
School of Computing

Performance Evaluation of Virtual
Machine Live Migration for Energy

Efficient Large-Scale Computing

Osama Nasser Alrajeh

Submitted for the degree of Doctor of
Philosophy (Integrated) in the School of

Computing, Newcastle University

August 2019

- B -

Dedicated to my loving

father, mother, wife and daughter...

who always inspire, encourage, and support

without whom none of this would be possible

- i -

- ii -

Declaration

I declare that this thesis has not been previously submitted for a qualification or degree

at Newcastle University or any other institution. I state that this thesis is my own

work unless otherwise stated.

Osama Alrajeh

We confirm that, to the best of our knowledge, this thesis is from the student’s own

work and has been submitted with our approval.

Supervisors

Dr. Nigel Thomas

Dr. Matthew Forshaw

- iii -

- iv -

Acknowledgements

First and foremost, I would like to thank my supervisors Dr. Nigel Thomas and Dr.

Matthew Forshaw. I am extremely grateful and indebted to them for their professional

guidance, continued support, valuable advice and motivating encouragement through-

out my IPhD study. They have supported me academically, morally, and spiritually

from the beginning to the end of finishing this research.

Also, I would like to take this opportunity to thank my external examiner Prof William

Knottenbet (Imperial College London) and my internal examiner Prof Paul Watson

for their valuable discussion in the viva.

I would like to thank my friends and colleagues at the School of Computing at Newcas-

tle University for their inspiration and motivation over the years as well as my friends

in the UK, US, and back in Saudi Arabia.

I would also like to thank my home country Saudi Arabia, the Institute of Public

Administration (IPA) in Riyadh and the Saudi Arabian Cultural Bureau in London

for giving me the opportunity to undertake my IPhD study in Newcastle University.

Nobody has been more important to me in the pursuit of this thesis than the members

of my family. I would like to thank my parents for all pray, support, love, and patience

throughout my IPhD study. I wish to thank my brothers. Most importantly, I am

very grateful to my supportive wife, Asseil, and my wonderful daughter, Aljawharah,

who provide constant inspiration and motivation on the long journey.

- v -

- vi -

Abstract

Large-scale computing systems must overcome a number of difficulties before they can

be considered a long-term solution to information technology (IT) demands, including

issues with power use and its green impact. Increasing the energy efficiency of large-

scale computing systems has long posed a challenge to researchers. Innovations in

efficient energy use are needed that can lower energy costs and reduce the CO2 emis-

sions associated with information and communications technology (ICT) equipment.

For the purpose of facilitating energy efficiency in large-scale computing systems, vir-

tual machine (VM) consolidation is among the key strategic approaches that can be

employed. Virtual machine (VM) live migration has become an established technology

used to consolidate virtualised workload onto a smaller number of physical machines,

as a mechanism to reduce overall energy consumption. Nevertheless, it is important

to acknowledge that the costs associated with VM live migration are not taken into

account in the context of certain VM consolidation techniques.

Organisations often exploit idle time on existing local computing infrastructure through

High Throughput Computing (HTC) to perform the computation. More recently the

same approach has been employed to make use of cloud resources in large-scale compu-

tation. To date, the impact of HTC scheduling policies within such environments has

received limited attention in the literature as well as the trade-off between energy con-

sumption and performance. Also, the benefits of using virtualisation and live migration

are not commonly applied in High Throughput Computing (HTC) environments.

In this thesis, we illustrate through trace-driven simulation the trade-off between en-

ergy consumption and system performance for a number of HTC scheduling policies.

Furthermore, the thesis demonstrates the way in which various workloads can affect

the time of VM live migration. We use a real experiment to explore the relation be-

tween various workload characteristics and the time of VM live migration. In order to

understand what factors influence live migration, we investigate three machine learn-

ing models to predict successful live migration using different training and evaluation

- vii -

sets drawn from our experimental data.

Through this thesis, we explore how virtualisation and live migration can be em-

ployed in HTC environment and used as a fault-tolerance mechanism to reduce energy

consumption and increase the utilisation of a single computer in a large computing

infrastructure. We propose various migration policies and evaluate them through the

use of our extensions to HTC-Sim simulation framework. Moreover, we compare the

results between the policies as well as the system where migration is not considered.

We demonstrate that our responsive migration could save approximately 75% of the

system wasted energy due to job evictions by user interruptions where migration is

not employed as a fault-tolerance mechanism.

- viii -

Publications

During my IPhD program, I have contributed to the following publications:

1. Alrajeh O., and Thomas N. Energy consumption of scheduling policies for HTC

jobs in the cloud. In Proceedings of the 8th International Conference on Simu-

lation Tools and Techniques. (2015), SIMUTools ’15, ACM, pp. 343-348 [31]

2. Alrajeh O., Forshaw M., and Thomas N. Performance of virtual machine live mi-

gration with various workloads. In: 32nd UK Performance Engineering Work-

shop. (2016), University of Bradford [32]

3. Alrajeh O., Forshaw M., and Thomas N. Machine learning models for predicting

timely virtual machine live migration. In European Workshop on Performance

Engineering. (2017), Springer, pp. 169-183 [30]

4. Alrajeh O., Forshaw M., A. Stephen McGough, and Thomas N. Simulation of

virtual machine live migration in high throughput computing environments. In

22nd IEEE International Symposium on Distributed Simulation and Real Time

Applications. (2018), IEEE [29]

5. Alrajeh O., Forshaw M., and Thomas N. Responsive live migration fault-tolerance

approach in high throughput computing environments (submitted)

- ix -

- x -

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Research Problems . 4

1.3 Research Hypothesis . 5

1.4 Research Objectives . 5

1.5 Research Methodology . 6

1.6 Research Contributions . 6

1.7 Thesis Structure . 7

2 Background and Related Work 9

2.1 Energy-efficiency . 10

2.1.1 Energy Efficiency Mechanisms 12

2.1.2 Energy Efficiency Metrics . 16

2.1.3 Benchmarking . 18

2.2 Virtualisation . 18

2.2.1 Virtual machine migration . 19

2.2.2 Live migration . 20

2.2.3 Live Migration Performance Metrics 21

2.2.3.1 Practical Test . 22

2.2.3.2 Prediction . 25

2.2.4 Virtual Machine Consolidation 27

2.3 Simulation Tools . 29

2.3.1 HTC-Sim . 30

2.4 Fault-tolerance . 32

3 Energy consumption of scheduling policies for HTC jobs in the Cloud 35

3.1 Introduction . 36

3.2 Policy . 37

3.3 Simulation Environment . 39

3.3.1 Resource Model . 39

3.3.1.1 Energy consumption: 39

- xi -

3.3.1.2 Performance scaling: 39

3.3.2 Metrics . 40

3.3.2.1 Overhead . 40

3.3.2.2 Cloud hours . 40

3.3.2.3 Infrastructure Energy Consumption 40

3.3.3 Simulation Scenario . 41

3.4 Results . 42

3.4.1 Limiting the number of cloud instances 42

3.4.2 Merging of different users’ jobs 44

3.4.3 Instance keep-alive . 45

3.4.4 Delaying the start of instances 48

3.5 Conclusions . 48

4 Performance of Virtual Machine Live Migration with Various Work-
loads 51

4.1 Introduction . 52

4.2 Experiment environment . 53

4.2.1 Experiment set up . 53

4.2.2 Benchmarks . 54

4.2.3 Experiment scenario . 57

4.3 Results . 59

4.4 Conclusions . 65

5 Machine learning models for predicting VM live migration 67

5.1 Introduction . 68

5.2 Experiment Environment . 69

5.2.1 Experiment set up . 69

5.2.2 Benchmarks . 70

5.2.3 Experiment scenario . 70

5.3 Experimental Results . 71

5.4 Virtual Machine Live Migration Modelling 73

5.4.1 Stochastic Gradient Boosted, Random Forest, and Bagged Tree 74

5.4.2 Dataset . 75

5.4.3 Tuning the models . 76

5.4.4 Performance evaluation of the models 77

5.5 Predicting migration outcome . 81

5.6 Conclusions . 84

- xii -

6 Simulation of VM Live Migration in HTC Environments 85

6.1 Introduction . 86

6.2 Simulation Environment . 87

6.2.1 Datasets . 88

6.2.2 Conceptual Simulation Architecture 90

6.2.3 Migration Model . 91

6.3 Simulation scenario . 92

6.3.1 Interval Migration . 93

6.3.2 Responsive Migration . 95

6.4 Simulation outcome . 96

6.4.1 Interval Migration . 97

6.4.2 Responsive Migration . 103

6.5 Conclusions . 107

7 Responsive Live Migration in HTC Environments 109

7.1 Introduction . 110

7.2 Policies . 111

7.3 Results . 113

7.3.1 Policy performance . 114

7.3.1.1 Number of migrations 114

7.3.1.2 Overall migration time 117

7.3.1.3 Overall migration energy 118

7.3.1.4 Number of migrations per job 120

7.3.2 System improvement . 122

7.3.2.1 Number of evictions 122

7.3.2.2 Overhead . 124

7.3.2.3 Energy . 125

7.3.2.4 Killed jobs . 127

7.4 Discussion . 129

7.4.1 Placement . 129

7.4.2 When to migrate . 131

7.4.3 Which job to migrate . 131

7.4.4 Where to migrate . 131

7.5 Conclusions . 131

- xiii -

8 Conclusion 133

8.1 Thesis Summary . 134

8.2 Limitations . 136

8.3 Future Research Directions . 136

8.3.1 VM live migration experiment 136

8.3.2 Prediction Models . 137

8.3.3 Simulation . 137

8.3.4 Fault-tolerance methods . 138

Bibliography 139

- xiv -

List of Figures

1.1 Thesis structure . 7

3.1 Performance to power ratio of SPECpower servers results in 2010 . . . 42

3.2 Impact of policy P1 on average overhead, number of instance hours,
and energy consumption. 43

3.3 Impact of policy P2 on average overhead, number of instance hours,
and energy consumption. 44

3.4 Impact of policy P3 on average overhead, number of instance hours,
and energy consumption. Varying chance of keep-alive and boot time
for Server 3. 46

3.5 Impact of policy P3 on average overhead, number of instance hours,
and energy consumption. Varying chance of keep-alive for a boot time
of ten minutes. 47

3.6 Impact of policy P4 on average overhead, number of instance hours,
and energy consumption. 49

4.1 The setup of VM live migration experiment with 100Mbps switch . . . 54

4.2 A flowchart of the experiment scenario 58

4.3 Average migration time of VM 1, VM 2, and VM 3 with various
workloads . 60

4.4 Average peak memory usage of each workload on various VMs 61

4.5 Memory usage of the VM 1 with Compiler.compiler, Crypto.aes,
Derby, Scimark.lu.large, Scimark.sor.small, and Xml.transform
workloads. 63

4.6 CPU utilisation of the VM 1 with with Compiler.compiler, Crypto.aes,
Derby, Scimark.lu.large, Scimark.sor.small, and Xml.transform workloads 64

5.1 The setup of VM live migration experiment with 1000Mb switch 69

5.2 Average migration time of VMij with various workloads from Server 1
to Server 2 . 72

5.3 Average migration time of VMij with various workloads from Server 2
to Server 1 . 72

5.4 The value of AUC with various SGB parameters’ values 77

5.5 The value of AUC with various RF parameters’ values 78

5.6 Training time of SGB and RF . 78

- xv -

5.7 Feature importance of SGB, RF, BT 79

5.8 Compare different models . 80

5.9 Compare SGB, RF, and BT with various datasets 81

5.10 Compare SGB, RF, and BT with various datasets of VMi. types 83

5.11 Compare SGB, RF, and BT with various datasets of VM.j types 83

6.1 Interactive user logins per day in 2010 [78]. 89

6.2 HTCondor jobs submission in 2010 [78]. 89

6.3 Conceptual architecture for HTC-Sim 90

6.4 Job state transition diagram with migration state. 91

6.5 Computer state transition diagram with reserve state. 92

6.6 Flowchart of interval live migration. 93

6.7 Flowchart of responsive live migration. 95

6.8 Total migrations, overall migrations time, and overall energy
consumption of successful migrations with different migration
durations and intervals. 98

6.9 Total number of interruptions during migration, overall migrations
waste time, and overall waste energy of failed migrations with different
migration durations and intervals . 99

6.10 Proportion of migrations interruption. 100

6.11 Total number of jobs finished during migration, overall migrations
waste time, and overall waste energy of failed migrations with different
migration durations and intervals . 102

6.12 Total migrations, overall migrations time, and overall energy
consumption of successful responsive migrations with different
migration durations and proportions. 104

6.13 Reduction of total interruptions by responsive migration. 105

6.14 Overall interruptions energy saved by responsive migration. 106

6.15 Reduction of overhead due to responsive migration. 106

7.1 Total migrations with various migration time 114

7.2 Proportion of interrupted migrations 115

7.3 Proportion of finished jobs during migration 116

7.4 Overall migration time . 117

7.5 Overall migration energy of each policy compared with total
migrations and various migration times (0.25, 1, 5 ,10) in minutes as
shown in the panels . 119

7.6 Migration energy wasted by users interruption 120

- xvi -

7.7 Empirical cumulative distribution function of migration numbers per
job of each policy with various migration times (0.25, 1, 5 ,10) in
minutes as shown in the panels . 121

7.8 Empirical cumulative distribution function of migration numbers per
job of each migration time with various policies shown in the panels . . 121

7.9 Reduction of total interrupted job evictions 122

7.10 Total evictions of each policy compared with total migrations and
various migration times (0.25, 1, 5 ,10) in minutes as shown in the panels123

7.11 Reduction of overhead . 124

7.12 Jobs overhead of each policy compared with total migrations and
various migration times (0.25, 1, 5, 10) in minutes as shown in the panels125

7.13 Overall interruptions energy saved by responsive migration 126

7.14 Jobs energy consumption of each policy compared with total
migrations and various migration times (0.25, 1, 5, 10) in minutes as
shown in the panels . 127

7.15 Killed jobs resource utilisation . 128

7.16 Number of bad and good migrations 129

7.17 Number of migrations for jobs within 10 minutes of their accumulated
execution time . 130

- xvii -

- xviii -

List of Tables

2.1 Comparisons of VM live migration practical tests 25

2.2 Comparison of simulators . 30

2.3 Overview of fault-tolerance techniques in large-scale computing 33

3.1 Selected server from SPECpower ssj 2008 published [1] 41

4.1 SPECjvm2008 Benchmark workloads 55

4.2 VMs specifications . 58

4.3 Average migration time and memory usage of VM 1, VM 2, and VM 3 59

5.1 SPECjvm2008 Benchmark workloads 70

5.2 Dataset structure . 75

5.3 Dataset sample . 76

6.1 Computer Type . 88

- xix -

- xx -

acronyms

ALR Adaptive Link Rate

AM Analytical Modelling

Co2 Carbon Dioxide

CPU Central Processing Unit

DVFS Dynamic Voltage and Frequency Scaling

HTC High Throughput Computing

HPC HPC High Performance Computing

ICT Information and Communications Technology

IT Information Technology

KVM Kernel-based Virtual Machines

ML Machine Learning

MIPs Million Instruction Per second

NAS Network-attached Storage

OS Operation System

SLA Service Level Agreement

PM Physical Machine

PUE Power Usage Effectiveness

QoS Quality of Service

RAM Random Access Memory

RF Random Forest

SGB Stochastic Gradient Boosting

SDN Software-Defined Networking

VM Virtual Machine

VMM Virtual Machine Monitor

- xxi -

- xxii -

1
Introduction

Contents
1.1 Motivation . 3

1.2 Research Problems . 4

1.3 Research Hypothesis . 5

1.4 Research Objectives . 5

1.5 Research Methodology . 6

1.6 Research Contributions . 6

1.7 Thesis Structure . 7

- 1 -

Chapter 1: Introduction

Introduction

Large-scale computing systems are widely used due to the ability of on-demand provi-

sioning resources to deliver inexpensive, convenient and user-friendly environment to

consumers. These systems are entirely dependent on a sustainable power supply in or-

der to work. The energy consumption of large-scale computing systems has increased

dramatically which also leads to significant carbon dioxide (CO2) emissions.

Meanwhile, global energy demand has increased from 10 thousand terawatt-hours in

1990 to 20 thousand terawatt-hours today. By 2040, global demand is expected to

approach 40 thousand terawatt-hours [116]. Power saving initiatives are motivated

by a number of factors, including governmental pressure and the need to save money.

For example, the British government aims to lower CO2 emissions by 80% in the next

35 years [15]. In the US, data centres consumed approximately 70 billion kWh of

electricity during 2014, which is almost equivalent to 1.8% of the US total energy

consumption. By 2020, It is expected that data centres energy consumption in the US

will increase by three billion kWh [148]. Also, data centres could contain idle servers

which might consume up to 70% of their peak power [73].

Thus, it is very important that data centres improve the efficiency with which they

use their power and a great deal of innovation has taken place to this end. For in-

stance, cloud computing takes advantage of virtualisation to allocate and migrate VMs

to increase the utilisation of the physical resources as well as reduce the number of

running servers which change the amount of computing power allocated to users in

line with their needs [35, 43, 95, 162]. Moreover, data centres employ VM migration

as a fault-tolerance mechanism to avoid hardware failures which enhances the overall

performance and the energy efficiency [72, 114, 127, 137].

In this thesis, we explore how virtualisation can improve performance and decrease

energy consumption in large-scale computing systems. In particular, we apply virtual-

isation and live migration techniques into high throughput computing (HTC) system

where the resources are allocated on multi-use clusters which public users share them

with the system. Throughout this thesis, we demonstrate the trade-off between energy

and performance of existing HTC jobs scheduling policies to cloud resources. Further,

- 2 -

Chapter 1: Introduction

we investigate the factors which influence the time of migration. Finally, we propose a

fault-tolerance mechanism and policies for performance and energy efficiency in HTC

environments.

1.1 Motivation

The issue of energy efficiency in large-scale computing motivated this research. As

we illustrated above, the global energy demand grows each year which needs to be

controlled in order to reduce the cost and the carbon dioxide (CO2) emissions. At

Newcastle University, Information and Communications Technology (ICT) use energy

has increased by 2.5% each year since 1990 [92]; it is estimated that ICT energy

cost is around £750k per year and the CO2 emissions of ICT is over 5,500 tonnes

per year [92]. The University has launched a Carbon Management Plan (CMP) to

reduce the CO2 emissions of campus and using virtualisation was one of the aims to

reduce CO2 emissions of ICT. The University applied virtualisation over 200 servers

as a mechanism to save energy which reduced the carbon dioxide by an estimated 700t

per year [92].

The HTCondor [110] system is provided for Newcastle University researchers. The

researchers use the system to run complex tasks to obtain the results quickly. The

University uses 35 spread clusters on campus as HTCondor pool and the pool contains

1400 desktop computers. However, these computers are shared with public users, and

a user might arrive on a computer at any time. When an interactive user logs in to the

computer while it is executing an HTCondor job, the job gets evicted and rejoins the

HTCondor queue to be reallocated on another machine. As a result, the job restarts

its execution which increases its energy consumption and the overhead of the system.

To avoid jobs from being evicted and rejoining the queue when interactive user logs

into a machine which executing HTC job, we propose a mechanism which migrates

the job into another physical machine for resuming its execution.

- 3 -

Chapter 1: Introduction

1.2 Research Problems

In order to adopt virtualisation and live migration techniques into high throughput

computing (HTC) environments for enhancing the performance and reducing energy

consumption, the following research problems are investigated:

What is the trade-off between energy and performance in the context of

management policies in large-scale computing systems? A number of previous

works proposed policies and algorithms for managing physical resources, queuing and

scheduling tasks, and fault-tolerance in order to enhance the performance. However,

the energy consumption of some of these techniques is not considered.

How to deploy virtualisation and live migration techniques in HTC sys-

tems? Based on the literature, there is no generalisable model for virtualisation and

live migration techniques within HTC environments in order to enhance performance

and reduce energy consumption.

What is the cost of live migration? The cost of live migration is not considered

in most of VM live migration models. Some approaches used live migration to transfer

the job into the most energy efficient physical machine within the system in order to

reduce the overall energy consumption. However, the energy consumption of VM live

migration can be higher compared to keeping the VM running in its current physical

machine. It is important to know the parameters that influence the cost of migration

before starting the migration of VMs to ensure the most significant decision on saving

energy.

Is it possible to predict the time of live migration with high accuracy?

Many approaches used an analytical modelling for predicting the time of migration

which requires knowledge about the internal behaviour of the system. To the best of

our knowledge, this thesis includes the first attempt to predict live migration time by

using machine learning where the information about system behaviour is not required.

Is it always reasonable to terminate a running job when an interactive user

arrives into a physical machine within the HTC system? Fault-tolerance mech-

anisms in HTC systems can recover jobs failure due to user interruptions. However,

- 4 -

Chapter 1: Introduction

reactive fault tolerance techniques could increase the overhead as well as have large

latency which affects the overall performance of the system. As a result, the energy

consumption of the system can significantly increase.

Which computer to select for migration? Determining which computer to mi-

grate the job when the migration is needed can influence the performance and energy

consumption of the system. It is essential to provide a selection policy mechanism

which improves the performance and reduces the energy consumption of the system.

1.3 Research Hypothesis

Using virtual machine live migration in a high throughput environment will enhance

the performance and reduce the energy consumption of the system.

1.4 Research Objectives

This research aims to increase performance and decrease the energy consumption of a

multi-use HTC environment by using virtualisation and live migration. The following

objectives need to be achieved in order to solve the above research questions:

• Explore the area of energy-efficiency in large-scale computing to gain knowledge

about the challenges and approaches for reducing energy consumption.

• Investigate virtualisation and migration approaches in large-scale computing in

order to employ them into HTC environments.

• Demonstrate and understand the trade-off between performance and energy of

existing and proposed policies in HTC environment.

• Measure the time of VM migration with various workload characteristics, hard-

ware capacities, and network speeds.

• Propose machine learning models to predict the VM migration time based on

real experimental data.

- 5 -

Chapter 1: Introduction

• Propose live migration techniques and policies for multi-use HTC environment

to reduce the energy and enhance the performance as well as avoiding user in-

terruptions failure.

1.5 Research Methodology

Quantitative analysis is used to obtain the findings in this thesis. In particular, the

thesis consists of three research methodologies as follows:

Experiment: In order to measure the migration time of VMs which is associated

with different workload characteristics and capacities, we use real experiments which

represent the VM live migration procedure as it takes place in real-world contexts.

Modelling: In order to predict successful migrations where VMs can be migrated

within a specific time window, we employ three different classification machine learn-

ing models, namely, Stochastic Gradient Boosting (SGB), Random Forest (RF), and

Bagging.

Simulation: In order to evaluate the energy and performance of the proposed meth-

ods and policies of this thesis, we use our extension of the HTC-Sim simulation frame-

work [78] which is based on real-world workload traces from Newcastle University.

1.6 Research Contributions

The key contributions of this thesis are as follows:

• An overview of the energy-efficient large-scale computing challenges and ap-

proaches is presented as well as the state-of-the-art in virtualisation and live

migration methods.

• Evaluation of the impact of existing policies for scheduling HTC jobs to cloud

resources on energy consumption and performance.

• Proposal and evaluation of an experimental setup for measuring the time of VM

live migration.

- 6 -

Chapter 1: Introduction

• An automated script for conducting VM live migration between physical ma-

chines and maintaining a log of the CPU utilisation, total system memory, free

memory, memory used, buffer cache, I/O activities, queue size, and load average

throughout the migration.

• Development and evaluation of three classification prediction models for predict-

ing the successful migrations where VMs can be migrated within a specific time

window. The effect of tuning the models with different values as well as train-

ing and evaluating the models among the various sub-datasets from the original

dataset is provided.

• Designing, implementing and evaluating two novel virtualisation and live migra-

tion methods to reduce energy consumption within HTC systems by extending

the HTC-Sim simulator.

• Proposal and evaluation of the impact of new six selection policies for deter-

mining the location of migrated jobs within HTC system on performance and

energy.

1.7 Thesis Structure

Figure 1.1: Thesis structure

Figure 1.1 presents an overview of the core chapters of this thesis. This thesis is

structured as follows:

Chapter 1 describes the motivation behind this work and highlights the problems,

main objectives and contributions of this thesis.

- 7 -

Chapter 1: Introduction

Chapter 2 provides background material and a summary of the most related work to

the research scope which described in this thesis.

Chapter 3 investigates the trade-off between performance and energy of existing

policies for scheduling HTC jobs to cloud resources by extending of HTC-Sim to in-

corporate energy measurement and evaluate the energy and performance. The results

of this chapter are published in [31].

Chapter 4 presents a real experiment setup for measuring the time of VM live migra-

tion with various workloads characteristics. The chapter illustrates the link between

the memory pages and the time of migration. The findings of this chapter are published

in [32].

Chapter 5 exhibits the process of creating and testing three predictive models. The

models are used to foretell how likely a VM is going to be migrated within the time

frame of the running workload. Finally, the comparison between the models and others

is provided. The contributions of this chapter are published in [30].

Chapter 6 discusses the implementation of virtualisation and live migration into

HTC-Sim. Also, it presents two novel live migration methods which can be easily ap-

plied to HTC systems. The chapter discusses the evaluation of the proposed methods.

The outcomes of the chapter are published in [29].

Chapter 7 evaluates the impact of a live migration fault-tolerance mechanism on per-

formance and energy consumption within a multi-use HTC environment. The chapter

proposes six selection mechanisms to determine the target computer when migration

is needed. Throughout the chapter, we discuss some useful tips which would assist

the administrator of the HTC system when they employ the live migration as a fault-

tolerance mechanism in their system.

Chapter 8 summarises the conclusions of the work presented in this thesis and illus-

trates the limitations of work. Also, the chapter discusses directions for further work

in the area.

- 8 -

2
Background and Related Work

Contents
2.1 Energy-efficiency . 10

2.1.1 Energy Efficiency Mechanisms 12

2.1.2 Energy Efficiency Metrics . 16

2.1.3 Benchmarking . 18

2.2 Virtualisation . 18

2.2.1 Virtual machine migration . 19

2.2.2 Live migration . 20

2.2.3 Live Migration Performance Metrics 21

2.2.4 Virtual Machine Consolidation 27

2.3 Simulation Tools . 29

2.3.1 HTC-Sim . 30

2.4 Fault-tolerance . 32

- 9 -

Chapter 2: Background and Related Work

Summary

This chapter provides an overview of the related background material motivating and

underpinning the work presented in this thesis. The chapter presents an overview

of the energy problem in large-scale computing systems. Also, it includes the energy

efficient techniques which reduce the energy consumption of large-scale computing sys-

tems. Furthermore, the chapter investigates the related work of virtualisation which

is commonly used in large-scale computing systems as energy-efficient and fault toler-

ance mechanisms. Through this chapter, we highlight the gaps of the relevant research

feature and discuss how this thesis tackles these gaps.

2.1 Energy-efficiency

The World Energy Council defines efficient energy use as a lowering of the amount of

power used by a facility or amenity [126]. Unfortunately, data centres are extremely

complicated structures with a large number of components from different research areas

such as management, computing, and networking. Thus, it can be very challenging

to cover each energy aspect of each component within a system in detail due to their

diversity. Based on the literature, some surveys such as [44, 164] describe energy

models in terms of their stationary and moving energy use, which deals only with

wasted power while the equipment is on but not in use. However, others [37] argue that

there is a measurable difference between the power used by computing equipment and

that used by supporting equipment in order to measure energy waste from supporting

equipment. Nonetheless, some surveys such as [116] combined these two approaches

in order to define energy efficiency more holistically.

Intended to create savings by a more efficient use of power while being as green as

possible, energy-aware computing is a type of green computing which has begun to shift

the high-level computing systems paradigm towards a balanced performance-energy

system. As Couch et al. [103] wrote in 2008, “The goal of energy-aware computing

is not just to make algorithms run as fast as possible, but also to minimise energy

requirements for computation, by treating it as a constrained resource like memory or

disk”.

- 10 -

Chapter 2: Background and Related Work

Green Computing: or “Green IT” is an approach to managing large data centres

which aims to reduce the environmental damage caused by information technology.

The aim of green IT is to maintain a balanced and environmentally-friendly IT service

which has as slight an impact on the environment as possible. Also, the use of a

green computing approach can have a number of advantages for organisations and the

general public, such as lower power bills, better performance, and a more efficient use

of space [164].

Mingay et al. [124] defines Green IT as“the optimal use of information and communica-

tion technology for managing the environmental sustainability of enterprise operations

and the supply chain, as well as that of its products, services, and resources through-

out their life cycles”.

Data Centres Energy Consumption: the large-scale computing systems are housed

in clusters and data centres. The energy consumption in data centres is not only based

on the physical nodes. According to Bermejo et al. [45], the IT equipment uses around

50% of the data centre power consumption and 25% might be consumed by cooling

systems.

Servers Energy Consumption: large-scale computing system such grids, clusters,

and cloud can contain hundreds to thousands of servers in order to process and solve a

large number of complex tasks. However, some of these servers are idle, and the others

are not fully utilised which increase the energy waste as well as CO2 emissions. Ac-

cording to Natural Resources Defense Council [67], approximately 30% of the servers

within a data centre are idle. Moreover, over half of a server’s maximum power con-

sumption can be used when it is merely running idle [63]. Additionally, as Barroso et

al. [39] argue typical data centres waste a massive amount of power by running servers

idle or at less than half capacity. Also, unused computer parts such as fans can also

waste over half the power they receive.

Network Energy Consumption: the pool of resources in large-scale computing

need a network architecture in order to communicate with each other. The network

hardware and traffic influence the energy consumption of the network within a data

centre. As Brown et al. [52] observe, approximately 5% of the average data centre’s

total power use is absorbed by the network. This can go up to 12% when servers

- 11 -

Chapter 2: Background and Related Work

are used at full load [23]. More recent research [150] explained that the network in

a typical data centre consumes about 30% of the total energy where 15% of network

energy used by access switches, 10% consumes aggregate switches, and 5% goes for

core switches.

Applications and Operating Systems Energy Consumption: the computer has

three separate subsystems which need to be assessed independently. Firstly, in order

to link the physical equipment with its software, an operating system is required.

Secondly, the software requires an appropriate runtime environment. Lastly, the end

user needs to be able to use some piece of software that performs the equipment’s

primary role [116]. An operating system is required for running software, and may be

standard software or a bespoke version created for a specific set of equipment. From

the point of view of the equipment, any resources the operating system uses which do

not contribute to the equipment’s primary role are wasted. This is especially the case

in situations such as repair or upkeep, where overheads are incurred completing tasks

which are not related to the hardware [116].

2.1.1 Energy Efficiency Mechanisms

In this section, we provide a brief overview of different energy approaches introduced

to achieve energy savings. In [21, 27, 44, 96, 116, 125, 165], the authors provide various

surveys of energy-efficient computing.

Software: The hardware designers need to think about much more than simple bat-

tery life issues, and must consider the energy efficiency of every part of a computer in

order to reduce their environmental impact and save money. Furthermore, the develop-

ment of legislation and software to manage and exploit these hardware improvements

has started to become more important, allowing the best use to be made of these

advancements.

The weak software design could lead to both performance losses and high energy

consumption. Assessing the energy usage of programs is difficult due to the instruction

order which affects the generation and compilation of code as well as energy usage [44,

85, 116, 134].

- 12 -

Chapter 2: Background and Related Work

To determine which applications or programs are keeping the CPU busy and wast-

ing energy, programming techniques such as waiting loop and active polling [93] are

introduced. Moreover, a program or application might keep the CPU busy without

performing any useful work when it is waiting for input/output (I/O). As a result,

the energy waste of the system increases. This issue is known as “wake-up the CPU”,

and the authors of [134] have presented various examples of programs and applications

that unnecessarily wake-up the CPU.

Regarding the operating system (OS), several approaches are proposed in the literature

such as Nemesis OS [130] and ECOsystem [166]. They mainly focus on enhancing

the battery-powered devices to be more energy efficient. By using them, the system

developers and operators can identify the energy as well as the quality of service (QoS)

requirements for each application. Meisner et al. [122] examined how high-power and

low-power operating states that have rapid transition times can be used for saving

energy. Their approach could save up to 74% of server energy consumption.

Koller et al. [100] introduced WattApp which is a framework that helps in predicting

application-aware energy in terms of data centres. The framework can be applied in

a virtualised heterogeneous environment. Moreover, a study by Zhang et al. [169]

showed that, based on performance variations of resources, the runtimes of similar

applications would differ and result in varying energy consumption. It is thus essential

to know that various workloads and the amount of energy they consume in order to

allocate and run them more efficiently.

Server: Dynamic voltage and frequency scaling (DVFS) is a technique used widely

to manage power by dynamically changing the processor’s clock frequency so that

power can be saved by allowing the supply voltage to reduce. Modern processors

can function at varying frequencies which involve different energy consumption and

processing speeds. Apart from processors, DVFS has also been applied to other devices

including main memory, storage, and cache memory [57]. It is, however, important

to note that as a decreased frequency can also diminish the circuit’s performance, it

is possible that DVFS can negatively impact the processor’s performance, because

of which DVFS must be applied smartly to ensure that the performance remains

high [125]. The studies by Lai et al. [104] and Wa et al. [161] demonstrate this trade-

- 13 -

Chapter 2: Background and Related Work

off.

Network: the key technology which allows components of large-scale computing sys-

tems to communicate with each other is the network. ASHRAE and Cisco provide best

practices guidelines [18, 19] for networking design that could reduce the energy con-

sumption of the network. Furthermore, a number of global plans have concentrated on

using energy efficiently in all types of network. For example, a European Commission

funded study [3], ECONET (low Energy COnsumption NETworks) aims to research

wired network technologies which can prevent power being wasted while idling. The

aim of the project is to lower the power requirements of network appliances by between

fifty and eighty percent.

Nedevschi et al. [129] proposed putting the idle network appliances in a sleep mode

which reduced their energy consumption. It also analyses how networks could benefit

from the use of Dynamic Voltage Scaling (DVS). When there is little demand being

placed on equipment, the study found that network could save up to half its energy

costs.

A study by Giroire et al. [85] examined network energy consumption and how it can be

reduced by considering this problem as an NP-hard bin-packing problem. To resolve

this, an Integer Linear Programming (ILP) formulation is suggested with the objective

function of reducing the number of network elements required for communication. ILP,

however, may not be a suitable or quick method of achieving the goal in both global

networks and large-scale data centre networks that include numerous resources, as

explained by Ferreto et al. [76].

Adaptive Link Rate (ALR) is a widely-used approach to reduce the energy consump-

tion of an Ethernet link by adapting link speed to traffic demand. Bilal et al. [47] did

a brief taxonomy on ALR. However, ALR approach could affect the performance of

the system as the packets need to be queued when the network equipment is in sleep

mode.

Applying Software-Defined Networking (SDN) provides opportunities for networks

which minimise energy consumption. The first study in this field was accomplished

by Tu et al. [154] who evaluated how controlling the SDN network’s traffic flow can

- 14 -

Chapter 2: Background and Related Work

help in minimising energy consumption. In their work, a greedy algorithm and a 0-1

integer programming model are the two methods suggested that can result in reducing

the energy cost by 30-40%.

Resource Management: resource management is used to schedule tasks, monitor

and manage physical and virtual machines in order to improve performance and reduce

energy consumption in large-scale computing systems. However, resource management

might affect the performance of the system. This problem needs to be considered when

the resource management deploys in a facility.

Scheduling: Liu et al. [111] studied the power efficiency of intensively managing data

grids on distributed systems. They created a power-efficient management simulator

called Distributed Energy-Efficient Scheduler (DEES) that provides energy savings by

incorporating scheduling jobs with data assignment approaches. Information dupli-

cation and job transferals are lowered, reducing the power drain. In [58], the author

proposed an energy efficient distributed scheduling and management algorithm for

large-scale computing systems. The algorithm does not require prior information. The

authors provided a mathematical analysis which showed the trade-off between energy

consumption and performance of the system. Juarez et al. [94] proposed a real-time

dynamic scheduling algorithm which reduced the energy consumption and makespan

of tasks in a cloud environment. Garg et al. [82] introduced five scheduling policies to

reduce the energy and CO2 emissions of HPC applications in the cloud. They used a

simulation tool to evaluate their policies, and their results showed 33% saving on en-

ergy. Beloglazov et al. [42] evaluate various energy-efficient resource allocation policies

and scheduling algorithms in the cloud computing systems. They consider the evalua-

tion of power consumption and Quality of Service (QoS) impacts, though they do not

consider HTC workloads in their evaluation. Duy et al. [71] assess the performance

of a neural networks predictor for enhancing server power utilisation in the Cloud.

They utilise predictors of future load demand predicated on historical demand. The

outcomes showed that the energy consumption can be reduced by 46.7%.

Virtualisation: De Alfonso et al. [64] deployed a virtual cluster in cloud environment

and compared the cost of physical cluster and virtual cluster. The High Performance

Computing (HPC) was deployed as virtual cluster on Amazon EC2. They construed

- 15 -

Chapter 2: Background and Related Work

the energy consumption in their comparison by applying different energy policies into

the physical cluster. They concluded that in some cases virtual cluster could be cheaper

than physical cluster. Sharma et al. [147] analysed a variety of Virtual Machines (VM).

They suggested the use of a new VM load balancing algorithm which could reduce costs

and response times. Li et al. [107] suggested the use of a VM placement algorithm

named EAGLE. This is able to lower power use by reducing the use of resources,

lowering the amount of running PMs required. EAGLE has been found to lower power

usage by up to 15%. In Section 2.2, we provide background about virtualisation and

discuss VM migration as well as the VM migration energy efficiency techniques which

are suggested in the literature.

2.1.2 Energy Efficiency Metrics

Developing recording procedures and successful enticements for the efficient use of

power in computing are important aims of the EU Code of Conduct for Data Centres

and the National Market Transformation Program. In addition, if we are to altering

the behaviour of computer operations, it is vital that we are able to calculate the

efficiency of energy transfers between equipment in order to obtain a grasp of the

types of wastefulness present in modern data centres. In the literature, many energy-

efficiency metrics are proposed in order to measure the consumed energy within a data

centre or IT infrastructure. The authors of [22, 56, 97, 145, 146, 160, 165] provide

reviews of various energy-efficiency metrics.

In order to calculate the amount of energy used by IT equipment such as network hard-

ware within data centres, the Green Grid introduced the Power Usage Effectiveness

(PUE) measurement [40]. This is shown below.

PUE =
TotalFacilityPower

ITEquipmentPower
(2.1)

Where TotalFacilityPower is the total amount of energy used by a facility (cooling,

lighting, etc.) and ITEquipmentPower is the total energy used by IT equipment

(network, servers, etc.) within the facility. When facilities are associated with low

PUE values, the facilities are considered to be energy-efficient facilities. However, the

- 16 -

Chapter 2: Background and Related Work

PUE does not measure the energy efficiency of IT equipment; it measures how much

energy is used by IT equipment compare to the energy consumed by other equipment

within a facility.

The data centre considered to be very inefficient when the value of PUE is more than

3 [40]. Uddin et al. [155] did an experiment in a small data centre which included

150 racks to conduct PUE value. The PUE value of their data centre was 3.2 which

represent a poor overall efficiency. The result of their experiment showed that 85% of

the racks were underutilised where these racks did not execute work but consumed idle

energy. Service providers can use these energy efficiency metrics as they determine the

service performance as well as identify the resource that can aid in energy efficiency

enhancement.

Furthermore, the Green Grid [40] introduced the Data Centre infrastructure Efficiency

(DCiE) which is given by the following equation:

DCiE =
1

PUE
=

ITEquipmentPower

TotalFacilityPower
(2.2)

Also, the Data Centre energy Productivity (DCeP) metric proposed by Green Grid [17]

as shown in equation 2.3. The UsefulWorkProduced can be calculated as the number of

jobs which are processed by the hardware during the assessment window. However, the

accuracy of measuring the UsefulWorkProduced might be a drawback of this metric.

DCeP =
UsefulWorkProduced

TotalFacilityEnergyConsumption
(2.3)

In order to measure the carbon of data centre operations, the Green Grid [38] proposed

Carbon Usage Effectiveness (CUE) metric, and is defined as:

CUE =
CO2 emitted(kg CO2 eq)

unit of energy(kWh)
∗ TotalDataCentreEnergy

ITEquipmentEnergy
(2.4)

Further metrics have been proposed in the literature. The Space, Watts and Perfor-

mance (SWaP) metric [12] measures the energy-efficiency of a data centre by three

parameters: performance, space, and energy. The IT energy Productivity (ITeP) [145]

measures useful IT work over IT consumed energy. The Rack Cooling Index (RCI) [87]

- 17 -

Chapter 2: Background and Related Work

is introduced to measure the effectiveness of IT equipment cooling.

2.1.3 Benchmarking

The initial industry standard was introduced in 2007 by SPECpower ssj2008 [11] and

was used as a benchmark for all others in order to assess and stipulate a method of

contrast between measured performance and measured power expenditure. This metric

signifies the combination of the performance measured at individual stages or load

levels (in ssj ops) divided by the total of the average power (in watts) at each individual

goals point including active-idle. As a benchmarking foundation standard SPECpower

utilises the current benchmark to integrate energy measurements; the foundation for

this is an enterprise Java workload. The benchmark itself instils progressive stages

of load on a given machine, usually calculating the energy usage and performance of

server hardware. The extremes of which are from active-idle (0%) and peak (100%

load at 10% progressive load levels). Lately SPEC launched SPEC VIRT SC 2013 [9],

this merges various benchmark workloads (which incorporates web server, application

server, mail server and CPU dominant workloads) in order to appraise the functions of

the servers for virtualised conditions. Additionally the use of benchmarking comprises

the measurement of power usage and power/performance associations.

The server efficiency rating tool (SERT) [8] was provided by the Standard Performance

Evaluation Corporation (SPEC). The tool measures and evaluates the energy efficiency

of servers. The tool provides a set of synthetic workloads which exercise the memory,

processor, and I/O and tests the energy efficiency of a system at various loads levels. In

[158], the authors used machine learning to predict the power consumption of servers.

They used the SERT tool to obtain the dataset of the prediction models, and their

prediction results associated with high accuracy.

2.2 Virtualisation

Virtualisation creates an abstraction layer between the hardware and operating system

(OS). Virtual Machine Monitor (VMM) or Hypervisor is a software which creates and

manages Virtual Machines (VMs) on physical machines. Each physical machine can

- 18 -

Chapter 2: Background and Related Work

have a number of VMs depending on the demand. A virtual machine that is employed

to the physical machine is capable of executing a desired operating system as well as

being isolated from the rest of the VMs on the same physical machine. Thus, other

VMs failure or malware infection that is being executed on the same physical machine

do not impact each other.

The IBM Corporation developed virtualisation in the 1960s to divide a large main-

frame computer into various logical instances. In 2000, this ability of dividing enabled

several applications and processes to operate simultaneously which also increases the

environment efficiency as well as reduces the maintenance cost [61]. Recently, there

has been increasing interest in virtualisation technology not only because of the growth

in computer performance but also because of the development of green computing and

the limitation of space in data centres. Green initiatives, in particular, are frequently

applied using virtual machine consolidation.

The following four virtualisation technology solutions are the most widely used: Kernel-

based Virtual Machine (KVM), Xen hypervisor, VMware solutions, and Microsoft

Hyper-V, are presented. Though these four solutions all support power management,

they do not coordinate VM specific calls concerning power state changes. A crucial

benefit of virtualisation is live virtual machine migration, which the majority of hy-

pervisors provide. The live virtual machine migration feature will be focused on in

this thesis.

2.2.1 Virtual machine migration

VM migration techniques substantially improve how data centres and clusters can be

managed by transferring a complete state of the VM to the destination host from

the source host. The virtualised environment provides two migration strategies: live

migration and non-live migration. Hence, VM migration includes single as well as

multiple migration. whereas single migration migrates only one VM at a time, multiple

migration migrates numerous VMs. According to the literature [24, 59, 167], the

benefits of VM migration can be listed as follows:

Power management: By switching the idle server to sleep or off mode according to

the resource demands, significant energy can be saved as the idle server consumes 50%

- 19 -

Chapter 2: Background and Related Work

of its peak power [63], as well as consolidating the running VMs to reduce the number

of active hosts which also benefits in saving energy.

Load balancing: An overloaded server could diminish the quality of service (QoS)

experienced by users. The servers that function in an underloaded state waste energy.

Live VM migration helps all data centre servers function uniformly without decreasing

QoS. Also, the load balancing ensures that a single point of failure can be avoided as

it distributes the server workload across various physical hosts in a data centre.

Fault Tolerance: To reduce the impact of hardware failures on the execution of ap-

plications and on the performance of the system, hardware failures must be anticipated

and then handled proactively by migrating the job to another host.

Hardware maintenance: This ensures that periodic maintenance helps in extending

the system’s life. VM migration can transfer the running task to another host so that

the task can continue to be serviced during system maintenance.

Resource sharing: When a task needs more hardware resources such as cache, mem-

ory, and cores, the task could be migrated to a more powerful host.

2.2.2 Live migration

The virtual machine (VM) during the live migration process continues to run on the

source physical machine as its memory pages get transferred to the target physical

machine. At some point, the VM will stop executing on the source machine and

resumes its execution on the target machine. To perform the live migration, the VM

must be installed on network-attached storage (NAS) which is accessible by physical

machines. Furthermore, the same virtual machine manager (VMM) should be installed

in both source and target machines with both machines having appropriate ports

open [139].

There are two live VM migration approaches which currently used in the data centres,

namely, post-copy live migration and pre-copy live migration. This thesis refers to

migration as the pre-copy live VM migration unless stated otherwise.

Post-copy live migration: The post-copy technique was proposed by Hines et al. [88,

89]. To initiate a post-copy VM migration process, the VM execution is suspended on

- 20 -

Chapter 2: Background and Related Work

the source server while the necessary CPU states and memory pages to resume VM

execution on the target server are transferred to the target server. The VM fetches

memory pages from the source server when it is resumed at the target server. The

remaining memory pages of the VM are then moved to the target server in on-demand

basis. Hence, this approach can take long migration time which consumes the resources

on the source as well as target servers for a longer time because of residual dependency.

Also, the post-copy live migration has some downtime initially which make the VM’s

services eventually be unavailable as well as in case of a page fault.

Pre-copy live migration: Clark et al. [60] proposed the concept of a pre-copy live

migration algorithm. This algorithm copies and transfers the memory pages of VM

from the source server to the target server. The initial phase of the pre-copy live mi-

gration algorithm is the iterative phase where the pre-copying occurs in rounds. When

the memory pages modified in a given round, the modified memory pages will be trans-

ferred again in the next round. Later, when there are relatively few uncopied pages,

the VM get suspended on the source host, and the remaining pages get transferred to

the target server as well as the CPU states termed as the stop-and-copy phase. In this

way, the VM can be migrated from machine to another with minimal downtime.

Pre-copy live migration has been widely applied in data centres today for many man-

agement operations as it does not include residual dependency between the target and

source servers. Moreover, the pre-copy approach is fault-tolerant as the source server

always includes a consistent copy of migrating VM until the target server resumes

the VM execution. As pre-copy migration does not have a residual dependency, the

migration process needs less time to finish compared to post copy migration. Also,

after migration, the source server is released when the memory pages of the VM is

completely transferred to the target computer. As a consequence, data centres tend

to use pre-copy live migration as an acceptable VM migration technique.

2.2.3 Live Migration Performance Metrics

VM live migration performance is characterised according to two time-related metrics:

downtime and migration time. The migration time is the time window between the

beginning of the migration process and the end of the migration process when the

- 21 -

Chapter 2: Background and Related Work

VM resumes at the target server. Also, there is always some downtime during the

migration process where the VM stops on the source computer and resumes in the

target computer. The migration time, as well as the downtime, negatively impacts the

performance of the application that is being executed on the migrating VM [49, 59,

159, 165].

Furthermore, based on the literature, there are three parameters which could influence

the performance of live migration: bandwidth, the memory size of VM, and the mem-

ory change rate. For a particular bandwidth, a VM which has large memory needs

more time to transfer the memory to the target server. Higher memory change rate,

which indicates how much memory is modified in a second, suggest that more mem-

ory will be needed for re-sending in the iterative phase, thus increasing the migration

time. The major factor impacting a live VM migration’s performance is the network

bandwidth. When the network speed is high, the live migration process will take a

short time to complete. Thus, an inversely proportional relationship exists between

the migration bandwidth and migration time and downtime.

In the following subsections, we present the studies that measured, evaluated and

predicted the performance of migration.

2.2.3.1 Practical Test

A study by Akoush et al. [25] has demonstrated the effect of network bandwidth on the

performance of the VM live migration. The VM memory transfer rate between source

and target servers reduces in case of the migration occurring over a low-speed link,

leading to longer migration time and downtime. A high-speed link, on the other hand,

reduces the migration time and downtime. Therefore, a longer time is needed over a

low-speed link for a larger VM which has higher memory change rate for completing

its migration, causing a significant amount of migration downtime.

Strunk et al. [151] measured the duration of VM live migration and the energy overhead

with various RAM sizes of the VM. Also, they used different network bandwidth

capacities between two servers for VM migration. They used KVM as a hypervisor

and developed their own tool to stress the memory. Their results showed that the time

of migration increases when the memory size of VM increases and the time of migration

- 22 -

Chapter 2: Background and Related Work

decreases when the network capacity increases. However, Strunk’s workload generation

method failed to represent genuine VM live migration. Through the employment of

a benchmark which produces a range of workload features, we bypass this limiting

factor.

In [62], the author shows the link between the memory size and bandwidth on the

time and energy of live migration. When the VM executes a workload, the time of

migration increase as well as the energy consumption. However, the benchmark which

used in their experiment only stresses the CPU.

Rybina et al. [142] investigated the time of VM migration that runs with multiple

running virtual machines and the impact of VM migration on the running virtual ma-

chines. They used the SPEC CPU2006 benchmark suite to generate CPU intensive

workloads. They showed that starting to migrate VMs with intensive memory work-

load first is cheaper than migration VMs with intensive CPU workload first. However,

their experiment is based on homogeneous physical hosts which we avoid in this thesis.

Another study by Salfner et al. [143] examined the impact on downtime and total

migration time of used memory size, memory size, CPU load. They found that memory

data migration performances are mainly affected by used memory size, configured

memory size, and memory dirtying rate. They examined how these factors impact

migration performances on VMware and Xen platforms. Their experiment, however,

was on homogeneous servers and the configuration of all tested VMs had only one

virtual CPU.

Hu et al. [90] assessed migration strategies by creating an automatic testing frame-

work for comparing the migration performances regarding total migration time, total

network traffic, and downtime. They focused on four hypervisors with varying param-

eters: Xen, VMware, KVM, and Hyper-V. Non-live migration, as well as storage data

migration, are considered in their framework. However, they did not consider using

different VM resource capacities in their experiment, and their evaluation results are

based on one type of VMs.

Dhanoa et al. [69] employed an experiment to measure the time and energy of live

migration. They applied KVM hypervisor to create and perform the live migration

- 23 -

Chapter 2: Background and Related Work

between two identical physical machines. They used two types of VM where the

memory size on the first VM is 1 GB and the second VM is 2 GB . The time and energy

of migration were measured when the VMs were idle, and the VMs were migrated six

times between the physical machines.

In [170], the authors evaluated the performance of non-live migrations by using varying

configurations to assess single and multiple migrations. They found that the interrup-

tion time of the services which provided by the VM is longer compared to the total

migration time due to the required time after migration for the VM to back to its

original performance.

Li et al. [106] used KVM platform to evaluate how bandwidth limit impacts migration

performance on total migration time as well as downtime and energy consumption.

They created an analytical model for formulating the link between them based on the

results of their experiments. They, however, included identical VMs with 2 GB RAM.

Further, the VM has a running workload which is randomly specified memory size and

the data which stresses it.

Bezerra et al. [46] evaluated the overheads which are caused by VM live migration

from the clients’ perspective on real as well as virtual environments. They determined

that it is possible for a client to observe the performance degradation which can occur

during the migration process.

In our experiments which are presented in Chapter 4 and 5, we use 20 different work-

loads. The benchmark that we used to generate the workloads has been not used

previously in the literature for similar context. The benchmark can generate various

workloads which stress the CPU, memory, and I/O. Also, we used nine distinct VM

hardware capacities for migration. Our VMs vary in CPU and memory capacities

which are not considered in most of the previous works. Furthermore, we used two

different network speed to obtain the results of our experiments. Table 2.1 shows

comparisons of VM live migration practical tests and illustrates that our experiments

setup employ heterogeneous servers.

- 24 -

Chapter 2: Background and Related Work

Paper
Hardware

environment
Hypervisor

type
VM
type

Workload
Network

Speed

Akoush et al. [25] Homogeneous Xen Various
SPEC CPU, SPECweb

SPECsfs
100 Mbps

1 and 10 Gbps

Strunk et al. [151] Homogeneous KVM Various
Own tool

(memory stress)
1 Gbps

Dargie et al. [62] Homogeneous KVM Various
Own tool

(CPU stress)
1 Gbps

Rybina et al. [142] Homogeneous KVM Identical SPEC CPU 1 Gbps

Salfner et al. [143] Homogeneous
VMware

Xen
Various

Own tool
(CPU, memory stress)

?

Hu et al. [90] Homogeneous
KVM, VMware
Xen, Hyper-V

Identical
Own tool

(CPU, I/O, memory stress)
1 Gbps

Dhanoa et al. [69] Homogeneous KVM Various – ?

Li et al. [106] Homogeneous KVM
Own tool

(memory stress)
Identical 1 Gbps

Alrajeh et al. [30] Heterogeneous KVM Various SPECjvm2008
100 Mbps

1 Gbps

Table 2.1: Comparisons of VM live migration practical tests

2.2.3.2 Prediction

The modelling and prediction of virtual machine migration has formed the basis for a

number of previous works. Also, the performance prediction of systems and applica-

tions involve two techniques: Analytical Modelling (AM) and Machine Learning (ML).

These techniques are used widely for several purposes such as cost prediction, elastic

scaling, faults detection, and energy consumption prediction.

In [25, 26, 68, 106, 112, 113, 163, 168, 171], the authors introduced models for predicting

the performance metrics of live migration such as migration time, downtime, and

memory pages, but none of them used machine learning for the prediction.

Analytical Modelling: For several years, AM was used as the reference technique

for performance evaluation as well as for predicting computing platforms in various

application contexts. AM incorporates the expertise regarding the systems’ or applica-

tions’ internal dynamics and encodes this knowledge into a mathematical model that

intends to capture the mapping of tunable parameters onto the performance. Gen-

erally, AM techniques require little to no training for conducting the predictions in

the concerned scenario. However, some AMs tend to be dependent on assumptions

regarding the behaviour of the modelled system and its workload. Thus, in situations

where the assumptions do not match, their accuracy can be affected [70].

Nathan et al. [128] developed performance prediction models for page-skipping optimi-

sation. Their model considers the pre-copy migration, and it is based on two factors.

- 25 -

Chapter 2: Background and Related Work

The first involved the number of unique pages which need to be transferred in each

iteration. The second involved the total of skipped pages for each iteration.

Aldhalaan et al. [26] developed multiple analytic models that can help in predicting

migration performance, such as downtime, total network traffic, and network utilisa-

tion. For this, they considered three cases: pages being copied during the pre-copy

phase, pages copied only during the VM’s downtime, and the rate of dirty pages.

Salfner et al. [144] created models for predicting live VM migration’s worst-case per-

formances. These models focused on workload feature as well as host behaviour. The

models determined that memory access pattern is the factor which influences the down-

time and total migration time. They evaluated the models with real as well as artificial

workloads on various virtualisation platforms, such as KVM, VMware, and Xen.

Akoush et al. [25] developed predictive models of live migration performance based on

experimentation with a number of SPEC benchmarks, and observed that network link

speed exists as the most dominant factor in migration performance.

Machine Learning: The Machine Learning (ML) modelling does not require any

knowledge regarding the internal behaviour of the target system or application. In

particular, ML approaches are based on observing the behaviour of the system in vari-

ous settings for determining a statistical behavioural model without any understanding

of the internal operations of the system. Though in the past few years, ML techniques

have become increasingly widely used to predict the performance of complicated sys-

tems. However, a significant limitation of this technique is the accuracy which is

primarily based on the representativeness of the dataset that is employed in the train-

ing phase. It should be noted that the prediction models which their features are not

explored adequately during the training process tend to present low accuracy [70].

Machine learning approaches have been used operationally to inform various resource

scheduling decisions within large-scale computing systems [118]. Uriarte et al. [156]

apply a Random Forest method to service clustering in autonomic cloud environments.

Further, machine learning was used for the first time in [81] for predicting the PUE of

a data centre for which they used 200,000 training samples from Google data centres

during two years. They used the neural network to build the prediction model by

- 26 -

Chapter 2: Background and Related Work

using 19 features.

In [135], the authors used machine learning algorithms to anticipate how many memory

pages get dirtied during ongoing iterations. In particular, they performed a time series

prediction by applying a historical analysis of past data which concerns dirty memory

pages.

Jo et al. [91] applied three machine learning techniques, namely, linear regression,

support vector regression (SVR) with bootstrap aggregation, and SVR with non-linear

kernels. They predicted six metrics of live migration: total amount of data transferred,

total VM migration time, VM downtime, CPU and memory usage on the physical

hosts, and performance degradation of the VM. It should be noted, however, that

these features and the collected dataset may not be applicable for complex data centre

environments which have a heterogeneous physical machine.

In thesis, in order to understand what factors influence live migration, we investigate

three machine learning models to predict successful live migration using different train-

ing and evaluation sets drawn from our experimental data. In our work, we present

the process of creating a Stochastic Gradient Boosted (SGB), Random Forest (RF)

and Bagged Tree (BT) models from the results of the experiment in order to predict

the time of migration, unlike the existing literature where the process of creating the

prediction models are not shown. Also, we used various training and evaluation sets

to create and test our models, unlike the work of the existing literature where they

used one training set and evaluation set to create and test their models.

2.2.4 Virtual Machine Consolidation

In large-scale computing systems, the VMs are allocated across many physical ma-

chines, and some of these physical machines are not fully utilised. Virtual machine

consolidation aims to lower the number of running physical machines by reallocat-

ing and merging VMs into a smaller number of physical machines. The idle physical

machines will be switched to a sleep mode or switched off which reduces the energy

consumption of the data centre. However, VM consolidation can impact the perfor-

mance of the VMs when the physical machine is over-utilised. The trade-off between

- 27 -

Chapter 2: Background and Related Work

performance and energy needs to be considered when the VM consolidation is applied.

Also, the cost of live migration is not considered in most of VM live migration models.

In some cases, the energy consumption of VM live migration can be higher compared

to keeping the VM running in its current physical machine. It is important to know

the parameters that influence the cost of migration before starting the migration of

VMs to ensure the most significant discussion on saving energy.

As part of an attempt to lower energy usage and service-level agreement (SLA) viola-

tions, a number of papers in the literature have proposed dynamic VM consolidation

approaches [35, 43, 95, 162]. Basically, the approaches migrate the VMs from under-

utilised servers and switch them into a sleep mode.

Beloglazov et al. [43] formulated algorithms and policies linked to live migration

and dynamic VM consolidation. The researchers drew on CloudSim instruments to

facilitate the assessment of their approaches. Initially, to carry out the reallocation

of the VMs, the physical machines were categorised into the following two groups:

overload and underload machines. Following this, three distinct VM selection policies

were employed to determine the VM which needs to be transferred from the present

to the novel host. Although useful insights were gathered from their experiment, it

should be noted that the researchers’ method was not appropriate to ensure that the

VM live migration costs were lower than the advantages gained.

Feller et al. [74] used the multi-dimensional bin-packing (MDBP) problem to solve the

workload consolidation difficulty. Also, they designed a novel nature-inspired work-

load consolidation algorithm based on the Ant Colony Optimisation algorithm (ACO)

for energy-efficient cloud computing. Their aim is to reduce the number of physical

machines that are used to compute the current workload. The authors developed a

simulator based on Java in order to evaluate their approach due to limitations of the

CloudSim tool by comparing ACO with First-Fit Decreasing algorithm (FFD). The

simulation results demonstrated that ACO saved much more energy than FFD.

In [131], the authors introduced a VM consolidation algorithm with multiple usage

prediction (VMCUP-M). The algorithm aims to reduce the number of migrations, the

number of running servers, and the servers’ energy consumption. They used real and

synthetic workloads to evaluate their approach by simulation, and their approach does

- 28 -

Chapter 2: Background and Related Work

not violate the SLA.

Teng et al. [153], investigated the energy problem of virtual clusters on physical servers.

They suggested two processes for batch-oriented consolidation and online placement.

Their algorithm selects the most efficient frequency CPU. They evaluated their ap-

proach on Hadoop testbed.

2.3 Simulation Tools

The simulation of Grid and Cluster level has formed the basis for many previous works

such as SimGrid [105], GridSim [53], OptorSim [41], SiCoGrid [123], and Chi-Sim [48].

These tools assist researchers in understanding the parallel and distributed systems

and evaluate new policies of managing tasks in HTC. In addition, Cloud simulators

such as CloudSim [55], GreenCloud [98], iCanCloud [132], and MDCSim [108] can

determine the trade-off between performance and cost as well as energy. Though,

unlike our extension to HTC-Sim [78], the tools as mentioned above might not be

ready to evaluate VM migration techniques and policies for the purpose of reducing

energy waste in HTC environment. Also, our simulation is unique in its capability

to model live migration in multi-use clusters with interactive users besides using real-

world workload traces.

MDCSim [108] is a data centre simulator, which can provide information about the

energy consumption of data centres. The simulator has three configuration layers (a

kernel layer, a user-level layer, and a communication layer) for modelling different

characteristic of data centres.

Calheiros et al. [55] developed a CloudSim framework that can help to model and

simulate cloud environments. The CloudSim framework provides many features and

one of them is simulating and modelling the energy-aware datacentre. CloudSim is

a generic tool that can be used to model and simulate varying energy policies and

mechanisms. However, CloudSim does not support modelling of multi-use clusters

with interactive user’s workloads.

iCanCloud [132] simulates cloud computing systems based on the Amazon Elastic

Compute Cloud (EC2), despite its creators stating that the application programming

- 29 -

Chapter 2: Background and Related Work

interface (API) of iCanCloud can be extended to simulate other environments. The

simulation is mainly used to predict the trade-off which exists between the cost and

the performance of an application that runs in a particular hardware.

SimGrid [105] is a simulation framework to simulate scheduling algorithms in a dis-

tributed environment. It was initially developed to simulate grid computing. lately,

it is extended to support various cloud computing use cases such as multi-purpose

network representation as well as virtualisation.

Kliazovich et al. [98] explore the energy-aware cloud computing data centres through

simulation, modelling the energy consumption of all data centre components including

servers, switches, and links. The simulation results showed that 66% of server energy

consumption was by idle servers, and networking accounted for 30% of total energy

consumption.

Table 2.2 represents that the simulation framework HTC-Sim is novel to model multi-

use cluster with the presence of interactive users. Furthermore, HTC-Sim is one of

the only very few simulations which simulate live migration, real workloads and fault

tolerance mechanisms.

Energy Model
Multi-use

Interactive users
Fault tolerance
Checkpointing

Language Virtualisation Live Migration

SimGrid [105] X – – C X X
GridSim [53] – – – Java X –
OptorSim [41] – – X Java – –
SiCoGrid [123] – – – Haskell – –
Chi-Sim [48] – – – C++ – –
CloudSim [55] X – – Java X X
GreenCloud [98] X – – C++/OTcl X ?
iCanCloud [132] X – – C++ X ?
MDCSim [108] X – X C++/Java – –
HTC-Sim [29] X X X Java X X

Table 2.2: Comparison of simulators

The authors of [54, 77, 115] provide reviews on simulation frameworks for cloud envi-

ronments.

2.3.1 HTC-Sim

High Throughput Computing (HTC) is powerful for a large number of jobs with a

long period of execution time, where jobs can be executed over a distributed set of

- 30 -

Chapter 2: Background and Related Work

computers. HTC systems such as HTCondor [110], BOINC [34], and SGE [83] are pop-

ular choices for academic as well as industry researchers, to do complex computational

tasks on existing, idle, shared facility (desktop grid) or dedicated resources.

HTCondor [110] is an open source high throughput computing software which provides

workload management system technology for grid computing jobs. HTCondor has a

job queuing mechanism, scheduling policy, priority scheme, resource monitoring, and

resource management. HTCondor chooses where and when to start running the jobs

that are submitted by users dependent upon its policy. CycleServer and CycleCloud [2]

are software tools provided by Cycle Computing, and are used for managing and

accessing cloud resources. CycleServer manages and monitors the jobs in HTCondor,

while CycleCloud provides access to the resources though web services such as Amazon

EC2. These tools have been used at large-scale to provide a huge number of instances

from a public cloud provider, which can reduce the time of running and the cost.

Forshaw et al. [78] introduced a high-level, trace-driven, simulation to evaluate the en-

ergy consumption and performance of different policies of high throughput computing

(HTC) systems. The simulation tool can be used to evaluate new policies and to find

the impact of these policies on the infrastructure itself. The tool and the results of

the paper are based on the Newcastle University’s HTCondor logs. The simulation

framework, however, is generalisable to other HTC systems.

In [79], the authors extended the simulation to add checkpointing as a fault-tolerance

mechanism. They provided checkpoint policies for determining the interval between

the checkpoint in order to reduce energy consumption and overhead of the system.

McGough et al. [120] presented some policies which can be applied to multi-use clusters

in order to reduce the energy consumption in HTC environments. The policies are

evaluated by HTC-Sim, and are shown to be capable of savings up to 55% of the

energy consumption of the high throughput system.

McGough et al. [121] used HTC-Sim to run an entire cluster on the Cloud with trace

logs from the Newcastle University HTCondor system. They proposed policies gov-

erning the scheduling of HTC jobs to Cloud instances, aiming to reduce cost and

overheads. However, their approach did not consider the energy impact of these poli-

- 31 -

Chapter 2: Background and Related Work

cies on the Cloud provider. In Chapter 3, we evaluated the energy and performance

impact of these scheduling policies by extending the simulator to model energy con-

sumption. We then compared the energy consumption of the same workload on servers

whose performance and energy consumption characteristics differ.

In [119] the authors used two different machine learning approaches, namely Random

Forest and MultiLayer Perceptron, to predict the idle time of computers within a HTC

environment. The prediction helped them to develop a scheduler that allocates jobs

to computers which associated with the longest idle time. They used the HTC-Sim

simulator to show that their approach can save up to 51.4% of the HTC system energy

consumption. However, their approach does not work as a mechanism to handle job

failures due to user interruptions.

In Chapter 6, we extend the HTC-Sim simulation to incorporate virtualisation. More-

over, we perform the pre-copy live migration algorithm to provide a test environment

for job live migration in HTC system. We explained and evaluated our interval and

responsive migration methods. We used a simple random policy to show the outcomes

of each migration technique. In Chapter 7, we use the responses migration technique

as a fault-tolerance mechanism with various migration policies.

2.4 Fault-tolerance

Fault-tolerance approaches are widely used in large-scale computing to prevent or

handle hardware failures and software faults. From the literature, the fault tolerance

mechanisms can be categorised as follows:

Reactive fault-tolerance: this mechanism occurs after the event of failure to miti-

gate the influence of the failure in the system. In this technique, the system frequently

saves its state and uses it as a recovery to handle the failures. For instance, check-

pointing is a well-known technique of reactive fault-tolerance.

Proactive fault-tolerance: this mechanism occurs before the event of failure to pre-

vent system fails. The system needs to predict the failures by continuously monitoring.

For instance, migration is a well-known technique of proactive fault-tolerance.

- 32 -

Chapter 2: Background and Related Work

Paper
Fault-tolerance

Category
Technique Name Environment Objective

Forshawet et al. [79] Reactive Checkpointing HTC Energy, Overhead
Aupy et al. [36] Reactive Checkpointing HTC Energy

Amoon et al. [33] Reactive Checkpointing, Replication Cloud Cost, Overhead, Availability
Nagarajan et al. [127] Proactive Migration HPC Overhead

Liu et al. [114] Proactive Migration Cloud Overhead, Network, Makespan
Engelmann et al. [72] Proactive Migration HPC Utilisation

Polze et al. [137] Proactive Migration HPC Response time, Availability

Responsive Migration Responsive Migration HTC
Energy, Overhead, Makespan,

Utilisation

Table 2.3: Overview of fault-tolerance techniques in large-scale computing

Table 2.3 summarises some fault-tolerance from the literature. We classify them by

fault-tolerance category, the name of the technique, the environment which technique

is applied, and the optimisation objective.

Checkpointing is a well-known approach to achieve reactive fault tolerance by regularly

storing snapshots of application state into storage. Aupy et al. [36] proposed energy-

aware checkpointing strategies for divisible tasks. They showed how to decide the

number of chunks, their size and execution speed.

Amoon et al. [33] presented an adaptive fault-tolerance framework based on check-

pointing and replication for cloud systems to enhance the performance of overheads,

cost, and availability. Their framework selects the optimal fault-tolerance technique

based on the customer’s requirements. When there is more than one VM to carry out

the customer’s request, the framework applies replication as a fault-tolerance tech-

nique. The number of replications for each VM is based on the failure probability

and the gained profit. Also, the checkpointing is applied when there is a single VM

to handle the consumer request. The checkpointing interval is based on the failure

probability of the VM.

Forshaw et al. [79] used a high-level, trace-driven, simulation to evaluate the energy

consumption and performance of various checkpointing strategies in high throughput

computing (HTC) systems. Thier checkpointing strategies help to decide when to make

energy-efficient checkpoints within HTC systems without affecting the performance.

In this thesis, we avoid checkpointing strategies and use VM migration strategies to

avoid job failures.

Proactive migration is a well-known approach that has been used in virtualised envi-

- 33 -

Chapter 2: Background and Related Work

ronments to prevent failures from impacting the performance of the system [72, 114,

127, 137]. To achieve this, the system monitors its nodes and predicts the nodes that

are about to fail to migrate the tasks from them to other stable nodes. Nagarajan et

al. [127] used an experiment for performing VM live migration as a proactive fault tol-

erance to migrate the task from unhealthy node to a healthy node in high-performance

computing (HPC) environments. They used Xen hypervisor to create and migrate the

VMs. Also, an Intelligent Platform Management Interface (IPMI) is used to monitor

and manage the hardware. Their approach monitors the health state and checks for

threshold violations. When the threshold violation is detected, they migrate the VM

to another healthy node. Instead of doing a live experiment, here, we use a simula-

tion tool to demonstrate the benefit of live migration in the event of user interruption

failure.

Liu et al. [114] introduced a proactive coordinated fault-tolerance (PCFT) mechanism

to predict a deteriorating physical machine. They monitor the CPU temperature in

order to predict the deteriorating physical machine. Their approach automatically

finds an optimal target machine to migrate the VM from the deteriorating machine

which improves the overall performance of the system.

In Chapter 6 and 7, we present a responsive fault-tolerance mechanism. The mecha-

nism occurs at the time of interactive user interruption in HTC systems to prevent the

job from been evicted and restarted. Unlike the reactive fault-tolerance, the respon-

sive fault-tolerance is ideal for short running and real-time tasks. Also, our method

does not require saving images of the job states which reduce the system overhead and

the responsive time of handling the fault. Furthermore, proactive fault-tolerance is

based on the accuracy of the prediction. The system could fail to handle some faults

which decrease the overall performance of the system. Further, the system might make

unnecessary decision to prevent the faults. Our methods could mitigate the disadvan-

tages of reactive and proactive fault-tolerance mechanisms when they used to handle

interactive user interruptions in HTC systems.

- 34 -

3
Energy consumption of

scheduling policies for HTC jobs
in the Cloud

Contents
3.1 Introduction . 36

3.2 Policy . 37

3.3 Simulation Environment . 39

3.3.1 Resource Model . 39

3.3.2 Metrics . 40

3.3.3 Simulation Scenario . 41

3.4 Results . 42

3.4.1 Limiting the number of cloud instances 42

3.4.2 Merging of different users’ jobs 44

3.4.3 Instance keep-alive . 45

3.4.4 Delaying the start of instances 48

3.5 Conclusions . 48

- 35 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

Summary

This chapter presents the extension of an existing cloud simulation system to incorpo-

rate energy measurement and evaluate the energy and performance impact of existing

policies for scheduling HTC jobs to cloud resources. We demonstrate, through trace-

driven simulation, the trade-off between energy consumption and system performance

for a number of HTC scheduling policies. Furthermore, we incorporate the energy im-

pact of networking infrastructure into our model of total facility energy consumption.

3.1 Introduction

High Throughput Computing (HTC) systems are a popular choices in organisations,

frequently employed to leverage existing, idle, infrastructure to perform computation

in an ‘cycle stealing’ fashion. Latterly, these same approaches are increasingly used

to meet peak requirements for computation by leveraging the scale offered by Cloud

Computing [2] which could not otherwise be satisfied using local infrastructure alone.

Thus, it is very important that data centres improve the efficiency with which they use

their power and a great deal of innovation has taken place to this end. For instance,

cloud computing takes advantage of allocation and migration policies in order to pro-

mote the use of physical resources, and can change the amount of computing power

allocated to users in line with their needs.

Existing research has considered the use of the Cloud in this context to meet excep-

tional capacity which cannot be met on local infrastructures [65, 117, 157], and also

for running full workloads [66]. However, this is often without consideration for the

energy consumption incurred by the cloud provider.

In this chapter, we build on previous work to evaluate the energy and performance

impact of scheduling policies for HTC workloads to cloud resources. We employ the

HTC-Sim simulation provided in [121], extending it to model energy consumption

such that we may evaluate the energy impact of policies governing the scheduling

of HTC jobs to cloud instances. Then, we compare the energy consumption of the

same workload on servers whose performance and energy consumption characteristics

- 36 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

differ. In addition, we evaluate policies using trace data obtained from a University

HTCondor high throughput cluster.

The rest of the chapter is structured as follows. Section 3.2 presents the policies we

evaluate through this work. Section 3.3 discusses our adaptations made to HTC-Sim

simulation environment, and our approached of calculating the energy utilisation. We

present and evaluate the results of our preliminary experimentation in Section 3.4,

before concluding and discussing future work in Section 3.5.

3.2 Policy

McGough et al [121] have previously proposed policies governing the scheduling of

HTC jobs to cloud instances, aiming to reduce cost and overheads. In this chapter,

we seek to quantify the energy impact of these policies on the cloud provider. The

policies we investigate in this chapter are detailed below.

P1: limiting the maximum number of cloud instances: this policy seeks to

limit the potential cost on the cloud by imposing a maximum number of instances

which can be active at a given time. If this limit has been reached, any arriving jobs

will be queued until a resource becomes available. This policy seeks to reduce cloud

cost and cloud idle time, at the expense of increased overheads for jobs submitted

during busy periods.

P2: merging of different users’ jobs: for reasons of security, an individual Cloud

instance is adept at performing a single job at any given time. Limits can be placed on

an instance to consent to take jobs from only a single individual user, which the user

that the instance was created for, or conversely enable the instance to agree to take

all jobs from any user. Enabling users to share the cloud instances can lower costs as

a lower amount of instances will be needed thus lowering overheads as jobs would be

prone to detect idle instances which can be exploited. In policy P2, they relax this

assumption and allow HTC jobs from multiple users to execute on the same running

instance. This should reduce overheads, cost and energy consumption.

P3: instance keep-alive: in [84], the authors showed that initialising an instance

can take up to 3 minutes. This policy enables an idle instance at the end of the billing

- 37 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

stage to stay ‘hired’ for the next stage with probability f(p), allowing it to serve the

latest next in line jobs more efficiently. It is problematic to predict the arrival of

subsequent jobs; consequently there are three alternative policies that can determine

if an instance needs to be kept alive and define f(p) for each:

Fixed: instances will be kept alive with probability f(p)=p.

Idle: instances will be kept alive with a probability proportional to the number of

currently idle instances: f(p) = (1−i
t

)p, where i is the number of idle cloud

instances at decision time and t is the total number of cloud instance at this

time.

Load: instances will be kept alive with a probability proportional to the current load

on the system:

f(p) =
∫ t
t−T uidi∫ t
t−T aidi

p

Where t is the decision time, T is the interval of load evaluation , ui the quantity

of active cloud instances at time i, ai is the number of hired cloud instances at

time i, and di is the differential of the variable i.

Such a policy could have additional ramifications on overheads, and as such a com-

mencing job would have an increased chance of arriving to an idle instance. The

number of instance hours consumed is expected to increase due to some instances

running in the absence of jobs.

P4: delaying the start of instances: this policy, seeks to minimise idle time arising

as a consequence of short running jobs using only partial hours on cloud instances.

Under this policy, jobs which arrive to the system which cannot be allocated to an

idle instance are queued. If the jobs do not receive an instance within t minutes of

submission, a new instance is then created. The policy should incur overheads but

reduce cloud cost and energy consumption.

- 38 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

3.3 Simulation Environment

In this chapter, we use the HTC-Sim simulation [78] to evaluate the performance of

job management policies of HTC jobs to cloud instances. We extend the existing simu-

lation environment to evaluate the energy consumption of these policies. Section 3.3.1

discusses changes to the cloud resource model and Section 3.3.2 discuss metrics consid-

ered in the remainder of the chapter. Section 3.3.3 describes the scenario we simulate

in the remainder of this chapter.

3.3.1 Resource Model

We extend the resource model of the existing simulation framework to include energy

consumption and performance figures, as described below.

3.3.1.1 Energy consumption:

We select readily available metrics from the SPECpower benchmark to obtain energy

consumption values for servers in idle, booting and working modes. These may be

then multiplied by the amount of time spent in each mode in order to calculate total

energy consumption of the system under a given policy. Here, we assumed the load

level for booting and working jobs is 100%.

3.3.1.2 Performance scaling:

Based on performance measures provided by the SPECpower benchmark for each

server, we are able to scale the execution time of our workload to more closely model

the performance observable if the workload were run on that hardware. In doing so we

assume the SPECpower benchmark to be representative of the original HTC workload.

We scale the duration of jobs in our workload as follows:

D′
s
j = Dj ×

Pb

Ps

(3.1)

- 39 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

where Pb is the baseline server performance, Ps is the performance of one of the other

selected servers and Dj is the job duration which is the start time job minus end time

job.

3.3.2 Metrics

Here, we outline a number of key metrics reported by the simulation, which are sub-

sequently used in Section 3.4 to evaluate the policies outlined in Section 3.2.

3.3.2.1 Overhead

Our main performance metric is average overhead for jobs within the system, which is

calculated as the difference between the execution time of the job D′sj and the amount

of time the job took to run in the simulation. The job will first face an idle period

before it is allocated to a cloud instance. The idle period could be due to time waiting

for a cloud instance to become available or policy decisions within the system. Hence,

we cannot consider using the ratio of the overhead as it may lead to divide by zero

error condition.

3.3.2.2 Cloud hours

We report the number of ‘instance hours’ arising from each policy under investigation.

This chapter focuses primarily on provider-side so we do not provide financial cost to

users; however, this may be trivially calculated by multiplying the number of instance

hours by the hourly price.

3.3.2.3 Infrastructure Energy Consumption

We further extend the simulation to make use of the industry-standard Power Usage

Effectiveness (PUE) metrics [40] to calculate the total facility power. The PUE metric

provides a ratio of energy consumption attributed to computing equipment compared

to the infrastructure required to support it, including cooling and air conditioning.

Equation 2.1 which is previously discussed in Section 2.1.2 defines the PUE metric.

- 40 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

We go further to incorporate the energy impact of networking infrastructure into our

model of total facility energy consumption. While other efforts [98] have performed

detailed analysis of the networking available in data centre environments, we chose to

leverage an observation by Brown et al [52] that approximately 5% of the average data

centre’s total power use is absorbed by the network. We included this supposition into

our simulation to acquire an estimation of the total facility power.

3.3.3 Simulation Scenario

We evaluate the scheduling policies which discussed in Section 3.2 using historical logs

for 409,479 completed jobs from the HTCondor cluster located at Newcastle University,

to calculate the energy consumption by applying varying job management policies of

HTC jobs to cloud instances.

No Server Name Cores
Peak

Power (W)
Idle

Power (W)
ssj ops

Scaling
ratio

Test
Date

1 PRIMERGY RX2560 M1 36 267 40.1 3,256,040 3.66 Mar-15
2 Express5800/A1080a-E 64 1749 993 3,647,000 4.10 Dec-10
3 ProLiant DL385 G7 48 271 101 888,819 1.00 Mar-10
4 PRIMERGY TX150 S7 4 112 24.3 276,514 0.31 Jan-10
5 Proliant DL580 G5 16 387 271 359,523 0.40 Dec-07

Table 3.1: Selected server from SPECpower ssj 2008 published [1]

Table 3.1 shows the server types which we consider in this chapter. We select Server

3 (‘ProLiant DL385 G7’) to represent the baseline server against which task duration

is scaled as in Equation 3.1. Server 3 was selected as the original HTCondor dataset

originates from 2010, and the chosen server exhibits close to average peak power and

performance characteristics from all published SPECpower results in 2010, as shown

in Figure 3.1. The remaining servers were selected to offer a variety of performance

and power characteristics, with this diversity of machines helping us indicate which

policy is the best fit for the server based on its performance and energy consumption.

In addition, the scaling ratio (Pb

Ps
) is used to scale the duration of jobs in our workload

as previously mentioned in Section 3.3.1.2, where Pb is the baseline server performance

(ssj ops) and Ps is the performance (ssj ops) of one of the other selected servers.

- 41 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

Peak energy consumption (W)
 10 100 1000 10000

P
e
a
k
 p

e
rf

o
rm

a
n
c
e
 (

s
s
j_

o
p
s
)

0.1

 1

 10

100

← Server 3 - ProLiant DL385 G7

Figure 3.1: Performance to power ratio of SPECpower servers results in 2010

3.4 Results

In this section, we present the results of our simulation, and explore the performance

and energy impacts of the policies outlined in Section 3.2.

3.4.1 Limiting the number of cloud instances

Figure 3.2 shows the impact of varying the maximum number of cloud instances.

We see significant reductions in average overheads through increasing the instance

count. The impact of the different performance levels of the servers is evident in these

policies, with overheads much lower for servers such as 1 and 2 which exhibit better

performance, and greater overheads observed for slower servers.

When considering the number of instance hours (hence cost incurred), we see for each

of the computers that by 150 for higher performance servers, and by 300 instances for

slower servers, the number of instance hours consumed plateaus and does not increase

much further. Similar trends are evident when considering the energy consumption,

with the exception of servers 4 and 5, which see an initially high energy consumption

for lower number of instances, due to their substantially lower performance than the

other benchmark servers.

- 42 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

Maximum number of Cloud instances
0 500 1000 1500 2000

A
v
e
ra

g
e
 o

v
e
rh

e
a
d
 (

s
e
c
o
n
d
s
)

10
0

10
2

10
4

10
6

10
8

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

N
u
m

b
e
r

o
f
in

s
ta

n
c
e
 h

o
u
rs

 50000

100000

150000

200000

250000

300000

350000

400000

450000

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

M
W

h
)

 1

 10

100

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

A
v
e
ra

g
e
 o

v
e
rh

e
a
d
 (

s
e
c
o
n
d
s
)

10
0

10
2

10
4

10
6

10
8

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

N
u
m

b
e
r

o
f
in

s
ta

n
c
e
 h

o
u
rs

 50000

100000

150000

200000

250000

300000

350000

400000

450000

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

M
W

h
)

 1

 10

100

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

A
v
e
ra

g
e
 o

v
e
rh

e
a
d
 (

s
e
c
o
n
d
s
)

10
0

10
2

10
4

10
6

10
8

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

N
u
m

b
e
r

o
f
in

s
ta

n
c
e
 h

o
u
rs

 50000

100000

150000

200000

250000

300000

350000

400000

450000

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

M
W

h
)

 1

 10

100

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Figure 3.2: Impact of policy P1 on average overhead, number of instance hours, and
energy consumption.

- 43 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

3.4.2 Merging of different users’ jobs

Maximum number of Cloud instances
0 500 1000 1500 2000

A
ve

ra
ge

 o
ve

rh
ea

d
di

ffe
re

nc
e

(%
)

-80

-60

-40

-20

 0

 20

 40

 60
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

In
st

an
ce

 h
ou

rs
 d

iff
er

en
ce

 (
%

)

-2.5

 -2

-1.5

 -1

-0.5

 0
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000E

ne
rg

y
co

ns
um

pt
io

n
di

ffe
re

nc
e

(%
)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

A
ve

ra
ge

 o
ve

rh
ea

d
di

ffe
re

nc
e

(%
)

-80

-60

-40

-20

 0

 20

 40

 60
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

In
st

an
ce

 h
ou

rs
 d

iff
er

en
ce

 (
%

)

-2.5

 -2

-1.5

 -1

-0.5

 0
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000E

ne
rg

y
co

ns
um

pt
io

n
di

ffe
re

nc
e

(%
)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

A
ve

ra
ge

 o
ve

rh
ea

d
di

ffe
re

nc
e

(%
)

-80

-60

-40

-20

 0

 20

 40

 60
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000

In
st

an
ce

 h
ou

rs
 d

iff
er

en
ce

 (
%

)

-2.5

 -2

-1.5

 -1

-0.5

 0
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum number of Cloud instances
0 500 1000 1500 2000E

ne
rg

y
co

ns
um

pt
io

n
di

ffe
re

nc
e

(%
)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Figure 3.3: Impact of policy P2 on average overhead, number of instance hours, and
energy consumption.

- 44 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

In Figure 3.3, we demonstrate the gains possible by merging workloads from multiple

users, for policy P1 varying the maximum number of cloud instances. We see the

merging of workloads leads to reduced average overheads, with jobs more likely to

enter the system to find an available idle instance.

We acknowledge significant variability for this policy due to random effects in the

simulation. In the simulation, the jobs and computers are selected randomly. For that

reason, we can see high variation in some of this policy results when we compare them

with the previous policy results.

As the maximum number of cloud instances increasing the average overheads tends

towards zero. We see policy P2 is capable of modest reduction of the number of

cloud hours required. Similarly, we observe general trends that policy P2 is capable

of reducing energy consumption. Both the difference in number of instance hours

and difference in energy efficiency will tend to zero as the number of cloud instances

increases.

3.4.3 Instance keep-alive

In Figure 3.4, we explore the impact of policy P3, which governs whether instances

are to be kept-alive and remain active during a subsequent billing period to serve jobs

arriving jobs. Here, we show results for our baseline server (ProLiant DL385 G7) and

a maximum instance count of 500. These results are representative of those for the

other servers we consider.

Our results acknowledge this policy reduced average overheads significantly only un-

der the assumption that cloud instances take 10 minutes to provision, with benefits

minimal for smaller provisioning durations. Also, the results confirm the authors’

observation of this policy in [121], and we further demonstrate the policy leads to

increased energy consumption.

Figure 3.5 demonstrates the relative impact of the three variants of policy P3. The

‘Fixed’ policy clearly offers the most compelling overhead reductions but at the expense

of the number of instance hours (and hence cost) consumed, and also has the most

detrimental impact on the energy consumption of the system.

- 45 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 o
ve

rh
ea

d
(s

ec
on

ds
)

0

50

100

150

200 Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 in

st
an

ce
 h

ou
rs

28500

29000

29500

30000

30500

31000
Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

E
ne

rg
y

co
ns

um
pt

io
n

(M
W

h)

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8
Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
g

e
 o

ve
rh

e
a

d
 (

se
co

n
d

s)

0

50

100

150

200 Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

in
st

a
n

ce
 h

o
u

rs

28500

29000

29500

30000

30500

31000
Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

E
n

e
rg

y
co

n
su

m
p

tio
n

 (
M

W
h

)

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8
Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 o
ve

rh
ea

d
(s

ec
on

ds
)

0

50

100

150

200 Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 in

st
an

ce
 h

ou
rs

28500

29000

29500

30000

30500

31000
Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

E
ne

rg
y

co
ns

um
pt

io
n

(M
W

h)

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8
Boot time = 0 mins
Boot time = 2 mins
Boot time = 4 mins
Boot time = 6 mins
Boot time = 8 mins
Boot time = 10 mins

Figure 3.4: Impact of policy P3 on average overhead, number of instance hours, and
energy consumption. Varying chance of keep-alive and boot time for Server 3.

- 46 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

A
v
e

ra
g

e
 o

v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
)

140

150

160

170

180

190

200

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

 h
o

u
rs

30000

30500

31000

31500

32000

32500

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
W

h
)

8

8.5

9

9.5

10

10.5

11

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

A
v
e

ra
g

e
 o

v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
)

140

150

160

170

180

190

200

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

 h
o

u
rs

30000

30500

31000

31500

32000

32500

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
W

h
)

8

8.5

9

9.5

10

10.5

11

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

A
v
e

ra
g

e
 o

v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
)

140

150

160

170

180

190

200

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

 h
o

u
rs

30000

30500

31000

31500

32000

32500

Percentage chance of keep-alive
0 0.1 0.2 0.3 0.4 0.5

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
W

h
)

8

8.5

9

9.5

10

10.5

11

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Computer 3, Fixed
Computer 3, Idle
Computer 3, Load

Figure 3.5: Impact of policy P3 on average overhead, number of instance hours, and
energy consumption. Varying chance of keep-alive for a boot time of ten minutes.

- 47 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

The ‘Idle’ policy is the most promising policy, in that is is capable of reducing average

overheads while incurring the least negative impact on the other metrics we consider.

The ‘Load’ policy is shown to perform better in terms of overhead reduction, but at

the expense of instance hours used and energy consumption.

3.4.4 Delaying the start of instances

Figure 3.6 demonstrates the impact of policy P4 on average overhead, number of cloud

hours consumed and energy consumption. The policy seeks to reduce the negative

impact of short-running jobs on the system, which would otherwise occupy only partial

hours on a resource. By delaying the creation of a cloud instance, it is hoped that

subsequent jobs will arrive and be able to make use of idle time on the hired cloud

resource.

We demonstrate results here with a maximum cloud instance limit of 500, and vary

the maximum job delay between zero and thirty minutes. We demonstrate that as

expected, this policy results in a detrimental on average overheads, but leads to re-

ductions in the number of instance hours consumed and hence energy consumption.

There is clearly a trade-off between overheads incurred for the HTC workload and

cost/energy consumption which must be reconciled.

Focusing on the impact on energy consumption, we see for each of the computers

considered, imposing a maximum job delay of 30 minutes results in reductions of over

50%, but in exchange for an intolerable increase in task overheads. Imposing a delay

of up to 5 minutes would reduce energy consumption by 20% in exchange for slightly

less than a doubling in average overhead, which would appear more acceptable.

3.5 Conclusions

This chapter has evaluated the energy consumption of a number of policies governing

the scheduling of a HTC jobs to cloud instances. These policies exhibit varying impacts

on energy consumption and average overheads, and in all cases have demonstrated the

criticality of the trade-off between energy consumption and performance/cost.

- 48 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

Maximum job delay (minutes)
0 5 10 15 20 25 30

A
ve

ra
ge

 o
ve

rh
ea

d
(s

ec
on

ds
)

0

100

200

300

400

500

600

700

800
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

N
um

be
r

of
 in

st
an

ce
 h

ou
rs

 0

100000

200000

300000

400000

500000

600000

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

E
ne

rg
y

co
ns

um
pt

io
n

(M
W

h)

 0

10

20

30

40

50

60

70

80
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

A
ve

ra
g

e
 o

ve
rh

e
a

d
 (

se
co

n
d

s)

0

100

200

300

400

500

600

700

800
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

in
st

a
n

ce
 h

o
u

rs

 0

100000

200000

300000

400000

500000

600000

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

E
n

e
rg

y
co

n
su

m
p

tio
n

 (
M

W
h

)

 0

10

20

30

40

50

60

70

80
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

A
ve

ra
ge

 o
ve

rh
ea

d
(s

ec
on

ds
)

0

100

200

300

400

500

600

700

800
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

N
um

be
r

of
 in

st
an

ce
 h

ou
rs

 0

100000

200000

300000

400000

500000

600000

Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Maximum job delay (minutes)
0 5 10 15 20 25 30

E
ne

rg
y

co
ns

um
pt

io
n

(M
W

h)

 0

10

20

30

40

50

60

70

80
Computer 1
Computer 2
Computer 3
Computer 4
Computer 5

Figure 3.6: Impact of policy P4 on average overhead, number of instance hours, and
energy consumption.

- 49 -

Chapter 3: Energy consumption of scheduling policies for HTC jobs in the Cloud

We evaluate policies under a number of assumptions made about the hardware used

within a cloud data centre, and through this work have extended an existing simulation

tool to allow practitioners to reason over resource allocation decisions in a cloud setting.

The development of this tool will ultimately support the development and evaluation

new algorithms for HTC workload scheduling in cloud environments.

In Chapter 6, we discuss our extension to HTC-Sim to support the modelling of

virtualisation and live migration. This allows us to evaluate policies governing the

consolidation of HTC workloads onto a virtualised environment. Also, we provide a

foult-tolerance technique to job handle failures by using live migration. In Chapter 7,

we evaluate classes of policy which leverage differences in clusters to make a selection

on which to use. However, in order to implement virtualisation and live migration in

HTC environment, we need to understand the factors that influence the time of live

migration. As we explained in the previous chapter, many existing research works did

not consider the cost of the live migration and assumed that live migration can always

be achieved. In the next chapter, we investigate through an experiment the factors

which influence the time of VM live migration.

- 50 -

4
Performance of Virtual Machine

Live Migration with Various
Workloads

Contents
4.1 Introduction . 52

4.2 Experiment environment . 53

4.2.1 Experiment set up . 53

4.2.2 Benchmarks . 54

4.2.3 Experiment scenario . 57

4.3 Results . 59

4.4 Conclusions . 65

- 51 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

Summary

This chapter introduces our approach for measuring the live migration time of a virtual

machine (VM). We demonstrate through live experiment the link between various

workload characteristics and the time of VM live migration. We present details of the

live experiment as well as the benchmark which used to generate various workloads.

We present and evaluate the experimental results of various VMs capacities. Finally,

we provide a discussion regarding the experimental limitations.

4.1 Introduction

Cloud computing has been achieved mainly due to the ability of modern equipment

and large-scale manufacturing processes that are able to deliver inexpensive, convenient

and user-friendly products to consumers all over the world. Virtualisation is a core

component of cloud computing which powers the cloud due to various benefits such as

partitioning, isolation, easy manageability, cost efficiency and flexibility.

Virtual machine live migration is one of the features that is provided by the hypervi-

sor. Live migration refers to the procedure of moving a running VM between physical

hosts without powering down the VM. It widely used in data centres due to its ability

of energy management, load balancing, and fault tolerance [60]. However, some of

VM management approaches that take advantage of live migration such as VM con-

solidation do not consider the cost of VM live migration. In some cases, the energy

consumption of VM live migration can be higher compared to keeping the VM running

in its current physical machine. It is important to know the parameters that influ-

ence the cost of migration before starting the migration of VMs to ensure the most

significant decision on saving energy.

In the previous chapter, we have evaluated the energy consumption of HTC scheduling

policies applied to a cloud-based cluster. However, the virtualisation and migration are

not considered nor included in the simulation. In order to consider virtualisation and

migration in a HTC environment, we need to conduct an experiment to understand

the aspects associated with the live migration process.

- 52 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

In this chapter, we perform a live experiment to measure the duration time of the VM

live migration. We use two physical hosts to migrate VMs between them by using

Kernel-based Virtual Machine (KVM) [4]. We choose SPECjvm2008 benchmark [10]

to generate workloads on the VMs due to its ability to produce various workloads

characteristics. Then, we compare the migration time of the same workloads on VMs

whose hardware characteristics differ.

The rest of the chapter is structured as follows. In Section 4.2 we present the experi-

ment environment. We present and evaluate the results of our preliminary experimen-

tation in Section 4.3, before concluding and discussing future work in Section 4.4.

4.2 Experiment environment

In this section, we use a live experiment to measure the time of VM live migration with

various workloads. We use the Kernel-based Virtual Machine (KVM) [4] as a hyper-

visor and SPECjvm2008 [10] benchmark to generate various workloads. Section 4.2.1

discusses set up of the experiment and Section 4.2.2 introduces the benchmark that

generates VM’s workloads, while Section 4.2.3 describes the scenario we experiment

in the rest of this chapter.

4.2.1 Experiment set up

The principal obligation which has influenced the experimental setup is that it should

reproduce the VM live migration procedure as it takes place in real-world contexts.

For this reason, the Kernel-based Virtual Machine (KVM), a common hypervisor for

data centres, has been employed. VM live migration necessitates the storage of VM

images in a dedicated area that can be accessed by every physical host. Consequently,

VM images are stored using network attached storage (NAS), and this has created

a situation in which the procedure of VM live migration is restricted to copying the

memory pages and the CPU state among physical hosts; this method is referred to as

pre-copy live migration. For NAS, we used the free software licensed Openfiler [6]. The

Openfiler is an operating system which delivers file-based network-attached storage

(NAS). We installed it on a virtual machine by using VMware, and it employs 60 GB

- 53 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

disk space and 8 GB virtual RAM. In addition, the setup involves two servers and one

client computer, linked together by a 100Mbps switch. The servers run CentOS 7 Linux

[13] and KVM is installed on each. The hardware features of both servers as follows:

server 1 employs 4 CPUs Core 2 Quad @ 2.66GHz and 4 GB DDR2 SDRAM. Server 2

has 8 CPUs Intel Core i7 @ 2.80GHz and 4 GB DDR3 SDRAM. The client computer

operates Ubuntu 16.04 LTS [14] and employs 1 CPU Intel Core i7 @ 3.20GHz and 4

GB DDR3 SDRAM. The difference between the two servers is a factor that assists

us to obtain various results. Finally, it should be noted that the client computer is

employed to trigger VM live migration between the servers.

Figure 4.1: The setup of VM live migration experiment with 100Mbps switch

4.2.2 Benchmarks

As we mentioned in Section 2.2.3.1, some approaches considered using an identical

workload which stresses the memory or CPU. We avoid this limitation by choosing the

SPECjvm2008 benchmark. The SPECjvm2008 benchmark [10] includes 39 distinct

workloads that test the performance of Java virtual machines (JVM) and hardware

systems such as processor and memory. The default run time for each workload is

four minutes. The benchmark contains two running modes: base and peak. The base

has a fixed running time duration which is 120 seconds warm-up, continued by 240

- 54 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

seconds. In our experiment, we use 21 workloads of the SPECjvm2008 benchmark as

illustrated in Table 4.1. Also, we use the base mode to run the benchmark without

warm-up time duration. The remaining part of this section gives a brief description of

each workload as mentioned in [149].

Table 4.1: SPECjvm2008 Benchmark workloads

Group name Workloads

Compiler compiler.compiler,
compiler.sunflow

Compress compress

Crypto crypto.aes,
crypto.rsa,
crypto.signverify

Derby derby

Mpegaudio mpegaudio

Scimark Large scimark.fft.large,
scimark.lu.large,
scimark.sor.large,
scimark.sparse.large,
scimark.monte carlo

Scimark Small scimark.fft.small,
scimark.lu.small,
scimark.sor.small,
scimark.sparse.small,
scimark.monte carlo

Serial serial

Sunflow sunflow

Xml xml.transform,
xml.validation

Compiler: There are two workloads within the compiler group, namely compiler and

sunflow. The compiler.sunflow workload determines the sunflow benchmark’s

compilation, while the OpenJDK compiler’s compilation time is measured by

the compiler.compiler workload. Input data is stored either in a file cache or in

memory to reduce the impact of I/O as the aim of these two workloads is the

evaluation of the compiler’s performance.

Compress: The workload uses a modified Lempel-Ziv technique to compress and

decompress data. The algorithm utilizes pseudo-random access based on the

input data, which is extended to 34.36 MB from 90 KB. Data is buffered to

- 55 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

minimise the impact of I/O and the compression is done using internal tables

of approximately 67 KB. As the JVM produces and operates on mixed length

data accesses, the compress workload tests inlining, array access, just in time

coupling and cache performance.

Crypto: There are three workloads within the crypto group: crypto.signverify, crypto.aes

and crypto.rsa. Between them, they cover three important aspects of cryptog-

raphy and test not only JVM execution but also different vendors protocol im-

plementations.The crypto.rsa workload works on input data of 16 KB and 100

bytes and encrypts and decrypts using the RSA protocol. The crypto.aes work-

load encrypts and decrypts data. This is done according to the AES and DES

protocols, using CBC/PKCS5P adding and CBC/NoP adding. The respective

input data sizes are 100 bytes and 713 KB, respectively. The crypto.signverify,

as its name suggests, signs and verifies protocols. In particular, it does this with

SHA1 with DSA, SHA1 with RSA, SHA256 with RSA and MD5 with RSA, for

input data sizes 1KB, 65 KB and 1 MB.

Derby: An open source, pure Java database called derby is used by this workload;

several databases are instantiated each time the workload is started, with every

four threads sharing a common database instance. Derby tests synchronization,

database and BigDecimal operations. It took forward the telco benchmark of

IBM such that it could synthesize business logic and test BigDecimal operations.

The BigDecimal calculations in this workload are longer than 64-bit.

Mpegaudio: The mpegaudio workload is based around floating-point calculations

and uses as an MPEG audio decoder the JLayer MP3 library. The input data

files, whose sizes range from 20 KB to 3 MB, are six MP3 files.

Scimark: Scimark comprises a group of workloads that together evaluate data ac-

cess patterns and floating-point operations in demanding mathematical calcula-

tions. It is based around the scimark workloads are arranged into two groups

scimark.small and scimark.large, according to the dataset size. Each workload

thread uses one dataset; the small group uses a 512 KB dataset to simulate the

performance of in-cache access whiule the large group uses a 32 MB dataset in or-

- 56 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

der to reproduce the out of cache access performance. Each group comprises five

workloads. These are monte carlo, sparse, lu, fft and sor. scimark.monte carlo

runs once but is counted in both scimark.large and scimark.small; the workload

does not operate on differently sized datasets.

Serial: This workload exercises the java.lang.reflect package and examines the serial-

ization and deserialization of primitives and objects. The performance of these

processes is evaluated using a dataset taken from a JBoss benchmark in memory

byte arrays. Serial acts in a producer-consumer situation, in which the producer

threads serialize the objects while, on the same system, the consumer threads

deserialize them.

Sunflow: The sunflow workload is multi-threaded and runs a number of bundles of

dependent threads. The workflow is reconfigurable. However, generally, there

are four threads per bundle and as many bundles as there are hardware threads.

Additionally, being floating-point intensive, the workload has a high object al-

location rate, exercising the memory bandwidth. It is used as a benchmark

simulating visualisation and graphics using ray tracing.

XML: Two workloads, xml.transform and xml.validate, constitute the XML group.

Both have high rates of contended locks and object allocation and exercise string

operations intensively. By performing XSLT transformations with SAX and

DOM stream sources, xml.transform exercises the JAXP implementation. The

workload utilizes ten use cases from real life and the XSLTC engine (this compiles

xsl stylesheets into java classes). The xml.validation workload also exercises the

JAXP implementation and uses just six use cases from real life.

4.2.3 Experiment scenario

We created a VM on server 1 by using KVM, and the image of the VM is saved in NAS.

The VM runs Ubuntu 16.04 LTS as an operating system, and it has the SPECjvm2008

benchmark to generate various workloads. We used three different VMs’ hardware

capacities as shown in Table 4.2. We call them VM 1, VM 2, and VM 3.

- 57 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

Table 4.2: VMs specifications

VM Name Number of Virtual CPUs Memory Size (GB)
VM1 1 1
VM2 2 2
VM3 3 3

The experiment employs 21 SPECjvm2008 workloads, and each is operated indepen-

dently. Once the first minute of workload operation has been completed, the VM live

migration procedure is started to transfer the VM from Server 1 to Server 2. After

the VM has been migrated to Server 2, the VM gets restarted and starts the previous

steps again between Server 1 and Server 2. We repeat the procedure ten times for

each workload within each VM type. The steps of the experiment are summarised in

Figure 4.2.

Power on the
VM

Run a workload
from

SPECjvm2008
benchmark

Start the
migration
process

Migration
complete

Restart the VM

Figure 4.2: A flowchart of the experiment scenario

The presence of the client computer is important in facilitating the operation of the

experiment in an automated way. We developed a script [28] that enables the client

computer to run the benchmark on the VM and, following this, the initiation of the

live migration between the two servers. The client accesses the VM and commences

the operation of a single workload; following one minute of running the workload, the

client facilitates the migration of the VM from the first to the second server; in turn,

the commencement and completion times of the VM live migration are recorded in a

log file. In addition to this, the script maintains a log of the memory usage of each

workload over the course of its runtime from second to second, and this is measured

by the Memusg script [5]. Furthermore, Top [16] is used to maintain a log of the CPU

- 58 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

utilisation and memory usage of the VM during the migration.

For future researchers who are interested in reproducing our test using their own

hardware, a copy of the automated script can be found at [28]. It is possible to modify

both the number of the test and the runtime of each workload.

4.3 Results

In this section, we present the results of our preliminary experimentation which show

the different workload characteristics impacts of VM live migration time on various

VM capacities.

Table 4.3 presents the results of VMs migration from Server 1 to Server 2. After one

minute of executing the workload, the migration process starts. We migrated each VM

with each workload ten times from server 1 to server 2 to obtain the results.

Table 4.3: Average migration time and memory usage of VM 1, VM 2, and VM 3

VM 1 VM 2 VM 3

Workloads
Migration
Time (Sec)

Memory
usage (KB)

Migration
Time (Sec)

Memory
usage (KB)

Migration
Time (Sec)

Memory
usage (KB)

compiler.compiler 231 219202 268 639368 317 909196
compiler.sunflow 222 190620 232 358673 264 470702
compress 210 115873 212 159170 228 226510
crypto.aes 209 81937 215 213467 237 330427
crypto.rsa 207 92021 208 108605 213 119630
crypto.signverify 208 78373 210 116095 221 141932
derby 442 345463 594 539221 630 626739
mpegaudio 207 100632 210 118431 217 132093
scimark.fft.large 212 169702 254 533904 269 639192
scimark.lu.large 223 227558 262 490671 293 738374
scimark.sor.large 211 118444 221 183212 233 217745
scimark.sparse.large 218 169940 219 236246 283 725774
scimark.fft.small 106 76095 209 94235 220 99275
scimark.lu.small 210 78432 210 99344 225 106371
scimark.sor.small 209 81134 218 137706 240 227848
scimark.sparse.small 210 80910 210 94887 219 97246
scimark.monte carlo 208 78741 209 94415 221 102125
serial 209 158552 227 362733 246 503948
sunflow 207 89595 236 277815 235 403761
xml.transform 228 136392 255 325566 280 419212
xml.validation 210 126865 271 572309 272 745437

The table shows the average live migration time for each workload and VM type in

seconds as well as the average peak memory usage in Kilobyte (KB). The results shows

a clear variance in average migration time and memory usage between workloads within

- 59 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

each VM type due to the different workload characteristics. Also, the results show

significant increases in average migration time when the size of memory is increased.

The reason is that live migration process copies the memory pages from the source

host (server 1) to the destination host (server 2). When the memory size of VM is

increased, the time of live migration increases due to the increment on memory pages.

In our experiment, VM 2 and VM 3 take more time to be migrated than VM 1 due to

the memory size of VM 2 and VM 3 which are bigger than the memory size of VM 1.

We should mention that the number of operations in the SPECjvm2008 benchmark is

based on the available resources. When there are more resources available in the server,

the workloads generate more operations to test these resources. In our experiment,

the workloads in VM 2 and VM 3 generates more memory pages than VM 1 due to

the fact that they contain a bigger memory size compare to VM 1.

0

100

200

300

400

500

600

700

com
pile

r.c
om

pile
r

com
pile

r.s
unflo

w

com
pre

ss

cry
pto

.a
es

cry
pto

.r
sa

cry
pto

.s
ig

nverif
y

derb
y

m
pegaudio

scim
ark

.ff
t.l

arg
e

scim
ark

.lu
.la

rg
e

scim
ark

.s
or.

la
rg

e

scim
ark

.s
pars

e.la
rg

e

scim
ark

.m
onte

_c
arlo

scim
ark

.ff
t.s

m
all

scim
ark

.lu
.s

m
all

scim
ark

.s
or.

sm
all

scim
ark

.s
pars

e.s
m

all

seria
l

sunflo
w

xm
l.t

ra
nsf

orm

xm
l.v

alid
atio

n

A
v

e
ra

g
e

 m
ig

ra
ti

o
n

 t
im

e
 (

 s
e

c
o

n
d

s
)

VM 1 VM 2 VM 3

Figure 4.3: Average migration time of VM 1, VM 2, and VM 3 with various workloads

Figure 4.3 illustrates the VM average migration time of VM 1, VM 2, and VM 3 for

each workload. The average migration time increases when the VMs resource capacity

increases. Also, the figure shows that the migration process finishes after the execu-

- 60 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

tion of workloads except for Derby and Scimark.monte_carlo. The Derby workload

migration time much exceeds the workload execution time. The system takes time

after the Derby workload finishes backing into idle state. The Scimark.monte_carlo

workload can be migrated during its execution time if the VM type is VM 1. The Sci-

mark.monte_carlo workload does not generate many memory pages when the memory

size is 1 GB. In addition, the standard deviation bars in the figure are shown for all

workloads. The standard deviation is used to show how much the values in the data

vary from the mean which is presented as black bars on the top of the histogram. Here,

we do not observe high variation between the runs within each experiment setup.

0

100

200

300

400

500

600

700

800

900

1000

com
pile

r.c
om

pile
r

com
pile

r.s
unflo

w

com
pre

ss

cry
pto

.a
es

cry
pto

.r
sa

cry
pto

.s
ig

nverif
y

derb
y

m
pegaudio

scim
ark

.ff
t.l

arg
e

scim
ark

.lu
.la

rg
e

scim
ark

.s
or.

la
rg

e

scim
ark

.s
pars

e.la
rg

e

scim
ark

.m
onte

_c
arlo

scim
ark

.ff
t.s

m
all

scim
ark

.lu
.s

m
all

scim
ark

.s
or.

sm
all

scim
ark

.s
pars

e.s
m

all

seria
l

sunflo
w

xm
l.t

ra
nsf

orm

xm
l.v

alid
atio

n

A
v

e
ra

g
e

 p
e

a
k

 m
e

m
o

ry
 u

s
a

g
e

 (
m

e
g

a
b

y
te

)

VM 1 VM 2 VM 3

Figure 4.4: Average peak memory usage of each workload on various VMs

Figure 4.4 shows the average peak memory usage of each workload on each VM. The

results do not show a link between the migration time of the VMs and the peak memory

usage of the workloads. For example,the Compiler.compiler workload in VM 2 and

VM 3 uses more memory than the Derby workload, but the VM with the Derby

workload takes a longer time to be migrated than the VM with Compiler.compiler.

Also, the results from one VM do not present a high variation in migration time

- 61 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

between the workloads event though the workloads memory usage are different. For

example, the Compress and the Crypto.aes workloads on VM 1 have similar migration

time, but the Compress workload uses more memory. Also, the standard deviation bars

are shown for all results where we see that average peak memory usage exhibits low

variance, across each benchmark and VM configuration.

This encouraged us to investigate more to find out the reason behind that. We modi-

fied our script to record the CPU utilisation and the memory usage of the VM during

workload running time and migration procedure. Figure 4.5 shows the memory usage

of the VM 1 with Compiler.compiler, Crypto.aes, Derby, Scimark.lu.large, Sci-

mark.sor.small, and Xml.transform workloads. The VM migration starts after 60

seconds of running the workload and the workload runs for 240 seconds. As illustrated

in Figure 4.5, the memory usage of the VM 1 starts to rise when the workload starts

and drops when the run time of workload is finished except Derby workload.

During the live migration procedure, the VM remains running on a source host until

it suspends and moves to a destination host. In our experiment, we observed that

the VM continues running on Server 1 till the memory usage of the VM drops then

it migrates to the Server 2. This is the reason for the low variation in the average

migration time between the workloads within one VM as well as the high average

migration time of VMs with Derby workload.

In this experiment, we use 100 Mbps switch to connect the servers and client com-

puter as mentioned in Section 4.2.1. The available bandwidth in the network is 94.6

Mbits/sec. The VM live migration requires moving the memory pages from the re-

source host to the destination host. At the point when there is a high rate of changing

the memory pages during the live migration with low network speed, the migration

might never finish or might take a long time. We changed the default run of the

workloads to be 1800 seconds instead of 240 seconds. The VM live migration is still

finished after a few seconds of the workload execution where the memory usage drops.

In addition, we looked at the CPU utilisation of the VMs during the runtime of the

workload and migration procedure. The CPU utilisation of workloads with one VM

is about the same except Derby workload. Figure 4.6 exhibits the CPU usage of

the VM 1 with Compiler.compiler, Crypto.aes, Derby, Scimark.lu.large,

- 62 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

Scimark.sor.small, and Xml.transform workloads.

Figure 4.5: Memory usage of the VM 1 with Compiler.compiler, Crypto.aes, Derby,
Scimark.lu.large, Scimark.sor.small, and Xml.transform workloads.

Figure 4.6 concludes that the CPU utilisation of the VMs with various workloads

characteristics does not affect the migration time between server 1 and server 2. For

instance, the Derby workload uses less CPU but takes more time to be migrated. Also,

our result observation showed that some workloads utilise only 60% of the CPU.

In general, therefore, it seems that the network speed in this experiment does not cope

- 63 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

with the high change rate of memory pages during the migration of each VM. The

VM live migrations need a high-speed network in order to perform efficiently which

we did not address in this chapter. Thus, our results of the average migration time

did not vary between each experiment setup. In the next chapter, we will address this

limitation.

Figure 4.6: CPU utilisation of the VM 1 with with Compiler.compiler, Crypto.aes,
Derby, Scimark.lu.large, Scimark.sor.small, and Xml.transform workloads

- 64 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

4.4 Conclusions

This chapter has measured the live migration time of different workload characteristics

on various VMs capacities. We used KVM as hypervisor and SPECjvm2008 benchmark

to generate the workloads. We provided a script which automated the run of the

experiment. Our results showed an essential link between the time of VM live migration

and the memory size of VM. When the memory size of VM increases, the time of VM

live migration increases. Also, our results showed that the live migration time of a

single VM on a host does not appear to be affected by the CPU utilisation of the VM.

Furthermore, the results demonstrated a strong link between the time of live migration

and network bandwidth. The live migration time is depending on the network speed.

VM live migration requires a high-speed network to get the most from it.

In addition, we are going to use our achievement of this chapter to extend our previous

work which was mentioned in Chapter 3. We are aiming to add the virtualisation on

the simulation tool. Then, we will evaluate the energy consumption of the VM in

HTC environment. It is essential to know the cost of live migration before we consider

the virtualisation and live migration in HTC systems in order to avoid unnecessary

migrations.

In the next chapter, we use the same setup of this experiment to measure the live

migration time with higher network speed. We show how changing the network switch

impacts the migration time of a VM. Also, we use different machine learning techniques

to predict the time of migration.

- 65 -

Chapter 4: Performance of Virtual Machine Live Migration with Various Workloads

- 66 -

5
Machine learning models for
predicting VM live migration

Contents
5.1 Introduction . 68

5.2 Experiment Environment . 69

5.2.1 Experiment set up . 69

5.2.2 Benchmarks . 70

5.2.3 Experiment scenario . 70

5.3 Experimental Results . 71

5.4 Virtual Machine Live Migration Modelling 73

5.4.1 Stochastic Gradient Boosted, Random Forest, and Bagged Tree 74

5.4.2 Dataset . 75

5.4.3 Tuning the models . 76

5.4.4 Performance evaluation of the models 77

5.5 Predicting migration outcome 81

5.6 Conclusions . 84

- 67 -

Chapter 5: Machine learning models for predicting VM live migration

Summary

This chapter presents an extension of the previous experiment where we introduce

different VMs’ capacities as well as upgrade the network speed. The preliminary

findings illustrate that it is impossible to migrate certain VMs in the timeframe of

the operating workload, and, furthermore, that the migration of certain VMs can be

achieved within the time of the operating workload. In combination with this, we

provide a comparison between machine learning models to predict how likely a VM is

going to be migrated within the time frame of the running workload.

5.1 Introduction

Virtual Machine (VM) consolidation in large-scale computing is a core strategic ap-

proach carried out to achieve energy efficient data centres. As we mentioned earlier,

VM Live Migration has become an established technology used to consolidate virtu-

alised workload onto a smaller number of physical machines, as a mechanism to reduce

overall energy consumption.

It is important to acknowledge that the expenses associated with live migration are

not taken into account for the majority of the existing VM live migration models, and,

in certain situations, VM live migration can be characterised by greater energy usage

when considered in relation to maintaining VM operation on the existing physical

machine. To guarantee energy efficiency, it is worthwhile to derive an understanding

of the limits which impact migration expenses prior to initiating VM migration.

This chapter addresses the above need by presenting predictive models for VM live

migration which can be employed to select the VMs that can be readily migrated based

on the characteristics of their workload. In order to build the models, we extend the live

experiment which discussed in Chapter 4 to measure the VM live migration duration

time, CPU utilisation, memory usage, buffer cache size, number of threads, and I/O

activities during the migration process. Also, we increased the network bandwidth

and introduced 9 VMs characterised by various hardware constraints.

Furthermore, the chapter exhibits the process of creating three machine learning mod-

- 68 -

Chapter 5: Machine learning models for predicting VM live migration

els from the results of the experiment. Also, the comparison between the proposed

models are presented as well as the difference in accuracy between the proposed models

and other machine learning models is provided.

The remainder of this chapter is organised as follows. Section 5.2 introduces the

experiment environment. Section 5.3 presents the results of our preliminary experi-

mentation. We explain and build the predictive models in Section 5.4. In Section 5.5,

we evaluate the model with various datasets, before concluding and motivating future

work in Section 5.6.

5.2 Experiment Environment

A live experiment constitutes the basis of this chapter, and this is carried out to

measure the durations of VM live migration and resource utilisation of the VMs during

the migration in the context of different workloads. In order to produce the different

workloads, the SPECjvm2008 benchmark [10] is employed, and KVM [4] is used as a

hypervisor. Section 5.2.1 describes the experimental setup; following this, Section 5.2.2

introduces the benchmark for VM workload generation and Section 5.2.3 details the

experimental scenario used for the rest of the chapter.

5.2.1 Experiment set up

Figure 5.1: The setup of VM live migration experiment with 1000Mb switch

- 69 -

Chapter 5: Machine learning models for predicting VM live migration

The setup of the experiment is similar to the setup which was presented previously in

Section 4.2.1 of Chapter 4 except the switch. Here, we change the network switch to

support a 1000 Mbps Ethernet speed for connecting the servers and the client computer

which illustrated in Figure 5.1. The difference between the two setups is a factor that

assists us to obtain various results.

5.2.2 Benchmarks

In order to perform the experiment with various workload characteristics, we used

SPECjvm2008 benchmark which discussed in Section 4.2.2 of Chapter 4. Here, we use

20 workloads from the SPECjvm2008 benchmark as shown in Table 5.1. We excluded

the Derby workload because the VM that runs it is corrupted during migration.

Table 5.1: SPECjvm2008 Benchmark workloads

Group name Workloads
Compiler compiler.compiler, compiler.sunflow
Compress compress
Crypto crypto.aes, crypto.rsa, crypto.signverify
Mpegaudio mpegaudio
Scimark Large scimark.fft.large, scimark.lu.large, scimark.sor.large,

scimark.sparse.large, scimark.monte carlo
Scimark Small scimark.fft.small, scimark.lu.small, scimark.sor.small,

scimark.sparse.small, scimark.monte carlo
Serial serial
Sunflow sunflow
Xml xml.transform, xml.validation

5.2.3 Experiment scenario

We first formulated a VM in Server 1 by using KVM. In turn, the image was stored

on the NAS. The VM runs Ubuntu 16.04 LTS, and it incorporates the SPECjvm2008

to generate a range of workloads. Several distinct VM hardware capacities have been

employed. Each VM is denoted as VMij where i,j ={1,2,3}, i is the number of CPUs,

and j is the RAM capacity in Gigabytes (GB).

The experiment employs 20 SPECjvm workloads, and each is operated independently.

Once the first minute of workload operation has been completed, the VM live migration

- 70 -

Chapter 5: Machine learning models for predicting VM live migration

procedure is started to transfer the VM from Server 1 to Server 2. After the VM has

been migrated to Server 2, the VM gets restarted and starts the previous steps again

between Server 2 and Server 1.

The presence of the client computer is important in facilitating the operation of the

experiment in an automated way. We developed a script [28] that enables the client

computer to run the benchmark on the VM and, following this, the initiation of the

live migration between the two servers. The client accesses the VM and commences

the operation of a single workload; following one minute of running the workload, the

client facilitates the migration of the VM from the first to the second server; in turn,

the commencement and completion times of the VM live migration are recorded in a

log file. In addition to this, the script maintains a log of the memory usage of each

workload over the course of its runtime from second to second, and this is measured

by the Memusg script [5]. Furthermore, top [16] and sar [7] are used to maintain a log

of the CPU utilisation, total system memory, free memory,memory used, buffer cache,

I/O activities, queue size, and load average over the course of the migration.

5.3 Experimental Results

In this section, we discuss the results of our preliminary experimentation. We demon-

strate the impact of different workload characteristics, and their impact on VM live

migration time, on various VMs capacities.

Figure 5.2 presents the results of VM migration from Server 1 to Server 2. The VMs

migration starts after one minute of running the workload. We migrated each VM with

each workload ten times from Server 1 to Server 2 and from Server 2 to Server 1. The

figure illustrates the average duration of the VM live migration of each workload from

Server 1 to Server 2. The results of the migration time between Server 2 to Server 1

has drawn the same conclusion in general, but have some variation compared to Server

1 because of the difference between the hardware of the servers. The results of the

migration time between Server 2 to Server 1 is shown in Figure 5.3.

The results represent a clear discrepancy in average migration time between work-

loads due to the various workload characteristics. Some workloads such as Com-

- 71 -

Chapter 5: Machine learning models for predicting VM live migration

V
M

1
.

V
M

2
.

V
M

3
.

xml.tra
nsform

compiler.compiler

scimark.fft.
large

scimark.sor.la
rge

compiler.sunflow

sunflow
seria

l

xml.validation

scimark.lu.small

scimark.lu.large

crypto.signverify

scimark.fft.
small

compress

crypto.aes

scimark.sparse.large

mpegaudio

crypto.rsa

scimark.sparse.small

scimark.monte_carlo

scimark.sor.small

0

100

200

300

0

100

200

300

0

100

200

300

Workload

M
ig

ra
ti

o
n

 T
im

e
 (

s
e

c
)

VM Type VM11 VM12 VM13 VM21 VM22 VM23 VM31 VM32 VM33

Figure 5.2: Average migration time of VMij with various workloads from Server 1 to
Server 2

V
M

1
.

V
M

2
.

V
M

3
.

xml.tra
nsform

scimark.lu.large

compiler.compiler

compiler.sunflow

scimark.sor.la
rge

xml.validation

scimark.fft.
large

sunflow
seria

l

scimark.lu.small

crypto.signverify

compress

scimark.fft.
small

crypto.aes

mpegaudio

scimark.sparse.large

crypto.rsa

scimark.sparse.small

scimark.sor.small

scimark.monte_carlo

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

Workload

M
ig

ra
ti

o
n

 T
im

e
 (

s
e

c
)

VM Type VM11 VM12 VM13 VM21 VM22 VM23 VM31 VM32 VM33

Figure 5.3: Average migration time of VMij with various workloads from Server 2 to
Server 1

- 72 -

Chapter 5: Machine learning models for predicting VM live migration

piler.compiler, xml.transform, and xml.validation consume much memory than

others which increases the time of VM live migration between servers. The reason is

that VM live migration process requires copying the VM’s memory pages from the

source host to the destination host. At the point when there is a high rate of changing

memory pages during the live migration with an insufficient network speed, the mi-

gration might never complete or might take a long time. Also, the number of threads

that produced by the workloads is another reason of delaying the VM live migration

or making it impossible. For example, the threads that generated by Serial and Sun-

flow workloads put pressure on the memory which defines them as non-migratable

workloads in our experiment.

The number of operations in the SPECjvm2008 benchmark is based on the available

resources. When there are more resources available in the VM, the workloads generate

more operations to test these resources. In our experiment, some workloads in VM2.,

and VM3. have longer migration time than the workloads in VM1. due to the fact that

they contain more memory pages compared to VM1..

In addition, the standard deviation bars in the figures are shown for all workloads.

Here, we observe in some workloads that average migration time demonstrate a vari-

ance, across each workload and VM configuration. Due to the uncertainty and incon-

stancy of the average migration time on some workloads over various VMs and servers,

we selected 10 stable workloads to create our VM live migration predictive models as

discussed in the next section.

5.4 Virtual Machine Live Migration Modelling

In this chapter, we used supervised learning in the form of classification to build our

predictive models. We used classification and regression training (caret) package [102]

by using R language [138]. Section 5.4.1 briefly introduces Stochastic Gradient Boosted

(SGB), Random Forest (RF), and Bagged Tree (BT) Models. Section 5.4.2 discusses

the dataset that is used for building the models, while Section 5.4.3 presents the

comparisons between the models.

- 73 -

Chapter 5: Machine learning models for predicting VM live migration

5.4.1 Stochastic Gradient Boosted, Random Forest, and Bagged
Tree

Stochastic Gradient Boosting (SGB) [80] is an advanced model of the Gradient Boost-

ing model. The basic idea of the Gradient boosting method is to fit a classifier, typically

a decision tree, at each iteration, so that the next classifier is trained to improve the

existing trained ensemble. In the SGB, the subset of the training data is selected

randomly in each iteration. Then, the random subset of the training set is used to

fit the base learner and tune the model for the current iteration. The SGB model

has many parameters [141] which can be defined by the user. The number of trees

which determines what number of trees are required to be built in the model. The

interaction depth parameter can control the maximum size of each tree. The impact

of each consecutive tree on the final predictions controlled by shrinkage also known as

learning rate. The low learning rate with a few number of trees can give poor results,

while a large number of trees, may improve results.

Random Forest (RF) [51] is a collection of decision trees that are different in structure.

RF selects the best splits of each node between a random subset of the features. Also,

the bootstrap or subsampling methods used by the training set to grow each tree. The

RF has two parameters which can be specified by the user; the total number of trees

of the model, and the number of splits controls the number of features in each node

split. Building RF models with a large number of trees does not lead to overfitting due

to the “Strong Law of Large Numbers” [75]. According to Breiman [50], the Strong

Law of Large Numbers ensures that the generalisation error always converges when

increasing the number of trees.

Bagging [50] is a method that takes different samples datasets, creates a set of high-

variance base learners (usually decision tree), and then averages the prediction results.

In Bagging, the subset of the training data is drawn with replacement from the training

set which makes it different from SGB. Also, all features are considered for splitting

a node, unlike RF where a subset of the features is randomly selected, and the best

features of the subset are used to split the node.

- 74 -

Chapter 5: Machine learning models for predicting VM live migration

5.4.2 Dataset

In order to create the predictive model for VM live migration decision, we need to select

data from the experiment results which address the following question “what VMs are

migratable or non-migratable within the time frame of the running workload?”. The

answer to the question assists choosing the VMs with a low migration time to be

migrated. That will reduce the associated cost with the migration as well as the

network traffic.

It is critical that we feed the model with the right data that solves the above question.

Consequently, the dataset for training and testing the models is selected from 10 stable

workloads’ results with 10 features and marked with two class labels as illustrated in

Table 5.2. When the workload can be migrated during its run time, we mark it as

migratable workload. The migratable workloads take around 15 seconds to be fully

migrated between hosts.

Workload Class Label Features
crypto.rsa

Migratable

Total System Memory
Memory Used
Free Memory
Buffer Cache
Number of CPUs
CPU Usage
Load Average
Queue Size
Blocked Tasks
Transactions (I/O)

scimark.monte carlo
scimark.sor.small
scimark.sparse.small
scimark.sparse.large
compiler.compiler

Non-migratable
serial
sunflow
xml.transform
xml.validation

Table 5.2: Dataset structure

The dataset is determined to 20 seconds which is from 50 to 70 seconds where the mi-

grations starting point occurred during this period. Each row of the dataset represents

one second which is taken from the recorded logs of the experiment, and it has the

values of the features as well as the class labels. The dataset contains 18000 rows and

is divided into two sets: a training set (75%) and testing set (25%). The training set

is used to build the model, and the testing set is used to evaluate the performance of

the model. We took advantage of the built-in function createDataPartition in caret

package [102] to have stratified random splits within each class label of the dataset.

- 75 -

Chapter 5: Machine learning models for predicting VM live migration

Table 3 presents a sample of the dataset.

Table 5.3: Dataset sample

Total
System
Memory

Memory
Used

Buffer
Cache

Free
Memory

CPUs
CPU
Usage

Load
Average

Queue
Size

Blocked
Tasks

I/O Class Label

992.56 744.44 229.88 18.24 1 100 1.17 1 0 0 Non-migratable
2000.30 691.87 235.32 1073.12 3 99.7 2.2 3 0 0 Migratable
3008.44 1017.48 240.52 1750.43 2 99.5 1.76 5 0 2 Non-migratable
992.56 656.73 235.38 100.45 1 89.1 2.26 6 0 1.98 Non-migratable
3008.31 1035.91 236.05 1736.36 3 82.1 2.07 5 0 0 Migratable
992.56 657.16 232.44 102.96 1 98 0.85 1 1 4.95 Migratable
2000.43 871.60 238.69 890.14 2 93.5 2.03 4 2 0 Migratable
3008.57 730.71 321.20 1956.66 3 95 2.09 2 1 352 Non-migratable

5.4.3 Tuning the models

We used caret package [102] to create our predictive models. The package depends

on 27 packages, and train is the main function that can be used to build and evaluate

the models. The first step in creating a predictive model is to choose the model. In

this chapter, we selected the following models: Stochastic Gradient Boosted (SGB),

Random Forest (RF), and Bagged Tree (BT). We used gbm package [141] for SGB, ran-

domForest package for RF, and ipred package for BT.

Next, we need to set the tuning parameters of the models. There are no tuning param-

eters for BT model. However, for the SGB model, we tuned combinations of values of

the number of trees, n.tree = seq(100, 1000, by=50), the depth of each tree, interac-

tion.depth = seq(1, 7, by=2), and the learning rate (or shrinkage), shrinkage =c(0.01

, 0.1) which is in total generates 152 combinations. For RF model, the values of the

number of trees to grow, ntree= seq(100, 1000, by=50), and the number of variables

at each node splits, mtry = seq(1, 7, by=2).

Then, we need to specify the measures of performance for the models and pass it to

the metric argument of the train function. We chose the area under the Receiver

Operating Characteristic (ROC) curve, or simply AUC, to assess the performance of

the models as advised in [86] and [109]. Finally, we need to specify the method of

resampling such as cross-validation or bootstrap by using the trainControl function.

We selected repeated K -fold cross-validation as the resampling method where K = 10

which recommended in [99] and repeated 5 times. After resampling, the train function

determines the best values of the tuning parameters and fit them to the final model.

- 76 -

Chapter 5: Machine learning models for predicting VM live migration

5.4.4 Performance evaluation of the models

We evaluate and compare the performance of the models to determine which model

performs best for our dataset. We explore the impact of model parameters on the

performance, training time, and prediction time. We then identify the most important

features of each model, before comparing the accuracy of the SGB, RF, BT models

with seven alternative models.

Figures 5.4 and 5.5 exhibit the correlation between different tuning parameters of

SGB and RF models and the resampled estimate of the AUC. For SGB model, the

AUC value increases when the number of trees grows, and the value max tree depth

increases. Also, the SGB performs better with 0.1 shrinkage value. The best param-

eters value of the SGB model for our dataset when the number of trees is 1,000, the

depth is 7, and the shrinkage is 0.1. However, the best AUC value can be achieved

with fewer trees and number of splits in RF model as illustrated in Figure 5.5. Also, it

should be noticed that the increasing of the number of the splits of each node could re-

duce the value of AUC which appeared in Figure 5.5 when the number of splits is 5 or 7.

0.01 0.1

250 500 750 1000 250 500 750 1000
0.92

0.94

0.96

0.98

1.00

Number of Trees

R
O

C
 (

R
ep

ea
te

d
C

ro
ss

−V
al

id
at

io
n)

Number of Splits 1 3 5 7

Figure 5.4: The value of AUC with various SGB parameters’ values

- 77 -

Chapter 5: Machine learning models for predicting VM live migration

0.99994

0.99996

0.99998

1.00000

250 500 750 1000
Number of Trees

R
O

C
 (

R
e
p

e
a
te

d
 C

ro
s
s
−

V
a
li
d

a
ti

o
n

)

Number of Splits 1 3 5 7

Figure 5.5: The value of AUC with various RF parameters’ values

RF SGB (0.01) SGB (0.1)

250 500 750 1000 250 500 750 1000 250 500 750 1000
0

60

120

180

240

300

360

420

480

540

600

Number of Trees

 T
ra

in
in

g
 T

im
e

(s
ec

)

Number of Split / Max Tree Depth 1 3 5 7

Figure 5.6: Training time of SGB and RF

We compare the training time of each model with various tuning parameters values

as exposed in Figure 5.6. The training time of BT model is 62 seconds which is not

in Figure 5.6 because the model has no tuning parameters to compare between their

- 78 -

Chapter 5: Machine learning models for predicting VM live migration

values. Figure 5.6 shows a link between the training time and the number of trees and

the number of splits or depth. When the number of trees, the number of splits, or

the tree depth grows, the training time increases. Also, when the learning rate value

of the SGB increases, the training time increases. Furthermore, the results show that

the training time of SGB model can be faster than RF model when its tree depth is 1

or 3 and longer when its tree depth is 5 or 7. Moreover, the training time of different

SGB models shows a wide variation while the training time of the RF models presents

less variation. In addition, the prediction time of the models is very fast, between 1

to 15 milliseconds.

However, we used the varImp function to characterise the importance of predictors

on the models. Each model has its method for estimating the link of each feature to

the model described in [101]. Figure 5.7 presents the impact of each feature on the

models and the order. The importance is scaled to have a maximum value of 100.

The feature importance values and their order are distinct in each model due to the

different algorithms and methods that are used to build the classifiers and determine

the most important features in the models.

SGB RF BT

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Transactions (I/O)

Blocked Tasks

Queue Size

Total System Memory

CPU Usage

Load Average

Number of CPUs

Free Memory

Buffer Cache

Memory Used

Importance

F
ea

tu
re

s

Figure 5.7: Feature importance of SGB, RF, BT

- 79 -

Chapter 5: Machine learning models for predicting VM live migration

We went further to evaluate the accuracy of SGB, RF, and BT models with another

seven models as follows: Support Vector Machines with Radial Basis Function Kernel

(SVMRadial), K-Nearest Neighbors (KNN), Support Vector Machines with Linear

Kernel (SVMLinear), Naive Bayes (NB), NeuralNetwork (NNet), Linear Discriminant

Analysis (LDA), and Learning Vector Quantization (LVQ). We assessed the models

in the same way with the same dataset to gain a fair comparison. To evaluate the

models’ performance on the test set, we used the confusionMatrix function to obtain a

summary of the prediction results on our models. The function can provide information

such as the accuracy rate, the confidence interval, the number of correct and incorrect

predictions, the sensitivity, and the specificity. Figure 5.8 illustrates the estimated

accuracy of each model as well as the 95% confidence interval. From Figure 5.8, we

can conclude that there is little difference between the SGB, RF, and BT in estimated

accuracy and they have the highest accuracy compared to other models.

LVQ

NNet

LDA

NB

SVMLinear

KNN

SVMRadial

BT

RF

SGB

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy

 95% Confidence Interval

 M
o

d
el

Figure 5.8: Compare different models

- 80 -

Chapter 5: Machine learning models for predicting VM live migration

5.5 Predicting migration outcome

This section introduces the performance evaluation of SB, RF, BT models when created

from various subsets of the original dataset. The aim is to understand the effect of one

type of workload or VMs on the estimated accuracy. First, we train the models with 9

workloads (dataset) and evaluate the classifiers with the 10th workload (test set). For

example, we train the model with Scimark.monte_carlo, Scimark.sor.small, Sci-

mark.sparse.small, Scimark.sparse.largel, Compiler.co-mpiler, Serial, Sun-

flow, and Xml.transform workloads then we test it with xml.va-lidation. In total,

there are 10 distinct training sets to create the models and 10 different 10 test sets to

evaluate the models.

Migratable Workloads Non−migratable Workloads

scimark.sparse.small

scimark.sor.small

scimark.monte_carlo

crypto.rsa

scimark.sparse.large

xml.transform
xml.validation

compiler.compiler
sunflow serial

0.00

0.25

0.50

0.75

1.00

Testing Set

A
c
c
u

ra
c
y

Model SGB RF BT

Figure 5.9: Compare SGB, RF, and BT with various datasets

Figure 5.9 shows the results of the estimated accuracy and the confidence 95% interval

for each classification problem. In general, the SGB models perform better than other

models in most of the cases. The models showed a poor performance in some of the

cases than others due to the variation in the workloads’ characteristics. When the

model has been trained with a similar type of dataset and tested with a new kind of

dataset, the model will fail to give a high accuracy on the prediction of the new test

- 81 -

Chapter 5: Machine learning models for predicting VM live migration

set which is the case in scimark.sparse.large, sunflow, and serial. For example,

the sunflow workload produces a greater number of threads than others which make its

features different than other workloads. However, the SGB is not the best prediction to

the sunflow workloads. The reason is that the SGB feature importance as previously

discussed in Section 5.4 gives the load average a small importance rate than other

models which affect the estimate accuracy in this case.

In the migratable workloads, Scimark.sparse.large has a poor performance over

the models. The workload has similar characteristics of the non-migratable workloads

which make the model predict it as a non-migratable workload. We can conclude that

other workloads’ features are not accurate to predict the scimark.sparse.large.

We went further to evaluate the estimated accuracy of the various type of VMs’

datasets. Our aim is to know which characteristics of the VMs present the most

impact on the estimated accuracy. Regardless the memory size of the VMs in our

dataset, Figure 5.10 shows the results of training the models with VMs that are dif-

ferent in the number of the CPUs while Figure 5.11 present the estimated accuracy of

VMs which are different in memory sizes.

In each case, the models created from 3 various training sets and validated with two

testing sets. In Figure 5.10, the experiment results of VM1., VM2., and VM3. are the

datasets to build and evaluate the models. We used one of the datasets to create the

models, and the other two datasets are used to assess the models. For example, the

experiment results of the VMs with one CPU used to build the models, and the results

of the VMs with two and three CPUs used to evaluate the model. The VM1. models

are better in predicting the VMs with 2 CPUs, and the VM2. models perform better in

predicting the VMs with 3 CPUs while VM3. models are much beneficial in predicting

the VMs with 2 CPUs.

We used the experiment results of VM.1, VM.2, and VM.3 to train and test the models

as shown in Figure 5.11. For example, the experiment results of the VMs with 1 GB

RAM used to build the models, and the results of the VMs with 2 and 3 GB RAM used

to evaluate the model. The VM.1 models are not the best in predicting the VMs with

2 and 3 GB RAM compared to the other models.The VM.2 models perform better in

predicting the VMs with 3 GB RAM while VM.3 models are much useful in predicting

- 82 -

Chapter 5: Machine learning models for predicting VM live migration

the VMs with 2 GB RAM.

VM1. VM2. VM3.

VM2. VM3. VM1. VM3. VM1. VM2.

0.00

0.25

0.50

0.75

Testing Set

A
c
c
u

ra
c
y

Model SGB RF BT

Figure 5.10: Compare SGB, RF, and BT with various datasets of VMi. types

VM.1 VM.2 VM.3

VM.2 VM.3 VM.1 VM.3 VM.1 VM.2

0.00

0.25

0.50

0.75

Testing Set

A
c
c
u

ra
c
y

Model SGB RF BT

Figure 5.11: Compare SGB, RF, and BT with various datasets of VM.j types

The prediction results of the models are influenced by a number of factors. First, the

differences in the sub-datasets that are used to train and test the models can affect

- 83 -

Chapter 5: Machine learning models for predicting VM live migration

the estimated accuracy of the prediction. In order to create a predictive model, the

sub-datasets of the original dataset should reflect the dataset. Second, the influence of

predictors on the each model (importance of features) can affect the prediction results

of the models. Finally, the process of building the models are different in each model.

Each model has its algorithm and parameters to create the model. Any change on one

of the parameters leads to amending the predictions results.

5.6 Conclusions

This chapter has measured the live migration time for different workload characteristics

on various VMs capacities. We used KVM as hypervisor and SPECjvm2008 benchmark

to generate the workloads. The results show that some VMs can be migrated within

a short time while others take a long time to migrate and some cannot be migrated

during the workload execution. The chapter presents the process of creating Stochastic

Gradient Boosted (SGB), Random Forest (RF) and Bagged Tree (BT) models from

the results of the experiment. We showed the effect of tuning the models with different

values as well as training and evaluating the models among the various sub-datasets

from the original dataset. It is clear that there is no easy choice of the best model to

employ and in practice a combination of the models presented could be used to gain

a better prediction of which VMs to migrate.

In the next chapter, we will use our finding of this chapter to introduce two methods

for deploying virtualisation and live migration in HTC systems. We will extend a

trace-driven simulation environment in order to evaluate our methods under different

workload and migration time assumptions.

- 84 -

6
Simulation of VM Live Migration

in HTC Environments

Contents
6.1 Introduction . 86

6.2 Simulation Environment . 87

6.2.1 Datasets . 88

6.2.2 Conceptual Simulation Architecture 90

6.2.3 Migration Model . 91

6.3 Simulation scenario . 92

6.3.1 Interval Migration . 93

6.3.2 Responsive Migration . 95

6.4 Simulation outcome . 96

6.4.1 Interval Migration . 97

6.4.2 Responsive Migration . 103

6.5 Conclusions . 107

- 85 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

Summary

This chapter introduces an extension of an existing trace-driven simulation to incorpo-

rate virtualisation. Furthermore, we implement the pre-copy live migration algorithm

to provide a test environment for live job migration in a high throughput computing

system (HTC). We present details of our extension into HTC-Sim as well as two ap-

proaches to perform the live migration in HTC environments. In this chapter, we use

a simple random policy for picking the jobs in order to migrate them and selecting

the target hosts to allocate the migrated jobs. Finally, we provide a discussion of the

simulation outcomes for each migration method.

6.1 Introduction

Computer simulation is a powerful evaluate complex systems and understand the reac-

tion of the systems in the real world. As VM live migration becomes a mechanism for

reducing overall energy consumption in large-scale computing by consolidating VMs

onto fewer physical machines, simulation assists to enhance the policies of VM live

migration decisions to gain more saving in energy and better performance.

High through computing (HTC) systems are popular choices for academic and industry

researchers because of the economy of scale. Researchers can share many resources

to do their jobs, and the resources are available for use 24/7. Since the resources in

HTC environment is shared usage, the HTC jobs might be affected by other users.

For instance, universities use students’ computer clusters as a resource pool for their

HTC system where HTC jobs can be executed on computers that are not being used

by students. There is a high probability that an HTC job can be interrupted when a

user starts using the computer. Such an interruption cause job eviction or suspension

which increase the power consumption and job makespan.

It is important to run these long-running jobs in the most energy-efficient machines

to decrease the energy consumption. However, the most energy-efficient machines

might be not available at the beginning of the HTC jobs initiation. Furthermore, it is

necessary to prevent the HTC jobs from being evicted from the computer or suspended

- 86 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

for a long time to minimise energy waste and makespan of the jobs.

Virtualisation has previously been applied to HTC systems such as HTCondor where

VMs considered as jobs to be executed [152]. The power of VM live migration could be

used to gain more saving in energy by migrating the jobs into energy efficient machines

when they become available. Moreover, it can prevent the jobs from being evicted or

suspended for a long time due to user login by migrating them to other idle machines.

However, VM live migration in HTC system has received a little attention in the

literature. Existing research has considered the use of the Checkpointing [36, 79, 133,

140] in this context to minimise the effect of jobs interruption on overall performance

and energy consumption of HTC systems.

In this chapter, we propose a different approach in which we use the ability of VM live

migration to mitigate the energy waste and the makespan of jobs in HTC environment.

In order to achieve this, we extend a trace-driven simulation HTC-Sim [78] to sup-

port virtualisation, in particular, VM live migration. We implemented the pre-copy

migration algorithm [60] in the same manner as in the real world. The simulation

tracks the number of successful and failed VM migrations, the time of VM migrations,

and the energy consumption of VM migrations. Additionally, the expansion of this

simulation will ultimately assist the development and evaluation of algorithms for VM

consolidation in large-scale computing.

The rest of this chapter is organised as follows. We introduce the simulation envi-

ronment in Section 6.2. In Section 6.3, we present two scenarios to perform the live

migration in our simulation. We explain the outcomes of the simulation in Section 6.4

before concluding in Section 6.5.

6.2 Simulation Environment

We implement virtualisation and the pre-copy live migration algorithm into HTC-

Sim [78] simulator. HTC-Sim is a Java-based trace-driven simulation for simulating

multi-use resources shared with interactive users as well as dedicated resources. More-

over, the tool is based on a real dataset collected from Newcastle University HTCondor

system in 2010.

- 87 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

6.2.1 Datasets

The Newcastle University employs HTCondor to provide a high throughput computing

environment to its researchers. The HTCondor pool contains 1400 desktop computers

spread across 35 clusters on campus. When a student log into the computer, the job

on that computer gets evicted and rejoins the queue of the HTCondor to be restarted

on another machine. The log file of the interactive user contain login timestamps,

logout timestamps, computer’s name, and a hash of the user’s identity, while the logs

file of the jobs includes the job id, job submission time, job duration, the state of the

ran job (either ’success’ or ’terminated’), and the hash id of job owner. Furthermore,

the cluster specification is stored in cluster file which has the cluster name, opening

and closing times, and list of the computer resources and their specification associated

with an energy profile.

Type Cores Power Consumption (W)
Active Idle Sleep

Normal 2 57 40 2
High End 4 114 67 3

Legacy 2 100-180 50-80 4

Table 6.1: Computer Type

Table 6.1 shows the energy consumption of different computer types based on Newcas-

tle University HTCondor resource pool. The computers are allocated within clusters

and each cluster contains equivalent computer resources. Our data do not contain

the CPU utilisation that utilised by the HTC jobs. As a result, the performance of

computers considered to be homogeneous with a different energy profile. Hence, we

identify three states where a machine may belong. The states are based on the Ad-

vanced Configuration and Power Interface (ACPI) specification [20]. The states are as

follows:

Active: the machine in this state is used by a HTC job or an interactive user. Here,

we assumed the CPU load level is 100%. This state equates to ACPI state S0.

Idle: the machine here is not processing a work for an interactive user nor HTC

job. The CPU load level in this state is approximately 5-10%. Also, this state is S0

according to ACPI.

- 88 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

Sleep: the components of the machine in this state are powered off expect RAM which

allows the operating system to resume without the need for restarting it. This state

is S3 as stated by ACPI.

HTC-SIM: A TRACE-DRIVEN SIMULATION FRAMEWORK 3277

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 u

se
r

lo
gi

ns
 p

er
 d

ay

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 5. Interactive user logins per day for 2010.

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 S

ub
m

is
si

on
s

1

10

100

1000

1000

10000

Figure 6. HTCondor workload trace for 2010.

5.4. Preparation of the HTCondor logs

Once a job has finished within HTCondor – that is, either completed or been terminated –
its ClassAd is archived within the history log. These ClassAds can be retrieved through the
condor_history -long command. In general, HTCondor is normally configured to only keep
the previous N jobs that have finished (where N is a configurable value). Also, in terms of sim-
plicity for HTCondor, the ordering of these records is based on completion times of the job rather
than submission time. Regular capturing of the history log can be used to overcome the first issue –
although this will lead to duplicate ClassAds held in consecutive captures. The second issue can be
overcome by post-processing the ClassAds to reorder them by submission time. This functionality,
along with functionality to remove duplicate records, is provided by a small tool. Once prepared, the
ordered ClassAds can be fed into HTC-Sim via the HTCondor pluggable policy implementation.

The number of HTCondor jobs submitted per day in 2010 is shown in Figure 6. A total of 561 851
jobs were submitted over the whole year with a mean submission rate of 1454 jobs submitted each
day. Unlike the interactive user logins per day, there is no clearly visible pattern within these data.

Further information about the execution of a HTCondor job, which is normally only made avail-
able to the submitter of the job, is available within the HTCondor system. This contains information
such as periodic recording of the memory and disk usage of the running job, a complete log of all
resources that the job was allocated to (not just the last allocation), along with records of individual
job suspensions and checkpoints. Modification to the configuration of the central HTCondor config-
uration script allows this information to be collected centrally for all jobs. The listing presented in
Listing 1 shows the configurations required to achieve this. We have been centrally collecting this
level of job statistics since December 2012.

EVENT_LOG = /some/file/path
EVENT_LOG_USE_XML = True
EVENT_LOG_MAX_SIZE = 52428800
EVENT_LOG_MAX_ROTATIONS = 3

Listing 1. HTCondor configuration options to enable centralised usage collection.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3260–3290
DOI: 10.1002/cpe

Figure 6.1: Interactive user logins per day in 2010 [78].

HTC-SIM: A TRACE-DRIVEN SIMULATION FRAMEWORK 3277

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 u

se
r

lo
gi

ns
 p

er
 d

ay

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 5. Interactive user logins per day for 2010.

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 S

ub
m

is
si

on
s

1

10

100

1000

1000

10000

Figure 6. HTCondor workload trace for 2010.

5.4. Preparation of the HTCondor logs

Once a job has finished within HTCondor – that is, either completed or been terminated –
its ClassAd is archived within the history log. These ClassAds can be retrieved through the
condor_history -long command. In general, HTCondor is normally configured to only keep
the previous N jobs that have finished (where N is a configurable value). Also, in terms of sim-
plicity for HTCondor, the ordering of these records is based on completion times of the job rather
than submission time. Regular capturing of the history log can be used to overcome the first issue –
although this will lead to duplicate ClassAds held in consecutive captures. The second issue can be
overcome by post-processing the ClassAds to reorder them by submission time. This functionality,
along with functionality to remove duplicate records, is provided by a small tool. Once prepared, the
ordered ClassAds can be fed into HTC-Sim via the HTCondor pluggable policy implementation.

The number of HTCondor jobs submitted per day in 2010 is shown in Figure 6. A total of 561 851
jobs were submitted over the whole year with a mean submission rate of 1454 jobs submitted each
day. Unlike the interactive user logins per day, there is no clearly visible pattern within these data.

Further information about the execution of a HTCondor job, which is normally only made avail-
able to the submitter of the job, is available within the HTCondor system. This contains information
such as periodic recording of the memory and disk usage of the running job, a complete log of all
resources that the job was allocated to (not just the last allocation), along with records of individual
job suspensions and checkpoints. Modification to the configuration of the central HTCondor config-
uration script allows this information to be collected centrally for all jobs. The listing presented in
Listing 1 shows the configurations required to achieve this. We have been centrally collecting this
level of job statistics since December 2012.

EVENT_LOG = /some/file/path
EVENT_LOG_USE_XML = True
EVENT_LOG_MAX_SIZE = 52428800
EVENT_LOG_MAX_ROTATIONS = 3

Listing 1. HTCondor configuration options to enable centralised usage collection.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3260–3290
DOI: 10.1002/cpe

Figure 6.2: HTCondor jobs submission in 2010 [78].

Figure 6.1 shows the number of user logins per day during 2010 while Figure 6.2

illustrates the number of HTCondor jobs in the same period. A total of 1,229,820 user

logins were occurred over 2010, and the total number of submitted HTCondor jobs was

561,851. From the figures, we can see a high probability for a job to be interrupted

by interactive users during its execution.. We can stop jobs from being interrupted

by migrating them to resume their execution on other machines. To achieve this, the

HTCondor jobs that run in a closed cluster can be moved to other idle computers just

before its opening time for students. Also, when a user logs in while HTCondor task

is running, the task can be migrated to another machine.

- 89 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

6.2.2 Conceptual Simulation Architecture

Cluster

 Policy

Cluster

 Policy

Cluster

 Policy

Cluster

Computer
 PolicyComputer

 PolicyComputer
 PolicyComputer

 Policy
 Policy

 Dedicated Cluster

Computer
 PolicyComputer

 PolicyComputer
 PolicyComputer

 Policy
 Policy

Interactive User
Management

High Throughput
Computing

Management
Network
Model

Wake On
LAN

 Resubmission
Policy

 Scheduling
Policy

 Resource
Policy

Checkpointing
Policy

Queueing
Policy

Policy

 Policy

Resource Metrics

Interactive User
Model

HTC User
Model

User
Metrics

High Throughput
Computing

Metrics Policy Policy

 Policy

WOL
Policy

 Dedicated
Policy

 Suspension
Policy

Migration
Policy

Selection
Mechanism

Policy

Figure 6.3: Conceptual architecture for HTC-Sim

The original conceptual architecture for HTC-Sim exhibited in [78]. The conceptual ar-

chitecture has been extended to perform job live migration as illustrated in Figure 6.3.

The unshaded boxes within the figure show a distinct service within the simulation

and the metric collection points are represented by the shaded boxes. Hollow arrows

represent the information flow to the metrics collectors while the information flow be-

tween services is represented by solid arrows. Also, the services within the architecture

are implemented to provide the common actions of the service which can be specified

to a particular realisation by a “pluggable” extension interface – the plugin “Policy”

element.

In Figure 6.3, we add the pluggable Migration policy to the original HTC-Sim architec-

ture. The pluggable Migration policy is a Java class that specifies when and which job

to migrate. The Selection Mechanism class handles the computer reservations when

the migration is needed, and the pluggable policy specifies which computer to select

from the HTCondor pool.

- 90 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

6.2.3 Migration Model

The simulator requires four files in order to perform. The first file contains the poli-

cies configurations which needs to be evaluated by the simulation. The trace log of

HTCondor workloads is included in the second file. The workload records specify the

submission time of the jobs, their duration, and their memory usage at the time of

completion. The third file has the trace log of user login to computers and logout from

computers, in addition, the fourth file contains the specifications of computers.

Job Running Job FinishedJob Queued Allocation

Checkpointing
Job Removed

Suspended

Eviction

Eviction

Interactive
user arrival

Interactive
user departure

Completion

Removal
Eviction

Interactive
user arrival

Removal

Removal

Removal

Migrating

Removal

Eviction

Completion

Figure 6.4: Job state transition diagram with migration state.

The original state transition diagram for a single job in HTC-Sim has been presented

in [78]. The HTCondor job enters the queue when it is submitted by a user and then

waits to be allocated on a machine. During its runtime, the job might be interrupted by

interactive users. As a result, the job gets suspended for a while or evicted immediately.

The task can also regularly checkpoint during its execution time. Furthermore, a

system administrator or the owner of the job may manually remove the job at any

state.

In Figure 6.4, we add the Migration state to the initial workload state diagram. The

migration of the workload can occur at anytime of its execution time. Additionally,

migration policies manage the migration process by determining which job, when,

- 91 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

and where to migrate. Also, live migration allows jobs to continue executing while

migration is taking place. Moreover, we assume the completion of the job might

happen during the migration along with job eviction.

Idle

HTC

Sleep

Wake

Sleep

Task
allocation

Task
de-allocation

User

Interactive
user arrival

Interactive
user departure

HTC + User

Task allocation

Task
de-allocation

Interactive
user arrival

Interactive
user departure

Reserve
Reserve

Migration
cancelled

Interactive
user arrival

Task
reallocation

Figure 6.5: Computer state transition diagram with reserve state.

Figure 6.5 shows the computer state transition diagram which previously introduced

in [78]. We include the Reserve state in it where computer enters when it is selected

as a target host for a migrated job. When the job starts transferring from the source

host to the target host, the computer enters the HTC state. Furthermore, the Reserve

state changes to the User state if an interactive user starts using it. Also, the reserved

computer begins idle when the migration is cancelled. When a machine is in a Sleep

state, it is powered-down except the RAM. In this way, the machine consumes very low

energy and can be powered-up very quickly without restarting the operating system.

Unlike the machine when it is idle or reserved, it consumes more energy than the Sleep

state, but much lower than HTC, User, and HTC+User states.

6.3 Simulation scenario

In this section, we present two different techniques to perform the live migration in

Newcastle University’s HTC system. The techniques are based on our observation of

the system in order to mitigate jobs energy waste and makespan. To achieve this, the

- 92 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

system needs to prevent jobs from rejoining the queue and restarting the execution

due to jobs’ evictions.

6.3.1 Interval Migration

Figure 6.6: Flowchart of interval live migration.

In this technique, we introduce a fixed period of time during job execution to check if

the condition of migration occurs. The condition can be specified by the administrator

of the system in order to gain a better performance or save energy.

In Chapter 5, we measured the live migration time for various workload characteristics

on different VMs capacities. Also, we introduced three predictive models to predict

the time of live migration. Our results showed that some workload might take a long

- 93 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

time to migrate and some cannot be migrated during the workload execution. We

have implemented these facts into our simulation tool.

When there is a need for job migration, the system indicates whether or not the job can

be migrated. If the job cannot be migrated within a short time, the job keeps executing

on the source computer, and the system waits for the next migration interval to elapse

for rechecking. If the job takes only a short time to be migrated, the system selects

a target computer from HTC system computer pool and the process of live migration

starts on the source and target computers. However, the job might be interrupted by

an interactive user during the migration process which leads to job eviction. if a user

logins into the target computer during the migration, the migration process stops, and

the job resumes on the source computer. Nevertheless, if the job is interrupted by a

user on the source computer, the job gets evicted and rejoins the queue.

The flowchart in Figure 6.6 illustrates the method of interval migration. Where a set

of k jobs J={J1,J2,J3,..., Jk} presents in the queue. Each Ji; i ∈{1,...,k} has duration

time DT (Ji). The starts time of the job ST (Ji) is given when the job is allocated on

a host for executing. Then, the finish time FT (Ji) of the job is calculated as

FT (Ji) = ST (Ji) + DT (Ji). (6.1)

When there is an interruption, the job Ji rejoins the queue and gets a new starting

ST (Ji) as well as new finishing time FT (Ji) when it gets allocated on a host for

executing. Moreover, the queuing time can be represented as QT (Ji) for a job Ji which

represents the waiting time for a job Ji in the queue. After interval time N , when the

migration condition occurs, the job Ji starts migrating from the source computer Cs to

target computer Ct. The job migration process is expressed as Ji : (Cs,→ Ct) and the

time of migration is represented as MT (Cs → Ct). Since we are using live migration,

the job Ji is still running on a source machine Cs during the migration. Then, the

job Ji stops running on the source computer Cs and resumes executing on the target

computer Ct. The starting time of the job Ji on target machine Ct is given as

STt(Ji) = STs(Ji) + ETs(Ji) + MT (Ji : (Cs → Ct)). (6.2)

- 94 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

where STs(Ji) is the start time for a job Ji on the source machine Cs and ETs(Ji) is

the execution time for a job Ji on the source machine Cs before starting the migration

process.

The remaining execution time of job Ji on a target machine Ct is calculated as

ETt(Ji) = DT (Ji)− ETs(Ji)−MT (Ji : (Cs → Ct)). (6.3)

Here, the migration time MT (Cs → Ct) has been considered because the job is still

executing on the source machine Cs during the live migration process.

6.3.2 Responsive Migration

Figure 6.7: Flowchart of responsive live migration.

- 95 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

In this method, we migrate the job when an interactive user arrives while an HTC job

is running which causes job interruption as illustrated in Figure 6.7. The HTC job

and the interactive user share the same machine until the job is migrated to another

machine. However, this can affect the performance of the running applications by the

interactive user on the source machine. The interactive user will have full CPU and

memory capacities of the source machine when the job is migrated.

In this technique, when the job cannot be migrated within a short time, the job is

removed from the source machine and restart running on another machine. Also, the

job rejoins the queue when there is no target machine available in the HTC system

pool as well as when an interactive use begins working on the target computer during

the migration process. Then, the finish time of the job will be calculated according to

Equation 6.1. Furthermore, Equations 6.2 and 6.3 are used to determine the starting

time of the job on the target computer and the remaining execution time.

6.4 Simulation outcome

Our extension of the HTC-Sim simulation tool can produce outcomes that associated

with the migration process in HTC environment. The simulation provides the total

of successful migrations and failed migrations, the overall time of successful and failed

migrations, and the energy consumption of the migration process. Also, the simulation

gives the reasons for migration failures during the migration process such as user inter-

ruption on the source or the target computers and the killed jobs by the administrator

or job owner.

The presented results in this section aim to give a clear understanding of our simulation

outcomes. Here, we demonstrate the migration interval and the migration responsive

techniques. The total submitted jobs in the simulation are 532,467, and we assumed

that not all jobs are migratable within the specified migration times. We have used

migration proportion value to determine the percentage of workload which can be

migrated. Also, we have used the random policy as a baseline to validate our extension

to HTS-Sim. The policy selects the jobs randomly in order to migrate them as well

as the selection of target computers. Furthermore, we have not introduced any policy

- 96 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

or algorithm to manage the migration process such as when to migrate, which job

to migrate, and where to migrate. However, our tool can easily adapt policies and

algorithms to reduce system’s energy consumption and jobs’ makespans. Section 6.4.1

represents the migration interval technique outcomes while Section 6.4.2 expresses the

migration responsive results.

6.4.1 Interval Migration

Based on our observations of the VM live experiment presented in Chapter 4 and

Chapter 5, we assumed that all the jobs cannot be migratable within the time frame

of the running workload (termed as non-migratable jobs). As a result, we have added

a migration proportion parameter into our simulation to limit the number of jobs that

can be migrated.

Figure 6.8 shows the results of successful migration with different migration durations

and intervals where the migration proportion value is 50%. The proportion value

limits the number of jobs that can be migrated to 266,233. The figure presents the

total number of successful job migrations, overall jobs migrations time, and the energy

consumption that jobs consumed during the migration process. We see significant

reductions in the results when the interval value increases. If the interval time occurs

during the job execution time, the system checks its migration policies and starts

the migration process if needed. Consequently, a short-running job might have fewer

migration attempts than a long-running job which leads to decreases in migration

energy consumption and time. Thus, it is crucial to determine when to migrate as well

as the reason for migration to avoid inefficient migration.

We acknowledge a significant relation between the migration time and the energy

consumption of the migration process. When a job takes a long time to be migrated,

it consumes more energy. Furthermore, we see this as an existing problem for many

VM consolidation techniques where the energy consumption of migration process is

not considered. To get over this problem, a policy could be developed, leveraging our

observations in chapter 5, to selectively migrate jobs based on estimated runtime and

migration time. In doing so, the policy could curtail the costs of migrating jobs, and

achieve an overall benefit for the system.

- 97 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

To
ta

l S
uc

ce
ss

fu
l M

ig
ra

tio
n

(h
ou

rs
)

Migration Interval 15 30 60

0

100000

200000

300000

400000

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
tio

n
Ti

m
e

(h
ou

rs
)

Migration Interval 15 30 60

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
tio

n
En

er
gy

 in
 k

W
h

Migration Interval 15 30 60

Figure 6.8: Total migrations, overall migrations time, and overall energy consumption
of successful migrations with different migration durations and intervals.

- 98 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

0

25000

50000

75000

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

To
ta

l o
f I

nt
er

ru
pt

io
ns

Migration Interval 15 30 60

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
tio

n
Ti

m
e

W
as

te
 (h

ou
rs

)

Migration Interval 15 30 60

0

300

600

900

1200

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
tio

n
En

er
gy

 W
as

te
 in

 k
W

h

Migration Interval 15 30 60

Figure 6.9: Total number of interruptions during migration, overall migrations waste
time, and overall waste energy of failed migrations with different migration durations
and intervals

- 99 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

Figure 6.9 demonstrates the relative impact of jobs interruptions during the migration

process where a user logs in to the source or target computer during the migration.

We observe increasing in the number of jobs’ interruptions when the migration time

of the job increases. As a result, the energy waste of jobs with a long migration time

is much higher than jobs associated with short migration time.

Similarly, we observe an increase in energy waste of the removed jobs during the

migration when the migration time is long. Thus, it worth to check the opening and

closing times of student clusters and design policies according to that to decrease the

number of users interruption.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

To
ta

l I
nt

er
ru

pt
io

ns
 (%

)

Migration Interval 15 30 60

Figure 6.10: Proportion of migrations interruption.

Furthermore, the interactive user can login into the source computer or target com-

puter at any time during the migration process regardless of the migration interval

value. Since we are using random migrations and random target computers to host

the migrated job, we cannot predict when the users’ login into the system will occur.

Consequently, the chance of interruptions compares to the number of migrations almost

the same between the different migration interval values as illustrated in Figure 6.10.

The figure shows the proportion of migrations interrupted in the system. Clearly, the

number of interactive users in the system makes an impact on migration success, but

there is no immediate link between the interval values and the users’ interruptions. As

a result, it is crucial to determine when and where to migrate to avoid unsuccessful

- 100 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

migrations.

- 101 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

0

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

To
ta

l f
in

is
he

d
jo

b
du

rin
g

m
ig

ra
tio

n

Migration Interval 15 30 60

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
tio

n
Ti

m
e

W
as

te
 (h

ou
rs

)

Migration Interval 15 30 60

0

250

500

750

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
tio

n
En

er
gy

 W
as

te
 in

 k
W

h

Migration Interval 15 30 60

Figure 6.11: Total number of jobs finished during migration, overall migrations waste
time, and overall waste energy of failed migrations with different migration durations
and intervals

- 102 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

In Figure 6.11, we explore the impact of the finishing jobs during the migration process.

In this situation, the jobs migrations are considered to be worthless migrations. It

increases the overall energy consumption of the system. Also, it reduces the number

of available machines in the system pool. As a consequence, the jobs might be queued

for a long time waiting for an idle computer to become available.

Furthermore, number of migration attempts failed due to an unavailable machine for

job migration. Our simulation can count these failed attempts during its runtime which

gives us the opportunity to understand how many resources are usually available for

migration when it is needed.

6.4.2 Responsive Migration

Here, we show the response migration method outcomes with different migration pro-

portion values. We do not consider any interval migration value since the migration

occurs when the user logs into a computer that is executing a Condor job. However,

user interruption might occur if the user logs into the target computer during the

migration process. As a result, the migration fails, and the job gets evicted from the

source computer and rejoins the queue.

Figure 6.12 presents the results of successful responsive migrations with various mi-

gration durations and migration proportions. The figure shows the total number of

successful job migrations, overall job migration time, and the energy consumption that

jobs utilised while migrating. The results illustrate a notable reduction in the total

number of successful migrations when the migration proportion is associated with a

small value. Hence, the total attempted migrations are low when the value of the

proportion migration is small.

In addition, the time of migration has a significant impact on the total of successful

responsive migrations. It is most likely for a job to be interrupted by use in the

target computer when a job takes more time to be migrated. During our analysis,

we discovered that up to 15.7% of responsive migration attempts could be interrupted

by users when the time of migration is 10 minutes. Thus, it is essential to determine

where to migrate jobs in order to prevent an inefficient migration.

- 103 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

To
ta

l S
u

cc
es

sf
u

l M
ig

ra
ti

o
n

 (
th

o
u

sa
n

d
)

Migration Proportion 0.25 0.5 0.75 1

0

2000

4000

6000

8000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
ti

o
n

 T
im

e
(h

o
u

rs
)

Migration Proportion 0.25 0.5 0.75 1

0

500

1000

1500

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
tio

n
E

ne
rg

y
in

 k
W

h

Migration Proportion 0.25 0.5 0.75 1

Figure 6.12: Total migrations, overall migrations time, and overall energy consumption
of successful responsive migrations with different migration durations and proportions.

- 104 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

Furthermore, the energy consumption of the migration process increases when the time

of migration increases. Consequently, the trade-off between the need for migration and

the time of migration needs to be considered to achieve a beneficial migration.

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

R
e

d
u

c
ti

o
n

 o
f

J
o

b
s

 I
n

te
rr

u
p

ti
o

n
s

 (
%

)

Migration Proportion 0.25 0.5 0.75 1

Figure 6.13: Reduction of total interruptions by responsive migration.

In Figure 6.13, we compare the number of interruptions of the system with responsive

migrations against a baseline where we do not migrate. The figure exhibits a significant

percentage decrease in evicted jobs by user interruptions when all jobs are migratable.

However, the simulation shows that the system could decrease about 25% of its evicted

job if the only number of migratable jobs is 133,117. Moreover, when the time of

migration increases, the reduction of job interruptions decreases.

In Figure 6.14, we compare the energy interruptions waste of the system with respon-

sive migrations against a baseline where we do not migrate. The figure shows the

energy interruptions drop of each migration duration for each migration proportion. If

all jobs can be migrated when the user interruption occurs, the system could save up to

75% of its energy waste on the baseline where there is no migration occurs. However,

the energy saving that gains by migrating the jobs when a user interrupts could be

significantly decreased if a 25% of the submitted jobs can be migrated. Moreover, the

responsive migration could increase the job execution energy consumption by 2.9%

when the proportion migration value is 1 and the time of migration is 10 minutes.

When the job rejoins the queue due to an interruption, the job spends time on the

- 105 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)R
e
d

u
c
ti

o
n

 o
f

J
o

b
s
 I
n

te
rr

u
p

ti
o

n
s
 W

a
s
te

d
 E

n
e
rg

y
 (

%
) Migration Proportion 0.25 0.5 0.75 1

Figure 6.14: Overall interruptions energy saved by responsive migration.

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

R
e
d

u
c
ti

o
n

 o
f

O
v
e
rh

e
a
d

 (
%

)

Migration Proportion 0.25 0.5 0.75 1

Figure 6.15: Reduction of overhead due to responsive migration.

queue waiting to be reallocated to a new machine. Also, the job loses its progress

and starts re-executing when it is allocated to the new machine. As a result, the jobs

makespan on the system increases which rise the energy consumption and overhead

of the system. In Figure 6.15, we expose the impact of responsive live migration on

the overhead. The responsive live migration could be reduced by approximately 60%

when the time of migration is 15 seconds and all jobs considered to be migratable.

Consequently, there will be more available resources to allocate new jobs as well as

- 106 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

the jobs that cannot be migrated which lead to increase the overall performance of the

system.

6.5 Conclusions

This chapter has presented the virtualisation and live migration in HTC systems by

extending an existing simulation tool. This allows researchers to evaluate policies and

algorithms in order to reduce the energy consumption and jobs makespan by using live

migration techniques in HTC environment. A simple random policy has validated our

outcomes of the tool. The tool can calculate the overall migration time, the overall

energy consumption and waste, and the number of failed migration due to interactive

users interruptions or removed jobs. Also, the simulation can count the number of

migration attempts when there is not host for migration. Moreover, our results showed

that the energy consumption significantly increases when the migration process takes

a long time to be finished. We demonstrate that our responsive migration could reduce

the wasted energy by 75%.

Through this chapter, we have suggested some approaches to mitigate the energy waste

of live migration in a large-scale computing environment. In the next chapter, we will

use the responsive migration as a fault-tolerance mechanism. Also, we will introduce

policies to determine the selection of target computers when the migration is needed.

The policies show the trade-off between energy and performance and aim to reduce

energy consumption and the makespan of jobs by avoiding job interruptions.

- 107 -

Chapter 6: Simulation of VM Live Migration in HTC Environments

- 108 -

7
Responsive Live Migration in

HTC Environments

Contents
7.1 Introduction . 110

7.2 Policies . 111

7.3 Results . 113

7.3.1 Policy performance . 114

7.3.2 System improvement . 122

7.4 Discussion . 129

7.4.1 Placement . 129

7.4.2 When to migrate . 131

7.4.3 Which job to migrate . 131

7.4.4 Where to migrate . 131

7.5 Conclusions . 131

- 109 -

Chapter 7: Responsive Live Migration in HTC Environments

Summary

In this chapter, we use the responsive live migration as a fault-tolerant mechanism to

prevent the job from been evicted and restarted in the event of interactive user inter-

ruption. We demonstrate the performance and energy impact of our responsive live

migration approach in high throughput computing (HTC) systems with various migra-

tion policies. The proposed policies focus on which computer to select for migration

from HTC resource pool. We extend our HTC-Sim simulation framework previously

introduced in Chapter 6 to support six different migration policies. Moreover, we

compare the results between the policies as well as the system where migration is not

considered.

7.1 Introduction

High Throughput Computing (HTC) systems are commonly used to execute a large

number of tasks associated with long running time. HTC is a fundamental approach

to fully use the available idle resources within an institution or a company. As a

consequence, faults might occur at any point in the system. Especially, when the

resources of the system are considered to be multi-user resources included of faculty

and student machines, where tasks could be interrupted during their execution by

users login to start using the machines. As a result, the tasks get evicted from the

resource and re-execute on another machine. Such interruptions lead to increase the

energy consumption of the system as well as the makespan of the task.

The reactive fault-tolerance techniques such as Checkpointing are commonly used in

HTC environments to handle the event of a failure. However, checkpointing could

significantly increase the overhead of the HTC system. The Los Alamos National

Lab (LANL) study [136] showed that the overhead of the checkpointing in petaflop

systems could extend a 100-hour job without failure to 151 hours. Also, it is difficult

to avoid unnecessary snapshots of the task which increase the latency and the energy

computation of the task.

From Figure 6.1 and Figure 6.2, we can observe a high probability for a job to be

- 110 -

Chapter 7: Responsive Live Migration in HTC Environments

interrupted by an interactive user. However, it is hard to predict when a job could

be submitted or an interactive could login into a computer. For that reason, we

propose a mechanism in the event of user job interruption to prevent jobs from being

evicted and rejoin the queue. To achieve this, we migrate the interrupted jobs to other

computers for resuming their execution. In this way, we can avoid the large latency

which may cause by the traditional reactive fault-tolerance techniques as well as the

wrong prediction that might occur by proactive fault-tolerance techniques.

In this chapter, we use the responsive migration method mentioned on Chapter 6 as

a responsive fault-tolerance mechanism to handle failures that caused by user inter-

ruption. We propose migration policies to reduce the number of jobs failure by user

interruption. Accordingly, the system resources will be utilised efficiently, and their

wasted energy will be much less.

The policies focus on which resource to select in order to migrate the interrupted job.

We investigate the impact of each policy on the performance and energy by using

HTC-Sim simulation. Also, we compare the migration policies with the system where

the migration is not considered.

The rest of this chapter is structured as follows. Section 7.2 introduce the proposed

policies. We illustrate the results of the simulation in Section 7.3. We provide a dis-

cussion to the HTC administrator to take them into account when they use migration

as a fault-tolerance mechanism in Section 7.4 before concluding in Section 7.5.

7.2 Policies

In this section, we introduce and discuss six live migration policies which can determine

the decision of selecting a target computer for job migration. For each policy, we

explain how it works and how we would expect the performance and energy of the

system to be affected.

When the job is interrupted by an interactive user, the policies first try to find an idle

computer from the HTC resource pool. If an idle computer is found, the computer

will be reserved, and the job migration process begins. If there is no idle computer in

- 111 -

Chapter 7: Responsive Live Migration in HTC Environments

the HTC resource pool, the policies will wake up a sleeping computer and reserve it

for the migration process.

In addition, the HTC resource pool has a limited number of resources. At some point,

the resources can be fully utilised by interactive users and HTC jobs. As a result,

there will be no machine to reserve when job migration is needed. In such a situation,

the job will be removed from the source computer and will rejoin the queue.

Random: is a simple policy which chooses the target computer randomly from the

HTC resource pool. We use this policy as a baseline against which the competitiveness

of our other proposed policies might be assessed.

Prefer closed clusters: this policy targets closed cluster for interactive users. Each

HTC resource is allocated within a cluster, and each cluster has a pre-defined opening

and closing times. When there is a need for migration, the system sorts closed clusters

in descending order based on their opening time. Then, the system selects a computer

from a cluster which opens last for users. Furthermore, the migration might occur

while all clusters are opened to users. In this situation, the system sorts the opened

clusters in ascending order based on their closing time. Then, a computer will be

selected from a cluster that is associated with the earliest closing time.

Migrating interrupted jobs into a closed cluster or cluster that is most likely to be

closed soon will reduce the chances from getting the job interrupted by an interactive

user during or after migration.

Prefer closed clusters quiet: some clusters within the university have the same

opening and closing times. When there is no computer available in a closed cluster

for migration, the system will select a computer from one of the opened clusters as

mentioned in the previous policy. The opened clusters which have identical opening

and closing times might vary in the number of available machines. As a result, the

system calculates the percentage of the available computers within each cluster. Then,

a computer will be selected from the cluster that has the highest availability percentage

value.

Choosing a computer from the quietest opened cluster when there is no closed cluster

might enhance the performance of the previous policy.

- 112 -

Chapter 7: Responsive Live Migration in HTC Environments

Most quiet cluster: this policy does not take into consideration the opening and

closing time of the clusters. The system calculates the percentage of the available

machines within each cluster and selects a computer from the cluster that is associated

with the highest resource availability percentage value. In this way, the system will be

allowed choosing a computer from the unbusy opened clusters event if they have the

latest closing time.

In the university, some clusters are open most of the day for public users. However,

these clusters could be not used by the interactive users especially at late night or

during holidays. As a result, this policy targets these clusters, and the job might have

a high possibility of not been interpreted during or after migration.

Most quiet cluster eco: some clusters within the university cloud have the pro-

portion of available machine at the time of migration, but their energy consumption

characteristics differ. Accordingly, we have optimised the previous policy to select a

computer from the most energy efficient cluster when the clusters have an identical

availability percentage value.

Enhancing the previous policy to be more energy efficient could reduce the energy

consumption of the system. Also, it will not impact the improvement on performance

which could be gained by the previous.

Most energy efficient: this policy targets the most energy-efficient computers of

HTC resource pool regardless of the opening and closing times for the clusters as well

as the resources availability percentage of the clusters.

Selection of the most energy-efficient computers for migration could save energy, but

cloud impacts the overall performance of the system, especially if the energy-efficient

clusters are the busiest clusters when migration is needed.

7.3 Results

In this section, we evaluate the previously specified policies. We compare the perfor-

mance and energy impacts of each policy. Also, we explore the improvement of the

responsive migration policies on the performance and energy against a baseline where

- 113 -

Chapter 7: Responsive Live Migration in HTC Environments

the responsive migration is not considered. Section 7.3.1 exhibits the migration pro-

cess results of each policy. Section 7.3.2 shows the improvement of the system on the

performance and energy when responsive migration is employed.

7.3.1 Policy performance

Here, we discuss the results of the migration process for each policy. We show how the

number of migrations, the overall time of migrations, and overall energy consumption

of migrations are varied between each policy. Also, we do not show the impacts of

policies on the overall performance and energy of the system. In the next section, we

present how the migration policies improve the overall performance and reduces the

energy consumption of the system.

7.3.1.1 Number of migrations

62

66

70

74

78

82

86

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

T
o

ta
l

M
ig

ra
ti

o
n

s
 (

th
o

u
s

a
n

d
)

Migration Policy
MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random

Figure 7.1: Total migrations with various migration time

As we explained in Section 6.3.2, migration occurs when an interactive user arrives

into a machine while it is executing an HTC job. The proposed policies vary on

determining the target computer for migration, which leads to a significant difference

- 114 -

Chapter 7: Responsive Live Migration in HTC Environments

in the number of migrations as illustrated in Figure 7.1. The figure shows the number

of total migrations of each policy with different migration times.

The Random policy has the highest number of migrations where the MostQuiet and

MostQuietEco have the lowest migration numbers. The Random policy might select

a target computer in a busy cluster for migration where the job is most likely to be

interrupted again during or after the migration process. As the result, the number

of migrations per job increase which influence the overall total migrations of the pol-

icy. However, migrating the interrupted job to a closed or a quiet cluster reduce the

possibility of the job being interrupted by an interactive user.

Moreover, as the migration time for a job increases, the number of migrations increases

as well. That is because of the high probability for an interactive user to login into

the target computer during the migration process, which leads to job eviction. Inter-

estingly, the number of migrations in the Random policy reduces when the time of

migration increases. The reason behind this is the system resources at some point are

fully utilised when new job interruptions occur, which leads to job evictions rather

than job migrations.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

T
o

ta
l

In
te

rr
u

p
ti

o
n

s
 (

%
)

Migration Policy
MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random

Figure 7.2: Proportion of interrupted migrations

- 115 -

Chapter 7: Responsive Live Migration in HTC Environments

During the migration process, an interactive user can arrive into the target computer.

As a consequence, the migration fails and the job rejoins the queue for re-execution

on another computer. Figure 7.2 presents the proportion of interrupted migrations by

interactive users. We acknowledge a significant relation between the migration time

and the number of interruptions as it is most likely for an interactive user to interrupt

the migration process when the migration takes a long time to finish. Also, there is a

clear decrease in the interrupted jobs during the migration process, when the selected

resources are within quiet clusters.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

T
o

ta
l

fi
n

is
h

e
d

 j
o

b
s

 d
u

ri
n

g
 m

ig
ra

ti
o

n
 (

%
)

Migration Policy
MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random

Figure 7.3: Proportion of finished jobs during migration

In our system, the job duration is not predictable. The job might finish at any point

and provide the outcomes to its owner. As a result, the job might finish during the

migration. Figure 7.3 shows the proportion of finished jobs during migration for each

policy. There are no significant differences between the number of the finished jobs

during the migration when the migration time is short. The results, as shown in

Figure 7.3, indicate that the MostQuiet and MostQuietEco have a higher finished job

during migration compared to other policies. Because, the number of evictions per job

of these policies is less than the other policies.

- 116 -

Chapter 7: Responsive Live Migration in HTC Environments

Similarly, the interactive user behaviour is unpredictable. The interactive user might

leave the interrupted computer during the migration. In this situation, the system

cancels the migration, and the job resumes its execution on the source computer. It is

apparent from our results that very few cancelled migrations occur when the time of

migration is 15 seconds. However, when the time of migration increases, the cancelled

migrations become significantly noticeable. The proportion of cancelled migrations for

the policies is between 19% to 22% when the migration process takes 10 minutes to

complete.

It is unnecessary to start the migration process when the migration time is higher than

the execution time of a job. Also, the user might login into a computer and use it for

a short time which leads to useless migration. To avoid these kinds of unnecessary

migrations, the system needs a proactive mechanism to predict the jobs duration and

users behaviour which we will consider it in the future work.

7.3.1.2 Overall migration time

0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v

e
ra

ll
 M

ig
ra

ti
o

n
 T

im
e

 (
h

o
u

rs
)

Migration Policy
MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random

Figure 7.4: Overall migration time

The overall migration time of each policy in the system is based on the total migrations

- 117 -

Chapter 7: Responsive Live Migration in HTC Environments

as well as the duration of the migration process. If a policy is associated with large

number of migrations, the policy will have a high overall migration time. In Figure 7.4,

we present the overall migration time for each policy. As it is expected the overall

migration time for the Random policy is higher than the other policy. Also, the figure

strongly presents the impact of the long migration duration on the overall migration

time of the system.

The overall migration time of each policy comprises the time of interrupted migrations

by the interactive users as well which we call it as migration wasted time due to user

interruptions. The migration wasted time is notable when the migration process takes

a long time to finish. When a task has been migrating for a long time and an interactive

user login only a few seconds before the task finishes migrating, the migration of the

task fails and the wasted migration time will increase crucially.

Based on our observation, the migration wasted time is significant when the migration

process takes 10 minutes to finish. The migration wasted time is the highest in the

Random policy, and it is about 8% of overall migration time where it is the lowest in

MostQuiet and MostQuietEco, and it is about 4%.

7.3.1.3 Overall migration energy

The total migration energy of each policy differs due to the number of migrations,

migration time, and the energy characteristics of the physical machines which are

shown in Table 6.1. The migration energy is the energy which consumed by the source

and the target computers during the migration process.

In Figure 7.5, we show the overall migration energy for each policy and migration

time. Also, the figure illustrates the link between the migration time and the energy

consumption as well as the impact of the total migrations on the migration energy.

When the job migration takes a long time, the energy consumption of job migration

increases.

Interestingly, there is no direct link between the number of migrations and the overall

migration energy consumption. As we can see in the figure, the MostEnergyEfficient

policy is associated with a high number of migrations as compared to the MostQuiet

- 118 -

Chapter 7: Responsive Live Migration in HTC Environments

and MostQuietEco policies. However, their migration energy consumption is similar

and even slightly better than the MostEnergyEfficient policy when migration time is

10 minutes.

0.25 1 5 10

65 70 75 80 85 65 70 75 80 85 65 70 75 80 85 65 70 75 80 85
0

200

400

600

800

1000

1200

1400

1600

Total Migrations (thousand)

O
ve

ra
ll

M
ig

ra
ti

o
n

 E
n

er
g

y
in

 k
W

h

MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random
 Migration Policy

Figure 7.5: Overall migration energy of each policy compared with total migrations
and various migration times (0.25, 1, 5 ,10) in minutes as shown in the panels

The reason behind that is the variation of the energy characteristics between the phys-

ical machines. For example, the MostEnergyEfficient policy selects the most energy-

efficient computer when there is a need for migration. As a result, the overall energy

consumption of the MostEnergyEfficient migration policy is less than other policies

regardless of the number of migrations. However, the performance of the MostEn-

ergyEfficient is not the best compared to other policies as shown in Figure 7.5. The

MostQuiet and MostQuietEco policies are expected to select the High End and Legacy

computers as defined in Table 6.1. This is due to the fact that these kinds of computer

are located within the quiet clusters which are not frequently used by students.

The trade-off between the energy saving and performance improvement can be clearly

observed based on our discussion of Figure 7.4 and Figure 7.5. It is critical to find a

- 119 -

Chapter 7: Responsive Live Migration in HTC Environments

balance between the performance and energy of the system. As a result, we apply the

MostQuietEco policy to address this need.

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v

e
ra

ll
 F

a
il

e
d

 M
ig

ra
ti

o
n

 E
n

e
rg

y
 b

y
 U

s
e

r
In

te
rr

u
p

ti
o

n
s

 i
n

 k
W

h
 (

%
)

Migration Policy
MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random

Figure 7.6: Migration energy wasted by users interruption

We have plotted the percentage of the migration energy waste due to the user interrup-

tions on the target computer during migration as shown in Figure 7.6. The migration

energy waste is essential when the time of migration is long. Also, migrating the job

into closed or quiet cluster increases the percentage of successful migration and the

system performs effectively and efficiently.

7.3.1.4 Number of migrations per job

Here, we present the impact of each policy on the number of migrations per job.

Figure 7.7 shows the empirical cumulative distribution function (ECDF) of the total

migrations per job for each policy with different migration time. It is clear that the

number of migrations per job is less when the MOSTQuiet and MOSTQuietEco policies

are used. However, for all policies, when the migration process takes a long time, the

number of migrations per job increase as well. Also, the figure exhibits that few jobs

within each policy are associated with a large number of migrations.

- 120 -

Chapter 7: Responsive Live Migration in HTC Environments

0.25 1 5 10

1 10 100 1 10 100 1 10 100 1 10 100

0.00

0.25

0.50

0.75

1.00

Number of Migrations Per Job

E
C

D
F

Migration Policy
MOSTEnergyEfficient

MOSTQuiet

MOSTQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

RANDOM

Figure 7.7: Empirical cumulative distribution function of migration numbers per job
of each policy with various migration times (0.25, 1, 5 ,10) in minutes as shown in the
panels

MOSTEnergyEfficient MOSTQuiet MOSTQuietEco PreferClosedClustersPreferClosedClustersQuiet RANDOM

1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100

0.00

0.25

0.50

0.75

1.00

Number of Migrations Per Job

E
C

D
F

Migration Time 0.25 1 5 10

Figure 7.8: Empirical cumulative distribution function of migration numbers per job
of each migration time with various policies shown in the panels

- 121 -

Chapter 7: Responsive Live Migration in HTC Environments

In addition, we plot another ECDF where each facet is the policy, and the different lines

are the migration times to understand those trends better as illustrated in Figure 7.8.

The time of migration within some policies such as Random and MostEnergyEffient

has no impact on the number of migrations per job. However, on the other policies,

the number of migration per job decreases when the migration process takes a short

time to complete.

7.3.2 System improvement

Here, we compare the system with responsive migrations against a baseline where we

do not migrate. We show the impact of each responsive migration policy on the overall

performance and energy.

7.3.2.1 Number of evictions

82

84

86

88

90

92

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

R
e

d
u

c
ti

o
n

 o
f

J
o

b
 E

v
ic

ti
o

n
s

 D
u

e
 t

o
 U

s
e

r
In

te
rr

u
p

ti
o

n
s

 (
%

)

Migration Policy
MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random

Figure 7.9: Reduction of total interrupted job evictions

The primary aim of this chapter is to reduce the number of evicted jobs in the HTC

systems where the job rejoins the queue for re-execution. The total evicted jobs due to

- 122 -

Chapter 7: Responsive Live Migration in HTC Environments

users interruption is 102,165 evictions where the responsive migration is not employed

as a fault-tolerance mechanism.

As Figure 7.9 shows, the responsive migration can approximately reduce the number

of job evictions by 92% when the time of migration is 15 seconds. Also, no significant

differences were found in the number of job evictions between the policies when the

migration duration is 15 seconds.

Moreover, the figure exposes a lower reduction of job evictions when the time of migra-

tion increases due to the user interruptions on the target computer during migration.

As the figure shows, the MostEnergyEfficient policy has more job evictions than other

policies except for Random policy. Because the most energy efficient machines in

the Newcastle University are allocated within busy clusters such as the library which

makes the job most likely to be interrupted during migration.

0.25 1 5 10

65 70 75 80 85 65 70 75 80 85 65 70 75 80 85 65 70 75 80 85

8

9

10

11

12

13

14

15

16

17

18

Total Migrations (thousand)

To
ta

l E
vi

ct
io

n
s

(t
h

o
u

sa
n

d
)

MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random
 Migration Policy

Figure 7.10: Total evictions of each policy compared with total migrations and various
migration times (0.25, 1, 5 ,10) in minutes as shown in the panels

Interestingly, for each policy, there is a significant difference between the total migra-

tions compare to the number of evictions. Figure 7.10 present the link between them.

- 123 -

Chapter 7: Responsive Live Migration in HTC Environments

When the time of migration is 15 seconds, the variation on the number of job evictions

is small. However, the total migrations is crucially varied between the policies. The

number of migrations per job increases when the job is migrated into a busy cluster,

which raises the possibility of getting it interrupted again by users.

7.3.2.2 Overhead

We calculate the overhead for jobs within the system as given by the difference between

the execution time and the amount of time the job spend to finish in the system. In

the event of job eviction, the job loses its progress and starts re-executing when it is

allocated to a new machine. The job might spend a long time in the queue while it is

waiting for an idle computer to become available. As a result, the job’s makespan on

the system rises which increases the energy consumption and overall overhead in the

system. Figure 7.11 exhibits the impact of each responsive migration policy on the

overhead.

51

54

57

60

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

R
e

d
u

c
ti

o
n

 o
f

J
o

b
 O

v
e

rh
e

a
d

 (
%

)

Migration Policy
MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random

Figure 7.11: Reduction of overhead

The figure shows no high differences between the policies on the overhead when the

- 124 -

Chapter 7: Responsive Live Migration in HTC Environments

time of migration is 15 seconds. However, when the time of migration increases,

the overhead increases as well. Comparing the overhead of each policy when the

time of migration increases, it can be seen that the overhead of the MostQuiet and

MostQuietEco is less compared with other policies.

In addition, it is notable that the reduction on the overhead does not vary significantly

between the policies when the migration process takes a short time. However, if we

compare the number of migrations across the policies, we will find a notable variation

between the policies as shown in Figure 7.12.

0.25 1 5 10

65 70 75 80 85 65 70 75 80 85 65 70 75 80 85 65 70 75 80 85

31600

32200

32800

33400

34000

34600

35200

35800

36400

37000

37600

38200

38800

Total Migrations (thousand)

Jo
b

s
ov

er
h

ea
d

 (
h

o
u

rs
)

MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random
 Migration Policy

Figure 7.12: Jobs overhead of each policy compared with total migrations and various
migration times (0.25, 1, 5, 10) in minutes as shown in the panels

7.3.2.3 Energy

When the responsive migration is not used as a fault-tolerance mechanism, the en-

ergy waste of job evictions due to user interruptions is 14,442 kWh. The responsive

migration policies could approximately save 75% of the evicted jobs wasted energy

due to user interruptions if all jobs are migratable and the time of migration is 15

- 125 -

Chapter 7: Responsive Live Migration in HTC Environments

seconds as shown in Figure 7.13. Also, there were no significant differences between

the MostQuiet and MostQuietEco on the saved of evicted jobs wasted energy due to

user interruptions.

Furthermore, our simulation results showed that the policies might save approximately

38% of the evicted jobs wasted energy due to user interruptions if 50% of jobs are

migratable and the time of migration is 15 seconds.

60

65

70

75

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

R
ed

u
ct

io
n

 o
f

Jo
b

 In
te

rr
u

p
ti

o
n

s
W

as
te

d
 E

n
er

g
y

(%
)

MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random
 Migration Policy

Figure 7.13: Overall interruptions energy saved by responsive migration

In addition, we have explored the impact of each policy on the jobs energy consumption

as illustrated in Figure 7.14. To obtain the energy consumption values of the computer

we used the information mentioned on Table 6.1. These then multiplied by the amount

of time which a job spent executing in the system to calculate the total jobs energy

consumption under a given policy. Here we assumed that the load level is 100% for

jobs execution.

Figure 7.14 presents the jobs total energy migrations of each policy and each migration

time. Interestingly, for those policies aimed to select quiet clusters, their jobs energy

- 126 -

Chapter 7: Responsive Live Migration in HTC Environments

consumption are higher than PreferClosedClusters and MostEnergyEfficient policies.

The reason behind that is the quiet clusters within the university do not contain

energy efficient machines. The busiest clusters within the university such as libraries

have the most energy efficient machine. For that reason, the MostEnergyEfficient

policy associated with a high number of migrations. Also, the figure shows that the

PreferClosedClusters policy consumes slightly less energy than MostEnergyEfficient

policy due to the number of migration which is much less in the PreferClosedClusters

policy.

0.25 1 5 10

65 70 75 80 85 65 70 75 80 85 65 70 75 80 85 65 70 75 80 85
36200

36400

36600

36800

37000

37200

37400

37600

37800

38000

38200

Total Migrations (thousand)

Jo
b

s
E

n
er

g
y

co
n

su
m

p
ti

o
n

 in
 K

W
h

MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random
 Migration Policy

Figure 7.14: Jobs energy consumption of each policy compared with total migrations
and various migration times (0.25, 1, 5, 10) in minutes as shown in the panels

7.3.2.4 Killed jobs

In the system, the job can be killed by its owner or the administrator of the system.

The user could decide to stop the job from running at any time during its execution.

Also, some of the assigned jobs have an error which needs to be removed by the

administrator. The killed jobs might run for a long time in the system before they

- 127 -

Chapter 7: Responsive Live Migration in HTC Environments

get killed and removed. As a result, these jobs increase the utilisation and the energy

consumption of the system. Also, our responsive migration could migrate them many

times before they get killed.

In general, when we migrate the jobs in the event of user interruption, the jobs are

most unlikely to rejoin the queue for re-submission. As a consequence, the system

resources will be utilised efficiently. However, this would be a problem when the killed

jobs by users keep running for a long time. The user interruptions will occur, and our

responsive migration mechanism will keep targeting these jobs for migration. That

will increase the resource utilisation as well as energy consumption.

16

18

20

22

0 1 2 3 4 5 6 7 8 9 10
Migration Time (minutes)

In
cr

ea
se

 o
f

S
ys

te
m

 U
ti

lli
sa

ti
o

n
 b

y
K

ill
ed

 J
o

b
s

(%
)

MostEnergyEfficient

MOSTQuiet

MostQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

Random
 Migration Policy

Figure 7.15: Killed jobs resource utilisation

In Figure 7.15, we compare the utilised resources by killed jobs between responsive

migration policies and the baseline. When a policy is associated with a lower number of

evictions due to the user interruption, the resources utilisation of the system increases.

The reason behind that is the killed jobs with the policies spent less time in the queue

compared to the baseline. The system would be more effective if we can predict when

the job most likely to be killed. We will address this in the future by employing a

- 128 -

Chapter 7: Responsive Live Migration in HTC Environments

proactive migration mechanism.

BAD GOOD

0.25 1 5 10 0.25 1 5 10

0

10000

20000

30000

40000

50000

Migration Time (minutes)

T
o

ta
l

M
ig

ra
ti

o
n

s

Migration Policy
MOSTEnergyEfficient

MOSTQuiet

MOSTQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

RANDOM

Figure 7.16: Number of bad and good migrations

Figure 7.16 exposes the number of bad migrations compares to the number of good

migrations where the job is not killed after the submission. The killed jobs are asso-

ciated with a large number of migrations. When the job migrations increase in the

system, the energy consumption increases as well. To avoid this problem, we need to

predict which kind of jobs that are most likely to be killed after submission.

7.4 Discussion

In this section, we highlight some points to the administrator of an HTC system to

take them into account when they employ the responsive migration in their system as

a fault-tolerance mechanism.

7.4.1 Placement

Here, the jobs are placed on a computer randomly. It would be more efficient and

effective to place the job in a place that most unlikely to be interrupted by users.

- 129 -

Chapter 7: Responsive Live Migration in HTC Environments

Also, the administrators should consider the trade-off between energy and performance

when they place a job into a computer.

In addition, we have implemented the migration policies as placement policies. The

placement policies determine which computer to choose in order to allocate the job

that is waiting in the queue. The initial allocation of the job is critical to gain better

performance and energy efficient system.

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10

Accumulated Execution Time (minutes)

N
u

m
b

e
r

o
f

M
ig

ra
ti

o
n

s

Placement Policy
MOSTEnergyEfficient

MOSTQuiet

MOSTQuietEco

PreferClosedClusters

PreferClosedClustersQuiet

RANDOM

Figure 7.17: Number of migrations for jobs within 10 minutes of their accumulated
execution time

Figure 7.17 shows the first 10 minutes of the accumulated execution time for all jobs

within the simulation, and the first migration occurs to the jobs due to user interrup-

tions. The number of migrations increases when the job is allocated randomly. As

we explained earlier, the most energy efficient computers are allocated within busy

clusters such as the library where the job is most likely to be interrupted by a user.

We are still implementing and evaluating the placement policies to come up with a

better saving on energy.

- 130 -

Chapter 7: Responsive Live Migration in HTC Environments

7.4.2 When to migrate

In this chapter, we migrate all the interrupted jobs. However, migration is most useful

when a job has been executed for a long time. The job could be interrupted just a

few seconds after the placement which makes the cost of job migration is higher than

the cost of job eviction. Also, the administrator could take advantage of the presented

approach to do a proactive fault-tolerance where jobs can be migrated before the

opening time of clusters.

7.4.3 Which job to migrate

Some of the jobs can be killed at any point after the submission by its owner or the

system administrator as we discussed previously. The system should avoid migrating

these kinds of jobs in order to gain better performance and to save more energy.

7.4.4 Where to migrate

This is the key point that we addressed in this chapter. The selecting mechanism of

the target computer for migration could impact the energy and performance of the

system. It is critical to adopt the policy which fit the most under into particular HTC

system. As we showed before, the Most Energy Efficient policy could save energy more

than other policies, but the performance is not the best compared to other policies.

7.5 Conclusions

In this chapter, we have presented the use of live migration as a fault-tolerance mecha-

nism in HTC systems. We have discussed the methodology of our responsive migration

model. Also, we have introduced six responsive migration policies to determine the

selection of the target computer when migration is needed.

We have used a trace-driven simulation to explore the impact of the policies on the

performance and energy. All of these policies have the potential to enhance the system

overall performance and decrease the jobs overhead and energy consumption. We

demonstrated that our responsive migration could save approximately 76% of the

- 131 -

Chapter 7: Responsive Live Migration in HTC Environments

system wasted energy due to job evictions by user interruptions where migration is

not employed as a fault-tolerance mechanism.

Moreover, our results exposed the number of job evictions due to user interruption

during migration. When the time of migration increases, the number of user interrup-

tions during migration also increases. The interrupted jobs during migration rejoin

the queue for re-execution which increase the energy consumption and overhead of the

system. We demonstrated that our responsive migration could reduce the number of

job evictions approximately by 92% when it is used as a fault-tolerance mechanism.

Also, the chapter discussed the impact of responsive migration on the killed jobs. We

showed how the system could be inefficiently utilised when we migrate jobs which are

killed at later time after migration.

Finally, we provided a discussion which would assist the administrator of the HTC

system when they employ the responsive migration in their system as a fault-tolerance

mechanism.

- 132 -

8
Conclusion

Contents
8.1 Thesis Summary . 134

8.2 Limitations . 136

8.3 Future Research Directions . 136

8.3.1 VM live migration experiment 136

8.3.2 Prediction Models . 137

8.3.3 Simulation . 137

8.3.4 Fault-tolerance methods . 138

- 133 -

Chapter 8: Conclusion

Summary

This chapter provides a summary of the work which presented in this thesis. Through-

out this chapter, we discuss the limitation of this work and highlight future research

directions.

8.1 Thesis Summary

Chapter 2 gave the fundamental terminology and their discussion that we used in

this research. Also, some related work in the literature introduced and discussed in

this chapter. For instance, we mentioned the difference between our research and

other research in term of migration experiment, migration performance prediction,

simulation tools, and using migration as a fault-tolerance mechanism.

Chapter 3 discussed the trade-off between energy and performance of existing HTC

job scheduling policies to cloud instances. We extended HTC-Sim framework in order

to measure the energy consumption of each policy. Our evaluation of the policies was

under a number of assumptions which made about the hardware used within a cloud

datacentre. The hardware energy and performance specifications were taken from the

published results in [1] which obtained by using the SPECPower2008 benchmark. All

policies showed different impacts on energy consumption and average overheads. More-

over, the simulation tool which used in this chapter is extended further in Chapter 6

and Chapter 7 to evaluate live migration methods and policies.

Chapter 4 presented a real experiment to measure the time of VM live migration.

We developed an automated script to trigger the live migration process between two

physical machines. In order to create the VMs, we used KVM as a hypervisor. Also,

we installed the SPECjvm2008 benchmark in each physical machine to generate the

workloads. The results of the experiment showed an important link between the VM

memory size and the migration time. The time of the VM migration increases as the

memory size of the VM increase. In this chapter, we considered a three type of VMs,

and the speed of the network was 100Mb. In Chapter 5, we extend this experiment to

support more type of VMs as well as higher network speed.

- 134 -

Chapter 8: Conclusion

Chapter 5 exhibited the extension of the live migration experiment which mentioned

in Chapter 4 where we used a 1000Mb switch and nine different type of VMs. Fur-

thermore, the chapter demonstrated the process of training and testing three machine

learning models based on the results from the live migration experiment. The models

used to predict the successful VM migrations where the VMs takes a short time to be

migrated between two physical machines. Our models showed a high accuracy when

we compared with another seven models. We adopted the findings of this chapter to

support the assumption that made to extend the HTC-Sim framework as discussed in

Chapter 6.

Chapter 6 described our extension to HTC-Sim which includes the virtualisation and

live migration mechanisms. In this chapter, we proposed two live migration methods

which can be used in HTC environment in order to improve the performance and save

energy, namely, responsive migration and interval migration. The simulation is based

on real data which collected from the Newcastle University HTCondor system during

2010. Moreover, our simulation can provide the overall migration time, the overall

energy consumption and waste, and the number of failed migrations due to interactive

users interruptions or removed jobs. Also, the simulation can count the number of

migration attempts when there is no host for migration. Our results showed that

the responsive migration method could save up to 75% of the system wasted energy.

In the next chapter, we introduced six migration policies which could optimise the

performance of the responsive migration.

Chapter 7 demonstrated how selecting the target computer for migration can influ-

ence the performance and energy of the system. We have proposed six responsive

migration policies to determine the selection of the target computer when migration is

needed. Also, this chapter focused on using live migration as a fault-tolerance mech-

anism where the jobs get migrated to another physical machine in the event of user

login. We extended the HTC-Sim to implement and evaluate the policies. The results

showed that our responsive migration method could reduce the number of job evictions

approximately by 92% when it is used as a fault-tolerance mechanism. Furthermore,

we provided some advice to the administrator of HTC systems which would assist

them when they use the live migration as a fault-tolerance mechanism.

- 135 -

Chapter 8: Conclusion

8.2 Limitations

In this thesis, we presented real experiments to measure the migration time of various

VM types between two different physical machines as well as two different network

speed. However, the VMs were created and migrated by using one hypervisor solution.

The experimental results might vary if the hypervisor solution is replaced with another

one in the experiment.

Also, the prediction models of this thesis were built from diverse datasets which in-

volved 20 type of workloads. However, the workloads belong to one benchmark, and

the dataset which used to train and test the models are considered to be small.

Furthermore, we used a trace-driven simulation where the trace logs are obtained from

a real environment. However, the trace logs do not include all the features which we

used to create the predictive models. As a result, the models are not implemented in

the simulation to predict the time of live migration. Instead, the time of migration

in the simulation is assumed based on our observations of the VM live migration

experiments and models. Moreover, the generalisability of the simulation results is

another limitation of this thesis which needs to be addressed in the future by applying

the migration methods and policies to another dataset.

The comparison between the real world and the simulation as well as the models are

missing in this thesis. Through this thesis, we used real data to build the models and

the simulation, but the gained results have been not compared with the real world

outcomes which we consider it as a limitation of this work.

8.3 Future Research Directions

In this section, we discuss some directions for future research, arising from lessons

learnt during the PhD.

8.3.1 VM live migration experiment

In Chapter 4 and 5, we presented a real experiment to measure the time of live mi-

gration between two different physical machines. The experiment could be extended

- 136 -

Chapter 8: Conclusion

to measure the downtime of the VM as well as the energy consumption of the migra-

tion process in the source and target computers. Also, the experiment involves one

hypervisor solution which is KVM. In the futures, the experiment can be extended

to understand the influence of other hypervisor solutions such as Xen, VMware, and

Hyper-V on the migration process. Also, we used two bandwidth capacities which are

widely used in HTC environment. In the future, the experiment can involve a much

higher bandwidth capacity that is used in most large-scale datacentres.

Furthermore, our results of the experiment are based on one benchmark which pro-

vides various workload types. The experiment can be extended to support different

benchmarks which will provide a better understanding of the workload impacts on the

migration process.

Finally, the traffic of the network might influence the migration time of a VM. To

understand the impact of network traffic on the time of migration, the experiment

should be performed under different network traffic status.

8.3.2 Prediction Models

In this thesis, we used classification prediction models to predict successful VM live

migrations where the VMs take a short time to be migrated. The models could be

changed to be regression models where the time of migration can be estimated rather

than categorisation into groups.

Furthermore, when the migration experiment is extended according to the mentioned

suggestions above, the number of prediction model features increase which could en-

hance the generalisation and interpretability of the models. Also, the prediction could

be extended to include migration cost, migration energy consumption, and VM down-

time.

8.3.3 Simulation

The simulation is used to evaluate HTC jobs policies, and it is based on real data which

collected from Newcastle University. In order to make the simulation more generic,

the trace logs need to be collected from other HTC systems such as HTCondor at the

- 137 -

Chapter 8: Conclusion

University of Wisconsin-Madison. Also, the trace logs should include all information

that needs to be used by the prediction models.

Also, the simulation can be easily extended to support other environments such as

cloud. In the future, we will provide a copy of the simulation that supports a cloud

environment. In order to do that, the simulation should be able to assign multiple jobs

on one source machine. We could achieve this by implanting dynamic VM placement

and migration into HTC-Sim. Also, we need to apply VM consolidation strategies

which enhance the performance and save energy.

8.3.4 Fault-tolerance methods

In this work, we provide a method and policies for fault-tolerance. The method avoids

the job failures due to the user interruptions. Our method is a reactive fault-tolerance

which takes place at the event of failure. In the future, the proactive fault-tolerance

mechanism could be designed and implemented in order to enhance the performance

and prevent unnecessary migrations.

Furthermore, the policies could be designed and implemented to support the proactive

fault-tolerance mechanism. For example, when the jobs are migrated from clusters

before the opening times to closed clusters, the jobs will have a low chance to be

interrupted during their execution.

- 138 -

Bibliography

[1] All published SPECpower ssj2008 results. https://www.spec.org/power ssj2008
/results/power ssj2008.html. Accessed: 2018-12-06.

[2] Cycle computing (homepage). http://cyclecomputing.com. Accessed: 2017-05-
05.

[3] ECONET. https://www.econet-project.eu Acessed: 2018-12-10.

[4] KVM. http://www.linux-kvm.org. Accessed: 2018-12-06.

[5] Memusg. https://gist.github.com/netj/526585. Accessed: 2017-05-05.

[6] Openfiler. http://www.openfiler.com. Accessed: 2017-05-05.

[7] Sar. http://www.linuxcommand.org/man pages/sar1.html. Accessed: 2017-05-
05.

[8] SERT Suite. https://www.spec.org/sert. Accessed: 2018-12-10.

[9] SPEC VIRT SC 2013. https://www.spec.org/virt sc2013. Accessed: 2018-12-06.

[10] SPECjvm2008. http://www.spec.org/jvm2008. Accessed: 2017-10-05.

[11] SPECpower ssj2008. http://www.spec.org/power ssj2008. Accessed: 2018-12-
06.

[12] SWaP (Space, Watts and Performance) Metric. http://www.sun.com/servers/
coolthreads/swap.

[13] The CentOS Project. http://www.centos.org. Accessed: 2017-05-05.

[14] Ubuntu for desktops. http://www.ubuntu.com. Accessed: 2017-05-05.

[15] UK Research Council End Use Energy Demand (EUED) Centres.
http://www.eued.ac.uk. Accessed: 2017-05-05.

[16] Unix top. http://www.unixtop.org. Accessed: 2017-05-05.

[17] A framework for data center energy productivity, 2008.
https://www.greenbiz.com/sites/default/files/document/GreenGrid-
Framework-Data-Center-Energy-Productivity.pdf. Accessed: 2018-12-06.

[18] Data center networking equipment - issues and best practices. Technical report,
ASHRAE Technical Committee, 2012. https://goo.gl/RJfvtS.

[19] Guidelines and best practices for the installation and mainte-
nance of data networking equipment. Technical report, Cisco Sys-
tems, Inc., 2013. https://www.cisco.com/c/dam/en us/training-
events/downloads/guidelines and best practices for the Installation and maint
enance of data networking equipment.pdf. Accessed: 2018-12-06.

- 139 -

https://www.spec.org/power_ssj2008 /results/power_ssj2008.html
https://www.spec.org/power_ssj2008 /results/power_ssj2008.html
http://cyclecomputing.com
https://www.econet-project.eu
http://www.linux-kvm.org
https://gist.github.com/netj/526585
http://www.openfiler.com
http://www.linuxcommand.org/man_pages/sar1.html
https://www.spec.org/sert
https://www.spec.org/virt_sc2013
http://www.spec.org/jvm2008
http://www.spec.org/power_ssj2008
http://www.sun.com/servers/ coolthreads/swap
http://www.sun.com/servers/ coolthreads/swap
http://www.centos.org
http://www.ubuntu.com
http://www.eued.ac.uk
http://www.unixtop.org
https://www.greenbiz.com/sites/default/files/document/GreenGrid-Framework-Data-Center-Energy-Productivity.pdf
https://www.greenbiz.com/sites/default/files/document/GreenGrid-Framework-Data-Center-Energy-Productivity.pdf
https://goo.gl/RJfvtS
https://www.cisco.com/c/dam/en_us/training-events/downloads/guidelines_and_best_practices_for_the_Installation_and_maint enance_of_data_networking_equipment.pdf
https://www.cisco.com/c/dam/en_us/training-events/downloads/guidelines_and_best_practices_for_the_Installation_and_maint enance_of_data_networking_equipment.pdf
https://www.cisco.com/c/dam/en_us/training-events/downloads/guidelines_and_best_practices_for_the_Installation_and_maint enance_of_data_networking_equipment.pdf

[20] Advanced configuration and power interface specification. Unified EFI Forum,
Inc., 2017. http://www.uefi.org/sites/default/files/resources/ACPI 6 2.pdf. Ac-
cessed: 2018-12-06.

[21] Energy efficient computing, clusters, grids and clouds: A taxonomy and survey.
Sustainable Computing: Informatics and Systems, 14:13 – 33, 2017.

[22] F. Abaunza, A.-P. Hameri, and T. Niemi. Eeui: a new measure to monitor and
manage energy efficiency in data centers. International Journal of Productivity
and Performance Management, 67(1):111–127, 2018.

[23] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy proportional
datacenter networks. SIGARCH Computer Architecture News, 38(3):338–347,
2010.

[24] R. W. Ahmad, A. Gani, S. H. Ab. Hamid, M. Shiraz, F. Xia, and S. A. Madani.
Virtual machine migration in cloud data centers: A review, taxonomy, and open
research issues. Journal of Supercomputer, 71(7):2473–2515, 2015.

[25] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper. Predicting the
performance of virtual machine migration. In IEEE MASCOTS, pages 37–46,
2010.

[26] A. Aldhalaan and D. A. Menascé. Analytic performance modeling and optimiza-
tion of live vm migration. In M. S. Balsamo, W. J. Knottenbelt, and A. Marin,
editors, Computer Performance Engineering, pages 28–42, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[27] S. A. Ali, M. Affan, and M. Alam. A study of efficient energy management
techniques for cloud computing environment. arXiv preprint arXiv:1810.07458,
2018.

[28] O. Alrajeh. VM live migration script. http://www.github.com/oalrajeh/VM Live
Migration. Accessed: 2018-12-06.

[29] O. Alrajeh, M. Forshaw, A. S. McGough, and N. Thomas. Simulation of virtual
machine live migration in high throughput computing environments. IEEE, 2018.

[30] O. Alrajeh, M. Forshaw, and N. Thomas. Machine learning models for predicting
timely virtual machine live migration. In P. Reinecke and A. Di Marco, editors,
Computer Performance Engineering, pages 169–183, Cham, 2017. Springer In-
ternational Publishing.

[31] O. N. Alrajeh and N. Thomas. Energy consumption of scheduling policies for
htc jobs in the cloud. In Proceedings of the 8th International Conference on
Simulation Tools and Techniques, SIMUTools ’15, pages 343–348. ACM, 2015.

[32] F. M. Alrajeh O. and T. N. Performance of virtual machine live migration with
various workloads. In 32nd UK Performance Engineering Workshop. University
of Bradford, 2016.

- 140 -

http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
http://www.github.com/oalrajeh/VM_Live_ Migration
http://www.github.com/oalrajeh/VM_Live_ Migration

[33] M. Amoon. Adaptive framework for reliable cloud computing environment. IEEE
Access, 4:9469–9478, 2016.

[34] D. P. Anderson. BOINC: a system for public-resource computing and storage.
In Fifth IEEE/ACM International Workshop on Grid Computing, pages 4–10,
2004.

[35] A. Ashraf and I. Porres. Multi-objective dynamic virtual machine consolidation
in the cloud using ant colony system. International Journal of Parallel, Emergent
and Distributed Systems, 33(1):103–120, 2018.

[36] G. Aupy, A. Benoit, R. Melhem, P. Renaud-Goud, and Y. Robert. Energy-aware
checkpointing of divisible tasks with soft or hard deadlines. In 2013 International
Green Computing Conference Proceedings, pages 1–8, 2013.

[37] R. Ayoub, R. Nath, and T. Rosing. Jetc: Joint energy thermal and cooling
management for memory and CPU subsystems in servers. In IEEE International
Symposium on High-Performance Comp Architecture.

[38] D. Azevedo, M. Patterson, J. Pouchet, and R. Tipley. Carbon usage
effectiveness (CUE): a green grid data center sustainability metric, 2010.
https://goo.gl/jaoagW.

[39] L. A. Barroso, J. Clidaras, and U. Hölzle. The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 8(3):1–154, 2013.

[40] C. Belady, A. Rawson, J. Pfleuger, and T. Cader. Green grid data center power
efficiency metrics: PUE and DCIE. Technical report, Green Grid, 2008.

[41] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger, and F. Zini.
Optorsim: A grid simulator for studying dynamic data replication strategies. The
International Journal of High Performance Computing Applications, 17(4):403–
416, 2003.

[42] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. Future
Generation Computer Systems, 28(5):755–768, 2012.

[43] A. Beloglazov and R. Buyya. Optimal online deterministic algorithms and adap-
tive heuristics for energy and performance efficient dynamic consolidation of vir-
tual machines in cloud data centers. Concurrency and Computation: Practice
and Experience, 24(13):1397–1420, 2012.

[44] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya. A taxonomy and
survey of energy-efficient data centers and cloud computing systems. CoRR,
abs/1007.0066, 2010.

[45] B. Bermejo, C. Juiz, and C. Guerrero. Virtualization and consolidation: a sys-
tematic review of the past 10 years of research on energy and performance.
Journal of Supercomputing, pages 1–29, 2018.

- 141 -

https://goo.gl/jaoagW

[46] P. Bezerra, G. Martins, R. Gomes, F. Cavalcante, and A. Costa. Evaluating live
virtual machine migration overhead on client’s application perspective. In 2017
International Conference on Information Networking (ICOIN), pages 503–508,
2017.

[47] K. Bilal, S. U. Khan, S. A. Madani, K. Hayat, M. I. Khan, N. Min-Allah,
J. Kolodziej, L. Wang, S. Zeadally, and D. Chen. A survey on green com-
munications using adaptive link rate. Cluster Computing, 16(3):575–589, 2013.

[48] G. Bisson and F. Hussain. Chi-sim: A new similarity measure for the co-
clustering task. In 2008 Seventh International Conference on Machine Learning
and Applications, pages 211–217, 2008.

[49] T. Bloch, R. Sridaran, and C. Prashanth. Understanding live migration tech-
niques intended for resource interference minimization in virtualized cloud envi-
ronment. In V. B. Aggarwal, V. Bhatnagar, and D. K. Mishra, editors, Big Data
Analytics, pages 487–497, Singapore, 2018. Springer Singapore.

[50] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, Aug 1996.

[51] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[52] R. E. Brown, E. R. Masanet, B. Nordman, W. F. Tschudi, A. Shehabi,
J. Stanley, J. G. Koomey, D. A. Sartor, and P. T. Chan. Report to congress
on server and data center energy efficiency: Public law 109-431. 2008.
https://escholarship.org/uc/item/74g2r0vg.

[53] R. Buyya and M. Murshed. Gridsim: a toolkit for the modeling and simulation
of distributed resource management and scheduling for grid computing. Concur-
rency and Computation: Practice and Experience, 14(13-15):1175–1220, 2002.

[54] J. Byrne, S. Svorobej, K. M. Giannoutakis, D. Tzovaras, P. J. Byrne, P.-O.
Östberg, A. Gourinovitch, and T. Lynn. A review of cloud computing simulation
platforms and related environments. 2017.

[55] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya.
Cloudsim: A toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41(1):23–50, 2011.

[56] A. Capozzoli, M. Chinnici, M. Perino, and G. Serale. Review on performance
metrics for energy efficiency in data center: The role of thermal management.
In S. Klingert, M. Chinnici, and M. Rey Porto, editors, Energy Efficient Data
Centers, pages 135–151, Cham, 2015. Springer International Publishing.

[57] P. H. Castro, V. L. Barreto, S. L. Correa, L. Z. Granville, and K. V. Cardoso.
A joint CPU-RAM energy efficient and SLA-compliant approach for cloud data
centers. Computer Networks, 94:1–13, 2016.

[58] Y. Chen, C. Lin, J. Huang, X. Xiang, and X. Shen. Energy efficient scheduling
and management for large-scale services computing systems. IEEE Transactions
on Services Computing, 10(2):217–230, 2017.

- 142 -

https://escholarship.org/uc/item/74g2r0vg

[59] A. Choudhary, M. C. Govil, G. Singh, L. K. Awasthi, E. S. Pilli, and D. Kapil.
A critical survey of live virtual machine migration techniques. Journal of Cloud
Computing, 6(1):23, 2017.

[60] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems Design & Implementation -
Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005. USENIX Associ-
ation.

[61] J. Daniels. Server virtualization architecture and implementation. Crossroads,
16(1):8–12, 2009. ACM.

[62] W. Dargie. Estimation of the cost of vm migration. In 23rd International Con-
ference on Computer Communication and Networks (ICCCN), pages 1–8. IEEE,
2014.

[63] S. Dawson-Haggerty, A. Krioukov, and D. E. Culler. Power optimization-a reality
check. EECS Department, University of California, Berkeley, Technical Report
UCB/EECS-2009-140, 2009.

[64] C. De Alfonso, M. Caballer, F. Alvarruiz, and G. Moltó. An economic and
energy-aware analysis of the viability of outsourcing cluster computing to a cloud.
Future Generation Computing Systems, 29(3):704–712, 2013.

[65] M. D. de Assuncao, A. di Costanzo, and R. Buyya. Evaluating the cost-benefit
of using cloud computing to extend the capacity of clusters. In Proceedings
of the 18th ACM International Symposium on High Performance Distributed
Computing, HPDC ’09, pages 141–150, New York, NY, USA, 2009. ACM.

[66] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of do-
ing science on the cloud: The montage example. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC ’08, pages 50:1–50:12, Piscat-
away, NJ, USA, 2008. IEEE Press.

[67] P. Delforge. America’s data centers are wasting huge amounts of energy. Natural
Resources Defense Council (NRDC), pages 1–5, 2014.

[68] L. Deng, H. Jin, H. Chen, and S. Wu. Migration cost aware mitigating hot
nodes in the cloud. In 2013 International Conference on Cloud Computing and
Big Data, pages 197–204, 2013.

[69] I. S. Dhanoa and S. S. Khurmi. Analyzing energy consumption during vm live
migration. In International Conference on Computing, Communication Automa-
tion, pages 584–588, 2015.

[70] D. Didona, F. Quaglia, P. Romano, and E. Torre. Enhancing performance pre-
diction robustness by combining analytical modeling and machine learning. In
Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering, ICPE ’15, pages 145–156, New York, NY, USA, 2015. ACM.

- 143 -

[71] T. V. T. Duy, Y. Sato, and Y. Inoguchi. Performance evaluation of a green
scheduling algorithm for energy savings in cloud computing. In 2010 IEEE
international symposium on parallel & distributed processing, workshops and Phd
forum (IPDPSW), pages 1–8. IEEE, 2010.

[72] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott. Proactive fault tol-
erance using preemptive migration. In 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pages 252–257, 2009.

[73] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-
sized computer. In ACM SIGARCH computer architecture news, volume 35,
pages 13–23. ACM, 2007.

[74] E. Feller, L. Rilling, and C. Morin. Energy-aware ant colony based workload
placement in clouds. In Proceedings of the 2011 IEEE/ACM 12th International
Conference on Grid Computing, pages 26–33. IEEE Computer Society, 2011.

[75] W. Feller. An introduction to probability theory and its applications, volume 2.
Wiley, New York, 1971.

[76] T. C. Ferreto, M. A. Netto, R. N. Calheiros, and C. A. D. Rose. Server consol-
idation with migration control for virtualized data centers. Future Generation
Computer Systems, 27(8):1027 – 1034, 2011.

[77] C. K. Filelis-Papadopoulos, K. M. Giannoutakis, G. A. Gravvanis, C. S.
Kouzinopoulos, A. T. Makaratzis, and D. Tzovaras. Simulating Heterogeneous
Clouds at Scale, pages 119–150. Springer International Publishing, Cham, 2018.

[78] M. Forshaw, A. McGough, and N. Thomas. HTC-Sim: A trace-driven simulation
framework for energy consumption in high-throughput computing systems. Con-
currency and Computation: Practice and Experience, 28(12):3260–3290, 2016.

[79] M. Forshaw, A. S. McGough, and N. Thomas. Energy-efficient checkpointing in
high-throughput cycle-stealing distributed systems. Electronic Notes in Theo-
retical Computer Science, 310(C):65–90, 2015.

[80] J. H. Friedman. Stochastic gradient boosting. Computational Statistics Data
Analysis, 38(4):367–378, 2002.

[81] J. Gao. Machine learning applications for data center optimization, 2014.
https://ai.google/research/pubs/pub42542.

[82] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya. Environment-conscious
scheduling of HPC applications on distributed cloud-oriented data centers. Jour-
nal of Parallel and Distributed Computing, 71(6):732–749, 2011.

[83] W. Gentzsch. Sun grid engine: towards creating a compute power grid. In
Proceedings First IEEE/ACM International Symposium on Cluster Computing
and the Grid, pages 35–36, 2001.

- 144 -

https://ai.google/research/pubs/pub42542

[84] L. Gillam, B. Li, J. O’Loughlin, and A. P. S. Tomar. Fair benchmarking for
cloud computing systems. Journal of Cloud Computing: Advances, Systems and
Applications, 2(1):6, 2013.

[85] F. Giroire, D. Mazauric, J. Moulierac, and B. Onfroy. Minimizing routing en-
ergy consumption: From theoretical to practical results. In 2010 IEEE/ACM
Int’l Conference on Green Computing and Communications Int’l Conference on
Cyber, Physical and Social Computing, pages 252–259, 2010.

[86] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29–36, 1982.

[87] M. K. Herrlin. Rack cooling effectiveness in data centers and telecom central
offices: The rack cooling index (RCI). Transactions-American Society of Heating
Refrigerating and Air conditioning Engineers, 111(2):725, 2005.

[88] M. R. Hines, U. Deshpande, and K. Gopalan. Post-copy live migration of virtual
machines. SIGOPS Oper. Syst. Rev., 43(3):14–26, 2009.

[89] M. R. Hines and K. Gopalan. Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’09, pages 51–60, New York, NY, USA, 2009. ACM.

[90] W. Hu, A. Hicks, L. Zhang, E. M. Dow, V. Soni, H. Jiang, R. Bull, and J. N.
Matthews. A quantitative study of virtual machine live migration. In Proceedings
of the 2013 ACM cloud and autonomic computing conference, page 11. ACM,
2013.

[91] C. Jo, Y. Cho, and B. Egger. A machine learning approach to live migration
modeling. In Proceedings of the 2017 Symposium on Cloud Computing, SoCC
’17, pages 351–364, New York, NY, USA, 2017. ACM.

[92] S. Jobling. Carbon management plan, 2016. https://www.ncl.ac.uk/sustainable-
campus/assets/documents/NewcastleUniversityCMP 2016 V1.pdf.

[93] T. P. Joe Olivas, Mike Chynoweth. Benefitting power and performance
sleep loops. https://software.intel.com/en-us/articles/benefitting-power-and-
performance-sleep-loops, 2015.

[94] F. Juarez, J. Ejarque, and R. M. Badia. Dynamic energy-aware scheduling for
parallel task-based application in cloud computing. Future Generation Computer
Systems, 78:257 – 271, 2018.

[95] N. J. Kansal and I. Chana. Energy-aware virtual machine migration for cloud
computing - a firefly optimization approach. Journal of Grid Computing,
14(2):327–345, 2016.

[96] A. Khosravi and R. Buyya. Energy and carbon footprint-aware management
of geo-distributed cloud data centers: A taxonomy, state of the art, and future
directions. In Sustainable Development: Concepts, Methodologies, Tools, and
Applications, pages 1456–1475. IGI Global, 2018.

- 145 -

https://www.ncl.ac.uk/sustainable-campus/assets/documents/NewcastleUniversityCMP_2016_V1.pdf
https://www.ncl.ac.uk/sustainable-campus/assets/documents/NewcastleUniversityCMP_2016_V1.pdf
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops

[97] A. Kipp, T. Jiang, M. Fugini, and I. Salomie. Layered green performance indi-
cators. Future Generation Computer Systems, 28(2):478 – 489, 2012.

[98] D. Kliazovich, P. Bouvry, and S. U. Khan. GreenCloud: a packet-level simulator
of energy-aware cloud computing data centers. The Journal of Supercomputing,
62(3):1263–1283, 2012.

[99] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[100] R. Koller, A. Verma, and A. Neogi. WattApp: An application aware power meter
for shared data centers. In Proceedings of the 7th International Conference on
Autonomic Computing, ICAC ’10, pages 31–40, New York, NY, USA, 2010.
ACM.

[101] M. Kuhn. Building predictive models in R using the caret package. Journal of
Statistical Software, 28(1):1–26, 2008.

[102] M. Kuhn. Caret package. Journal of Statistical Software, 28(5):1–26, 2008.

[103] K. Kumar. Workshop on power aware computing and systems (Hot-
Power’08). 2008. https://www.usenix.org/legacy/publications/login/2009-
04/openpdfs/hotpower08.pdf.

[104] Z. Lai, K. T. Lam, C.-L. Wang, and J. Su. Latency-aware DVFS for efficient
power state transitions on many-core architectures. The Journal of Supercom-
puting, 71(7):2720–2747, 2015.

[105] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applications:
the simgrid simulation framework. In CCGrid 2003. 3rd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, 2003. Proceedings., pages
138–145, May 2003.

[106] J. Li, J. Zhao, Y. Li, L. Cui, B. Li, L. Liu, and J. Panneerselvam. iMIG: Toward
an adaptive live migration method for KVM virtual machines. The Computer
Journal, 58(6):1227–1242, 2015.

[107] X. Li, Z. Qian, S. Lu, and J. Wu. Energy efficient virtual machine placement
algorithm with balanced and improved resource utilization in a data center.
Mathematical and Computer Modelling, 58(5):1222 – 1235, 2013.

[108] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das. MDCSim: A multi-
tier data center simulation, platform. In 2009 IEEE International Conference
on Cluster Computing and Workshops, pages 1–9, Aug 2009.

[109] C. X. Ling, J. Huang, and H. Zhang. AUC: A Better Measure than Accuracy
in Comparing Learning Algorithms, pages 329–341. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

- 146 -

https://www.usenix.org/legacy/publications/login/2009-04/openpdfs/hotpower08.pdf
https://www.usenix.org/legacy/publications/login/2009-04/openpdfs/hotpower08.pdf

[110] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor-a hunter of idle worksta-
tions. In Distributed Computing Systems, 1988., 8th International Conference
on, pages 104–111. IEEE, 1988.

[111] C. Liu, X. Qin, S. Kulkarni, C. Wang, S. Li, A. Manzanares, and S. Baski-
yar. Distributed energy-efficient scheduling for data-intensive applications with
deadline constraints on data grids. In 2008 IEEE International Performance,
Computing and Communications Conference, pages 26–33, 2008.

[112] H. Liu and B. He. Vmbuddies: Coordinating live migration of multi-tier appli-
cations in cloud environments. IEEE Transactions on Parallel and Distributed
Systems, 26(4):1192–1205, 2015.

[113] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao. Performance and energy modeling
for live migration of virtual machines. In Proceedings of the 20th International
Symposium on High Performance Distributed Computing, HPDC ’11, pages 171–
182, New York, NY, USA, 2011. ACM.

[114] J. Liu, S. Wang, A. Zhou, S. Kumar, F. Yang, and R. Buyya. Using proactive
fault-tolerance approach to enhance cloud service reliability. IEEE Transactions
on Cloud Computing, 2016.

[115] A. T. Makaratzis, K. M. Giannoutakis, and D. Tzovaras. Energy modeling in
cloud simulation frameworks. Future Generation Computer Systems, 79:715 –
725, 2018.

[116] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and A. V.
Vasilakos. Cloud computing: Survey on energy efficiency. ACM Computing
Surveys, 47(2):33:1–33:36, 2014.

[117] M. Mattess, C. Vecchiola, and R. Buyya. Managing peak loads by leasing cloud
infrastructure services from a spot market. In Proceedings of the 2010 IEEE
12th International Conference on High Performance Computing and Communi-
cations, HPCC ’10, pages 180–188, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[118] A. S. McGough, N. Al Moubayed, and M. Forshaw. Using machine learning in
trace-driven energy-aware simulations of high-throughput computing systems. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion, pages 55–60. ACM, 2017.

[119] A. S. McGough, M. Forshaw, J. Brennan, N. A. Moubayed, and S. Bonner.
Using machine learning to reduce the energy wasted in volunteer computing
environments. arXiv preprint arXiv:1810.08675, 2018.

[120] A. S. McGough, M. Forshaw, C. Gerrard, P. Robinson, and S. Wheater. Analy-
sis of power-saving techniques over a large multi-use cluster with variable work-
load. Concurrency and Computation: Practice and Experience, 25(18):2501–
2522, 2013.

- 147 -

[121] A. S. McGough, M. Forshaw, C. Gerrard, S. Wheater, B. Allen, and P. Robinson.
Comparison of a cost-effective virtual cloud cluster with an existing campus
cluster. Future Generation Computer Systems, 41:65–78, 2014.

[122] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: Eliminating server idle
power. SIGARCH Comput. Archit. News, 37(1):205–216, 2009.

[123] V. Méndez and F. Garćıa. SiCoGrid: A complete grid simulator for scheduling
and algorithmical research, with emergent artificial intelligence data algorithms.
Technical Report RR-06-11. DIIS. UNIZAR. 2005.

[124] S. Mingay. Green IT: the new industry shock wave. Gartner RAS Research Note
G, 153703(7), 2007.

[125] S. Mittal. Power management techniques for data centers: A survey. arXiv
preprint arXiv:1404.6681, 2014.

[126] F. Moisan and D. Bosseboeuf. Energy efficiency: A recipe for success. World
Energy Council, London, UK, Tech. Rep, 2010.

[127] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive fault
tolerance for HPC with Xen virtualization. In Proceedings of the 21st annual
international conference on Supercomputing, pages 23–32. ACM, 2007.

[128] S. Nathan, U. Bellur, and P. Kulkarni. Towards a comprehensive performance
model of virtual machine live migration. In Proceedings of the Sixth ACM Sym-
posium on Cloud Computing, SoCC ’15, pages 288–301, New York, NY, USA,
2015. ACM.

[129] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall. Reduc-
ing network energy consumption via sleeping and rate-adaptation. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI’08, pages 323–336, Berkeley, CA, USA, 2008. USENIX Association.

[130] R. Neugebauer and D. Mcauley. Energy is just another resource: energy ac-
counting and energy pricing in the nemesis os. In Proceedings Eighth Workshop
on Hot Topics in Operating Systems, pages 67–72. IEEE, 2001.

[131] T. H. Nguyen, M. Di Francesco, and A. Yla-Jaaski. Virtual machine consolida-
tion with multiple usage prediction for energy-efficient cloud data centers. IEEE
Transactions on Services Computing, 2017.

[132] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero,
and I. M. Llorente. iCanCloud: A flexible and scalable cloud infrastructure
simulator. Journal of Grid Computing, 10(1):185–209, 2012.

[133] D. Nurmi, J. Brevik, and R. Wolski. Minimizing the network overhead of check-
pointing in cycle-harvesting cluster environments. In 2005 IEEE International
Conference on Cluster Computing, pages 1–10, 2005.

- 148 -

[134] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre. A survey on techniques
for improving the energy efficiency of large-scale distributed systems. ACM
Computing Surveys, 46(4):47:1–47:31, 2014.

[135] M. Patel, S. Chaudhary, and S. Garg. Machine learning based statistical predic-
tion model for improving performance of live virtual machine migration. Journal
of Engineering, 2016, 2016.

[136] I. R. Philp. Software Failures and the Road to a Petaflop Machine. In Pro-
ceedings of the 1st Workshop on High Performance Computing Reliability Issues
(HPCRI) 2005, in conjunction with the 11th International Symposium on High
Performance Computer Architecture (HPCA) 2005, San Francisco, CA, USA,
2005. IEEE Computer Society.

[137] A. Polze, P. Troger, and F. Salfner. Timely virtual machine migration for
pro-active fault tolerance. In 2011 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Work-
shops, pages 234–243, 2011.

[138] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2016.

[139] S. Radvan, D. Parker, C. Curran, and J. Mark. Red Hat Enterprise
Linux 5 Virtualization Guide. https://access.redhat.com/documentation/en-
us/red hat enterprise linux/5/pdf/virtualization/Red Hat Enterprise Linux-5-
Virtualization-en-US.pdf, 2014.

[140] X. Ren, R. Eigenmann, and S. Bagchi. Failure-aware checkpointing in fine-
grained cycle sharing systems. In Proceedings of the 16th International Sym-
posium on High Performance Distributed Computing, HPDC ’07, pages 33–42,
New York, NY, USA, 2007. ACM.

[141] G. Ridgeway. Generalized boosted models: A guide to the gbm package. Update,
1(1):2007, 2007.

[142] K. Rybina, A. Patni, and A. Schill. Analysing the migration time of live mi-
gration of multiple virtual machines. In Proceedings of the 4th International
Conference on Cloud Computing and Services Science, CLOSER 2014, pages
590–597, Portugal, 2014. SCITEPRESS - Science and Technology Publications,
Lda.

[143] F. Salfner, P. Tröger, and A. Polze. Downtime analysis of virtual machine live
migration. In The Fourth International Conference on Dependability (DEPEND
2011). IARIA, pages 100–105, 2011.

[144] F. Salfner, P. Tröger, and M. Richly. Dependable estimation of downtime for
virtual machine live migration. International Journal On Advances in Systems
and Measurements, 5(1), 2012.

[145] B. Schödwell, K. Erek, and R. Zarnekow. Data center green performance mea-
surement: State of the art and open research challenges. 2013.

- 149 -

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/pdf/virtualization/Red_Hat_Enterprise_Linux-5-Virtualization-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/pdf/virtualization/Red_Hat_Enterprise_Linux-5-Virtualization-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/pdf/virtualization/Red_Hat_Enterprise_Linux-5-Virtualization-en-US.pdf

[146] B. Schödwell, M. Wilkens, K. Erek, and R. Zarnekow. Towards a holistic multi-
level green performance indicator framework (GPIF) to improve the energy effi-
ciency of data center operation - a resource usage-based approach. In Electronics
Goes Green 2012+, pages 1–6, 2012.

[147] M. Sharma and P. Sharma. Performance evaluation of adaptive virtual machine
load balancing algorithm. IJACSA) International Journal of Advanced Computer
Science and Applications, 3(2), 2012.

[148] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E. Masanet,
N. Horner, I. Azevedo, and W. Lintner. United states data center energy usage
report. 2016.

[149] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko. SPECjvm2008 Performance
Characterization, pages 17–35. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[150] J. Shuja, S. A. Madani, K. Bilal, K. Hayat, S. U. Khan, and S. Sarwar. Energy-
efficient data centers. Computing, 94(12):973–994, 2012.

[151] A. Strunk and W. Dargie. Does live migration of virtual machines cost energy?
In 27th International Conference on Advanced Information Networking and Ap-
plications (AINA), pages 514–521. IEEE, 2013.

[152] H. Team. HTCondor version 8.7.7 manual. Technical report, Center for High
Throughput Computing, University of Wisconsin-Madison, 2018.

[153] F. Teng, L. Yu, T. Li, D. Deng, and F. Magoulès. Energy efficiency of VM
consolidation in IaaS clouds. The Journal of Supercomputing, 73(2):782–809,
2017.

[154] R. Tu, X. Wang, and Y. Yang. Energy-saving model for SDN data centers. The
Journal of Supercomputing, 70(3):1477–1495, 2014.

[155] M. Uddin, A. Shah, R. Alsaqour, and J. Memon. Measuring efficiency of tier
level data centers to implement green energy efficient data centers. Middle-East
Journal of Scientific Research, 15(2):200–207, 2013.

[156] R. B. Uriarte, F. Tiezzi, and S. A. Tsaftaris. Supporting autonomic management
of clouds: Service clustering with random forest. IEEE Transactions on Network
and Service Management, 13(3):595–607, 2016.

[157] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-optimal schedul-
ing in hybrid iaas clouds for deadline constrained workloads. In 2010 IEEE 3rd
International Conference on Cloud Computing, pages 228–235, 2010.

[158] J. von Kistowski, J. Grohmann, N. Schmitt, and S. Kounev. Predicting server
power consumption from standard rating results. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering, ICPE ’19.
ACM, 2019.

- 150 -

[159] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost of virtual machine
live migration in clouds: A performance evaluation. In M. G. Jaatun, G. Zhao,
and C. Rong, editors, Cloud Computing, pages 254–265, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[160] L. Wang and S. U. Khan. Review of performance metrics for green data centers:
a taxonomy study. The Journal of Supercomputing, 63(3):639–656, 2013.

[161] C.-M. Wu, R.-S. Chang, and H.-Y. Chan. A green energy-efficient scheduling
algorithm using the DVFS technique for cloud datacenters. Future Generation
Computer Systems, 37:141–147, 2014.

[162] Q. Wu, F. Ishikawa, Q. Zhu, and Y. Xia. Energy and migration cost-aware
dynamic virtual machine consolidation in heterogeneous cloud datacenters. IEEE
Transactions on Services Computing, pages 1–1, 2018.

[163] Y. Wu and M. Zhao. Performance modeling of virtual machine live migration. In
4th International Conference on Cloud Computing, pages 492–499. IEEE, 2011.

[164] J. Xu and I. S. Moreno. Energy-efficiency in cloud computing environments:
Towards energy savings without performance degradation. International Journal
of Cloud Computing, 1(1):17–33, 2011.

[165] M. Zakarya. Energy, performance and cost efficient datacenters: A survey. Re-
newable and Sustainable Energy Reviews, 94:363 – 385, 2018.

[166] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosystem: Managing energy
as a first class operating system resource. SIGPLAN Not., 37(10):123–132, 2002.

[167] F. Zhang, G. Liu, X. Fu, and R. Yahyapour. A survey on virtual machine migra-
tion: Challenges, techniques, and open issues. IEEE Communications Surveys
Tutorials, 20(2):1206–1243, 2018.

[168] J. Zhang, F. Ren, and C. Lin. Delay guaranteed live migration of virtual ma-
chines. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communi-
cations, pages 574–582, 2014.

[169] Z. Zhang, L. Cherkasova, and B. T. Loo. Exploiting cloud heterogeneity to op-
timize performance and cost of mapreduce processing. SIGMETRICS Perform.
Eval. Rev., 42(4):38–50, 2015.

[170] M. Zhao and R. J. Figueiredo. Experimental study of virtual machine migration
in support of reservation of cluster resources. In Proceedings of the 2Nd Interna-
tional Workshop on Virtualization Technology in Distributed Computing, VTDC
’07, pages 5:1–5:8, New York, NY, USA, 2007. ACM.

[171] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu. Pacer: A progress man-
agement system for live virtual machine migration in cloud computing. IEEE
Transactions on Network and Service Management, 10(4):369–382, 2013.

- 151 -

	Introduction
	Motivation
	Research Problems
	Research Hypothesis
	Research Objectives
	Research Methodology
	Research Contributions
	Thesis Structure

	Background and Related Work
	Energy-efficiency
	Energy Efficiency Mechanisms
	Energy Efficiency Metrics
	Benchmarking

	Virtualisation
	Virtual machine migration
	Live migration
	Live Migration Performance Metrics
	Practical Test
	Prediction

	Virtual Machine Consolidation

	Simulation Tools
	HTC-Sim

	Fault-tolerance

	Energy consumption of scheduling policies for HTC jobs in the Cloud
	Introduction
	Policy
	Simulation Environment
	Resource Model
	Energy consumption:
	Performance scaling:

	Metrics
	Overhead
	Cloud hours
	Infrastructure Energy Consumption

	Simulation Scenario

	Results
	Limiting the number of cloud instances
	Merging of different users' jobs
	Instance keep-alive
	Delaying the start of instances

	Conclusions

	Performance of Virtual Machine Live Migration with Various Workloads
	Introduction
	Experiment environment
	Experiment set up
	Benchmarks
	Experiment scenario

	Results
	Conclusions

	Machine learning models for predicting VM live migration
	Introduction
	Experiment Environment
	Experiment set up
	Benchmarks
	Experiment scenario

	Experimental Results
	Virtual Machine Live Migration Modelling
	Stochastic Gradient Boosted, Random Forest, and Bagged Tree
	Dataset
	Tuning the models
	Performance evaluation of the models

	Predicting migration outcome
	Conclusions

	Simulation of VM Live Migration in HTC Environments
	Introduction
	Simulation Environment
	Datasets
	Conceptual Simulation Architecture
	Migration Model

	Simulation scenario
	Interval Migration
	Responsive Migration

	Simulation outcome
	Interval Migration
	Responsive Migration

	Conclusions

	Responsive Live Migration in HTC Environments
	Introduction
	Policies
	Results
	Policy performance
	Number of migrations
	Overall migration time
	Overall migration energy
	Number of migrations per job

	System improvement
	Number of evictions
	Overhead
	Energy
	Killed jobs

	Discussion
	Placement
	When to migrate
	Which job to migrate
	Where to migrate

	Conclusions

	Conclusion
	Thesis Summary
	Limitations
	Future Research Directions
	VM live migration experiment
	Prediction Models
	Simulation
	Fault-tolerance methods

	Bibliography

