
Enhancing the Usability of
Rely-Guarantee Conditions for

Atomicity Refinement∗

Thesis by

Kenneth G. Pierce

A thesis submitted for the degree of Doctor of Philosophy (PhD) at
Newcastle University.

School of Computing Science,
Newcastle University,

Newcastle-upon-Tyne, UK.

December 2009

∗This is the electronic / technical report version of this document. It has been reformatted into
double-sided, single-spaced format. This has altered the page numbering. The author suggests that
you use this document for references to specific pages, since it is the version that will be most easily
accessible. A few typos have been fixed in Chapter 6.

To my parents, Ron and Gill.

“Für die Wahrheit! Wie vielfach ist sie? Jeder glaubt
sie zu haben und jeder hat sie anders.”

Gotthold Ephraim Lessing (1729–1781)

i

Abstract

Formal methods are a useful tool for increasing the confidence in the correctness of com-
puter programs with respect to their specifications. Formal methods allow designers to
model specifications and these formal models can then be reasoned about in a rigourous
way.

Formal methods for sequential processes are well-understood, however formal methods
for concurrent programs are more difficult, because of the interference which may arise
when programs run concurrently. Rely-guarantee reasoning is a well-established formal
method for modelling concurrent programs. Rely-guarantee conditions offer a tractable
and compositional approach to reasoning about concurrent programs, by allowing de-
signers to reason about the interference inherent in concurrent systems.

While useful, there are certain weaknesses in rely-guarantee conditions. In particular,
the requirement for rely-guarantee conditions to describe whole-state updates can make
large specifications unwieldy. Similarly, it can be difficult to describe problems which
exhibit distinct phases of execution. The main contribution of this thesis is to show
ways in which these two weaknesses of rely-guarantee reasoning can be addressed. In
turn, this enhances the usability of rely-guarantee conditions.

Atomicity refinement is a potentially useful tool for simplifying the development of
concurrent programs. The central idea is that designers can record (possibly unrealistic)
atomicity assumptions about the eventual implementation of a program. This fiction of
atomicity simplifies the design process by avoiding the difficult issue of interference. It
is then necessary to identify ways in which this atomicity can be relaxed and concurrent
execution introduced. This thesis also argues that the choice of data representation
plays an important role in achieving atomicity refinement.

In addition, this thesis presents an argument that rely-guarantee conditions and VDM
offer a potentially fruitful approach to atomicity refinement. Specifically, rely-conditions
can be used to represent assumptions about atomicity and the refinement rules of VDM
allow different data representations to be introduced. To this end, a more usable ap-
proach to rely-guarantee reasoning would benefit the search for a usable form of atomicity
refinement.

All of these points are illustrated with a novel development of Simpson’s Four-Slot, a
mechanism for asynchronous communication between processes.

ii

iii

Declaration

I certify that no part of the material offered has been previously submitted by me for
a degree of other qualification in this or any other University. The work in Chapter 8
was carried out in collaboration with my supervisor. An early, incomplete version of the
development appears in [JP08], while [JP09] contains the same development, but uses
different arguments for correctness.

iv

v

Acknowledgements

There are many people I wish to thank for their help and support during the course of
this work. First and foremost, I would like to thank my supervisor, Cliff Jones, without
whom this thesis would not have been possible. Cliff has taught me many things and
always finds time for his students, despite his often hectic schedule.

I would also like to extend thanks to my other colleagues here at Newcastle University,
as well as those I have met from other institutions, for their invaluable advice and
guidance. Similarly to my peers, many of whom have become close friends, for their
advice, friendship and laughter; and to those other friends, both close to home and
farther afield, who have each helped me in their own way.

I would like to thank my family, especially my parents and two younger brothers, whose
unwavering support, faith — and on numerous occasions, patience — have shaped who
I am today. Without them, I would never have come this far.

Finally, I wish to thank the EPSRC, who funded this research.

vi

Contents

Abstract i

Declaration ii

Acknowledgements iv

Table of Contents vi

List of Figures xi

1 Introduction 1
1.1 Formal Methods . 1
1.2 Concurrency and Atomicity . 2
1.3 The Appeal of Formal Methods . 4

1.3.1 The Benefits . 4
1.3.2 Desirable Properties of a Formal Method 5
1.3.3 The Drawbacks . 5

1.4 Contribution . 6
1.5 Thesis Outline . 6
1.6 The Atomic Manifesto . 7

1.6.1 Atomicity in Formal Methods . 8
1.6.2 Atomicity in Database and Transaction Processing Systems . . . 8
1.6.3 Atomicity in Dependable Systems 8
1.6.4 Atomicity in Hardware Architecture 9
1.6.5 Final Thoughts . 9

2 Background and Related Work 11
2.1 Overview . 11
2.2 Correctness of Sequential Programs . 11

2.2.1 Pre-Post Conditions . 11
2.2.2 Refinement . 12

2.3 VDM . 14
2.3.1 Refinement in VDM . 15
2.3.2 Refinement in Special Cases of Non-Determinism 16

2.4 Correctness of Concurrent Programs . 17
2.4.1 Linearizability . 18
2.4.2 Process Algebras . 20

2.5 Other Relevant Work . 21
2.6 Summary . 21

vii

viii CONTENTS

3 Rely-Guarantee Conditions 23
3.1 Overview . 23
3.2 Reasoning About Interference . 23

3.2.1 Pre-Post Conditions . 23
3.2.2 Interference and Environment . 24
3.2.3 Rely-Guarantee Conditions . 24
3.2.4 Correctness in Rely-Guarantee Reasoning 25

3.3 Rely-Guarantee by Example . 26
3.4 Rely-Guarantee Conditions in Wider Context 29
3.5 Weaknesses of Rely-Guarantee Reasoning 29

3.5.1 Phases of Execution and Complex Rely-Guarantee Conditions . . 29
3.5.2 Whole-State Updates . 30
3.5.3 Static State . 31
3.5.4 Relying on Definites . 31

3.6 Summary . 31

4 Data Reification and Atomicity Refinement 33
4.1 Overview . 33
4.2 FINDP Example . 33

4.2.1 Concurrent Specification . 34
4.2.2 Data Reification . 36

4.3 SIEVE Example . 36
4.4 Simpson’s Four-Slot Algorithm . 39

4.4.1 Asynchronous Communication Mechanisms 39
4.4.2 Multiple Slots . 41
4.4.3 Two- and Three-Slots . 41
4.4.4 Four-Slots . 42

4.5 Summary . 44

5 Separation Logic 45
5.1 Overview . 45
5.2 Separation Logic . 45

5.2.1 The Language of Separation Logic 46
5.2.2 Separating Conjunction . 47
5.2.3 The Frame Rule . 48
5.2.4 Parallel Composition Rule . 48

5.3 RGSep . 49
5.4 Evaluation of Separation Logic Methods 51

5.4.1 Potential Disadvantages . 51
5.4.2 Taking Inspiration from RGSep 52

5.5 Summary . 52

6 Simplifying Rely-Guarantee with Frames 55
6.1 Overview . 55
6.2 Disjoint Concurrency and Rely-Guarantee 55
6.3 Frames in VDM . 56

6.3.1 The VDM Externals Clause . 56
6.3.2 Declaration of Exclusive Write Access with owns wr 57
6.3.3 Example: Frames and FINDP 58

CONTENTS ix

6.4 Formal Treatment of Framed Operations 59
6.4.1 Frame Notation . 59
6.4.2 Definitions and Theorems . 60
6.4.3 Further Applications of Framing 61

6.5 Comparison with Separation Logic Ideas 62
6.6 Summary . 63

7 Using Procedural Ordering in Specifications 65
7.1 Overview . 65
7.2 Ordering Actions in Specifications . 65

7.2.1 Ordering Actions with Auxiliary Variables 66
7.2.2 Ordering Actions with Phasing 67
7.2.3 Specification of ACMs with Phasing 69

7.3 Potential for Addressing Deeper Issues with Phasing 70
7.3.1 Phasing and Control Variables 70
7.3.2 Phasing and Rely-Guarantee Conditions 71

7.4 Summary . 72

8 Atomicity Refinement Applied to Simpson’s Four-Slot 75
8.1 Overview . 75
8.2 The Difficulties of ACM Specifications 76
8.3 Abstract Specification: Unbounded Memory 77

8.3.1 Proof Obligations . 80
8.4 Intermediate Specification: Reusing Locations 81

8.4.1 Reification of data-w . 82
8.4.2 Auxiliary Variable and Example Code 84
8.4.3 Proof Obligations . 85
8.4.4 First Refinement: Abstract to Intermediate 86

8.5 Representation Specification: Simpson’s Four-Slot 88
8.5.1 Auxiliary Variables and Example Code 90
8.5.2 Proofs Obligations . 90
8.5.3 Second Refinement: Intermediate to Representation 94

8.6 Evaluation of Development . 96
8.7 Summary . 97

9 Conclusions and Further Work 99
9.1 Conclusions . 99
9.2 Further Work . 100

Bibliography 102

A VDM-SL Notation 111

B Proofs for FINDP and SIEVE 115
B.1 Operation Decomposition Inference Rules 115
B.2 Proof of a Program FINDP . 116

B.2.1 Introducing Concurrency . 116
B.2.2 Achieving Atomicity Refinement with Data Reification 118
B.2.3 From Specification to Code . 119

B.3 Proof of a Program SIEVE . 120

x CONTENTS

B.3.1 Introducing Concurrency . 120
B.3.2 Achieving Atomicity Refinement with Data Reification 121
B.3.3 From Specification to Code . 122

C Four-Slot Specifications 123
C.1 Top-Level Specification . 123
C.2 Abstract Level . 123

C.2.1 State . 123
C.2.2 Atomic Specification . 123
C.2.3 Specification . 124

C.3 Intermediate Level . 124
C.3.1 State . 124
C.3.2 Specification . 125
C.3.3 An Argument for Four-Slots . 125

C.4 First Refinement . 127
C.4.1 Linking Invariant . 127

C.5 Representation Level . 129
C.5.1 State . 129
C.5.2 Specification . 129

C.6 Second Refinement . 130
C.6.1 Retrieve Function . 130

Alternative Title Page 131

List of Figures

2.1 Standard VDM commutativity diagram 13
2.2 Specification of ARB0 . 15
2.3 Illustration of post-conditions as relations 15
2.4 VDM domain rule; adapted from [Jon90] 16
2.5 Standard VDM result rule; adapted from [Jon90] 16
2.6 VDM adequacy rule (surjectivity of retr); adapted from [Jon90] 16
2.7 Specification of ARB1 . 17
2.8 VDM refinement diagram with Nipkow’s refinement rule 17
2.9 Nipkow’s VDM result rule . 17
2.10 Possible executions of a FIFO queue; adapted from [HW90] 19

3.1 Illustration of rely-guarantee conditions 24
3.2 Standard rely-guarantee rule for parallel composition 26
3.3 Sequential specification of XPLUS1 . 27
3.4 Concurrent specification of XPLUS1 . 27
3.5 Concurrent specification of XPLUS1 and YLESSX 27
3.6 Concurrent execution of XPLUS1 . 27
3.7 An example of locking with rely-guarantee conditions 27
3.8 Rely-condition using a phase ghost variable 30

4.1 Sequential specification of FINDP . 34
4.2 Specification of SEARCH . 35
4.3 Specification of SEARCH -Odd . 36
4.4 Sequential specification of SIEVE . 37
4.5 Specification of REM . 37
4.6 Specification of REM -Mask . 38
4.7 A single writer and reader communicating via an ACM [Sim90] 39
4.8 Possible interactions of write and read operations in an ACM 40
4.9 Visual representation of two- and three-slot ACMs 42
4.10 Non-atomic assignment to control variables 42
4.11 Logical structure of the four-slot . 43
4.12 Code for an implementation of the four-slot 44

5.1 Heap assertions in separation logic [VP07] [Vaf07] 48
5.2 Rule of constancy; adapted from [Rey02] 48
5.3 An invalid assertion in separation logic; adapted from [Rey02] 48
5.4 The frame rule of separation logic; adapted from [Rey02] 49
5.5 The par rule of separation logic; adapted from [VP07] 49
5.6 The parallel composition rule of RGSep; adapted from [VP07] 50

xi

xii LIST OF FIGURES

5.7 RGSep actions for locking and unlocking a list node; adapted from [VP07] 50

6.1 Externals clause of a VDM operation . 57
6.2 Spectrum of externals declarations . 58
6.3 Original specification of SEARCH -Odd 59
6.4 SEARCH -Odd with simplified rely-condition (due to owns wr) 59
6.5 Functions to access read-write frame information of an operation 60

7.1 Example events in Event-B which use a pseudo program counter 67
7.2 A triple modular redundancy example in VDM using auxiliary variables 68
7.3 A triple modular redundancy example in VDM as a phased specification 69
7.4 Example of a system with an unbounded pseudo program counter . . . 72

8.1 Writes occurring during a read in an ACM 76
8.2 Begin and end events for ACM operations 77
8.3 Abstract ACM state . 77
8.4 Top-level ACM specification . 78
8.5 Abstract ACM specification with rely-guarantee conditions 79
8.6 Intermediate ACM state . 82
8.7 Intermediate ACM specification . 83
8.8 Example code for the intermediate ACM 85
8.9 Linking invariant between abstract and intermediate states 87
8.10 Representation ACM state . 89
8.11 Relationship between intermediate and representation state components 90
8.12 Representation ACM specification . 91
8.13 Code for an implementation of the four-slot 92
8.14 Retrieve function between intermediate and representation states 94

C.1 Modified intermediate specification illustrating the need for four slots . 126
C.2 Failure mode of a three-slot implementation 126

Chapter 1

Introduction

1.1 Formal Methods

The goal of much of the field of computer science is eventually to write programs. A
computer program is a series of instructions that a computer executes to compute a
result. These instructions take the form of binary information, which the computer
interprets in order to perform calculations and move data around in memory.

While programmers (those who write programs) originally dealt directly with these
machine codes on punch cards, higher level languages have since been invented that
allow them to think in terms of variables, assignments and loops [Som88] (for example,
the ALGOL family [BBG+63]).

There are a number of programming paradigms, the most common of which is the imper-
ative style1. An imperative program directly instructs the computer what to do [Set96].
It consists of a set of variables that represents a program’s state and a number of oper-
ations2 which manipulate that state. The field of object-oriented languages can be seen
as an extension to this basic paradigm [DN66].

No program is complete however without a purpose. Whether it is a scribble on the back
of a napkin or the result of hundreds of hours of requirements analysis, all programs
have some form of specification. At a basic level, a specification describes the expected
functionality of a computer program [WLBF09].

For example, a simple, natural language specification might read: “the program should
compute the square root of any natural number.” Most competent programmers should
be able to write a program to satisfy this specification in their favourite programming
language. Questions arise however — how does one know if the program is working
correctly? Does it meet the specification?

In order to answer this questions, the approach familiar to most programmers is test-
ing [Som88]. Given the input 4, the square root program should return the result 2;
given 9 it should return 3. Any deviation from these expected results indicates a problem
with the program; each agreement increases confidence in its correctness.

There are an infinite number of natural numbers however, so it is impossible to test
them all. After a certain number of tests, a programmer might be confident enough in

1The imperative style is typically contrasted with the functional style, in which the program describes
what must occur, but not necessarily how [Set96].

2The term ‘operation’ is used throughout this thesis to refer to functions that modify program state.
This matches the terminology of VDM [Jon90]. Other terms in use include procedure, subroutine,
method, etc.

1

2 Chapter 1. Introduction

an implementation. Testing alone can only increase confidence so far however, especially
for large programs — and for fields such as safety- or security-critical systems, confidence
in “correctness”3 is paramount.

Another approach (and the one upon which this thesis focuses) is to define the specifi-
cation formally [Hoa69, WLBF09], using a language free from the ambiguities of natural
language (which is subject to misinterpretation). For example, the square root program
might be defined as4:

sqrt(x :N) r :R �
x = r ∗ r

Here, the result, r , of the square root of a number, x , is defined such that x is the
square of the result. No details are given in this specification of how the result should
be achieved in an implementation, but the specification defines exactly what the program
should do, albeit in an abstract way.

The art of formal methods can be seen as defining models, which abstract from the
delicacies and nuances associated with an implementation [WLBF09]. These abstract
models can then be reasoned about in a structured way. Techniques exist for refin-
ing abstract specifications into implementable code [Hoa72a, Jon90]. The practice of
refinement is discussed in Section 2.2.2.

By defining formal models, it is possible to prove certain properties of the specification.
Techniques such as refinement can show that an implementation is correct with respect
to a specification. A formal model is subject to many assumptions, especially in the
choice of abstraction. Whether these assumptions are valid is a matter for other re-
search [HJJ03]. As such, formal modelling cannot show that a system is totally correct,
only increase confidence in its correctness (see Section 1.3.3).

1.2 Concurrency and Atomicity

The square root program from the previous section is likely to be implemented sequen-
tially. The few calculations required can be executed in sequence in order to calculate a
result. Since early on in the history of computing science however, it has been possible to
run multiple programs at the same time, concurrently. Concurrent systems allow more
than one thread of execution to exist at any one time [Set96]. Threads of execution may
constitute separate programs, or a single program forking into two (or more) threads.

Parallel execution can be achieved on a single processor by halting (preempting) the
execution of one program and beginning (or continuing) execution of another [Ber93].
This causes the programs’ executions to become interleaved. To the average end user,
this gives the illusion of executing multiple programs simultaneously, allowing for mul-
titasking.

It is also possible to have multiple processing units executing programs at the same
time, achieving true concurrency. Early multiprocessor systems attempted to disguise
multiple processors from the user [Hoa78], but today multiprocessor systems are a reality,
particularly as a solution to the power requirements and heat generation of ever larger

3Note that the abstract of this thesis clearly points out that correctness is defined with respect to
some specification. In order to simplify explanation, the correctness of a program is used throughout
this thesis as a shorthand for “correct with respect to its specification”.

4This is an implicit VDM function (see Section 2.3).

1.2 Concurrency and Atomicity 3

single processors. True concurrency can allow tasks to be completed faster. For example,
a concurrent searching algorithm may find items more quickly (see Chapter 4).

When talking about concurrently executing programs, it is useful to give a name to a
program that is running, but which has not finished executing. This is called a process5.
A concurrent process is considered to be a sequential program executing at the same
time as one or more other processes, as in [Hoa78].

In order to use concurrent execution to achieve a single task successfully, it is necessary
for processes to communicate with each other [Hoa78]. The two main paradigms of
process synchronisation are shared memory and message passing. The shared memory
paradigm is used throughout this thesis, while the message passing paradigm is only
considered within the context of process algebras (in Section 2.4.2). This is justified
because the two systems can be shown to be duals of each other [LN79].

The problem with concurrent processes sharing memory is one of interference [Jon03a].
More than one process may modify the value of a variable during execution. The state
of each program is therefore subject to interference from the environment in which it is
executed. This environment is formed by other processes executing simultaneously.

The way in which variables change depends on the interleaving of concurrent programs.
These interleavings are non-deterministic, hence the values of variables may change non-
deterministically. This non-determinism may lead to race conditions [BH72], in which
the outcome of a program differs depending on the specific interleaving of processes.

Race conditions may produce unexpected results. Testing of a concurrent program is
particularly difficult, because it is almost impossible to test all possible interleavings,
a small number of which may result in incorrect behaviour [BH72]. For example, the
outcome of the following sequential process will increase the value of x by 2.

x ← x + 1 ; x ← x + 1

A concurrent version, which replaces the sequential composition (;), with parallel com-
position (‖), may behave differently [Jon03a]. The following program is not guaranteed
to increase x by 2. For example, both processes may read the same initial value of x ,
increase this value by 1, then write the value back to x . In this case, x will only increase
by 1.

x ← x + 1 ‖ x ← x + 1

What has been lost in the concurrent program is the atomicity present in the sequen-
tial program. The sequential version executes atomically — the value of x cannot be
changed and the internal state cannot be observed. (For discussions on “atomicity”
see [JLRW05, BJ05a, BJ05b, Bur04, CJ07].) In order to guarantee that the concur-
rent program increases x by 2 (i.e. exhibits the same behaviour as the sequential one),
it is necessary to restore some degree of atomicity. In the following program, angle
brackets [Lam88] indicate that the assignments should occur atomically.

〈x ← x + 1〉 ‖ 〈x ← x + 1〉
The atomic brackets require that the assignments occurs in isolation, such that after
the program has finished, the value of x will have increased by 2. In this case, the as-
signments happen sequentially, but in a non-deterministic order. In order to implement
these atomic brackets in a real machine, it would be necessary to protect x , such that
each process could access it atomically. This could be achieved with a lock [Gra70]. A

5In this thesis, the term ‘process’ encompasses a ‘thread’ (of execution).

4 Chapter 1. Introduction

process must acquire the lock before accessing x . While a process owns the lock, no
other process may access x .

Semaphores [Dij68], monitors [Hoa72b] or conditional critical regions [BH75] offer re-
lated solutions. The Java programming languages provides the synchronized key-
word [GJSB05]. Only a single synchronized operation may run within a single object
instance at any one time, hence synchronized operations can be considered to execute
with a degree of atomicity.

Whatever the choice of mechanism, it can be seen that performance may suffer. For
example, a process may be forced to wait (indefinitely) until a lock is released by another
process. On the other hand, the increase in efficiency offered by concurrent execution is
gained from allowing multiple processes to run simultaneously. So often the important
choice is where to set the granularity of atomicity, in order to find a balance between
efficiency and “safe” concurrency [Jon07].

For example, at a high level of granularity, whole programs could execute atomically.
Thus there would be no interference, but also no concurrent execution. Atomicity could
be reduced to the level of operations (as with Java’s synchronized keyword). Compilers
typically offer some guarantees of atomicity of individual statements, but it is even
possible to reason about systems in which the atomicity of a simple assignments is not
guaranteed [Col08].

In order to decide on the level of atomicity, a formal method that can deal with atomicity
as a concept would be desirable [Jon07]. The notion of atomic execution of statements
(i.e. the atomic brackets) could also be a useful design tool. Atomic execution simplifies
the design of concurrent programs by reducing the need to consider interference.

Developing under a fiction of atomicity [BJ05b] could allow designers to gain traction on
difficult concurrent programs. It may be difficult or inefficient to realise these brackets in
hardware, so this atomicity could then be relaxed to permit interference. It would then
be necessary to show that the interference introduced allowed the program to function
without introducing race conditions. This notion could be called splitting atoms [Jon07].
Chapter 4 discusses the choice of data representation as a key component of relaxing
atomicity.

1.3 The Appeal of Formal Methods

1.3.1 The Benefits

The benefits of formal specifications are numerous [WLBF09]. The obvious benefit, as
covered in the previous section, is the ability to reason about the behaviour of specifi-
cations (and in turn, programs) in a structured and rigorous way. Properties such as
invariants can be defined to constrain their behaviour and through techniques such as
refinement, these properties can be shown to hold of final implementations. This should
increase confidence in the correctness of code.

While it is possible, if difficult, to perform post-hoc verification formally, it is the author’s
view that the major attraction of a top-down formal approach is the focus on the design
early in the development cycle. The principal purpose of a (functional) specification is
to define what a program must do. The precision of a formal language requires that
these decisions are made and do not languish ambiguously in natural language.

Furthermore, a formal development records these design decisions for future reference.
An examination of the code of an implementation may give some insight into what it

1.3 The Appeal of Formal Methods 5

does, but not necessarily why, or specifically, why a particular approach was chosen.
Formal specifications can go a long way to improving this.

1.3.2 Desirable Properties of a Formal Method

While the most expressive formal method may be an intellectual marvel, it is no more
than a technical exercise if it is not used in practice. In order for a formal method to
be used, one would expect it to be usable, by humans. It is the author’s opinion that a
usable formal method will exhibit — at a minimum — two properties: tractability and
compositionality.

Tractability is the property of being easy to manage and easy to work with [CJ00].
Tractability implies that it is obvious to a user of the formal method how the desired
functionality can be expressed and that the user is able to comprehend both the problem
that is being tackled and the form of the solution that is required.

Compositionality is the property of enabling larger specifications to be composed
from smaller, independent specifications [Jon03a]. This could also be called modularity.
Large problems are often solved by first solving smaller subproblems — the ‘divide and
conquer’ approach. Thus a formal method which enables problems to be tackled using
this intuitive human approach is at an inherent advantage.

In order to retain compositionality (and hence usability) in a formal method, it must be
possible to specify subproblems without reference to the context in which they appear in
the larger specification. If this is achieved and maintained, it is then possible for these
specifications to be reused and contribute to a body of work surrounding the formal
method. In turn, this reusability contributes directly to usability, by saving time and
effort.

Compositional specifications also benefit a stepwise development process (such as refine-
ment, see Section 2.2.2). New steps in the development do not invalidate the assump-
tions of previous steps, avoiding the “scrap and rework” policy that may be required
of non-compositional methods [Jon07] (see Section 2.4 for a discussion of early, non-
compositional approaches to concurrent verification).

1.3.3 The Drawbacks

Formal methods are not a panacea. As mentioned in the previous section, formal models
are only as good at the assumptions made about the world which they represent. These
assumptions will always exist and no model can perfectly capture the intricacies of a
universe.

Formal methods work well for verification ([Som88]). Proofs done within the framework
of a formal model can show that various properties hold of the model and that design
steps are consistent. In terms of validation ([Som88], see also [Mih72]) however, it
is perfectly possible to build a ‘correct’ formal specification that does not match its
requirements. Similarly, it is still perfectly possible to make poor design decisions.
Though the benefit remains that those design decisions which are made (rightly or
wrongly) are recorded formally.

Formal modeling also requires time, effort and esoteric knowledge. One could argue that
the time spent on formal design should reduce time spent on testing and maintenance.
One way to reduce the effort required to use formal methods is to create libraries of
verified software, which can then be used by designers without the need to understand

6 Chapter 1. Introduction

their formal verification. Investigation into this area is one aim of UKCRC’s6 “Grand
Challenge”7 on “Dependable Systems Evolution”8 (GC06) [Woo06]. In theory, tool
support for formal methods also reduces the burden on the designer. This issue is not
considered in this thesis.

It is the author’s view that the ability of formal methods to add rigour to the specification
of programs and record design decisions in a precise way outweighs these flaws. Formal
methods can greatly increase confidence in the correctness of specifications (particularly
‘tricky’ concurrent programs) and record design decisions in an unambiguous way.

1.4 Contribution

The work in this thesis makes a contribution to the use of formal methods for verifying
the correctness of concurrent programs, specifically within the field of
rely-guarantee [Jon83a] reasoning. This thesis argues:

• that there is a clear link between data representation and successful relaxation of
atomicity.

• that read-write frames in VDM [Jon90] can be used to reduce the complexity of
rely-guarantee conditions.

• that adding procedural constructs to top-level specifications can allow the order of
actions to be controlled in state-based specifications and in turn this could provide
a solution to certain weaknesses in current rely-guarantee reasoning.

All three of the above points are illustrated with a novel treatment of Simpson’s Four-
Slot [Sim90], an asynchronous communication mechanism (ACM). This new develop-
ment is also compared to other work within the same area.

1.5 Thesis Outline

The remaining section of this chapter discusses the notion of atomicity in greater detail,
specifically by looking at how various disciplines within the computer science field view
atomicity as a concept.

Chapter 2 presents a discussion of the technical background to this thesis and other
related work. It includes an exploration of current methods for reasoning about both
sequential and concurrent programs and of VDM (Vienna Development Method) [Jon90],
the formal method used through the majority of this thesis.

Chapter 3 presents a discussion of rely-guarantee conditions [Jon83a], one method of rea-
soning about concurrent programs. Rely-guarantee conditions permit reasoning about
interference. The chapter illustrates the usefulness of rely-guarantee with a series of
simple examples and also includes a discussion of some of the weaknesses of current
rely-guarantee theory.

6See http://www.ukcrc.org.uk/
7See http://www.ukcrc.org.uk/grand challenges/index.cfm
8See http://www.bcs.org/server.php?show=ConWebDoc.4721

1.6 The Atomic Manifesto 7

Chapter 4 argues that there is a clear link between data representation and successful
relaxation of atomicity. The argument is supported by three examples, the third of
which is an introduction to Simpson’s Four-Slot [Sim90] algorithm.

Chapter 5 presents a discussion of separation logic [Rey02], another method of reasoning
about concurrent programs. It includes a discussion of two attempts to combine sepa-
ration logic with rely-guarantee reasoning, namely RGSep [Vaf07] and Deny-Guarantee
reasoning [DFPV09].

Chapter 6 argues that read-write frames in VDM can be used to reduce the complexity
of rely-guarantee conditions, inspired by the work on separation logic. A denotational
semantics for parallel composition of framed operations is given to support the argument.

Chapter 7 introduces the notion of controlling order in state-base specifications using
procedural constructs, which might also offer a solution to certain weaknesses in current
rely-guarantee reasoning.

Chapter 8 presents a novel development of Simpson’s Four-Slot [Sim90], which draws
upon the work of Chapter 4, Chapter 6 and Chapter 7.

Chapter 9 draws conclusions from the work in this thesis and discusses possible future
work.

1.6 The Atomic Manifesto

In April 2004, a workshop was held in Schloss Dagstuhl in Germany entitled “Atomicity
in System Design and Execution”9. Its purpose was to bring together experts (both aca-
demic and industrial) from various fields, to whom the term ‘atomicity’ held significance
as a concept.

There were four main disciplines present at the workshop, which are detailed below. The
goal was to discuss the meaning of atomicity in the various disciplines and the problems
faced in its use, as well as to engender an atmosphere of collaboration. The workshop
was highly successful and led to the publication of The Atomic Manifesto [JLRW05]
and a second Dagstuhl workshop entitled “Atomicity: A Unifying Concept in Computer
Science”10. During the same year, a project entitled “Splitting Atoms Safely (in Software
Design)” was accepted by the EPSRC, through which this thesis was funded.

The following section gives a brief overview of the views of the disciplines represented at
the workshop (with details taken from [JLRW05]), to highlight the issues surrounding
atomicity as a concept. Some of these issues are considered in this thesis, though many
remain as open problems. The four disciplines represented at the original workshop
were:

• database and transaction processing systems

• fault tolerance and dependable systems

• formal methods for system design and correctness reasoning

• hardware architecture and programming languages

9See http://drops.dagstuhl.de/portals/04181
10See http://drops.dagstuhl.de/portals/06121

8 Chapter 1. Introduction

1.6.1 Atomicity in Formal Methods

The view of the formal methods community described in [JLRW05] is broadly the view
taken in this thesis: that formal methods are beneficial in understanding and verifying
systems. Atomicity is discussed at a semantic level, in terms of statements grouped
into atomic blocks that behave as a single block. It is noted that these groupings
(within “atomic brackets”) are difficult to realise practically, but do however provide a
convenient and tractable logical framework in which to discuss atomicity.

1.6.2 Atomicity in Database and Transaction Processing Systems

The system model in the database community is of large DBMSs (Database Management
Systems) providing transaction processing for a set of applications. These applications
have typically been independent, fast-executing programs. While there is some responsi-
bility on the programmer to consider data consistency, it is the sole responsibility of the
DBMS to ensure that data is stored and retrieved correctly, in the presence of partial
execution, system failures and concurrent execution.

Databases ensure data integrity internally with various complex mechanisms, including
locking, logging and two-phase commit. They present, in essence, a black box to the
application programmer, to which the interface is composed of “ACID transactions”.
ACID stands for Atomicity, Consistency, Isolation and Durability. So within this field,
the term ‘atomicity’ is a correctness property imposed upon transactions. It means that
a transaction will either commit (complete in its entirety) or abort. This “all or nothing”
approach requires that, if a transaction (or part of a transaction) fails, the system will
be rolled back to the state immediately before the transaction occurred.

It was noted at the workshop that this traditional model of small, independent ap-
plications accessing a database is being replaced, especially with the advent of web
technologies. Modern systems often require multiple applications to cooperate and in-
teractions that last much longer, on the order of hours or weeks. The “all or nothing”
approach is perhaps draconian and the ability to continue despite errors is desirable. In
the area of security, the model is different again. It is often the case that “immediate
results are more important than precise ones” [JLRW05].

These new models require alternative models of transactions, a number of which have
been suggested. The key point that was identified was that the application of formal
methods would be desirable in modeling these new transactions and the DBMSs that
provide them.

1.6.3 Atomicity in Dependable Systems

Methods for engineering dependable systems can be broken down into a number of
separate, though related, areas. The main tasks involved are fault removal (in which
formal methods may already play a part), fault forecasting of those faults which remain
(with a view to fault removal) and fault tolerance.

The fault tolerance community accepts that faults will occur and cause errors, despite
the best effort of system designers and programmers. Atomicity as a concept can be
used in error confinement strategies. An atomic action (termed a conversation) is a
communication which multiple processes enter (and leave) at the same time. The effects
of an atomic action should only become visible when it completes. Errors may occur
during an atomic action, but are also isolated by it (making reasoning about the system

1.6 The Atomic Manifesto 9

simpler). When an error occurs, all parties within the conversation cooperate to resolve
it. Strategies include retry, rollback (much like in database transactions), or exception
handling.

Atomic actions have been extended for use in situations where parties compete for
shared resources, moving towards the original database model of multiple applications
competing for a single database. The manifesto identifies that the formal methods
community can help in the need for rigourous methods for dealing with atomic actions,
much like the need to model new classes of database transactions.

Distributed systems presents an open problem for the fault tolerance community, namely
the need for each component to maintain a consistent view of the system and allow
asynchronous components to form a consensus, despite the presence of faults and errors.
One suggestion is the need for notions of “relaxed” atomicity, in which components are
not necessarily engaged for the full length of an action. Much like the fiction of atomicity
of the formal methods community, various notions of relaxed atomicity will be necessary
for different problems.

1.6.4 Atomicity in Hardware Architecture

As mentioned previously in this introduction, access to concurrent hardware is increas-
ingly common these days. So far, the onus has been on the programmer to deal with
the issues raised by parallel programming. The complexity of multi-threaded programs
is set to increase further, leading to problems of tractability and debugging. Support
for concepts in languages such as threading is increasing, but as a software solution, it
is characterised as being slow.

Atomicity at a hardware level concerns executing one or more operations on memory
atomically, such that they can’t be interrupted. One goal would be to allow the pro-
grammer to choose which parts of the program need to execute atomically, the details of
which would be met by the hardware. This outwardly appears to differ somewhat from
the database persecutive in that a programmer would typically wish for these memory
operations to ‘just work’ (and in that sense complete successfully), having made the
decision to have them execute atomically.

There are a number of atomic operations typically available at the hardware level, such as
test&set, fetch&add and compare&swap (CAS). These are examples of read-modify-write
operations, which read a memory location before writing to it and return an indication
of whether the write was successful. A discussion of these operations is given in [Her91].
These instructions are used in the implementations of atomic access structures such as
semaphores.

Semaphores (and other atomic concepts such as critical sections) typically block pro-
cesses that are not accessing a resource, forcing them to wait. Work has been done
however on transactional and lock-free memory models. For example, [Col08] describes
a semantics of transactional memory with rely-guarantee conditions. What is currently
lacking however is a common abstraction between software and hardware for atomic
memory and hence also a lack of support in real hardware.

1.6.5 Final Thoughts

Though the various disciplines differ somewhat on the exact meaning of the term ‘atom-
icity’ and on the details of its use, it is clear that it is a unifying concept between a

10 Chapter 1. Introduction

number of fields of computer science. Atomicity is a powerful abstraction, that has the
potential to help designers and programmers in dealing with the myriad complexities of
modern systems. This applies to the creation of software and hardware components as
well as reasoning formally about these components and system as a whole.

What is also clear is that there is much work to be done in all fields of atomicity. Of
particular relevance to this thesis is the notion of the fiction of atomicity as a design
tool. In this area, it is necessary to develop theories of the ways in which this fiction can
be relaxed, so as to gain the full benefit of modern computing systems without revealing
hell’s maw to the designer.

The fiction of atomicity can to be applied at the software level (see Chapter 4 and
Chapter 8). It is arguably already present in database systems, where ACID transactions
hide the complexity of concurrent databases from the application programmer. It is also
relevant to the hardware level where, as described above, atomic memory could lead to
better, more robust memory models with atomic memory operations as a linchpin.

Chapter 2

Background and Related Work

2.1 Overview

This chapter discusses the technical background to the work presented in this thesis.
This includes a discussion of methods for reasoning about sequential programs (namely
pre-post conditions [Hoa69]), refinement [Hoa72a, Jon90] as a notion for correctness
of implementation and of VDM [Jon90] (the main formal method used in later chap-
ters). This chapter also includes a discussion of various approaches for reasoning about
concurrent programs. Two of these methods are explored in greater detail in later chap-
ters — rely-guarantee reasoning [Jon83a] in Chapter 3 and separation logic [Vaf07] in
Chapter 5.

2.2 Correctness of Sequential Programs

2.2.1 Pre-Post Conditions

A partial history of reasoning about programs is given in [Jon03b]. Jones divides the
discussion pre- and post-Hoare eras, based around the publication of [Hoa69] (also avail-
able in [HJ89]). The post-Hoare era is of most importance to this section. In [Hoa69],
Hoare introduces the notions of pre- and post-conditions. Pre-post condition reasoning
allows programs to be defined in terms of their properties. The standard example is
the abs function, which computes the absolute value of an integer. The result of the
abs function “must be non-negative and equal to either its argument or the negation
thereof” [Jon03b].

The description of the results of the abs function constitutes its post-condition, which
describes the properties of the result. The post-condition is an assertion that must be
true after the execution of a program [Hoa69]. Hoare notes however that the result of a
program will depend on the values of variables beforehand, thus he also introduces the
notion of a pre-condition, which is an assertion about the state before the execution of
a program.

Based on Hoare’s work, the pre-condition, P , program text, S , and post-condition, Q ,
are widely written as a “Hoare-triple”. A Hoare triple is a program text annotated by
pre-post condition assertions. Hoare suggests that this be interpreted as follows: “if the
assertion P is true before the initiation of a program S , then the assertion Q will be

11

12 Chapter 2. Background and Related Work

true on its completion.1”

{P} S {Q}
The post-condition of a program defines a contract which the programmer must fulfil.
The programmer is however also allowed to set the conditions under which this contract
will be filled. This can be seen as part of ‘assumption-commitment’ reasoning. Under
the assumption P , the program S makes a commitment to fulfil Q . Note that [Hoa69]
uses post-conditions of a single state (the final state), whereas VDM uses post-conditions
of two states (the initial and final states) [Jon90]. As such post-conditions in VDM are
relations and this makes it easier to state how the value of a variable changes over the
course of an operation (or indeed to assert that is does not).

The major benefit of pre-post conditions is that, as well as being precise about the
operation of a program, it is not necessary to have any knowledge of S in order to
reason about its behaviour. As long as the program fulfils the specification defined by
P and Q , these pre-post conditions are sufficient to describe the program — they define
its interface.

This means that pre-post condition specifications can be used to reason about programs
without reference to the context in which they appear. Specifications can be realised
as multiple steps, which together meet a final post-condition (under a set of initial
assumptions) and linked together by further pre-post conditions in a chain. Furthermore,
various different implementations can be written for a single specification, as long as
they all respect the interface. Thus pre-post condition reasoning forms a tractable,
compositional method for reasoning about programs.

Pre-post condition reasoning is used almost universally in formal methods. It is a
key component of refinement [Hoa72a] (see the next section), VDM [Jon90] (see Sec-
tion 2.3), rely-guarantee reasoning [Jon83a] (see Chapter 3) and separation logic [Vaf07]
(see Chapter 5).

2.2.2 Refinement

The aim of refinement [Hoa72a, Jon90] is to define a method for showing that an abstract
top-level specification is consistent with a low-level, concrete one. At the simplest
level, this involves verifying that the concrete design correctly implements the abstract
specification — that the data representation and operations at the low-level are in
some sense equivalent and showing that the behaviour of the concrete specification is
essentially the same as at the abstract level [McD89].

For simplicity of explanation, the terms ‘abstract’ and ‘concrete’ are used here to refer
to a high-level and a lower-level specification. In practice, they may form a link in
a longer chain of refinement. An abstract specification may implement a yet more
abstract specification and a concrete specification may be further refined. Note that
an important concept is that of abstract specifications being under-determined. Under-
determined specifications permit more than one deterministic implementation (or in
some cases non-deterministic implementation) [LH96]. This notion is used in the VDM
refinement rules (see Section 2.3.1).

The practice of refinement lends itself to a stepwise approach to development. Develop-
ment begins with a highly abstract specification that captures the essential functionality

1This quote has been modified to use the choice of letters P ,S and Q over Hoare’s original P ,Q and
R.

2.2 Correctness of Sequential Programs 13

Figure 2.1: Standard VDM commutativity diagram

of the system. At each step, more details of the data representation and operations are
added, steering the development towards an implementation. Each step is verified to be
consistent with the previous step. The stepwise process eventually leads to an imple-
mentable, concrete specification, which can be considered to be correct with respect to
the original specification.

The use of formal methods should engender confidence in the correctness of the final con-
crete design. The practice of refinement provides a framework within a formal method
to specify and verify design steps. The details of each refinement step record design de-
cisions clearly and in an unambiguous manner. There are notions of refinement within
many different formal methods and notations. Each is slightly different, with varying
refinement rules that result in differing strengths and weaknesses.

As an aside, the varying views on refinement became abundantly clear during an exer-
cise undertaken for GC-6 (see Section 1.3.3). Various teams from a wide range of formal
methods groups undertook experiments with the formal development of an electronic
purse system, known by it’s earlier name of “Mondex” [SCW00]. The original develop-
ment required two stages of refinement. Haneberg et al. were proud to have discovered
a single stage refinement [HSGR07]. On the other hand, Butler and Yadav presented an
Event-B model with nine levels of refinement [BY07] following an as abstract as possible
approach2. Broadly speaking however, at each step of refinement it is necessary to show
adequacy and satisfaction [McD89].

Adequacy is a property of the chosen data representation. It requires that “all data
which can be represented at the high level can similarly be represented at the low
level” [McD89] (p. 2). To show this, the abstract and concrete states must be related in
some way. In VDM (see Section 2.3) a retrieve function is defined. A retrieve function
is a surjective function that builds an abstract state from a concrete one. An adequacy
proof obligation must be discharged to show (via the retrieve function) that the chosen
representation is adequate (that all abstract states can be represented by the chosen
concrete representation).

Satisfaction is a property of operations. It requires that each concrete operation reaches
the same final state (after applying the retrieve function) as the corresponding abstract
operation. This is illustrated in Figure 2.1, which is the standard VDM commutativity
diagram, as presented in [Jon90]. Discussion of the details of this diagram are deferred
until the discussion of refinement in VDM (see Section 2.3.1). Note that VDM has a
notion of ‘operation decomposition’, in which multiple concrete operations connected
by pre-post conditions may implement a single abstract operation. Further details of

2This was however partially to gain a high degree of automatic proof (see Section 2.5).

14 Chapter 2. Background and Related Work

refinement in VDM are given in Section 2.3.1.

2.3 VDM

The Vienna Development Method (VDM) is a formal method used for defining functional
specifications of systems and reasoning about their behaviour. It is a mature method
that has been used and taught widely. The canonical reference is [Jon90]. The method
as a whole consists of a specification language (VDM-SL), techniques for data reification
and operation decomposition and a proof framework [BFL+94]. The VDM-SL notation
has been standardized in [Int96] and the VDM++ extension introduces object-oriented
features to the method [FLM+05]. Numerous tools have been created to aid in the
construction and analysis of specifications, including mural [JJLM91], VDMTools3 and
Overture4.

VDM is model-oriented formal method, in which specifications are defined in terms of
a state and operations that act upon that state. As such it reflects the imperative
style of programming. Data abstraction and refinement (typically called ‘reification’)
are central to the VDM philosophy5. A typical VDM development contains an abstract
specification and one or more refinement steps in which the data representation and
operations are reified to create more concrete (and eventually executable) specifications.
At each stage, proofs obligations must be discharged to show that the data representation
and operations of the new specification satisfy the previous step. VDM-SL has basic data
types to represent booleans, natural numbers and so on. It also includes set, sequence
and map types, union types and record types (composite types with named components,
of which the state is one example). A brief overview of the types and syntax of VDM-SL
is given in Appendix A.

Functions and operations (functions that access state components) can be specified
implicitly, in terms of pre-post conditions, or explicitly, where programming language
constructions can be used. Explicit definitions may also be guarded by pre-conditions.
Typically, explicit definitions are introduced during the final steps of a development
and allow specifications to be executed (interpreted) for the purposes of testing and
animation.

VDM differs from many other formal methods in that post-conditions are predicates
over two states — the initial and final states of an operation. Figure 2.2 gives a simple
VDM specification of an implicit operation called ARB0 [Jon89]. This operation is an
abstract specification for an operation that returns new (unseen) number every time it
is called. The result, r , of ARB0 is a natural number. The operation uses a set, s,
to remember the values that it has returned before; the post-condition states that r is
selected such that it is not in the s and that r is added to s (so that it won’t be returned
again by a subsequent call).

Note the ‘hook’ notation (↼−s) indicates the initial value of a variable. The addition of r
to the set is accomplished by stating that (the final value of) s is formed by the union

of the initial value (↼−s) and r . The idea of post-conditions as relations between states is
illustrated in Figure 2.3. It allows the nature of changes to the values of variables to be
captured. This is also an important idea in rely-guarantee reasoning (see Chapter 3).

3See http://www.vdmtools.jp/en/
4See http://www.overturetool.org/
5It should be noted that philosophy is a good term here — limitations of notation or lack of current

theory should be no barrier to the exploration of new ideas.

2.3 VDM 15

ARB0() r :N
wr s:N-set
post r /∈↼−s ∧ s = ↼−s ∪ {r}

Figure 2.2: Specification of ARB0

(a) Post-conditions of a single state

(b) Post-conditions as a relation over two states

Figure 2.3: Illustration of post-conditions as relations

Note that before the post-condition on ARB0, there is an externals clause. An externals
clause, in the simplest case, contains the names of variables which the operation may
access. An externals clause also differentiates between read-only and full write access
to variables, using the keywords rd and wr, respectively. The externals clause of an
operation becomes more important in Chapter 6.

2.3.1 Refinement in VDM

Early refinement theory in VDM arose from work on the earlier VDL method (Vienna
Development Language). VDL was developed by IBM in order to specify programming
language semantics (mainly for PL/I) with the view to aid correct compiler design.
At one time, two different Universal Language Descriptions existed for PL/1 (ULD2
from IBM Hursley and ULD3 from IBM Vienna) that differed in their treatment in the
semantics of program blocks6.

The question was raised — were these two definitions equivalent? Did they describe
the same semantics? To find an answer, Lucas [Luc68] struck upon the idea of a twin
machine, in which two theoretical machines are started, each running a version of the
ULD. If these machines then proceed in lock-step and can be shown to reach the same
state for all possible operations, they are considered equivalent. In essence, one can
‘rub out’ one of the machines. In order to show that the two machines proceed in lock
step correctly, the two states are combined into one and an invariant defined to describe
when the states are synchronised. If this linking invariant is established at each step of
the twin machine, then the languages can be considered equivalent.

Jones noted in [Jon70] that when considering an abstract specification and reification
thereof, for most well-defined programs, the reified state will contain more information
than the abstract state. A many-to-one relationship exists between reified and abstract
states. Thus the linking invariant can be specialized into a function that maps from a
reified to an abstract state — a retrieve function.

6This account is based on a discussion with Cliff Jones.

16 Chapter 2. Background and Related Work

In order to show that a representation satisfies an abstract specification, two proof
obligations must be discharged for each operation — these are the domain rule and
the result rule. Formulations of these two rules are given in Figure 2.4 and Figure 2.5,
respectively. The general form of the adequacy rule for VDM is given in Figure 2.6.

∀σc ∈ Σc · pre-OPa (retr(σ
c)) ⇒ pre-OPc(σ

c)

Figure 2.4: VDM domain rule; adapted from [Jon90]

∀σc
1 , σ

c
2 ∈ Σc · pre-OPa (retr(σ

c
1)) ∧ post-OPc(σ

c
1 , σ

c
2) ⇒
post-OPa (retr(σ

c
1), retr(σ

c
2))

Figure 2.5: Standard VDM result rule; adapted from [Jon90]

∀σa ∈ Σa · ∃σc ∈ Σc · retr(σc) = σa

Figure 2.6: VDM adequacy rule (surjectivity of retr); adapted from [Jon90]

The domain rule “requires that the pre-condition on the representation is not too nar-
row.” [Jon90] (p. 190). The result rule describes the commutativity presented in the
standard refinement diagram for VDM Figure 2.1. In VDM it is necessary to show
that this diagram commutes for each operation — that retrieval followed by an abstract
operation is the same as the performing the corresponding concrete operation followed
by retrieval. More precisely, the initial concrete state, σc

1 (lower left), retrieves to the
initial abstract state, σa

1 (upper left). Performing OPa reaches the abstract final state,
σa
2 (upper right). It is necessary to show that the concrete final state, σc

2 (lower right),
reached by performing OPc from σc

1 , retrieves to the abstract state, σa
2 .

If it is impossible to define a retrieve function, then the abstract specification is described
as biased. A biased specification is one in which the abstract state contains more in-
formation than the reified state and hence in which it is impossible to reconstruct an
abstract state. In order to define a retrieve function, this abstract state information
would need be be held in the reified state, in which case the abstract representation has
biased the reified specification [Jon90]. A major tenet of VDM is to avoid specification
bias.

2.3.2 Refinement in Special Cases of Non-Determinism

Unfortunately, it is sometimes necessary to consider apparently biased specifications as
the ‘correct’ choice of representation. It is entirely possible to define concrete spec-
ifications for which the inarguably sensible choice of abstract specification must be,
apparently, biased. This is best illustrated by reconsidering the example from above,
namely ARB0. A sensible implementation of ARB0 (which must return a new, unseen
number on each call) is to simply add 1 to the previous number returned. A definition
for such a realisation (ARB1) is given in Figure 2.7 [Jon89].

ARB1 uses a counter, n, to remember the last number returned and increments this
value at each call. ARB1 however only exhibits one of the possible behaviours of ARB0

2.4 Correctness of Concurrent Programs 17

ARB1() r :N
wr n:N
post r = ↼−n ∧ n = ↼−n + 1

Figure 2.7: Specification of ARB1

Figure 2.8: VDM refinement diagram with Nipkow’s refinement rule

and a retrieve function cannot be defined. The key factor in this example (and common
to many examples of this type) is the requirement for the abstract state to retain history
information. In the above example, this is the set of previously returned numbers. The
implementation shows only one possible behaviour of the abstract specification — the
non-determinism present in the abstraction is not present in the implementation (it is
“unused” [Jon89]).

In order to deal with the resolution of non-determinacy, it was necessary to extend the
standard VDM rules for refinement. Work in the area was undertaken separately at
Oxford [HHH+87] and Manchester [Nip86], though it is now typically referred to (based
on the latter of the two), as Nipkow’s rule. The major difference from the standard result
rule is that the retrieve function is replaced with a relation (as in a twin machine). It is
necessary show that, for any concrete step beginning in a state that corresponds to an
abstract step, there exists a corresponding final abstract state. Nipkow’s result rule is
given in Figure 2.9 (compare to Figure 2.5 above).

∀σc
1 , σ

c
2 ∈ Σc , σa

1 ∈ Σa · rel(σa
1 , σ

c
1) ∧ post-OPc(σ

c
1 , σ

c
2) ⇒

∃σa
2 ∈ Σa · post-OPa (σ

a
1 , σ

a
2) ∧ rel(σa

2 , σ
c
2)

Figure 2.9: Nipkow’s VDM result rule

2.4 Correctness of Concurrent Programs

As outlined in Chapter 1, showing correctness of concurrent programs requires methods
to deal with the interference and non-determinism. These ‘racy’ programs pose a chal-
lenge, requiring extensions to previous methods of reasoning about sequential programs,
as well as new approaches to deal with the ‘tricky’ behaviour of concurrent programs.

As described in [Jon83b], early work in this area attempted to develop proofs for se-
quential components in isolation before going on to show that in combination, these

18 Chapter 2. Background and Related Work

components did not interfere. Ashcroft and Manna [AM71] combined the specifications
of concurrent processes into a single, sequential, non-deterministic specification. This
approach requires assertions about non-interference within the specification that grow
exponentially with the size of the program.

The work of Owicki and Gries [OG76] develops separate sequential specification for each
program and requires a final Einmischungsfrei7 proof to show non-interference. If this
cannot be proved, it may require a “scrap and rework” of the design so far. It is argued
in Section 1.3.2 (and [Jon83b]) that these non-compositional approaches are unsuitable
as a development method. The remainder of this section briefly mentions two popular
methods for reasoning about concurrent programs (which are discussed in later chapters)
and gives details of other approaches that are relevant as background to this thesis.

Rely-guarantee reasoning [Jon83a] is an extension to pre-post conditions that permits
reasoning about interference (typically within the VDM framework, but more recently
extended to other notations). The ability to reason about interference during develop-
ment avoids the need for any final (potentially deal-breaking) Einmischungsfrei proof.
Rely-guarantee reasoning forms a major part of this thesis and is dealt with in Chapter 3.

Separation logic [Vaf07] offers a different approach. In separation logic it is possible
to make assertions about portions of memory being entirely disjoint. If each disjoint
area is accessed by a single process, these processes can run safely in parallel because
no interference can arise. This notion of disjoint concurrency allows separation logic
to ‘avoid races’. Separation logic is often applied at a low level to highly concurrent
algorithms. Research has also been carried out to combine separation logic and rely-
guarantee reasoning. As RGSep provided inspiration for the work in Chapter 6, it is
discussed in detail in Chapter 5.

Other approaches to the correctness of concurrent programs often attempt to show
that a concurrent specification is, in some sense, ‘equivalent’ to a sequential one, in
that it exhibits the same behaviours. Typically, concurrent execution introduces new
behaviours. In fact these new behaviours are often the reason why concurrent execution
is beneficial in terms of speed — new concurrent behaviours are required to increase
efficiency. Clearly, a concurrent specification that introduces new behaviours cannot be
equivalent to a sequential version in the strict use of the word.

2.4.1 Linearizability

Serializability [Pap79] and sequential consistency [Lam79] were early attempts to show
the correctness of concurrent programs by relating them to sequential executions. Se-
rializability is a basic correctness condition in the database community, where opera-
tions (transactions) are serializable if they can be viewed as a sequential atomic execu-
tion [Kao08]. Sequential consistency is similar, but also preserves the ordering of events
for an individual process [AW94].

Linearizability [HW90] is a more modern notion. In addition to the requirements of
sequential consistency, it also requires that the global ordering of non-overlapping op-
erations is preserved [AW94]. Linearizability is defined on a ‘shared object’ that has
a set of primitive operations and is accessed by one or more (sequential) processes.
While these primitive operations take time to complete, they are linearizable if they
can be considered to take effect instantly at a point during their execution. This is the
linearization point.

7Translation: interference-free.

2.4 Correctness of Concurrent Programs 19

(a) Sequential access of a queue

(b) Acceptable concurrent access of a queue

(c) Unacceptable concurrent access of a queue

Figure 2.10: Possible executions of a FIFO queue; adapted from [HW90]

Figure 2.10 illustrates three possible executions of a FIFO queue, with two operations
enqueue (ENQ) and dequeue (DEQ). Time runs from left to right, with operations
of process A appearing above the line and operations of process B appearing below
the line. Figure 2.10a shows sequential access to the queue. Firstly, x is enqueued by
process A, then y is enqueued by process B and finally B performs a dequeue operation,
returning the value x . Figure 2.10b shows concurrent behaviour of a queue, in which
two enqueue operations occur simultaneously. This could be linearized to the execution
in Figure 2.10a, thus is considered to be acceptable behaviour. Figure 2.10c shows
unacceptable (non-linearizable) concurrent access to the queue, because y is dequeued
twice.

An execution of a concurrent system is recorded as a history. A history is a “finite
sequence of operation invocations and response events” [HW90]. Each event in the
trace includes a process identifier (indicating to which process the event refers) and,
where appropriate, parameters and return values. In a sequential trace, the first item is
an invocation event and each invocation is followed directly by a corresponding return
event. A process subhistory is a subsequence of all events in a history that relate to a
single process. A history is well-formed if all process subhistories are sequential [HW90].

A linearizable object is “one whose concurrent histories are linearizable with respect
to some sequential specification”. Effectively, events are swapped within the history
such that it appears as if events occur “at the level of granularity of complete oper-
ations” [HW90], while preserving the order of non-overlapping operations [Vaf09]. So
linearizability uses notions of atomicity to hide concurrency from the user.

Linearizability is a local property: if the components of a system are linearizable, then
the system as a whole is linearizable [HW90] and hence it is compositional. Lineariz-
ability is however inherently low-level, often applied to highly concurrent algorithms in
a post-facto manner. For example, separation logic often uses linearizability to show
correctness of concurrent algorithms (see Chapter 5). The author admits it is a valid
contribution to notions of correctness for concurrent systems, but feels that it lacks the

20 Chapter 2. Background and Related Work

benefits of recording design decisions with specifications, as discussed in Section 1.3.1.

2.4.2 Process Algebras

The need for methods to reason about systems with multiple parallel processes led to the
development of process algebras (or calculi). Examples include CSP (Communicating
Sequential Processes) [Hoa78], CCS (Communicating Concurrent Systems) [Mil89] and
the more recent π-calculus [Mil99]. In [Hoa78], Hoare identifies input/output (I/O)
as the basic operations of a process. In CSP, processes can communicate over named
channels. If a process names a channel for output and another process names the
same channel for input, they will synchronise. In CSP and CCS, this basic form of
synchronisation is then used to encode more complex concepts, such as value passing.

Systems in CCS comprise a number of processes in combination. The state of the system
is the combination of the current state of its constituent processes. Each process has
the potential to perform named actions, thus a labelled transition system (LTS) can be
defined. The general form of an LTS is given below.

(S ,T , { t−→: t ∈ T})
An LTS if defined by S , the set of possible states; T , the set of (labels of) all possible

transitions; and a transition relation,
t−→⊆ S × S , for each label [Mil89]. CCS also

includes the notion of a perfect, or silent, action (typically) named τ . This is considered
to be an internal action.

As with model-oriented formal methods, it is useful to show that two systems defined
in process algebras are, in some sense, equivalent. The notion of bisimulation is a
common method for defining equivalence. Two systems are said to be equivalent if
they can simulate each other, much like a twin machine in VDM (see Section 2.3.1).
A bisimulation relation can be defined between two systems, which acts as “a kind of
invariant holding between a pair of dynamic systems” [Mil89].

There are different types of bisimulation. Strong bisimulation defines a strong equiva-
lence between systems and in which a.0 and a.τ.0 are not equivalent. That is, internal
actions are observable. In weak bisimulation, a.0 and a.τ.0 are equivalent. Internal
actions are not observable and hence it defines an observational equivalence, such that
“no observations can distinguish them” [HM85].

The π-calculus [Mil99] is a more modern process algebra that allows for mobility of
processes. The basic unit in the π-calculus is the name. Names form communication
channels. Names can also be passed as parameters to communications to be used as
channels for further communication. As such, the π-calculus can describe mobile and
dynamic systems.

Process algebras typically offer a different perspective on systems compared to model-
oriented methods. They are able to capture properties such as protocols that are not
necessarily clear in other formal notations. Various attempts have been made to combine
the benefits of process algebras and model-based systems, for example, CSP‖B [BL05]
allows process algebra expressions to determine the order of operations within state-
based models.

It is the author’s view that multiple treatments of the same problem in a variety of
formal methods are invaluable in understanding (and solving) difficult problems. This
view is supported by the usefulness of insight gained from the various treatments of the

2.5 Other Relevant Work 21

Mondex system as part of GC-6 [Woo06] and the usefulness of different developments
in understanding Simpson’s Four-Slot [Sim90] (see Chapter 4 and Chapter 8).

The author contributed to the work on Mondex for GC-6 by exploring the protocol
surrounding the electronic purse system (which is based on smartcards), using the π-
calculus [JP07]. The work includes a notion of users initiating deals between each other
and the use of card readers to provide channels of communication.

2.5 Other Relevant Work

Event-B is another well established formal method and is arguably the main (model-
oriented) alternative to VDM. Event-B [MAV05] is based on The B Method [Abr96]. It
too has seen industrial use, for example, it is the main focus of the DEPLOY project8.
Jean-Raymond Abrial, the originator of Event-B, cites the influence of VDM.

An Event-B model is composed of a set of machines. Each machine represents a level of
refinement and together they form a refinement chain. A refinement relation is shown
to hold between each link in the chain. In this way Event-B is similar to VDM, where
a machine is similar to a single specification in VDM and a model as a whole is a set of
refined specifications.

An Event-B machine includes a set of variable names and a set of invariants. Invari-
ants define the data types of variables, as well as defining more traditional invariants
that restrict the values of variables and defines relationships between them. Event-B
machines can be seen as an action system [BKS83], where each action is termed as an
event. Each machine has a set of events (guarded actions). An event is the main equiv-
alent to a VDM operation. If the guards of an event are true, then the result of the
event is considered to have happened atomically. In this way, the guards may be seen
as the pre-condition and the result of the events as the post-condition. Events can be
decomposed in refinement steps in much the same way as operation decomposition in
VDM.

A strong element of the Event-B approach is the emphasis on tool support for discharging
proof obligations automatically. This is exemplified by the Rodin Platform9. The use
of tools with Event-B often leads to developments with a large number of refinement
steps (for example, the nine levels of refinement Event-B development of the Mondex
system). This is because refinement steps in which only small changes are made to the
model can be more easily discharged by a tool automatically.

2.6 Summary

This chapter discussed the technical background to the work presented in this thesis.
This included methods for reasoning about sequential programs (pre-post conditions),
refinement and VDM. This chapter also discussed approaches for reasoning about con-
current programs, including rely-guarantee reasoning, separation logic, linearizability
and process algebras. Rely-guarantee reasoning is discussed in detail in Chapter 3 and
separation logic in Chapter 5.

8See http://www.deploy-project.eu/
9See http://www.event-b.org/

22

Chapter 3

Rely-Guarantee Conditions

3.1 Overview

This chapter presents a discussion of rely-guarantee conditions [Jon83a], one method of
reasoning about interfering programs. Rely-guarantee conditions are introduced as an
extension of pre-post conditions [Hoa69] within VDM [Jon90] (Chapter 2), as well as
being placed in a wider context of assumption-commitment reasoning.

Some simple examples of rely-guarantee conditions are given in order to illustrate the
principles. Readers are directed to Chapter 4 for more complex examples. Some of the
main weaknesses of the approach are discussed — what can’t necessarily be achieved (or
be achieved easily) with rely-guarantee reasoning. In turn, these weaknesses motivate
the work in later chapters (Chapter 6, Chapter 7 and Chapter 8).

3.2 Reasoning About Interference

3.2.1 Pre-Post Conditions

Section 2.2.1 discussed the use of pre-post conditions to reason about sequential pro-
grams. The pre-condition, P , of a program, S , is a predicate restricting the initial state
of the program. It is an assumption that the programmer makes about the environment
in which the program will run correctly. The post-condition, Q , is predicate over the
initial and final state of the program, describing the result of S . It is a commitment that
must be fulfilled by the programmer. In VDM, post-conditions are predicates over both
the initial and final state (Section 2.3). This allows a VDM specification to describe the
changes made to variables. Pre-post conditions are often written as a Hoare triple:

{P} S {Q}
Pre-post conditions are sufficient for describing the operation of a program, because
they define an interface. As such they can be used to reason about a program without
reference to the implementation (requiring only that the implementation can be shown to
respect the interface). Hence pre-post condition reasoning is compositional for sequential
programs.

23

24 Chapter 3. Rely-Guarantee Conditions

(a) Post-conditions as a relation over two states

(b) Rely-guarantee conditions as relations over steps of execution

Figure 3.1: Illustration of rely-guarantee conditions

3.2.2 Interference and Environment

Pre-post conditions are insufficient however for reasoning about programs that may
suffer interference. A program under interference can no longer be considered to move
from an initial to a final state (as described by pre-post conditions) in a single step.
Actions of the environment may now affect the program during execution. On single
processor systems, processes may be preempted and in multiprocessor systems, processes
execute with true concurrency. The environment can interfere with a program by both
observing intermediate state and modifying shared variables.

At some level of granularity however, a step of execution can be considered to be atomic.
In sequential programs, these atomic steps occur at the level of pre-post conditions. In
the case of concurrent programs however, these atomic steps occur at a granularity
smaller than pre-post conditions. Steps of concurrent execution comprise two types:
steps of the program and steps of the environment. In order to reason about interference,
it is necessary to describe and reason about these steps.

3.2.3 Rely-Guarantee Conditions

Rely-guarantee reasoning extends pre-post condition by introducing a rely-condition and
a guarantee-condition to each operation. Rely-guarantee reasoning originated in [Jon81]
and appears in [Jon83a, Jon83b] and with a more modern notation given in papers such
as [Jon96]1. A wide ranging treatment of compositional and non-compositional meth-
ods for reasoning about concurrency, including rely-guarantee reasoning, is presented
in [dR01].

Both the rely- and guarantee-condition are (like a VDM post-condition) predicates over
two states, namely the initial and final states of a step of execution. The rely-condition
of a program describes steps of the environment and the guarantee-condition describes
steps of the program. Hence during execution the system can either make a rely step
or a guarantee step. Figure 3.1 illustrates the concept in the same way as Figure 2.3 in
Section 2.3.

1A partial rely-guarantee bibliography is available at
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf

3.2 Reasoning About Interference 25

The horizontal line represents time, increasing from left to right. The pre-condition, P ,
must hold of the initial state of the program and the post-condition, Q , must hold over
the initial and final state. For each step of the environment, the rely-condition, R, must
hold. For each step of the program, the guarantee-condition, G , must hold.

A rely-condition describes the interference that a program must tolerate from the envi-
ronment. When a process is executing concurrently, it is subject to the actions of the
environment. It also forms part of the environment for other processes and may itself be
the source of interference. A rely-condition is an assumption, much like a pre-condition,
that the programmer makes about the environment in which it is running. The rely-
condition should sufficiently capture the requirements under which a program can meet
its post-condition.

The guarantee-condition describes the degree of interference a program can generate as
the environment to other processes. The guarantee-condition, in addition to its post-
condition, forms the commitment that a programmer must make, under the assumption
that the pre- and rely-condition are met. This view of rely-guarantee conditions is
reflected in the modification of the Hoare triple, which can now be read as: under the
assumptions P ,R the program S must achieve G ,Q .

{P ,R} S {G ,Q}
Rely- and guarantee-conditions consist of statements about the (possible) changes to
shared variables that occur during a step of execution. In the case of a rely step, this
places a limit on what the environment may do2. In the case of a guarantee step, this
limit is placed on the program. By describing the total interference that a program will
both tolerate and induce, the behaviour of that program within any (suitably described)
environment can be reasoned about without reference to the implementation. Rely-
guarantee conditions therefore can be said to extend the interface described by pre-post
conditions to a concurrent context. Hence rely-guarantee reasoning is compositional for
interfering programs.

3.2.4 Correctness in Rely-Guarantee Reasoning

When reasoning about multiple processes (described with rely-guarantee conditions)
running concurrently, it is necessary to show that each program can exist in a concur-
rent environment with all the other programs. In this section, only two programs are
considered to be executing concurrently, in order to simplify the explanation. Expansion
of the idea to multiple concurrent programs is considered to be obvious.

In order to show that two programs can coexist in a concurrent environment, it is neces-
sary to show that the rely-condition of each program is met by the guarantee-condition
of the other program. That is, that each program can tolerate (at least) the interference
produced by the other program. The standard rule for parallel composition is given in
Figure 3.2. In systems with more than two concurrent programs, it is necessary to show
that, for each program, the combination of all guarantees meets the rely-condition.

The parallel composition rule requires that each process can meet its individual post-
condition under the interference created by the other. Together they can meet the com-
bined post-condition, Q , under the combined interference of both processes (stability).
The reflexive and transitive closure of the combination of rely- and guarantee-conditions
of both processes is taken to describe the total interference, (R ∨ G1 ∨ G2)

∗. This is a

2In the sense that if a rely-condition is not met, a program may not behave correctly.

26 Chapter 3. Rely-Guarantee Conditions

{P ,R ∨ G2} S1 {G1,Q1}
{P ,R ∨ G1} S2 {G2,Q2}
G1 ∨ G2 ⇒ G
↼−
P ∧Q1 ∧Q2 ∧ (R ∨ G1 ∨ G2)

∗ ⇒ Q

{P ,R} S1 ‖ S2 {G ,Q}

Figure 3.2: Standard rely-guarantee rule for parallel composition

convenience as it allows stuttering, where the state is not modified (the identity step).
Transitivity admits that, if all the individual steps of a program meet the guarantee-
condition, then the program as a whole also meets the guarantee-condition [CJ07]. By
corollary the same is true of the environment with respect to the rely-condition.

Note that when program operations described with rely-guarantee conditions are de-
composed, they can only rely on (at least) the same degree of interference as the parent
operation. They also cannot produce more interference than the guarantee-condition of
the parent operation. In practice, one might wish to loosen the assumptions (both the
pre-condition and rely-condition) under which the post-condition can be met. One may
also wish to tighten the guarantee-condition, such that is it the strongest commitment
that a program can make regarding interference. Taken together this approach would
ensure that the program could exist in the greatest number of concurrent environments.

3.3 Rely-Guarantee by Example

In order to understand rely-guarantee reasoning (and in particular its philosophy), it is
useful to see some examples of its use. The examples given below are simple. They are
designed to show the types of rely-condition (and hence guarantee-condition) that are
commonly written. Chapter 4 contains more interesting examples.

Figure 3.3 contains the sequential specification of a simple operation called XPLUS1,
which increases the value of a variable x by 1. The operation requires write access to
x and the post-condition states that the final value of x will be one greater than the
initial value. This operation is designed to run sequentially. In order to add 1 to x ,
the operation must read the initial value of x . If any other operation were to modify x
during the operation, it could no longer guarantee to meet its post-condition.

In order to reason about XPLUS1 in a concurrent environment, a rely-condition can be
added to the operation. The simplest rely-condition states that a value be unchanged
by interference. Figure 3.4 contains a definition for XPLUS1c that includes the rely-
condition that x remains unchanged during the operation. Under this assumption, it
is now possible to implement XPLUS1c such that it is able to meet its post-condition,
because no other process may modify the value of x . This type of rely-condition really
states that with respect to x , the operation runs in isolation. XPLUSc can only run in
an environment that guarantees not to change x .

It is not always necessary to be as restrictive as requiring that a value doesn’t change.
In fact, when multiple processes access shared variables it is often unrealistic to expect a
value to be unchanged. Rely-conditions can also be used to state properties of variables
such as the value monotonically increasing (or decreasing).

Figure 3.5 contains two specifications. In addition to a version of XPLUS1, it also

3.3 Rely-Guarantee by Example 27

XPLUS1
wr x :N
post x = ↼−x + 1

Figure 3.3: Sequential specification of XPLUS1

XPLUS1c
wr x :N
rely x = ↼−x
post x = ↼−x + 1

Figure 3.4: Concurrent specification of XPLUS1

XPLUS1g
wr x :N
rely x = ↼−x
guar x > ↼−x
post x = ↼−x + 1

YLESSX
rd x :N
wr y :N
rely x ≥↼−x
post y �= ↼−y ∧ y ≤ x

Figure 3.5: Concurrent specification of XPLUS1 and YLESSX

XPLUS1c ‖ XPLUS1c

Figure 3.6: Concurrent execution of XPLUS1

XPLUS1p
rd switchq :B
wr switchp :B
wr x :N
rely (switchq ⇒ x = ↼−x) ∧

(¬↼−−−−switchq ⇒ switchq)

guar (switchp ⇒ x = ↼−x) ∧
(¬↼−−−−switchp ⇒ switchp)

post x = ↼−x + 1

XPLUS1q
rd switchp :B
wr switchq :B
wr x :N
rely (switchp ⇒ x = ↼−x) ∧

(¬↼−−−−switchp ⇒ switchp)

guar (switchq ⇒ x = ↼−x) ∧
(¬↼−−−−switchq ⇒ switchq)

post x = ↼−x + 1

Figure 3.7: An example of locking with rely-guarantee conditions

28 Chapter 3. Rely-Guarantee Conditions

contains a specification of YLESSX , which changes the value of a variable y such that it
is less than the value of x . In order to do this, the operation requires read access to x and
write access to y . The post-condition states that y will change and that the value will
be less than x . In order to meet its post-condition under interference, YLESSX needs
to know something about the changes to the value of x . If the value of x is changed
arbitrarily, the chosen value for y may not less than x .

YLESSX could require, as before, that x be unchanged by interference, but this is overly
restrictive and means that YLESSX could not run concurrently with XPLUS1 (which
cannot guarantee not to change x). As long as x never decreases however, YLESSX

can meet its post-condition (by choosing y = ↼−x − 1, for example). This is reflected in
the chosen rely-condition, requiring that x monotonically increases. XPLUS1g is able
to guarantee that x always increases. This guarantee is stronger than YLESSX requires
and hence these two operations can run concurrently.

Figure 3.6 presents the situation where two XPLUS1c operations run in parallel with
each other. This is essentially a specification of x ← x + 1 ‖ x ← x +1. As discussed in
Section 1.2, the value of x after these two operations complete will not necessarily have
increased by 2. The rely-guarantee conditions of XPLUS1c indicate that this could not
be proved, because both XPLUS1c operations rely on the value of x being unchanged
by interference in order to meet their post-conditions. Neither XPLUS1c operation
guarantees this however.

In fact, neither operation is able to guarantee not to change x . In order to allow both
these XPLUS1c operations to execute concurrently, there are a number of options.
Firstly, an assumption could be recorded about the compiler of the implementation
language, for example, that is ensures that assignments are executed atomically. This
may however be unrealistic. Further discussion of this solution is given in Chapter 4.

Another approach would be to implement XPLUS1 with locks, such that each operation
must acquire a lock before modifying the value of x . This is akin to the atomic brackets
described in Section 1.2, i.e. 〈x ← x +1〉 ‖ 〈x ← x +1〉. This implementation would be
a large step from the specification in Figure 3.3 however. It would therefore be desirable
to reason about these locks, in order to increase confidence in an implementation. This
is illustrated in Figure 3.7.

There are now two specifications of XPLUS1 subscripted with p and q . Each operation
has write access to a switch (of boolean type), in addition to write access to x . Each
operation also has read access to the other operation’s switch. The rely-condition of
both operations requires that if their switch is true, x remains unchanged. In turn, both
operations guarantee that if the other’s switch it true, x remains unchanged. Therefore,
each operation can meet its post-condition under its rely-condition and the rely-condition
is met by the guarantee-condition of the other process.

In an implementation, an operation would have to set its switch to true in order to be
allowed to write to x and would only be allowed to do so if the other switch was false.
While this small example is a little contrived, it illustrates the possibility of describing
locks with rely-guarantee conditions. It can be seen that this idea could be expanded to
describe semaphores with P and V operations to protect variables.

A more elegant solution (and one closer to the philosophy of rely-guarantee thinking)
is to find a data representation of x that allows both operations to run concurrently
and meet their post conditions. This is hard to envisage for the simple examples in this
chapter, but more complex examples where such an approach is possible are given in
Chapter 4. Naturally, the choice of representation depends on the problem domain, but

3.4 Rely-Guarantee Conditions in Wider Context 29

this data reification approach is a strength of rely-guarantee reasoning.

3.4 Rely-Guarantee Conditions in Wider Context

The version of rely-guarantee reasoning presented here is broadly in line with the work
in [Jon81] and subsequent papers (see above). The work in this thesis can be considered
to be from the ‘Jones school’ of rely-guarantee reasoning. Rely-guarantee reasoning
also falls into the larger field of assumption-commitment reasoning, of which pre-post
conditions can also be considered a part. Other branches and schools of thought have
formed since [Jon81]. This section contains a brief overview of other work in the field.
Far from detracting from the work in this thesis, the different ideas show that, perhaps,
rely-guarantee reasoning is a Good Idea.

A number of theses using rely-guarantee began to appear in the nineties, these include
the addition of progress arguments to rely-guarantee reasoning by Stølen in [Stø90]. Broy
and Stølen include rely-gurantee within a method called FOCUS in [BS01]. Collette aims
to unify the paradigms of shared variable and message passing concurrency (with respect
to rely-guarantee reasoning) in [Col94]. Middelburg uses temporal logic expressions to
achieve a notion of interference between operations in VDM (in an extension called
VVSL) in [Mid93]. Similarly, Barringer et al. consider compositionality of temporal
logic specifications in [BKP84]. A more complete, though still partial (and admittedly
biased), collection of rely-guarantee references is available online3.

3.5 Weaknesses of Rely-Guarantee Reasoning

It is the author’s view that rely-guarantee reasoning is a useful and tractable method for
reasoning about programs in a concurrent context. It allows assumptions about interfer-
ence to be captured, recorded and reasoned about. In turn this increases confidence in
the design and specification of difficult concurrent programs. There are however weak-
nesses in rely-guarantee reasoning. This section discusses some of those weaknesses, of
which two are addressed in this thesis.

3.5.1 Phases of Execution and Complex Rely-Guarantee Conditions

One weakness of current rely-guarantee reasoning is in tackling problems where multiple
or “complex” changes are made to shared variables during the execution of an operation.
These complex changes can be difficult to capture with rely-guarantee conditions.

First, consider the example of the switch in Figure 3.7. Imagine a modification to this
specification where the operation may set the value of the switch to both true or false
during execution. The transitive closure of a guarantee-condition for this operation
admits arbitrary changes to switchq .

Arbitrary changes such as these can be difficult to capture with current rely-guarantee
reasoning (since a guarantee-condition of true says very little). If however there is some
temporal order to these changes, then it is possible to consider that they might occur in
phases. The switch might be true in one phase and false in the other (with this pattern
repeating). In this situation, it is possible to capture the changes with rely-guarantee
conditions.

3See http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf

30 Chapter 3. Rely-Guarantee Conditions

Consider an operation (called OP , for example), where two phases rely on a variable,
x , monotonically increasing and decreasing, respectively. Again, the transitive closure
admits arbitrary changes to x . One solution is to decompose OP into two operations,
one for each phase. If they refine a single abstract operation however, the abstract
operation would still require the combination of the rely-conditions of the two phases. If
they are defined as entirely separate operations, it is difficult to ensure that operations
run alternately between phase one and phase two. It is also technically necessary to
consider interference between the two phases, even though they conceptually represent
part of a single operation.

Another solution is to introduce ghost variables that track the phase of the operation.
For example, a boolean value named phaseone could be introduced. This value would
be set to true as OP enters the first phase and to false as it exits. The rely-condition is
then formulated by multiple conjuncts based on the phase of the operation, as recorded
by the ghost variable (Figure 3.8).

rely-OP() � (phaseone ⇒ x ≥↼−x) ∧ (¬ phaseone ⇒ x ≤↼−x)

Figure 3.8: Rely-condition using a phase ghost variable

The author believes this is an inelegant solution to what is essentially a weakness in
the expressiveness of current rely-guarantee reasoning. Adding ghost variables to the
state is not necessary and represents needless clutter that hinders understanding of these
intricate problems. Similarly, picking out the relevant clauses when reading a specifica-
tion can quickly become difficult for large specifications and gaining an understanding
of the rely-guarantee conditions as a whole can be hard. Thus the emphasis on clearly
recording design decisions becomes muddied.

One approach to dealing with problems that exhibit phasing properties is explored in
Chapter 7 and in turn in Chapter 8, which presents a novel development of Simpson’s
Four-Slot [Sim90] (see Chapter 4), a difficult problem that exhibits phasing properties.

3.5.2 Whole-State Updates

In Figure 3.7, both XPLUS1 operations are required to guarantee that they will not
modify x if a given switch is true, in order to satisfy the rely-condition of the other
process. With only two operations and a single shared variable, the guarantee-conditions
are simple. If more operations and state components were added to the system however,
the complexity of guarantee-conditions would increase quickly and may well become
unwieldy.

This problem stems from the fact that rely-guarantee conditions describe steps of the
whole state, in which all components participate. For larger systems it can be difficult
to find rely-guarantee conditions that hold for steps of the entire system. It is also
possible that combinations of components cannot actually interfere with each other due
to accessing disjoint sets of variables, but are still required to consider them in the
guarantee-conditions. Currently, there is no standard way to deal with these issues in
rely-guarantee reasoning.

Separation logic offers a way of dealing with this problem by separating the state into
a local and a shared components, creating ‘frames’ that avoid the need to deal with

3.6 Summary 31

the possibility of interference. Chapter 5 discusses separation logic and Chapter 6 dis-
cusses the use of frames in VDM and rely-guarantee conditions, inspired by the work on
separation logic [Vaf07].

3.5.3 Static State

Due to the model-based approach of VDM (and in turn of the rely-guarantee approach
taken in this thesis), the state of a system is always static and determined at development
time. While this does have the benefit of making the design of the state clear (and of
recording design decisions), it does make it difficult to consider systems in which the
state can change dynamically, at run-time. The notion of the heap in separation logic
allows it to deal with dynamic state changes. Another approach is to combine process
algebras with model-based formal methods, in order to introduce a notion of ‘mobility’.
This issue is not addressed in this thesis.

3.5.4 Relying on Definites

The form of the standard parallel composition for rely-guarantee is given in Figure 3.2.
The rule states the the various pre-, post-, rely- and guarantee-conditions imply the
overall post-condition. This however does not allow operations to rely on something
that must happen. For example, in Figure 3.7, XPLUS1p cannot rely on switchp being
true at some point, only that if it is true, x will be unmodified. This is a somewhat
subtler problem to the issue of whole state updates and it is not addressed in this thesis.
The notion of progress arguments offers a possible solution [Stø90]. Another possible
solution is the notion of software transactional memory, which is explored (with rely-
guarantee) in [Col08].

3.6 Summary

This chapter presented an introduction to (the ‘Jones school’ of) rely-guarantee reason-
ing by means of simple examples. Further examples are given in Chapter 4. It explored
the benefits of rely-guarantee reasoning as a compositional method for reasoning about
interference in ‘racy’ programs.

This chapter also included a discussion of other areas of rely-guarantee thinking that have
branched from the original work on rely-guarantee conditions. Some of the weaknesses
of current rely-guarantee reasoning were discussed, two of which are tackled in Chapter 6
and Chapter 8.

32

Chapter 4

Data Reification and Atomicity
Refinement

4.1 Overview

What has become clear during the course of this work is that in order for rely-guarantee
conditions to be useful in development of all but the simplest of problems, it is essen-
tial to find a ‘good’ data representation. Finding a good representation is often the
key to finding an implementation that can satisfy rely-guarantee conditions. This ob-
servation is directly relevant to this thesis because data reification will play a key role
in any successful atomicity refinement [BJ05b] method. Hence finding the right data
representation is inexorably linked to atomicity refinement.

In order to illustrate this link, this chapter presents three examples that clearly show
how a ‘good’ choice of data representation allows rely-guarantee to be applied to non-
trivial concurrent programs. The first two examples, namely FINDP [Owi75] and
SIEVE [Jon83a] (of Eratosthenes), are relatively simple. Their solutions however are
subtle enough to illustrate the importance of choice of representation. Both are pre-
sented with specifications and rely-guarantee conditions [Jon83a] in VDM [Jon90].

The third example, Simpson’s Four-Slot [Sim90], forms the major supporting example
of this thesis. It is an algorithm for asynchronous communication that, while it consists
of a mere eight lines of code, can be difficult to comprehend. To this end, this chapter
presents a description of asynchronous communication mechanisms and of Simpson’s
choice of data representation (the eponymous ‘four slots’), without reference to a formal
specification or rely-grantee conditions. As presented, an explanation of the algorithm
is enough to illustrate the cleverness of Simpson’s design and forms a solid introduction
to the novel formal development presented in Chapter 8.

In order to justify the developments of FINDP and SIEVE presented below, formal
proofs which justify the decompositions (into concurrent programs) are given in Ap-
pendix B. The proofs also demonstrate the methodology of operation decomposition
proofs with rely-guarantee conditions in VDM.

4.2 FINDP Example

The FINDP example is a simple searching algorithm, initially presented in [Owi75]
(as Findpos). A version of the problem using rely-guarantee reasoning is presented

33

34 Chapter 4. Data Reification and Atomicity Refinement

in [Jon81]. The details of the development given below are taken from the more re-
cent [CJ07]. For a given vector of values, vals, FINDP returns the lowest index in the
vector for which the element satisfies a given predicate, pred . If there is no element
that satisfies pred , the value returned will be one greater than the length of vals. A
sequential specification for this algorithm is presented in Figure 4.1.

FINDP
rd vals:Value∗

wr r :N1

pre ∀i ∈ {1..len vals} · δ(pred(vals(i)))
rely vals =

↼−−
vals ∧ r = ↼−r

guar true
post (r = len vals + 1 ∨ 1 ≤ r ≤ len vals ∧ pred(vals(r))) ∧

∀i ∈ {1..r − 1} · ¬ pred(vals(i))

Figure 4.1: Sequential specification of FINDP

The sequential specification is straightforward. The operation requires read access to
vals and write access to the result, r . The pre-condition states that the predicate is
computable for all elements of the vector. The post-condition states that r will be
one greater than the length of v (if no element was found satisfying pred) or that r is
an index in vals (a result) and that no indices smaller than r satisfy pred . The rely
condition requires that vals and r are unchanged by interference1. Essentially this says
that FINDP is run in isolation. The operation makes no guarantees about its internal
behaviour. The predicate pred may be simple2, it is assumed however that this search
is costly to run and would benefit from concurrent execution — for example, if a large
number of elements are to be searched.

Concurrent execution implies that multiple processes must be allowed to search part
of the vector (a partition), before agreeing on the smallest index (if any) that satisfies
pred . While [Jon81] considers an arbitrary number of processes, here only two parallel
processes are used (as in [Owi75] and [CJ07]). The two processes are named ‘even’ and
‘odd’. The even process considers only even indices of the vector and the odd process
considers only the odd indices. In this way, the vector is partitioned into two halves.

4.2.1 Concurrent Specification

A simple way to approach parallelisation is to allow the even and odd processes to
independently search their partition for the lowest index satisfying pred . The minimum
of the two results is then taken to compute the final result. This solution avoids any
race conditions, because the two concurrent processes do not share variables. This naive
implementation may however perform worse than a sequential search. For example, if
the even process finds an index satisfying pred in the first index of the even partition,
the odd process may continue to search the entirety of the odd partition. In the same
situation, a sequential search would have returned a value almost immediately.

1A neater alternative to protecting variables such as r with rely-conditions is presented in Chapter 6.
2For example, pred(i) � vals(i) > 0 — the index of the first non-zero element in the vector, as

in [Owi75].

4.2 FINDP Example 35

What is required is a way for the processes to communicate their progress, allowing a
process to terminate early. By introducing a shared variable top (recording the lowest
index found so far by either process that satisfies pred), each process is able to terminate
before reaching the end of its partition. There is no point searching indices higher than
top. Figure 4.2 contains a specification of SEARCH that introduces top.

SEARCH (part :N1-set)
rd vals:Value∗

wr top:N1

pre ∀i ∈ part · δ(pred(vals(i))) ∧ top = len vals + 1

rely vals =
↼−−
vals ∧ top ≤↼−

top

guar top =
↼−
top ∨ top <

↼−
top ∧ pred(vals(top))

post ∀i ∈ part · i ≤ top ⇒ ¬ pred(vals(i))

Figure 4.2: Specification of SEARCH

The VDM specification of SEARCH is parameterised by a set of indices (a partition).
This partition would be a set of even indices for the even process and the set of odd
indices for the odd process. The pre-condition is the same as the sequential definition
and the post-condition states that any index (within the partition) lower than top does
not satisfy pred .

The rely-guarantee conditions are now more interesting, because top is shared between
processes. Again, SEARCH relies on the vector remaining unchanged, but also that top
monotonically decreases. That is, the value of top is never replaced by a higher index.
Since multiple SEARCH operations will be running concurrently, SEARCH must now
guarantee not to increase top in order to satisfy the rely conditions of any other process.

The post-condition of SEARCH only establishes that all values lower than top (within
the partition) do not satisfy pred . In order to satisfy the post-condition of FINDP (i.e.
finding a result) it is necessary to establish pred(top). Since an index satisfying pred may
not exist in the partition, this cannot be stated in the post-condition. In order to estab-
lish that pred holds of top, the guarantee condition states that either top is unchanged,
or it is replaced by a lower value that satisfies pred . Together the (transitive closure
of) the guarantee conditions of multiple processes will establish the post-condition of
SEARCH [CJ07]. This guarantee condition also meets the rely condition of top mono-
tonically decreasing.

In order for the value of top to be updated during the search, SEARCH processes must
be granted write access to top. The introduction of a variable shared between processes
introduces a potential race condition. In an implementation of SEARCH , more than
one process may attempt to update top simultaneously and hence cause undesirable
consequences due to interference. One solution is to simply lock top, such that the
update is atomic. This may potentially cause another process to wait. In order to gain
the full benefits of concurrent execution, it is desirable to avoid locking. To this end, a
reification of top that allows blocking to be avoided is desirable.

36 Chapter 4. Data Reification and Atomicity Refinement

4.2.2 Data Reification

A solution is to represent top as min(top-e, top-o), where top-e and top-o are written
only by the even and odd processes, respectively. A specification of the odd process is
given in Figure 4.3. The even process is similar, except that it writes top-e, reads top-o
and considers i ∈ evens(len vals). The final result after both processes have executed
is r = min(top-e, top-o).

In order to update top-o (and to decide whether to terminate), the odd process only
requires read access to top-e. The converse is true of the even process. The suffix,
-e, indicates write access by the even process and -o indicates write access by the odd
process3. This notation is useful in that it becomes obvious that there are no values
marked -eo. This indicates that there are no shared variables to which both processes
have write access. Note that the odd process relies on the vector being unchanged
and top-e monotonically decreasing. In addition, top-o must remain unchanged by
interference4.

SEARCH -Odd
rd vals:Value∗

rd top-e:N1

wr top-o:N1

pre ∀i ∈ odds(len vals) · δ(pred(vals(i)))) ∧ top-o = len vals + 1

rely vals =
↼−−
vals ∧ top-o =

↼−−−
top-o ∧ top-e ≤↼−−−

top-e

guar top-o =
↼−−−
top-o ∨ top-o <

↼−−−
top-o ∧ pred(vals(top-o))

post ∀i ∈ odds(len vals) · i ≤ top-o ⇒ ¬ pred(vals(i)))

Figure 4.3: Specification of SEARCH -Odd

As this example shows, by careful choice of data representation, it is possible to represent
top in such a way that each process is able to read the information required for its search,
but that requires no variables with shared write access. It can also be seen that the
atomic update of top required to implement the specification of SEARCH in Figure 4.2,
which was useful when designing the algorithm, has been refined into a finer grained
operation that requires only reasonable assumptions about the atomicity of hardware
memory access.

4.3 SIEVE Example

The SIEVE algorithm is a method for calculating the prime numbers up to a given
integer, attributed to the Greek mathematician Eratosthenes of Cyrene (276-194 BC).
The method is based on the observation that, for a given integer, i , in a set of integers, s
(where the highest integer in s is n), the multiples of i (for i > 2) cannot, by definition,
be prime.

The development presented below is based on [Jon83a]. An object-oriented version of
this problem (which still includes rely-guarantee reasoning) expressed in “pobl” is given

3These suffices, in some sense, indicate write ownership of variables. They are merely, arguably
“tasty”, syntactic sugar.

4Again, cf. Chapter 6.

4.3 SIEVE Example 37

in [Jon07]. The algorithm works by removing all of the multiples of i from s, beginning
with i = 2. This method, repeated for i ≤ �√n�, removes all compound numbers from
s, leaving only prime numbers. A VDM specification of a sequential SIEVE operation
is given in Figure 4.4. Note that for the purposes of this example, 1 is considered to be
a prime number (in the sense that it is not a compound).

SIEVE
wr s:N1-set
pre true
rely s = ↼−s
guar true
post s = ↼−s −�{mults(i) | 2 ≤ i ≤ �√n�}

Figure 4.4: Sequential specification of SIEVE

A sequential SIEVE operation requires write access to the set s and relies on no other
process modifying the set during the operation. As with the sequential FINDP op-
eration (see above), SIEVE makes no guarantees about its internal behaviour. The
post-condition states that after the operation, s will not contain any multiples of i up to
a given value5. The function mults(i) is assumed to return a set containing the multiples
of i , where i /∈ mults(i).

A sequential implementation of SIEVE requires O(n log log n) arithmetic operations
time O(n) bits of space [DJS96]. Various implementations can improve on this (for
example, O(n/ log log n) operations / bits [DJS96]), however SIEVE can also benefit
from concurrent implementation. One method is to create a number of processes, such
that the ith process is responsible for removing the multiples of i from s. Figure 4.5
presents a specification of such a process called REM .

REM (i :N1)
wr s:N1-set
pre true
rely s ⊆↼−s
guar (↼−s − s) ⊆ mults(i) ∧ s ⊆↼−s
post s ∩mults(i) = {}

Figure 4.5: Specification of REM

The REM operation is parameterised by i and requires write access to s. The post-
condition for REM cannot state that s = ↼−s − mults(s) as other processes may also
remove elements from s (invalidating the inequality). It is therefore necessary to state
that, after the operation, s will not contain any multiples of i . The post-condition of
REM would admit, for example, the empty set as final value for s, therefore the first
conjunct of the guarantee condition is required to state that the operation will remove

5Note that in practice, when implemented sequentially as a loop, i can be set to be the lowest number
remaining in s at the beginning of each iteration.

38 Chapter 4. Data Reification and Atomicity Refinement

only multiples of i from s, if anything. The second conjunct of the guarantee condition
admits that REM may modify s and if so, will make it smaller.

The potential problem with an implementation of this specification is one of updating
a large data structure concurrently. In order to remove elements from s, a REM pro-
cess must read the current value of the s, modify it and then write the value back to
memory. If two processes begin these actions at the same time, then the change made
by one process may be overwritten. This is akin to parallel assignment example given
in Section 1.2, where x ← x + 1 ‖ x ← x + 1 does not necessarily increase the value of
x by 2.

In order to combat this possibility, it would be necessary to defensively lock s for every
update by every process. The locking of a large data structure may require REM
processes to wait. This greatly reduces the efficiency of the concurrent implementation.
What is needed is a way to refine this atomicity, such that REM processes can execute
concurrently without waiting. Previous insights point to data representation holding
the key.

The solution is based on the observation that all that a REM process really need to
do is ‘cross out’ values from the set. While multiple REM processes may attempt to
remove same value (e.g. REM (2) and REM (3) will both attempt to remove 6), it is
inconsequential whether the value is still in the set at the time, the result is the same.
Therefore, the solution is to represent the large set s as a ‘bit mask’ (a map from natural
numbers to boolean values), where the domain of the mask is equal to s.

This is reflected in the new specification for REM -Mask in Figure 4.6. The result after
all REM -Mask(i) processes have completed is given by dom (m � true). While the
specification may look somewhat complex, s has simply been replaced dom (m � true).
The post-condition ensures that the multiples of i are ‘removed’ (set to false) and the
guarantee-condition ensures that only multiples of i are removed.

REM -Mask(i :N1)
rd s:N1-set
wr m:N1

m−→ B

pre domm = s
rely domm = dom↼−m ∧ dom (m � true) ⊆ dom (↼−m � true)

guar domm = dom↼−m ∧ (dom (↼−m � true)− dom (m � true)) ⊆ mults(i) ∧
dom (m � true) ⊆ dom (↼−m � true)

post dom (m � true) ∩mults(i) = { }

Figure 4.6: Specification of REM -Mask

It is hoped that on a real machine the setting of a single bit to 0 can be carried out
(reasonably) safely. The author concedes that modern machines do not address single
bits, but words (potentially consisting of large numbers of bits). This problem could be
overcome by locking a word (which is an improvement over locking the entirety of s) or
implementing each bit in the mask as a word.

Again, it is clear from this example that the choice of data representation is crucial in
realising rely-guarantee conditions and permitting enough interference so as to gain the
benefit of parallelisation. The atomic definition of REM permitted careful consideration
of the correct post- and guarantee-conditions for the REM process, while postponing the
requirement to consider concurrent updates to the set. By finding a ‘correct’ data rep-

4.4 Simpson’s Four-Slot Algorithm 39

resentation, it is possible to allow multiple processes to concurrently update s, requiring
only (reasonable) assumptions about hardware.

4.4 Simpson’s Four-Slot Algorithm

Simpson’s Four-Slot is an implementation of an Asynchronous Communications Mech-
anism (ACM) [Sim90]. An ACM is a shared data structure that enables concurrent
read and write access by two6 processes asynchronously. Simpson’s Four-Slot (hereafter
referred to simply as a ‘four-slot’) specifically deals with two processes — a single writer
and a single reader. The writer and reader consist of a single operation, executed one
or more times in succession. The diagram in Figure 4.7 illustrates the conceptual view
of a single writer, single reader ACM.

Figure 4.7: A single writer and reader communicating via an ACM [Sim90]

4.4.1 Asynchronous Communication Mechanisms

An ACM requires that neither the writer nor reader is blocked or forced to wait at any
time while accessing the data structure. Both processes run independently (at possibly
varying speeds) and neither process is expected to take account of the other; there is no
synchronisation between processes. In addition, each value being written to the ACM
may be considered to be ‘large’, consisting of multiple bytes.

The wait-free requirement of an ACM stems from the areas in which they are deployed.
The aviation industry is one example, in which the writer may be a flight sensor and
the reader a flight controller. Due to the speed of modern aircraft, it is paramount that
the controller is not delayed when required to act. Due to the independent operation of
the reader and writer, it is entirely possibly for multiple reads to occur during a write
operation. Conversely, it is possible for multiple writes to occur during a read operation.

While an ACM must not block processes, it must also maintain data integrity. The
consequences of reading ‘incorrect’ data during flight are obvious. The two key data
integrity properties of an ACM are:

• No bad data: the reader must only read complete data that has been written by
the writer.

• No old data: the reader must access the most recent data written and in particular
it must not read any data older than it has read before.

The second property is referred to as ‘freshness’. Because multiple writes may occur
during a single read operation, it is not necessary for the reader to see all data written.
The data that is read however must be read in the order it was written. When a read

6While only single writer, single reader ACMs are considered in this thesis, mechanisms with n
readers are possible [BP89a].

40 Chapter 4. Data Reification and Atomicity Refinement

operation completes it will return a value. Any values written before this value then
become ‘old’ and must not be returned by subsequent reads. In addition, because the
processes are unsynchronised and the writer may be idle, it is acceptable for the reader
to return the same value multiple times.

(a) Non-interfering access to an ACM

(b) A reader accessing an ACM three times in quick succession

(c) A read overlaps with a write. The new value is not available until the end of the
write operation and should not be returned by the reader

(d) A read occurs within a single write. Again, the reader should not return the new
value

(e) Two writes occur within a single read. The first read access is permitted to return
any of the three values written. The second access must return the third value written

Figure 4.8: Possible interactions of write and read operations in an ACM

Figure 4.8 presents a visual representation of some possible valid executions of an ACM.
The horizontal line represents time, increasing from left to right. The grey boxes indicate
access by the writer or reader (above and below the line, respectively). Each access takes
time to complete, represented by the width of the grey box. Between boxes a process is
idle (or otherwise engaged) and is not accessing the ACM. For example, in Figure 4.8a,
the writer and reader both access the ACM twice. Actual modification of the data
structure within the ACM may occur at any time during an access.

In Figure 4.8a, both processes access the ACM but the operations do not overlap.
This case happens to mimic atomic access to a shared data structure. Similarly, in
Figure 4.8b, no operations overlap. It also shows the potential differences in speed
between the writer and reader.

Figure 4.8c shows a write operation beginning during a read operation. The value
written during the read operation should not be marked ‘fresh’ (and be available to the
reader) until the write operation has completed, hence the read operation should return
the first value written. The same is true of Figure 4.8d, in which a read operation is
entirely contained within a write operation. The first read operation should return a
previous value. The second read operation however must return the new value written.

The final case in Figure 4.8e is the most interesting. Two write operations complete

4.4 Simpson’s Four-Slot Algorithm 41

while the reader is active. In this case read operation is permitted to to return any of the
three values written. The subsequent read must return the third value. Capturing these
subtle properties in a specification is handled in detail Chapter 8, which also includes
discussions of other work in the area of the four-slot.

4.4.2 Multiple Slots

If a writer and a reader are to access a shared data structure asynchronously and without
creating bad data, it should be obvious that a single memory location is insufficient.
There is no way to ensure that read and write operations will not clash. One method
of avoiding clashes is to introduce multiple locations, or ‘slots’, in which data can be
stored. Control variables are required to allow the writer and reader to decide which
slot to access. These variables are then updated as new data is written. Much like
the SIEVE example, these ACMs rely on the fact that control bits can be updated
atomically [Sim90].

The external view of an ACM is of a one-slot, with a single shared data structure
accessed by both processes (as in Figure 4.7). In an ACM which contained an indefinite
buffer, the writer could always find a new location in which to write a value, such that
reader would never be accessing that location concurrently. The ingenuity of Simpson’s
data representation is to show that four slots are sufficient in order to meet the data
integrity and freshness requirements. The algorithm also requires four control variables.

Before explaining the four-slot algorithm, it is useful to understand why two- and three-
slot algorithms are insufficient7 to achieve the data integrity properties given above. In
doing so, the cleverness of Simpson’s design should become clear. Once the need for
four slots is understood, the intuition behind the algorithm is revealed and the details
of the code are straightforward, consisting of a mere eight actions (lines of code).

The inadequacies of the two- and three-slot algorithms are explained in [Sim90, Hen05],
which form the basis of the descriptions given below. The work presented in the latter
includes a taxonomy describing various types of ACM with increasing guarantees of
data integrity. These distinctions are however beyond the scope of this thesis. A proof
showing the requirement for a minimum of four slots is given in [BP89b].

4.4.3 Two- and Three-Slots

In a two-slot ACM, a second location is added so that the writer and reader can be
active simultaneously (Figure 4.9a). Two single bit control variables are used, slot-w
and slot-r . Each process updates a control variable (slot-w by the writer and slot-r
by the reader) to indicate the slot that it most recently accessed. The read operation
simply accesses the slot indicated by slot-w and returns this value. The reader must
then update slot-r . The writer performs in a similar way, but uses the value of slot-r
to avoid the reader, choosing the other slot in which to write the new value.

Generally, the two-slot allows the writer and reader to avoid each other such that the
reader never attempts to read a slot that the writer is currently accessing. The problem
with the two-slot mechanism arises in the case where a reader is overtaken by the writer
and the writer does not have another choice of slot [Sim90]. A two-slot mechanism will
work if “the interval between successive writes is always greater than the duration of any

7Perhaps it is more accurate to state that the assumptions under which two- and three-slots are
sufficient are unrealistic.

42 Chapter 4. Data Reification and Atomicity Refinement

(a) Two slot data structure (b) Three-slot data structure

Figure 4.9: Visual representation of two- and three-slot ACMs

read” [Sim90] (p. 21), however there are applications in which this assumption cannot
be made.

A three-slot ACM uses the same two control variables, but adds a third slot into which
data can be written (Figure 4.9b). The algorithm differs from the two-slot in that
the writer performs an extra step in selecting a slot to write into. Again, the writer
attempts to avoid the slot currently being accessed by the reader (slot-r). In addition,
it also avoids the slot into which it last wrote (slot-w), using the third slot to write the
value into. It then updates slot-w .

The third slot appears to overcome the problems of the two-slot mechanism, because
the writer always has a third option when choosing a slot. There is a subtle problem
with the three-slot however, in which the writer and reader can end up accessing the
same slot. The three-slot relies on the ability to update control variables atomically,
which Simpson notes is unrealistic. If assignments are not atomic, it takes time to read
a value and to perform an assignment8. A failure involving this problem is illustrated
in Figure 4.10. In this example, the reader chooses to read slot-w , but before it updates
slot-r (due to the time taken to perform the read and assignment), the writer will choose
to avoid the slot currently pointed to by slot-r (i.e. slot-w). Thus both processes will
be accessing the same slot. Again, this problem can be overcome if the interval between
writes is always greater than read duration, however a solution that removes the need
for this assumption is desirable.

Figure 4.10: Non-atomic assignment to control variables

4.4.4 Four-Slots

By adding a fourth slot, Simpson is able to overcome the limitations of the two- and
three-slot mechanisms. The four-slot algorithm presented in [Sim90] allows a single
writer and single reader to communicate in a fully asynchronous, wait-free manner. As
shown in Figure 4.11, the structure of the four-slot is logically separated into two pairs
of two slots. Four control variables are also required to control access to the four-slot,
where each of the four locations is identified by a two-bit value. The values of slot-w and
slot-r are replaced with pair -w and pair -r , indicating the pairs most recently accessed

8Simpson represents this by introducing a temporary variable. Further discussion of this problem is
given in Appendix C.3.3.

4.4 Simpson’s Four-Slot Algorithm 43

by the writer and reader. The variable slot-w now becomes a two-bit array indicating
the slot in each pair that contains the newest value.

Figure 4.11: Logical structure of the four-slot, here divided horizontally into two pairs,
each divided vertically into two slots

The reader proceeds in much the same way as in the two- and three-slot mechanisms. It
reads the pair indicated by pair -w and uses slot-w to select the newer value in that pair.
As before, the writer selects the pair that the reader is not accessing. In addition, it also
selects the older of the two slots within that pair to write to (in a similar manner to the
three-slot mechanism). It then performs the actual write before updating pair -w and
slot-w . During a typical run, the writer and reader should end up in different pairs. It
is still possible for the writer and reader to access the same pair however, if the update
to pair -r does not occur atomically and the writer overtakes the reader (the scenario
illustrated in Figure 4.10). This can be captured in a specification by having the reader
store the value of pair -w in a temporary variable, then updating pair -r . This permits
discussion of the reader being preempted (and results in a fifth control variable and
ninth line of code). This is explained further in Appendix C (Section C.3.3).

Even if both processes access the same pair, the fact that the reader accesses the newer
value and the writer accesses the older, means that reader will never select the slot that
is currently being written. Simpson calls this an orthogonal avoidance strategy [Sim90].
Note that the four-slot is not a circular buffer, because writes might not proceed through
each of of the locations in turn. In addition, the reader might not follow the writer
strictly in order. For example, if the reader is slow and accesses a single pair for a long
time, the writer will continue writing values to alternate slots in the other pair.

Code for a possible implementation of the four-slot algorithm is given in Figure 4.12. The
author would generally wish to avoid presenting code before a specification (for those
who wish to agree, please go9 to Chapter 8), but the four-slot is a difficult problem and
the code may help the reader to see how delicate correctness is. Note that the operations
define local variables to hold pair (wp-w , rp-r) and slot (ws-w , rs-r) information and
that data-w holds the actual data. The order of slot selection and update of control
variables is important. The write operation only updates pair -w and slot-w after the
value has been written, but the reader updates pair -r before the value is read.

Far greater detail than presented here is required to prove that the four-slot behaves
correctly. Various proofs exist, for example [Hen05], as well as the novel development
presented in Chapter 8. What should be clear from the brief description here is the
intuition behind the algorithm and the ‘clever’ representation that allows the mecha-
nism to work. To the reader and writer, the four-slot appears as a single shared data

9Go directly to Chapter 8, do not pass go, do not collect £200.

44 Chapter 4. Data Reification and Atomicity Refinement

Write(v :Value)
wr data-w , pair -w , slot-w ,wp-w ,ws-w
rd pair -r

wp-w ← ρ(pair -r);
ws-w ← ρ(slot-w(wp-w));
data-w(wp-w ,ws-w) ← v ;
slot-w(wp-w) ← ws-w ;
pair -w ← wp-w

Read() r :Value
wr pair -r , rp-r , rs-r
rd data-w , pair -w , slot-w
rp-r ← pair -w ;
pair -r ← rp-r ;
rs-r ← slot-w(rp-r)
r ← data-w(rp-r , rs-r);

Figure 4.12: Code for an implementation of the four-slot

structure (a one-slot mechanism). The implementation uses four slots and requires four
control variables in order to guarantee data integrity. Note that the fifth control variable
mentioned previously is included in the code in Figure 4.12 (as rp-r).

The four-slot reiterates the link between data reification and atomicity refinement. It
clearly represents an excellent example for treatment with atomicity refinement, in which
the one-slot specification is written with atomic operations and reified into a concurrent
specification, targeting Simpson’s representation. This is undertaken in Chapter 8.

4.5 Summary

This chapter explored the important link between data reification and atomicity refine-
ment using three examples. The FINDP and SIEVE examples were presented with spec-
ifications and rely-guarantee conditions in VDM. Both examples show how the ‘clever’
data representation in each example (top in the case of FINDP and m in SIEVE) is
required to allow atomicity refinement to be performed.

These two examples illustrate how the ‘fiction of atomicity’ can benefit the development
of parallel programs by postponing the need to consider difficult interleaving problems.
This fiction is typically presented through rely conditions, consisting of useful (but
unrealistic) assumptions about the environment. Data reification seeks to refine these
assumptions into a realistic, implementable form. Data representation is often the key
to achieving this goal.

This chapter also describes Asynchronous Communication Mechanisms (ACM) and the
third example, Simpson’s Four-Slot. The goal of an ACM and the details of Simpson’s
algorithm were addressed and the link drawn between the data representation (the four
slots) and the ability to correctly implement an ACM.

Chapter 5

Separation Logic

5.1 Overview

This chapter discusses separation logic [Rey02], which is a “program logic with a built-in
notion of resource” [Vaf07]. There are various versions of separation logic, however this
resource is most commonly thought of as a heap.

Separation logic is good at describing concurrent programs where there is no interference.
The core of separation logic is the separating conjunction, which (when combined with
the notion of an explicit heap) allows assertions to be made about parts of the heap
being disjoint. In turn, this allows separation logic to describe disjoint concurrency.
In addition, there are versions of separation logic that describe interference between
threads, which are discussed below.

This chapter also discusses an extension to separation logic called RGSep [Vaf07]. RGSep
attempts to harness the strengths of separation logic (in reasoning about disjoint con-
currency) and rely-guarantee conditions [Jon83a] (in reasoning about interference) in a
single approach. The work on RGSep served as inspiration for the work presented in
Chapter 6, which is an attempt to simplify rely-guarantee in VDM [Jon90] by harnessing
notions of disjoint concurrency.

5.2 Separation Logic

Separation logic grew from the logic of bunched implications (BI) [OP99]. It is used to
reason at a low-level about highly concurrent data structures and to verify concurrent
algorithms implemented as pointer programs. Vafeiadis describes RGSep as “parallel
programming with pointer operations” [VP07]. As a program logic, separation logic is
typically described with reference to a simple, imperative programming language. The
specifics of the language are given in Section 5.2.1, which also includes details of the
various heap assertions available within separation logic.

In [Vaf07], Vafeiadis describes the various versions of separation logic with respect to
an abstract separation logic [COY07] that contains an abstract shared resource. The
most common “instantiation” of this resource is a heap. This standard version of sepa-
ration logic cannot deal with interference between threads, so other instantiations have
been proposed which are better equipped to deal with thread interaction. These in-
clude permissions [BCOP05] (allowing read-sharing between threads) and concurrent
separation logic [O’H07]. Concurrent separation logic introduces resource invariants. A

45

46 Chapter 5. Separation Logic

resource invariant must be true at all times, except when a process is within an atomic
block [Vaf07].

Resource invariants are somewhat limiting [VP07]. RGSep is an extension of separa-
tion logic that includes a notion of rely-guarantee reasoning as a way to reason about
interference, the idea is that the strengths of both approaches can be harnessed. RGSep
is discussed in more detail in Section 5.3. Deny-Guarantee Reasoning [DFPV09] is an-
other, more recent attempt to combine rely-guarantee reasoning with separation logic,
which is able to deal with forking and joining of threads. Deny-guarantee reasoning is
not considered further within this thesis.

In [Hoa72b], Hoare discusses the notion of static disjoint concurrency for a set of pro-
cesses that access a shared memory store (a heap). If each process in the set accesses an
“entirely disjoint set of variables”, then all processes in the set can be run safely in par-
allel as there is no possibility of interference. Hoare then goes on to describe controlling
concurrent access to a shared resource using critical regions [Hoa72b].

Various terms exist for describing disjoint sets of variables. One could say that the
alphabet of two processes is disjoint. The term footprint is used in [Rey02]. Chapter 6
uses the term read-write frame in the context of a VDM operation. Whatever the
terminology, the key point is that these footprints are static — they are defined when
program is written and do not change at runtime. As Hoare points out, a compiler could
be written that verifies statically that the footprints of a set of processes are disjoint.

The notion of a shared heap in separation logic permits descriptions of explicit memory
allocation and deallocation. Separation logic can deal with programs whose memory
requirements change over time (for example, processes acquiring and releasing locks)
and therefore is able to describe dynamic disjoint concurrency. It is also possible to
consider notions of ownership and ownership transfer in this context.

The main innovation of separation logic is the introduction of a novel logical operator,
the separating conjunction (see Section 5.2.2). An important part of the ideology of
separation logic is to reason about small, local specifications. These local specifications
are then combined to form larger specifications in a modular way. Separation logic is
therefore compositional1, one of the goals for usable formal methods discussed at the
beginning of this thesis (Section 1.3.2). This approach is facilitated by the separating
conjunction and the frame rule (see Section 5.2.3). The separating conjunction is also
used to define a rule for disjoint parallelism (see Section 5.2.4).

5.2.1 The Language of Separation Logic

In [Vaf07], Vafeiadis uses a language called GPPL (Generic Parallel Programming Lan-
guage) to present the concepts of separation logic and RGSep. Much of this language
will be familiar, however it contains new expressions (and hence statements) that make
reference to the heap. It is useful to be aware of these in order to appreciate the re-
mainder of this chapter. The language is described in [Rey02] as an extension of the
language axiomatized by Hoare in [Hoa69].

Familiar statements in the language include the empty command, skip; sequential com-
position, S1 ; S2; non-deterministic choice, S1 + S2; looping, S

∗ (the reflexive and tran-
sitive closure of a statement); an atomic command, 〈S 〉; parallel composition, S1 ‖ S2;
and variable assignment, x := e.

1Further discussion of the compositionality of separation logic is given in Section 5.4

5.2 Separation Logic 47

Familiar expressions include program variables, x; logical variables, x ; constants, n;
and arithmetic operators, e.g. e + e. Note that expressions with lower case letters are
pure in that they do not reference the heap. Vafeiadis uses upper case letters to denote
expressions which may dereference memory locations. The examples in this chapter use
only lowercase (pure) expressions.

The expression, [e], accesses the memory location pointed to by e. The statements in the
language therefore also include reading from memory, x := [e]; and writing to memory,
[e] := e; as well as explicit memory allocation, cons(e1, ..., en) (which allocates n new
memory locations); and memory deallocation, dispose(e). Typically, the set of positive
natural integers is used to refer to memory locations, providing a convenient way of
reasoning about pointer programs (by allowing pointer arithmetic, for example) [Vaf07].

The assertions of classical propositional logic are valid in separation logic. In addition,
assertions can be made about the heap. For example, that the heap is empty, emp;
or that the heap contains a single cell, e �→ e ′. A shorthand notation is defined for
describing multiple adjacent cells, e �→ (e1, . . . , en) (the definition of which uses the
separating conjunction, see Section 5.2.2 below).

As with VDM, an underscore is used in place of an expression whose value is unimpor-
tant. This is useful in order to assert that a memory location exists, for example, when
writing to memory. The following axiom states that the memory location at e exists
before an assignment (although its value is unimportant) and that after an assignment,
its value will be e ′ [Vaf07].

{e �→ } [e] := e ′ {e �→ e ′}

5.2.2 Separating Conjunction

The main innovation of separation logic is the introduction of a novel logical operator,
the separating conjunction, ∗2. This operation asserts that parts of the heap are com-
pletely disjoint. For example, P ∗ Q states that “P and Q hold for disjoint portions
of addressable memory.” [Rey02]. The separating conjunction is a heap assertion (in
addition to those outlined in the previous section). A simple example is that of two
disjoint memory cells.

{x �→ ∗ y �→ }
The shorthand notation for describing a contiguous adjacent cells is given below; the
definition shows the pointer arithmetic that is (for better or worse) possible within
separation logic.

e �→ (e1, . . . , en) � e �→ e1 ∗ (e + 1) �→ e2 ∗ . . . ∗ (e + n − 1) �→ en

The separating conjunction is used to introduce two other heap assertions. These are
separating implication (or the magic wand), P −∗Q ; and septraction (or the existential
magic wand), P −� Q . Separating implication describes additions to the current heap
in that is asserts that Q holds for all heaps formed by extending a heap for which P is
true [IO01] [Vaf07]. Septraction is the dual of separating implication and means that
“the heap can be extended with a state satisfying P and the extended state satisfies
Q .” [VP07]. A summary of the pertinent assertions which are available (in addition to
those of classical propositional logic) in separation logic is given in Figure 5.1.

2pronounced as “star”.

48 Chapter 5. Separation Logic

P ,Q ::= emp | e �→ e ′ | P ∗Q | P −∗Q | P −� Q

Figure 5.1: Heap assertions in separation logic [VP07] [Vaf07]

5.2.3 The Frame Rule

As mentioned above, an important part of separation logic is to allow small, local spec-
ifications to be combined into larger specifications. In classical propositional logic, this
is facilitated by the “rule of constancy”, a formulation3 of which is given in Figure 5.2.
This rule allows one to infer that for a standard Hoare triple, {P} S {Q}, it is possible
to conclude that a second conjunct, R, is true both before and after the command,
assuming S doesn’t modify variables that are free in R.

{P} S {Q}
{P ∧ R} S {Q ∧ R}

Figure 5.2: Rule of constancy; adapted from [Rey02]

In [Rey02], Reynold’s states that most rules of traditional Hoare logic hold in separa-
tion logic, but that this is not true of the rule of constancy. Consider the example in
Figure 5.3, in which a memory location, x, is assigned the value, 4. In the pre-condition,
x must be defined (though it’s value is unimportant) and in the post-condition its value
has been updated. In addition, a memory location, y, has the same value in both the
pre- and post-condition because it is unaffected by the assignment to x. The conclusion
of this example does not hold in separation logic however, because of the possibility of
memory aliasing, i.e. x = y.

{x �→ } x := 4 {x �→ 4}
{x �→ ∧ y �→ 3} x := 4 {x �→ 4 ∧ y �→ 3}

Figure 5.3: An invalid assertion in separation logic; adapted from [Rey02]

The solution to this problem, proposed by O’Hearn, is to introduce the frame rule.
This is given in Figure 5.4. The frame rule is similar to the rule of constancy, except
it replaces logical conjunction with separating conjunction. The frame rule states that
only the part of the heap affected by the command, S , may change and that a separate
part of the heap, R, remains constant (assuming that no variables in R are modified
by S). The frame rule restores the ability to combine local specifications (concerning
small, local heaps) into larger specifications with a shared heap.

5.2.4 Parallel Composition Rule

The separating conjunction can be used to form the parallel composition (par) rule of
separation logic. This rule captures the intuition discussed above that if two statements
have disjoint footprints, then they can be run safely in parallel. This is given in Fig-
ure 5.5. This rule requires that S1 does not modify variables in S2 (and vice versa), that

3Note that the use of ‘adapted from ...’ in these figures denotes modification of the presentation, not
content.

5.3 RGSep 49

{P} S {Q}
{P ∗ R} S {Q ∗R}

Figure 5.4: The frame rule of separation logic; adapted from [Rey02]

is, the statements have disjoint footprints. The result is simply the combination of the
post-conditions, Q1 ∧Q2.

{P1} S1 {Q1}
{P2} S2 {Q2}
{P1 ∗ P2} S1 ‖ S2 {Q1 ∗Q2}

Figure 5.5: The par rule of separation logic; adapted from [VP07]

If the pre- and post-condition of a statement have different footprints, this can indi-
cate a change of ownership [VP07]. In this way separation logic describes dynamic
disjoint concurrency using the notion of the explicit heap. A variable appearing in the
post-condition of a statement (but not the pre-condition) would indicate acquisition of
ownership of a variable. Conversely, a variable disappearing in the post-condition would
indicate a relinquishing of ownership. This change of ownership can be used to encode
programming features such as acquiring and releasing locks.

5.3 RGSep

RGSep is an attempt to combine the useful properties of separation logic and rely-
guarantee reasoning into a single approach. While concurrent separation logic allows
resource invariants to deal with interference, this approach can be limiting because it
is difficult to capture “the relational nature of interference” [VP07]. Rely-guarantee
reasoning is strong in capturing the notion of interference, therefore a “marriage” with
separation logic would seem like a good idea.

RGSep shares much of the style and ideology of other versions of separation logic.
It can be catagorised as an attempt to add rely-guarantee reasoning to a separation
logic framework (as opposed to incorporating separation logic ideas into an existing
rely-guarantee framework such as VDM). As such, RGSep lends itself to dealing (at a
low-level) with difficult concurrent algorithms through reasoning directly about memory
locations. Note that another “marriage” of separation logic and rely-guarantee, called
SAGL, was developed simultaneously by another team [FFS07]. Both parties have since
collaborated on further work, e.g. [DFPV09].

RGSep separates program state into shared and local components. The local state is
owned by a single process and is not subject to interference. RGSep can deal with the
disjoint concurrency between local states in the manner described above (for separation
logic). The boundaries between local and shared state in RGSep are not fixed [VP07].
Parts of the heap can be moved from the local state to the shared state. Similarly,
parts of the shared state can be moved into the local state. This represents a change of
ownership.

Variables within the shared state are subject to interference. These variables are not
owned by one particular process and can therefore be modified by any process. Rely-

50 Chapter 5. Separation Logic

guarantee conditions within RGSep are used to reason about this interference by de-
scribing updates to the shared state.

The approach of RGSep is exemplified by the parallel composition rule, given in Fig-
ure 5.6. Note that pre-post conditions are of the combined (shared and local) state,
whereas the rely-guarantee conditions are defined over the shared state. The separat-
ing conjunction in the post-conditions separates the combined state into three compo-
nents, l1, l2, s (i.e. the local state is separated into two halves, but the shared state is
not) [VP07].

� S1 sat (P1,R ∪G2,G1,Q1)
� S2 sat (P2,R ∪G1,G2,Q2)

� S1 ‖ S2 sat (P1 ∗ P2,R,G1 ∪G2,Q1 ∗Q2)

Figure 5.6: The parallel composition rule of RGSep; adapted from [VP07]

If the shared state is empty, then the rule behaves like the standard parallel composition
rule of separation logic (see Figure 5.5). If the local state is empty, the rule behaves like
the standard rely-guarantee rule presented in Chapter 3 (Figure 3.2). This matches the
intuition that separation logic is used to deal with the instances of disjoint concurrency
where there can be no interference (i.e. between the local states of each process) and
that rely-guarantee conditions handle the interference that can arise within the shared
state.

Rely-guarantee within RGSep is described in terms of actions. An action, P � Q ,
describes a change to the shared state. In this instance, P and Q are heap assertions
about the changes that occur to the shared state during this action. The set of all
actions represents the total amount of interference possible within a program [VP07].
As with rely-guarantee reasoning, the reflexive and transitive closure of the union of the
semantics of each action in the set of all actions defines the semantics of the interference
within the program [VP07].

A supporting example for RGSep given in [VP07] is that of a fine-grained concurrent
list. The list is an implementation of a linked list where each node can be locked
individually, allowing more than one process to access the list concurrently. A process
can access the list by acquiring the lock for the head node, then acquiring the lock for
the next node, before releasing the lock on the first (as such processes traverse the list
in a hand-over-hand fashion).

(x �→ 0) ∗ list(y)� x �→ 1 (Acq)
x �→ 1� (x �→ 0) ∗ list(y) (Rel)

Figure 5.7: RGSep actions for locking and unlocking a list node; adapted from [VP07]

The acquiring and releasing of locks is defined with (rely-guarantee) actions, because
the shared state is affected. Figure 5.7 contains definitions for the acquire, (Acq), and
release, (Rel), actions. In these definitions, list(y) is a list node and access to this node
is controlled by a lock bit, x. In order to lock the node (Acq), the lock bit must have
the value 0 and the node must reside in the shared state. The result of acquiring the
lock (on the right hand side of the arrow) is that the value of the lock bit is set to 1 and
that the list node no longer resides in the shared state.

5.4 Evaluation of Separation Logic Methods 51

After acquisition of the lock, the node resides in the local state of the process that
acquired the lock. The node will not be subject to interference until it is released. The
action of releasing the lock (Rel) is the reverse of acquisition — initially the lock bit has
the value 1 and the node does not reside in the shared state. After the action, the node
is available in the shared state and the lock bit has the value 0.

Note that the differing footprints of (the pre- and post-conditions of) these actions indi-
cate the change in ownership; in this case, of the list node. Note also that these minimal
definitions of locking and unlocking nodes can be incorporated into the specification of
the list data structure as a whole using the frame rule.

5.4 Evaluation of Separation Logic Methods

Separation logic is good at describing concurrent programs where there is no interference.
The core of separation logic is the separating conjunction, which (when combined with
the notion of an explicit heap) allows assertions to be made about parts of the heap being
disjoint. Separation logic lends itself well to dealing with difficult concurrent algorithms
described with pointer operations.

Standard separation logic cannot easily describe interference between threads. Versions
of separation logic exist that can describe thread interaction and therefore interference,
however the solutions (such as resource invariants in concurrent separation logic) are
far from ideal. RGSep extends separation logic with rely-guarantee conditions, which
are well suited to describing interference. RGSep divides the state in local and shared
components.

The major benefit of this “marriage” is that separation logic is used to describe the
local state (where no interference can occur) and rely-guarantee reasoning is used to
describe the shared state (where interference is possible). This reduces the need to
write rely-guarantee conditions and the necessity to describe whole-state updates. As
described in Chapter 3, the need to describe whole state updates is a weakness of
current rely-guarantee reasoning (see Section 3.5.2). In addition, both separation logic
and RGSep can capture the dynamic boundaries of concurrency in a way that rely-
guarantee reasoning in VDM cannot.

5.4.1 Potential Disadvantages

From the author’s point of view, the main drawback of separation logic (and in turn
RGSep) is the fact that they comprise a program logic. As such, it is in their nature to
deal with concurrent problems at the level of heaps, locks and pointer arithmetic. While
both methods successfully demonstrate the correctness of many complex, concurrent
algorithms, what may not be apparent from these developments is how these algorithms
themselves were devised.

That is not to say that showing the correctness of difficult algorithms is unimportant.
There is an argument to say that by incorporating implementations of these algorithms
within a library of formally proved software, the need to understand the formal devel-
opment is reduced. The author acknowledges in Chapter 1 that this is a legitimate
approach. A counterargument is that understandable formal developments are useful in
and of themselves. The author feels that developments from the separation logic area
lack the layers of abstraction that are typically present in rely-guarantee developments

52 Chapter 5. Separation Logic

(in VDM), for example, those presented in Chapter 44.

As discussed in Chapter 1, it is the author’s position that these abstraction layers make
for understandable and tractable developments, which clearly record decisions made
by designers. In turn, this design information can be referred to at a later stage, for
example, during the actual coding process. Previous developments can also inform new
developments. It is in this way that the body of work on designing concurrent systems
will increase, in order that better systems can be designed in the future.

On the compositionality of separation logic, the approach is compositional in the sense
that specifications can be composed and that the proof of an entire program can be
formed from proofs of its subcomponents. The author feels that the strength of rely-
guarantee reasoning in VDM however lies in decomposition. The author is unsure
whether the separating conjunction offers a way to decompose specifications and be-
lieves this to be an open question.

5.4.2 Taking Inspiration from RGSep

The notion of disjoint concurrency of separation logic and RGSep reduces the need to
consider interference and therefore the need to write rely-guarantee conditions. This
notion is based on the footprints of processes being disjoint. The externals clause of
an operation in VDM defines the variables which the operation can read and write.
As such, the footprint of the operation can be precisely determined. These read-write
frames offer a way to introduce a notion of static disjoint concurrency to rely-guarantee
reasoning in VDM.

Chapter 6 shows how these read-write frames can reduce the need to write rely-conditions
in situations where no interference can arise. While this is not as powerful a notion as the
dynamic disjoint concurrency of separation logic or RGSep, it is nevertheless a valuable
contribution to simplifying the process of developing specification with rely-guarantee
conditions in VDM. Chapter 8 presents a novel development of Simpson’s Four-Slot,
where the work in Chapter 6 is shown to be a useful addition to rely-guarantee reasoning.

5.5 Summary

This chapter discussed separation logic and RGSep. Separation logic has a powerful
notion of dynamic disjoint concurrency, which can be used to reduce the need to consider
interference. This is facilitated by the separating conjunction, ∗, from which is derived
the frame rule that allows local definitions to be extended and combined to form larger
specifications.

It is however difficult to describe interference with separation logic. RGSep is an ex-
tension of separation logic that includes notions of rely-guarantee reasoning to address
this issue. Separation logic is used to carve the state into (disjoint) local and shared
components; rely-guarantee reasoning is used to describe changes to the shared state
(interference).

RGSep inspired the work presented in Chapter 6, which is an attempt to incorporate
the strengths of separation logic into traditional rely-guarantee reasoning in VDM. The

4The author freely admits that the low-level nature of separation logic developments may not nec-
essarily be inherent to separation logic itself. It may be due to the fact that no one has attempted to
describe levels of abstraction in separation logic developments. The author is currently unaware of any
research into this area.

5.5 Summary 53

main aim is to reduce the need to consider interference using a the notion of disjoint
concurrency. In turn, this simplifies the process of development and the complexity of
the specifications produced and hopefully leads to a more usable formal method.

54

Chapter 6

Simplifying Rely-Guarantee with
Frames

6.1 Overview

This chapter considers the concept of using the read-write frames of VDM [Jon90] op-
erations to reduce the complexity of rely-guarantee conditions [Jon81]. By allowing
operations to declare exclusive write access to shared variables, the need to write rely-
conditions is reduced (because these variables are not subject to interference). The
author argues that this reduces the complexity of the resulting specifications, making
them easier to write and comprehend. In addition, proof effort is reduced (effort shifts
from formal proofs to static checks).

The chapter introduces read-write frames informally, including a look at the FINDP
example (see Chapter 4). Theorems are also included which tie this work in with previous
work on rely-guarantee conditions in VDM. In addition, the author also considers further
developments which may be possible with read-write frames.

The argument that the use of read-write frames reduces the complexity of VDM spec-
ifications is further supported by the work in Chapter 8, where it is shown that the
number of rely-guarantee conditions required to describe a complex concurrent specifi-
cation (Simpson’s Four-Slot [Sim90]) is greatly reduced by the use of frames.

Note that Bicarregui uses read-write frames in [Bic95] to reason about non-interference
between suboperations as an aid to compositionality and refinement. The work does
not however directly consider its application to (the simplification of) rely-guarantee
conditions.

6.2 Disjoint Concurrency and Rely-Guarantee

Chapter 5 discussed separation logic [Rey02], a program logic with an explicit notion of
a heap. In separation logic, a novel logical operator called the separating conjunction
permits assertions to be made about portions of the heap being disjoint. This allows
separation logic to describe parallel programs where there is no interference, because
processes can be shown to access disjoint sets of variables (memory locations). Rely-
guarantee reasoning, on the other hand, deals explicitly with programs that can interfere.

The need to consider interference led to an extension of separation logic called
RGSep [VP07]. RGSep introduces rely-guarantee reasoning to a separation logic frame-

55

56 Chapter 6. Simplifying Rely-Guarantee with Frames

work. RGSep separates the program state into local and shared components, where
the local state is owned by a single process and is not subject to interference. What
is clear from the work on RGSep is that the powerful notion of disjoint concurrency
in separation logic, facilitated by the separating conjunction, reduces the need to write
rely-guarantee conditions. Rely-guarantee conditions are only needed to describe the
interesting cases where interference can arise on the shared state.

As an extension to separation logic, RGSep is suited to describing complex algorithms
at the level of heaps and pointer operations. Although a powerful formalism, the author
argues in Chapter 5 that developments in separation logic and RGSep (currently) lack
the levels of abstraction typically present in VDM developments with traditional rely-
guarantee reasoning. The author argues in Chapter 1 that these levels of abstraction
are useful in recording design decisions and in showing why these choices were made.

As it stands, rely-guarantee reasoning in VDM does not have this notion of disjoint con-
currency. In fact, it is noted in Chapter 3 that rely-guarantee conditions must describe
changes to the whole state. This can quickly make large specifications overly complex
and both difficult to write and comprehend (see Section 3.5.2). RGSep avoids the need
to consider whole state updates because it is possible to assert (where appropriate)
that portions of the state cannot experience interference. This chapter shows that it
is possible to add notions of disjoint concurrency to rely-guarantee reasoning in VDM
and hence reduce the need to write rely-conditions where interference cannot arise. In a
sense this can be seen as adding (the key strengths of) separation logic to rely-guarantee
reasoning in VDM (at least for static ownership).

6.3 Frames in VDM

At the level of VDM operations, disjoint concurrency is possible where an operation has
exclusive write access to a subset of variables in the shared state (i.e. where there are
variables only written by a single operation). This is Hoare’s notion of static disjoint
concurrency introduced in [Hoa72b] (see Chapter 5). Intuitively, for operations that
write to different variables, these operations cannot interfere with each other (at least
not via those variables).

6.3.1 The VDM Externals Clause

In order to know that two operations access a disjoint subsets of variables, it is clearly
necessary to know which variables they can access. This information is already available
for each operation through the externals clause. An externals clause, in the simplest case,
contains the names of variables which the operation may access. An externals clause
differentiates between read-only and full write access to variables, using the keywords
rd and wr, respectively. The externals clause describes the read-write frame of an
operation (one might also say the alphabet or footprint of an operation, see Section 5.2).
The operation in Figure 6.1 declares read-only access to x , but write and read access to
y .

The declarations of rd and wr are defined in the standard for the VDM-SL nota-
tion [Int96]. In concurrent systems however, it is useful to also consider local vari-
ables [DLM+78] that are only accessed by a single process. A variable declared local
to an operation can be both written and read by the operation. In addition, there

6.3 Frames in VDM 57

OP
rd x :N
wr y :N
. . .

Figure 6.1: Externals clause of a VDM operation

is an expectation that when promoted to the shared state, local variables are not ob-
served or modified by other processes. Local variables, by definition, are not subject to
interference.

An externals declaration of this type is not part of VDM-SL as declared in [Int96],
nor does it appear in the object-oriented VDM++ extension1 [FLM+05]. The author
believes that it is useful in discussing read-write frames and disjoint concurrency and
will use the keyword local to describe this property.

It is therefore possible to consider a spectrum of externals clause declarations, with
local as the strongest (most restrictive to other operations) and rd the weakest. These
three declarations however do not permit reasoning about disjoint concurrency in the
manner described above. Consider two operations, OPa and OPb, where OPa writes to
a variable x . Consider also that OPb needs to read x in order to carry out its task (but
it does not write to it). It can be seen that there is an example of disjoint write-frames
here (with respect to x). In this specific scenario, when run concurrently, OPa will not
experience interference on x and could, in theory, omit x from its rely-condition.

How might the externals clause of OPa be declared to show this? Using local x is too
strong, because it does not allow OPb to read the value of x . On the other hand, a
declaration of wr x is too weak, because it does not rule out that OPb might change
x and hence would require a rely-condition on OPa (i.e. rely-OPa

� x = ↼−x). The
author therefore proposes that a fourth externals declaration is required, which allows
an operation to declare exclusive write access to a variable (but one which permits other
operations to read the variable). The author considers such a declaration in the next
section.

6.3.2 Declaration of Exclusive Write Access with owns wr

To allow the VDM notation to cope with static disjoint concurrency, the author intro-
duces a fourth externals declaration. The author proposes to use the keyword owns wr
to allow an operation to declare exclusive write access to a variable. It does not how-
ever restrict other operations from reading the value of the variable. A summary of
the full spectrum of externals clause declarations considered in this chapter is given in
Figure 6.2.

The use of owns wr to declare exclusive write access to a shared variable allows static
disjoint concurrency to be captured in VDM. If an operation has exclusive write access
to a variable, it cannot (by definition) experience interference on this variable from
other concurrent operations. This means that the operation does not need to include
this variable in its rely-condition as no interference can arise. So essentially, declaring
owns wr x is equivalent to conjoining x = ↼−x to the rely-condition.

1Although VDM++ handles concurrency, this is at the object-level (as opposed to the operation-
level).

58 Chapter 6. Simplifying Rely-Guarantee with Frames

local x — only this operation can read or write x .
owns wr x — only this operation can write x , but other oper-

ations may read it.
wr x — this operation can read or write x , but other op-

erations may read or write it.
rd x — this operation can read, but not write, x .

Figure 6.2: Spectrum of externals declarations

The use of owns wr can therefore reduce the number of rely-conditions within spec-
ifications. Hence the need to consider whole-state updates has been reduced. Note
however that when an operation declares owns wr x , a guarantee-condition may still
be needed to describe changes to x . The reduction of rely-guarantee conditions makes
specifications simpler and less cluttered. As such, this should make it easier for humans
to create specifications. In addition, the resulting specifications should be simpler to
read and comprehend. Perhaps most importantly, reduced numbers of rely-guarantee
conditions result in fewer elements to consider during the proof effort.

Of course, the variables declared as owns wr must be disjoint from the write frame of
the other operation(s). This can be checked simply by considering the read-write frames.
Effort has therefore moved from formal proofs to static checks, which the author would
argue is a much easier task (for both humans and tools).

6.3.3 Example: Frames and FINDP

In order to demonstrate the reduction of rely-guarantee conditions due to owns wr
(and hence the usefulness of the approach described in the previous section), this section
includes a brief re-examination of the FINDP example. FINDP is initially presented in
this thesis in Chapter 4 (with proofs in Appendix B.2). Further demonstration of the
usefulness of this approach can be seen with the development of Simpson’s Four-Slot in
Chapter 8.

Recall that the FINDP is a searching algorithm where two processes cooperate to find
the lowest index in a vector for which the element satisfies a given predicate. One process
searches the even indices and the other the odd indices. In order to communicate their
progress, the processes update a shared variable, top, recording the lowest index found
so far (for which the element satisfies the predicate). Of course, concurrent updates to
a shared variable can lead to interference. One solution (as described in Chapter 4) is
to reify top into two values, one for the even process and one for the odd. Thus the
value of top becomes min(top-e, top-o). A specification for the odd process is given in
Figure 6.3 (this appears previously as Figure 4.3).

Notice in the original specification of SEARCH -Odd that top-o is declared as wr (read-

write access). Therefore the rely-condition must include top-o =
↼−−−
top-o to ensure that

top-o is unchanged by interference. A modified SEARCH -Odd specification is given in

Figure 6.4. Here, top-o is declared with owns wr and as such, top-o =
↼−−−
top-o can be

omitted from the rely-condition.

The specification SEARCH -Even is, mutatis mutandis, the same as SEARCH -Odd .
Since owns wr has been declared, it is necessary to perform the static frame check.
Both SEARCH -Odd and SEARCH -Even only write a single variable, so the check is

6.4 Formal Treatment of Framed Operations 59

SEARCH -Odd()
rd vals:Value∗

rd top-e:N1

wr top-o:N1

pre ∀i ∈ odds(len vals) · δ(pred(vals(i)))) ∧ top-o = len vals + 1

rely vals =
↼−−
vals ∧ top-o =

↼−−−
top-o ∧ top-e ≤↼−−−

top-e

guar top-o =
↼−−−
top-o ∨ top-o <

↼−−−
top-o ∧ pred(vals(top-o))

post ∀i ∈ odds(len vals) · i ≤ top-o ⇒ ¬ pred(vals(i)))

Figure 6.3: Original specification of SEARCH -Odd

SEARCH -Odd()
rd vals:Value∗

rd top-e:N1

owns wr top-o:N1

pre ∀i ∈ odds(len vals) · δ(pred(vals(i)))) ∧ top-o = len vals + 1

rely vals =
↼−−
vals ∧�������

top-o =
↼−−−
top-o ∧ top-e ≤↼−−−

top-e

guar top-o =
↼−−−
top-o ∨ top-o <

↼−−−
top-o ∧ pred(vals(top-o))

post ∀i ∈ odds(len vals) · i ≤ top-o ⇒ ¬ pred(vals(i)))

Figure 6.4: SEARCH -Odd with simplified rely-condition (due to owns wr)

straightforward: {top-o} ∩ {top-e} = { }. Having performed this check, the correctness
of the framed version of the specifications can then be carried out in the standard way
(see Appendix B.2).

This is a simple example. Since both operations only write to a single variable, the scope
for the reduction of rely-conditions is small. It is however clear that the rely-conditions
required for this algorithm are that the vector is unchanged by interference and that
top monotonically decreases. The development of Simpson’s four-slot in Chapter 8
however demonstrates how a greater number of rely-conditions can be omitted in larger
specifications.

6.4 Formal Treatment of Framed Operations

The previous sections of the chapter discussed the simplification of rely-guarantee rea-
soning using the read-write frames of VDM operations (as described by their externals
clause). This section is intended to present the same ideas in a formal way, including
theorems which tie together this view of rely-guarantee in VDM with earlier work.

6.4.1 Frame Notation

In order to reason about read-write frames, it is useful to introduce functions which
access the frame information of an operation. VDM already includes functions to access

60 Chapter 6. Simplifying Rely-Guarantee with Frames

local-OP : Id-set � {i ∈ Id | i declared local in OP}
ownswr -OP : Id-set � {i ∈ Id | i declared ownswr in OP}
wr -OP : Id-set � {i ∈ Id | i declared wr in OP}
rd-OP : Id-set � {i ∈ Id | i declared rd in OP}

writes-OP : Id-set � ownswr -OP ∪ wr -OP
frame-OP : Id-set � local-OP ∪ ownswr -OP ∪ wr -OP ∪ rd-OP
invframe-OP : Id-set � {i ∈ Id | i /∈ writes-OP}

Figure 6.5: Functions to access read-write frame information of an operation

the various parts of an operation declaration, e.g. pre-OP , post-OP . The author there-
fore introduces four frame functions (one for each of the externals declarations included
in Figure 6.2). Each function takes an operation and returns a set of identifiers (Id-set).
In addition, three compound functions are introduced to return the write frame (both
wr and owns wr), the entire read-write frame and the “inverse frame” (variables that
the operation cannot write to) of an operation. These functions are summarised in
Figure 6.5.

6.4.2 Definitions and Theorems

First, a definition for a framed operation is required. Above, it states that a declaration
of owns wr on a set of variables allows rely-conditions to be omitted for those variables.

Definition Framed Operation

A framed operation, {P ,R} OP {G ,Q}, may have a rely-condition R which does not
reference the variables in the set ownswr -OP .

Since each identifier in the set of ownswr -OP represents permission to omit a conjunct
from the rely-condition for that identifier, it is possible to rewrite a framed opera-
tion as a standard operation by conjoining a rely-condition of the form x = ↼−x for all
x ∈ ownswr -OP . Note that in the following, �b is used to represent the set of pairs
of states satisfying a truth-valued function, b. Recall that a rely-condition is a rela-
tion between pairs of states representing steps of the program. Thus for an operation
{P ,R} OP {G ,Q}, �G is the set of pairs of states containing all possible steps that OP
can perform.

Theorem 1

A framed operation, {P ,R} OP {G ,Q}, can be rewritten as a standard rely-
guarantee specification, {P ,R′} OP ′ {G ,Q} (where OP ′ differs from OP only
in that ownswr -OP ′ = { }) by selecting R′ such that:

�R′ =
� {{(σ ∪ σi , σ

′ ∪ σi) | σi ∈ state extn(ownswr -OP)} | (σ, σ′) ∈ �R}
where

state extn: Id-set → P(Σ)
state extn(C) �
{σ ∈ Σ | dom σ = C}

6.4 Formal Treatment of Framed Operations 61

Proof

A standard rely-guarantee operation cannot declare owns wr, therefore
ownswr -OP ′ must be empty. A declaration of owns wr on a variable requires
that its value is unchanged by interference during a step of the operation and
this must be reflected in the augmented rely-condition. Thus every possible
step, (σ, σ′), in the original rely-condition �R is augmented with the identity
step on those variables in the set ownswr -OP . This ensures that these values
do not change and that OP ′ is equivalent to OP . �

The above theorem shows that framed operations are equivalent to standard operations
rely-guarantee reasoning, subject to rewriting. This approach therefore inherits the
soundness and completeness proofs published elsewhere, for example, in [dR01] and more
recently in [Col08]. Note that this definition currently assumes dom σ ∩ ownswr -OP =
{ }. There are perhaps some subtle issues that need exploring here.

It remains then to describe how framed operations can be combined in parallel. In
the previous sections, it is noted that in addition to the usual proof effort, it is also
necessary to ensure that the exclusive write-frame of the first operation is disjoint from
the write-frame of the second operation (and vice versa). This is stated in the following
theorem.

Theorem 2

Two framed operations, {P1,R1} OP1 {G1,Q1} and {P2,R2} OP2 {G2,Q2},
can be checked using standard rely-guarantee rules only when the exclusive
write-frame of OP1 is disjoint from the write-frame of OP2 (and vice versa):

ownswr -OP1 ∩ writes-OP2 = { } ∧
ownswr -OP2 ∩ writes-OP1 = { }
Proof

First, consider that each operation can be rewritten as a standard operation
by augmenting the rely-condition. It is therefore necessary to show that the
augmented portion of each rely-condition is respected by the other operation.
In addition to the implicit rely-conditions, it is possible to consider an implicit
guarantee-condition for an operation, which is the identity relation on vari-
ables which it cannot write to. An augmented guarantee-condition G ′ could be
defined as:

�G ′ =
� {{(σ ∪ σi , σ

′ ∪ σi) | σi ∈ state extn(invframe-OP)} | (σ, σ′) ∈ �G}
Using Theorem 1 and the above rewriting, the two augmented operations will
be {P1,R

′
1} OP ′

1 {G ′
1,Q1} and {P2,R

′
2} OP ′

2 {G ′
2,Q2}. For Theorem 2 to

hold, it is necessary to show that R′
1 is satisfied by G ′

2. This holds because
R′
1 includes the identity relation on those variables in ownswr -OP1 and G ′

2

includes the identity on all variables except those in (local-OP2 ∪ writes-OP2)
(see Figure 6.5). Since ownswr -OP1 ∩ writes-OP2 = { }, G ′

2 will include the
identity on ownswr -OP1 and hence can satisfy R′

1. The same argument holds
for the reverse (that R′

2 is satisfied by G ′
1). �

6.4.3 Further Applications of Framing

This chapter discusses the reduction of rely-conditions required when considering opera-
tions frames which declare exclusive write access to variables. The ability to consider the

62 Chapter 6. Simplifying Rely-Guarantee with Frames

read-write frames of operations may however have further application to the area of rely-
guarantee reasoning in VDM. This section briefly describes some of these possibilities,
with a view to investigating these in subsequent papers.

Consider that if the frames of two operations are entirely disjoint, then they can clearly
be run safely in parallel (as no interference can arise between them). As such, it is not
necessary to expend proof effort on showing that the rely-guarantee conditions hold. A
decomposition rule could therefore be defined that reflects this. Note that parallels can
be drawn with the way in which the RGSep parallel rule (see Figure 5.6) collapses into
the standard separation logic rule (see Figure 5.5) [VP07].

There is also scope to consider the inheritance of frames from parent operations during
refinement. Consider that all specifications in the FINDP example rely on the vector

being unchanged (i.e. vals =
↼−−
vals). If the top-level FINDP specification were able to

declare exclusive write access to vals however, then refined operations could be consid-
ered to inherit this declaration. Similarly, refined operations should intuitively not be
allowed to increase the strength of their externals declarations compared to their parent,
e.g. declaring write access on a variable for which the parent only has read access. These
issues should be considered.

Finally, the read-write frames of operations could be used as a guide for specification
writers, particularly within tools. For example, if a user declares read access to y for
an operation, the tool could suggest that a rely-condition may be required. Similarly,
for read-write access, both rely- and guarantee-conditions may be required; and for
exclusive write access, only a guarantee-condition may be needed.

6.5 Comparison with Separation Logic Ideas

The work on RGSep served as inspiration for the work in this chapter. It is clear from
RGSep that the ability to describe disjoint concurrency reduces the need to consider in-
terference and hence to write rely-guarantee conditions. RGSep is a powerful formalism,
however because it deals with concurrency at a low level, it lacks the levels abstraction
typically present in VDM specifications. VDM is well-suited to describing levels of ab-
straction, hence this chapter aimed to incorporate a notion of disjoint concurrency (a
strength of separation logic) into rely-guarantee reasoning in VDM.

The frames in RGSep are defined by using the separating conjunction to carve the state
into local and shared components. As such they are defined implicitly. Here, they are
defined explicitly using the externals clause of an operation. More importantly, the
notion of the explicit heap in RGSep allows these frames to be dynamic — variables
can move between the local and shared state and the boundaries of interference can
change [VP07].

The disjoint concurrency described here is static, because an operation’s frame is de-
fined at design time. The inability to describe dynamic state is still a weakness of
rely-guarantee reasoning in VDM (see Section 3.5.3). This is not necessarily always a
bad thing. The externals clause makes it very clear to a designer which variables can
be altered by interference and hence where it is is necessary to write rely-guarantee
conditions. The dual of this is that owns wr clearly indicates where it is not necessary
to write rely-guarantee conditions.

So while this approach of adding notions of disjoint concurrency to rely-guarantee rea-
soning in VDM is clearly not as powerful as in RGSep, a lot has been gained for a little

6.6 Summary 63

effort. The approach retains the style and feel of rely-guarantee reasoning in VDM,
while addressing the necessity of describing whole-state updates. The key point is that
the need to write rely-guarantee conditions is reduced, so specifications become less
complex. This means that is is easier to write specifications and focus on the impor-
tant areas where it is necessary to consider interference. This simplifies rely-guarantee
reasoning and enhances usability of the method as a whole.

6.6 Summary

This chapter discussed the addition of a notion of disjoint concurrency to rely-guarantee
reasoning in VDM. This was achieved using the read-write frames of VDM operations (as
defined by externals clauses). The ability to assert that a variable cannot be changed by
interference, by claiming ownership for an operation using owns wr, reduces the need
to write rely-conditions. In turn this leads to simpler specifications, less proof effort
and a more usable formal method. The author also considered avenues for further work
related to framed operations.

This argument is further supported by the work in Chapter 8, which presents a novel
development of Simpson’s Four-Slot. It is clear from the development that the need to
write rely-guarantee conditions is greatly reduced. Those that are required are necessary
for describing the complex interactions possible within a highly concurrent system.

64

Chapter 7

Using Procedural Ordering in
Specifications

7.1 Overview

This chapter introduces the idea of using procedural constructs within specifications to
capture the behaviour of certain concurrency problems. The author calls the resulting
specifications “phased specifications”. These specifications might otherwise require the
use of auxiliary variables. The work was undertaken in order to capture the difficult
behaviour of Asynchronous Communication Mechanisms (ACMs) [Sim90]. The idea
of phased specifications is initially presented as a way of ordering concurrent actions
in a clean, intuitive way which avoids extraneous auxiliary variables. The utility of
procedural constructs, in particular sequential composition (;) and looping (while),
within concurrent specifications is explored.

The idea of phasing in specifications is introduced with a simple example, namely the
reading of a sensor using triple modular redundancy [LV62]. The difficulties of specifying
the behaviour of ACMs is discussed in brief, however a fuller explanation of the problem
and creation of a top-level phased specification is deferred until Chapter 8 (which also
contains a full development of Simpson’s four-slot mechanism).

Finally, this chapter includes a discussion of how phased specifications might have a
deeper utility than simply ordering actions. Firstly, the author discusses how the del-
icate relationship between control variables in Simpson’s four-slot is captured by the
phased specification (including forwards pointers to the relevant sections in Chapter 8).
Secondly, the potential relationship between phases and rely-guarantee conditions is dis-
cussed. Phased specifications allow different rely-guarantee conditions to be assigned to
each phase without the need for auxiliary variables. This is seen to a certain extent in
the four-slot development in Chapter 8.

7.2 Ordering Actions in Specifications

As mentioned in Chapter 1, state-based formal methods target the imperative program-
ming paradigm. Imperative programs are written in terms of a state, combined with
code which manipulates the state [Set96]. The state comprises a set of variables that can
be written to and read from by commands in the code. The word “imperative” refers
to the fact that the programmer directly writes commands which affect the state, for

65

66 Chapter 7. Using Procedural Ordering in Specifications

example, assignment statements. Procedural constructs, such as conditional statements
and loops, allow the programmer to write algorithms which produce the output of the
program.

State-based formal methods have a number of benefits when defining specifications for
imperative programs. There is a clear refinement path from abstract states to con-
crete states and from abstract operations to concrete operations. Pre-post condition
reasoning [Hoa69] can abstract from even the most complex algorithms by describing
operations in terms of their properties (i.e. their result) without the need for details
of implementation. The state-based approach can be contrasted with process-oriented
approach, where the steps of the system are given by traces (histories) describing the
actions performed by the system (see Section 2.4.2). In the state-based paradigm, the
abstract state defines equivalence classes of histories, where sequences of actions that
finish in the same state are indistinguishable (for example, x ← x + 1 ; x ← x − 1 is
equivalent to skip).

This can lead to difficulties in the specification of systems where it is crucial to the
correctness of the system that actions occur in a specific order. For example, when the
system implements some pre-defined protocol. A typical machine consists of a set of top-
level abstract operations, defined in terms of pre-post conditions. Pre-post conditions
however do not specify when an action should occur. They simply state the conditions
under which an action may occur (pre-condition) and the consequences if an action
occurs (post-condition).

An example, in which a protocol is crucial to correctness, is that of the “Mondex” case
study [SCW00, JP07]. The Mondex cards were intended to replace cash — each card
holds a value, representing an amount of money. Two cards can be brought together to
make a payment in which money passes from one to the other. This is achieved through
the passing of messages in a given sequence: request, payment and acknowledgement.
It is important for the correctness of the system that this protocol is followed. For
example, it is unacceptable to acknowledge a payment that has not been requested, or
to send a payment twice.

Another example illustrating the importance of the ordering of actions is Simpson’s
four-slot [Sim90] (and ACMs in general: see Chapter 4 and Chapter 8). In this case, the
actions are steps taken by the writer and reader with respect to accessing a shared data
structure. The writer, when tasked with storing a value, must choose where to place
it, update the data structure, then record this location. Clearly if the writer performs
these steps out of sequence or repeats a step, it may interfere with the reader in an
unsafe way.

The above makes a case for the necessity (in certain situations) to exert fine control
over the order of actions in model-oriented specifications. The following section looks
at using auxiliary variables to tackle this problem, followed by a section introducing
“phased specifications” as an alternative approach.

7.2.1 Ordering Actions with Auxiliary Variables

The discussion above does not refer to any specific model-oriented specification language,
however the following section considers Event-B [MAV05] (and later VDM [Jon90]).
Top-level specifications in Event-B are indeed called machines and the actions that a ma-
chine can perform are called events. Event-B follows Back’s “action systems” [BKS83].
Events in a machine are guarded. These guards are firing conditions — an action may

7.2 Ordering Actions in Specifications 67

Event 1
when
pc = 1

then
. . .
pc := 2

end

Event 2
when

pc = 2
then

. . .
pc := 3

end

Event 3
when

pc = 3
then

. . .
pc := 1

end

Figure 7.1: Example events in Event-B which use a pseudo program counter

only fire when the guard evaluates to true (this is different to VDM where all top level
actions —operations— are always available).

The problem of ordering events in an Event-B machine could be tackled in a number of
ways. One solution could be to augment the notation to include additional information
about the order in which events should occur. This approach is taken CSP‖B [BL05]
and π|B [KST07], which both associate process algebra expressions with a machine,
specifying the permitted order of events within that machine. Similarly, there are ex-
tensions planned for the Rodin tools (for Event-B)1 which allow sequences of events to
be specified as “flows” [Ili09].

If however the notation is not to be modified, events can be ordered by introducing
(one or more) auxiliary variables. An auxiliary variable can be used like a program
counter, where its value indicates which event should fire. The guard of each action is
modified to trigger only when the program counter has a certain value and the counter
is increased as a result of the event firing. The author hereafter refers to this type of
auxiliary variable as a “pseudo program counter”. An example of an event which uses
a pseudo program counter is given in Figure 7.12.

The author feels that these pseudo program counters are, at the very least, inelegant.
The program counter is a very low-level notion that is being elevated to the top-level
of specification. This could be considered an affront to the notion of abstraction. The
extraneous auxiliary variables also add “noise” to the specification, which the reader
must attempt to ignore in order to understand the operation of the specification.

In addition (and perhaps more importantly), control over the pseudo program counter
is left to the individual events — this makes it necessary to be careful that no “rogue”
event misbehaves, for example, by increasing the pseudo program counter by 2. With
this in mind, the author wishes to find a better, cleaner way of specifying this kind of
behaviour without the need for extraneous auxiliary variables.

7.2.2 Ordering Actions with Phasing

The idea of phased specifications is introduced in the following section by means of
a simple example. In the example, the goal is to take a reading from a real-world
environment using a sensor. It is also expected that the system should loop to continually
produce readings from the sensor. Triple modular redundancy [LV62] is used to reduce
the risk of a faulty reading. It is assumed that there are three separate physical sensors

1See http://www.event-b.org/
2This approach is used in an Event-B development of Simpson’s four-slot (which is unpublished as

of the time of writing). Anecdotal evidence suggests it is a common tactic in Event-B.

68 Chapter 7. Using Procedural Ordering in Specifications

Σ :: r1 : N

r2 : N

r3 : N

rv : N | 〈ERROR〉
f1 : B

f2 : B

f3 : B

VOTE
wr rv :N
wr f1, f2, f3:B
rd r1, r2, r3:N
pre ¬f1 ∧ ¬f2 ∧ ¬f3
post f1 ∧ f2 ∧ f3 ∧ rv = choose(r1, r2, r3)

where choose selects an appropriate value for rv

READi

wr ri :N
wr fi :B
pre fi
post ri ∈ N ∧ ¬fi

for i ∈ {1..3}

Figure 7.2: A triple modular redundancy example in VDM using auxiliary variables

that the machine can access. To introduce redundancy, each sensor is read in each
read cycle (represented by three independent read operations). These three values are
then used by a voter to produce a result for the reading (e.g. by selecting a value using
readings from the two sensors which are closest).

It is clear here that there is a protocol involved. During one cycle, each read operation
should update its value and then the voter should decide upon the outcome. These
actions should occur alternately in that order. It is undesirable for the voter to vote
twice (potentially using outdated information) and certainly the read operations should
not modify their respective variables during a vote.

A specification for such a system is given in Figure 7.2. The machine consists of four
operations (three read operations and a vote operation). The state consists of: variables
for the result of each read (r1,r2,r3); a variable for the result of the vote (rv); and
auxiliary variables (flags) to control when the read operations may fire (f1,f2,f3). Pre-
conditions are used to ensure that the read operations can only occur when their flags
are true and that the voter can only execute when the reads aren’t primed.

The specification again shows the problems discussed above. In addition, because VDM
does not have a notion of firing conditions, the specification still does not ensure that
the machine actually executes these operations. It would in fact be necessary to add
some further top-level operation which ensured that the operations were triggered. A
possible operation is given below. (In this case, the TMR operation should have a post-
condition which can be realised by the post-conditions of the read and vote operations.)
This specification still does not offer an obvious way to show that the system should
continually read and vote indefinitely.

TMR � READ1 ‖ READ2 ‖ READ3 ‖ VOTE

The above is far from ideal, hence the author proposes the introduction of “phased
specifications” to circumvent the need for auxiliary variables. The author uses the term
“phase” to describe an action (or set of actions) that occur with a temporal relation to
other phases. An analogy can be drawn with speed (a quantity) and velocity (a speed

7.2 Ordering Actions in Specifications 69

Σ :: r1 : N

r2 : N

r3 : N

rv : N | 〈ERROR〉

while true do
(READ1 ‖ READ2 ‖ READ3);VOTE

od

READi

wr ri :N
post ri ∈ N

for i ∈ {1..3}

VOTE
wr rv :N
rd r1, r2, r3:N
post rv = choose(r1, r2, r3)

Figure 7.3: A triple modular redundancy example in VDM as a phased specification

and direction). An action is a quantity, whereas a phase is an action with a notion of
(temporal) direction.

For example, the author considers the above TMR example to have two phases: a reading
phase and a voting phase. These phases should occur strictly sequentially and cannot
run at the same time. The chosen solution is to use sequential composition (;) within the
specification to create a phased specification. As a specification language, VDM allows
the use of programming constructs within specifications (i.e. sequential composition
and looping constructs). Sequential composition perfectly captures the notion that one
operation must occur after another. The author proposes to lift these to the top-level
specification of a machine.

A reformulation of the TMR example using a phased specification is given in Figure 7.3.
(Note that suitable changes would need be made to READn and VOTE operations to
remove the now superfluous auxiliary variables.) The key to the above specification is
the sequential composition operator acting as a way to order the phases. It effectively
acts as a temporal separating conjunction, as noted by Hoare and O’Hearn in [HO08].
The loop also captures the requirement that the system continually reads the sensor and
votes on the outcome.

These phased specifications can be seen as a reformulation of equivalent specifications
which use auxiliary variables to act a pseudo program counters. Thus the term phased
specification can be defined as: a specification which uses procedural constructs to order
actions in a concurrent environment without the need for auxiliary variables. It is the
author’s position however that this type of phased specification is “cleaner” than those
using auxiliary variables, which are easy to read (due to the lack of extraneous auxiliary
variables) and comprehend (in that the ordering of phases of actions is captured in an
intuitive way).

The introduction of loops and sequential composition to the top-level specification re-
sults in an algorithmic specification comprising an annotated program. While it could
be argued that this approach also introduces low-level programming constructs to spec-
ifications, the author believes this is a more intuitive approach than the introduction of
a pseudo program counter.

7.2.3 Specification of ACMs with Phasing

In the overview to this chapter, the author states that the work on phased specifications
was undertaken in order to create a top-level specification for an ACM (and in turn

70 Chapter 7. Using Procedural Ordering in Specifications

Simpson’s four-slot implementation) [Sim90]. An ACM is a highly concurrent algorithm
and presents problems in the definition of an abstract, top-level specification. This
section briefly describes the problems encountered, however the issue is explored in
greater detail (including creation of a top-level specification and full development) in
Chapter 8 (specifically Section 8.2).

For this section, it suffices to say that an ACM is a concurrent data structure. It allows
a single writer and single reader to continually write values to and read values from
shared memory. The writer and reader do not synchronise and neither must be delayed
by the other. In addition, the reader should only see complete, uncorrupted data and
must never see a value older than it has previously read.

The highly concurrent nature of the ACM means that write and read operations can
interleave. Multiple writes can occur during a single read operation and conversely
multiple reads can occur during a single write operation. If formal development of the
ACM is to be tackled using atomicity refinement [BJ05b], it would be ideal to define a
single, atomic abstract operation for the write and read operations.

Atomic operations of this nature however cannot interleave and therefore cannot exhibit
all the behaviours of an ACM. By splitting the operations into two phases however, it is
possible to describe operations overlapping. Both the writer and reader are split into a
start phase and an end phase (corresponding to start and end operations). By combining
these start and end operations in a phased specification, all behaviours of the ACM are
captured. The use of procedural constructs allows these phases to be ordered correctly
— sequential composition ensures they execute in order and the while loop ensures that
the ACM runs continuously.

7.3 Potential for Addressing Deeper Issues with Phasing

In the previous sections of this chapter, phased specifications are introduced as a way of
defining order in state-based specifications by using procedural constructs in top-level
specifications. This approach is shown to be useful by, say, the development of the
four-slot in Chapter 8. The author believes however that phased specifications might
have utility beyond the simple ordering of actions. An overview of two possible uses for
phased specifications is given in this section, with a view to investigating these issues in
subsequent papers.

7.3.1 Phasing and Control Variables

Simpson’s four-slot is an implementation of an ACM, in which the shared data structure
contains four locations (‘slots’) in which values can be written. These slots allow the
writer and reader to access the data structure at the same time. Although the writer and
reader do not wait or synchronise, they do communicate their current location through
control variables. The reader should know where the writer last wrote to, in order to
read the latest value. Similarly, the writer should know where the reader is, in order to
avoid writing to the same slot.

In an ACM, the writer and reader access the data structure at the same time. It is
important that the writer does not attempt to write to a slot that the reader is currently
accessing, as this may lead to corrupt data. The essence of Simpson’s algorithm is
what he terms the orthogonal avoidance strategy, which allows the writer to avoid the

7.3 Potential for Addressing Deeper Issues with Phasing 71

reader despite the highly concurrent nature of the ACM. This is detailed in Chapter 8
(‘Preservation of inv -Σr ’ in Section 8.5.2).

The orthogonal avoidance strategy depends powerfully on the order in which the control
variables are updated. The reader must announce its intention to read before it accesses
the data structure and the writer must announce the location of a new value after it has
written to the data structure. The use of a phased specification allows this order to be
captured (access to the data structure and update of control variables occur in separate
phases in both the write and read operations).

Deeper exploration of the link between control variables and the correctness of Simpson’s
four-slot could be a worthwhile pursuit. It is probable that there are other examples
where the use of control variables is essential to correct operation, in which phased
specifications could capture this within top-level specifications.

7.3.2 Phasing and Rely-Guarantee Conditions

In Section 3.5.1, the author discusses the difficulties of writing rely-guarantee conditions
for operations which make multiple or “complex” changes to shared variables during
their execution. For these types of operation, it can be difficult to write rely-guarantee
conditions that capture these complex changes. One solution discussed is to introduce
an auxiliary variables to create case distinctions.

For example, consider an operation OP which may both increase and decrease a shared
variable, x , during its operation. An auxiliary variable, p, could be introduced, which
is true when x might increase and false when x might decrease. The operation can then
guarantee to monotonically increase x when p is true and to monotonically decrease x
when p is false:

OP

guar (p ⇒ x ≥↼−x) ∧ (¬ p ⇒ x ≤↼−x)

There is a clear parallel here with the phased specification above. Phased specifications
can be used to remove extraneous auxiliary variables, by using procedural constructs in
top-level specifications. If there is a clear order to the periods when p is true and false,
then a phased specification could be used in much the same way to remove the auxiliary
variables. The following captures the case where p is alternately true and then false:

OPp1

guar x ≥↼−x

OPp2

guar x ≤↼−x

while true do
OPp1;OPp2

od

Of course, the above is quite a simple case. Changes to shared variables may be more
complex than simple alternation of two phases. The author would argue however that
the phased specification above is a potentially useful tool in the field of rely-guarantee
reasoning. As before, the removal of auxiliary variables results in cleaner specifications
that are easier to read and comprehend. Phased specifications may also reduce proof
effort. Consider the following specification:

72 Chapter 7. Using Procedural Ordering in Specifications

while true do
A;B

od
‖

while true do
C

od

It is clear from the above that A and B cannot interfere. It is therefore only necessary
to consider interference between A / C and B / C . In addition, the proof obligations
will not include the extra implications introduced by auxiliary variables. The above
separation of interference between phases is evident in the four-slot development in
Chapter 8.

The author believes that any phased specification of the above form could be captured
by introducing auxiliary variables. What is unclear, but interesting, is whether any
specification using auxiliary variables could be captured using phased specifications.

Clearly, if a program counter could increase indefinitely, then the sequence of actions is
essentially infinite and this could not be captured with a phased specification (because
it is impossible to write down an infinite sequence of actions). An example of this
problem is illustrated by the Event-B style specification given in Figure 7.4. The two
actions will occur in alternately in a stuttering sequence (with primed actions becoming
increasingly infrequent), since both actions increase the program counter by one. This
cannot be captured in a phased specification, unless the value of the program counter
was bounded.

The author believes that any finite sequence of actions could be captured by a phased
specification. Even with a bound on the program counter however, a phased specifi-
cation capturing a large sequence of actions would quickly become unwieldy (undoing
the simplicity introduced by phased specifications). At some stage, introducing auxil-
iary variables may be necessary — or perhaps this would indicate a problem with the
design and that refactoring is required in order to find a better representation. Further
investigation is clearly required.

Event
when
¬isprime(pc)

then
. . .
pc = pc + 1

end

Event′

when
isprime(pc)

then
. . .
pc = pc + 1

end

Figure 7.4: Example of a system with an unbounded pseudo program counter

7.4 Summary

This chapter introduced the concept of using “phased specifications” in state-based
specification languages. Phased specifications are defined as specifications that use pro-
cedural constructs to order actions in concurrent environments without the need for
auxiliary variables (such as pseudo program counters).

Both specifications that use pseudo program counters and phased specifications tackle
the same problem — the specification of concurrent systems where the order of actions is

7.4 Summary 73

critically important to the correctness. The author argues however phased specifications
are a better solution, because they represent order in specifications in a natural way
(using the procedural constructs familiar to programmers) and they lack extraneous
auxiliary variables (which result in specifications that are easier to read an comprehend).

The work was undertaken in response to the difficulties presented by the specification of
ACMs [Sim90], which were also described. The top-level ACM specification presented
in this chapter is expanded into a full development in Chapter 8.

As well as a means for ordering actions within specifications, this chapter also included
a discussion of how phased specifications might have deeper utility than the simple
ordering of actions. Two possible uses were identified, with the view to exploring these
issues in a follow-up paper:

• The correct operation of Simpson’s four-slot requires careful control over the set-
ting of control variables. Phased specifications allow the order of actions to be
controlled and hence could be used to exert the required level of control in diffi-
cult problems such as the four-slot.

• As identified in Section 3.5.1, it can be difficult to write rely-guarantee conditions
for operations which interact with shared variables in a “complex” way. Aux-
iliary variables can be used to create case distinctions for interactions. Again,
phased specifications could be used to address this issue (by removing the need
for auxiliary variables in much the same way as for the ordering of actions).

74

Chapter 8

Atomicity Refinement Applied to
Simpson’s Four-Slot

8.1 Overview

This chapter presents a novel development of Simpson’s Four-Slot mechanism [Sim90],
modelled in VDM [Jon90] (see Chapter 2) using rely-guarantee conditions (see Chap-
ter 3). The four-slot is an example of an Asynchronous Communication Mechanism
(ACM), a shared data structure that allows a single writer and single reader to commu-
nicate concurrently whilst maintaining data integrity.

The development comprises three levels and two reifications. The first level is an atomic
specification, which uses an unbounded list to store values. The second level is an
intermediate specification, which shows that memory locations can be reused. Finally
a representation level is introduced, which shows that only four locations are needed to
realise the intermediate specification (this is Simpson’s representation).

This example was chosen because it illustrates the three main elements of this thesis
clearly. Firstly, as discussed in Chapter 4, Simpson’s choice of data representation (the
eponymous four slots) is key in relaxing atomicity in order to achieve an implementable
algorithm. It is hoped that the development presented here makes this link clear.

Secondly, the rely-guarantee specifications are greatly simplified by the use of read-
write frames (see Chapter 6). Using the read-write frames of the operations allows
many rely-conditions to be omitted, specifically by the use of owns wr (meaning that,
by definition, a variable cannot be changed by interference). The reduction in rely-
guarantee conditions makes specifications more succinct, aids readability and reduces
the number of proof obligations. More importantly, it emphasizes the importance of
those rely-conditions that are required. These remaining rely-conditions indicate where
it is truly important to reason about interference.

Finally, this example is used to demonstrate the notion of phasing in specifications.
The highly concurrent nature of an ACM and the need to capture non-determinism in
the specification require that the ACM operations are divided into distinct start and
end actions. Current rely-guarantee reasoning lacks a clean way of representing this
behaviour (see Section 3.5.1). Previous approaches to the four-slot have used ghost
variables as program counters (e.g. [Hen05]). This chapter uses a novel approach of
phased specifications, which the author believes represents a more natural way to tackle
this issue.

75

76 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

Figure 8.1: Writes occurring during a read in an ACM

The author makes no claim on the invention of the ‘clever’ data representation (full
credit goes to Simpson [Sim90]). Neither can it be claimed that this development would
lead naturally to the four-slot representation. It is hoped however that this development
clearly shows the intuition behind Simpson’s algorithm and is easier to follow than some
other developments (see Section 8.6), as well as illustrating the points outlined above.
The work presented in this chapter was undertaken jointly with Cliff Jones and originally
published in [JP08]. The development has been updated since the paper was published.

8.2 The Difficulties of ACM Specifications

An ACM allows a single writer and single reader to communicate via a shared data
structure. To both processes, it should appear that they are accessing a single structure.
Both processes run independently and may run at different speeds; neither is expected
to synchronise with the other. An ACM requires that neither the writer nor reader
is blocked or forced to wait at any time while accessing the data structure. Chapter 4
contains a fuller explanation of the operation of an ACM and of the four-slot mechanism.

The ideal scenario when developing programs with an atomicity refinement approach is
to define a top-level specification consisting of a single, atomically accessible data struc-
ture. In the case of an ACM, this would consist of atomic Write and Read operations,
which store and retrieve values from the ACM, respectively.

Unfortunately, the highly concurrent nature of an ACM makes this impossible — it is
not possible to specify all behaviours of an ACM with atomic write and read operations.
Due to the lack of synchronisation, one or more write operations may occur entirely
within a read. Similarly, one or more read operations may occur within a single write.
The first case is the most important and is best illustrated with a diagram, given in
Figure 8.1 (which originally appears as Figure 4.8e).

As given in Chapter 4, the two key data integrity properties of an ACM are:

• No bad data: the reader must only read complete data that has been written by
the writer.

• No old data: the reader must access the most recent data written and in particular
it must not read any data older than it has read before.

The second property is referred to as ‘freshness’. The last value written before the start of
a read operation is always a valid value to return. If any write operations complete during
a read operation however, these values are also valid. Data only becomes old when it is
returned by a read operation. An abstract read operation should non-deterministically
return one of these values. Clearly, this behaviour cannot be captured with atomic
operations, because it is impossible to describe actions overlapping. What is required
is a way to incorporate an (abstract) notion of time, such that operations take time to
complete.

8.3 Abstract Specification: Unbounded Memory 77

Figure 8.2: Begin and end events for ACM operations

Σa :: data-w : Value∗

fresh-w : N1

hold-r : N1

inv (mk -Σa (data-w , fresh-w , hold-r)) �
1 ≤ hold-r ≤ fresh-w ≤ len data-w

init mk -Σa([x], 1, 1)

Figure 8.3: Abstract ACM state

The chosen solution is to separate both of the write and read operations into two distinct
actions: a begin action and an end action (in a similar way to the invocation/return
events of linearizability, see Section 2.4.1). It is then possible to describe actions of
the writer occurring after a read has started (and vice versa). This is illustrated in
Figure 8.2 (a modification of Figure 4.8a). The grey areas between events now indicate
the period during which an operation as a whole is considered to be executing.

By separating each operation into begin and end actions, each action can be seen as a
phase. Hence this development lends itself to being captured as a phased specification.
This concept is introduced in Chapter 7.

8.3 Abstract Specification: Unbounded Memory

The first data integrity property given in Section 8.2 is that the reader should not read
any bad data. In order to achieve this, the reader and writer must never access the
same memory location simultaneously (clash). As noted in Section 4.4.2, if the writer
can always choose an unused slot in which to write new data, then the reader and writer
will never clash. Importantly, the writer must not inform the reader of this new location
until it has completed the write.

Based on this observation, the chosen abstract representation is an unbounded sequence
of values, which allows the write operation to always select new location. The interme-
diate specification then shows that old locations can be reused and the final specification
shows that (as Simpson discovered), only four locations are necessary. A state for the
abstract specification is given in Figure 8.3.

The idea is that data-w records all values written, fresh-w indicates the index of the
latest value written and hold-r is used by the reader to remember that latest value
written when the read began. Again, note that the suffices on the state components
indicate those operations which may write them (as used in Chapter 4 and Chapter 6).
The -w suffix indicates the write process and the -r suffix. Importantly, there are no
variables marked -rw — neither process will attempt to write to the same variable.

The invariant on the state ensures that fresh-w always points to an element within
data-w and that hold-r can never surpass fresh-w . The initialisation states that a single

78 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

while true do
start-Write(v :Value): data-w ← data-w � [v];
commit-Write(): fresh-w ← len data-w

od
while true do

start-Read(): hold -r ← fresh-w ;
end-Read() r :Value: r ← data-w(i) for some i ∈ {hold-r ..fresh-w}

od

Figure 8.4: Top-level ACM specification

value, x, has been written and read once. This is a “fudge” used to avoid the difficult
issue of initialisation. It is used in both the intermediate and representation levels later
in this chapter, as well as many other developments of the four-slot (e.g. [Hen05]).

The two operations of the write process are as follows: the start-Write operation appends
a new value to the end of this list. Then commit-Write updates fresh-w to publish this
new value to the reader. Because commit-Write does not modify the data structure,
this preserves the requirement that the reader does not attempt to read a value until
the writer has finished updating data-w .

The two operations of the reader process are as follows: the start-Read operation records
the value of fresh-w in hold-r . This indicates the latest value written when the read
operation begins. The end-Read operation then returns a value between the indices of
hold-r and fresh-w . This allows the read operation the possibility to return values which
were written during its execution, replicating the non-determinism shown in Figure 8.1.
A top level specification of this behaviour is given in Figure 8.4. It is presented as an
annotated program which uses the phasing ideas introduced in Chapter 7.

Note that it is not strictly necessary to separate the write operation into two separate
suboperations. The start-Write and commit-Write could be combined into a single
operation that updates both data-w and fresh-w (since they occur in that order), without
reducing the possible behaviours. This would however reduce the ability to discuss the
write and read operations overlapping. The author believes this would hide the intuition
behind certain choices made later within the development.

The top-level specification in Figure 8.4 is defined in terms of atomic suboperations.
Recall that in the final algorithm, neither process will synchronise with the other, nor
should either process be delayed at any stage. It is therefore unrealistic to specify these
suboperations atomically and it is necessary to split these atoms and allow suboperations
to execute concurrently. Hence it is necessary to define rely-guarantee conditions to rea-
son about interference. A full abstract specification including rely-guarantee conditions
is presented in Figure 8.5.

Firstly, note that the specification of the Read operation has changed (compared to the
top-level specification). The non-determinism has shifted from end-Read to start-Read .
This is possible because operations may now overlap and multiple write operations can
occur during a single start-Read operation. The reason for the change is that this
placement of non-determinism now matches both the intermediate and representation
specifications (where the “trick” of returning a value between hold-r and fresh-w in

8.3 Abstract Specification: Unbounded Memory 79

Write(v :Value)
owns wr data-w , fresh-w

start-Write(v :Value)
owns wr data-w

guar {1..fresh-w} � data-w = {1..fresh-w} �↼−−−−
data-w

post data-w =
↼−−−−
data-w � [v]

commit-Write()
owns wr fresh-w
rd data-w
post fresh-w = len data-w

Read() r :Value
owns wr hold-r
rd data-w , fresh-w

start-Read()
owns wr hold-r
rd fresh-w

post hold-r ∈ {↼−−−−fresh-w ..fresh-w}
end-Read() r :Value

rd data-w , hold-r

rely data-w(hold-r) =
↼−−−−
data-w (hold-r)

post r = data-w(hold-r)

Figure 8.5: Abstract ACM specification with rely-guarantee conditions

80 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

end-Read cannot be used because values can be overwritten).

Secondly, note that there are only two rely-guarantee conditions (one rely-condition
and one guarantee-condition). Due to the use of a phased specification, start-Write
and commit-Write cannot, by definition, execute concurrently; neither can start-Read
and commit-Read . It is therefore not necessary to consider interference between the
suboperations1.

Since operations may now run concurrently, it is necessary to consider how variables may
be changed by interference. These variables would traditionally have to be protected
using rely-conditions. In the previous section, it is noted that there are no variables
which are written by both processes and each variable has exclusive write access to its
own variables. To indicate this, each variable has been declared as owns wr by their
respective processes.

The use of owns wr reduces the need to write rely-conditions (and corresponding
guarantee-conditions). Consider that both suboperations of the write process would
have to rely on their variables being unchanged by interference (and that both subop-

erations of the read process would have to guarantee this), i.e. data-w =
↼−−−−
data-w and

fresh-w =
↼−−−−
fresh-w . Similarly, the read process would need to rely on hold-w being un-

changed by interference. Altogether the use of owns wr removes the need to include
six rely-conditions and the six corresponding guarantee-conditions. This value is larger
for the intermediate and representation levels, which both include a greater number of
state variables.

8.3.1 Proof Obligations

Even on a specification, there are proof obligations to be discharged. In this case, it
is necessary to show that the invariant holds in the initial state; that the invariant is
preserved by each operation; and that each rely-condition is satisfied.

Initial State Satisfies inv -Σa

That inv -Σa(σa
0) holds is immediate. �

Preservation of inv -Σa by Each Operation

It is necessary to show that each operation preserves the invariant. The invariant is:

1 ≤ hold-r ≤ fresh-w ≤ len data-w

In order to demonstrate that the above is preserved by each operation however, it is
necessary to introduce a form of “dynamic invariant”. This invariant requires that the
value of fresh-w is never decreased. This can be defined as:

sinv -Σa : Σa × Σa → B

sinv -Σa(mk -Σa(data-w , fresh-w , hold -r),mk -Σa (data-w ′, fresh-w ′, hold-r ′)) �
fresh-w ≤ fresh-w ′

1In fact, in this case, the alphabets of the suboperations are disjoint — but this may not always be
the case.

8.4 Intermediate Specification: Reusing Locations 81

Note that while a traditional dynamic invariant must hold between the initial state
and any subsequent state which can arise, here it is necessary that the invariant holds
between any pair of adjacent states. That is, the invariant holds between any transition
between from some state σ to σ′. To make this distinction, the author will refer to this
is a “step invariant”.

It is necessary to show that each operation preserves the invariant; the “step invariant”
is covered simultaneously. Note that the Write and Read sides can be reasoned about
independently.

Preservation of inv -Σa by start-Writea

∀↼−σa ∈ Σa · post-start-Writea (
↼−
σa , v , σa) ⇒ sinv -Σa(

↼−
σa , σa) ∧ σa ∈ Σa

This is immediate since only data-w changes and the length of the sequence is
increased, hence fresh-w ′ ≤ len data-w ′. �

Preservation of inv -Σa by commit-Writea

∀↼−σa ∈ Σa · post-commit-Writea (
↼−
σa , σa) ⇒ sinv -Σa(

↼−
σa , σa) ∧ σa ∈ Σa

That the invariant holds is immediate, because fresh-w ′ = len data-w ′ and
hence fresh-w ′ ≤ len data-w ′. The “step invariant” follows from the
invariant. �

Preservation of inv -Σa by start-Reada

∀↼−σa ∈ Σa · post-start-Reada (
↼−
σa , σa) ⇒ sinv -Σa(

↼−
σa , σa) ∧ σa ∈ Σa

This is immediate, since hold-r takes a value of fresh-w , hence
hold-r ′ ≤ fresh-w ′. �

Preservation of inv -Σa by end-Reada

∀↼−σa ∈ Σa · post-end-Reada (
↼−
σa , σa) ⇒ sinv -Σa(

↼−
σa , σa) ∧ σa ∈ Σa

This holds trivially since the state is unchanged, i.e. σa =
↼−
σa . �

Respecting Rely-conditions

As noted in the text, rely-end-Reada is the only rely-condition required to
ensure that no clashes occur and is satisfied by the writer. It follows from
guar -start-Writea (that data-w is unchanged below fresh-w) and from the in-
variant (hold-r ≤ fresh-w). �

8.4 Intermediate Specification: Reusing Locations

While the abstract specification uses an unbounded sequence in which to store values,
it is infeasible to implement this specification as real computers have a finite amount of
memory. So at some point it will be necessary to reuse locations and hence it is also
necessary to show that this is possible whilst maintaining data integrity.

82 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

Σi :: data-w : X
m−→ Value

fresh-w : X
hold-r : X
hold-w : X
A-rw : X -set

inv (mk -Σi (data-w , fresh-w , hold -r , hold -w , { })) �
{fresh-w , hold-r , hold-w} ⊆ dom data-w

init mk -Σi({α �→ x}, α, α, α, { })

Figure 8.6: Intermediate ACM state

When a value is returned from the ACM, all values written before it become old and
should not be returned by subsequent reads (see Section 4.4.2). This means that, at
some stage, certain locations will contain old values and can therefore be reused. It
is vitally important however that the writer does not clash with the reader. In this
case, not clashing means not choosing to reuse a location which may be accessed by the
reader.

Simpson’s insight was to show that only four locations (slots) are required to maintain
data integrity. This development however introduces an intermediate level between the
abstract and (four-slot) representation level, which is used to show that locations can
be reused.

8.4.1 Reification of data-w

The key change between the abstract and intermediate state is the reification of data-w
to allow locations to be reused. The data representation is changed from a sequence of
values, Value∗, to a mapping from an arbitrary indexing set X to values, X

m−→ Value.
This is reflected in the intermediate state presented in Figure 8.6.

If the indexing set, X , were to be implemented using natural numbers, then the inter-
mediate specification could be equivalent to the abstract specification. The use of an
arbitrary set however allows the writer to choose an index which may already be in the
domain of data-w , allowing locations to be reused. In this way the intermediate level
may also retain less history than the abstract level, as old values may be overwritten.

The state presented in Figure 8.6 is very similar to that of the abstract level: data-w
becomes a mapping (as described above) and the purpose of fresh-w and hold-r remains
the same. The new state component, hold-w , is used by the writer to record the location
of the newly written value and to allow this value to persist between start-Write and
commit-Write (at the abstract level, this role was played by len data-w).

Note that a fifth state component, A-rw , has also been introduced. This is an auxil-
iary variable that is used in order to overcome an expressive weakness in VDM which
becomes apparent in this highly concurrent context. This is discussed in the following
section. The intermediate level specification is presented in Figure 8.7. While some-
what complicated by the introduction of an auxiliary variable, this mainly affects the
start-Read operation.

With regards the intermediate specification, the writer must not select a location (a value
for hold-w) that could potentially be accessed by the reader. This is reflected in the

8.4 Intermediate Specification: Reusing Locations 83

Write(v :Value)
owns wr data-w , fresh-w , hold-w
wr A-rw
rd hold-r

start-Write(v :Value)
owns wr data-w , hold-w
rd hold-r , fresh-w

rely hold-r �= ↼−−−
hold-r ⇒ hold-r = fresh-w

guar {↼−−−hold-r , hold-r} � data-w = {↼−−−hold-r , hold-r} �↼−−−−
data-w

post hold-w /∈ {↼−−−hold-r , hold-r} ∧ data-w =
↼−−−−
data-w † {hold-w �→ v}

commit-Write()
owns wr fresh-w
wr A-rw
rd hold-w

guar A-rw �= ↼−−−
A-rw ⇒ A-rw =

↼−−−
A-rw ∪ {fresh-w}

post fresh-w = hold-w

Read() r :Value
owns wr hold-r
wr A-rw
rd data-w , fresh-w

start-Read()
owns wr hold-r
wr A-rw
rd fresh-w

guar (hold-r �= ↼−−−
hold-r ⇒ hold-r = fresh-w) ∧

(A-rw �= ↼−−−
A-rw ⇒ A-rw = {fresh-w})

post hold-r ∈ A-rw
end-Read() r :Value

rd data-w , hold-r

rely data-w(hold-r) =
↼−−−−
data-w (hold-r)

post r = data-w(hold-r)

Figure 8.7: Intermediate ACM specification

84 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

post-condition, hold-w /∈ {↼−−−hold-r , hold-r}. It is obvious that the reader can potentially

access the location it has currently chosen, i.e.
↼−−−
hold-r . Multiple read operations may

occur during the start-Write operation however, therefore the writer must also avoid
hold-r .

The reader follows the writer by updating hold-r to the value of fresh-w (this is reflected
in guar -start-Read). Since the writer only updates fresh-w after the value has been
written, hold-r can only change at most once during a start-Write operation, hence

{↼−−−hold-r , hold-r} = {↼−−−hold-r , fresh-w}. The former is used in the specification as it makes
the refinement of start-Read clearer between the intermediate and representation levels.

8.4.2 Auxiliary Variable and Example Code

The auxiliary variable, A-rw , is necessitated by the post-condition of start-Read . As
with the abstract level, start-Read must choose a value of hold-r to be a value of
fresh-w . Note however that many write operations may complete during a single read
operation. This is captured in the abstract specification using a range, i.e. hold-r ∈
{↼−−−−fresh-w ..fresh-w}. This is possible because all values are retained at the abstract level.

The problem at the intermediate level is that, since values may be overwritten, it is not
possible to use this range “trick” in order to choose a value of fresh-w . Note that a

post-conditions of hold-r ∈ {↼−−−−fresh-w , fresh-w} is invalid, because fresh-w may change
more than once (due to the highly concurrent nature of the algorithm).

What is required is a way to say that hold-r is set to any of the possible values of
fresh-w that may arise during the execution of start-Read . There is currently no way
to state this property in VDM. This development will appear (in a modified form) in an
upcoming joint paper with Cliff Jones, which will explore the introduction and use of a
possible values operator.

In order to circumvent this problem in the current development, the auxiliary variable,
A-rw , is introduced. This variable is used to gather the set of values of fresh-w written
during a read operation, such that start-Read can write select a value from this set, i.e.
hold-r ∈ A-rw . To show the intuition behind the use of this auxiliary variable, example
code for the intermediate level ACM is given in Figure 8.8.

The auxiliary variable is used in the code as follows. The start-Read operation reduces
the set to the singleton containing fresh-w (the last value written before the read be-
gan). The commit-Write operation then adds values to the set; thus A-rw will contain
any values written during the read operation. Finally, start-Read non-deterministically
selects a value from the set.

Note that modifications to the auxiliary variable are captured within rely-guarantee
conditions as opposed to post-conditions. For example, it is invalid to state A-rw =
{fresh-w} in the post-condition of start-Read , because A-rw may be modified by the
writer (the point being that values should accumulate within A-rw during the read
operation). This also has the added benefit of reducing the influence of the auxiliary
variable during the refinement steps. In this case, it must only be considered in the
refinement of start-Read .

This pattern, of shifting information from post-conditions to rely-guarantee conditions
is also seen in both the FINDP and SIEVE examples (see Chapter 4).

Note that the auxiliary variable, A-rw , must be written to by both the writer and reader
and that atomic brackets are required (in the example code) to protect simultaneous

8.4 Intermediate Specification: Reusing Locations 85

Write(v :Value)
owns wr data-w , fresh-w , hold-w
wr A-rw
rd hold-r

start-Write(v :Value)
hold-w :∈ (X − {fresh-w , hold-r});
data-w(hold-w) ← v

commit-Write()
〈fresh-w ← hold-w ;
A-rw ← A-rw ∪ {fresh-w}〉

Read() r :Value
owns wr hold-r
wr A-rw
rd data-w , fresh-w

start-Read()
〈A-rw ← {fresh-w}〉;
〈hold-r :∈ A-rw〉

end-Read() r :Value
r ← data-w(hold-r)

Figure 8.8: Example code for the intermediate ACM

access. The author however considers that this is justified because the auxiliary vari-
able and code are only used to facilitate reasoning and are not meant as a realistic
implementation.

The intermediate specification can, with modification, be used to discuss why four slots
(as opposed to three) are required. A discussion is given in Appendix C.3.3

8.4.3 Proof Obligations

Again, it is necessary to show that the invariant holds in the initial state; that the
invariant is preserved by each operation; and that each rely-condition is satisfied.

Initial State Satisfies inv -Σi

That inv -Σi(σi
0) holds is immediate. �

Preservation of inv -Σi by start-Write i

∀
↼−
σi ∈ Σi · post-start-Write i (

↼−
σi , v , σi) ⇒ σi ∈ Σi

Firstly, start-Write i cannot reduce dom data-w , hence fresh-w and hold-r will
be in the domain of the resulting data-w . Secondly, hold-w is of type X and is

clearly in dom (
↼−−−−
data-w † {hold-w} �→ v). �

86 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

Preservation of inv -Σi by commit-Write i

∀
↼−
σi ∈ Σi · post-commit-Write i (

↼−
σi , σi) ⇒ σi ∈ Σi

This is immediate because hold-w was already in dom data-w . �

Preservation of inv -Σi by start-Read i

∀
↼−
σi ∈ Σi · post-start-Read i (

↼−
σi , σi) ⇒ σi ∈ Σi

This is immediate because fresh-w was already in dom data-w . �

Preservation of inv -Σi by end-Read i

∀
↼−
σi ∈ Σi · post-end-Read i (

↼−
σi , σi) ⇒ σi ∈ Σi

This holds trivially since the state is unchanged, i.e. σi =
↼−
σi . �

Respecting Rely-conditions

The key rely-condition that ensures that no clashes occur is rely-end-Read i . It
follows immediately from guar -start-Write i . �

The most interesting case is rely-start-Write i . Since end-Read i does not change
any of the relevant variables, guar -start-Read i has to imply rely-start-Write i .
This is immediate from their texts and the fact that fresh-w cannot change
during the execution of start-Write i . The argument relies on the fact that
hold-r can only change (at most) twice during the execution of start-Write i

(see above). �

8.4.4 First Refinement: Abstract to Intermediate

The refinement between the abstract and intermediate levels is somewhat complicated
by the fact that the abstract specification retains all values written. On the other hand,
the intermediate level may overwrite values, hence the abstract state may contain more
information than the intermediate state. This means that the standard VDM refinement
rule with a retrieve function cannot be used and Nipkow’s rule must be used instead.

Nipkow’s rule is discussed in Section 2.3.2. The retrieve function is replaced by a linking
invariant. It is necessary to show that for a step of the intermediate level, there exists
an abstract level step which matches it. The linking invariant relates abstract states
and intermediate states and is given in Figure 8.9.

Effectively the linking invariant states that values written at the intermediate level are
a subset of those written at the abstract level. In addition, fresh-w and hold-r must be
in-step (pointing to the same value). This is achieved using an existential quantification
to show the existence of a (one-to-one / injective) mapping between the abstract and
intermediate data structure for which the the states are in-step.

The abstract specification is essentially deterministic and the choice of mapping is
straightforward in each case, so witness values for abstract final states are not difficult
to define. The reasons for using an existential quantification in the linking invariant are
discussed in Appendix C.4.1.

8.4 Intermediate Specification: Reusing Locations 87

rel : Σa × Σi → B

rel(mk -Σa (data-wa , fresh-wa , hold-ra),
mk -Σi(data-w i , fresh-w i , hold-r i , hold-w i)) �

∃m ∈ (X
m←→ N1) ·

data-w i ⊆ m ◦ data-wa ∧
m(fresh-w i) = fresh-wa ∧
m(hold-r i) = hold-ra

Figure 8.9: Linking invariant between abstract and intermediate states

Initial States Relate

That rel(σa
0 , σ

i
0) holds is immediate with m = {α �→ 1}. �

The start-Write Operation

rel(σa
1 , σ

i
1) ∧ post-start-Write i (σi

1, v , σ
i
2) ⇒

∃σa
2 ∈ Σa · post-start-Writea (σa

1 , v , σ
a
2) ∧ rel(σa

2 , σ
i
2)

Since the start-Write operation is the only one where values are added, it is
also the only operation where the existence of the new mapping requires work.
From rel(σa

1 , σ
i
1) we have:

∃m1 ∈ (X
m←→ N1) ·

data-w i
1 ⊆ m1 ◦ data-wa

1 ∧
m1(fresh-w

i
1) = fresh-wa

1 ∧
m1(hold-r

i
1) = hold-ra1

Then post-start-Writea determines σa
2 to give:

data-wa
2 = data-wa

1
� [v]

Then rel(σa
2 , σ

i
2) follows from:

m2 = m1 † {hold-w i �→ len data-wa
2 }

The pairing hold-w i �→ len data-wa
2 ensures data-w i

2 ⊆ m2◦data-wa
2 ; hold-w

i
2 /∈

{fresh-w i
1 , hold-r

i
1} (from post-start-Write i) shows the last two requirements on

m are satisfied. �

The commit-Write Operation

rel(σa
1 , σ

i
1) ∧ post-commit-Write i (σi

1, σ
i
2) ⇒

∃σa
2 ∈ Σa · post-commit-Writea (σa

1 , σ
a
2) ∧ rel(σa

2 , σ
i
2)

Here, commit-Writea and commit-Write i set fresh-w to len data-w and hold-w ,
respectively. By phasing (cf. start-Write, above), we know that m1(hold-w

i) =
len data-wa , hence m2 = m1. �

88 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

The start-Read Operation

rel(σa
1 , σ

i
1) ∧ post-start-Read i (σi

1, v , σ
i
2) ⇒

∃σa
2 ∈ Σa · post-start-Reada (σa

1 , v , σ
a
2) ∧ rel(σa

2 , σ
i
2)

Both operations copy a value of fresh-w into hold-r . Any value written to
fresh-w will appear in the mapping (cf. start-Write, above), hence m2 = m1.
Note that hold-r ∈ A-rw at the intermediate level is equivalent to hold-r ∈
{↼−−−−fresh-w ..fresh-w} at the abstract level (subject to A-rw being updated cor-
rectly, cf. intermediate code, above). �

The end-Read Operation

rel(σa
1 , σ

i
1) ∧ post-end-Read i (σi

1, σ
i
2, r) ⇒

∃σa
2 ∈ Σa · post-end-Reada (σa

1 , σ
a
2 , r) ∧ rel(σa

2 , σ
i
2)

Neither operation modifies the state and hence m2 = m1. Thus it only remains
to check that the result, r , is the same in both cases. Both operations return
data-w(hold-r). From m2, we know m2(hold-r

i) = hold-ra , hence both results
match. �

8.5 Representation Specification: Simpson’s Four-Slot

The final step in the development is to introduce Simpson’s data representation. This
is achieved by reification of the indexing set, X . Recall from Chapter 4 that Simpson
divides the four slots into two pairs of two slots. The location of each of the four slots
can be represented by a pair of bits, representing the pair and the slot within that pair.

In this development, the indexing set, X , is reified by this pair / slot representation.
Thus data-w becomes P × S

m−→ [Value], where P ,S = token-set and where cardP =
card S = 2.

Note that in this development, bit flipping is abstracted using a function, ρ (for reverse).
It has a simple definition, where ρ(i) �= i . It can be seen that this can easily be
implemented using bits, but the abstraction is a cleaner representation and could still
be used if the set from which i was drawn contained more than two elements (for
example, in an ACM with m pairs of n slots).

The state for the representation level is given in Figure 8.10. Due to each location being
represented by a pair of values, the state is somewhat more complicated than at the
intermediate level. Again, note that two auxiliary variables have been introduced, C -w
and C -r . Justification for the use of these extra state components is given below.

The role for each state component is made somewhat clearer when seen in relation to
the state components at the intermediate level. Note that, because the representation
level simply reifies the indexing set, X , the standard VDM refinement rule can be used.
As such, a retrieve function can be defined using these relationships (see Section 8.5.3).
The relationships between the intermediate and representation level components are as
follows:

As with the previous levels, the start-Write operation selects the location in which to
write the new data. This is represented by the (wp-w ,ws-w), the internal state of the
writer (equivalent to hold-w). The start-Write operation then updates data-w at this
location. Finally, commit-Write publishes this location by updating
(pair -w , slot-w(pair -w)) (equivalent to fresh-w).

8.5 Representation Specification: Simpson’s Four-Slot 89

Σr :: data-w : P × S
m−→ Value

pair -w : P
pair -r : P

slot-w : P
m−→ S

wp-w : P
ws-w : S
rp-r : P
rs-r : S
C -w : B

C -r : B

inv (mk -Σr (data-w , pair -w , pair -r , slot-w ,wp-w ,ws-w , rp-r , rs-r ,C -w ,C -r)) �
C -w ∧ C -r ⇒ (wp-w ,ws-w) �= (rp-r , rs-r)

init let data-w = {(p0, s0) �→ x}
pair -w = p0
pair -r = p0
slot-w = {p0 �→ s0, p1 �→ s0}
wp-w = p0
ws-w = s0
rp-r = p0
rs-r = s0
C -w = false
C -r = false in

mk -Σr (data-w , pair -w , pair -r , slot-w ,wp-w ,ws-w , rp-r , rs-r ,C -w ,C -r)

Figure 8.10: Representation ACM state

90 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

Σi represented in Σr by

fresh-w (pair -w , slot-w(pair -w))
hold-r (rp-r , rs-r)
hold-w (wp-w ,ws-w)

Figure 8.11: Relationship between intermediate and representation state components

Note that the choice of values to represent hold-r is more difficult. Again the start-Read
selects a location to access, by reading (pair -w , slot-w(pair -w)). It publishes this loca-
tion as (pair -r , rs-r). As discussed elsewhere however (Appendix C.3.3), pair -r is not
updated atomically, but via the intermediate internal variable, rp-r . So in fact, the
location to be accessed by the reader is represented by (rp-r , rs-r).

So, the pair chosen by the reader, rp-r , may not be reflected by the value of pair -r .
Hence at the point at which the writer chooses the pair, it may not be acting on the
correct information (i.e. pair -r �= rp-r). The key to the four-slot algorithm is that the
writer is able to avoid the reader even in this situation, due to Simpson’s “orthogonal
avoidance strategy” (discussed in Section 4.4.4). Recall that, if the writer and reader
are in the same pair, the writer will choose to overwrite the older value, while the reader
will choose to read the newer value. The invariant captures the essence of this strategy.
A specification is given in Figure 8.12.

8.5.1 Auxiliary Variables and Example Code

As noted above, auxiliary variables have been introduced at this level. As opposed to
the intermediate level however, these are not required to address a weakness in the ex-
pressiveness of VDM, but instead are used to facilitate the formation of the invariant.
The essence of the invariant is to state that, when the writer and reader are access-
ing the data structure, they are accessing different locations in the data structure, i.e.
(wp-w ,ws-w) �= (rp-r , rs-r).

Again, as with the intermediate level, example code is included to show the intuition
behind these auxiliary variables. The code is given in Figure 8.13. Each auxiliary
variable is a boolean value, set during the “critical section” of the writer (C -w) and
(C -r). Discussion of these “critical regions” and the correctness of the invariant is given
in Section 8.5.2, below. A version of this development where auxiliary variables are not
required at the representation level is explored in [JP09].

8.5.2 Proofs Obligations

Correctness of the Four-Slot Mechanism

The the key safety property of the four-slot is that it must avoid clashes. A clash would
occur where the reader accesses a location that is currently being written to by the
writer. Due to the wait-free requirement of an ACM, traditional critical regions cannot
be used to protect access to the data structure, data-w , because this could lead to
delays in access. In fact, it is known (and intended) that reader and writer may access
the overall data structure at the same instant.

In order to avoid clashes on data-w , it is necessary to show that, if the writer and reader
are accessing the data structure simultaneously, they are accessing different locations

8.5 Representation Specification: Simpson’s Four-Slot 91

Write(v :Value)
owns wr data-w , pair -w , slot-w ,wp-w ,ws-w
rd pair -r

start-Write(v :Value)
owns wr data-w ,wp-w ,ws-w
rd pair -r , slot-w

rely pair -r �= ↼−−−
pair -r ⇒ pair -r = pair -w

guar ∀p ∈ {↼−−−pair -r , pair -r} ·
{(p, slot-w(p))} � data-w = {(p, slot-w(p))} �↼−−−−

data-w

post wp-w �= ↼−−−
pair -r ∧ ws-w �= slot-w(wp-w) ∧ data-w(wp-w ,ws-w) = v

commit-Write()
owns wr pair -w , slot-w
rd ws-w ,wp-w

post slot-w =
↼−−−
slot-w † {wp-w �→ ws-w} ∧ pair -w = wp-w

Read() r :Value
owns wr pair -r , rp-r , rs-r
rd data-w , pair -w , slot-w

start-Read()
owns wr pair -r , rp-r , rs-r
rd pair -w , slot-w

rely slot-w(rp-r) =
↼−−−
slot-w (rp-r)

guar pair -r �= ↼−−−
pair -r ⇒ pair -r = pair -w

post rp-r = {↼−−−−pair -w , pair -w} ∧ pair -r = rp-r ∧ rs-r = slot-w(rp-r)
end-Read() r :Value

rd data-w , rp-r , rs-r

rely data-w(rp-r , rs-r) =
↼−−−−
data-w (rp-r , rs-r)

post r = data-w(rp-r , rs-r)

Figure 8.12: Representation ACM specification

92 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

Write(v :Value)
owns wr data-w , pair -w , slot-w ,wp-w ,ws-w
rd pair -r

start-Write(v :Value)
wp-w ← ρ(pair -r);
ws-w ← ρ(slot-w(wp-w));
C -w ← true;
data-w(wp-w ,ws-w) ← v ;
C -w ← false

commit-Write()
slot-w(wp-w) ← ws-w ;
pair -w ← wp-w

Read() r :Value
owns wr pair -r , rp-r , rs-r
rd data-w , pair -w , slot-w

start-Read()
rp-r ← pair -w ;
pair -r ← rp-r ;
rs-r ← slot-w(rp-r)

end-Read() r :Value
C -r ← true;
r ← data-w(rp-r , rs-r);
C -r ← false

Figure 8.13: Code for an implementation of the four-slot

8.5 Representation Specification: Simpson’s Four-Slot 93

within it. The point at which the data structure is accessed could be called a data-critical
region. Two auxiliary variables are introduced, C -w and C -r , to facilitate reasoning
about the data-critical regions of the writer and reader, respectively. These auxiliary
variables are used within the code to mark the data-critical regions of the writer (in
start-Write) and the reader (in end-Read).

The invariant is written in terms of these two auxiliary variables and formally states
that, if the writer and reader are both within their data-critical region (that is, accessing
the data structure), that different locations are being accessed.

C -w ∧ C -r ⇒ (wp-w ,ws-w) �= (rp-r , rs-r)

Preservation of inv -Σr

It is clear from the code of the start-Write that the invariant holds trivially over the
whole operation, because C -w is false at the beginning2 and end of the operation. The
same is true (mutatis mutandis) for end-Read . Hence the argument for the preservation
of the invariant must be considered with respect to the data-critical regions within each
operation (where the respective auxiliary variables are true).

The only point at which the antecedent to the implication in the invariant is true
occurs when start-Write and end-Read are both within their data-critical regions.
It is therefore necessary to demonstrate that when the data-critical regions coincide,
(wp-w ,ws-w) �= (rp-r , rs-r). However, note that when these operations reach their
data-critical regions, the values of (wp-w ,ws-w) and (rp-r , rs-r) have already been se-
lected. Therefore, it is necessary to show that values are never chosen such that such
that (wp-w ,ws-w) = (rp-r , rs-r). Simpson’s orthogonal avoidance strategy ensures this.
This can be demonstrated as follows:

The writer attempts to avoid the reader by choosing:

wp-w = ρ(pair -r)

Note however that pair -r is not updated atomically (see above and Ap-
pendix C.3.3), hence the internal state (rp-r) of the reader may not be consis-
tent with its public state (pair -r). This gives rise to two cases:

• pair -r = rp-r ;wp-w = ρ(pair -r)

By definition of ρ, we know wp-w �= rp-r , hence (wp-w ,ws-w) �=
(rp-r , rs-r).

• pair -r �= rp-r ;wp-w = ρ(pair -r)

By type definition, we know cardP = 2, hence wp-w = rp-r . However,
the slots are chosen as follows:

ws-w = ρ(slot-w(wp-w))

rs-r = slot-w(rp-r)

By definition of ρ, we know ws-w �= rs-r , hence (wp-w ,ws-w) �=
(rp-r , rs-r).

�
2This follows from the auxiliary variable being false in the initial state and at the end of each write

phase.

94 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

retr : Σr → Σi

retr (mk -Σr (data-w , pair -w , pair -r , slot-w ,wp-w ,ws-w , rp-r , rs-r)) �
let fresh-w = (pair -w , slot-w(pair -w))

hold-r = (rp-r , rs-r)
hold-w = (wp-w ,ws-w) in

mk -Σi(data-w , fresh-w , hold -r , hold -w)

Figure 8.14: Retrieve function between intermediate and representation states

The above relies heavily on the order in which the data-critical regions are reached with
respect to the publishing of control variables. The reader publishes the location it will
access before it reaches its data-critical region, so the writer is always able to avoid it.
Since the writer publishes the location written to after its data-critical region, it will
always avoid the reader before it reaches its data-critical region again (this is clear from
the order of the phases of the write operations).

Respecting Rely-conditions

The only rely-condition on the writer’s side is rely-start-Writer , which concerns
the value of pair -r . By framing, this can only be affected by start-Readr .
rely-start-Writer is satisfied trivially by guar -start-Readr . �
The key rely-condition that ensures that no clashes occur is rely-end-Readr .
When the reader accesses data-w at (rp-r , rs-r), C -r is true. Modifica-
tion of data-w (which might violate rely-end-Readr) only occurs when C -w
is true. From post-start-Writer , we know that data-w is only modified
at (wp-w ,ws-w). If both C -r and C -w are true, the invariant establishes
(wp-w ,ws-w) �= (rp-r , rs-r) and hence rely-end-Readr is satisfied. �

8.5.3 Second Refinement: Intermediate to Representation

As noted above, the step from the intermediate to representation level can be justified
using the standard VDM refinement rule (see Section 2.2.2, 2.3.1). This requires defi-
nition of a surjective retrieve function (from Σr to Σi); demonstration that the initial
states relate; and that each pair of operations commutes with respect to retr .

A retrieve function can be defined (based on the relationships between intermediate and
representation state components given in Figure 8.11). The data structure itself, data-w ,
is taken directly from the representation state. The local variables at the intermediate
level are built from their pair and slot counterparts at the representation level.

The totality of the retrieve function is immediate. The adequacy of the retrieve function
is clear for cardX = 4, hence it is suitable for the current representation.

Initial States Match

retr(σr
0) = σi

0 holds since:

σi
0 has α = fresh-w = hold-r = hold-w

σr
0 has α ≡ (p0, s0). �

8.5 Representation Specification: Simpson’s Four-Slot 95

The start-Write Operation

∀↼−σr , σr ∈ Σr ·
post-start-Writer (

↼−
σr , v , σr) ⇒ post-start-Write i (retr(

↼−
σr), v , retr(σr))

The post-condition of start-Write i requires that:

hold-w /∈ {↼−−−hold-r , hold-r} ∧ data-w =
↼−−−−
data-w † {hold-w �→ v}

The first conjunct, by retr , requires that the writer chooses (wp-w ,ws-w) such
that it is not equal to the possible values of (rp-r , rs-r). This is ensured by
Simpson’s orthogonal avoidance strategy (cf. preservation of inv -Σr , above).

The second conjunct (that data-w is updated at hold-w) is immediate from the
text of post-start-Writer and that, by retr , hold-w ≡ (wp-w ,ws-w). �

The commit-Write Operation

∀↼−σr , σr ∈ Σr ·
post-commit-Writer (

↼−
σr , σr) ⇒ post-commit-Write i (retr(

↼−
σr), retr(σr))

The post-condition of commit-Write i requires that:

fresh-w = hold-w

By retr , this is (pair -w , slot-w(pair -w)) = (wp-w ,ws-w). This follows from
the text of post-commit-Writer and the fact that (established by framing and
phasing) wp-w is unchanged. �

96 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

The start-Read Operation

∀↼−σr , σr ∈ Σr ·
post-start-Readr (

↼−
σr , σr) ⇒ post-start-Read i (retr(

↼−
σr), retr(σr))

Here, the use of the auxiliary variable, A-rw , at the intermediate level must be
addressed. The post-condition of start-Read i is written in terms of A-rw :

hold-r ∈ A-rw

This captures the fact that hold-r can take any value fresh-w which can

arise, i.e. hold-r ∈ {↼−−−−fresh-w , fresh-w} is insufficient. Note however that at
the representation level, the pair and slot types can only take two values
(cardP = card S = 2), hence the selection of a value as the initial or final
value of a variable is sufficient.

By retr , hold-r ≡ (rp-r , rs-r) and fresh-w ≡ (pair -w , slot-w(pair -w)).

Thus start-Readr must select rp-r from {↼−−−−pair -w , pair -w}, then rs-r as
slot-w(pair -w), which is equivalent to slot-w(rp-r). This is immediate by the
text of post-start-Readr .

Note that slot-w may change during this operation, but that again Simpson’s or-
thogonal avoidance strategy ensures that it does not change to rp-r (cf. preser-
vation of inv -Σr , above). �

The end-Read Operation

∀↼−σr , σr ∈ Σr ·
post-end-Readr (

↼−
σr , σr , r) ⇒ post-end-Read i (retr(

↼−
σr , r), retr(σr))

The above holds trivially because the state is unchanged. It only remains to
check that the result, r , is the same. From post-end-Read i , r = data-w(hold-r).
By retr , this requires that r = data-w(rp-r , rs-r). This is immediate from the
text of post-end-Readr . �

8.6 Evaluation of Development

The author feels that the development of the four-slot presented in this chapter repre-
sents a worthwhile contribution both to the study of the mechanism itself and to the
wider area of formal correctness for concurrent programs. One attraction of the de-
velopment is the straightforward, understandable top-level specification. The use of a
phased specification captures the concurrent nature of the algorithm without the need
for ghost variables to track execution. As a whole the author feels that the development
presents the intuition behind Simpson’s algorithm clearly.

The development also shows that framing is particularly useful in reducing the complex-
ity of specifications. Even with a reasonably large number of state components, only a
few key rely-guarantee conditions are needed to describe the subtle interactions between
the writer and reader. This makes the specifications easier to read and reduces the proof
effort.

8.7 Summary 97

The intermediate specification is particularly useful in understanding the step from
an abstract specification with unbounded memory to a representation with only four
slots. Whereas other approaches (such as [Hen05]) make this connection in a single
step, the intermediate level in this development presents a natural way to discuss the
issues involved with reusing memory locations. Indeed, as seen in Appendix C.3.3, the
intermediate specification can also be used to discuss the limitations of a three-slot
mechanism. A similar approach could potentially be used to discuss two- and one-slot
mechanisms.

The development is of course not perfect. Weaknesses in the expressiveness of VDM
coupled with the highly concurrent nature of ACMs necessitated introduction of an
auxiliary variable at the intermediate level, which somewhat complicates the neat devel-
opment. This issue will be addressed in a forthcoming joint paper with Cliff Jones. In
addition, auxiliary variables were introduced at the representation level, in order to show
correctness. A version of this development where auxiliary variables are not required at
the representation level is explored in [JP09].

With regard to other formal developments of the four-slot, the main comparison can be
drawn with [Hen05], which also contains a development in VDM with rely-guarantee
reasoning. The author feels that the development presented here is cleaner. Henderson
uses ghost variables to track execution and effectively defines an operation for each
line of code in Figure 8.13. This observation suggests that a separation logic / RGSep
development of the four-slot should be successful, however this bottom-up approach goes
against the traditional tenets of abstraction in VDM.

An (unpublished) attempt to verify the four-slot in Event-B uses a similar approach,
with an abstract specification based on traces (using complex relationships to track the
non-determinism shown in Figure 8.1). Anecdotal evidence suggests that this pseudo
program counter approach is a common approach in Event-B. The author feels both
approaches lack the understandable abstract specification present in this development.
A verification of the four-slot mechanism in CSP appears in [Bur04].

8.7 Summary

This chapter presented a novel development of Simpson’s Four-Slot mechanism. The
example was chosen because it ties together the three main threads of this thesis:

• That atomicity refinement is a useful way of approaching difficult concurrent prob-
lems and leads to understandable developments; that rely-guarantee conditions are
a useful way of representing atomicity assumptions; and that data representation
can be an important factor in realising these specification successfully.

• That read-write frames reduce the number of rely-guarantee conditions required
with minimal effort on the part of the designer. In turn, this leads to cleaner
specifications that are easier to understand. The rely-guarantee conditions within
the above development are all concerned with the complex interactions between
processes in a highly concurrent system. This is the area in which the efforts of
the designer writing rely-guarantee conditions should be concentrated.

• The development used a phased specification at the top level in order to capture
the behaviours of a complex set of requirements. Traditionally, rely-guarantee
reasoning with VDM lacked a way of describing problems that exhibit phases

98 Chapter 8. Atomicity Refinement Applied to Simpson’s Four-Slot

(periods of execution with differing rely-guarantee conditions). While the use of
the phased specification does introduce certain problems (to do with refinement
proofs), it is the author’s position that these phased specifications offer a natural
way of describing concurrent problems of this nature.

Chapter 9

Conclusions and Further Work

9.1 Conclusions

There are three main threads of work presented in this thesis, however they all meet in
Chapter 8 with the development of Simpson’s Four-Slot [Sim90]. The starting point for
this work was to investigate formal methods for reasoning about concurrent programs.
More specifically, to study the question that atomicity refinement [BJ05b] could offer a
way to simplify the process of specifying and designing complex concurrent programs.
The notion of atomicity [JLRW05] can be ignored in sequential programs, because the
program will not suffer interference or observation of its intermediate state. This is not
the case for concurrent programs however.

But the ability to start with a fiction of atomicity [BJ05b] during design and devel-
opment of concurrent programs has the potential to make these problems easier to
understand and solve. The main idea is that designers can record (possibly unrealistic)
assumptions about atomicity, in order to simplify the design process. These assumptions
can then be relaxed in order to allow more concurrent (e.g. efficient) execution.

It is the author’s position that VDM [Jon90], in conjunction with rely-guarantee rea-
soning [Jon83a], presents a useful framework for exploring both concurrent design and
atomicity refinement. VDM is a mature method that is used widely. Well understood
notions of refinement and operation decomposition allow for an abstract approach to
design that clearly records design decisions and assumptions.

Rely-guarantee conditions offer a way to describe interference. A rely-condition de-
scribes the interference that a program must tolerate from its environment. A guarantee-
condition describes the degree of interference a program can generate as the environment
to other processes. Together, the pre- and rely-condition form an assumption which the
programmer makes about the environment in which a program runs. The guarantee-
and post-condition represent the programmer’s commitment.

With respect to atomicity refinement, rely-conditions offer a way to record assumptions
about atomicity. For example, an initial specification might include rely-conditions
which suggest an implementation that defensively locks a shared variable. Steps of
refinement can then be undertaken that have a looser set of atomicity assumptions,
reflected by looser rely-conditions, which conclude with an implementable representation
with realisable assumptions about atomicity (at both a code and hardware level).

The main conclusions of this thesis are:

• that data representation is often important for successful relaxation of atomic-

99

100 Chapter 9. Conclusions and Further Work

ity and realisation of concurrent specifications, because ‘clever’ representations
can allow programs to satisfy rely-guarantee conditions under realistic atomicity
assumptions.

• that read-write frames in VDM reduce the complexity of rely-guarantee conditions
by reducing the need to write rely-guarantee conditions where no interference can
occur.

• that the use of phased specifications can overcome certain weaknesses in current
rely-guarantee reasoning for a certain class of problem.

• that the novel development of Simpson’s Four-Slot illustrates these points clearly
and is easier to understand than other comparable developments.

In addition, the author believes that read-write frames and phased specifications enhance
the usability of rely-guarantee conditions. Both techniques reduce the complexity of
specifications, which both reduces the proof effort and makes them easier to write for
the designer and easier to read and comprehend for others. It is the author’s position
that a method in which specifications are less complex is more usable.

In the case of read-write frames, complexity is reduced by using a notion of disjoint
concurrency to reduce the need to write rely-guarantee conditions where no interference
can occur. In the case of phased specifications, complexity is reduced by using the notion
of phasing as a natural way to reduce proof obligations in the development of certain
problems (those which exhibit phasing properties) without the need for ghost variables,
such as “pseudo program counters”, to track the execution of phases.

9.2 Further Work

On the novel development of the four-slot, the development and proofs in this thesis
use auxiliary variables, which the author would wish to avoid. The auxiliary variables
at the intermediate level could be tackled by a novel possible values operator for VDM.
A version of this development, using such an operator, appears (at the time of writing)
as [JP09]. In addition, the paper explores a correctness argument for the four-slot
representation that does not use auxiliary variables.

Arguments for the correctness of the intermediate abstraction could be strengthened by
showing the developments of two- and three-slot specifications can, subject to atomic-
ity assumptions, refine the intermediate specification. This possibility is hinted at in
Section C.3.3, which presents an argument for the need for four slots. The author sub-
scribes to the view that a ‘good’ abstraction should support multiple representations,
so applications of the abstraction to other ACMs could be an interesting area for future
work.

On the use of read-write frames for simplifying rely-guarantee, the author feels that the
arguments presented in this thesis are strong. Three possible extensions for this work
are considered in Section 6.4.3. In addition, one way to continue this work would be
through the development of tools. The read-write frames of operations, as defined by
externals clauses, lend themselves to mechanization. A tool could incorporate analy-
sis of read-write frames and indicate to the designer where rely-guarantee conditions
may be required. A harder task would be an analysis tool which could suggest where
rely-conditions may be difficult to realise (for example, the concurrent modification of

9.2 Further Work 101

a shared variable such as top in FINDP [CJ07]). A promising platform for such an
application would be the open source Overture tool1.

On the link between atomicity refinement and data representation, a good first step
would be to find more examples that strengthen the argument. Further investigation
could lead to identification of patterns, which could be followed in future developments.
For example, both the SIEVE [Jon83a] and four-slot developments rely on the ability to
atomically ‘flip bits’. In contrast, the FINDP example reifies a single shared variable into
two components with a relationship defined between then (in this case, the minimum of
the two).

These ‘clever’ representations which are used to relax atomicity have to be found by pro-
grammers, where individuals, such as Simpson, devise them using intricate knowledge of
programming languages and hardware. Identifying patterns could lift this knowledge to
the design level, where it could be applied without the need for such esoteric knowledge.
In addition, these patterns could potentially be incorporated into a tool as a complement
to the read-write frame tools described above.

On the use of phased specifications as a method of tackling certain concurrent programs,
further work is clearly needed. Two deeper problems that could potentially be tackled
with phased specifications are mentioned in Section 7.3. The single example of the
four-slot, while promising, is not enough to fully justify the merits of the approach. As
mentioned in Appendix C.4.1, the phased specification appears to introduce difficulties
in refinement (in this case, of defining a linking invariant); further study should reveal
other potential problems.

One way to proceed would be to define operation decomposition rules for phased spec-
ification. These would likely take the form of an extension to the traditional parallel
composition rule of rely-guarantee reasoning and would identify the circumstances under
which a problem can be realised as phased specification.

1See http://www.overturetool.org/

102

Bibliography

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, New York, NY, USA, 1996.

[AM71] E. A. Ashcroft and Z. Manna. Formalization of properties of parallel pro-
grams. In B. Meltzer and D. Michie, editors, Machine Intelligence, 6, pages
17–41. Edinburgh University Press, 1971.

[AW94] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus lineariz-
ability. ACM Trans. Comput. Syst., 12(2):91–122, 1994.

[BBG+63] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, and M. Woodger. Revised report on the algorithmic language
Algol 60. Communications of the ACM, 6(1):1–17, 1963.

[BCOP05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkin-
son. Permission accounting in separation logic. SIGPLAN Not., 40(1):259–
270, 2005.

[Ber93] Gérard Berry. Preemption in concurrent systems. In Proceedings of the 13th
Conference on Foundations of Software Technology and Theoretical Com-
puter Science, pages 72–93, London, UK, 1993. Springer-Verlag.

[BFL+94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian
Ritchie. Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag,
1994. ISBN 3-540-19813-X.

[BH72] P. Brinch Hansen. Structured multiprogramming. Commun. ACM,
15(7):574–578, 1972.

[BH75] P. Brinch Hansen. The programming language concurrent Pascal. IEEE
Transactions on Software Engineering, 1:199–207, June 1975.

[Bic95] Juan Bicarregui. Intra-Modular Structuring in Model-Oriented Specification:
Expressing Non-Interference with Read and Write Frames. PhD thesis, 1995.

[BJ05a] J. I. Burton and C. B. Jones. Atomicity in system design and execution.
Journal of Universal Computer Science, 11(5):634–635, 2005.

[BJ05b] J. I. Burton and C. B. Jones. Investigating atomicity and observability.
Journal of Universal Computer Science, 11(5):661–686, 2005.

103

104 BIBLIOGRAPHY

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose tempo-
ral logic specifications. In Proceedings of 16th ACM STOC, pages 51–63,
Washington, April–May 1984.

[BKS83] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. In PODC ’83: Proceedings of the second annual ACM
symposium on Principles of distributed computing, pages 131–142, New York,
NY, USA, 1983. ACM.

[BL05] Michael Butler and Michael Leuschel. Combining CSP and B for specifica-
tion and property verification. In John Fitzgerald, Ian Hayes, and Andrzej
Tarlecki, editors, Formal Methods 2005, number LNCS 3582, pages 221–236.
Springer, January 2005.

[BP89a] J. E. Burns and G. L. Peterson. The ambiguity of choosing. In PODC
’89: Proceedings of the eighth annual ACM Symposium on Principles of
distributed computing, pages 145–157, New York, NY, USA, 1989. ACM.

[BP89b] J. E. Burns and G. L. Peterson. The ambiguity of choosing. In PODC
’89: Proceedings of the eighth annual ACM Symposium on Principles of
distributed computing, pages 145–157, New York, NY, USA, 1989. ACM.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive
Systems. Springer-Verlag, 2001.

[Bur04] Jonathan Burton. The Theory and Practice of Refinement-After-Hiding.
PhD thesis, University of Newcastle upon Tyne, 2004.

[BY07] M. Butler and D. Yadav. An incremental development of the Mondex system
in Event-B. Form. Asp. Comput., 20(1):61–77, 2007.

[CJ00] Pierre Collette and Cliff B. Jones. Enhancing the tractability of
rely/guarantee specifications in the development of interfering operations.
In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language
and Interaction, chapter 10, pages 277–307. MIT Press, 2000.

[CJ07] J. W. Coleman and C. B. Jones. A structural proof of the soundness of
rely/guarantee rules. Journal of Logic and Computation, 17(4):807–841,
2007.

[Col94] Pierre Collette. Design of Compositional Proof Systems Based on
Assumption-Commitment Specifications – Application to UNITY. PhD the-
sis, Louvain-la-Neuve, June 1994.

[Col08] J. W. Coleman. Constructing a Tractable Reasoning Framework upon a Fine-
Grained Structural Operational Semantics. PhD thesis, Newcastle University,
Newcastle Upon Tyne, January 2008.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action
and abstract separation logic. Logic in Computer Science, Symposium on,
0:366–378, 2007.

BIBLIOGRAPHY 105

[DFPV09] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-
guarantee reasoning. In Programming Languages and Systems: Proc. 18th
European Symposium on Programming (ESOP 2009), volume 5502 of Lecture
Notes in Computer Science, pages 363–377. Springer-Verlag, 2009.

[Dij68] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–112. Academic Press, New York, 1968.

[DJS96] Brian Dunten, Julie Jones, and Jonathan Sorenson. A space-efficient fast
prime number sieve. Information Processing Letters, 59(2):79 – 84, 1996.

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: an exercise in coopera-
tion. Commun. ACM, 21(11):966–975, 1978.

[DN66] Ole-Johan Dahl and Kristen Nygaard. Simula: an algol-based simulation
language. Commun. ACM, 9(9):671–678, 1966.

[dR01] W. P. de Roever. Concurrency Verification: Introduction to Compositional
and Noncompositional Methods. Cambridge University Press, 2001.

[FFS07] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In ESOP, pages
173–188, 2007.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel
Verhoef. Validated Designs for Object-oriented Systems. Springer, 2005.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley
Professional, 2005.

[Gra70] Jim Gray. Locking. In Record of the Project MAC conference on concurrent
systems and parallel computation, pages 169–176. ACM, New York, NY,
USA, 1970.

[Hen05] Neil Henderson. Formal Modelling and Analysis of an Asynchronous Com-
munication Mechanism. PhD thesis, University of Newcastle upon Tyne,
2005.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, 1991.

[HHH+87] C. A. R. Hoare, I. J. Hayes, J. He, C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sørensen, J. M. Spivey, and B. A. Sufrin. The laws of programming.
Communications of the ACM, 30:672–687, 1987. see Corrigenda in ibid
30:770.

[HJ89] C. A. R. Hoare and C. B. Jones. Essays in Computing Science. Prentice
Hall International, 1989.

[HJJ03] Ian Hayes, Michael Jackson, and Cliff Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of LNCS, pages 154–169. Springer Verlag, 2003.

106 BIBLIOGRAPHY

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism
and concurrency. J. ACM, 32(1):137–161, 1985.

[HO08] Tony Hoare and Peter O’Hearn. Separation logic semantics for communicat-
ing processes. Electron. Notes Theor. Comput. Sci., 212:3–25, 2008.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12:576–580, 583, October 1969.

[Hoa72a] C. A. R. Hoare. Proof of correctness of data representations. Acta Inf.,
1:271–281, 1972.

[Hoa72b] C.A.R. Hoare. Towards a theory of parallel programming. In Operating
System Techniques, pages 61–71. Academic Press, 1972.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21:666–677, August 1978.

[HSGR07] D. Haneberg, G. Schellhorn, H. Grandy, and W. Reif. Verification of Mondex
electronic purses with KIV: from transactions to a security protocol. Form.
Asp. Comput., 20(1):41–59, 2007.

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–
492, 1990.

[Ili09] Alexei Iliasov. On event-b and control flow (presentation). http://wiki.

event-b.org/images/Soton_flow.pdf, July 2009.

[Int96] International Organization for Standardization. ISO/IEC 13817-1:1996: In-
formation technology — Programming languages, their environments and
system software interfaces — Vienna Development Method — Specification
Language — Part 1: Base language. 1996.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for
mutable data structures. SIGPLAN Not., 36(3):14–26, 2001.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal
Development Support System. Springer-Verlag, 1991.

[JLRW05] C. B. Jones, D. Lomet, A. Romanovsky, and G. Weikum. The atomic man-
ifesto. Journal of Universal Computer Science, 11(5):636–650, 2005.

[Jon70] C. B. Jones. A technique for showing that two functions preserve a relation
between their domains. Technical Report LR 25.3.067, IBM Laboratory,
Vienna, April 1970.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a No-
tion of Interference. PhD thesis, Oxford University, June 1981. Printed as:
Programming Research Group, Technical Monograph 25.

[Jon83a] C. B. Jones. Specification and design of (parallel) programs. In Proceedings
of IFIP’83, pages 321–332. North-Holland, 1983.

BIBLIOGRAPHY 107

[Jon83b] C. B. Jones. Tentative steps toward a development method for interfering
programs. Transactions on Programming Languages and System, 5(4):596–
619, 1983.

[Jon89] C. B. Jones. Data reification. In J. A. McDermid, editor, The Theory and
Practice of Refinement, pages 79–89. Butterworths, 1989.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105–122,
March 1996.

[Jon03a] C. B. Jones. Wanted: a compositional approach to concurrency. In Annabelle
McIver and Carroll Morgan, editors, Programming Methodology, pages 1–15.
Springer Verlag, 2003.

[Jon03b] Cliff B. Jones. The early search for tractable ways of reasonning about
programs. IEEE, Annals of the History of Computing, 25(2):26–49, 2003.

[Jon07] C. B. Jones. Splitting atoms safely. Theoretical Computer Science, 357:109–
119, 2007.

[JP07] Cliff B. Jones and Ken G. Pierce. What can the π-calculus tell us about the
Mondex purse system? In ICECCS ’07: Proceedings of the 12th IEEE Inter-
national Conference on Engineering Complex Computer Systems (ICECCS
2007), pages 300–306, Washington, DC, USA, 2007. IEEE Computer Society.

[JP08] Cliff B. Jones and Ken G. Pierce. Splitting atoms with rely/guarantee con-
ditions coupled with data reification. In ABZ ’08: Proceedings of the 1st
international conference on Abstract State Machines, B and Z, pages 360–
377, Berlin, Heidelberg, 2008. Springer-Verlag.

[JP09] C. B. Jones and K. G. Pierce. Elucidating concurrent algorithms via layers
of abstraction and reification. Technical Report CS-TR 1166, Newcastle
University, 2009.

[Kao08] Ming-Yang Kao, editor. Encyclopedia of Algorithms. Springer, 2008.

[KST07] Damien Karkinsky, Steve A. Schneider, and Helen Treharne. Combining
mobility with state. In IFM, pages 373–392, 2007.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess progranm. IEEE Trans. Comput., 28(9):690–691, 1979.

[Lam88] Leslie Lamport. Control predicates are better than dummy variables for rea-
soning about program control. ACM Trans. Program. Lang. Syst., 10(2):267–
281, 1988.

[LH96] Peter Gorm Larsen and Bo Stig Hansen. Semantics of under-determined
expressions. Formal Asp. Comput., 8(1):47–66, 1996.

[LN79] Hugh C. Lauer and Roger M. Needham. On the duality of operating system
structures. SIGOPS Oper. Syst. Rev., 13(2):3–19, 1979.

108 BIBLIOGRAPHY

[Luc68] P. Lucas. Two constructive realizations of the block concept and their equiv-
alence. Technical Report TR 25.085, IBM Laboratory Vienna, June 1968.

[LV62] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to
improve computer reliability. IBM Journal of Research and Development,
6(2):200–209, 1962.

[MAV05] C. Métayer, Jean-Raymond Abrial, and L. Voisin. Event-b language. Tech-
nical report, May 2005.

[McD89] J. A. McDermid. Introduction. In J. A. McDermid, editor, The Theory and
Practice of Refinement, pages 1–11. Butterworths, 1989.

[Mid93] Cornelius A. Middelburg. Logic and Specification: Extending VDM-SL for
advanced formal specification. Chapman and Hall, 1993.

[Mih72] G. Arthur Mihram. Some practical aspects of the verification and validation
of simulation models. Journal of the Operational Research Society, 23:17–29,
1972.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, June 1999.

[Nip86] T. Nipkow. Behavioural Implementation Concepts for Nondeterministic Data
Types. PhD thesis, University of Manchester, 1986. Reprinted as UMCS-87-
5-3, May 1987.

[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs: an ax-
iomatic approach. Commun. ACM, 19(5):279–285, 1976.

[O’H07] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[OP99] Peter W. O’Hearn and David J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis,
Department of Computer Science, Cornell University, 1975. 75-251.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 26(4):631–653, 1979.

[Rey02] J.C. Reynolds. Separation logic: a logic for shared mutable data structures.
pages 55–74, 2002.

[SCW00] Susan Stepney, David Cooper, and Jim Woodcock. An electronic purse:
Specification, refinement, and proof. Technical monograph PRG-126, Oxford
University Computing Laboratory, July 2000.

[Set96] Ravi Sethi. Programming Languages: Concepts and Constructs. Addison
Wesley Longman Publishing Company, 1996.

BIBLIOGRAPHY 109

[Sim90] H.R. Simpson. Four-slot fully asynchronous communication mechanism.
Computers and Digital Techniques, IEE Proceedings E, 137(1):17–30, Jan
1990.

[Som88] Ian Sommerville. Software Engineering. International Computer Science
Series. Addison Wesley Longman Publishing Company, 1988.

[Stø90] K. Stølen. Development of Parallel Programs on Shared Data-Structures.
PhD thesis, Manchester University, 1990. Available as UMCS-91-1-1.

[Vaf07] Viktor Vafeiadis. Modular Fine-Grained Concurrency Verification. PhD
thesis, University of Cambridge, 2007.

[Vaf09] Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In
VMCAI ’09: Proceedings of the 10th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation, pages 335–348, Berlin,
Heidelberg, 2009. Springer-Verlag.

[VP07] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee
and separation logic. Technical Report UCAM-CL-TR-687, University of
Cambridge, Computer Laboratory, June 2007.

[WLBF09] Jim Woodcock, Peter G. Larsen, Juan Bicarregui, and John Fitzgerald. For-
mal methods: Practice and experience. ACM Comput. Surv., 41(4):1–36,
2009.

[Woo06] Jim Woodcock. Verified software grand challenge. In FM 2006: Formal
Methods, pages 617–617, 2006.

110

Appendix A

VDM-SL Notation

The following gives details of the (subset of) VDM-SL notation used in this thesis. It is
based on the notation guide in [Jon90] and the VDMTools VDM-SL Language Manual1.
The former uses the mathematical notation (used in this thesis) and the latter describes
an ASCII version of the notation used in various tools.

Type Definitions

With the exception of records, types are defined as follows, where Id is the type name.
Each type may have an invariant defined where i is an identifier (representing a typical
element of the type) and P is a predicate restricting the possible values of i . In addition,
types may have an initial value defined, where e is an expression yielding a value of the
type.

Id = type expression

inv i � p(i)

init e

Record types are composite types comprising of a set of fields identified by name, each
having their own type. The fields of a record can be accessed by naming using a dot
(e.g. r .id1). Each record type has a make-function (e.g. mk -Id(. . .)), which constructs a
record from appropriate values for each field. The make-functions are useful for pattern
matching records, as shown in the invariant definition. For pattern matching, each field
in the constructor can be an identifier, representing a value; a specific value for that
field; or (underscore), representing a field whose value is unimportant.

Id :: id1 : Type
id2 : Type
. . .

inv mk -Id(id1, id2, . . .) � p(id1, id2, . . .)

init mk -Id(id1, id2, . . .)

1See http://www.vdmtools.jp/uploads/manuals/langmansl a4E.pdf

111

112 Appendix A. VDM-SL Notation

Type Expressions

New types can be constructed from the following. Note that Type is used as a placeholder
for other defined types, so it is possible to have sets of natural numbers, N-set, for
example. Sequence and map application is indicated with parenthesis, e.g. s(i), m(d).
Tokens, characters and quote types can only be compared using equality and inequality.

B Booleans 〈Id〉 Quote type
N Natural numbers Type | Type Type union
N1 Positive natural numbers [Type] Optional type (Type | nil)
Z Integers Type-set Finite set
R Real numbers Type∗ Finite sequence
Q Rational numbers Type+ Non-empty finite sequence

token Token type Type
m−→ Type Finite mapping

char Characters Type
m←→ Type Finite bijective mapping

With the exception of the token type, values for the basic types in the left-hand column
above can be constructed using appropriate literals (e.g. true, 1, ′K ′). Quote literals
are the same as the definition, 〈Id〉. For optional types, the nil literal represents an
omitted object. Values for the other types can be created in the following ways.

{ } Empty set
{t1, t2, . . . , tn} Set enumeration
{x ∈ S | p(x)} Set comprehension
{i ..n} Set range (i to j inclusive)
[] Empty sequence
[e1, e2, . . . , en] Sequence enumeration
[x ∈ S | p(x)] Sequence comprehension
s(i ..j) Subsequence
{ } Empty map
{d1 �→ r1, . . . , dn �→ rn} Map enumeration
{d �→ f (d) ∈ D × R | p(d)} Map comprehension

Operations and Functions

Implicit operation definitions are defined as follows. Note that within this thesis the
parameters and return type have been omitted for certain specifications where the op-
eration simply modifies the state (e.g. in Chapter 3 and Chapter 4).

OP(p1:Type, . . . , pn :Type) r :Type �
rd t1:Type
wr t2:Type
owns wr t3:Type
pre . . .
rely . . .
guar . . .
post . . .

Implicit and explicit functions are also used in Chapter 6.

fn(p1:Type, . . . , pn :Type) r :Type �
pre . . .
post . . .

fn:Type × . . .× Type → Type
fn(p1, . . . , pn) �

. . .

113

Unary Expressions

The following operators are prefixes. Also available is map inverse, -1, which is a postfix
operator.

+ Unary plus hd Head (sequences)
− Unary minus tail Tail (sequences)
abs Absolute value len Length (sequences)
floor Floor elems Set of elements (sequences)
¬ Negation inds Set of indices (sequences)
card Cardinality (sets) dom Domain (maps)�

Distributed union (sets) rng Range (maps)

Binary Expressions

The following operators are infixes.

+ Sum ∪ Union (maps)
− Difference † Override (maps)
∗ Product � Domain restriction (maps)
/ Division −� Domain subtraction (maps)
rem Remainder � Range restriction (maps)
mod Modulus −� Range subtraction (maps)
↑ Power ∧ Conjunction
div Integer division ∨ Disjunction
∪ Union (sets) ⇒ Implication
∩ Intersection (sets) ⇔ Biimplication
− Difference (sets) = Equality
⊆ Subset (sets) �= Inequality
⊂ Proper subset (sets) < Less than
∈ Membership (sets) ≤ Less than or equal
/∈ Non-membership (sets) > Greater than
� Concatenation (sequences) ≥ Greater than or equal

114

Appendix B

Proofs for FINDP and SIEVE

B.1 Operation Decomposition Inference Rules

These inference rules are included here for reference. The standard operation decom-
position rules for VDM are given in [Jon90]. The rules below include rely-guarantee
conditions and were adapted from [CJ07].

Assign-I {δ(e),RI } x ← e {GI , x = ↼−e }

Where the pre-condition, δ(e), states that the value of e is computable; the rely-
condition, RI , is the identity relation on the variables free in e; and the guarantee-
condition, GI , is the identity relation on all variables except x .

weaken

{P ,R} S {G ,Q}
P ′ ⇒ P
R′ ⇒ R
G ⇒ G ′

Q ⇒ Q ′

{P ′,R′} S {G ′,Q ′}

Much like the standard weaken rule in [Jon90], a weaker specification has narrower
assumptions (pre- and rely-condition) or wider commitments (post- and guarantee con-
dition).

Seq-I

{P ,R} S1 {G ,Q1 ∧ P2}
{P2,R} S2 {G ,Q2}
Q1 | Q2 ⇒ Q

{P ,R} S1 ; S2 {G ,Q}
Where Q1 | Q2

� ∃σ′ ·Q1(σ, σ
′) ∧Q2(σ

′, σ′′).

Par -I

{P ,R ∨ G2} S1 {G1,Q1}
{P ,R ∨ G1} S2 {G2,Q2}
G1 ∨ G2 ⇒ G
↼−
P ∧Q1 ∧Q2 ∧ (R ∨ G1 ∨ G2)

∗ ⇒ Q

{P ,R} S1 ‖ S2 {G ,Q}

115

116 Appendix B. Proofs for FINDP and SIEVE

B.2 Proof of a Program FINDP

FINDP returns the lowest index of an element in a given vector that satisfies a given
predicate, pred . A sequential specification is:

FINDP
rd vals:Value∗

wr r :N1

pre ∀i ∈ {1..len vals} · δ(pred(vals(i)))
rely vals =

↼−−
vals ∧ r = ↼−r

guar true
post (r = len vals + 1 ∨ 1 ≤ r ≤ len vals ∧ pred(vals(r))) ∧

∀i ∈ {1..r − 1} · ¬ pred(vals(i))

FINDP can be realised by two concurrent processes searching a partition of the vector
(in this case, an odd and an even process). They communicate via shared variable, top,
which records the lowest index found so far by either process that satisfies pred . A first
step in justifying this development is to introduce and intermediate specification that
sets the temporary variable, top; searches the vector; and finally copies the result into
r . Such a specification is given below. This step can be justified using Assign-I , Seq-I
and weaken rules given above [CJ07]1.

top ← len vals + 1;
SEARCHES ;
r ← top

SEARCHES
rd vals:Value∗

wr top:N1

pre ∀i ∈ {1..top − 1} · δ(pred(vals(i)))
rely vals =

↼−−
vals ∧ top =

↼−
top

guar true

post (top =
↼−
top ∨ top <

↼−
top ∧ pred(vals(top))) ∧

(∀i ∈ {1..top − 1} · i ≤ top ⇒ ¬ pred(vals(i)))

B.2.1 Introducing Concurrency

To realise the concurrent implementation, it is then necessary to show that SEARCHES
can be implemented by:

SEARCH ({i ∈ {1..len values} | is-odd(i)}) ‖
SEARCH ({i ∈ {1..len values} | ¬is-odd(i)})

1The argument is basically sequential, with the need to carry the rely-guarantee conditions into the
compound components.

B.2 Proof of a Program FINDP 117

Where the specification of SEARCH is given by:

SEARCH (part :N1-set)
rd vals:Value∗

wr top:N1

pre ∀i ∈ part · δ(pred(vals(i))) ∧ top = len vals + 1

rely vals =
↼−−
vals ∧ top ≤↼−

top

guar top =
↼−
top ∨ top <

↼−
top ∧ pred(vals(top))

post ∀i ∈ part · i ≤ top ⇒ ¬ pred(vals(i))

To simplify the following, assume that the instance of SEARCH that searches the odd
indices is given by {Po ,Ro} So {Go ,Qo}, mutatis mutandis for the even process (Se).
In order to justify this step with Par -I , it is necessary to show:

{pre-SEARCHES , rely-SEARCHES ∨ Ge} So {Go ,Qo}
{pre-SEARCHES , rely-SEARCHES ∨ Go} Se {Ge ,Qe}
Go ∨ Ge ⇒ guar -SEARCHES
↼−
P ∧Qo ∧Qe ∧ (R ∨ Go ∨ Ge)

∗ ⇒ post-SEARCHES

The third hypothesis follows trivially is because guar -SEARCHES is true. The first
two hypotheses follow from:

rely-SEARCHES ∨ Ge ⇒ Go

rely-SEARCHES ∨ Go ⇒ Ge

Which both follow because the two processes have the same specification and hence:

Ge ⇔ Go

The fourth and final hypothesis states that together the two processes achieve the overall
post-condition of SEARCHES . The conjunction of the Qo and Qe is:

(∀i ∈ {1..len values | is-odd(i)} · i ≤ top ⇒ ¬ pred(vals(i))) ∧
(∀i ∈ {1..len values | ¬is-odd(i)} · i ≤ top ⇒ ¬ pred(vals(i)))

The union of the two partitions contains all indices in the vector (because all numbers
are either odd or even), hence the second conjunct of post-SEARCHES is established
by the two post-conditions:

Qo ∧Qe ⇒ ∀i ∈ {1..top − 1} · i ≤ top ⇒ ¬ pred(vals(i))
The first conjunct of post-SEARCHES is:

top =
↼−
top ∨ top <

↼−
top ∧ pred(vals(top))

Which is satisfied by the transitive closure of the guarantee-conditions of both processes.
In fact, guar -SEARCH is already transitive and hence:

(Go ∨ Ge) ⇒ top =
↼−
top ∨ top <

↼−
top ∧ pred(vals(top))

Therefore:

Qo ∧Qe ∧ (Go ∨ Ge) ⇒ post-SEARCHES

118 Appendix B. Proofs for FINDP and SIEVE

B.2.2 Achieving Atomicity Refinement with Data Reification

In order to avoid concurrent updates to a shared variable, top can be realised as
min(top-e, top-o). The retrieve function is therefore defined as top = min(top-e, top-o).
It is immediate that this is both adequate and total. A specification for the odd process
is (mutatis mutandis for the even process):

SEARCH -Odd
rd vals:Value∗

rd top-e:N1

wr top-o:N1

pre ∀i ∈ odds(len vals) · δ(pred(vals(i)))) ∧ top-o = len vals + 1

rely vals =
↼−−
vals ∧ top-o =

↼−−−
top-o ∧ top-e ≤↼−−−

top-e

guar top-o =
↼−−−
top-o ∨ top-o <

↼−−−
top-o ∧ pred(vals(top-o))

post ∀i ∈ odds(len vals) · i ≤ top-o ⇒ ¬ pred(vals(i)))

It is necessary to demonstrate that (under the retrieve function) SEARCH -Odd and
SEARCH -Even are suitable implementations for SEARCH , with respect to the post-
condition of SEARCHES . Intuitively, since both processes achieve the guarantee- and
post-conditions for their respective components of top, then clearly they hold for the
minimum of the two. Under the retrieve function, the first conjunct of post-SEARCHES
is:

min(top-e, top-o) = min(
↼−−−
top-e ,

↼−−−
top-o) ∨

min(top-e, top-o) < min(
↼−−−
top-e ,

↼−−−
top-o) ∧ pred(vals(min(top-e, top-o)))

This is satisfied by the guar -SEARCH -Odd and guar -SEARCH -Even (i.e. Go ∨ Ge):

top-o =
↼−−−
top-o ∨ top-o <

↼−−−
top-o ∧ pred(vals(top-o)) ∨

top-e =
↼−−−
top-e ∨ top-e <

↼−−−
top-e ∧ pred(vals(top-e))

The second conjunct of post-SEARCHES , under the retrieve function, is:

∀i ∈ {1..min(top-e, top-o) − 1} · i ≤ min(top-e, top-o) ⇒ ¬ pred(vals(i))
Which follows from the conjunction of post-SEARCH -Odd and post-SEARCH -Even:

∀i ∈ odds(len vals) · i ≤ top-o ⇒ ¬ pred(vals(i))) ∧
∀i ∈ evens(len vals) · i ≤ top-e ⇒ ¬ pred(vals(i)))

B.2 Proof of a Program FINDP 119

B.2.3 From Specification to Code

The specifications of SEARCH -Odd and SEARCH -Even can be implemented using
loops. Thus pseudo-code for and implementation of SEARCHES could be (adapted
from [CJ07]):

top-o ← len vals + 1;
top-e ← len vals + 1;
parbegin

(count-o ← 1;
while count-o < top-o ∧ count-o < top-e do

if pred(vals(top-o)) then top-o ← count-o;
count-o ← count-o + 2

od)
‖
(count-e ← 2;
while count-e < top-e ∧ count-e < top-o do

if pred(vals(top-e)) then top-e ← count-e;
count-e ← count-e + 2

od)
parend;
if top-o < top-e then r ← top-o;
if top-e < top-o then r ← top-e

The justification for the two loops follows from the standard while rule. The following
observations concern the odd process. The same is true (mutatis mutandis) for the even
process.

• The test in the while loop refers to a (possibly changing) shared variable. If top-e
changes after the test is evaluated, top-o may be updated to an index higher than
top-e. The choice of min(top-e, top-o) as the representation of top however ensures
that together the processes still achieve post-SEARCHES .

• There is an assignment to a shared variable, top-o, within the loop. This only
occurs if an index is found which is lower than top-o that satisfies pred . This
satisfies guar -SEARCH -Odd .

• The development in [CJ07] is defined in terms of a highly concurrent language,
where the code includes a second check that count-o < top-o within the loop.
The code above assumes the first conjunct of the while loop test is stable under
interference. Since count-o is local and top-o is only written by the odd process,
this this is a valid assumption2.

2Note that this assumption is recorded in rely-SEARCH -Odd (i.e. top-o =
↼−−−
top-o). This is another

excellent candidate for an owns wr declaration (see Chapter 6).

120 Appendix B. Proofs for FINDP and SIEVE

B.3 Proof of a Program SIEVE

SIEVE finds all prime numbers in a set of integers, s = {1..n}, by removing all of the
multiples of i from s, where i ∈ {2..�√n�}. A sequential specification is:

SIEVE
wr s:N1-set
pre true
rely s = ↼−s
guar true
post s = ↼−s −�{mults(i) | 2 ≤ i ≤ �√n�}

B.3.1 Introducing Concurrency

SIEVE can be realised concurrently by defining a process for each i , which is responsible
for removing the multiples of i from s. A specification for the ith concurrent process is:

REM (i :N1)
wr s:N1-set
pre true
rely s ⊆↼−s
guar (↼−s − s) ⊆ mults(i) ∧ s ⊆↼−s
post s ∩mults(i) = {}

In order to justify this step it is necessary to show:

{pre-SIEVE , rely-SIEVE}
�√n��
i=2

REM (i) {guar -SIEVE , post-SIEVE}

While the Par -I rule is defined (above) using only two processes, each process has the
same specification (REM). So without loss of generality, interference can be considered
between two processes i , j , where {Pi ,Ri} REM (i) {Gi ,Qi} (mutatis mutandis for j).
It is therefore necessary to show:

{pre-SIEVE , rely-SIEVE ∨ Gj } REM (i) {Gi ,Qi}
{pre-SIEVE , rely-SIEVE ∨ Gi} REM (j) {Gj ,Qj}
Gi ∨ Gj ⇒ guar -SIEVE

The third hypothesis follows trivially is because guar -SIEVE is true. The first two
hypotheses follow from:

rely-SIEVE ∨ Gi ⇒ Gj

rely-SIEVE ∨ Gj ⇒ Gi

Which both follow because:

Gi ⇔ Gj

In order to achieve the overall goal of post-SIEVE however, it is necessary to consider
all REM processes. The standard proof obligation for two processes meeting the overall
post-condition is:

↼−
P ∧Q1 ∧Q2 ∧ (R ∨ G1 ∨ G2)

∗ ⇒ Q

B.3 Proof of a Program SIEVE 121

In this case, Q is:

s = ↼−s −�{mults(i) | 2 ≤ i ≤ �√n�}
The combination of the post-conditions for each process is given by:

∀i ∈ {2..�√n�} · post-REM (i)

Which achieves:

s ∩�{mults(i) | 2 ≤ i ≤ �√n�} = { }
The above ensures that no compound numbers remain in s. This is the upper bound
on s. It does not however require that there are any primes in s (for example, it admits
s = { }). The guarantee-condition states that only multiples of i are removed from s by
REM (i):

(↼−s − s) ⊆ mults(i)

Taken together, the transitive closure of the guarantee-conditions ensures that only
compound numbers are removed. This is the lower bound. That is, for the global s:

(s −↼−s) ⊆ �{mults(i) | 2 ≤ i ≤ �√n�}
Let compounds be

�{mults(i) | 2 ≤ i ≤ �√n�} in:
s ∩ compounds = { } ∧ (s −↼−s) ⊆ compounds ⇒ s = ↼−s − compounds

Therefore:

∀i ∈ {2..�√n�} · post-REM (i) ∧ guar -REM ⇒ post-SIEVE

B.3.2 Achieving Atomicity Refinement with Data Reification

In order to avoid concurrent updates to a large shared data structure, s can be realised
as a ‘bit mask’ (a map from natural numbers to boolean values), where the domain of
the mask, m, is equal to s. To remove a value i from s, a process sets m(i) to false.
The retrieve function is s = dom (m � true). A specification for using this principle is
as follows:

REM -Mask(i :N1)
rd s:N1-set
wr m:N1

m−→ B

pre domm = s
rely domm = dom↼−m ∧ dom (m � true) ⊆ dom (↼−m � true)

guar domm = dom↼−m ∧ (dom (↼−m � true)− dom (m � true)) ⊆ mults(i) ∧
dom (m � true) ⊆ dom (↼−m � true)

post dom (m � true) ∩mults(i) = { }

It is necessary to demonstrate that (under the retrieve function) the combination of
REM -Mask processes achieve post-SIEVE . As before, the combination of the post-
conditions achieves the upper bound on s:

dom (m � true) ∩ compounds = { }
Again the combination of the guarantee-conditions achieves the lower bound:

(dom (m � true)− dom (↼−m � true)) ⊆ compounds

122 Appendix B. Proofs for FINDP and SIEVE

B.3.3 From Specification to Code

The specification of REM -Mask can be implemented using a loop. Pseudo-code for an
implementation of SIEVE (to calculate prime numbers up to n) could therefore be:

m ← {i �→ true | i ∈ {1..n}};
lim ← floor(sqrt(n));
parbegin for i ∈ {2..�√n�}

. . .
‖
REM (i) is
(count ← i + i ;
while count ≤ n do

m(count)← false;
count = count + i

od);
‖
. . .

parend;
s ← {i | i ∈ domm ∧m(s) = 1}

This above code illustrates a definition for the ith process, though clearly a function call
or instantiation of a REM class would likely be used in an executable implementation.
The justification of the loop follows from the standard while rule. From the above code
the following observations can be made.

• Both i and count are local variables and hence the test for the loop is stable under
interference.

• There is a single assignment to a shared variable, m, within the loop. Because
count is initialised to i + i and incremented by i in each iteration, it can be
seen that only multiples of i will be altered in m (by this process) and hence the
implementation satisfies guar -REM -Mask .

• The assignment to m sets a value from true to false (i.e. 1 to 0). It is assumed that
concurrent ‘bit flip’ operation can be achieved safely on any reasonable hardware.

Appendix C

Four-Slot Specifications

C.1 Top-Level Specification

while true do
start-Write(v :Value): data-w ← data-w � [v];
commit-Write(): fresh-w ← len data-w

od
while true do

start-Read(): hold -r ← fresh-w ;
end-Read() r :Value: r ← data-w(i) for some i ∈ {hold-r ..fresh-w}

od

C.2 Abstract Level

C.2.1 State

Σa :: data-w : Value∗

fresh-w : N1

hold-r : N1

inv (mk -Σa (data-w , fresh-w , hold-r)) �
1 ≤ hold-r ≤ fresh-w ≤ len data-w

init mk -Σa([x], 1, 1)

C.2.2 Atomic Specification

Write(v :Value)
start-Write(v :Value)

wr data-w

post data-w =
↼−−−−
data-w � [v]

commit-Write()
wr fresh-w
rd data-w
post fresh-w = len data-w

123

124 Appendix C. Four-Slot Specifications

Read() r :Value
start-Read()

wr hold-r
rd fresh-w
post hold-r = fresh-w

end-Read() r :Value
rd data-w , hold-r
post ∃i ∈ {hold-r ..fresh-w} · r = data-w(i)

C.2.3 Specification

Write(v :Value)
owns wr data-w , fresh-w

start-Write(v :Value)
owns wr data-w

guar {1..fresh-w} � data-w = {1..fresh-w} �↼−−−−
data-w

post data-w =
↼−−−−
data-w � [v]

commit-Write()
owns wr fresh-w
rd data-w
post fresh-w = len data-w

Read() r :Value
owns wr hold-r
rd data-w , fresh-w

start-Read()
owns wr hold-r
rd fresh-w

post hold-r ∈ {↼−−−−fresh-w ..fresh-w}
end-Read() r :Value

rd data-w , hold-r

rely data-w(hold-r) =
↼−−−−
data-w (hold-r)

post r = data-w(hold-r)

C.3 Intermediate Level

C.3.1 State

Σi :: data-w : X
m−→ Value

fresh-w : X
hold-r : X
hold-w : X
A-rw : X -set

inv (mk -Σi (data-w , fresh-w , hold -r , hold -w , { })) �
{fresh-w , hold-r , hold-w} ⊆ dom data-w

init mk -Σi({α �→ x}, α, α, α, { })

C.3 Intermediate Level 125

C.3.2 Specification

Write(v :Value)
owns wr data-w , fresh-w , hold-w
wr A-rw
rd hold-r

start-Write(v :Value)
owns wr data-w , hold-w
rd hold-r , fresh-w

rely hold-r �= ↼−−−
hold-r ⇒ hold-r = fresh-w

guar {↼−−−hold-r , hold-r} � data-w = {↼−−−hold-r , hold-r} �↼−−−−
data-w

post hold-w /∈ {↼−−−hold-r , hold-r} ∧ data-w =
↼−−−−
data-w † {hold-w �→ v}

commit-Write()
owns wr fresh-w
wr A-rw
rd hold-w

guar A-rw �= ↼−−−
A-rw ⇒ A-rw =

↼−−−
A-rw ∪ {fresh-w}

post fresh-w = hold-w

Read() r :Value
owns wr hold-r
wr A-rw
rd data-w , fresh-w

start-Read()
owns wr hold-r
wr A-rw
rd fresh-w

guar (hold-r �= ↼−−−
hold-r ⇒ hold-r = fresh-w) ∧

(A-rw �= ↼−−−
A-rw ⇒ A-rw = {fresh-w})

post hold-r ∈ A-rw
end-Read() r :Value

rd data-w , hold-r

rely data-w(hold-r) =
↼−−−−
data-w (hold-r)

post r = data-w(hold-r)

C.3.3 An Argument for Four-Slots

In Chapter 8, it is noted that the key to maintaining data integrity is to avoid clashing.
This is captured in the guarantee-condition on start-Write, which states that data-w
will not be overwritten at any location that the reader might access. This is matched in

the post-condition, where hold-w is chosen to avoid {↼−−−hold-r , hold-r} (this set represents
the readers current and potential next location).

The specification presented in Figure 8.7 is very similar to the three-slot algorithm
in [Sim90]. In a three-slot mechanism implementation, the cardinality of the indexing
set, X , is three. At first glance, it might appear that three slots is sufficient. Indeed, the
post-condition of start-Write suggests that it must only avoid two locations, hence the
need for only three locations. The reason why this is not the case is subtle. An informal
explanation is given in Section 4.4.3, but the specification in Figure 8.7 presents an

126 Appendix C. Four-Slot Specifications

Σj :: data-w : X
m−→ Value

fresh-w : X
hold-r : X
hold-w : X
temp-r : X

Read() r :Value
local temp-r :X

temp-r ← fresh-w ;
hold-r ← temp-r ;
r ← data(temp-r)

Figure C.1: Modified intermediate specification illustrating the need for four slots

init ;Write(y) gives mk -Σi2({1 �→ x, 2 �→ y}, 2, 1, 2, 1)
invoke start-Read() mk -Σi2({1 �→ x, 2 �→ y}, 2, 1, 2, 2)

Write(z) mk -Σi2({1 �→ x, 2 �→ y, 3 �→ z}, 3, 1, 3, 2)
start-Write(a) mk -Σi2({1 �→ x, 2 �→ y, 3 �→ z}, 3, 1,2,2)

finish start-Read() mk -Σi2({1 �→ x, 2 �→ y, 3 �→ z}, 3, 2,2,2)
Figure C.2: Failure mode of a three-slot implementation

opportunity to explore this problem formally. The issue is about the implementability
of atomic updates to variables.

Firstly, consider that in order to avoid the locations that the reader may access, the
writer needs to know where the reader is. This is indicated by the value of hold-r . The
value of hold-r may change and if it does, it will be set to the current value of fresh-w .
In an implementation, this could be written as hold-r ← fresh-w . Simpson notes that
in the highly concurrent environment in which ACMs are used, it is unreasonable to
assume that this assignment could be carried out atomically.

The implication is that the reader may be interrupted after it has read the value of
fresh-w , but before it has updated hold-r . It is possible that the writer could perform
a number of steps before hold-r is updated and it is in this situation that a clash can
occur. Henderson refers to these steps as readerChoosesSlot and readerIndicatesSlot ,
respectively [Hen05]. The explanation of the clash situation (which requires a very
specific interleaving of the writer and reader) is clearer with a modification to the state.
This is given in Figure C.1.

The modified state includes a new variable, temp-r . The code in Figure C.1 shows the
updated read operation, which now copies fresh-w into temp-r , before updating hold-r .
This represents the fact that hold-r may not be updated atomically and that the reader
may be interrupted between these two actions. This modified form of the code now
matches that of the three-slot presented in [Sim90].

There is now a situation where this three-slot implementation can result in a clash. This
clash requires a specific interleaving of the code, an example of which is illustrated in
Figure C.2.

In this scenario, two write operations have been performed when a read operation begins.
The reader is slow however and only manages to copy fresh-w into temp-r before it is
interrupted by the writer. The reader has now chosen a slot, but because it has not

C.4 First Refinement 127

updated hold-r , the writer is not aware of this choice. The writer then performs another
full write and begins another, selecting hold-w to be 2. The reader then resumes and
updates hold-r to the value of temp-r , which is also 2. A clash may now occur because
hold-w = hold-r = 2 and both the writer and the reader are poised to access data-w .
It is now clear that if the writer interrupts the reader between temp-r ← fresh-w and
hold-r ← temp-r , it may not be acting upon the latest information when choosing hold-w
and a clash can occur. While this scenario may seem unlikely, the demanding nature of
the concurrent environment in which ACMs are deployed requires that it be considered.
It is for this reason that Simpson uses four slots, because this allows the writer to avoid
the reader despite the fact that it may not be acting on the latest information.

This section is presented as an aside and the author chooses not to include this splitting
of atomicity at the intermediate level. The intermediate level is still an abstraction,
therefore atomicity assumptions are justified (as long as they are understood). The
modifications presented in this section are useful in showing the need for four slots and
also as an introduction to the representation level (where an equivalent split in atomicity
is included).

C.4 First Refinement

C.4.1 Linking Invariant

The definition of a linking invariant between the abstract and intermediate states is
somewhat complicated by the use of a phased specification. An initial attempt at a
linking invariant was as follows:

rel : Σa × Σi → B

rel(mk -Σa (d-wa , fr -wa , ho-ra),mk -Σi (d-w i , fr -w i , ho-r i , ho-w i)) �
rng d-w i ⊆ elems d-wa ∧
d-wa (fr -wa) = d-w i (fr -w i) ∧
d-wa (ho-ra) = d-w i (ho-r i)

The definition states that the items written at the intermediate level are a subset of
those written at the abstract level. In addition, fresh-w and hold-r must be in-step
(pointing to the same value). At first glance, this definition appears to describe the
relationship between the abstract an intermediate levels well. Unfortunately, this is not
the case and the problem arises due to the use of a phased specification. Consider that
the formulation of Nipkow’s rule in this case will be as follows:

r(σa
1 , σ

i
1) ∧ post i (σi

1, σ
i
2) ⇒ ∃σa

2 ∈ Σa · posta (σa
1 , σ

a
2) ∧ r(σa

2 , σ
i
2)

For each operation, it is necessary to establish that there exists an abstract final state
that both meets the abstract post-condition and relates to the intermediate final state.
The abstract specification is essentially deterministic, so witness values for abstract final
states are not difficult to define. The problem which arises however is best illustrated
with an example, such as the proof for start-Read . In order to establish that the linking
invariant holds for the witness value, the proof must establish that both hold-r and
fresh-w are in step. The reader owns write access to hold-r , therefore this is easy to
establish.

The reader however has no control over fresh-w , which is owned by the writer and could
be changed (to the best of the reader’s knowledge) arbitrarily. The question that arises

128 Appendix C. Four-Slot Specifications

is therefore which value to choose for fresh-w ; is it valid to assume that it doesn’t change,
for example? The converse is true for changes creating proofs for the write operations.
The problem is that, essentially, fresh-w and hold-r are local variables that have been
promoted to state components because they have to persist between two operations.
For example, the value of fresh-w is written in start-Write and read in commit-Write.
This is due to the choice of using a phased specification.

In order to solve this problem, a number of options were considered. The first of which
was to introduce guarantee conditions to each operation that essentially announce the
possible changes to variables (of the form “if the value changes, it will change to ...”).
Corresponding rely-conditions can then be written and appealed to in the proofs in order
to establish that the linking invariant holds on the final abstract state. This solution is
unsatisfactory as it is non-compositional and introduces many spurious rely-guarantee
conditions, which the use of a phased specification seeks to reduce.

Another approach that was considered (dubbed the microstep argument) was to show
that each guarantee-step of an operation preserved the linking invariant. It can then be
assumed in the proof for an operation that the other operations “behave themselves”
and respect the linking invariant. This approach seemed fruitful and may yet have
applications in the future, however it again raises questions over compositionality and
also requires construction of a solid argument showing that it is a valid approach.

The chosen solution is to reformulate the linking invariant to take into account the non-
determinism introduced by the phased specification. Below is the chosen definition for
the linking invariant, which states that there exists a mapping between the abstract
and intermediate for which the intermediate values are a subset of those written at the
abstract level and for which fresh-w and hold-r are in-step.

rel : Σa × Σi → B

rel(mk -Σa (data-wa , fresh-wa , hold-ra),
mk -Σi(data-w i , fresh-w i , hold-r i , hold-w i)) �

∃m ∈ (X
m←→ N1) ·

data-w i ⊆ m ◦ data-wa ∧
m(fresh-w i) = fresh-wa ∧
m(hold-r i) = hold-ra

C.5 Representation Level 129

C.5 Representation Level

C.5.1 State

Σr :: data-w : P × S
m−→ Value

pair -w : P
pair -r : P

slot-w : P
m−→ S

wp-w : P
ws-w : S
rp-r : P
rs-r : S
C -w : B

C -r : B

inv (mk -Σr (data-w , pair -w , pair -r , slot-w ,wp-w ,ws-w , rp-r , rs-r ,C -w ,C -r)) �
C -w ∧ C -r ⇒ (wp-w ,ws-w) �= (rp-r , rs-r)

init let data-w = {(p0, s0) �→ x}
pair -w = p0
pair -r = p0
slot-w = {p0 �→ s0, p1 �→ s0}
wp-w = p0
ws-w = s0
rp-r = p0
rs-r = s0
C -w = false
C -r = false in

mk -Σr (data-w , pair -w , pair -r , slot-w ,wp-w ,ws-w , rp-r , rs-r ,C -w ,C -r)

C.5.2 Specification

Write(v :Value)
owns wr data-w , pair -w , slot-w ,wp-w ,ws-w
rd pair -r

start-Write(v :Value)
owns wr data-w ,wp-w ,ws-w
rd pair -r , slot-w

rely pair -r �= ↼−−−
pair -r ⇒ pair -r = pair -w

guar ∀p ∈ {↼−−−pair -r , pair -r} ·
{(p, slot-w(p))} � data-w = {(p, slot-w(p))} �↼−−−−

data-w

post wp-w �= ↼−−−
pair -r ∧ ws-w �= slot-w(wp-w) ∧ data-w(wp-w ,ws-w) = v

commit-Write()
owns wr pair -w , slot-w
rd ws-w ,wp-w

post slot-w =
↼−−−
slot-w † {wp-w �→ ws-w} ∧ pair -w = wp-w

130 Appendix C. Four-Slot Specifications

Read() r :Value
owns wr pair -r , rp-r , rs-r
rd data-w , pair -w , slot-w

start-Read()
owns wr pair -r , rp-r , rs-r
rd pair -w , slot-w

rely slot-w(rp-r) =
↼−−−
slot-w (rp-r)

guar pair -r �= ↼−−−
pair -r ⇒ pair -r = pair -w

post rp-r = {↼−−−−pair -w , pair -w} ∧ pair -r = rp-r ∧ rs-r = slot-w(rp-r)
end-Read() r :Value

rd data-w , rp-r , rs-r

rely data-w(rp-r , rs-r) =
↼−−−−
data-w (rp-r , rs-r)

post r = data-w(rp-r , rs-r)

C.6 Second Refinement

C.6.1 Retrieve Function

retr : Σr → Σi

retr (mk -Σr (data-w , pair -w , pair -r , slot-w ,wp-w ,ws-w , rp-r , rs-r)) �
let fresh-w = (pair -w , slot-w(pair -w))

hold-r = (rp-r , rs-r)
hold-w = (wp-w ,ws-w) in

mk -Σi(data-w , fresh-w , hold -r , hold -w)

131

