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Abstract 
 

Interests in commodity price dynamics are not new phenomena. Booms and slumps in recent 

decades have renewed the interest in understanding the factors behind agricultural commodity 

price movements. This thesis includes a collection of empirical chapters concentrate on critical 

aspects concerning the movement behaviours of selected grains prices in the United States. In 

particular, this thesis contributes to studies in applied commodity price analysis.  

 

The agricultural commodity price is characterised as being highly volatile and the factors lying 

behind these fluctuations are characterised by a significant complexity. Chapter 2 discusses the 

agricultural commodity price developments and main factors associated with agricultural 

commodity price dynamics in the United States. This chapter leads the subsequent chapters 

with the motivations for the selected factors discussed in this thesis and the technical methods.  

 

Using data on energy markets and agricultural commodity export prices, chapter 3 identifies 

the long-term co-movements between diesel prices and corn export prices in the U.S., 

considering diesel powers the U.S. economy in exporting agricultural commodities and 

offering long-term productivity gains in the fundamental sectors. The analysis provides 

evidence of a positive connection between diesel prices and corn export prices in the long-term. 

Besides, by employing the quantile-based analysis, this study also finds the long-run relations 

between corn and diesel prices vary over different market conditions. The findings in chapter 

3 imply that the response of corn export prices to changes in diesel prices is generally much 

steeper when corn export prices at normal levels than in extreme levels.  

 

Considering the threats of climate changes on agricultural commodity production, chapter 4 

analyses the effects of extreme climate events on the movements of agricultural commodity 

price. Particularly, the chapter explores the extent by which changes in an important climate 

phenomenon, El Niño Southern Oscillation (ENSO), have contributed to the dynamics of 

grains prices in the United States. Previous works contribute to the belief that the dynamic 

relation of ENSO events on grain prices should be nonlinear in nature. To take the climate 

volatility information and nonlinear feature into account, this analysis fits an interval-based 

threshold model. This chapter finds that the warm condition increases the prices of soybeans 
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and corn, and the cooler condition has an impact on wheat and corn. These results can help 

form policies on storage and production decisions. 

 

Chapter 5 provides evidence for the agricultural commodity market efficiency of the United 

States on the causal effects of agricultural commodity futures prices on cash prices. Applying 

three time-varying methods, with placed on grains markets including wheat, soybean and corn, 

chapter 5 finds that the causal effects between futures and cash prices change over time and 

depend on agricultural commodity markets. This chapter has proved that the cash and futures 

prices linkages behave differently in wheat and soybean, corn markets, implying a time-varying 

bidirectional causality in the wheat markets but unidirectional causal effects in the soybean and 

corn markets.  

 

The joint theme and main contribution of this thesis lie on providing new evidence in relevant 

issues in applied agricultural commodity prices analysis by employing econometric methods 

in a novel way.  
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Chapter 1. Introduction 
 

This thesis analyses the dynamic behaviour of agricultural commodity prices movements, with 

relation to factors that are known to influence such behaviour. The focus is on U.S. prices, and 

this thesis deals with three main research topics: The relation between energy prices and 

agricultural commodity prices; the impact of global climate changes on agricultural commodity 

prices; and the role of financial derivatives and physical agricultural commodity prices.  

 

The interest in the commodity price dynamics is not a new trend. Large price fluctuations in 

recent decades have renewed interest in understanding the factors behind agricultural 

commodity price dynamics. It is widely acknowledged that agricultural commodity prices have 

experienced booms and slumps over the years. Specifically, there is a significant surge in 

agricultural commodity prices in both 2007-2008, but the prices of commodities increase 

decelerated in the second half of 2008 and then drop sharply during the midst of the financial 

and economic crisis. Booms and slumps in agricultural commodity prices are inevitable in the 

following decades. Understanding the transmission mechanism between the different factors 

and agricultural commodity prices is helpful for forecasting and risk management. In the 

United States, programmes such as the Farm Commodity Programme and the Direct Payments 

Programme tend to protect farmers against adverse price shocks (Ghoshray, 2019). However, 

the previous mixed findings make it unclear to predict how the different shocks affect prices. 

With looming federal budget deficits, the considerable variability in predicting the cost of risk 

management policies has induced discussions on the efficiency of such policies. As a result, it 

is necessary to know the relations between factors and agricultural commodity prices. The work 

of this thesis is built upon three research questions and concerned with three aspects that affect 

the agricultural commodity prices giving special attention to the grains including, wheat, 

soybean and corn. 

 

The thesis is organised in five chapters. Chapter 2 provides the background regarding each 

chapter. Chapter 3, 4 and 5, make a contribution to this research in the form of three essays that 

cover the three research topics as outlined earlier. In particular, given the importance of 

transporting grains from the prairies of the U.S to the ports for exports, Chapter 3 investigates 

the swings of energy prices on the agricultural prices. Since extreme climatic events can cause 

changes in temperature and precipitation, Chapter 4 is concerned with the effects of climate 
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changes on agricultural prices. Finally, chapter 5 analyses the effects of changes in the financial 

derivative instruments prices to the variations in the agricultural commodity prices.  

 

The recent strong co-movements between energy prices and agricultural commodity prices 

have renewed interest in exploring the transmission mechanism between oil prices and 

agricultural commodity prices (Dimpfl et al., 2017; Nazlioglu, 2011). Energy prices are 

considered fundamental in increasing agricultural commodity prices. The direct causal link 

between energy and agricultural commodity prices is made with production and transportation 

costs (Reboredo, 2012, Tothova, 2011). The oil price transmission to agricultural commodity 

prices suggests that the increasing energy prices drive up the agricultural commodity prices by 

adding the production costs including the fertilizer, chemicals, transportation and other inputs 

(Nazlioglu, 2011). In the United States agricultural sector, there is no cost-effective substitute 

for diesel engines with the same combination of energy efficiency, power and performance, 

durability and reliability. Diesel engines power most of the farm equipment in the United States 

(EIA, 2018). In addition, 90 per cent of agricultural products are transported by trucks and 

trains with diesel engines. Compared to other oil derivatives, diesel prices should be closely 

related to agricultural commodity prices. An increase in diesel prices could increase the input 

costs and transportation costs, and a corresponding rise in agricultural commodity prices. 

Diesel prices and agricultural commodity prices are expected to co-move in the long-run. 

 

Chapter 3 builds on the studies that analyse the long-term co-movements between energy prices 

and agricultural commodity export prices. The variability of energy prices has a direct impact 

on agricultural commodity prices through a range of aspects such as farm production inputs 

and transportation costs (Cabrera and Schulz, 2016; Nazlioglu, 2011; Nazlioglu and Soytas, 

2012; Nazlioglu et al., 2013). We focus on the U.S. as it is the leading producer and exporter 

of several important agricultural commodities. The motivation of this chapter is to analyse the 

long-run relationship between diesel and corn export prices, given the central role that diesel 

plays in transporting corn (EIA, 2018; Wensveen, 2016). The empirical evidence on the long-

run relationship so far is mixed. A potential reason may be the response of agricultural 

commodity prices to energy prices that could vary at different market conditions (Pal and Mitra, 

2017b). Corn is a storable commodity. Exporters could increase or decrease the storage of the 

corn. This leads to the changing demand for diesel. Exporters are not sensitive to the diesel 

price changes when they only need less diesel. These features prove that the long-run 
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relationship could change according to the corn export prices levels. The contributions of this 

chapter to the studies are on two counts. First, this chapter reveals the dominant role of diesel 

in the U.S. agricultural sector. Second, we contribute to identifying the long-run linkage 

between corn export price and diesel prices in the United States. In particular, this chapter 

deviates from past studies and provides a timely contribution by identifying that the long-run 

relationship between diesel and corn export prices varies according to the market conditions.  

 

Climate change is set to have a major impact on the agricultural sector because agriculture is 

among the more climate-sensitive human activities that most rely on climate conditions (Hertel 

et al., 2010). The agricultural sector is more vulnerable to growing conditions. Climate changes 

are characterised as significant sources for agricultural commodity price changes (Gilbert and 

Morgan, 2010). Agricultural production has been affected by climate changes from several 

different conditions, including dryness, excess precipitation, and even more hazardous 

manifestations like wildfires and hurricanes (Tack and Ubilava, 2015). Considering global 

climate changes could lead to production variability and therefore affect market fundamentals 

and commodity prices (Tothova, 2011). Specifically, Climate change is likely to trigger 

weather variability and the occurrence of extreme conditions that potentially generates weather 

shocks on agricultural prices. Climate variations and increasing global mean temperature 

(GMT) create significant threats to the global natural systems as well as socioeconomic well-

being (Smith et al., 2009). For instance, small changes in GMT could lead to serious adverse 

effects on agricultural productions, especially for tropic regions (Müller et al., 2011; 

Rosenzweig et al., 2014). Weather conditions play a crucial role in all aspects of commodity 

prices, which includes commodity access, utilisation and commodity price stability. As such, 

the climate conditions, compared to other factors, are considered to be the major factor in the 

food prices (Headey and Fan, 2008).  

 

Chapter 4 is on the relationship between climate changes and agricultural commodity prices 

and places attention on the grains farm prices, which are most likely to be impacted by variable 

climate conditions. For quite some time there have been warnings about increasing 

temperatures and declining precipitation related to global warming having a profound impact 

on agricultural production and prices, especially grains (Lobell et al. 2008). El Niño Southern 

Oscillation (ENSO) is one of the most important climate phenomena that exists over the 

tropical Pacific and shows a close correlation to global weather implications (Chen and McCarl, 
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2000; Collins et al., 2910; Dai 2013; Timmermann et al., 1999). ENSO exerts impacts on crop 

prices in several ways (Marlier et al., 2013; Cashin et al., 2017). This chapter contributes by 

exploring to what extent and how such climate phenomenon has impacted the grains farm 

received prices, including wheat, soybean and corn. Recent studies contribute to the belief that 

the dynamic relation of ENSO events on grain prices should be nonlinear in nature (Ubilava 

and Holt, 2013; Ubilava, 2017a; Ubilava, 2017b). Typically, ENSO itself is characterised as 

asymmetric cyclical variations with turbulent periods (An and Jin, 2004; Hall et al., 2001; 

Kohyama et al., 2018; Ubilava and Helmers, 2013). The findings of this chapter indicate that 

the warm phase of ENSO drives the prices of soybeans and corn. In comparison, the cooler 

phase of the ENSO has an impact on wheat and corn. The contribution of this chapter is to 

identify the asymmetries in the transmission of climate extreme events and explore how these 

asymmetries behave differently in various grains. Unlike most existing works examining the 

climate variations in levels, this study adopts a novel approach to measure climate changes by 

means of a range to cover both level and volatility information.  

 

Over the last decade, the recorded fluctuated agricultural commodity prices are attributed to 

the growing role played by financial instrument trading, especially financial derivatives trading 

(Ouyang and Zhang, 2020). Beforehand the year of 2000, hedgers are the major participants in 

the commodity futures markets and they mainly engage in leveraged trading (Hirshleifer, 1988). 

Besides, commodity markets have a low or negative relation to other external financial markets 

such as stock and bond markets. Therefore, commodities are commonly used by institutional 

investors for portfolio diversification (Gorton and Rouwenhorst, 2006). However, the past 

decade has witnessed large capital inflows into commodity markets and the increasing 

popularity of commodity investing leads to an unprecedented inflow of institutional funds into 

commodity futures markets (Basak and Pavlova, 2016). The scale of the speculative positions 

in the commodity futures markets increases rapidly and over the commercial traders who 

participate in the business activities in the underlying spot markets; the commodities become a 

popular asset class for portfolio investors, a process known as ‘financialisation of commodity 

markets’ (Basak and Pavlova, 2016; Bohl and Stephan, 2013). Traditionally, futures markets 

are introduced for commodity suppliers and demanders to mitigate later cash prices risks and 

control costs. Given futures market is considered fundamental in facilitating and price 

discovery and risk sharing, the emerging financialisation of commodity markets raise the 

general question of the functioning and interaction of commodity futures and cash prices 
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(Mayer et al., 2017). The issues of the abilities of agricultural commodity futures and spot 

market to discover price has broad implications for varying horizons of traders such as 

producers, hedgers, consumers and speculators. In this regard, understanding the spot-futures 

lead-lag relationship for the special asset class of agricultural commodities assumes particular 

importance.  

 

Chapter 5 reconsiders the lead-lag relationship between spot and futures agricultural 

commodity prices in the United States, with particular interests in wheat, soybean and corn, 

because they are the top three popular agricultural futures contracts in the United States. Past 

studies tend to lend support to the leadership role of the futures prices over cash prices because 

of the lower transaction costs, higher liquidity and transparency (Herbst et al., 1987; Xu, 2018). 

However, less is known about the time-varying relations between agricultural commodity cash 

and futures markets. The pattern of the lead-lag is sensitive to the choice of the sample period. 

The direction of causality could vary with the new information received alongside the time and 

price movements (Kawaller et al., 1987). At certain periods of time, the flow of information 

may be relatively sluggish, thereby affecting the lead-lag relationship. This implies that the 

relationship between futures and spot prices can be sensitive to the chosen time period 

(Alzahrani et al., 2014; Balcilar et al., 2015; Bekiros and Diks, 2008; Polanco-Martínez and 

Abadie, 2016; Silvapulle and Moosa, 1999). The time-varying features incorporated in the 

lead-lag relationship has received limited attention, which motivates this chapter to explore the 

potential time-varying nature of the lead-lag relationship. The empirical results from this 

chapter show a time-varying causality in the case of wheat, and unidirectional effects are 

revealed in the cases of soybean and corn. The core contribution of this chapter consists of 

providing new additions on the issues of market efficiency in the agricultural commodity 

markets and revealing the lead-lag causality for the selected grains. Knowing the time-varying 

lead-lag relationship between spot and futures prices is useful for producers. Producers could 

fix sales prices according to the spot or futures prices ahead of production and adjust supply 

decisions for the chosen time. Besides, the lead-lag relations change at different time periods, 

which is important for hedges to predict the possible movements in spot and futures prices to 

minimise the risks. This chapter also contributes by applying a novel time-varying Granger 

causality test that based on a recursive evolving window procedure. This method allows for 

potential heteroscedasticity in the testing process and no need for data transformation.  
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Chapter 2. Agricultural Commodity Price Movements 
 

2.1 Introduction 

Following the seminal paper of Samuelson (1965), there is now widely acknowledged that 

commodity prices often change randomly (Brooks and Prokopczuk, 2013). Agricultural 

products prices are considerably more volatile than are the prices of most non-agricultural 

commodities and services. It is broadly known that commodity prices could decrease by 75 per 

cent or jump by 100 or more per cent during only some months (Tomek and Kaiser, 2014). The 

persistence in volatility in agricultural commodity prices reveals the continued uncertainty in 

terms of how market fundamentals have unfolded and how they are likely to develop (Tothova, 

2011). Producers usually voice concerns about the increased price fluctuations because they 

make production decisions partly based on expected prices (Tomek and Kaiser, 2014). Large 

swings in agricultural prices introduce difficulties in forecasting the price (Piot-Lepetit and 

M’Barek, 2011). To the extent that their expectations are not realised, prices and yield risk 

occurs (Tomek and Kaiser, 2014). In addition, agricultural prices are important for consumers’ 

access to food. High volatility in prices may restrict the ability of consumers to secure supplies 

and manage input costs. Rising uncertainties in agricultural prices indicate that buyers and 

sellers of commodities will face large price risks (Tomek and Kaiser, 2014).   

 

The price volatility of most commodity prices, including agricultural prices, appear to have 

moderated and currently are much lower than in 2011. However, price volatility and ways to 

solve its impacts on producers and consumers still worry both market participants and policy-

makers. Policies to solve perceived and real problems related to agricultural commodity price 

uncertainties could be misconceived if they are not based on the comprehensive understanding 

of price movement factors (Baffes and Haniotis, 2016). Therefore, it is crucial to understand 

the nature of these stochastic movements and underlying causes (Brooks and Prokopczuk, 

2013). This chapter introduces the factors and the motivations for the selected factors in this 

thesis.  

 

This chapter first reviews the performance of volatile prices and discusses the dynamics of 

agricultural commodity prices. Next, section 2.2 moves to review the typical factors that have 

caused the changes in the agricultural commodity prices within the current economic 

environment. Section 2.3 emphasises three key issues that are of key significance to agricultural 
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prices. The logistical issues of transportation of grains from the prairies to the ports of exports 

call for the relation of diesel prices and agricultural prices. Climatic change has been hogging 

the limelight in recent years and is likely to have an impact on agricultural prices by affecting 

the production. We concentrate on the certainly most discussed climate anomalies, ENSO, and 

its impacts on grains prices. Last, we investigate the financial side of commodities by analysing 

the lead-lag relationship between cash and futures markets in a dynamic environment. This 

thesis is empirical in nature, and therefore the final part of each subsection in section 2.3 

describes how the econometric procedures add to new knowledge about the price dynamics of 

agricultural prices. To this end, a contribution of this thesis consists of applying the newly 

developed econometric methods that could shed further light on the contentious issues that are 

dealt with in this thesis and inform policy-makers related to agriculture. In addition, section 2.3 

briefly illustrates the key contribution of each chapter and answering the question of new 

additions provided by this thesis.  

 

2.2 Agricultural commodity price performances 

The first decade of the new millennium has witnessed a longest and broadest boom in 

commodity prices and widespread financialisation of commodity products since World War II 

(Baffes and Haniotis, 2016). Sharp booms and slumps in agricultural commodity prices are 

common, and the current price spike is still evolving. According to Peters et al. (2009), there 

are six spikes in agricultural commodity prices since 1970. In each price spikes period, the 

large growth in agricultural prices are followed by a dramatic drop, and the prices rocket to the 

record highs before decreasing. Typically, the declines in prices are as much as the rises after 

the conditions that drive the increase was reversed. Between the spikes in the 1975 and 2008, 

the agricultural commodity prices only decrease to a new plateau that higher than the historical 

average values. Particularly, agricultural commodity prices have experienced substantial spikes 

from 2002 with significant spikes in 2007-2008 and again in 2010-2011 (Borychowski and 

Czyżewski, 2015).  

 

Figure 2.1 reports the performance of the food commodity price index and crop price index 

over the period of 2002-2011. The overall agricultural commodity prices show particularly 

marked run-ups during 2002-2008 and reverse to decline rapidly after reaching the highest 

level in the mid-2008. Compared to the overall food commodity price index, the four basic 

crops price index, including wheat, soybean, corn and rice, show especially greater price 
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fluctuations in the recent decade. To show the performance of the crop prices, the Economic 

Research Service (ERS) in the United States Department of Agriculture (USDA) has 

constructed a four-crop index, which also applies the International Monetary Fund (IMF) 

monthly prices weighted by global trade shares. Figure 2.1 shows that the four-crop price index 

begins increasing in 2002, reversing the 20-year downward trend. The index of monthly-

average world prices for these four basic crops rises accelerated and reaches a peak in nearly 

thirty years, with 226 per cent jumping from January 2002 to June 2008. Then the four-crop 

index upswing decelerates and decreases sharply with 40 per cent in the following half-year, 

the midst of the financial and economic crisis period. Wheat and corn prices tripled in this 

period (Von Braun, 2008a). A similar price movement’s pattern occurs between June 2010 and 

March 2011, where the four-crop index slowly began to climb once again and increased by 70 

per cent in 2011. The largest price swings are found in the wheat and corn prices.  

 

 
 

Figure 2.1: Food commodity price index and crop price index, 2002-2011 

 

Agricultural commodity prices have now decreased significantly after the peaks in early 2011. 

However, the prices in real terms are still with 40 per cent higher than the lows in 2000 (Baffes 

and Haniotis, 2016). Increasing agricultural commodity prices and related rising food prices 

have received much press and led to aroused concerns, given the effects of two major price 

spikes in 2007-2008 and 2010-2011 are still on the minds of producers, consumers, agricultural 

businesses and governments (Trostle, 2011a). In both developed and developing countries, 

consumers suffer the effects of increasing food prices, especially during the periods of overall 

inflationary pressures. Producers also face pressures from the rising costs. Meanwhile, all 
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individuals feel the effects of the agricultural commodity price spikes, which is commonly 

recognised as ‘perfect storm’, which last persistently even when the immediate effects of the 

Great Recession gradually subside (Baffes and Haniotis, 2016). The rising food prices have 

drawn the attention of the United Nations’ Food and Agricultural Organisation (FAO), who 

have called for additional research on the rapidly increasing food prices. These sharp increases 

in agricultural commodity prices disproportionately affect global consumers in an adverse 

manner, especially those who are living in low-income and food-importing countries.  

 

2.3 Factors explaining agricultural commodity dynamics 

Not every commodity market experiences price fluctuations. They tend to be markets where 

the supply and demand conditions of the products are relatively stable every year, and where 

both the supply elasticity and demand elasticity are high. Only the markets with unstable supply 

and demand conditions on products will experience price changes year by year (Piot-Lepetit 

and M’Barek, 2011). For agricultural commodity markets, agricultural prices change because 

of the variabilities in production and demand consumption (Gilbert and Morgan, 2010). As 

introduced above, agricultural prices are very volatile over 2006-2011. Studies on exploring 

the sources of agricultural commodity price movements have shifted the focus from the topics 

of ‘yesterday’ towards more pertinent today because of the more volatile current prices (Baffes 

and Haniotis, 2016). This implies more studies have concentrated on the factors that are typical 

for current economies, especially during and after the price spikes of 2007-2008 and 2010-

2011 (e.g. Meyers and Meyer, 2008; Tothova, 2011; Trostle, 2010). A number of factors and 

their interactions can be identified as lying behind the movements in these grains prices. The 

typical supply-side factors in current economies include (1) production costs or the production 

factors prices (from macroeconomic perspective), in which the energy and energy resources 

prices such as oil, natural gas and coal prices account for the large part; (2) the availability of 

arable land for agricultural purposes; (3) the developments in agricultural techniques and 

biological progress; (4) climate changes and adverse weather conditions with their related 

effects. The typical demand-side prices factors include (1) population; (2) economic 

development degree, demand scale as well as the changing structure of consumption; (3) 

alternative possibility of the arable land usage and competition for agricultural land between 

food market and bioenergy sector; (4) financial speculation and activity in commodity markets 

(Gilbert and Morgan, 2010; Borychowski and Czyżewski, 2015). The purpose of this thesis is 

to investigate certain factors – that are distinct in their own right - which contribute to the 
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agricultural commodity price dynamics. We try to explain the transmission mechanisms. The 

motivations for the certain factors discussed in this thesis are introduced below.  

 

2.3.1 Energy price 

Energy prices, along with agricultural commodity prices, are two vital determinants of the 

global economic performance. Typically, energy, as a crucial commodity worldwide, affects 

different economy sectors either through direct or indirect channels (Nikkinen and Rothovius, 

2019). It may be expected that there is a feedback effect between energy and agricultural prices. 

On the one hand, given crude oil is a considerable input for transportation and processing in 

the agricultural sector, rising oil prices raise crop prices by pushing up production costs 

(Cabrera and Schulz, 2016). On the other hand, increased energy prices lead to energy policies 

that tend to be towards renewable and cheaper energy sources. In this regard, energy policies 

develop to support biofuel production and alternative energy sources. The increases in biofuel 

production raise the demand for agricultural commodities and boost their prices (Chen et al., 

2010; Nazlioglu, 2011).  

 

In a dominant part of the literature on agricultural commodity price dynamics, the energy 

market is conceived to play a critical role in affecting the agricultural price behaviour (Baffes, 

2011; Tothova, 2011). In the past 15 years, the global economy has experienced a two-surge 

in commodity prices. Agricultural commodity prices have witnessed several booms and slumps 

after 2000, and they tend to relate to trends in energy commodities because oil prices have been 

volatile. For example, oil prices have embarked on a bull run from September 2004 and peaked 

at $145 per barrel in 2008, but this surge stopped because of the Global financial crisis, and by 

the end of 2008, the oil prices plunge to $40 per barrel (Fowowe, 2016). This volatile behaviour 

has been reflected in agricultural commodity prices. In particular, the movements of 

agricultural commodity prices have matched with those of energy prices (Nazlioglu et al., 

2013). The co-movement among most prices, especially between energy and non-energy 

commodities, is one key feature of the commodity price surges from the beginning of 2006 to 

the end of 2011. Such co-movement behaviour is often identified in conjunction or attributed 

to the agricultural commodities (Baffes, 2011). Particularly, during the global food crisis period, 

around the beginning of 2006 until the middle of 2008, the prices of the major crops including 

wheat, soybean and corn show dramatic growth compared to other agricultural commodities, 

and rise in concurrence with oil prices and reach the highest level. The joint swings are further 
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observed to drop at the end of 2008 and restart to steadily increase to around $124 a barrel in 

April 2011 (Pal and Mitra, 2017a). Consistent with this argument, crude oil and grains return 

co-move with increased correlations between two markets for years. The increased correlations 

are related to a rise in the direct pass-through between energy markets and grains markets (Serra, 

2011; Tyner, 2010). The concurrent movements in energy and agricultural commodity prices, 

as well as the increase correlations between two markets, indicate world oil price is a primary 

factor for the volatile agricultural commodity prices (Nazlioglu and Soytas, 2012). Given the 

observed co-movements between energy and agricultural markets have renewed interest in 

identifying price transmission from energy prices to agricultural commodity prices, the issue 

of knowing the relationship between these two markets continues to attract attention over the 

years (Nazlioglu et al., 2013). In particular, this observed co-movement have attracted 

widespread attention to examine the factors of energy prices to agricultural prices, and identify 

the possible transmission mechanism between energy and agricultural markets. 

 

Two important transmission mechanisms have been identified for explaining the pass-through 

from energy prices to agricultural prices. The first linkage is based on the cost-push effects 

from energy prices to agricultural commodity prices. For a long time, it is argued that the farm 

input, production, storage and transportation of agricultural commodities have been affected 

by energy prices (Nazlioglu et al., 2013). A large amount of energy has been consumed for 

agricultural production which consumed directly for the use of the combustion of fossil oils, 

such as gasoline, diesel and petroleum for operating equipment, or indirectly used as necessary 

energy-intensive inputs, particularly fertilizer. Between 2005 and 2008, the averaged direct 

energy use expenses and fertilizer expenses account for approximately 6.7 and 6.6 per cent of 

entire production expenses in the United States farm sectors, respectively. However, these 

average values cannot reflect much greater energy intensities for major field crops. Therefore, 

the agricultural production becomes sensitive to the energy price movements, whether the 

movements are caused by global oil markets, policies related to the environmental objectives 

or policies for improving energy security (Sands et al., 2011). Secondly, it is argued that the 

rising energy prices lead to increased agricultural commodity prices through rising demand for 

the agricultural commodities applied for biofuel production to respond to the increased biofuels 

demand (Ciaian, 2011a; Nazlioglu and Soytas, 2012). United States Department of Agriculture 

(USDA) points an accelerating process of biofuel production since 2003 in the United States. 

In the European Union, the biofuel production increased in 2005. The conventional anecdotal 
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evidence indicates that energy and agricultural correlation is relatively low and negative. 

However, in addition to the cost-push effects, the stronger positive correlation between two 

prices is partially related to the increased production of biofuel from agricultural commodities 

(Beckman et al., 2012).  

 

The above transmission mechanism between energy and agricultural commodity prices suggest 

the energy costs are the essential component of the inputs for agricultural production. Therefore 

one of the recent tendencies in agricultural price determination is to identify the dependency 

for long periods between them. A large volume of empirical studies have examined the 

presence of a long-run relationship between energy and agricultural commodity prices but the 

findings in the literature are polarised. One the one hand, it is found that the energy and 

agricultural prices co-move in the long-run (e.g. Balcombe and Rapsomanikis, 2008; Pal and 

Mitra, 2017a; Paris, 2018; Serra et al., 2011). On the other hand, there are several empirical 

studies unable to conclude long-term energy-agriculture linkage (e.g. Koirala et al., 2015; 

Natanelov et al., 2011; Nazlioglu, 2011 and Zhang et al., 2010). As this literature review shows, 

there leaves a gap in understanding the long-run relationship because of no consensus with 

respect to the energy-agricultural commodity prices nexus.  

 

After the 2008 world food crisis, surges in agricultural prices have added additional risks to 

producers and consumers, resulting in tremendous pressure to the world food insecure issues 

(Nazlioglu and Soytas, 2011). Surges in agricultural commodity prices add additional stress on 

the family budget of poor household, which is expected to exacerbate world hunger problem. 

These combined effects pose a series of challenges in policymaking (Xu et al., 2018). Therefore, 

for policymakers, it is essential to be aware of the connection between the energy and 

agricultural sectors for the purpose of adopting an effective set of policy tools to maintain price 

stability and provide significant implications for policy adjustments that based on the dynamic 

market condition (Su et al., 2019).  

 

The upshot from these discussions suggests that, given the following properties, energy price 

is an important factor and should be revisited when understanding the agricultural commodity 

price dynamics based on the following reasons: (a) the tendency of the basic agricultural 

commodity prices has roughly followed the same pattern as oil prices over the years. (b) energy 

is directly linked to agricultural commodity prices as it is a fairly significant input for 
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transportation and processing in the agricultural sector. (c) increasing energy prices related 

accelerating process of agricultural fuel production has induced the movements in agricultural 

commodity prices. (d) while there are a growing number of studies that propound the issue of 

energy-agricultural commodity prices linkage, the empirical evidence is not clear-cut. Further 

analysis is required to handle the issue within the context of different methods. Finally, (e) 

information about energy-agricultural nexus can be useful for policymakers, especially to 

maintain price stability and design policy adjustments. These considerations have motivated 

chapter 3 of this thesis to examine the factor of energy prices to address a gap in the extant 

works of agricultural commodity price dynamics.   

 

The long-run relationship may vary among different market conditions. The linear relationship 

between energy prices and agricultural prices may not always hold (Pal and Mitra, 2017b).For 

example, when oil prices decrease farmers instead supplying soybean as feedstock may sell 

soybean to feed processing plants or may choose to export. Besides, some agricultural 

commodities such as wheat, soybean and corn are storable agricultural commodities. Market 

participants such as exporters may choose to store these commodities in the situation that 

beneficial for them to increase storage. On this condition, they will reduces the demand for 

energy for transport purpose and become less sensitive to the energy price changes. Moreover, 

it is widely known that commodity prices including energy prices and agricultural commodity 

prices are known to be highly volatile. Both energy and agricultural commodity prices are 

characterised by negative skewness and excess kurtosis (Deaton and Laroque, 1992). This 

chapter argues that the underlying properties of commodity prices have been overlooked in 

past studies which can potentially affect the conclusion of long-run co-movement between 

these variables. Chapter 3 contributes to the existing literature by employing the quantile 

cointegration procedures to examine the long-run relations between energy prices and 

agricultural commodity prices. This method is introduced by Xiao (2009) that allows for the 

long-run relations affected by the shocks received in each period, and vary over the innovation 

quantile. Namely, the model proposed in chapter 3 assists in capturing the long-run relationship 

between energy prices and agricultural commodity prices under different market conditions. 

The potential nonlinearity in the long-run relationship is revealed from the data based on the 

level of the individual prices. This allows to identify the response of agricultural prices to 

energy prices, if agricultural prices are high and vice versa. Moreover, chapter 3 uses this 
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quantile-based modelling framework to determine the linkages between these variables 

considering this is appropriate given the nature of the prices data. 

 

2.3.2 Climate change 

Climate refers to the changes in temperature, humidity and precipitation of the atmosphere in 

a certain area for long periods. Weather is what arises at a particular moment in time, which is 

the variations in the atmospheric conditions over a short period of time. By contrast, the climate 

is a long-term interpretation of weather conditions in a particular region (Pandey, 2020; Rotem, 

2012). Weather describes a group of meteorological conditions at an exact time and place, for 

instance, wind, rainfall, snowfall, daylight, temperature, humidity, pressure, etc. (Trenberth, 

2006). The climate is the long-run summary of the average values of these weather conditions. 

The distribution of vegetation, the types of ecosystem, the diversity of animals and plants, 

livelihood and the settlement of people in the region and their agricultural practices are 

determined by the climate of the area. When the climate of a certain area shows a long-term, 

gradual and stable change, which is the consequences of a long-term average daily weather 

change, it refers to climate change. Climate change could be caused by both anthropogenic and 

natural resources. The observed climate changes are periodic and unstable changes in weather 

conditions, which connected to the emergence of El Niño or La Niña, volcanic eruptions, or 

the variations in the earth’s dynamic system. In addition, climatic variations include the annual 

variations and the existence of the extreme events as well, for example, the violent storms, 

unprecedented precipitation and abnormal hot seasons (Pandey, 2020).  

 

Over the past few decades, researchers from worldwide have noticed the remarkable increased 

global average temperatures (Bhattacharya, 2019). There is widespread evidence supports this 

argument of rising global average temperatures and ocean temperatures, melting snow and ice 

in permafrost area, and increasing average sea levels (Bandara and Cai, 2014; Lobell et al., 

2011). The 2007 Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC) indicates that global warming is not an occasional conjecture, but an apparent and 

continuous phenomenon (IPCC, 2007). Over the previous five centuries, the average 

temperature of the atmosphere and the ocean has been at the highest level in history, and this 

tendency has been dominant for over a century now (Jones et al., 1999; Pandey, 2020). With 

the increasing temperature over the South and North Poles, and accelerating ice cap melting, 

as well as the reducing icebreaking period in polar lakes, global warming becomes evident and 
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leads to a remarkable rise in the sea level. The intensive global warming could result in extreme 

climatic conditions, including flood, drought and heatwaves, which increases the possibility of 

natural disaster over the world (Pandey, 2020). In addition to the warming temperature, the 

climate changes also affect the hydrology, which indicates direct impacts on the underground 

water level, water temperature, river flow and water quality of lakes and marshes (Bandara and 

Cai, 2014). The precipitation, evaporation and soil moisture content are sensitive to the impacts 

of warming air. For instance, the changing precipitation pattern caused by climate changes 

increase the precipitation and the outflow, but the rising temperature reduces the outflow 

through more evaporation (Parry, 1990). These effects pass to the river flows and available 

underground water (Trenberth, 2011). Besides, the seasonal changes in precipitation and 

temperature are the results of climate variations as well. The consequences of climate change 

can be seen in the form of melting polar ice, retreating glaciers, melting permafrost, flooding 

and drought in rivers and lakes, erosion in coastal areas, sea-level rise, and extreme phenomena 

in nature, not only the physical system of the earth but also biological systems (Pandey, 2020). 

Namely, the phenomena related to climate change, such as wildfires, fauna and flora migration, 

and even the death of sensitive fauna and flora species caused by extreme weather conditions, 

directly or indirectly affect biological systems. For example, rising ambient temperature could 

hurt the crops yield or even causes the death of the crops.  

 

Agriculture is known to be vulnerable to weather changes and arguably the most directly 

exposed economic sector. Hence it seems more likely to be affected by climate change (Adams 

et al., 1995). Agricultural production is highly dependent on local actual climatic conditions, 

and the damage caused by climate change is real. It has long been confirmed by scientists from 

all over the world that the changing patterns of precipitation and temperature systems of the 

atmosphere affect agricultural production. Especially, the unprecedented changes in the climate 

are disrupting the economic and social sectors worldwide. The effects could be worsened for 

the tropical regions and the less developed countries of this region (Pandey, 2020). 

 

Since 1950, the global average temperatures have increased by approximately 0.13 °C every 

ten years (Lobell et al., 2011), and the effects of this phenomenon have had on agriculture is 

not fully revealed (Lobell and Field, 2007). In the next two to thirty years, the pace of global 

warming is expected to be even faster with roughly 0.2 °C growth per decade, especially with 

considerably larger trends for cultivated land regions (Lobell et al., 2011). The IPCC report 
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has confirmed the realness of the global climate change and indicates the global warming is 

occurring rapidly. Regardless of changes in greenhouse gas emission, by 2030, global warming 

is expected to be about 1 °C relative to the late 20th century (Hertel et al., 2010). Lobell et al. 

(2008) predict that, over the next two decades, the rising temperatures and declining rainfall 

over the semiarid area are likely to hurt the yield for grains such as wheat, corn and rice, and 

other primary crops, which could cause a severe impact on global food security. According to 

the study of Stevanović et al. (2016), due to climate changes, the estimated global economic 

losses in the production of wheat, corn and barley reach at 5 billion dollar per year over the 

past three years. By the end of 2010, global undernourished people reach 925 million. It is 

expected that the world with 2.3 billion more people and peak at over 9 billion by 2050, to 

meet the needs of the ever-growing and urbanized population, agricultural production is 

required to increase substantially, approximately 70% in the first 50 years of this century 

(Aiking, 2011; Hochman et al., 2017). Given the pressure of surging agricultural productions, 

any factor that drives agricultural outputs has become a serious threat to humanity (Pandey, 

2020). It is predicted that local and global changes in climatic conditions will not only result in 

long-term climate change but will also become more frequent and severe, accompanied by 

more recurrent and destructive extreme events (Field, 2014). The climatic variations and 

related extreme conditions spread over the world and pose severe challenges for agricultural 

productions to satisfy the food and nutrition demands of the growing world population (Rötter 

et al., 2018).  

 

The climate matters argument is of particular interest as it leads to a potential discussion as to 

how climate changes could be linked to agricultural commodity prices. Climate and agriculture 

are intrinsically connected. This statement is commonly accepted. In particular, crop yields 

have long been found to be closely tied to growing environments (Ubilava and Holt, 2013). 

Following the same reasoning, crop prices are bound to be sensitive to global climate shocks 

(Ubilava and Holt, 2013; Ubilava, 2017a). Some supporting statistics are described below. 

Spikes in agricultural commodity prices during the period of 2010-2011 are attributed to a 

series of the global adverse weather events (Trostle, 2011b). The reduction in agricultural 

commodity production from adverse climate conditions is more severe in 2010-2011. Russia 

and parts of Ukraine, as well as Kazakhstan, have experienced severe drought in 2010, which 

reduces the production of all crops, especially wheat. At the end of the summer in 2010, 

precipitation on almost mature wheat across Canada and northwest parts of Europe downgrade 
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the quality of the wheat to feed grade. Nearly the same period, the increasing temperatures and 

its related dryness during the grain-filling months result in the reductions in corn yield 

prospects in the United States. The abnormal climate conditions continue and cause effects on 

the crops in 2011. The drought conditions triggered by the adverse weather threats the crop 

productions, leading to significant reductions in winter wheat plantings in Russia for the 2011 

crop. In November 2010, the La Nina condition caused higher temperature and drought 

overspread in Argentina lower the expectations of soybean and corn crops. Besides, similar to 

Canada and north-western Europe in the late summer of 2010, the precipitation during the end 

of 2010 and the beginning of 2011 hurt the quality of eastern Australia’s wheat by downgrading 

the food quality to feed quality, which decreases the worldwide supplies of the food quality 

wheat. The rare freeze condition in early February of 2011 has destroyed the standing corn for 

Mexico. Focusing on the United States, the largest producer and exporter of grains, the dry 

autumn, winter and spring conditions in the United States is harmful to the hard red winter 

wheat yields, which lowers the prospects of 2011 wheat productions in the south-western Great 

Plains. The regions of Corn Belt and Northern Plains in the U.S. as well as Canada have been 

hit by the heavy and persistent spring rainfall, which delays the planting of 2011 corn and 

wheat, therefore, lowers the production expectations (Trostle, 2011b).   

 

The changes in agricultural production patterns and commodity prices result from climatic 

anomalies would convey to both producers and consumers, changing the profitability of 

production and the portion of income spent on food (Hertel and Rosch, 2010). Facing the 

increased product prices triggered by the climate changes, households have to take more from 

their income on consuming food, more worsen, they may expose to the risks of nutritional 

shortage and insufficient food access (Stevanović et al., 2016). The better understanding and 

estimating of the climate effects transmission mechanisms, especially agricultural commodity 

price behaviours, can assist in implementing effective policies at both the national and 

international levels to cushion the potential influences (Ciscar et al., 2011). Besides, the 

identification of the effects of previous trends helps to evaluate the importance of near-term 

climate changes for crucial commodity supplies (Lobell et al., 2011).  

 

Climate change is expected to last. Future variations in climate may cause substantial effects 

on agricultural productivity and food supply worldwide, warned by some leading scientific and 

environmental organisations (Porter et al., 2017). However, studies attempting to evaluate the 
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sensitivity of agriculture to climate, in expectations of gaining insights into the impacts of 

future climate change have yielded different consequences. For example, the warming 

conditions may lead to the long dry areas suffer further losses, but advantageous the cooler 

areas and increase agricultural yields. Therefore, it is perhaps expected that climate change 

influences on agriculture are not always the same. The climate change effects could range from 

negligible to serious (Butler and Huybers 2013; Schlenker and Roberts 2009). In addition, 

although a growing body of research on this topic, there remains some uncertainties as to the 

nature and timing of the climate changes on the agriculture, and also the implications of these 

effects for human wellbeing in the world (Hertel et al., 2010; Schmidhuber and Tubiello, 2007). 

Addressing this uncertainty is one of the top priorities for improving the understanding of 

climate change effects (Lobell and Burke, 2008).  

 

To summary the preceding discussions, the motivation for adopting and analysing the factor of 

climate change is as follows: First, climate change and rising global mean temperature is the 

apparent and continuous phenomena, and they are emerging and occurring at an extremely 

rapid rate over the world. In the coming decades, it is predicted that climate would become 

more variable than at present, with increases in the frequency and severity of climate-related 

natural disasters including cyclones, floods, droughts and heatwave. Second, in the 21st century, 

climatic uncertainties are considered as posing the most significant threats to agriculture and 

food security. Changes in climate affect all sectors of the natural and human ecosystem. 

However, agriculture is the industry that is most vulnerable because it is highly sensitive to 

climatic factors. Third, the ever-growing population put pressures on the food supply. Climate 

is the principal determinant of agricultural productivity. With prospects of continued global 

warming, the implications of climatic variations could be substantial for four dimensions of 

food supplies, which are availability, stability, access and utilisation. The global agricultural 

will need to confront the increasing food requirements and respond to climate change 

challenges. Fourth, agricultural production is one way through which climate change may 

affect agricultural commodity prices. Crop growth and yield could be interrupted by excessive 

heat or insufficient water. Besides, the extreme events, particular flooding and dryness, could 

destroy the harvest. If, as predicted, agricultural commodity prices are exposed to further 

upward risks because of the continues reduction in agricultural yields caused by climate 

variations. Last, many of the past research provides mixed and uncertainty information, 

regarding the nature and timing of the climate changes on agriculture. Motivated by these facts, 
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chapter 4 places particular attention to the effects of climate changes on agricultural commodity 

prices.  

 

Chapter 4 studies the different phases of climate anomalies and analyses the impacts of the 

different stages of climate anomalies on the agricultural commodity prices. Recently studies 

have documented the dynamic relation of climate events on grain prices is nonlinear. The 

climate effects are known to be asymmetric because different phases of adverse climate events 

can affect crop production in different ways. For example, the hot conditions and cold 

conditions triggered by climate anomalies have different effects on temperature and 

precipitation. Besides, the effects of most extreme episodes climate phenomenon are likely to 

be more pronounced compared to the moderate phases. In addition to the asymmetry, the 

climate - price transmission has been broadly assessed with agricultural prices using point-

based nonlinear models. This means the average values of the prices and climate index are 

employed to reflect the changes within a month or quarter. Unfortunately, such point-value 

models fail to capture the extreme and volatility information of the price data, as well as the 

climate indicators, because the data collected at a specific time point during a period is unable 

to record valuable interval information. In particular, climate events and related weather 

conditions can vary significantly within a period. It is vital to account for the volatility 

information in the regression settings to facilitate a comprehensive analysis of the relationship 

between climate change and agricultural commodity prices. The contribution of this chapter is 

based on the idea that the volatility of both the climate indicators and agricultural commodity 

prices is not exploited in point-valued based nonlinear models, thereby failing to make a 

complete analysis of the dynamic linkages between price spikes and climate anomalies. The 

recently developed threshold autoregressive interval (TARI) model proposed by Sun et al. 

(2018) is useful to classify the different phases of climate changes and analyse the asymmetric 

effects. Besides, TARI model is an interval-based modelling framework, which is superior to 

conventional point-based approaches such as threshold autoregressive (TAR) model, smooth 

transition autoregression (STAR) model and vector smooth transition autoregression (VSTAR) 

model which not only capture more information about both the level and volatility. 

 

2.3.3 Financialisation 

Over the past few years, agricultural commodity prices have undergone remarkable 

fluctuations. Recent claims have linked commodity financialisation and commodity derivative 
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prices to volatile world commodity prices (Basak and Pavlova, 2016; Tothova, 2011). As early 

as 1848, the Chicago Board of Trade (CBOT) is established, which is the first futures exchange. 

However, major changes emerge in the market environment of commodity markets in the 21st 

century (Mayer et al., 2017). With a series of developments linked to the growing dominance 

of financial markets, institutions and interests in the United States economy since 1970, the 

term financialisation is introduced. It becomes widely used in the political economy literature 

to describe these developments loosely. Subsequently, the concept of financialisation becomes 

prevalent and extended to the commodity markets (Pradhananga, 2016). In the context of 

modern portfolio theory, research of Greer (2000) and Gorton and Rouwenhorst (2006), the 

understanding of the diversification properties of commodities is enhanced, and it can be 

observed growing popularity of commodity investments (Mayer et al., 2017). For example, the 

stock market collapse motivates investors to explore the safe assets for their portfolio, which 

results in the increasing interest in commodity futures. The financial industry and some 

academic economists have marketed commodity futures as the assets. The weighted index of 

commodities has comparable returns to the S&P 500 index but not correlated with stocks and 

bonds (Kat and Oomen, 2007). Commodity derivatives are effective to diversify investment 

and hedge against inflation. Therefore, investments in commodity derivatives increase rapidly, 

either through exchanges and over-the-counter (OTC). Over the last decade, especially since 

the early 2000s, commodity investing has become popular, which leads to an unprecedented 

inflow of institutional funds such as hedge funds and commodity index traders into commodity 

markets (Basak and Pavlova, 2016; Cheng and Xiong, 2014). This process is referred to as the 

financialisation in the context of the commodities futures market, which indicates the rise of 

commodities is applied as a popular investment asset class, similar to the stocks and bonds 

(Cheng and Xiong, 2014; Ouyang and Zhang, 2020). Financialisation of the commodity market 

is one of the potential explanation of the persistent and at times sharp jumps in the agricultural 

commodity prices. The upward price trend and most of the anomalies recorded after 2005 is 

related to the growing application of financial instruments and the effects of financialisation 

(Baffes and Haniotis, 2016). In 2008, Commodity Futures Trading Commission (CFTC) 

estimated and reported the total investment inflows of various commodity futures indexes 

increases from $13 billion to $260 billion from the beginning of 2003 to the first half of 2008. 

Simultaneously, commodities across agricultural, energy and metal sectors show the 

concurrent cycles of prosperity and depression during 2007-2008. Meanwhile, commodity 

prices become extremely volatile. The coincident occurring price spikes and volatility level 
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increases within major commodity markets have attracted growing attention from both market 

participants as well as public and the policy community, to identify if financialisation of 

commodity has distorted their prices, and attribute this abnormal behaviour of commodity 

prices to speculations (Cheng and Xiong, 2014; Mayer et al., 2017).  

 

The examination of the potential impacts of financialisation on commodity markets raises a 

general question of the functioning and interaction between spot and futures markets (Fattouh 

et al., 2013; Mayer et al., 2017). Futures trading is frequently claimed to accentuate price 

movements in the spot markets. The underlying belief is that commodity futures prices lead 

the spot prices but not vice versa (Silvapulle and Moosa, 1999). This relative ability to lead 

prices knows as price discovery can provide significant insights into the nature of prices 

discovery mechanism between spot and futures markets. The importance of futures markets in 

providing a price discovery mechanism has been a broad field of extensive empirical research 

(Bekiros and Diks, 2008). Financial derivatives are important to assist information 

dissemination, price discovery and resources allocation (Chan, 1992; Schwarz and Szakmary, 

1994). According to the theory of asymmetry information and price discovery function, futures 

prices should respond more quickly to new information in the markets and signal the spot prices 

movements within markets. The considerable support for the information imbalance between 

spot and futures markets stems from the fact that futures markets show a lesser amount of 

friction than physical spot markets. Therefore, better-informed participants in futures markets 

promote the price discovery mechanism, leading to new information regarding fundamentals 

will be factored faster (Mayer et al., 2017). Especially, severe informational frictions threats 

the commodity market participants. Increasing globalised trading in extensive industrial and 

agricultural commodities prompt market participants confront the information frictions related 

to the supply, demand and inventory of these commodities across the world (Cheng and Xiong, 

2014). In the occurrence of informational frictions in worldwide commodity supply, demand 

and inventory, the centralised futures markets centralised futures market complement the 

normally dispersed spot market in the field of information discovery and assists in aggregating 

the information (Grossman and Stiglitz, 1980). Therefore, futures prices become the important 

price in signalling the commodity demand and reflecting the impacts of futures market trading 

on commodity demand and spot prices.  
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However, many scholars have recognised price discovery changes with time and attempted to 

estimate the lead-lag relations over different subsamples (Foster 1996; Moosa 2002; Narayan 

and Sharma, 2018; Oellermann et al., 1989). They argue that the price discovery or the lead-

lag relations between futures and spot prices is not time-invariant but sensitive to the choice of 

the sample period (Foster, 1996). Here are two main reasons. First, at any time, market 

participants filter the new information that is related to either spot or futures markets. This may 

induce the spot-futures lead-lag interaction change over time (Kawaller et al., 1987). Second, 

at certain periods of time, the flow of information may be relatively sluggish, thereby affecting 

the lead-lag relationship. Despite several attempts in the literature to identify the causal linkage 

between commodity futures and spot prices, limited empirical evidence acquired for 

agricultural commodity markets. In particular, the time-varying lead-lag relations between 

agricultural futures and spot markets needs to be brought into focus. Price discovery theory 

suggests a direction for causality between spot and futures markets. The issue of price 

discovery is undoubtedly still one of the specific problems to be resolved when evaluating the 

ability to assimilate and transmit information of the agricultural futures markets (Alzahrani et 

al., 2014; Dimpfl et al., 2017). Motivated by these considerations, the last chapter in this thesis 

aims to address a gap in the extant studies regard the price discovery perspective and examine 

the time-varying lead-lag causality between agricultural spot and futures prices. 

 

Chapter 5 uses three time-varying causality procedures to identify the lead-lag causal effects 

of futures prices on the cash prices in the agricultural commodity markets. The time-varying 

approach used in this chapter is based on the belief that the lead-lag pattern between cash and 

futures markets can alter with the new information received and varies with time. These time-

varying form tests are inspired by several empirical applications in the energy markets (e.g. 

Chang and Lee, 2015; Polanco-Martínez and Abadie, 2016), which find the changing pattern 

of the causal relations between cash and futures prices. However, the tests of the changing 

pattern of leads and lags over time are less found in the context of the agricultural commodity 

markets. The chapter adopts both the traditional Granger causality methods, forward expanding 

window causality test (Thoma, 1994) and the rolling window causality test (Swanson, 1998), 

and newly presented recursive evolving window Granger causality test from Shi et al. (2020). 

This chapter contributes to reveal the time-varying lead-lag causality between agricultural 

futures and spot markets and identify the exact dates of the origination and end dates of any 
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causality periods. The understanding of the time-varying causality is a benefit for market 

participants to avoid inaccurate prediction. 
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Chapter 3. Examination of the U.S. Corn Export Price Behaviour 
 

3.1 Introduction 

The volatility of commodity export prices has led to mounting interest in the dynamics of the 

export price behaviour. One of the key variables that can cause shifts in export prices has been 

documented to be energy prices (e.g. Hanson et al., 1993; Nazlioglu and Soytas, 2012; Piesse 

and Thirtle, 2009; Trostle, 2010). International agricultural commodity trade relies on oil to 

ship agricultural products to the ports for export and final importing countries. The increasing 

oil prices and surcharges result in costly shipping, which shrinks the profits for the regional 

agricultural exporters and motivate these traders to adjust commodity export prices, especially 

for the long-distance supply of the agricultural products (Curtis, 2007; Nazlioglu and Soytas, 

2012; Von Braun, 2008b). The fact that the agricultural commodity export prices and the 

growth of oil prices both experienced sharp jumps from 2006 to 2008. Some studies indicate 

that food crisis during this period is expected to be caused by the rise of oil prices (Nazlioglu 

and Soytas, 2012; Wang et al., 2014). The oil and agricultural commodity prices are believed 

to exhibit a co-movement behaviour, which motivates interest in studying the transmission 

mechanisms for oil and agricultural commodity prices (Nazlioglu and Soytas, 2012). Existing 

work examines the possible linkage between oil and agricultural commodity prices through the 

direct supply-driven mechanism, and they suggest the high-priced fuel has direct symptoms 

regarding the cost-push effects by raising the production and transportation costs (Nazlioglu, 

2011; Nazlioglu and Soytas, 2012). In other words, a rise in oil prices is considered directly 

related to the increased agricultural commodity export prices through the increased cost of 

producing and transporting grains to world markets (Nazlioglu and Soytas, 2011).  

 

Oil prices are a major cost to agricultural exporters, which involve the cost of moving 

agricultural commodities between points of production, export and import (Nazlioglu, 2011; 

Nazlioglu and Soytas, 2012). In the case of the U.S., diesel powers the transportation of 

agricultural. Over four-fifths of products exported from and imported to the U.S. are employing 

diesel technology. Owing to the lower cost and higher volume advantages, diesel-powered 

surface transportation containing road, rail or combinations thereof are the preferred modes for 

moving the agricultural goods from farm to port in the U.S. (Wensveen, 2016). The energy 

usage details from the U.S. Energy Information Administration (EIA) document that most of 

the consumer products including agricultural commodities are transported by diesel engines in 
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trucks, trains, boats and barges (EIA, 2018). Diesel engines power over two-thirds of the farm 

equipment and transport nearly 90% of the agricultural products in the United States. As a 

transportation fuel, diesel is popular because of its superiority in efficiency and safety features1. 

In the agricultural industry, the similar cost-effective substitutions of diesel engines that could 

provide the same performance, durability and reliability are rare. Diesel dominates the entire 

farm supply chain from planting the seeds, tending the grains, harvesting the products and 

transporting the commodities to markets at home and abroad. A fact which reflects this is that 

approximate 96% of the large trucks powered by diesel is employed to deliver the agricultural 

products to the railheads and warehouses1. In addition, the Diesel Technology Forum (DTF) in 

the U.S. reports that the freight locomotives, marine river grain barges and ocean-going vessels 

used to move the agricultural commodities to domestic and international markets are diesel 

engines. The energy costs for agricultural production vary significantly for various crops. 

According to the report from United States Department of Agriculture (USDA), on the per-

care basis, the energy-related expenses for corn are considered to the highest among eight 

selected major agricultural commodities (Sands et al., 2011). Given the importance of diesel 

as a transportation cost for exporters, price changes in diesel are likely to have an impact on 

corn prices. Diesel has been popularly used for corn transportation since the 1990s, making 

diesel becomes an important long-run input cost for exporting corn for a considerable length 

of time. Agriculture is considered to be an energy-intensive sector (Reboredo, 2012). A change 

in diesel prices results in the movement in transport and input costs and a corresponding 

fluctuation in producer prices. In the short-run, the producer prices and export prices could drift 

apart because of the agricultural policy changes or seasonal factors. However, if they continue 

to move far apart in the long-run, the economic forces, for example, the market mechanisms, 

may act to bring them together (Palaskas, 1995). Therefore, one would expect that within the 

integrated commodity markets, diesel and corn export prices would move together over time. 

In econometric methodology, this suggests that the corn export prices and diesel prices are 

cointegrated. 

 

Interest in oil stems from the fact that large amounts of corn were being siphoned off to produce 

biofuels as a result of the energy policy mandate in the U.S. around the mid-2000s. Hence the 

large volume of studies of oil-corn linkages. Considering the importance of diesel prices to 

 
1 Source: https://www.dieselforum.org/about-clean-diesel/agriculture  
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transport agricultural commodity prices in the U.S., little research has been conducted to 

examine the relationship from the transportation perspective. This research considers diesel 

instead of oil to analyse the long-run relation with corn prices. We focus on the diesel-corn 

price linkage through the channel of transportation, which has been largely overlooked. 

Cointegration methods are the most commonly employed econometric tools to identify the 

long-run relationships for economic variables, such as the oil – corn comovement (Koirala et 

al., 2015; Pal and Mitra, 2017a; Zhang et al., 2010). These tests determine whether there is a 

long-run relationship. For example, if oil prices are found to be cointegrated with the 

agricultural commodity prices, there is co-movement between oil and corn prices, or the prices 

share a common trend (Goodwin and Schroeder, 1991). Employing the cointegration methods, 

some studies have identified a long-run relationship to exist between oil and agricultural prices 

(Pal and Mitra, 2017a; Serra et al., 2011), while some find no such relation (Koirala et al., 

2015; Nazlioglu, 2011; Zhang et al., 2010). Although a body of literature has evolved that 

characterises the long-run relations between oil prices and agricultural commodity export 

prices, the empirical studies in understanding the influences of energy prices on agricultural 

prices are mixed. The mixed results open up questions of the nature of the so-called long-run 

relationship between oil and agricultural commodity prices.  

 

Pal and Mitra (2017b) examine the long-run relationship between diesel and soybean price and 

find the cointegration changes when soybean prices at different levels. They point out that 

farmers have the choices to supply soybean as feedstock, sell soybean to feed processing plants 

or opt for export in the face of diesel price changes. Hence, a linear relationship between 

soybean prices and diesel prices does not hold true, implying soybean prices should respond 

differently to the changing diesel prices. Similar to soybean, corn is also an important storable 

agricultural commodity for both domestic and export markets in the United States. Exporters 

could adjust export or storage volume in anticipation of higher revenue and profits. Their 

demand for diesel varies according to their export decisions. Export prices may not be sensitive 

to the diesel prices movements when exporters do not need to use much diesel to transport corn. 

But become sensitive when exporters need more diesel. The potential nonlinearity in the long-

run relationship between corn export prices and diesel prices is expected to occur. This study 

conjectures that corn export prices do not uniformly respond to diesel price changes when corn 

export prices at different levels. This study, therefore, is attempting to examine the corn-diesel 

long-run relationship by applying a quantile cointegration model. This approach uses the 
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quantile indicates the different level of corn export prices, which allows us to test the corn-

diesel cointegration at different levels of corn export prices. It is of considerable interest to 

corn traders to know how export prices react to the movements in diesel prices under different 

market situations. Because more real decisions depend upon current market states and prices 

(Lee and Zeng, 2011), especially for the extreme market conditions and prices. Understanding 

the long-run relationship between diesel and corn export prices in the U.S. market may be used 

for predicting purposes for policymakers. In addition, if the corn traders know the co-price 

movements for different level corn export prices, they could predict how the corn export prices 

will move with changing diesel prices based on current corn export prices. This is helpful for 

corn traders to design the inventory holding strategies and demand.     

 

This study aims to make a contribution to the diesel-corn price linkage. We consider diesel, as 

it is the primary fuel for transportation of grains in the U.S.. By focusing on diesel rather than 

other oil prices, this study shed lights on revealing the facts of the dominant role of diesel in 

the agricultural industry. Secondly, we contribute to identifying the long-run co-movements 

between diesel and corn export prices using cointegration methods. However, we depart from 

the traditional cointegration regression used in recent studies, by adopting the quantile–based 

cointegration method, which allows us to identify the long run corn-diesel price linkage 

measured at different market conditions. To this end, we bring new insights into the literature 

on the fuel-food nexus. The remainder of the paper is organised as follows: The next section 

provides a literature review, followed by a description of the novel econometric methods in 

section 3.3. The data to be used in the analysis are described in Section 3.4. Section 3.5 presents 

empirical results and discussion. The final section concludes. 

 

3.2 Literature review 

The joint upward and downward drifts between energy and agricultural prices is not a new 

concern. Supply-side views attribute changes in agricultural export prices to changes in crude 

oil prices, which is of particular interest as it leads to the explanations as to why an increase in 

fuel prices caused growth in input transport costs that can, in turn, exert upward pressure on 

agricultural commodity export prices in the long-run. A body of literature exists that examines 

the long-run co-movements of oil and agricultural commodity export prices relying on 

cointegration procedures. These are helpful to address the topic and to further empirical 

analysis with novel econometric estimation. 
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Several studies have applied cointegration methods to oil prices and grain export markets 

relations using the traditional cointegration framework such as those of Engle and Granger 

(1987) and Johansen (1988; 1991). Studies including Zhang et al. (2010), Koirala et al. (2015) 

and Pal and Mitra (2017a) have tested the cointegration over the full data samples. The study 

from Zhang et al. (2010) characterises the cointegration between oil and global agricultural 

commodity prices. Using the Johansen (1988; 1991) procedure, they find no long-run 

relationships between fuel and agricultural commodity prices for three fuel-price series 

(ethanol, gasoline, and oil) and five agricultural commodity prices (corn, rice, soybeans, sugar, 

and wheat) from March 1989 through July 2008. Applying the Engle-Granger test, Koirala et 

al. (2015) fail to identify cointegration relations between oil prices with soybean and corn 

prices, using the daily futures prices. Corresponding to these studies, Pal and Mitra (2017a) 

obtain varying results relying on using the Johansen (1991) cointegration trace test. They 

confirm the oil prices and world food price indices will move together in the long-run with 

monthly data on crude oil prices and the world food price index and its sub-categories including 

dairy, cereals, vegetable oil and sugar, over the period January 1990 to February 2016.   

 

A drawback of the above studies is that they ignore the possible presence of structural breaks 

in the price series, which has been found in several studies (Harvey et al. 2010; Kellard and 

Wohar 2006). This has been addressed in several studies which include Nazlioglu (2011), 

Natanelov et al. (2011), Harri et al. (2009) and Ciaian (2011b). Nazlioglu (2011) conducts 

Johansen trace (1988) cointegration tests between oil and three agricultural prices. These 

include natural logarithms of weekly prices, spanning from the first week in 1994 to the 29th 

week in 2010 of corn, soybeans and wheat prices. To test for the cointegration for subsamples, 

he uses the unit root test proposed by Lee and Strazicich (2003) to determine the breakpoints. 

The results indicate no cointegration relation exists for soybean-oil and corn-oil for the three 

subsamples (1994w4-1998w12, 1998w13-2004w37, and 2004w38-2008w37) as well as the 

full sample. However, for the fourth subsample (2008w38–2010w29), soybean, corn and oil 

are found to be cointegrated. In contrast, the wheat-oil prices are found to be cointegrated over 

the full samples with the exception of one subsample 1998-2004. Further, the residual-based 

cointegration test with the presence of the structural change could occur in the intercept and 

trend introduced by Gregory and Hansen (1996), is applied. The empirical results conclude that 

corn-oil and wheat-oil price pairs are cointegrated from 2007 onwards, while no evidence 

supports the cointegration relations for soybean-oil. Natanelov et al. (2011), employing the 
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Johansen (1988) trace and maximum eigenvalues cointegration tests with the U.S. data used in 

the empirical analysis comprises monthly futures prices of crude oil, gold and a series of 

agricultural commodity prices starting July 1989 until February 2010. To account for the 

problem of structural change, they break down the full sample into two subsamples by choosing 

January 2002 as the break point. Reasons behind the structural break of price movements in 

2002 include the depreciation of U.S. dollars, global inflation, OPEC oil supply manipulation 

and geopolitical events (Zhang and Wei, 2010). The results suggest that the co-movement of 

commodity prices is temporal and contrast in two subsamples. Regarding the cointegration 

tests in two split periods, in the first period, they find cocoa, soybeans, soybean oil, wheat and 

corn prices co-move with crude oil future prices. But in the second period, they only notice 

coffee prices besides cocoa and wheat prices to be cointegrated with fuel prices. Many papers 

have also concentrated on the structural break effects in the cointegration relationships between 

oil and agricultural commodities, and they acquire the similarly mixed cointegration results, 

such as Harri et al. (2009) and Ciaian (2011b). 

 

In light of these conflicting findings, different econometric methods have been introduced to 

analyse the cointegration with the asymmetric adjustments which involve applying nonlinear 

cointegration procedure; these include Balcombe and Rapsomanikis, 2008; Natanelov et al., 

2011; Serra et al., 2011 and Paris, 2018. For example, Balcombe and Rapsomanikis (2008) 

propose the generalised bivariate error correction models which allow for investigating the 

nonlinear adjustment toward long-run price equilibrium relations between sugar, ethanol and 

oil prices. They use these methods on the weekly prices for crude oil, ethanol, and sugar in 

Brazil, expressed in Brazilian Real, covering the period from July 2000 and May 2006. They 

argue that the asymmetric vector error correction (VEC) approach outperforms the linear 

models. Their findings reveal that oil prices co-move with sugar and ethanol prices in Brazil in 

the long-run. Serra et al., (2011) assess price cointegration relations within the U.S. ethanol 

industry by employing a smooth transition vector error correction (VEC) model with ethanol, 

corn, oil and gasoline prices on a monthly basis, spanning the period of 1990-2008. Their 

findings show the existence of a long-run relationship through two cointegration relations 

among four prices analysed, which provides strong evidence between energy and agricultural 

commodity prices, with the nonlinear adjustment process of ethanol prices depending on the 

deviation of the equilibrium. Natanelov et al. (2011) consider whether asymmetric 

cointegration exists for crude oil, gold and a series of agricultural commodity prices. Beyond 
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employing the Johansen (1988) cointegration test, they give an in-depth focus on studying the 

oil-corn, oil-soybeans and oil-soybean oil relations by using the threshold cointegration 

approach proposed by Hansen and Seo (2002). The findings indicate a long-run relationships 

prices between corn and oil prices in the U.S. In the recent study, Paris (2018) adopts the 

cointegrating smooth transition regression model due to Saikkonen and Choi (2004), to study 

the long-run relation of oil and agricultural commodity prices using the daily prices of oil, corn, 

soybean, wheat, sunflower oil and rapeseed oil. The empirical results underline that, in the 

long-term, rising oil prices have an impact on the prices of agricultural products used in biofuel 

production.  

 

The above literature suggests that there is no clear consensus regarding the presence of 

cointegration between fuel and agricultural product prices. While relying on conventional 

cointegration tests, it is clear that there is a growing body study that conducts estimating the 

equilibrium process. Though the existing studies have considered the structural break and 

asymmetry problems in commodity data price series, the highly volatile features of commodity 

prices has received limited attention in understanding the cointegration relationship. Volatility 

is an acknowledged characteristic in commodity prices (Deaton and Laroque 1992). Testing 

cointegration only focus on the average of the oil and agricultural commodity prices is not 

appropriate because the cointegration coefficients could be affected by the shocks received in 

each period and vary over different innovation quantiles (Lyon and Olmo, 2018). As such, the 

speed of adjustment may differ from the different magnitudes of deviations from the 

equilibrium (Tsong and Lee, 2013). Allowing for additional volatility of the dependent 

variables in addition to the regressors and permitting the cointegrating coefficients to be 

affected by the shocks received in each period (Xiao, 2009), this paper is an important 

supplement to investigate the long-run relationship between oil and agricultural commodity 

prices by employing a novel quantile-based cointegration tests.  

 

3.3 Econometric methodology 

Engle and Granger (1987) originally introduced a seminal framework to evaluate the 

cointegration between two-time series data, and his method has been widely employed in 

different disciplines over several decades. However, recent literature identifies although the 

concept of cointegration has been defined for the conditional distribution, the majority of 

previous papers identify the cointegration based on estimated conditional mean behaviour. For 



31 
 

the cases of fat tail distribution data, the conditional mean-based approach fails to describe the 

complete cointegrating relationships between economic time series indicators (Ding et al., 

2016). Quantile regression approach refers to modelling the relations between a set of predictor 

variables and specific percentiles of the response variable. By supplementing the conditional 

mean function estimations with techniques for estimating an overall range of conditional 

quantile functions, quantile methods allow us to perform complete statistical analysis of the 

stochastic relations between random variables (Koenker and Xiao, 2004). The quantile 

inference is robust in estimation compared to the least squares approach if the data is non-

Gaussian or heavy-tailed. Compared to the traditional models, we could test for different 

persistence patterns relying on the size and location of the shocks.  

 

3.3.1 Quantile autoregression unit root 

When conducting the empirical analysis on the hypothesis, researchers are required to 

characterise the nature and distribution of the data since the conclusions acquired to rely on 

econometric methods. Non-Gaussian conditions and non-stationarities in commodity price 

series argue that the estimation and inference procedures based on mean value are not robust. 

One way to achieve robustness is to utilise the quantile-based approach and associated 

inference apparatus. Quantile autoregression model enjoys power gains over the augmented 

Dickey-Fuller (ADF) test in exploring the stationarity of the series at quantile levels of the 

conditional distribution. To be precise, their framework allows for identifying the mean-

reverting behaviours by explicitly testing the unit root at various quantiles rather than 

exclusively focusing on the single measure of conditional central tendency. We first consider 

the ADF autoregression model (Dickey and Fuller, 1979) on the price series. 

 

!! = #"!!#" +∑ #$%"
&

$'"
∆!!#$ + '!                    (3.1) 

 

Where the autoregressive coefficient #"  measures the persistence in !! . Under regularity 

conditions, the #" = 1  represents !!  has a unit root and is persistent, while |#"| < 1 

indicates !!  shows mean reversion pattern. To acquire complete estimates for studying 

persistence in the tails of the conditional distribution of !! , the equation (3.1) could be 

estimated with quantile autoregression approach. The + th conditional quantile of !! refers 

to the value ,(!-+.!!#", … , !!#&1 which implies the probability that !!  conditional on its 

recent history will be less than ,(!-+.!!#", … , !!#&1 is +. For instance, if the diesel price is 
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higher (lower) than recent diesel price realisations, which suggests a large positive (negative) 

shock has existed and !! stays at above (below) the mean conditional on past information 

somewhere in the upper (lower) conditional quantiles. Following the methodology proposed 

by Koenker and Xiao (2004) and based on the ADF autoregression, the +  th conditional 

quantile of !! , conditional on the past information set ℱ!#" = (!!#", … , !!#&)  could be 

functionally presented by the following quantile autoregression model:  

 

,(!(+|ℱ!#") = #)(+) + #"(+)!!#" + ∑ #$%"∆
&

$'"
!!#$             (3.2) 

 

Where #)(+) denotes the +th quantile of '!. Letting #$(+) = #$ , 5 = 1,… , 6 + 1, and define 

 

#(+) = (#)(+), #", … , #&%")′ 

7! = (1, !!#", ∆!!#", … , ∆!!#&)′ 

 

Thus, we have 

 

,(!(+|ℱ!#") = 7!′	#(+)                          (3.3) 

 

It is worthy of notice that #"(+) measures the reversion speed of !!, which varies within each 

quantile. Estimation of the linear quantile autoregression model requires minimising the sum 

of asymmetrically weighted absolute deviations: 

 

9:;∑ (*
!'" + − =(!! < 7

!

′
#(+))) >!! − 7!

′
#(+)>                (3.4) 

 

Where = represents an indicator taking the value of unity if  !! < 7
!

′
#(+) and zero otherwise. 

Given the solution of equation (3.4) is indicated by #?(+), Koenker and Xiao (2004) consider 

testing the behaviour of !! for each quantile with the t-ratio statistic: 
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Where FG-H#"(+)1  is a consistent estimator of F(H#"(+)) , with F and H  denoting the 

density and distribution function of '!. B#" is the vector of lagged dependent variables !!#", 

and C4  indicates the projection matrix onto the space orthogonal to I =

-1, ∆!!#", … , ∆!!#&1.	 In addition to the t-ratio statistic @*(+) , Koenker and Xiao (2004) 

construct the Kolmogorov–Smirnov (KS) test to generally examine the unit root property based 

on the quantile method across a range of quantiles, which is a complete inference of the unit 

root process and given as  

 

KLM5 = Sup
0∈7

|@*(+)|                          (3.6) 

 

Where @*(+) is the t-ratio statistic of the autoregressive coefficient defined in equation (3.5) 

and Q = (0.05,0.10,0.15, … ,0.95)′ in the later applications. In order to evaluate the overall 

non-stationarity, we need to test the null hypothesis of #"E(+) = 1∀+ ∈ Q using the KLM5 

statistics. If such a null hypothesis is rejected, then we conclude our series is not a constant 

(homogeneous) unit root process. The critical values for the QKS test are acquired by 

implementing the bootstrap approach (number of bootstrap=1000 in our case) of Koenker and 

Xiao (2004).  

 

Although the quantile autoregression methods introduced by Koenker and Xiao (2004) 

provides a framework that is robust to departures from Gaussian conditions and allows for 

exploring a range of conditional quantiles exposing a variety of forms of conditional 

heterogeneity. However, such model only accounts for the intercept but ignores the linear time 

trend and covariates. Galvao (2009) generalised their test by including related stationary 

covariates and the linear trend in the Koenker and Xiao (2004)’s framework, which leads to 

gains in power. Additionally, containing a deterministic time trend in the model is powerful 

since the time series data presents trend reversion properties under the alternative hypothesis 

of stationarity (Galvao, 2009). In this case, we perform the quantile autoregressive unit root 

test by adding the trend term and then rewrite the equation (3.2) as  

 

,(!(+|ℱ!#") = W"(+) + W8@ + X"(+)!!#" +∑ X$%"∆
9

$'"
!!#$         (3.7) 
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Where W"(+) and @ are the drift term and deterministic trend item, respectively. Estimating 

equation (3.7) at each quantile + ∈ Q gives us a set of estimates of the persistence parameter 

X"(+). Then we test the null hypothesis Y): X"(+) = 1 for each quantile to investigate the 

persistence using our dataset. Despite including more covariates would enhance the unit root 

test power, adding correlated stationary covariates in the regression relies on examining 

variables from the same regime and exploiting the economic relations between these variables. 

Besides, the test results can be very misleading once the covariates are non-stationary. As such, 

this study excludes the stationary covariates in the regression equation (3.7).  

Setting X$(+) = X$ , 5 = 1,… , Z + 1, then define 

 

[(+) = (W"(+), W8, X", … , X9%")′ 

\! = (1, @, !!#", ∆!!#", … , ∆!!#9)′ 

 

thus we acquire 

 

,(!(+|ℱ!#") = \!′	[(+)                         (3.8) 

 

Note that the asymptotic distribution for Galvao (2009)’s t-ratio statistic is the same as Koenker 

and Xiao (2004)’s QAR unit root test when there is no information in the stationary covariates. 

We employ the t-ratio statistic proposed by Koenker and Xiao (2004) and generalised by 

Galvao (2009), which is given as  

 

@:(+)=
+,-.

"#(0)2

30("#0)
AB

#"

′
];B#"D

#
$
(X"̂(+) − 1)                 (3.9) 

 

Same as the definition given by Koenker and Xiao (2004), F(. ) and H(. ) are the probability 

and cumulative density function of residuals, respectively, and FG-H#"(+)1 is a consistent 

estimator of F(H#"(+)). B#" denotes the vector of lagged dependent variables !#" and ]; 

represents the projection matrix onto the space orthogonal _ = -1, ∆!!#", … , ∆!!#&1. Under 

regularity conditions, the null hypothesis of X"(+) = 1 implies !!#" contains a unit root and 

is persistent for different quantiles + ∈ `. For different quantile levels, we estimate the @:(+) 

and reject the null hypothesis when the t-statistic is numerically smaller than the calculated 
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critical value which has been reproduced by Galvao (2009) for both demeaned and detrended 

cases. The test extended by adding the trend components completes the tests of Koenker and 

Xiao (2004), which is essential for testing unit roots of drifting time series data 

(Hosseinkouchack and Wolters, 2013).  

 

3.3.2 Quantile cointegration 

The traditional methods to test the economic variables have the cointegrated relations are to 

employ Engle and Granger (1987) or Johansen (1988, 1991, 1995) cointegration frameworks. 

Although their approaches have gained great popularity, a large number of applications fail to 

discover the cointegration on the data that are seemingly cointegrated by visually inspecting 

the data. One interpretation for these findings suggests the occurrence of time-varying 

cointegrating parameters, namely, the persistence coefficients that indicate the long-term 

relations would change over time, despite these series perform to move together in the long 

term. Xiao (2009) addresses this issue by proposing a new cointegration test with quantile-

varying coefficients, in which the values of cointegrating parameters differ over the innovation 

quantile, to measure the impacts of conditioning variables on the location and shape of the 

response variables’ conditional distribution. In solving the endogeneity in traditional 

cointegration models, Xiao (2009) decomposes the error term into lead-lag terms and a pure 

innovation component. Consider the following bivariate regression model 

 

!! = a + b7! + c!                         (3.10) 

 

Where !! is the corn export prices and 7! is the diesel prices, respectively. By decomposing 

c!  into the sum of the lead and lag terms of ∆7!  and a pure innovation d!  to avoid the 

second-order bias generated by the correlation between 7!  and c! , we reparameterise the 

equation (3.10) as  

 

!! = a + b7! + ∑ e<∆7!#< + d!
=

<'#=                   (3.11) 

 

Following Xiao (2009)’s work, the quantile cointegration method accordingly incorporates the 

standard cointegration specification of Engle and Granger (1987) as particular conditions in 

which b(+) remains constant b as described by equation (3.11). And the general form of the 

quantile cointegration model is given by 
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,(!(+|ℱ!) = a(+) + 	b(+)7! +∑ e<(+)∆7!#<
=

<'#=                 (3.12) 

 

where ℱ!  denotes the information accumulated up to time @  and a(+)  is the +  th 

conditional quantile of d! . Note the b(+)  in equation (3.12) represents the cointegrating 

coefficient which depends on the new information (or shocks) received in the period and 

therefore varies over quantiles. We are interested in investigating if the	b(+) are constant over 

several specific quantiles. Estimation of the coefficients in equation (3.12) involves solving the 

issue 

 

]:;	 ∑ [0( !! − a(+) − 	b(+)7! − ∑ e<(+)∆7!#<
=

<'#= )             (3.13) 

 

Where [0(') = '-+ − =(' < 0)1, the check function (Koenker and Bassett, 1978) with = 

denoting an indicator function. Following Xiao (2009), the null hypothesis of b(+) = b? can 

be tested overall quantiles through applying a supremum norm of the absolute value of the 

difference f*g (+) = ;|(b?(+) − b?| as the test statistic, where b? is the least square estimate for 

b in equation (3.11) and b?(+) is the estimated parameters in equation (3.12). Then we use the 

statistic of sup0.f*g (+).  to facilitate comparison with the critical values acquired by 

performing 1000 Monte Carlo simulations. In this model, the null hypothesis is constant 

cointegrating coefficient while and the rejection of the null displays evidence of varying 

coefficient behaviour.  

 

3.4 Data and preliminary tests 

The time series analysed are diesel price and corn export price using monthly observations over 

the period April 1994 to February 2019. Although the transformation of time series data is 

common, the expected analysis results and related explanations can differ according to the 

types of data (Tomek, 2000). For instance, the time series properties for the deflated and 

nominal commodity prices can vary. The nominal prices could present a stationary trend, while 

the real prices may exhibit a random walk characteristic. As such, this paper deflates the 

nominal diesel and corn export prices by employing the CPI (U.S. Consumer Price Index, CPI) 

as the deflator. All variables are taken in their natural logarithm counterpart before analysing. 
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The price data for diesel was sourced from the open data published by the U.S. Energy 

Information Administration (EIA). The monthly U.S. No.2 yellow corn (maize) free on board 

(FOB) Gulf of Mexico quotation (FOB) of the export prices of corn reported by the U.S. 

Department of Agriculture has been chosen to conduct the analysis. Indicating ‘FOB port’ 

implies that the seller is responsible for the costs of transporting the commodities to the 

shipment port and the loading costs. The purchaser pays the costs associated with moving the 

goods from the arrival port to the final destinations. Examples of these costs include marine or 

air freight transport, insurance fee and unloading costs. The term ‘FOB Gulf of Mexico’ 

indicates that the exporter pays the fee of delivering corn to the port of the Gulf of Mexico, and 

the buyer affords all the costs beyond this port. For this reason, the FOB quotation is 

appropriate to identify the sensitivities of the corn export prices to the volatilities of the 

transporting oil prices.  

 

Table 3.1: Descriptive statistics of the data 
 Diesel Corn export  

Skewness 0.135 0.700 
Kurtosis 1.779 2.656 

Jarque-Bera 19.477*** 25.868*** 
Probability 0.000 0.000 

Note: For diesel and corn export prices case, the data consist of 299 monthly observations on 
diesel price and corn export (fob), from April 1994 to February 2019. ***, **, and * denote 
significance at the 1%, 5% and 10% levels, respectively. 
 

The corn export price series start from the different year for constructing the balanced pairs. 

Table 3.1 shows the descriptive statistics for all variables and their respective results of the 

Jarque-Bera (JB) normality test. The values of kurtosis indicate all series exhibit the leptokurtic 

distribution. It is clear that the distributions of the diesel prices and corn export prices 

experience some form of asymmetry since the JB test rejects the null hypothesis of normality 

at the 1% and higher significance level. The marked evidence of non-normality suggests that 

it would be more fruitful to employ the quantile methods to consider each quantile separately 

instead of modelling for the mean in this paper. 

 

Non-stationary and trending characteristics could be witnessed in economic time series data. 

Pre-testing for unit roots becomes necessary before deciding the most appropriate form and 

approach to employ (Hatanaka, 1996). As a prelude to the test of quantile autoregression unit 

roots, this paper employs four conventional unit root tests to verify the stationarity of the data 
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and serve as a baseline test to compare our results, which are the Augmented Dickey-Fuller 

(ADF) test of Dickey and Fuller (1979) and Phillips and Perron (1988) (PP) test. These tests 

also performed to be verified as a precursor to testing for cointegration. The Augmented 

Dickey-Fuller (ADF) test is the most common unit root test for ascertaining whether the 

stationarity of the series. The Phillips-Perron (PP) test is non-parametric with respect to 

nuisance parameters, which improved in allowing for the weakly dependent and 

heterogeneously distributed series. The results of these benchmark standard unit root tests are 

reported in Table 3.2 below. 

 

Table 3.2: Conventional unit root tests 

Unit root test Diesel Corn export  
ADF Test: level -1.921 -2.263 

ADF Test: 1st diff. -10.599*** -13.267*** 
Phillips-Perron: level -1.667 -2.067 

Phillips-Perron: 1st diff. -10.648*** -13.296*** 
Note: ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively. 
 

The preliminary results at this stage are consistent and have strong evidence of containing a 

unit root indicated by all unit root tests. According to the results in Table 3.2, both the ADF 

and PP tests cannot reject the null hypothesis of non-stationarity for all level series at 10% 

significance level or higher. But the first differences of all data series reject the null of a unit 

root at all conventional levels of significance, which confirms the variables are integrated of 

order one.  

 

3.5 Empirical analysis and discussion 

We first conduct the Engle and Granger (1987) cointegration test as our benchmark because 

their test is the special case for the quantile cointegration test. The ADF and PP tests have tested 

that the diesel and corn export prices series are integrated of the same order, say I(1). We 

proceed to investigate the issue of cointegrations in cases of transportation-export. The results 

of the Engle-Granger cointegration test are presented in Table 3.3. We are unable to reject the 

null hypothesis of no cointegration at any significance level, which is consistent with Koirala 

et al. (2015).  
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Table 3.3: Engle-Granger cointegration test 

Cases Tau-statistic MacKinnon P-value 
Diesel and Export -2.9100 0.1364 

Note: The critical value calculated from the MacKinnon tables for variable levels at 10% 
significance is -3.0599 for the Diesel and Export case. The absolute value of the Tau-statistic 
is smaller than the absolute value of critical value. It indicates we cannot reject the null 
hypothesis of no cointegration at 10% significance level. Besides, the MacKinnon p-values 
represent we cannot reject the null hypothesis of no cointegration.  
 

The results of the preliminary exercise confirm evidence of leptokurtosis and non-normality in 

each case, supporting the application of quantile autoregression model. We reassess the 

persistence of these series applying the quantile autoregression framework and present the 

results in Table 3.4 – Table 3.5. We utilise the following two tests to our data series: (1) the 

Kolmogorov–Smirnov (KS) test (QKS!) proposed by Koenker and Xiao (2004), and calculate 

the bootstrapped critical values by applying simulation procedure; (2) Galvao (2009)’s quantile 

unit root test which modified by considering both the intercept and time trend. By including 

the presence of time trend, Galvao (2009)’s framework becomes more effective as it is a 

generalisation of the quantile unit root test by allowing for researchers to add trend term 

according to data performance. Therefore, this study concentrates on the results of Galvao 

(2009) for the following analysis. Schwarz information criterion (SIC) is used to determine the 

appropriate lags of the dependent variables. The first test offers a general examination of the 

unit root properties over a range of quantiles, while the second test is detailed to reveal the unit 

root behaviour at each decile. We estimate the QKS! statistic for all + ∈ [0.05, … ,0.95]. In 

the context of accepting the null hypothesis of the QKS test implies constant (or homogeneous) 

unit root process. The 10%, 5% and 1% level critical values calculated based on the resampling 

procedure are presented in Table 3.4.  

Table 3.4: Quantile unit root tests (QKS test) 
 Diesel Corn export  

QKS statistic 2.244 1.556 
p-value 0.753 0.994 
CV10% 3.276 3.237 
CV5% 3.534 3.519 
CV1% 4.269 4.153 

Note: The bootstrapped p-values (1000 replications) are calculated by using the pair-wise 
bootstrap approach for the Kolmogorov-Smirnov (QKS) test, over the whole quantiles + ∈ Q, 
where Q = (0.05, 0.95). CV10%, CV5%, and CV1% denote QKS test critical values at the 
10%, 5% and 1% levels, respectively. 
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For the diesel-corn case, the null hypothesis of constant (or homogeneous) unit root process is 

failed to be rejected at all significance level. As discussed above, the QKS test, by excluding 

the trend term and loses the power in testing the variables which have a trend. The Galvao 

(2009) method allows us to generalise the QKS model by allowing for a linear time trend. For 

the following quantile cointegration tests, the quantile respective individual tests can be 

informative in understanding the detailed persistence behaviour of our variables. Accordingly, 

we rely on the Galvao (2009) approach and take the QKS test as a reference. The Galvao 

(2009)’s quantile unit root tests results at 10% level of significance are displayed by pair cases 

in Table 3.5. In the case of diesel and export, we cannot reject the null hypothesis of a unit root 

for diesel prices for all the deciles. Besides, it is possible to reject the null for corn export prices 

(starts from 1994) only for the first quantiles, at 10% significance level. Supplementing the 

estimation of conditional mean functions with techniques for estimating an entire family of 

conditional quantile functions allows us to reveal the full range of stationarity for diesel prices 

and corn export prices by decile.  

 

Table 3.5: Quantile unit root tests (Galvao, 2009) 

m Diesel Corn export 
no t-statistic CV no t-statistic CV 

0.05 0.9610 -1.0146 -2.4665 0.8844 -2.2946 -2.0821 
0.10 0.9635 -1.4262 -2.5700 0.9154 -2.2378 -2.2658 
0.15 0.9645 -2.0521 -2.5700 0.9447 -2.0955 -2.2995 
0.20 0.9897 -0.8047 -2.5700 0.9572 -2.0293 -2.4207 
0.25 0.9945 -0.5274 -2.5700 0.9683 -1.9694 -2.3966 
0.30 0.9957 -0.5039 -2.5700 0.9727 -1.9692 -2.4353 
0.35 0.9951 -0.7425 -2.5700 0.9742 -2.0867 -2.4267 
0.40 0.9924 -1.2363 -2.5700 0.9821 -1.4967 -2.4745 
0.45 0.9908 -1.4268 -2.5516 0.9855 -1.2750 -2.4631 
0.50 0.9915 -1.1182 -2.5270 0.9879 -1.0567 -2.4685 
0.55 0.9920 -0.9921 -2.4641 0.9777 -1.9151 -2.5700 
0.60 0.9924 -0.9046 -2.4640 0.9856 -1.1348 -2.5700 
0.65 1.0018 0.1915 -2.5503 0.9849 -1.1438 -2.5700 
0.70 1.0105 1.0811 -2.4856 0.9960 -0.2860 -2.5700 
0.75 1.0084 0.8100 -2.4068 0.9934 -0.4464 -2.5700 
0.80 1.0040 0.3507 -2.2698 1.0109 0.7233 -2.3775 
0.85 1.0031 0.2336 -2.1028 1.0090 0.4711 -2.2333 
0.90 1.0022 0.1307 -1.9422 1.0119 0.3880 -2.1996 
0.95 1.0061 0.2157 -1.9419 1.0111 0.2518 -2.1371 

Note: The t-statistic values in red represent the rejection of the null hypothesis of non-stationary 
or Y): #(+) = 1. 
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We further examine the stability of the cointegrating coefficients in equation (3.12) and report 

the results in Table 3.6. The quantile-varying cointegrating coefficient behaviour is strongly 

supported by the fact that the test statistic qrs>.t?̂(m). is higher than the bootstrapped critical 

values for all cases, leading us to reject the null hypothesis of constant cointegrating 

coefficients in favour of varying-coefficient behaviours. These findings are in sharp contrast to 

the counterparts in Table 3.3 where no cointegrating equilibrium is observed employing the 

Engle-Granger approach, implying the traditional cointegration model can lead to misspecified 

and erroneous conclusions. We turn our attention to discover such varying cointegrating 

coefficients and analyse the effects of quantile cointegrating relations. Table 3.7 reports the 

estimated quantile-dependent cointegrating coefficients for the case of diesel-export. In the 

following, closer scrutiny delivers further insight that of the cointegrating relations for the 

individual case.    

 

Table 3.6: Quantile cointegration test 

Relationship Coefficient qrs>.t?̂(m). CV (1%) CV (5%) CV (10%) 
Diesel - Corn export b 62.665 30.885 22.013 19.086 

Note: This table summarises the results of the quantile cointegration test (Xiao, 2009). CV 
(1%), CV (5%) and CV (10%) are the critical values of statistical significance at 1%, 5% and 
10%, respectively. The critical values have been created through 1000 Monte Carlo simulations. 
We use an equally spaced grid of 11 tail quantiles, [0.10; 0.95], to calculate the test statistic of 
the quantile cointegration model between diesel and corn export (fob) price. The sup-statistic 
values in bold form represent the rejection of the null hypothesis of no quantile cointegration 
at all conventional significance level. 
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Table 3.7: Quantile cointegration test estimated coefficients 

m Diesel and Corn export 
b(+) 

0.05 - 
0.10 0.311*** 
0.15 0.409*** 
0.20 0.473*** 
0.25 0.515*** 
0.30 0.530*** 
0.35 0.539*** 
0.40 0.531*** 
0.45 0.530*** 
0.50 0.516*** 
0.55 0.481*** 
0.60 0.507*** 
0.65 0.561*** 
0.70 0.568*** 
0.75 0.659*** 
0.80 0.623*** 
0.85 0.642*** 
0.90 0.595*** 
0.95 0.427** 

Note: This table reports the estimated coefficients of the quantile cointegration model (3.12), 
where ***, **, and * denote rejection of the null hypothesis at the 1%, 5%, and 10% 
significance level, respectively. 
 

Table 3.7 reports the most striking results of the estimated values of b(+) , which are 

significant to reflect the elasticity and confirm the long-run co-movements for by quantiles. 

For the diesel-corn case, the estimated results for cointegrating parameters b(+)  are 

significant at all significance levels, except for the 95% quantile. To be precise, we could 

identify the cointegrating relationship between diesel and corn export prices and it occurs over 

the whole available quantiles, which is opposite to the recognition of no cointegration using 

the mean-based Engle-Granger method.  
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Figure 3.1: Coefficients of quantile cointegration with diesel and corn export prices 
 

Figure 3.1 reports the quantile cointegrating results for the diesel-corn case. With rough eye 

inspection, they approximately constitute an increasing tendency but with some fluctuations 

depending on the quantiles. Generally, this upward pattern implies that the values of b(+) are 

much larger in the upper quantiles compared to the lower quantiles. A closer scrutiny in the 

model of diesel and corn export delivers further insight. The values for b(+) increase from 

0.311 at 10% quantile and peak at 0.539 at 35% quantile, then slowly drop to 0.481 at 55% 

quantile. Take the higher quantiles such as 60%, 65%, 70% and 75% quantiles, the estimated 

values are 0.507, 0.561, 0.568 and 0.659, respectively, implying that in such quantiles, the 

responses become much stronger with quantiles increasing and reach the highest at the quantile 

of 0.75. The higher the quantiles are, the larger the estimated values of	b(+) until they present 

a sudden downward trend within the extreme high quantiles (0.80-0.90), but the values of	b(+) 

are still higher than the lower quantiles. For the 95% quantile, the estimated cointegrating 

coefficient further reduces to 0.427 and only significant at 5% significance level. When the 

corn export prices at the extreme high level, shifts in diesel prices convey less pressure to push 

the corn export prices up. These results could also explain the fact that the standard Engle-

Granger cointegration test shows no cointegration whereas in the median quintile of the quintile 

cointegration test the cointegrating parameter is statistically significant. The traditional 

cointegration test relies on the mean value, which fails to consider the effects of extreme values. 

In our case, the cointegrating coefficients are statistically significant over both the median and 
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extreme quantiles. However, the cointegrating test results of the traditional Engle-Granger 

cointegration approach will be affected by extreme values.  

 

Diesel is widely used for transporting corn since the 1990s and plays a key role in the corn 

supply chain from planting, harvesting and transporting (Reboredo, 2012). The price of diesel 

is a large and significant component affecting the price of corn. As mentioned before, b(+) is 

the cointegrating coefficient and represents the diesel-corn price elasticity in each quantile. The 

cointegrating coefficients increase with quantiles and decrease at the extreme high quantile. 

Therefore, the long-run relations between corn export prices and diesel prices are best 

characterised as nonlinear and more – specifically state-dependent, where states are defined as 

high or low corn prices. This finding is consistent with the study of Pal and Mitra (2017b). Our 

results show, when corn export prices are at a low or high level, or alternatively low or high 

quantile, the response of corn export prices to diesel prices is small. While a stronger response 

of corn export prices to diesel price changes when corn export prices are closer to the average 

level or alternatively in the mid-quartile range. What might suggest that when the corn export 

prices are at the extreme low and extreme high levels, corn export prices are less sensitive to 

the changes in the diesel prices? A possible explanation is as follows: An excess 

supply/production of corn can cause low corn export prices. For example, in the United States, 

income support policies could provide economic incentives for farmers to increase corn 

acreage. Besides, producers adopt favourable production practices developed through research, 

which increases the corn yields and causes the excess supply. Alternatively, a fall in demand 

but a stable corn production could also lead to the lower corn export prices. Abundant corn in 

the importing countries could reduce U.S. corn export demand, lowering U.S. corn prices 

(Westcott and Hoffman, 1999). Under such circumstances, exporters become less responsive 

to diesel price changes as they tend to lose the incentive to export corn. At the other extreme, 

when corn export prices are at a high level, the response of corn export prices to diesel prices 

turns out to be weak. High corn prices are a result of excess demand relative supply. The global 

demand for U.S. corn has been strong when competitors like Brazil and Argentina struggling 

with dry weather. A shortfall in these corn-producing countries leads to the U.S. corn become 

more attractive to global purchasers, increasing the U.S. corn demand. Alternatively, the higher 

corn prices are the result of a fall in corn production but the demand for corn is stable. In the 

United States, the reduces in beginning stocks and production are the main reasons for the corn 

supply shortage. For example, small stocks can provide lower corn supplies in a low production 
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year (Westcott and Hoffman, 1999). The extreme climate anomalies and weather condition 

could damage the planted area of corn. The corn yields will decrease (Tack and Ubilava, 2013). 

If corn exporters assume that such excess demand or reduce supply is going to be persistent, 

then they will store corn anticipating future demand. But according to the storage theory, the 

commodity inventory level and convenience yield are inversely related (Working, 1949). The 

convenience yield is the benefit of physically holding commodities for a period. The 

convenience yield falls as corn inventories pile up, making it gradually more costly to store 

more corn. Once the convenience yield is negative, exporters do not take more corn. At this 

stage, exporters are reluctant to demand corn in spite of the higher price it can fetch on 

exporting the commodity. This leads to a decrease in the demand for diesel to transport corn to 

ports. Hence, high corn export prices can become less sensitive to the changes in diesel prices. 

When corn export prices are in the median range, corn exporters find the prices to be within 

their expectations. Therefore the positive relationship that we expect to prevail between corn 

prices and diesel prices holds, as higher corn prices (within the range) would lead to higher 

profits for the exporter. As more corn is exported in anticipation of higher revenue and profits 

to the exporter, more corn is demanded to arrive at the ports. Exporters need more diesel and 

gradually become more sensitive to diesel price changes. These features prove that the 

movement in corn export prices in the United States varies over quantile in response to the 

changes in diesel prices, highlighting the importance of quantile methods of cointegration. The 

nonlinearity in long-run relations between corn export and diesel prices could lead to non-

rejection of the null hypothesis of no cointegration (Michael et al., 1997). This result is of 

significance as we can mistakenly conclude that there is no cointegrating relation between 

diesel and corn using the traditional cointegration test. In general, we conclude that the diesel 

price evolves independently and that the corn export prices adjusts to maintain a long-run 

relation with diesel prices, depending on the level of corn prices, whether they are too high or 

low, or whether they are within a range that is within a specified interval of the central 

distribution of corn prices. 

 

3.6 Conclusion 

This article utilises a novel quantile cointegration methods of Xiao (2009) to investigate 

whether a long-run relationship between corn export prices and diesel prices exists. 

Corresponding to the traditional estimation conditional on mean distributions of dependent 

variables, this method allows us to identify cointegrating relations conditional on quantiles in 
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the distributions of corn export prices. The consequences of this study are different from the 

previous empirical investigations that focus on the long-run relationship between prices using 

the overall mean levels. These previous studies neglect the possibility that the dependence 

structure between energy prices and agricultural commodity prices could vary under different 

market circumstance. This work addresses this gap. Using traditional cointegration methods, 

we fail to find a long-run relationship between diesel and corn prices. However, when applying 

the quantile-based cointegration measures of Xiao (2009), we estimate an entire family of 

conditional quantile functions, to assess the corresponding-dependence structures. Analysing 

for the long-run co-movements provides compelling evidence of cointegration between corn 

export prices and diesel prices. The immediate implication of this work is that the effect of 

quantile cointegration indeed occurs in the relationship between corn export prices and diesel 

prices. This condition could lead to the standard linear cointegration measure fail to capture 

the long-run relation. Studies may move beyond the traditional cointegration framework, and 

explore the nonlinear price transmission from energy to the agricultural commodity as the 

results of the quantile cointegration model has found that the diesel-corn relation is quantile-

dependent.  

 

Our empirical analysis finds quantile-dependent behaviour for the cointegration relationship 

between the prices of diesel and corn. More specifically, the findings of this study support that 

changes in corn export prices vary over quantiles in response to the movements in diesel prices. 

The long-run equilibrium relation becomes stronger in the case of upper tail quantiles, which 

implies that corn export prices respond strongly to the diesel price changes as compared to that 

in the lower quantiles. However, the dependence between corn and diesel prices tends to drop 

for extreme quantiles. These findings have important implications for corn traders as it reflects 

the nonlinear performance among different market states (lower corn export prices and higher 

corn export prices) and in addition to nonlinear effects of diesel prices changes. This nonlinear 

linkage is less considered in agricultural and energy markets, especially for the cointegration 

between corn and diesel prices. We employ a more accurate model to analyse the nonlinear 

relationship and hence enabling a better forecast of the future movements of the corn export 

prices. We hope our empirical results could offer different aspects to policymakers when 

building the estimation and prediction models. They should consider the nonlinear behaviour 

of the corn export prices to changing diesel prices when conduct predictions. Finally, if the 

corn importers want to make the optimum decisions of importing corn, then they should make 
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the decisions according to the market conditions to avoid imprecise predictions. For instance, 

they could predict how the corn export prices will move with changing diesel prices based on 

current corn export prices. 

 

Given the summary findings of the existence of quantile-varying cointegration, this paper 

explains the phenomenon of the absence of cointegration between energy prices and corn prices 

that are seemly cointegrated, which provides the explanations of the mixed conclusions in the 

existing literature. This study provides a timely contribution to explain the mixed literature 

evidence of this topic. Unfortunately, this study presents a limitation with regards to the 

adjustment behaviour. Quantile cointegration method provides more efficient estimations but 

yet does not allow to analyse the adjustment behaviour of corn export prices in more detail. 

Further avenues of study consist of exploring quantile-dependent adjustment behaviour. 
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Chapter 4. Climate Anomalies and their impact on Cereal Grain Prices 
 

4.1 Introduction 

For quite some time, there have been warnings about increasing temperatures and declining 

precipitation having a profound impact on agricultural production, especially grains (Lobell et 

al. 2008). More recently, the strongest El Nino events during 2015-2016, have led to concerns 

of possible global food shortages and agricultural commodity price spikes (Ubilava, 2017b). 

This concern is reasonable because agriculture is a vulnerable industry in the face the weather 

fluctuations as uncertainty and risk affects agricultural production (Kennett and Marwan, 2015). 

According to the Intergovernmental Panel on Climate Change (IPCC) report, climate change 

could affect all aspects of food security, including food access, utilisation and food price 

fluctuations (Porter et al., 2017). Given the importance of staple grains that are one of the 

primary sources of calories (Cranfield et al., 2002), and the increases in food prices could lead 

to global worsen poverty (Ahmed et al., 2009), the agricultural commodity price fluctuations 

motivate a need for better studying of the climatic fluctuations and their linkage to prices. 

 

Global warming is an important climate phenomenon related to the frequency and intensity of 

extreme weather events, and it has been discussed that the Pacific area climate would 

experience significant variations under global warming conditions (Collins et al., 2010). 

Within the climate phenomenon associated with global warming, the El Niño Southern 

Oscillation (ENSO) phenomenon describes the climate anomalies by irregular periodic 

volatiles in the wind and sea surface temperatures over the central and eastern tropical Pacific 

Ocean, which triggers various extreme weather conditions to much of the tropics and subtropics 

(Chen and McCarl, 2000; Dai 2013). The El Niño is defined by the occasional return behaviour 

of the abnormal warm water in the normally cold-water area along the Peruvian coast, and the 

La Niña describes the cooler-than-normal sea surface temperatures in the central and eastern 

tropical Pacific Ocean (Ashok and Yamagata, 2009). The Southern Oscillation is an 

accompanying global-scale atmospheric component measured by the atmospheric pressure-

field difference fluctuations between the area of the eastern and western tropical Pacific 

coupled with the sea surface temperature so that El Niños and La Niñas are accompanied with 

high and low air surface pressure over the tropical western Pacific, respectively (Aceituno, 

1992). This coupled atmosphere-ocean systems together named ENSO, which is a nature 

interannual climate fluctuation that impacts entire global ecosystems, freshwater supply, 

hurricanes, agricultural industry and severe climate events (Timmermann et al., 1999; Collins 
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et al., 2010). El Niño and La Niña are, therefore, the two extreme phases of the ENSO cycle, 

which are also characterised as warm tropical Pacific surface sea temperatures (SSTs) and cold 

tropical Pacific SSTs, respectively. Between El Niño and La Niña is the third phase termed as 

ENSO-neutral (Hanley et al., 2003) where the trade winds blow west crossing the tropical 

Pacific area and the tropical Pacific SSTs to keep at the average level. In contrast, under El 

Niño conditions, the weak trade winds in the central and western Pacific lead to abnormal SSTs 

increasing in the central and western Pacific area and form a warning of the ocean surface 

(Ashok and Yamagata, 2009); and La Niña, which is strongly related to the trade winds and 

the causes a cooling of the ocean surfaces. Generally, the warmer (cooler) the ocean 

temperature anomalies, the stronger the El Niño (La Niña) (Timmermann et al., 1999). 

 

ENSO exerts impacts on agricultural commodity prices in several ways (Marlier et al., 2013; 

Cashin et al., 2017). First, the primary channel is arguably weather-driven supply shocks. The 

link between global climate events and the local weather phenomenon in some regions of the 

world is termed ‘teleconnection’, which in turn orchestrates the relationship between climate 

anomalies and commodity production and prices (Barlow et al., 2001; Ropelewski and Halpert, 

1987). This occurs through the variability of temperature and precipitation (Ubilava, 2017a), 

which has an impact on agricultural production and therefore price variability (Solow et al., 

1998). Second, the anomalies of the temperature and precipitation during growing-season 

generate significant changes in yields through the direct effects of pest infestations and indirect 

effects from pesticides (Gregory et al., 2009). The apparent consequence of the insects-driven 

yield changes is the price variability (Deutsch et al., 2018). Third, the size of the climate 

anomalies matter. For example, the large magnitude weather anomalies such as drought, 

tropical cyclones, hurricanes and tsunamis are more likely to happen during the ENSO extreme 

phases, which causes significant loss to agricultural production over a larger geographical area 

(Camargo and Sobel, 2005; Siegert et al., 2001). Such extreme cases can cause large scale crop 

failure, famine and food insecurity (Limsakul, 2019), leading to prices spikes (Noy, 2009; 

Ubilava, 2017a). Fourthly, hazardous ENSO-triggered weather extremes damage the storage 

conditions, transport infrastructure and international logistics, thereby lead to increased 

commodity prices (Ubilava, 2013). Finally, ENSO-caused weather condition affects grain 

prices through substitution of related commodities (Ubilava and Holt, 2013). However, this 

effect could be clouded based on the geographical distribution of the countries and the 

teleconnections strength for the different regions (Brunner, 2002). 
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While the earlier mentioned discussion of the numerous channels in which ENSO events could 

impact commodity price movements, further work is required because there is mounting 

evidence to suggest the impact of ENSO on agricultural prices is not adequately modelled by 

a linear model (Ubilava and Holt, 2013). In this study, we aim to contribute to the extant 

literature by investigating the possible asymmetric relationship of the two extreme phases, El 

Niño and La Niña, to agricultural commodity price movements. We adopt this approach as 

ENSO itself is characterised by asymmetric cyclical variations and turbulent periods (Hall et 

al., 2001; Ubilava and Helmers, 2013). El Niño SST anomalies tend to be larger than cold 

anomalies, as such the El Niño magnitude is on average larger than La Niñas, and the El Niño 

effects are stronger than La Niña (Hannachi et al., 2003; Kessler, 2002; Liang et al., 2017), 

which describes the intrinsic nonlinear features of ENSO events (An and Jin, 2004; Kohyama 

et al., 2018). Secondly, the impacts of ENSO anomalies on climatic fluctuations in various 

regions of the world are also asymmetric (Ubilava, 2017a; Ubilava, 2017b). Specifically, in the 

El Niño and La Niña episodes, different regions would suffer from variable drought or flood 

challenges, which depends on the location and the strength of the teleconnections. Taking the 

United States as the example, the El Niño events typically indicate richer rains and floods in 

California, impaired tornadic activities in the Midwest part, increased precipitation in the south, 

warmer winters in the North-eastern regions and diminished hurricanes shocks along the East 

coast (Laosuthi and Selover, 2007). Moreover, the consequences of El Niño and La Niña events 

are not always similar (Cai et al., 2010; Ubilava, 2017b). Furthermore, the observed ENSO-

teleconnection weather conditions are likely to be more pronounced during the ENSO extreme 

episodes than moderate episodes. The larger shocks are more pronounced on agricultural yields 

so that considerable deviations in the ENSO anomalies could induce the disproportionate 

magnitude changes in the crop prices (Ubilava, 2017b). Finally, the nonlinear linkage is closely 

related to the very nature of the production and distribution cycle. Distributers are able to 

dispose demand shocks by quickly reducing crop stocks. However, restocking can take some 

time. Therefore, it may result in asymmetric price dynamics (Holt and Craig, 2006). Given that 

El Niño and La Niña have different effects in the United States and grains are the storable 

agricultural commodities, we expect that the grains prices would have different responses to 

ENSO anomalies. Based on the above discussion, we can therefore conclude that adopting a 

nonlinear modelling framework would be appropriate to study the ENSO-related agricultural 

commodity price fluctuations (Ubilava and Holt, 2013; Ubilava, 2017a). 
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While extant studies have analysed the relation between ENSO and grain prices, very little has 

been done to understand how the extreme changes in climatic conditions affect grain prices. 

(Modarres and Ouarda, 2013). Appropriate modelling of the ENSO fluctuations has important 

implications for global and/or local agricultural production as well as agricultural commodity 

prices (Chu et al., 2012; Peri, 2017). Because as the possible instability of the international 

agricultural markets The impact of extreme climatic conditions has an impact on agricultural 

prices, potentially causing them to fluctuate which can have implications for global food 

insecurity; an important concern for policymakers (Madramootoo and Fyles, 2012; Bellemare, 

2015; Watson, 2017). The asymmetric ENSO-price transmission has been broadly assessed by 

employing point-value prices in nonlinear models. The point-value model is point estimation, 

which uses a single value such as the statistic mean of the prices to conduct estimation (e.g. 

Ubilava, 2012; 2013; Ubilava and Holt, 2013; Ubilava, 2017a). Unfortunately, the point-value 

series and model fail to catch the variations in information, because the data collected at a 

specific time point during a period is unable to record the interval information (Sun et al., 2019) 

which can prove to be valuable. For example, consider a case where the seasonal value of 

ENSO indicator is 0.5 in the second quarter in 2016. However, the ENSO index values change 

from 0.05 to 0.99 from April to June. This wide range needs to be utilised to deliver more 

information for analysing the transmission between climate events and commodity prices. 

Time interval modelling framework is superior to conventional point value time series 

approaches. The major advantage lies in that it covers both the level information and volatility 

information such as the range between the boundaries, which makes the information set that is 

being utilised to be relatively richer than the traditional point-valued methods. In addition, the 

interval-valued series could avoid the unnecessary noises included in the higher-frequency 

point-valued data series (Sun et al., 2018). The inappropriate frequency for commodity prices 

could generate a huge amount of data, but it puts the difficulties to discriminate information 

from noises. Constructing the interval format time series by collecting the minimum and 

maximum values of the variable for a specific period is an alternative method, to pick out the 

undesirable noises and attain useful information (Sun et al., 2018). 

 

The upshot of the foregoing discussion is that the ENSO-price relations exhibit the following 

features: (1) ENSO-driven anomalies pass effects to commodity prices through several ways 

such as precipitation, temperature, pest damages, shipping and substitution effects, (2) the 

intrinsic nonlinear features of ENSO events lead to these effects on commodity prices to be 
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nonlinear and asymmetric (3) though the ENSO characteristics of nonlinearity have been 

examined, the study considering the ENSO fluctuations and variations to prices is lacking till 

date, given that the volatility which generates a higher frequency of extreme events can pose 

more uncertainties in prices. In relation to (3), to our knowledge, past studies of ENSO events 

have not been examined in terms of both level and volatility effects on agricultural commodity 

prices. Motivated by these considerations, this paper adds to the literature in a crucial 

dimension by targeting to be more accurate about whether ENSO anomalies matter for 

agricultural commodity prices, and if so, to study such climatic effects. Previous research 

typically concentrates on linking ENSO anomalies to average yields and prices. However, as 

discussed, those methods potentially lose the ‘range’ information of the ENSO effects. 

Considering the nonlinear behaviour and higher volatility of ENSO indicators and agricultural 

commodity prices, this paper adopts recently developed TARI model as it allows for testing 

asymmetric adjustment ENSO-price relations. By employing novel TARI model to test for 

asymmetries in the transmission mechanism, we get more information contained in the interval 

data of ENSO proxies and commodity prices, and thus is expected to acquire more 

comprehensive inferences for understanding the asymmetries in the transmission of ENSO 

shocks.   

 

This remainder of the paper is structured as follows: The next section outlines the ENSO-price 

transmission mechanism, and ENSO and anomalies measures. This is followed by a literature 

review section of the key studies for ENSO anomalies effects on commodity prices. Section 4 

describes the novel econometric methods of TARI applied in the paper, followed by the 

description of the data used in the analysis. Data and the preliminary test results are presented 

in section 5. Section 6 provides the empirical results and discussions, and the final section 

concludes.   

 

4.2 Transmission mechanism and ENSO measures 

Wheat occupies more cropped acreage than other grains around the world and its production is 

sensitive to weather conditions (Ubilava, 2017b). In the United States, the ENSO mechanism 

impacts daily extreme precipitation during winters, as well as temperature and soil moisture 

over the southern high plains area, where hard red winter wheat is grown (Gershunov, 1998; 

Mauget et al., 2009; Montroy, 1997). During the peak El Niños, the excess precipitation 

anomalies in the Southwest and southern Great Plains lead to the positive soil moisture 
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anomalies which remain until the next growing season. Conversely, the negative precipitation 

anomalies persist from boreal winter to spring, which decreases the soil moisture and drives 

the maximum temperatures up (Anderson et al., 2017a; 2017b). ENSO significantly poses risks 

or benefits to the wheat yields through both water and temperature stresses (Solow et al., 1998), 

and this supply shock could cause wheat prices fluctuations (Ubilava, 2017a). Soybean prices 

are expected to be influenced by ENSO through the direct weather changes as well as the effects 

on anchovy and tuna fishing (Keppenne, 1995). The El Niño-generated anomalous rainy 

weather throughout the midwestern United States forms an extreme wet condition in soybean’s 

planting and growing periods, which hurts the harvest expectations and affect prices (Mo and 

Ghil, 1987). La Niña results in limited precipitation and the dry weather over the Midwest, 

leading to the poor harvest and a shortfall in production (Trenberth et al., 1988). Aside of the 

ENSO-induced weather effects, the warm conditions over the equatorial Pacific during the El 

Niño years strongly affects the fishing conditions, pushing up the fish-protein substitutions 

demand of soybeans, while no negative effects of ENSO on fishing conditions are founded 

during La Niña years (Keppenne, 1995; Letson and McCullough, 2001). Consequently, ENSO-

related weather shocks are likely to pass effects to soybean harvest and fish-protein substitute 

demand and, therefore, soybean prices. The United States is the global leader in corn-producing 

and -exporting, and the focus on corn-based ethanol production has enhanced the importance 

of corn (Tack and Ubilava, 2013). The U.S. corn belt agricultural production relies on 

favourable weather, and the climate fluctuations affect agricultural decisions and outcomes 

throughout the year (Motha and Baier, 2005). The far-reaching effects of the ENSO on the 

weather patterns pose the greatest risk on corn yields by affecting crop production conditions, 

including rainfall and temperature (Phillips et al., 1999). La Niñas, with warmer and drier 

summer than neutral years in the corn belt, lead to the combination of high temperatures and 

low precipitations, which damages the moisture balance (Phillips et al., 1999; Tack and 

Ubilava, 2013; Wannebo and Rosenzweig, 2003). El Niño years, on the other hand, tend to be 

cooler and has the excessive precipitation during the planting season across most of the corn 

belt states (Handler and Handler, 1983; Kellner and Niyogi, 2015). The variability in rainfall, 

temperature and soils result in the deviations in the farmers’ decisions calendar (Haigh et al., 

2015), For instance, they delay the planting beyond the optimum time and therefore impair the 

corn yields (Handler and Handler, 1983), which, in turn, affects corn prices. Except for the 

rainfall and temperature, which are thought to be the primary common factors in these four 

crops yields, the ENSO-altered weather patterns correlate to the pest damage. It is harmful to 
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crop production as well (Tack and Ubilava, 2013). Climate dominates the spatial and temporal 

distribution and proliferation of insects, weeds and pathogens because the temperature, light 

and water are the principal needs for their growth, development, migration and adaptation 

(Deutsch et al., 2018; Porter et al., 1991). Moreover, the pesticides that use to control and 

prevent pest outbreaks are characterised to be strongly influenced by the climate because the 

intensity and timing of rainfall affect the efficiency and persistence of the pesticides, and the 

temperature and light are proved to cause chemical alterations to impact the pesticides 

persistence (Rosenzweig et al., 2001). ENSO-induced extreme weather events can increase the 

crop vulnerability to infection and pest infestations so that the changes in development and 

population rates for insects and germination rates for bacteria, fungi and nematodes are 

projected to extend to higher latitudes (Rosenzweig et al., 2001; Tack and Ubilava, 2013). 

Consequently, farmers respond to climate shifts and change pest management strategies, 

planting dates and crop breeding. This affects crop production, which in turn influences the 

global grain supplies, passing on to food prices (Deutsch et al., 2018). The production-side is 

not the sole channel through which the ENSO cycle could affect the supplies and prices of the 

agricultural commodities. For example, climatic variations can affect shipping (Ng et al., 2018). 

Researchers notice climate changes pose transportation barriers (Chapman and Thornes, 2006; 

Jaroszweski et al., 2010; McCarl and Hertel, 2018). Namely, the storage, transportation 

infrastructures and international logistics are damaged by the hazardous ENSO-triggered 

weather extremes, leading to increases in the costs of transport and storage and, subsequently, 

leading to the higher crop prices (Ubilava, 2013). As a sector, transportation is almost 

continuously subjected to the ENSO-induced climate hazards, which cause damages to the 

transport infrastructures and weakens the efficiency across all transportation modes 

(Jaroszweski et al., 2010). The ENSO-related drought, high temperatures, flood and snowstorm, 

have been well documented, contributing to rising surface and air transportation costs through 

enhanced transportation facilities (Chapman and Thornes, 2006). For instance, the continuous 

cold days could trigger the growth of the maintenance costs for road and rail, which in turn 

raise the commodity price effectively paid by consumers (Jaroszweski et al., 2010; Montalbano 

et al., 2017; Renkow et al., 2004; Ubilava, 2013).  

 

The most cited ENSO indicators are the Southern Oscillation Index (SOI) and sea surface 

temperature (SST) indexes. Several studies have employed either or both of them (e.g. Brunner, 

2002; Cashin et al., 2017). SOI is the oldest indicator of the ENSO events, which describes the 
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bimodal variation in sea-level barometric pressure between two stations at Tahiti (in the Pacific) 

and Darwin, Australia (on the Indian Ocean) (Allan et al., 1991). However, SOI only bases on 

the sea level pressure at two observation stations, which would cause the deviations by shorter-

term fluctuations unrelated to ENSO. Besides, these two stations are located at the south of the 

equator, while ENSO is predominantly along the equator. Another indicator, the SST, is 

increasingly used since the ocean has been characterised to be an important player in ENSO 

(Bjerknes, 1969; Rasmusson and Carpenter, 1982; Wyrtki, 1985). Initially, certain regions 

measurements such as Niño 1, Niño 2, Niño 3 and Niño 4 regions are used. In April 1996, the 

Niño 3.4 region which locates between and overlapping with Niño 3 and Niño 4 was identified 

as the most ENSO-representative and added to allow researchers gain a better understanding 

of the ENSO cycles (Bamston et al.,1997; Ubilava 2017b). The Niño 3.4 index measures the 

sea surface temperature (SST) anomalies around the Niño 3.4 region, which is a rectangular 

area of the Pacific Ocean between 5°North-5°South and 170-120°West (see Figure 4.1). The 

SST-based measure is a reliable indicator of ENSO occurrence (Tack and Unilava, 2015) and 

commonly utilised climate variables in the climate economics studies (Hsiang et al., 2011; 

Hsiang and Meng, 2015; Ubilava, 2017b).  

 

 
Source: National Centres for Environmental Information, NOAA. 
 

Figure 4.1: Niño 3.4 region 
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There are three Niño 3.4 index datasets provided by the National Oceanic and Atmospheric 

Administration (NOAA)2. Table 4.1 shows the descriptions of these three Niño 3.4 index 

datasets.  

 

Table 4.1: Descriptions of three Niño 3.4 index datasets 

Niño 3.4 index Description 
OISST.v2 

(1981-2010 base period) 
Average of daily sea surface temperature values interpolated 
from weekly measures obtained from both satellites and buoys. 
And the anomaly for a given month is denoted by the deviation 
in this particular month from the average historic Niño 3.4 
values relative to the 1981-2010 base period 

ERSST.v5 
(1981-2010 base period) 

ERSST only bases on the in situ (ship and buoy) observations 

ERSST.v5 
(centred base period) 

In removing the warming trend, the centred base period is 
updated to calculate the anomalies for successive 5-year periods 
in the historical value 

 

The better known and popular applied Niño 3.4 index, depicting ENSO events, is derived from 

the daily 1/4° Optimally Interpolated SST (OISST.v2) dataset, which is reported from January 

1982 and updated on a weekly and monthly basis. The OISST-based measure is an average of 

daily sea surface temperature values interpolated from weekly measures obtained from both 

satellites and buoys. The anomaly for a given month is denoted by the deviation in this 

particular month from the average historic Niño 3.4 values relative to the 1981-2010 base 

period. Another similar but different Niño 3.4 index is derived from the monthly 2 Extended 

Reconstruction SST (ERSST.v5) dataset. To avoid satellite biases, the ERSST only bases on 

the in situ (ship and buoy) observations (Reynolds et al., 2007). Similar to the OISST index, 

the ERSST-based Niño 3.4 uses the fixed 30-year base period (1981-2010) to calculate the 

anomalies as well. However, the significant global warming trends in the Niño 3.4 region from 

1950 onwards criticise the single fixed 30-year base period (1981-2010). This fixed base period 

used to define El Niño and La Niña episodes increasingly incorporate the long-term trends 

which fail to capture the interannual ENSO variability. In removing the warming trend, the 

centred 30-year base period is updated to calculate the anomalies for successive 5-year periods 

in the historical value, to ensure the El Niño and La Niña events will be defined by the 

contemporary climatology rather than future climatology. 

 

 
2 Source: https://www.cpc.ncep.noaa.gov/data/indices/   
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The Oceanic Niño Index (ONI) is defined as three-month running mean values of SST 

departures from average in the Niño 3.4 region, which is an internationally accepted indicator 

to define the state of the ENSO cycle (Kousky and Higgins, 2007). According to the NOAA 

operational definitions for El Niño and La Niña episodes, the El Niño condition is characterised 

by the positive ONI values equal or higher than +0.5℃, and the La Niña episode is 

characterised by the negative ONI values equal or lower than -0.5℃. Otherwise, when the 

values of the ONI fall into the interval [-0.5℃, +0.5℃], a neutral phase is assumed (Royce et 

al., 2011; Ubilava, 2017b). The results of the phases classification applied to the ONI data from 

NOAA are shown in Figure 4.2.  

 
Note: This figure shows the warm and cold anomalies. Values exceeding thresholds of +0.5℃ 
and -0.5℃ are stippled to indicate El Niño and La Niña episodes, respectively.  
 

Figure 4.2: Time series plots of the ONI using data from NOAA 
 

4.3 Literature review 

In this section, we review the studies that analyse the relation between ENSO anomalies and 

agricultural commodity prices through the supply (production, transportation) and demand 

channels.  

 

Keppenne (1995) examines how soybean futures contracts traded on the Chicago Mercantile 

Exchange are affected by ENSO conditions by applying the multichannel singular spectrum 

analysis (M-SSA) approach. Applying the M-SSA method with a time window of 48-month 

on the ENSO indicators and soybean prices, he identifies an appreciable coherence between 

ENSO and soybean prices at the 48-month cycle that construed as an ENSO signal. Moreover, 

he finds that soybean futures prices are more responsive to the La Niña events than to El Niño 

events. This can be explained partly by the fact that La Niña-induced droughts in the U.S. 

Midwest cover large soybean producing fields, leading to the reduced supply and increased 
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prices. In a related study, Letson and McCullough (2001) revisit the ENSO-soybean prices 

relations to seek to characterise the robustness of this linkage with the traditional spectral 

analysis to identify the periodic ENSO signals, and determine whether such climate-price 

connections have implications for commodity traders and government investment for climate 

prediction capability. In contrast to Keppenne’s (1995) work, they argue the effects of ENSO 

events on soybean future prices should be channelled through the soybean supply and demand 

shocks, which are triggers for soybean cash prices; so, soybean cash price acts as a signal. 

Employing monthly observations spanning back to 1950, they corroborate the findings of 

Keppenne (1995) but notice only a 12-month cycle that corresponds to the frequency of ENSO 

events. Besides, they evaluate the Granger causality between soybean cash prices and ENSO 

phenomenon, and recognise that ENSO does not cause soybean prices, and vice versa. Curtis 

et al. (2002), investigate the impacts of ENSO phases on wheat prices fluctuations. Algieri 

(2014) adopts a vector error correction model (VECM) to quantify the impact of ENSO on 

wheat prices. This is done by using a mix of main drivers that contribute to wheat price 

movements. This mix is distinguished into four groups, one of which is a weather variable used 

to represent the climate condition effects. Monthly observations of the U.S. No. 1 hard red 

winter export prices, El Niño region 3.4 sea surface temperature (SST) anomalies index and 

Southern Oscillation Index (SOI) are tested over the sample period 1980-2012. He finds that 

adverse weather conditions caused by La Niña adversely impact on wheat production and 

thereby raise wheat prices.  

 

Selecting the State of Ceará as the representative of the Brazilian semi-arid region, Chimeli et 

al. (2008) utilise the climate information to study the climate uncertainty on the rainfed corn 

market in the state. Using corn production and price data and a semi-parametric algorithm 

regression, they forecast quantity and prices in the Brazilian local corn market. The results 

provide encouraging evidence of an inverse relation between El Niño and corn yields, and a 

positive relation between SST anomalies and corn prices. Brunner (2002) examined the ENSO 

effects on a group of primary commodity prices. He employs 30 non-oil primary commodity 

price indices, consumer price index and real GDP to examine the impact of ENSO. By 

including the continuous time series indicators of ENSO intensity (instead of using a dummy 

variable to designate the ENSO years) in a vector autoregression (VAR) model, they find 

ENSO appears to account for around 20% of real commodity price fluctuations. This result 

indicates that the ENSO cycle has a considerable explanatory power for real commodity price 



59 
 

volatilities, in particular real food prices. In the same vein, Laosuthi and Selover (2007) conduct 

the analysis for 22 individual nations, especially upon the developing countries which are most 

susceptible to ENSO events. This was tested by employing SOI as the indicator of the 

magnitude of ENSO events in the Granger causality framework. They find a weaker 

synchronisation between ENSO events and real GDP growth, as well as consumer price 

inflation; but robust evidence of ENSO effects on corn prices and coconuts, palm oil, rice and 

sorghum prices, while no significant influences on other commodity prices. 

 

Ubilava (2012; 2013; 2017a; 2017b) makes a significant contribution in this field by publishing 

a series of studies on analysing the impact of ENSO events on commodity prices. For example, 

highlighting the susceptibility of coffee production to climate anomalies, Ubilava (2012) 

employs monthly price data from four coffee types: Columbian Mild Arabica, Other Mild 

Arabica, Brazilian and other natural Arabicas, and Robustas. Using a smooth transition 

autoregression (STAR) of four coffee variety prices, he concludes the ENSO events affect 

coffee prices and the ENSO-associated asymmetries have existed in coffee prices: El Niño 

positively affects the Robustas prices but negatively impact Arabicas prices; while the opposite 

is true during La Niña periods. In another pertinent work, Ubilava and Holt (2013) assesses the 

ENSO effects on market dynamics of major world vegetable oil prices and investigate potential 

asymmetry in vegetable oil prices. They first apply the STAR model to analyse the potential 

for nonlinearity in ENSO cycle and vegetable oil prices; then the smooth transition vector error 

correction (STVEC) model of Rothman et al. (2001), which is a multivariate version of the 

STAR framework, is employed to model a system of interrelated vegetable oil prices, covering 

the period between January 1972 to December 2010. Consistent with Ubilava’s (2012) work, 

the results show self-exciting type nonlinearity in ENSO anomalies with the STAR model. 

Besides, these nonlinearities trigger the asymmetries in the world vegetable oil prices, which 

indicates that the vegetable oil production in different regions of the world varies considerably 

to the ENSO regimes. Therefore, the world vegetable oil prices respond differently to the 

ENSO phases. Both of these studies allowing for a continuum of switching points between the 

regimes, which are essential when discussing potential heterogeneous agents’ behaviour. 

Ubilava (2013) revisits the fishmeal-soya-bean meal price ratio and analyses it in conjunction 

with the ENSO anomalies. The study applies a STAR modelling framework and utilises a 

sample of monthly observations over the period of 1982-2012 to address the regime-dependent 

behaviour in the monthly fishmeal-soybean meal price ratio dynamics. He finds evidence of 
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asymmetry. Besides, he confirms findings of Keppenne (1995) that La Niña events are 

responsible for the fishmeal-soybean meal price ratio deviations because of the associated 

droughts in the soybean producing regions, which have a greater impact on soybean meal prices.  

 

More recently, using more than three decades of monthly data, Ubilava (2017a) employs a 

vector smooth transition autoregression (VSTAR) approach, a particular kind of nonlinear 

multivariate framework, to quantify the ENSO-caused asymmetric price transmission in the 

world wheat markets. In so doing, this study examines the linkage between ENSO-associated 

wheat yields shocks and the subsequent price dynamics. Investigating the effects of El Niño 

and La Niña on world wheat prices separately, Ubilava (2017a) indicates the wheat prices are 

affected by the climate conditions and reports an ENSO-related regime dependency in the price 

fluctuations. This suggests the wheat prices respond differently to the two extreme ENSO 

phases. He finds that wheat prices tend to drop after El Niño events and rise following La Niña 

shocks, and with more persistent price responses during La Niña conditions than El Niño 

condition. To the extent wheat is a storable crop and this is consistent with the economics of 

storage. La Niña negatively affects wheat production, which can deplete the international grain 

reserves. The prices would increase dramatically in such a low-inventory regime (Algieri, 

2014). These findings are in common with the conclusions of Iizumi et al. (2014), who report 

the differential prices performance within two extreme phases of ENSO through global 

production effect perspective. In a more comprehensive study, Ubilava (2017b) attempts to 

estimate the impact of ENSO climate anomalies across an extensive list of primary commodity 

prices over the period 1980-2016. The smooth transition models could capture the transition 

between regimes by allowing for a continuum of points or thresholds. The time-varying smooth 

transition autoregressive (TV-STAR) model is a generalised framework which considers the 

structural change could be gradual rather than abrupt. The ENSO-price relation is prior 

unknown and these relations could vary across commodities. Therefore, TV-STAR model has 

been wildly used in examining commodity prices (Balagtas and Holt, 2009; Holt and Craig, 

2006; Hood and Dorfman, 2015). Employing the TV-STAR modelling framework of 

Lundbergh et al. (2003), he notes that the ENSO events affect selected prices depend largely 

on the type of commodities (some vegetable oils and protein meals respond most robustly to 

ENSO anomalies, while no evidence is revealing the SST effects on cereal grains prices). 

However, the findings of no effects on cereal grains from Ubilava (2017b) differ from Chimeli 

et al. (2008) who prove the effects of ENSO anomalies on Brazilian corn prices. The possible 
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explanations refer to the limited exposure of the temperate area to ENSO anomalies plus the 

north-south diversification of the cereal grains. Because crop production is diversified in 

different regions, losses in one region could be more or less offset by another region (Lybbert 

et al., 2014). Besides, the resultant buffer constructed by intra-annual supply responses and 

global trade serves as another reason. This mixed picture is also reinforced by Iizumi et al. 

(2014), who collected the differences in averaged yield anomaly between El Niño (La Niña) 

years and neutral years, illustrating the overall impacts of ENSO extreme episodes on global 

yields are uncertain. They also highlight the various reactions of the crop yields during El Niño 

and La Niña years, and the grain price variations across export regions.  

 

On balance, the extant literature tends to favour the ENSO role in uncovering asymmetric 

commodity price dynamics. However, there seems to be some mixed evidence about whether 

the ENSO anomalies would affect cereal grains prices. In previous studies, STAR type models 

are commonly employed. However, the STAR type models are based on the gradual transition 

between different regimes, which are unable to conduct regime-dependent modelling. As 

discussed in section 4.2, the El Niño condition is characterised by the positive ONI values equal 

to or higher than +0.5℃, and the La Niña episode is characterised by the negative ONI values 

equal to or lower than -0.5℃. Otherwise, when the values of the ONI fall into the interval [-

0.5℃, +0.5℃], a neutral phase is assumed. In this way, we have the El Niño regime and the 

La Niña regime. The STAR type models conduct analysis by moving from the El Niño regime 

to the La Niña regime gradually, while there is a neutral phase between them. The neutral phase 

is the normal climate condition, which cannot be recognised as El Niño or La Niña. The regime-

dependent modelling should be considered given the STAR type models fail to characterise the 

El Niño regime and La Niña regime. According to Ubilava (2013) and Ubilava (2017a), 

regime-dependent modelling has emerged as a tool to facilitate improved predictability of 

climate anomalies. They suggest that the regime-dependent models could better quantify the 

relationship between climate anomalies and commodity prices; and possibly, improve the 

predictability of commodity prices. TARI model is employed because it allows for conducting 

the regime-dependent analysis. In addition, as discussed earlier, the recently introduced 

interval-based TARI procedures are superior to the point-based STAR and TV-STAR models 

by allowing us to produce more efficient parameter estimates and statistical inferences for the 

dynamic ENSO-price relations. Moreover, we can exploit the variability range of climate 

anomalies on agricultural prices. This will allow us to trace the effects of extreme climate 
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conditions on grain prices. This aspect of causality has not been analysed in the literature so 

far. 

 

4.4 Threshold autoregressive interval framework 

In this section, we begin by providing a brief description of the threshold autoregressive 

interval (TARI) models proposed by Sun et al. (2018). Then we move to introduce the TARIX 

model, which is the extension of TARI that allows for including exogenous explanatory 

interval variables. The TARIX model that employed to test the ENSO-price relationship will 

be described in the last part. 

  

The TARI model can be described as follows: 

 

B! = v
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            (4.1) 

 

where {B! = [B@,! , BB,!]} indicates a stochastic interval procedure with the lower bound B@,! 

and the higher bound BB,!. X$< are the unknown scalar-valued coefficients with 5=1,…, p and 
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constant interval intercept. 6!  is the threshold variable which could be endogenous or 

exogenous and b denotes an unknown scalar-valued threshold indicator. d! = [d@,! , dB,!] is 

the interval innovation. Sun et al. (2018) assume the interval innovation item d! as an interval 

martingale difference sequence (IMDS) with respect to the information set =!#"  so that 

z(d!|=!#") = [0, 0] almost surely.  

 

Noting that B on a probability space (Ω	, H, C) is a calculable mapping B:Ω → =ℝ. Here, =ℝ 

indicates the space of closed sets of sequenced numbers in ℝ, as B(~) = [B@(~), BB(~)], 

where B@(~) and BB(~) ∈ ℝ for ~ ∈ Ω. Particularly, B(~) is a group of ordered real-

valued numbers, fluctuating continuously from B@(~) to BB(~), for each ~ ∈ Ω. Following 

Kaucher (1980), the left bound of an interval-valued time series (ITS) could be larger than the 

right bound, and this extended interval improves the traditional bivariate internal approach (Sun 

et al., 2018). The regular intervals (B@,! ≤ BB,! ) are included in this definition as well. 

Alternatively, the equivalent expression of equation (4.1) could be written as  
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 B! = I!
DX"=(6! ≤ b) + I!

DX8=(6! > b) + d!                (4.2) 

 

where I! = ([1, 1], �−
"

8
	 ,
"

8
	Ä , B!#", … , B!#9)′ , X< = (#)< , #"< , X"< , X8< , … , X9<)′ ∈ ℝ9%8 , :=1, 

2.  

 

To utilise interval information to estimate the parameters and whether these coefficients are 

significantly different, Sun et al. (2018) define the minimum Ç=-distance estimator ÉÑ in their 

model. Let Ö = X8 − X" represent the threshold effect. The idea of their solution is letting 

Ö → 0 as Ü → ∞. The equivalent expression of the equation (4.1) is  

 

B! = I!
DX + I!(b)DÖ + d!                        (4.3) 

 

Changing the equation (4.3) and deriving  

 

B! = _!(b)DÉ + d!                           (4.4) 

 

where I!(b) = I!=(6! > b), _!(b) = -I!
D, I!

D(b)1
D

, É = (XD, ÖD)  and X = X"  in equation 

(4.2). 

 

The main concern is whether the nonlinear term I!(b) in the regression, which is, whether 

Ö = 0. Applying a local-to-null reparameterization, the distributional theory will be facilitated 

as Ö = c/√Ü. As such, the testable null hypothesis is Y): ã = 0 and the alternative hypothesis 

YE: ã ≠ 0. Note that this test is nonstandard since b is not identified under Y): ã = 0.  

 

Before taking the asymmetry test, the first step is estimating parameters. Under Y): ã = 0, the 

model changes to B! = I!
DX + d!. The estimator of X" is acquired by minimising 

 

,F(É) =
"

F#G
∑ Ç98(
F
!'" B! − I!

DX)                     (4.5) 

 

where Ç9(. ) calculates the distance between intervals. When the b is known, É could be 

estimated by applying the minimum Ç=-distance approach, which aims to minimise the sum 

of squared residuals below 
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,F(É) =
"

F#G
∑ Ç98(
F
!'" B! − _!

D(b)(É)                  (4.6) 

 

where Ç9(. ) calculated the distance between the observed interval B! and the fitted interval 

_!
D(b)É. When the b is unknown, two steps estimations are needed to get the estimators. The 

first step is minimizing the sum of squared residuals of TARI model in equation (4.6). The 

second step gets the estimator of b by minimizing the ,F(É), which is  

 

b? = çéè	9:;H,F(É)|H'HI(J) 

 

Then the estimator of É is acquired as  

 

ÉÑ = ÉÑ(b?) = (XG(b?)D, ÖG(b?)) 

 

Then, the sum of squared distance between the fitted interval-valued sets and interval-valued 

observations could be measured by following the Ç= metric introduced by Körner (1997) and 

Körner and Näther (2002). The Ç= metric for the interval B! and the fitted interval _!D(b)É 

is given by  

 

Ç=
8(B! , _!

D(b)É)) = ∫ [ëK!(')(L,M)∈N% − ë
;!&(J)H	(')][	ëK!(í) − ë;!&(J)H	(í)ìî(', í), 

= ‹ë
K!#;!&(J)H , ëK!#;!&(J)H›= 

= ||B! −	_!
D(b)É||=

8 = ||d!||=
8

                                (4.7) 

 

Where the unit space ó) = {' ∈ ℝ", |'| = 1} = {1,−1}, î(', í)  is a symmetric positive 

definite weighing function on ó) to ensure that Ç=8(B! , _!D(b)É)) is a metric for extended 

intervals, and ‹ ∙	, ∙ › indicates the inner product in ó) in terms of kernel î(', í). And the 

support function is  

 

ëE(') = v
ë'ZP∈E{' ∙ ç|' ∈ ó)}, :F		õ@ ≤ õB ,
ë'ZP∈E{' ∙ ç|' ∈ ó

)}, :F		õB ≤ õ@ ,
 

 

Which follows the ëE(') = õB when ' = 1, while ëE(') = −õ@ when ' = −1. 
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Under Y): ã = 0 , the minimum Ç=  estimator Xú  for X	 is obtained, that is Xú =

(∑ ‹ë4! , ë′4!›=)
#"F

!'"
∑ ‹ë4! , ëK!›=
F
!'"  and aù8 = ∑ ||d!û||=

8 /(; − ü)F
!'" , where d!û = B! − I!

DXú . 

And under YE: ã ≠ 0, the parameter estimator is given by 

 

ÉÑ = (∑ ‹ë;(J), ëD;!(J)›=
F
!'" )#"	-∑ ‹ë;!(J), ëK!›=

F
!'" 1            (4.8) 

 

Last, the interval-based Wald test for testing the asymmetry with a known b is conducted by 

employing a heteroscedasticity-robust Wald test expressed as  

 

†! = ÜÉÑ′°(°fÑF
∗°)#"°′ÉÑ 

 

Where ° = (¢  =9%8)′  is the selector matrix and fÑF∗ = ]gF
#"(ÉÑ)fÑF(ÉÑ)]gF

#"(ÉÑ) , fÑF-ÉÑ1 =

∑ '?!
F
!'"F

R
'?′!, ]gF-ÉÑ1 = ∑ ‹ë;(J), ëD;!(J)›=

F
!'" , '?! = ‹ë;!(J), ëST!›=.  

 

By incorporating exogenous explanatory interval variables, Sun et al. (2018) extend their TARI 

model to a TARIX model and the generalised form could be expressed as  

 

B! = [#)" + X)"=) +£X$"B!#$

9

$'"

+£ÖU"
V õ!#$

V

U')

]=(6! ≤ b) + [#)8 + X)8=) + 

				∑ X$8B!#$
9

$'"
+ ∑ ÖU8

V õ!#$
V

U') ]=(6! > b) + '!               (4.9) 

 

where õ! = (õ"! , … , õ&!)′ is the exogenous strictly stationary interval vector procedure and 

Ö$< = (ÖU"< , … , ÖU&<)′ , § =  0,…, s and : =1, 2, which denotes an unknown point-valued 

parameter vector. The asymptotic theory for the TARIX model is similar to the TARI model 

(Sun et al., 2018).  

 

In this study, we expect to find in ENSO-commodity price relations which may be asymmetric 

to the warm and cold shocks from the climate conditions. Furthermore, the variability in ENSO 

can have important effects on agricultural commodity prices variability as emphasised by 

Madramootoo and Fyles (2012). The upshot is that we need to consider climatic extremes as 

well when conducting the tests for asymmetry (Ubilava, 2013). To completely determine the 



66 
 

ENSO effects, the TARIX model is an effective procedure to test for the presence of the 

asymmetry between weather and prices.   

 

Focusing on testing the relationship between cereal grain prices and the two ENSO extreme 

phases, El Niño and La Niña, respectively. The two-regime TARIX model in this study is 

constructed as follows 

 

∆°! = #) + Ö)=) + Ö"∆°!#" + Ö8•!#"=(¶!#" ≤ −0.5) + ÖW•!#"=(¶!#" ≥ 0.5) + ®!     

(4.10) 

 

Where °! = [°@,! , °B,!] is the quarterly logarithmic interval-valued agricultural commodity 

prices and •! = [•@,! , •B,!] is the logarithmic interval-valued ENSO index (SST anomalies). 

¶!#"	is the seasonal point-valued Oceanic Niño Index (ONI), which is the National Oceanic 

and Atmospheric Administration (NOAA)’s primary indicator to monitor the El Niño and La 

Niña conditions and rank the strength of the ENSO. In our model, ONI serves as the threshold 

parameter to recognise the climate pattern of the ENSO. If the ¶! ≤ −0.5 , which is the 

indicative of La Niña conditions exist and the east-central tropical Pacific is cooler than usual. 

Whereas the ¶! ≥ 0.5 associated with El Niño conditions and the region is significantly 

warmer than usual (Kousky and Higgins, 2007); and if the value of ONI falls into the 

interval	[−0.5, 0.5	] then it denotes a neutral episode (Royce et al., 2011). =) = [−
"

8
	 ,
"

8
	] is a 

unit interval and #) + Ö)=) = [#) −
"

8
Ö), #) +

"

8
Ö)]	is a constant interval intercept. Here, the 

#)  and Ö)  measures for the constant mark-up in the trend and volatility, respectively. In 

equation (4.10), í! = [í@,! , íB,!] is an interval innovation. Following Sun et al. (2018) and 

assuming {í! } is an interval martingale difference sequence (IMDS) with respect to the 

information set =!#", that is •(®! |=!#") = [0,0] almost surely. Ö", Ö8 and ÖW are unknown 

parameters. Ö" measures the lagged agricultural commodity prices effects. Ö8 evaluates the 

effects of La Niña conditions on export prices and ÖW assesses the influences of El Niño on 

commodity price growth, respectively. Note that, the interval is divided into two regimes in 

response to the La Niña phase ¶! ≤ −0.5  and El Niño phase ¶! ≥ 0.5  to capture 

asymmetric features in both mean and range, respectively. Besides, as the entries of the ENSO 

index for La Niña events are negative and below -0.5, the negative estimated coefficients 

suggest that the climate changes have a positive impact on commodity prices under La Niña 

conditions.  
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Hypothesis I: La Niña and El Niño events would increase grains prices.  

In light of the ENSO-price transmission mechanism explained in the above section, both El 

Niño and La Niña could affect prices through hurting the grains yield. Therefore, we would 

expect Ö8 < 0 and ÖW > 0, which describes the La Niña and El Niño events would increase 

grains prices, respectively. 

 

Hypothesis II: La Niña and El Niño do not asymmetrically affect grain prices. 

Following Ubilava (2017a; 2017b), ENSO-price relations are characterised by asymmetric, 

which represents the grain prices adjustment in El Niño years would be different from the La 

Niña years. This type of asymmetry implies the following testable hypothesis, that is, 

Y): |Ö8| = |ÖW|.  

 

Indeed, we expect the asymmetric adjustment in grains prices described above bases on the 

assumption that ENSO extremes would push the prices, but the agricultural commodity prices 

would respond differently in the absolute magnitude.  

 

4.5 Data and preliminary analysis 

Following a series work from Ubilava (2012; 2013; 2017a; 2017b), the proxy variable for 

ENSO employed in this study is the Niño 3.4 index, reported by the Climate Prediction Centre 

(CPC) at the National Oceanic and Atmospheric Administration (NOAA). As introduced above, 

three different Niño 3.4 SST anomalies measures, which are OISST.v2 (1981-2010 base 

period), ERSST.v5 (1981-2010 base period) and ERSSTv5 (centred base period) are employed 

in the empirical analysis for the comparison. To assess the warm (El Niño) and cold (La Niña) 

of the ENSO cycle separately, the Oceanic Niño Index (ONI) has been selected to serve as the 

threshold to determine the El Niño and La Niña phases in this paper. The commodity prices of 

interest in this study are farm received prices of three U.S. major crops because the climatic 

impact on production is considered to be more direct. The farm received prices data are for the 

wheat, soybean and corn are obtained from the online publications of the National Agricultural 

Statistical Service (NASS) of the United States Department of Agriculture (USDA). These are 

cash prices and represent the sales from producers to first buyers, including all grades and 

qualities. Considering the inflation effects, the nominal spot and cash prices are deflated 

applying the U.S. producer price index (PPI) which reported by the U.S. Bureau of Labor 
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Statistics. All the prices used in this study are quoted in U.S. dollars, and hereafter the analysis 

of data is carried out on logarithm of real commodity prices unless otherwise stated.  

 

All the data, including both ENSO indices and commodity prices introduced above, are 

monthly point-valued data. To investigate the pass-through of ENSO cycles to agricultural 

commodity prices, we utilize these monthly prices to construct interval-valued quarterly prices. 

Considering the ENSO influences on rainfall take more time, quarterly frequency data is 

chosen as it would be more likely to capture the ENSO effects (Hansen et al., 1998). Besides, 

climate variability reflects the climatic changes across seasons and years (Woli et al., 2015), 

making a quarterly interval-valued data series more appropriate. The quarterly interval-valued 

prices are formed by using the minimum and maximum monthly point-valued prices within a 

quarter. Thus, for each price series, the minimum and maximum monthly point-valued data 

form the lower and upper bounds, respectively. Due to the negative values existed in ENSO 

indices, the quarterly interval-valued ENSO variables are constructed in the same way but 

using the minimum and maximum monthly point-valued data without taking logarithms. In a 

given period, the interval-based observations enjoy the information gain by capturing the price 

trend as well as the volatility information (Sun et al., 2019).  

 

A complete list and detailed descriptions of ENSO indicators, ONI, along with the farm 

received commodity prices, are shown in Table 4.2. 
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Table 4.2: Description of the ENSO indicators, threshold variable and commodity prices 

Variable Description Time range 
 

ENSO indicators 
OISST.v2 (1981-2010 base period) Niño 3.4 (5°North-5°South) (170-120°West)  1982:01-2019:06 
ERSST.v5 (1981-2010 base period) Niño 3.4 (5°North-5°South) (170-120°West) 1964:01-2019:06 
ERSST.v5  (centred base periods) Niño 3.4 (5oNorth-5oSouth) (170-120oWest) 1964:01-2019:06 

Threshold variable Oceanic Niño 
Index 

3-month running average in Niño 3.4 (5oNorth-5oSouth) (170-120oWest) 1964:01-2019:06  

 
Farm received prices 

Wheat 
 

1964:01-2019:06  Soybean national-level season-average price received by farmers($/bu) 
Corn 

 

Note: This table lists the description and time range of the raw data collected from the Climate Prediction Centre (CPC) at the National Oceanic 
and Atmospheric Administration (NOAA) and National Agricultural Statistical Service (NASS) of the United States Department of Agriculture 
(USDA).  
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To give an intuitive sight of the interval-based data could contain more information than their 

representative point-valued processes, Figure 4.3 shows the range between the lower and upper 

boundaries, which measures the points of extreme fluctuation occurring in the ENSO measures. 

The volatility is prominent, and the lower-upper interval could be extreme for selected quarters. 

We proceed to test whether such interval-valued time series could provide a contrasting case 

in comparison to point-valued observations, especially for the changing climate conditions. 
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Note: This figure reports the lower-upper interval ranges for three Niño 3.4 SST anomalies measures from OISST.v2 (1981-2010 base period), 
ERSST.v5 (1981-2010 base period) and ERSSTv5 (centred base period) dataset.  
 

Figure 4.3: Quarterly three ENSO indicators range 
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As a prelude to the TARIX estimation, we first determine the order of integration of the ENSO 

intensity measures and the prices series examined in the study. To this end, we employ the 

augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root 

tests. According to the ADF test result, all ENSO indices reject the null hypothesis of a unit 

root, thus denoting that the ENSO indicators are integrated of order zero, or I (0). The test 

results for the farm received prices are mixed, implying the two bounds of interval-valued 

wheat prices are stationary I (0) while others are I (1). The KPSS test results give the same 

conclusion as the ADF test except for wheat prices. This study focus on the ADF test results 

but use the KPSS test results as the reference. Therefore, the subsequent TARI modelling is 

carried out on all first differenced commodity prices except for the wheat prices which are 

modelled in levels. Table 4.3 summaries the unit root test rests on all variable.   

 

4.6 Empirical results and discussion 
To characterize the robustness of the estimated relations over alternative measures of the ENSO, 

as introduced in the previous data section, three different Niño 3.4 SST anomalies measures, 

which are OISST.v2 (1981-2010 base period), ERSST.v5 (1981-2010 base period) and 

ERSSTv5 (centred base period) are employed. Both the OISST.v2 and ERSST.v5 (1981-2010 

base period) use the fixed 30-year base period (1981-2010) to calculate the SST anomalies. As 

discussed earlier, considering the single fixed 30-year base period (1981-2010) failed to 

incorporate the contemporary climatology, we repeat the TARIX regression again by replacing 

the SST anomalies index from ERSST.v5 (centred 30-year base period) dataset. Table 4.4 

displays the results for TARIX model of the ENSO events against the grain prices when 

different choices of ENSO proxies are used.  
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Table 4.3: Unit root test on variables 

 ENSO indicator Threshold 
variable 

Farm received prices 

 
OISST.v2 

(1981-2010 
base period) 

ERSST.v5 
(1981-2010 
base period) 

ERSST.v5 
(centred base 

periods) 

Oceanic 
Niño Index 

Wheat Soybean Corn 

ADFL Lower bound -6.876*** -8.635*** -8.857***  -2.783* -2.346 -1.446 
Upper bound -5.740*** -6.752*** -6.935***  -3.066** -2.269 -2.316 

Threshold  -6.951***  
ADF∆ Lower bound / / /  -6.045*** -11.711*** -5.970*** 

Upper bound / / /  -13.402*** -12.173*** -7.219*** 
Threshold  /  

KPSSL Lower bound  0.049 0.224 0.041  1.047*** 1.173*** 1.147*** 
 Upper bound 0.044 0.153 0.034  0.991*** 1.133*** 1.141*** 
 Threshold  0.035  
KPSS∆ Lower bound  / / /  0.039 0.034 0.032 
 Upper bound  / / /  0.033 0.044 0.029 
 Threshold  /  

Note: This table presents the standard ADF and KPSS unit root tests results for three ENSO indicators and selected cereal grains farm received 
prices, based on the interval time series sample information. The ADF and KPSS unit root tests for the Oceanic Niño Index is based on the point 
time series sample information. ***, ** and * denote rejection of the null hypothesis of unit root process at the 1%, 5% and 10% significance level, 
respectively.  
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Table 4.4: Estimation results of interval-based regression for three cases 

 ENSO-wheat prices ENSO-soybean prices ENSO-corn prices 

 
OISST.v2 

(1981-2010 
base 

period) 

ERSST.v5 
(1981-2010 

base 
period) 

ERSST.v5 
(centred 

base 
periods) 

OISST.v2 
(1981-2010 

base 
period) 

ERSST.v5 
(1981-2010 

base 
period) 

ERSST.v5 
(centred 

base 
periods) 

OISST.v2 
(1981-2010 

base 
period) 

ERSST.v5 
(1981-2010 

base 
period) 

ERSST.v5 
(centred 

base 
periods) 

!! 0.1895*** 0.1217*** 0.1181*** -0.0122 -0.0119 -0.0133 -0.0238* -0.0200** -0.0210** 
"! 0.0184*** 0.0115* 0.0108* -0.0008 -0.0047 -0.0045 0.0018 -0.0004 0.0002 
"" 0.8078*** 0.8878*** 0.8915*** -0.2771 -0.2165 -0.2149* -0.1665* -0.1485** -0.1483** 
"# -0.0308* -0.0262* -0.0247 -0.012 0.0024 0.0006 -0.0436** -0.0264** -0.0309** 
"$ -0.0097 -0.0044 -0.0028 0.0161* 0.0333** 0.0335** 0.0265** 0.0300*** 0.0294*** 

Ho:"# = "$ 0.3381 1.1872 1.0397 1.8129 1.7895 1.8832 8.2131*** 7.9806*** 8.1568*** 
Note: This table reports the estimated results of the TARIX regression on Niño 3.4 SST anomalies measures from OISST.v2 (1981-2010 base 
period), ERSST.v5 (1981-2010 base period) and ERSSTv5 (centred base period) dataset. The last row of results reports the asymmetry test statistics. 
***, ** and * denote significance at the 1%, 5% and 10% levels, respectively.  
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In Table 4.4, we tabulate the estimated results of the relationship between three interval-valued 

ENSO indicators and interval-valued commodity prices. Of the agricultural commodities under 

consideration, in general, the farm received grain prices are affected by ENSO cycles. In terms 

of wheat, the estimates of the !! are significant at 1% level, which denotes the autocorrelation. 

As the entries of the ENSO index for La Niña events is negative and below -0.5, the negative 

estimated coefficients suggest that the climate changes have a positive impact on commodity 

prices under La Niña conditions. The estimator !" is negative and significant at 10% level, 

implying the La Niña shocks, or negative deviations of the SST, tend to affect wheat prices 

positively. However, no observed relations between La Niña events and wheat farm prices are 

obtained when we choose the updated ERSST.v5 (centred 30-year base period) SST anomalies 

measures. We observe that El Niño would not affect wheat prices, confirm by the insignificant 

!# . For U.S. soybean cases, only the estimator of !#  is significantly positive at 5% 

significance level (10% significant for OISST.v2 ENSO measure case), which implies the El 

Niño phenomenon has a positive impact on prices and the La Niña events have no influences. 

Possible reasons for the wheat and soybean prices only respond to either La Niña or El Niño 

will be discussed later.  

 

In the case of U.S. corn price, the estimates of the !!, !" and !# are found to be significant, 

indicating the corn prices are autocorrelated and respond to both the El Niño and La Niña 

phenomenon. The estimated coefficient !!  is significant at 5% significance level (10% 

significant for OISST.v2 ENSO measure case), implying autocorrelation. Besides, the 

estimates of the !" and !# are significant at 5% and 1% significance level, respectively, 

denoting both La Niña and El Niño affects corn price. The negative sign of the estimator !" 

is predicted because the La Niña-caused high temperatures and low precipitations along the 

U.S. corn belt could hurt the moisture balance and then production (Phillips et al., 1999; 

Wannebo and Rosenzweig, 2003; Tack and Ubilava, 2013), as such an increase in corn prices 

is expected during La Niña episodes. During El Niño years, the excessive rainfalls lead to the 

delay of the corn planting and therefore impair the corn yields (Handler and Handler, 1983), 

and drive the prices. The positive sign of !# meets the expectations of the positive effects of 

El Niño on corn prices. Another noteworthy result is the null hypothesis "$: !" = !# of the 

asymmetric test has been rejected for corn case, which confirms that the corn prices respond 

asymmetrically to La Niña and El Niño anomalies. This asymmetric response is related to the 

differential crop yields within two extreme phases of ENSO (Iizumi et al., 2014). Our result 
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departs from Hansen et al. (1998) and Ubilava (2017b) who fail to find evidence of ENSO 

effects on cereal grain prices.  

 

To provide an intuitive comparison, Table 4.5 summarises the estimated results we obtained 

from using different ENSO proxies.  

 

Table 4.5. Estimation results comparison 

 ENSO indicator 
 OISST.v2 

(1981-2010 base period) 
ERSST.v5 

(1981-2010 base period) 
ERSST.v5 

(centred base periods) 
Wheat    

L L  
Soybean E E E 

   
Corn E E E 

L L L 
Note: This table compares the TARIX regressions of climate variability on selected cereal grain 
prices using different proxies for ENSO events. E and L denote the effects of El Niño and La 
Niña events, respectively.  
 
As is clear from Table 4.5, when we use different ENSO indices, the results keep unchanged 

for soybean and corn cases. In other words, the soybean prices are only affected by El Niño 

condition when we use different ENSO indicators in estimation. While corn prices respond to 

both El Niño and La Niña events when using the ENSO indicators from different datasets. In 

the case of wheat, the empirical evidence regarding the impact of ENSO-induced weather 

shocks is mixed. Note that overall the El Niño events do not impact on farm received prices of 

wheat, which confirms the findings of Ubilava (2017a) that wheat prices are more pronounced 

during La Niña periods than El Niño periods. However, when we use the ENSO proxies from 

OISST.v2 and ERSST.v5 (1981-2010 base period) dataset, the La Niña-like conditions have 

an impact on wheat prices, causing them to increase. This result supports Ubilava (2017a) of 

where it has been explained by the fact that SST anomalies are based on a fixed 30-year base 

period (1981-2010), a period in which extreme La Niña realizations including 1988-1989 and 

2007-2008 were found to trigger price spikes (Ubilava, 2017a). But the base period of the 

updated ERSST.v5 (centred 30-year base period) is shifted every 5 years to ensure the El Niño 

and La Niña events will be defined by the contemporary climatology. The extreme La Niña 

events exist in 1988-1989 and 2007-2008. Compared to the ERSST.v5 (1981-2010 base period) 

that uses the constant 1981-2010 base period, ERSST.v5 (centred 30-year base period) dataset 



77 
 

incorporate the gentler La Niña events after 2008. The total effects of La Niña decrease. This 

may explain the result that La Niña does not significantly affect wheat prices when using 

ERSST.v5 (centred 30-year base period). The results of the ENSO-soybean price relation are 

unchanged regardless of the ENSO choice, which implies the positive correlation exists 

between the soybean prices and El Niño. El Niño impacts soybean prices either through the 

weather conditions or through its influences on substitution demand (Keppenne, 1995). For 

example, drier weather over the soybean plant area results in the poor harvest, which reduces 

the supply and raises the prices (Letson and McCullough, 2001). Besides, warm conditions 

associated with the El Niño events hurt the fishing industry by decreasing the harvests of 

anchovy and tuna, triggering the higher demand for the fish-protein substitutes for livestock 

feeding propose and then growing U.S. soybean trades (Hansen et al., 1998; Keppenne, 1995). 

During the La Niña years, we notice that the soybean prices do not respond as significantly to 

the climate anomalies as El Niño did. Perhaps, this lack of causality could be attributed to the 

fishing conditions over the equatorial Pacific are not negatively affected by the La Niña shocks 

(Keppenne, 1995). Results of this analysis do not support the hypothesis that both El Niño and 

La Niña shocks could affect the commodity prices simultaneously, for wheat and soybean. The 

lack of significant interaction is confirmed between El Niño and wheat prices, and the soybean 

prices are only responsive to El Niño events. These would seem to contradict the previous 

research (e.g. Hansen et al., 1998; Keppenne, 1995; Letson and McCullough, 2001; Peri, 2017) 

that presents evidence concluding that both El Niño and La Niña phases could improve the 

soybean prices. Hansen et al. (1998) and Keppenne (1995) have shown a 2-year lag price 

response and 48-month cycle correspond to La Niña shocks. A potential explanation for this 

apparent lack of interaction would be that a longer time period may be necessary for prices to 

respond to climate changes. What we find is that there is no short-term effect of prices to 

climate effects.   

 

Table 4.5 also characterises the robustness of the ENSO-corn price relationship founded by 

Tack and Ubilava (2013) to alternative definitions of ENSO proxies employed in the analysis. 

Combing the estimation parameters results discussed above, we corroborate that corn prices 

respond asymmetrically to La Niña and El Niño anomalies. Specifically, price-makers adjust 

corn prices upwards in response to the warm and cool conditions, but in a slightly different rate. 

Intuitively, the considerable spatial climate effects have important implications for the supply, 

because the ENSO-driven extremes could simultaneously create large-scale crop losses across 
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a wide production area. Although Phillips et al. (1999) point the spatial pattern of ENSO effects 

is not homogeneous for the U.S. corn belt, a reduction of the corn yields is established 

throughout the corn belt region when the El Niño hits the United States. In addition, this pattern 

holds during the La Niña period as well (Tack and Ubilava, 2013). A similar pattern of results 

is found in the study by Adams et al. (1999), who present evidence of the spatially aggregated 

effects which are negative for both El Niño and La Niña events. The contraction of corn 

production is a major reason for explaining the increased corn farmgate prices. Because La 

Niña and El Niño anomalies both will lead to the reduction in corn yields throughout the corn 

belt region in the United States. This study indicates that such an asymmetric pattern seems 

much more likely to be due to the corn yields adjustment nuances facing the La Niña and El 

Niño shocks. Our results are in sharp contrast with some of the studies that have been conducted 

into investigating the relationship between ENSO anomalies and cereal grain prices. Our results 

are in contrast to Ubilava (2017b), who are unable to support the hypothesis that ENSO affects 

cereal grain prices. In addition, the results of this study are partly in line with some studies 

which inquires the price response to ENSO events for individual crops. For example, we lend 

support to Ubilava (2017a) and Letson and McCullough (2001) by confirming the ENSO 

phases could affect the soybean and wheat prices. Moreover, we add to the previous study by 

showing the corn prices respond asymmetrically to the different phases of ENSO events.  

 

To investigate the robustness of our results, we also run a basic TAR using point-valued data 

instead of interval-based. A comparison will give a good idea to see how different the results 

might be with the range taken into account. Table 4.6 reports the results of the point-based 

regression. The OISST.v2 measure for ENSO is not applicable due to the insufficient 

observations. For all cases, the estimated coefficients !! are significant, indicating the prices 

are autocorrelated. We observe that the estimators !" and !# are both significant at 5% 

level or higher in the case of wheat. This implies that both La Niña and El Niño shocks would 

increase wheat prices. In the case of soybean, there are no linkages found with ENSO as shown 

by the results in Table 4.6. La Niña is found to raise the corn prices given the negative 

estimator!" . The results for soybean and corn are in contradiction to the interval-based 

estimations. Considering the ENSO-prices transmission mechanisms discussed in section 4.2, 

these point-based findings do not meet a priori expectation of the soybean price should be 

affected by ENSO events. The potential reason would be that the average value is unable to 

capture the extreme and volatility information of the climate and price variables. Therefore, the 
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point-based estimation results may not capture complete information. The novel interval-based 

approach assists in providing more information when modelling the ENSO-price linkage, 

which allows us to conclude that grains prices respond to the climate shocks, and the ENSO 

extremes affect corn prices in an asymmetrical manner.  
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Table 4.6. Estimation results of point-based regression for three cases 

 ENSO-wheat prices ENSO-soybean prices ENSO-corn prices 

 
OISST.v2 

(1981-2010 
base period) 

ERSST.v5 
(1981-2010 
base period) 

ERSST.v5 
(centred base 

periods) 

OISST.v2 
(1981-2010 
base period) 

ERSST.v5 
(1981-2010 
base period) 

ERSST.v5 
(centred base 

periods) 

OISST.v2 
(1981-2010 
base period) 

ERSST.v5 
(1981-2010 
base period) 

ERSST.v5 
(centred base 

periods) 
!! / -0.0240*** -0.0252*** / 0.0939** 0.0874** / 0.0304 0.0273 
"" / 0.1431** 0.1363** / 0.9487*** 0.9541*** / 0.9467*** 0.9547*** 
"# / -0.0416** -0.0494*** / 0.0109 0.0154 / -0.0281* -0.0259* 
"$ / 0.0292** 0.0281** / -0.0144 -0.0147 / 0.0102 0.0078 

Note: This table reports the estimated results of the TAR regression on Niño 3.4 SST anomalies measures ERSST.v5 (1981-2010 base period) and 
ERSSTv5 (centred base period) datasets. The results are non-applicable with OISST.v2 (1981-2010 base period) measure because it leads to the 
insufficient observation issue in point-based regression. ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively. 
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4.7 Conclusion 

Climate change has been dominating the headlines and, in this light, a great deal of 

attention has been paid to the issues of global climate variability on grain prices. 

Empirical evidence to date is mixed. While previous studies such as those by Letson 

and McCullough (2001) and Ubilava (2012; 2013; 2017a) have investigated the impacts 

of climatic changes on individual crops, systematic research linking climatic anomalies 

to a group of cereal grains prices has been scarce. We argue that using global climate 

anomalies, the extreme episodes of the ENSO strongly affect the temperature and 

precipitation, which motivates and the need to understand its effect on agricultural 

prices (Iizumi et al., 2014; Ubilava, 2017b).  

 

The newly proposed interval-based threshold method neatly fits to evaluate the ENSO-

caused asymmetric price transmissions on a group of U.S. grain prices received by 

farmers. Accordingly, this study quantifies the connection between two ENSO phases 

and the subsequent grain price fluctuations. The interval-based nonlinear framework is 

advantageous to allow for testing the nonlinearities of changes in both trend and 

volatility simultaneously. Besides, the TARI model assists in obtaining more efficient 

estimations and robust statistical inferences because the intervals could provide 

sufficient information over the standard point-value data (Sun et al., 2018; 2019). For 

instance, our results contrast the view in recent empirical studies of Ubilava (2017b) 

where the conclusion is that cereal grains prices are not responsive to the ENSO shocks. 

We provide support to Ubilava (2017a) and Letson and McCullough (2001) by 

identifying the different phases of ENSO could affect the soybean and wheat prices. In 

addition, we add to the research analysing ENSO effects on corn prices by showing the 

corn prices respond asymmetrically to the different phases of ENSO events. Applying 

more appropriate modelling methods and comparing different ENSO measures in this 

study, the key and robust findings of this study suggest that the ENSO anomalies lead 

to price fluctuations in selected U.S. grain prices.   
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These results add to the extant literature by providing new evidence that climate 

variability is an important factor when analysing the impact it has on grain prices. What 

are the policy implications? This study is useful for farm risk management and planning 

crop plantation. For instance, the rotations strategy for corn and soybean could be 

adjusted in light of the information we obtain on climate change (Tack and Ubilava, 

2013). Our results report the ENSO-induced price changes for soybean and corn are of 

the same sign, but the soybean only responds to the El Niño events. In the case of 

competing for acreage between corn and soybeans, strategies of land allocation to the 

preferable crops could be planned in advance to hedge against climate risks and 

improve the economic returns during different phases of ENSO.   

 

This study adds more knowledge to the existing studies on ENSO and price relations 

and underscores the novel tests demonstrate better properties in estimating the ENSO-

price linkages for cereal grains. Unfortunately, the ability of forecasting prices is 

limited. Future work on the predictions based on interval-valued forecasts could be an 

avenue for added research an area for future research. Furthermore, it is helpful to 

investigate the interaction between ENSO shocks and cereal grain prices from the 

regional perspective because of the spatial heterogeneity of ENSO effects following 

Phillips et al. (1999) and Tack and Ubilava (2013).   

 

 

 

 

 

 

 

 

 

 



83 
 

Chapter 5. Time-varying Causality among the U.S. Grains Cash and 

Futures Price 
 
5.1 Introduction  
Agricultural commodity futures contracts have been traded for over 150 years in the 

United States (Working, 1953). With the Grain Futures Act enacted on September 21, 

1922, the United States has established the federal law involving the regulation of 

trading in certain commodity futures. Since then, trading in futures contracts is under 

federal regulation (Carlton, 1984). Nowadays, the grains futures including corn, 

soybean and wheat futures contracts are the top three actively traded agricultural 

commodity futures contracts in the Chicago Mercantile Exchange (CME). It is well 

known that futures markets play an important role in price discovery mechanism and 

risk transfer in agricultural commodity markets (Irwin et al., 2008). Price discovery 

mechanism refers specifically to the functions and mechanisms of the futures markets 

that are formed through option auctions and can indicate the future direction of price 

change in t spot markets (Working, 1949), and the risk transfer refers to the process of 

hedgers using futures to shift the risks in price changes to others (Working, 1953). 

Given the price discovery role of futures contracts and the possibility of risk transfer, it 

is important to have some understanding of the relationship between spot and futures 

prices (Garbade and Silber, 1983), because spot-futures relations are important to 

various sectors in the agricultural commodity markets including production, marketing 

and consumption (Xu, 2019).  

 

An understanding of this relationship is essential for four reasons. First, grains 

producers fix sales prices ahead of production and adjust supply decisions basing on 

the futures contract prices (Nicolau and Palomba, 2015; Xu, 2019). Second, commodity 

processors and exporters rely on the futures contracts to cover continuous supply 

requirements (Hieronymus, 1977; Peck, 1985), and the physical traders price their 

commodities using the futures as the references (Nicolau and Palomba, 2015). Third, 
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futures contract, as an important financial instrument for hedge, knowledge of the 

relationship between spot and futures prices could be valuable for speculators and 

hedgers to forecast the possible deviations in between spot and futures prices to 

generate profits and mitigate risks (Hieronymus, 1977). Finally, exchange 

administrators need to understand the linkage of the cash and futures prices to design 

and evaluate new financial derivative contracts (Xu, 2019). These reasons motivate this 

article as to investigate the lead-lag relations between grains cash prices and futures 

prices.  

 

The continual interest in the lead-lag relationship between the agricultural commodity 

cash markets and futures markets has led to the extant literature on this subject. This 

lead-lag relation indicates the speed at which the futures market transmits new 

information relative to the spot market as well as how closely they interact (Chan, 1992). 

Economic theory suggests that, in a perfect frictionless world, cash and futures prices 

should be contemporaneously linked (Chan, 1992), implying they adjust 

instantaneously to incorporate new information under efficient markets where no 

profitable arbitrage opportunities exist, and as a result, the lead-lag relationship is not 

to be expected (Xu, 2019). However, if the futures (spot) markets respond faster to 

information and spot (futures) markets behave slowly, then this gives rise to a lead-lag 

relation (Chan, 1992). The empirical evidence based on analysing the lead-lag relations 

in commodity markets has generated empirical results that are at best mixed (Xu, 2019). 

Nonetheless, the weight of evidence is in favour of futures markets to dominate spot 

commodity markets (Nicolau and Palomba, 2015; Xu, 2019). This could be owing to 

the advantages of the futures markets being able to incorporate new information faster 

than spot markets because of high liquidity and transparency, low transaction costs and 

initial outlays and short sell opportunities (Herbst et al., 1987). For instance, futures 

markets facilitate price information flows by offering a central but virtual place to 

register commodity values. Therefore, futures prices, especially commodity futures, 

convey new information to economic agents more quickly (Xu, 2018). However, some 
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studies have found that cash markets play the leading roles in price discovery (e.g. 

Kawaller et al., 1987; Moosa, 1996; Rosenberg and Traub, 2009). This could result 

from increased transparency, which allows new information to be contained in spot 

markets (Moosa, 1996; Rosenberg and Traub, 2009). At any time, market participants 

filter their information sets that are associated with either spot or futures markets, 

thereby possibly causing the lead-lag relationship to change in respond to the new 

information (Kawaller et al., 1987). Since the lead-lag relationship is found to be mixed 

in extant studies, it is reasonable to assume that the relationship changes with time as 

new information received (Kawaller et al., 1987). At certain periods of time, the flow 

of information may be relatively sluggish thereby affecting the lead-lag relationship. 

This implies that the relationship between futures and spot prices can be sensitive to 

the chosen time period. A natural question that can arise is whether the lead-lag 

relationship changes over time between futures and spot prices and whether we can 

identify those time periods when the change occurs. The result can be useful as it may 

point to regimes where the agricultural policy or market conditions affect the causal 

relationship.  

 

This paper adds to the extant literature of spot-futures lead-lag interactions, which so 

far have produced mixed results. The contributions and novelties of this paper are as 

follows. First, this study contributes to the on-going research on the lead-lag 

relationship between agricultural commodity futures and cash prices. We provide 

empirical evidence to support the lead-lag relationship can change over time and find 

the periods when the change occurs. Agricultural commodity futures and spot prices 

could be affected by the current market information. The lead-lag pattern change as 

new information in the commodity market arrives. At any time point, each could lead 

the other because agricultural commodity market participants filter and respond to the 

information relevant to their positions, which may be spot or futures. Besides, the lead-

lag relationship is time-varying due to changes in the information flows. In certain 

periods of time, it can be fast or sluggish compared to other times. Since the early 2000s, 
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financialisation among commodity markets makes the commodity futures traded as a 

class of assets. Increasing futures trading in commodity markets serves as a key 

platform for aggregating information. The centralised futures exchange accelerates the 

information flows and affects the lead-lag pattern. Second, this paper adopts a novel 

econometric method that can be used to exploit the lead-lag relationship between spot 

and futures prices employing the concept of time-varying Granger causality. Phillips et 

al. (2015a; 2015b) has proposed the recursive evolving window method. Later, Shi et 

al. (2020) introduce a new time-varying Granger causality test base on this recursive 

evolving window procedure. Given the commodity prices are characterised as highly 

volatile, especially since 2000, use of the long sample period data may include multiple 

breaks of exuberance and collapse. The recursive evolving window approach proposed 

in Phillips et al. (2015a; 2015b) is more effective to identify the causal relationships 

with non-stability. This novel approach adds the flexibility to allow the testing 

procedure to search for the optimum starting point of the regression for each 

observation, which able to accommodate re-initialisation in the subsample to square 

with any structural changes that may exist within the entire sample. Therefore, it assists 

in detecting any unknown change points in the causal relationship (Shi et al., 2018). By 

identifying the causal periods, we are able to link these causal periods to specific 

agricultural commodity market events. Of particular interest is that recursive evolving 

window causality test allows us to identify the exact dates of the origination and end 

dates of any causality period. Besides, a problem with extant studies is that when testing 

for Granger causality, there are several transformations that are made to the data when 

adopting a conventional vector autoregressive (VAR) framework. For example, 

whether agricultural prices contain a stochastic or deterministic trend is a contentious 

issue (Ghoshray 2019, Wang and Tomek, 2007) and therefore uncertainty shrouds over 

the question of whether or not to difference or detrend the data when incorporating the 

price variables in the VAR. The problem is that if we choose to difference the data, then 

the meaning of the variable changes as it is expressed in growth form. Other problems 

arise if such transformation of the data is made leading to arbitrary transformations that 
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can cause error misspecification (Christiano and Ljungqvist 1988). However, the 

method by Shi et al. (2020) is robust in the sense that it does not require pretesting of 

the data leading to detrending or differencing of the data. Besides, the procedure allows 

for causality to change over time by endogenously determining the switching points, 

which contributes to the point we raise before that changes in the flow of information 

can affect the lead-lag relationship. The procedure also allows for potential 

heteroscedasticity in the testing process. This may be particularly useful because it is 

well-known that agricultural prices are highly volatile in nature.  

 

According to Shi et al. (2020), the traditional forward expanding window causality test 

(Thoma, 1994) and the rolling window causality test (Swanson, 1998) are the two 

special cases of this recursive evolving window method. For comparison, we adopt both 

the traditional and newly presented time-varying Granger causality tests, to examine 

the time-varying lead-lag causality for grains spot and futures spanning nearly half-

century. The remainder of this paper is organised as follows: Section 2 reviews the 

previous literature on testing the lead-lag relations; Section 3 describes the econometric 

methods to test for time-varying Granger causality; Section 4 describes the data applied 

to this study and present the empirical results, and Section 5 provides the conclusions.  

 

5.2 Literature Review 

The spot-futures lead-lag relationships have been studied both theoretically and 

empirically (Alzahrani et al., 2014). Two important theories, traditional cost of carry 

model (Brennan, 1958; Kaldor, 1939; Working, 1949) and market efficiency theory 

(Fama, 1970), have agreed on the existence of the relationship between spot and futures 

prices, but only the latter indicates a causality between spot and futures prices 

(Alzahrani et al., 2014). With respect to the market efficiency theory, futures prices are 

the unbiased predictors of future cash prices, and hence futures prices are expected to 

lead cash prices (Alzahrani et al., 2014; Garbade and Silber, 1983). However, applying 

different methodologies, researchers have provided inconsistent and diverse empirical 
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evidence for lead-lag interaction relationship between cash and futures prices in 

different markets and time periods (Shao et al., 2019). Lead-lag pattern causality 

between cash and futures markets has been widely studied in the context of financial 

markets and commodity markets. Some researchers have dealt with the lead-lag pattern 

issues among commodity spot and futures markets with the objective of analysing the 

issues of price discovery and market efficiency (Silvapulle and Moosa, 1999). Although 

there are extensive studies that test the lead-lag relations, we only concentrate on 

reviewing studies that relate to commodity markets. 

 

Identifying the direction of information flows between cash and futures markets 

appears to be an empirical issue, as economic theory only indicates the variables to be 

related (Bessler and Brandt, 1982). This study builds on three types of empirical 

evidence on the causality between the cash and futures markets. The first posits that the 

direction of the causal lead-lag relations runs from futures market to spot market 

(Brorsen et al., 1984; Carter and Mohapatra, 2008; Garbade and Silber, 1983; Khoury 

and Yourougou, 1991; Koontz et al., 1990; Oellermann and Farris, 1985; Schroeder 

and Goodwin, 1991; Schwarz and Szakmary, 1994). The second evidence shows that 

the spot market causal leads the futures markets (Moosa, 1996; Quan, 1992). The third 

suggests that the direction of the causal link changes over different sub-samples or 

described as time-varying (Alzahrani et al., 2014; Bekiros and Diks, 2008; Silvapulle 

and Moosa, 1999).  

 

A substantial amount of studies have modelled the lead-lag relationship in commodity 

markets and analyse the price discovery process between cash and futures prices. 

Generally, past studies have found to lend more support to futures prices dominating 

cash prices (Judge and Reancharoen, 2014). The common rationalisation of this finding 

is that the futures contract prices react to new information faster than cash prices 

because the flexible short selling opportunities and lower transaction costs make the 

futures markets are better informed (Herbst et al., 1987; Xu, 2019). Further, the futures 
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market are more prone to market manipulations (Newbery, 1989) and serve as reference 

points for speculators and arbitrageurs (Moosa and Al-Loughani, 1995). Many studies 

on commodity lead-lag relationships lend support for the hypothesis that causality runs 

from futures prices to spot prices. Garbade and Silber (1983) have analysed the 

characteristics of price flows between spot and futures market for storable commodities, 

including wheat, corn, oats, frozen orange juice concentrates, copper, gold, and silver. 

They present a theoretical model of the concurrent spot and futures price changes to 

identify the direction of information flows and then empirically test the model to study 

the notion of price discovery. Their findings show in general, that futures markets play 

a leading role over spot markets, with about 75% of new information incorporated in 

futures markets first and then flowing to spot markets for wheat, corn and orange juice 

because the cash markets for these commodities are largely satellites of the futures 

markets. In contrast, they find the price discovery function shows the information of 

silver, oats and copper is more evenly divided between spot and futures markets, and 

no conclusive statement can be found for gold because of the data limitations. Similar 

studies of Schroeder and Goodwin (1991) have also applied Garbade and Silber (1983) 

model to the live hog markets and draw the same conclusions of the leadership role of 

futures prices. Several theoretical studies by Khoury and Martel (1985;1986;1989) 

abandon the previous assumption of equal dissemination of new information to all 

market participants, and propose the issues of optimal hedging when the new 

information is asymmetrically distributed between hedgers and speculators. To 

empirically test this, Khoury and Yourougou (1991) analyse the lead-lag relations 

between cash and futures for agricultural commodity prices, including barley, canola 

and oats. Following the studies that generally employ the model of Garbade and Silber 

(1983), they examine price series including barley, canola and oats using daily data for 

the period March 1980 to July 1977. They pose that the futures prices are empirically 

confirmed to lead cash prices on a day-to-day basis, and also hold for varying periods 

before maturity. But the reverse feedback effects from cash to futures are weak for oats 

and do not occur in the cases of barley and canola. Brorsen et al. (1984) publish the 
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study that analyses the role of the futures market in cotton price discovery by comparing 

the current cash and current futures prices and exploring whether the cotton prices are 

discovered in futures markets, spot markets or if they are decided simultaneously. They 

use the closing quoted daily time series prices over a period ranging from June 15, 1976, 

and April 30, 1982, and test causalities between spot and futures cotton prices in a 

bivariate autoregressive (AR) framework. The empirical results show that the spot 

prices have a strong positive relationship with the lagged one period of the futures 

prices. Therefore, the cotton prices are discovered in the futures markets and transferred 

to the spot markets in a short period of time, implying futures price changes are the 

leading sources of the spot price movements and cause the cash price changes 

unidirectionally. Oellermann and Farris (1985) use the Granger causality test (Granger, 

1969) to determine for live beef cattle between 1966 and 1982. They take the view that 

live cattle futures started to gain public attention from 1964 to the early 1970s, then 

experienced high price volatility during the mid of 1970s, after partially returning to 

stability around 1980. Taking into account these changes in price stability that occurred 

in the sample period, they divide this sample period into three time spans: 1966 through 

1972, 1973 through 1977 and 1978 through 1982. These three-time spans have been 

further separated into six time-of-year sub-periods to accommodate the seasonal nature 

of cattle production and marketing. The empirical results indicate the live cattle futures 

prices lead changes in spot prices for nearly each sub-period. Besides, they also notice 

the instantaneous feedback within some years. As a result, they provide strong evidence 

that in most instances, the futures prices play the centre role of price discovery for live 

cattle. In a similar vein, dividing the observation period of 1973-1984 into three sub-

periods (1973-1976, 1977-1980 and 1981-1984), Koontz et al. (1990) conduct a 

Granger causality test to identify the live cattle dominant-satellite relationship. They 

find evidence to support that none of the markets is independent, implying that the 

information runs between all markets over a 1-week trading period. They did confirm 

that causality runs from end-of-week futures prices to cash prices early in the next week. 

However, the dependence of cash prices on future prices has generally decreased over 
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time. Using data on hog cash and futures prices spanning 1998 to 2014, Carter and 

Mohapatra (2008) employ an error-correction cointegration framework and test both 

the short-run and long-run price discovery process. They reveal that hog futures are the 

unbiased predictor of spot prices especially for the closed futures contracts and prove 

the futures markets are the primary price discovery point. Further, the empirical results 

of the short-run causality test show the hog futures contracts prices lead movements in 

spot prices, but no reverse feedback found from hog spot prices. Similar studies have 

focused on the crude oil markets and found futures prices lead the spot prices. In the oil 

market, the new information such as the OPEC decides to restrict production would 

indicate that oil prices will increase. Speculators tend to purchase oil futures over 

physical oil, as the latter needs a relatively higher initial outlay and relatively long time 

to implement the physical purchase deal. Besides, speculators are not interested in 

physical oil but prefer to hold futures contracts. Hedgers with storage constraints would 

prefer to buy futures contracts. As such, both speculators and hedgers respond to new 

information by choosing futures contracts than spot transactions. Spot prices reactions 

would be lagged since executing a spot transaction takes more time (Bekiros and Diks, 

2008; Silvapulle and Moosa, 1999). Schwarz and Szakmary (1994) explore the lead-

lag relations among the light sweet crude oil, No.2 heating oil and unleaded gasoline 

cash and futures prices, from 1985 to 1991. They strongly favour the standpoint that oil 

futures prices lead the cash prices. Xu (2019) identifies causal linkages among seven 

major corn-producing states cash prices and futures prices in the United States. This 

study adds to the previous research by examining both the in-sample and out-sample 

causal directions based on the VECM and first attempting to explore contemporaneous 

Granger causality among U.S. corn spot and futures prices. Testing the 

contemporaneous causality is important to understand the contemporaneous effects of 

shocks or interventions. An analysis of contemporaneous causality supplements the 

Granger causality by offering more insight into dynamic linkages between cash and 

futures prices. To perform contemporaneous causality test, Xu (2019) adopts a data-

determined method, directed acyclic graphs (DAGs), which identifies the structural 
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models through data-determined orthogonalisation of the contemporaneous innovation 

covariance, so that facilitates to determine the directions of instantaneous causal flows 

and provide inference in innovation accounting (Swanson and Granger, 1997). Using 

VECM and DAGs, she concludes that the contemporaneous and in-sample causality 

tests report a causality runs from futures prices to cash prices in the corn markets. No 

causal relations are found from corn cash prices to futures prices, which lends support 

to the studies of Garbade and Silber (1983).  

 

Although a majority of studies have proved for futures leading cash prices, there also 

exists some empirical evidence for cash prices’ leading role in lead-lag causality 

relations. For example, Quan (1992) examine the price discovery process using the 

monthly crude oil prices data employing two-step testing procedures; the first-step 

reveals the long-run relations and the second-step aims to test the lead-lag causality in 

the crude oil market. The results conclude that new information originates from cash 

prices spreading over to the futures prices, contrary to the view that futures prices lead 

spot prices. However, Schwarz and Szakmary (1994) argue that Quan (1992)’s failure 

to confirm the leadership role of oil futures prices attribute to the inappropriate choice 

of data frequency. Given that markets change quickly, Schwarz and Szakmary (1994) 

point out that the lead-lag relations only appear within short intervals so that high-

frequency data should be considered. In another study, Moosa (1996) introduces a 

model in which crude oil futures prices is triggered by cash prices, because the markets 

participants including arbitrageurs and speculators set the cash prices as reference point 

to motivate their actions in futures markets.  

 

A group of empirical findings have revealed a time-varying lead-lag causality between 

futures and spot prices. Several studies find that the causal lead-lag relationship varies 

over different subperiods applying linear econometric methods (Foster 1996; Moosa 

2002; Narayan and Sharma, 2018; Oellermann et al., 1989). Focusing on analysing the 

price discovery process and causality among spot and futures prices for feeder cattle 



93 
 

and live cattle, Oellermann et al. (1989) utilise the model constructed by Garbade and 

Silber (1983) and modify it by deleting the storage costs adjustments as it is not 

appropriate for livestock. Considering the structural changes in the daily observations, 

they divide the full sample into two periods of 1979-1982 and 1983-1986 and find the 

lead-lag causality significantly changed between two periods. They find futures prices 

to lead cash prices for feeder cattle, but the leading power becomes weak in the more 

recent period. In addition to applying the dynamic regression model of Garbade and 

Silber (1983), they use a Granger causality technique that follows Mishken (1983) to 

further examine the spot-futures price linkages for feeder cattle. The results confirm 

feeder cattle futures prices play the leadership role in generating new pricing 

information and serve as the centre of price discovery for feeder cattle in the early 

period, but the leading strength of futures prices tend to be less in more recent years. 

The possible explanations could be that futures markets are the focal point of 

information assimilation for both purchasers and sellers, which contributes 

significantly to improving the price discovery efficiency for feeder cattle. But in recent 

years, some feedback occurs from the feeder cash prices to futures prices, which 

explains the leading strength of futures prices become weak. Foster (1996) and Moosa 

(2002) have modified the Garbade and Silber (1983) model by employing the time-

varying parameter estimation based on the Kalman filter. Foster (1996) use daily West 

Texas Intermediate (WTI) crude oil prices from January 1990 to September 1991 and 

find the evidence of a strong time-varying price discovery function, and concludes that 

the first Gulf conflict in 1990-1991 causes a shift. Moosa (2002) also use the WTI crude 

oil prices covering the period 1985-1986 and find 60 per cent of the price discovery 

function is performed by the future market. This result indicates a time-varying price 

discovery function, which is in support of the conclusions reached by Foster (1996). In 

a recent study, Narayan and Sharma (2018) propose a rolling-window-based error 

correction model to examine the time-varying price discovery (spot and futures) for 17 

commodities, including metals, energy and agricultural commodities. Applying the 

monthly time series prices spanning 1977-2012, they find strong evidence of time-
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varying price discovery for 14 commodities including corn, soybean oil and soybean 

yellow, etc. Namely, they conclude that the price discovery process is oscillatory for 

these commodities, implying the spot market dominate price discovery over some time 

periods while futures markets lead spot markets during other periods. They indicate that 

for different phases, the dominance of price discovery is linked to the specific 

commodity market events.  

 

Several more recent empirical studies point out that the lead-lag causal relation between 

spot and futures prices is nonlinear and time-varying (Alzahrani et al., 2014; Balcilar 

et al., 2015; Bekiros and Diks, 2008; Polanco-Martínez and Abadie, 2016; Silvapulle 

and Moosa, 1999). These papers use both linear and nonlinear causality tests to capture 

the lead-lag linkages between commodity cash and futures markets and compare the 

results. The nonlinearities are typically related to nonlinear transaction cost, noise 

traders, market microstructure impacts (Silvapulle and Moosa, 1999). To account for 

the nonlinearity, nonparametric form methods are appealing given it places direct focus 

on prediction without using a linear function form (Bekiros and Diks, 2008). The linear 

causality test is typically conducted in the parametric form and the nonlinear test is 

performed using nonparametric techniques. For example, Silvapulle and Moosa (1999) 

first apply the Hsio’s (1981) sequential procedure for linear Granger causality test and 

use a bivariate VAR to analyse the lead-lag relationship between the spot and futures 

prices of crude oil. Then, they test for a nonlinear dynamic causal relationship by 

adopting a nonparametric procedure of Hiemstra and Jones (1994), which is a modified 

version of the Baek and Brock (1992) test. Their analysis covers the period 02 January 

1985 and 11 July 1996, using one-month, three months and six-months futures contract 

daily prices. The results of the linear causality test confirm that there is feedback from 

spot to futures prices. On the contrary, the nonlinear causality testing reports a 

bidirectional relationship, namely implying both markets respond to new information 

simultaneously. In addition, they find that the lead-lag pattern should change over time. 

Bekiros and Diks (2008) investigate the lead-lag causal relations between oil spot and 
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futures prices using daily data covering two separate periods, namely 21 October 1991 

to 29 October 1999, and 1 November 1999 to 30 October 2007. A traditional linear 

Granger causality test based on a vector error correction model (VECM) is employed. 

The linear causality test indicates a strong bidirectional Granger causal lead-lag relation 

between crude oil cash and futures prices during both periods, which are in contrast to 

the unidirectional results from the linear test in the study by Silvapulle and Moosa 

(1999). Bekiros and Diks (2008) also apply a new nonlinear nonparametric causality 

test introduced by Diks and Panchenko (2005). When accounting for the nonlinear 

effects, the causality test results suggest neither market leads or lags the other 

consistently.  The studies of Silvapulle and Moosa (1999) and Bekiros and Diks (2008) 

both conclude the pattern of leads and lags changes over time. These two studies both 

explain that given the spot-futures causal linkage can change from one direction to the 

other at any time point, the result of bidirectional causality over the sample periods may 

imply a changing pattern of leads and lags over time, which provides support to the 

Kawaller et al. (1987) hypothesis. Kawaller et al. (1987) hypothesis indicate that 

market participants filter the information relevant to their positions as new information 

comes in, at any time point, cash may lead futures and vice versa. Therefore, on balance, 

though futures prices are found to play a bigger role in price discovery, there is still 

some evidence to suggest spot prices can play a key role in the price discovery process. 

Similar to Bekiros and Diks (2008), Alzahrani et al. (2014) also employ both the linear 

Granger causality test based on a VAR and a modified nonlinear nonparametric 

causality test of Diks and Panchenko (2005) to test the lead-lag causality using the daily 

oil prices from February 20, 2003 to April 19, 2011. They apply a wavelet approach to 

transform the data into frequency domain without losing the time domain information, 

so that the time-dependent volatility and structural breaks in oil cash and futures prices 

series can be accommodated, and avoid the effects of data frequency on causality tests. 

The outcomes of both linear and nonlinear tests in this study reconcile the findings of 

Bekiros and Diks (2008) who find bidirectional causality and conclude neither markets 

necessarily lead the other. Inspired by Alzahrani et al. (2014), Polanco-Martínez and 
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Abadie (2016) estimate the lead-lag relations from different time-scales (short, medium 

and long-term scales), with the use of a stochastic model (Abadie and Chamorro, 2016), 

a wavelet correlation graphical tool (Polanco-Martínez and Fernández-Macho, 2014), 

as well as a nonlinear causality test (Diks and Panchenko, 2006). Their results show 

bidirectional causal relations for most time scales, from intra-week to biannual, over 

the period 24 February 2006 to 2 April 2016, which implies the concurrent response of 

spot and futures prices to the new information. Noticing some of the previous studies 

have mostly been supportive of the time-varying causal links between spot and futures 

markets, Balcilar et al. (2015) examine time-varying causal relations between the daily 

spot and futures prices for maturities of one, two, three and four months of the WTI 

crude oil benchmark spanning periods from January 2, 1986-July 31, 2013. They 

propose a Markov-switching vector-error correction (MS-VEC) model which is 

capable of capturing the nonlinear, asymmetric and time-varying causal linkages. 

Namely, this method is helpful in identifying the causal linkages that are likely to be 

operative for each point in time. Moreover, it allows the causal patterns change over 

time accordingly to a Markov-switching process. The results indicate a strong time-

varying causality between spot and futures prices. The lead-lag relations between spot 

and futures crude oil prices for the maturities of one, two, three and four months are 

proved to experience significant changes over the sample years. They indicate that the 

change periods are all related to the times of volatile prices and continues flows of new 

information to the markets, triggered by the diversified important events. 

 

In summary, the empirical evidence on price discovery and lead-lag relationships 

between spot and futures prices is mixed. A potential gap that appears in the above 

studies is that although they highlight the fact of the changing pattern of leads and lags 

over time, implying the lead-lag causality are likely to contain time-varying features, 

very few have attempted to study the time-varying pattern of causality. Besides, a large 

number of studies have acknowledged the lead-lag relationships and the associated 

time-varying causal relations between crude oil cash and futures prices, however, this 
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aspect of time-varying lead-lag causality has received limited attention in the context 

of the agricultural commodity prices. This literature review suggests that the lead-lag 

causality is a dynamic one, especially for the periods with consistent uncertainty, which 

results in significant incongruities among studies in terms of the dominant role of the 

prices. We address this gap by adopting the traditional time-varying Granger causality 

tests of forward expanding window causality test (Thoma, 1994) and the rolling 

window causality test (Swanson, 1998), with recent developments that use recursive 

evolving window causality test that allow us to be agnostic about the order of 

integration of the data, a problem that is known to plague agricultural spot and futures 

prices. (Phillips et al., 2015a; 2015b; Shi et al., 2020). Given the data stationarity could 

impact price variable modelling, previous empirical studies first determine the order of 

integration of each price series using unit root tests (Xu, 2018). In this study, the 

forward recursive algorithm, rolling window algorithm, and recursive evolving 

algorithm, all of which use subsample tests of Granger causality within a lag-

augmented VAR model. This approach is particularly designed to be robust to the 

integration and cointegration properties of the time series employed in the regressions 

and can hence be used without accurate prior knowledge of the presence or absence of 

unit root (Shi et al., 2020). The advantages of applying these novel tests are that they 

allow to revealing the changing pattern informational directions running between cash 

and futures prices over time; and we could identify the exact time periods and capture 

the corresponding information flows between agricultural commodity cash prices and 

futures prices. Therefore, instead of giving a general conclusion of changing causality, 

we can be more specific in explaining how causality changes over time. Besides, 

regarding the statistical analysis perspective, commodity prices are characterised to be 

highly volatile and may contain structural breaks (Ghoshray, 2019). Typically, the 

structural breaks are the most challenging problems when conducting time series 

analysis (Granger, 1996). Hansen (2001) and Perron (2006) have affirmed that issues 

of the structural breaks should be distinctly considered when applying the econometric 

tools with the time series data. The possible presence of structural breaks in the 
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underlying data can lead to the parameters of the econometric models to be time-variant. 

Hence the statistical tests based on the assumption of the constant parameter can give 

invalid and incorrect inferences (Balcilar et al., 2019). Accordingly, we consider the 

possibility of structural breaks in agricultural commodity prices. This study conducts 

the time-varying Granger causality tests against the effects of structural breaks. The 

econometric procedures of these three time-varying Granger causality tests are now 

described in the following section.  

 

5.3 Econometric Methods 

When performing an empirical test on the hypothesis, one should consider the 

underlying nature of the data series because the conclusion drawn will be relying on 

the econometric framework (Ghoshray and Johnson, 2010). It is widely known that 

commodity prices are characterised as being volatile, given it is the common features 

of commodity prices (Deaton and Laroque, 1992). The agricultural commodity price 

series under investigation could be nonstationary. To conduct a Granger causality test 

by allowing for possibly integrated variables, we adopt a lag-augmented vector 

autoregression (LA-VAR) model (Toda and Yamamoto, 1995; Dolado and Lütkepohl, 

1996) and the bivariate case with a maximum order of integration !, which could be 

expressed as  

 

"!" = $!# + $!!& + ∑ (!$"!"%$ +&'(
$)! ∑ )!$"*"%$&'(

$)! + *!", 

"*" = $*# + $*!& + ∑ (*$"!"%$ +&'(
$)! ∑ )*$"*"%$&'(

$)! + **", 

 

where + indicates the lag order of the original VAR model and additional ! lags 

represents the possible maximum order of integration of the variables. & is the time 

trend and *$"  are the error terms. "*" ↛+, "!"  denotes that "*"  does not Granger 

cause "!", implying the situation that the predictions of "!" conditional on its own 

previous cannot be improved by incorporating the + lags of "*" in the model. The 

null hypothesis for testing the causality from "*" to "!" is 



99 
 

 

-#:	)!! = ⋯ = )!& = 0 

 

Extend to the general version for n-dimensional vector "" , the LA-VAR model is 

expressed as  

 

"" = 2# + 2!& + ∑ 3$""%$ +&
$)! ∑ 3-""%-&'(

-)&'! + *",          (5.1) 

 

where 3&'! = ⋯ = 3&'( = 0 and ! is the maximum order of integrated variable "". 

Thus rewrite the above regression equation as  

 

"" = 45" + 67" +89" + *",                  (5.2) 

 

where 4 = (2#, 2!).×(1'!) , 5" = (1, &)*×!3 , 7" = (""%!3 , … , ""%&3 )′.&×! , 9" =

(""%&%!3 , … , ""%&%(3 )′.(×! , 6 = (3!, … , 3&).×.&  and 8 = (3&'!, … , 3&'().×.( . The 

null hypothesis of testing the Granger non-causality is given as  

 

-#:	@∅ = 0                          (5.3) 

 

on the coefficient ∅ = BCD(6) applying row vectorisation and @ is the E × G*+ 

matrix. The final !  lagged vectors parameter matrix 8  is ignored because its 

elements are set to be zero.  

 

Rewriting the equation (5.1) in a more compact representation as  

 

Y = 54′ + I6′ + J8′ + *, 
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where Y = ("!, "*, … , "4)′4×. , 5 = (5!, … , 54)′4×* , I = (7!, … , 74)′4×.& , J =

(9!, … , 94)′4×.( and * = (5!, … , 54)′4×*. Then set out 

 

Q = L5 − L5J(J3L5J)%!J′L5 

 

and the OLS estimator could be given as  

 

6N = O′LI(I3LI)%! 

 

The standard Wald statistic P for testing the null hypothesis -# is  

 

P = Q@∅NR
3
[@{U6V⊗ (I3LI)%!}@3]%7@∅N             (5.4) 

 

where ∅N = BCD(6N), U6V = !
4 *̂

3*̂, and ⊗ denotes the Kronecker product. This Wald 

statistic has the [8*  asymptotic null distribution with E  being the number of 

restrictions (Toda and Yamamoto, 1995; Dolado and Lütkepohl, 1996).  

 

As indicated in the literature review, there are some studies expect the lead-lag causality 

should change over time because the market participants will filter the information 

relevant to cash and futures positions over time (Silvapulle and Moosa, 1999; Bekiros 

and Diks, 2008). In such circumstances, testing the time-varying causality using the 

entire sample will average the sample information and inevitably fail to capture the 

changes in information receiving (Shi et al., 2018). Although estimating the Granger 

causality with exogenously determined subsamples of the data could give useful 

information, it does not allow the data to reveal the potential change points. 

Accordingly, the ultimate objective for this study is conducting tests that allow for the 

change points endogenously defined and identified in the sample data (Shi et al., 2018). 

The recursive Granger causality procedures calculate the Wald statistics by using the 
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subsamples of the data. To clearly illustrate the testing algorithms, we follow Shi et al. 

(2018; 2020) and explain with sample fractions in the following exposition. Let \ 

represents the fractional observation of interest and \#  is the minimum fractional 

window size needed to conduct the estimations. Besides, assuming the \!  and \* 

denote the fractional start and end points of the regression sample, respectively, and 

\9 = \* − \!. And P:!
:" indicates the Wald statistic based on the LA-VAR model and 

calculated from the subsample.  

 

In Figure 5.1 we illustrate the subsampling process subsampling processes and the 

window widths of forward expanding, rolling window and recursive evolving 

procedures, respectively. For the forward expanding procedure, \# = 0 is fixed and 

sets \ = \*, and the rolling window assumes a fixed window width \9 = \* − \! =

\#  and window initialisation \! = \* − \# . Forward expanding and rolling window 

procedures are the special cases of the recursive evolving approach. The recursive 

evolving method allows variation in the window widths \9 = \* − \! ≥ \# applied in 

the regression, which adds the flexibility by relaxing \!  to allow the procedure to 

search for the optimum starting point of the regression for each observation. This 

flexibility is able to accommodate re-initialisation in the subsample to square with any 

structural changes that may exist within the entire sample, and thereby assists in detect 

any changes in the structural and causal direction. Although the subsampling processes 

are different, these three methods all rely only on the past information and hence can 

be employed for real-time monitoring at the present observation \ (Shi et al., 2018).  
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Note: Sample sequences for forward expanding, rolling window and recursive evolving 
procedures are displayed in (a), (b) and (c), respectively.  
 

Figure 5.1: Sample sequences for forward expanding, rolling window, and 
recursive evolving procedures 
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Set 5! = ⌊\!_⌋, 5* = ⌊\*_⌋ and 59 = ⌊\9_⌋, where _ denotes the total observation 

number and 5# = ⌊\#_⌋ is the minimum observation number required for the VAR 

estimation. To achieve the goal of testing the dynamic lead-lag causality, this study 

employs three time-varying Granger causality tests, which are the forward expanding 

window causality test (Thoma, 1994), the rolling window causality test (Swanson, 1998) 

and the recursive evolving window causality test (Phillips et al., 2015a; 2015b; Shi et 

al., 2020). They all focus on testing the changing pattern causality but calculate the 

Wald statistics in different ways. The forward expanding window approach sets starting 

point 5!  fixed at the first observation, for example: 5! = 1 , and the regression 

window starts to expand from 5# to _. This procedure could be view as to having 5* 

runs from 5# to _ and hence the test basing from this method is mentioned to as a 

forward expanding window test. For the rolling window procedure, by contrast, the 

regression window size keeps fixed and set the window size equals to 5#  in the 

sequence of regressions. The starting point is not fixed and the regression window 

moves from the first available observations to _ − 5# + 1 and the ending point 5* =

5! + 5# − 1. We can rewrite in an alternative form to 5! and 5* of the procedure as 

5* = {5#, … , _} and 5! = 5* − 5# + 1. Then the ending point of the process moves 

from 5# to the last observation in the sample _, and the starting point follows to move 

to keep the window size fixed at 5# . For the recent proposed recursive evolving 

window procedure, the end point 5* = {5#, … , _}, which is the same as the rolling 

window method. But the start point 5!, rather than keeping a constant distance with 5* 

as in the rolling window process, varies from 1 to 5* − 5# + 1 to cover all possible 

values.  

 

We could obtain a sequence of Wald statistics {P:!,:"}:"):
:!∈[#,:"%:#] for each fractional 

observation of interest \a[\#, 1]. Defining the test statistic based on the supremum 

norm of the Wald statistic sequence 

 

bP:(\#) = cde
:"):,:!∈[#,:"%:#]	

{P:!,:"}.                 (5.5) 
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And we make inferences on Granger non-causality for available observation ⌊\_⌋ 

based on this sup Wald statistic bP:(\#).  

 

The above Wald statistic and sup Wald statistic are under the assumption of the residual 

error term is homoskedasticity. When the errors are heteroskedastic, the Granger 

causality test based on the assumption of homoskedasticity could be accompanied by 

power loss. To account for the potential effects of heteroskedasticity in the residuals, 

Shi et al. (2020) propose heteroskedastic consistent versions of the Wald and sup Wald 

statistics. Shi et al. (2020) define the heteroskedastic-consistent subsample Wald test 

statistic as  

 

P:!,:"
∗ = _9Q@∅N:!,:"R

3
[@fgh:!,:"

%7 Uh:!,:"gh:!,:"
%7 i@3]%7@∅N:!,:" ,        (5.6) 

 

Where ∅N:!,:" = BCD(6N:!,:")  with 6N:!,:"  denotes the OLS estimate of 6  from the 

sample running from \! to \*, 

 

gh:!,:" = j. ⊗Lh:!,:" with Lh:!,:" =
!
4$
∑ 7"7"3
⌊4:"⌋
")⌊4:!⌋  

Uh:!,:" =
!
4$
∑ kl"kl"3
⌊4:"⌋
")⌊4:!⌋  with kl" = *"̂ ⊗7". 

 

The heteroskedastic-consistent sup Wald statistic is defined as  

 

bP:
∗(\#) = cde

:"):,:!∈[#,:"%:#]	
{P:!,:"

∗ }.                  (5.7) 

 

According to Shi et al. (2020), the heteroskedastic consistent version includes the 

homoscedastic one as a special case. Therefore, this study employs the heteroskedastic 

consistent version test to consider the potential heteroskedasticity effect, which 

normally been ignored in past studies. 
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The issue of multiplicity is the common-known phenomenon that the probability of 

making a Type I error increases with the number of hypotheses being tested in a test 

sequence. In the current application context, the test statistics in these three testing 

algorithms are needed to be compared with the corresponding critical values for every 

observation moving from ⌊\#_⌋ to _. Namely, for a sample size _ data series, the 

test statistics calculated starting from ⌊\#_⌋ to _, which requires to test the hypotheses 

of non-causality for _ − ⌊\#_⌋ + 1 times. To avoid the size distortion occurring from 

the recursive procedures, we follow Shi et al. (2020) and adopt their bootstrap approach 

to address the multiplicity problem for the simulations and empirical analysis part.  

 

To make the bootstrap process more simply and easier to understand, Shi et al. (2020) 

describes it in the context of a bivariate VAR(1) model. Following the study of Shi et 

al. (2020), five steps are introduced to perform the bootstrap procedures.  

 

Step 1: Using the data from the full sample period, we estimate the bivariate VAR(1) 

model which imposes the null hypothesis of non-causality runs from "* to "!. 

 

n
"!"
	"*"o = p∅

N!! 0
∅N!* ∅N**

q n
"!"%!
	"*"%!o + n

C!"
	C*"o 

 

where ∅N!! , ∅N!*  and ∅N**  are the estimated parameters, and C!"  and 	C*"  denotes 

the estimated residuals.  

Step 2: As mentioned above, 5C denotes the number of observations in the window 

over which size is to be restricted. Let the sample size of the bootstrapped data series 

and denote by 5# + 5C − 1, the bootstrap sample could be generated as 

 

p
"!"C

	"*"C
q = p∅

N!! 0
∅N!* ∅N**

q p
"!"%!C

	"*"%!C q + p
C!"C

	C*"C
q                (5.8) 
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in which C!"C  is randomly drawn with replacement from the estimated residuals C!". 

Following the same logic, C*"C  is drawn from the estimated residuals C*". The initial 

values of "!"C  and "*"C  equal to the "!" and "*", respectively.  

Step 3: The test statistic sequences for the forward expanding window, rolling window 

and recursive evolving window are 

 

Forward expanding window: {P!,"
C }")5#

5#'5%%! 

Rolling window: {P"%5#'!,"
C }")5#

5#'5%%! 

Recursive evolving window: {bP"
C(5#)}")5#

5#'5%%! 

 

respectively, based on their algorithms we have introduced above. In this step, we 

calculate each test statistic sequence by applying the bootstrapped series. The maximum 

values for these bootstrapped test statistic sequences are computed such that 

 

Forward expanding window: ℳ!,"
C = Es7"∈[5#,5#'5%%!](P!,"

C ) 

Rolling window: ℳ"%5#'!,"
C = Es7"∈[5#,5#'5%%!](P"%5#'!,"

C ) 

Recursive evolving window: bP"
C(5#) = Es7"∈[5#,5#'5%%!](bP"

C(5#)) 

(5.9) 

 

Step 4: Repeating step 2 and step 3 for t = 1000 times.  

Step 5: The critical values for the forward expanding window, rolling window and 

recursive evolving window methods are expressed as 90% percentiles of  

 

Forward expanding window: {ℳ!,"
C }C)!D  

Rolling window: {P"%5#'!,"
C }C)!D  

Recursive evolving window: {bP"
C(5#)}C)!D  
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respectively.  

 

For practical implementation and empirical analysis, in step 1, we need to determine 

the optimal lag order by applying information criteria and estimate the restrictive model. 

Likewise, the lag order should be selected for step 3 before computing the test statistics. 

Shi et al. (2020) have conducted the simulation experiments to examine the 

performance of forward expanding window, rolling window and recursive evolving 

window causality tests with the bootstrapped critical values under the DGP (12) for 

different parameter settings for several cases. By performing 1000 times replications 

for each parameter constellation, they calculate the sizes and powers of these three tests, 

where the sizes denote the probability of rejecting at least one true null hypothesis and 

powers mean the probability of rejecting at least one false null hypothesis for the same 

period. According to their calculations, the sizes for all these three test processes are 

very close to the nominal size of 5%, implying the validations of the bootstrap method 

in controlling the family-wise size and resolving the multiplicity issue in recursive 

procedures. As for the empirical powers, the recursive evolving window test 

characterises the highest power and the rolling window procedure follows closely. The 

performances the evolving window and rolling window procedures could be identical 

under most circumstances, but the recursive evolving test gain more powers in 

moderate causal strength and large sample sizes (such as _ = 200). The forward 

expanding window method has the least power than that of the rolling window and 

recursive evolving window. The detective power of these three procedures varies. For 

rolling window and recursive evolving window, the detective power gains with the \# 

increase from 0.18 to 0.24 and remains roughly the same or slightly decreases for 

further extension to 0.36. In the case of using forward expanding procedure, the 

detective power rises with the increasing of the initialisation \#. These three procedures 

all enjoy the power gains with the increasing sample size _, at a decreasing rate though. 

Besides, all causality tests powers increase with the strength of causality (Shi et al., 

2020). 
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5.4 Data description and preliminary analysis 

Our analysis is based on the monthly price time series for the important cereal grains, 

including wheat, soybean and corn spot and futures prices, which are freely available 

at the website of the National Agricultural Statistics Service (NASS) of the United 

States Department of Agriculture (USDA). The spot prices of the wheat, soybean and 

corn are the monthly farm received prices published by the NASS of the USDA. These 

are cash prices and represent the sales from producers to first buyers, including all 

grades and qualities. The futures prices are the prices settled by the Chicago Mercantile 

Exchange (CME) group’s contract for wheat, soybeans and corn. The prices for the 

nearby contract are applied but except the marketing year month coincides with the 

month in which the contract expires. For instance, the November contract prices are 

applied for September and October, while the January contract prices are used for 

November and December, etc. For this reason, we choose monthly prices. We focus on 

the time period which is extended to the most recent period available, covering the 

period from June 1975 to February 2020 for the case of wheat, and spanning September 

1975 to February 2020 for soybean and corn cases, in monthly frequency. The time-

series properties for the different transformed commodity prices can differ (Ghoshray, 

2019). Namely, though the data transformation is not unusual, the results of estimation 

can vary with different types of transformation (Tomek, 2000). For this reason, we 

choose to use logged price transformations in subsequent analysis, to reduce 

heteroscedasticity, stabilise the variance and straighten trend. Table 5.1 below exhibits 

the descriptive information of the cash and futures price series for wheat, soybean and 

corn. From Table 5.1, wheat and soybean price series are slightly platykurtic, but the 

corn series are more leptokurtic than wheat and soybean. All these series are slightly 

right-skewed. 
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Table 5.1: Descriptive statistics for cash and futures price series 

 Wheat Soybean Corn 
Cash Futures Cash Futures Cash Futures 

Mean 1.3484 1.4089 1.9473 1.9825 1.0149 1.0830 
Median 1.2947 1.3584 1.8710 1.9095 0.9431 1.0043 

Minimum 0.7080 0.8329 1.4085 1.4255 0.3365 0.4055 
Maximum 2.3514 2.4449 2.7850 2.8219 2.0321 2.0844 
Standard 
deviation 

0.3256 0.3178 0.3129 0.3135 0.3439 0.3317 

Skewness 0.6525 0.8126 0.6374 0.6454 0.7928 0.8793 
Kurtosis 2.9653 3.2363 2.6283 2.6256 3.3749 3.5229 

 

The data are plotted in Figure 5.2, which provides visual evidence of that at all series 

seem much more likely to be non-stationary. Besides, visual inspection points the 

possibility of the structural breaks incorporated in the price series.  
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     (a) 

 

     (b) 

 

     (c) 

 

 
Note: Time-series plots of the logarithms of spot prices and futures prices in the United States for wheat, soybean and corn are displayed in (a), 
(b) and (c), respectively.  
 

Figure 5.2: Time-series plots of the agricultural commodity spot prices and futures prices
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The LA-VAR model, introduced in the last part, does not need to pre-filter the data 

through de-trending and/or differencing, but require the information of maximum 

possible integration order. Therefore, prior to applying the LA-VAR model, we should 

determine the maximum integration order of the system. This study determines the 

integrated order of the price variables by using the Augmented Dickey-Fuller (ADF) 

test (Dickey and Fuller, 1981), Phillips-Perron (PP) test (Phillips and Perron, 1988) and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992), which 

have been employed in the similar studies from Xu (2018; 2019). Given that the ADF 

and PP tests have low power, the KPSS test with the null of stationary, against a non-

stationary alternative, is also employed. In addition, given the agricultural prices are 

characterised to be volatile and the possibility of a structural break in price series 

identified by visual inspection, this study also conducts the unit root test of Perron and 

Vogelsang (1992), which allows for testing one break under both the null of a unit root 

and alternative of stationary. This test searches for the unknown structural break either 

through innovational outliers (IOs) and additive outliers (AOs). The results of ADF, PP 

and KPSS testing procedures, as well as the test of Perron and Vogelssang (PV) (1992) 

are reported in Table 5.2 The top half of Table 5.2 conducts the standard unit root tests 

without breakpoint, including ADF, PP and KPSS tests. The lower half of Table 5.2 

tests for unit root allowing for a structural break. Roughly in all cases, the evidence is 

mixed where the ADF test results do not match with the PP test and KPSS test. For 

these three cases, though some tests point that the null hypothesis cannot be rejected, 

they all become stationary after taking first-differences, implying I(1) is the maximum 

integration order. When assuming one unknown structural break with IOs and AOs, all 

data series are found to be I(1), implying the maximum order of integration should be 

I(1) as well. Though the results are mixed, the LA-VAR modelling framework does not 

require all the variables to be integrated of the same order. Therefore, we can set the 

maximum order of integration as I(1) in the LA-VAR model. Considering all the data 
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series exhibit a driftless random walk, this study therefore does not include a time trend 

term and sets the additional lag parameter ! to one.  
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Table 5.2: Unit root tests on levels and first differences of cash and futures price series 
 Wheat Soybean Corn 

Cash Futures Cash Futures Cash Futures 
Without break ADFL -2.3033 -2.6772* -2.9686** -3.0738** -2.7687* -2.8532* 

ADF∆ -14.6975*** -18.4634*** -14.9836*** -13.9610*** -14.2319*** -17.4305*** 
PPL -2.3508 -2.6003* -2.2223 -2.5529 -1.9954 -2.5919* 
PP∆ -14.2065*** -18.4074*** -14.1240*** -13.9610*** -13.4168*** -16.9369*** 

KPSSL 1.4749*** 1.3286*** 1.3901*** 1.3706*** 1.2518*** 1.1874*** 
KPSS∆ 0.0303 0.0307 0.0319 0.0302 0.0816 0.0363 

With break PVAO, L -2.8124 -2.7031 -2.9295 -3.0439 -2.7863 -2.8675 
PVAO, ∆ -14.5653*** -18.6379*** -15.0036*** -17.1603*** -14.1863*** -17.4279*** 
PVLO, L -2.2289 -2.5981 -2.8409 -2.9206 -2.5547 -2.8052 
PVLO, ∆ -15.3119*** -18.3717*** -14.9696**** -13.9741*** -14.2223*** -17.2053*** 

Note: ***, ** and * denote rejection of the null hypothesis of unit root process at the 1%, 5% and 10% significance level, respectively
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5.5 Empirical analysis 

A wide range of unit root tests has been carried out on all price series. We now examine 

the causal relationship between cash and futures prices for each grain, applying the 

forward expanding window, rolling window and recursive evolving window 

procedures. This study follows Shi et al. (2018; 2020), in estimating the LA-VAR 

model and conducting Granger causality tests. The Bayesian Information Criteria (BIC) 

is used to select the lag length for the whole sample periods for all cases, and the lag 

order assumed the same over the subsamples. In implementing the testing procedures, 

the minimum window size usually set as !! = 0.20 because the powers of rolling and 

recursive evolving procedures increase when !! runs from 0.18 to 0.24 (Shi et al., 

2018; 2020). Practically, the optimal value of !! depends on the strength and duration 

of the causal relationship. Shi et al. (2018; 2020)’s model fixes the duration of the 

causality episode as 0.2, and therefore if the minimum window size exceeds the 

causality duration, the regression would contain the mix of causal and non-causal 

observations. Given that we have 537 observations for wheat and 534 observations for 

the cases of both soybean and corn, we set the minimum window size as 107 for all 

cases based on the 20% duration of the whole sample. The 10% critical values are 

acquired from the bootstrapping method introduced above, and the model coefficients 

under the null are computed applying the whole sample period.  

 

This study tests the causality between spot prices and futures prices of the wheat, 

soybean and corn in the United States. The estimation results are reported in Figure 5.3 

to Figure 5.8. The time-varying test statistic sequence (blue dashed line) along with the 

bootstrapped 10% critical value sequence (black solid line) are illustrated under the 

figures. We test the null hypothesis of no causal relationship between spot and futures 

prices and reject the null when the test statistic sequence above the 10% critical value 

sequence.  
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The time-varying test statistic sequences for causal relations between wheat cash and 

futures prices, along with their corresponding bootstrapped 10% critical values for the 

forward expanding window, rolling window and recursive evolving window methods 

are displayed in Figure 5.3. Panel (a), (b) and (c) of Figure 5.3 report the test statistic 

sequences and their corresponding bootstrapped 10% critical values for testing the 

causal relationship from wheat futures to cash prices. According to the panel (a) and (c) 

in Figure 5.3, the test statistics are always above the 10% critical values sequence for 

the whole sample using the forward and recursive evolving methods. These results 

suggest the rejection of the null hypothesis of no causality between variables at the 10% 

significance level and indicate the causal relations running from wheat futures prices to 

cash prices. However, there is a slight discrepancy in the rolling window test as shown 

in panel (b), with the test statistics are higher than the critical values for most of the 

time except some short episodes: mid to late 1990s and at the end of the sample. This 

result shows that the rolling window method detects no causality from wheat futures 

prices to spot prices in some short periods.   

 

Panel (a), (b) and (c) in Figure 5.4 display time-varying test statistics for causal effects 

running from wheat cash prices to futures prices. From panel (a), (b) and (c) of Figure 

5.4, the test statistics are found to be higher than the 10% critical values during the early 

stage, suggesting the null hypothesis of no causality from wheat cash prices to futures 

prices can be rejected during the early periods. In detail, the forward expanding 

procedure indicates the main episode of Granger causality from wheat cash prices to 

futures prices but with some breaks: April 1984 – April 2003. The relatively short 

causality period is obtained from the rolling window process shown in panel (b) of 

Figure 5.4, suggesting a causal relation from wheat cash prices to futures prices 

between April 1984 and December 1995, but also with some breaks. The recursive 

evolving procedure detects a continues causality subperiod: April 1984 - July 1999.  
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     (a) 

 

     (b) 

 

     (c) 

 
 
Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
June 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole sample 
period.  
 

Figure 5.3: Tests for Granger causality running from wheat futures prices to cash prices
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     (a) 

 

     (b) 

 

     (c) 

 
 
Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
June 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole sample 
period.  
 

Figure 5.4: Tests for Granger causality running from wheat cash prices to futures prices
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Panel (a) to (c) of Figure 5.5 and Figure 5.6 display the test statistics and 10% critical 

values applying the forward expanding, rolling window and recursive evolving 

approaches for the cases of soybean, respectively. Panel (a) and (c) of Figure 5.5 report 

that the test statistic sequence obtained from forward expanding and recursive evolving 

methods are over the 10% critical value sequence persisting over the entire sample, 

implying the soybean futures prices are found to Granger cause the cash prices. 

However, a far more dynamic causal relation between cash and futures prices are 

revealed through a rolling window method. In panel (b) of Figure 5.5, the estimation 

results of the rolling window procedure paint a different picture. Before November 

2001, the test statistics only above the 10% critical value at some episodes, suggesting 

the causality from soybean futures prices to cash prices occurs within some subperiods. 

But the rolling window procedure detects the soybean futures prices Granger cause cash 

prices after November 2001. The estimated test statistics in panel (a) of Figure 5.6 are 

always below their 10% critical value sequence, indicating not rejecting the null 

hypothesis of that soybean cash prices do not Granger cause futures prices. However, 

in panel (b) and (c) of Figure 5.6, the test statistics of the rolling window and recursive 

evolving causality procedures are higher than the critical values at a very short period 

in 1997. These results indicate that the soybean cash prices were shown to Grange cause 

futures prices in some months in 1997. 
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     (a) 

 

     (b) 

 

     (c) 

 

Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period.  
 

Figure 5.5: Tests for Granger causality running from soybean futures prices to cash prices 
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     (a) 

 

     (b) 

 

     (c) 

 
 
Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period.  
 

Figure 5.6: Tests for Granger causality running from soybean cash prices to futures prices
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In the case of corn prices, the results based on the forward expanding and recursive 

evolving methods, reported in panel (a) and (c) of Figure 5.7, are consistently above 

the 10% critical values. We can reject the null hypothesis of no causality from corn 

futures prices to spot prices. According to the panel (b) of Figure 5.7, similar to wheat 

and soybean cases, the rolling window causality test statistic sequence is above the 10% 

critical value sequence for most periods with some breaks. In a relatively long break 

episode, August 2004 – May 2008, the rolling window test statistics are below the 

critical values, indicating we cannot reject the null hypothesis of no causality from corn 

futures prices to cash prices. Panel (a) of Figure 5.8 reports that the forward expanding 

causality test statistic sequence is below the critical value sequence at 10% level, which 

fails to reject the null hypothesis of non-causality runs from corn cash prices to futures 

prices. Similar to soybean case, panel (b) and (c) of Figure 5.8 show that the rolling 

window and recursive evolving causality test statistics are below the 10% critical values 

except for January-February 1997.  
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     (a) 

 

     (b) 

 

     (c) 

 
 
Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period.  

 

Figure 5.7: Tests for Granger causality running from corn futures prices to cash prices 
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     (a) 

 

     (b) 

 

     (c) 

 

 
Note: Results from the forward recursive, rolling window and recursive evolving procedures are displayed in (a), (b) and (c), respectively. Causal 
periods are noted on the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and controlled over a 1-year period, with a 
minimum window size !! = 0.20. The sequence of tests for the forward recursive, rolling window and recursive evolving procedures run from 
September 1975 to February 2020. Lag orders are assumed to be constant and selected using BIC with a maximum length of 20 for the whole 
sample period. 
 

 Figure 5.8: Tests for Granger causality running from corn cash prices to futures prices
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According to the explanations of subsampling processes for these three methods using 

Figure 5.1 in the methodology section, the advanced recursive evolving is capable of 

searching for the optimum starting point of the regression for each observation, and 

thereby able to accommodate re-initialisation in the subsample to square with any 

changes in the structural as well as the causal direction that may exist within the full 

sample. Besides, both the forward expanding and rolling window methods are the 

special cases of the recursive evolving approach. The results of recursive evolving 

testing procedure are considered to be more comprehensive (Shi et al., 2018). Based on 

the obtained results from these causality tests, we find: (1) Before the early 2000s, a 

bidirectional Granger causality between wheat futures and spot prices, which suggests 

the information is approximate evenly divided between wheat spot and futures markets. 

But wheat futures prices lead the price discovery since the early 2000s. (2) For soybean 

and corn, there is unidirectional causality from futures prices to cash prices but with a 

very short break in 1997, providing strong evidence in favour of the futures prices lead 

the price discovery.  

 

We attempt to explore whether the different phases of price discovery lead by either the 

spot or futures prices are associated with the specific events. In general, we are able to 

link the time-varying lead-lag causal relationship to specific agricultural commodity 

market events. In the case of wheat, we find a bidirectional linkage between spot and 

futures prices before the early 2000s. But a unidirectional causality from wheat futures 

prices to cash prices after the early 2000s. This paper suggests that the change point of 

the early 2000s is related to the financialisation among commodity markets. Prior to 

the early 2000s, the bidirectional causality indicates wheat futures prices and cash 

prices are both important in price discovery. Typically, futures prices lead the price 

discovery because futures markets have the advantages of lower transaction costs, 

higher transparency and higher liquidity. However, the bidirectional causality results 

suggest that wheat cash prices also play a key role in price discovery. Futures markets 
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have a higher liquidity because it is the financial markets. However, constant 

reassessments of commodity future prices make the evaluation difficult and potentially 

affect the well-functioning price discovery of the futures markets (O'Hara, 2003). 

Commodities are different from financial assets, the spot market on the other hand 

might be less liquid but could promote the price discovery. Specifically, in the spot 

market, the buyers get access to the sellers easier while the sellers face difficulties in 

touching buyers immediately. Traders (who might even coincide with producers) could 

evaluate the market fundamentals better and quickly agreed on the fundamental value, 

the best-traded spot price, of the commodity through matching supply and demand 

(Dimpfl et al., 2017). The demand and supply pressures over the physical commodities 

are equally important to the trading on the futures markets, in increasing the price 

discovery role of wheat cash markets (Irwin et al., 2009). Besides, the increased trade 

liberalisation during 1970s to 1990s adds more flexibility to the agricultural commodity 

markets. The market-liberalising policies accelerate the information dissemination and 

affect the price discovery process in the agricultural markets (Olipra, 2020). The 

physical market becomes more responsive to changes in global supply and demand 

conditions (Peters et al., 2009). 

 

Since the early 2000s, the financialisation of commodity markets leads to rapid growth 

in financial investment and speculation in agricultural futures in the United States 

markets. For example, Irwin and Sanders (2012) report that the level of combined 

futures and option open interest in wheat in the late 2000s reached around five times 

their 1995-1999 levels. Besides, they report a more than three-fold increase in monthly 

wheat futures trading volume from 2000-2011. The institutional managers have 

considered commodity as a profitable alternative asset because commodity futures has 

a low or negative correlation with traditional assets such as stock and bond, and 

commodity prices positively correlated with inflation (Cheng and Xiong, 2014). These 

features encourage investors to use commodity futures as a refuge when conventional 
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asset markets are under stress (Silvapulle and Moosa, 1999). Agricultural commodity 

futures emerge as an asset class and offers a diversification benefit (Cheng and Xiong, 

2014). Accordingly, investment flows on the order of hundreds of billions of dollars 

come into the commodity markets, which attracts large liquidity. The higher liquidity 

results in higher price discovery (Grammig and Peter, 2013; Yan and Zivot, 2010), 

which interprets our result of unidirectional causality from wheat futures prices to cash 

prices from the early 2000s. In addition, take a close look at the financial crisis period 

2007-2009 and food crisis period (2007-2008), our results suggest that the greater 

liquidity of wheat futures over physical wheat. Wheat futures react more quickly to 

unexpected information in the crisis period. In the time of crisis, wheat futures prices 

still play an important role in the price discovery process.  

 

For soybean and corn, we find futures prices play the leadership role in price discovery, 

but the reverse is not true. Different from the wheat market, both the soybean and corn 

cash prices unanimously do not Granger cause futures prices. As explained above, the 

current best price of the commodity could be quickly agreed through matching supply 

and demand in the wheat cash market, and therefore the wheat cash price is also 

important in price discovery. However, this may not hold in soybean and corn markets 

because soybean and corn markets are interrelated markets. Soybean and corn are 

substitutable in terms of their end-use and these two commodities typically compete for 

acreage in the United States. The planting decisions for soybean and corn usually made 

jointly. Consequently, the supply responses of soybean and corn are a trade-off 

regarding acreage allocation decisions (Holt, 1992). In the sense that a rise in soybean 

acreage occurs at the expense of a decrease in corn acreage, and vice versa (Chavas and 

Holt, 1990). Compared to the wheat market, revising the supply and demand may 

relatively complex and take some time in the soybean and corn markets. Soybean and 

corn futures have greater liquidity over physical soybean and corn. In addition, 

agricultural commodity market participants face severe informational frictions 
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regarding the supply, demand and inventory of the agricultural commodities (Cheng 

and Xiong, 2014). Financialisation of soybean and corn causes influences on the 

information discovery in soybean and corn markets. The lower costs of trading soybean 

and corn futures compared with the physical soybean and corn encourage greater 

participation and facilitates information aggregation. However, Stockin and Xiong 

(2015) emphasise that the noise brought about by the trading of futures investors could 

feed back to final-goods producers’ demand for the commodity. Soybean and corn 

futures contracts are the most popular traded contracts in the United States. 

Informational frictions could exist because the soybean and corn producers cannot 

determine whether the futures price changes are trigged by financial investors’ trading 

or the global economic fundamentals. Therefore, in comparison with financial traders, 

the participants in the physical markets may misinterpret the information of shocks. In 

other words, soybean and corn futures markets react more quickly to new information 

compared to their underlying spot markets. 

 

These results are interesting for two reasons. First, some of the previous studies (e.g. 

Crain and Lee, 1996; Garbade and Silber, 1983 and Yang and Leatham, 1999) analyse 

the lead-lag relationship in the wheat market and conclude that wheat cash markets are 

largely satellites of the futures markets. Corresponding to these studies, Dimpfl et al. 

(2017) find evidence that the prices of these agricultural commodities are independently 

formed in the spot markets and that the spot prices contribute more in price discovery. 

The previous studies either support wheat futures prices lead cash prices or wheat cash 

prices dominate the price discovery. Our findings are different from them by indicating 

neither wheat futures prices nor spot prices constantly lead the other, or in other words, 

the lead-lag pattern changes over time. By applying their causality tests, this study 

identifies the exact switching time point of the changing lead-lag relationship. We are 

able to link these different causality periods to specific commodity market events such 

as the financialisation of commodity markets. Second, different from the wheat market, 
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almost full-sample evidence does support that soybean and corn futures prices are 

Granger-causal of their cash prices, but the reverse does not true. This finding 

emphasises the price discovery drivers more related to the financial trading on soybean 

and corn futures markets.  

 

5.6 Robustness checks 

In identifying the robustness of the findings on causal relations running between spot 

and futures prices, a sensitivity and robust analysis is conducted. This study makes the 

following variants of the basic setup in the LA-VAR modelling framework: controlling 

the window size over a 3-year period to compute the 10% bootstrapped critical values 

and setting the minimum window size as !! = 0.24  to explore the finer local 

variability in the test statistics. We first retest the causality by controlling the size of 

the test sequence over a 3-year window instead of a 1-year window and the probability 

of making at least one false positive conclusion is taken to be 10% level. The 10% 

bootstrapped critical values are acquired from the 1000 repetitions and the bootstrap 

sample size is '" = (! + 35. The low change of drawing a false positive conclusion is 

expected with the stricter rejection criteria, but the detection power would decrease. 

Remaining the basic estimation setup unchanged and the estimated results for wheat, 

soybean and corn are presented in Figure 5.9, Figure 5.10 and Figure 5.11, 

respectively. From Figure 5.9, generally, the identification of the causal subperiods 

appears to be robust to the changes in window size. But we could also find some 

variations in the dates and the number of the causal episodes decreases, which attributed 

to the lower detection power induced by changing the window size. In the case of 

soybean and corn, Figure 5.10 and Figure 5.11 suggest that the causality pattern 

identified by three different algorithms keeps solid, despite some causal episode 

nuances.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Note: The forward recursive, rolling window and recursive evolving test results for 
Granger causality from wheat futures to spot prices are displayed in (a), (b) and (c), and 
spot to futures prices are reported in (d), (e) and (f). Causal periods are noted on the 
plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and 
controlled over a 3-year period, with a minimum window size !! = 0.20. Lag orders 
are assumed to be constant and selected using BIC with a maximum length of 20 for 
the whole sample period. 
 

Figure 5.9: Tests for Granger causality between wheat futures and cash prices 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Note: The forward recursive, rolling window and recursive evolving test results for 
Granger causality from soybean futures to spot prices are displayed in (a), (b) and (c), 
and spot to futures prices are reported in (d), (e) and (f). Causal periods are noted on 
the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and 
controlled over a 3-year period, with a minimum window size !! = 0.20. Lag orders 
are assumed to be constant and selected using BIC with a maximum length of 20 for 
the whole sample period.  
 

Figure 5.10: Tests for Granger causality between soybean futures and cash prices 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Note: The forward recursive, rolling window and recursive evolving test results for 
Granger causality from corn futures to spot prices are displayed in (a), (b) and (c), and 
spot to futures prices are reported in (d), (e) and (f). Causal periods are noted on the 
plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and 
controlled over a 3-year period, with a minimum window size !! = 0.20. Lag orders 
are assumed to be constant and selected using BIC with a maximum length of 20 for 
the whole sample period.  
 

Figure 5.11: Tests for Granger causality between corn futures and cash prices 
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This paper subsequently changes the basic setting of the minimum window size by 

increasing the value of !! from 0.20 to 0.24 and maintain all other settings of the LA-

VAR model unaltered, to test for the robustness of the Granger causality for three 

agricultural commodities. We re-conduct the Granger causality test with three different 

procedures and the results are reported in Figure 5.12, Figure 5.13 and Figure 5.14, 

for wheat, soybean and corn, respectively. Once more, the entire Granger causality 

pattern identified appears to be robust to the changed model settings with small 

differences in the dates. Overall, from the robustness checks, the conclusion reached 

here implies that the pattern of Granger causality tested by employing sequences of 

Wald statistics is significantly robust to the changes of the estimation setup for the three 

agricultural commodities discussed in this study.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Note: The forward recursive, rolling window and recursive evolving test results for 
Granger causality from wheat futures to spot prices are displayed in (a), (b) and (c), and 
spot to futures prices are reported in (d), (e) and (f). Causal periods are noted on the 
plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and 
controlled over a 1-year period, with a minimum window size !! = 0.24. Lag orders 
are assumed to be constant and selected using BIC with a maximum length of 20 for 
the whole sample period.  
 

Figure 5.12: Tests for Granger causality between wheat futures and cash prices 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Note: The forward recursive, rolling window and recursive evolving test results for 
Granger causality from soybean futures to spot prices are displayed in (a), (b) and (c), 
and spot to futures prices are reported in (d), (e) and (f). Causal periods are noted on 
the plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and 
controlled over a 1-year period, with a minimum window size !! = 0.24. Lag orders 
are assumed to be constant and selected using BIC with a maximum length of 20 for 
the whole sample period.  
 

Figure 5.13: Tests for Granger causality between soybean futures and cash prices 
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(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

(f)

 
Note: The forward recursive, rolling window and recursive evolving test results for 
Granger causality from corn futures to spot prices are displayed in (a), (b) and (c), and 
spot to futures prices are reported in (d), (e) and (f). Causal periods are noted on the 
plots. The 10% bootstrapped critical values are obtained with 1000 repetitions and 
controlled over a 1-year period, with a minimum window size !! = 0.24. Lag orders 
are assumed to be constant and selected using BIC with a maximum length of 20 for 
the whole sample period.  
 

Figure 5.14: Tests for Granger causality between corn futures and cash prices 
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5.7 Conclusion 

This study investigates the time-varying lead-lag causal relations between cash and 

futures markets for three important stable agricultural commodities, wheat, soybean 

and corn, spanning nearly half-century. We add to the literature on the lead-lag 

causality between agricultural commodity spot and futures markets on three counts. 

First, this study adopts three different time-varying causality test procedures based on 

LA-VAR modelling framework. Different from the previous studies, this model can be 

used without detailed or accurate prior knowledge of the presence or absence of unit 

roots. Besides, we could make Granger causality inferences in a time-varying manner 

and identify the exact origination and termination dates of causality periods. Second, 

the previous studies find a unidirectional causality between wheat futures and cash 

prices in the full sample, either futures prices Granger cause cash prices (e.g. Crain and 

Lee, 1996; Garbade and Silber, 1983; and Yang and Leatham, 1999) or cash prices 

Granger cause futures prices (Dimpfl et al., 2017). On the contrary, we find neither 

market leads nor lags the other consistently. We shed new light on the causal relations 

running from wheat spot prices to futures prices should change over time because the 

information flows could change with time. In our study, the lead-lag causality between 

wheat futures and cash prices are found to have experienced significant change around 

the early 2000s. A bidirectional Granger causality is observed prior to the early 2000s, 

but then wheat futures prices are found to lead the price discovery. This change 

corresponds to the financialisation among commodity markets, which attracts large 

liquidity and promotes the information flows in the wheat futures market. Third, we 

show that the spot and futures prices interactions behave differently in wheat compared 

to soybean and corn markets; in particular, a time-varying causality in the wheat 

markets but the unidirectional causality in the soybean and corn markets. The strong 

one-way causality is proved from futures prices to cash prices in both soybean and corn 

markets. The cases of soybean and corn are distinct from wheat. This finding 

emphasises futures markets are more liquid and react quickly to new or unexpected 
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information. Besides, our findings are helpful for identifying the predictive power of 

futures and cash markets over different subperiods. Prior to the early 2000s, both only 

wheat futures and cash prices have predictive power for each other. But futures prices 

have the predictive power on the future actions of wheat cash prices since the early 

2000s. Soybean and corn futures markets have strong predictive content for their cash 

markets.   

 

Our findings have implications for producers, consumers and hedgers. We know that 

grains producers fix sales prices ahead of production and adjust supply decisions basing 

on the futures contract prices (Nicolau and Palomba, 2015; Xu, 2019). Our results 

indicate that the predictive power of wheat futures and cash prices change over different 

subperiods. While soybean and corn futures prices have insight information to predict 

the future action of their cash prices. Wheat producers may not always price wheat 

using futures prices as the reference ahead of production and revise wheat supply. They 

should pay more attention to the market events in different periods. Because these 

events may affect the direction or speed of the information flows, and therefore, the 

lead-lag relationship is sensitive to the time. However, soybean and corn producers 

could use the futures prices to fix sale prices and adjust supply decisions given futures 

prices consistently lead their cash prices. For consumers who consume the U.S. soybean 

and corn, they could use the futures prices to predict the future trend of the cash prices. 

They could store more soybean and corn in advance when the soybean and corn futures 

prices show an increase signal. For hedgers, this result supports the intuitive idea that 

hedgers in soybean and corn markets could take opposite positions in futures and spot 

markets to mitigate their portfolio risks. But for the hedgers in wheat markets, the 

information of specific events may be important for them to adjust the futures and cash 

positions. In addition, this chapter also gives several messages of the effects on world 

food price in developing economies. Developing countries are particularly affected by 

the volatile world food prices because of their dependence on agricultural commodity 
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exports and their specialisation in one or a few agricultural commodities. The volatile 

world agricultural commodity price have serious consequences especially for the poor 

who spend a large part of their income on food (Banerjee and Duflo, 2007). The food 

price volatility leads to increased poverty in developing countries (Page and Hewitt, 

2001). The U.S. wheat, soybean and corn markets play an important role in deciding 

the world food prices. Our results find that wheat, soybean and corn futures markets 

lead the price discovery in the United States since the 2000s. This means that wheat, 

soybean and corn futures markets are able to quickly reflect the new information related 

to the world agricultural commodity price changes and volatilities. The government in 

developing economies could plan for the appropriate preparation based on the 

information obtained from the grains futures markets of the United States. For example, 

the policymakers in the developing countries could plan for the strategic grain reserves 

and public stock scheme for the grains basing on the U.S. grains futures prices 

movements.  

 

An interesting issue remains unresolved in this study relates to the effects of bounded 

rationality and rational herding on the informational content between the cash and 

futures markets. Further work on this topic would need an in-depth examination of the 

bounded rationality and rational herding. Besides, this study restricts the lead-lag time-

varying causality to the linear form. However, the causal effects between markets could 

be nonlinear. The nonlinear lead-lag interactions might draw different pictures from 

their linear counterparts. To be robust to possible nonlinear causality, there are avenues 

for further studies on this arguable issue. The findings of these studies would no doubt 

improve the understanding of the causal effects and price discovery process for 

agricultural commodity markets.  
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Chapter 6. Final Remarks 
 

Three chapters consist of this thesis and provide evidence for three core topics for the 

agricultural commodity price dynamics. It does so by applying recently developed 

novel econometric tools for the identification of effects of energy markets, climate 

changes and financial markets.   

 

Chapter 3 analyses the role of the energy market in the movements of agricultural 

commodity prices, with particular attention on the relations between diesel prices and 

corn export prices, considering diesel power dominates the wide transportations, and 

corn has the highest energy-related expenses among eight selected major agricultural 

commodities (Sands et al., 2011). The results of this work show a positive co-movement 

between corn export prices and diesel prices. An implication from this result is that the 

diesel prices are currently facilitating the input costs and result in changes in export 

prices. The chapter also identifies the positive long-run relation patterns between diesel 

and corn export prices rely on the market conditions. More specifically, the long-run 

equilibrium relationship becomes stronger when corn export prices at the higher level. 

But when the corn export prices at the extreme level, the dependence between corn and 

diesel decreases. Because under the extreme circumstances, the excess supply or excess 

demand market conditions, exporters will not export corn and hence reduce the demand 

for diesel. In comparison, the steeper responses occur when corn export prices are at 

extreme levels at the median and high ranges. At this stage, exporters find the prices 

are within their expectations and will continue to export corn for higher profits. Thus 

they need more diesel to transport corn to the ports. 

 

Chapter 3 makes a contribution to the literature in the following ways: First, this study 

aims to model long-run relations between corn export prices and diesel prices, given 

that diesel powers over two-thirds of the farm equipment and transport approximately 
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90% of the agricultural products in the United States. To this end, this chapter shows 

that there is a positive co-movement between corn export prices and diesel prices. 

Therefore, the importers of the U.S. corn can use diesel prices as a reference to anchor 

their decisions on corn export prices prediction. Secondly, this work is different from 

the previous studies by arguing that the magnitude of the long-run relationship between 

energy prices and corn export prices varies when corn export prices at a different level. 

Besides, this paper proves the relationship between diesel and corn is characterised as 

nonlinear. Since it is difficult to capture the upward and downward movements, 

especially if the diesel prices can be extremely volatile, this study chooses to consider 

the extreme effects with the help of a quantile-based cointegration method. Chapter 3 

gives several interesting results from such a novel econometric tool.  

 

Chapter 4 identifies the effects of changes in the climate conditions on the movements 

in agricultural commodity prices, with focus on an important global climate 

phenomenon, El Niño Southern Oscillation (ENSO), and examine its effects on 

agricultural commodity prices, particularly grain prices that are most likely to be 

affected by variable climate conditions. The empirical results of this chapter point that 

both the two phases of the ENSO event, El Niño and La Niña, lead to the increases in 

the grain prices. Wheat prices only respond to the La Niña events and soybean prices 

only affected by El Niño conditions. However, corn prices respond to both El Niño and 

La Niña phases but display the asymmetric price adjustment processes. The findings of 

this chapter imply that we can use current El Niño and La Niña conditions to predict 

different grain prices basing on their responses to the ENSO conditions. In addition, 

although it is not the primary objective of this work, the results may contribute to 

informing the issue associated with the agricultural commodity prices forecasting in the 

forthcoming decades. Particularly, how the information of ENSO events may assist in 

making predictions of grains prices in the United States.  
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This chapter makes a core contribution to the literature by providing new evidence of 

the effects of climate changes on agricultural commodity prices, and more concretely 

the asymmetric relationship of the two extreme phases, El Niño and La Niña, to the 

major grains price dynamics in the United States. This study differs from previous 

research on finding the ENSO anomalies lead to price fluctuations in selected U.S. grain 

prices. Further, conversely to most works in the literature that rely on using the point-

based models, this chapter employs a novel interval-based tool which allows for 

capturing range information of climate variables.  

 

Finally, chapter 5 identifies the time-varying price discovery issues for the three most 

frequent traded agricultural futures contracts, wheat, soybean and corn, in the United 

States. The findings of chapter 5 indicate that the lead-lag causal relations between 

futures and cash prices change over time and depend on agricultural commodity 

markets. In wheat markets, the relationship between wheat futures and cash prices are 

found to have experienced significant change around the early 2000s. A bidirectional 

Granger causality is observed prior to the early 2000s, but then wheat futures prices are 

found to play a bigger role in the price discovery. However, in soybean and corn 

markets, the results are consistent to indicate more evidence for causality from futures 

prices to spot prices than otherwise.  

 

Although the subject of this chapter is the familiar price discovery process, the 

contribution is different from the existing literature. The core contribution chapter 5 is 

to reveal the time-varying features of the price discovery process in agricultural 

commodity markets. To progress the idea of understanding the time-varying 

characteristic of price discovery in agricultural commodity markets, this chapter 

employs both conventional forward expand and rolling window causality tests as well 

as recently developed recursive evolving causality method. Our findings have strong 
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implications for producers, consumers and hedges. Given that a bidirectional causality 

found in wheat markets, market participants should pay more attention to the wheat 

market events in different periods. While for the participants in soybean and corn 

markets, the information in the futures markets is more important to help predictions.  

 

This thesis provides several messages in policy terms. The insights from chapter 3 entail 

two important implications. First, policymakers should pay attention to the nonlinear 

behaviour of the diesel-corn price nexus when building the estimation and prediction 

modes for agricultural or energy markets. Second, corn could also be used as biofuel 

production. The findings in chapter 3 may help with setting land allocation plans. Corn 

used as biofuel production would compete with food grain in allocating land. Knowing 

the relationship between diesel and corn is helpful for corn supply and demand 

predictions. Therefore, strategies of land allocation for food grains and feedstock 

should consider this nonlinear relationship. Several important policy implications are 

derived from the findings of chapter 4. First, the design of crop plantation should 

consider the responses of different crops to the changing climate conditions. The 

findings in chapter 4 suggest that policymakers may be encouraged to adjust the 

rotation strategy and land allocation strategy for corn and soybean, given the two ENSO 

phases will increase the soybean and corn prices. However, soybean only responds to 

El Niño conditions while corn will respond to both El Niño and La Niña events. To this 

extent, considering the competing for land between corn and soybean, local planning 

should adjust the land-using to the preferable crops to hedge against the climate adverse 

effects. Second, chapter 4 is useful for farm risk management and improve the 

economic returns facing different phases of ENSO event.  

 

There are several potential avenues for future research that may be different from the 

perceptions of this thesis. First, chapter 3 of this thesis discusses the responsive 

behaviour of corn export prices to diesel price changes for different market conditions. 
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This chapter has confirmed the corn export prices have a different response to the 

changing diesel prices. The findings in this chapter may be nicely complemented by 

analysing the adjustment behaviour of corn export prices in more detail, such as the 

correction behaviours when corn export prices at different levels. Due to current 

econometric method is unable to capture the correction process, this thesis has not 

addressed the detailed adjustment behaviour of corn export prices. Yet, this issue seems 

to be important when making accurate predictions. Second, chapter 4 concentrate 

sharply on the effects of climate change on agricultural commodity prices from the 

whole country perspective. However, agricultural commodity production is 

heterogeneous in different regions in the United States. In addition, the effects of 

climate events are also not homogeneous for different areas in the United States. Further 

to this, the regional level analysis could be conducted in future research. Third, chapter 

5 inspects the time-varying causality between futures and spot prices. One potential 

reason is that the information flows could be sluggish in some time periods. Along this 

line, the issues of the impacts of bounded rationality and rational herding on the 

informational content between the cash and futures markets keep unanswered. More 

research is needed to elucidate the bounded rationality and rational herding.  
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