),R, {nil}) 7, 8.4.2.4.1, Conv-Concrete

infer Convergesc(Cb ,R, {mk -Seq(nil,wh)}) 8.4.2.4.2, Conv-Wrap-Seq
8.4.2.5 ∀Cb ∈ C b · Converges(Cb ,R, {mk -Seq(nil,wh)}) ∀-I(8.4.2.4)
8.4.2.6 Convergesc(Cv ,R, {mk -Seq(nil,wh)})

8.4.2.2, 8.4.2.3, 8.4.2.5, Conv-Concat
8.4.2.7 from S ∈ Seq ∧ S .left = nil; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {S .right}) h8.4.2.7, inspection of m−→
R

8.4.2.8 ∀σ ∈ Σ · Converges((mk -Seq(nil,wh), σ),R, {wh}) ∀-I(8.4.2.7)
8.4.2.9 Convergesc(Cv ,R, {wh}) 8.4.2.6, 8.4.2.8, Conv-Concat
8.4.2.10 C w = {(wh, σw) | C0

m−→∗
R

Cv
m−→∗
R

(wh, σw)} definition

8.4.2.11 ∀(Sw , σw) ∈ C w · [[W ∧ P]](σ0, σw)
h, 3, 6, 8.4.2.10, While-interstices-psat

8.4.2.12 C w ⊆ {(wh, σ′′) | C0
m−→∗
R

(wh, σ′′) ∧ [[W ∧ P]](σ0, σ
′′)}

h8, 8.4.2.10, 8.4.2.11
8.4.2.13 ∀Cw ∈ C w · Converges(Cw ,R, {nil}) h8, 8.4.2.12

infer Convergesc(Cv ,R, {nil}) 8.4.2.9, 8.4.2.10, 8.4.2.13, Conv-Concat
infer Convergesc(Cv ,R, {nil}) ∨-E(h8.4,8.4.1,8.4.2)

8.5 ∀Cv ∈ C v · Convergesc(Cv ,R, {nil}) ∀-I(8.4)
infer Convergesc(C0,R, {nil,wh}) 8.2, 8.3, 8.5, Conv-Concat

infer Convergesc(C0,R, {nil}) 1, 2, 8, W-Indn

Figure 6.10: Proof of the convergence lemma for the While construct.

90 6.4. Convergence Lemmas

lemma inside line 8.4.2.4. With that done, we can conclude in line 8.4.2.6 that Cv will
reach a sequence with a nil left-hand component and the original While in the right-hand
component. From there it is trivial to conclude that Cv will converge on configurations
containing the original While , and this is done in lines 8.4.2.7–8.4.2.9.

It is at this point in the proof that we are almost ready to use the inductive assumption
placed in the hypothesis of line 5. Before actually doing so, however, we must show that it
actually applies. To that end, line 8.4.2.10 defines and binds the set of configurations that
line 8.4.2.9 asserts that Cv must converge upon, doing so relative to C0. Line 8.4.2.11,
then, uses the While-interstices-psat lemma to deduce that the body’s post condition –and,
thus, the well-founded relation– hold between σ0 and all of the state components in the set
of configurations in line 8.4.2.10. That allows line 8.4.2.12 to deduce that the set defined
in line 8.4.2.10 is a subset of the set in the inductive assumption and, therefore, all of those
configurations converge upon nil, as recorded in line 8.4.2.13. That last deduction allows
us to conclude that Cv with a true test expression must converge upon nil.

The infer of line 8.4 uses disjunction elimination to conclude that any given Cv will
converge upon nil, and line 8.5 uses universal introduction to place that into a universal
quantifier. That is concatenated with line 8.2 to give us the inductive step, that is, C0

will converge upon nil if all reachable following configurations with the original While
converge upon nil. The W-Indn rule then allows us to conclude, simply, that C0 must
converge upon nil for the final infer of the proof.

6.4.2 Atomic/STM

Considering the Atomic/STM construct, it is easy to see that there are only two things
that would cause it never to reach nil: either the failure of the body to converge on nil,
or interference triggering the STM-Retry semantic rule every time before the STM-E semantic
rule can be applied. The approach taken by the Atomic-I development rule is to constrain
the interference so that it cannot trigger the STM-Retry semantic rule at all. As noted in
Section 3.2 where the Atomic-I is given, this constraint on interference strongly affects the
potential uses of the construct in a rely/guarantee development; however, use of the sat-I

inference rule with an alternate termination argument can mitigate this problem.

Inside the proof itself, we end up with the situation where it is necessary to show that
all transitions that follow a given configuration cannot be due to the STM-Retry semantic rule.
This is done through the use of the unusual mechanism of proof by contradiction. In the
from/infer box of line 7.3 we show that the presence of a STM-Retry transition implies that
the rely condition cannot have been true of the environment’s behaviour. Since the rely
condition –and that the environment’s behaviour conforms to it– is a framing assumption
of the entire rely/guarantee framework, this allows the introduction of an absurdity, and by
the restricted principle of contradiction elimination, allows us to deduce that, in fact, no
STM-Retry transition can be present.

Looking at the structure of the proof of Atomic-Converges in Figure 6.11, then, we
see the usual initial step of importing the relevant antecedents in lines 1 and 2. Lines 3–5
show that the Atomic construct must become a STM construct, and line 6 defines the

Chapter 6. Proving Soundness 91

Atomic-Converges
from (P ,R) ` mk -Atomic(body) sat (G,Q); [[P]](σ0); C0 = (mk -Atomic(body), σ0);

IH -T (body)
1 (P , I) ` body sat (true,Q ′) h, Atomic-I
2 R ⇒ IVars(body) h, Atomic-I
3 Convergess(body ,P , I , {nil}) 1, IH-T(body)
4 from S ∈ Atomic;σ ∈ Σ,R′ ∈ Rely

infer Convergesc((S , σ),R, {mk -STM (S .body , σ′,S .body , σ′) | [[R]](σ, σ′)})
h4, inspection of m−→

R
, STM-Atomic

5 Convergesc(C0,R, {mk -STM (body , σb , body , σb) | [[R]](σ0, σb)}) h, 4
6 C i = {Ci | C0

m−→∗
R

Ci ∧ Ci = (mk -STM (body , σb , body , σb), σi) ∧ [[R]](σ0, σb)}
definition

7 from Ci ∈ C i ; Ci = (mk -STM (body , σb , body , σb), σi)

7.1 from (Cj ,Ck) ∈ {(Cj ,Ck) | Ci
m−→∗
R

Cj
m−→
R

Ck}
7.1.1 (Cj ,Ck) ∈ STM-Retry ∨ (Cj ,Ck) /∈ STM-Retry h7.1, inspection of m−→

R

7.1.2 from (Cj ,Ck) ∈ STM-Retry; Cj = (Sj , σj); Σj = {σ | [[R]](σj , σ)}
7.1.2.1 [[R]](σb , σi) h7, inspection of m−→

R
, STM-Atomic

7.1.2.2 (Cj ,Ck) ∈ (STM-Atomic ∪ STM-Step ∪ STM-E ∪ STM-Retry)∗

h7.1.2, inspection of m−→
R

7.1.2.3 [[R]](σi , σj) 7.1.2.2, Rely-Trivial
7.1.2.4 ∀σ′ ∈ Σj · [[IVars(body)]](σj , σ) 2, h7.1.2
7.1.2.5 ∀σ′ ∈ Σj · [[IVars(body)]](σb , σ) 7.1.2.1, 7.1.2.3, 7.1.2.4
7.1.2.6 ∀σ′ ∈ Σj · (Vars(body)Cσb) = (Vars(body)Cσ′) 7.1.2.5
7.1.2.7 ∃σ′ ∈ Σj · (Vars(body)Cσb) 6= (Vars(body)Cσ′) h7.1.2, STM-Retry

infer f 7.1.2.6, 7.1.2.7, f-I
infer (Cj ,Ck) /∈ STM-Retry 7.1.1, 7.1.2, f-E

7.2 ∀t ∈ {(Cj ,Ck) | Ci
m−→∗
R

Cj
m−→
R

Ck} · t /∈ STM-Retry ∀-I(7.1)

7.3 [[P]](σb) h, h7, PR-ident
7.4 Convergesc((body , σb), I , {nil}) 3, 7.3, Conv-Concrete
7.5 Convergesc(Ci ,R, {S ∈STM | S .body =nil}) h7, 7.2, 7.4, Conv-Wrap-STM
7.6 C e = {(Se , σe) | Ci

m−→∗
R

(Se , σe) ∧ Se ∈STM ∧ Se .body =nil} definition

7.7 from Ce ∈ C e

7.7.1 from S ∈ STM ∧ S .body = nil;σ ∈ Σ; R′ ∈ Rely ; R′ ⇒ IVars(S.body)

infer Convergesc((S , σ),R′, {nil})
infer Convergesc(Ce ,R, {nil}) 2, h7.7, 7.7.1

7.8 ∀Ce ∈ C e · Convergesc(Ce ,R, {nil}) ∀-I(7.7)
infer Convergesc(Ci ,R, {nil}) 7.5, 7.6, 7.8, Conv-Concat

8 ∀Ci ∈ C i · Convergesc(Ci ,R, {nil}) ∀-I(7)
infer Convergesc(C0,R, {nil}) 5, 6, 8, Conv-Concat

Figure 6.11: Proof of the convergence lemma for the Atomic/STM construct.

92 6.4. Convergence Lemmas

set of possible configurations that follow from line 5. Lines 7 and 8 introduce a universal
quantification to the effect that all elements of the set defined in line 6 must converge to nil,
and the proof ends by concatenating the Converges properties in lines 5 and 8 to conclude
that the initial configuration must converge to nil.

Line 7 is the from/infer box that deduces that any arbitrary element, Ci of the set
defined in line 6 must converge to nil. The content of the from/infer box can be sectioned
into three parts: lines 7.1 and 7.2 deduce that the STM-Retry transition cannot follow Ci ;
lines 7.3–7.5 build that into the more general assertion that the configuration Ci must
reach a STM construct with a nil body; and last, lines 7.6–7.8 and the infer show that Ci

must, indeed, reach nil.
Line 7.1 is the deduction that any arbitrary transition that follows Ci cannot be due to

the STM-Retry semantic rule, and line 7.2 generalizes it by introducing a universal quantifier
to that effect. The hypothesis of line 7.1 binds Cj and Ck to be the configurations related
by a single transition that follows from Ci . Then, on the basis that Cj and Ck must be
related by some rule of the semantics, line 7.1.1 notes that the pair of configurations either
is or is not related by the STM-Retry semantic rule. This disjunction is always defined as
every transition must be via some semantic rule, and thus means that we are able to use
proof by contradiction to derive one of the terms of the disjunction. Line 7.1.2 makes the
assumption that the pair of configurations is related through STM-Retry, and from that derives
an absurdity. The final infer of line 7.1 can then use the absurdity elimination rule –the
embodiment of the principle of restricted contradiction elimination– to conclude that the
transition that relates the pair of configurations is not STM-Retry.

Inside line 7.1.2 we need to derive two assertions that contradict each other. The second
of these is line 7.1.2.7, which asserts that there is some external state for which the variables
of the body differ in value from those in the body’s starting state. The external states that
the existential quantifier selects from are those that are one interference step past σj — as
defined in the hypothesis of line 7.1.2. The definition of the STM-Retry semantic rule allows
line 7.1.2.7 as a direct consequence. Set against line 7.1.2.7 is line 7.1.2.6, asserting that
the values of the variables of the body have the same values in the external state and the
starting state. Line 7.1.2.6 is deduced by showing that the rely condition holds between
the body’s starting state and all external states. As the rely condition implies an identity
relation restricted to the variables of the body, this proceeds directly.

Line 7.3 deduces that the pre condition holds on the body’s starting state and is nec-
essary for line 7.4 to deduce that the body will converge to nil given that particular state.
The combination of lines 7.2, 7.4 and the hypothesis of line 7 allows the application of the
Conv-Wrap-STM inference rule, giving us the result in line 7.5 that Ci will converge to a
STM construct with a nil in its body. This step relies on the fact that the Conv-Wrap-STM

rule leaves the external state free in its conclusion.

At this point all that remains is to show that any nil-bodied STM construct that Ci can
reach will, by necessity, reach nil. This is done through line 7.7 (with lines 7.6 and 7.8
providing the usual structure for the introduction of a universal quantifier) as the contained
from/infer constrains its hypothetical configuration enough that it is only in the domain
of the STM-E rule of the semantic relation. The conclusion of line 7.7 is then gained by

Chapter 6. Proving Soundness 93

matching up known deductions with the hypothesis of line 7.7.1, giving us the result that
any nil-bodied STM construct will reach nil in this context. The remainder of the proof is
just alternating applications of universal quantifier introduction and the Conv-Concat rule.

94

95

7 — A Development Example
This chapter is concerned with the application of the rely/guarantee development rules
given in Chapter 3. As such, we are not so much concerned with the reasons and motivation
behind particular design decisions made in a development, but rather the effect of design
decisions on the application of the development rules.

The example in this chapter –called FINDP— of a rely/guarantee development is an
elaboration of the example used in [CJ07]. This example originates in Owicki’s the-
sis [Owi75]; the first treatment of this example using rely/guarantee reasoning was in
Jones’ thesis [Jon81].

The task of FINDP is to find the least index into a vector such that the value of the vector
at that index satisfies some predicate. The predicate here is left arbitrary — it could be a
simple test to see if the value is a positive integer, or it could be arbitrarily complex. For the
sake of motivating the use of parallelism in the development, we are taking the predicate
to be both computationally expensive to evaluate and suitable for parallel execution.

The semantics of the language described in Chapter 2 does not include either function
calls nor vectors, both of which are used in the development. This is not a serious issue
in this case, however, as both can be reified down to constructs that are available in the
language. For the sake of clarity and length, however, this reification is not performed
here.

We start the development, then, with the specification of FINDP, as given in Figure 7.1.
In the specification, v represents the vector we are interested in, r will hold the result of
computation –the least index– and pred is the predicate we are looking to find a satisfactory
value for. The specification of FINDP is our top-level specification: it is used to start the
development, and the eventual implementation must satisfy it.

FINDP
rd v : X ∗

wr r : N1

pre ∀i ∈ {1..len v} · δ(pred(v(i)))

rely v = ↼−v ∧ r = ↼−r
guar true
post (r = 1 + len v ∨ 1 ≤ r ≤ len v ∧ pred(v(r)))

∧ ∀i ∈ {1..r − 1} · ¬ pred(v(i))

Figure 7.1: Specification of FINDP.

Breaking the specification of FINDP down, we first note that we are allowing read ac-
cess to the vector and write access to the result variable. By a strict interpretation of this
specification, any conformant implementation would be restricted from using any variable
not named by either a rd or wr keyword. However, we will be adding new variables
as we decompose and reify this specification and, as the language has no notion of local
variables, we will have to alter the definition of FINDP to include these variables as we pro-
ceed. These changes are perfectly consistent with the rely/guarantee –and VDM– method

96

of development. The rd and wr keywords help to implicitly define the guarantee and post
conditions for the specification; in particular, a variable mentioned only in the rd key-
word will have an implicit guarantee that the variable will not be altered by a conformant
implementation.

The next two keywords in the specification –pre and rely– give the context in which
a conformant implementation is expected to execute within. For FINDP, the pre condition
asserts only that the predicate is defined for all values in the vector. The rely condition
asserts that the environment will not modify either the vector or the result variable. Thus
we are assuming that the environment will do nothing that can affect the execution of
FINDP.

The final two keywords –guar and post– give the expected behaviour and end result of
the program. The guarantee, here, is listed as being simply true, which would imply that
FINDP is free to modify any variable in any fashion. This must be read taking the rd and
wr keywords into consideration, however, and as such the guarantee of FINDP becomes
↼−v = v . The overall guarantee condition is reached by starting with the identity relation,
relaxing all restrictions on variables named in wr keywords, then adding the constraints
given in the guar keyword.

The post condition of FINDP is a straightforward formalisation of the purpose stated
earlier, with a little bit of elaboration to describe the potential case where no value in the
vector satisfied the predicate. The first term in the conjunct restricts the resulting index to
be either a value one more than the length of the vector or any index for which its value in
the vector satisfies the predicate. That, alone, is not quite enough to satisfy the informal
specification, so the second term of the conjunct restricts the result further so that the values
at all lesser indices in the vector do not satisfy the predicate.

Having now described the conditions in the FINDP specification, we need to check that
all of the conditions meet the constraints required by the rely/guarantee framework. This
means ensuring that the rely and guarantee conditions are reflexive and transitive; that, if a
state satisfies the pre condition, then states related to that state through the rely condition
also satisfy the pre condition;1 and if a pair of states satisfy the post condition, then the
rely condition cannot result in a state that no longer satisfies the post condition.2 We will
not verify these constraint explicitly in this chapter, but rather leave this validation implicit
for the specifications that will follow as we develop the example.

First we ensure that the rely condition of FINDP cannot produce a state which does
not satisfy pre-FINDP. It is not hard to see that this is the case: pre-FINDP make an
assertion solely about the vector, and rely-FINDP asserts that the environment never alters
the vector. Second, we check that rely-FINDP cannot produce a state which would no
longer satisfy post-FINDP (relative to an arbitrary, fixed, pre condition-satisfying initial
state). As post-FINDP only references the vector and result variables, and rely-FINDP is
effectively an identity for those variables, it is easy to see, once again, that is true. Finally,
we ensure that both rely-FINDP and guar -FINDP are reflective and transitive; here this is
self-evident.

1See the PR-ident lemma.
2See the QR-ident lemma.

Chapter 7. A Development Example 97

With the top-level specification defined, we are now ready to perform the first de-
composition. This development step is a little delicate as it introduces a new variable;
a language with local variables would not have difficulty with this. The approach taken
here is to amend the top-level specification to include the new variables, and we make the
assumption that the new variables are fresh –unused and not otherwise present– at the top-
level. This amendment to the top-level specification is as simple as adding t : N1 to the wr
keyword, and adding ↼−t = t to the rely condition of FINDP.3

The decomposition itself –given the existence of t– has the purpose of separating the
initialization and finalization steps of FINDP from the actual task of searching for the least
index. Thus we have

FINDP 4 (INIT ; SEARCHES) ; FINAL

where INIT, FINAL, and SEARCHES are defined in Figures 7.2, 7.3 and 7.4, respectively.

INIT

rd v : X ∗

wr t : N1

pre true
rely v = ↼−v ∧ t =

↼−
t

guar true
post t = 1 + len↼−v

Figure 7.2: Specification of INIT.

The specification for INIT is pleasantly simple: given read access to the vector and write
access to the temporary variable t , a conforming implementation will finish with t set to a
value one greater than the length of the vector. The specification requires that interference
leaves the vector and temporary variable (t) alone, but places no restriction on the initial
state. The guar -INIT condition is left open, though there is the implicit constraint that a
conformant implementation will not modify the vector as only read access is assumed.

FINAL

rd t : N1

wr r : N1

pre true
rely t =

↼−
t ∧ r = ↼−r

guar true
post r =

↼−
t

Figure 7.3: Specification of FINAL.

The specification of FINAL is similar to that of INIT, but has the effect of making
the temporary variable and the result variable equivalent at its conclusion. Note that
post-FINAL equates the final value of the result variable with the initial value of the tem-
porary variable: this ensures that an implementation that sets t to the value of r is non-
conforming.

3Thus making rely-FINDP equivalent to ↼−v = v ∧↼−r = r ∧↼−
t = t .

98

SEARCHES

rd v : X ∗

wr t : N1

pre ∀i ∈ {1..t − 1} · δ(pred(v(i)))

rely v = ↼−v ∧ t =
↼−
t

guar true
post

h
t =

↼−
t ∨ (t <

↼−
t ∧ pred(v(t)))

i
∧ ∀i ∈ {1..t − 1} · ¬ pred(v(i))

Figure 7.4: Specification of SEARCHES.

The SEARCHES specification is now where the bulk of the work necessary to satisfy the
FINDP specification is done. This specification is intended to be more general than that of
FINDP: indeed, one could take the view that FINDP is a specialization of SEARCHES that
covers the entire vector. To see this, first consider pre-SEARCHES: this pre condition only
requires that the predicate be defined on values in the vector up to (but not including) an
index given by t . We know from FINDP and INIT that t will be just past the end of the array,
but SEARCHES does not require that in and of itself. Given that the rely and guarantee
conditions of FINDP and SEARCHES are essentially the same (modulo t and r), let us
consider what the post condition tells us about the result of executing an implementation
of SEARCHES. Examining post-SEARCHES in comparison to post-FINDP, we find that
t is substituted consistently for r and that the default case for t is different than that for
r in post-FINDP. Specifically, we assert in post-SEARCHES that t will be unchanged in
the default case — considering this in the context of the decomposition, this makes perfect
sense: t is initially set to one greater than the length of the vector.

These three specifications –INIT, SEARCHES, and FINAL– are shown to satisfy FINDP
by the use of the Seq-I development rule and judicious application of the Weaken rule. The
Seq language construct is a binary structure, and we have three sub-specifications, so we
are required to first compose two of the specifications into an intermediate specification,
then compose that with the remaining specification to show that this decomposition sat-
isfies the specification of FINDP. Alternately, we could posit a development rule for the
sequential composition of three, or arbitrarily many, specifications and prove it sound rela-
tive to the language semantics. If compositions of that form were done frequently enough
in the development then creating such a rule would be to our advantage; in this case we are
not doing enough compositions to justify it. The argument presented here first composes
INIT and SEARCHES, then that with FINAL.

Before we get to using the rules, however, we need to check that the rd & wr keywords
are compatible. The vector is only ever read in the sub-specifications, which matches
FINDP perfectly, and the remaining variables named in the sub-specifications are present
in FINDP’s wr keyword.4

The pre condition of INIT can easily be weakened to match that of FINDP, and the rely
condition of INIT is less restrictive than that of FINDP, so this portion is fine. Once the
pre-INIT condition is weakened to become pre-FINDP, the pre condition of SEARCHES

4Note that we will have added t to FINDP’s specification, though the addition is not shown in Figure 7.1.

Chapter 7. A Development Example 99

is implied by the conjunction of pre-FINDP, and the rely, guarantee, and post conditions
of INIT. Now, post-SEARCHES is very nearly the same form as post-FINDP but on t
instead of r and using ↼−t instead of 1 + len v . In the composition of INIT and SEARCHES,
the ↼−t of post-SEARCHES becomes 1 + len v for the post condition of the composition,
and composing that with FINAL allows the substitution of r for t , resulting in a final post
condition that is the same as post-FINDP.

We will now concentrate on the further development of SEARCHES; INIT & FINAL can
be directly implemented as assignments as shown in Figure 7.12. The decomposition of
SEARCHES into a pair of SEARCH specifications is motivated by the desire to demonstrate
how a parallel decomposition works rather than any specific opinion regarding the best
implementation of the task.

The proposed decomposition is

SEARCHES 4 SEARCH(odds)‖SEARCH(evens)

where odds is defined as

odds 4 {i ∈ N1 | i < t ∧ is-odd(i)}

and evens is defined in a similar manner; the specification for search is shown in Figure 7.5.
The t in the definition of odds is the same t as in the wr keywords of both SEARCHES and
SEARCH. This parallel split is, of course, to allocate a split on the odd and even indices
of the vector. The pre condition of SEARCH is nearly equivalent to pre-SEARCHES except
that it is restricted to only the indices in the is set that is given as a parameter. It is not
difficult to see that pre-SEARCH can be weakened to become pre-SEARCHES. The rely
condition of SEARCH allows for more interference than rely-SEARCHES; allowing t to
decrease monotonically means that other threads running in parallel may decrease t and
the current instantiation of SEARCH will act accordingly. The guarantee condition for
SEARCH effectively states that each execution step will either leave t unaltered, or it will
change t to a smaller index whose value in the vector satisfies the predicate. Last, the post
condition for SEARCH is much simpler than that for SEARCHES: it only requires that all
values in the vector at indices less than t (and in odds) do not satisfy the predicate.

SEARCH(is: N1-set)
rd v : X ∗

wr t : N1

pre ∀i ∈ is · δ(pred(v(i)))

rely v = ↼−v ∧ t ≤↼−t
guar t =

↼−
t ∨ (t <

↼−
t ∧ pred(v(t)))

post ∀i ∈ is · [i < t ⇒ ¬ pred(v(i))]

Figure 7.5: Specification of SEARCH.

The Par-I development rule is the key to using the weaker post-SEARCH together with
guar -SEARCH to show that post-SEARCHES must hold. The last antecedent of Par-I –
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q– is the specific requirement: Ql & Qr correspond

100 7.1. Atomicity Via Data Reification

to post-SEARCH for the odd and even cases; Gl & Gr correspond to guar -SEARCH on
the odd and even cases; and Q corresponds to post-SEARCHES. The

↼−
P term corresponds

to pre-SEARCHES — as mentioned, post-SEARCHES is a weakening of post-SEARCH.
We must also check that rely-SEARCH(odds) can be weakened to rely-SEARCH(odds) ∨
guar -SEARCH(evens) so as to make sure the Par-I rule can be applied. It is not hard to
see that it can: guar -SEARCH only references t and is effectively t ≤ ↼−t (the restriction
if t < ↼−t is not relevant in this consideration), so it is accurate to say that the actions in
guar -SEARCH(evens) are included in rely-SEARCH(odds). The same argument applies
in the symmetrical case for SEARCH(evens), of course.

The only remaining antecedent in Par-I that must be checked is that Gl ∨ Gr ⇒ G .
The Gl & Gr terms represent the guarantees from the odd and even cases of SEARCH; G is
the guarantee from SEARCHES. That this antecedent is satisfied is trivially true: anything
implies true, which is the definition of guar -SEARCHES as written; the objection that we
must take the rd & wr keywords into account is satisfied by noting that they are precisely
the same between SEARCHES and SEARCH.

7.1 Atomicity Via Data Reification

This section details the development of the FINDP example from the SEARCH specification
without the use of software transactional memory. The next step in the development –from
SEARCH(odds) to SEARCH-ODD, shown in Figure 7.6– is primarily reliant on the Weaken

development rule, but also uses data reification to “split” the variable t into separate vari-
ables, ot and et , for the odd and even SEARCH specifications. An alternative approach is
taken in Section 7.2 that uses the Atomic construct instead of data reification.

SEARCH-ODD

rd v : X ∗, et : N1

wr oc, ot : N1

pre ∀i ∈ {j ∈ N1 | j < min(ot , et) ∧ is-odd(j)} · δ(pred(v(i)))

rely v = ↼−v ∧ oc = ↼−oc ∧ ot =
↼−
ot ∧ et ≤↼−et

guar ot =
↼−
ot ∨ (ot <

↼−
ot ∧ pred(v(ot)))

post ∀i ∈ {j ∈ N1 | j < min(ot , et) ∧ is-odd(j)} · ¬ pred(v(i))

Figure 7.6: Specification of SEARCH-ODD.

The data reification is done to control access to the temporary variable in the parallel
copies of SEARCH. We split t into two new variables –ot and et , for the odd and even
branches– and define the retrieve function such that t = min(ot , et). As with the orig-
inal introduction of t , we need to add ot & et to the more abstract specification as local
variables.

The purpose and intent of the reification is to create what is essentially a local vari-
able for each instantiation of SEARCH; because of this, we perform the reification as we
specialize SEARCH(odds) into SEARCH-ODD.5 The specialization of SEARCH(odds) into

5And SEARCH(evens) into SEARCH-EVEN, though we will not show that development.

Chapter 7. A Development Example 101

SEARCH-ODD also introduces another pseudo-local variable, oc, that is added to the spec-
ifications in the same manner as t was.

The variables named in SEARCH-ODD, then, should be no surprise: oc and ot –the
pseudo-local variables– are named for write access; and v and et are named for read ac-
cess. Strictly speaking, et is only named as an optimization to allow SEARCH-ODD to
finish early in the case where SEARCH-EVEN finds a satisfactory index that is lower than
the current odd index. The current odd index is held in oc and tracks how far along the
vector SEARCH-ODD’s implementation has reached. The ot variable acts both as an upper
bound to indicate when to stop looking as well as a result variable: if ot is changed it is
because a satisfactory index has been found by SEARCH-ODD. As is obvious from the
preceding description, a number of assumptions regarding the implementation have now
entered into the design of the specification. In particular it is assumed that an implementa-
tion of SEARCH-ODD will start at the lowest possible index and increase the index until it
finds one that satisfies the predicate.

The pre condition for SEARCH-ODD is a specialized version of pre-SEARCH: the is
parameter has been replaced with the set comprehension for the odd indices, and t has
been replaced with min(ot , et). The rely condition has been changed a bit to reflect the
reification: ot must now be interference-free, and et may monotonically decrease.

The guarantee of SEARCH-ODD is that of guar -SEARCH but specialized to ot ; et
is implicitly unaltered as SEARCH-ODD does not have write access to it. Last, the post
condition of SEARCH-ODD asserts that all odd indices less than the minimum of ot and et
will not satisfy the predicate. Though the set comprehension in post-SEARCH-ODD is
textually the same as that in pre-SEARCH-ODD, it should be noted that they may not
necessarily generate the same set of indices: the set in the post condition will be a (non-
strict) subset of that in the pre condition.

Comparing the rely and guarantee condition in the specialized SEARCH-ODD and
SEARCH-EVEN, it is not hard to see that the only place that they can actually affect each
other is in the post condition. And, even there, the practical effect is essentially nil.

Justifying the assertion that an implementation that conforms to SEARCH-ODD will
also conform to SEARCH(odds) is done via the Weaken development rule with the reifica-
tion taken into account.

The SEARCH-ODD specification does not assume that oc has any particular initial
value, however, it will certainly need to be initialized before any further work is done
in the search. Thus we posit the following for the decomposition of SEARCH-ODD:

SEARCH-ODD 4 SEARCH-ODD-INIT ; SEARCH-ODD-SCAN

where SEARCH-ODD-INIT is given in Figure 7.7 and SEARCH-ODD-SCAN is given in
Figure 7.8.

The specification of SEARCH-ODD-INIT is uninteresting save for the fact that its post
condition equates oc to a constant value. At the abstract level we know that there are no
odd values in the set of indices that are less than 1, and since finding a least index involves
knowing something about all lesser indices, this is the obvious place to start. This constant

102 7.1. Atomicity Via Data Reification

SEARCH-ODD-INIT

wr oc: N1

pre true
rely oc = ↼−oc

guar true
post oc = 1

Figure 7.7: Specification of SEARCH-ODD-INIT.

value is later used to justify the satisfaction of post-SEARCH-ODD from the composition
of post-SEARCH-ODD-INIT and post-SEARCH-ODD-SCAN.

SEARCH-ODD-SCAN

rd v : X ∗, et : N1

wr oc, ot : N1

pre ∀i ∈ {j ∈ N1 | oc ≤ j < min(ot , et) ∧ is-odd(j)} · δ(pred(v(i)))

rely v = ↼−v ∧ oc = ↼−oc ∧ ot =
↼−
ot ∧ et ≤↼−et

guar ot =
↼−
ot ∨ (ot <

↼−
ot ∧ pred(v(ot)))

post (↼−oc ≤ oc) ∧ ¬ (oc < min(ot , et))

∧ ∀i ∈ {j ∈ N1 |↼−oc ≤ j < min(ot , et) ∧ is-odd(j)} · ¬ pred(v(i))

Figure 7.8: Specification of SEARCH-ODD-SCAN.

The SEARCH-ODD-SCAN specification is where the actual work of scanning through
the indices is done. There is an implicit assumption that the start and end points of the scan
–oc and ot respectively– are already set; or, seen from another prospective, this specifica-
tion only scans the vector between the bounds set by oc at the (inclusive) bottom and ot at
the (exclusive) top.

The pre condition of SEARCH-ODD-SCAN is the natural restriction of previous pre
conditions to the definedness of only those indices between oc and the minimum of ot
and et . As has been the pattern in the previous development steps, this is a further re-
laxation of the pre condition from the more abstract specification. Both of the rely and
guarantee conditions of SEARCH-ODD-SCAN are precisely the same as those in SEARCH-
ODD.

The post condition of SEARCH-ODD-SCAN implies that of SEARCH-ODD when com-
posed sequentially with that of SEARCH-ODD-INIT. This sequential composition uses the
Seq-I development rule and proceeds in a similar manner as does the (triple) composition
of INIT, SEARCHES, and FINAL into FINDP. The structure of the post condition will be de-
tailed after SEARCH-ODD-SCAN-BODY is covered as it makes more sense in the context
of how the specification is decomposed.

This brings us to the net development step, which decomposes SEARCH-ODD-SCAN

into a While loop.

test-odd 4 oc < ot ∧ oc < et
SEARCH-ODD-SCAN 4 mk -While(test-odd , SEARCH-ODD-SCAN-BODY)

The specification of SEARCH-ODD-SCAN-BODY is given in Figure 7.9. The justification
of this decomposition is made through the use of the While-I development rule.

Chapter 7. A Development Example 103

SEARCH-ODD-SCAN-BODY

rd v : X ∗

wr oc, ot : N1

pre oc < ot
∧ ∀i ∈ {j ∈ N1 | oc ≤ j < ot ∧ is-odd(j)} · δ(pred(v(i)))

rely v = ↼−v ∧ oc = ↼−oc ∧ ot =
↼−
ot

guar ot =
↼−
ot ∨ (ot <

↼−
ot ∧ pred(v(ot)))

post (↼−oc < oc)

∧ ∀i ∈ {j ∈ N1 |↼−oc ≤ j < min(oc, ot) ∧ is-odd(j)} · ¬ pred(v(i))

Figure 7.9: Specification of SEARCH-ODD-SCAN-BODY.

As noted much earlier –in Chapter 3– the While-I development rule depends on the test
expression of the While loop having some interesting properties. The expression consists
of two parts: the first part must be independent of all interference and the second part must
be such that at most one variable is shared and that variable may be used only once. For the
test-odd expression in this decomposition, it is not hard to see that these requirements are
met. The given form of While-I denotes the independent, stable portion of the test as bs and
that corresponds to the oc < ot term in test-odd . This term only references the variables
oc and ot , and so it is obvious from the rely-SEARCH-ODD-SCAN that this term is free of
interference in evaluation. The portion of the test with a shared variable is denoted as bu in
the While-I rule, and this corresponds to oc < et in test-odd . The only shared variable in
this term is et and it is clear from the form of the term and the language semantics that the
value of et is only read once during expression evaluation. The important part about this
test is that we can depend on the value of the bs element of the test to remain stable during
execution of the loop body, and that we can treat the evaluation of the bu component as
though it were evaluated in a single state. This last property is required to ensure that the
last antecedent from While-I6 is relevant — the form of the antecedent assumes single-state
evaluation.7

Looking at SEARCH-ODD-SCAN-BODY, we first note that it no longer has any access
to the et variable; this specification is no longer dependent on any variables which have
interesting interference. The practical effect of this is that further development of this
specification can proceed almost as though we were developing a non-concurrent program.

The pre condition of SEARCH-ODD-SCAN-BODY includes the definedness condition
that the previous specifications use, but it also includes the stable portion of test-odd from
the While loop. This has the effect of ensuring that the initial value of oc is an index into
the vector. The guarantee condition is an elaboration of that from SEARCH-ODD-SCAN,
including the specific detail that if ot decreases it explicitly becomes the value of oc.

The post condition of SEARCH-ODD-SCAN-BODY has a similar structure to that of
SEARCH-ODD-SCAN. The differences are connected and relate to the fact that this post
condition must be a well-founded relation (where post-SEARCH-ODD-SCAN need not be),
and to the way this particular example deals with separating the search threads. First, the
selection set in the universal quantifier uses min(oc, ot) instead of min(ot , et) as an upper

6↼−−−−−−−¬ (bs ∧ bu) ∧ R ⇒ ¬ (bs ∧ bu)
7See the discussion on multiple-state evaluation in Chapter 3.

104 7.1. Atomicity Via Data Reification

bound: inside the body of the While loop we must ensure that there are no references to
shared variables. That the overall While loop can use min(ot , et) as its upper bound is
due to the requirement that the oc variable be greater than one of the top markers, ot or
et . On this basis, then, it is not hard to see that post-SEARCH-ODD-SCAN is a weakened
reflexive closure of post-SEARCH-ODD-SCAN-BODY.

That post-SEARCH-ODD-SCAN-BODY is a well-founded relation rests both on the
strict inequality in the ↼−oc < oc term and on the implicit constraint that if oc is greater than
ot the pre condition of the specification is not satisfied.

SEARCH-ODD-SCAN-STEP

wr oc: N1

pre true
rely oc = ↼−oc

guar true
post oc = ↼−oc + 2

Figure 7.10: Specification of SEARCH-ODD-SCAN-STEP.

The decomposition of SEARCH-ODD-SCAN-BODY is done as a sequential split, thus:

SEARCH-ODD-SCAN-BODY 4

SEARCH-ODD-SCAN-CHECK ; SEARCH-ODD-SCAN-STEP

The specification of SEARCH-ODD-SCAN-STEP is in Figure 7.10, and is responsible for
incrementing the odd loop counter; we will not examine it in detail. The specification of
SEARCH-ODD-SCAN-CHECK in Figure 7.11 is more interesting, however.

SEARCH-ODD-SCAN-CHECK

rd v : X ∗, oc: N1

wr ot : N1

pre δ(pred(v(oc)))

rely v = ↼−v ∧ oc = ↼−oc ∧ ot =
↼−
ot

guar ot =
↼−
ot ∨ (ot = ↼−oc ∧ pred(v(↼−oc)))

post
“

ot = ↼−oc ∧ pred(v(↼−oc))
”
∨
“

ot =
↼−
ot ∧ ¬ pred(v(↼−oc))

”
Figure 7.11: Specification of SEARCH-ODD-SCAN-CHECK.

The further decomposition of SEARCH-ODD-SCAN-CHECK is intended to use the
If-b-I development rule rather than the simpler If-I development rule. The implementa-
tion of this specification (as shown in Figure 7.12) is:

if pred(v(oc)) then ot ← oc fi;

and it can be seen that interference from the rely condition cannot affect the evaluation of
the test expression in the If construct. This allows for a pre condition on the body of the
If construct that includes the fact that if the body is executed then the index held in oc
satisfies the predicate. In turn we can conclude that, when execution of the implementation
has completed, either the ot variable will be modified if oc is an index that satisfies the

Chapter 7. A Development Example 105

predicate, or ot will be left unmodified.

The SEARCH-ODD-SCAN-CHECK specification no longer depends upon et in the vari-
able list — part of the decomposition to this step is the decision to have this implemen-
tation of SEARCH-ODD-SCAN-BODY only check the potential satisfaction of one index.
The use of et in post-SEARCH-ODD-SCAN-BODY is a weakening of a post condition that
could be derived from the composition of SEARCH-ODD-SCAN-CHECK and SEARCH-
ODD-SCAN-STEP; using et in the specification of SEARCH-ODD-SCAN-BODY allows us
to justify the optimization of terminating the loop when oc passes any satisfactory index.

The pre condition of SEARCH-ODD-SCAN-CHECK only requires that the predicate
is defined for the value in the vector of the starting value of oc. This simplification is a
direct consequence of the design decision to have the body only check one index. The
rely condition is simple: it requires what is essentially the identity on the vector and the
two odd-branch variables, oc and ot . The guarantee condition of SEARCH-ODD-SCAN-
CHECK is the same as that for SEARCH-ODD-SCAN-BODY, as the expected behaviour is
precisely the same: it will only modify ot if oc is less than the initial value of ot and it
satisfies the predicate.

The post condition –fittingly for a specification that we expect to decompose using an
If -based development rule– is a disjunction on two cases. The first case handles instances
where the initial value of oc does satisfy the predicate; here ot will end up equivalent to
the initial value of oc. The second case is where the initial value of oc does not satisfy the
predicate, and asserts that ot will be unchanged in that case.

The SEARCH-ODD-SCAN-CHECK specification, as noted, can be decomposed into an
If construct, and, as is visible in its implementation, the body of that If construct is an
assignment. That assignment can be justified by the Assign-I rule, and the step between
the richer post condition of the SEARCH-ODD-SCAN-CHECK specification and the assign-
ment can be made using the Weaken rule.

Finishing this development, we present Figure 7.12 which contains a pseudo-code
implementation of FINDP according to the development in this section. Portions of the
pseudo-code have been boxed indicating their corresponding specification.

7.2 Atomicity Via Software Transactional Memory

This section presents an alternative development of the FINDP example, this time using
software transactional memory to stay with the idea of a single variable t . We start from
the specification of SEARCH in Figure 7.5 as the initial steps are common to both develop-
ments. Given that we will be using software transactional memory in this development we
do not need to reify t as we did in the previous section. Instead we will use the language’s
Atomic construct to manage access to t . The description and explanation of each develop-
ment step in this section will be terse until we reach the actual use of the Atomic construct
as most of the development follows a parallel path to that in the previous section.

The first development step is from SEARCH on the odd indices to SEARCH-STM-ODD,
and the resulting specification is shown in Figure 7.13. Justification of this development
step is done using the Weaken rule, as all of the conditions are specializations from a

106 7.2. Atomicity Via Software Transactional Memory

1

Joint FINDP

ot ← len v + 1;
et ← len v + 1;
par
‖ (oc ← 1;

while (oc < ot ∧ oc < et) do
if pred(v(oc)) then ot ← oc fi;
oc ← oc + 2

od)
‖ (ec ← 2;

while (ec < et ∧ ec < ot) do
if pred(v(ec)) then et ← ec fi;
ec ← ec + 2

od)
rap;
if ot < et then r ← ot fi;
if et < ot then r ← et fi

STM FINDP

t ← len v + 1;
par
‖ (oc ← 1;

while (oc < t) do
if pred(v(oc)) then

atomic(if oc < t then t ← oc fi)
fi;
oc ← oc + 2

od)
‖ (ec ← 2;

while (ec < t) do
if pred(v(ec)) then

atomic(if ec < t then t ← ec fi)
fi;
ec ← ec + 2

od)
rap;
r ← t

DRAFT — #1093, Sat, 29 Dec 2007 30 December 2007|

SearchesInit

Final

Search-Odd

Search-Even

Search-O
dd-Scan

Search-O
dd-Init

Search-O
dd-Scan-Body

Se
ar
ch
-O
dd
-S
ca
n-
Ch

ec
k

Se
ar
ch
-O
dd
-S
ca
n-
St
ep

Figure 7.12: An annotated pseudo-code implementation of FINDP without atomic blocks.

SEARCH-STM-ODD

rd v : X ∗

wr oc, t : N1

pre ∀i ∈ {j ∈ N1 | j < t ∧ is-odd(j)} · δ(pred(v(i)))

rely v = ↼−v ∧ oc = ↼−oc ∧ t ≤↼−t
guar t =

↼−
t ∨ (t <

↼−
t ∧ pred(v(t)))

post ∀i ∈ {j ∈ N1 | j < t ∧ is-odd(j)} · ¬ pred(v(i))

Figure 7.13: Specification of SEARCH-STM-ODD.

Chapter 7. A Development Example 107

general set of indices to the particular case of the odd indices.

SEARCH-STM-ODD-SCAN

rd v : X ∗

wr oc, t : N1

pre ∀i ∈ {j ∈ N1 | oc ≤ j < t ∧ is-odd(j)} · δ(pred(v(i)))

rely v = ↼−v ∧ oc = ↼−oc ∧ t ≤↼−t
guar t =

↼−
t ∨ (t <

↼−
t ∧ pred(v(t)))

post ↼−oc ≤ oc ∧ ¬ (oc < t)

∧ ∀i ∈ {j ∈ N1 |↼−oc ≤ j < t ∧ is-odd(j)} · ¬ pred(v(i))

Figure 7.14: Specification of SEARCH-STM-ODD-SCAN.

The next development step decomposes SEARCH-STM-ODD into two parts, thus:

SEARCH-STM-ODD 4

SEARCH-ODD-INIT ; SEARCH-STM-ODD-SCAN

where SEARCH-ODD-INIT is the same as in Figure 7.7, and SEARCH-STM-ODD-SCAN

is given in Figure 7.14.
The justification of this development step is done using the Seq-I development rule,

naturally. The first significant difference in the specifications relative to the previous sec-
tion appears here: the need to constantly reference the minimum of ot and et –thus reading
a variable which is only written to in another thread– is eliminated.

SEARCH-STM-ODD-SCAN-BODY

rd v : X ∗

wr oc, t : N1

pre oc < t ∧ ∀i ∈ {j ∈ N1 | oc ≤ j < t ∧ is-odd(j)} · δ(pred(v(i)))

rely v = ↼−v ∧ oc = ↼−oc ∧ t ≤↼−t
guar t =

↼−
t ∨ (t <

↼−
t ∧ pred(v(t)))

post ↼−oc < oc ∧ ∀i ∈ {j ∈ N1 |↼−oc ≤ j < t ∧ is-odd(j)} · ¬ pred(v(i))

Figure 7.15: Specification of SEARCH-STM-ODD-SCAN-BODY.

The next development step gives us a While loop with oc < t as the test, thus:

SEARCH-STM-ODD-SCAN 4

mk -While(oc < t , SEARCH-STM-ODD-SCAN-BODY)

where SEARCH-STM-ODD-SCAN-BODY is given in Figure 7.15. This development step
uses the While-I rule, though it only uses the unstable term, bu , of the test defined in the
rule. The stable term, bs , is taken to be true for the purposes of this development.

This specification of the loop’s body decomposes into two parts, thus:

SEARCH-STM-ODD-SCAN-BODY 4

SEARCH-STM-ODD-SCAN-CHECK ; SEARCH-ODD-SCAN-STEP

where SEARCH-ODD-SCAN-STEP is given previously in Figure 7.10 and SEARCH-STM-
ODD-SCAN-CHECK is given in Figure 7.16. As in the previous section, the “step” speci-

108 7.2. Atomicity Via Software Transactional Memory

SEARCH-STM-ODD-SCAN-CHECK

rd v : X ∗, oc: N1

wr t : N1

pre oc < t ∧ δ(pred(v(oc)))

rely v = ↼−v ∧ oc = ↼−oc ∧ t ≤↼−t
guar t =

↼−
t ∨ (t <

↼−
t ∧ t = ↼−oc ∧ pred(v(↼−oc)))

post (t = ↼−oc ∧ pred(v(↼−oc))) ∨ (t =
↼−
t ∧ ¬ pred(v(↼−oc)))

Figure 7.16: Specification of SEARCH-STM-ODD-SCAN-CHECK.

fication satisfies the irreflexive portion of the loop body’s post condition, and the “check”
specification deals with the potential need to alter the value of t .

SEARCH-STM-ODD-SCAN-SET

rd oc: N1

wr t : N1

pre true
rely oc = ↼−oc ∧ t ≤↼−t

guar t =
↼−
t ∨ (↼−oc <

↼−
t ∧ t = ↼−oc)

post t ≤↼−oc

Figure 7.17: Specification of SEARCH-STM-ODD-SCAN-SET.

The decomposition of SEARCH-STM-ODD-SCAN-CHECK pins down where the cur-
rent index in oc is actually checked for satisfaction of the predicate. This decomposition
uses the predicate directly as the test, thus:

SEARCH-STM-ODD-SCAN-CHECK 4

mk -If (pred(v(oc)), SEARCH-STM-ODD-SCAN-SET)

where SEARCH-STM-ODD-SCAN-SET is in Figure 7.17. It is at this point where the
development becomes interesting from the perspective of the Atomic construct, as the
guarantee condition of SEARCH-STM-ODD-SCAN-SET creates the need for an atomic
test-and-set operation due to the shared nature of t and the fine-grained expression evalua-
tion semantics of the language.

STM-TEST-AND-SET

rd oc: N1

wr t : N1

pre true
rely I

guar true
post (↼−oc <

↼−
t ⇒ t = ↼−oc) ∧ (

↼−
t ≥↼−oc ⇒ t =

↼−
t)

Figure 7.18: Specification of STM-TEST-AND-SET.

Because of the need for a test-and-set operation, the development of SEARCH-STM-
ODD-SCAN-SET is done using the Atomic-psat-I rule, thus:

SEARCH-STM-ODD-SCAN-SET 4 mk -Atomic(STM-TEST-AND-SET)

Chapter 7. A Development Example 109

where STM-TEST-AND-SET is given in Figure 7.18.

At this point there is a problem if we try to prove that SEARCH-STM-ODD-SCAN-SET

terminates: as we are unable to show that all of the variables on which STM-TEST-AND-
SET depends are left untouched by the environment, the full satisfaction Atomic-I rule
cannot be used. Instead we must use the partial satisfaction rule Atomic-psat-I for the
decomposition, then establish a termination argument that allows the use of the sat-I rule.

For this example, the argument that SEARCH-STM-ODD-SCAN-SET must terminate
comes from inspecting the even thread and the knowledge that a) the even thread is the
only source of alterations to the shared variable, t ; and b) that the even thread is designed
in a manner that is essentially symmetric to the odd thread. We note that the even thread
may only modify t a finite number of times, based on the fact that t will be modified at
most once per even index, and there are a finite number of even indices in a finite vector.
Combine that with the knowledge –from the language semantics– that it is not possible
for two Atomic constructs to cause mutual retry attempts –as one of the constructs must
commit before the other– and we can then conclude that SEARCH-STM-ODD-SCAN-SET

must terminate. This comes on the basis that its dependent variables can only be modified
a finite number of times before the environment will act as an identity thenceforth on those
variables.

In fact, we know that the situation for SEARCH-STM-ODD-SCAN-SET is even more
tightly constrained than we describe above: we know that the overall SEARCH-ODD and
SEARCH-EVEN threads will only modify t at most once each for the lowest odd and even
indices. The penalty of a STM retry that troubles the convergence proofs is something that
may only happen once, at most, for any execution of this program. A STM retry can only
be triggered by external writes to either the local counter variable (which will not happen)
or to the variable t . In the latter situation, we know that the write comes from the parallel
thread, and we know that it cannot happen again.

At this point the decomposition implementation of STM-TEST-AND-SET is straight-
forward; this is shown in the overall implementation in Figure 7.19. As with Figure 7.12
we have boxed portions of the pseudo-code to indicate the corresponding specification.
Unlike the previous implementation, however, only a small portion of the pseudo-code
has been boxed: only the portions specifically developed to use the Atomic construct are
annotated.

7.3 Comparison of the Developments

At a superficial level –just comparing the pseudo-code– the reification-style development
has the simpler structure: it uses fewer conditional tests and, represented as a tree, its
program structure is shallower. Furthermore, as it avoids the use of the Atomic construct,
its properties with respect to termination are easier to determine. The particular details
of the two developments –at the superficial level and in the reasoning which lead to the
decompositions– are less relevant than the trade-offs that arise due to the constraints around
reification and the Atomic construct.

Data reification is a powerful tool when used in the decomposition of specifications. It

110 7.3. Comparison of the Developments

1

Joint FINDP

ot ← len v + 1;
et ← len v + 1;
par
‖ (oc ← 1;

while (oc < ot ∧ oc < et) do
if pred(v(oc)) then ot ← oc fi;
oc ← oc + 2

od)
‖ (ec ← 2;

while (ec < et ∧ ec < ot) do
if pred(v(ec)) then et ← ec fi;
ec ← ec + 2

od)
rap;
if ot < et then r ← ot fi;
if et < ot then r ← et fi

STM FINDP

t ← len v + 1;
par
‖ (oc ← 1;

while (oc < t) do
if pred(v(oc)) then

atomic(if oc < t then t ← oc fi)
fi;
oc ← oc + 2

od)
‖ (ec ← 2;

while (ec < t) do
if pred(v(ec)) then

atomic(if ec < t then t ← ec fi)
fi;
ec ← ec + 2

od)
rap;
r ← t

DRAFT — #1094, Sun, 30 Dec 2007 31 December 2007|

Search-STM-Odd-Scan

Search-STM-Odd-Scan-Body

Search-STM-Odd-Scan-Check

Search-STM-Odd-Scan-Set

STM-Test-And-Set

Figure 7.19: An annotated pseudo-code implementation of FINDP with atomic blocks.

can be used –as is done in the present example– to take a data structure which is modified
by parallel processes and replace it with a new data structure which avoids the contention
altogether. Doing this in the present example is straightforward but, in general, finding a
suitable reification can be very difficult.

The difficulty of finding a suitable reification –and, in some cases, the simple lack of
any suitable reification– suggests that an alternate approach to reason about shared vari-
ables in necessary. Software transactional memory, as embodied in a construct which is
similar to the Atomic construct presented in this work, provides this alternative.

Use of the Atomic construct allows for the decompositions of a program into compo-
nents that have strict limits on the interference which they can tolerate. This ability comes
at a cost, however, which depends on the development rule which is used to introduce the
Atomic construct. With the Atomic-I rule we may only use the Atomic construct when we
are trying to prevent other processes from reading intermediate states. This particular rule
is useful for operations such as an atomic variable exchange. And with the Atomic-psat-I

rule we have more flexibility in the use of the Atomic, but the termination properties be-
come much harder to determine — to gain any termination property we need to provide an
alternate argument that ensures that the construct will always converge to the nil statement.

In situations where both reification and the Atomic construct could be used, the choice
between them depends on the requirements of the particular situation. Reification requires
the developer to expend more effort on the data abstractions used in the development, but
can result in a program which avoids the need for any direct concurrency control. It can also

Chapter 7. A Development Example 111

result in the interaction between elements of the reified data structure being more fragile
than the simpler, unreified data structures. Use of the Atomic construct allows for simpler
data structures, but at the cost of potential overhead due to the need to monitor changes
made to the state outside of the Atomic, as well as some ambiguity in the termination
properties of the program. On the other had, use of a direct concurrency control mechanism
highlights the location of operations which are sensitive to interference.

Finally, we note that our use of the development rules in this example follows the
same general style as operation decomposition in VDM and that VDM has a pragmatic
philosophy with respect to hitting a “dead-end” in a development: that is, backtrack and
attempt another approach. The use of reification and the Atomic construct fit neatly in
this philosophy: we would suggest using the Atomic construct early in development if a
suitable reification is not obvious, and only reify away the need for the Atomic construct
if it becomes necessary to do so.

112

113

8 — Conclusions

8.1 Recapitulation

This thesis starts, in Chapter 2, by presenting a semantic model for a language which
includes an Atomic construct implemented as a form of software transactional memory.
We continue, in Chapter 3, by introducing the rely/guarantee development rules and, in
particular, we give two rules for the Atomic construct and a refined rule for the While
construct.

Chapter 4 introduces the methods and tools used to connect the concepts in Chapters 2
and 3. We describe natural deductive proofs and the style of name binding we use in their
application. The two forms of augmented semantics –distinguishing and merging– are
introduced to aid reasoning about the behaviour of programs executed in an environment
with interference. We also give definitions for the Within and Converges properties so
that we have a mechanism to reason about whether or not a program’s behaviour satisfies
its specification. Key to using these properties in the context of the semantic model is our
notion of pinch sets, and these are used heavily in the soundness proofs of Chapter 6.

The subsidiary lemmas used in the soundness proofs are described in Chapter 5, and of
particular interest are Isolation-Par-L, Isolation-Par-R, Comp-Par, and Frame-Rule. The
first three of these are essentially formalizations of what we consider to be one of the
great strengths of rely/guarantee reasoning: that separate components of a program may
be decomposed (or composed) and reasoned about in isolation without knowledge of the
internal structure of the other components. The last lemma –Frame-Rule– is inspired by
work in separation logic,1 and tries to emulate some of the ease with which separation logic
focuses only on the relevant portions of the memory store.

The soundness proofs of the development rules with respect to the semantic model
are described in Chapter 6, giving a guide to reading the detailed proofs in Appendix D.
Finally, in Chapter 7 we work through an example in two ways to show the application of
the rules in the development of a specification into pseudo-code.

8.2 Reflections and Future Work

8.2.1 Assessing the Initial Aims

This thesis has two major aims: to provide a rely/guarantee framework which is able to
deal with interference in concurrent program development in a fine-grained manner; and to
provide that framework in such a way as to minimize the semantic gap between the frame-
work and the semantic model of the development language. Part of the aim to provide a
framework which can deal with fine-grained interference includes the need for a mecha-
nism to control the level of granularity for portions of the development. And above these

1See [Rey02] and [PBO07].

114 8.2. Reflections and Future Work

aims is the intent that we end up with a tractable framework for software development.

Addressing the smaller goals first, we have produced a rely/guarantee framework which
deals with fine-grained concurrency. The development rules given in Chapter 3 do an
effective job of characterizing how the expected interference and the required behaviour
of a program interact. Multiple-state evaluation of the expression in a construct can be
handled in a manner with more finesse than simply requiring that there be no effective
interference during the evaluation; this is particularly apparent in the rule given for the
While construct. Concurrency control is provided via the Atomic/STM construct pair,
though there is a need for development rules for this pair of constructs which have more
flexible constraints than those of the Atomic-I and Atomic-psat-I rules.

The soundness proofs provided in Chapter 6 tie the provided development rules to
the semantic model of Chapter 2. As the rules are shown to be sound in terms of the
semantic model, it is clear that the semantic gap between the development rules and the
semantic model has been eliminated, especially in light of the fact that the semantic rules
and development rules may be used at the same logical level. Furthermore, because the
soundness proofs use the semantic model directly instead of a secondary model Aczel trace
semantics, we have minimized the number of possible steps between the development rules
and the semantic model.

The broader goal of a tractable reasoning framework has been achieved, with some
caveats. The provided framework is usable for languages similar to that described by our
semantic model. However, before the model can be considered analogous to languages
commonly used in software development it requires the addition of features such as alias-
ing, free variable introduction, scoping mechanisms, and procedure calls. These features
pose their own challenges, and their addition to the framework is not expected to be simple.

The generation of the soundness proofs require a greater technical proficiency than us-
ing the development rules in a software development. We expect that the task of generating
the soundness proofs will be done by an expert, and that the proofs, once done, need not
be generated again. As such we do not consider the greater difficulty of these proofs to be
a factor in the relative tractability of this method.

8.2.2 Extracting the Meta-Method

One clear avenue of future work would be to extract the meta-method which is implicit
in this work and firmly characterize its requirements and applicability. At first glance the
primary elements of such a method are the basic logical framework, a formal model of
the development language, and a set of inference rules to reason about programs in the
language. This thesis uses LPF, the SOS model in Chapter 2, and the rely/guarantee rules
in Chapter 3, respectively, as its primary elements, but there is nothing which explicitly
constrains those choices. The key feature of such a meta-method –on top of the basic
elements– is to ensure that the development rules are an extension of the framework estab-
lished by the basic logical framework and the language model.

Once the meta-method is characterized we would then be free to explore other choices
for the basic elements. It would certainly be possible to replace the semantic model used

Chapter 8. Conclusions 115

here with models of other languages, and even the particular formalism used to model the
language could be changed. We suggest the use of a modelling formalism which is easily
accessible by the software developers who are expected to use the resulting framework.

A more interesting proposition, however, is the potential for the use of basic logical
frameworks other than LPF; it is not hard to imagine that a modal logic could be used to
good effect. The replacement of the basic logical framework must satisfy a practical con-
straint, however: as we hope to be able to develop software with the resulting development
framework, the basic logical framework chosen must be able to address the potential for
undefined terms. And, if the resulting framework is to be tractable, it must address the
question of undefinedness in a manner which does not impede the software developer.

8.2.3 Software Transactional Memory and Termination

Software transactional memory is a fascinating concept: it promises a mechanism that
eliminates most of the problems associated with locking protocols. It is not a panacea,
of course: STM is only applicable to situations where every contained operation is fully
reversible and where the effects of every operation can be hidden until the STM transaction
is ready to commit. Constructs based on STM also have to deal with the costs associated
with a transactional retry –actually reversing every operation that has happened– though
careful implementation of the STM construct in the language can mitigate this.

It is possible to abuse STM transactions in many of the same ways that explicit locks
may be abused. In particular, placing a large program inside a STM transaction is just as
bad an idea as locking a variable and then running a large program before unlocking the
variable. The difference between these two situations is that in the STM-based example
there is the risk and cost of having that large program be undone and restarted whereas in
the lock-based example any other program which needs access to the locked variable will
be halted. Poor program designs will bring out the worst features of any construct.

On the topic of the implementation of the STM construct, many of the works cited in
Section 2.5 have designed their implementations of STM as code libraries to be used in
development rather than as features within the target language itself. From the perspective
of rigorous development this is a mistake: it puts a burden on the user to ensure that
nothing violates the pragmatic intent of the STM implementation. It is better to have the
STM implementation done as a integral part of the language; the cost of ensuring that the
constructs that implement STM do so correctly becomes a part of the cost of verifying that
the language compiler is a valid implementation of its semantic model.

The termination arguments in the convergence proofs of Chapter 6 follow from one of
three things: the inherent nature of the construct (in that it cannot fail to terminate), from
well-founded induction (in the case of the While construct), or from restricting interference
(in the case of the Atomic construct). There are other possible arguments that can be made
and their use would allow for development rules which apply to situations not covered by
those presented.

One possible argument involves an extension of the well-founded induction used in
the convergence proof of the While construct to the convergence proof for the Atomic

116 8.2. Reflections and Future Work

construct. If it could be shown that interference would always reach –in a finite number
of steps– a state such that interference never caused any further alteration to the value of
certain values, then the rely condition representing this interference would correspond to a
relation suitable for use with a modified form of well-founded induction. The proof outline
would rest on two cases: the first is where there were enough consecutive interference
transitions which did not alter the value of any variable the Atomic depended on; and the
second is in the case where interference did cause the Atomic to retry, thus reducing the
number of further possible retries. In this case we might say that interference eventually
becomes quiescent with respect to the variable the Atomic depends upon.

Another possibility is based on a notion of “periodic” quiescence in interference, es-
sentially a formalization of the notion that an Atomic block will always terminate be-
cause there are sufficiently long periods where interference does not alter the values of
variables on which the Atomic block depends. This notion is in conflict with the inher-
ent expressive weakness of the rely/guarantee framework, however, and there is currently
no mechanism to specify durations in the logic. Current work by Hayes, Jackson, and
Jones [HJJ03, JHJ06] may lead to a useful means of dealing with this.

A combination of this eventual quiescence of interference with the wait conditions used
by Stølen may allow us to reason about parallel compositions in which one branch depends
upon the other branch performing some action. This combination would require that this
entire work be extended to the overall rely/guarantee framework used by Stølen, however,
and would be no small undertaking.

8.2.4 Constructs and Rules

Extension of the semantic model in Chapter 2 to include more language features –such as
dynamic blocks– would have the effect of bringing the model closer to that of commonly
used programming languages. This work has focused on basic interference behaviour;
adding features such as dynamic blocks to the model would allow for development rules
that are more precise than those presented in Chapter 3. In particular, the addition of
dynamic blocks would give the semantic model the basis for investigating mechanisms in
the development rules that can “hide” variables in the rely and guarantee conditions.

Another construct which might be suggested as an immediate candidate for inclusion
into the semantic model is an explicit STM retry operation, analogous to the usual “break”
command for loops. This would involve modelling non-local exits in the semantic model,
and would result in profound effects on both the model and the resulting development rules.
From this construct the next step could be to add a full fault-handling mechanism to the
semantic model.

The most ambitious goal would be to provide a set of development rules that are sound
with respect to a complete semantics for a language commonly used in industry. This
would be a challenge as most commonly used languages have run-time systems which
may disagree on various details of the language model. Although such a semantic model
for the Java language has been developed in [KNvO+02], much work remains if a set
of rely/guarantee development rules are to be proven sound with respect to their model.

Chapter 8. Conclusions 117

The soundness proofs for the corresponding development rules would be straightforward
for most of the normal language constructs as they are just repetitions of the ideas in this
work; however, many of the constructs in their model are not dealt with here.

A smaller goal, at the level of the rely/guarantee development rules, relates to the split-
predicate structure used in the While-I development rule given in Chapter 3. This rule is
structured so that the conditional expression in the While construct is a conjunction of
two terms. The two terms are constrained in different ways, and the overall rule can handle
development situations where only one of the parts is needed. This suggests that other rules
which are affected by expression evaluation may benefit –or at least be generalizable– from
being written in this split-predicate style.

8.2.5 Automated Reasoning

Automated reasoning in support of the development process has two components: support
for reasoning with the semantic model; and support for the actual development steps using
the development rules. Automated support for the generation of the soundness proofs –
though not part of the development process per se– is integral to this, but should be less
visible to a software developer.

Mechanization of the soundness proofs is certainly possible: Prensa Nieto does this
in [PN03] for a set of rely/guarantee rules relative to a semantic model with flat,2 coarse-
grained concurrency. Prensa Nieto’s work would make a good starting point to mechanize
the work in this thesis if Isabelle/HOL were chosen as the inference engine. At a minimum,
however, that work would have to be extended with relational post conditions, multiple-
state expression evaluation, and nested concurrency. Generating a model of multiple-state
expression evaluation is straightforward, but ensuring that the automated reasoner can han-
dle the non-equivalence between the logical evaluation of an expression and the semantic
evaluation in a useful way requires some finesse. After providing a means of handling the
basic features of the work in this thesis, some time would have to be spent increasing the
level of detail in the proofs of Chapter 6 and Appendix D, as well as providing proofs for
the lemmas in Chapter 5.

The use of pinch sets will be a challenge for to automated reasoning: pinch sets require
that we reason about the set of all reachable configurations from a given starting point. As
it is not, in general, feasible to calculate this set of configurations the proofs contained in
this thesis use knowledge of the semantic rules and the structure of the constructs to ensure
that we have valid pinch sets. An automated tool would require a deep understanding of
the semantic model to verify a proposed pinch set, much less instantiate one without user
intervention.

Taken from the perspective of the actual reasoning effort, automated reasoning support
for software development using the development rules would require nothing beyond that
required for the soundness proofs. Creating a usable interface to such a tool, however, is
another problem entirely. We envisage a workbench-style tool that could assist the devel-
opment process, allowing the user to not only verify that a particular development step is

2In the sense that parallel construct cannot be nested.

118 8.2. Reflections and Future Work

valid, but also verify that a particular program fragment satisfies a specification. Work on
such things as Mural [JJLM91] and the RODIN platform [Rod07] suggest that this should
be possible.

119

9 — Bibliography

[Acz82] P. Aczel. A note on program verification. Letter to Cliff Jones, Manchester,
January 1982.

[BFL+94] Juan C. Bicarregui, John S. Fitzgerald, Peter A. Lindsay, Richard Moore, and
Brian Ritchie. Proof in VDM: A Practitioner’s Guide. Springer Series On
Formal Approaches To Computing And Information Technology. Springer-
Verlag, 1994.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive
Systems. Springer-Verlag, 2001.

[Bue00] Martin Buechi. Safe Language Mechanisms for Modularization and Concur-
rency. PhD thesis, Turku, 2000.

[CH05] Christopher Cole and Maurice P. Herlihy. Snapshots and software transac-
tional memory. Science of Computer Programming, 58(3):310–324, Decem-
ber 2005.

[CJ00] Pierre Collette and Cliff B. Jones. Enhancing the tractability of
rely/guarantee specifications in the development of interfering operations.
Foundations Of Computing, pages 277–307. MIT Press, Cambridge, MA,
USA, 2000.

[CJ07] Joey W. Coleman and Cliff B. Jones. A structural proof of the soundness
of rely/guarantee rules. Journal of Logic and Computation, 17(4):807–841,
August 2007.

[CM92] Juanito Camilleri and Tom Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, University of
Cambridge Computer Laboratory, August 1992.

[Col94] Pierre Collette. Design of Compositional Proof Systems Based on
Assumption-Commitment Specifications — Application to UNITY. PhD the-
sis, Louvain-la-Neuve, June 1994.

[Daw91] John Dawes. The VDM-SL Reference Guide. Pitman Publishing, 1991.

[dR01] Willem-Paul de Roever. Concurrency Verification: Introduction to Compo-
sitional and Noncompositional Methods. Number 54 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, New York, NY,
USA, January 2001.

[Fit52] Frederic Benton Fitch. Symbolic Logic: an Introduction. Ronald Press Com-
pany, New York, 1952.

[HF03] Tim Harris and Keir Fraser. Language support for lightweight transactions.
In OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference
on Object-oriented programing, systems, languages, and applications, pages
388–402, New York, NY, USA, 2003. ACM Press.

[HJJ03] Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones. Determining the spec-
ification of a control system from that of its environment. In FM 2003:

120

Formal Methods: International Symposium of Formal Methods Europe, vol-
ume 2805 of Lecture Notes in Computer Science, pages 154–169. Springer-
Verlag, September 2003.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer,
III. Software transactional memory for dynamic-sized data structures. In
PODC ’03: Proceedings of the twenty-second annual symposium on Prin-
ciples of distributed computing, pages 92–101, New York, NY, USA, 2003.
ACM Press.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural
support for lock-free data structures. In ICCA ’93: Proceedings of the 20th
annual international symposium on Computer architecture, pages 289–300,
New York, NY, USA, May 1993. ACM Press.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Com-
posable memory transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pages 48–60, New York, NY, USA, 2005. ACM Press.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, October 1969.

[Hoa72] C. A. R. Hoare. Towards a theory of parallel programming, pages 61–71. In
Hoare and Perrott [HP72], 1972.

[HP72] C. A. R. Hoare and R. H. Perrott. Operating System Techniques. Academic
Press, 1972.

[JHJ06] Cliff B. Jones, Ian J. Hayes, and Michael A. Jackson. Specifying systems
that connect to the physical world. Technical Report Series CS-TR-964,
Newcastle University, May 2006.

[JJLM91] Cliff B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal
Development Support System. Springer-Verlag, 1991.

[Jon81] Cliff B. Jones. Development Methods for Computer Programs including a
Notion of Interference. PhD thesis, Oxford University, June 1981. Printed
as: Programming Research Group, Technical Monograph 25.

[Jon83a] C. B. Jones. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems,
5(4):596–619, October 1983.

[Jon83b] Cliff B. Jones. Specification and design of (parallel) programs. In R. E. A.
Mason, editor, Information Processing 83: Proceedings of the IFIP 9th
World Congress, pages 321–332. IFIP, 1983.

[Jon90] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall,
Inc., 2nd edition edition, 1990.

[Jon96] Cliff B. Jones. Accommodating interference in the formal design of concur-
rent object-based programs. Formal Methods in System Design, 8(2):105–
122, 1996.

[Jon01] C. B. Jones. The transition from VDL to VDM. Journal of Univeral Com-
puter Science, 7(8):631–640, August 2001.

Chapter 9. Bibliography 121

[Jon03a] Cliff B Jones. The early search for tractable ways of reasonning about pro-
grams. IEEE, Annals of the History of Computing, 25(2):26–49, April–June
2003.

[Jon03b] Cliff B. Jones. Operational semantics: Concepts and their expression. Infor-
mation Processing Letters, 88(1–2):27–32, October 2003.

[Jon07] Cliff B. Jones. Annotated bibliography on rely/guarantee conditions. Avail-
able on the WWW as http://homepages.cs.ncl.ac.uk/cliff.
jones/ftp-stuff/rg-hist.pdf, 2007.

[KNvO+02] Gerwin Klein, Tobias Nipkow, David von Oheimb, Leonor Prensa Nieto,
Norbert Schirmer, and Martin Strecker. Java source and bytecode formalisa-
tions in Isabelle: Bali, 2002.

[LN79] H. C. Lauer and R. M. Needham. On the duality of operating system struc-
tures. Operating Systems Review, 13(2):3–19, April 1979.

[LW69] Peter Lucas and Kurt Walk. On The Formal Description of PL/I, volume 6
part 3 of Annual Review in Automatic Programming. Pergamon Press, 1969.

[McC63] John McCarthy. Towards a mathematical science of computation. In Ci-
cely M. Popplewell, editor, Proceedings of the IFIP Congress, Munich, 1962,
pages 21–28. North-Holland Publishing Company, Amsterdam, 1963.

[McC66] John McCarthy. A formal description of a subset of ALGOL. In Steel
[Ste66].

[Mor88] Carroll Morgan. The specification statement. ACM Transactions on Pro-
gramming Languages and Systems, 10(3):403–419, 1988.

[MSH+06] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,
David Eisenstat, William N. Scherer, III, and Michael L. Scott. Lowering
the overhead of nonblocking software transactional memory. Presented at
TRANSACT: First ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing, PLDI, Ottawa, June
2006, June 2006.

[MSS05] Virendra J. Marathe, William N. Scherer, III, and Michael L. Scott. Adaptive
software transactional memory. In Distributed Computing, volume 3724 of
Lecture Notes in Computer Science, pages 354–368. Springer, 2005.

[OG76] Susan Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. Communications of the ACM, 19(5):279–285, May
1976.

[Owi75] Susan S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD
thesis, Department of Computer Science, Cornell University, Ithaca, NY,
USA, 1975. 75-251.

[PBO07] Matthew Parkinson, Richard Bornat, and Peter O’Hearn. Modular verifica-
tion of a non-blocking stack. In Proceedings of POPL’07, January 2007.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, 1981.

[Plo04a] Gordon D. Plotkin. The origins of structural operational semantics. Journal
of Logic and Algebraic Programming, 60–61:3–15, July–December 2004.

122

[Plo04b] Gordon D. Plotkin. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60–61:17–139, July–December 2004.

[PN03] Leonor Prensa Nieto. The Rely-Guarantee method in Isabelle/HOL. In
P. Degano, editor, European Symposium on Programming (ESOP’03), vol-
ume 2618 of LNCS, pages 348–362. Springer, 2003.

[Pra65] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Publi-
cations, Inc., 1965.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS ’02: Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science, pages 55–74, Washington, DC, USA, 2002.
IEEE Computer Society.

[RNN92] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A
Formal Introduction. Wiley, 1992.

[RNN07] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications:
An Appetizer. Undergraduate Topics in Computer Science. Springer, 2007.

[Rod07] The RODIN project. http://rodin.cs.ncl.ac.uk/, December
2007.

[Sch97] Fred B. Schneider. On Concurrent Programming. Graduate Texts in Com-
puter Science. Springer-Verlag New York, Inc., 1997.

[Sit74] Richard L. Sites. Proving That Computer Programs Terminate Cleanly. PhD
thesis, Stanford University, May 1974.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 204–213, New York, NY, USA, 1995. ACM
Press.

[Ste66] Thomas B. Steel, Jr., editor. Formal Language Description Languages for
Computer Programming. IFIP Working Conference on Formal Language
Description Languages, North-Holland Publishing Company, Amsterdam,
1966.

[Sti86] Colin Stirling. A compositional reformulation of Owicki-Gries’s partial cor-
rectness logic for a concurrent while language. In L. Kott, editor, Automata,
Languages and Programming: ICALP’86, volume 226 of Lecture Notes in
Computer Science, pages 407–415. Springer-Verlag, 1986.

[Sto77] Joseph Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, 1977.

[Stø90] Ketil Stølen. Development of Parallel Programs on Shared Data-Structures.
PhD thesis, Manchester University, 1990. Available as Technical Report
UMCS-91-1-1.

[Stø91a] Ketil Stølen. An attempt to reason about shared-state concurrency in the
style of VDM. In VDM ’91: Proceedings of the 4th International Sympo-
sium of VDM Europe on Formal Software Development-Volume I, volume
551 of Lecture Notes in Computer Science, pages 324–342, London, UK,
1991. Springer-Verlag.

Chapter 9. Bibliography 123

[Stø91b] Ketil Stølen. A method for the development of totally correct shared-state
parallel programs. In CONCUR ’91: Proceedings of the 2nd International
Conference on Concurrency Theory, pages 510–525, London, UK, 1991.
Springer-Verlag.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-
Holland Publishing Company, Amsterdam, The Netherlands, 1969.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An In-
troduction. MIT Press, 1993.

[Xu92] Qiwen Xu. A Theory of State-based Parallel Programming. PhD thesis,
Oxford University, 1992.

124

125

Appendices

126

127

A — Language Definition

A.1 Semantic Model

A.1.1 Abstract Syntax

Stmt = Assign | Atomic | If | Par | Seq | STM |While | nil

Expr = B | Z | Id | Dyad

Assign :: id : Id
e : Expr

Atomic :: body : Stmt

If :: b : Expr
body : Stmt

Par :: left : Stmt
right : Stmt

Seq :: left : Stmt
right : Stmt

STM :: orig : Stmt
σ0 : Σ

body : Stmt
σ : Σ

While :: b : Expr
body : Stmt

Dyad :: op : + | − | < | = | > |
∧ | ∨

left : Expr
right : Expr

A.1.2 Context Conditions

wf -Expr : (Expr × Id -set)→ {BOOL, INT, ERROR}
wf -Expr(e, ids) 4

cases e of
e ∈ B→ BOOL
e ∈ Z→ INT

e ∈ Id ∧ e ∈ ids→ INT
mk -Dyad(op, left , right)→ let ltype = wf -Expr(left , ids) in

if ltype = wf -Expr(right , ids) ∧
ltype 6= ERROR

then cases (op, ltype) of
(+, INT)→ INT
(−, INT)→ INT
(<, INT)→ BOOL
(=, INT)→ BOOL
(>, INT)→ BOOL

(=,BOOL)→ BOOL
(∧,BOOL)→ BOOL
(∨,BOOL)→ BOOL
others ERROR
end

else ERROR

others ERROR
end

wf -Stmt : (Stmt × Id -set)→ B

128 A.1. Semantic Model

wf -Stmt(stmt , ids) 4
cases stmt of

nil→ true
mk -Assign(id , e)→ id ∈ ids ∧ wf -Expr(e, ids) = INT

mk -Atomic(body)→ wf -Stmt(body , ids)
mk -If (b, body)→ wf -Expr(b, ids) = BOOL ∧ wf -Stmt(body , ids)

mk -Par(left , right)→ wf -Stmt(left , ids) ∧ wf -Stmt(right , ids)
mk -Seq(left , right)→ wf -Stmt(left , ids) ∧ wf -Stmt(right , ids)

mk -STM (orig , σ0, body , σ)→ wf -Stmt(orig , ids) ∧ wf -Stmt(body , ids) ∧
domσ0 = domσ = ids

mk -While(b, body)→ wf -Expr(b, ids) = BOOL ∧ wf -Stmt(body , ids)
others false
end

A.1.3 Semantic Objects

Σ = Id m−→ Z

Config = Stmt × Σ

A.1.4 Semantic Rules

Expressions

e−→ : (Expr × Σ)× Expr

Identifiers

Id-E
(id , σ) e−→ σ(id)

Dyads

Dyad-L
(left , σ) e−→ left ′

(mk -Dyad(op, left , right), σ) e−→ mk -Dyad(op, left ′, right)

Dyad-R
(right , σ) e−→ right ′

(mk -Dyad(op, left , right), σ) e−→ mk -Dyad(op, left , right ′)

Dyad-E
left , right ∈ Z

(mk -Dyad(op, left , right), σ) e−→ [[op]](left , right)

Statements

s−→ : Config × Config

Appendix A. Language Definition 129

Assign

Assign-Eval
(e, σ) e−→ e ′

(mk -Assign(id , e), σ) s−→ (mk -Assign(id , e ′), σ)

Assign-E
e ∈ Z

(mk -Assign(id , e), σ) s−→ (nil, σ † {id 7→ e})

Atomic/STM

STM-Atomic
(mk -Atomic(body), σ) s−→ (mk -STM (body , σ, body , σ), σ)

STM-Step

(Vars(orig) C σ0) = (Vars(orig) C σ)
(body , σs) s−→ (body ′, σ′s)

(mk -STM (orig , σ0, body , σs), σ) s−→ (mk -STM (orig , σ0, body ′, σ′s), σ)

STM-E
(Vars(orig) C σ0) = (Vars(orig) C σ)

(mk -STM (orig , σ0,nil, σs), σ) s−→ (nil, σ † (Vars(orig) C σs))

STM-Retry
(Vars(orig) C σ0) 6= (Vars(orig) C σ)

(mk -STM (orig , σ0, body , σs), σ) s−→ (mk -Atomic(orig), σ)

If

If-Eval
(b, σ) e−→ b′

(mk -If (b, body), σ) s−→ (mk -If (b′, body), σ)

If-T-E
(mk -If (true, body), σ) s−→ (body , σ)

If-F-E
(mk -If (false, body), σ) s−→ (nil, σ)

Parallel

Par-L
(left , σ) s−→ (left ′, σ′)

(mk -Par(left , right), σ) s−→ (mk -Par(left ′, right), σ′)

Par-R
(right , σ) s−→ (right ′, σ′)

(mk -Par(left , right), σ) s−→ (mk -Par(left , right ′), σ′)

Par-E
(mk -Par(nil,nil), σ) s−→ (nil, σ)

Sequence

130 A.2. Augmented Semantic Model

Seq-Step
(left , σ) s−→ (left ′, σ′)

(mk -Seq(left , right), σ) s−→ (mk -Seq(left ′, right), σ′)

Seq-E
(mk -Seq(nil, right), σ) s−→ (right , σ)

While

While
ifbody = mk -Seq(body ,mk -While(b, body))

(mk -While(b, body), σ) s−→ (mk -If (b, ifbody), σ)

A.2 Augmented Semantic Model

Rely = Σ× Σ
R ∈ Rely
RConfig 4 {((S , σ), (S , σ′)) | S ∈ Stmt ∧ (σ, σ′) ∈ R}

A.2.1 Distinguishing Semantics

r−→
—

: Config × Rely × Config

r−→
R
≡ s−→ ∪RConfig

A-R-Step
[[R]](σ, σ′)

(S , σ) r−→
R

(S , σ′)

A-S-Step
(S , σ) s−→ (S ′, σ′)
(S , σ) r−→

R
(S ′, σ′)

A.2.2 Merging Semantics

m−→
—

: Config × Rely × Config

M-Step ≡ A-R-Step � A-S-Step � A-R-Step

m−→
R
≡ RConfig � s−→� RConfig

M-Step

[[R]](σ0, σ1)
(S , σ1) s−→ (S ′, σ2)

[[R]](σ1, σf)
(S , σ0) m−→

R
(S ′, σf)

131

B — Rely/Guarantee Rules

B.1 Framework Assumptions

PR-ident ↼−
P ∧ R ⇒ P

QR-ident
Q � R ⇒ Q

B.2 Meta Rules

Weaken

(P ,R) ` S sat (G ,Q)
P ′ ⇒ P
R′ ⇒ R
G ⇒ G ′

Q ⇒ Q ′

(P ′,R′) ` S sat (G ′,Q ′)

psat-I

Withins(P ,R,S ,G)
∀σ, σ′ ∈ Σ ·

(
[[P]](σ) ∧ (S , σ)

r−→∗
R

(nil, σ′)
)
⇒ [[Q]](σ, σ′)

(P ,R) ` S psat (G ,Q)

sat-I

(P ,R) ` S psat (G ,Q)
Convergess(S ,P ,R, {nil})

(P ,R) ` S sat (G ,Q)

B.3 Development Rules

Assignment

Assign-I

R ⇒ IVars(e)∪{id}
G = {(σ, σ † {id 7→ [[e]](σ)}) | σ ∈ Σ} ∪ I

Q = {(σ, σ′) | σ, σ′ ∈ Σ ∧ σ′(id) = [[e]](σ)}
(P ,R) ` mk -Assign(id , e) sat (G ,Q)

Atomic blocks

Atomic-psat-I

(P , I) ` body psat (true,Q ′)
Q ′ ⇒ G

↼−
P ∧ R � Q ′ � R ⇒ Q

(P ,R) ` mk -Atomic(body) psat (G ,Q)

132 B.3. Development Rules

Atomic-I

(P , I) ` body sat (true,Q ′)
Q ′ ⇒ G

R ⇒ IVars(body)
↼−
P ∧ R � Q ′ � R ⇒ Q

(P ,R) ` mk -Atomic(body) sat (G ,Q)

Conditional Execution

If-b-I

(P ∧ b,R) ` body sat (G ,Q)
R ⇒ IVars(b)

↼−
P ∧↼−¬ b ∧ R ⇒ Q

(P ,R) ` mk -If (b, body) sat (G ,Q)

If-I

(P ,R) ` body sat (G ,Q)
↼−
P ∧ R ⇒ Q

(P ,R) ` mk -If (b, body) sat (G ,Q)

Sequential Composition

Seq-I

(P ,R) ` left sat (G ,Ql ∧ Pr)
(Pr ,R) ` right sat (G ,Qr)

Ql � Qr ⇒ Q
(P ,R) ` mk -Seq(left , right) sat (G ,Q)

Seq-raw-I

(Pl ,Rl) ` left sat (Gl ,Ql)
(Pr ,Rr) ` right sat (Gr ,Qr)

Ql ⇒ Pr

(Pl ,Rl ∧ Rr) ` mk -Seq(left , right) sat (Gl ∨ Gr ,Ql � QR)

Parallel Composition

Par-I

(P ,R ∨ Gr) ` left sat (Gl ,Ql)
(P ,R ∨ Gl) ` right sat (Gr ,Qr)

Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q
(P ,R) ` mk -Par(left , right) sat (G ,Q)

Iteration

While-I

well -founded(W)
bottoms(W) ⊆ [[¬ (bs ∧ bu)]]

R ⇒ W ∗ ∧ IVars(bs)

SingleSharedVar(bu ,R)
↼−−−−−−−¬ (bs ∧ bu) ∧ R ⇒ ¬ (bs ∧ bu)

(P ∧ bs ,R) ` body sat (G ,W ∧ P)
(P ,R) ` mk -While(bs ∧ bu , body) sat (G ,W ∗ ∧ P ∧ ¬ (bs ∧ bu))

133

C — Collected Lemmas

C.1 Behavioural

Within-Rely
(C ,C ′) ∈ A-R-Step

Within1(C ,C ′,G)

Within-Prog

((S , σ), (S ′, σ′)) ∈ A-S-Step

[[G]](σ, σ′)
Within1((S , σ), (S ′, σ′),G)

Within-Weaken

G ⇒ G ′

Within1(C ,C ′,G)
Within1(C ,C ′,G ′)

Within-Multi

C ij = {(Ci ,Cj) | C0
r−→∗
R

Ci
r−→
R

Cj
r−→∗
R

Cf }
∀(Ci ,Cj) ∈ C ij ·Within1(Ci ,Cj ,G)

Withinm(R,C0,Cf ,G)

Within-Weaken-Multi

R′ ⇒ R
G ⇒ G ′

Withinm(R,C ,C ′,G)
Withinm(R′,C ,C ′,G ′)

Within-Concat

C i = {Ci | C0
r−→∗
R

Ci
r−→∗
R

Cf }
C p ⊆ C i

∀Ci ∈ C i ·
(
∃Cp ∈ C p · Ci

r−→∗
R

Cp ∨ Cp
r−→∗
R

Ci

)
∀Cp ∈ C p ·Withinm(R,C0,Cp ,G) ∧Withinm(R,Cp ,Cf ,G)

Withinm(R,C0,Cf ,G)

Within-Relation
Withinm(R, (S , σ), (S ′, σ′),G)

[[(R ∨ G)∗]](σ, σ′)

Within-Equiv

(S0, σ0) r−→
R

(S1, σ1)

(S ′0, σ0) r−→
R

(S ′1, σ1)

(S0 = S1) ⇔ (S ′0 = S ′1)
Within1((S0, σ0), (S1, σ1),G)
Within1((S ′0, σ0), (S ′1, σ1),G)

134 C.2. Convergence

Within-Prog-Cor

(C ,C ′) ∈
 A-R-Step ∪ Assign-Eval ∪ STM-Atomic ∪

If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E ∪
STM-Step ∪ STM-Retry ∪ Par-E ∪ While


Within1(C ,C ′,G)

Within-Rely-Trivial
(nil, σ)

r−→∗
R

(nil, σ′)
Withinm(R, (nil, σ), (nil, σ′),G)

Within-Abstract

∀σ, σ′ ∈ Σ ·
(

[[P]]σ ∧ (S , σ)
r−→∗
R

(nil, σ′)
⇒ Withinm(R, (S , σ), (nil, σ′),G)

)
Withins(P ,R,S ,G)

Within-Concrete

Withins(P ,R,S ,G)
[[P]](σ)

(S , σ)
r−→∗
R

(nil, σ′)
Withinm(R, (S , σ), (nil, σ′),G)

C.2 Convergence

Conv-I

C i = {Ci | C0
m−→∗
R

Ci}
C f = {(Sf , σf) ∈ Config | Sf ∈ Setf }

∀Ci ∈ C i ·
(
∃Cf ∈ C f · (Ci

m−→∗
R

Cf) ∨ (Cf
m−→∗
R

Ci)
)

Convergesc(C0,R,Setf)

Conv-Weaken

R′ ⇒ R
Setf ⊆ Set ′f

Convergesc(C ,R,Setf)
Convergesc(C ,R′,Set ′f)

Conv-Concat

Convergesc(C0,R,Set0)
C i = {(Si , σi) | C0

m−→∗
R

(Si , σi) ∧ Si ∈ Set0}
∀Ci ∈ C i · Convergesc(Ci ,R,Setf)

Convergesc(C0,R,Setf)

Conv-Abstract
∀σ ∈ Σ · [[P]](σ) ⇒ Convergesc((S , σ),R,Setf)

Convergess(S ,P ,R,Setf)

Conv-Concrete

[[P]](σ)
Convergess(S ,P ,R,Setf)

Convergesc((S , σ),R,Setf)

Appendix C. Collected Lemmas 135

Conv-Wrap-Seq

Convergesc((left , σ),R,Setf)
Set ′f = {mk -Seq(S , right) | S ∈ Setf }

Convergesc((mk -Seq(left , right), σ),R,Set ′f)

Conv-Wrap-Par

(P ,R ∨ Gr) ` left psat (Gl ,Ql)
(P ,R ∨ Gl) ` right psat (Gr ,Qr)
Convergesc((left , σ),R ∨ Gr ,Setl)

Convergesc((right , σ),R ∨ Gl ,Setr)
Setf = {mk -Par(Sl ,Sr) | Sl ∈ Setl ∧ Sr ∈ Setr}

Convergesc((mk -Par(left , right), σ),R,Setf)

Conv-Wrap-STM

C = (mk -STM (body , σ0, body , σ0), σ)
Convergesc((body , σ0), I ,Setf)

∀τ ∈ {(C ′,C ′′) | C m−→∗
R

C ′ m−→
R

C ′′} · τ /∈ STM-Retry

Convergesc(C ,R, {S ∈ STM | S .body ∈ Setf })

C.3 Isolation & Composition

Seq-Equiv

(S , σ)
m−→∗
R

(S ′, σ′)

(mk -Seq(S , right), σ)
m−→∗
R

(mk -Seq(S ′, right), σ′)

Isolation-If

S ′ ∈ If ⇒ S ′.body 6= S
(mk -If (b,S), σ0)

r−→∗
R

(mk -If (true,S), σi)
r−→∗
R

(S ′, σj)

(S , σ0)
r−→∗
R

(S ′, σj)

Comp-Par

[[P]](σ)
Withins(P ,R ∨ Gr , left ,Gl)

Withins(P ,R ∨ Gl , right ,Gr)
(left , σ)

m−→∗
R∨Gr

(left ′, σ′)

(right , σ)
m−→∗

R∨Gl

(right ′, σ′)

(mk -Par(left , right), σ)
m−→∗

R∨Gl∨Gr

(mk -Par(left ′, right ′), σ′)

Isolation-Par-L

[[P]](σ)
(P ,R ∨ Gr) ` left sat (Gl ,Ql)

(P ,R ∨ Gl) ` right sat (Gr ,Ql)
(mk -Par(left , right), σ)

r−→∗
R

(mk -Par(left ′, right ′), σ′)

(left , σ)
r−→∗

R∨Gr

(left ′, σ′)

136 C.4. Miscellaneous

Isolation-Par-R

[[P]](σ)
(P ,R ∨ Gr) ` left sat (Gl ,Ql)

(P ,R ∨ Gl) ` right sat (Gr ,Ql)
(mk -Par(left , right), σ)

r−→∗
R

(mk -Par(left ′, right ′), σ′)

(right , σ)
r−→∗

R∨Gl

(right ′, σ′)

Isolation-Seq-R

S ′ ∈ Seq ⇒ S ′.right 6= S
(mk -Seq(nil,S), σ)

r−→∗
R

(S ′, σ′)

(S , σ)
r−→∗
R

(S ′, σ′)

Isolation-STM

(mk -STM (orig , σ0,S , σs), σ)
r−→∗
R

(mk -STM (orig , σ0,S ′, σ′s), σ′)

(S , σs)
r−→∗
I

(S ′, σ′s)

Isolation-While

wh = mk -While(b, body)
τ = ((mk -If (true,mk -Seq(body ,wh)), σ), (wh, σ′))

τ ∈ (A-R-Step ∪ If-T-E ∪ Seq-Step ∪ Seq-E)∗

(body , σ)
r−→∗
R

(nil, σ′)

C.4 Miscellaneous

Frame-Rule

(S0, σ0)
r−→∗
I

(S1, σ1)

(Vars(S0) C σ0) = (Vars(S0) C σ′0)
(Vars(S0) C σ1) = (Vars(S0) C σ′1)
(Vars(S0)−C σ0) = (Vars(S0)−C σ1)
(Vars(S0)−C σ′0) = (Vars(S0)−C σ′1)

(S0, σ
′
0)

r−→∗
I

(S1, σ
′
1)

Rely-Trivial

(S , σ)
r−→∗
R

(S ′, σ′)

((S , σ), (S ′, σ′)) ∈
 A-R-Step ∪ Assign-Eval ∪ STM-Atomic ∪

If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E ∪
STM-Step ∪ STM-Retry ∪ Par-E ∪ While

∗
[[R]](σ, σ′)

Sequential-Effect
(S , σ)

r−→∗
I

(S ′, σ′)

σ′ = σ † (Vars(S) C σ′)

Appendix C. Collected Lemmas 137

Single-Eval-Assign

R ⇒ IVars(e)

(mk -Assign(id , e), σ)
r−→∗
R

(mk -Assign(id , v), σ′)

v ∈ Z
v = [[e]](σ) = [[e]](σ′)

Single-Eval-If

R ⇒ IVars(e)

(mk -If (b, body), σ)
r−→∗
R

(mk -If (v , body), σ′)

v ∈ B
v = [[b]](σ) = [[b]](σ′)

While-interstices-pre

[[P]](σ)
(P ∧ bs ,R) ` body psat (G ,W ∧ P)

R ⇒ W ∗ ∧ IVars(bs)

wh = mk -While(bs ∧ bu , body)
(wh, σ)

r−→∗
R

(mk -Seq(body ,wh), σ′)

[[P ∧ bs]](σ′)

While-interstices-psat

[[P]](σ)
(P ∧ bs ,R) ` body psat (G ,W ∧ P)

R ⇒ W ∗ ∧ IVars(bs)

wh = mk -While(bs ∧ bu , body)
C w = {(wh, σ′) | (wh, σ)

m−→∗
R

(wh, σ′) ∧ σ 6= σ′}
∀(wh, σ′) ∈ C w · [[W ∧ P]](σ, σ′)

138

139

D — Full Proofs

D.1 Theorem PSAT

from (P ,R) ` S sat (G,Q); Π = {(σ, σ′) ∈ Σ× Σ | [[P]](σ) ∧ (S , σ)
r−→∗
R

(nil, σ′)}
1 from (σ0, σf) ∈ Π
1.1 S ∈ Stmt h
1.2 from S ∈ Assign

infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)
h, h1, h1.2, Assign-Within, Assign-Post

1.3 from S ∈ Atomic
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)

h, h1, h1.3, Atomic-Within, Atomic-Post
1.4 from S ∈ If

infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)
h, h1, h1.4, If-Within, If-Post

1.5 from S ∈ Par
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)

h, h1, h1.5, Par-Within, Par-Post
1.6 from S ∈ Seq

infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)
h, h1, h1.6, Seq-Within, Seq-Post

1.7 from S ∈While
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf)

h, h1, h1.7, While-Within, While-Post
infer Withinm(R, (S , σ0), (nil, σf),G) ∧ [[Q]](σ0, σf) ∨-E(1.1–1.7)

2 ∀(σ0, σf) ∈ Π ·Withinm(R, (S , σ0), (nil, σf),G) ∀-I(1)
3 Withins(P ,R,S ,G) h, 2, Within-Abstract
4 ∀(σ0, σf) ∈ Π · [[Q]](σ0, σf) ∀-I(1)
infer Withins(P ,R,S ,G) ∧ ∀(σ0, σf) ∈ Π · [[Q]](σ0, σf) ∧-I(3,4)

140 D.2. Guarantee Condition

D.2 Guarantee Condition

D.2.1 Assignment

Assign-Within
from (P ,R) ` mk -Assign(id , e) sat (G,Q); [[P]](σ0);

(mk -Assign(id , e), σ0)
r−→∗
R

(nil, σf)

1 R ⇒ IVars(e)∪{id} h, Assign-I
2 G = {(σ, σ † {id 7→ [[e]](σ)}) | σ ∈ Σ} ∪ I h, Assign-I
3 T i = {(C1,C2) | (mk -Assign(id , e), σ0)

r−→∗
R

C1
r−→
R

C2
r−→∗
R

(nil, σf)} definition

4 from (C1,C2) ∈ T i

4.1 (C1,C2) ∈ (A-R-Step ∪ Assign-Eval ∪ Assign-E) h4, inspection of r−→
R

4.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h4.2, Within-Rely
4.3 from (C1,C2) ∈ Assign-Eval

infer Within1(C1,C2,G) h4.3, Within-Prog-Cor
4.4 from (C1,C2) ∈ Assign-E; C1 = (S1, σ1); C2 = (S2, σ2)
4.4.1 S1 ∈ Assign h4.4, Assign-E

4.4.2 S1.id = id h4, 4.4.1, inspection of r−→
R

4.4.3 S1.e ∈ Z h4.4, 4.4.1, Assign-E

4.4.4 σ2 = σ1 † {id 7→ S1.e} h4.4, Assign-E

4.4.5 S1.e = [[e]](σ0) = [[e]](σ1) 1, h4, 4.4.1, 4.4.2, 4.4.3, Single-Eval-Assign
4.4.6 [[G]](σ1, σ2) 2, 4.4.4, 4.4.5

infer Within1(C1,C2,G) h4.4, 4.4.6, Within-Prog
infer Within1(C1,C2,G) ∨-E(4.1–4.4)

5 ∀(C1,C2) ∈ T i ·Within1(C1,C2,G) ∀-I(4)
infer Withinm(R, (mk -Assign(id , e), σ0), (nil, σf),G) 3, 5, Within-Multi

Appendix D. Full Proofs 141

D.2.2 Atomic/STM

Atomic-Within
from (P ,R) ` mk -Atomic(body) psat (G,Q); [[P]](σ0); C0 = (mk -Atomic(body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P , I) ` body sat (true,Q ′) h, Atomic-psat-I
2 Q ′ ⇒ G h, Atomic-psat-I
3 T i = {(C1,C2) | C0

r−→∗
R

C1
r−→
R

C2
r−→∗
R

Cf } definition

4 from (C1,C2) ∈ T i

4.1 (C1,C2) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry ∪ STM-E)

h4, inspection of r−→
R

4.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h4.2, Within-Rely
4.3 from (C1,C2) ∈ (STM-Atomic ∪ STM-Step ∪ STM-Retry)

infer Within1(C1,C2,G) h4.3, Within-Prog-Cor
4.4 from (C1,C2) ∈ STM-E; C1 = (S1, σ1); C2 = (S2, σ2)
4.4.1 S1 ∈ STM ∧ S1.body = nil ∧ S2 = nil h4.4, STM-E

4.4.2 ∃Ca ∈ Config , σa , σs ∈ Σ·
C0

r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ Ca = (mk -STM (body , σa , body , σa), σa)
∧ S1 = (mk -STM (body , σa , nil, σs), σ1)
∧ (Ca ,C1) ∈ (A-R-Step ∪ STM-Step)∗

h4, h4.4, inspection of r−→
R

4.4.3 from Ca ∈ Config , σa , σs ∈ Σ st
C0

r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ Ca = (mk -STM (body , σa , body , σa), σa)
∧ S1 = (mk -STM (body , σa , nil, σs), σ1)
∧ (Ca ,C1) ∈ (A-R-Step ∪ STM-Step)∗

4.4.3.1 (C0,Ca) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry)

h4.4.3, inspection of r−→
R

4.4.3.2 [[R]](σ0, σa) 4.4.3.1, Rely-Trivial
4.4.3.3 [[R]](σa , σ1) h4.4.3, Rely-Trivial
4.4.3.4 [[P]](σ1) h, 4.4.3.2, 4.4.3.3, PR-ident
4.4.3.5 (body , σa)

r−→
I

(nil, σs) h4.4.3, Isolation-STM

4.4.3.6 σs = σa † (Vars(body) C σs) 4.4.3.5, Sequential-Effect
4.4.3.7 (body , σa)

r−→
I

(nil, σa † (Vars(body) C σs)) 4.4.3.5, 4.4.3.6

4.4.3.8 [[IVars(body)]](σa , σ1) h4.4.3, STM-E

4.4.3.9 (Vars(body) C σa) = (Vars(body) C σ1) 4.4.3.8
4.4.3.10 (body , σ1)

r−→
I

(nil, σ1 † (Vars(body) C σs))

4.4.3.7, 4.4.3.9, Frame-Rule
4.4.3.11 [[Q ′]](σ1, σ1 † (Vars(body) C σs)) h, 1, 4.4.3.4, 4.4.3.10, IH-S(body)
4.4.3.12 σ2 = σ1 † (Vars(body) C σs) h4.4, h4.4.3, STM-E

4.4.3.13 [[Q ′]](σ1, σ2) 4.4.3.11, 4.4.3.12
4.4.3.14 [[G]](σ1, σ2) 2, 4.4.3.13

infer Within1(C1,C2,G) h4.4, h4.4.3, 4.4.3.14, Within-Prog
infer Within1(C1,C2,G) ∃-E(4.4.2,4.4.3)

infer Within1(C1,C2,G) ∨-E(4.1–4.4)
5 ∀(C1,C2) ∈ T i ·Within1(C0,Cf ,G) ∀-I(4)
infer Withinm(R,C0,Cf ,G) 3, 5, Within-Multi

142 D.2. Guarantee Condition

D.2.3 If

If-Within
from (P ,R) ` mk -If (b, body) sat (G,Q); [[P]](σ0); C0 = (mk -If (b, body), σ0);

C1 = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P ,R) ` body sat (G,Q) h, If-I
2 C b = {(S , σb) | S ∈ {body , nil} ∧ C0

r−→∗
R

(S , σb)
r−→∗
R

Cf } definition

3 from Cb ∈ C b ; Cb = (Sb , σb)

3.1 T i = {(C1,C2) | C0
r−→∗
R

C1
r−→
R

C2
r−→∗
R

Cb} definition

3.2 from (C1,C2) ∈ T i

3.2.1 (C1,C2) ∈ (A-R-Step ∪ If-Eval ∪ If-T-E ∪ If-F-E) h3, inspection of r−→
R

3.2.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h3.2.2, Within-Rely
3.2.3 from (C1,C2) ∈ (If-Eval ∪ If-T-E ∪ If-F-E)

infer Within1(C1,C2,G) h3.2.3, Within-Prog-Cor
infer Within1(C1,C2,G) ∨-E(3.2.1–3.2.3)

3.3 ∀(C1,C2) ∈ T i ·Within1(C1,C2,G) ∀-I(3.2)
3.4 Withinm(R,C0,Cb ,G) 3.1, 3.3, Within-Multi
3.5 from Sb = body

3.5.1 (C0,Cb) ∈ (A-R-Step ∪ If-Eval ∪ If-T-E)∗ h3, inspection of r−→
R

3.5.2 [[R]](σ0, σb) h3, h3.5, 3.5.1, Rely-Trivial
3.5.3 [[P]](σb) h, 3.5.2, PR-ident

infer Withinm(R,Cb ,Cf ,G) h, 1, h3, h3.5, 3.5.3, IH-S(body)
3.6 from Sb = nil

infer Withinm(R,Cb ,Cf ,G) h3, h3.6 Within-Rely-Trivial
3.7 Withinm(R,Cb ,Cf ,G) ∨-E(h3,3.5,3.6)

infer Withinm(R,C0,Cb ,G) ∧Withinm(R,Cb ,Cf ,G) ∧-I(3.4,3.7)
4 ∀Cb ∈ C b ·Withinm(R,C0,Cb ,G) ∧Withinm(R,Cb ,Cf ,G) ∀-I(3)
infer Withinm(R,C0,Cf ,G) 2, 4, Within-Concat

Appendix D. Full Proofs 143

D.2.4 Sequence

Seq-Within
from (P ,R) ` mk -Seq(left , right) sat (G,Q); [[P]](σ0); C0 = (mk -Seq(left , right), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(left); IH -S(right)

1 (P ,R) ` left sat (G,Ql ∧ Pr) h, Seq-I
2 (Pr ,R) ` right sat (G,Qr) h, Seq-I
3 C r = {(right , σr) | C0

r−→∗
R

(right , σr)
r−→∗
R

Cf } definition

4 from Cr ∈ C r ; Cr = (right , σr)

4.1 T i = {(C1,C2) | C0
r−→∗
R

C1
r−→
R

C2
r−→∗
R

Cr} definition

4.2 from (C1,C2) ∈ T i

4.2.1 (C1,C2) ∈ (A-R-Step ∪ Seq-E ∪ Seq-Step) h4.2, inspection of
r−→∗
R

4.2.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h4.2.2, Within-Rely
4.2.3 from (C1,C2) ∈ Seq-E

infer Within1(C1,C2,G) h4.2.3, Within-Prog-Cor
4.2.4 from (C1,C2) ∈ Seq-Step; C1 = (S1, σ1); C2 = (S2, σ2)

4.2.4.1 (left , σ0)
r−→∗
R

(S1.left , σ1)
r−→
R

(S2.left , σ2) h4.2, h4.2.4, Seq-Equiv

4.2.4.2 Within1((S1.left , σ1), (S2.left , σ2),G) h, 1, 4.2.4.1, IH-S(left)
infer Within1(C1,C2,G) h4.2.4, 4.2.4.2, Within-Equiv

infer Within1(C1,C2,G) ∨-E(4.2.1–4.2.4)
4.3 ∀(C1,C2) ∈ T i ·Within1(C1,C2,G) ∀-I(4.2)
4.4 Withinm(R,C0,Cr ,G) 4.1, 4.3, Within-Multi
4.5 ∃σa ∈ Σ · C0

r−→∗
R

(mk -Seq(nil, right), σa)
r−→∗
R

Cr
r−→∗
R

Cf

h4, inspection of r−→
R

4.6 from σa ∈ Σ st C0
r−→∗
R

(mk -Seq(nil, right), σa)
r−→∗
R

Cr
r−→∗
R

Cf

4.6.1 (left , σ0)
r−→∗
R

(nil, σa) h4.6, Seq-Equiv

4.6.2 [[Ql ∧ Pr]](σ0, σa) h, 1, 4.6.1, IH-S(left)
4.6.3 ((mk -Seq(nil, right), σa),Cr) ∈ (A-R-Step ∪ Seq-E)∗ h4.6, inspection of r−→

R

4.6.4 [[R]](σa , σr) h4.6, 4.6.3, Rely-Trivial
infer [[Pr]](σr) 4.6.2, 4.6.4, PR-ident

4.7 [[Pr]](σr) ∃-E(4.5, 4.6)
4.8 Withinm(R,Cr ,Cf ,G) 2, h4, 4.7, IH-S(right)

infer Withinm(R,C0,Cr ,G) ∧Withinm(R,Cr ,Cf ,G) ∧-I(4.4,4.8)
5 ∀Cr ∈ C r ·Withinm(R,C0,Cr ,G) ∧Withinm(R,Cr ,Cf ,G) ∀-I(4)
infer Withinm(R,C0,Cf ,G) 3, 5, Within-Concat

144 D.2. Guarantee Condition

D.2.5 Parallel

Par-Within
from (P ,R) ` mk -Par(left , right) sat (G,Q); [[P]](σ0); C0 = (mk -Par(left , right), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(left); IH -S(right)

1 (P ,R ∨ Gr) ` left sat (Gl ,Ql) h, Par-I
2 (P ,R ∨ Gl) ` right sat (Gr ,Qr) h, Par-I
3 Gl ∨ Gr ⇒ G h, Par-I
4 T i = {(C1,C2) | C0

r−→∗
R

C1
r−→
R

C2
r−→∗
R

Cf } definition

5 from (C1,C2) ∈ T i

5.1 (C1,C2) ∈ (A-R-Step ∪ Par-L ∪ Par-R ∪ Par-E) h5, inspection of
r−→∗
R

5.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h5.2, Within-Rely
5.3 from (C1,C2) ∈ Par-E

infer Within1(C1,C2,G) h5.3, Within-Prog-Cor
5.4 from (C1,C2) ∈ Par-L; C1 = (S1, σ1); C2 = (S2, σ2)

5.4.1 (left , σ0)
r−→∗

R∨Gr

(S1.left , σ1)
r−→

R∨Gr

(S2.left , σ2) h, 1, 2, h5, Isolation-Par-L

5.4.2 Within1((S1.left , σ1), (S2.left , σ2),Gl) h, 1, 5.4.1, IH-S(left)
5.4.3 Within1((S1.left , σ1), (S2.left , σ2),G) 3, 5.4.2, Within-Weaken

infer Within1(C1,C2,G) h5.4, 5.4.3, Within-Equiv
5.5 from (C1,C2) ∈ Par-R

infer Within1(C1,C2,G) symmetric to 5.4
infer Within1(C1,C2,G) ∨-E(5.1–5.5)

6 ∀(C1,C2) ∈ T i ·Within1(C1,C2,G) ∀-I(5)
infer Withinm(R,C0,Cf ,G) 4, 6, Within-Multi

Appendix D. Full Proofs 145

D.2.6 While

While-Within
from (P ,R) ` mk -While(b, body) sat (G,Q); [[P]](σ0); C0 = (mk -While(b, body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P ∧ bs ,R) ` body sat (G,W ∧ P) h, While-I
2 T i = {(C1,C2) | C0

r−→∗
R

C1
r−→
R

C2
r−→∗
R

Cf } definition

3 from (C1,C2) ∈ T i

3.1 (C1,C2) ∈ (A-R-Step ∪ While ∪ If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E ∪ Seq-Step)

h3, inspection of r−→
R

3.2 from (C1,C2) ∈ A-R-Step

infer Within1(C1,C2,G) h3.2, Within-Rely
3.3 from (C1,C2) ∈ (While ∪ If-Eval ∪ If-T-E ∪ If-F-E ∪ Seq-E)

infer Within1(C1,C2,G) h3.3, Within-Prog-Cor
3.4 from (C1,C2) ∈ Seq-Step; C1 = (S1, σ1); C2 = (S2, σ2)

3.4.1 ∃Ca ∈ Config , σa ∈ Σ·
Ca = (mk -Seq(body ,mk -While(b, body)), σa)

∧ C0
r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ (Ca ,C1) ∈ (A-R-Step ∪ Seq-Step)∗

h3, h3.4, inspection of r−→
R

3.4.2 from Ca ∈ Config , σa ∈ Σ st
Ca = (mk -Seq(body ,mk -While(b, body)), σa)

∧ C0
r−→∗
R

Ca
r−→∗
R

C1
r−→
R

C2

∧ (Ca ,C1) ∈ (A-R-Step ∪ Seq-Step)∗

3.4.2.1 [[P ∧ bs]](σa) h, 1, h3.4.2, While-interstices-pre
3.4.2.2 (body , σa)

r−→∗
R

(S1.left , σ1)
r−→
R

(S2.left , σ2) h3.4, h3.4.2, Seq-Equiv

3.4.2.3 Within1((S1.left , σ1), (S2.left , σ2),G) h, 1, 3.4.2.1, 3.4.2.2, IH-S(body)
infer Within1(C1,C2,G) 3.4.2.3, Within-Equiv

infer Within1(C1,C2,G) ∃-E(3.4.1,3.4.2)
infer Within1(C1,C2,G) ∨-E(3.1–3.4)

4 ∀(C1,C2) ∈ T i ·Within1(C1,C2,G) ∀-I(3)
infer Withinm(R,C0,Cf ,G) 2, 4, Within-Multi

146 D.3. Post Condition

D.3 Post Condition

D.3.1 Assignment

Assign-Post
from (P ,R) ` mk -Assign(id , e) sat (G,Q); [[P]](σ0); C0 = (mk -Assign(id , e), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf

1 R ⇒ IVars(e)∪{id} h, Assign-I
2 Q = {(σ, σ′) | σ, σ′ ∈ Σ ∧ σ′(id) = [[e]](σ)} h, Assign-I
3 ∃v ∈ Z, σ1, σ2 ∈ Σ ·

C0
r−→∗
R

(mk -Assign(id , v), σ1)
r−→
R

(nil, σ2)
r−→∗
R

Cf

∧ ((mk -Assign(id , v), σ1), (nil, σ2)) ∈ Assign-E

h, inspection of r−→
R

4 from v ∈ Z, σ1, σ2 ∈ Σ st
C0

r−→∗
R

(mk -Assign(id , v), σ1)
r−→
R

(nil, σ2)
r−→∗
R

Cf

∧ ((mk -Assign(id , v), σ1), (nil, σ2)) ∈ Assign-E

4.1 v = [[e]](σ0) = [[e]](σ1) 1, h4, Single-Eval-Assign
4.2 σ2 = σ1 † {id 7→ v} h4, Assign-E
4.3 σ2(id) = [[e]](σ0) 4.1, 4.2
4.4 [[Q]](σ0, σ2) 2, 4.3
4.5 ((nil, σ2),Cf) ∈ A-R-Step h4, inspection of r−→

R

4.6 [[R]](σ2, σf) 4.5, Rely-Trivial
infer [[Q]](σ0, σf) 4.4, 4.6, QR-ident

infer [[Q]](σ0, σf) ∃-E(3, 4)

Appendix D. Full Proofs 147

D.3.2 Atomic/STM

Atomic-Post
from (P ,R) ` mk -Atomic(body) psat (G,Q); [[P]](σ0); C0 = (mk -Atomic(body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P , I) ` body psat (true,Q ′) h, Atomic-psat-I

2
↼−
P ∧ R � Q ′ � R ⇒ Q h, Atomic-psat-I

3 ∃C1,C2,C3 ∈ Config , σ1, σ2, σ3, σs ∈ Σ ·
C1 = (mk -STM (body , σ1, body , σ1), σ1)
∧ C2 = (mk -STM (body , σ1, nil, σs), σ2)
∧ C3 = (nil, σ3)

∧ C0
r−→∗
R

C1
r−→∗
R

C2
r−→
R

C3
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry)∗

∧ (C1,C2) ∈ (A-R-Step ∪ STM-Step)∗

∧ (C2,C3) ∈ STM-E

∧ (C3,Cf) ∈ A-R-Step∗

h, inspection of r−→
R

4 from C1,C2,C3 ∈ Config , σ1, σ2, σ3, σs ∈ Σ st
C1 = (mk -STM (body , σ1, body , σ1), σ1)
∧ C2 = (mk -STM (body , σ1, nil, σs), σ2)
∧ C3 = (nil, σ3)

∧ C0
r−→∗
R

C1
r−→∗
R

C2
r−→
R

C3
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ STM-Atomic ∪ STM-Step ∪ STM-Retry)∗

∧ (C1,C2) ∈ (A-R-Step ∪ STM-Step)∗

∧ (C2,C3) ∈ STM-E

∧ (C3,Cf) ∈ A-R-Step∗

4.1 [[R]](σ0, σ1) h4, Rely-Trivial
4.2 [[R]](σ1, σ2) h4, Rely-Trivial
4.3 [[P]](σ2) h, 4.1, 4.2, PR-ident
4.4 (body , σ1)

r−→∗
I

(nil, σs) h4, Isolation-STM

4.5 σs = σ1 † (Vars(body) C σs) 4.4, Sequential-Effect
4.6 (body , σ1)

r−→∗
I

(nil, σ1 † (Vars(body) C σs)) 4.4, 4.5

4.7 [[IVars(body)]](σ1, σ2) h4, STM-Step

4.8 (Vars(body) C σ1) = (Vars(body) C σ2) 4.7
4.9 (body , σ2)

r−→∗
I

(nil, σ2 † (Vars(body) C σs)) 4.6, 4.8, Frame-Rule

4.10 [[Q ′]](σ2, σ2 † (Vars(body) C σs)) h, 1, 4.3, 4.9, IH-S(body)
4.11 σ3 = σ2 † (Vars(body) C σs) h4, STM-E

4.12 [[Q ′]](σ2, σ3) 4.10, 4.11
4.13 [[R]](σ3, σf) h4, Rely-Trivial
4.14 [[R � Q ′ � R]](σ0, σf) 4.1, 4.2, 4.12, 4.13

infer [[Q]](σ0, σf) h, 2, 4.14
infer [[Q]](σ0, σf) ∃-E(3,4)

148 D.3. Post Condition

D.3.3 If

Unconstrained body — If-I

If-Post
from (P ,R) ` mk -If (b, body) sat (G,Q); [[P]](σ0); C0 = (mk -If (b, body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P ,R) ` body sat (G,Q) h, If-I

2
↼−
P ∧ R ⇒ Q h, If-I

3 ∃v ∈ B, σ1 ∈ Σ · C0
r−→∗
R

(mk -If (v , body), σ1)
r−→∗
R

Cf h, inspection of r−→
R

4 from v ∈ B, σ1 ∈ Σ st C0
r−→∗
R

(mk -If (v , body), σ1)
r−→∗
R

Cf

4.1 (C0, (mk -If (v , body), σ1)) ∈ (A-R-Step ∪ If-Eval)∗ h4, inspection of r−→
R

4.2 [[R]](σ0, σ1) h4, 4.1, Rely-Trivial
4.3 from ¬ v

4.3.1 ((mk -If (v , body), σ1),Cf) ∈ (A-R-Step ∪ If-F-E)∗ h4, h4.3, inspection of r−→
R

4.3.2 [[R]](σ1, σf) h4, h4.3, 4.3.1, Rely-Trivial
4.3.3 [[R]](σ0, σf) 4.2, 4.3.2

4.3.4 [[
↼−
P ∧ R]](σ0, σf) h, 4.3.3

infer [[Q]](σ0, σf) 2, 4.3.4
4.4 from v

4.4.1 (body , σ0)
r−→∗
R

(nil, σf) h4, h4.4, Isolation-If

infer [[Q]](σ0, σf) h, 1, 4.4.1, IH-S(body)
infer [[Q]](σ0, σf) ∨-E(h4,4.3,4.4)

infer [[Q]](σ0, σf) ∃-E(3,4)

Appendix D. Full Proofs 149

Constrained body — If-b-I

If-Post
from (P ,R) ` mk -If (b, body) sat (G,Q); [[P]](σ0); C0 = (mk -If (b, body), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(body)

1 (P ∧ b,R) ` body sat (G,Q) h, If-b-I
2 R ⇒ IVars(b) h, If-b-I

3
↼−
P ∧↼−¬ b ∧ R ⇒ Q h, If-b-I

4 ∃v ∈ B, σ1 ∈ Σ · C0
r−→∗
R

(mk -If (v , body), σ1)
r−→∗
R

Cf h, inspection of r−→
R

5 from v ∈ B, σ1 ∈ Σ st C0
r−→∗
R

(mk -If (v , body), σ1)
r−→∗
R

Cf

5.1 (C0, (mk -If (v , body), σ1)) ∈ (A-R-Step ∪ If-Eval)∗ h4, inspection of r−→
R

5.2 [[R]](σ0, σ1) h4, 4.1, Rely-Trivial
5.3 v = [[b]](σ0) = [[b]](σ1) 2, h5, Single-Eval-If
5.4 from ¬ v

5.4.1 ((mk -If (v , body), σ1),Cf) ∈ (A-R-Step ∪ If-F-E)∗ h5, h5.4, inspection of r−→
R

5.4.2 [[R]](σ1, σf) h5, h5.4, 5.4.1, Rely-Trivial
5.4.3 [[R]](σ0, σf) 5.2, 5.4.3
5.4.4 [[¬ b]](σ0) 5.3, h5.4

5.4.5 [[
↼−
P ∧↼−¬ b ∧ R]](σ0, σf) h, 5.4.3, 5.4.4

infer [[Q]](σ0, σf) 3, 5.4.5
5.5 from v
5.5.1 [[b]](σ0) 5.3, h5.5
5.5.2 [[P ∧ b]](σ0) h, 5.5.1
5.5.3 (body , σ0)

r−→∗
R

(nil, σf) h5, h5.5, Isolation-If

infer [[Q]](σ0, σf) h, 1, 5.5.2, 5.5.3, IH-S(body)
infer [[Q]](σ0, σf) ∨-E(h5,5.4,5.5)

infer [[Q]](σ0, σf) ∃-E(4,5)

150 D.3. Post Condition

D.3.4 Sequence

Seq-Post
from (P ,R) ` mk -Seq(left , right) sat (G,Q); [[P]](σ0); C0 = (mk -Seq(left , right), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(left); IH -S(right)

1 (P ,R) ` left sat (G,Ql ∧ Pr) h, Seq-I
2 (Pr ,R) ` right sat (G,Qr) h, Seq-I
3 Ql � Qr ⇒ Q h, Seq-I
4 ∃σ1 ∈ Σ · C0

r−→∗
R

(mk -Seq(nil, right), σ1)
r−→∗
R

Cf h, inspection of r−→
R

5 from σ1 ∈ Σ st C0
r−→∗
R

(mk -Seq(nil, right), σ1)
r−→∗
R

Cf

5.1 (left , σ0)
r−→∗
R

(nil, σ1) h5, Seq-Equiv

5.2 [[Ql ∧ Pr]](σ0, σ1) h, 1, 5.1, IH-S(left)
5.3 (right , σ1)

r−→∗
R

(nil, σf) h5, Isolation-Seq-R

5.4 [[Qr]](σ1, σf) h, 2, 5.2, 5.3, IH-S(right)
5.5 [[Ql � Qr]](σ0, σf) 5.2, 5.4

infer [[Q]](σ0, σf) 3, 5.5
infer [[Q]](σ0, σf) ∃-E(4,5)

Appendix D. Full Proofs 151

D.3.5 Parallel

Par-Post
from (P ,R) ` mk -Par(left , right) sat (G,Q); [[P]](σ0); C0 = (mk -Par(left , right), σ0);

Cf = (nil, σf); C0
r−→∗
R

Cf ; IH -S(left); IH -S(right)

1 (P ,R ∨ Gr) ` left sat (Gl ,Ql) h, Par-I
2 (P ,R ∨ Gl) ` right sat (Gr ,Qr) h, Par-I

3
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q h, Par-I

4 ∃σ1 ∈ Σ · C0
r−→∗
R

(mk -Par(nil, nil), σ1)
r−→∗
R

Cf h, inspection of r−→
R

5 from σ1 ∈ Σ st C0
r−→∗
R

(mk -Par(nil, nil), σ1)
r−→∗
R

Cf

5.1 (left , σ0)
r−→∗

R∨Gr

(nil, σ1) h5, Isolation-Par-L

5.2 [[Ql]](σ0, σ1) h, 1, h5, 5.1, IH-S(left)
5.3 ((mk -Par(nil, nil), σ1),Cf) ∈ (A-R-Step ∪ Par-E)∗ h5, inspection of r−→

R

5.4 [[R]](σ1, σf) h5, 5.3, Rely-Trivial
infer [[Ql]](σ0, σf) 5.2, 5.4, QR-ident

6 [[Ql]](σ0, σf) ∃-E(4,5)
7 [[Qr]](σ0, σf) symmetrical to 4–6
8 from σ1 ∈ Σ st C0

r−→∗
R

(mk -Par(nil, nil), σ1)
r−→∗
R

Cf

8.1 Withins(P ,R ∨ Gr , left ,Gl) h, 1, IH-S(left)
8.2 (left , σ0)

r−→∗
R∨Gr

(nil, σ1) h8, Isolation-Par-L

8.3 Withinm(R ∨ Gr , (left , σ0), (nil, σ1),Gl) h, 8.1, 8.2, Within-Concrete
8.4 [[(R ∨ Gr ∨ Gl)

∗]](σ0, σ1) 8.3, Within-Relation
8.5 ((mk -Par(nil, nil), σ1),Cf) ∈ (A-R-Step ∪ Par-E)∗ h8, inspection of r−→

R

8.6 [[R]](σ1, σf) h8, 8.5, Rely-Trivial
infer [[(R ∨ Gl ∨ Gr)∗]](σ0, σf) 8.4, 8.6

9 [[(R ∨ Gl ∨ Gr)∗]](σ0, σf) ∃-E(4,8)
infer [[Q]](σ0, σf) h, 3, 6, 7, 9

152 D.3. Post Condition

D.3.6 While
While-Post

from wh = mk -While(bs ∧ bu , body); (P ,R) ` wh sat (G,W ∗ ∧ P ∧ ¬ (bs ∧ bu));

[[P]](σ0); C0 = (wh, σ0); Cf = (nil, σf); C0
r−→∗
R

Cf ; sw = mk -Seq(body ,wh);

IH -S(body)
1 well-founded(W) h, While-I
2 R ⇒ W ∗ ∧ IVars(bs) h, While-I
3 SingleSharedVar(bu ,R) h, While-I

4 ¬
↼−−−−−
(bs ∧ bu) ∧ R ⇒ ¬ (bs ∧ bu) h, While-I

5 (P ∧ bs ,R) ` body sat (G,W ∧ P) h, While-I
6 ∃C1 ∈ Config , v ∈ B, σ1 ∈ Σ ·

C1 = (mk -If (v , sw), σ1) ∧ C0
r−→∗
R

C1
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ While ∪ If-Eval)∗

h, inspection of r−→
R

7 from C1 ∈ Config , v ∈ B, σ1 ∈ Σ st
C1 = (mk -If (v , sw), σ1) ∧ C0

r−→∗
R

C1
r−→∗
R

Cf

∧ (C0,C1) ∈ (A-R-Step ∪ While ∪ If-Eval)∗

7.1 [[R]](σ0, σ1) h7, Rely-Trivial
7.2 from ¬ v

7.2.1 (C1,Cf) ∈ (A-R-Step ∪ If-F-E)∗ h, h7.2, inspection of r−→
R

7.2.2 [[R]](σ1, σf) 7.2.1, Rely-Trivial
7.2.3 [[R]](σ0, σf) 7.1, 7.2.2
7.2.4 [[W ∗]](σ0, σf) 2, 7.2.3
7.2.5 [[P]](σf) h, 7.2.3, PR-ident
7.2.6 [[¬ (bs ∧ bu)]](σf) 2, 3, 4, h7.2, 7.2.2

infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) 7.2.4–7.2.6
7.3 from v
7.3.1 ∃σ2 ∈ Σ ·

C1
r−→∗
R

(wh, σ2)
r−→∗
R

Cf

∧ (C1, (wh, σ2)) ∈ (A-R-Step ∪ If-T-E ∪ Seq-Step ∪ Seq-E)∗

h7, h7.3,
inspection of r−→

R

7.3.2 from σ2 ∈ Σ st
C1

r−→∗
R

(wh, σ2)
r−→∗
R

Cf

∧ (C1, (wh, σ2)) ∈ (A-R-Step ∪ If-T-E ∪ Seq-Step ∪ Seq-E)∗

7.3.2.1 (body , σ1)
r−→∗
R

(nil, σ2) h7.3.2, Isolation-While

7.3.2.2 [[P]](σ1) h, 7.1, PR-ident
7.3.2.3 [[bs]](σ1) 2, h7, h7.3, Single-Eval-If
7.3.2.4 [[W ∧ P]](σ1, σ2) h, 5, 7.3.2.1–7.3.2.3, IH-S(body)
7.3.2.5 [[W ∗]](σ0, σ1) 2, 7.1
7.3.2.6 [[W ∧ P]](σ0, σ2) 7.3.2.4, 7.3.2.5
7.3.2.7 from ∀σ′ ∈ {σ′′ | [[W ∧ P]](σ0, σ

′′) ∧ h[σ′′/σ0]}·
[[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ′, σf)

7.3.2.7.1 σ2 ∈ {σ′′ | [[W ∧ P]](σ0, σ
′′) ∧ h[σ′′/σ0]} h, h7.3.2, 7.3.2.6

7.3.2.7.2 [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ2, σf) ∀-E(h7.3.2.7,7.3.2.7.1)
infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) 7.3.2.6, 7.3.2.7.2

infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) 1, 7.3.2.7, W-Indn
infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) ∃-E(7.3.1,7.3.2)

infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) ∨-E(h7.5.2,7.3)
infer [[W ∗ ∧ P ∧ ¬ (bs ∧ bu)]](σ0, σf) ∃-E(6,7)

Appendix D. Full Proofs 153

D.4 Theorem SAT

from (P ,R) ` S sat (G,Q); Π = {σ ∈ Σ | [[P]](σ)}; Π 6= { }
1 from σ0 ∈ Π
1.1 S ∈ Stmt h
1.2 from S ∈ Assign

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.2, Assign-Converges
1.3 from S ∈ Atomic

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.3, Atomic-Converges
1.4 from S ∈ If

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.4, If-Converges
1.5 from S ∈ Par

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.5, Par-Converges
1.6 from S ∈ Seq

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.6, Seq-Converges
1.7 from S ∈While

infer Convergesc((S , σ0),R, {nil}) h, h1, h1.7, While-Converges
infer Convergesc((S , σ0),R, {nil}) ∨-E(1.1–1.7)

2 ∀σ ∈ Π · Convergesc((S , σ),R, {nil}) ∀-I(1)
infer Convergess(S ,P ,R, {nil}) h, 2, Conv-Abstract

D.4.1 Assign

Assign-Converges
Convergess(mk -Assign(id , e), true, true, {nil})

154 D.4. Theorem SAT

D.4.2 Atomic/STM

Atomic-Converges
from (P ,R) ` mk -Atomic(body) sat (G,Q); [[P]](σ0); C0 = (mk -Atomic(body), σ0);

IH -T (body)
1 (P , I) ` body sat (true,Q ′) h, Atomic-I
2 R ⇒ IVars(body) h, Atomic-I
3 Convergess(body ,P , I , {nil}) 1, IH-T(body)
4 from S ∈ Atomic;σ ∈ Σ,R′ ∈ Rely

infer Convergesc((S , σ),R, {mk -STM (S .body , σ′,S .body , σ′) | [[R]](σ, σ′)})
h4, inspection of m−→

R
, STM-Atomic

5 Convergesc(C0,R, {mk -STM (body , σb , body , σb) | [[R]](σ0, σb)}) h, 4
6 C i = {Ci | C0

m−→∗
R

Ci ∧ Ci = (mk -STM (body , σb , body , σb), σi) ∧ [[R]](σ0, σb)}
definition

7 from Ci ∈ C i ; Ci = (mk -STM (body , σb , body , σb), σi)

7.1 from (Cj ,Ck) ∈ {(Cj ,Ck) | Ci
m−→∗
R

Cj
m−→
R

Ck}
7.1.1 (Cj ,Ck) ∈ STM-Retry ∨ (Cj ,Ck) /∈ STM-Retry h7.1, inspection of m−→

R

7.1.2 from (Cj ,Ck) ∈ STM-Retry; Cj = (Sj , σj); Σj = {σ | [[R]](σj , σ)}
7.1.2.1 [[R]](σb , σi) h7, inspection of m−→

R
, STM-Atomic

7.1.2.2 (Cj ,Ck) ∈ (STM-Atomic ∪ STM-Step ∪ STM-E ∪ STM-Retry)∗

h7.1.2, inspection of m−→
R

7.1.2.3 [[R]](σi , σj) 7.1.2.2, Rely-Trivial
7.1.2.4 ∀σ′ ∈ Σj · [[IVars(body)]](σj , σ) 2, h7.1.2
7.1.2.5 ∀σ′ ∈ Σj · [[IVars(body)]](σb , σ) 7.1.2.1, 7.1.2.3, 7.1.2.4
7.1.2.6 ∀σ′ ∈ Σj · (Vars(body)Cσb) = (Vars(body)Cσ′) 7.1.2.5
7.1.2.7 ∃σ′ ∈ Σj · (Vars(body)Cσb) 6= (Vars(body)Cσ′) h7.1.2, STM-Retry

infer f 7.1.2.6, 7.1.2.7, f-I
infer (Cj ,Ck) /∈ STM-Retry 7.1.1, 7.1.2, f-E

7.2 ∀t ∈ {(Cj ,Ck) | Ci
m−→∗
R

Cj
m−→
R

Ck} · t /∈ STM-Retry ∀-I(7.1)

7.3 [[P]](σb) h, h7, PR-ident
7.4 Convergesc((body , σb), I , {nil}) 3, 7.3, Conv-Concrete
7.5 Convergesc(Ci ,R, {S ∈STM | S .body =nil}) h7, 7.2, 7.4, Conv-Wrap-STM
7.6 C e = {(Se , σe) | Ci

m−→∗
R

(Se , σe) ∧ Se ∈STM ∧ Se .body =nil} definition

7.7 from Ce ∈ C e

7.7.1 from S ∈ STM ∧ S .body = nil;σ ∈ Σ; R′ ∈ Rely ; R′ ⇒ IVars(S.body)

infer Convergesc((S , σ),R′, {nil})
infer Convergesc(Ce ,R, {nil}) 2, h7.7, 7.7.1

7.8 ∀Ce ∈ C e · Convergesc(Ce ,R, {nil}) ∀-I(7.7)
infer Convergesc(Ci ,R, {nil}) 7.5, 7.6, 7.8, Conv-Concat

8 ∀Ci ∈ C i · Convergesc(Ci ,R, {nil}) ∀-I(7)
infer Convergesc(C0,R, {nil}) 5, 6, 8, Conv-Concat

Appendix D. Full Proofs 155

D.4.3 If

If-Converges
from (P ,R) ` mk -If (b, body) sat (G,Q); [[P]](σ0); C0 = (mk -If (b, body), σ0); IH -T (body)
1 (P ,R) ` body sat (G,Q) h, If-I
2 Convergess(body ,P ,R, {nil}) 1, IH-T(body)
3 from S ∈ If ; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {mk -If (v ,S .body) | v ∈ B}) h3, inspection of m−→
R

, If-Eval

4 Convergesc((mk -If (b, body), σ0),R, {mk -If (v , body) | v ∈ B}) h, 3
5 C v = {Cv | C0

m−→∗
R

Cv ∧ Cv = (mk -If (v , body), σv) ∧ v ∈ B} definition

6 from Cv ∈ C v ; Cv = (mk -If (v , body), σv)
6.1 v ∈ B h6
6.2 from ¬ v
6.2.1 from S ∈ If ∧ S .b = false; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {nil}) h6.2.1, inspection of m−→
R

, If-F-E

infer Convergesc(Cv ,R, {nil}) h6, h6.2, 6.2.1
6.3 from v
6.3.1 from S ∈ If ∧ S .b = true; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {S .body}) h6.3.1, inspection of m−→
R

, If-T-E

6.3.4 Convergesc(Cv ,R, {body}) h6, h6.3, 6.3.1
6.3.5 C b = {(body , σb) | Cv

m−→∗
R

(body , σb)} definition

6.3.6 from Cb ∈ C b ; Cb = (body , σb)

6.3.6.1 (C0,Cb) ∈ (If-Eval ∪ If-T-E)∗ h6, h6.3, h6.3.6, inspection of m−→
R

6.3.6.1 [[R]](σ0, σb) 6.3.6.1, Rely-Trivial
6.3.6.2 [[P]](σb) h, 6.3.6.2, PR-ident

infer Convergesc(Cb ,R, {nil}) 2, 6.3.6.3, Conv-Concrete
6.3.7 ∀Cb ∈ C b · Convergesc(Cb ,R, {nil}) ∀-I(6.3.6)

infer Convergesc(Cv ,R, {nil}) 6.3.4, 6.3.5, 6.3.7, Conv-Concat
infer Convergesc(Cv ,R, {nil}) ∨-E(6.1,6.2,6.3)

7 ∀Cv ∈ C v · Convergesc(Cv ,R, {nil}) ∀-I(6)
infer Convergesc(C0,R, {nil}) 4, 5, 7, Conv-Concat

156 D.4. Theorem SAT

D.4.4 Sequence

Seq-Converges
from (P ,R) ` mk -Seq(left , right) sat (G,Q); [[P]](σ0); C0 = (mk -Seq(left , right), σ0);

IH -T (left); IH -T (right)
1 (P ,R) ` left sat (G,Ql ∧ Pr) h, Seq-I
2 Convergess(left ,P ,R, {nil}) h, 1, IH-T(left)
3 Convergesc((left , σ0),R, {nil}) h, 2, Conv-Concrete
4 Convergesc(C0,R, {mk -Seq(nil, right)}) 3, Conv-Wrap-Seq
5 C i = {Ci | C0

m−→∗
R

Ci ∧ Ci = (mk -Seq(nil, right), σi)} definition

6 from Ci ∈ C i ; Ci = (mk -Seq(nil, right), σi)
6.1 from S ∈ Seq ∧ S .left = nil; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {S .right}) h, h6.1, inspection of m−→
R

, Seq-E

infer Convergesc(Ci ,R, {right}) h, h6, 6.1
7 ∀Ci ∈ C i · Converges(Ci ,R, {right}) ∀-I(6)
8 Convergesc(C0,R, {right}) 4, 5, 7, Conv-Concat
9 (Pr ,R) ` right sat (G,Qr) h, Seq-I
10 Convergesc(right ,Pr ,R, {nil}) h, 9, IH-T(right)
11 C r = {(right , σr) | C0

m−→∗
R

(right , σr)} definition

12 from (right , σr) ∈ C r

12.1 [[Pr]](σr) 1, h12, Theorem PSAT
infer Convergesc((right , σr),R, {nil}) 10, 12.1, Conv-Concrete

13 ∀Cr ∈ C r · Convergesc((right , σr),R, {nil}) ∀-I(12)
infer Convergesc(C0,R, {nil}) 8, 11, 13, Conv-Concat

Appendix D. Full Proofs 157

D.4.5 Parallel

Par-Converges
from (P ,R) ` mk -Par(left , right) sat (G,Q); [[P]](σ0); C0 = (mk -Par(left , right), σ0);

IH -T (left); IH -T (right)
1 (P ,R ∨ Gr) ` left sat (Gl ,Ql) h, Par-I
2 (P ,R ∨ Gl) ` right sat (Gr ,Qr) h, Par-I
3 Convergess(left ,P ,R ∨ Gr , {nil}) 1, IH-T(left)
4 Convergess((right , σ0),P ,R ∨ Gl , {nil}) 2, IH-T(right)
5 Convergesc((left , σ0),P ,R ∨ Gr , {nil}) h, 3, Conv-Concrete
6 Convergesc((right , σ0),P ,R ∨ Gl , {nil}) h, 4, Conv-Concrete
7 Convergesc(C0,R, {mk -Par(nil, nil)}) 1, 2, 5, 6, Conv-Wrap-Par
8 C e = {Ce | C0

m−→∗
R

Ce ∧ Ce = (mk -Par(nil, nil), σe)} definition

9 from Ce ∈ C e ; Ci = (mk -Par(nil, nil), σe)
9.1 from S = mk -Par(nil, nil); σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {nil}) h9.1, inspection of m−→
R

, Par-E

infer Convergesc(Ce ,R, {nil}) h9, h9.1
10 ∀Ce ∈ C e · Convergesc(Ce ,R, {nil}) ∀-I(9)
infer Convergesc(C0,R, {nil}) 7, 8, 10, Conv-Concat

158 D.4. Theorem SAT

D.4.6 While

While-Converges
from wh = mk -While(bs ∧ bu , body); (P ,R) ` wh sat (G,W ∗ ∧ P ∧ ¬ (bs ∧ bu));

[[P]](σ0); sw = mk -Seq(body ,wh); C0 = (wh, σ0); IH -T (body)
1 well-founded(W) h, While-I
2 bottoms(W) ⊆ [[¬ (bs ∧ bu)]] h, While-I
3 R ⇒ W ∗ ∧ IVars(bs) h, While-I
4 SingleSharedVar(bu ,R) h, While-I

5 ¬
↼−−−−−
(bs ∧ bu) ∧ R ⇒ ¬ (bs ∧ bu) h, While-I

6 (P ,R) ` body sat (G,W ∧ P) h, While-I
7 Convergess(body ,P ,R, {nil}) 1, IH-T(body)
8 from ∀C ′ ∈ {(wh, σ′′) | C0

m−→∗
R

(wh, σ′′) ∧ [[W ∧ P]](σ0, σ
′′)}·

Convergesc(C ′,R, {nil})
8.1 from S ∈While; σ ∈ Σ; R′ ∈ Rely ; sw ′ = mk -Seq(S .body ,S)

infer Convergesc((S , σ),R′, {mk -If (v , sw ′) | v ∈ B}) h8.1, inspection of m−→
R′

8.2 Convergesc(C0,R, {mk -If (v , sw) | v ∈ B}) h, 8.1
8.3 C v = {(mk -If (v , sw), σv) | C0

m−→∗
R

(mk -If (v , sw), σv) ∧ v ∈ B} definition

8.4 from Cv ∈ C v ; Cv = (mk -If (v , sw), σv)
8.4.1 from ¬ v
8.4.1.1 from S ∈ If ∧ S .b = false; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {nil}) h8.4.1.1, inspection of m−→
R′

infer Convergesc(Cv ,R, {nil}) h, h8.4, h8.4.1, 8.4.1.1
8.4.2 from v
8.4.2.1 from S ∈ If ∧ S .b = true; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {S .body}) h8.4.2.1, inspection of m−→
R′

8.4.2.2 Convergesc(Cv ,R, {sw}) h, h8.4, h8.4.2, 8.4.2.1
8.4.2.3 C b = {(sw , σb) | Cv

m−→∗
R

(sw , σb)} definition

8.4.2.4 from Cb ∈ C b ; Cb = (sw , σb)
8.4.2.4.1 [[P ∧ bs]](σb) h, 6, h8.4, h8.4.2, h8.4.2.4, While-interstices-pre
8.4.2.4.2 Convergesc((body , σb),R, {nil}) 7, 8.4.2.4.1, Conv-Concrete

infer Convergesc(Cb ,R, {mk -Seq(nil,wh)}) 8.4.2.4.2, Conv-Wrap-Seq
8.4.2.5 ∀Cb ∈ C b · Converges(Cb ,R, {mk -Seq(nil,wh)}) ∀-I(8.4.2.4)
8.4.2.6 Convergesc(Cv ,R, {mk -Seq(nil,wh)})

8.4.2.2, 8.4.2.3, 8.4.2.5, Conv-Concat
8.4.2.7 from S ∈ Seq ∧ S .left = nil; σ ∈ Σ; R′ ∈ Rely

infer Convergesc((S , σ),R′, {S .right}) h8.4.2.7, inspection of m−→
R

8.4.2.8 ∀σ ∈ Σ · Converges((mk -Seq(nil,wh), σ),R, {wh}) ∀-I(8.4.2.7)
8.4.2.9 Convergesc(Cv ,R, {wh}) 8.4.2.6, 8.4.2.8, Conv-Concat
8.4.2.10 C w = {(wh, σw) | C0

m−→∗
R

Cv
m−→∗
R

(wh, σw)} definition

8.4.2.11 ∀(Sw , σw) ∈ C w · [[W ∧ P]](σ0, σw)
h, 3, 6, 8.4.2.10, While-interstices-psat

8.4.2.12 C w ⊆ {(wh, σ′′) | C0
m−→∗
R

(wh, σ′′) ∧ [[W ∧ P]](σ0, σ
′′)}

h8, 8.4.2.10, 8.4.2.11
8.4.2.13 ∀Cw ∈ C w · Converges(Cw ,R, {nil}) h8, 8.4.2.12

infer Convergesc(Cv ,R, {nil}) 8.4.2.9, 8.4.2.10, 8.4.2.13, Conv-Concat
infer Convergesc(Cv ,R, {nil}) ∨-E(h8.4,8.4.1,8.4.2)

8.5 ∀Cv ∈ C v · Convergesc(Cv ,R, {nil}) ∀-I(8.4)
infer Convergesc(C0,R, {nil,wh}) 8.2, 8.3, 8.5, Conv-Concat

infer Convergesc(C0,R, {nil}) 1, 2, 8, W-Indn

159

E — Selected VDM Syntax Definitions

A note on types

• M are mappings

• R are relations

• S are sets

• x , y , z are elements in a set or a domain/range of a mapping or relation

Mappings
dom dom M ≡ the domain of M
rng rng M ≡ the range of M
fld fld M ≡ dom M ∪ rng M
C S C M ≡ {x 7→ M (x) | x ∈ (S ∩ dom M)}
B M B S ≡ {x 7→ M (x) | x ∈ dom M ∧M (x) ∈ S}
−C S −C M ≡ {x 7→ M (x) | x ∈ (dom M − S)}
−B M −B S ≡ {x 7→ M (x) | x ∈ dom M ∧M (x) /∈ S}
† M0 †M1 ≡

{
x 7→ y

∣∣∣∣ (x ∈ (dom M0 − dom M1) ∧ y = M0(x))
∨ (x ∈ dom M1 ∧ y = M1(x))

}

Relations
dom dom R ≡ the domain of R
rng rng R ≡ the range of R
fld fld R ≡ dom R ∪ rng R
C S C R ≡ {(x , y) | x ∈ S ∧ (x , y) ∈ R}
B R B S ≡ {(x , y) | y ∈ S ∧ (x , y) ∈ R}
−C S −C R ≡ {(x , y) | x /∈ S ∧ (x , y) ∈ R}
−B R −B S ≡ {(x , y) | y /∈ S ∧ (x , y) ∈ R}
� R0 � R1 ≡ {(x , z) | ∃y · ((x , y) ∈ R0 ∧ (y , z) ∈ R1)}

160

161

F — Index of Rules, Lemmas, and Proofs

f-E 49
f-I 48
∀-I 43
A-R-Step 50
A-S-Step 50
Assign-Converges 153
Assign-E 15
Assign-Eval 15
Assign-I 38
Assign-Post 146
Assign-Within 74, 140
Atomic-Converges 90, 154
Atomic-I 39
Atomic-Post 85, 147
Atomic-Within 78, 141
Atomic-psat-I 38
Comp-Par 65
Conv-Abstract 56
Conv-Concat 68
Conv-Concrete 57
Conv-I 56
Conv-Weaken 57
Conv-Wrap-Par 69
Conv-Wrap-STM 69
Conv-Wrap-Seq 69
Dyad-E 13
Dyad-L 13
Dyad-R 13
∃-E 44
Frame-Rule 60
Id-E 12
If-Converges 155
If-Eval 15

If-F-E 15
If-I 36
If-Post 148
If-T-E 15
If-Within 142
If-b-I 36
Isolation-If 63
Isolation-Par-L 66
Isolation-Par-R 66
Isolation-STM 64
Isolation-Seq-R 63
Isolation-While 64
M-Step 51
N-Indn 47
PR-ident 32
Par-Converges 157
Par-E 17
Par-I 34
Par-L 17
Par-Post 151
Par-R 17
Par-Within 144
psat-I 71
QR-ident 32
Rely-Trivial 59
sat-I 71
STM-Atomic 20
STM-E 21
STM-Retry 21
STM-Step 21
Seq-Converges 156
Seq-E 16
Seq-Equiv 64

Seq-I 33
Seq-Post 150
Seq-Step 16
Seq-Within 143
Seq-raw-I 33
Sequential-Effect 60
Single-Eval-Assign 61
Single-Eval-If 61
Stmt-Indn 42
Theorem PSAT 71
Theorem SAT 72
W-Indn 47
Weaken 33
While 16
While-Converges 87, 158
While-I 36
While-Post 82, 152
While-Within 76, 145
While-interstices-pre 62
While-interstices-psat 62
Within-Abstract 55
Within-Concat 68
Within-Concrete 55
Within-Equiv 67
Within-Multi 54
Within-Prog 53
Within-Prog-Cor 67
Within-Relation 66
Within-Rely 53
Within-Rely-Trivial 67
Within-Weaken 53
Within-Weaken-Multi 54

