
School of Computing Science

Simplifying Internet of Things
(IoT) Data Processing Workflow

Composition and Orchestration in
Edge and Cloud Datacenters

Yinhao Li

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

December 2020

c© 2020, Yinhao Li

- B -

Abstract

Internet of Things (IoT) allows the creation of virtually infinite connections into a

global array of distributed intelligence. Identifying a suitable configuration of devices,

software and infrastructures in the context of user requirements are fundamental to

the success of delivering IoT applications. However, the design, development, and

deployment of IoT applications are complex and complicated due to various unwar-

ranted challenges. For instance, addressing the IoT application users’ subjective and

objective opinions with IoT workflow instances remains a challenge for the design of

a more holistic approach. Moreover, the complexity of IoT applications increased ex-

ponentially due to the heterogeneous nature of the Edge/Cloud services, utilised to

lower latency in data transformation and increase reusability.

To address the composition and orchestration of IoT applications in the cloud and

edge environments, this thesis presents IoT-CANE (Context Aware Recommendation

System) as a high-level unified IoT resource configuration recommendation system

which embodies a unified conceptual model capturing configuration, constraint and

infrastructure features of Edge/Cloud together with IoT devices. Second, I present

an IoT workflow composition system (IoTWC) to allow IoT users to pipeline their

workflows with proposed IoT workflow activity abstract patterns. IoTWC leverages

the analytic hierarchy process (AHP) to compose the multi-level IoT workflow that

satisfies the requirements of any IoT application. Besides, the users are befitted with

recommended IoT workflow configurations using an AHP based multi-level composi-

tion framework. The proposed IoTWC is validated on a user case study to evaluate

the coverage of IoT workflow activity abstract patterns and a real-world scenario for

smart buildings. Last, I propose a fault-tolerant automation deployment IoT frame-

work which captures the IoT workflow plan from IoTWC to deploy in multi-cloud

edge environment with a fault-tolerance mechanism. The efficiency and effectiveness

of the proposed fault-tolerant system are evaluated in a real-time water flooding data

monitoring and management application.

- i -

- ii -

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of

work done in collaboration unless otherwise stated. It is not substantially the same as

any that I have submitted, or, is being concurrently submitted for a degree or diploma

or other qualification at the Newcastle University or any other University or similar

institution.

Yinhao Li,

December 2020

- iii -

- iv -

Publications

Published

1. Y. Li, A. Alqahtani, E. Solaiman, C. Perera, P. P. Jayaraman, R. Buyya, G.

Morgan, and R. Ranjan, “IoT-CANE: A unified knowledge management system

for data-centric Internet of Things application systems.” Journal of Parallel and

Distributed Computing 131 (2019): 161-172.

2. Y. Li, D.N.Jha, G.S.Aujla, G.Morgan, A.Y.Zomaya and R.Ranjan, 2020, April.

“IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow Com-

position System.” In 2020 IEEE International Conference on Cloud Engineering

(IC2E), pp. 1-10. IEEE, 2020.

3. D. N. Jha, Z. Wen, Y. Li, M. Nee, M. Koutny and R. Ranjan, 2020, January. “A

Cost-Efficient Multi-cloud Orchestrator for Benchmarking Containerized Web-

Applications.” In International Conference on Web Information Systems Engi-

neering, pp. 407-423. Springer, Cham, 2020.

4. A. Alqahtani, Y. Li, P. Patel, E. Solaiman and R. Ranjan, 2018, July. “End-

to-end service level agreement specification for iot applications.” In 2018 Inter-

national Conference on High Performance Computing and Simulation (HPCS),

pp. 926-935. IEEE, 2018.

5. K. Alwasel, Y. Li, P. P. Jayaraman, S. Garg, R. N. Calheiros, and R. Ranjan,

2017. “Programming sdn-native big data applications: Research gap analysis.”

IEEE Cloud Computing 4, no. 5 (2017): 62-71.

6. B. Qian, J. Su, Z. Wen, D. N. Jha, Y. Li, Y. Guan, D. Puthal, P. James, R.

Yang, A. Y. Zomaya and O. Rana, “Orchestrating the development lifecycle of

machine learning-based iot applications: A taxonomy and survey.” ACM Com-

puting Surveys (CSUR) 53, no. 4 (2020): 1-47.

- v -

7. D. N. Jha, Y. Li, P. P. Jayaraman, S. Garg, P. Watson, and R. Ranjan, “Chal-

lenges in Deployment and Configuration Management in Cyber Physical System.”

In Handbook of Integration of Cloud Computing, Cyber Physical Systems and

Internet of Things, pp. 215-235. Springer, Cham, 2020.

8. K. Alwasel, A. Noor, Y. Li, E. Solaiman, S. K. Garg, P. P. Jayaraman, R. Ran-

jan, “Cloud Resource Scheduling, Monitoring, and Configuration Management

in the Software Defined Networking Era.” TC-CPS Newsletter 3 (2017): 4-8.

Under Review

1. Y. Li, O. Almurshed, O. Rana, D. N. Jha, P. Patel, P. P. Jayaraman, and R.

Ranjan, “A Fault-Tolerant Workflow Composition and Deployment Automation

IoT Framework in a Multi-Cloud Edge Environment.” IEEE Network, IEEE.

- vi -

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Rajiv Ranjan, for

his guidance and leadership throughout the years. I am incredibly grateful for his

support, belief in me, and for the knowledge, wisdom and vision he has passed on

to me. Rajiv has taught me to look at the wider implications of my research and

has always had a positive outlook on what I have achieved. Furthermore, I wish to

thank Prof. Paul Watson and Dr. Ellis Solaiman, who have been demonstrative and

generous in their guidance and support in my PhD study. I am also very grateful

to Dr. Prem Prakash Jayaraman (Swinburne University of Technology), Dr. Charith

Perera (Cardiff University), Dr. Graham Morgan (Newcastle University) and Prof.

Omer Rana (Cardiff University) for their guidance and valuable suggestions on my

research.

I would like to thank my lab-mates and colleagues: Awatif Alqahtani, Ayman Noor,

Bin Qian, Deepak Puthal, Devki Nandan Jha, Fawzy Habeeb, Jedsada Phengsuwan,

Jie Su, Gagangeet Aujla, Khaled Alwasel, Nipun Balan, Umit Demirbaga, Zhenyu

Wen; and my friends in Newcastle University: Bowen and his wife Min, Conghao,

Jiajie, Yulong and his girlfriend Huan, Zongyin and his wife Shanshan for their kind

help, support and company. I would like to thank my friends in China for their support

and encouragement. I am grateful to many graduate students I met throughout the

years in the School of Computing. I learnt something new from each one of them. I

would like to thank Osama Almurshed from Cardiff University with his generous help

on my research.

Lastly, I would like to thank my mother, Lazhi, my father, Jing, my mother-in-law,

Lei, and all members of my family, who have been continuous with me throughout

these years, especially my mother. Particularly, I would like to express my utmost

thanks to my beloved wife, Die, for her continuous support, company, and patience on

this long journey.

- vii -

- viii -

Contents

1 Introduction 1

1.1 Research Questions . 4

1.2 Research Contributions . 6

1.3 Thesis Structure . 7

2 Background and Literature Review 9

2.1 Internet of Things . 10

2.1.1 IoT/CPS Architecture . 11

2.1.2 Data Analytics in IoT . 13

2.2 Configuration Management and Deployment Automation 15

2.2.1 Concept and Dimensions of Configuration Management and Au-
tomation Deployment . 16

2.2.1.1 Configuration Management and Deployment Automa-
tion in IoT . 17

2.2.1.2 Dimensions of Configuration Management and Deploy-
ment Automation . 19

2.2.2 Configuration Management and Deployment Automation Tools:
State of the Art . 23

2.2.3 Evaluation of Configuration Management and Deployment Au-
tomation Tools . 30

2.3 Workflow Composition and Orchestration 34

2.3.1 Scientific Workflow System . 35

2.3.1.1 Scientific Workflow Specification 35

2.3.1.2 Scientific Workflow Composition 36

2.3.1.3 Scientific Workflow Scheduling 38

2.3.1.4 Scientific Workflow Execution 40

2.3.1.5 Scientific Workflow Provenance 41

2.3.2 Internet of Things Workflow . 42

2.3.2.1 IoT Workflow Composition and Orchestration 43

2.3.3 IoT Workflow Composition and Orchestration Tools: State of
the Art . 44

2.4 Conclusion . 50

- ix -

3 IoT-CANE: A Unified Knowledge Management System for Data-
Centric Internet of Things Application Systems 51

3.1 Introduction . 52

3.2 Related Work . 55

3.2.1 Multi-layer Resources Configuration Management Issues in IoT 55

3.2.2 Conceptual Model in IoT . 55

3.2.3 Context-aware Recommender Systems 56

3.3 Conceptual Model and System Architecture 57

3.3.1 Conceptual Model . 57

3.3.2 System Architecture . 62

3.4 Recommendation System Technique . 63

3.4.1 Recommendation Rule . 63

3.4.2 Single Conclusion Ripple Down Rules 64

3.5 Design and Implementation . 65

3.5.1 System Design . 65

3.5.2 System Workflow . 67

3.5.3 Recommendation Rule Tree . 71

3.5.4 Computational Complexity . 72

3.6 User Evaluation . 73

3.6.1 Experiment setup . 73

3.6.2 User Evaluation . 73

3.7 Conclusion and Future Work . 75

4 IoTWC: Analytic Hierarchy Process Based Internet of Things Work-
flow Composition System 77

4.1 Introduction . 78

4.2 Related Work . 80

4.3 IoT Workflow Activity Abstract Pattern 81

4.4 IoTWC: AHP-based Model and Multi-level Composition Framework . . 82

4.4.1 IoT Analytic Hierarchy Process Based Model 83

4.4.2 Criteria Definition . 84

4.4.2.1 Resource Cost . 84

4.4.2.2 Resource QoS . 85

4.4.2.3 Data . 86

4.4.3 Multi-level Composition Framework 87

- x -

4.4.4 Computational Complexity Analysis 89

4.5 System Design and Implementation . 90

4.5.1 System Architecture . 90

4.5.2 System Workflow . 91

4.5.3 System Implementation . 91

4.6 System Evaluation . 93

4.6.1 User Case Study . 93

4.6.1.1 Experiment Setup . 94

4.6.1.2 User Evaluation . 94

4.6.2 Scenario Validation . 95

4.6.2.1 Scenario Description 95

4.6.2.2 Scenario Validation . 96

4.7 Conclusion and Future Work . 98

5 A Fault-Tolerant Workflow Composition and Deployment Automa-
tion IoT framework in a Multi-Cloud Edge Environment 99

5.1 Introduction . 100

5.2 Related Work . 102

5.3 IoT Fault-tolerance Model . 104

5.4 System Design . 106

5.4.1 System Architecture . 106

5.4.1.1 Workflow Layer . 107

5.4.1.2 Infrastructure Layer 108

5.4.1.3 Deployment Layer . 109

5.4.1.4 Recovery Layer . 111

5.4.2 System Execution Workflow . 112

5.5 Evaluation . 114

5.5.1 Application Requirements . 115

5.5.2 Experiment Setup . 115

5.5.3 Failure Model . 116

5.5.4 Experiment Result . 117

5.6 Conclusion . 119

- xi -

6 Conclusions and Future Work 121

6.1 Thesis Summary . 122

6.2 Future Research Directions . 124

6.2.1 Dynamic Distributed Workflow Deployment 124

6.2.2 Resource Prediction in IoT Workflow Composition 124

6.2.3 Feedback-based IoT Workflow Composition 124

6.2.4 Workload Prediction based Workflow Orchestration 125

Bibliography 127

- xii -

List of Figures

1.1 Flood-PREPARE system DAG . 3

1.2 Data Transformation Tasks in Layered IoT Application 5

1.3 Chapter Structure . 7

2.1 IoT/CPS System Components . 11

2.2 Data Analytic Operation . 14

2.3 Dimensions of Configuration Management and Automation Deployment 18

2.4 Taxonomy of Scientific Workflow System 41

3.1 The conceptual model of IoT resources 57

3.2 The system architecture of IoT-CANE 62

3.3 ER diagram of recommendation rules 64

3.4 State transition diagram of IoT-CANE 65

3.5 Sequence diagram of IoT-CANE . 68

3.6 Example of Configuration Knowledge Representation 70

3.7 Example of recommendation rule tree structure 71

3.8 User survey result . 74

4.1 IoT Workflow Abstractions and Instances Mapping 79

4.2 Example IoT workflow with abstract patterns 82

4.3 CKR Selection Hierarchy . 84

4.4 Schematic Design of IoTWC System 91

4.5 IoTWC System Sequence Diagram . 92

4.6 User Case Study Result . 93

4.7 Smart building scenario workflow . 96

4.8 IoTWC running interface and pipelined workflow 96

4.9 Configuration Knowledge Representation Example 97

5.1 System Overview of Proposed Approach 101

5.2 IoT Fault Recovery Model . 104

5.3 IoT Workflow Composition and Fault-tolerant System Architecture . . 106

5.4 IoT Workflow Abstractions and Redundant Deployment 111

- xiii -

5.5 System Execution Workflow . 113

5.6 Total Execution Time Comparison . 117

5.7 Failure Rate Comparison . 118

- xiv -

List of Tables

2.1 Evaluation of Configuration Management tool (Part I) 31

2.2 Evaluation of Configuration Management tool (Part II) 32

2.3 IoT Workflow Composition and Orchestration Tools Comparison 49

3.1 Comparison of Related Work . 56

3.2 Partial infrastructure components description and instance of smart
building in IoT data model . 61

3.3 IoT recommender model parameters . 72

4.1 IoT AHP model parameters . 89

4.2 Relative Importance Value . 89

5.1 Application Requirements . 115

5.2 Infrastructure Computing Nodes . 116

5.3 Experiment Parameters . 118

5.4 Compare Cost . 118

- xv -

- xvi -

1
Introduction

Contents
1.1 Research Questions . 4

1.2 Research Contributions . 6

1.3 Thesis Structure . 7

- 1 -

Chapter 1: Introduction

Introduction

The Internet of Things (IoT) is the idea of things (devices) that are locatable, read-

able and recognisable and controllable through using the Internet [1–3]. It has become

an important component of leading software development and an integral part of our

daily life. In IoT, a number of things and resources (edge and cloud) combine to

provide services that form the basis for many different types of applications that are

commonly referred to as smart (e.g., smart healthcare, smart homes, smart buildings,

smart manufacturing, smart agriculture, smart traffic). “Smart” is a way of categoris-

ing those applications where users can discover, query and employ different IoT entities

on-demand in real-time without such entities requiring further human intervention in

their development to achieve the desired outcomes. Manufacturers have developed

numerous entities for use within IoT infrastructures. These entities are not only phys-

ical, such as sensors and actuators, but also virtual, like social media (e.g., Facebook,

Twitter, MySpace). The heterogeneous large-scale data from such physical and vir-

tual entities (e.g., [4], [5], [6], [7],) raises a challenge of unified resource configuration

knowledge representation and high performance data processing [8]. Therefore, we

need to incorporate the digital and physical worlds in IoT ecosystems. In order to

allow this level of interoperability, it is important to define the services supplied by

these physical and virtual entities in a unified way [9].

Flood-PREPARE [10] is a real-world IoT application for city rainfall analysis and

flooding prediction. It allows real-time geographically precise warning for surface water

flooding and continuous situational awareness and intelligence. To deploy such real-

world IoT system, a range of resources from CCTV, sensors to Raspberry Pi, router

and cloud virtual machines, GPU servers, etc. is required to coordinate extensive

scale data for intellgent purposes. Due to the large data size, resource heterogeneity,

model complexity and real-time processing requirements, it is a challenge to design

and represent such IoT applications in an abstract way. More specifically, according

to various domains, concepts and infrastructures of IoT application, it is hard to

develop abstract methodology.

IoT applications can be modelled as a directed acyclic graph (DAG) with data trans-

- 2 -

Chapter 1: Introduction

Figure 1.1: Flood-PREPARE system DAG

formation tasks as its nodes and data flow dependencies (or control flow dependencies)

as its vertices. A simplified DAG of Flood-PREPARE is shown in Figure 1.1. To be

most useful in a modelling sense, we need an IoT workflow pattern that can be general

enough to define any IoT application. Representing a generic IoT workflow pattern is

intricate because of the heterogeneity of IoT infrastructure (IoT device, edge device,

and cloud), coupled with application dependency on infrastructure and variability of

data. Identifying a set of reasonable IoT workflow activity patterns (provisioning an

abstraction understandable to the engineer yet maintaining its usefulness for compo-

sition purposes), which covers IoT data transformation tasks and workflow activities,

is the primary challenge in IoT workflow representation and composition. Addressing

IoT application users’ subjective and objective opinions with abstract understanding

of IoT workflow instances remains a challenge for a more holistic approach.

Due to the rapid increase in IoT applications, the demand for fault-tolerance from in-

frastructure and software perspective has also expanded. In order to accomplish fault-

tolerance for IoT application, such applications need to detect and recover emerging

faults under the specific quality of service constraints, such as latency, etc. Therefore,

developing a comprehensive fault-tolerant IoT system which offers self-detection and

automatic recovery to increase application reliability and usability is also a challenge.

- 3 -

Chapter 1: Introduction

1.1 Research Questions

According to the research challenges discussed in the previous text in terms of IoT,

Edge Datacenter (EDC) and Cloud Datacenter (CDC), it raises the question of how

to deploy and configure IoT data processing activities across both edge and cloud

datacenter. Thus, this thesis focus on answering the following research questions:

• Q1: How to represent and discover IoT devices, EDC and CDC resources?

• Q2: How to map, execute and deploy data processing workflows across three

layers based on demand requirements?

• Q3: How to increase workflow system reliability, availability, safety and main-

tainability in an IoT environment?

To answer Q1, how to represent IoT devices, EDC and CDC resources need to be taken

into account. In IoT applications, a large number of IoT devices need to be represented

as virtual entities. It will benefit data analysis and operation afterwards. However,

different embedded sensors and actuators are geographically distributed; also, one

cloud resource provider cannot satisfy all the consumers’ requirements. Therefore,

proper devices from IoT environments and resources from edge and cloud need to be

discovered and represented based on different demand and requirements.

Modelling IoT devices and EDC and CDC resource heterogeneity is another big chal-

lenge in representation. Heterogeneous configurations in IoT devices (e.g. location,

temperature alarm, data transformation frequency of temperature sensors), edge data-

center (e.g. port configuration, IP address, certificate authority setting of a gateway),

cloud datacenter (e.g. memory, IP address, storage of VM) are considered complex.

Moreover, existing configuration management techniques are rarely transparent and

adaptive to IoT applications, and the complexity of configuration management forces

consumers to gain expertise in multiple configuration management knowledge domains.

For Q2, most IoT applications are modelled as data transformation workflows. Multi-

ple heterogeneous data analysis computational and programming models that realise

- 4 -

Chapter 1: Introduction

Edge
Computing

L2

Cloud Datacentre
Cloud

Computing
L1

Edge Data Centre

IoT
environment

L3

Data and Control
Flow

Task

Cloud Task Edge TaskIoT Task

Task

Task
Task

Task

Figure 1.2: Data Transformation Tasks in Layered IoT Application

various data transformation tasks are shown in Figure 1.2. Data transformation pro-

cedures happen in the following three stages: between IoT devices layer and EDC

layer; between IoT devices layer and CDC layer; between EDC layer and CDC layer.

This new framework should enable an easy deployment interface where data transfor-

mation can be easily defined. Additionally, a composition technique which supports

the composition of workflow crossing transformation in different layers needs to be

considered.

The mapping problem is complicated by uncertainty in modelling the performance

of workflow activities on both CDC and EDC resources. These resources have het-

erogeneous hardware and virtualisation configurations. Deploying and executing such

workflow applications in different IoT environments is difficult as there is no unified

method or programming tool to perform deployment in a variety of cloud providers

and edge devices. Considering hardware and software heterogeneity, a more general

and unified workflow deployment platform which can avoid the complexity of edge and

cloud resources from customers needs to be designed and developed.

In Q3, the importance of IoT systems in terms of availability, safety, reliability and

maintainability increase significantly due to the rapid development of IoT. Reliability

is considered as a primary aim to implement for IoT applications concerned with

- 5 -

Chapter 1: Introduction

Quality of Service. Reliability is threatened by the occurrence of failures where an

IoT system can hardly offer potential services. In an IoT environment, applications

are excepted to continuously provide reliable services and features which put fault-

tolerance mechanism as priority. IoT safety refers to the capability to secure or prevent

the IoT system from causing an unacceptable risk of injury or physical damage. On

the other hand, IoT safety can also be considered to secure the continuous IoT services

providing from any unpredictable faults with both hardware and software. As a result,

a framework which can efficiently execute a fault-tolerant IoT workflow application is

required.

1.2 Research Contributions

In this thesis, I make principal contributions as following:

1. My first contribution is proposing a unified conceptual model which captures the

resource configurations in IoT environments. I design a support recommender

system (IoT-CANE) for the recommendation of resource configuration in IoT

using SQL-based relational semantics and procedures. I also develop a service

interface that converts simple context information captured from users to op-

timal IoT resource configurations to map users’ requirements supported by an

incremental knowledge acquisition based IoT resource configuration knowledge

base. This main contribution is illustrated in Chapter 3.

2. My second contribution is proposing IoT workflow activity abstract patterns that

can capture IoT user requirements. I also design and develop an IoT workflow

composition system leveraging an analytic hierarchy process based multi-level

composition algorithm. This contribution is presented in Chapter 4.

3. My third contribution is proposing a fault-tolerant IoT system to provide reli-

able workflow application execution, automation deployment and infrastructure

recovery. I present a novel fault-tolerance IoT model and illustrate the details of a

fault detection and infrastructure level recovery mechanism. A real-world IoT ap-

plication, called Flood-PREPARED, is evaluated by the proposed fault-tolerant

- 6 -

Chapter 1: Introduction

Chapter 1
Introduction

Chapter 2
Background and Literature

Review

Chapter 3
IoT conceptual model

IoT-CANE

Chapter 4
IoT workflow abstract patterns

AHP-based IoTWC

Chapter 5
IoT fault-tolerance model

IoT automation deployment
and fault-tolerant system

Chapter 1
Introduction

Chapter 6
Conclusion

Provide
configuration
knowledge

representation for
each IoT workflow

steps

Offer composed
IoT workflow with

detailed
deployment
information

Figure 1.3: Chapter Structure

IoT system with results analysis. This contribution is discussed in Chapter 5.

1.3 Thesis Structure

This thesis is structured, as shown in Figure 1.3, and the details are as follows:

Chapter 1 describes the general background information and motivation behind the

topic and illustrates the research questions and main contributions of this research.

Chapter 2 presents the detailed background material and state of the art regarding

the overall topic in this thesis.

Chapter 3 presents IoT-CANE (Context Aware recommendatioN systEm) which

embodies a unified conceptual model capturing configuration, constraint and infras-

tructure features of cloud/edge together with IoT devices. The performance and ac-

ceptance of the proposed system is investigated by a user case study. Based on the

study results, a range of criteria were satisfied by the participants.

- 7 -

Chapter 1: Introduction

Chapter 4 proposes an IoT workflow composition system (IoTWC) to allow IoT

users to pipeline their workflows with proposed IoT workflow activity abstract patterns.

IoTWC leverages the analytic hierarchy process (AHP) to compose the multi-level IoT

workflow that satisfies the requirements of any IoT application. The proposed IoTWC

is evaluated on a user case study to evaluate the coverage of IoT workflow activity

abstract patterns and a real-world scenario for smart buildings.

Chapter 5 proposes a fault-tolerant IoT workflow execution and automation deploy-

ment system. The proposed system enables a user to compose any IoT application

with defined Quality of Service (QoS) parameters, then automatically set up the in-

frastructure according to the recommended configurations. Meanwhile, this system

utilises fault detection and recovery mechanism to automatically detect and recover

infrastructure level faults to increase application availability and reliability.

Chapter 6 summarises the conclusion of this thesis and describes future research

directions in a related area.

- 8 -

2
Background and Literature

Review

Contents
2.1 Internet of Things . 10

2.1.1 IoT/CPS Architecture . 11

2.1.2 Data Analytics in IoT . 13

2.2 Configuration Management and Deployment Automation . . 15

2.2.1 Concept and Dimensions of Configuration Management and Au-
tomation Deployment . 16

2.2.2 Configuration Management and Deployment Automation Tools:
State of the Art . 23

2.2.3 Evaluation of Configuration Management and Deployment Au-
tomation Tools . 30

2.3 Workflow Composition and Orchestration 34

2.3.1 Scientific Workflow System . 35

2.3.2 Internet of Things Workflow . 42

2.3.3 IoT Workflow Composition and Orchestration Tools: State of
the Art . 44

2.4 Conclusion . 50

- 9 -

Chapter 2: Background and Literature Review

Summary

In this chapter, I present the background information regarding the overall topic. First,

I describe the general Internet of Things (IoT) and related literature. Next, I present

the configuration management and automation deployment in the IoT area. Last, I

discuss the concept of workflow composition and orchestration. At the same time,

academic research and industrial platforms in relevant topics are illustrated.

2.1 Internet of Things

With the diverse availability of computation and communication provided by cloud and

edge systems, Internet of Things (IoT) generates a new way to visualise the interaction

between physical and computation systems. In addition to computation and commu-

nication technology, IoT also depends on control systems, electronics and electrical

engineering, chemical and biological advancements and other new design technologies

to give a better interaction among these technologies. The rise of IoT technology revo-

lutionises our way of living by influencing society in numerous ways, e.g. smart home,

smart traffic, smart city, smart shopping, smart healthcare, smart agriculture, etc.

IoT is defined as an interdisciplinary approach that combines computation, commu-

nication, sensing and actuation of cyber systems with physical systems to perform

time-constrained operations in an adaptive and predictive manner [11–13]. Here, feed-

back loops are associated with the physical system that helps embedded computers and

networks to control and monitor physical processes. This helps in evolving the design

technique based on the previous design model and feedback from the physical system,

which results in the system being more reliable, robust and free from any previous error

condition. IoT is an overarching concept having a number of branches that describe

similar or related concepts. These include Cyber-Physical Systems (CPS) [14], Indus-

try 4.0 [15], Machine-to-Machine [16], Smart City (Smart Anything) [17], etc. CPS is

considered to be similar to IoT due to sharing similar architecture. However, the main

focus of IoT is at the smart device level, whereas CPS emphasises the physical system.

There are three main components of CPS: cyber component, physical component and a

- 10 -

Chapter 2: Background and Literature Review

Figure 2.1: IoT/CPS System Components

network component. The cyber component consists of cloud, edge and IoT devices. IoT

devices act as a bridge between the physical and cyber components. For implementing

the desired solution, data is collected from diverse physical sources (e.g. environment,

transport, communication, business transactions, healthcare system, education system,

social media, etc.) by using smart IoT devices (e.g. sensors, cameras, log files, etc.)

Increasing numbers of devices are continuously connecting to IoT/CPS systems to

provide broader coverage of physical conditions. Gartner predicts that up to 100

billion devices will be connected to the IoT/CPS system by 2025 [18]. This data can

be extracted, filtered and processed in many ways by IoT devices, edge and cloud

datacenters.

2.1.1 IoT/CPS Architecture

IoT/CPS are mainly composed of three components, namely cyber component, phys-

ical component and a network component. Network components interlink the cyber

and physical components for transfer of data and control. The interaction between all

the components is shown in Figure 2.1.

- 11 -

Chapter 2: Background and Literature Review

Physical Component This component of IoT/CPS does not have any computation

or communication capability. It includes chemical processes, mechanical machinery, bi-

ological processes and human aspects. Physical components create the data that mush

be processed in real-time to operate and control various activities. These components

generate data, which is highly concurrent and dynamic.

Cyber Component This component of IoT/CPS is responsible for the collection,

processing, reporting and controlling of the physical components in IoT. It is very

challenging to manage the dynamic and concurrent data produced by physical com-

ponents. The cyber component consists of three sub-components: IoT devices, edge

datacenter components and cloud datacenter components.

• IoT devices : These devices are highly integrated with the physical components

to capture their activity. There are potentially millions of distributed IoT devices

capturing raw physical data. Sensors (e.g. Temperature sensor, Humidity sensor,

Motion sensor), actuators (e.g. Zigbee), mobile phones, cameras, etc. are the

most common examples of IoT devices. Social media to capture humans’ physical

activity. A variety of devices can captures raw data in their native format. After

capturing the data, IoT devices send it to the edge or cloud datacenter for further

processing and storage. Some new IoT devices are battery-driven and can have

limited capability.

• Edge Datacenter (EDC): The EDC is the collection of smart devices capable of

performing functions like storage or computation of diverse data at a smaller

level. Smart gateways (e.g. Raspberry Pi, esp8266), Network Function Vir-

tualisation Devices (e.g. OpenFlow, Middlebox) Software-Defined Networking,

mobile phones, etc. are some common examples of EDC [19]. Each EDC de-

vice can perform specific functions, e.g. collecting data from various sensors,

some pre-processing, short-term data storage and processing and finally routing

the data to the cloud datacenter. The EDC also receives commands from the

backend and routes it to the specific device. The EDC is also involved in ensur-

ing secure communication by providing authentication and authorisation of IoT

devices.

- 12 -

Chapter 2: Background and Literature Review

• Cloud Datacenter (CDC): The CDC consists of all private, commercial and pub-

lic cloud providers providing software, platform, storage, etc. in the form of

services. These cloud providers are distributed in different geographical regions

and can be accessed ubiquitously on demand. The CDC is considered to have

unlimited storage and processing power. The physical datacenter resources are

virtualised and provided to the user in a pay-per-use manner. Hypervisors (e.g.

Xen, KVM, Virtual Box) and Containers (e.g. Docker, LXC) are two of the most

common methods of virtualisation used in a cloud datacenter. The CDC creates

multiple virtual machines (VMs or containers) over the physical machine that are

isolated from each other and are allocated to different jobs [20, 21]. Many cloud

service providers have a variety of virtual machines available with different con-

figurations and costs. These machines can be used for massive data storage and

processing activities. The virtual environment is selected on the basis of various

QoS parameters, e.g. completion time, cost, availability, security, etc. [22].

Network Component This component of IoT is involved in all communication

either between physical components and cyber components or among the cyber com-

ponents. The raw data is captured from physical components by using IoT devices.

The IoT devices then send the data to either the edge or the cloud or both. Informa-

tion is transferred between the edge and cloud as required. Finally, cloud and edge

devices send control and feedback to the physical devices. The factors affecting the

network communication are network bandwidth, topology, contention, etc.

2.1.2 Data Analytics in IoT

The raw data captured from different physical devices is stored, analysed and processed

in different ways to achieve the desired result. Data analytics refers to all the activities

happening with the data after entering the CPS, including storage, processing, transfer,

etc. [23]. These data analytic activities are performed at different layers (IoT devices or

edge or cloud datacenter) depending on the requirements of the application (e.g. access

methods, infrastructure support, hardware or software requirements). IoT devices are

programmed to perform only specific functions, whereas edge and cloud datacenters

- 13 -

Chapter 2: Background and Literature Review

Figure 2.2: Data Analytic Operation

can be configured according to the application requirement [24]. The edge devices have

small processing and storage capacity and normally use containers for creating virtual

machines, whereas a cloud datacenter has enormous capacity and uses both VMs and

containers for deployment.

The data captured from different sources is of large size, divergent type (e.g. text,

image, audio, video) and is captured at variable speed. This data is either structured

or unstructured. The complexity of the data makes it challenging to store and process

it. Various existing programming models like batch processing, stream processing,

SQL, NoSQL are involved in the storage and processing task for this data. Figure 2.2

shows a schematic diagram of data analytics where the raw data is converted to the

workflow (representing the data and control dependency), which is then deployed on

different data processing platforms including Hadoop, Hive, Storm, Kafka, Cassandra,

etc. These data processing platforms are running on virtual machines/containers inside

either edge or cloud datacenters.

- 14 -

Chapter 2: Background and Literature Review

2.2 Configuration Management and Deployment Au-

tomation

IoT solutions are typically application-specific and are deployed and configured on

the basis of hardware heterogeneity (sensors, actuators, gateways, SDN controllers,

datacenter, etc.), communication protocols (standard or specific, connectionless or

connection-oriented, etc.), data processing models (batch processing, stream process-

ing, etc.) and data storage models (SQL, NoSQL, etc.). The application environment

differs from application to application, and there is no standard service management

procedure available for all applications. Managing and handling such systems requires

extensive knowledge of all the integrant technology, which is not possible for a user

as they are considered to be either non-technical or with little technical knowledge.

There is, therefore, a requirement for an autonomic system that performs all the con-

figuration management and deployment automation procedures for a user. A user only

needs to provide the requirement specification, and necessary constraints using the in-

terface (e.g. command-line interface (CMI) or application program interface (API) or

software-defined kit (SDK)) and the remaining processes are carried out automatically

by the system.

Currently, numerous frameworks are available that can automate the deployment and

configuration functionality of cloud or edge devices; however, these tools are not able

to satisfy the complex dependency requirements of IoT. Due to the underlying het-

erogeneity of IoT infrastructure [25], these tools can only be used for automation of

an individual layer of IoT application. The remaining service management tasks such

as sensor and gateway configuration, different drives and package installation, various

decision-making, etc., are handled manually in each particular case.

The motivation for this section comes from the challenges we have experienced while

deploying smart solutions in different application domains. In this section, I discuss

the problem of configuration management and deployment automation of IoT systems.

The challenges of configuration management and deployment automation are discussed

in terms of dimensions. I provide a brief overview of some existing commercial and

open-sourced tools for configuration management and deployment automation and

- 15 -

Chapter 2: Background and Literature Review

show that these tools are not completely suitable for IoT solutions.

The rest of this section is organised as follows. Subsection 2.2.1 discusses the prob-

lems related to the specification of configuration and deployment automation in IoT.

I also present the dimensions of configuration management and deployment automa-

tion that affect this management process. In Subsection 2.2.2, I review some popu-

lar configuration and deployment frameworks used for cloud and edge environments.

Subsection 2.2.3 evaluates the presented tools in terms of the dimensions identified in

Subsection 2.2.1.

2.2.1 Concept and Dimensions of Configuration Manage-
ment and Automation Deployment

Configuration management is a method that performs various system operations for

a user, handling the entire system configuration and keeping track of files and pack-

ages [26]. However, the question is, why should we need configuration management?

The answer is simple as the configuration management technique provides a simpler

and faster application deployment with higher accuracy, flexibility and fault tolerance

than manual methods. Manually configuring thousands of applications is very time

consuming, with an increased chance of errors. If there is a software update, it is very

tedious to update all the systems manually. There is a high chance of inconsistency

if any system is not updated correctly. If there is some problem in the current ver-

sion, rolling back to the previous version is more troublesome as no previous state

information is stored.

All these problems can be overcome by using a configuration management system. By

writing only one command, the application can be deployed or updated in as many

systems as required, which makes deployment very simple, fast and flexible. As the

configuration is performed automatically, there is a significantly reduced chance of

error or inconsistency. The previous state information is stored by the configuration

management system, which makes rolling back very easy in the case of some problem

arising. Any default or error condition can be easily rolled back, making the system

more fault-tolerant.

- 16 -

Chapter 2: Background and Literature Review

2.2.1.1 Configuration Management and Deployment Automation in IoT

Consider an example of a smart home in an IoT system. My phone can tell the heater

or air conditioner to turn on and make the house warm/cool before I reach home, the

virtual assistant (e.g. Gatebox, Amazon Alexa) could advise me to take an umbrella

before I leave for the office and many other things. It looks very simple, but the

processing and control of these operations are very complex. Sensors and actuators

are embedded in the physical devices such as refrigerators, air conditioner, heating

and lighting devices so that they can communicate with a central controller entity.

The embedded sensors are continuously capturing the raw data, e.g. temperature of

the room for the air conditioner or heater, weather information for updating about

rain, etc. The decision about switching the heater or air-conditioner on is made by

analysing the GPS data from the phone and the temperature sensor data from the

house along with the stored data about the time taken to make the house warm/cool.

The decision process is performed in either the edge or cloud datacenter as the IoT

devices do not have that much capacity to store and process diverse data. Different IoT

devices have different communication standards, which complicates communication

with each other. Edge devices (e.g. Gateway) can eliminate this problem as they

can easily be installed to communicate with different devices. These edge devices

receive the data from different IoT devices and operate according to the demand of

the application. For real-time constraint applications, the edge device performs some

data analytic operations and notifies the IoT devices to perform accordingly while, for

other applications, it extracts the data and sends it to the cloud for further storage and

processing. The heavy data storage and processing are performed in the cloud, and

the result is sent back to the IoT devices via edge devices. There may be intermediate

information exchange between cloud and edge devices depending upon some factors

like resource availability, time constraints, etc. The actuators embedded in the physical

devices can react and respond according to the output of the edge or cloud. Feedback

is also sent from the cloud or edge device that supervises the physical devices for

self-configuration and self-adaptation.

To perform all these operations, a user would need to be expert in all the involved

technology so that he/she can deploy and manage the complex requirements of IoT

- 17 -

Chapter 2: Background and Literature Review

Configuration Management
and Automation Deployment

Dependency Graph

Access Mechanism

Access Control

Vitualisation Techniques

Scalability

Extensibility

Deployment Environment

Reusability

Portability

Customisation

Figure 2.3: Dimensions of Configuration Management and Automation Deployment

applications. As the IoT application uses IoT devices, edge and cloud, a user must

know how to configure and manage data in all these environments. It is not enough to

select an optimal cloud resource or edge resource when providing the best services. The

cloud, edge and IoT devices must be synchronised together to provide better service

with maximum resource utilisation. Given the variety of devices at each level, as shown

in Figure 2.1, it is not possible to manually configure the whole system by writing one

script that manages everything. In addition to this, the continuous update and upgrade

of the execution environment make the management process more complicated. A

solution is required that performs all these operations automatically. In an automated

environment, the user only needs to state the requirements and constraints, and the

remaining processes are performed automatically.

- 18 -

Chapter 2: Background and Literature Review

2.2.1.2 Dimensions of Configuration Management and Deployment Au-
tomation

The complexity of data analytic activities in the cloud, edge and IoT environment

makes the configuration management and deployment automation process very chal-

lenging. To facilitate this process, we present the technical dimensions that provide an

intuitive view of the factors affecting the configuration management and deployment

automation in IoT applications. The dimensions are depicted in Figure 2.3 and are

explained in this section.

Dependency Graph A dependency graph is a directed acyclic graph that represents

the dependencies of several nodes (objects/resources) on each other. The ordering re-

lation of each node can easily be extracted from the dependency graph. One can easily

and explicitly represent the data and control flow among the nodes by using a program

dependency graph (PDG). The dependency between constituent entities/nodes can be

easily analysed by using a PDG, which can be used to support user interaction, pa-

rameterisation of models, optimisation decisions, consistency checks, easy debugging

and other operations. Dependencies are broadly classified into two categories: data

dependency and control dependency. Data dependency shows the flow of data being

computed by one node that is used by other nodes, whereas control dependency rep-

resents the ordered flow of control in the program. Any change in the dependency can

easily be represented by adding, removing or reconfiguring them on the PDG.

It is straightforward to represent the complex dependency and requirement specifi-

cation of IoT by using the dependency graph. Here, the node represents an appli-

cation/service, whereas the edges represent the dependency, i.e. how the nodes are

dependent on each other. This is also helpful for creating a similar application as we

can reuse the same dependency graph with some modification.

Access Mechanism Access mechanism signifies the methods of interaction with

the services provided by the IoT system. This is very important as it provides an

abstraction for different types of users, e.g. application developers, technical experts

or DevOps managers accessing from different types of device, e.g. personal computers,

- 19 -

Chapter 2: Background and Literature Review

mobile phones, tablets and facilitates easy interaction with the IoT. There are nu-

merous access mechanisms available, e.g. command-line interface (CLI), application

program interface (API), software development kit (SDK), graphical user interface

(GUI). These mechanisms have different properties; for example, GUI is easier to

use but has significant delay as compared to a command-line interface. The choice

of access mechanism depends on various factors such as application support, device

support, user technical knowledge, etc.

Access Control In information technology, access control is a process by which

users are granted access and certain privileges to systems, resources or information

in a computing environment. However, applications in cyber-physical systems, unlike

traditional applications, usually do not have well-defined security perimeters and are

dynamic in nature. Therefore, traditional access control policies and mechanisms

rarely address these issues and are thus inadequate for IoT. Access control for IoT

depends on the following factors: trustworthiness of entities; environmental context,

and application context. In terms of trustworthiness of entities, this is important in IoT

because IoT has no well-defined security perimeters (interactions between entities may

be unknown in advance). The overarching theme between two types of access control

(physical and cyber) is a notion of trust. Environmental context, such as location and

time, is also a crucial consideration in access decisions of IoT. Access control models

must take into account environmental factors before making access decisions. For the

application context, it depends on the data obtained from sensors and other devices.

Access control systems perform authorisation identification, authentication, access ap-

proval, and accountability of entities through login credentials, including passwords,

personal identification numbers (PINs), biometric scans, and physical or electronic

keys.

Extensibility Extensibility is the ability of a system to be easily extended or ex-

panded from its initial state. It is an essential characteristic of any software, applica-

tion or programming language, which makes it adaptable for execution in a frequently

changing environment. Extensibility can be supported by add-ons, plug-ins, pack-

- 20 -

Chapter 2: Background and Literature Review

ages or hooks that add some additional functionality or by explicitly adding macros

or functionality directly to the applications. Ruby, Lua, etc. are typical examples

of extensible programming language. At the same time, Eclipse is a typical example

of an extensible application which provides a variety of add-ons (available offline or

through a market place) that can easily be integrated with the existing application.

The technology is changing at a fast rate, so an application must be extensible so it

can be adapted for any new environment.

Customisation Customisation or personalisation is the characteristic that allows a

user to customise an application based on their specific requirements. The require-

ments of each user are unique, and so do not necessarily fit with the other user ap-

plications or a default application. If the system allows a user to customise their

application, then it is better from both user and system perspective as all the require-

ments of users are satisfied. Targeted systems resources are used for reducing resource

wastage.

Reusability Reusability refers to the reuse of existing software artefacts. There are

some modules which are common in multiple applications. One way to achieve this is

to define the same modules separately for each application, while the alternative is to

define the module only once and reuse the same module multiple times. Many existing

modules can either be used directly or be used after little modification. There are

some essential requirements for software/products to be reused, including consistency,

adaptability, stability, flexibility and complexity.

Tools like Docker have a storage repository (Docker Hub) that stores numerous existing

containers. A user can easily pull the image from this repository. These images can

either be used directly or easily updated to satisfy some specific requirements.

Deployment Environment The deployment environment is the system(s) respon-

sible for the proper execution of an application. The environment provides all the nec-

essary resources to start, execute and stop the application. Based on the resource type

and configuration, the deployment environment can be categorised as an on-premise

- 21 -

Chapter 2: Background and Literature Review

system, edge datacenter or cloud datacenter. Cloud datacenter is again divided into

public, private or hybrid cloud. The application can be deployed based on different

qualitative and quantitative QoS parameters, e.g. resource requirements, cost, dead-

line, security, etc.

Virtualisation Technique Virtualisation is the crucial concept of cloud computing

that partitions the physical resources (e.g. compute, storage, network) into multi-

ple virtual resources [20]. It allows multiple users to access the services provided

by the cloud in an isolated manner. Two types of virtualisation are expected in a

cloud perspective: hypervisor-based virtualisation (e.g. Xen, KVM, VMware) and

container-based virtualisation (e.g. Docker, LXC). In hypervisor-based virtualisation,

a hypervisor layer is either added directly on top of the hardware (Type 1 hypervisor)

or on top of the host operating system (Type 2 hypervisor). However, each virtual

machine must have a separate operating system. In container-based virtualisation, a

container engine is added on top of the host operating system that is shared by all the

containers using Linux features namespace and c-groups. Container-based virtualisa-

tion is considered to be lightweight due to the lack of a separate operating system for

each container.

Scalability Scalability is the ability to accommodate an increasing workload by in-

creasing the capacity of the system. It is an essential characteristic of an application,

which determines whether the application can perform well with higher workloads.

Scalability can be performed either vertically (scale-up) or horizontally (scale-out).

The difference between these two approaches is the way they add additional resources

with an increasing workload. In vertical scalability, the capacity of the node is in-

creased by adding more resources (e.g. CPU, memory, disk). In contrast, in horizontal

scalability, we can add many independent systems (equivalent to the existing system)

parallel to the existing systems to satisfy the increased workload.

Scalability can be achieved through a software framework such as dynamically loaded

plug-ins, top-of-the-line design interfaces with abstract interfaces, useful call-back func-

tion constructs, a very logical and plausible code structure, etc.

- 22 -

Chapter 2: Background and Literature Review

Portability Portability is the characteristic of an application that allows it to ex-

ecute successfully in a variety of environments. Portability is a capability attribute

of a software product, and its behaviour is manifested to a degree, and the degree of

performance is closely related to the environment. The basic idea of portability is to

provide an abstraction between system and the application, which is possible only if

the application is loosely coupled with the system architecture.

Portability is critical as it can improve the software life cycle by allowing it to run on

different domains. It also reduces the burden of redefining the same application for

different environments, which increases the Reusability of the application.

2.2.2 Configuration Management and Deployment Automa-
tion Tools: State of the Art

The research community has developed several frameworks to automate the deploy-

ment and configuration management in the cloud and edge environments. Some of the

frameworks can also have support for IoT applications. Users only need to specify the

requirements and these frameworks perform the remaining operations automatically.

Some popular frameworks and their functionalities are presented below.

Chef Chef 1 is a powerful tool for automating the infrastructure. It converts the

infrastructure in the form of code called Recipe for automating the setup, configuration,

deployment and management. It can be used for different types of application varying

from web application to batch and stream processing.

There are three main elements of Chef: a server, a few workstations and many nodes.

Any machine (physical or cloud) managed by Chef is called a node. Each node is

installed with a Chef client that automates all the management operations on that

node. Each client is registered with the Chef node before the configuration manage-

ment. Chef uses a client-server architecture where each node runs a Chef client while

the server is available to all the clients. The Chef server is a centralised entity that

contains all the Cookbooks (a Cookbook is a basic unit of configuration management

that defines a scenario with everything necessary to handle that scenario.), policies and

1https://www.chef.io

- 23 -

Chapter 2: Background and Literature Review

other management information. The client retrieves all the stored information on the

server and pulls the relevant configuration data to automate the management of the

node. The client uploads the runtime data with the respective scenario to the server

so that some other node can use the information in the future. The workstation acts

as a communication bridge between a client installed on a node and the Chef server.

It runs a Chef development kit (ChefDK) that facilitates client and server interaction

and also helps users to author, test and maintain Cookbooks on the workstation, which

are then uploaded to the server. The programming language Ruby is used to author

the Cookbooks.

Puppet Puppet 2 is an open-source configuration management tool that allows users

to define the system resources and the state of a system (i.e. desired state) and

performs all the operations to achieve that state from the current state. The system

resources are described by the user using an easy-to-read declarative language or Ruby

domain-specific language. Puppet works either by using a client-server architecture or

as a stand-alone application.

In a client-server architecture, a server (also known as the master) is installed on one or

more systems, and a client (also known as an agent) is installed on all the nodes to be

configured. The agent running on a node communicates with the server and conveys

all the desired information from the server. The agent first sends the node information

to the server; the server uses that information to decide what configuration should be

applied to that node. The master then sends the desired information to the agent,

and the agent implements all the changes accordingly to reach the desired state. The

Puppet agent can run either periodically to check the configuration of the node or can

be configured manually to set the specific configuration.

The declarative nature of Puppet permits uses of the same resource declarations mul-

tiple times without any alteration to the result. Maintaining a centralised codebase is

more manageable than distributed code, while also increasing productivity.

2https://puppet.com

- 24 -

Chapter 2: Background and Literature Review

Ansible Ansible 3 is a radically simple IT automation engine that automates cloud

provisioning, configuration management, application deployment, intra-service orches-

tration and many other IT needs. It uses no agents and no additional custom security

infrastructure, so it is easy to deploy – and most importantly, it uses a very simple

language (YAML, in the form of Ansible Playbooks) that allows the user to describe

automation jobs in a way that approaches plain English.

Ansible works by connecting to nodes and pushing out small programs, called “Ansible

Modules” to them. These programs are written to be resource models of the desired

state of the system. Ansible then executes these modules (over SSH by default) and

removes them when finished.

Docker Docker 4 is an open-source platform that automates the deployment and

management of applications in containers. It is the most popular Linux container

management tool that allows multiple applications to run independently on a single

machine (physical or virtual). It abstracts and automates the operating system level

virtualisation on any machine.

Docker wraps the application with all its dependencies into a container so that it can

efficiently be executed on any system (on-premise, bare metal, public or private cloud).

Docker uses layered file system images along with the other Linux kernel features like

namespace and cgroups for management of the containers. Other container manage-

ment tools do not support the layered file system feature. This feature is handled

by an advanced multi-layered unification file system (aufs) which provides a union

mount for the layered file system. This feature allows Docker to create any number

of containers from a base image, which are simply copies of the base image. Docker

can easily be integrated with different infrastructure management tools such as Chef,

Puppet, Kubernetes, etc.

Multiple Docker nodes can quickly be scheduled and managed by Docker swarm, which

manages the whole cluster as a single virtual system. Docker swarm uses the standard

Docker API to interact with the management tool (e.g. Docker machine) to assign

3https://www.ansible.com
4https://www.docker.com

- 25 -

Chapter 2: Background and Literature Review

containers to the physical nodes in an optimised way.

Kubernetes (K8s) Kubernetes 5 is an open-source platform used to automate the

operations (e.g. deployment, scaling, management) of containerised applications across

a group of hosts. Kubernetes API objects are used to describe the desired state of the

cluster (e.g. information about the application, type of workloads, container images,

network and disk resource requirements). The desired state information is set either by

using Kubernetes CMI kubectl or by accessing the API directly. Kubernetes control

plane checks the current state and automatically performs a series of tasks to match

it with the desired state. Kubernetes control plane splits the cluster into two types of

nodes, namely master node and non-master node. The master node is installed on one

node, and it controls the whole system by running three processes: kube-apiserver,

kube-controller-manager and kube-scheduler, while non-master nodes or Minions are

installed on the other nodes, running two processes: kubelet (communicates with the

master node) and kube-proxy (network proxy reflecting network services on each node).

For the sake of high availability and fault tolerance, the number of master nodes is

more than one, i.e. one is the primary master node, and the others are supporting

master nodes (copies of the primary master node).

The Kubernetes object represents the abstract view of the state of the cluster. The

necessary objects of Kubernetes are Pod, Service, Volume and Namespace. Two fields

govern the configuration of an object’s state: the object spec and the status, which

describes the desired state and actual state respectively. The Pod is the smallest

and simplest unit of the Kubernetes object model that represents a running process.

It contains one or more co-located containers that share common resources (storage,

memory and network). Based on the requirement specification of the user, Kubernetes

creates and controls multiple pods.

Juju Juju 6 is an open-source universal modelling tool for deployment, configuration,

management, scaling and maintenance of applications on physical servers and cloud

environments. Juju provides a framework that allows users to define their requirements

5https://kubernetes.io
6https://juju.is

- 26 -

Chapter 2: Background and Literature Review

abstractly. Juju works a layer above the usual configuration management tools like

Puppet, Chef, etc. and uses the services provided by these tools. It mainly focuses on

the service delivered by the application rather than on the environment or platform

on which it is running.

The whole mechanism of Juju is based on “charms”. Charms contain all the infor-

mation regarding the deployment of an application. Charms can be written in any

programming language or scripting system. Users can either create their charms, use

any existing charms or update existing charms by merely adding some features accord-

ing to their requirements. All the charms and their relationships are contained in a

bundle that provides the full working deployment in one collection. A bundle file is

easy to share among different users working in different environments.

Amazon CloudFormation Amazon Web Services Cloud Formation 7 is a free ser-

vice that provides Amazon Web Service (AWS) customers with the tools they need to

create and manage the infrastructure required to run on AWS. CloudFormation has

two parts: templates and stacks. A template is a JavaScript Object Notation (JSON)

text file. The file, which is declarative and not scripted, defines what AWS resources

or non-AWS resources are required to run the application. For example, the template

may declare that the application requires an Amazon Elastic Compute Cloud (EC2)

instance and an Identity and Access Management (IAM) policy. When the template is

submitted to the service, CloudFormation creates the necessary resources in the cus-

tomer’s account and builds a running instance of the template, putting dependencies

and data flows in the correct order automatically. The running instance is called a

stack. Customers can make changes to the stack after it has been deployed by using

CloudFormation tools and an editing process that is similar to version control. When

a stack is deleted, all related resources are deleted automatically as well.

Terraform Terraform 8 is a tool for building, changing and versioning infrastructure

safely and efficiently. Terraform can manage existing and popular service providers

as well as custom in-house solutions. Configuration files describe the components

7https://aws.amazon.com/cloudformation/
8https://www.terraform.io

- 27 -

Chapter 2: Background and Literature Review

needed to run a single application or an entire datacenter. Terraform generates an

execution plan describing what it will do to reach the desired state, and then executes

it to build the described infrastructure. As the configuration changes, Terraform can

determine what changed and create incremental execution plans. The infrastructures

that Terraform can manage include low-level components such as compute instances,

storage, and networking, as well as high-level components such as DNS entries, SaaS

features, etc.

Some of the key features of Terraform are:

• Infrastructure is described using a high-level configuration syntax. Additionally,

infrastructure can be shared and re-used.

• Terraform has a planning step where it generates an execution plan. The exe-

cution plan shows what Terraform will do when it is applied. This avoids any

surprises when Terraform manipulates infrastructure.

• Terraform builds a graph of all resources and parallelises the creation and mod-

ification of any non-dependent resources. Because of this, Terraform builds in-

frastructure as efficiently as possible, and operators get insight into dependencies

in their infrastructure.

• Complex changesets can be applied to infrastructure with minimal human inter-

action. With the previously mentioned execution plan and resource graph, users

know what Terraform will change and in what order, avoiding many possible

human errors.

Cloudify Cloudify 9 is an open-source framework that allows you to deploy, manage

and scale your applications on the cloud, and Cloudify aims to make this as easy as

possible. The idea is simple: users model their application using a blueprint, which

describes the tiers that make up their application, along with how to install, start and

monitor each of these tiers. The blueprint is a collection of text configuration files that

contain all of the above. Each Cloudify deployment has one or more managers, which

9https://cloudify.co

- 28 -

Chapter 2: Background and Literature Review

are used to deploy new applications (using the above blueprints), and continuously

monitor, scale and heal existing applications.

Cloudify looks at the configuration from an application perspective – i.e. given a de-

scription of an application stack with all its tiers, their dependencies, and the details

for each tier, it will take all the steps required to realise that application stack. This

includes provisioning infrastructure resources on the cloud (compute, storage and net-

work), assigning the right roles to each provisioned VM, configuring this CM (which

is typically done by CM tools), injecting the right pieces of information to each tier,

starting them up in the right order, and then continuously monitoring the instances

of each tier, healing it on failure and scaling that tier when needed. Cloudify can

integrate with these CM tools as needed for configuring individual VMs, and in fact,

this is recommended as best practice.

TOSCA TOSCA [27, 28] is a new OASIS standard that specifies the meta-model for

explaining the topology structure and management of cloud application. The structure

is defined by a topology template (consisting of a node template and a relationship

template) represented as a directed graph. Node type is defined separately to sup-

port reusability and is referenced by the node template whenever required. There are

two methods for implementing TOSCA: the declarative method and the imperative

method. In the declarative method, the user declares the requirements, and the frame-

work automatically does everything, while in the imperative method, the management

process is specified explicitly using Plans. Plans are the process models that define the

deployment and management process and are represented using complex workflows.

Open TOSCA is the runtime instantiation of TOSCA. TOSCA also provides a limited

run time ecosystem for an IoT environment.

Calvin Calvin is an application environment that lets things talk to things [29]. It

includes both a development framework for application developers and a runtime en-

vironment for handling the running application. The Calvin Platform is an attempt

at a solution allowing developers to develop applications using clearly separated, well-

defined functional units (actors) and per-deployment requirements. The platform then

- 29 -

Chapter 2: Background and Literature Review

autonomously manages the application by placing the actors on different nodes (de-

vices, network nodes, cloud, etc.) in order to meet the requirements, and later migrates

them if changes in circumstances should so require. The platform enables decoupling

application development and deployment from hardware investments by providing an

abstraction layer for applications and establishing a standard interface to similar func-

tionality, built up in an agile manner. In [30], the authors divided an application’s

life cycle into four separate, well-defined phases: Describe, Connect, Deploy and Man-

age. Then Calvin uses the actor model to provide abstractions of device and service

functionality. With actors describing the processing blocks, they concisely express the

data flow graph using CalvinScript. A Calvin runtime presents an abstraction of the

platform it runs on as a collection of the capabilities this platform offers. One of the

friendly properties of automated deployment based on capabilities and requirements is

that many aspects of managing running applications are already in place and active.

2.2.3 Evaluation of Configuration Management and Deploy-
ment Automation Tools

This section evaluates the different tools discussed in Subsection 2.2.2 in terms of

configuration management and deployment automation dimensions. The summary of

evaluation is presented in Table 2.1 and Table 2.2 and is described below.

• Most of the tools have a dependency graph that helps to represent the resource

definition and relationship except Ansible that does not have dependency graph

support. Some of the tools (e.g. Puppet) use the dependency graph only for

internal resource management. The dependency graph in Cloudify is represented

using a blueprint that describes the logical representation of the application.

TOSCA is the only tool that represents the topology specification along with

the resource representation.

• In terms of extensibility, most of the tools are extensible, but how this is achieved

is different. Some of the tools can be extended by the addition of plugins (e.g.

Juju, Cloudify) while some use an extensible library (e.g. Ansible).

- 30 -

Chapter 2: Background and Literature Review

Table 2.1: Evaluation of Configuration Management tool (Part I)

Tools
Dependency
graph

Access
mechanism

Access
control

Extensibility Customisation

Chef Yes

CDK (chef
development
kit),
GUI
(graphical user
interface)

Mutual
authentication,
SSL

Yes Yes

Puppet Yes

RPC (remote
procedure
call),
API
(application
program
interface),
GUI

Mutual
authentication,
digital
signature, SSL

Yes (using
faces API)

Yes

Ansible No

CLI (command
line interface),
web user
interface

SSH
Yes
(extensive
library)

Yes

Docker Yes
CLI, Docker
engine API

Linux
namespace and
cgroups, TLS
(transport layer
security) using
plugins

Yes (via
plugins)

Yes

K8s Yes
CLI, API,
REST based
request

Client
certificate,
Password,
plain/bootstrap,
tokens

Yes
(modular,
pluggable,
hookable,
composable

Yes

Juju Yes CLI, GUI
Mutual
authentication,
SSH

Yes (using
plugins)

Yes

Cloud
Formation

Yes
CLI,
management
console, API

AWS IAM
(identity access
management)

Yes Yes

Terraform Yes CLI, API
End-to-end
authorisation

Yes Yes (via plugins)

Cloudify Yes
CLI, web user
interface

Mutual
authentication.
SSL

Yes (via
diamond
plugins)

Yes

TOSCA
Yes(with
topology
information)

GUI

No specific
client
authentication
method

Yes Yes

Calvin - CLI, API
Mutual
authentication

Yes Yes

- 31 -

Chapter 2: Background and Literature Review

Table 2.2: Evaluation of Configuration Management tool (Part II)

Tools Reusability
Deployment
environment

Virtualisation
technique

Scalability Portability

Chef
Yes (using
cookbooks)

On-premise,
cloud, edge

Hypervisor,
container

Yes Yes

Puppet Yes
On-premise,
cloud, edge

Hypervisor,
container

Yes Yes

Ansible Yes
On-premise,
cloud

Hypervisor,
container

Yes Yes

Docker
Yes (using
Docker hub)

On-premise,
cloud, edge

Container

Yes
(horizontally
scalable
using parallel
and sequential
mode), no
autoscaling

Yes

K8s Yes
On-premise,
cloud, edge

Container
Auto
scaling

Yes

Juju

Yes (using
charms or
bundles)
(puppet, chef,
Docker, etc.
codes can also
be included in
the charms)

On-premise,
cloud, edge

Hypervisor,
container

Yes Yes

Cloud
Formation

Yes
Public cloud
(AWS)

Hypervisor,
container

Auto
scaling

Compatible
with all the
services
provided
by AWS

Terraform Yes
On-premise,
cloud, edge

Hypervisor,
container

Yes Yes

Cloudify Yes

On-premise,
cloud, edge
(with vCloud
plugin)

Hypervisor,
container

Yes Yes

TOSCA Yes
On-premise,
cloud

Hypervisor,
container

Yes

Yes (using
TOSCA-
based
DSL)

Calvin
Yes (using
Calvin actors)

Cloud, edge,
IoT devices
(mainly for IoT
application)

Hypervisor,
container

Yes Yes

- 32 -

Chapter 2: Background and Literature Review

• Most of the tools support user customisation, but the way they allow customi-

sation is very different from tool to tool.

• Except for TOSCA that does not have a specific access control mechanism, all

other tools have their specific mechanism. Some tools (e.g. Chef, Juju, Puppet)

use mutual authentication while others (e.g. Cloud Formation) use a cloud-

specific identity access mechanism (IAM).

• Since most of the DevOps systems are based on UNIX or Linux system, most of

the tools support command-line interface (CMI). Some of the tools (e.g. Puppet,

Docker, Calvin) also support an application program interface (API) to manage

applications across cloud, edge and IoT. A few of the tools (e.g. Chef, Juju,

TOSCA) also support a graphical user interface (GUI) for easy accessibility.

• Most of the available tools (e.g. Ansible, Cloud Formation) are used for on-

premise or cloud datacenter, but only a few of them can be used for edge devices

(e.g. chef, Puppet, Docker). Among these tools, only a few of them (e.g. Juju)

are used for infrastructure deployment. Calvin is the tool specially designed for

IoT application deployment while recent advancements in TOSCA also support

IoT. The remaining tools do not contain support for CPS applications.

• Docker and Kubernetes are the tools that support only container based virtu-

alisation; the remaining tools support either hypervisor only or both hypervisor

and container. The virtualisation technique is not relevant for tools like Chef,

Puppet, Ansible, etc., as they are only responsible for configuration management

of resources rather than virtualising them. Docker and Kubernetes have recently

started to focus on infrastructure management.

• Reusability is an important concept, which is provided by almost all tools, using

different methods. Chef uses Cookbook while Docker uses Docker Hub. Similarly,

other tools use some centralised or distributed storage to reuse the artefacts.

• Most of the tools provide scalability, but only some of them (e.g. Kubernetes,

Cloud Formation) provide automatic scaling. Similarly, portability is an essential

requirement for a configuration that is provided by almost all the tools.

- 33 -

Chapter 2: Background and Literature Review

From the evaluation, it is clear that the presented tools automate the deployment

and configuration management task in their specific ways. Frameworks such as Chef,

Puppet, Ansible, etc. configure and deploy the infrastructure but do not virtualises

the infrastructure. Tools like Docker and Kubernetes virtualise only in the form of

containers, whereas Juju and Cloud Formation support both container and hypervisor-

based virtualisation. Tools like TOSCA and Calvin have support for IoT devices along

with cloud and edge environment, but they need further development. To provide a

sophisticated solution for deployment and configuration management, we need a new

tool that can satisfy all the dimensions holistically.

2.3 Workflow Composition and Orchestration

A workflow usually represents sequenced activity patterns that can be composed and

orchestrated based on a business target. With the development of business process

modelling and business process coordination, workflow technology becomes essential

to deal with complex component frameworks and business interaction.

Workflow can be understood through several different perspectives [31], such as data-

flow, control-flow, resource, etc. In the control perspective, a workflow illustrates

activities and the execution order to enable workflow execution, such as sequence,

parallelism, choice and join synchronisation. From the data perspective, the workflow

can be divided into workflow data patterns, including data visibility, data interaction,

data transfer and data-based routing [32]. When it comes to the resource perspective,

it provides a low-level structure to the workflow in the format of human and resource

roles.

The control flow provides an initial vision of a workflow specification, including the

essential connections in business processes. Moreover, data flow offers a unified way

to represent and utilise workflows with designed workflow data patterns.

In the rest of this subsection, I discuss the scientific workflow system management,

composition, execution and provenance first. Then I move to IoT workflow composition

and orchestration. Finally, I list related IoT workflow tools.

- 34 -

Chapter 2: Background and Literature Review

2.3.1 Scientific Workflow System

With increasing application complexity and distributed resources, a scientific workflow

system has become a necessary tool to overcome such challenges [33]. The purpose of

scientific workflow systems is to simplify and automate the data movement between

different locations and activities in order to reduce the complexity of computational

management for scientists.

A workflow in such systems represents an orchestration template consisting of specific

scientific workflow activity patterns and dependencies between them. To perform a

workflow lifecycle, the following five steps are considered: specification, composition,

scheduling, execution and provenance [34]. First, a data model is specified and designed

based on a particular goal to represent each component in a workflow application.

Next, according to this data model, a comprehensive workflow can be composed to

achieve the final goal with desired workflow activities. After the workflow is defined, it

can be passed to schedule and execute on natural resources. Once execution finished,

various registries can save and record all relevant provenance information to provide

insights for future workflow design. I explain these five workflow lifecycle steps in

detail in the following subsections.

2.3.1.1 Scientific Workflow Specification

Workflow specification aims to offer a unified and textual way of allowing workflow

owners who can specify requirements to control and adjust the workflow step selection

and composition. Workflow specification can also be understood as a data model de-

sign for a particular scientific application. As such, the workflow specification process

is user-specific requirements driven. To specify user requirements, a unified workflow

specification language is necessary in the workflow design stage to represent require-

ments that can be reasoned, validating properties of services and verifying services to

be part of a workflow.

Holonic Multi-agent Systems (HMS) [35] is designed to address the dynamic of work-

flow services. This system is adopted for dynamic real-time re-configuration for ser-

vice collaboration. A workflow adaptation problem (WAP) is analysed, and a solution

- 35 -

Chapter 2: Background and Literature Review

based on contract net protocol (CNP) is proposed to solve WAP in the context of ser-

vice composition based on HMS. A well-established workflow language, Petri Net [36]

is employed in this work to represent the workflow.

Business Application Modeler (BAM) [37] is a tool-based approach for requirements

verification and validation for business process models. The core component in this

model is the formal specification which can be adopted for automatic verification and

validation of process models. In this work, graph-based rules in Computation Tree

Logic (CTL), Graphical Computational Tree Logic G-CTL [38] is used to specify the

workflow requirements.

A concurrent Transaction Logic (CTR) [39] based formal framework is proposed for

interaction modelling in virtual enterprises. Workflows are graphically presented as a

Direct Acyclic Graph (DAG), representing activity coordination. In order to enforce

constraints on a workflow or specific control flow, a set of CTR connectives are created.

SpecificatiOn Language fOr servIce compoSitions inTeractions (SOLOIST) [40] is a

workflow specification language to formalise the interactions of services composition.

It follows the Service Oriented Architecture (SOA) principles to enrich service-based

application development by orchestrating third-party services to provide added-value

applications. This service-based application has been widely used in enterprises, to

develop their own SOA information systems.

Service workflow specification (SWSpec) [41] language is devised to specify workflow

requirements mathematically relevant to service workflows. It provides a unified and

formal method to allow requirements to be specified independently. The compliance

checking is automatic due to the formal SWSpec. SWSpec captures the structural fea-

tures of service workflows, such as tasks and the tasks execution locations, to represent

the coordination of these tasks.

2.3.1.2 Scientific Workflow Composition

Workflow composition acts a crucial role in scientific workflow lifecycle. It allows users

to define the workflow activities and dependencies between each step abstractly or

concretely. Usually, a workflow can be represented as computational steps and the

- 36 -

Chapter 2: Background and Literature Review

data that goes through these steps. Sometimes, the workflow composition process

can be divided into two phases. First, a high-level workflow representation template

is constructed, and then the actual data will fill into this template. These work-

flow templates can be stored and reused in other associated cases. I categorise the

workflow composition mechanism in the following three types: textual, graphical and

mechanism-based semantic models.

Textual Workflow Editing Many scientific workflow systems utilise a specific

workflow language, such as Business Process Execution (BPEL) [42], Simple Concep-

tual Unified Flow Language (SCUFL) [43], Directed Acyclic Graph Manager (DAG-

Man) [44] and Directed Acyclic Graph in XML format (DAX) [45]. These workflow

languages support text editor based composition with a specification. However, some

workflow systems become extremely complex when the parallelisation is finished, where

the algorithm is applied to several data sets through the entire workflow. Therefore,

a high-level programming language (Python) based scripting tool is designed to de-

scribe the complex control and data flows. For instance, Pegasus [45] adopts DAX

as a description language to generate workflow under a Java API and other types of

scripting languages. Commonly, Pegasus is utilised to integrate with a user interface to

provide interaction between workflow systems and users in terms of metadata query-

ing. A workflow instance can be generated automatically with user input and then be

executed based on DAGman.

Graphical Workflow Editing A graph-based workflow editor can simplify users’

lives with intuitive graph editing. However, it is available in the domains where the

workflow only has a small number of primary tasks, such as [46, 47]. As a result, many

workflow systems like Kepler [48], Triana [49] and Vistrails [50] provide availability of

composing nested workflow graphs. BPEL is a widely used workflow composition lan-

guage integrating into many programming languages, such as Python and Java. For

example, Eclipse BPEL Designer 10 employs primarily visual modelling for workflow

composition. Two general types are considered to represent most of the workflow sys-

tems: task-based and service-based. Task-based systems focus on low-level workflow

10https://www.eclipse.org/bpel/

- 37 -

Chapter 2: Background and Literature Review

execution, such as resource management and fault-tolerance while service-based sys-

tems place emphasis on high-level user interaction to provide services management and

composition. These two types of system can perform together; for instance, Kepler

(task-based) works with Pegasus (service-based).

Semantic Workflow Editing Many scientists [51] focus on the development of

fully automatic workflow generators with artificial intelligence techniques. This can

be achieved through integrating semantic specifications of workflow components with

standard features of correct workflows. Work like [52] utilises rich semantic descrip-

tions of components and workflow templates expressed with regard to domain ontolo-

gies and constraints. Wings provide a workflow template editor for users to edit and

compose workflow components with data flows, along with constraints specification.

With information inputted by users, Wings generates a workflow instance including

orchestration and data specifications. Since workflow representation and specifica-

tion becomes declarative and expressive, these semantic workflow systems empower

automation and assistance in workflow composition.

2.3.1.3 Scientific Workflow Scheduling

Workflow scheduling represents the process of resource selection for the executable

workflow instance. In some cases, users perform these selection operations themselves.

Nevertheless, more frequently, workflow systems can handle these processes. There are

three main procedures in workflow scheduling: resource discovery, workflow mapping

and workflow optimisation. I discuss such procedures in detail as following.

Resource Discovery A resource typically refers to a service which can complete

one or more particular tasks in workflow systems. These services can be REST [53],

WSDL-based Web Services [54], a computational agent, even a human. For example,

a workflow step could be requiring a person to perform a particular task which can

not be done by machines. In the web service context, a registry containing service

descriptions is utilised to maintain existing services in workflow systems. When a new

service is added, the registry may be updated within this new service. A search engine

- 38 -

Chapter 2: Background and Literature Review

that can query the registry can be considered as a resource discovery tool.

Workflow Mapping As discussed, workflow systems perform workflow mapping for

users in most cases. Kepler, Sedna, Taverna and VisTrails [50] rely on users to select

and allocate resources and services used in workflows. Users need to select multiple

alternatives for each workflow step to avoid undesired errors. A workflow engine, P-

GRADE [55] based on Condor DAGMan and GEMLCA [56] extensions supports both

task-based and service-based workflow applications. Similarly, Triana integrates with

GAT (Grid Application Toolkit) [57] and GAP (Grid Application Prototype) [58]

to offer task-based and service-based workflow mapping capability respectively. In

a service-based workflow application, users can directly invoke services, or they can

compose a workflow then map it to distributed services via a pipeline script. On the

other hand, Triana can send user-defined tasks to available resources in task-based

workflows. Karajan [59] provides dynamic binding of tasks to resources by allowing

users to specify tasks at an abstract or concrete level, then mapping such specified tasks

to a single resource. In the BPEL based workflow systems, the resource selection and

workflow mapping processes will always be explicit as abstract Web Service Definition

Language (WSDL) descriptions.

Workflow Optimisation When performing workflow optimisation, a composed sci-

entific workflow can be improved in terms of execution cost, work efficiency, quality of

service, etc. Pegasus provides a user interface with a user-defined scheduler including

four standard scheduling algorithms: HEFT [60], min-min, round-robin and random.

With such scheduling algorithms, Pegasus can schedule workflows depending on the

quality of information about execution time and data accessibility. Meanwhile, Pe-

gasus can offer four types of workflow optimisation: task clustering, data reuse, data

cleanup and partitioning [45]. Another task-based workflow system, called the Askalon

system, can perform resource mapping along with resource provision during execution.

This system has a performance analysis and prediction component which estimates the

data transfer time and the workflow tasks execution time.

- 39 -

Chapter 2: Background and Literature Review

2.3.1.4 Scientific Workflow Execution

When a workflow template is designed, a workflow execution engine or system is needed

to perform and execute such workflows. I classify workflow execution in the following

two ways: execution model and fault tolerance mechanism.

Execution Model Workflow systems generally handle services or tasks. In various

execution scenarios, workflow execution follows different models. For example, Pegasus

can schedule workflows in a range of target resources managed by PBS [61], LSF [62],

Condor [63] and individual machines. Pegasus adopts DAGMan workflow engine as

an execution tool and GSI [64] as remote resources accessing the tool. In the mean-

time, Askalon adopts the Unified Modelling Language (UML) standard as composition

and modelling technique, and supports XML-based Abstract Grid Workflow Language

(AGWL). The Java-based workflow framework, Karajan provides DAG-based hierar-

chical workflow structures. In this system, workflows can be visualised and tracked

by a workflow scheduler and modified at runtime. Triana integrates with the GridLab

GAT to support task level workflow execution. Besides, it binds to Web, WS-RF and

P2P services to support service-level workflow execution as well.

Fault Tolerance In a different level of workflow, the fault tolerance mechanism can

be various. Some operating-system-level fault tolerance mechanism can be used to

save workflow execution time and recover system failure. Moreover, application-level

fault tolerance mechanisms, such as check-pointing, can support workflow execution

migration. The Cactus worm [65] adopts this mechanism to solve task-level work-

flow execution failure. On the other hand, operations to perform fault-tolerance in

a service-level workflow can restart services in a time interval or mitigate to another

alternative service. For example, Kepler integrating with a “smart re-run” extension

can avoid unnecessary re-computations. Similarly, Triana informs users with error

messages when failure has occurred. DAGMan supports a tasks re-submitting feature

with a batch system. Apart from these mechanisms, to monitor runtime information

externally is another choice. For example, when executing a workflow, an external

monitor agent can detect failures happening and bring failed tasks to a substitute

- 40 -

Chapter 2: Background and Literature Review

Scientific Workflow System

Workflow Specification

Workflow Composition

Workflow Scheduling

Workflow Execution

Workflow Provenance

Specification Language

Data Model

Textual Workflow Editing

Graphical Workflow Editing

Semantic Workflow Editing

Resource Discovery

Workflow Mapping

Workflow Optimisation

Execution Model

Fault tolerance

Data Provenance

Figure 2.4: Taxonomy of Scientific Workflow System

resource.

2.3.1.5 Scientific Workflow Provenance

Workflow provenance holds a record of a workflow data object from creation. To hold

such records is important because users can reproduce the workflow result and analysis

workflow in terms of particular aims.

The increase of workflow provenance challenge comes from various provenance repre-

sentations from different workflow systems even the same workflow is produced. In

other words, Some systems manage provenance information with internal data struc-

tures; others use external services to do so. For example, Triana records provenance

information locally in an internal format. In this record, the execution history and

- 41 -

Chapter 2: Background and Literature Review

parameters of the data sets are easy to access and understand.

The VisTrails system [66] can track the provenance of workflows with the capability of

workflow management. Users can explore any operations on a workflow via a graphical

user interface. With this kind of workflow provenance, scientists can quickly revise and

analysis the workflow across domains.

In summary, the taxonomy of scientific workflow system is illustrated in Figure 2.4.

2.3.2 Internet of Things Workflow

In the past decades, IoT devices have generated a massive amount of raw data for

processing purposes. Cloud and Edge are two major paradigms in the distributed

computation environment. Despite cloud datacenter having massive computational

capability, transferring all data generated from IoT devices to the centralised cloud dat-

acenter for processing is unnecessary. This operation may increase end-to-end latency

and response time. It also raises network resource wastage and energy consumption

rate. An edge datacenter located close to IoT devices with lightweight computational

power is proposed to overcome these disadvantages. The critical benefit of an edge

datacenter is to perform preprocessing with the raw data captured from IoT devices

in order to reduce the data size to transfer to centralised cloud datacenter. The end-

to-end latency is also decreased because edge devices always deploy locally. However,

many edge nodes have computational capability limitation to handle large scale data

processing tasks. Thus, neither cloud nor edge datacenters can manage various data

processing tasks efficiently. It raises a new challenge to formulate and pipeline an IoT

application with both edge and cloud resources integrated. IoT workflow application

is proposed to address the above challenge in order to utilise cloud and edge resource

capability to meet the quality of service or other service level constraints.

An IoT workflow similar to a scientific workflow is represented as a DAG with depen-

dencies [67–69]. The workflow refers to a set of scientific tasks or engineering prob-

lems. Every workflow application requires massive computational power to execute

distributed tasks over resources in an expected time [70]. Because of the IoT applica-

tion diversity, workflow composition and orchestration, which refers to the scheduling

of workflow, leads to specific challenges and opportunities.

- 42 -

Chapter 2: Background and Literature Review

2.3.2.1 IoT Workflow Composition and Orchestration

In order to orchestrate relevant resources to handle corresponding tasks, for example,

large scale data processing tasks need heavy computational power in the cloud, an

intelligent IoT workflow composition mechanism needs to be developed. Meanwhile,

meeting a range of quality of service constraints, such as latency, cost, etc., is another

essential characteristic of IoT workflow composition and orchestration.

Cloud-based workflow composition and orchestration have been studied comprehen-

sively [71–74]. However, such studies focus on centralised cloud environment workflow

analysis which can hardly cover current cloud-edge associated IoT deployment envi-

ronments.

Objectives of IoT Workflow Composition and Orchestration The workflow

composition and orchestration strategy in IoT differs from traditional scientific work-

flow composition because it needs to address several research challenges for enabling

efficient and effective operations. When deploying an IoT application which contains

many different data processing tasks, the computational time of each task depends on

the data size and task type. The primary objectives [75–77] to compose and orchestrate

IoT workflow can be summarised as follows:

• latency: Discovering the closest resource to execute an IoT workflow task is

a primary challenge in a federated cloud-edge environment [78]. The latency

describes the time interval between an output from the previous step and input

of the next step. It relies on geo-distance and network quality.

• Energy: Designing a workflow which can reduce energy consumption is a chal-

lenge in IoT [79]. The energy consumption of a resource varies leaning on the

processors and memory size of the resource and also the resource utilisation. As

a result, executing IoT workflow steps on edge nodes can control the total energy

consumption, while waste and temperature controlling is affected by resources

energy consumption.

• Resource Utilisation: Resource utilisation refers to the number of resources

that are utilised by the tasks within a time interval [80]. Loads are assigned

- 43 -

Chapter 2: Background and Literature Review

on remaining resource capability. If the remaining load of local resources is less

than the required load, the workflow steps need to be executed locally. Alterna-

tively, such loads should be allocated to centralised cloud resources for further

execution. Composing and orchestrating an IoT workflow to enable high resource

utilisation is a challenge.

2.3.3 IoT Workflow Composition and Orchestration Tools:
State of the Art

Workflow composition tools in IoT offer various features, such as workflow definition,

workflow design, workflow execution, etc. These tools and platforms can significantly

improve scientists’ work in terms of IoT related workflow deployment and orchestra-

tion. In this section, I describe nine popular IoT workflow tools and platforms and

analyse the features and advantages of them below.

Node-RED Node-RED 11 is a flow-based event-driven pipeline application that con-

sists of a Node.js runtime with a web browser to access the workflow editor. In Node-

RED, users can pipeline and model workflows with provided “nodes” as a network of

black-boxes of an application’s behaviour. Each node is well-defined to perform a spe-

cific purpose. In IoT workflow applications, Node-RED can provide a platform which

allows users to represent their workflows visually and debug workflow steps in runtime.

Workflows are specified as a JSON metadata which contains node information and de-

pendencies. Such JSON files are easy to share with other IoT workflow application

developers to import and reuse in other scenarios. Besides, Node-RED is a lightweight

workflow system which can be deployed on locations with low computational power

such as Raspberry Pi. This feature increases the capability of workflow composition

and orchestration. However, scalability is a big challenge for Node-RED in the current

version because the software is a Node.js runtime environment and when workloads

increase, it has the potential to fail.

11https://nodered.org/

- 44 -

Chapter 2: Background and Literature Review

Airflow Apache Airflow 12 is an open-source workflow management platform to pro-

grammatically author, schedule and monitor workflows. In Airflow, all workflows are

represented in code which is easy to maintain, test and collaborate. Users can visu-

alise workflow pipelines as directed acyclic graphs (DAGs) of tasks which are executed

further by an Airflow scheduler following the specified dependencies. Airflow is a

pure python-based software supporting standard python features, including data time

formats for scheduling and loops to generate tasks dynamically. Moreover, Airflow pro-

vides a range of plug-and-play operators to perform typical cloud platform execution,

such as Amazon Web Services, Azure, Google Cloud Platform, etc. Scalability is also

enabled by applying a message queue to orchestrate an arbitrary number of workers.

However, Airflow still has some weaknesses; one is that version control is missing. If

users delete a task from the DAG, then associated metadata will be lost. Another

disadvantage is about data sharing between tasks. Recently, data is sharing between

tasks benefits, data reuse and data aggregation processes. There is no easy way to

share data between atomic tasks in Airflow. Users can only restart ETL (extract,

transform, load) whenever any part of it fails.

Argo Workflows Argo Workflows 13 is an open-source container-native workflow en-

gine for parallel tasks orchestration based on Kubernetes infrastructure environments.

It is implemented as a Kubernetes Custom Resource Definition (CRD) to benefit work-

flow management using kubectl and natively integrate with many well-defined Kuber-

netes services, like secrets, volumes and RBAC (Role-based access control). Argo is

easy to deploy on many resources in a short period and offers parameter substitution,

artefacts, loops, fixtures and recursive workflows features. When performing Argo as

a workflow engine, users can design their DAGs in a provided workflow specification

template. Meanwhile, several properties such as workflow type, container information

and resource information are defined in each pod of a workflow. After workflow script

is well designed, Argo continuous delivery software can be utilised for declarative work-

flow deployment. Since the workflow template is written in YAML format script and

tasks are defined in a containerised environment, reusability and extensibility are easy

12https://airflow.apache.org
13https://argoproj.github.io/projects/argo

- 45 -

Chapter 2: Background and Literature Review

to achieve. However, continuous integration is not supported in Argo, which means

test and build steps are lacking in Argo workflows.

CDS Continuous Delivery Service 14 is an open-source platform to offer enterprise-

grade continuous delivery and DevOps automation services written in Go language.

In CDS, they conceptualise workflow applications as two parts, pipelines and work-

flows. Pipeline refers to structured, sequential stages containing one or more concur-

rent tasks, while workflow represents a chain of pipelines with conditional branching.

They consider workflows at high-level, including not only small jobs and tasks but also

all operations to perform an application from scratch. The benefit of these divided

concepts brings fault-tolerance to CDS because users only need to replace or modify

a pipeline when a particular step fails instead of debugging the entire workflow. CDS

contains many user features like git repository configuration, native GitHub/GitLab

integration, secure remote caching, etc.

Cadence Cadence 15 is a distributed, scalable, durable and highly available orches-

tration engine to execute asynchronous long-running business logic in a scalable and

resilient way. In Cadence, fault-oblivious stateful workflow code is the primary ab-

straction. The form of the workflow code, including associated local variables and

threads it creates, is immune to process and Cadence service failures. The workflow

encapsulates states, processing threads, durable timers and event handlers to offer

state recovery and determinism. Activities representing functions or object methods

are orchestrated by workflow code to communicate with external API directly. Such

activities are invoked asynchronously through task lists, storing a queue of available

activity tasks. Cadence supports Java and Go application as a client application and

uses a rich command-line interface to perform essential interaction. However, a com-

plex Java/Go deployment environment declines lightweight computational resources

in the edge.

14https://ovh.github.io/cds/docs/
15https://cadenceworkflow.io

- 46 -

Chapter 2: Background and Literature Review

n8n n8n 16 is an extendable workflow automation tool with a fair-code distribution

model allowing users to add customised functions, logic and apps. With n8n, metadata

can be moved and transformed between apps and databases without integrating with

particular APIs or troubleshooting CORS (cross-origin resource sharing) error. A user-

friendly user interface is provided for workflow designing within javascript functions

and conditional logic. A well-defined workflow consists of nodes which retrieve data and

execute functions in sequence. These nodes can be any services, such as cloud services

and any functions with Node.js runtime. A trigger node is designed to start a workflow

and supply the initial data. Reusability and extensibility rely on a JSON based script

editing and sharing mechanism. Some important runtime information is stored within

the workflow script, including time stamp, execution error data, execution URL, etc.

Luigi Luigi 17 is a python based pipeline tool for batch tasks. This software is

designed to solve long-running batching processes in data science domains, such as

Hadoop, Spark, Hive, etc. It hides the complexity of workflow management to provide

focus to data scientists on their tasks and dependencies. A web-based user interface

is employed for workflow pipeline and task searching and filtering. Some features, like

failure handling, task tracking and event handling, make Luigi more reliable for batch

data processing. Integrating with such batch data processing platforms (Hadoop,

Spark) is a crucial advantage for users to execute MapReduce jobs and Spark jobs. To

avoid data pipeline crashing, Luigi provides file system abstractions for HDFS (Hadoop

Distributed File System) as standard task templates for usability. However, due to

the batch processing oriented design, Luigi is less useful in real-time workflow pipeline

and continuous delivery. Additionally, distribution of execution is not supported in

Luigi when worker nodes get overloaded, which leads to failure.

Prefect Prefect 18 is a workflow management system powered by the open-source

Prefect Core workflow engine and designed for modern infrastructures. Users only need

to focus on tasks definition and flows composition. The Prefect Core workflow engine

16https://n8n.io
17https://luigi.readthedocs.io/en/stable/index.html
18https://www.prefect.io

- 47 -

Chapter 2: Background and Literature Review

allows semantics like retries, logging, dynamic mapping, caching, failure notification to

formulate workflow execution. In a Prefect workflow, Tasks represent discrete actions

which execute user-defined functions, while flows refer to entire workflows or applica-

tions by illustrating the dependencies between tasks. Prefect supports a wide range of

common deployment solutions involving AWS, Azure, GCP, Docker, Kubernetes, etc.

and many task libraries like MySQL, Python, etc. Nevertheless, Prefect is friendly for

edge devices without command-line accessibility.

Temporal Temporal 19 is a microservice orchestration platform which enables scal-

able applications development with productivity and reliability. Units of application

logic, workflows are executed on a Temporal server in a resilient manner that handles

intermittent failures and retries failed operations automatically. Temporal currently

provide SDKs for Go and Java programming languages with pseudocode-like work-

flow representation. Workflow operations like pause, resume and replay in the pro-

vided SDKs enable state management, queueing, resilience and other safety features.

Any Temporal environment includes a backend service, workers and a data repository.

Workers running end-users’ functions can connect to the Temporal service, which of-

fers to schedule, queueing and state management via a gPRC (remote procedure call)

protocol. An external data repository, such as MySQL or Cassandra can record and

store data from Temporal service side for further reusing. Temporal can be consid-

ered as an extended version of Cadence with improvement in communication protocol

changing and configuration simplifying.

In summary, the comparison of these workflow compositions and orchestration tools

in terms of the deployment environment, scalability, extensibility, etc., is shown in

Table 2.3

19https://temporal.io

- 48 -

Chapter 2: Background and Literature Review

T
ab

le
2.

3:
Io

T
W

or
k
fl
ow

C
om

p
os

it
io

n
an

d
O

rc
h
es

tr
at

io
n

T
o
ol

s
C

om
p
ar

is
on

P
la

tf
or

m
s

D
A

G
A

cc
es

s
M

ec
h
an

is
m

W
or

k
fl
ow

R
ep

re
se

n
-t

at
io

n

D
ep

lo
y
m

en
t

E
n
v
ir

on
m

en
t

A
P

Is
an

d
S
D

K
s

F
au

lt
T

ol
er

an
ce

S
ca

la
b
il
it

y
E

x
te

n
si

b
il
it

y
R

eu
sa

b
il
it

y

N
o
d
e-

R
E

D
Y

es
W

eb
-b

as
ed

U
se

r
In

te
rf

ac
e

(W
eb

U
I)

J
S
O

N
C

lo
u
d
,

E
d
ge

,
D

o
ck

er
,

A
n
d
ro

id

N
o
d
e.

js
A

P
I,

H
T

T
P

A
P

I,
J
av

as
cr

ip
t

b
as

e
S
to

ra
ge

A
P

I,
jQ

u
er

y
w

id
ge

ts
A

P
I

Y
es

Y
es

Y
es

Y
es

A
ir

fl
ow

Y
es

W
eb

U
I,

C
om

m
an

d
L

in
e

In
te

rf
ac

e
(C

L
I)

P
y
th

on
C

lo
u
d
,

E
d
ge

,
D

o
ck

er
P

y
th

on
A

P
I,

R
E

S
T

A
P

I
Y

es
Y

es
(m

o
d
u
la

r
ar

ch
it

ec
tu

re
)

Y
es

Y
es

(W
or

k
fl
ow

as
C

o
d
e)

A
rg

o
W

or
k
fl
ow

s
Y

es
C

L
I,

W
eb

U
I

fo
r

C
D

on
ly

Y
A

M
L

C
lo

u
d
,

E
d
ge

,
D

o
ck

er
S
w

ag
ge

r
A

P
I,

R
E

S
T

A
P

I
Y

es

Y
es

(h
or

iz
on

ta
ll
y

sc
al

e
th

e
w

or
ke

r
n
ot

co
n
tr

ol
le

r)

Y
es

Y
es

C
D

S
Y

es
C

L
I,

W
eb

U
I

Y
A

M
L

C
lo

u
d
,

E
d
ge

,
D

o
ck

er

R
E

S
T

A
P

I,
G

ol
an

g
S
D

K
,

R
u
st

S
D

K
Y

es
Y

es
Y

es
Y

es

C
ad

en
ce

N
o

C
L

I,
W

eb
U

I
Y

A
M

L
C

lo
u
d
,

E
d
ge

,
D

o
ck

er
J
av

a
A

P
I,

G
o

A
P

I
Y

es
Y

es
N

o
Y

es

n
8n

Y
es

C
L

I
on

ly
fo

r
w

or
k
fl
ow

ex
ec

u
ti

on
,

W
eb

U
I

J
S
O

N
C

lo
u
d
,

E
d
ge

,
D

o
ck

er
R

E
S
T

A
P

I,
Y

es
(e

rr
or

tr
ig

ge
r)

Y
es

Y
es

Y
es

L
u
ig

i
Y

es
W

eb
U

I
P

y
th

on
C

lo
u
d
,

E
d
ge

P
y
th

on
S
D

K
Y

es
N

o
Y

es
Y

es

P
re

fe
ct

Y
es

W
eb

U
I,

C
L

I
P

y
th

on
C

lo
u
d
,

E
d
ge

,
D

o
ck

er
P

y
th

on
S
D

K
Y

es
Y

es
Y

es
Y

es

T
em

p
or

al
N

o
C

L
I,

W
eb

U
I

J
av

a/
G

o
C

lo
u
d
,

E
d
ge

,
D

o
ck

er
J
av

a
S
D

K
,

G
ol

an
g

S
D

K
Y

es
Y

es
Y

es
Y

es

- 49 -

Chapter 2: Background and Literature Review

2.4 Conclusion

In this chapter, I have discussed the background information of associated topics in-

cluding IoT, scientific workflow systems, configuration management, deployment au-

tomation and IoT workflow composition. From the literature review, I have illustrated

recent academic research and analysed drawbacks on such topics. In addition, popu-

lar configuration management and IoT workflow composition tools are discussed and

evaluated in terms of several critical dimensions. In summary, regarding the above

discussion, I highlighted research challenges concerning IoT workflow composition and

deployment automation.

- 50 -

3
IoT-CANE: A Unified Knowledge

Management System for
Data-Centric Internet of Things

Application Systems

Contents
3.1 Introduction . 52

3.2 Related Work . 55

3.2.1 Multi-layer Resources Configuration Management Issues in IoT 55

3.2.2 Conceptual Model in IoT . 55

3.2.3 Context-aware Recommender Systems 56

3.3 Conceptual Model and System Architecture 57

3.3.1 Conceptual Model . 57

3.3.2 System Architecture . 62

3.4 Recommendation System Technique 63

3.4.1 Recommendation Rule . 63

3.4.2 Single Conclusion Ripple Down Rules 64

3.5 Design and Implementation . 65

3.5.1 System Design . 65

3.5.2 System Workflow . 67

3.5.3 Recommendation Rule Tree . 71

3.5.4 Computational Complexity . 72

3.6 User Evaluation . 73

3.6.1 Experiment setup . 73

3.6.2 User Evaluation . 73

3.7 Conclusion and Future Work 75

- 51 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

Summary

In this chapter, I present IoT-CANE (Context Aware recommendatioN systEm) as

a high-level unified IoT resource configuration recommendation system to overcome

resource heterogeneity in cloud and edge environments. IoT-CANE embodies a unified

conceptual model capturing configuration, constraint and infrastructure features of

Cloud/Edge together with IoT devices. The success of IoT-CANE is evaluated through

an end-user case study.

3.1 Introduction

The Internet of things (IoT) commonly refers to the idea of things (devices) that

are smart, locatable, easily readable and recognisable and controllable using the In-

ternet [1–3]. In IoT, things and resources (edge and/or cloud), combine as services

that form the basis for many IoT applications e.g. smart healthcare, smart homes,

smart buildings, smart manufacturing, smart agriculture, smart traffic, etc. In such

applications, real-time users can easily discover, query and operate different IoT enti-

ties. Numerous physical objects provide these kinds of services using IoT technologies.

These objects are not only physical objects, such as physical sensors and actuators, but

also virtual objects, like social media (Facebook, Twitter, etc.,). The heterogeneous

large-scale data from such physical and virtual objects raises a challenge of unified

resource configuration knowledge representation and high performance data process-

ing [8]. Therefore, we need an incorporation of the digital world and the physical world

in IoT ecosystems; that is, in order to allow interoperability, it is important to define

the services supplied by these physical and virtual objects in a homogeneous way [9].

More specifically, the requirement of developing a novel and unified conceptual model

to represent the knowledge and configuration information of each entity in IoT field is

necessary.

Consider a scenario of a new IoT application manager that would like to create for

a smart building application without high budget. The manager may purchase IoT

devices from multiple manufacturers with a low price, such as temperature sensors, mo-

tion sensors, humidity sensors, Raspberry Pi, gateway, etc. We assume this manager

- 52 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

does not have enough knowledge of Cloud and Edge resource configuration manage-

ment and deployment. Because of the heterogeneous data type, diverse hardware and

software knowledge in different IoT devices and Cloud/Edge resources, the manager

needs to find some IoT application solution providers to offer IoT resource config-

uration management and deployment solutions. However, the problem is that the

majority of IoT application solution providers that can offer different IoT application

solutions to the user, are expensive. Moreover, IoT application solution providers can

only provide existing services within their service list with the IoT devices supported

by their software. Besides, IoT devices produced by different manufacturers may have

different APIs, which increases the difficulty of service deployment from a single IoT

application solution provider. For example, currently, there are more than 325 avail-

able APIs for Internet of Things programming from the ProgrammableWeb website 1.

Therefore diverse programming APIs and multiple IoT devices bring new challenges

in configuration management and deployment of IoT applications.

In another scenario, a householder purchases a new smart camera to enhance his

smart home application with an intrusion detection service. He may need to connect

this new smart camera to his smart home environment, for example, by establishing

a connection between the camera and a gateway to collect graphic data. After that,

another node in the smart home application captures this graphic data and detects any

intrusion via graphic data processing. The householder may have already implemented

the smart home with the help of professionals. But it may not be affordable or practical

to seek help every time when he purchases new IoT devices. In this case, discovering

and adding a new device or a new service into an existing IoT application becomes

a challenge for the beginners. Also, the new data type from smart camera, such as

format of photos and videos are new for his smart home application. Meanwhile, one

or multiple software which are eligible to handle with such data format are necessary to

be aggregated into this smart home application. Therefore, many IoT application users

will meet diverse problems in IoT resource configuration management and deployment

due to rapid IoT development.

To address such growing challenges, we present a high-level, simplified context-aware

1https://www.programmableweb.com/category/internet-things/api

- 53 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

IoT resource configuration recommender system (IoT-CANE) to address the aforemen-

tioned specified problems. The core idea in our IoT recommender system is to first,

capture the IoT resource configuration knowledge using a declarative language, and

implement a recommender system associated with a relational data-model. Execu-

tion in the IoT-CANE uses transactional procedures and applies SQL-based relational

semantics for different IoT resource configurations operations, such as querying, insert-

ing and deleting. Also, the IoT recommender system is designed to facilitate increased

acquisition of knowledge.

The key contributions of this chapter are as follows:

• We propose a unified conceptual model which captures the resource configura-

tions in IoT environments. The model incorporates various available infrastruc-

ture features for IoT devices, Edge and Cloud.

• We design a support recommender system for the recommendation of resource

configuration in IoT using SQL-based relational semantics and procedures.

• We develop an incremental method to facilitate the knowledge acquisition in IoT

resource configuration knowledge base.

• We design a service interface that converts simple context information captured

from users to optimal IoT resource configurations to map users’ requirements.

The rest of this chapter is organised as follows. Related work about resource configura-

tion management issues in IoT, IoT conceptual model and context-aware recommender

system is presented in Section 5.2. A detailed description of the conceptual model and

system architecture is presented in Section 5.3. Performed techniques and implementa-

tion of the proposed recommender system are presented in Section 3.4 and Section 3.5

respectively. Evaluation of a use case study is provided in Section 5.5 before the

conclusion and future work in Section 5.6.

- 54 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

3.2 Related Work

3.2.1 Multi-layer Resources Configuration Management Is-
sues in IoT

The recent trend in composing Cloud applications is driven by connecting heteroge-

neous services deployed across multiple datacenter [81]. Such a distributed deployment

aids in improving IoT application reliability and performance within Edge computing

environments. Ensuring high levels of dependability for such IoT data transformation

tasks composed by a multitude of systems is a considerable issue. Different frameworks

for describing and deploying Edge and Cloud resources are proposed in academia and

industry. Multiple Cloud providers such as CA AppLogic 2 and AWS OpsWorks 3 allow

description and deployment of complete Cloud application stack. They offer resource

representations that are specific to a particular provider only. In Edge computing,

Docker 4 provides deployment and configuration management solutions for Edge de-

vices based on container techniques. However, when it comes to IoT, in addition to the

Cloud and Edge layers, IoT resources configuration management should also consider

the physical devices which are deployed widely in most IoT applications. In IoT, all

resources from multiple layers need to be considered in a single application which leads

to much more complicated scenarios.

3.2.2 Conceptual Model in IoT

The Semantic Sensor Networks ontology presents a high-level conceptual model to de-

scribe physical devices, their capabilities and the associated properties in the semantic

sensor networks within the IoT area. Authors in [82], provide a description of IoT

application elements, and a data model, and also capture the relationships among

various data provider and descriptor cells. They also illustrate how their models can

be associated with each other and can be related to different domain knowledge. The

IoT-A project has also described services, entities and resources as basic concepts in

the IoT domain [83]. The entity in their model is the main core of interactions by

2https://support.ca.com/us/product-information/ca-applogic.html
3https://aws.amazon.com/opsworks/
4https://www.docker.com/

- 55 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

Table 3.1: Comparison of Related Work

Parameter
Related Work

IoT-CANE
[85] [82] [83] [84] [86] [87] [88]

IoT device conceptual model 3 3 3 3 7 7 7 3

EDC,CDC conceptual model 7 7 7 7 7 3 3 3

IoT ontology modelling 3 7 3 3 7 7 7 3

knowledge recommendation 7 7 7 7 3 3 3 3

incremental knowledge base 7 7 7 7 7 3 7 3

people and software agents. As they proposed, an IoT service reveals the function-

ality of a resource which is hosted on devices that offer physical access to the entity.

In [84], the authors present the design of a completed and lightweight semantic descrip-

tion model for knowledge representation in the IoT field. The widely applied rules in

knowledge engineering and ontology modelling are considered in their design. However,

their model only considers the physical world of the IoT domain and how to abstract

the physical devices. They do not consider Edge and Cloud components, which are

extremely important in unified knowledge representation of diverse IoT applications.

3.2.3 Context-aware Recommender Systems

The context notion has outstandingly matured from what it was proposed in [89].

Currently, there are different types of contextual information, which are mainly cate-

gorised into three different classes: physical context, user context, and appliance con-

text based on the adopted views e.g. user or application perspective. The meaning of

context depends on the area and structure of the considered application, which makes

it appropriate to provide a proper definition of the concept. Possible recommender

system interpretation for applications like e-commerce and different systems are pro-

vided in [90]. Location is a common contextual piece of information in recommender

systems, however, it does not represent the users’ geo-location all the time, e.g. for

the social tag-based joint filtering method given in the context of smart TV applica-

tions [86]. This is a context-aware approach where the information of both user and

device contexts are considered. In this case, the recommendations are calculated only

using users’ preferences and the recommendations are re-ranked appropriately. In [87],

the authors presented a framework to provide declarative context driven knowledge

- 56 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

resources

physical resources
Edge resources Cloud resources

actuators sensors

operating range deployment observed features of interest

compute network storage

service

Data Model::Main

Figure 3.1: The conceptual model of IoT resources

recommendations for federated Cloud resources configuration. In this framework, they

give a recommendation of configuration knowledge artefacts based on a given context.

However, these frameworks provide a context-driven recommendation in Cloud com-

puting while in our approach, context-aware recommendations are given in the IoT

area which is more complicated. In [88], the authors proposed an ontology-based in-

frastructure selection system based on the real-time QoS requirements and utilised

analytic hierarchy process method to facilitate multi-criteria decision-making. How-

ever, their infrastructure selection system is designed only for Cloud resources selection,

IoT resource selection is still a significant research problem. Such related work can be

summarised in the following comparison Table 3.1.

3.3 Conceptual Model and System Architecture

In this section, we present our conceptual infrastructure model for IoT, the IoT-CANE

system architecture.

3.3.1 Conceptual Model

An IoT framework can easily take advantage of various models which provide dif-

ferent concepts and abstractions for the components and their respective attributes.

The main concepts and abstractions underling the IoT infrastructure and describing

relationships are presented in this section. One main notion of our research is the

representation of unified knowledge for IoT resource configurations. A unified hierar-

- 57 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

chical representation data-model is presented using the entity-relationship modelling

(ER model), shown in Figure 4.1. The physical resources part of our model is designed

based on Semantic Sensor Network (SSN) Ontology 5. The Semantic Sensor Network

(SSN) ontology is an ontology which depicts various sensors and their observations,

the related procedures, the samples used to do so, the considered features of interest,

and the observed attributes, as well as actuators. The designing of SSN follows a

two-dimensional modularisation by implementing a lightweight but self-contained core

ontology called SOSA (Sensor, Observation, Sample, and Actuator) for its primary

classes and attributes. In SSN ontology, sensors and related concepts, are described

without domain concepts, e.g. time, locations, etc. In our conceptual model, we con-

sidered these domain concepts because our model is suited for some specific domains

and further OWL imports are not necessary for our conceptual model. Moreover,

Edge and Cloud resources are also considered to complete the conceptual infrastruc-

ture model for IoT as these resources are also configurable and describable.

In Fig. 4.1, the widget called resources in IoT conceptual infrastructure model con-

sists of three main entities, physical resources, Edge resources, and Cloud resources.

These three entities represent the abstraction of physical devices (e.g., sensors, ac-

tuators, etc.), Edge devices (e.g., gateways, routers, etc.) and Cloud infrastructure

(Datacenter) respectively. Next, we discuss these entities in detail.

• service: the service entity represents the domain information of IoT services,

each of them provides an organised and standardised interface that offers all the

necessary functionalities for interaction with resources and the related processes.

The services expose the functionality by accessing multiple resources. The service

entity consists of a service profile, service grounding and service model subclasses.

The type of service can be categorised as OWL-S, USDL, WSML, WADL, SOAP

and etc. Service profile describes the semantic description and textual informa-

tion of a service. Service grounding provides the attributes for service interaction

and access, such as endpoint address, input and output. Service model depicts

the operations and outcomes inside each service.

5https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

- 58 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

• resource: resource class is the high-level class of physical, Edge and Cloud. It

contains resources, name, type, access interface, description and etc. This class

provides a general description of IoT resources which expose IoT services.

• physical resource: physical resources class describes the attributes of sensors and

actuators in the conceptual model. Both actuator and sensor have their specific

type, location name, geolocation, latitude, longitude, availability and etc. The

type of sensors and actuators can be easily abstracted in three categories, phys-

ical (temperature sensor, locker), virtual (Facebook) and smart (smartphone,

smart camera). The smart here indicates the physical resource which has the

computational capacity so that it can be programmed.

• operating rage: operating range indicates the conditions in which a sensor/actuator

is expected to operate. It contains resolution, response time, measurement range,

precision, latency and accuracy.

• deployment : deployment class describes the deployment of a or several specific

sensor/actuator for a certain purpose. For instance, a motion sensor can be

deployed on the corner of a room.

• observed : observed indicates a sensor/actuator is observed in a particular method.

It consist of accuracy, observation, observed result, result time and sampling.

The observed class links sensor/actuator and feature of interest.

• feature of interest : the feature of interest describes the object which associate

with sensor/actuator and estimate observation. It has role, property and object

attributes. For example, when you measure the depth of a river, the depth is

the observed property, 50 meters may be the observation result and the river is

the feature of interest.

• Edge resource: Edge resource indicates the resources deploying in the Edge lever-

age computational capacity to improve latency, privacy and security. It contains

performance, location name, availability, edge resource type, attached IoT de-

vice, battery capacity, current battery and etc. Edge resource capture data from

sensor and send command to actuator.

- 59 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

• Cloud resource: Cloud resource describe the cloud infrastructure deploying in

a variety of cloud service providers. It consists of performance, location name,

geolocation, availability and connected edge devices. The type of cloud resource

can be virtual machine, container, virtual storage and etc. Both Edge resource

and Cloud resource have subclass as compute, network and storage.

• compute: it depicts the computational capacity of each Edge or Cloud resource.

Hypervisor, CPU number, CPU cores, RAM, operating system are the main

attributes of the compute class. In a IoT application, resource computational

capacity may influent the decision of resource configuration selection. For ex-

ample, if a user attempts to deploy a Hadoop cluster to process a large volume

data, a high performance virtual machine may be the better choice than a limited

computation raspberry pi.

• network : the network describes all the network connection between each two

entities, such as the communication between Edge and Cloud, the data trans-

formation from sensor to Edge, and etc. It contains response time, network

bandwidth, uplink bandwidth, downlink bandwidth, latency and etc. Network

configuration manages all the entity communication and data transformation

tasks which require the functionality of stability and fault-tolerance.

• storage: storage class providing the storage capacity of Edge and Cloud resource

consists of storage capability, storage type, storage bandwidth and etc.

All these attributes contain main functional configuration of every single Edge/Cloud

resource attached into a proposed IoT service. Based on these properties, the Edge/Cloud

node of an IoT application can be easily deployed.

To explain the conceptual infrastructure model clearly, we present a partial descrip-

tion of infrastructure components for a smart building scenario using the proposed

conceptual model.

As shown in Table 3.2, the sensor class contains five attributes – sensorType, loca-

tionName, latitude, longitude and availability – to describe resource type, geograph-

ical area and running time availability respectively; the actuator class contains five

- 60 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

Table 3.2: Partial infrastructure components description and instance of smart building
in IoT data model

Class Attribute Type Description
Instance in

Smart Building

resource

hasName String Name of the resource Smart temperature sensor

resourceType
Resource

type
Resource type, such as physical resource,

edge resource and cloud resource
Physical resource

accessInterface
Interface

type
Interface type, such as REST,

SOAP and XML-RPC
REST API

hasDescription String Description of the resource
Intelligently measure
the temperature of

the specific area
hasTag String Any tags of the resource Smart temperature

actuator

actuatorType
Actuator

type
Actuator type, such be physical (locker),
virtual (social media) and smart actuator

physical

locationName String
Geographical area in

which the resource is located
Newcastle

latitude Float Latitude of the actuator 54.9783 N
longitude Float Longitude of the actuator 1.6178 W

availability Boolean Actuator availability available

sensor

sensorType
Sensor
type

Sensor type, such as physical
(temperature), virtual (social media)

and smart sensor
physical

locationName String
Geographical area in

which the resource is located
Newcastle

latitude Float Latitude of the sensor 54.9783 N
longitude Float Longitude of the sensor 1.6178 W

availability Boolean Sensor availability available

operating
range

resolution String

The smallest difference in the value of
an observable property being observed

that would result in perceptible different
values of observation results

-

responseTime String
The time between a change in the

value of an observed sensor
1.8-60 seconds

measurement
Range

String
A set of values that the sensor can return

as the result of an observation
-55 to 150 C

precision String

As a sensor: the closeness of agreement
between replicated observations on an

unchanged or similar quality value;
As an actuator: the closeness of agreement

between replicated actuation of an
unchanged or similar command

0.36 C (max)

latency String
The time interval between a

command for an observation and
the sensor providing a result

500ms (max)

accuracy String

The closeness of agreement
between the result of observation

(command of an actuation)
and the true value of the observed

0.1 C

- 61 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

{temperature sensing;
Physical sensors;

SQL;
Edge node}

Context

Service category

contexts

Recommendation
rules

Configuration
Knowledge

Artifacts

Input Layer Processing Layer Output Layer

data source

Programming
model

Deployment
node

User
Level

System
Level

Admin
Level

Configuration
Knowledge

Representations

Rule Editor

Config Editor

Figure 3.2: The system architecture of IoT-CANE

attributes as well; the operating range class contains resolution, responseTime, mea-

surementRange, precision, latency and accuracy attributes; in each line, we presented

a short description to explain the meaning of attribute. Additionally, in the last col-

umn of the proposed table, we present an instance in smart building to illustrate each

attribute in detail. For example, we choose the Urban Science Building (USB) as a

smart building application. USB is a smart building located in Newcastle upon Tyne.

There are more than 4000 sensors throughout the building providing high resolution

data regarding environmental, mechanical and electrical performance. In USB, the

instance of the sensor can be a temperature sensor in the 3rd floor. Then the re-

source name is ’smart temperature sensor’, the accessInterface is ’RESTful API’, the

locationName is ’Newcastle USB’, availability is ’available’ in this case.

3.3.2 System Architecture

This context-aware recommendation system is intended to suggest CKAs to multiple

layers required by users during IoT resource configuration management processes (such

as IoT resource deployment and configuration parameter modification) in an automatic

way. CKA represents configuration knowledge artifact which is a set of configuration

details of a concrete service. As shown in Figure 3.2 Recommended suggestions are

- 62 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

generated based on the users’ context (e.g. service category, data source and pro-

gramming model). This context represents an individualised IoT data transformation

task or an IoT service requirement. All the necessary instructions and information re-

quired to satisfy the context description for resource configuration of Edge or Cloud is

included in recommended CKR. CKR represents configuration knowledge representa-

tion which consists various configurations storing in the database. Recommendations

can be derived using CKAs, e.g. bundled virtual appliances and runnable deployment

texts, using information from similar past contexts. Recommended CKAs can be ac-

cepted unchanged or modified according to users’ specific requirements. Instead, users

can generate a new CKA if they refuse the previous recommendation. After any new

CKA defined by the user, the recommender system converts those modifications into

recommendation rules and saves them to make them available for any future recom-

mendation. Meanwhile, recommended CKAs are input to a Docker deployment engine

to provide detailed configurations. The detailed discussion of IoT-CANE system will

be presented in section 3.5.

3.4 Recommendation System Technique

In the IoT-CANE, we adopted a rule-based recommendation method to generate

context-aware configuration recommendations. Meanwhile, Ripple Down Rules are

employed to facilitate knowledge acquisition in configuration knowledge base. De-

tailed techniques are discussed in the section given below.

3.4.1 Recommendation Rule

In IoT-CANE, an IoT resource configuration knowledge base (CKB) is maintained by

this recommender system that stores contextual information, CKRs and CKAs. The

configuration knowledge base is a database which stores all configuration knowledge.

An association is maintained between the items in the CKB by the recommendation

rules as shown in the Figure 3.3. Recommendations include two components, named

contexts and conclusions.

- 63 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

recommendation rules

context recommendation

service category data source deployment node programming model configuration knowledge representation

configuration knowledge artifact

Form the context of the rule Form the conclusion of the rule

Data Model::Main

Figure 3.3: ER diagram of recommendation rules

Contexts The left-hand side of the ER diagram contains the context information.

The recommender system maintains “contexts” data of the intended service category

(e.g. temperature sensing, motion sensing), data source (e.g., physical sensors, so-

cial media APIs), programming model (e.g. streaming process, batch process, SQL,

NoSQL) and deployment node (e.g. Edge node, Cloud node). The CKB is intended to

capture metadata and common information about classes having comparable applica-

tion and resource requirements. Shared context knowledge is allowed to be customised

and reused by IoT users. Contrarily, coordinating contexts with the CKRs can split

these representations on the bases of satisfying services effectively.

Conclusions The components that form the conclusion of the generated recommen-

dation rule is represented on the right-hand side of the ER diagram. CKR is suggested

by the generated recommendation rules. The CKR can be easily deployed by the user

using some specific configuration deployment engine, such as Docker. Sometimes,

users may be required to submit knowledge representations to particular deployment

engines and create some CKAs. For example, the recommender engine firstly gener-

ates an image using knowledge representation and then the user uploads the image

to Docker API for deploying the particular Edge or Cloud services. The deployed

resources configuration can be easily managed by users at any time.

3.4.2 Single Conclusion Ripple Down Rules

To model heterogeneous IoT resource configurations and to facilitate adequate reuse of

existing CKRs, we employ a commonly used knowledge acquisition and maintenance

- 64 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

DBs and GUI
initialization

frame

receive IoT
app data

initialize
context

information

receive
context data

SQL query
combination

send to rule
DB

SQL query
execution

initialize rule
editor

add new rule
in rule DB

set up
configuration

add new
configuration
in config DB

initialize DBs
and GUI

get rid result

formulate
configuration
SQL query

send to config
DB

get
configuration

result

display on
GUI

check
satisfaction

adopt
configuration

start
completion completionreceived

received

combinedsentexecuted

failure

completion added

completion

formulated

sent

completion

displayed

satisfied

dissatisfied completion

adopted

added

end

Figure 3.4: State transition diagram of IoT-CANE

approach, Ripple Down Rules [91]. The decision to choose RDR is because it enables

the re-usability of the existing CKRs and CKAs. It also enriches the CKB by simply

creating and attaching new rules to it. Many domains e.g. database cleansing, UI

artefact reuse, NLP, etc. have successfully implemented the RDR technique. Based

on our knowledge, RDR has not been adopted in the IoT resources configuration

representation field.

Single conclusion RDR, multiple classification RDR and collaborative RDR are the

common variations of RDR available [92]. The proposed IoT-CANE given in this

chapter utilises a single conclusion ripple down rules technique that considers only one

conclusion for given contextual information.

3.5 Design and Implementation

In this section, we present the implementation of system design, system workflow and

the recommendation rule tree of proposed IoT-CANE.

3.5.1 System Design

Figure 3.4 depicts a state transition diagram of IoT-CANE which includes various

states of IoT-CANE from start to end. Between every two states, a designed condition

- 65 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

must be accomplished before moving the system state from one to another towards

arrow direction.

In order to get the appropriate and accurate recommendations of resource configura-

tions, we employ the knowledge from our conceptual model to specify each property in

diverse IoT resources (physical resources, Edge resources and Cloud resources). Each

property will be set in detail in the config editor module of IoT-CANE based on ex-

perts’ experience to make sure these pieces of configurations are suitable. Also, these

configurations may be optimised depending on the feedback from users. Only the ad-

ministrator can operate the config DB and the rule DB in order to keep our databases

stable and consistent. Such operations can be adding rule combinations/CKRs; delet-

ing rule combinations/CKRs; modifying rule combinations/CKRs; changing associa-

tion between rules and CKRs. It also protects the user from various operations.

Because each resource configuration combines a large set of attributes, IoT-CANE

attempts to take over the massive number of choices associated with the attributes from

the users to compensate for their lack of knowledge. With the aim of avoiding confusion

for users, we design four context information categories (service category, data source,

programming model and deployment node) to abstract the resource configurations in

the IoT applications. The reason we choose these four context information categories

is discussed below:

• Service Category : this is the main context information the user needs to input.

For each IoT application, we abstract a list of services to indicate the currently

available services in the specific IoT application. Along with the increasing

number of services in the IoT application, the list will be updated based on both

experts’ experience and users’ feedback. The demand of edge/cloud resources

in diverse IoT applications are significantly different, that is why the choice of

service category influences the CKR much, also that is the reason we choose it

as the first context information category.

• Data Source: data source is the original ”place” the raw data comes from. These

places can be geographically distributed, and the raw data can be type non-

sensitive. For instance, in a smart building application, the same temperature

- 66 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

sensors deployed on different floors. These sensors can be considered as data

sources which deployed geographical distributed. A temperature sensor which

captures text data (temperature measurement), and a camera which captures

image data can be considered as a different type of raw data. For a different type

of data source and distributed data source, different CKRs will be recommended

for each situation.

• Programming Model : programming model is another important context infor-

mation. Widely used execution approaches include; stream process (e.g. Kafka

Streams), batch process (e.g. Hadoop), SQL (e.g. MySQL), NoSQL (e.g. Mon-

goDB). For each programming model, the recommended CKRs should be differ-

ent for some specific properties. For example, the streaming process may require

a higher rate of service availability and bigger bandwidth of network than batch

process, because streaming processes data on a rolling window.

• Deployment Node: deployment node depicts the physical or virtual node for

deployment. In IoT applications, such deployment nodes can be edge and cloud

in general. To be more specific, edge node includes gateway, raspberry pi, mobile

phone and etc.; cloud node includes private cloud, public cloud and various cloud

platform offered by cloud providers (Amazon EC2, Microsoft Azure, etc.). The

CKRs in edge node and cloud node are different. For example, the configuration

in gateway may include DNS and IPv4 address setting, but these configurations

are not available in Amazon EC2. Even the configurations between Amazon EC2

and Microsoft Azure are slightly different.

After capturing this context information, a relatively unique CKR can be recommended

from IoT-CANE to cover users’ requirement.

3.5.2 System Workflow

Next, we discuss the system workflow of IoT-CANE. Figure 3.5 shows the system work-

flow in a sequence diagram. First, the IoT-CANE graphic user interface (GUI) will

get the IoT application set from the rule database (rule DB) after initialisation. When

the GUI receives the set of IoT application and a specific IoT application is chosen,

- 67 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

GUI SQL query

setSQLquery()

rule DB config DB

updateConfigDB()

rule editor config
editor

generateNewconfig()

init()
getIoTappset()

IoTappset

getContextinfoset()

Contextinfoset

sendContextinfo()

setSQLquery()
sendSQLquery()

executeSQLquery()
senderrorinfo()

Ruleset

Ruleset
updateRuleDB()

sendSQLquery()

executeSQLquery()
senderrorinfo()

generateNewrule()

Configset

Configset

Figure 3.5: Sequence diagram of IoT-CANE

another get method will run in rule DB to get the context information set for updating

context options in GUI. Afterward, the user will specify a set of context information

including service category (sc), data source (ds), programming model (pm) and de-

ployment node (dn). This piece of the message then is sent to the SQL query module

to combine as a rule SQL query to run in the rule DB in order to index appropriate

rules. In the worst case, nothing useful return, meanwhile, an error message with pre-

viously specified context information set is sent to the rule editor module. After a new

rule set generated based on the given context information, it will be transferred to rule

DB to update the index. Next, a configuration SQL query is composed based on the

returned rule set in order to search relevant IoT resource configuration set. Another

error message including the chosen rule will be sent to config editor module in the

worst case as well. Then, a specific IoT resource configuration set associated with the

sent rule will be generated based on the administrator’s experience and expertise, also

the given context information. After generation, the config DB module will receive the

new resource configuration set and the update operation will run automatically. Then,

this result will display on the graphic user interface for further deployment. Also, the

user is attending to evaluate the return resource configuration set depending on their

- 68 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

opinions.

The request for resource configuration representation recommendation in IoT-CANE

is expressed as SQL queries. Next, we explain the basic steps which are executed for

resolving a resource configuration representation recommendation request.

• System combines user’s input context information to a temporary SQL query;

• The above temporary SQL query will be executed in the recommendation rule

database to produce a possible result;

• Based on the result from the rule database, map the result to configuration

representation database with rule number and show in the user interface;

• According to user satisfaction, new rule and configuration representation will be

updated in the respective database after the administrator’s operation.

A detailed example of the same scenario proposed in the first section will be explained

below. When the householder purchases a new smart camera to deploy an intrusion

detection service in his smart home application, he may feel confused on how to plug

in the new smart camera to the smart home application and what are the configura-

tions in each part of his smart home application. The problem here will be: which

device’s configuration will be changed and how to change them? The use can then use

our IoT-CANE and input necessary contextual information under software guidance.

In this case, he needs to choose ’IoT application’ as ’Smart Home’, ’Service Cate-

gory’ as ’Intrusion Detection’, ’Data Source’ as ’smart camera’, ’Programming Model’

as ’Streaming’ and ’Deployment Node’ as ’Gateway’ respectively. The system then

combines selected contextual information to a temporary SQL query along with SQL

statement execution in the configuration knowledge base. Ideally, if there is an existing

combination of selected contextual information in the CKB, the configuration knowl-

edge representation of an intrusion detection service deployed with the smart camera

on gateway will be displayed to the householder in the user interface. However, two

unexpected situations will impact the result of the system process. One is the house-

holder does not satisfied with provided CKR, which means the feedback from user is

- 69 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

Figure 3.6: Example of Configuration Knowledge Representation

”not satisfied”. This situation will be met in some factors, e.g., users have knowledge

with configuration knowledge representations, they know exactly what they need; users

can hardly deploy their application based on the provided CKR, which means the CKR

can not meet their requirement. Another situation is the temporary SQL query cannot

acquire the corresponding result. In this case, our knowledge representation database

cannot perform or acquire the particular CKR with given SQL query sentence because

this given context combination has no history rule and corresponding CKR. With these

two situations, the system will go to another layer to process the SQL request: the

administrator can add a piece of the new rule in the configuration knowledge base with

given contextual information in the rule editor module. Then he adds a corresponding

CKR with his expertise and experience in the config editor module. After updating the

CKB, the householder can review the returned resource configuration set formulated

in JSON format on the IoT-CANE GUI. The example CKR in this scenario is shown

in Figure 3.6 A set of deployment methods (e.g. Docker deployment) will be adopted

using the recommended CKR in the further deployment. Up to now then, a new smart

camera is discovered and added in the household’s proposed smart home application

with an intrusion detection service.

- 70 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

Rule A0
IF SC = (undefined)
AND DS = (undefined)
AND PM = (undefined)
AND DN = (undefined)
THEN KID = unknown

• SC = Service Category
• DS = Data Source
• PM = Programming Model
• DN = Deployment Node
• KID = Configuration Knowledge Representation ID

except

except

Rule A1
IF SC = “temperature sensing”
AND DS = “physical sensor”
AND PM = “SQL”
AND DN = “Edge node”
THEN KID = “A001”

Rule A2
IF SC = “temperature controlling”
AND DS = “temperature sensor”
AND PM = “SQL”
AND DN = “raspberry pi”
THEN KID = “B001”

If not

Rule A3
IF SC = “motion sensing”
AND DS = “physical sensor”
AND PM = “NoSQL”
AND DN = “Edge node”
THEN KID = “C001”

Rule A4
IF SC = “intrusion detection”
AND DS = “motion sensor”
AND PM = “NoSQL”
AND DN = “gateway”
THEN KID = “D001”

except

Rule A5
IF SC = “event detection”
AND DS = “social media”
AND PM = “Streaming”
AND DN = “Cloud node”
THEN KID = “E001”

If not

except
Rule A6
IF SC = “event detection”
AND DS = “twitter”
AND PM = “Streaming”
AND DN = “AWS EC2”
THEN KID = “F001”

Figure 3.7: Example of recommendation rule tree structure

3.5.3 Recommendation Rule Tree

In the IoT-CANE, a tree architecture is adopted to organise numbers of recommenda-

tion rules and make connections among them. Figure 3.7 depicts the tree representa-

tion of the recommendation rules in the CKB. Default conclusion named ”unknown” is

contained in Rule A0. This conclusion is suggested by the recommender system in the

case when there is no specified input context; meaning that the service category, data

source and other information is not provided in the input context. There are two possi-

bilities “if not” (false) branches and“except” (true) branches for CKB to choose. When

the IoT-CANE receives a new user context, the system passes the rule tree starting

from root to the branches by checking the node is ”except” or ”if not” comparing with

the recommendation rules. This step is repeated until there are no possible branches

in the recommendation rule tree. The final conclusion received from the last ”except”

node will be given to the user. A similar procedure is performed for each parameter

(such as service category, data source, programming model and deployment node).

Let us consider an example of administrator for the CKB that wants to model an

IoT resource configuration for a temperature controlling application as an Edge de-

ployment. We assuming that the CKB does not have this service definition in any

- 71 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

Table 3.3: IoT recommender model parameters

Notations Meaning
Query A configuration selection query
SC = {sc1,...,scn} Set of n service categories
DS = {ds1,...,dsm} Set of m data sources
PM = {pm1,...,pmo} Set of o programming models
DN = {dn1,...,dnp} Set of p deployment nodes
N Number of rows in the database
M Number of column in the database

available IoT applications. In this case, there is no Rule A2 for the recommendation

rule tree structure in Figure 3.7. A query is generated for CKB to find a CKR that is

related with service category “temperature sensing” and deployment node “Edge node”

(Rule A1). But there is no such expert rule available generating from Rule A1. Hence,

the administrator verifies the CKR linked with Rule A1 and confirms if this CKR is

satisfactory for deploying a temperature controlling application. If the administrator

updates the CKR, describing the required resource configuration for the temperature

controlling application, the administrator adds one expert Rule A2 beneath Rule A1

and refers to the modified CKR as the result of Rule A2.

Summarising, the proposed IoT-CANE allows users to focus on the specific infrastruc-

ture requirements from the applications meanwhile the framework prevents users from

any technical complexity of multiple IoT resource configuration solutions.

3.5.4 Computational Complexity

In this section, we discuss the computational complexity of the proposed system logic.

The model parameters are discussed in detail in Table 3.3. For the worst case, our

proposed system logic considers all the possible combinations (full CROSS JOIN). The

total number of options varies based on the number of rows in each table. For the

querying process, the upper bound complexity is given in equation (1):

Oquery(scn × dsm × pmo × dnp) (3.1)

However, the modern databases can use different techniques to reduce the computa-

tional complexity. For example, HASH JOIN and MERGE JOIN are widely used to

- 72 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

reduce the computational complexity. They are O(M +N) and O(N ∗Log(N) +M ∗

Log(M)) respectively.

3.6 User Evaluation

In this section, we present the experimental setup and user evaluation on our proposed

framework.

3.6.1 Experiment setup

We hosted the IoT-CANE on a local machine with 64bit Mac OS X operating system.

The machine has the following hardware configuration: Processor (2.4 GHz Intel Core

i5); Memory (8GB 1600 MHz DDR3); Graphics (Intel Iris 1536 MB); Storage (256 GB

SSD). We chose MySQL database to implement the knowledge database.

3.6.2 User Evaluation

In order to evaluate the IoT-CANE, we performed a use case study to investigate the

performance and acceptance of this system. Ten participants were invited to join the

experiment. All participants are PhD students working in the Cloud Computing and

Internet of Things area at Newcastle University. All of them had experience of deploy-

ment and configuration management in Cloud infrastructure and Edge devices. None

of them had experience of using a recommender system for IoT resource configuration

selection. The participants were asked to use the IoT-CANE under demonstration of

an administrator.

They did a questionnaire after application testing. We gave nine questions to evaluate

their experience and opinion of our IoT-CANE. The questions are listed below. Some

of the results are shown in Figure 3.8.

• How satisfied are you with this system’s ease of use?

• How often does our system freeze or crash?

• To what extent do you think that the recommendations are reasonable?

- 73 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

0 50 10050100

60%

100%

90%

80%

90%

0%

0%

10%

10%

20%

Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

I am satisfied with this system’s ease of use

I think that the recommendations are reasonable

I think that the recommender system can mostly cover my requirements

I think I can effectively complete my work by using this system

I think that the interface of this system is pleasant

Figure 3.8: User survey result

• To what extent does the recommender system cover your requirements?

• To what extent do you think you can effectively complete your work using this

system?

• Do you agree or disagree that the interface of this system is pleasant?

• How likely is it that you would recommend this software to a friend or group

member?

• Overall, how satisfied or dissatisfied are you with our recommendations?

• How can we improve our recommender system?

As shown in Figure 3.8, most of the participants were satisfied with the IoT rec-

ommender system in the following ways: ease of use; reasonable recommendations;

pleasant user interface etc. Based on their feedback, it can easily be concluded that

the conceptual model covers the majority of resource configuration knowledge in IoT

and the IoT-CANE can provide reasonable recommendations to IoT application users.

However, not all of the participants think so. The final question in the survey asked

the participants to give some suggestions to improve our IoT recommender system.

Their suggestions can be categorised as follows:

- 74 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

• They wanted new features, such as automatic deployment;

• They suggested that the user interface could be more descriptive and user friendly;

• They suggested that the IoT recommender system could provide multiple choices

of the configurations which can handle more scenarios.

Based on their suggestions, our IoT recommender system needs to be improved in

two ways: (1) to provide a new service which can convert JSON format configuration

files into Docker-readable configuration files, such as YAML format; (2) to provide an

automatic deployment service based on container techniques.

3.7 Conclusion and Future Work

In this chapter, a model to construct the unified CKR for IoT infrastructure is pre-

sented. The framework comprises a CKR model for IoT infrastructure; a support

recommender system for the recommendation of resource configuration in IoT; a ser-

vice interface that converts context information to IoT resource configuration. The

effectiveness of the proposed framework is evaluated using a proofed implementation

and a user study. In the future, we are going to improve the IoT-CANE with some

recommendation algorithms and also improve automatic deployment features in our

recommender system.

- 75 -

Chapter 3: IoT-CANE: A Unified Knowledge Management System for Data-Centric
Internet of Things Application Systems

- 76 -

4
IoTWC: Analytic Hierarchy

Process Based Internet of Things
Workflow Composition System

Contents
4.1 Introduction . 78

4.2 Related Work . 80

4.3 IoT Workflow Activity Abstract Pattern 81

4.4 IoTWC: AHP-based Model and Multi-level Composition Frame-
work . 82

4.4.1 IoT Analytic Hierarchy Process Based Model 83

4.4.2 Criteria Definition . 84

4.4.3 Multi-level Composition Framework 87

4.4.4 Computational Complexity Analysis 89

4.5 System Design and Implementation 90

4.5.1 System Architecture . 90

4.5.2 System Workflow . 91

4.5.3 System Implementation . 91

4.6 System Evaluation . 93

4.6.1 User Case Study . 93

4.6.2 Scenario Validation . 95

4.7 Conclusion and Future Work 98

- 77 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Summary

In this chapter, I present an IoT workflow composition system (IoTWC) to allow IoT

users to pipeline their workflows with proposed IoT workflow activity abstract patterns.

IoTWC leverages the analytic hierarchy process (AHP) to compose the multi-level IoT

workflow that satisfies the requirements of any IoT application. Moreover, the users are

befitted with recommended IoT workflow configurations using an AHP based multi-

level composition framework. The proposed IoTWC is validated on a user case study

to evaluate the coverage of IoT workflow activity abstract patterns and a real-world

scenario for smart buildings. The comprehensive analysis shows the effectiveness of

IoTWC in terms of IoT workflow abstraction and composition.

4.1 Introduction

The Internet of Things (IoT) has become an important component of leading software

development and an integral part of our daily life. IoT is visible in many diverse com-

munities such as smart buildings, smart agriculture, and smart industry [93]. With

increasing demand and domain diversity, IoT applications become more complex in

design, development, and deployment due to their multi-party Cloud/Edge/IoT re-

source makeup and the service level of agreement (SLA) requirements of their inter-

connections [94].

IoT applications can be modelled as a directed acyclic graph (DAG) with data trans-

formation tasks as its nodes and data flow dependencies (or control flow dependencies)

as its vertices. To be most useful in a modelling sense, we need an IoT workflow pat-

tern that can be general enough to define any IoT application. Representing a generic

IoT workflow pattern is intricate because of the heterogeneity of IoT infrastructure

(IoT device, Edge device, and Cloud), coupled with application dependency on infras-

tructure and variability of data.

To narrow the accuracy of our modelling approach we provide a mechanism that

converts the abstract workflow patterns into specific application workflow instances

(see Figure4.1) (e.g., a Smart Home based on different QoS requirements such as IoT

- 78 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

1

3

2

5 64

7 8

IoT Workflow Abstraction

AHP based multi-level
composition framework

1

3

2

5 64

7 8

IoT Workflow Instances

Figure 4.1: IoT Workflow Abstractions and Instances Mapping

device mobility, data privacy, and latency).

Identifying a set of reasonable IoT workflow activity patterns (provisioning an ab-

straction understandable to the engineer yet maintaining its usefulness for composition

purposes), which covers IoT data transformation tasks and workflow activities, is the

primary challenge in IoT workflow representation and composition. The aforemen-

tioned research challenges can be summarised to the following research questions:

• What are the abstract IoT patterns required to create generalised IoT applica-

tions across any domain?

• How to convert IoT workflow abstractions into IoT workflow instances specific

for an IoT application based on the heterogeneous QoS requirements?

Traditional composition engines such as BPMN (Business Process Model and Nota-

tion) are specific only for business processes [95]. Workflow composition frameworks

from academia [96–99] and industry (Calvin[30], Kubernetes [100], Amazon cloudFor-

mation [101]) are also available but all of them are specific to a certain infrastructure

or domain. Addressing IoT application users’ subjective and objective opinions with

abstract understanding of IoT workflow instances remains a challenge for a more holis-

tic (cross-domain) approach. None of the existing frameworks are able to perform a

generic IoT application composition.

- 79 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

To address the above challenges, we proposed and developed a novel composition

framework, IoTWC (IoT Workflow Composition System). Based on an extensive lit-

erature study and interviewing multiple people (domain experts/users), we provide

basic activity patterns that are abstracted within IoTWC. IoTWC leverages the an-

alytic hierarchy process (AHP) [102] to compose the multi-level IoT workflow that

satisfy the requirements of any IoT application. The proposed IoTWC is validated on

a user case study to evaluate the coverage of IoT workflow activity abstract patterns

and a real-world scenario for smart buildings which show the effectiveness of IoTWC

in terms of IoT workflow abstraction and composition.

The rest of this chapter is organised as follows. Section 5.2 discuss the related work.

A detailed discussion about IoT workflow activity abstract patterns are presented in

Section 4.3. Section 5.3 describes the IoT AHP model and multi-level composition

framework in IoTWC while system design and implementation is discussed in Sec-

tion 4.5. Section 5.5 presents the system evaluation with a user case study and a real

world scenario validation followed by conclusion in Section 5.6.

4.2 Related Work

Application specification and composition is well-studied problem for general purpose

applications. BPMN (Business Process Model and Notation) is a graph-oriented spec-

ification language representing business processes. As an implementation of BPMN for

the web service domain, WS-BPEL (Web Services Business Process Execution Lan-

guage) is an XML-based specification language that leverages web services to interact

with each other in any web-based business approach. Glombitza [103] uses the BPEL

for IoT application modelling to realise business processes. Domingos [104] defines

IoT-aware business processes with the BPEL language to avoid increases in process

complexity. XPDL (XMP Process Definition Language) is standardised by the Work-

flow Management Coalition (WfMC) to interchange the graphical business process

workflow models to an XML-based model. Although these business workflow mod-

elling approaches can present the flow of information, they do not model the specific

data transformation tasks in IoT which are key to a successful IoT deployment and

- 80 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

requires managing the correct configuration of devices and their usages.

Chen [105] proposed a RESTful web service to encapsulate heterogeneous IoT devices,

in order to manage and compose IoT services for social network deployments. Urbi-

eta [106] presented a context-aware web service description language based on adaptive

service composition frameworks to support dynamic reasoning in IoT-based smart city

applications. Chen [107] proposed trust management to support service composition

applications in service-oriented architecture based IoT systems. Baker [108] developed

a multi-cloud IoT service composition algorithm to create an energy-aware composi-

tion plan to fulfil user requirements. These works have addressed many IoT workflow

and service composition research problems in a variety of application domains. How-

ever, there is no general approach to abstract the IoT workflow composition problems

that can be useful across multiple IoT domains.

Many industry sectors also propose composition frameworks for supporting IoT appli-

cation deployment. Da [28] applied TOSCA (Topology and Orchestration Specification

for Cloud Application) in IoT to automate the deployment process of IoT applications

based on the mosquito message broker. Persson [30] modelled IoT applications using

four well-defined aspects: describe, connect, deploy and manage. This eased IoT appli-

cation development and deployment processes for engineers. [100], 1 provided open-

source approaches to benefit the design and deployment of IoT application workflows.

However, these frameworks are designed for expert users having detailed background

knowledge. This is not suitable for general users having little technical knowledge.

Additionally, these frameworks do not focus on data transformation aspects of the IoT

workflow composition process.

4.3 IoT Workflow Activity Abstract Pattern

Due to the heterogeneity of IoT applications, including their supporting Cloud/Edge

data processing tasks, the traditional approach of presenting IoT workflow activities

as a set of abstract patterns is difficult. Representation of IoT applications as a

directed acyclic graph (DAG) simplifies this process by modelling each node as an IoT

1https://aws.amazon.com/cloudformation/

- 81 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Sensor1

Data
capture

Edge1

Data
aggregate Edge2

Data
filter

Data
inference

Data
visualization

Sensor2

Sensor3
Edge3

Data
translate

Edge4

Data
aggregate

Things
connect

Edge to
Edge

Edge to
Edge

Cloud1
Edge to
Cloud

Cloud2

Data
inference

Cloud to
Cloud

Cloud3

Data
store

Edge5

Edge6

Cloud to
Edge

Actuation

: Data transformation activity patterns

: Abstract connection patterns

Figure 4.2: Example IoT workflow with abstract patterns

data transformation task. Thus, data is considered as a meta component in an IoT

application. Considering a typical IoT application, the fundamental process consists of

gathering and dissemination of data (e.g., capturing raw data from temperature sensors

and storing this processed data into the database). In this typical example, we abstract

IoT workflow activities as the following data transformation patterns: Data Capture,

Data Store, Data Inference, Data Filter, Data Aggregate, Data Visualisation, Data

Translate, and Actuation. Furthermore, we also consider the main abstract connection

patterns in IoT: Things Connect and Data Transfer that consist of four sub-categories

(Edge to Edge, Edge to Cloud, Cloud to Edge and Cloud to Cloud) in terms of sender

and receiver of data. An example IoT workflow with proposed abstract patterns is

shown in Figure 4.2.

After comprehensive literature reviews and interviews with IoT domain experts, we

believe that our proposed IoT workflow activity abstract patterns cover the majority

of the IoT data transformation tasks and associated data flows together with control

flow requirements across multiple domains. The detailed evaluation will be discussed

in section 5.5.

4.4 IoTWC: AHP-based Model and Multi-level Com-

position Framework

In this section, we describe the IoT AHP model and multi-level composition framework.

- 82 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

4.4.1 IoT Analytic Hierarchy Process Based Model

The complexity of IoT applications and their QoS requirements bring huge challenges

for converting IoT workflow abstractions into IoT workflow instances. The fundamen-

tal aspect of this problem can be formalised as a Cloud/Edge resource Configuration

Knowledge Representation (CKR) selection task. This selection task can be translated

into a multi-criteria decision analysis problem with multiple alternative choices.

Analytic Hierarchy Process (AHP)[102] is an effective method for solving complicated

multi-criteria decision making problems. In addition, AHP encourages decision makers

to prioritise and identify how and when an appropriate decision is considered. The

AHP can capture not only subjective, but also objective aspects of a decision by

decreasing complicated decisions to a list of pairwise comparisons and then merge the

results. Moreover, AHP adopts a technique to evaluate the consistency of the decision

made by decision makers, resulting in the lowering of bias in the overall process under

consideration.

In the AHP algorithm, a set of evaluation criteria and alternative choices need to be

considered and identified by users. In addition, users also need to specify a weight be-

tween each two of the evaluation criteria based on their pairwise comparisons. Next,

it will assign a score to each alternative choice based on users’ pairwise comparisons.

Finally, the algorithm will combine the criteria weights and the choice scores to gen-

erate a global ranking for alternatives. The ranking represents the sequence of each

choice.

Figure4.3 illustrates the hierarchical representation of the CKR selection problem.

Here, CKR selection is the primary goal and is based on three main criteria: Resource

Cost, Resource QoS, Data. For each criterion, there is a set of sub-criteria prescribed

(e.g., Hardware Cost, Hosting Cost and Network Cost are sub-criteria for Resource

Cost; Reliability, Mobility, Heterogeneity, Scalability, Capability and Resource Avail-

ability are sub-criteria of Resource QoS). Based on our selection goal, we have a list of

alternative choices among edge and cloud resources, such as CKR1 (high-performance

edge resource, Raspberry Pi 4 model), CKR2 (low-performance edge resource, Rasp-

berry Pi Zero model), CKR3 (high-performance cloud resource, AWS EC2 t2.xlarge)

- 83 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Cloud ResourceEdge Resource

CKR selection

Resource Cost Resource QoS Data

Data
Availability

Data
Replication

Data
Freshness

CKR1 CKR2 CKR3 CKR4… … … …

Data Privacy

LongTerm
Storage

Data Integrity

Latency

Reliability Mobility

Heterogeneity Scalability

Capability Resource
Availability

Hardware Cost

Hosting Cost

Network Cost

Figure 4.3: CKR Selection Hierarchy

and CKR4 (low-performance cloud resource, AWS EC2 t2.micro). When the IoT AHP

model is enacted, IoTWC ranks all alternatives based on criteria weights between each

two of the evaluation criteria. Users can retrieve the score and ranking, and the deci-

sion of CKR selection.

4.4.2 Criteria Definition

In this section, we discuss our criteria in more detail.

4.4.2.1 Resource Cost

Resource cost represents all financial commitments in the IoT application life cycle,

like hardware, hosting, and network costs.

• Hardware Cost : Hardware cost includes all costs associated with hardware pur-

chasing, such as IoT devices (e.g., sensor), computational devices (e.g., Rasp-

berry Pi) and network devices (e.g., router) [109]. For each workflow activity,

hardware costs depend on which resource is targeted. For example, users who

plan to deploy their workflow activity in Edge resources may need to pay for

Edge devices, such as a Raspberry pi; in contrast, workflow tasks located in

Cloud resources can save this cost in hardware comparatively.

- 84 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

• Hosting Cost : Hosting cost represents the cost of provisioning the IoT application

on hardware/software services enabling them available for use [109]. For Edge re-

sources, hosting cost primarily include the maintenance cost, such as power con-

sumption cost. Meanwhile, hosting cost in Cloud includes maintenance in various

enabling services such as compute, storage, database, and network. Therefore,

we consider a workflow activity deployed in Edge will be cheaper than Cloud in

terms of hosting.

• Network Cost : Network Cost relates to the money spent on managing the net-

working and resource connections in Cloud and Edge applications [110]. For

Cloud resources, the cloud providers offer networking services, like virtual net-

works, load balancing, application gateways, network monitoring infrastructures,

and traffic managers. At the Edge, network cost mainly represents the bandwidth

paid for. A major difference is that in Cloud based services such costs are paid

on a pay-for-use basis where as in Edge scenarios pre-pay for services in advance

is utilised.

4.4.2.2 Resource QoS

Resource QoS refers to the quality of service that both Edge and Cloud resources can

provide. It consists of reliability, mobility, heterogeneity, scalability, capability and

resource availability.

• Reliability : The probability that a service or a system can perform without

any failures within a time interval is considered as reliable [111]. In workflow

activity deployment scenarios, reliability also represents the high availability of

Cloud and Edge resources. Cloud resources can provide full-stack solutions and

comprehensive trouble-shooting and debugging services (increasing costs).

• Mobility : Mobility refers to the ability to migrate and transfer data, services and

applications across Edge devices and Cloud servers [112]. Mobility also represents

the ability for physical movement of Edge devices and Cloud datacenters.

• Heterogeneity : Heterogeneity represents the difference of hardware, software, in-

frastructures, architectures and technologies of both Cloud and Edge resources [113].

- 85 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Numerous cloud providers offer services with different technologies and infras-

tructures. Many IoT device manufacturers together with their propriety solu-

tions result in the Edge infrastructures that are highly heterogeneous.

• Scalability : Scalability is provided in two dimensions: Horizontal and Verti-

cal [114]. Horizontal scalability indicates the ability to increase the same type of

resources to satisfy load. For example, increasing the number of virtual machines

and containers is a type of horizontal scalability. Vertical scalability indicates

increasing the capability of an existing service, such as increasing CPU, memory

and bandwidth of a virtual machine.

• Capability : Capability represents the ability to achieve a requirement [115]. Ca-

pability indicates the ability to integrate Edge or Cloud resources and the tech-

nologies to align with the users’ strategic requirements.

• Resource Availability : The percentage of time that a user can access and operate

a specific service is considered as resource availability [116]. Additionally, we can

calculate the resource availability percentage by using total service time minus

the time for which service is not available, then divided by total service time.

4.4.2.3 Data

Data indicates all data related criteria considered in our proposed model that affects

the decision making, such as data privacy, data availability, long-term storage, data

replication, data integrity, data freshness, and latency.

• Data Privacy : Privacy indicates the access control of data maintained by devices

and services [117]. They need to remain in charge of their data in spite of third

party data.

• Data Availability : Availability represents the ability to ensure data can be ac-

cessed when required [118]. In both Edge and Cloud resources, users expect to

have complete access to their data at all times.

• LongTerm Storage: LongTerm storage describes the data that will be stored for

a long period, usually in the data centre [119]. In the Cloud, the providers offer

- 86 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

various data storage services helping users to store data safely and continuously.

For Edge devices, they may have their own storage for temporary data storage.

• Data Replication: Data replication provides the ability to store data in more

than one database or network node [120]. This promotes data availability and

reduces risks of data loss and, ultimately, failure.

• Data Integrity : Data integrity represents the accuracy, validity, and consistency

of data over the whole life-cycle [118].

• Data Freshness : Data freshness indicates the recent nature of data in terms of

generation and collection [121]. This helps reduce out-of-order date messaging.

In IoT, freshness is a serious concern when dealing with in-stream analysis and

management.

• Latency : Latency indicates the delay to message response time and the time for

data transformation tasks [122]. Latency is influenced by the following factors:

geographical location, bandwidth, computational power. For Cloud resources,

higher bandwidth along with increased computational power can be employed to

minimise latency. However, cloud data centers are always located in a specific

geographic location which may be far from users’ server (indicating there is little

to be done regarding this aspect of latency). However, the geographic positioning

of Edge devices can have a significant impact on latency (but they have limited

ability to alter bandwidth or processing capabilities).

4.4.3 Multi-level Composition Framework

The composition framework of IoTWC works in twofold manner. It first applies AHP-

based algorithm to combine both subjective and objective criteria functions for the

selection of CKR and then take into account the financial budget to build an IoT

application platform.

For the application of AHP-based algorithm, user need to provide the preference of

various criteria (see Section 4.4.2). Consider there are L number of levels in the

hierarchical representation of the problem and R is the set of criteria. The preference

- 87 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Algorithm 1: Multi-level Composition
Input: Prefkl – preference of kth criteria over lth criteria, R – all criterion defined in AHP

model, rij – set of i criteria in first level and j sub-criteria, V alrijon – value for rij
criteria and on option, σt – a ranking list for tth instance, θt – best ranking for tth
instance, B – budget, Cu – cost of uth instance, Csum – sum of instance cost

Output: CKR – list of CKRs
1 construct Mkl using Prefkl
2 if (!Consistent(M)) then
3 Notify user to enter new values
4 return -1

5 else
6 W = normalise (principle eigen vector (M))
7 end
8 for each rij ∈ R do
9 multiple W and V al(RO) to get σO

10 select best ranking θt from σO for each instance
11 CKR = sum of θt selection result

12 end
13 Csum =

∑u
1 Cu

14 if Csum > B then
15 select second best ranking of σt for each instance
16 else
17 return CKR
18 end

of criteria k with respect to l, Prefkl is provided following the Saaty scale as shown

in table 4.2. Next, a comparison matrixMs is constructed from the user’s preferences

following the rule given in equation 4.1.

Ms =

1, when k = l

P refkl, when k > l

1/Mkl, when k < l

} (4.1)

Since the user enter value may not be consistent, it is important to check the consis-

tency of each comparison matrix M constructed using the user’s preference values.

If the comparison matrix is found inconsistent, user is notified to enter new values,

otherwise, the weights are calculated. The weights wk ∈ W for criteria k is calculated

by normalizing the principle eigen vector of the respective matrix M. Finally the

rank vector σO of option O is calculated by multiplying the weight vector W with the

normalized option values V al(RO). This process is repeated for each instance t which

can be later combined in the next step to select one complete application instance.

In the second level composition, we will calculate each IoT workflow activity cost

based on the recommended configurations. For example, the budget column will show

- 88 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Table 4.1: IoT AHP model parameters

Notations Description
L Level of criteria in AHP
R = {r11...rij} set of criteria
Pref = {Pref11...P refkl} set of preference of kth criteria over lth criteria
M = {M1...Ms} set of s comparison matrix
O = {o1...on} set of n options in AHP
V al(RO) = {V alr11o1 ...V alrijon} set of value for each criteria and options
W = {w1...wq} set of weight for q criteria
σO ranking list for option O
θt best ranking for tth instance
B budget for IoT application
C = {c1...cu} set of u instance cost
Csum sum of instance cost
CKR list of CKRs

Table 4.2: Relative Importance Value

Importance Value
Equal important 1
Moderate important 3
Strong important 5
Demonstrated important 7
Extreme important 9
Intermediate 2,4,6,8

the cost when deploying such Edge/Cloud resources for a given period. IoTWC will

compare the sum of the IoT workflow activity cost Csum together with the user rec-

ommended budget B to determine which composed IoT workflow is acceptable. If the

sum is over budget, the system will first display the cost result and recommend one

or more CKRs. Therefore, IoTWC can perform multi-level compositions to make ap-

propriate decisions under a certain budget and so better reflect a real-world scenario

of deployment. The pseudo code of this multi-level composition algorithm is shown in

Algo 1.

4.4.4 Computational Complexity Analysis

The AHP based IoT workflow composition problem appears complex due to the compu-

tational cost of the multi-level composition framework. The computational complexity

of our approach is described in equation 4.2:

- 89 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

O(u× n× (i× j3 + i3)) (4.2)

In this equation, u represents number of instance in an IoT application, n is the number

of options in each instance, i × j3 and i3 indicates the complexity of calculating the

weight vector for all criteria. However, in our case, i, j, u are concrete number based on

given IoT application. Therefore, the final computational complexity can be simplified

to O(n × i × j3). Based on the given O, we can expect IoTWC’s complexity to be

proportional to n, i and j.

4.5 System Design and Implementation

This section describes the architecture, workflow, and implementation of IoTWC.

4.5.1 System Architecture

Figure 4.4 shows the architecture of IoTWC. IoTWC is developed as a Web applica-

tion. The system allows a user to pipeline their IoT application workflow with IoT

workflow activities and abstract patterns, along with their specific IoT application

requirements for each activity. More specifically, users can easily drag and drop the

desired IoT workflow activity from the provided IoT abstraction patterns. The in-

put criteria weights for each section are selected in the similar manner. IoTWC will

compose a user’s IoT workflow activities together with the recommended configura-

tions. Information entered by users relating to patterns, weights and configurations

are stored in an incremental knowledge base to be recalled when required.

The incremental knowledge base is maintained by a well-established system, IoT-

CANE 3, which facilitates knowledge acquisition and maintenance. In this system, an

incremental method is used to automate a configuration knowledge artefact suggestion

based on user requirements within IoT resource configuration management. These rec-

ommended suggestions are generated based on users’ context information and domain

expert edits and modifications. Details of IoT-CANE can be found in Chapter 3. Fi-

nally, a composed IoT workflow coupled with configurations will be returned to users

via the web interface.

- 90 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

User

Composition Module

Pipeline Module
U

se
r I

nt
er

fa
ce

Knowledge Base

JavaScript FrameworkQoS
Requirement

Capturing

Abstractions
Connection

Multi-level
Composition

Instances
mapping

IoTWC

IoT-CANE

Figure 4.4: Schematic Design of IoTWC System

4.5.2 System Workflow

Fig. 4.5 shows the workflow of IoTWC. First, a user is required to input the necessary

information through the web interface (step1), such as IoT workflow activities and their

associated relationships. IoTWC then initialises by retrieving the appropriate abstract

patterns associated with user input (step2). The user input IoT workflow activities

are then sent to a javascript based pipeline module (step3) to allow the proposed IoT

workflow pipeline to be displayed via the web interface (steps 4 and 5). The user

will then specify the criteria weights for each proposed IoT workflow activity (step 6),

e.g., weight between Resource Cost and Resource QoS. Once weightings are complete

all information is sent to the composition module to allow IoT workflow configuration

composition. In this module, an SQL query is constructed from IoT workflow activities

(step 7) and their criteria weights suitable for the incremental knowledge base of IoT-

CANE (step 8), allowing recommended configurations to be produced (steps 9 and

10). Finally, the recommended configurations are composed into a JSON format file

which will be displayed in the web interface (steps 11 and 12).

4.5.3 System Implementation

The IoT workflow composition system is implemented and programmed in the Java

programming language using the Spring framework 5.0 2The UI (user interface) is

2https://spring.io/

- 91 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Figure 4.5: IoTWC System Sequence Diagram

created in HTML5, CSS, and JavaScript to ensure ”easy to use” website design princi-

ples. Our system is designed to help users to pipeline their IoT application workflow

into the desired configuration. In addition, this also benefits mapping users’ abstract

IoT application requirements to real IoT activity instances by applying the AHP based

multi-level composition framework. Two main modules (JavaScript (JS) based pipeline

module and AHP based composition module) used in our system are now described.

JS based pipeline module. IoTWC allow users to drag and drop IoT workflow activ-

ity abstract patterns to position them as required with the aid of the JS-based pipeline

module. This module is implemented with GoJS 3,a JS library for building interactive

diagrams and graphs. We present a set of IoT workflow activity abstract patterns as

reusable components in the system. These components can be freely dragged from

the left side of the interface and dropped on the blank workspace on the right side.

Links can be built between each IoT workflow activity via mouse clicks, representing

connections between Cloud and Edge resources.

AHP based composition module. When the planned IoT workflow activity is

clicked by a user, a list of criteria indicating available pairwise comparisons are shown.

3https://gojs.net/latest/index.html

- 92 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

0 50 10050100

80%

100%

80%

80%

90%

10%

0%

20%

0%

10%

Percentage

Response Strongly
Disagree

Disagree Neutral Agree Strongly Agree

I am satisfied with this system’s ease of use

I think that the abstract patterns are reasonable

I think that the workflow composition system can mostly cover my requirements

I think I can effectively complete my work by using this system

I think that the interface of this system is pleasant

Figure 4.6: User Case Study Result

In the composition module, these pairwise comparisons capture the subjective and ob-

jective opinions from users to execute decisions by applying the IoT AHP algorithm.

The composition module will calculate the ranking for the alternatives based on user

supplied criteria weightings, then compose the appropriate SQL query to retrieve rec-

ommended configurations from the knowledge base (IoT-CANE). A Java library is used

for vector calculations and score generation. Our implementation provides a simple

and easy way for novice users to use IoTWC to display the composed results.

4.6 System Evaluation

This section describes the user case study and real world validation of our proposed

IoTWC system.

4.6.1 User Case Study

This sub-section describes the experimental setup and user evaluation from our user

case study.

- 93 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

4.6.1.1 Experiment Setup

As IoTWC is implemented in Java it can be composed into a JAR file to execute

over a variety of environments, such as Windows, Linux, and MacOS. In this scenario,

we host our workflow composition system on a MacBook Pro with MacOS operating

system. The machine has the following hardware configuration: 1.4GHz Quad-Core

Intel Core I5 processor, 16GB memory, Intel Iris Plus 1536MB Graphics and 512GB

SSD storage. We run our tool using Visual Studio build environment Code4 with Java

and Spring Boot extensions. We use a MySQL5 database as our data management

tool. IoTWC is an open-source system and the current version of code is available on

github6.

4.6.1.2 User Evaluation

In order to evaluate IoTWC, we perform a use case study to ascertain acceptance and

performance. We invited twelve participants, who are current Ph.D. or Masters stu-

dents studying Cloud Computing and/or Internet of Things at Newcastle University.

All of these participants have experience and knowledge in Cloud and Edge resource

management and deployment. They do not have experience in IoT workflow compo-

sition.

After using IoTWC, the participants were asked to complete a questionnaire. Nine

questions are used to investigate users’ opinions regarding their experiences of IoTWC,

listed below.

• How satisfied are you with this system’s ease of use?

• How often does the system freeze or crash?

• To what extent do you think that the abstract patterns are reasonable?

• To what extent do the abstract patterns cover your requirements to pipeline IoT

workflow?

4https://code.visualstudio.com/
5https://www.mysql.com/
6https://github.com/frankleesd/iot workflow composer

- 94 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

• To what extent do you think you can effectively complete your composition work

using this system?

• Do you agree or disagree that the interface of this system is pleasant?

• How likely is it that you would recommend this software to a friend or group

member?

• Overall, how satisfied or dissatisfied are you with the workflow composition sys-

tem?

• How can we improve our IoT workflow composition system?

We chose five questions to show in Figure 4.6. As shown in this figure, most of the

users were satisfied with IoTWC in areas such as reasonable abstract patterns, and

pleasant user interface. According to the feedback, we can summarise that the IoT

workflow activity abstract patterns can cover the majority of IoT workflow composition

requirements. However, not all of the participants were fully satisfied. Based on

the feedback, we can improve IoTWC in the coverage of some alternatives and other

criteria.

4.6.2 Scenario Validation

This sub-section will validate the effectiveness of the proposed IoTWC using a real

world smart building IoT application scenario highlighting the typical usage in an

industry style project setting.

4.6.2.1 Scenario Description

In a real world smart build scenario, a user plans to deploy a smart IoT application

that can capture relevant data from different room sensors to provide the status of the

building. Basic sensors can provide temperature level, humidity level, and CO2 level

while more advanced sensors can provide images and other useful information. This

smart building IoT application workflow is represented in Figure 4.7. In this applica-

tion, a user wishes to capture CCTV and a variety of other sensor data from rooms

- 95 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

CCTV

Sensors

Data
capture

Data
capture

Raw
data

Data
aggregate

Extracted
info

Data
filter

Abnormal
detection/Rem
ove noisy data

Data
filter

(temperature sensors)
(Humidity sensors)
(CO2 sensors)
……

Mean value of
each metric for

every room

Data
inference

Top 5 rooms
of each
metric

Max value of
each metric

Data
inference

Data
inference

Visualisation
of results

Data
visualization

Figure 4.7: Smart building scenario workflow

Figure 4.8: IoTWC running interface and pipelined workflow

while including novel data management/filtering possibilities utilising Edge devices,

like a Raspberry Pi. This allows the extraction of raw data into different useful data

sets, such as temperature data set, humidity data set and CO2 data set. Abnormal

detection and noisy data removal is performed before data inference. In this case, the

user plans to calculate the top 5 rooms of each metric and the associated max value

of each metric, together with provisioning visualisation of the results.

4.6.2.2 Scenario Validation

First, the user can pipeline the smart building application workflow in IoTWC with

given abstract patterns. The pipelined workflow is shown in Figure 4.8

When this smart building workflow pipeline is assessed by IoTWC, the user specifies

a set of criteria weights in each IoT workflow activity which allows to capture a user’s

subjective and objective opinion according to his/her requirements. In addition, the

- 96 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

Figure 4.9: Configuration Knowledge Representation Example

user needs to specify a budget for the smart building application. For example, in

Raw Data Aggregation workflow activity, a user needs to specify a comparison weights

between Resource Cost, Resource QoS, and Data. When these weight information is

typed in, a comparison matrix is generated as follow:

CKRSelec =

RCost RQoS Data

RCost 1 7 9

RQoS 1/7 1 3

Data 1/9 1/3 1

The computation of this comparison matrix can give a ranking for Resource Cost,

Resource QoS, and Data.

Additionally, each criteria has some sub-criteria for decision making. For example, a

comparison matrix for Hardware, Hosting, and Network Costs is generated as follow:

RCost =

CHardware CHosting CNetwork

CHardware 1 1/3 9

CHosting 3 1 5

CNetwork 1/9 1/5 1

These two comparison matrix are generated based on the information provided by the

users. In the meantime, the comparison matrix between criteria and alternatives are

- 97 -

Chapter 4: IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow
Composition System

defined and composed by domain experts. For example, considering scalability sub-

criteria under resource QoS, Cloud resource may get more weight than Edge resource

due to the scalability and services offered by cloud providers. The comparison matrix

is shown below:

Scalability =

Cloud1 Cloud2 Edge1 Edge2

Cloud1 1 1 9 9

Cloud2 1 1 9 9

Edge1 1/9 1/9 1 1

Edge2 1/9 1/9 1 1

Other comparison matrix are constructed in the similar manner. As a result of AHP

execution, a list of best ranking for each instance are calculated by previous pro-

cesses. Once the ’execute’ button is clicked the IoT AHP algorithm starts querying

the knowledge base to gain a set of appropriate configuration knowledge representa-

tions for each IoT workflow activity. The results are displayed to the user for further

consideration. An example JSON format CKR result of one IoT workflow activity is

shown in Figure 4.9.

4.7 Conclusion and Future Work

IoT workflow composition is a complex problem due to the heterogeneity of Cloud

and Edge resources and data type diversity. We proposed and developed a novel

AHP based multi-level composition framework and IoTWC system. With IoTWC,

IoT application users can easily pipeline and compose IoT workflow application with

recommended activity configuration knowledge representations under a certain budget.

The results are investigated and validated in a real world smart building scenario. The

results can be further utilised by user to deploy the workflow instance while making a

balance between the performance and budget for each workflow activity. In the future,

we plan to design and develop a deployment module to integrate with IoTWC, in order

to automate IoT application development life cycle. We will provide an extension of

IoTWC to cover deployment and orchestration processes in IoT applications.

- 98 -

5
A Fault-Tolerant Workflow
Composition and Deployment

Automation IoT framework in a
Multi-Cloud Edge Environment

Contents
5.1 Introduction . 100

5.2 Related Work . 102

5.3 IoT Fault-tolerance Model . 104

5.4 System Design . 106

5.4.1 System Architecture . 106

5.4.2 System Execution Workflow . 112

5.5 Evaluation . 114

5.5.1 Application Requirements . 115

5.5.2 Experiment Setup . 115

5.5.3 Failure Model . 116

5.5.4 Experiment Result . 117

5.6 Conclusion . 119

- 99 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Summary

With the increasing popularity of IoT application, e.g., smart home, smart manufac-

turing, the importance of underlying IoT system availability, safety, reliability and

maintainability become crucial in IoT application development processes. IoT appli-

cations are expected to continuously provide reliable services and features which put

the fault-tolerance mechanism as priority. Current IoT fault-tolerant systems are de-

signed to overcome any faults caused by human activities and physical errors in order

to reserve the correct IoT workflow execution. However, addressing fault-tolerance

interaction in multi-cloud edge environment and failed service deployment automation

remain challenges. This chapter proposes a novel fault-tolerant model that offers the

self-detection and automatic recovery of faults to increase IoT applications’ reliabil-

ity to address the infrastructure level failure in the heterogeneous IoT environments.

Based on the proposed model, a fault-tolerant workflow composition and deployment

automation system is developed and implemented. This system utilises a layered ar-

chitecture and a time-dependent failure model to offer deployment automation and

infrastructure recovering. The efficiency and effectiveness of the proposed system are

validated and evaluated with a real-world IoT application. The evaluation result shows

that the proposed model can reduce system fail rate with recovery algorithm enabled.

Moreover, our recovery strategies reduce the cost of on-demand backup nodes signifi-

cantly.

5.1 Introduction

The Internet of Things (IoT) is mainly driven by data which is transferred between

resources including cloud, edge and IoT devices. It raises the importance of IoT

systems in terms of availability, safety, reliability and maintainability. Reliability is

a primary aim to implement for IoT applications concerned with Quality of Service

(QoS). Reliability is threatened by the occurrence of failures where an IoT system

can hardly offer potential services. There are three main methods to mitigate failures

including fault correction, fault avoidance and fault tolerance, where fault tolerance

refers to detect and recover faults in runtime. In an IoT environment, applications

- 100 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Set up

Fog
Node

Fog
Node

Fog
Node

Fog
Node

Multi-Cloud

Fog

VM

VM

VM

GCP

Self-Configuration Self-optimization

Self-healing

Monitor

Fog-Cloud infrastructure

Workflow Composition

Deploy

Access Tokens

Access Tokens

Configure

VM

Start/ Stop Re-configure

Report
Failure

Backup
information

Input

Output

Action
using tools

System
Message

Input/Output Autonomic
component

Legend

Figure 5.1: System Overview of Proposed Approach

are expected to continuously provide reliable services and features which put fault-

tolerance mechanism as priority.

Consider that the Newcastle city council bids for a new IoT project for flood fore-

casting. Their engineers plan to develop and deploy a flood forecasting application

which provides real-time rainfall map and main road risk level to avoid flood damage

in the city. In this application, the raw streaming rainfall data captured by CCTV and

sensors around the city is supposed to be delivered and analysed by a given rainfall

model and flood forecasting model. The infrastructure for deployment includes CCTV,

rainfall sensors, Raspberry Pi as edge devices and virtual machines on the cloud pur-

chased and subscribed. Due to the QoS (end-to-end latency and reliability) and the

city council budget limits, infrastructure selection becomes a challenge in this project.

Meanwhile, to avoid infrastructure failure, a robust multi-level reconfiguration system

is necessary. Moreover, a centralised deployment agent who can deploy and manage

every task across different IoT application layers will ease the work.

- 101 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

This chapter plans a framework that enables a user to compose any IoT application

with defined QoS parameters, then automatically set up the infrastructure according

to the recommended configuration, as shown in Figure 5.1. The system is divided

into three components: Self-configuration, Self-optimisation and Self-healing. Self-

configuration takes user QoS requirements and a workflow model of an IoT application,

and then it returns ready to use infrastructure. Moreover, the Self-configuration au-

tomatically sets up the infrastructure and sends the access tokens to Self-optimisation

and Self-healing. Then, Self-optimisation loads configuration operates and monitors

infrastructure according to QoS. During failure events, Self-optimisation reports Self-

healing with system failures. Self-healing component restores operation to normal by

backing up the infrastructure with resources and recover the faulty ones.

During the evaluation process, an IoT application is utilised to test the functionality

of the proposed framework that solves challenging issues associated with developing

and operating IoT applications, such as avoiding dependency issues using container

technology. The experiment contains a platform and operates on raw streaming data

and analyses on a given ML model near the edge. Moreover, multi-cloud infrastruc-

ture supports computing power, e.g., additional storage and processor type (FPGA

or GPU). The application has chained service functions in the form of a Directed

Acyclic Graph (DAG). The functions apply logical data operation, machine learn-

ing (ML) model training or ML prediction. Each service function has its execution

requirements, which will determine the place of execution, i.e., cloud or edge.

The rest of this chapter is organised below: Section 5.3 explains the detail of the

IoT fault-tolerance model. Section 5.4 illustrates the layered system architecture and

Section 5.5 presents the experiment setup and results analysis. Before the conclusion,

a set of related and relevant work is discussed in Section 5.2.

5.2 Related Work

In this section, we discuss the related work on workflow composition, deployment

automation and fault-tolerance of IoT applications.

Workflow composition is mainly well-studied in general web services and applications.

- 102 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

BPEL (Business Process Execution Language) and WSDL (Web Service Definition

Language) are popular XML-based workflow composition languages that are widely

used in enabling web services interaction and communication.

Academic researchers have proposed many solutions and architectures for IoT work-

flow composition and deployment problems. A RESTful based web service is designed

in [105] to encapsulate heterogeneous IoT devices. In order to support dynamic rea-

soning in smart city applications, a context-aware web service description language is

presented in [106] based on adaptive service composition frameworks. A trust manage-

ment framework is proposed in [107] to provide service composition in service-oriented

IoT architectures. [108] developed a multi-cloud IoT service composition algorithm

to create an energy-aware composition plan to fulfil user requirements. These works

have addressed many IoT workflow and service composition research problems in a

variety of application domains. However, there is no general approach to abstract the

IoT workflow composition problems that can be useful across multiple IoT domains.

Meanwhile, composition frameworks which support IoT application deployment are

also well-defined in industry. OpenTOSCA applied TOSCA (Topology and Orchestra-

tion Specification for Cloud Application) in IoT to automate the deployment process

of IoT applications based on the mosquito message broker. Calvin modelled IoT ap-

plications using four well-defined aspects: describe, connect, deploy and manage. This

eased IoT application development and deployment processes for engineers. Kuber-

netes provided open-source approaches to benefit the design and deployment of IoT

application workflows. However, these frameworks are designed for expert users who

have rich background knowledge.

Moreover, in order to reserve the correct workflow execution of IoT applications, a

fault-tolerant system is necessary to overcome any faults caused by human activi-

ties and physical errors. Javed [123] proposed a fault-tolerant IoT architecture to

offer failover of an interconnected network for both Edge and Cloud environments.

Power [124] presented a microservices-based framework to detect fault-tolerance in

real-time and predict fault patterns with machine learning mechanisms to mitigate

faults before they activated. Grover [125] proposed an agent-based fault-tolerant IoT

architecture to migrate data from the failed Edge servers to other available alternate

- 103 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Switch
Modes

VM

VMFog Node

 Primary Resources

Fog Node

Fog Node

VM

Fog Node VM

VM

VM

VM

VM

Backup Resources

Monitor Start/Stop

Deploy Recover

Controller

Resource pool

Primary Resources

Fog Node VMVM

VM

VM

VMVM

VMVM

Backup Resources

Regular mode

Resource pool

Recovery mode

Legend Turned On

Turned Off

Temporal Infrastructure

Self-optimization Self-healing

Figure 5.2: IoT Fault Recovery Model

servers to avoid system-level failure. However, these pieces of research fail to ad-

dress multi-layer (Edge, Cloud) fault-tolerance interaction challenges, and they lack

integrated deployment automation for failed service automatic redeploy.

5.3 IoT Fault-tolerance Model

This section presents a novel IoT fault-tolerance model and discusses details of the

fault detection and recovery mechanism.

In our proposed IoT fault-tolerance model, shown in Figure 5.2, an IoT application

consists of two main components: controller and resource pool. The controller is a

fog node that controls the resource pool. It deploys the application, monitors re-

sources, and switches to/from recovery mode. The controller manages all the available

resources can be categorised into two resources: primary resources and backup re-

sources. Primary resources refer to the resources utilised in a particular application

as priority (usually considered edge resource and part of cloud resources). Backup

resources represent resources for backup purpose (usually cloud resources). Since the

available edge devices may have different architecture and configuration, it may not

always be possible to have a backup device with the same configuration. Consequently,

we choose on-demand cloud resources as the backup to meet the end-to-end latency

- 104 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

constraints.

The system has two operational modes, regular mode and recovery mode. Regular

mode is when the controller deploys IoT applications in the Primary Resources. The

Recovery mode controller deploys in the Temporal Infrastructure (i.e., primary re-

sources with chosen cloud backup resources) and recover failed resources. In the case

of intolerable failure, the controller switches to recovery mode. After recovering failed

nodes, it switches to the regular mode and resumes the deployment in the primary

resources.

The centralised controller contains a Self-optimisation component and a Self-healing

component. Self-optimisation manages continuous IoT applications deployments and

detects an intolerable error in the primary resources group. Moreover, it operates in

both primary resource (i.e., regular mode), and temporal infrastructure (i.e. recovery

mode). Self-healing role can be summarised in three main actions: switch off failed

resources, switch on backup resources and recover failed resources. Self-healing com-

ponent prepares the temporal infrastructure for the Self-optimisation component by

adding cloud resources to unfailing resources from primary resources. During recov-

ery mode, the Self-healing component starting a set of recovery procedures including

failed resources reboot, environment setup and availability check. After recovering

failed nodes, the Self-optimisation component resumes the deployment in the regular

mode. Self-healing reduces the cost of on-demand cloud VMs by switching off backup

cloud resources during the regular mode.

With performing this novel IoT fault recovery model, users can efficiently execute a

fault-tolerant IoT workflow application with a limited number of primary resources

under a reasonable budget. Backup resources are considered when necessary and

will be released immediately after recovered primary resources back to work. Such

operations reduce the running cost and raise the reliability and availability of an IoT

workflow application. As a result, we plan to develop an IoT workflow composition and

deployment automation system, applying the proposed model to minimise application

execution cost and maximise reliability. The details of this system are discussed in

Section 5.4.

- 105 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Failure handler Module

Online Optimizer

 Backup Infrastructure

Input
Information

Infrastructure

Workflow Layer

Infrastructure Layer

Pipeline Module

Offline Optimizer

Database

Composer

Workflow Abstraction QoS Comparison

AHP-based Ranking Budget Ranking

Workflow Patterns QoS Configuration

Knowledge Base

Configuration Knowledge Representation

U
se

r
In

te
rf

ac
e

Auto Setup Module

Workflow Interpreter
Cloud Infrastructure

Launcher

Abstract
workflow graph

Quality of
Service

requirements

Budget

Workflow Allocator Infrastructure Manager

Main
InfrastructureGreedy Nominator

Heuristic

Deployment

suspended

Resume

Resource Monitor
Monitoring QoS Report Failure

Add resources

Recover

Deployment Layer Recovery Layer

Figure 5.3: IoT Workflow Composition and Fault-tolerant System Architecture

5.4 System Design

This section presents the IoT workflow composition and fault-tolerant system archi-

tecture and discusses the system execution workflow.

5.4.1 System Architecture

According to the workflow composition and fault-tolerance challenges we discussed

in Section 5.1, we propose an IoT workflow composition and fault-tolerant system to

address these research problems. This system is designed to provide workflow com-

position and fault-tolerant workflow application execution which allows deployment

automation and infrastructure recovery under proposed fault detection and recovery

mechanism.

Figure 5.3 illustrates the layered schematic architecture of our proposed system and the

dependencies of each component. This system is implemented as a web application that

provides a User Interface for users to explore and compose their IoT components and

execute fault-tolerant IoT workflow applications. Users can execute a fault-tolerant

IoT application by simply inputting an abstract workflow graph, quality of service

- 106 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

requirements and desired budget information. Other complex composition, deployment

and recovery procedures are hidden to ease the interaction. There are four main layers

of our system, as explained in the following subsections.

5.4.1.1 Workflow Layer

The workflow layer is proposed to manage IoT workflows. It consists of four main

components, as discussed below:

Pipeline Module This component is involved in acquiring user input from the

User Interface and creating a DAG-based IoT workflow. It has two modules Workflow

Abstraction and QoS Parameter Comparison.

Workflow Abstraction relies on the abstract data analysis patterns available in the

workflow patterns of the QoS Parameter Comparison allowing users to specify the

priority of each non-functional QoS requirement stored in the QoS Configuration of

the Database. The comparison values are required to be provided following the Saaty

Scale[102]. A comparison matrix is constructed using these values and checked for

consistency as the user entered values may not always be consistent. If the matrix is

found to be inconsistent, a user is advised to enter new values.

Offline Optimizer Since there are many possible solutions for the deployment of

each data analysis task, it is necessary to find an optimal solution which satisfies

all the non-functional QoS requirements in the defined budget. However, finding an

optimal solution for only one data analysis task can be proven to be NP-hard [126]. To

solve this problem, we propose a heuristic model which is divided into two segments

AHP-based Ranking and Budget-based Ranking.

AHP-based Ranking is based on the multi-criteria decision-making algorithm; Analytic

Hierarchical Process (AHP) [102]. First, the algorithm takes as input the hierarchy

of QoS requirements for each data analysis task and the QoS comparison matrix gen-

erated in the previous step. Using AHP, it then computes the priority of each QoS

parameter and results in a weight vector. Finally, it takes the resource ranking values

- 107 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

and computes the Final Rank, which is used to select the best infrastructure resource

for the deployment.

Since some infrastructure resources may present a price which may not be suitable

for a budget constraint user, Budget Ranking includes the infrastructure resource cost

and total budget with the Final Rank given by AHP-based Ranking. This results in

selecting an optimal resource for each data analysis task.

Database This is the most important component as it stores not only the basic

Workflow Patterns and QoS Configurations but it also contains a Knowledge Base,

which acts as a knowledge source for Offline Optimizer and Composer. Knowledge

Base contains the predefined Ranking and CKR for different infrastructure resources.

Both pieces of information are computed beforehand and available as ready to use.

Configuration Knowledge Representation (CKR) is also computed for all the avail-

able resources using a knowledge management system IoT-CANE [127]. The scale of

provided resources can be easily maintained using IoT-CANE.

Composer For each data analysis task, the Composer takes the optimized infras-

tructure component from Offline Optimizer and queries the Database for the desired

CKR. Finally, it combines all the configurations and returns to the user in a unified

format file which can be easily used for deployment purpose.

5.4.1.2 Infrastructure Layer

The infrastructure layer is designed to manage the setup of infrastructures used in IoT

applications.

Auto Setup Module This module acquires composed workflow DAG with config-

uration information from the workflow layer. It manages infrastructure setup pro-

cedures including four components Workflow Interpreter, Workflow Allocator, Cloud

Infrastructure Launcher and Infrastructure Manager.

Workflow Interpreter When a unified format IoT workflow file is composed and gen-

erated from Composer, this interpreter can read and understand the infrastructures

- 108 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

required to deploy the particular IoT application. After interpreting, a list data struc-

ture containing each fog/cloud CKR is constructed for further deployment procedures.

At the same time, Workflow Allocator is functioning to allocate and orchestrate such

workflow activities to ensure the success of the workflow sequence.

As cloud providers, such as AWS, Azure and Google Cloud Provider offer different

SDKs and APIs for developers to program and operate such cloud services, a unified,

centralised Cloud Infrastructure Launcher becomes necessary for cloud environment

setup. This component provides solutions for virtual machine launching, Docker in-

stallation, communication establishment, etc. Previous CKR information is adopted

to specify the particular cloud provider, VM type, deployment location, network prop-

erties and other relevant requirements specified by APIs. When cloud infrastructures

are ready to use, our system can receive the notification messages sent by these Docker

installed VMs with static IP addresses for remote accessing.

After cloud infrastructures and fog/edge infrastructures are prepared, the Infrastruc-

ture Manager component offers CRUD (Create, Read, Update, Delete) operations for

such infrastructures and attached containers. Because Docker is installed with REST

API enabled on all launched infrastructures, the container management becomes com-

fortable with simple constructed RESTful requests. Meanwhile, to release the failed

and unoccupied infrastructures is possible with simple commands from Infrastructure

Manager.

In conclusion, the Auto Setup Module can interpret the composed workflow DAG and

CKRs, then set up an infrastructure pool containing cloud/fog/edge infrastructures

with Docker installed for further deployment processes.

5.4.1.3 Deployment Layer

The deployment layer is based on master-worker architecture. The master orchestrates

the workflow and is located in the fog, whereas Workers are geo-distributed over fog-

cloud infrastructure. Greed Nominator Heuristic (GNH) decided where to deploy the

functions and utilises Parsl to control dataflow over the infrastructure. Parsl enables

distributed parallel programming. The output of the infrastructure layer is divided

into two infrastructures, primary and backup. In case where a failure event occurs the

- 109 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

deployment layer notifies the recovery layer to prepare the backup node and recover

the failures within the infrastructure.

The deployment layer includes the following parts:

Parsl controls computing geo-distributed resources that include managing connec-

tion, provisioning virtual resources to deploy DAG application. DataFlow Kernel

(DFK) of Parsl handles error and steers dataflow between computing nodes.

The master node has the DFK and the configuration, as well as GNH to decided

the redundant deployment. The master node connects, monitors resources and tracks

failure. In a case where intolerable failure occurs, it generates the report with the

failed nodes and the number of nodes to back up primary infrastructure.

Worker nodes are computing nodes that form the primary infrastructure. The

virtual functions that are a part of the workflow application run on these worker

nodes. Each virtual function is running within a docker container, which provides

a flexible virtual function delivery. The master node does handling task allocation,

where a worker provides its resources to compute it and pass the result to the master

node or message broker (depends on the user-specification).

Online optimiser i.e., Greedy Nominator Heuristic (GNH), aims to i) lower end-

to-end latency, ii) leverage redundancy to operate during failure events iii) Highest

replicas to the critical function to lower risk of additional delay and iv) balancing

redundancy and deployment cost. The greedy algorithm calculates the maximum

possible replicas for each function using MaxReplicas (formula 5.1) function, where i

is the virtual function sequence in the application. The application size is represented

by n, and m is a constant a user sets to adjust the redundancy number. Let n = 5,

m = 3, formula 5.1 will produce a funnel-shaped redundant deployment similar to

Figure 5.4

MaxReplicas = 1 + d(1− i

n+ 1
)me (5.1)

- 110 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Workflow
Abstraction

Flood
impact
model

Flood impact
model

HiPMIES

HiPMIES

Rainfall
model

Rainfall
model

Rainfall
model

Correlator

Correlator

Correlator

Kafka

Kafka

Kafka

Kafka

Kafka

Correlator

Rainfall
model

HiPMIES
Flood

impact
model

Kafka

Kafka

Kafka

Correlator

Correlator

Rainfall
model

Rainfall
model

HiPMIES
Flood
impact
model

Kafka Correlator Rainfall
model

HiPMIES
Flood

impact
model

W
or

kf
lo

w
 R

ed
un

da
nt

 A
bs

tr
ac

tio
n

W
or

kf
lo

w
 R

ed
un

da
nt

 D
ep

lo
ym

en
t

Figure 5.4: IoT Workflow Abstractions and Redundant Deployment

The GNH is scalable with the increasing number of nodes in the infrastructure. It

searches in two stages i) Nomination phase and ii) Announcement phase. At the Nom-

ination phase workers are divided between nominators, then each nominator provides

partial-decision. The announcement phase decides the final redundant deployment

out of the nominators’ output. Redundant deployment is funnel-shaped, where earlier

functions will have higher replicas.

5.4.1.4 Recovery Layer

The recovery layer is the layer that manages the backup infrastructure. It receives a

failure report from the deployment layer then supports the central infrastructure with

pre-configured cloud instance to form temporal infrastructure. While the temporal

- 111 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

infrastructure receives tasks, the failed nodes are recovering. The backup nodes are

turned off unless they are needed, this to reduce the operation cost.

Backup infrastructure is virtual machines in the cloud that has all the package

dependency and the required configuration to run the IoT workflow. Each node in the

backup infrastructure is mapped to one or two nodes in the primary infrastructure.

This to ensure that there is a node that has the proper configuration to replace specific

requirements.

Failure handle module is the component that controls the backup infrastructure

and faulty nodes. The module can pause and resume back up nodes and recover the

faulty node. Node failures mean that virtual instance is down, or its performance is

deteriorating. Recovering a node is restoring the instance to its original configura-

tion. This is achieved due to decoupling software from hardware. However, in case

of a hardware failure, e.g., a malfunction within the electronic circuits, the services

are moved from the faulty node to another backup node until the physical node is

repaired/replaced and is ready for task execution.

DFK failure there are some occasions where the DFK fails to connect to workers.

For example, in cases where the internet service providers assign a dynamic public IP

to the master node, it will cause a disconnection to workers. In this case, the system

has a standby Parsl’s DFK that can resume task allocation to reduce whole system

downtime. Figure 5.2 shows the recovery model with two DFK, where the red one is

a paused DFK.

5.4.2 System Execution Workflow

The following subsection illustrates the main steps to execute IoT workflow composi-

tion and fault-tolerant system.

Define the IoT Workflow At the beginning, the Workflow Layer is designed to

compose a different type of IoT application. The application is defined in terms of

- 112 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

User User
Interface

Pipeline
Module

Database Offline
Optimiser

Composer AutoSetup
Module

Online
Optimiser

Resource
Monitor

Failure
handler

Input
workflow

DAG, QoS,
budget

information
(Step 1)

Create the
workflow
(Step 2)

Store Workflow and
QoS information

(Step 3)

Retrieve
QoS and
resource

information
(Step 4)

Find the
optimised
resource

group
(Step 5)

Retrieve
optimised
resource
(Step 6)

Retrieve CKR information
(Step 7)

Compose
the workflow

(Step 8)

Pass the
composition

file
(Step 9)

Launch
Cloud

infrastructures
(Step 10)

Optimise
deployment

plan
(Step 11)

Execute
deployment

plan
(Step 12)

Monitor
deployment

status
(Step 13)

Notify
resource

failure
(Step 14)

Pause,
recover,

resume failure
resources
(Step 15)Return successful deployment

information
(Step 16)

Figure 5.5: System Execution Workflow

data analysis and connection patterns using the User Interface as depicted in step 1

of Figure 5.5. Users can drag and drop the abstract patterns and rename them based

on their adequacy. The pipeline module converts the user input into the workflow

sequence, as shown in step 2, which is then stored in the database.

Define the QoS requirement comparison The Workflow Layer provides a two-

way comparison scheme for all the QoS parameters. Users can enter a priority value

in the box provided by User Interface which is converted into a comparison matrix

by the Pipeline Module. Finally, the comparison matrix is stored in the database for

further infrastructure ranking (Step 3).

Optimised infrastructure generation The Offline Optimiser retrieves the work-

flow and QoS and infrastructure information from the database (Step 4) and finds the

optimised infrastructure for each workflow component (Step 5).

Compose the workflow The Composer retrieves the optimised infrastructure re-

source information from the Offline Optimiser (Step 6) and queries the Knowledge

- 113 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Base to get the CKR information for the respective infrastructure resource (Step 7).

Finally, it will compose the workflow (Step 8).

Infrastructure Setup The composed workflow information in JSON format can

be transferred to Workflow Interpreter (Step 9) to interpret as a set of CKR infor-

mation along with infrastructure locations, then pass them to Workflow Allocator for

infrastructure orchestration. Cloud Infrastructure Launcher retrieves such informa-

tion from the allocator and invokes API from cloud providers to launch necessary

cloud resources with virtual programming environment installed (Step 10). Next, an

infrastructure pool containing primary and backup resources is prepared for further

deployment.

Workflow Deployment When the Online Optimiser receives a success message

from infrastructure layer, a decision of virtual functions deployment allocation is gen-

erated by Greedy Nominator Heuristic module (Step 11). Parsl is enabled as a dis-

tributed parallel deployment tool to manage network connections and resource provi-

sioning (Step 12). The DataFlow Kernel of Parsl handles errors and controls dataflow

between computational resources.

Failure Handling During workflow application execution, Resource Monitor mon-

itors and detects infrastructure level failure, then passes such failure information to

Failure Handler Module (Steps 13, 14). The centralised controller can pause the failure

resources first, then migrate tasks from failed nodes to backup resources to enable avail-

ability. Next, a recovery mechanism is employed to recover failed resources, then put

them back to work (Step 15). Finally, successful deployment information is displayed

on the user interface to indicate workflow deployment success (Step 16).

5.5 Evaluation

This section presents an IoT application utilised in our experiments and the related

requirements following with experiment setup and failure model. We also explain and

analyse the experiment results.

- 114 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Table 5.1: Application Requirements

Sequences Virtual Function Task Requirements Processor
1 Kafka Start Kafka server if not working Internet access and privilege to open port 9092 CPU
2 Correlator Check if there is a Correlator or start one Access to the message broker CPU
3 Rainfall model Rainfall forecasting Machine handles AI inference CPU
4 HiPMIES Predict sudden state changes during a flood event Machine supports parallel computing GPU
5 Flood impact model Predict flood disruption at fixed locations Machine handles AI inference CPU

5.5.1 Application Requirements

This subsection describes the distributed application and the infrastructure require-

ments for the experimental application. We use real-time surface water flooding data

monitoring and management application, called Flood-PREPARED [10], to evaluate

our proposed system.

Any system issues such as component failure or late response will affect any adaptive

response to a flood event. Thus, the system needs a fast response to the unreliabil-

ity that can affect the Flood-PREPARED application’s timing. The application is

composed of containers and utilise Kafka streaming processing server to communicate

messages. Parsl is the dataflow engine in this system that executes functions respecting

data dependencies. The optimisation placement algorithm (i.e., GNH) decides the pro-

cess nodes that deploy the containers. The application consists of the Rainfall model,

HiPMIES (High-Performance Integrated hydrodynamic Modelling System) and Flood

impact model. Application requirements details are shown in Table 5.1. Such models

cooperate in monitoring and predicting flood in Newcastle city area.

5.5.2 Experiment Setup

The application runs over a Fog-Cloud environment. We utilise two cloud service

provides: Amazon Web Service (AWS) and Google Cloud Platform (GCP). The in-

frastructure has three GPU nodes, one in the fog and two in GCP cloud. In total,

the environment has ten computing nodes, half of it is primary, and the other half is

backup nodes.

The HIPIMS requires GPU to execute CUDA program. Therefore, it is running in

Nvidia Jetson nano or GPU instance with NVIDIA Tesla P100. All other functions

are going to be running in every computing nodes. Controller and Kafka server is

- 115 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Table 5.2: Infrastructure Computing Nodes

Qty Computing Node CPU CPU speed RAM Storage CUDA GPUs Fog/Cloud zone RTT
1 NVIDIA Jetson Nano Quad core Cortex-A57 (ARM v8) 1.43 GHz 2 GB 32 GB Maxwell Fog <1 ms
1 RPi 4 Model B Quad core Cortex-A72 (ARM v8) 1.5 GHz 4 GB 32 GB N/A Fog <1 ms
2 RPi 3 Model B+ Quad core Cortex-A53 (ARM v7) 1.4 GHz 1 GB 32 GB N/A Fog <1 ms
1 RPi Zero W Single core BCM2835 (ARM v6) 1 GHz 512 MB 32 GB N/A Fog <1 ms
2 n1-standard-4 (GCP) Dual core Intel Xeon - 4 vCPUs 2.30GHz 15 GB 50 GB Tesla P100 europe-west1-b 99 ms
2 e2-medium (GCP) Single core Intel Xeon - 2 vCPUs 2.30GHz 4 GB 50 GB N/A europe-west1-b 99 ms
2 t2.micro (AWS) Single core Intel Xeon - 1 vCPUs 2.30GHz 1 GB 15 GB N/A eu-west-2a 93 ms

located in the fog infrastructure. The fog is located in Cardiff, the United Kingdom.

The fog infrastructure contains Raspberry Pi ZeroW, Raspberry Pi 3B+, Raspberry

Pi 4B and Nvidia Jetson Nano 2GB. Raspberry Pi 4B will be the controller and also

will run some tasks in a virtual instance inside it. The CPU instances in GCP are e2-

medium with 2 vCPUs, and 4 GB memory, whereas the GPU nodes are n1-standard-4

with 4 vCPUs and 15 GB memory). Each GCP has 50GB of storage. The GCP’s

nodes are located in Brussels, Belgium (europe-west1-b). The round trip time (RTT)

of 14B package sent from the fog to GCP is 99 ms (± 24.8). On the other hand, AWS

instances are of t2.micro type, which has 1 vCPUs, and 1 GB memory. AWS instances

have 15 GB of allocated disk. The AWS zone is eu-west-2 which located in London,

the United Kingdom. The RTT of 14B packet between AWS and fog is 93 ms (±

4.73). All detailed computing nodes information are shown in Table 5.2.

5.5.3 Failure Model

This subsection describes a time-dependent failure probability model from which we

simulate node failure. Based on the Weibull distribution, we determined the proba-

bility of not completing a submitted task, i.e., deployed virtual function. The model

parameters are as follows:

Start time is the timestamp when the node is started to deploy virtual functions,

whether it is at the beginning or after a recovery session.

Current time is the count that started after the Start time represented by x, i.e.,

x = current timestamp − Start time.

Time-to-failure i.e., λ, is the time where the services in a node go down.

- 116 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Figure 5.6: Total Execution Time Comparison

Reliability variable is Weibull shape parameter, i.e., k, that determines how reli-

able the node is. In case failure rate is constant then k = 1, whereas k < 1 or k > 1

means failure rate changes over time.

f(x;λ, k) = 1− e−(x/λ)
k

(5.2)

A random choice based on probability of failure, i.e., f(x;λ, k)), and success, decides

whether it met the deadline or not.

5.5.4 Experiment Result

This subsection describes the experimental results based on the proposed failure model

and the Flood-PREPARED workflow.

In Table 5.3, we list resource parameters in terms of k and λ for both primary and

backup resources. For the experiment parameters, we set a fixed λ (86400 sec) and

- 117 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

Figure 5.7: Failure Rate Comparison

Table 5.3: Experiment Parameters

parameter
Pi3

(No.1)
Pi3

(No.2)
AWS

(backup)
Pi4 GCP

GCP
(backup)

nano GCP GPU
GCP GPU
(backup)

k 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.9 0.9
lambda 86400 86400 86400 86400 86400 86400 86400 86400 86400

Table 5.4: Compare Cost

AWS GCP GCP GPU GCP GPU Total
Price per Hour $0.0116 $0.04 $2.3460 $2.3460 $4.7436
Uptime per day (minutes) 18.36 7.54 59.17 60.97 146.04
Bill with self-healing (month) $0.11 $0.15 $69.40 $71.52 $141.18
Bill without self-healing (month) $8.35 $28.80 $1,689.12 $1,689.12 $3,415.39
Decrease backup cost by 98.72% 99.48% 95.89% 95.77% 95.87%

vary k from 0.5 to 0.8 for different resources.

The final results of total workflow execution time and failure rate comparison in terms

of recovery algorithm utilising are shown in Figure 5.6 and Figure 5.7 respectively.

We can clearly see from Figure 5.6 that the total workflow execution time has a rare

- 118 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

difference if the recovery algorithm is enabled. Our recovery algorithm is designed to

minimise the backup resources’ cost while maintaining the total workflow execution

time. Meanwhile, the failure rate increase overtime without the proposed recovery

algorithm enabled. However, when the recovery algorithm is employed, the failure rate

will drop after a time interval because the particular resource is in recovery processes.

Figure 5.7 shows that replicas of GNH guarantee task completed with no failure.

Nevertheless, Table 5.4 illustrates the high cost of running extra cloud instances as

backups (i.e., $3,415.39 per month). Recovery strategies reduce the cost of on-demand

backup nodes by 95.87% (i.e., $141.18 per month) in total. Cost is reduced due to

backups are shutdown unless they are needed.

5.6 Conclusion

This chapter has described a novel framework which is utilised to compose IoT work-

flow from given DAG and QoS requirements, then automatically launch cloud infras-

tructures with recommended configurations, finally allocate and deploy desired virtual

functions across edge and cloud environments. Meanwhile, the proposed system detects

and recovers infrastructure level failures to enable continuous services with tolerable

end-to-end latency. This system has been validated and evaluated with a real-world

surface water flooding data monitoring and management application. The results of

experiments proves efficiency and effectiveness of our system. In the future work, an

execution feedback-based intelligent infrastructure recommendation approach can be

employed to increase the configuration recommendation accuracy and decrease useless

budget waste.

- 119 -

Chapter 5: A Fault-Tolerant Workflow Composition and Deployment Automation
IoT framework in a Multi-Cloud Edge Environment

- 120 -

6
Conclusions and Future Work

Contents
6.1 Thesis Summary . 122

6.2 Future Research Directions . 124

6.2.1 Dynamic Distributed Workflow Deployment 124

6.2.2 Resource Prediction in IoT Workflow Composition 124

6.2.3 Feedback-based IoT Workflow Composition 124

6.2.4 Workload Prediction based Workflow Orchestration 125

- 121 -

Chapter 6: Conclusions and Future Work

Summary

This chapter summarise the research work presented in this thesis. I highlight the

contributions of the thesis and discuss the research directions about the future work.

6.1 Thesis Summary

With the growth of IoT paradigm, it is of paramount importance to provide simplified

workflow and deployment solutions. In this thesis, I designed and developed a set

of frameworks to enable unified workflow composition and fault-tolerant automation

deployment in multi-cloud and edge environments in order to meet demands and QoS

constraints.

Chapter 2 First, I gave an overview of background information about IoT. Then the

dimensions of configuration management and automation deployment were classified

into ten categories: Dependency graph, Access mechanism, Access control, Extensi-

bility, Customisation, Reusability, Deployment environment, Virtualisation technique,

Scalability and Portability, while the state of the art of configuration management and

automation deployment tools were evaluated. Next, I investigated the taxonomy of

scientific workflow system and the difference with IoT workflow. Finally, I discussed

IoT workflow composition and orchestration objectives and current available tools.

Chapter 3 I proposed a unified conceptual model which captures the resource con-

figurations in IoT environments. Besides, a support recommendation system for the

resource configuration recommendation in IoT utilising SQL-based relational semantics

and procedures was presented. Then, I developed an incremental method to facilitate

the knowledge acquisition in IoT resource configuration knowledge base. Finally, I

designed a service interface that converts simple context information captured from

users to optimal IoT resource configurations to map users’ requirements. Meanwhile,

I validated and evaluated the proposed framework with an implementation and a user

study.

- 122 -

Chapter 6: Conclusions and Future Work

Chapter 4 I proposed and developed a novel composition framework, IoT work-

flow composition system (IoTWC). I provide basic IoT workflow activity patterns

that are abstracted within IoTWC based on literature study and interviewing of do-

main experts. IoTWC leverages the analytic hierarchy process (AHP) to compose the

multi-level IoT workflow that satisfy the requirements of any IoT application. Then

I validated the coverage of IoT workflow activity abstract patterns with a user case

study. I also evaluated IoTWC with a real-world scenario for smart buildings which

show the effectiveness of the proposed system in terms of IoT workflow abstraction

and composition.

Chapter 5 I proposed a framework that enables a user to compose any IoT applica-

tion with defined QoS parameters, then automatically set up the cloud infrastructures

according to the recommended configurations. The system is divided into two com-

ponents, Self-configuration and Self-optimisation. Self-configuration takes users QoS

requirements and a workflow DAG of an IoT application; then it returns ready to user

infrastructure group. Self-optimisation component continuously adapted to traffic and

the infrastructure state to execute the IoT application based on a novel fault-tolerance

model. Finally, the proposed framework has been validated and evaluated with a real-

world surface water flooding data monitoring and management application, where the

results proved the efficiency and effectiveness.

In conclusion, these proposed frameworks and systems can empower and simplify IoT

application from design time to deploy period. More specifically, with IoT-CANE

enabled, engineers from Flood-PREPARED can maintain optimal IoT resource con-

figuration knowledge artifects by delivering simple context information to this sys-

tem. Meanwhile, these configuration knowledge artifects can be composed to proper

IoT workflow DAG by IoTWC, to offer ranked IoT application deployment solutions.

With the proposed fault-tolerant IoT system, this Flood-PREPARED can be deployed

automatically with given configurations. Both edge and cloud resources in Flood-

PREPARED are also fault-tolerant with proposed infrastructure recovery algorithm.

- 123 -

Chapter 6: Conclusions and Future Work

6.2 Future Research Directions

Alongside my contributions, I also provide a number of opportunities of future research.

6.2.1 Dynamic Distributed Workflow Deployment

There are a large number of IoT workflow systems designed to bring centralised IoT

workflow deployment. However, the majority of workflow systems are designed to op-

erate in a fixed networked environment, such as cloud environment or private network.

Such systems rely on a central point of coordination in order to manage centralised

workflow deployment. A dynamic distributed workflow deployment mechanism which

leverages a decentralised execution approach to run on coordinative edge and cloud

network environment is a new challenge.

6.2.2 Resource Prediction in IoT Workflow Composition

The current workflow orchestration strategies focus on workflow tasks deployment on

the collaborative edge and cloud environment without concerning the availability and

current load of the resources. However, the resources selection based on the dynamic

QoS constraints is one of the largest research problems in workflow orchestration. To

overcome previous research challenges, a resource prediction approach is needed. The

resource prediction mechanism may help to allocate the suitable running nodes for a

workflow based on the resource availability and the runtime loads stats which may

increase the accuracy of the application performance.

6.2.3 Feedback-based IoT Workflow Composition

When performing a workflow composition procedure, a configuration knowledge base

is utilised to provide historical data. Meanwhile, several resource allocation strategies

help to recommend suitable resources through edge and cloud environments. However,

due to the dynamic QoS requirements, historical configuration data may not able to

produce accuracy results. As a result, it is challenging to deliver a feedback-based

intelligent IoT workflow composition framework. The feedback-based framework can

- 124 -

Chapter 6: Conclusions and Future Work

monitor and collect deployment performance feedback, and allocate future workflow

tasks based on these performance feedback analysis proposed by machine learning

algorithms.

6.2.4 Workload Prediction based Workflow Orchestration

The collaborative edge and cloud environment consists of broad heterogeneous re-

sources which are QoS constraints sensitive. It is a crucial task to understand the

patterns and characteristics of workload in order to improve the system operational

conditions and resource utilisation. Workload analysis and target server property pre-

diction based on realistic parameters such as memory and CPU usage are required to

explore the federated workload characteristics. Performance prediction model helps to

discover the best-fit target resource more accurately. The merit of the performance

model depends on the historical resource usage information like CPU and memory

usage, resources performance rate, the workflow execution time, etc.

- 125 -

126

Bibliography

[1] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and
challenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431–440, 2015.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,”Future generation computer
systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[3] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of things (iot): A liter-
ature review,” Journal of Computer and Communications, vol. 3, no. 05, p. 164,
2015.

[4] Y. Tang, D. Chen, L. Wang, A. Y. Zomaya, J. Chen, and H. Liu,“Bayesian tensor
factorization for multi-way analysis of multi-dimensional eeg,” Neurocomputing,
vol. 318, pp. 162–174, 2018.

[5] D. Chen, Y. Hu, L. Wang, A. Y. Zomaya, and X. Li, “H-parafac: Hierarchical
parallel factor analysis of multidimensional big data,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 4, pp. 1091–1104, 2017.

[6] D. Chen, X. Li, L. Wang, S. U. Khan, J. Wang, K. Zeng, and C. Cai, “Fast
and scalable multi-way analysis of massive neural data,” IEEE Transactions on
Computers, vol. 64, no. 3, pp. 707–719, 2015.

[7] H. Ke, D. Chen, T. Shah, X. Liu, X. Zhang, L. Zhang, and X. Li, “Cloud-aided
online eeg classification system for brain healthcare: A case study of depression
evaluation with a lightweight cnn,” Software: Practice and Experience, 2018.

[8] J. Fan, J. Yan, Y. Ma, and L. Wang, “Big data integration in remote sens-
ing across a distributed metadata-based spatial infrastructure,” Remote Sensing,
vol. 10, no. 1, p. 7, 2017.

[9] M. Blackstock and R. Lea, “Iot interoperability: A hub-based approach,” in
Internet of Things (IOT), 2014 International Conference on the, pp. 79–84,
IEEE, 2014.

[10] S. Barr, S. Johnson, X. Ming, M. Peppa, N. Dong, Z. Wen, C. Robson, L. Smith,
P. James, D. Wilkinson, et al., “Flood-prepared: A nowcasting system for real-
time impact adaption to surface water flooding in cities,” ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 6,
pp. 9–15, 2020.

[11] L. Atzori, A. Iera, and G. Morabito,“The internet of things: A survey,”Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[12] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,” International
journal of communication systems, vol. 25, no. 9, p. 1101, 2012.

- 127 -

[13] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information
Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[14] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control technol-
ogy, vol. 12, no. 1, pp. 161–166, 2011.

[15] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & information systems engineering, vol. 6, no. 4, pp. 239–242, 2014.

[16] M. Chen, J. Wan, and F. Li, “Machine-to-machine communications: Architec-
tures, standards and applications.,” Ksii transactions on internet & information
systems, vol. 6, no. 2, 2012.

[17] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in 2011 international
conference on electronics, communications and control (ICECC), pp. 1028–1031,
IEEE, 2011.

[18] S. Mittal and A. Tolk, Complexity Challenges in Cyber Physical Systems: Us-
ing Modeling and Simulation (M&S) to Support Intelligence, Adaptation and
Autonomy. John Wiley & Sons, 2019.

[19] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing:
A survey,” Future Generation Computer Systems, vol. 97, pp. 219–235, 2019.

[20] Y. Xing and Y. Zhan, “Virtualization and cloud computing,” in Future Wireless
Networks and Information Systems, pp. 305–312, Springer, 2012.

[21] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and linux containers,” in 2015 IEEE international
symposium on performance analysis of systems and software (ISPASS), pp. 171–
172, IEEE, 2015.

[22] J. Zhang, H. Huang, and X. Wang, “Resource provision algorithms in cloud
computing: A survey,” Journal of Network and Computer Applications, vol. 64,
pp. 23–42, 2016.

[23] L. Carnevale, A. Celesti, A. Galletta, S. Dustdar, and M. Villari, “From the
cloud to edge and iot: a smart orchestration architecture for enabling osmotic
computing,” in 2018 32nd International Conference on Advanced Information
Networking and Applications Workshops (WAINA), pp. 419–424, IEEE, 2018.

[24] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan, “Modelling and
simulation challenges in internet of things,” IEEE cloud computing, vol. 4, no. 1,
pp. 62–69, 2017.

[25] H. B. Pötter and A. Sztajnberg, “Adapting heterogeneous devices into an iot
context-aware infrastructure,” in Proceedings of the 11th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pp. 64–
74, 2016.

[26] C. Lueninghoener, “Getting started with configuration management,” USENIX;
login, vol. 36, no. 2, pp. 12–17, 2011.

- 128 -

[27] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Tosca: portable auto-
mated deployment and management of cloud applications,” in Advanced Web
Services, pp. 527–549, Springer, 2014.

[28] A. C. F. da Silva, U. Breitenbücher, K. Képes, O. Kopp, and F. Leymann,
“Opentosca for iot: automating the deployment of iot applications based on the
mosquitto message broker,” in Proceedings of the 6th International Conference
on the Internet of Things, pp. 181–182, ACM, 2016.

[29] A. Mehta, R. Baddour, F. Svensson, H. Gustafsson, and E. Elmroth, “Calvin
constrained—a framework for iot applications in heterogeneous environments,”
in 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pp. 1063–1073, IEEE, 2017.

[30] P. Persson and O. Angelsmark, “Calvin–merging cloud and iot,” Procedia Com-
puter Science, vol. 52, pp. 210–217, 2015.

[31] W. Van Der Aalst, K. M. Van Hee, and K. van Hee, Workflow management:
models, methods, and systems. MIT press, 2004.

[32] N. Russell, A. H. Ter Hofstede, D. Edmond, and W. M. van der Aalst, “Workflow
data patterns: Identification, representation and tool support,” in International
Conference on Conceptual Modeling, pp. 353–368, Springer, 2005.

[33] A. Barker and J. Van Hemert, “Scientific workflow: a survey and research direc-
tions,” in International Conference on Parallel Processing and Applied Mathe-
matics, pp. 746–753, Springer, 2007.

[34] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-science:
An overview of workflow system features and capabilities,” Future generation
computer systems, vol. 25, no. 5, pp. 528–540, 2009.

[35] F.-S. Hsieh and J.-B. Lin, “A self-adaptation scheme for workflow management
in multi-agent systems,” Journal of Intelligent Manufacturing, vol. 27, no. 1,
pp. 131–148, 2016.

[36] W. Viriyasitavat, A framework of trust in service workflows. PhD thesis, Uni-
versity of Oxford, 2013.

[37] S. Feja, S. Witt, and A. Speck, “Bam: A requirements validation and verification
framework for business process models,” in 2011 11th International Conference
on Quality Software, pp. 186–191, IEEE, 2011.

[38] S. Feja and D. Fötsch, “Model checking with graphical validation rules,” in 15th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ecbs 2008), pp. 117–125, IEEE, 2008.

[39] H. Davulcu, M. Kifer, L. R. Pokorny, C. Ramakrishnan, I. Ramakrishnan, and
S. Dawson, “Modeling and analysis of interactions in virtual enterprises,” in Pro-
ceedings Ninth International Workshop on Research Issues on Data Engineering:
Information Technology for Virtual Enterprises. RIDE-VE’99, pp. 12–18, IEEE,
1999.

- 129 -

[40] D. Bianculli, C. Ghezzi, and P. San Pietro, “The tale of soloist: a specification
language for service compositions interactions,” in International Workshop on
Formal Aspects of Component Software, pp. 55–72, Springer, 2012.

[41] W. Viriyasitavat, L. Da Xu, and A. Martin, “Swspec: The requirements speci-
fication language in service workflow environments,” IEEE Transactions on In-
dustrial Informatics, vol. 8, no. 3, pp. 631–638, 2012.

[42] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, et al., “Business process execution language for
web services,” 2003.

[43] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, et al., “Taverna: a tool for the composition
and enactment of bioinformatics workflows,” Bioinformatics, vol. 20, no. 17,
pp. 3045–3054, 2004.

[44] C. Team, “Dagman: A directed acyclic graph manager,” See website at
http://www. cs. wisc. edu/condor/dagman, 2005.

[45] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, et al., “Pegasus: A framework for mapping
complex scientific workflows onto distributed systems,” Scientific Programming,
vol. 13, no. 3, pp. 219–237, 2005.

[46] H. D. Lord, “Improving the application development process with modular vi-
sualization environments,” ACM Siggraph Computer Graphics, vol. 29, no. 2,
pp. 10–12, 1995.

[47] S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson, “An integrated prob-
lem solving environment: the scirun computational steering system,” in Proceed-
ings of the Thirty-First Hawaii International Conference on System Sciences,
vol. 7, pp. 147–156, IEEE, 1998.

[48] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Ke-
pler: an extensible system for design and execution of scientific workflows,” in
Proceedings. 16th International Conference on Scientific and Statistical Database
Management, 2004., pp. 423–424, IEEE, 2004.

[49] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual grid workflow in triana,”
Journal of Grid Computing, vol. 3, no. 3-4, pp. 153–169, 2005.

[50] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo, “Managing the evolution of dataflows with vistrails,” in 22nd International
Conference on Data Engineering Workshops (ICDEW’06), pp. 71–71, IEEE,
2006.

[51] Y. Gil, “Workflow composition: Semantic representations for flexible automa-
tion,” in Workflows for e-Science, pp. 244–257, Springer, 2007.

- 130 -

[52] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim, “Wings for pega-
sus: Creating large-scale scientific applications using semantic representations of
computational workflows,” in Proceedings of the National Conference on Artifi-
cial Intelligence, vol. 22, p. 1767, Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2007.

[53] R. T. Fielding and R. N. Taylor, Architectural styles and the design of network-
based software architectures, vol. 7. University of California, Irvine Irvine, 2000.

[54] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al., “Web services
description language (wsdl) 1.1,” 2001.

[55] A. Kertész, G. Sipos, and P. Kacsuk, “Brokering multi-grid workflows in the
p-grade portal,” in European Conference on Parallel Processing, pp. 138–149,
Springer, 2006.

[56] T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, and P. Kacsuk,
“Gemlca: Running legacy code applications as grid services,” Journal of Grid
Computing, vol. 3, no. 1-2, pp. 75–90, 2005.

[57] G. Allen, T. Goodale, T. Radke, M. Russell, E. Seidel, K. Davis, K. N. Dolkas,
N. D. Doulamis, T. Kielmann, A. Merzky, et al., “Enabling applications on
the grid: A gridlab overview,” The International Journal of High Performance
Computing Applications, vol. 17, no. 4, pp. 449–466, 2003.

[58] I. Taylor, M. Shields, I. Wang, and O. Rana, “Triana applications within grid
computing and peer to peer environments,” Journal of Grid Computing, vol. 1,
no. 2, pp. 199–217, 2003.

[59] G. Von Laszewski, M. Hategan, and D. Kodeboyina, “Java cog kit workflow,” in
Workflows for e-Science, pp. 340–356, Springer, 2007.

[60] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, et al., “A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel and Distributed computing,
vol. 61, no. 6, pp. 810–837, 2001.

[61] R. Henderson and D. Tweten, “Portable batch system: External reference spec-
ification,” tech. rep., Technical report, NASA, Ames Research Center, 1996.

[62] S. Zhou, “Lsf: Load sharing in large heterogeneous distributed systems,” in I
Workshop on cluster computing, vol. 136, 1992.

[63] A. J. Younge, G. Von Laszewski, L. Wang, S. Lopez-Alarcon, and W. Carithers,
“Efficient resource management for cloud computing environments,” in Interna-
tional Conference on Green Computing, pp. 357–364, IEEE, 2010.

[64] V. Welch, F. Siebenlist, I. Foster12, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke, “Gsi3: Security for grid
services,” in Proceedings of the Twelfth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-12), Citeseer, 2003.

- 131 -

[65] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel,
and J. Shalf, “The cactus worm: Experiments with dynamic resource discov-
ery and allocation in a grid environment,” The International Journal of High
Performance Computing Applications, vol. 15, no. 4, pp. 345–358, 2001.

[66] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo, “Vistrails: visualization meets data management,” in Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pp. 745–747,
2006.

[67] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan, “Bi-criteria work-
flow tasks allocation and scheduling in cloud computing environments,” in 2012
IEEE Fifth International Conference on Cloud Computing, pp. 638–645, IEEE,
2012.

[68] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility,” Future Generation computer systems, vol. 25, no. 6, pp. 599–616,
2009.

[69] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and R. Ranjan, “Osmotic flow: Os-
motic computing+ iot workflow,” IEEE Cloud Computing, vol. 4, no. 2, pp. 68–
75, 2017.

[70] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on scheduling strate-
gies for workflows in cloud environment and emerging trends,” ACM Computing
Surveys (CSUR), vol. 52, no. 4, pp. 1–36, 2019.

[71] R. Khorsand, F. Safi-Esfahani, N. Nematbakhsh, and M. Mohsenzade, “Tax-
onomy of workflow partitioning problems and methods in distributed environ-
ments,” Journal of Systems and Software, vol. 132, pp. 253–271, 2017.

[72] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, “Towards workflow schedul-
ing in cloud computing: a comprehensive analysis,” Journal of Network and
Computer Applications, vol. 66, pp. 64–82, 2016.

[73] D. Poola, M. A. Salehi, K. Ramamohanarao, and R. Buyya, “A taxonomy and
survey of fault-tolerant workflow management systems in cloud and distributed
computing environments,” in Software architecture for big data and the cloud,
pp. 285–320, Elsevier, 2017.

[74] S. Smanchat and K. Viriyapant, “Taxonomies of workflow scheduling problem
and techniques in the cloud,” Future Generation Computer Systems, vol. 52,
pp. 1–12, 2015.

[75] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient resource
management in fog computing supported medical cyber-physical system,” IEEE
Transactions on Emerging Topics in Computing, vol. 5, no. 1, pp. 108–119, 2015.

- 132 -

[76] L. Peng, A. R. Dhaini, and P.-H. Ho, “Toward integrated cloud–fog networks
for efficient iot provisioning: Key challenges and solutions,” Future Generation
Computer Systems, vol. 88, pp. 606–613, 2018.

[77] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos, “Fog
computing for sustainable smart cities: A survey,” ACM Computing Surveys
(CSUR), vol. 50, no. 3, pp. 1–43, 2017.

[78] P. Ferrari, E. Sisinni, D. Brandão, and M. Rocha, “Evaluation of communication
latency in industrial iot applications,” in 2017 IEEE International Workshop on
Measurement and Networking (M&N), pp. 1–6, IEEE, 2017.

[79] F. Tao, Y. Wang, Y. Zuo, H. Yang, and M. Zhang, “Internet of things in product
life-cycle energy management,” Journal of Industrial Information Integration,
vol. 1, pp. 26–39, 2016.

[80] N. Kaur and S. K. Sood, “An energy-efficient architecture for the internet of
things (iot),” IEEE Systems Journal, vol. 11, no. 2, pp. 796–805, 2015.

[81] S. K. Datta, R. P. F. Da Costa, and C. Bonnet, “Resource discovery in internet
of things: Current trends and future standardization aspects,” in Internet of
Things (WF-IoT), 2015 IEEE 2nd World Forum on, pp. 542–547, IEEE, 2015.

[82] S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for the inter-
net of things,” in Computer Science and Information Systems (FedCSIS), 2011
Federated Conference on, pp. 949–955, IEEE, 2011.

[83] M. Bauer, N. Bui, J. De Loof, C. Magerkurth, A. Nettsträter, J. Stefa, and
J. W. Walewski, “Iot reference model,” in Enabling Things to Talk, pp. 113–162,
Springer, 2013.

[84] W. Wang, S. De, G. Cassar, and K. Moessner, “Knowledge representation in the
internet of things: semantic modelling and its applications,” automatika, vol. 54,
no. 4, pp. 388–400, 2013.

[85] H. Neuhaus and M. Compton,“The semantic sensor network ontology,” in AGILE
workshop on challenges in geospatial data harmonisation, Hannover, Germany,
pp. 1–33, 2009.

[86] W.-P. Lee, C. Kaoli, and J.-Y. Huang, “A smart tv system with body-gesture
control, tag-based rating and context-aware recommendation,” Knowledge-Based
Systems, vol. 56, pp. 167–178, 2014.

[87] D. Weerasiri and B. Benatallah, “Unified representation and reuse of federated
cloud resources configuration knowledge,” in Enterprise Distributed Object Com-
puting Conference (EDOC), 2015 IEEE 19th International, pp. 142–150, IEEE,
2015.

[88] M. Zhang, R. Ranjan, M. Menzel, S. Nepal, P. Strazdins, W. Jie, and L. Wang,
“An infrastructure service recommendation system for cloud applications with
real-timeqosrequirement constraints,” IEEE Systems Journal, 2015.

- 133 -

[89] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in
Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Work-
shop on, pp. 85–90, IEEE, 1994.

[90] Z.-L. Chen, S. Raghavan, P. Gray, and H. J. Greenberg, “State-of-the-art
decision-making tools in the information-intensive age,” 2008.

[91] B. R. Gaines and P. Compton, “Induction of ripple-down rules applied to mod-
eling large databases,” Journal of Intelligent Information Systems, vol. 5, no. 3,
pp. 211–228, 1995.

[92] B. Kang, P. Compton, and P. Preston, “Multiple classification ripple down rules:
evaluation and possibilities,” in Proceedings 9th Banff knowledge acquisition for
knowledge based systems workshop, vol. 1, pp. 17–1, 1995.

[93] M. Kranz, P. Holleis, and A. Schmidt, “Embedded interaction: Interacting with
the internet of things,” IEEE internet computing, no. 2, pp. 46–53, 2009.

[94] D. N. Jha, P. Michalak, Z. Wen, P. Watson, and R. Ranjan, “Multi-objective de-
ployment of data analysis operations in heterogeneous iot infrastructure,” IEEE
Transactions on Industrial Informatics, pp. 1–1, 2019.

[95] M. Dimitrov, A. Simov, S. Stein, and M. Konstantinov, “A bpmo based semantic
business process modelling environment,” in Proceedings of the Workshop on
Semantic Business Process and Product Lifecycle Management (SBPM-2007),
vol. 251, pp. 1613–0073, 2007.

[96] D. Chiu, T. Hall, F. Kabir, and G. Agrawal, “An approach towards automatic
workflow composition through information retrieval,” in Proceedings of the 15th
Symposium on International Database Engineering & Applications, pp. 170–178,
ACM, 2011.

[97] P. Asghari, A. M. Rahmani, and H. Haj Seyyed Javadi, “A medical monitoring
scheme and health-medical service composition model in cloud-based iot plat-
form,” Transactions on Emerging Telecommunications Technologies, p. e3637.

[98] P. Partheeban and V. Kavitha, “Versatile provisioning and workflow scheduling
in waas under cost and deadline constraints for cloud computing,” Transactions
on Emerging Telecommunications Technologies, vol. 30, no. 1, p. e3527, 2019.

[99] G. Nikol, M. Träger, S. Harrer, and G. Wirtz, “Service-oriented multi-tenancy
(so-mt): enabling multi-tenancy for existing service composition engines with
docker,” in 2016 IEEE Symposium on Service-Oriented System Engineering
(SOSE), pp. 238–243, IEEE, 2016.

[100] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running: dive into
the future of infrastructure. ” O’Reilly Media, Inc.”, 2017.

[101] A. Amazon, “Cloud formation,” Amazon Web Services. AWS CloudFormation.
Available online: http://aws. amazon. com/de/cloudformation.

- 134 -

[102] T. L. Saaty, “Analytic hierarchy process,” Encyclopedia of Biostatistics, vol. 1,
2005.

[103] N. Glombitza, S. Ebers, D. Pfisterer, and S. Fischer, “Using bpel to realize
business processes for an internet of things,” in International Conference on Ad-
Hoc Networks and Wireless, pp. 294–307, Springer, 2011.

[104] D. Domingos, F. Martins, C. Cândido, and R. Martinho, “Internet of things
aware ws-bpel business processes context variables and expected exceptions.,” J.
UCS, vol. 20, no. 8, pp. 1109–1129, 2014.

[105] G. Chen, J. Huang, B. Cheng, and J. Chen, “A social network based approach for
iot device management and service composition,” in 2015 IEEE World Congress
on Services, pp. 1–8, IEEE, 2015.

[106] A. Urbieta, A. González-Beltrán, S. B. Mokhtar, M. A. Hossain, and L. Capra,
“Adaptive and context-aware service composition for iot-based smart cities,” Fu-
ture Generation Computer Systems, vol. 76, pp. 262–274, 2017.

[107] R. Chen, J. Guo, and F. Bao, “Trust management for soa-based iot and its
application to service composition,” IEEE Transactions on Services Computing,
vol. 9, no. 3, pp. 482–495, 2014.

[108] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, and R. Buyya, “An energy-aware
service composition algorithm for multiple cloud-based iot applications,” Journal
of Network and Computer Applications, vol. 89, pp. 96–108, 2017.

[109] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning cost
in cloud computing,” IEEE transactions on services Computing, vol. 5, no. 2,
pp. 164–177, 2011.

[110] S. A. Karthikeya, J. Vijeth, and C. S. R. Murthy, “Leveraging solution-specific
gateways for cost-effective and fault-tolerant iot networking,” in 2016 IEEE
Wireless Communications and Networking Conference, pp. 1–6, IEEE, 2016.

[111] H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu, “Reliability
in the utility computing era: Towards reliable fog computing,” in 2013 20th
International Conference on Systems, Signals and Image Processing (IWSSIP),
pp. 43–46, IEEE, 2013.

[112] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s intranet of things to
a future internet of things: a wireless-and mobility-related view,” IEEE Wireless
communications, vol. 17, no. 6, pp. 44–51, 2010.

[113] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things:
Vision, applications and research challenges,” Ad hoc networks, vol. 10, no. 7,
pp. 1497–1516, 2012.

[114] D. Zhang, L. T. Yang, and H. Huang, “Searching in internet of things: Vision
and challenges,” in 2011 IEEE Ninth International Symposium on Parallel and
Distributed Processing with Applications, pp. 201–206, IEEE, 2011.

- 135 -

[115] X. Yu, B. Nguyen, and Y. Chen, “Internet of things capability and alliance:
Entrepreneurial orientation, market orientation and product and process inno-
vation,” Internet Research, vol. 26, no. 2, pp. 402–434, 2016.

[116] S. C. Mukhopadhyay and N. K. Suryadevara, “Internet of things: Challenges
and opportunities,” in Internet of Things, pp. 1–17, Springer, 2014.

[117] C. Perera, R. Ranjan, L. Wang, S. U. Khan, and A. Y. Zomaya,“Big data privacy
in the internet of things era,” IT Professional, vol. 17, no. 3, pp. 32–39, 2015.

[118] R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,” Computer,
vol. 44, no. 9, pp. 51–58, 2011.

[119] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pp. 13–16, 2012.

[120] A. Kumar, N. C. Narendra, and U. Bellur, “Uploading and replicating internet of
things (iot) data on distributed cloud storage,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), pp. 670–677, IEEE, 2016.

[121] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “Caching in named data
networking for the wireless internet of things,” in 2015 international conference
on recent advances in internet of things (RIoT), pp. 1–6, IEEE, 2015.

[122] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Mobile edge computing
and networking for green and low-latency internet of things,” IEEE Communi-
cations Magazine, vol. 56, no. 5, pp. 39–45, 2018.

[123] A. Javed, K. Heljanko, A. Buda, and K. Främling, “Cefiot: A fault-tolerant iot
architecture for edge and cloud,” in 2018 IEEE 4th world forum on internet of
things (WF-IoT), pp. 813–818, IEEE, 2018.

[124] A. Power and G. Kotonya, “A microservices architecture for reactive and proac-
tive fault tolerance in iot systems,” in 2018 IEEE 19th International Sympo-
sium on” A World of Wireless, Mobile and Multimedia Networks”(WoWMoM),
pp. 588–599, IEEE, 2018.

[125] J. Grover and R. M. Garimella, “Reliable and fault-tolerant iot-edge architec-
ture,” in 2018 IEEE SENSORS, pp. 1–4, IEEE, 2018.

[126] A. Brogi and S. Forti, “Qos-aware deployment of iot applications through the
fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1185–1192, 2017.

[127] Y. Li, A. Alqahtani, E. Solaiman, C. Perera, P. P. Jayaraman, R. Buyya, G. Mor-
gan, and R. Ranjan, “Iot-cane: A unified knowledge management system for
data-centric internet of things application systems,” Journal of Parallel and Dis-
tributed Computing, vol. 131, pp. 161–172, 2019.

136

	Introduction
	Research Questions
	Research Contributions
	Thesis Structure

	Background and Literature Review
	Internet of Things
	IoT/CPS Architecture
	Data Analytics in IoT

	Configuration Management and Deployment Automation
	Concept and Dimensions of Configuration Management and Automation Deployment
	Configuration Management and Deployment Automation in IoT
	Dimensions of Configuration Management and Deployment Automation

	Configuration Management and Deployment Automation Tools: State of the Art
	Evaluation of Configuration Management and Deployment Automation Tools

	Workflow Composition and Orchestration
	Scientific Workflow System
	Scientific Workflow Specification
	Scientific Workflow Composition
	Scientific Workflow Scheduling
	Scientific Workflow Execution
	Scientific Workflow Provenance

	Internet of Things Workflow
	IoT Workflow Composition and Orchestration

	IoT Workflow Composition and Orchestration Tools: State of the Art

	Conclusion

	IoT-CANE: A Unified Knowledge Management System for Data-Centric Internet of Things Application Systems
	Introduction
	Related Work
	Multi-layer Resources Configuration Management Issues in IoT
	Conceptual Model in IoT
	Context-aware Recommender Systems

	Conceptual Model and System Architecture
	Conceptual Model
	System Architecture

	Recommendation System Technique
	Recommendation Rule
	Single Conclusion Ripple Down Rules

	Design and Implementation
	System Design
	System Workflow
	Recommendation Rule Tree
	Computational Complexity

	User Evaluation
	Experiment setup
	User Evaluation

	Conclusion and Future Work

	IoTWC: Analytic Hierarchy Process Based Internet of Things Workflow Composition System
	Introduction
	Related Work
	IoT Workflow Activity Abstract Pattern
	IoTWC: AHP-based Model and Multi-level Composition Framework
	IoT Analytic Hierarchy Process Based Model
	Criteria Definition
	Resource Cost
	Resource QoS
	Data

	Multi-level Composition Framework
	Computational Complexity Analysis

	System Design and Implementation
	System Architecture
	System Workflow
	System Implementation

	System Evaluation
	User Case Study
	Experiment Setup
	User Evaluation

	Scenario Validation
	Scenario Description
	Scenario Validation

	Conclusion and Future Work

	A Fault-Tolerant Workflow Composition and Deployment Automation IoT framework in a Multi-Cloud Edge Environment
	Introduction
	Related Work
	IoT Fault-tolerance Model
	System Design
	System Architecture
	Workflow Layer
	Infrastructure Layer
	Deployment Layer
	Recovery Layer

	System Execution Workflow

	Evaluation
	Application Requirements
	Experiment Setup
	Failure Model
	Experiment Result

	Conclusion

	Conclusions and Future Work
	Thesis Summary
	Future Research Directions
	Dynamic Distributed Workflow Deployment
	Resource Prediction in IoT Workflow Composition
	Feedback-based IoT Workflow Composition
	Workload Prediction based Workflow Orchestration

	Bibliography

