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Abstract

In this work probability density function (PDF) models are used as a method for

studying the statistical distribution of particles in turbulent flows, which is of interest

in many industrial and environmental processes. This approach involves derivation of

a transport equation for describing the evolution of the joint PDF of particle variables.

In different flow configurations the PDF approach identifies various contributions to

the particle phase mass flux that act as additional drift and diffusion terms. These

terms, which are critical in the formulation of two-fluid models, require closure. In

order to evaluate the effect of the different flux contributions arising in the various

flow configurations, these terms are considered in the context of both homogeneous

and inhomogeneous flows. In the case of homogeneous flows the enhancement of the

settling rate of inertial particles under an applied body force, specifically gravity, is

investigated. Inhomogeneous turbulence is used to study the clustering of particles in

a framework associated with the behaviour of particle pair dynamics in homogeneous

flows. Existing closures based on simple local approximations are shown to neglect the

contributions of interest to the particle phase mass flux, and an improved methodol-

ogy is proposed which takes into account underlying physical mechanisms behind the

observed behaviour, and consists of modelling various correlations that arise from the

PDF formulation. The performance of this closure strategy is evaluated making use

of particle trajectory simulations in a synthetic flow field generated using Kinematic

Simulation (KS). The Eulerian two-point, two-time fluctuating velocity correlations

for the continuous phase are central to the modelling, and these are determined in the

specification of the flow field. Similarly the particle response tensor to perturbations in

the continuous phase is computed allowing for exact evaluation of the unclosed terms.

A linear drag law is used in the particle equation of motion, and the influence of both

Stokes number and applied body forces on the increase in particle settling rate and

clustering is investigated. In agreement with previous work it is seen that the mecha-

nism responsible for these effects can be quantified in terms of the preferential sampling

of strain over rotation by inertial particles due to interaction with the structures in the

flow field.
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Chapter 1

Introduction

1.1 Background

The transport of droplets and particles in turbulent flows is an area of considerable in-

terest in the context of both engineering applications and scientific understanding, with

widespread occurrences arising in natural and artificial systems in addition to the many

theoretical questions which remain unanswered. The need for greater understanding of

particle behaviour in both environmental and industrial applications encompasses situ-

ations including cloud formation in the atmosphere [138], particle transport in pipelines

[131], spray combustion of fuel droplets [47], and atmospheric dispersion of emissions

[136].

To better understand the physics involved in such processes, the study of particle

transport in turbulence has evolved into an important research topic since the mid 20th

century. Almost without exception, the motion of disperse particles is highly dependent

on the behaviour of the underlying fluid flow, meaning that the statistical treatment

required for describing turbulence is also inherent in characterising the behaviour of

particles within such flows [181]. Specifically, it is the various averaged quantities that

are associated with particles in a given flow configuration that is of most interest, chief

among which is the physical distribution of particles in space and how this evolves over

time. Being able to accurately describe such statistics makes it desirable to investigate

the behaviour of these multiphase flows within a general framework, and accordingly

two distinct approaches have emerged to enable the development of accurate models

for this purpose [90].

Firstly, development of a mathematical framework can be achieved by modelling the
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CHAPTER 1. INTRODUCTION

Figure 1.1: Asperatus clouds demonstrating the interaction between the atmospheric
conditions at different physical scales and the distribution of water droplets that con-
stitute the cloud. Image credit and copyright: Witta Priester via NASA

particles as a continuum in a fixed Eulerian frame of reference, with average particle

behaviour governed by transport equations which are analogous to those for the con-

tinuous phase (conservation of mass, momentum, energy, etc.). Such an approach is

referred to as a two-fluid model, however due to the continuous phase not having a

closed form mathematical solution in the context of turbulent flows, this is also the

case for the corresponding particle phase transport equations. Consequently the two-

fluid approach will result in unknown terms that require closure, which is subsequently

addressed by further modelling.

The alternative method is particle tracking, which entails the modelling of individual

particles within a moving Lagrangian frame of reference. Calculation of particle tra-

jectories is possible by the numerical solution of the governing equation of motion in

conjunction with the transport equations for the fluid velocity field. Due to the high

variability of individual particle trajectories, many such realisations are needed in order
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1.2. THE ROLE OF COMPUTATIONAL FLUID DYNAMICS

to achieve a sufficient ensemble size from which average particle statistics which are

sufficiently noise-free can be obtained. As a result, particle tracking naturally lends

itself to computational fluid dynamics (CFD) simulations, which can be performed

using various methods that resolve the underlying fluid flow to different levels. De-

spite being conceptually simple, the limitation to particle tracking is the availability

of computational resources and time which are needed in order to obtain a sufficient

level of accuracy in simulations. The advance of modern high performance computing

(HPC) facilities has seen the use of such simulations become increasingly feasible, and

for research purposes it is currently possible to obtain a high level of detail within a

reasonable amount of time by using particle tracking.

1.2 The Role of Computational Fluid Dynamics

Due to the closure problem which remains an inherent part of two-fluid models, the need

arises for not only capturing the appropriate physical behaviour of particles in various

flow configurations by developing accurate closures within a mathematical framework,

but also a methodology for validating such closures. One approach is obtaining the

true physical behaviour of a given flow from particle tracking simulations, which can be

used to quantitatively assess closure strategies based upon how much of the observed

particle behaviour they capture. The alternative to using simulations for these purposes

is to make use of experimental data. Whilst this would arguably provide behaviour

which can be considered more realistic physically, if the required data does not already

exist it can be a time-consuming process to obtain it experimentally, due to the level of

precision that is required to ensure that measurement errors which could compromise

the validity of results are minimised. Furthermore, the ability to obtain experimental

data for certain physical conditions can often be considerably more complicated than

the equivalent computational approach. This demonstrates the efficacy of numerical

simulation at both handling complex setups including geometry, boundary conditions,

and physical interactions, and also providing the required data in a straightforward

manner without the need for complicated measuring apparatus and procedures. For

these reasons numerical simulation provides a suitable way of substantiating closure

models, and has accordingly become the third means of investigation within scientific

research alongside the traditional avenues of theory and experiment.

It is important to note however that even though numerical simulation provides a way

of testing the capabilities of models developed using either theoretical or empirical
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means, it does not guarantee that they are able to accurately represent the behaviour

that is present in the full physical reality of a certain configuration. For this reason it

is essential to validate the performance of models using data obtained from a rigorous

experimental setup before true confidence in the accuracy of a model can be had, and

scale-up to scientific and engineering applications can be done. Nonetheless, this does

not detract from the usefulness of numerical simulation as an efficient means of model

development, but highlights the need to ensure compatibility of the model with the

environmental or industrial applications which it is intended to address.

1.3 Aims of the Current Work

One method of closure for two-fluid models is the use of probability density function

(PDF) models [181, 97], which are a useful means of studying the statistical distribution

of particles in a turbulent flow. In addition to their use in the modelling of single-phase

fluid flows, PDF models provide a basis for constructing the transport equations for

the particle phase of a two-fluid model, however due to the PDF description containing

unclosed quantities these will also appear in the corresponding two-fluid model. The

aim of the present work is to apply the PDF modelling approach to different flow con-

figurations in order to identify various contributions that act as additional convection

and diffusion terms, and are therefore critical in the formulation of two-fluid models.

The flow configurations under consideration in this study are simple cases of both

homogeneous and inhomogeneous flow fields, which are constructed such that the con-

tributions to the particle phase mass flux can be easily identified. In the case of

homogeneous flows the enhancement to the settling rate of inertial particles under an

applied body force, specifically gravity [91, 163], is the focus. Inhomogeneous turbu-

lence is used to study the clustering of particles in a framework associated with the

behaviour of particle pair dynamics in homogeneous flows, and notably the balance of

forces upon particles which results in the radial distribution function [31, 179]. Ex-

isting closures based on both local [151, 127] and non-local [142, 13] approximations

are shown to not adequately capture the contributions of interest to the particle phase

mass flux, with the aim of the present work then being to propose improved closure

methodologies which are able to include the characteristic behaviour of these terms

based upon the underlying physical effects experienced by particles.

In addition to using specific flow configurations to more easily study the required contri-

butions to the particle mass flux, this work also utilises simple physical representations
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for both the flow field and the particles which contain enough information to study the

desired phenomenon, but do not include all the physics that such systems would con-

tain in reality. Specifically, the fluid flow is constructed as a synthetic flow field which

is representative of the large scale motions of turbulence, and is taken to be Newto-

nian, isothermal, incompressible, isotropic, and statistically stationary. The particles

are assumed to be small enough that their mass can be modelled as acting entirely

at their centre of mass, and although this is a vast simplification of the various forces

that would act non-uniformly over the particle surface in reality, the forces which are

taken into account in this work are sufficient to reproduce the particle behaviour which

is of interest. In this way the investigation of such simplified systems can be more

easily approached, and understanding of the phenomenological behaviour in question

developed, leading to the possibility of studying more realistic representations in the

future.

To summarise, the main objectives of this research are to:

• Demonstrate through the use of numerical simulation that PDF models are ca-

pable of providing an exact representation of the contributions of interest in the

particle phase mass flux

• Show that existing PDF model closures do not capture the behaviour of interest

in the specific flow configurations used in this work

• Develop novel closure methodologies that account for the additional convective

terms in the particle mass flux through consideration of non-local effects

• Analyse the PDF framework as applied to the flow configurations under con-

sideration in order to further understand the underlying physics responsible for

observed particle behaviour

1.4 Scope of the Thesis

This thesis is structured to introduce and review the essential concepts that underpin

the research, followed by detail of the findings. Chapter 2 outlines various aspects of

particle-laden flows including their classification, description of the carrier flow and the

distinct approaches to simulation, description of the particle phase in both Lagrangian

and Eulerian frameworks, and an overview of the different levels of coupling between the
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phases. Chapter 3 reviews the current body of literature on the areas of interest in this

work, specifically PDF modelling, settling of particles under gravity, particle clustering,

and simulation approaches. Chapter 4 introduces the PDF kinetic model and its use in

construction of the transport equations for the particle phase of a two-fluid model, and

highlights the contributions of interest in this research. Chapter 5 presents the details

of the simulation approach which is taken to numerically evaluate the terms of the PDF

kinetic model, and details a novel method of initialising the particle velocities such that

the particle phase statistics conform to their steady-state levels. Chapter 6 is focused

upon the settling of inertial particles which are subject to a gravitational body force,

and highlights the ability of the PDF kinetic model to describe the increase in particle

settling velocity which is exhibited as a result of particle interaction with the turbulent

structures in the fluid velocity field. Additionally, a symmetry analysis is conducted

that shows which components of variables associated with the particle phase are non-

zero, and a closure model is developed that is able to account for the increase in particle

settling velocity. Chapter 7 considers the use of a particle velocity field for capturing

the increase in particle settling velocity, and in particular the numerical treatment of

the quantities that arise within this formulation. Chapter 8 deals with particle-pair

models, and how through the construction of an appropriate inhomogeneous velocity

field the PDF kinetic model is able to capture the additional convective flux terms

which arise in this configuration, with the focus being upon how these contributions

act to affect particle clustering. Chapter 9 summarises the findings of this research,

and details further avenues of investigation.
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Chapter 2

Fundamentals of Disperse Particle

Transport

The objective of this research is to develop improved mathematical models for predict-

ing the behaviour of inertial particles within different turbulent flow configurations. In

order to achieve this, a thorough understanding of the fundamental physical processes

which take place within these flows is required. An overview of the different types

of flow regimes that exist is provided, followed by the governing equations used for

describing turbulent flows. The approaches of particle tracking and two-fluid models

are introduced and then compared, and the different levels of coupling that can be

included between the two phases is detailed.

2.1 Classification of Multi-Phase Flow Regimes

Multi-phase transport encompasses many different types of flow, the classification of

which is determined by factors including the separation between phases, Reynolds

number and thermophysical particle properties [36]. Such flows can take on many

forms with the separate phases being any of solid, liquid, gas, or even plasma [36],

and are accordingly classified depending upon the form that the different phases take.

If both phases are continuous and therefore separated by a line of contact, the flow

is termed as a separated flow, an example of which is a stratified flow in which such

separation occurs due to variation in density between the two phases. In contrast, if

one phase consists of discrete elements that are not connected such as a collection of

individual bubbles, droplets, or particles, this is referred to as a dispersed phase flow. It
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Figure 2.1: Different types of fluid-particle flow regimes, taken from [37]

is the latter type of flow which is the focus of this work, and in order to preserve clarity

whilst keeping the phase mediums as arbitrary, the continuous phase is hereafter used

to refer to the carrier flow of liquid or gas in which the dispersed phase elements are

immersed.

Within the realm of dispersed phase flows, further general classification can be made de-

pending upon the large-scale collective behaviour that is exhibited by bubbles, droplets,

or particles, and this is most easily done within the context of pipe flow as illustrated

in Figure 2.1 [37]. The simplest regime is a homogeneous particle flow (Figure 2.1(a)),

in which the continuous phase velocity is high enough that the particles maintain an

almost uniform distribution as a result of turbulent mixing. This sort of flow is termed

as dilute-phase transport, and is characterised by the inter-particle spacing being rela-

tively large, the energy expended by the fluid in moving the particles being very small,

and the effect of collisions between particles considered as negligible. A lower fluid ve-

locity in the case of pipe flow can result in some particles collecting on the pipe surface,

with this being referred to as dune flow (Figure 2.1(b)). With decreasing fluid velocity

or an increased particle loading, the particles building up on the side of the pipe fill

more of the pipe surface area, and the next distinct classification is made where alter-

nate regions exist in which some particles have deposited whilst other particles are still

in suspension within the fluid, which is known as slug flow (Figure 2.1(c)). The final

phenomenon of note is the case in which particles almost completely fill the pipe, and

is known as a packed bed (Figure 2.1(d)). The latter two cases represent examples of

dense-phase transport, where the inter-particle spacing is very low, a large proportion

of energy is used by the fluid in moving particles, and the effect of collisions between

particles is significant.
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2.2. DESCRIPTION OF THE CONTINUOUS PHASE

The classifications in Figure 2.1 serve to highlight the strong dependence of the dis-

persed phase on the concentration of bubbles, droplets or particles within the flow, and

pertaining to that a key metric for differentiating between these different types of flow

regime is the volume fraction of the dispersed phase, defined as [37, p. 18]

αd = lim
δV→δV 0

δVd
δV

(2.1)

where δVd is the volume of the dispersed phase within the volume δV , and the volume

δV 0 is the limiting volume which ensures a stationary average. In practice, dilute-phase

transport is considered to be flows with a volume fraction of αd < 10−3, whilst dense-

phase transport is a volume fraction of αd > 10−3. For a more detailed classification

of particle-laden turbulent flows in terms of the volume fraction see section 2.4.

2.2 Description of the Continuous Phase

2.2.1 Governing Equations

For a complete description of the continuous phase, by considering the full dynamics

of the carrier flow it is possible to derive a set of governing equations that determine

the evolution of this phase. Such a procedure yields the continuity and momentum

conservation equations of a fluid, for which different representations are available in

both conservation and non-conservation forms depending on whether they are derived

in a fixed Eulerian framework or moving along a fluid streamline in a Lagrangian sense

[2]. In this instance the continuous phase is considered in an Eulerian framework, and

further restricting to the case of an incompressible medium, this approach gives the

equations for conservation of mass and momentum for a fluid of constant density as

∇ · u = 0 (2.2)

∂u

∂t
+ (u · ∇) u =

1

ρf
∇ · σ + g (2.3)

where u(x, t) is the continuous phase velocity, ρf is the continuous phase density (con-

stant), σ(x, t) is the continuous phase stress tensor describing the surface forces of

the fluid, and g is the gravitational acceleration. If other body forces such as electric

or magnetic fields act upon the continuous phase, then appropriate source terms can

9



CHAPTER 2. FUNDAMENTALS OF DISPERSE PARTICLE TRANSPORT

be added onto the momentum equation in a similar manner to gravitational accelera-

tion. Furthermore, the effect that the dispersed phase has on the continuous phase can

also be treated in this manner, with the effective point force of each particle on the

fluid being incorporated as an additional source term within the momentum equation

(see section 2.4). The stress tensor σ can be decomposed into pressure and viscous

contributions [120]

σ = −P I + τ (2.4)

where P is the continuous phase pressure, and τ is the continuous phase viscous stress

tensor. For an incompressible and isothermal Newtonian fluid the latter is defined as

[167]

τ = µ
(
∇u +∇u>

)
(2.5)

where µ is the dynamic viscosity of the continuous phase. This results in the momentum

equation (2.3) taking the form

∂u

∂t
+ (u · ∇) u = − 1

ρf
∇P +

µ

ρf
∇2u + g (2.6)

Equation (2.2) represents the volume continuity condition of an incompressible flow,

whilst equation (2.6) is the Navier-Stokes equation governing the momentum of the

flow. The solutions of these equations determine the underlying behaviour of the contin-

uous phase within a multiphase flow, however analytical solutions can only be obtained

for relatively simple flows such as a laminar regime, where no turbulent structures exist

within the flow [167]. Proof of the existence and uniqueness of general solutions to the

Navier-Stokes equations is a long standing unsolved problem of mathematical analysis,

although it is widely accepted in the scientific and engineering communities that these

equations are universally applicable to describing the behaviour of all fluid flows. In

the case of turbulent flows the Navier-Stokes equations do not admit closed-form so-

lutions, meaning that the alternative approach of numerical simulation must be taken

to obtain an approximation for the continuous phase.

Non-dimensional Form

For clarity of working, equations (2.2) and (2.6) can be put into non-dimensional form

with respect to appropriate reference values. The form adopted here uses a refer-

ence lengthscale lref and velocity uref, leading to the following definitions for the non-

dimensional variables

10



2.2. DESCRIPTION OF THE CONTINUOUS PHASE

x̂ =
x

lref

, û =
u

uref

, t̂ =
t uref

lref

, P̂ =
P

ρf u2
ref

, ĝ =
g

|g|
(2.7)

Application of the above transforms the governing equations for the continuous phase

into the following non-dimensional form

∇̂ · û = 0 (2.8)

∂û

∂t̂
+
(
û · ∇̂

)
û = −∇̂P̂ +

1

Re
∇̂2û +

ĝ

Fr2 (2.9)

where Re is the continuous phase Reynolds number, defined as

Re =
ρf uref lref

µ
(2.10)

which is a dimensionless quantity representing the ratio of inertial to viscous forces

within the continuous phase, and is of importance as it quantifies the intensity of

turbulence. The quantity Fr is the Froude number, defined as

Fr =
uref√
|g| lref

(2.11)

which is a dimensionless quantity defined as the ratio of inertial forces within the

continuous phase to the magnitude of the gravitational body force.

2.2.2 Overview of Simulation Methods

Although the Navier-Stokes equations (2.2) and (2.6) fully describe the dynamics of an

incompressible isothermal Newtonian fluid flow, the absence of analytical solutions for

an arbitrary flow necessitates the use of approximations, and in the case of turbulent

flows numerical solution has become the only viable method of treatment. In order to

numerically prescribe the fluid flow field there are a range of alternative approaches

which can be used, and these differ in the degree of physical refinement of the flow,

leading to various levels of complexity and computational requirements. Due to the

omission of a certain level of detail that characterises some approaches, the resulting

governing equations are unclosed and require modelling in order to be fully specified,
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CHAPTER 2. FUNDAMENTALS OF DISPERSE PARTICLE TRANSPORT

which is often intricately involved with the details of solving the continuous phase

numerically.

The distinction between the various methods of simulation for the Navier-Stokes equa-

tion is the level to which the scales that are inherent within the flow are resolved. This

is more precisely expressed in terms of the turbulent kinetic energy spectrum E(k) and

the range of the wavenumber magnitude k which is taken into account, with higher

wavenumbers corresponding to smaller physical lengthscales of the flow. By sampling

only a certain range of the larger wavenumbers, large-scale motions are accounted for

whilst the detail at smaller scales is not directly represented and must be otherwise

accounted for by modelling, reducing the computational requirements accordingly. The

key simulation types are described in order of decreasing level of resolution within the

flow, with reference to Figure 2.2 [3].

10-1 100 101 102 103 104 105
10-6

10-5

10-4

10-3

10-2

10-1

100

101

Figure 2.2: The level of detail in the turbulence energy spectrum to which different
simulation approaches can resolve [3]

Direct Numerical Simulation (DNS)

Initial work involving the simulation of turbulence was instigated by Orszag [109, 110],

who considered the numerical solution of the full conservation equations for mass (2.2)
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2.2. DESCRIPTION OF THE CONTINUOUS PHASE

and momentum (2.6) for the fluid phase in a coupled manner without assumption,

an approach which is referred to as direct numerical simulation (DNS). This provides

a complete description of the turbulent velocity field by including the behaviour at

all scales that are present within the flow down to the smallest structures, which are

characterised by the Kolmogorov lengthscale η. By numerically solving the governing

equations without making any physical assumptions there is no requirement for any

form of turbulence modelling, however due to the subsequent need to resolve down to

the Kolmogorov lengthscale in order to include a sufficiently wide range of scales within

the inertial subrange, DNS is by far the most computationally expensive method of

simulation. As a result it is currently unfeasible for application in full-scale industrial

problems, instead being mainly used to generate data in support of model development

for accurately describing isolated physical effects.

Within the context of dispersed particle flow, DNS has proven an invaluable tool for

gaining further insight into the behaviour of particles in various flow configurations.

The governing equations for the dispersed phase (see section 2.3) are solved in conjunc-

tion with those for the continuous phase, and particle-fluid interaction (see section 2.4)

is further taken into account by using a level of momentum coupling appropriate for

the particle mass loading within the system. This enables a full physical description

of configurations to be considered, and consequently is of great importance when it

comes to understanding the mechanisms that are responsible for the phenomenological

behaviour exhibited by particles.

Large-Eddy Simulation (LES)

To avoid the prohibitive computational expense of DNS, a compromise is made with

large-eddy simulation (LES) which directly represents the large scales of turbulent mo-

tion but uses a model to account for the influence of the smallest scales. The rationale

for this is that many flows of practical relevance have significant large-scale unsteadi-

ness which requires explicit description, however the small scales are more universal

in character and thus better suited to being modelled. This is achieved by spatial

filtering of the Navier-Stokes equations to obtain a modified velocity field containing

the large scale dynamics, however this produces unclosed terms that are associated

with the sweeping of scales by the energy cascade in turbulence [118]. Consequently

a sub-grid scale model is required to include this information, the pioneering of which

was undertaken by Smagorinsky [145] through use of the equilibrium hypothesis, which

implies that energy cascaded down from larger scales is dissipated instantaneously by
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the small scales. Depending upon the degree of coarseness used to filter the velocity

field, LES typically resolves scales down to within the inertial subrange of the turbulent

kinetic energy spectrum, with the detail at the microscales being lost.

Due to many instances of particle-laden flows being strongly affected by turbulent

structures at the large scales of motion and less so at the microscales, LES has proven

to be of some use for studying disperse systems. In particular, development of tur-

bulence models for LES of particle-laden flows has highlighted that LES is suitable

for predicting temporal statistics, however the relative dispersion of particle pairs for

separation distances less than the smallest resolvable scale is significantly underesti-

mated by the sub-grid scale models [67], demonstrating that LES is not applicable for

investigation into all aspects of particle behaviour.

Reynolds-averaged Navier-Stokes (RANS) Models

In order to address the need for a low-cost computational approach for approximat-

ing turbulent flows, Reynolds-averaged Navier-Stokes (RANS) models were pioneered

as a statistical framework for estimating key flow quantities by Jones, Launder, and

Spalding [80, 86]. This involves using a Reynolds decomposition on the Navier-Stokes

equations to obtain the Reynolds equations, the solution of which yields the mean

velocity field of the flow. As the Reynolds equations contain the unclosed Reynolds

stress term, a turbulent viscosity model must be used as an approximation [152], such

as that provided by the well-known k–ε model [86]. This results in loss of physical

resolution of the turbulence fluctuations, meaning that RANS models can only resolve

the turbulence down to the scale of the largest eddy structures in the flow field at the

longitudinal integral lengthscale L11, with all detail of the turbulence in the inertial

subrange and dissipation range being neglected. RANS models are commonly employed

for industrial purposes due to their relatively low computational cost, however this is

offset by it also being the least accurate approach compared to DNS and LES.

As RANS models of the carrier flow do not include any information about the instan-

taneous turbulence fluctuations which are often the most salient influence on the be-

haviour of disperse particle transport, they have limited applicability for such purposes.

Existing models tend to be highly specialised towards a specific flow configuration or

set of parameters, and consequently are not relevant in more general contexts [90, 154].
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Kinematic Simulation (KS)

Whilst DNS, LES, and RANS are all based on methods originating from the physical

description of a carrier flow provided by the Navier-Stokes equations, an alternative

class of stochastic models exist which are widely used to generate velocity fields that

exhibit the key characteristics of turbulence. One such approach is that of kinematic

simulation (KS) as developed by Kraichnan [84], in which a synthetic velocity field

is generated by the linear superposition of random Fourier modes, producing a flow-

field which is correlated in both space and time such that it conforms to standard

energy spectra. The main advantage of KS is that it can be used to create flow

fields with prescribed decorrelation rates by specification of the fluid velocity as a

coloured Gaussian process, making it a more realistic means of investigation than

if a simple white-noise process was used. Additionally, the fluid velocity field can be

constructed such that a constant level of kinetic energy is maintained, thus avoiding the

complication of a forcing mechanism in order to keep the flow statistically stationary.

Conversely, KS does not capture all of the physics present in a true turbulent flow,

and in particular does not contain the energy cascade effect of sweeping of the small

scales by the larger scales, meaning that KS is inadequate for investigation into the

behaviour of single-phase flows.

Notwithstanding this, KS does have scope as a useful means of investigation for study-

ing dispersed multiphase flows, as it can generate a velocity field which includes large

scale structures that are able to reproduce aspects of particle behaviour that are ob-

served in true turbulent flows. Furthermore, since the fluid velocities are generated at

the particle locations as needed at a given time, no interpolation from a fixed grid of

fluid velocities is required, avoiding the error which arises from this procedure in highly

intermittent flows [78].

2.3 Description of the Dispersed Phase

Considering the contrast in physical behaviour between the various types of multiphase

flow regimes, it is clear that different strategies are required to accurately describe the

dispersed phase for each classification of flow, and in the case of dilute-phase transport

the approaches fall into two distinct categories [90]. Particle tracking models each

particle as an individual entity, with the local fluid behaviour being used to determine

the trajectory of each particle by solving an equation of motion in the Lagrangian
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frame of reference, and together with the continuous phase constitutes a Lagrangian-

Eulerian description. This has the advantage of a conceptually simple formulation

even when complex forces such as lift and rotational effects on the particles have to

be taken into account, however the computational expense of simulating many such

particles individually can require a large amount of both processing power and time,

and means that simulations representing real-world applications are often unfeasible

at the desired level of detail. In contrast, two-fluid models represent the particle phase

as a continuum in a fixed Eulerian frame of reference, with the average properties of

the particles governed by a set of transport equations which can be constructed in

a similar manner to those of the continuous phase, together constituting an Eulerian-

Eulerian formulation. The statistical nature of such treatment means that solutions can

be obtained much more quickly than particle tracking, however dealing with complex

particle forces is considerably more difficult, and furthermore some detail of the particle

behaviour is necessarily omitted due to the averaging procedures used. Nonetheless,

research into two-fluid models is useful for a variety of applications, and the issues

presented by the approach are steadily being addressed.

2.3.1 Particle Tracking

Fully Resolved Simulations

For dealing with the dispersed phase, the starting point is an equation of motion

which determines the evolution of particle trajectories within a flow field. From first

principles, such an equation is derived by considering the momentum transfer between

the fluid and the particle. This results in the force exerted on the particle being equal

to the sum of body forces on the particle (only gravitational acceleration is taken into

account in this case) and the total hydrodynamic force exerted by the fluid on a particle

[120]

mp
dvp
dt

= mpg +

∮
S

σ · n dS (2.12)

where mp is the mass of an individual particle, vp(t) is the particle velocity, σ is the

fluid stress tensor defined in (2.4), and n is the outward unit normal on the surface S

of the particle. The integral in (2.12) is over the entire surface of the particle, and as

such this representation takes into account all physical effects of the continuous phase

upon particles. In principle, it is possible to solve equation (2.12) numerically within a
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particle tracking simulation, and this is referred to as a fully resolved simulation (FRS),

since all the fluid stresses acting on the particle surface are captured. Unfortunately the

computational expense of FRS is so high for even simple turbulent flow configurations

that it is impractical for any simulations of relevance in engineering applications [120].

Basset-Boussinesq-Oseen Equation

In order to obtain a model equation of motion which captures the necessary particle

dynamics at an acceptable computational cost, the integral of the fluid stress tensor in

(2.12) can be simplified by modelling particles as points. This is achieved by assuming

that their mass acts only at their centre of mass, and therefore negates the need to

integrate the fluid stress tensor over the entire particle surface. In practice the point

particle approximation applies when particles are small compared to the smallest scales

over which the continuous phase velocity field varies (i.e. the Kolmogorov lengthscale

η). Further assuming that particles are rigid and spherical, a general equation of

motion can be derived which takes into account all the important forces acting upon

the particle such as weight, buoyancy, drag, and lift, so that a high degree of physical

realism is maintained. Many different forms of such an equation of motion exist,

however the benchmark form is considered to be given by the Basset-Boussinesq-Oseen

(BBO) equation of motion [37], also referred to as the Maxey-Riley-Gatignol equation

[93, 58]

mp
dvp
dt

=
1

2
ρfCDAp|up − vp| (up − vp)︸ ︷︷ ︸

steady-state drag

+ mpg︸︷︷︸
gravitational force

− Vp∇Pp︸ ︷︷ ︸
buoyancy

+ Vp∇τp︸ ︷︷ ︸
shear stress

+
ρfVp

2

[
∂up
∂t

+ (up · ∇) up −
∂vp
∂t

]
︸ ︷︷ ︸

added mass

+
3

2
d2
p

√
πρfµ

[∫ t

0

∂u′p
∂t′

+
(
u′p · ∇

)
u′p −

∂v′p
∂t′√

t− t′
dt′ +

(up − vp)0√
t

]
︸ ︷︷ ︸

Basset history

(2.13)

where Vp is the particle volume, CD is the corrective drag coefficient, Ap is the projected

cross sectional area of the particle in the direction of the relative velocity |up−vp|, dp is
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the particle diameter, and (up − vp)0 is the initial velocity difference between the par-

ticle and the continuous phase. The subscript p denotes that quantities are evaluated

at the particle position xp as a consequence of the point particle approximation being

used, and furthermore the prime denotes that the temporal argument of the associated

quantity within the Basset history term is t′, i.e. v′p = vp(t
′). The various forces each

describe the effect of different physical phenomena acting upon the particle, and may

be more or less important depending upon the specific flow configuration. These are

[37]:

• Steady-state drag: the force acting upon a particle in a uniform pressure field

when there is no acceleration of the relative velocity between the particle and

continuous phase

• Gravitational force: the body force acting upon the particle as a result of accel-

eration due to gravity (similar terms are included in the presence of other body

forces, e.g. electric or magnetic fields)

• Buoyancy: the effective buoyancy force is the difference between the particle

weight and buoyancy force acting upon the particle

• Shear stress: arises from the viscous stresses and pressure gradients within the

continuous phase

• Added mass: of use when the particle density is comparable to or less than the

continuous phase density, and balances the work done in accelerating the fluid

surrounding a particle

• Basset history: addresses the temporal delay in boundary layer development as

the relative velocity between the local fluid and particle changes with time

The formulation of the BBO equation (2.13) uses only the drag forces affecting the

particle momentum, and still omits some forces that could be included. These are

pressure distributions induced by a velocity gradient (Saffman lift), rotation of a parti-

cle (Magnus lift), and the Faxén contribution to the drag force due to non-uniformity

of the continuous phase [37]. For the conditions under which the point-particle ap-

proximation is valid these contributions are generally negligible compared to the drag

forces, and as a result are not considered further in this work.
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Steady-state Drag Models

The momentum conservation equation for the continuous phase given by (2.3) along

with the definition of the stress tensor σ in (2.4) can be used to replace the buoyancy

and shear stress terms in the BBO equation (2.13) with the material fluid acceleration

and gravitational body force. The limitation of this substitution is that the BBO

equation can then only be used for the motion of particles within a dilute suspension,

since the effect of local fluid disturbance from one particle on the motion of a different

particle (i.e. three-way coupling - see section 2.4) can no longer be included. Using this

substitution and rearranging transforms (2.13) into the following equation of motion

(
1 +

1

2

ρf
ρp

)
dvp
dt

=
ρfdp
24µ

CD
1

τp
|up − vp| (up − vp) +

(
1− ρf

ρp

)
g +

3

2

ρf
ρp

[
∂up
∂t

+ (up · ∇) up

]
+

√
9

2π

(
ρf
ρp

) 1
2 1
√
τp

[∫ t

0

∂u′p
∂t′

+
(
u′p · ∇

)
u′p −

∂v′p
∂t′√

t− t′
dt′ +

(up − vp)0√
t

]
(2.14)

where ρp is the density of the particle phase, and τp is a characteristic response time

of the particle to changes in the local fluid velocity as a result of its inertia, which is

defined as

τp =
ρpd

2
p

18µ
(2.15)

From (2.14) it is seen that the expression
ρf
ρp

giving the ratio of continuous phase density

to particle density appears in several terms. For situations where the particle density

is much larger than the continuous phase density this ratio becomes very small, which

is typical of a gas-particle or gas-droplet flow. When sufficiently small, and specifically

satisfying the condition

ρf
ρp

< 10−3 (2.16)

this ratio can justifiably be approximated as being equal to zero [37], simplifying (2.14)

to just the contribution of the steady-state drag force and gravitational acceleration

dvp
dt

=
ρfdp
24µ

CD
1

τp
|up − vp| (up − vp) + g (2.17)
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It is useful to define the particle Reynolds number Rep by taking the reference length-

scale as the particle diameter dp and reference velocity as the relative velocity of the

particle compared to the local fluid velocity |u− vp|

Rep =
ρfdp|up − vp|

µ
(2.18)

Using this definition, the particle equation of motion (2.17) becomes

dvp
dt

=
Rep
24

CD
1

τp
(up − vp) + g (2.19)

Despite the level of detail that it contains, the BBO equation still has limitations.

It does not directly account for some effects that are of importance in physical ap-

plications, such as variation in local Reynolds number, the influence of neighbouring

particles, and turbulence effects. This is addressed by use of the corrective drag coeffi-

cient CD, which is incorporated into the particle equation of motion in order to capture

the dependencies on particle shape, orientation, local turbulence intensity, and particle

Reynolds number [37]. Several correlations are available for CD as a function of Rep,

with one such often used correlation having been developed by Schiller & Neumann

[33, 120, 38], which is given by

CD =
24

Rep

(
1 +

1

6
Re

2
3
p

)
(2.20)

The form of drag coefficient in (2.20) is used to account for the effect of turbulence on

particles, and is valid for Rep < 1000 meaning that although the turbulence will not

be fully developed, this form of drag coefficient is valid for all values of Rep that can

feasibly be simulated computationally.

Linear Drag Models

A simpler model for CD known as the Stokes drag coefficient is defined by [37]

CD =
24

Rep
(2.21)

This is applicable in the low particle Reynolds number regime (Rep < 1) [37], and

transforms the particle equation of motion (2.19) into a simple linear drag law
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dvp
dt

=
1

τp
(up − vp) + g (2.22)

This is referred to as Stokes drag model for the particle equation of motion. In order

for (2.22) to be valid, the condition (2.16) must be strictly observed, as if the density

of the dispersed phase is comparable to or less than that of the continuous phase, the

complete BBO equation is required so that the added mass and Basset history forces

are taken into account. Nonetheless, within the field of particle dispersion a large body

of work is still undertaken utilising a Stokes drag model in order to keep subsequent

analysis tractable, and as such it is the predominant form of the particle equation of

motion used throughout this work.

To summarise, the assumptions invoked in order for a Stokes drag model to be valid

are:

• Point particle approximation: dp � η

• Particles modelled as rigid spheres

• Dilute particle loading within the flow field: αd < 10−6

• Continuous phase density is much less than that of the particle phase: ρf/ρp <

10−3 (restricts model applicability to gas-particle or gas-droplet flows)

• Small particle Reynolds number: Rep < 1

Non-dimensional Form

The Stokes drag model (2.22) can be non-dimensionalised in terms of the reference

lengthscale lref and velocity scale uref by using the non-dimensional quantities defined

in (2.7), resulting in

dv̂p
dt

=
1

St
(ûp − v̂p) +

ĝ

Fr2 (2.23)

where St is the Stokes number defined as

St =
τp
τf

(2.24)
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and in which τf is some characteristic response time of the continuous phase, defined

from the reference lengthscale lref and velocity uref

τf =
lref

uref

(2.25)

The Stokes number is a non-dimensional quantity representing the ratio of response

timescales between the particles and continuous phase, and is a key parameter in the

study of particle transport. The behaviour of particles is strongly dependent on the

Stokes number, and observation of different phenomenon across a range of St is a

hallmark feature of parametric simulation studies focusing upon particle transport in

turbulence. Large values of St imply that particle inertia is the dominant influence in

the dispersion process with particles acting in a ballistic manner, whereas small values

of St infer that the turbulence is a more important factor and the particles behave

almost like fluid elements.

It is possible to define various Stokes numbers depending on the specific flow configu-

ration under investigation, and the length and velocity scales associated with it that

determine the corresponding fluid timescale τf . For instance, a fluid timescale repre-

sentative of the large scales of motion within the continuous phase is obtained by taking

lref = L11 (longitudinal integral lengthscale) and uref = u′ (continuous phase root mean

square (RMS) velocity fluctuation), giving the eddy turnover time τeddy = L11/u
′. Sim-

ilarly, a fluid timescale typical of the smallest microscales is obtained by taking lref = η

(Kolmogorov lengthscale) and uref = uη (Kolmogorov velocity scale), resulting in the

Kolmogorov timescale τη = η/uη.

Gravitational Effects on Particles

The collective behaviour of particles which are subject to gravity is an area with in-

complete understanding, with the research interest into this topic originating from the

study of atmospheric pollution problems [36]. In this context, a further quantity for

evaluating the significance of the gravitational body force g on particle dispersion is

the magnitude of terminal velocity due to gravity in still fluid, defined by

Vg = |Vg| = τp g (2.26)
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which is also referred to as the Stokes settling velocity, and is obtained as the averaged

steady-state solution of the Stokes drag model (2.22). When dealing when this quantity,

rather than classification in terms of the Froude number Fr, a more suitable non-

dimensional parameter for determining the effect of gravity within particle-laden flows

is the Rouse number

Ro =
Vg
uref

(2.27)

which is simply the ratio of the Stokes settling velocity experienced by the particles to

the continuous phase reference velocity. Large values of Ro indicate that the gravita-

tional body force dominates the dispersion process, whereas in small Ro systems the

turbulence is the main influence on particle motion.

Consideration of Light Particles

In situations when the dispersed phase medium has a density that is either roughly

comparable to or less than that of the continuous phase medium, the heavy particle

condition of ρf/ρp < 10−3 has to be relaxed in order to keep the physical description of

the dispersed phase suitably accurate. This is extremely important in the case of bubble

flow, in which the particles have a very low density and added mass effects are now

the dominant force acting upon particles, meaning that the linear drag law (2.22) is an

inadequate representation. The added mass contribution and buoyancy terms in (2.14)

can be included as additional terms in the linear drag law, which extends the range

of flow regimes that can be addressed using a simplified particle equation of motion

without having to account for the Basset history force, which requires substantially

more computation.

2.3.2 Two-Fluid Models

Despite the relative simplicity and numerical accuracy of particle tracking, in reality

simulations using this approach for even simple applications can require a large amount

of computation, and furthermore do not necessarily provide insight into the behaviour

that particles exhibit. More complex phenomenon resembling those seen in industrial

or environmental processes are computationally unfeasible to model at this level of de-

tail, and therefore an alternative approach is needed. Often the quantities of interest
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in such processes are average statistics of the particle phase rather than the extreme

values of individual particle motion, and this motivates a different framework for mod-

elling multiphase flows in which only these average quantities are computed. Such

an averaged approach is considered in an Eulerian sense, and is known as two-fluid

modelling [49].

A description of this manner for the dispersed phase requires a careful set of assump-

tions to be made, and the following considerations constitute the most basic form of

two-fluid model [49]:

1. The dispersed phase behaves only macroscopically as a continuum, with micro-

scopic behaviour not being represented in a two-fluid model

2. The dispersed phase contains particles which are uniform in size and spherical

3. The dispersed phase volume fraction is sufficiently small to ensure that particle

collisions do not need to be accounted for (αd < 10−3 - see section 2.4)

4. Neither the continuous nor dispersed phase undergoes any phase changes

Subject to these conditions, the particle phase can be interpreted as if it were itself

a continuum, with the most straightforward approach to this being the deterministic

construction of transport equations for the key particle statistics. Specifically, conti-

nuity and momentum equations for the particle concentration ρ and average particle

velocity v respectively are given by [48]

∂ρ

∂t
+∇ · (ρv) = 0 (2.28)

∂

∂t
(ρv) +∇ · (ρv v) = ∇ · (αdσd) + ρg (2.29)

where σd is the stress tensor for the dispersed phase. Equations (2.28) and (2.29) are

obtained for a single realisation of the flow field by averaging over a control volume

that is much larger than single particles, and it is emphasised that in the two-fluid

framework the quantities ρ, v, and σd represent the values for a cloud of particles

within this control volume, and not individual particles. In the general form above

the momentum equation (2.29) is unclosed, with the dispersed phase stress tensor σd

remaining to be modelled.
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It is instructive to compare the form of (2.28) and (2.29) with the corresponding equa-

tions for the continuous phase given by (2.2) and (2.3). The difference in the dispersed

phase continuity equation arises due to incompressibility no longer being invoked; in-

deed the finite compressibility of the dispersed phase is a fundamental feature of mul-

tiphase flows which gives rise to many of the phenomena that are of interest in such

systems (see Chapter 3). The momentum equation for the dispersed phase is seen to

be essentially identical to that of the continuous phase, however it is again the com-

pressibility of the dispersed phase that leads to the momentum equation differing for

the two phases. In particular, the dispersed phase stress tensor σd can be decomposed

into pressure and viscous contributions analogous to that for the continuous phase in

(2.4), i.e. σd = −PdI + τd with Pd being the dispersed phase pressure and τd the

dispersed phase viscous stress tensor, however the form of τd will differ. Obtaining an

exact expression for τd constitutes the closure problem of two-fluid modelling, with this

being considerably more complicated than in single-phase flows in the sense that ideas

such as Prandtl’s mixing length hypothesis give useful results in turbulence modelling,

whereas the availability of such ideas in multiphase flow is much more limited and the

performance of them often even more so [120]. The simplest case of using a Boussinesq

approximation for τd, in which variation in properties other than ρ is ignored and the

viscous stresses are modelled as proportional to the rate of strain [36], results in

τd = µd
(
∇u +∇u>

)
− 2

3
µd (∇ · u) I (2.30)

where µd is the dispersed phase dynamic viscosity. This can be considered as the

compressible analogue to the continuous phase viscous stress tensor τ given in (2.5),

however even this basic model presents problems, with the question arising of how

to suitably define a global value for µd. This parameter encompasses much of the be-

haviour of the dispersed phase in the model (2.30), with µd being related to the particle

velocity fluctuations which are themselves dependent on both the local turbulence and

particle history [36]. Subsequent choice of a constant value for µd is paramount to

neglecting these effects upon which much particle behaviour of interest is dependent,

producing a model for the dispersed phase which does not capture anything other than

large scale average behaviour. On the other hand, introducing a variable value of µd as

a function of St is possible [32], however this involves producing a suitable fit for such

a function which is a non-trivial task. Furthermore, encompassing a range of effects all

within the single parameter µd does not shed any physical insight into the individual

factors which are responsible for given behaviour of the dispersed phase, demonstrating
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the need for a specification of τd which is less empirical in nature. However, formulating

a closure which captures the relevant physics in the dispersed phase is often non-trivial,

and remains the most challenging aspect of utilising two-fluid models.

As an alternative to the aforementioned method of obtaining a set of governing equa-

tions which describe the behaviour of the dispersed phase, a separate statistical frame-

work exists which involves the construction of such equations through the use of proba-

bility density functions, and this is detailed separately in Chapter 4. Such a formulation

provides a higher level of detail in the associated transport equations, meaning that

the closures which are required can be made at a more basic level, and consequently

are more likely to produce an accurate model.

2.4 Inter-phase Coupling

The description of the continuous phase in section 2.2 only contains information about

the carrier flow as an individual entity, whilst that of the dispersed phase in section 2.3

is influenced by only the local properties of the continuous phase. In reality a given

flow regime will contain a certain level of interaction between the two phases which

is dependent upon the physical characteristics of the system in question; notably the

volume fraction αd and Stokes number St. Dilute and dense-phase transport thus

each require different levels of particle-fluid interaction to be taken into account, and

an overview of these different instances of phase-coupling is therefore detailed in the

following [36].

The starting point is one-way coupling, in which there is no feedback from the dis-

persed phase to the continuous phase, and further the motion of individual particles is

independent of each other. To create a better model, the effect of particles on the sur-

rounding fluid should also be taken into account, and in conjunction with the one-way

coupling mechanism this is termed as two-way coupling. In the case of dilute phase

flows, the large inter-particle separation distance means that particle-particle inter-

action can be assumed to be negligible, and thus two-way coupling is a valid model.

However for dispersed flows which have a higher volume fraction and therefore smaller

inter-particle separation distance, the particles will begin to have an effect upon each

other. Three-way coupling accounts for this by including the effect of local fluid dis-

turbance from one particle on the motion of another particle, whilst the highest level

of accuracy is achieved by four-way coupling which takes particle collisions into ac-

count. Once the volume fraction is increased to a certain level, the problem is classed
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as dense-phase flow, in which the particle-particle interactions become the dominant

contribution to the coupling mechanism, meaning that four-way coupling is absolutely

necessary in this situation.
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Figure 2.3: Classification map of dispersed two-phase turbulent flows [48]

Classification of two-phase flows in terms of the degree of coupling required can be

made for different volume fractions and Stokes numbers, and depicted as a regime

diagram as shown in Figure 2.3 [48]. For αd < 10−6 the particles have negligible effect

on the turbulence meaning that two-way coupling does not need to be accounted for,

and one-way coupling is sufficient for accurately capturing the particle behaviour. For

the range 10−6 < αd < 10−3 however, the effect of the particles on the turbulence

is great enough to alter the structure of the turbulence, and therefore needs to be

accounted for through use of two-way coupling. Within this range the effect of different

Stokes numbers on this coupling mechanism gives rise to different degrees of turbulence

modulation, with the Stokes number here being defined in terms of the Kolmogorov

timescale Stη = τp/τη. Systems that fall within this range of volume fraction have

particles classified as [36]:

• Microparticles (Stη � 1): particles behave almost like fluid elements due to their

response time τp being much less than the Kolmogorov timescale τη, however both
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turbulent kinetic energy and dissipation rate are increased compared to

single-phase flow

• Ghost particles (Stη ∼ 0.25): the energy spectrum is modified in such a way that

the turbulent kinetic energy is identical to that of single-phase flow,

whilst the dissipation rate is increased

• Critical particles (Stη ∼ 1): maximum preferential accumulation is observed as

a result of interaction with the structures of the turbulence, with the energy

spectrum being modified such that the turbulent kinetic energy is decreased,

whilst the dissipation rate is identical to that of single-phase flow

• Large particles (1 . Stη . 10): particles behave more ballistically due to their

response time τp being greater than the Kolmogorov timescale τη, and both tur-

bulent kinetic energy and dissipation rate are decreased compared to

single-phase flow

When particles become sufficiently large (Stη & 10) within the two-way coupling range,

their motion becomes fully ballistic and they are classified differently to large particles.

This is due to the very high inertia meaning that the particle Reynolds number is now

large enough to cause vortex shedding, which in turn results in enhanced production

within the energy spectrum. Therefore in contrast to large particles which cause the

turbulent kinetic energy to decrease, for (Stη & 10) an increase in turbulent kinetic

energy is instead observed. In the case of αd > 10−3 the particle loading is now a dense

suspension and inter-particle collisions become important, necessitating the use of four-

way coupling. At higher values of Stη the tendency of particles to collide is increased,

with this behaviour making a non-negligible contribution even for αd < 10−3, and this

is why the separation between two-way coupling and four-way coupling varies with

αd in Figure 2.3. For dense suspensions the effects of particles on the turbulence are

varied, classification of which is a subject of ongoing research [36].
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Chapter 3

Literature Review

Although the fundamentals of particle transport are well-established, modelling the

behaviour of multiphase flows and a true understanding of the physical mechanisms

that underlie various phenomena remains an active research topic. As such, a large

body of literature addressing these issues exists, from which the relevant advances are

detailed in the subsequent sections.

3.1 PDF Modelling

The PDF approach (see Chapter 4) is a methodology for representing both single-phase

fluid flows and disperse particle flows, with the objective being to develop mathematical

models that can accurately describe the behaviour exhibited in various flow configura-

tions. Considerable focus has been given to using the PDF approach in single-phase

flows as a method of constructing closures to the Reynolds averaged Navier-Stokes

(RANS) equations [118] (see section 2.2.2), through use of stochastic Lagrangian meth-

ods such as the generalised Langevin model [117]. Such approaches consider the PDF of

the fluid velocity at a given position and time in a Lagrangian sense, leading to closures

for various moments of the fluid velocity along the trajectory of a fluid element.

In the case of disperse particle flows, two different forms of PDF equation have been

introduced and studied. One choice of variables for analysis of particle dispersion is

the particle position and velocity at a given time, and this formulation is known as

the kinetic model (KM). The associated PDF transport equation is referred to as the

kinetic equation, and is derived from the particle equation of motion itself. In contrast,

the local fluid velocity at the particle position can also be included within the PDF in
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addition to the particle position and velocity, with this approach being referred to as the

generalised Langevin model (GLM). The name arises from the need for an additional

equation of motion for the fluid velocity along the particle trajectory in the modelling

procedure, with the standard model for this purpose being a simple derivative of the

Langevin equation [117]. In principle both approaches can arrive at the same results,

however this requires that the closures made are exact in either PDF equation, and

that the statistics of the process are the same in both cases [127]. It is important to

note that the PDF equation in both of these general forms remains unclosed, with the

methods used to derive them reducing the closure problem from that of the phase-space

diffusion current to correlations of the phase-space variables of the PDF.

3.1.1 Kinetic Models

The KM approach was pioneered by Buyevich [23] in the early 1970’s, with the first

derivation of the kinetic equation obtained via the classical Fokker-Planck equation

using a simple decomposition of the particle and fluid velocities into mean and fluctu-

ating components. This form of the kinetic equation is however only valid when the

random particle motion is described by a Markov process [124], which restricts usage

to when the particle timescale τp is much greater than that of the turbulence in the

continuous phase τf , a restriction which is known as the white noise approximation.

The specification of the continuum equations from the kinetic equation was also first

performed in the work by Buyevich, in the standard manner of Chapman & Cowl-

ing [28]. Buyevich followed this with further work on closure of the kinetic equation

using the Chapman-Enskog method [24], and application of the KM to homogeneous

suspensions in pseudo-turbulence [25].

A number of other workers have since developed the KM approach. Reeks [122, 124]

obtained a kinetic equation by modelling the particle motion as a Langevin equation

(i.e. the fluctuating continuous phase driving force is prescribed along a particle trajec-

tory) and performing a cumulant expansion to close the phase-space diffusion current

arising from the Liouville equation for the PDF. In order to circumvent the implied

restriction on the particle timescale of τp � τf that is implicit in the kinetic equa-

tion of Buyevich, the Lagrangian History Direct Interaction (LHDI) approximation of

Kraichnan [83] was used to preserve the invariance under random Galilean transfor-

mations (RGT). This involves consideration of an added random translational velocity

which is uniform in space and time invariant to each realisation of the continuous phase

flow, and Kraichnan [85] took the distribution of these translational velocities to be
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Gaussian. Along with the LHDI approximation Reeks supposed that the fluctuating

component of the continuous phase driving force along particle trajectories was also

Gaussian, resulting in every term within the cumulant expansion apart from the first

becoming zero, and thus producing a kinetic equation no longer constrained to the

random particle motion being Markov. The resultant dependence of the PDF upon

the history of particle trajectories is encapsulated in the kinetic equation within the

so-called dispersion tensors, which in turn contain a two-point two-time correlation

tensor of the fluctuating continuous phase driving force and a particle response tensor

in the form of a functional derivative with respect to the fluctuating continuous phase

driving force. In addition, Reeks [125] formally demonstrated that a well-posed set of

continuum equations for the particle phase could be derived using this approach.

Obtaining a kinetic equation directly from the particle equation of motion without

recourse to RGT invariance has also been carried out. Swailes & Darbyshire [150] used

the correlation splitting result of Furutsu and Novikov (FN) [56, 107] for functionals

to produce an expansion of the phase-space diffusion current, which truncates to just

the first cumulant by modelling the Eulerian continuous phase fluctuating velocity as

Gaussian. This produces a similar form of kinetic equation to that of Reeks [124], with

the distinction that the fluctuating continuous phase driving force is interpreted in an

Eulerian sense in this case rather than along a trajectory. Indeed, since the starting

point in this formulation is the true particle equation of motion, the closure is exact

up to the point of using the Gaussian assumption, resulting in a theoretically sound

kinetic equation. In the same manner as Reeks, this approach also leads to continuum

equations for the particle phase [151].

The FN correlation splitting approach has been used by other workers to close the

phase-space diffusion current, notably Hyland et al. [71], and Derevich & Zaichik [44].

Both of these derivations arrive at a kinetic equation different from that of Swailes &

Darbyshire due to varying treatment of the functional derivatives involved. Hyland

et al. assume that the probability of transition for a particle along a trajectory is

independent of the fluctuating continuous phase driving force, by invoking Corrsin’s

hypothesis [35] on the grounds of the driving force being small enough compared to

a characteristic speed that is determined by an explicit condition on the turbulence

spectrum [168], and also numerical accuracy [122]. This addresses the implied timescale

restriction of the classical Fokker-Planck equation in an equivalent manner to the LHDI

approximation, and consequently results in a kinetic equation identical to that of Reeks

[124]. In contrast, Derevich & Zaichik assume that the infinitesimal change in fluid

velocity is delta-correlated in both space and time, resulting in the functional derivative
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losing its dependence on the particle trajectory and becoming a deterministic function

of the particle phase variables. This leads to a form of the kinetic equation which is

also fully deterministic, with the only unclosed quantity being the Reynold’s stresses.

A further derivation of the kinetic equation was performed by Pozorski & Minier [119],

and makes use of the cumulant expansion method proposed by Van Kampen [162]

for the solution of linear stochastic differential equations, by modelling the particle

equation of motion as such a process. This features both deterministic and random

components as linear operators, however a restriction on the timescale and fluctuation

intensity of the random component is inherent within application of the cumulant ex-

pansion [160, 161]. Assuming that the random component of the stochastic differential

equation has a zero-mean Gaussian distribution results in a kinetic equation of the

same form as that obtained by Reeks [124] using the LHDI procedure, however the

fluctuating continuous phase driving force is only a function of phase-space variables

[90]. Consequently the unclosed terms in this formulation of the kinetic equation do

not involve non-local correlations along particle trajectories, meaning that it differs

from the approaches using LHDI and FN.

The closures provided for the phase-space diffusion current by LHDI, FN, and Van

Kampen’s method all result in PDF kinetic equations which are fundamentally different

[12], and any reconciliation between the various approaches in their general forms

remains unestablished. Consideration of this is an unresolved issue within the area of

PDF modelling, and demonstrating correspondence between the different assumptions

used in the various closures would be a result of significant interest.

3.1.2 Generalised Langevin Models

The GLM approach was first proposed by Simonin et al. [141] by using an equation

of motion to model the continuous phase velocity along particle trajectories. This

equation was developed from the Langevin equation used as an analogue of the Navier-

Stokes equation for fluid point motion by Pope & Haworth [66]. The higher-dimensional

PDF of the particle location, velocity, and local fluid velocity is then considered in order

to derive expressions for the fluid/particle turbulent moments. Since all the necessary

variables are specified within the phase-space vector of the PDF, the only unknown

term within the PDF transport equation is the fluid acceleration. As this is defined by

the Langevin equation, the PDF transport equation in a GLM model is in fact already

closed, with the assumption of modelling the fluid velocity along a particle trajectory
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as a stochastic process providing all the information that is required to fully determine

the associated PDF [98]. Thus the problem reduces to specification of an appropriate

form of Langevin model that captures the necessary features of the flow field.

3.1.3 Stochastic Models

A more general approach of modelling the behaviour of an arbitrary stochastic process

rather than the specific case of particle motion was taken by Hänggi [64], in which a

FN closure was applied via use of the characteristic functional. This procedure yields

a recursive relationship between the n-point correlation function and cumulants of the

process in question. This work considers processes governed by a GLM, and derives a

master equation for the PDF of the process by using the cumulants of the fluctuating

part of the process to characterise its stochastic properties. Assuming that the random

force is a coloured Gaussian noise, the subsequent master equation takes a closed linear

form, for which the solution can be written in terms of a Green’s function.

This work was followed up by Hänggi [65] with the development of an approximate non-

linear Fokker-Planck type equation for modelling the long-time dynamics of a general

stochastic system. This equation is written in terms of dispersion tensors of a similar

form to those that appear within the various forms of kinetic model. The two-point

two-time correlation tensor is treated simply using an exponential decay model due to

a Langevin process being assumed for the stochastic system, whilst the response tensor

is written in an iterated integral form to which a decoupling approximation is applied

in order to neglect correlations among components of the response tensor. This still

retains some of the important long-time information about the underlying stochas-

tic process, producing an improved model compared to the earlier work of Hänggi

[64]. This work does however assume that the response tensor and PDF itself are

independent. Further work [54] on this approach involved extending the decoupling

approximation applied to the response tensor by using projector-operator techniques

on the GLM process.

A more recent investigation [6] into systems of stochastic differential equations with

coloured noise as the driving force uses a modified large-eddy diffusivity (LED) method

to make a closure of the associated PDF model. The stochastic flux appearing in this

closure is shown to be equivalent to the second-order cumulant expansion of van Kam-

pen [160, 161], and a local linearisation is used to obtain a PDF transport equation.

This is found to be accurate when the decorrelation time of the coloured noise is
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much different from the relaxation time involved in the system in question, i.e. in the

case of disperse particle transport the PDF model is only valid for St 6= 1. It was

noted that the accuracy of the PDF decreases with increased standard deviation of the

coloured noise, indicating that the long-time history effects of the process are respon-

sible. Notwithstanding this, the PDF model in [6] for processes involving noise with

finite decorrelation times is still an improvement over white noise models which do not

capture any history effects, and the subsequent non-local nature of the PDF equation

reflects the non-Markovian behaviour of the process. The closure for the stochastic flux

is written in terms of dispersion tensors that take a similar form to the kinetic model,

however instead of a response tensor (see section 4.1.4), the Jacobian tensor represent-

ing the elemental deformation of a fluid element along a particle trajectory (see section

3.3.1) appears. This presents the interesting possibility of whether reconciliation be-

tween these two different classes of model is possible. In [6] further evaluation of the

dispersion tensors is carried out by linearising the response tensor, which effectively

loses the detail of the relationship between the response and correlation tensor, and

leads to a fully localised quasi-Fokker-Planck transport equation for the PDF. When

applied to a set of coupled Kramer’s equations, there is no general solution to the PDF

transport equation, however approximate analytical solutions can be derived. These

capture the stochastic resonance behaviour which is present in the system, thereby of-

fering an improvement over classical LED closures which are inaccurate in such systems

due to neglection of this behaviour.

3.1.4 Spurious Drift

For investigation into the various stochastic fluxes that arise within the different forms

of PDF models it is essential that the drift contribution can be accurately quantified,

and that so-called spurious drift does not make a contribution [98]. This applies in the

limit of particle inertia becoming negligible, in which case particles effectively become

fluid tracers and move along streamlines of the flow field. When dealing with incom-

pressible flows, mass continuity implies that given an initially uniform distribution of

particles, the concentration must remain uniform. Models which do not respect this

constraint are said to exhibit spurious drift, and this constitutes a serious shortcoming

of that model.

In terms of PDF models, an important contribution was made by Bragg et al. [12]

by showing that of all the forms of kinetic equation outlined in section 3.1.1, only

the Furutsu-Novikov closure of Swailes & Darbyshire [150] respects this condition for
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general flow configurations, with the LHDI procedure of Reeks [124] only doing so for

homogeneous flows, and application of Van Kampen’s method by Pozorski & Minier

[119] only doing so by neglecting an important scalar flux contribution associated with

non-uniform flows. On the other hand, the form of the stochastic model used for the

continuous phase in the GLM approach determines whether spurious drift is present,

meaning that appropriate specification of this stochastic model ensures that the con-

straint is automatically respected [98]. This limits the choice of PDF models which are

appropriate for studying drift enhancement, but still allows for either the KM or GLM

to be used depending upon preferences.

3.1.5 Current Developments

The foundations of the work on kinetic models has recently been brought into question

by Minier & Profeta [99, 97], with claims that the kinetic equation is ill-posed and

therefore invalid as a PDF description of dispersed two-phase flows. The assertion

made is that the kinetic equation has the properties of a backward heat equation and

therefore its solution exhibits singularities within a finite time, which is justified by

arguing that the phase space diffusion tensor possesses both positive and negative

eigenvalues. The validity of this argument was addressed by Reeks et al. [128] by

noting that the drift coefficient in the kinetic equation contains both convective and

diffusive contributions in a transformed phase space due to the coupling of phase space

variables, i.e. particle position and velocity are not independent. This implies that the

drift contribution is not purely a convection term within the kinetic equation, but has

a specific form consisting of both convective and diffusive parts, since it is a functional

of the solution to the kinetic equation. It is formally demonstrated that the diffusive

contribution offsets the convective contribution to the negative eigenvalue of the phase

space diffusion tensor for the entire range of values in the particle parameter space,

meaning that the kinetic model is in fact well-posed.

Furthermore, it was noted in [128] that the claim of ill-posedness of the kinetic equation

contradicts the well-posedness of the PDF equation for the GLM, with some further

contrasts between these two different classes of PDF model also considered. Firstly,

the GLM cannot capture the influence of spatio-temporal structures within the flow

on particle behaviour, as the Langevin model is used to prescribe the flow. This effect

is very important for describing the spatial distribution of particles, which the kinetic

model captures through the two-point two-time correlation tensor. Secondly, the GLM

fails to preserve the RGT invariance which is a cornerstone of the LHDI procedure.
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This is due to the fluctuating stochastic acceleration field described by the Fokker-

Planck equation, and causes the GLM to predict short term dispersion of O(t) rather

than O(t2) as the kinetic model predicts. The difference lies within the assumptions

made on the history of particle trajectories, for which the dispersion tensors of the

kinetic model cannot be considered time-independent in analysis due to non-zero time

correlations of the flow field, i.e. the system is inherently non-Markovian. These factors

result in the GLM and kinetic model producing different quantitative behaviour over

a vast range of flow configurations, with agreement only being observed in the case of

a simple shear flow in which statistics of fluid velocity along particle trajectories are

assumed to be Gaussian.

3.2 Drift Enhancement under Gravitational Settling

The study of particle dispersion subject to an applied body force is most easily realised

by considering the case of gravity, due to the additional force acting in only one direc-

tion, and therefore if the underlying flow field is isotropic the inclusion of gravity results

in a reduction in the symmetry of the particle phase in just the gravitational direction.

The interest in this configuration is due to the tendency of the average settling velocity

of particles within a turbulent flow to be be modified compared to the settling velocity

within a still fluid Vg, and this has been the subject of a number of investigations into

the physical mechanisms responsible. A large body of work has focused upon using

a linear drag law for the particle equation of motion, and from equations (2.23) and

(2.9) it can be seen that particle behaviour involving a gravitational body force can

be viewed as a function of Stokes number St, Froude number Fr (or Rouse number

Ro), and flow Reynolds number Re. Furthermore, if the particle equation of motion is

relaxed to a steady-state drag law as in equation (2.19) then behaviour also becomes

a function of the particle Reynolds number Rep. Despite this dependence on as few

as three parameters, the modification in settling velocity is still not well understood,

and precisely attributing these effects to individual factors remains a focus of ongoing

research.

3.2.1 Crossing Trajectories Effect

The effect of crossing trajectories was first highlighted by Yudine [174], and arises due

to the influence of an external body force causing inertial particle trajectories to cross
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those of fluid elements. The consecutive interaction with many separate fluid elements

results in a different velocity for the inertial particles than the corresponding fluid ele-

ments, and this causes particles to move from one region in which the flow is correlated

to another. Since the fluid element neighbourhood of particles is continuously chang-

ing, the particle velocity correlation decorrelates more rapidly with time than that of

fluid elements [39]. The crossing trajectories effect has been recognised as being of

great practical importance in relation to the diffusion rate of inertial particles, with

the rate of dispersion decreasing as the effect becomes more pronounced [169]. Further,

it is observed that crossing trajectory effects are negligible when the drift velocity of

the particles produced by the associated body force is less than the RMS fluid velocity

[169]. Nonetheless, crossing trajectory effects are central to modification of the average

settling velocity of particles, in addition to being responsible for a number of other

mechanisms that contribute to particles moving between different regions in which the

flow is correlated.

3.2.2 Preferential Concentration and Sweeping

The effect of an unsteady flow on particle settling was first studied by Maxey & Corrsin

[92] in cellular flow fields, who observed that inertial particles subject to a Stokes

drag force reached an equilibrium settling velocity that is greater than the Stokes

settling velocity Vg. Furthermore, the tendency of particles with a small inertia that

are subject to a small gravitational acceleration to collect along isolated paths was

observed. Following on from this work, Maxey [91] conducted an investigation into

the physical mechanisms behind the observed behaviour by using a more rigorous

study of inertial particles in a Gaussian random velocity field. By performing an

asymptotic analysis for small particle inertia and defining a particle velocity field,

Maxey showed that the divergence of this velocity field is positive in regions of high

vorticity and low strain rate, and negative in regions of high strain rate. This results

in an inertial bias on the particles causing them to accumulate in regions of high strain

rate and low vorticity, thus leading to a locally non-uniform particle concentration,

referred to as preferential concentration. Note that this is defined distinctly as a special

case of particle clustering, which is non-uniformity of the particle spatial distribution

irrespective of any correlation this has with the fluid flow field. In contrast, preferential

concentration is where the particle spatial distribution is not only non-uniform, but is

also correlated with local properties the flow [155].

Further work was undertaken by Wang & Maxey [163] using full direct numerical sim-
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ulations to capture the effect of the flow dynamics at small scales on the increase in

settling velocity. In contrast to the Gaussian random velocity field where the increase

in settling rate was found to be up to 10% of the terminal velocity in still fluid, in-

clusion of the full flow dynamics increased the settling rate as much as 50%, with the

peak increase being when the particle timescale and gravitational settling velocity are

comparable to the respective Kolmogorov microscales of the flow. This was justified

by previous work [139] which demonstrated that intense vortical regions are a feature

of the small scale dissipation range flow dynamics, with the higher intensity at these

scales serving to accentuate the effect of inertial bias on particles. This is in contrast

to particle dispersion, which is dominated by the bulk stirring of the large scale eddies.

Furthermore, in [163] an additional mechanism contributing towards the increase in

settling velocity was identified as the tendency of particles to collect in the downflow

side of local fluid structures with respect to the direction in which the gravitational

body force is acting, a phenomenon known as preferential sweeping. The proposal of

such a mechanism followed from the observation that regions of higher particle concen-

tration tend to appear as long connected patches that are aligned in the gravitational

direction, with these patches being located precisely in the downflow regions in the ve-

locity field which form between neighbouring regions of vorticity. Thus [163] concludes

that the faster settling rate of particles is due to both preferential concentration and

preferential sweeping.

The observation of Wang & Maxey [163] that regions of higher particle concentration

are characterised by long connected patches of particles in the gravitational direction

has attracted attention to classification of these patches and the dependence of such

clustering due to gravity on physical parameters. By considering clustering only within

the inertial range where forcing and dissipation are not relevant, different defined spatial

clustering patterns referred to as attractors have been observed [51, 105], with the

different forms of attractor dependent upon St and Fr. Clustering patterns are found

to exist as 1D, 2D and 3D attractors, and exhibit different concentration gradients

dependent upon the dimensionality of the attractor which is formed in a given case.

However, it is noted that across most cases of St and Fr the particle distribution

did not form defined patterns, and dispersed throughout the domain. Further to this,

depending upon the value of St, gravity can either reduce or enhance the degree to

which clustering occurs. In particular, one-dimensional clustering patterns move from

the horizontal direction to the vertical direction with increasing Fr, and for low values

of Fr, two-dimensional clustering patterns are recovered due to the gravity preventing

uniform settling of particles.
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3.2.3 Loitering

Wang & Maxey [163] also examined the particle settling rate in the case of a nonlinear

drag law, and in doing so produced the first simulations which identified a net decrease

in the particle settling velocity in turbulent flows, referred to as the loitering of par-

ticles. This phenomenon was previously observed by Tunstall & Houghton [156] and

Hwang [70] for simple oscillatory flows, and Mei [94] for random flow fields, with Wang

& Maxey’s contribution confirming that the effect also exists in flows governed with a

full physical description. This study only observed a decrease in the particle settling

velocity in the case of both St and Vg being large, and this effect is attributed to the

fluctuating slip velocity between particles and the surrounding fluid within a turbulent

flow, which is opposite in sense to the effect of preferential sweeping, and exists even

when the inertial bias is not present. The overall effect of nonlinear drag is a slight

decrease in the average particle settling rate compared to a linear drag law at the same

St and Vg.

Another early investigation into whether the average settling velocity of inertial par-

ticles in homogeneous stationary turbulence differs from that in still fluid was carried

out by Fung [55], with the influence of turbulent structures on this behaviour specifi-

cally being focused upon. This study also used a Gaussian random velocity field rather

than true turbulence, however in contrast to the initial work of Maxey [91], preferen-

tial concentration is observed in eddy regions for small gravitational settling velocities,

resulting in a decreased average settling velocity compared to still fluid. Crucially, this

study used a square drag law within the particle equation of motion, consistent with

the hypothesis of decreases in the average particle settling velocity being attributable

to nonlinear drag effects.

A theoretical investigation considering particle settling velocity in the asymptotic limit

of negligible particle inertia for a vortex flow was performed by Davila & Hunt [41] using

a particle equation of motion that takes added mass effects into account. A Rankine

vortex of radius Rv and circulation Γ is used to define the flow field, resulting in a

completely deterministic configuration. The simulation characteristics are determined

by two parameters: the dimensionless ratio VT = VgRv/Γ and the ratio between the

particle timescale and the characteristic time for a particle to move around a vortex

Fp = τpV
2
T /Γ. By calculating the differential settling distance of inertial particles, an

expression for the average settling velocity is obtained. This is predicted to be up to

80% greater than in still fluid for Vg < u′, but also up to 20% less for Vg > u′, providing

the first theoretical justification for the loitering of particles. The increase in average
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settling velocity further becomes negligible for Vg/u
′ > 4. The analysis also proceeds

to define a particle velocity field as an asymptotic expansion for small Fp, with the

resultant expression for the divergence of this particle velocity field being equal to

that obtained by Maxey [91], demonstrating the equivalence of these two approaches.

Additionally, despite added mass effects being included, the particle equation of motion

used in [41] contains a linear drag law, bringing into question whether nonlinear drag

effects are solely responsible for the phenomenon of loitering.

3.2.4 Experimental Studies

Although the initial work into modification of the average particle settling velocity was

carried out using a combination of numerical simulation and theoretical analysis, more

recent studies have made an important contribution by undertaking experimental in-

vestigations into the phenomenon in order to validate the existing research. The first

such work was by Aliseda et al. [1] and confirmed that the highly non-uniform spatial

distribution of particles is due to interaction with the underlying turbulence resulting

in preferential concentration within certain regions of the flow, and that the cross-

ing trajectories effect causes particles to experience preferential sweeping which results

in the mean effect of the turbulence on particles being a net force that results in a

downwards acceleration. As with simulation studies, particle settling velocity enhance-

ment due to turbulence was found to depend primarily on the two non-dimensional

parameters Stη and the Rouse number defined using the Kolmogorov velocity scale

Roη = Vg/uη, with the maximum settling increase observed at Stη ∼ 1 and Roη ∼ 1.

However, enhancement of the average particle settling velocity was also found to be

highly dependent on the particle mass loading in the flow, where a monotonic increase

in the average particle settling velocity with the local concentration was reported. This

means that preferential sweeping cannot be the only mechanism responsible for settling

enhancement, otherwise the effect would be independent of the number of particles in

the flow. Consequently an additional mechanism for clustering due to particle loading

results from regions of high particle concentration behaving like large pseudo-particles

(clusters) which have their own settling velocity, and adding this onto the settling ve-

locity of the individual particles contained within the cluster produces an increase in

the overall particle settling velocity.

More recent experimental investigations have confirmed that in a linear velocity field

heavy particles preferentially accumulate in strain-dominated regions of the flow [59],

and further considered the contribution of preferential sweeping, loitering, and nonlin-
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ear drag towards the variation (enhancement or reduction) in drift velocity by isolating

these distinct mechanisms [61]. The latter study reported that a reduction in the av-

erage particle settling velocity is only observed at large Stokes numbers (for which a

point-particle approximation is made) when one-way coupling is used with nonlinear

drag corrections, and this behaviour is attributed to the increase in drag coefficient

with slip velocity introducing a bias towards upward flowing regions. Reduced set-

tling speeds are only observed with a linear drag model in the case of artificial flows

that eliminate preferential sweeping by the eddies, and this demonstrated by consid-

ering particle motion which is constrained to vertical paths, removing the preferential

sweeping effect and thereby reproducing loitering. For linear drag forces and uncon-

strained particle motion, preferential sweeping dominates any loitering effects, meaning

that enhancements to the settling velocity are observed across the whole range of pa-

rameter values. It is also observed that particles respond more to fluid fluctuations in

the vertical (gravitational) direction than in the horizontal direction(s), due to verti-

cal fluctuations being correlated over longer distances than horizontal fluctuations, in

agreement with Wang & Stock [165].

A very recent study [69] has further investigated experimentally the role of particle

loading on the settling velocity of inertial particles in homogeneous isotropic turbulence

(HIT), with behaviour characterised in terms of the local particle volume fraction. For

αd < 10−6, corresponding to the one-way coupling regime, particles respond only to

the background flow and there are no collective effects amongst particles. However for

αd ∼ 4.5×10−5, corresponding to the two-way coupling regime, particles are subject to

a rapid settling velocity enhancement which is proportional to the turbulence fluctua-

tions. Finally for αd > 10−3, corresponding to the four-way coupling regime, particles

experience no further increase in settling velocity as volume fraction is increased, and

the enhancement typically remains at 60−100% of that seen by particles in the one-way

coupling regime.

3.2.5 Effect of Settling Velocity Modification on Particle Dy-

namics

Recent simulation studies have attempted to quantify and understand the interaction

between particles and the turbulent carrier phase in a higher level of detail, focusing

upon the physical mechanisms responsible for altering the average settling rate of

particles as a result of the flow dynamics. In particular, the effect of different mass
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loadings on average settling velocity has been considered by varying the particle volume

fraction, with such investigations using fully-resolved simulations in order to capture

all the physical forces acting on particles and accurately quantify the effect of different

particle mass loadings. In a study [182] focusing upon dense particle suspensions, for

low volume fraction (αd < 0.01) and high Reynolds number flows (Re ≥ 175) particles

are observed to cluster in high strain regions, while for high volume fraction flows

(αd > 0.03) a reduced averaged particle settling velocity is observed across all values

of Re. In contrast, another numerical study [52] found that a volume fraction in the

range 0.005 − 0.01 decreased the average particle settling velocity by 12 − 14%, with

the mechanisms responsible being the unsteady drag effects and non-stationary effects

related to vortex shedding. In particular, the main contribution to the overall drag

force is the steady part, however the reduction in average settling velocity is almost

entirely due to the unsteady effects. Additionally, gravity has been found to play an

important role in particle acceleration statistics by disrupting the near equilibrium

behaviour of particle response to local turbulent motion and also amplifying extreme

acceleration events in all directions, thereby reducing the inertial filtering mechanism

[114].

A DNS investigation [43] using one-way coupling into the effect of settling enhancement

as a result of preferential concentration found that in addition to the preferential sweep-

ing of particles by the fluid velocity on the downward side of flow structures, a similar

mechanism exists due to the fluid acceleration on the downward side of flow structures.

However, the magnitude of the effect is reported to be marginal, and it could not

be detected from statistical analysis of the particle concentration. This study further

observed that in the case of one-way coupling the maximum enhancement of settling

velocity is of order of 0.1u′, and the average particle settling velocity monotonically

increases with local particle concentration.

As a follow-up to [43], the effect of different levels of inter-phase coupling at a given

mass loading has also been addressed in a further DNS study [102], in which analysis of

gravitational settling with two-way coupling effects included was carried out in order to

obtain insights into the interplay between local preferential concentration and turbu-

lence. In this work particle settling is parametrised by the Rouse number Ro = Vg/u
′,

and the particle concentration is determined by Voronöı analysis, in which clustering

is classified using connected components of Voronöı cells whose individual volume is

below a given threshold [100]. It was found that the particle settling velocity increases

up to Ro ∼ 0.4 and then decreases for Ro > 0.4, although the influence of gravity upon

particle settling rate is weaker than that of the Stokes number. Further, the maximum
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increase in settling velocity is reported at Stη ∼ 1.5, however the maximum increase in

preferential concentration is observed at Stη ∼ 2. The study confirms that including

momentum exchange by use of two-way coupling increases the settling rate in areas

of high particle concentration compared to one-way coupling, in agreement with the

experimental work of Aliseda et al. [1]. In particular, the mean increase in particle

settling velocity was attributed to the local mean contribution of the fluid velocity, of

which the dominant part comes from the main mechanism in two-way coupling.

Investigation into the various forces other than drag which act upon a particle has

been the focus of a number of studies, as for ρp/ρf < 102 the pressure gradient, added

mass, and Basset history forces are all non-negligible and must be taken into account.

One such study [159] concluded that the pressure gradient force results in a decreased

settling velocity in HIT by preventing preferential sweeping, as it forces particles to-

wards the centre of vortices, ensuring that they are kept there for a longer period of

time. In this work, the effect of the Basset history force is found to be Stokes num-

ber dependent, increasing the settling velocity for large St and decreasing the settling

velocity for small St accordingly. Further to this, a nonlinear drag law significantly

changes the settling velocity, however the enhancement in settling velocity is small.

Another investigation [53] focused upon the case of finite-size particles with a density

being roughly comparable to that of the fluid, establishing that the average settling

velocity is reduced by between 6 − 60% compared to the still fluid settling velocity,

dependent upon the value of Vg/u
′. Additionally, as the ratio ρp/ρf is reduced, it was

observed that the average settling speed reduces correspondingly due to increased ver-

tical drag induced by the fluid-particle relative velocity. Furthermore, expanding upon

earlier work [52], the contribution of unsteady effects to the mean overall drag force is

quantified as only about 6− 10%.

The effect of gravity on particle dynamics in isotropic turbulence has been investigated

by Ireland et al. [76], however firstly the particle dynamics without gravity were anal-

ysed in order to both understand the underlying behaviour and also enable the effect

of gravity to be isolated once introduced. This entailed classification of the flow field

by regions in terms of the strain and rotation rate tensors, with high strain and high

rotation areas termed as vortex sheets, high strain and low rotation areas termed as

irrotational dissipation regions, and low strain and low rotation areas termed as vortex

tubes. It was found that low Stη particles are ejected from both vortex tubes and

vortex sheets, but preferentially accumulate in irrotational dissipation regions. Within

these regions, the rotation rate timescale is much more sensitive to changes in Stη than

the strain rate timescale, which suggests that the dominant effect of inertia is to cause
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particles to spend less time in strongly rotating regions. Preferential sampling effects

are determined to be important for Stη < 0.1, whilst the path history and non-local

effects become important for Stη > 0.2, and as Stη increases the timescale over which

particles retain a memory of their interactions with turbulence also increases. The de-

pendence on the turbulence intensity was also considered, and it was found that for low

Taylor Reynolds number Reλ (defined by taking lref = λ, the Taylor microscale) flows

the response time of the largest particles exceeds the timescales of many large-scale

flow features, whilst for higher Reλ flows more flow features are present with timescales

that exceed the particle response time.

The introduction of gravity in the follow up work of Ireland et al. [77] causes particles

to preferentially sample certain regions of the flow as expected. The resultant reduction

in symmetry for the particle field causes particles to sample flow more uniformly, and

reduces the time that particles can spend interacting with the underlying turbulence.

The particle accelerations tend to be increased, whilst the particle relative velocities

decrease, reducing both the degree of preferential sampling and the importance of

path-history interactions. As a result gravity causes reduced clustering at low Stη,

and increased clustering at high Stη. Classification of the average increase in settling

velocity is made as 〈∆vp〉 > 0 corresponding with the preferential sweeping of particles

noted by Wang & Maxey [163], and 〈∆vp〉 < 0 representing the loitering of particles.

The average settling velocity is found to be independent ofReλ for Stη ≤ 0.1, suggesting

that the average settling velocity is determined entirely by the small scale turbulence.

In contrast, at higher Stη settling speeds are stronger functions of Reλ. Gravity was also

shown to reduce the Lagrangian timescales of both the strain and rotation rates along

particle trajectories. Analysis of the mechanisms reveals that preferential sweeping

cannot fully explain the trends in acceleration variances with gravity. Particles are

shown to experience vertical fluid velocities that are more strongly correlated over

a particle timescale than the horizontal fluid velocities, meaning that the horizontal

fluid velocities sampled by the particle change more rapidly, leading to larger particle

accelerations in these directions. This is responsible for the clustering on the downward

side of turbulent eddies that induces the drift enhancement due to gravity.

An independent study [134] into the settling velocity of non-interacting small heavy

particles pursued a similar line of investigation, and concluded that the dominant effect

on the increase in settling velocity is preferential sweeping. However, a reduction of

settling velocity in HIT without large scale vortical structures is only found to emerge

if particle horizontal motions are artificially blocked (in the direction perpendicular to

gravity). The tendency of particles to be swept preferentially by the downward flow
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regions is subsequently prevented, thereby causing a reduction in settling velocity.

3.2.6 Influence of Flow Scales

Work into the feasibility of using different methods of numerical simulation to study

enhancement of particle settling was undertaken by Yang & Lei [173], with the fo-

cus upon Large-Eddy Simulation. It is argued that preferential concentration in low

vorticity regions is controlled by small scales at a wavenumber which corresponds to

the maximum in the dissipation spectrum, but the smaller (by an order of magnitude)

Kolmogorov scales have no contribution to the increase in average settling velocity, and

thus small eddies also have negligible effect. However, the increase in average settling

velocity also depends on particle drag, as controlled by the large scale eddies. Therefore

the mechanisms responsible for the increase in settling velocity operate entirely above

a certain cutoff lengthscale, meaning that Large-Eddy Simulation is therefore adequate

for studying the increase in settling velocity behaviour if this cutoff lengthscale is used

for the filtering of the fluid velocity field. Yang & Lei also noted the dependence of the

increase in average particle settling velocity on the RMS of the velocity field, finding

that the increase is of order u′/10 for Stη ∼ 1. Furthermore, for these simulations it is

observed that the behaviour of the average settling velocity in decaying turbulence is

qualitatively similar to stationary turbulence.

A very recent investigation by Tom & Bragg [155] has developed a new theoretical result

to address the effect which different flow scales have on settling velocity enhancement

by revealing the multiscale nature of the physical mechanisms which are responsible.

Noting that the asymptotic result obtained by Maxey [91] breaks down for St � 1

due to the formation of caustics (see section 3.4.1) in the particle velocity distribution

[170], it follows that this result can be extended to arbitrary St by construction of an

appropriate particle velocity field. The formal solution to the particle velocity field

may then be written by integrating the particle equation of motion, and this shows

that non-local contributions to the particle velocity field exist from the history of fluid

velocities along the particle trajectories. Further, the particle density conservation

equation has a solution in terms of the divergence of the particle velocity field, from

which it is apparent that the clustering related to the divergence of the particle velocity

field must be correlated with the underlying fluid velocity for settling enhancement to

occur. The influence of different flow scales is considered in [155] by decomposing the

particle velocity field into coarse and subgrid parts, from which it is argued that there

is no contribution to the increase in settling velocity from the coarse part. This is
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because the divergence of the particle velocity field only significantly deviates from

zero at scales less than the coarse-graining length scale, and is therefore uncorrelated

with the coarse-grained fluid velocity field. As a result, it is concluded in [155] that

settling enhancement occurs due to inertial particles being preferentially swept by

eddies which are smaller than the coarse-graining length scale, but also that there is

no single turbulent velocity scale that characterises the enhanced settling rate. For

example, as the still fluid settling velocity of particles is increased, the flow scales of

the turbulence which cause the enhancement in particle settling velocity become larger.

Similarly, as St is increased the dominant contribution to the preferential sweeping

mechanism comes from progressively larger flow scales of the turbulence. Furthermore,

preferential sampling of the fluid velocity gradient at scales outside of the dissipation

range occurs for rapidly settling particles [77].

Comparing the work of Yang & Lei [173] with Tom & Bragg [155], the main issue

arising is that the former proposes that the mechanisms leading to enhancement of the

particle settling velocity operate at flow scales above a certain lengthscale, while the

latter argue that such mechanisms only occur at flow scales below a certain lengthscale.

Notwithstanding the fact that these two lengthscales are not necessarily the same, the

differing conclusions of the two investigations highlights the need for a more complete

understanding of particle settling behaviour.

3.2.7 Applications of Drift Enhancement

The salient applications of gravitational settling enhancement have been highlighted

by Wang & Maxey [163] as being the growth rate of water droplets in clouds and the

residence time of dust or aerosols in the atmosphere. This is due to these processes

being strongly influenced by changes in the settling rate, as in atmospheric turbulence

where the flow scales are widely separated, the average settling rate of small particles

would only be affected by a limited range of flow scales near the dissipation range,

thereby resulting in an increase in settling velocity which is comparable to the peak

increase observed at Kolmogorov scaling. Furthermore, in [77] it has been noted that in

warm cumulus clouds the gravitational settling velocity of droplets has been observed

as up to an order of magnitude larger than the Kolmogorov velocity scale of the local

atmosphere, thus the droplets have a substantially modified response to the underlying

flow, demonstrating the potential implications of an improved understanding of settling

velocity enhancement.
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3.3 Particle Velocity Field Formulation

The initial work of Maxey [91] in defining a particle velocity field (PVF) in the limit

of small particle inertia was central to the emergence of preferential concentration as a

dominant mechanism responsible for the enhancement of the average settling velocity of

particles subject to gravity. In particular, Maxey showed that it is the compressibility

of the particle velocity field that is responsible for this effect. Davila & Hunt [41] also

arrived at the same result for the divergence of the particle velocity field, however as

with Maxey’s approach the analysis is only valid for St� 1, limiting the scope of this

particle velocity field to identify all the physical mechanisms that contribute to the

settling enhancement. This motivated the consideration of a more generally defined

particle velocity field that is valid for arbitrary St, and capable of accounting for the

different physical mechanisms which act across the entire range of values of particle

inertia.

3.3.1 Full Lagrangian Methods

Investigation into the formal development for the particle phase of a two-fluid model

by using the particle velocity field approach has been pioneered by Reeks [129], and

entails the construction of the PDF equation that is associated with a stochastic pro-

cess that consists of both the particle velocity and its divergence. Of particular note

is that the divergence of the particle velocity field can be computed by making use

of the derivative of the particle position along a trajectory with respect to an initial

fixed position, which represents the particle phase deformation tensor, and can also

be interpreted as the Jacobian J (x0, t) of the Eulerian-Lagrangian transformation.

The determinant of the Jacobian tensor J(x0, t) = det
[
J (x0, t)

]
then provides the

elemental volume deformation along a particle trajectory, which is directly related to

the compressibility of the particle phase. This Jacobian tensor is therefore central to

analysing the particle velocity field, and was first introduced by Osiptsov [111] for de-

termining the particle concentration along a trajectory. Further work [112] culminated

with the development of a class of models that completely describe the particle phase

known as full Lagrangian methods (FLM), which originate from the Lagrangian form

of the particle continuity equation. These methods have since been used for investi-

gating preferential accumulation of particles within a number of contexts, including

in boundary layers [116] and flow near a stagnation point [68]. This subsequent work

has highlighted the efficacy of Osiptsov’s method due to its ability to handle singu-
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larities appearing in the particle phase, i.e. where the particle concentration becomes

mathematically infinite, although it should be noted that in practice this would never

occur due to the effect of finite particle size and particle collisions. The behaviour of

the evolution of the Jacobian has also been further analysed [68], with two important

outcomes being that the Jacobian changes sign if particle trajectories cross, and that

correct specification of initial conditions for the Jacobian J (x0, t0) and its derivative

J̇ (x0, t0) is of paramount importance.

The latter issue has since been addressed in a series of studies [130] which apply Os-

iptsov’s method to Stokes drag model, producing a governing equation for the Jacobian

that is identical in form to the particle equation of motion. In particular, the initial

condition for the Jacobian itself naturally emerges as J (x0, t0) = I, whilst the Jacobian

derivative J̇ (x0, t0) represents deformation in velocity space, which poses the question

as to what value this should physically take. In [130] J̇ (x0, t0) is defined using the fluid

strain rate S and particle timescale τp so that only diagonal components are nonzero,

specifically J̇ij(x0, t0) = (−1)i+1 τ−1
p S δij. Whilst this choice of initial condition re-

spects incompressibility, it is somewhat artificial, and was revised in later work [72] to

the more general condition of simply imposing the initial fluid velocity gradient field,

i.e. J̇ij(x0, t0) = ∂ui(x
0, t0)/∂xj. This arises from the choice of initial particle velocity,

which in this case is set equal to the fluid velocity at the particle position, and then

the above condition follows from the definition of J̇ (x0, t).

This particular series of work [130, 72] has focused on evaluating the preferential con-

centration associated with nonzero compressibility of the particle velocity field, as for

finite St an analytical expression for the divergence of the particle velocity field is

not available and must be determined numerically. This is done with both the FLM

using Osiptsov’s method and also the mesoscopic Eulerian formalism (MEF), which

is in essence a box counting method (BCM) requiring a large number of particles to

achieve meaningful particle concentration statistics. The methodology of the FLM

here involves calculating the determinant of the Jacobian tensor to obtain the size of

an infinitesimally small volume occupied by a group of particles along the trajectory of

one single particle. This then yields the particle concentration along the trajectory, as

this corresponds to the inverse of the volume occupied by a fixed number of particles.

It is reported [72] that FLM can be used to compute local concentration gradients

more accurately and at less computational expense than the MEF which is based on

a difference equation, demonstrating the advantage of the two-fluid approach over a

purely computational method. Further, if the particle velocity field is written as an

expansion in St then truncation to the leading order retrieves the approximation pro-
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posed by Maxey [91], reconciliating the more general theory of the FLM [72, 73] with

this established result.

Additional insight from the use of a particle velocity field can be made in the case of

a straining region, in which the particle equation of motion can be simplified, leading

to a linearised equation for the deformation tensor and thus an analytical solution

[73]. Statistics of the average divergence of the particle velocity field are examined, for

which extreme values are related to events when the deformation along a trajectory

passes through zero, and a negative value represents the accumulation of particles.

The averaged compressibility of particle phase is shown to approach a constant value

in the long time limit, and the PDF of the divergence of the PVF is reported to be

highly asymmetric with intermittent tails. Despite this insight, straining flows only

have limited applicability in reality, and utilisation of the PVF approach in a synthetic

random velocity field is also considered in [73]. It was found that the divergence of the

PVF is proportional to St2 in the limit of small St, in agreement with previous work in

periodic flow fields [10] and direct numerical simulation of HIT [31]. Furthermore, the

distribution in time of particle compressibility was shown to be non-Gaussian beyond

the third and fourth moments [95]. Additional work [95] involved a DNS study in

order to capture the full effect of flow dynamics on the compressibility of the particle

phase using FLM, with the outcome that the wider distribution of scales in DNS did

not significantly alter the results for the deformation along a trajectory. It was also

noted in this work that preferential sweeping from high vorticity to high strain regions

of flow may only be appropriate for small St, with other mechanisms that rely on the

history of the particle trajectory contributing at larger St, a premise which has since

been expanded upon in work [19] focusing on particle clustering (see section 3.4.3).

3.4 Particle Clustering

The clustering of particles within various turbulent flow configurations is a striking

feature of disperse particle transport, and has been subject to extensive investigation

since the 1960s [5]. Despite this, a complete classification of the extent of this phe-

nomenon is still not available, with many questions yet to be answered. Identification

of the key physical mechanisms responsible for this effect is a focus of current research,

and requires analysis of the structures and dynamics of the dispersed phase in order to

quantify these. In particular, an early observation by Reeks [123] noted the tendency

for particles to migrate in the direction of decreasing turbulence level, a phenomenon
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that has been termed turbophoresis. This arises from a force balance between the net

drag force and the gradient of the kinetic stresses acting on the particles due to the

turbulence, leading to a build-up of concentration near the wall in boundary layers,

and subsequently an enhanced rate of particle deposition.

The enhanced settling velocity of particles subject to gravity within turbulence ob-

served by Maxey [92, 91] resulted from the preferential concentration of particles due

to interaction with the structures of the flow field. This was some of the first work done

using numerical simulations on the clustering of particles, and these early findings set

the scene for more detailed investigations into the mechanisms responsible. The first

direct numerical simulation studies focusing upon this phenomenon were undertaken

by Squires & Eaton [146], in which parametric simulations were performed in order to

gauge the conditions under which preferential concentration was most pronounced. In

this study it was also noted that the observed clustering behaviour implied that under

certain conditions the turbulence could actually inhibit rather than enhance the mixing

of particles, going against the conventional views that consider particle mixing as a ho-

mogeneous process resulting in uniform dispersion. In terms of the effect of flow scales

on particle clustering, experimental investigation [172] across different Stokes numbers

in HIT has validated the Kolmogorov timescale as being the most appropriate fluid

timescale for measuring preferential concentration with respect to.

3.4.1 Caustics

Aside from the preferential concentration in areas of high strain and low vorticity [91]

and preferential sweeping which causes particles to collect on the downward side of

eddies [163] when subject to a gravitational body force, other physical mechanisms in-

volving the turbulence-particle interactions and which contribute to particle clustering

have come to light in subsequent work. A somewhat artificial process is the devel-

opment of caustics [170], defined as the occurrence of multiple particles occupying

the same point in physical space but with differing velocities, and therefore purely a

modelling artefact of point-particle treatment in dispersed systems where inter-particle

collisions are not accounted for. Clustering of inertial particles is found to occur on a

network of caustic lines, with the caustics themselves providing one mechanism which

is responsible for the clustering. This is due to the formation of caustics resulting in

particles passing through areas of greatly increased particle density, thereby affecting

the rates of collision and coagulation which holds particular relevance for explaining

the rapid onset of rainfall from convective clouds [171]. Clustering as a result of caus-
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tics is thus a more general theory than that of the preferential concentration seen in

low vorticity high strain regions, yet within computational studies it still provides a

mechanism for which the clustering effect has to be accounted for.

More recently, the influence of particle relative velocities on spatial distribution and

collision rates has been investigated [62, 16, 115, 11]. It is known that the collision

rate is affected by both the radial distribution function (see section 3.4.5) and the

mean radial relative velocities [166], and it is reported [115] that the dependence of

the latter on Stokes number is attributable to the formation of caustics. Additionally,

the joint PDF of relative velocities at small separations is computed and compared to

a model which matches the asymptotic limits of the distribution [62], dominated by

pair diffusion (characterised by highly correlated motion between particles) and caus-

tics (characterised by large velocity differences between particles at small separations)

respectively. It is concluded [115] that this model is accurate up to a separation dis-

tance of 0.1 of the Kolmogorov lengthscale for any Stokes number, subject to enough

caustics being present to allow large velocity differences at small separations, and also

a sufficiently large separation in scales existing between τp and the integral timescale

of the system to ensure that particle dynamics are not influenced by the system driv-

ing force. Furthermore, a recent DNS investigation [11] into the joint PDF of relative

separation and radial velocity of inertial particle pairs in HIT concluded that the PDF

is scale invariant at small scales. This was reasoned to be a consequence of two distinct

clustering mechanisms at work, namely interaction with fluid structures causing the

separation between particle pairs to become small for an extended period of time, and

caustics respectively.

3.4.2 Sweep-Stick Mechanism

Another phenomenon that has been observed is referred to as the sweep-stick mecha-

nism [30, 34], and follows the observation that clustering of particles in HIT coincides

with acceleration stagnation points of the carrier fluid. This is explained by these re-

gions of zero-acceleration in the fluid being swept together with inertial particles by

the large scale motions of the fluid, however when a particle arrives at an acceleration

stagnation point it moves with the fluid velocity for a longer period of time than would

be otherwise expected, constituting the stick part of the mechanism. This is applicable

to particles with a small inertia, and is dependent upon the dynamic sweeping of small

scales by the larger scales within a flow field [101]. The result is clustering in the spatial

distribution of particles over multiple different scales, with this sweep-stick mechanism
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reported to be dominant over the preferential concentration arising from centrifuging

out of high vorticity regions [34].

A subsequent experimental investigation [108] into the effect of Reλ and Stη on clus-

tering focused on the centrifugal effects and sweep-stick mechanisms at work, with the

setup consisting of grid generated HIT in a wind tunnel. Clusters are identified using

Voronöı analysis by locating cells with areas below a critical threshold [100], and from

this it is concluded that the dominant clustering mechanism is the sweep-stick effect

of heavy particles preferentially sticking to zero-acceleration points for the parameter

space in this study of Reλ ∈ [200–400] and Stη ∈ [2–10]. Additionally, it is implied that

the resultant increase in local particle concentration from the sweep-stick mechanism

could further be responsible for enhancement in the settling velocity under gravity [1].

Another experimental study [148] considering the clustering of small heavy polydis-

perse particles in HIT examined the dependence on Reλ ∈ [170–450], Stη ∈ [0.1–5],

and the volume fraction αd ∈ [2×10−6–2×10−5]. In [148] clustering was found to be

strongly enhanced by increased Reλ and noticeably enhanced by increased αd, however

a lack of sensitivity in clustering due to variation of Stη is also apparent, which supports

the sweep-stick effect as the main physical mechanism responsible for the clustering.

Furthermore, a DNS study [157] of finite-size particles (ρp/ρf = 1.5) observed that

clustering tendency increases as particle diameter is increased. No significant statisti-

cal correlation is reported between particle location and the intense vortical structures

within the flow, however preferential concentration of particles is correlated statistically

significantly with zero acceleration points of the carrier flow.

3.4.3 Non-Local Path History Effects

On the basis of existing work [178, 15] highlighting the importance to clustering of the

history of the velocity gradient tensor sampled by particles, Bragg et al. [18] undertook

a detailed analysis of the mechanisms responsible for particle clustering in the inertial

range of isotropic turbulence in order to determine their relative contribution to the net

drift. It is concluded that for Stη � 1, clustering is due to preferential sampling of the

coarse-grained fluid velocity gradient tensor resulting in the centrifuge mechanism of

Maxey [91], whilst for Stη > 1 a clustering mechanism involving the sampling of larger

fluid velocity differences along the non-local path history is responsible. Additionally,

if the Taylor Reynolds number Reλ is sufficiently large, particles may also cluster due

to mechanisms which act in the inertial range of turbulence, with such mechanisms

being analogous to those in the dissipation range. In this work it is also noted that the
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sweep-stick mechanism idea that particles stick to particular acceleration stagnation

points and are swept along is probably not valid, however particles may be swept by

clusters of stagnation points. Nonetheless, it is found that the sweep-stick mechanism

breaks down at Stη ∼ O(10) as it is a local mechanism, and for Stη � 1 is the same

as the preferential sampling of strain over rotation.

Further investigation into the relationship between the non-local path history and pref-

erential concentration mechanisms was undertaken by Bragg et al. [19]. Despite the

dominant clustering mechanism changing from centrifuging for Stη � 1 to the sym-

metry breaking effects of non-local path history for Stη > 1, the particle positions

continue to correlate with high strain, low rotation regions of turbulence in both cases.

This is due to the non-local path history effects being influenced by the preferential

sampling of the fluid velocity gradient tensor along the particle trajectories in such a

way as to generate a bias for clustering in high strain regions of the turbulence. The

strength of the resulting inward drift in the dissipation range is influenced by the way

particles have interacted with the strain and rotation tensors along their path history.

For Stη = O(1), the centrifuge mechanism is not the primary cause of clustering, but

influences it through the way it causes particles to preferentially sample the fluid ve-

locity gradient tensor along their path histories. Clustering is possible at this Stokes

number even if the centrifuge mechanism does not operate, causing preferential concen-

tration to disappear. From simulations it was seen that over the timescale for which

particles retain memory of their path history, the strain and rotation fields remain

significantly correlated along the particle trajectory, with the preferential sampling af-

fecting the non-local contributions to the drift velocity, which subsequently generates

the clustering. It was also noted that for particles settling under gravity, the cen-

trifuge mechanism no longer operates and preferential concentration vanishes, however

clustering still exists due to the non-local path history symmetry breaking mechanism.

A separate line of enquiry [40] analysed the effect of the often neglected Basset history

force on particle statistics including preferential concentration. This was shown to be

significant, with a reduction observed in all of preferential concentration, particle slip

velocity, acceleration of particles relative to the fluid, and collision rate, which were

attributed to the history force causing inertial particles to stay closer to the flow and

behave more like fluid elements.

53



CHAPTER 3. LITERATURE REVIEW

3.4.4 Further Developments

The effect of clustering mechanisms in a synthetic velocity field has been the focus

of one investigation [106] on the premise that the correlation of particle concentra-

tion and local fluid properties cannot be accurately predicted unless at least convec-

tion is included, and thus in general synthetic flow fields will result in less clustering

and enhanced settling than fully developed turbulence. As the centrifuge effect re-

quires finite-time decorrelation of vortex structures, clustering in velocity fields which

are delta-correlated in time therefore cannot occur from centrifuging as the dominant

mechanism, with this instead being attributed to a sling effect. This involves the

presence of fluid structures that result in regions of increased particle concentration

being significantly removed in both time and space from where the effect is observed.

Clustering is found to be generally stronger for non-Gaussian velocity fields with a

finite-time decorrelation, in which case a significant widening of the tails for the PDF

of the second invariant of the fluid velocity gradient tensor occurs, meaning that large

values of strain and rotation are more likely and causing centrifuging to be the main

mechanism responsible for clustering in this case. Additionally, for high St it is ob-

served that particles in non-Gaussian turbulence preferentially sample regions of low

kinetic energy, whereas particles in Gaussian turbulence preferentially sample regions

of high kinetic energy, leading to different contributions towards overall clustering from

centrifuging effects in these two distinct cases.

An investigation [147] into the spatial patterns that are formed due to particle clustering

as St is varied involved computation of the finite-time Lyapunov exponent field for the

full BBO equation in order to characterise the clustering, with the main result being

that inertial particles are attracted to or repelled from zones of high concentration

depending on whether the particles are aerosol (high density) or bubbles (low density).

In the case of true turbulence, a DNS study [4] of particles in HIT using one-way

coupling with a linear drag law has confirmed that the average particle concentration

is strongly dependent on Stokes number, but also observed that individual clusters of

particles display strongly multi-scale behaviour (in agreement with recent work [155]

on preferential concentration arising due to gravity), and that clusters are aligned with

the local vorticity vector. Particles within coherent clusters are found to display a much

stronger tendency to sample high-strain low-vorticity regions, and this is demonstrated

to be true for both Stη significantly larger than unity as well as small Stη. In terms

of settling speed due to a gravitational body force, particles inside coherent clusters

oversample downward flow regions, leading to an average settling velocity of almost
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double that of the still-fluid terminal velocity. Further to this occurrence of preferential

sweeping, clustering is stronger in the presence of gravitational settling, a finding which

is at odds with the centrifuging mechanism, since settling is expected to decorrelate

particles from the turbulent structures within the flow field.

3.4.5 Particle Pair Modelling

One approach to analysing the clustering of particles is by using so-called particle-pair

models, in which the separation between particles is studied. Of the work done in this

area, the radial distribution function (RDF) has provided a key measure of particle

clustering [46]. Defined by Reade & Collins [121], the RDF has the physical interpreta-

tion of the number of particle centres located in a spherical shell about a central particle

divided by the expected number of particles given a uniformly distributed particle field.

The first analytical model for the RDF was obtained by Zaichik [177], by treating the

clustering phenomenon in homogeneous turbulence as a result of a particle migration

drift in the separation direction due to the gradient of the radial relative fluctuating

velocity, and therefore interpreting the drift as an additional attractive velocity. This

work involved the development of a kinetic equation for the joint pair PDF of separa-

tion and relative velocity. The Furutsu-Novikov closure is applied to the phase-space

diffusion current, and the functional derivatives are approximated by assuming that

the infinitesimal change in fluid velocity is delta-correlated in both space and time,

meaning that the unclosed expressions within the resultant kinetic equation reduce to

Lagrangian correlations and structure functions of the fluid velocity. From the kinetic

equation a set of continuum equations for the particle pair density, mean relative ve-

locity, and second-order two-point Lagrangian velocity structure functions are derived.

Closure of these is performed by modelling the fluid velocity structure functions over

the viscous and inertial subranges using an interpolation of Taylor expansions and

Kolmogorov’s similarity hypothesis. The RDF is interpreted as a renormalisation of

the particle pair density, leading to a power law behaviour with an exponent that is

proportional to St2 for small St, and providing a benchmark for quantifying particle

clustering.

Further work by Zaichik [178] refined this approach using improved closure method-

ologies. The approach taken to modelling the second-order two-point Lagrangian fluid

velocity structure functions in the previous work [177] assumed that the timescales

of the two-point strain and rotation correlations are equal, however Brunk et al. [21]

observed through use of the DNS data of Girimaji & Pope [60] that these timescales
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can differ significantly over small separations. By modelling the structure functions

in terms of the strain and rotation rate tensors, the different timescales introduced

by these components ensures the turbulence-particle interaction mechanism that con-

tributes to the preferential clustering is captured to a greater extent. This is done

by means of constructing a transport equation for the strain and rotation tensors,

which are closed using a quasi-Gaussian approximation for the third-order moments.

At small separations the clustering effect is found to increase with the ratio between

the timescales of the rotation and strain rate correlations, however this result is only

valid in the viscous subrange. Extension of the applicability of this work from zero-

size to finite-size particles was also considered by Zaichik [179] by applying boundary

conditions to the continuum equations at a separation equal to the particle diameter,

along with further minor refinement of approximating the second-order two-point La-

grangian fluid velocity structure functions. Additionally, the timescales of the strain

and rotation rate correlations were expressed in terms of the Kolmogorov timescale as

τΣ = 2.3τη and τΩ = 7.2τη following on from previous work [21, 60].

In some other pioneering work, Chun et al. [31] developed an analytical theory for

predicting the the RDF in turbulent flows for small particles, by supposing that the

preferential concentration of particles at lengthscales smaller than the Kolmogorov scale

can be attributed to a radial inward drift of inertial particles in a locally linear flow field.

This was performed within a particle pair framework by analysis of particle equations

of motion written in terms of the particle separation and relative velocity. Noting that

the definition of drift can be obtained by performing a perturbation expansion in Stokes

numbers on these equations, averaging to obtain expressions for the drift velocity, and

making closures using the rate of strain and rotation tensors, a model for the relative

particle separation and velocity is obtained. A PDF equation in terms of the relative

particle separation and velocity is developed using the method of characteristics, with

the distinction that the joint PDF is not used, but rather a separate PDF for each phase-

space variable. Closure is made using the previously derived models, and the RDF is

related to the average of the PDF by a simple normalisation procedure. Solution for the

RDF leads to the expected power law behaviour with an exponent that is proportional

to St2η in agreement with Zaichik [177], and testing against both a stochastic model

and DNS data confirms good agreement between the model and simulations. Due to

the perturbation expansion used this result is only valid for small Stokes numbers (i.e.

at Kolmogorov scaling Stη = τp/τη), whereas Zaichik [177, 178, 179] also investigated

the preferential concentration at intermediate St (i.e. the integral scales StE = τp/τE).

Building upon this work, further analysis of the approaches by Chun et al. [31] and
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Zaichik [178] was undertaken by Bragg & Collins [15] in order to compare the two theo-

retical models and gauge their applicability. It is observed that the model proposed by

Chun et al. neglects the effect of the path history contribution due to truncation of the

perturbation expansion used, with the physical explanation of the drift coming purely

from the centrifuge mechanism of oversampling strain over rotation. Additionally, the

effect of caustics is not taken into account. In contrast, the Zaichik model captures

the path history contribution, whilst also including the effect of caustics. Despite this,

the Zaichik model observes a quantitative discrepancy in the power law exponent of

the RDF, which could be attributable to a number of reasons. Chief among these is

the local closure used on the functional derivative within the kinetic equation, with the

omission of non-local effects possibly accounting for this discrepancy. Subject to the

restriction of St� 1 for which the Chun et al. model is valid, it does capture the lead-

ing order effects of the clustering mechanism behaviour in the Zaichik model, whilst

the non-local contribution to the mechanism significantly enhances the inward drift.

However the Chun et al. model incorrectly assumes that the PDF of relative velocity

is incompressible, meaning that the non-centrifuge mechanism proposed by Ijzermans

et al. [73] involving evolution of the deformation tensor along a trajectory is not ac-

counted for. In the second part of this study Bragg & Collins [16] analysed the relative

velocity distribution of particles using the same models in order to determine whether

the influence of non-local dynamics on the formation of caustics is captured. It was

observed that particle pairs originating from larger separations have experienced on

average more energetic turbulence than pairs that have come from smaller separations

in their path history, with this creating a net inward drift and therefore clustering.

Additionally it is noted by Bragg & Collins [16] that an error arises in the non-local drift

contribution as the forward-in-time (FIT) separation is used whereas for consideration

of particles at a previous time it is actually the backward-in-time (BIT) separation

that is required. Since the dynamics of particle separation are not invariant under

time reversal, the resultant contributions from using the forward-in-time separation to

represent the path history are technically incorrect, forming the basis of an ongoing

line of investigation by Bragg [20, 14]. The research in this vein to date has reported

that for a critical Stokes number Stc, in two-dimensional turbulence FIT dispersion

is faster than BIT dispersion for St < Stc, but for St > Stc BIT dispersion is faster

than FIT dispersion [17]. This behaviour was attributed to two distinct irreversibility

mechanisms competing against each other, which are specified as the local energy flux in

the turbulent field and non-local path history effect that also serves to induce clustering

respectively. In three-dimensional turbulence, both mechanisms act together so that
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BIT dispersion is faster than FIT dispersion across all St, however in two-dimensional

turbulence, the two mechanisms have opposite effects due to the energy flux from

small to large scales which exists. Further to this, investigation [45] into the moments

of separation between two fluid particles for separations within the dissipation range

has found that these moments grow first as power law at small times, followed by

exponential growth for t > 200τη. This long time exponential behaviour is due to

fluctuations of the strain rate along particle trajectories, and results in the difference

between the rate of particle separation FIT and BIT growing exponentially at long

times, for which the implications on clustering are a present research interest.

3.5 Methods of Simulation

Although the main focus of investigation into multiphase flow systems is to develop

better understanding of the physical behaviour in various flow regimes and applied

contexts, focus purely upon how such situations are treated numerically is also an area

of research in its own right. The salient approaches are DNS and KS, with each having

their own distinct advantages for use, and some of the current developments regarding

these methods are outlined in this section.

3.5.1 Direct Numerical Simulation

In the context of dispersed particle transport DNS is an eminently suitable means of

investigation, as the mechanisms responsible for particle behaviour can occur over a

wide range of lengthscales, and therefore a full physical description of the carrier flow is

necessary in order to gain an accurate understanding of phenomenological observations.

One requirement in the study of particle behaviour is for the continuous phase to ideally

be statistically stationary, and this constitutes an added consideration within DNS, as

the turbulent kinetic energy (TKE) naturally decays when the simulation is advanced

in time. To address this, a range of turbulence forcing mechanisms have been developed

that maintain a constant TKE, with the original focus being on schemes implemented

in spectral space [50]. This is the obvious starting point conceptually, since injection

of energy at the lowest wavenumber modes allows for the energy cascade to naturally

pass this energy down to the high wavenumber modes, without altering the turbulence

energy spectrum in the process. However, the disadvantage to forcing in spectral space

is that many DNS codes run in physical space, making forcing in this way impractical
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due to the high computational overhead of using the inverse Fast Fourier Transform

(FFT) to convert the forcing contribution to a physical velocity field at every timestep.

As a result attention has more recently been devoted to developing forcing mechanisms

in physical space, with the simplest proposal being that of linear forcing [87], and

subsequent refinements introducing control mechanisms that tightly regulate the TKE

to the desired level [26, 89]. Despite this, direct forcing of the velocity field in such a

manner distributes the injected energy over all wavenumber modes in spectral space,

and as a consequence artificially modifies the turbulence energy spectrum from its

natural form. This has the drawback of altering the longitudinal integral lengthscale

L11 of the turbulence so that it converges to a constant fraction of the simulation

domain size independent of the initial conditions, and cannot be changed as a variable

parameter in parametric studies, thereby limiting the applicability of linear forcing

[135]. More recent work [81, 113] has addressed this shortcoming by use of a low-pass

filter on the forcing contribution to the velocity field to ensure that energy is only

injected into the largest scales of turbulent motion, thus allowing the energy cascade

to evolve naturally, and regaining control of the longitudinal integral lengthscale L11

as a simulation parameter.

3.5.2 Kinematic Simulation

The application of KS to disperse particle transport research has been widespread due

to its relatively low computational expense, and has produced insights into phenomena

not previously observed [92, 91, 72, 73], with this work often being the precursor

to further studies using DNS [163, 95]. A particularly helpful feature of KS is to

control structures within the flow [73], so that the influence of such structures on

particle behaviour can be accurately quantified. Furthermore, KS can be used to

construct non-Gaussian flow fields which take into account physics such as convection

[106], leading to local flow structures being transported with the particles. Other

variants include target Lagrangian KS [104], in which the Lagrangian integral timescale

is enforced rather than Eulerian integral timescale, on the premise that to ensure

recovery of the expected Lagrangian behaviour the realism of the Eulerian behaviour

can be sacrificed. The expected behaviour of inertial particles is recovered using this

approach, including the crossing trajectories effect, and the Lagrangian statistics are

effectively captured. Additionally, the ability to vary the energy spectrum in KS has

been used to investigate the effect on the clustering of inertial particles subject to

gravity [105], by quantifying the different spectral power laws on the form of attractor
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to which the particles equilibrate. It is found that variation of the spectral law can have

a significant effect on the attractor shape, and notably in two-dimensional simulations

that the attractor is only affected by a changed spectrum power in the presence of

gravity.

The suitability of KS for reproducing particle statistics is an often raised point, and

work [103] addressing this has concluded that KS qualitatively reproduces the con-

tinuity effect, clustering of particles, and pairwise dispersion of particles, but not to

the same extent as DNS owing to the behaviour at the microscales being omitted.

However, Lagrangian correlations along particle trajectories are overpredicted by KS

compared to DNS, but do compare better in the case when gravity is included. Focus-

ing upon the structures within the velocity field, KS has been found [55] to be deficient

compared to DNS chiefly because vortical regions are not sufficiently elongated, and

higher-order statistics are too closely Gaussian. This stems directly from the fact that

KS does not represent the dynamical processes in turbulence which are responsible for

vortex stretching and turbulence intermittency, and this in turn affects higher-order

statistics. However, this work does observe that generation of random displacements

of fluid elements and a flow field which has a time dependent structure is sufficient

to capture the effect of the evolution of fluid structures upon particles. Further to

this, KS has been used to investigate the separation of particle pairs [153], finding

that the mean-square separation of particle pairs in the inertial subrange grows like

t6 in the presence of a strong mean velocity and as t9/2 in the case of no mean flow.

This compares with a growth in separation like t3 in both flow configurations for true

turbulence, and raises questions about the applicability of KS to simulate particle pair

separation in real turbulent flows.

3.6 Research Aims of the Current Work

The scope of this research falls under the application of PDF modelling to disperse

particle transport, with specific attention on the class of kinetic models [44, 124, 71],

and notably that developed by Swailes & Darbyshire [150, 151] using the Furutsu-

Novikov closure. As the focus is upon dilute-phase transport, the effects of inter-particle

collisions and local fluid disturbances generated as a result of particle motion can be

taken to be negligible, and consequently three and four-way coupling mechanisms do

not need to be accounted for in this work. Additionally, when dealing with the closure

of two-fluid models it is advantageous to restrict attention to the case of just one-way
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coupling in order to keep the description of the problem more tractable, meaning that

the condition of αd < 10−6 must be observed. Furthermore, the particles are taken to

have a density much greater than that of the fluid so that a linear drag law can be

used for the equation of motion as is typical in gas-solid flows.

The aim of this work is firstly to use data from particle tracking simulations within

various flow configurations to demonstrate that the PDF kinetic model is a suitable

means of assessing the contributions arising from the particle mass flux which act as

additional drift terms, and thereby lead to subtle modification in the particle behaviour.

The use of certain flow configurations enables these contributions to the particle mass

flux to be manipulated and therefore analysed in isolation, meaning that the physical

mechanisms responsible can be investigated using such an approach. Evaluation of

existing local [151, 127] and non-local [142, 13] models are addressed, in order to

demonstrate the inadequacy of these closures for describing particle behaviour in the

specific flow configurations which are considered. The secondary focus is then the

development of closure models which are able to account for the additional drift terms

that arise, by relating them to the underlying physical mechanisms outlined in the

literature which are responsible for the existence of these contributions.

The first flow configuration of interest is that of a homogeneous isotropic fluid velocity

field subject to gravity. The presence of a physical body force results in identification

of a contribution to the particle mass flux from the PDF kinetic model that acts as an

additional body force, and is equal to the increase in settling rate compared to a quies-

cent flow. This term, which is critical in the formulation of two-fluid models, requires

closure. Existing closures are shown to be inadequate for capturing the enhancement

in settling rate, meaning that an improved methodology is required which accounts for

the physical mechanisms behind the observed behaviour. As the PDF kinetic model

is exact when the continuous phase is Gaussian, all the necessary physics leading to

the observed settling enhancement is contained within the unclosed terms, leaving the

challenge of capturing the non-local path history effects and subsequent inertial bias

experienced by particles as a result of preferential sampling of strain over rotation

within a closure model.

The relative distribution of particle-pair models can also be studied within the alter-

native configuration of an appropriate inhomogeneous flow field using the PDF kinetic

model, with analysis of the corresponding RDF being carried out in order to investi-

gate particle clustering. In this case the PDF approach identifies two key contributions

within the convective-diffusive representation of the particle mass flux, the balance of
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which governs the associated net drift and thereby preferential concentration of par-

ticles. These emerge from a density weighted body force term associated with the

statistical inhomogeneities of the turbulence, and a term contributing to the particle

phase stress tensor, which both require closure. As in the case of gravitational settling,

it is seen that simple local closures which neglect the non-local path history of parti-

cles cause both contributions to the particle mass flux to vanish, and thereby do not

capture the observed clustering behaviour within the description provided by the PDF

kinetic model. However, it can be demonstrated that the non-local drift term is not

identically zero for low inertia particles, and is in fact a significant flux contribution

for St 6� 1.
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Chapter 4

PDF Modelling of Disperse Particle

Transport

Two-fluid modelling has distinct advantages in several respects when compared to par-

ticle tracking, notably that the statistical nature which is intrinsic to the modelling

means that it is less computationally demanding and therefore much quicker to obtain

solutions for, and also that it can provide some insight into the underlying physics of

the average behaviours observed in particle dispersion. On the other hand, the aver-

aged nature of two-fluid models introduces a number of difficulties, namely including

the more complex forces which act upon a particle such as lift and history terms, incor-

porating physically relevant boundary conditions within the dispersed phase transport

equations, and also causing the loss of some level of detail due to this statistical means

of description [36]. Treatment of these issues using the heuristic means of construction

for the dispersed phase transport equations outlined in section 2.3.2 is reliant upon

closures of an empirical nature which are made at a high level of physics, and conse-

quently have a more limited chance of resulting in a sufficiently accurate description for

a given flow configuration. This heuristic approach is not however the only method of

construction for the dispersed phase transport equations of two-fluid models, with an

alternative statistical formulation existing in terms of the probability density function

(PDF), which exists as a class of models in its own right for describing the behaviour

of particles within a turbulent velocity field [48].

The PDF approach presents a rational framework for the development of two-fluid

models, as the starting point is from the underlying particle equation of motion used

for particle tracking. A master transport equation governing the evolution of the PDF

itself can formally be derived in particle phase space, which contains unclosed terms
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involving the particle-fluid interactions. The dispersed phase continuum equations for

the corresponding two-fluid model can then be derived directly from the PDF transport

equation, however the unclosed terms also emerge in the two-fluid model as part of the

dispersed phase stress tensor σd, and therefore once the PDF itself is known then

specification of the associated two-fluid model automatically follows without need for

any further closures. This is advantageous, as the PDF transport equation in phase

space can be closed at a more basic level of dynamics than the two-fluid model. Thus

a given closure is more likely to be sufficiently accurate for describing the required

particle behaviour than a similar strategy applied directly to the two-fluid model,

which is more dependent on intuition and empiricism. For instance, making simple

Boussinesq approximations at phase-space level does not necessarily mean that the

corresponding closures within the two-fluid model will also be in the form of Boussinesq

approximations. Furthermore, correct specification of boundary conditions for near-

wall behaviour can be encapsulated within the general form of the PDF framework,

since these involve knowledge of the particle velocity distribution at the walls [48].

4.1 Derivation of The Kinetic Equation

Within the framework of the PDF approach the research in this thesis uses the kinetic

model, for which the PDF is associated with the joint probability distribution of a

particle in phase-space having position x and velocity v at time t, and is characterised

by the average probability density function given by p (x,v, t). In order to derive a

transport equation that defines p (x,v, t), it is natural to consider the construction of a

PDF equation that corresponds to a general system of stochastic ordinary differential

equations.

4.1.1 Phase-Space Representation

For modelling purposes it is convenient to write the particle equation of motion in the

general form

dxp
dt

= vp , xp(t0) = x0

dvp
dt

= F (xp,vp, t) + f (xp, t) , vp(t0) = v0 (4.1)
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where F (x,v, t) defines the mean continuous phase force per unit mass acting on par-

ticles with position x and velocity v at time t, and f (x, t) is a zero-mean stochastic

field modelling the fluctuating acceleration experienced by a particle with position x

at time t. It is important at this stage to distinguish between (x,v) denoting coor-

dinates in phase space, and (xp,vp) denoting the particle position and velocity along

an individual trajectory at time t. Then by introducing the Reynolds decomposition

u = 〈u〉+ u′ of the continuous phase velocity u into components for the mean flow 〈u〉
and fluctuating flow u′, the decomposition for the particle equation of motion (4.1) in

the case of the Stokes drag model (2.22) corresponds to

F (x,v, t) = β
(〈

u(x, t)
〉
− v

)
+ g (4.2)

f (x, t) = βu′(x, t) (4.3)

where β = τ−1
p is the particle inertia parameter. For further ease of working, it is

helpful to recast the problem into phase-space, which not only permits a more concise

formulation but also provides a generic framework in which the PDF of other systems

can be analysed. This is achieved by converting the particle equation of motion into

system form through introduction of the phase-space coordinate vector ξ = (x,v), and

in the same manner denoting a trajectory within phase-space as z(t) = (xp(t),vp(t)).

The particle equation of motion (4.1) can then be described by the general phase-space

form

ż(t) = a (z(t), t) + b (z(t), t) , z(t0) = ξ0 (4.4)

with a (ξ, t) = (v,F (x,v, t)) being a deterministic function and b (ξ, t) = (0, f (x, t))

being a zero-mean stochastic field.

4.1.2 The Fine-Grained PDF and Liouville Equation

Formally, the average PDF p (x,v, t) defining the distribution of the stochastic process

z(t) can be expressed as

p (ξ, t) =
〈
δ (z(t)− ξ)

〉
(4.5)
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where 〈·〉 denotes an ensemble average taken over all realisations of z(t), and δ(·) is the

Dirac delta function. The PDF interpretation (4.5) can be viewed as the mathematical

idealisation of a box counting method, in which the proportion of trajectories z(t)

that pass through an elemental phase-space volume that is centred on ξ is computed.

Following from this, the instantaneous PDF P (ξ, t) for a particle with position x and

velocity v at time t is defined as the fine-grained version of p (ξ, t) [150, 71]

P (ξ, t) = δ (z(t)− ξ) (4.6)

Thus the relationship between the average and fine-grained PDFs is p (ξ, t) =
〈
P (ξ, t)

〉
.

A transport equation for the PDF p (ξ, t) is obtained by taking the derivative of (4.5)

with respect to time, from which it follows that [44, 71]

∂

∂t
p (ξ, t) = − ∂

∂ξ
·
[
a (ξ, t) p (ξ, t) +

〈
b (z(t), t)P (ξ, t)

〉]
(4.7)

This is the Liouville equation for p (ξ, t), in which the ensemble average on the right-

hand side of is referred to as the phase-space diffusion current, with specification of

this expression representing the closure problem in the PDF kinetic framework.

4.1.3 Correlation Splitting

Various methods of closing the phase-space diffusion current have been used (see section

3.1.1), with one such approach being through the use of correlation splitting techniques.

To proceed with closure in this manner, firstly note that due to the filtering property

of the fine-grained PDF P (ξ, t) only realisations of z for which z = ξ contribute to

the ensemble average, and therefore

〈
b (z(t), t)P (ξ, t)

〉
=
〈
b (ξ, t)P (ξ, t)

〉
(4.8)

Furthermore, P (ξ, t) is a function of z(t), which has a functional dependence on the

process b(z(t), t) through the phase-space equation of motion (4.4), meaning that the

fine-grained PDF can be denoted as P (b; ξ, t). The subsequent form of the phase-

space diffusion current then enables a result from stochastic analysis to be used which

provides an expansion in terms of the cumulants K of b, specifically written in multi-

index notation as [56, 107]
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〈
bi (ξ, t)P (b; ξ, t)

〉
=

∞∑
k=1

1

k!

∑
jk

∫ t

t1=t0

∫
ξ1

· · ·
∫ t

tk=t0

∫
ξk

Kk+1
i,jk

(ξ, t; ξ1, t1 · · · ; ξk, tk)

·
〈

δk

δbj1(ξ1, t1) · · · δbjk(ξk, tk)
P (b; ξ, t)

〉
dξk dtk · · · dξ1 dt1

(4.9)

where
∑

jk indicates a sum over all components of the k-tuple jk = (j1, ..., jk), and Kk+1

is the (k+1)th cumulant of the stochastic field b (ξ, t). The formula (4.9) thus represents

the correlation between b and P in terms of the cumulants of b and the functional

derivative of P , and contains an infinite number of terms without the use of a specific

choice of probably distribution for b. In order to make the use of (4.9) more tractable,

it is advantageous to select a distribution of b which avoids the appearance of the

higher-order cumulants; in particular all the cumulants Kn of a Gaussian distribution

for n > 2 are zero, and it is the only distribution with this property [132]. Therefore

assuming that b is a Gaussian field reduces the correlation splitting result to the exact

representation known as the Furutsu–Novikov formula [82]

〈
bi (ξ, t)P (b; ξ, t)

〉
=

∫ t

t0

∫
ξ′

K2
ij(ξ, t; ξ

′, t′)

〈
δ

δbj(ξ′, t′)
P (b; ξ, t)

〉
dξ′ dt′ (4.10)

in which summation over the index j is now assumed implicitly. From (4.10) the

closure problem reduces to evaluation of the functional derivative of P , for which

correct treatment is essential in order to include the full effect of the field b on the

evolution of P . Specifically, the chain rule for functional differentiation is used since the

functional dependence of P on b is through the phase-space trajectory z(t), following

which making use of the filtering property of the δ-function results in [44, 71, 150]

δ

δbj(ξ′, t′)
P (b; ξ, t) = − δzk(t)

δbj(z(t′), t′)

∂P
∂ξk

(ξ, t) δ(ξ′ − z(t′)) (4.11)

in which summation over the dummy index k is implied, and the functional dependence

of P on b is no longer stated explicitly. Noting that in (4.10) the operations of ensemble

averaging and integration commute, substitution of (4.11) and evaluation of the integral

over the phase-space coordinate ξ′ yields
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〈
bi (ξ, t)P (b; ξ, t)

〉
= −

∫ t

t0

〈
K2
ij(ξ, t; z(t′), t′)

δzk(t)

δbj(z(t′), t′)

∂P
∂ξk

(ξ, t)

〉
dt′ (4.12)

in which it is emphasised that the expression K2(ξ, t; z(t′), t′) denotes that the Eu-

lerian form of the cumulant K2(ξ, t; ξ′, t′) is taken and then subsequently evaluated

along the phase-space trajectory ξ′ = z(t′). The key outcome of this treatment is that

K2(ξ, t; z(t′), t′) is a stochastic quantity, and hence must appear within the ensemble

average in (4.12). Then since the cumulant K2 has a dependence on the phase-space

coordinate ξ but the functional derivative that appears within (4.12) does not, manip-

ulation of the partial derivative ∂/∂ξ leads to

〈
bi (ξ, t)P (b; ξ, t)

〉
=

∫ t

t0

〈
∂

∂ξk
K2
ij(ξ, t; z(t′), t′)

δzk(t)

δbj(z(t′), t′)
P (ξ, t)

〉
dt′

− ∂

∂ξk

∫ t

t0

〈
K2
ij(ξ, t; z(t′), t′)

δzk(t)

δbj(z(t′), t′)
P (ξ, t)

〉
dt′ (4.13)

Finally, the fine-grained PDF P (ξ, t) can be extracted from the ensemble average to

give an expression in terms of the average PDF p (ξ, t)

〈
bi (ξ, t)P (b; ξ, t)

〉
=

∫ t

t0

〈
∂

∂ξk
K2
ij(ξ, t; z(t′), t′)

δzk(t)

δbj(z(t′), t′)

〉
z=ξ

dt′ p (ξ, t)

− ∂

∂ξk

[∫ t

t0

〈
K2
ij(ξ, t; z(t′), t′)

δzk(t)

δbj(z(t′), t′)

〉
z=ξ

dt′ p (ξ, t)

]
(4.14)

where 〈·〉z=ξ denotes a conditional ensemble average based on the subset of realisations

for which z(t) = ξ. Furthermore, since K2 is the second cumulant of the zero-mean

field b, it can simply be written as the covariance of b

K2
ij (ξ, t; ξ′, t′) =

〈
bi (ξ, t) bj (ξ′, t′)

〉
(4.15)

Then noting that K2
ij (ξ, t; ξ′, t′) = K2

ji (ξ
′, t′; ξ, t), the final correlation splitting result

can be written explicitly in terms of the stochastic field b as
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〈
bi (ξ, t)P (b; ξ, t)

〉
=

∫ t

t0

〈
δzk(t)

δbj(z(t′), t′)

∂

∂ξk

〈
bj (ξ′, t′) bi (ξ, t)

〉∣∣∣
ξ′=z(t′)

〉
z=ξ

dt′ p (ξ, t)

− ∂

∂ξk

[∫ t

t0

〈
δzk(t)

δbj(z(t′), t′)

〈
bj (ξ′, t′) bi (ξ, t)

〉∣∣∣
ξ′=z(t′)

〉
z=ξ

dt′ p (ξ, t)

]
(4.16)

where the inner ensemble average is taken over all realisations of the stochastic field b,

and then subsequently evaluated along the phase-space trajectory ξ′ = z(t′). At this

point it is appropriate to denote the functional derivative that appears by G[t; t′]

Gkj [t; t′] =
δzk(t)

δbj (z(t′), t′)
(4.17)

This has the interpretation of a stochastic 1-point response tensor which is dependent

on the sample path z(t), and physically describes the effect on the trajectory z at time

t that is caused by a perturbation in the field b at an earlier time t′ and corresponding

location z(t′). The behaviour of this response tensor is therefore central to that of the

PDF p (ξ, t), and satisfies the governing equation [150]

Ġ [t; t′] =

[
δa

δξ
(z(t), t) +

δb

δξ
(z(t), t)

]>
· G [t; t′] , G [t′; t′] = Ĩ =

[
0 0

0 I

]
(4.18)

in which the time derivative is with respect to t rather than t′. Then using the defini-

tions of K2 in (4.15) and G[t; t′] in (4.17) enables (4.16) to be expressed in the more

compact form〈
b (ξ, t)P (b; ξ, t)

〉
= d (ξ, t) p (ξ, t)− ∂

∂ξ
·
[
D (ξ, t) p (ξ, t)

]
(4.19)

in which d (ξ, t) is a drift tensor with the interpretation of a convective flux and D (ξ, t)

is a diffusion tensor representing a diffusive flux, which are defined respectively as

d (ξ, t) =

∫ t

t0

〈
G> [t; t′] :

∂

∂ξ
K2 (z′, t′; ξ, t)

〉
z=ξ

dt′ (4.20)

D (ξ, t) =

∫ t

t0

〈
G [t; t′] ·K2 (z′, t′; ξ, t)

〉
z=ξ

dt′ (4.21)
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where z′ = z(t′). Using the closure (4.19) in the Liouville equation (4.7) for p (ξ, t)

then yields the phase-space form of the PDF kinetic equation for the case in which the

stochastic field b has a Gaussian distribution [150]

∂

∂t
p (ξ, t) = − ∂

∂ξ
·
[(

a (ξ, t) + d (ξ, t)
)
p (ξ, t)

]
+

∂

∂ξ
· ∂
∂ξ
·
[
D (ξ, t) p (ξ, t)

]
(4.22)

For instances in which important contributions to the particle behaviour are depen-

dent upon non-Gaussian aspects of the stochastic field b, the expansion (4.9) can be

extended to include higher-order terms. This results in the kinetic equation (4.22) con-

taining additional drift and diffusion tensors, which in turn consist of the higher-order

cumulants Kn of b and (n-1)-point response tensors with respect to b [150].

4.1.4 Physical Space Interpretation

The corresponding interpretation of the PDF kinetic equation in physical space (x,v)

is recovered by recalling the phase-space coordinate definitions

ξ = (x,v) a (ξ, t) = (v,F (x,v, t))

z(t) = (xp(t),vp(t)) b (ξ, t) = (0, f (x, t)) (4.23)

This produces

K2 (ξ′, t′; ξ, t) =

[
0 0

0 R (x′, t′; x, t)

]
(4.24)

in which R (x′, t′; x, t) is the Eulerian two-point two-time correlation tensor of the

fluctuating particle acceleration f(x, t)

Rji (x
′, t′; x, t) =

〈
fj (x′, t′) fi (x, t)

〉
(4.25)

and

G [t; t′] =

[
0 H [t; t′]

0 Ḣ [t; t′]

]
(4.26)

in whichH [t; t′] and Ḣ [t; t′] are respectively the particle response in position xp(t) and
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velocity vp(t) with respect to the fluctuating particle acceleration along a trajectory

f(xp(t
′), t′)

Hij [t; t′] =
δxpi(t)

δfj (xp(t′), t′)
, Ḣij [t; t′] =

δvpi(t)

δfj (xp(t′), t′)
(4.27)

The governing equation for the phase-space response tensor G [t; t′] in (4.18) then be-

comes [151]

Ḧ [t; t′] =

[
∂F

∂v

]>
p

· Ḣ [t; t′] +

[
∂F

∂x
+
∂f

∂x

]>
p

·H [t; t′] ,
H [t′; t′] = 0

Ḣ [t′; t′] = I
(4.28)

where [·]p denotes that the derivatives of F (x,v, t) and f (x, t) are quantities which are

evaluated along the particle trajectory (xp(t),vp(t)). The corresponding forms for the

drift and diffusion tensors in physical space are [151]

d (ξ, t) =
(
0,κ (x,v, t)

)
, D (ξ, t) =

[
0 λ (x,v, t)

0 µ (x,v, t)

]
(4.29)

in which the dispersion tensors κ (x,v, t), λ (x,v, t), and µ (x,v, t) are given by

κ (x,v, t) =

∫ t

t0

〈
H> [t; t′] :

∂

∂x
R
(
x′p, t

′; x, t
)〉

x,v

dt′ (4.30)

λ (x,v, t) =

∫ t

t0

〈
H [t; t′] ·R

(
x′p, t

′; x, t
)〉

x,v

dt′ (4.31)

µ (x,v, t) =

∫ t

t0

〈
Ḣ [t; t′] ·R

(
x′p, t

′; x, t
)〉

x,v

dt′ (4.32)

where x′p = xp(t
′). The PDF kinetic equation (4.22) can then be re-written in terms of

the dispersion tensors (4.30 - 4.32) and the physical space variables x and v for when

the fluctuating particle acceleration f(x, t) has a Gaussian distribution as [150, 124, 71]

∂p

∂t
= − ∂

∂x
· [vp]− ∂

∂v
·
[

(F + κ) p
]

+
∂

∂v
·
[
∂

∂x
· [λp] +

∂

∂v
· [µp]

]
(4.33)

in which the arguments are omitted for clarity. The evolution of the PDF p (x,v, t) is

thus governed by the particle dispersion tensors κ (x,v, t), λ (x,v, t), and µ (x,v, t),
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which can be interpreted as memory integrals that capture the influence of the flow field

on particle trajectories through the action of the response tensorH [t; t′]. More specif-

ically, κ (x,v, t) describes spatial convection of particles and behaves as a momentum

source, λ (x,v, t) represents spatial diffusion of particles, and µ (x,v, t) accounts for

velocity diffusion of particles and acts as a stress source [143]. These dispersion tensors

are unknown quantities, with the conditional averages that constitute the integrands

requiring a further level of closure in order to completely specify the PDF p (x,v, t).

Within these conditional averages, it is therefore the response tensor H [t; t′] and cor-

relation tensor R (x′, t′; x, t) evaluated along the particle trajectory x′ = x′p that need

modelling in order to make such a closure.

4.2 Application to Two-Fluid Models

4.2.1 Particle Mean-Field Variables

The PDF kinetic model detailed in section 4.1 can provide much insight into particle

behaviour as a stand-alone framework, however it also provides a rigorous method

for deriving the transport equations that constitute the dispersed phase of a two-fluid

model. The starting point for this procedure lies in consideration of the average,

or mean-field properties of particles at a macroscopic level, which can be defined by

generating different sets of trajectories xp(t) and velocities vp(t) for each realisation of

the stochastic field f (xp(t), t) and collectively averaging over these. Specifically, and

assuming that the PDF p (x,v, t) vanishes in the limit v→ ±∞, the particle number

density ρ (x, t) is defined as the average PDF of just spatial position x [149]

ρ (x, t) =
〈
δ (xp(t)− x)

〉
(4.34)

Alternatively, the particle mean-field variables can be obtained by extracting the mo-

ments of p (x,v, t), with the number density ρ (x, t) determined as the zeroth moment

ρ (x, t) =

∫
v

p (x,v, t) dv (4.35)

A related quantity is the fine-grained number density % (x, t), which is simply the

instantaneous realisation of the number density
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% (x, t) = δ (xp(t)− x) (4.36)

It follows that the relationship between the number density and fine-grained number

density is ρ (x, t) =
〈
% (x, t)

〉
. The mean particle velocity v (x, t) is defined in a similar

manner as

v (x, t) =
〈
vp(t)

〉
xp(t)=x

=
1

ρ (x, t)

〈
vp(t)δ (xp(t)− x)

〉
(4.37)

The mean particle velocity can also be interpreted as the first moment of the PDF

p (x,v, t)

v (x, t) =
1

ρ (x, t)

∫
v

vp (x,v, t) dv (4.38)

Defining the particle fluctuating velocity as c(t) = vp(t) − v (xp(t), t), the particle

kinetic stresses cc (x, t) are given in the same manner by

cc (x, t) =
〈
c(t)c(t)

〉
xp(t)=x

=
1

ρ (x, t)

〈
c(t)c(t)δ (xp(t)− x)

〉
(4.39)

The kinetic stresses are analogous to the Reynold’s stresses u′u′ for the continuous

phase, and can also be represented as the second moment of the PDF p (x,v, t)

cc (x, t) =
1

ρ (x, t)

∫
v

(v − v) (v − v) p (x,v, t) dv (4.40)

4.2.2 Particle Phase Continuum Equations

The particle mean-field variables ρ (x, t), v (x, t), and cc (x, t) can be used to interpret

the particle phase as if it were itself a continuum, by construction of subsidiary trans-

port equations directly from the underlying PDF kinetic equation (4.33). In particu-

lar, by integrating (4.33) over the phase-space velocity v, the particle phase continuity

equation is given as [149]

∂ρ

∂t
+∇ · (ρv) = 0 (4.41)
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Similarly, multiplying the PDF equation (4.33) by v and then integrating over v leads

to the particle phase momentum equation [149]

∂

∂t
(ρv) +∇ · (ρv v) = −∇ ·

[
ρ
(
cc + λ

)]
+ ρ

(
F + κ

)
(4.42)

in which overbars denote the velocity averaged form of the dispersion tensors given by

F =
1

ρ

∫
v

pF dv , κ =
1

ρ

∫
v

pκ dv , λ =
1

ρ

∫
v

pλ dv , µ =
1

ρ

∫
v

pµ dv (4.43)

Furthermore, multiplying the PDF equation (4.33) by vv and then integrating over v

leads to the kinetic stress transport equation [149]

ρ
D

Dt
cc = −∇ · (ρ ccc) + ρ

(
Ψ + Ψ>

)
(4.44)

where D/Dt is the material derivative operator given by

D

Dt
≡ ∂

∂t
+ v · ∇ (4.45)

the particle kinetic stress flux ccc (x, t) is defined as the third moment of the PDF

p (x,v, t)

ccc (x, t) =
1

ρ (x, t)

∫
v

(v − v) (v − v) (v − v) p (x,v, t) dv (4.46)

and

Ψ = −1

ρ
∇ ·
(
ρλc

)
−
(
cc + λ

>
)
· ∇v + µ+ c (F + κ) (4.47)

Equations (4.41), (4.42), and (4.44) then constitute the dispersed phase of a two-fluid

model, and it is insightful to compare the particle phase continuity and momentum

equations retrieved from the PDF approach to those from the heuristic two-fluid frame-

work outlined in section 2.3.2 as given by (2.28) and (2.29) respectively. Specifically,
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the continuity equation is identical, however the particle phase stress tensor σd appear-

ing in the momentum equation for the heuristic two-fluid model has been replaced with

terms that originate from the PDF transport equation (4.33). The additional detail

provided by the form of these terms reduces the problem from developing a closure for

σd at a macroscopic level of physical description to that of the unknown quantities in

the momentum equation at a more fundamental level, namely the velocity averaged

dispersion tensors κ (x, t) and λ (x, t), and the kinetic stresses cc (x, t).

As detailed in section 4.1.4, closure of κ (x, t) and λ (x, t) is dependent on modelling

of the response tensor H [t; t′] and correlation tensor R (x′, t′; x, t) evaluated along a

particle trajectory, however treatment of the kinetic stresses cc (x, t) is restricted to

the continuum equations, and can be specified by closing the kinetic stress transport

equation (4.44). This in turn necessitates closure of the unknown kinetic stress flux

ccc (x, t), modelling of which requires supplementary information, with the Chapman-

Enskog methodology providing an often used approach [149]. In conjunction, closure

of these quantities then fully specifies the particle phase continuum equations, whilst

also determining the PDF p (x,v, t).

4.2.3 Particle Mass Flux Representation

Further to highlighting the differences between the heuristic and statistical formulations

of two-fluid models in terms of the additional detail provided by extracting the particle

phase continuum equations directly from the PDF transport equation, it is helpful to

interpret these additions in terms of the underlying physics involved. This is possible

by considering the relative significance of the terms which emerge in the particle phase

momentum equation (4.42) as derived using the PDF approach. For the particular case

of the Stokes drag model, in which the mean continuous phase driving force per unit

mass F (x,v, t) that acts on particles is linear in v as in (4.2), then rearrangement of

the particle phase momentum equation produces an expression for the particle mass

flux ρv

ρv = ρ

[
〈u〉+ Vg + τp

{[
κ−∇ · λ

]︸ ︷︷ ︸
1

−∇ · cc︸ ︷︷ ︸
2

− D

Dt
v︸︷︷︸

3

}]

︸ ︷︷ ︸
convective flux

− τp
(
cc + λ

>
)
· ∇ρ︸ ︷︷ ︸

4
diffusive flux

(4.48)
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The importance of the contributions that the terms 1 − 4 make to this flux is of

interest within the context of various flow configurations, with a broad split into the

balance of convective and diffusive flux terms. The diffusive flux in 4 is a relatively

known entity, and the inertial term 3 vanishes when the behaviour under consideration

is steady-state, however it is the remaining contributions to the convective flux which

are noteworthy. In the case of the non-local drift flux 1 , previous modelling approaches

have often neglected one or both of these terms, with assumptions that κ = 0 in

homogeneous flows of all configurations [125, 48], κ − ∇ · λ ≡ 0 across all values of

St [178], and representations which do not explicitly take into account these terms

[31]. It has been formally demonstrated that κ − ∇ · λ is only equal to zero in the

case of fluid elements with no inertia, a result known as the fully mixed condition [12].

The gradient of the kinetic stresses in 2 is the turbophoretic contribution, and acts

in the opposite sense to 1 . Although turbophoresis has been accounted for in some

work [178], the balance between 1 and 2 can become a non-negligible contribution

in some flow configurations, and warrants further research. Indeed, as will been seen

in Chapters 6 and 8, the particle mass flux expression (4.48) is central to the work in

this thesis due to the role it plays in quantifying the various flux contributions that

arise in different flow configurations.

4.3 Benchmarking the Dispersion Tensors in Ho-

mogeneous Flow

For the purpose of evaluating the contributions of interest in the particle mass flux and

developing closure models, calculation of the dispersion tensors κ (x,v, t), λ (x,v, t),

and µ (x,v, t) in the PDF framework as defined by (4.30 - 4.32) is somewhat involved,

requiring solution for the particle response tensor H [t; t′]. Even in the simple case

of a homogeneous flow, the presence of turbulence means that an analytical solution

to the response tensor governing equation (4.28) becomes intractable for modelling

purposes (see Appendix A), and thus it is necessary to seek a numerical solution. For

such an approach it is useful to have an alternative measure against which to assess

the accuracy of these evaluations, and that is thus able to provide validation of the

procedure used.

This is possible in the case of homogeneous systems by considering the physical in-

terpretation of the dispersion tensors λ (x,v, t) and µ (x,v, t) as measures of spatial

diffusion and velocity diffusion respectively. Since the dispersion tensors are dependent
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on the history of fluid-particle interaction along trajectories, this poses the question

as to how they are related to the quantities
〈
xp(t)f(xp(t), t)

〉
and

〈
vp(t)f(xp(t), t)

〉
,

i.e. the correlation between each of the particle location and velocity respectively

with the fluctuating component of the flow field. A convenient way of investigating

these correlations is to use the phase-space interpretations z(t) = (xp(t),vp(t)) and

b (ξ, t) = (0, f (x, t)) from (4.23), leading to representation of both quantities within

the expression
〈
z(t)b (z(t), t)

〉
. Then the fine-grained PDF P as defined in (4.6) en-

ables b (z(t), t) to be written in terms of the phase space variable ξ by making use of

the filtering property of the δ-function, and by the same reasoning only points where

z = ξ then contribute to the ensemble average, meaning that it is possible to write

〈
z(t)b (z(t), t)

〉
=

〈
z(t)

∫
ξ

b (ξ, t)P (ξ, t) dξ

〉
=

∫
ξ

ξ
〈
b (ξ, t)P (ξ, t)

〉
dξ (4.49)

Thus the problem reduces to the closure of the phase-space diffusion current
〈
b (ξ, t)P (ξ, t)

〉
identified in the Liouville equation (4.7), and therefore the FN correlation splitting

technique result in (4.19) can be applied, resulting in

〈
z(t)b (z(t), t)

〉
=

∫
ξ

ξ

(
d (ξ, t) p (ξ, t)− ∂

∂ξ
·
[
D (ξ, t) p (ξ, t)

])
dξ (4.50)

Performing the integration then yields

〈
z(t)b (z(t), t)

〉
=
〈
z(t)d (z(t), t)

〉
+
〈
D (z(t), t)

〉
(4.51)

Re-introducing the physical space interpretations (4.23) along with those for the drift

and diffusion tensors in terms of the dispersion tensors (4.29) enables the closure to be

decoupled into the original correlations

〈
xp(t)f(xp(t), t)

〉
=
〈
xp(t)κ

(
xp(t),vp(t), t

)
+ λ

(
xp(t),vp(t), t

)〉
(4.52)〈

vp(t)f(xp(t), t)
〉

=
〈
vp(t)κ

(
xp(t),vp(t), t

)
+ µ

(
xp(t),vp(t), t

)〉
(4.53)

Considering the first equation (4.52), the term
〈
xp(t)κ

(
xp(t),vp(t), t

)〉
can be written
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〈
xp(t)κ

(
xp(t),vp(t), t

)〉
=

∫
v

∫
x

xκ (x,v, t) p (x,v, t) dx dv =

∫
x

x ρ (x, t)κ (x, t) dx

(4.54)

Now in homogeneous statistically stationary systems with no external body forces, it

is evident that v = 0, and all spatial or temporal gradients of averaged quantities are

zero. Applying these criterion reduces the particle phase momentum equation (4.42)

in form to

0 = F + κ (4.55)

For the case of a linear drag law the mean continuous phase force per unit mass is

F (x,v, t) = β
(〈

u(x, t)
〉
− v

)
, as given by (4.2) with g = 0. However for homogeneous

turbulence it is also true that 〈u(x, t)〉 = 0, producing the velocity averaged form

F = −βv (4.56)

Therefore as v = 0 it follows that F = 0, and thus from (4.55) then κ = 0 (although

note that this does not imply that κ = 0, as even in homogeneous systems, κ =

κ (v, t)). From (4.54) it is then seen that
〈
xp(t)κ

(
xp(t),vp(t), t

)〉
= 0, subsequently

reducing (4.52) to

〈
xp(t)f(xp(t), t)

〉
=
〈
λ
(
xp(t),vp(t), t

)〉
(4.57)

Further to this, properties of the PDF p (x,v, t) can be used to write

〈
λ
(
xp(t),vp(t), t

)〉
=

∫
v

∫
x

λ (x,v, t) p (x,v, t) dx dv =

∫
x

ρ (x, t)λ (x, t) dx = λ (x, t)

giving the final expression as [150, 151]

〈
xp(t)f(xp(t), t)

〉
= λ (x, t) (4.58)

For the case of equation (4.53), it can similarly be written that
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〈
vp(t)κ

(
xp(t),vp(t), t

)〉
=

∫
x

∫
v

vκ (x,v, t) p (x,v, t) dv dx

=

∫
x

ρ (x, t) cκ (x, t) dx

= cκ (x, t) (4.59)

This expression cannot be simplified any further in the case of a homogeneous statisti-

cally stationary flow, however it is generally modelled as being negligible. Additionally,

in the same vein as for λ (x,v, t) the properties of the PDF p (x,v, t) give

〈
µ
(
xp(t),vp(t), t

)〉
=

∫
x

∫
v

µ (x,v, t) p (x,v, t) dv dx =

∫
x

ρ (x, t)µ (x, t) dx = µ (x, t)

meaning that with the approximation cκ (x, t) ≈ 0 in (4.59) then (4.53) can be written

in the form

〈
vp(t)f(xp(t), t)

〉
≈ µ (x, t) (4.60)

Thus for homogeneous statistically stationary flows, equations (4.58) and (4.60) give

expressions for which the left-hand sides can be evaluated using particle tracking sim-

ulations, thereby providing a benchmark for testing λ (x, t) and µ (x, t) as obtained

from direct computation of (4.31) and (4.32) against.

4.4 Local Closure Models

In general there are two ways of approaching the closure problem for unknown quan-

tities; either developing an algebraic closure or modelling each unclosed term using

an additional transport equation. Within the context of PDF models, the continuum

equations constitute such a hierarchy of transport equations, however whether closure

is made at this level or directly in the PDF kinetic equation, modelling of the disper-

sion tensors κ (x,v, t), λ (x,v, t), and µ (x,v, t) given by (4.30 - 4.32) is a requirement.

These dispersion tensors are intrinsically non-local in nature, with their values at (x, t)

depending upon the particle trajectories xp(t
′) for times 0 ≤ t′ ≤ t, however the extent
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to which this non-locality is captured in closure models is highly variable, and is the

subject of ongoing research.

4.4.1 Local Homogeneous Approximations

The starting point for modelling κ (x,v, t), λ (x,v, t), and µ (x,v, t) is by construct-

ing simple approximations that are local to the point in physical space x at which the

dispersions tensor describe the particle behaviour, and consequently ignore the history

effect of previous particle-fluid interactions that are of importance in certain flow con-

figurations. Further assuming a homogeneous flow, such a model is referred to as a

local homogeneous approximation (LHA).

These various assumptions are applied to the response and correlation tensors that

constitute the unclosed conditional average within the dispersion tensors. In the

case of the two-point two-time correlation tensor evaluated along a particle trajec-

tory R
(
x′p, t

′; x, t
)

defined by (4.25), a locality assumption can be made by supposing

that xp(t
′) ≈ x, thereby reducing the correlation required in space to a single point.

Additionally, a model E (t− t′; x) can be introduced for the temporal decorrelation of

the random field f (x, t) along trajectories that satisfy xp(t) = x, which further re-

duces the correlation to the one-point one-time form R (x, t; x, t). Thus the LHA for

R
(
x′p, t

′; x, t
)

takes the form [151]

R
(
x′p, t

′; x, t
)
≈ R (x, t; x, t) E (t− t′; x) (4.61)

The further assumption of a homogeneous flow removes the spatial dependence in

the one-point one-time correlations, and if the flow is also isotropic this results in

R (x, t; x, t) = β2u′2I for the case of a linear drag law where the fluctuating particle

acceleration is given by (4.3). For the time component E (t− t′; x), an appropriate

model is an exponential decorrelation specified by

E (t− t′; x) = exp

[
− 1

τLp(x)
(t− t′)

]
(4.62)

where τLp is the Lagrangian fluid integral timescale for the random field f (x, t) eval-

uated along inertial particle trajectories. Following Wang & Stock [165], a suitable

model for τLp in a homogeneous flow as obtained from curve fitting of DNS data is
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τLp = τE −
τE − τL

(1 + StE)−0.4(1+0.01StE)
(4.63)

where τE is the Eulerian fluid integral timescale, τL is the Lagrangian fluid integral

timescale along fluid element trajectories, and StE is the Stokes number defined in

terms of the Eulerian integral timescale StE = τp/τE. The model (4.63) is valid for the

case in which τE is equal to the eddy turnover time τeddy of the flow field, and satisfies

the limiting cases of τLp → τL as τp → 0 and τLp → τE as τp →∞, with τL ≤ τLp ≤ τE

applying in the general case of inertial particles. Accordingly, the approximation to

R
(
x′p, t

′; x, t
)

in (4.61) becomes

R
(
x′p, t

′; x, t
)
≈ β2u′

2
exp

[
− 1

τLp
(t− t′)

]
I (4.64)

Therefore this approximation captures the expected spatial and temporal decorrelation

behaviour using the single quantity τLp to account for the effects of particle inertia. In

terms of the particle response tensor H[t; t′], for the linear drag law specified in (4.2 -

4.3) the contribution from ∂F/∂x in the governing equation (4.28) is zero, and further

neglecting contribution from ∂f/∂x makes H[t; t′] trajectory independent. Since the

particle history is not taken into account as a result, this is equivalent to the locality

assumption made for the correlation tensor R
(
x′p, t

′; x, t
)
, and the resulting simplified

governing equation can be solved to produce an approximation for H[t; t′] known as

the Green’s tensor [151]

H [t; t′] =
1

β

[
1− exp

[
− β (t− t′)

]]
I (4.65)

The name arises from the fact that the scalar part of (4.65) is also the Green’s function

of the particle equation of motion (2.22) in the case of a linear drag law, which further

implies that this approximation is consistent with the interpretation of H[t; t′] as the

particle response to a perturbation. The approximations for R
(
x′p, t

′; x, t
)

(4.64) and

H[t; t′] (4.65) are then both deterministic quantities, meaning that evaluation of the

dispersion tensors κ (x, t), λ (x, t), and µ (x, t) (4.30 - 4.32) using these expressions

causes the conditional averages to drop out, thus solving the closure problem. Subse-

quent evaluation of the integrals and taking the limit t → ∞ yields the steady-state

LHA for the dispersion tensors
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λ
LHA

= u′
2 1

StLp (1 + StLp)
I

µLHA = u′
2 β

1 + StLp
I =

1

τLp
λ

LHA
(4.66)

κLHA = 0

where StLp is the Stokes number defined by StLp = τp/τLp. The constant approxi-

mations in (4.66) are the simplest closure for the dispersion tensors in an isotropic

flow, and constitute the benchmark form of model which is assessed against data from

particle tracking simulations.

In the event that the LHA does not adequately describe the particle behaviour within

more complex flow configurations, it nevertheless provides a starting point for devel-

oping improved closure methodologies. An appropriate example to illustrate this is

when added mass effects are accounted for within the PDF modelling framework so

that the behaviour of arbitrary density particles can be described. Although the forces

acting upon particles are more complex, the PDF kinetic modelling procedure in sec-

tion 4.1 can still be applied by decomposing the particle equation of motion into mean

F(x,v, t) and fluctuating f(x, t) components. The closures required in such a model

remain those of two-point two-time correlation tensors for both fluid velocity and ac-

celeration, and response tensors with respect to perturbations in both the fluid velocity

and acceleration fields. Research in this area has used the locality assumption (4.61) as

a standard model for the correlation tensors, whilst treatment of the response tensors

has varied, with both the usual LHA of neglecting the contribution ∂f/∂x to keep the

treatment deterministic [144], but also inclusion of further detail that accounts for the

path history of particles and therefore makes the response tensors trajectory dependent

[180].

4.4.2 Uniform Shear Flow

If the restriction of an isotropic flow is relaxed to that of a uniform shear flow in which

a non-zero mean fluid velocity 〈u〉 (x) exists in one direction, the geometry of the flow

makes it convenient to consider this configuration in two-dimensional form. Then the

mean flow rate is given by 〈u〉 (x) = (〈u1〉 (x2) , 0), where x1 varies in the streamwise

direction and x2 varies normally to the mean flow, and is characterised by the constant

shear rate [151]
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S =

[
0 γ

0 0

]
(4.67)

where γ = ∂〈u1〉/∂x2. In this configuration the one-point one-time correlations in

the model (4.61) for R
(
x′p, t

′; x, t
)

can still be taken to be spatially independent since

the fluctuating part of the flow field u′ is homogeneous, however each component now

has a distinct value as isotropy is no longer satisfied. Notwithstanding this, the local

approximation (4.61) can still be utilised for the linear drag law with fluctuating particle

acceleration f (x, t) given by (4.3), resulting in

R
(
x′p, t

′; x, t
)
≈ β2

〈
u′u′

〉
exp

[
− 1

τLp
(t− t′)

]
(4.68)

The particle response tensor H[t; t′] can be treated in the same manner as in the LHA

by neglecting the contribution from ∂f/∂x in the governing equation (4.28), however

the presence of a mean flow implies that the contribution from ∂F/∂x 6= 0 in this

context, resulting in an approximation for H[t; t′] that is anisotropic [126, 127, 13]

H [s] =

[
1
β

[
1− exp [−βs]

]
γ
β2

[
βs− 2 + (2 + βs) exp [−βs]

]
0 1

β

[
1− exp [−βs]

] ]
(4.69)

where s = t − t′. Crucially, both the models (4.68) for R
(
x′p, t

′; x, t
)

and (4.69) for

H[t; t′] in the case of uniform shear flow remain trajectory independent, meaning that

in the same manner as the LHA the conditional average within the dispersion tensors is

automatically closed without further assumption. This yields corresponding long-time

values for the approximations κLHA, λ
LHA

, and µLHA [126, 127, 142], presentation of

which is omitted here for clarity, however it is noted that κLHA = 0 in this configuration

since the models for R
(
x′p, t

′; x, t
)

and H[t; t′] contain no spatial dependence.

4.5 Non-local Closure Models

The impact of non-local effects on inertial particles is of relevance for inhomogeneous

flows, when the LHA cannot be reasonably expected to capture all the relevant fluid-

particle interactions that influence particle behaviour. Evaluation of the particle dis-

persion tensors in the case of an inhomogeneous flow was first considered by Skartlien

[142] within the context of one-dimensional stratified turbulent channel flow with a
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non-linear mean shear rate, and requires numerical computation of the instantaneous

response tensor H[t; t′] and evaluation of R
(
x′p, t

′; x, t
)

along individual trajectories

using particle tracking simulations. This work demonstrated that λ (x, t) deviates sig-

nificantly from the LHA, in contrast to µ (x, t) which is actually well approximated by

the LHA across the width of the channel, and this difference in sensitivity to inhomo-

geneities within the flow is attributed to the weightings of the particle response tensor

H[t; t′] within each dispersion tensor. This arises due to the respective timescales as-

sociated with each of H[t; t′] and R
(
x′p, t

′; x, t
)
; from the Green’s tensor (4.65) it can

be seen that τp is representative of H[t; t′], whilst the locality assumption (4.61) can

be used to associate τLp with R
(
x′p, t

′; x, t
)
. It is then the weightings of H[t; t′] and

R
(
x′p, t

′; x, t
)

within the integrands for λ (x, t) and µ (x, t) as evaluated using (4.31)

and (4.32) respectively that determine the sensitivity of the dispersion tensors [142].

For λ (x, t), the displacement response H[t; t′] is shown not to reduce to zero with in-

creasing time separation s = t− t′, meaning that the dominant decorrelation timescale

is τLp, and λ (x, t) is therefore more dependent on the particle path history and conse-

quently relatively sensitive to changes in the flow. In contrast, for µ (x, t) the velocity

response Ḣ[t; t′] does decrease to zero with increasing time separation, and because in

general τp � τLp for small particles, the dominant decorrelation timescale is therefore

τp. This results in µ (x, t) sampling much less of the particle path history, meaning

that it is subsequently less sensitive to changes in the flow, and that the trajectory

independent LHA is a better model in this case. This work clearly highlighted the

scope for including the not insignificant non-local path history effects within a closure

model for λ (x, t) in particular, which is otherwise only obtainable to a sufficient level

of accuracy in inhomogeneous flows by using particle tracking simulations.

4.5.1 Passive Scalar Approximation

The concept of the passive scalar approximation (PSA) was introduced by Skartlien

[142] in order to satisfy the requirement of fully mixed particles in the limit of zero

particle inertia (i.e. fluid elements), and ensure that the particle phase momentum

equation is correct. For the PDF kinetic framework this is stated in terms of the

dispersion tensors as

κ (x, t) = ∇ · λ (x, t) (4.70)

This approximation can then reasonably be applied for St� 1, and includes a higher
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level of detail than the LHA as the gradient in turbulence intensity is not neglected

[142], with κ (x, t) 6= 0 and ∇·λ (x, t) 6= 0 in general for a inhomogeneous flow. Use of

the LHA would approximate both of these quantities as zero, thereby trivially satisfying

(4.70), however development of a non-local closure for λ (x, t) with subsequent use of

(4.70) to obtain κ (x, t) includes this higher level of detail, and is therefore a more

appropriate closure.

4.5.2 Modelling the Conditional PDF of Particle Trajectories

It was highlighted by Swailes & Darbyshire [151] that even in flow configurations where

the response tensor H[t; t′] can be specified deterministically, the standard closure

approximation on the two-point two-time correlation tensor R
(
x′p, t

′; x, t
)

still utilises

the locality assumption, namely

〈
R
(
x′p, t

′; x, t
) 〉

x,v
≈ R (x, t′; x, t) (4.71)

Consequently any particle-fluid interactions along the history of the particle trajec-

tory are not taken into account, and this presents the major shortcoming of such an

approximation, with improved closures being the subject of subsequent work. Such

closures are largely based on the more fundamental approach of considering the joint

distribution φ of xp(t
′) and vp(t

′) conditional on xp(t) = x and vp(t) = v, from which

stems the identity [151]

〈
R
(
x′p, t

′; x, t
) 〉

x,v
=

∫
x′

∫
v′

R (x′, t′; x, t)φ (x′,v′, t′ | x,v, t) dv′ dx′ (4.72)

where φ (x′,v′, t′ | x,v, t) is the conditional PDF for particle trajectories (x′,v′) at

time t′ which satisfy (x,v) at a later time t. The non-local effects can therefore be

included within a closure by specification of φ (x′,v′, t′ | x,v, t), and in the absence

of a suitable closed form, this is most easily realised through supposition of a certain

distribution and construction of the necessary moments. In particular, for the choice of

a Gaussian approximation the closure problem reduces to determination of the mean

m′ = m(t′ | t) = (〈x′〉, 〈v′〉) and covariance Θ′ = Θ(t′ | t) =
〈

(x′ − 〈x′〉) (v′ − 〈v′〉)
〉

of φ. The intricacy of such a procedure is that the distribution of particle trajectories

at (x′,v′) conditional on the later position (x,v) can be treated by taking this final

position as a fixed initial condition and considering trajectories described by the time-
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reversed particle equation of motion [151]. Closure is made in the corresponding time-

reversed PDF transport equation for φ by assuming a Gaussian form and utilising

the locality assumption (4.71) at this level within the associated expressions for m′

and Θ′. Specification of these moments then fully determines φ, meaning that the

identity (4.72) can be evaluated and in turn used for deducing closed expressions for

the dispersion tensors κ (x, t), λ (x, t), and µ (x, t) at the top level of the problem.

This approach was first applied to the case of fluid element transport (the limiting case

of τp → 0) in an incompressible isotropic flow [151], for which the simplified equation

of motion means that µ (x, t) does not appear within the corresponding transport

equation for the PDF φ (x′, t′ | x, t) and κ (x, t) = 0, thereby restricting attention to

the spatial diffusion λ (x, t). This system admits analytical solutions with m′ = 0 and

Θ′ reducing to a function of time separation s, resulting in an improved approximation

for λ (x, t) which is able to capture non-local path history effects of fluid elements

within the dispersion process.

4.5.3 Application to Inertial Particles

Application of the non-local closure methodology in section 4.5.2 to capturing the be-

haviour of inertial particles in inhomogeneous flows was undertaken by Bragg et al. [13]

within the context of a turbulent boundary layer. This is specified as a statistically

stationary non-uniform shear flow, in which the mean flow 〈u〉(x) is taken to be lo-

cally linear, modifying the shear rate defined in (4.67) to the location-dependent form

γ(x2) = ∂〈u1〉/∂x2. In the same manner as for a uniform shear flow, using the LHA on

the response tensorH[t; t′] by neglecting the contribution from ∂f/∂x in the governing

equation (4.28) produces the approximation given in (4.69), with the distinction that

in this case γ(x2) and therefore also H12[t; t′; x2] are both location dependent in the

wall-normal direction x2. This allows for deterministic treatment of H[t; t′] since it is

trajectory independent, meaning that it can be extracted from the conditional averages

within the dispersion tensors (4.30 - 4.32), which reduce to averages of only the two-

point two-time correlation tensor R
(
x′p, t

′; x, t
)
. Further, since it is the particle spatial

distribution which is of interest in boundary layers, the velocity averaged form of the

dispersion tensors can be used, and then for the purposes of developing a non-local

closure the identity (4.72) simplifies to

〈
R
(
x′p, t

′; x, t
) 〉

x
=

∫
x′

R (x′, t′; x, t)φ (x′, t′ | x, t) dx′ (4.73)
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In this work, construction of the moments m′ and Θ′ for the assumed Gaussian

conditional PDF for particle trajectories φ (x′, t′ | x, t) was carried out by express-

ing the time-reversed particle equation of motion in integral form, which is admissible

for a linear drag law. This modelling procedure then reduces the required closures

to the averages of fluid velocity along trajectories
〈
u(xp(t), t)

〉
and particle veloc-

ity
〈
vp(t)

〉
, the particle kinetic stresses cc (x, t), and the covariances of fluid velocities〈

u′(xp(t1), t1)u′(xp(t2), t2)
〉

and particle-fluid velocities
〈
v′p(t1)u′(xp(t2), t2)

〉
along tra-

jectories. By utilising the particle-phase momentum and kinetic stress equations (4.42)

and (4.44), closure is made at this level with the LHA forms of the dispersion tensors

κLHA (x, t), λ
LHA

(x, t), and µLHA (x, t). For a turbulent boundary layer these approx-

imations generalise the form of R
(
x′p, t

′; x, t
)

in the homogeneous shear flow model

(4.68), with the distinction that both the one-point one-time correlations R (x, t; x, t)

and the fluid decorrelation timescale along particle trajectories τLp(x) should be mod-

elled as a function of the wall-normal position x2, resulting in

R (x′, t′; x, t) ≈ β2
〈
u′ (x2) u′ (x2)

〉
exp

[
− 1

τLp(x2)
(t− t′)

]
(4.74)

This procedure determines the moments m′ and Θ′ analytically, however the subse-

quent evaluation at the top level of closure in (4.73) and thereafter for the dispersion

tensors κ (x, t), λ (x, t), and µ (x, t) is necessarily undertaken numerically due to the

level of detail included in the modelling process. Nonetheless it is demonstrated that

this approach accounts very well for the non-local effects that are characteristic of a

turbulent boundary layer, with all three of the dispersion tensors in close agreement

with particle tracking simulation results. As with the work of Skartlien [142], the LHA

is shown to be less accurate for λ (x, t) than µ (x, t) compared to simulation data,

however the non-local closure model successfully captures the correct behaviour. Ad-

ditionally, it is shown that in general the PSA (4.70) does not hold across a range of

particle inertias, with the non-local closure model offering a significant improvement in

κ (x, t). Due to the modelling framework being self-contained, no additional input data

is required in the procedure, meaning that the closure model can be evaluated a-priori

of the particle tracking simulations. This attributes the accuracy of the closure model

solely to the non-local treatment of
〈
R
(
x′p, t

′; x, t
) 〉

x
, and highlights the potential of

such a methodology for producing accurate closures in other flow configurations or for

a more general particle model than that of gas-solid flows.
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4.6 Appraisal of Existing Closure Models

Previous work has almost without exception approximated the particle response tensor

H [t; t′] with a deterministic expression, thereby taking into account only the mean

behaviour of H [t; t′]. This approach has yielded appropriate closure models for both

uniform shear flow (section 4.4.2) and a turbulent boundary layer (section 4.5.3) when

the two-point two-time correlation tensor R(x′, t′; x, t) is modelled using local and non-

local approximations respectively, however in all cases the underlying flow field in which

particles are immersed has a non-zero mean flow.

The work presented in this thesis is concerned with analysing the importance of cer-

tain contributions that arise within the particle mass flux representation of the PDF

kinetic model given by equation (4.48). In order to better understand these contribu-

tions, it is desirable to consider flow configurations that limit the confounding effects

of multiple such terms by isolating individual contributions. This is achieved in the

present work using both a homogeneous isotropic flow in which particles are subject to

a gravitational body force in one direction (Chapter 6), and also a specially constructed

inhomogeneous flow field with no external body forces (Chapter 8). In both of these

configurations the fluid velocity field is statistically stationary, and is further charac-

terised by a zero-mean flow, meaning that the LHA forH [t; t′] takes the isotropic form

given by (4.65). An immediate consequence of this is that within the integrand of the

dispersion tensor κ (x, t) as given by (4.30), the expression ∂
∂x

R(x′, t′; x, t) contracts to
∂
∂x
·R(x′, t′; x, t), which is identically zero due to the incompressibility of the flow field

regardless of the modelling approach taken for R(x′, t′; x, t). Therefore configurations

with a zero-mean flow automatically yield κLHA (x, t) = 0, meaning that the effect of

this important contribution to the particle mass flux is lost in all such flows by using

the simplified description ofH [t; t′] given in (4.65). The challenge then is to develop a

model that is able to capture in particular the non-zero behaviour of κ (x, t) in these

flow configurations, by specifically including a fuller description of the particle response

tensor H [t; t′].
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Chapter 5

Numerical Methodology

For the development of closure models using the PDF framework to be objective, as-

sessment of proposed models against some form of data is essential in order to evaluate

the accuracy of the closures. As alluded to in Chapter 1, the alternative options of

experimental and computational approaches are available for such purposes, with each

having their own distinct merits. The present research takes the computational point of

view, chiefly due to the relative ease with which the required statistics can be extracted

from a numerical simulation as opposed to an experiment, but also due to the versa-

tility of the methods available. In this work computational fluid dynamics is used as a

means for running particle tracking simulations in the Lagrangian frame of reference,

with this approach being particularly applicable to the PDF kinetic model since the

framework is developed from the underlying particle equation of motion. Specifically,

particle trajectories governed by the linear drag law in equation (2.22) are computed

in flow fields constructed using kinematic simulation (KS), the details of which are

outlined in section 5.1. Furthermore, it is useful to initialise particle velocities in a

way that reflects emergent correlations between particle and fluid velocities, and the

approach used to achieve this is discussed in section 5.3, with the effect on the initial

transience of the PDF kinetic model dispersion tensors κ (x, t), λ (x, t), and µ (x, t)

detailed in section 5.4.

5.1 Kinematic Simulation

The suitability of KS as a means for making inferences about the physical mechanisms

that are responsible for particle behaviour in a given flow configuration is detailed in
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section 3.5.2, with the consensus being that it provides a sufficiently detailed input to

the particle equation of motion for behaviour to be attributable to structures within

the flow field, whilst not including the effect of dissipation and full description of the

microscales that vastly amplify the computational cost of such a simulation. The main

advantage of KS within the context of the PDF kinetic model is that it can be used to

create flow fields with prescribed decorrelation rates, thereby providing a closed form

of the Eulerian two-point two-time correlation tensor R (x′, t′; x, t) given by (4.25)

that is easily evaluated, and thus avoiding the otherwise non-trivial evaluation of this

from simulation data. A direct comparison of closure models and particle tracking

simulation results is then possible without any further modelling required, meaning

that any discrepancy can be attributed solely to inadequacies of the closure for the

particular flow field being considered. Additionally, the fluid velocities u(x, t) can

be generated to conform to a specific probability distribution. For the PDF kinetic

model it is therefore particularly helpful to choose this to be a Gaussian, since then

the higher order terms in the cumulant expansion (4.9) of the phase-space diffusion

current
〈
b (ξ, t)P (b; ξ, t)

〉
are all identically zero, meaning that the Furutsu-Novikov

formula (4.10) can be used to give an exact closure. A true turbulent velocity field on

the other hand is not Gaussian [118], and the higher-order moments cause the tails to

deviate significantly from those of a normal distribution. Subsequent inclusion of the

higher-order terms in the cumulant expansion (4.9) may be necessary to maintain the

accuracy of this closure, thereby considerably complicating the form of the PDF kinetic

model for dynamic turbulent flow. Another salient advantage of a synthetic flow field is

that the fluid velocity can then be specified explicitly and calculated as needed within

the simulation domain, thereby avoiding the need for interpolation from a fixed grid

of points as required for the numerical treatment of the Navier-Stokes equations, and

the associated truncation error which comes with this.

5.1.1 Specification and Generation of the Velocity Field

The aim is to construct an incompressible flow field that is also homogeneous, isotropic,

and statistically stationary for a rectangular domain of side length 2L with periodic

boundary conditions. Specifically, suppose that the zero-mean velocity field U(x, t) is

defined on the uniform ‘box’ B = [−L,+L]d where d ∈ {2, 3} is the number of physical

spatial dimensions. Therefore due to periodicity

U(x, t)
∣∣
xj=−L = U(x, t)

∣∣
xj=+L ∀j ∈ {1, . . . , d} (5.1)
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Then U(x, t) and its periodic extension to all x can be expressed in terms of its Fourier

series representation as

U(x, t) =
∑

k

ck(t) exp
[
ik · x

]
(5.2)

where k = ∆k n are the Fourier space modes, ∆k = 2π/L is the spacing between

Fourier modes, n ∈ Zd is the number of modes included in the summation (5.2) in each

direction, and the complex Fourier coefficients ck(t) are defined as

ck(t) =
1

(2L)d

∫
B

U(x, t) exp
[
− ik · x

]
dx (5.3)

To ensure that U(x, t) is real-valued, the complex Fourier coefficients ck(t) are subject

to the relation

c−k(t) = ck(t) (5.4)

Furthermore, taking the divergence of the velocity field definition (5.2) results in

∇ ·U(x, t) =
∑

k

i ck(t) · k exp
[
ik · x

]
(5.5)

meaning that for the velocity field to be incompressible and satisfy ∇ · U = 0, the

equivalent condition in Fourier space is ck ·k = 0. In order to respect these constraints,

generation of the complex Fourier coefficients ck(t) is motivated by previous approaches

to KS [84, 151], and are taken to be independent random variables such that

ck(t) = zk × k exp
[
i ωkt

]
(5.6)

where the complex vectors zk are in turn specified by

zk =
1

2
αk

(
ζk − i ξk

)
(5.7)

in which αk is a scaling coefficient satisfying α−k = αk to be chosen such that the

desired form of energy spectrum can be recovered from the velocity field, and the

random velocities ζk, ξk and frequencies ωk are subject to the constraints ζ−k = −ζk,
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ξ−k = ξk and ω−k = −ωk as a consequence of (5.4). This is realised by generating ζk,

ξk and ωk as zero-mean Gaussian random numbers according to

ζjk , ξ
j
k ∼ N

(
0, σ2

z

)
ωk ∼ N

(
0, σ2

ω

)
(5.8)

where σz and σω are the standard deviations of the respective velocity and frequency

distributions. Furthermore, the velocity field U(x, t) defined in (5.2) can be reduced

to a two-dimensional form U = (U1, U2, 0) by taking

zk = (0, 0, zk)

k = (k1, k2, 0) = ∆k (n1, n2, 0) (5.9)

Then specification of the Fourier coefficients by (5.6) produces ck =
(
c1
k, c

2
k, 0
)

as

required.

5.1.2 Reconciliation of KS with the Velocity Spectrum Tensor

The parameters αk, σz and σω are chosen to recover a prescribed form of the two-point

two-time fluid velocity correlations
〈
U(x1, t1)U(x2, t2)

〉
consistent with a homogeneous

isotropic flow field. For this velocity field it is desired for convenience to specify the

spatial and temporal correlations as independent decorrelation functions such that

〈
U(x1, t1)U(x1 + r, t2)

〉
= Q(r)Eω(s) (5.10)

where Q(r) is the two-point one-time fluid velocity correlation tensor Q(r) =
〈
U(x, t)U(x+

r, t)
〉
, r is the spatial separation vector defined as r = x2−x1, s is the time separation

given by s = t2 − t1, and Eω(s) is the Eulerian temporal decorrelation function for the

velocity field that satisfies Eω(s)→ 0 as |s| → ∞.

Since the KS flow field properties are specified in terms of the Fourier coefficients ck(t),

it is most natural to determine the parameter values needed to retrieve a given form

of Q(r) in terms of the Fourier modes. From the definition of ck(t) in (5.3), it can be

shown that
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〈
c−k(t1)ck(t2)

〉
=

1

(2L)d

∫
B

〈
U(x1, t1)U(x1 + r, t2)

〉
exp

[
− ik · r

]
dr (5.11)

Then making use of the assumed independence of spatial and temporal decorrelation

functions as given in (5.10) and the relation ∆k = 2π/L produces

〈
c−k(t1)ck(t2)

〉
= (2π)−d (∆k)d

∫
B

Q(r) exp
[
− ik · r

]
dr Eω(s) (5.12)

If the domain B = [−L,+L]d is considered to be sufficiently large relative to the

lengthscales implicit in the correlation tensor Q(r), then the integral over B can be

approximated as the standard Fourier transform of Q(r), enabling (5.12) to be written

in terms of the velocity spectrum tensor Φ(k) [9]

〈
c−k(t1)ck(t2)

〉
≈ (2π)−

d
2 (∆k)d Φ(k)Eω(s) (5.13)

On the other hand, taking the chosen method for generation of the Fourier coefficients

ck(t) for the KS flow field defined by (5.6) with the distribution of random velocities

ζjk , ξ
j
k ∼ N

(
0, σ2

z

)
as in (5.8), it follows that

〈
c−k(t1)ck(t2)

〉
ij

=
1

2
σ2
z

(
k2δij − kikj

) 〈
exp [i ωks]

〉
(5.14)

where k = |k| is the magnitude of the Fourier mode k. Then with ωk ∼ N
(
0, σ2

ω

)
as

specified in (5.8), the characteristic function of ωk yields a Gaussian decorrelation in

time

Eω(s) =
〈

exp [i ωks]
〉

= exp

[
−1

2
σ2
ωs

2

]
(5.15)

in which σω can be interpreted as a measure of the velocity field temporal correlations.

Comparison between the different forms of Fourier coefficient correlation arising from

the flow field definition (5.13) and chosen method of generation for KS (5.14) then

shows that the velocity spectrum tensor Φ(k) is determined as

Φij(k) ≈ 1

2
σ2
zα

2
k (2π)

d
2 (∆k)−d

(
k2δij − kikj

)
(5.16)
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From this the constant multiplier 1
2
σ2
z can be interpreted as a characteristic velocity of

the flow field, whilst the scaling coefficient α2
k is taken as a Fourier mode dependent

expression to be chosen such that the desired form of Φ(k) is recovered.

5.1.3 Imposition of an Isotropic Two-Point Correlation Ten-

sor

Determination of the parameters σz and αk requires explicit specification of Q(r),

which is done for this velocity field by appealing to isotropy [9, 118]

Qij(r) = u′
2
[
g(r)δij +

(
f(r)− g(r)

)rirj
r2

]
(5.17)

where r = |r|, and f(r) and g(r) are the normalised longitudinal and lateral correlation

coefficients of the underlying velocity field respectively. For an incompressible velocity

field the correlation functions f(r) and g(r) are related by [9]

g(r) = f(r) +
1

d− 1
r
d

dr
f(r) (5.18)

Thus the characteristics of Q(r) for an isotropic flow field are dependent solely on

the longitudinal correlation function f(r). For dynamical turbulence f(r) is governed

by the Kármán–Howarth equation [42] and cannot be uniquely determined without

further physical assumption about the flow field, however self-similar approximations

emerge for a decaying flow after a sufficiently long period of time has elapsed [8].

When dealing with numerical simulations the long-established practice is to use the

corresponding form of the turbulent kinetic energy spectrum E(k) to inform the choice

of f(r), and specifically the requirement that E(k) decreases sufficiently fast over the

range of Fourier modes k used in the simulation [137]. One such appropriate form of

E(k) is the Batchelor-Townsend energy spectrum [8], which corresponds to a Gaussian

form of f(r) [84, 137, 122, 91, 164]. In this work the following form of f(r) is therefore

adopted

f(r) = exp

[
−1

2
σ2
kr

2

]
(5.19)

where σk is the magnitude of the Fourier modes corresponding to the peak of the energy

spectrum E(k), and therefore acts as a measure of the velocity field spatial correlations
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characteristic of the larger energetic eddies. With this form of f(r) in Q(r) as specified

in (5.17), taking the Fourier transform then yields the velocity spectrum tensor Φ(k)

as

Φij(k) =
1

d− 1
u′

2 (
k2δij − kikj

) 1

σd+2
k

exp

[
−1

2

k2

σ2
k

]
(5.20)

Comparison with the approximation of Φ(k) used for generating the KS flow field in

(5.16) directly reveals expressions for the parameters σz and αk

σ2
z =

2

d− 1
u′

2
(5.21)

α2
k = (2π)−

d
2 (∆k)d

1

σd+2
k

exp

[
−1

2

k2

σ2
k

]
(5.22)

where it is now noted that the explicit condition for the approximation (5.16) to be

valid is Lσk � 1. This fully specifies the KS flow field for the selected form of f(r)

in (5.19), and leaves the free parameters u′, σk, and σω to be chosen as appropriate

within each simulation.

5.1.4 Recovering the Form of the Kinetic Energy Spectrum

For an isotropic velocity field the kinetic energy spectrum E(k) is uniquely determined

by the longitudinal correlation coefficient f(r), and is also related to the velocity spec-

trum tensor Φ(k) by [9]

Φij(k) =
E(k)

k2Ad(k)

(
k2δij − kikj

)
, Ad(k) =

{
2πk , d = 2

4πk2 , d = 3
(5.23)

where Ad(k) is the area of bounding surface of the Fourier modes which form a shell at

magnitude k in d dimensions. From this E(k) can therefore be recovered by comparing

Φ(k) as given by (5.20) for the chosen case of f(r) with (5.23), which results in a form

consistent with the Batchelor-Townsend spectrum as desired

E(k) =
1

d− 1
u′

2
k2Ad(k)

1

σd+2
k

exp

[
−1

2

k2

σ2
k

]
(5.24)
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This can be generalised for an arbitrary kinetic energy spectrum E(k) by comparing

the relation (5.23) with the approximation (5.16) for Φ(k) arising from the chosen

method of generation for the KS flow field, from which in turn emerges

E(k) =
1

2
σ2
z︸︷︷︸

Multiplier

k2Ad(k) (2π)
d
2 (∆k)−d α2

k︸ ︷︷ ︸
Fourier mode dependent tail

(5.25)

Thus, of the parameters emerging from the method of generation for the KS flow field

in (5.6), for an arbitrary kinetic energy spectrum, σz acts as a multiplier, whilst αk

contains information about the roll off at high Fourier modes within a suitably defined

spectrum tail.

5.1.5 Velocity Field Statistics

Specification of the KS velocity field in the manner outlined uses an explicit form (5.19)

of the longitudinal correlation coefficient f(r), and produces the Gaussian form (5.15)

for the Eulerian temporal decorrelation function Eω(s) when the rate parameter σω is

normally distributed. From these key quantities the longitudinal integral lengthscale

L11 and Eulerian integral timescale τE of the velocity field directly follow, given as [118]

L11 =

∫ ∞
0

f(r) dr =

√
π

2

1

σk
(5.26)

τE =

∫ ∞
0

Eω(s) ds =

√
π

2

1

σω
(5.27)

The parameters σk and σω are therefore used to determine the associated values of L11

and τE, and are interpreted as an inverse lengthscale and timescale respectively. Further

statistics do not emerge automatically as a result of the velocity field specification, but

are considered from a computational viewpoint.

5.2 Computational Implementation

The KS velocity field for the continuous phase constructed in section 5.1 was imple-

mented in MATLAB R© for d = {2, 3}, employing the Parallel Computing Toolbox in
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order to keep the physical program runtime tractable. Simulations have been carried

out using the Newcastle University Rocket HPC service, and to ensure sufficiently

smooth statistics for the dispersed phase the required ensemble size used is 106 par-

ticles. The ability to directly generate fluid velocities using the flow field definition

(5.2) makes it feasible for each particle to be tracked in a separate realisation of the

velocity field, further reducing the variability of subsequent statistics. The paralleli-

sation procedure can be considerably simplified in the case of one-way coupling by

sending each particle to a separate processor, meaning that there is then no need for

communication between processors during the simulation itself, and thus resulting in

an embarrassingly parallel implementation. This has the advantage of being free from

parallel slowdown, with a near linear speed-up in program efficiency compared to a se-

rial version, thereby facilitating the extraction of results which are sufficiently smooth.

Further details concerning the numerical treatment for aspects of particle tracking are

outlined as follows.

5.2.1 Time Advancement

For the purposes of evaluating the dispersion tensors κ (x, t), λ (x, t), and µ (x, t)

within a particle tracking simulation, both the particle equation of motion (4.1) and

governing equation (4.28) for the particle response tensor H [t; t′] must be solved nu-

merically. To enable the use of standard numerical methods, H [t; t′] is recast as a

first-order system of the form ẏ = f(t,y) in the same manner as the particle equation

of motion, as given by the phase-space response tensor G [t; t′] with the correspond-

ing equation of evolution (4.18). For marching these equations forward in time, the

standard Adams fourth-order predictor-corrector method is utilised [22]. This consists

of two substeps; firstly a prediction step that approximates updated values using the

four-step explicit Adams-Bashforth method (AB4)

y∗i+1 = yi +
∆t

24

[
55f(ti,yi)− 59f(ti−1,yi−1) + 37f(ti−2,yi−2)− 9f(ti−3,yi−3)

]
(5.28)

where y∗i+1 is the approximation for the predictor step to the solution yi+1, and ∆t

is the computational timestep. This is followed by a corrector step that improves the

approximated values using the three-step implicit Adams-Moulton method (AM3)
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yi+1 = yi +
∆t

24

[
9f(ti+1,y

∗
i+1) + 19f(ti,yi)− 5f(ti−1,yi−1) + f(ti−2,yi−2)

]
(5.29)

Inclusion of this corrector step achieves a noticeable improvement in accuracy com-

pared to just the explicit AB4 predictor step done alone, due to the greater stability

and smaller round-off errors inherent in the implicit AM3 method. Furthermore, the

corrector step only requires one further functional evaluation of f(ti+1,y
∗
i+1), as all

other values of f have been previously computed for use in the predictor step. In the-

ory, the corrector step could be iterated to within a convergence criterion, however this

would converge on the approximation given by AM3 rather than the true solution yi+1,

and in practice just one iteration is found to offer a sufficient improvement in accuracy

within the context of tracking both particles and the response tensor. Additionally, the

starting values required for these multistep methods are computed using the fourth-

order Runge-Kutta method (RK4) in order to maintain an accuracy of O
[
(∆t)4] [22].

5.2.2 Numerical Treatment of the Particle Response Tensor

To compute the dispersion tensors κ (x, t), λ (x, t) and µ (x, t) using the definitions

(4.30 - 4.32), evaluation of the path-history integrals requires knowledge of the particle

response tensor H [t; t′] at time t for perturbations in the velocity field at all previous

times t′ throughout the sampling period t0 ≤ t′ ≤ t. Since the response tensor is unique

to each individual particle trajectory, when the simulation runtime t is advanced to

t + ∆t the value of H [t; t′] corresponding to each trajectory must then be advanced

to H [t+ ∆t; t′] for all discrete time points t′. This is illustrated in Figure 5.1, and

demonstrates that the different instances of H [t; t′] needed to evaluate the dispersion

tensors at a fixed time point t require indexing in terms of only the reference time t′,

with all such instances then being updated accordingly when the simulation runtime t

is advanced. As a point of computational efficiency this means that at a given time t in

the simulation, only the current values ofH [t; t′] for all instances of the reference time t′

are needed, and therefore it is unnecessary to store the history of the response tensor in

the computer memory as the simulation is advanced in time. This is in contrast to the

particle trajectory, where for the two-point two-time correlation tensor R
(
x′p, t

′; x, t
)

to be evaluated over all values of t′ requires storage of the complete particle trajectory

for the duration of the sampling period t0 ≤ t′ ≤ t until the simulation is complete.
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Figure 5.1: Schematic representation outlining the computation procedure of the par-
ticle trajectory xp(t) , particle response tensor H [t; t′] , and dispersion tensors κ (x, t)
, λ (x, t) and µ (x, t) at a given time point t in the simulation

5.2.3 Non-dimensionalisation and Parameter Independence

To keep non-dimensional quantities consistent across simulations, it is convenient to use

the free parameters arising from the KS velocity field formulation as the reference scales

for non-dimensionalisation denoted in equation (2.7). Specifically, taking lref = σ−1
k

and tref = σ−1
ω produces the reference velocity uref = σ−1

k σω, and further setting these

reference scales as σk = 1 and σω = 1 has the effect of fixing both the longitudinal

integral lengthscale L11 and Eulerian integral timescale τE. As a point of convenience,

this also results in the non-dimensional form of the governing equations for both the

continuous phase as specified by the KS flow field (5.2) and particle phase as given

by the equation of motion (4.1) being the same as their original dimensional forms,

meaning that no further treatment is required in their implementation. Therefore all

variables referred to forthwith are taken to be in non-dimensional form, even though

this is not denoted explicitly for notational clarity. Additionally, fixing both σk and σω

in this manner leaves the only free parameters for the fluid velocity field as the RMS

u′ and domain size 2L, which in conjunction with τp and g = |g| then constitute the
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free parameters for these simulations.

Further, since the gravitational settling velocity Vg and Stokes number St are both

defined in terms of the particle timescale τp, it is helpful to be able to vary these

independently as the primary parameters of interest in disperse particle transport, and

thereby isolate the effects of gravity and particle inertia in different simulations. As

τE is fixed from non-dimensionalisation, StE is naturally controlled through variation

of τp, and for a fixed value of the gravitational acceleration g this variation would

consequently also affect Vg. It is therefore judicious to choose Vg as a fixed input

parameter to the simulation, and then variation of τp instead changes the effective

value of g, which is inconsequential as all subsequent computation and post-processing

for particle phase involving gravity uses Vg. Thus the coupling between Vg and St

is not an issue with this approach, meaning that they can be treated as independent

parameters.

5.2.4 Specification of Simulation Parameters

Domain Size

For running particle tracking simulations, the remaining free parameters must be spec-

ified a-priori. Firstly, fixing σk = 1 as part of the non-dimensionalisation procedure

simplifies the requirement on the domain size to L � 1, and since the reference length-

scale σ−1
k uniquely determines the integral lengthscale L11 =

√
π
2
≈ 1.25, the constraint

on domain size can be expressed in terms of the ratio of these two quantities

L
L11

� 1 (5.30)

This can be simply be interpreted as the requirement that there must be many eddies

at the largest scales of motion within the periodic simulation domain, and in order

to satisfy the requirement L is set such that the simulation domain contains either 6

or 8 eddies in each direction for the present work, which is consistent with resolution

recommendations for turbulent flows [118].

Computational Timestep

The computational timestep is determined from a stability analysis of the explicit

AB4 method (5.28) used for time advancement which is relevant to the phase-space
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response tensor G [t; t′]. Specifically, for the linear drag law in (2.22) that corresponds

to F (x,v, t) = β
(〈

u(x, t)
〉
− v

)
+ g and f (x, t) = βu′(x, t), the governing equation

for G [t; t′] given in (4.18) explicitly becomes

Ġ [t; t′] =

[
0 I

β∇u>(xp(t), t) −βI

]
· G [t; t′] , G [t′; t′] = Ĩ =

[
0 0

0 I

]
(5.31)

Since G [t; t′] is dependent upon the fluid velocity gradient∇u>, in contrast to the par-

ticle trajectories which depend on the fluid velocity u, the larger fluctuations exhibited

by the fluid velocity gradient relative to the fluid velocity implies that constructing

a timestep criterion for numerical solution of G [t; t′] will then also be a sufficient cri-

terion for the particle trajectories. Furthermore, since the implicit AM3 method has

greater stability than the explicit AB4 method at the same order of accuracy [22], such

a criterion will also be applicable to both substeps of the predictor-corrector method.

Then proceeding with a stability analysis of the linear system (5.31) for the explicit

AB4 method as detailed in Appendix E yields the timestep criterion given in (E.11) as

∆t� 3

10 max (β, β|∇u>(xp(t), t)|)
(5.32)

for which the dependencies in the denominator arise from the coefficient matrix in

(5.31). This is interpreted as the requirement for the timestep to be defined using

whichever of the particles or fluid velocity gradient has a smaller timescale for a given

value of β, and this is taken into account by using an order of magnitude approxima-

tion for |∇u>|. The simple estimate for the RMS fluid velocity gradient of u′/L11 is

used for this purpose, and following that the assumption that∇u>(xp(t), t) can be ap-

proximated as normally distributed produces the condition |∇u>(xp(t), t)| < 4u′/L11.

Further introducing a contingency factor of 1.2 for β to ensure that (5.32) remains

strictly satisfied and guarantee numerical stability for all aspects of the simulation

gives the final timestep criterion as

∆t� 3

10 max (1.2β, 4u′/L11)
(5.33)
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Fluid-Particle Timescale

To utilise the Wang & Stock [165] model of the fluid timescale along particle trajectories

τLp given in (4.63) and as used in the LHA, a suitable value of the fluid Lagrangian

integral timescale τL is required. In the absence of an analytical result a suitable

approximation of τL must therefore be made, and this is considered in terms of the

turbulence structure parameter m, defined as [165]

m =
τEu

′

L11

(5.34)

which is the ratio of the fluid Eulerian integral timescale τE to the one-point eddy

turnover time τeddy. The approximation of τL/τE = 0.356 is then provided by Wang

& Stock [165] as a model from simulation data, however it is conditional on m having

a value of unity. For the current KS flow field, the non-dimensionalisation procedure

in section 5.2.3 fixes the values τE =
√
π/2 and L11 =

√
π/2 , and consequently the

constraint m = 1 therefore imposes that u′ = 1 in this case. The validity of the Wang

& Stock approximation for the KS flow field is straightforward to check by tracking

fluid elements as governed by the equation of motion

ẋf = u (xf (t), t) (5.35)

where xf is the trajectory of a fluid element as it travels through the velocity field.

Then τL can be computed directly for an isotropic velocity field by [118]

τL =

∫ ∞
0

〈
u′ (xf (t), t) · u′ (xf (t+ s), t+ s)

〉〈
u′ (xf (t), t) · u′ (xf (t), t)

〉 ds (5.36)

For the KS flow field specified in section 5.1.1 it is found that τL/τE = 0.465, with the

appreciable difference from the Wang & Stock value of 0.356 making it appropriate to

use this more representative figure. For a given Stokes number St, it is also possible to

confirm the suitability of the value of τLp obtained from the model (4.63) by comparison

with direct computation of τLp from simulation data as the integral timescale (5.36),

in which the fluid velocity is instead evaluated along inertial particle trajectories xp(t)

rather than fluid element trajectories xf (t).
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Simulation Runtime

During the initial part of the simulation, particles are required to reach steady-state

behaviour such that the concentration profile and average particle velocity both equi-

librate, in order for statistics that can be considered statistically stationary to subse-

quently be extracted. As with the computational timestep, the length of time taken to

achieve equilibrium values is dependent upon the relative response times of the parti-

cles and fluid velocity, and for this flow field it is found that a suitable period across

a range of values for the particle inertia is 3τp + 3τE. Following this, the sampling

period for computation of particle statistics also needs to be specified, for which the

required duration hinges on how long it takes for the two-point two-time correlation

tensor R
(
x′p, t

′; x, t
)

to decorrelate. The length of the sampling period is therefore

heavily dependent on the fluid-particle interaction, and as a result is most appropri-

ately expressed in terms of the fluid timescale along a particle trajectory τLp. For the

cases run the duration of sampling was set to 4τLp, which was found to be adequate for

the particle dispersion tensors κ (x, t), λ (x, t) and µ (x, t) to reach their steady-state

values across a range of particle inertias.

5.2.5 Periodicity Considerations

Since the flow field defined using KS in section 5.1.1 is periodic in space, this results

in a discontinuity whenever the particle location is used directly in evaluation of an

expression. In particular, this occurs during the evaluation of the two-point two-time

correlation tensor R
(
x′p, t

′; x, t
)

within the dispersion tensors, and also the homoge-

neous benchmark value for λ (x, t) given by
〈
xp(t)f(xp(t), t)

〉
in section 4.3, each of

which require different treatment.

For the case of evaluating R
(
x′p, t

′; x, t
)

within an isotropic flow field, the dependence

on particle location is through the separation vector rp(t). Due to the periodicity of

the flow field, the spatial part of the correlation tensor Q(r) given in (5.17) will also be

periodic with period 2L for the separation in each direction rj. This means that when-

ever a particle passes through a boundary and re-enters the domain on the opposite

side, the separation vector rp(t) will automatically shift accordingly so that it remains

within the domain, thereby creating a discontinuity in the time series of the magnitude

rp = |rp|. This can be remedied by keeping track of the history of boundary crossings

for each particle, meaning that the true non-periodic trajectory can be constructed,

and the resultant continuous separation vector rp(t) correctly computed.
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When considering the quantity
〈
xp(t)f(xp(t), t)

〉
, it is clear that the explicit depen-

dence on xp(t) will cause the correlation to be heavily affected by the manner in which

the periodicity is handled. In fact, periodic treatment of xp(t) produces the result〈
xp(t)f(xp(t), t)

〉
≡ 0, since every time a particle passes through a domain boundary

its location in that direction changes from ±L to ∓L, and the net effect of negating the

particle location over the entire ensemble of particles averages out at zero correlation

with the fluctuating particle acceleration f(xp(t), t). On the other hand, non-periodic

handling of xp(t) in the same manner as for R
(
x′p, t

′; x, t
)

means that on average xp(t)

experiences unbounded growth when all particles are initially placed within the box

B = [−L,+L]d. This is inherently also manifest in the correlation
〈
xp(t)f(xp(t), t)

〉
as a consequence, which instead of reaching an equilibrium value continues to grow in

size throughout the sampling period, highlighting the need for an alternative method

for handling the periodicity of xp(t). To achieve this it is necessary to make use of the

ability to track each particle within its own realisation of the KS flow field, and then

by initialising all particles at the centre of the domain, they will on average uniformly

disperse across the ensemble of separate realisations without crossing any boundaries

for a certain period of time. The sampling of particle trajectories within this period

can then be done without needing to account for periodicity, providing a means of

calculating
〈
xp(t)f(xp(t), t)

〉
for comparing against λ (x, t) as directly computed from

(4.31).

5.3 Particle Velocity Initialisation

The manner in which the velocity of particles is initialised within a particle tracking

simulation can have a strong impact on the time taken for the particle statistics to

equilibrate, and in particular the asymptotic (t → ∞) forms of the dispersion tensors

κ (x, t), λ (x, t), and µ (x, t) given by (4.30 - 4.32). It is therefore a point of computa-

tional importance as to how the particle velocity v0 can be specified in such a manner

as to minimise initial transience of the particle statistics, with the objective then being

to find a method of initialising the particle velocities at the desired equilibrium level.

An intuitive approach to this problem is to determine the required distribution of par-

ticle velocities using knowledge of the flow field at the particle position, which is given

by the PDF of particle velocity conditional on the local fluid velocity φ(v | u). In order

to generate v0 such that the particle-fluid velocity correlations
〈
v0 u(x0, t0)

〉
conform

to the equilibrium statistics, knowledge of the joint particle-fluid velocity PDF φ(u,v)
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is also required. Since the relationship between the conditional PDF and joint PDF is

given by [57]

φ(v | u) =
φ(u,v)

φ(u)
(5.37)

the problem reduces to finding the joint PDF φ(u,v) in the limit t → ∞. From this

the marginal PDF φ(u) can be extracted, thereby providing a means of calculating

φ(v | u).

5.3.1 Modelling the Fluid Acceleration along Inertial Particle

Trajectories

To go about finding the joint PDF φ(u,v), it is instructive to start by considering the

higher-dimensional framework utilised by the generalised Langevin model as outlined

in section 3.1.2, in which an equation governing the evolution of the fluid velocity along

an inertial particle trajectory up is specified in addition to those for particle position

xp and velocity vp [98]

ẋp = vp

v̇p = F (xp,vp,up, t) + f (xp, t) (5.38)

u̇p = G (xp,vp,up, t)

The form of the model G (xp,vp,up, t) for the fluid acceleration is informed by inter-

preting the process up(t) as up(t) ≡ U(xp(t), t). Then it follows that along a particle

trajectory vp(t) [141]

u̇p(t) =
d

dt
U(xp(t), t) =

DU

Dt
(xp(t), t)−

(
up(t)− vp(t)

)
· ∂
∂x

U(xp(t), t) (5.39)

The phase-space model for the fluid acceleration along particle trajectories is thus given

by

G (x,v,u, t; U(x, t)) =
DU

Dt
(x, t)−

(
u− v

)
· ∂
∂x

U(x, t) (5.40)
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Decomposing the fluid velocity and acceleration into mean and fluctuating parts U =

〈U〉+U′ and DU
Dt

=
〈
DU
Dt

〉
+
(
DU
Dt

)′
respectively leads to an expression for the fluctuating

model fluid acceleration along a particle trajectory G′ = G − 〈G〉. Furthermore, for

a statistically stationary and homogeneous flow field, the average parts 〈U〉 and
〈
DU
Dt

〉
are zero, meaning that 〈G〉 = 0 and therefore [141]

G (x,v,u, t; U(x, t)) =

(
DU

Dt

)′
(x, t)−

(
u− v

)
· ∂
∂x

U′(x, t) (5.41)

An appropriate model for the fluctuating fluid acceleration along a fluid element tra-

jectory is that of Haworth and Pope [66, 117]

(
D

Dt
U(x, t)

)′
= −α(x) ·U′(x, t) + w(x, t) (5.42)

where α is a rate scale representing the decorrelation timescales for the normalised

fluctuating fluid velocity along particle trajectories, and w(x, t) is the Wiener process

used to describe Brownian motion [118]. Then since U′(x, t) = U(x, t) for homogeneous

flows, along with the further simplification U′(x, t) ≈ 〈U′(x, t)〉 causing the last term

of (5.41) to vanish, the final model emerges as

G (x,v,u, t; U(x, t)) ≈ −α(x) ·U(x, t) + w(x, t) (5.43)

The rate scale tensor α(x) is taken in the form α(x) = diag
(
τ−1
i (x)

)
, where τ−1

i (x)

are the decorrelation timescales for components of normalised fluctuating fluid veloc-

ity along particle trajectories [158], and in isotropic turbulence this becomes α(x) =

τ−1(x) I. Further assuming a homogeneous flow field means that the Wang & Stock

[165] model τ = τLp as defined in (4.63) is a suitable representation for the rate scale,

resulting in

α = τ−1
Lp I (5.44)

Modelling of the Wiener process w(x, t) involves decomposition into separate spatial

and temporal components such that w(x, t) = B(x) · Γ(t), where Γ(t) is the standard

Gaussian white-noise process. Following the work of Iliopoulos & Hanratty [74, 75],

the spatial covariance of B(x) is specified as
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B ·B> =
〈
U
〉
· ∇
〈
U′U′

〉
+∇ ·

〈
U′U′U′

〉
+α ·

〈
U′U′

〉
+
〈
U′U′

〉
·α> (5.45)

For the case of a homogeneous flow field, the spatial gradients of averaged quantities

are zero, and further assuming isotropy enables use of the model (5.44) for α, reducing

(5.45) to

B2(x) = 2τ−1
Lp

〈
U′(x)U′(x)

〉
(5.46)

For the assumed homogeneous isotropic flow the Reynolds stresses are given by
〈
U′U′

〉
=

u′2 I, and this then fully specifies the parameters of the model for fluid acceleration

along particle trajectories.

5.3.2 Calculation of the Joint Particle-Fluid PDF

Taking the GLM system (5.38), assuming the linear drag law for vp in (4.2 - 4.3)

together with the acceleration model along particle trajectories for up (5.43), and also

omitting the first equation along with all dependence on particle position xp reduces

the system for the simple homogeneous case to

v̇p = β (up − vp) + g

u̇p = −αup + B · Γ (5.47)

Note that neglecting the dependence on xp implies that this framework is only strictly

valid for modelling the fluid velocity along particle trajectories up as a process, which

is of importance when it comes to applying this formulation to the dispersion tensors

in the PDF kinetic model. This also formally restricts the spatial coefficient B of the

Wiener process to being a constant, although this is already the case for the assumed

homogeneous isotropic flow. Interpreting the phase-space coordinate and trajectory

vectors as ξ = (u,v) and z = (up,vp) respectively converts (5.47) to the system form

ż = A · z + b + k (5.48)

where
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A =

[
−αI 0

βI −βI

]
, b =

[
B · Γ

0

]
, k =

[
0

g

]
(5.49)

This enables the joint PDF φ(u,v, t) for z to be reconciled with the phase-space frame-

work of the PDF kinetic model outlined in section 4.1, the distinctions in this case being

that the deterministic part is now linear in the phase-space trajectory z and the random

field b(x, t) is now a random process b(t). In particular, the removal of dependence

on ξ in b(t) causes the drift tensor d(ξ, t) in (4.20) to vanish, reducing the kinetic

equation (4.22) to the Fokker-Planck equation [150]

∂

∂t
φ (ξ, t) = − ∂

∂ξ
·
[(

A · ξ + k
)
φ (ξ, t)

]
+

∂

∂ξ
· ∂
∂ξ
·
[
D (t)φ (ξ, t)

]
(5.50)

in which D (t) is the diffusion tensor as specified in (4.21) without dependence on ξ.

In this case, since the white-noise process Γ(t) is delta-correlated in time, the integral

along the path history can be evaluated directly, reducing D (t) to the simple constant

form.

D =

[
1
2
B ·B> 0

0 0

]
=

[
τ−1
Lp u

′2 I 0

0 0

]
(5.51)

where the final step utilises the model (5.46) for the case of a homogeneous and isotropic

flow field. For the linear system in (5.48), the Fokker-Planck equation admits analytical

solutions for the PDF φ (ξ, t) in the form of a multivariate Gaussian distribution [150]

φ (ξ, t) = (2π)−
d
2 det [Θ]−

1
2 exp

[
−1

2
(ξ −m) ·Θ−1 · (ξ −m)

]
(5.52)

where the time dependent mean m = 〈z〉 and covariance matrix Θ = 〈(z −m) (z −m)〉
satisfy

ṁ = A ·m + k , m(t0) = ξ0 (5.53)

Θ̇ = (A ·Θ + D) + (A ·Θ + D)> , Θ(t0) = 0 (5.54)

As it is the asymptotic PDF φ (ξ) for t→∞ which is sought, the mean and covariance

matrix in (5.52) are no longer time dependent, meaning that ṁ = 0 and Θ̇ = 0. This
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reduces (5.53) and (5.54) to steady-state systems of algebraic equations for m = (û, v̂)

and Θ, and subject to det(A) 6= 0 it then follows with reference to k and A from

(5.49), D from (5.51), and the model for α from (5.44) that

m =

[
0

Vg

]
, Θ = u′

2

[
I 1

1+StLp
I

1
1+StLp

I 1
1+StLp

I

]
(5.55)

Specification of m and Θ then fully determines φ (u,v) as given by (5.52), and since

the PDF is a multivariate Gaussian, the moments of the conditional PDF φ (v | u) can

be expressed directly in terms of m and Θ. Specifically, φ (v | u) also takes the form

of a multivariate Gaussian distribution with the mean q(u) and covariance matrix Q

given by the standard results [150]

q(u) = v̂ + Θ21 ·Θ−1
21 · (u− û) (5.56)

Q = Θ22 −Θ21 ·Θ−1
11 ·Θ12 (5.57)

Thus with m and Θ as calculated in (5.55) the resultant expressions for q(u) and Q

are

q(u) =
1

1 + StLp
u + Vg , Q =

StLp
(1 + StLp)2

u′
2
I (5.58)

These parameters then determine the required conditional distribution φ (v | u) such

that v ∼ N
(
q(u),Q

)
, from which the initial particle velocities can be generated within

a particle tracking simulation such that they conform to the equilibrium statistics given

by (5.55). The behaviour of φ (v | u) in the limit of small and large particle inertia is

as physically expected, with

StLp → 0 : q→ u , Q→ 0 ⇒ φ (v | u)→ δ (v − u) (5.59)

StLp →∞ : q→∞ , Q→ 0 ⇒ φ (v | u)→ δ (v) (5.60)

This demonstrates that the distribution reduces to a zero-variance δ-function in both

limits, retrieving the expected behaviour of fluid elements and ballistic particles re-

spectively when subject to a gravitational body force.
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5.4 Initial Condition Dependent Formulation of the

Dispersion Tensors

In a homogeneous statistically stationary flow field, representations of the velocity-

averaged particle dispersion tensors λ (x, t) and µ (x, t) are given by expressions (4.58)

and (4.60) respectively as

λ (x, t) =
〈
xp(t)f(xp(t), t)

〉
µ (x, t) ≈

〈
vp(t)f(xp(t), t)

〉
(5.61)

It follows that the initial value λ (x, t0) is determined by the correlation between the ini-

tial particle positions xp(t0) and fluctuating continuous phase driving force f(xp(t0), t0),

and similarly the initial value µ (x, t0) is determined by the correlation between the

initial particle velocities vp(t0) and f(xp(t0), t0). These correlations then automatically

account for any interaction between the particle trajectories (xp(t0),vp(t0)) and flow

field evaluated along a trajectory f(xp(t0), t0) at the initial time t0. However when

λ (x, t) and µ (x, t) are explicitly calculated using the definitions (4.31) and (4.32),

information about initial particle-fluid interaction is embedded within the particle re-

sponse tensor H [t; t′] defined in (4.27), and since the response tensor is subject to the

causality conditionH [t; t′] = 0 for t0 ≤ t < t′ such interaction is not taken into account

when initial conditions are imposed at t = t′ as in (4.28) [150]. This therefore highlights

a disparity between the evolution of the two sides of equations (5.61), and shows the

need for incorporating the effect of initial particle-fluid interaction into H [t; t′].

5.4.1 Dependence of Initial Conditions on the Continuous Phase

In order to determine the effect of a modification toH [t; t′] on all of κ (x, t), λ (x, t) and

µ (x, t), it is convenient to use the phase-space representation of the response tensor

G [t; t′] defined in (4.17). The evolution of G [t; t′] is governed by (4.18), the derivation

of which is based upon the condition that the initial particle trajectories z(t0) = ξ0

are independent of the stochastic field b (ξ0, t0). However, for the joint particle-fluid

PDF derived in section 5.3.2, the covariance matrix Θ specifies non-zero equilibrium

values of the particle-fluid velocity correlations
〈
u′v′

〉
, given in (5.55) by
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Θ12 = Θ21 =
1

1 + StLp
u′

2
I (5.62)

Consequently, initialising the particle trajectories using the conditional distribution

φ (v | u) requires that this correlation is taken into account in the PDF kinetic model

by assuming that the initial conditions ξ0 are dependent on b (ξ0, t0), and therefore

satisfy

ξ0 = Ξ
(
b
(
ξ0, t0

))
(5.63)

where Ξ (b (ξ0, t0)) is an operator that defines the initial distribution ξ0 = (x0,v0). Ini-

tial particle positions x0 which are uniformly distributed in each direction are specified

by

x0 =

(
ψ − 1

2

)
L (5.64)

where ψ ∼ U[0,1] is a uniformly distributed parameter. Additionally, to generate

initial particle velocities v0 that conform to the conditional distribution φ (v | u) ∼
N
(
q(u),Q

)
as given by (5.58), the standard normal deviate Z ∼ N[0,1] is related

to the uniformly distributed parameter ψ by Z =
√

2 erf−1(2ψ − 1), resulting in the

explicit formula for v0 of

v0 =
1

1 + StLp

[√
2StLp u

′ erf−1(2ψ − 1) + up(t0)
]

+ Vg (5.65)

where the fluid velocity along particle trajectories is given formally by up(t0) = u(x0, t0).

Then in physical space the initial distribution operator Ξ (f (x0, t0)) is given for the

assumed homogeneous and statistically stationary flow by

Ξ
(
f
(
x0, t0

))
=

[ (
ψ − 1

2

)
L

1
1+StLp

[√
2StLp u

′ erf−1(2ψ − 1) + up(t0)
]

+ Vg

]
(5.66)

5.4.2 Modification of the Particle Response Tensor

The dependence of the initial conditions ξ0 on the stochastic field b (ξ0, t0) through the

operator Ξ (b (ξ0, t0)) defined in (5.66) can be accounted for within the phase-space

111



CHAPTER 5. NUMERICAL METHODOLOGY

response tensor G [t; t′] by using the notion of ‘extending’ a differential operator [133,

pp. 159–163]. Such an approach leads to modification of the governing equation (4.18)

for G [t; t′], resulting in [71]

Ġ [t; t′] =

[
δa

δξ
(z(t), t) +

δb

δξ
(z(t), t)

]>
· G [t; t′] + δ (t− t′) I + δ (t− t0)

[
δξ0

δb(z(t′), t′)

]>
(5.67)

where the initial condition on G [t; t′] at time t = t′ in (4.18) has been incorporated

as a source term, and the effect of b (ξ0, t0) on the initial values of the trajectories ξ0

at time t = t0 appears as a further source term. Note that in (5.67) G [t; t′] now also

depends on the value of t0, and this is denoted as G = G [t; t′, t0] with the understanding

that t0 ≤ t′ ≤ t. Further treatment involves splitting G [t; t′, t0] into two components

denoted as G(1) [t; t′] and G(2) [t; t′, t0] upon which the initial conditions are imposed

separately at t = t′ and t = t0 respectively, and which therefore satisfy [133]

Ġ(1)
[t; t′] =

[
δa

δξ
(z(t), t) +

δb

δξ
(z(t), t)

]>
· G(1) [t; t′] + δ (t− t′) I (5.68)

Ġ(2)
[t; t′, t0] =

[
δa

δξ
(z(t), t) +

δb

δξ
(z(t), t)

]>
· G(2) [t; t′, t0] + δ (t− t0)

[
δξ0

δb(z(t′), t′)

]>
(5.69)

The sum of these two components G [t; t′, t0] = G(1) [t; t′] + G(2) [t; t′, t0] then satis-

fies the modified governing equation (5.67), for which insight can be sought through

consideration of the separate components. The equation (5.68) for G(1) [t; t′] is iden-

tical to the case when the initial conditions ξ0 are independent of the stochastic field

b (ξ0, t0), and thus G(1) [t; t′] can be obtained in the standard numerical fashion. To

construct G(2) [t; t′, t0], consider the equation (5.68) for G(1) [t; t′] evaluated at t′ = t0

and right-multiplied by
[

δξ0

δb(z(t′),t′)

]>
, then comparing to the equation (5.69) for G(2)

yields [71]

G(2) [t; t′, t0] = G(1) [t; t0] ·
[

δξ0

δb(z(t′), t′)

]>
(5.70)

Therefore once G(1) [t; t′] is known it can be used to obtain G(2) [t; t′, t0], and hence the

solution for G [t; t′, t0] that satisfies the modified governing equation (5.67) is given by
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G [t; t′, t0] = G(1) [t; t′] + G(1) [t; t0] ·
[

δξ0

δb(z(t′), t′)

]>
(5.71)

In order to calculate the modified response tensor G [t; t′, t0] using (5.71), it remains

to find an expression for the initial condition dependency on the continuous phase at

time t0 given by the functional derivative in the final term. Then for the relationship

ξ0 = Ξ (b (ξ0, t0)) defined in (5.63), using the chain rule for functional differentiation

formally gives

δξ0

δb(z(t′), t′)
=

[
δξ0

δb(z(t′), t′)
· ∂b

∂ξ
(ξ0, t0) + δ (t′ − t0) I

]
· ∂Ξ

∂b

(
b
(
ξ0, t0

))
(5.72)

Now, in order to obtain the conditional distribution φ (v | u) used to specify the initial

particle velocity v0 as an analytical solution to the PDF equation for the underlying

GLM in section 5.3.1, the necessary assumption of modelling up(t) as a process rather

than a spatially dependent field has been made. In keeping with this, the phase-space

zero-mean stochastic field b (ξ, t) should also be interpreted as a process b (t), and

thereby treated as independent of the phase-space coordinate ξ. In this context it is

therefore true that

∂b

∂ξ
(ξ0, t0) =

∂b

∂ξ
(t0) = 0 (5.73)

Additionally, using the physical space interpretation b = (0, f), the derivative of the

initial distribution operator (x0,v0) = Ξ (f (x0, t0)) as specified in (5.66) is

∂Ξ

∂b

(
b
(
ξ0, t0

))
=

[
0 0
∂x0

∂f
∂v0

∂f

]
=

 0 0

0 1

β(1+StLp)
I

 (5.74)

Then using the results (5.73), (5.74), and the expression for the initial condition de-

pendency on the continuous phase at time t0 in (5.72), the modified response tensor

G [t; t′, t0] given by (5.71) for the set of initial conditions specified by Ξ (b (ξ0, t0)) takes

the form

G [t; t′, t0] = G(1) [t; t′] + G(1) [t; t0] ·

 0 0

0 1

β(1+StLp)
I

 δ (t′ − t0) (5.75)
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Therefore G [t; t′, t0] is given by the original response tensor G(1) [t; t′] with the addition

of a source term that only acts at the initial time of sampling t0 and is proportional

to the dependence of the initial conditions Ξ (b (ξ0, t0)) on the continuous phase. Re-

interpreting in terms of the particle response tensor H [t; t′] in physical space through

use of (4.26), the corresponding modified expressions for H [t; t′, t0] and Ḣ [t; t′, t0] are

H [t; t′, t0] =H(1) [t; t′] + δ (t′ − t0)
1

β (1 + StLp)
H(1) [t; t0] (5.76)

Ḣ [t; t′, t0] = Ḣ(1)
[t; t′] + δ (t′ − t0)

1

β (1 + StLp)
Ḣ(1)

[t; t0] (5.77)

Application of expressions (5.76) and (5.77) to the velocity averaged form of the dis-

persion tensors κ (x, t), λ (x, t), and µ (x, t) defined in (4.30 - 4.32) finally results in

κ (x, t) =

∫ t

t0

〈
H(1)> [t; t′] :

∂

∂x
R
(
x′p, t

′; x, t
)〉

x

dt′

+
1

β (1 + StLp)

〈
H(1)> [t; t0] :

∂

∂x
R
(
x0, t0; x, t

)〉
x

(5.78)

λ (x, t) =

∫ t

t0

〈
H(1) [t; t′] ·R

(
x′p, t

′; x, t
)〉

x

dt′

+
1

β (1 + StLp)

〈
H(1) [t; t0] ·R

(
x0, t0; x, t

)〉
x

(5.79)

µ (x, t) =

∫ t

t0

〈
Ḣ(1)

[t; t′] ·R
(
x′p, t

′; x, t
)〉

x

dt′

+
1

β (1 + StLp)

〈
Ḣ(1)

[t; t0] ·R
(
x0, t0; x, t

)〉
x

(5.80)

The expressions (5.78 - 5.80) are equal to the original forms of the dispersion tensors

κ (x, t), λ (x, t), and µ (x, t) with an additional source term accounting for the initial

particle-fluid velocity correlations at the initial time of sampling t0. The conditional

averages within these source terms are simply the integrands from the corresponding

standard forms of κ (x, t), λ (x, t), and µ (x, t) evaluated at t′ = t0, and can therefore

easily be computed within a simulation at relatively little extra expense. This enables

the dispersion tensors to reach their steady-state values in a shorter period of time,

meaning that sampling of statistics can be started sooner, and consequently placing

less demand on the computational resources needed.
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5.5 Verification of Flow Field Statistics

The KS flow field defined in section 5.1.1 was constructed with the aim of being able to

retrieve a given form of the two-point two-time correlation tensor
〈
U(x1, t1)U(x2, t2)

〉
;

specifically where the spatial correlations Q(r) satisfy isotropy as given by (5.17). The

validity of this form is subject to the constraint (5.30) of L/L11 � 1, and therefore it

remains to verify that the chosen value of L is sufficient to retrieve the desired form of

Q(r). It is also instructive to similarly check the components of ∇Q(r) as required for

evaluation of the dispersion tensor κ (x, t) using (4.30), due to the larger gradients that

are involved in these expressions, for which the expected profile is given in Appendix

C by (C.16). Demonstration that Q(r) and ∇Q(r) are successfully recovered from

the flow field is shown in Figures 5.2 and 5.3, for which L/L11 = 4 is used (meaning

that there are 8 eddies in the domain of side length 2L). The resulting profiles for

f(r) and g(r) are necessarily in accordance with (5.19) and (5.18) respectively in order

for Q(r) to assume the correct form, and Eω(s) automatically satisfies the temporal

decorrelation function profile (5.15) by virtue of ωk ∼ N
(
0, σ2

ω

)
. It is seen that the

profiles for Q(r) and ∇Q(r) are zero to within statistical variation for r1/L11 & 3,

meaning that as long as the side length of the domain is greater than 6 eddies, the full

decorrelation behaviour of the flow is captured by the simulation. Further, visualisation

of the velocity field reveals that the evolution of the large-scale structures within the

flow exhibits the expected effect of influencing particle trajectories, as displayed in

Figure 5.4. This confirms that the KS velocity field is suitable for the simulation

of inertial particles within a statistically stationary homogeneous isotropic flow, and

therefore also an appropriate means for numerically evaluating the dispersion tensors

κ (x, t), λ (x, t) and µ (x, t) in this flow configuration.

5.6 Validation of the Dispersion Tensors in Homo-

geneous Flow

A suitable means of validating the procedure for computing the dispersion tensors

κ (x, t), λ (x, t) and µ (x, t) in homogeneous flow is available using the benchmark

values from section 4.3, specifically equations (4.58) and (4.60), which are repeated

below for ease of reference
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Figure 5.2: Recovery of the components of Q(r) in a two-dimensional KS velocity field
for which L/L11 = 4 and with spatial separation r1 varied in the x1 direction: ——
expected profile given by (5.17); × simulation values

λ (x, t) =
〈
xp(t)f(xp(t), t)

〉
µ (x, t) ≈

〈
vp(t)f(xp(t), t)

〉

where also κ (x, t) = 0 for a homogeneous flow with no external body forces. The

above expressions have the advantage of being able to quantify not only the steady-

state values of λ (x, t) and µ (x, t), but also the evolution of these quantities from their

initial conditions, meaning that the benchmark expressions are suitable for assessing

the amendment to the dispersion tensors developed in section 5.4. This is realised

by computing λ (x, t) and µ (x, t) as they evolve in the KS velocity field specified in

section 5.1.1, along with evaluation of 〈xpfp〉 and 〈vpfp〉 along the same ensemble of

particle trajectories.

In the first instance, Figure 5.5 displays the case where the initial correlation between

particle and fluid velocities is not included in the evaluation of the dispersion tensors
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Figure 5.3: Recovery of the components of ∇Q(r) in a two-dimensional KS velocity
field for which L/L11 = 4 and with spatial separation r1 varied in the x1 direction:
—— expected profile given by (C.16); × simulation values
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Figure 5.4: Visualisation of the KS velocity field with the continuous phase coloured
by vorticity ω, demonstrating the influence of large-scale flow structures on particle
behaviour for the case StE = 0.1 and Vg/u

′ = 1.0
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Figure 5.5: Evolution of the PDF dispersion tensors in a homogeneous KS velocity field
with StE = 1 not including initial correlation amendments, normalised with respect to
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when StE = 1. The expressions 〈xp1fp1〉 and 〈vp1fp1〉 are seen to account for existing

initial correlations, with no interdependence between the particle position xp1 and

fluctuating continuous phase driving force along a particle trajectory fp1 = f1(xp(t), t)

at the start of the simulation, and an initial correlation between the particle velocity vp1

and fp1 that is equal to the LHA value µLHA
11 . By contrast, the evolution of λ11 and µ11

both begin from zero when no initial amendment is made, highlighting the discrepancy

between µ11 which has an initial value of zero and the benchmark 〈vp1fp1〉 = µLHA
11 .

Further to this, even though the initial values of λ11 and 〈xp1fp1〉 are the same, the rate

of evolution differs, with 〈xp1fp1〉 reaching the equilibrium value of λ
LHA

11 more quickly.

This shows that knowledge of the initial correlations not only affects the dispersion

tensors at the initial time t0, but also the length of time taken to reach their respective

steady-state values.
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Figure 5.6: Evolution of the PDF dispersion tensors in a homogeneous KS velocity
field with StE = 1 including initial correlation amendments, normalised with respect
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With the initial condition dependent formulations of the dispersion tensors λ11 and

µ11 given by equations (5.79) and (5.80) incorporated into the KS computation, the

behaviour in Figure 5.6 is observed for the case StE = 1. It is observed that both λ11

and µ11 show close agreement with the respective benchmarks 〈xp1fp1〉 and 〈vp1fp1〉 at

the start of the simulation and during the initial transience. Furthermore, this method

of initialization captures the equilibrium behaviour of the dispersion tensors fairly well,

with the steady-state values achieved more quickly than the corresponding cases in

Figure 5.5. The extent of this speed-up can be seen to be not insignificant, with a time

of t ≈ τE required for λ11 and µ11 to reach a statistically stationary state compared to

that of t ≈ 2τE when the initial fluid-particle correlations are not taken into account.

Knowledge of this initial interdependence consequently enables the sampling period to

be shortened by τE, providing a saving in the computational cost of the simulation.

Further to this, both Figures 5.5 and 5.6 can be used to make inferences about various

aspects of the dispersion tensor behaviour in homogeneous flow. Firstly, it is seen

that the asymptotic value of µ11 closely matches that of 〈vp1fp1〉. From this, since

the exact relationship between these quantities from section 4.3 is
〈
vpfp

〉
= cκ + µ,

this naturally supports the conclusion that cκ = 0 in homogeneous flows. Secondly,

it is observed that once the dispersion tensors reach their steady state values, the

correlation 〈xp1fp1〉 exhibits somewhat intermittent behaviour, which can be attributed

to the treatment of the particle position xp within the periodic domain as outlined in

section 5.2.5. In this case xp has been handled as a non-periodic position which results

in the correlation 〈xp1fp1〉 progressively increasing after a certain amount of time, and

it is the effect of this which is evident in Figures 5.5 and 5.6. Finally, these results are

normalised with respect to the long-time local homogeneous approximation values for

the dispersion tensors presented in equation (4.66), with the variation from unity in

Figures 5.5 and 5.6 demonstrating that a margin of error is inherent in the LHA values

even in homogeneous flows.

Overall, these results serve to validate the procedure for evaluating the dispersion

tensors λ (x, t) and µ (x, t) within the particle tracking simulations for the simple case

of a homogeneous flow, and complete the groundwork required for investigation of

particle behaviour in more complex flow configurations.
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Chapter 6

Drift Enhancement in Gravitational

Settling

6.1 Motivation

Despite the numerous studies outlined in section 3.2 that have focused upon developing

a more complete understanding of the physical mechanisms responsible for the mod-

ification in settling rate of inertial particles in turbulent flows, no single mechanism

has been identified as being the dominant causal factor of this behaviour. The various

numerical and experimental approaches that have been used to study the response of

particles across the range of parameters have provided significant insight into the na-

ture of individual physical mechanisms, yet unification of these isolated explanations

remains out of reach. As a result, it is prudent to both analyse this phenomenon in more

detail so that the consequences of the reduction in symmetry on particle behaviour can

be determined, and also consider the application of mathematical modelling to see if

further information can be extracted from such techniques.

The PDF kinetic model framework detailed in Chapter 4 is a suitable means for in-

vestigating the phenomenon of enhanced settling rate, since it contains a complete

physical description within the dispersion tensors κ (x, t), λ (x, t), and µ (x, t) of the

behaviour associated with the underlying particle equation of motion. As noted, the

exactness of this approach applies only when the zero-mean random fluctuating particle

acceleration f (x, t) has a Gaussian distribution. This is a strong assumption for true

turbulence, as the energy cascade explicitly depends upon non-Gaussian aspects of the

velocity field [118], however the KS flow field constructed in Chapter 5 to generate
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fluid velocities which conform to a Gaussian distribution is ideally suited for use with

the PDF kinetic model. Then using this methodology, the focus falls upon closure of

the dispersion tensors in order to make inferences about the particle behaviour. To

begin with however, the form of the PDF kinetic model in the case of a homogeneous

isotropic flow subject to the influence of a gravitational body force in one direction is

considered.

6.2 The PDF Kinetic Model Applied to Gravita-

tional Settling

As set out in section 3.2, the range of experimental and numerical research into mod-

ification of the average particle settling velocity v compared to the Stokes settling

velocity Vg has shown that the level of physical detail taken into account can result

not only in enhancement of v, but also loitering. Specifically, loitering is found only to

occur in the cases when a nonlinear drag law is used, or in cases of high particle mass

loading that fall within the two-way coupling regime. With regard to this, the remit of

the present work is consideration of the PDF kinetic model applied to the linear drag

law (2.22), meaning that this investigation is limited to the enhancement of v since

nonlinear drag corrections are not included and one-way coupling is used.

6.2.1 Particle Mass Flux Interpretation

To apply the PDF kinetic model to the phenomenon of particle settling rate enhance-

ment, it is helpful to begin by considering the particle mass flux representation in the

case of a Stokes drag model as detailed in section 4.2.3, and specifically the rearrange-

ment (4.48) of the particle-phase momentum equation, repeated here for reference

ρv = ρ

[
〈u〉+ Vg + τp

{[
κ−∇ · λ

]
−∇ · cc− D

Dt
v

}]
− τp

(
cc + λ

>
)
· ∇ρ (6.1)

Since there is no mean flow the Eulerian average 〈u (x, t)〉 is equal to zero, and as the

constant gravitational acceleration g acts uniformly across the domain the behaviour of

the particle phase is therefore homogeneous, meaning that it is permissible to neglect

all spatial gradients. Additionally, because it is the steady-state behaviour that is of
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interest the inertial term Dv/Dt can also be neglected, and then equation (6.1) is

considerably simplified to the form

κ = β(v −Vg) (6.2)

Thus the drift enhancement responsible for the increase in average particle settling ve-

locity v−Vg is solely quantified by the dispersion tensor κ in the PDF kinetic model,

consistent with the interpretation of κ as an additional drift contribution. Conse-

quently, quantification of this enhanced settling rate using the PDF kinetic model

therefore reduces the focus to closure of κ.

6.2.2 Correlation Splitting Interpretation

In addition to the result (6.2) emanating from the particle mass flux balance, it is

possible to obtain a further expression for increase in average particle settling velocity

v−Vg by consideration of the particle equation of motion. Taking the average of the

Stokes drag model (2.22) yields

dv

dt
= β

[〈
u (xp(t), t)

〉
x
− v + Vg

]
(6.3)

For the steady-state behaviour, neglecting the inertial term dv/dt as before produces

the relation

v −Vg =
〈
u (xp(t), t)

〉
x

(6.4)

Therefore the increase in average particle settling velocity can also be interpreted as the

average of the fluid velocity sampled along inertial particle trajectories
〈
u (xp(t), t)

〉
x

[91]. It is subsequently instructive to investigate the significance of this quantity, which

can be realised by utilising the filtering property of the fine-grained particle number

density % (x, t) to write the conditional form of the average as

〈
u (xp(t), t)

〉
x

=
1

ρ (x, t)

〈
u (x, t) % (x, t)

〉
(6.5)

Then decomposing the Eulerian fluid velocity into its mean and fluctuating parts gives

u (x, t) = u′ (x, t) since 〈u (x, t)〉 = 0 in this configuration, resulting in

〈
u (xp(t), t)

〉
x
ρ (x, t) =

〈
u′ (x, t) % (x, t)

〉
(6.6)
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This form permits the use of correlation splitting techniques to further describe the

interaction between u′ (x, t) and % (x, t), and in keeping with the PDF kinetic model

u′ (x, t) is taken to be Gaussian. Then using the interpretations of the phase space

variables directly in terms of the configuration coordinates ξ = x and b (ξ, t) = f (x, t)

results in equation (4.16) taking the form

〈
fi (x, t) % (f ; x, t)

〉
=

∫ t

t0

〈
δxpk(t)

δfj(xp(t′), t′)

∂

∂xk

〈
fj (x′, t′) fi (x, t)

〉∣∣∣
x′=xp(t′)

〉
x

dt′ ρ (x, t)

− ∂

∂xk

[∫ t

t0

〈
δxpk(t)

δfj(xp(t′), t′)

〈
fj (x′, t′) fi (x, t)

〉∣∣∣
x′=xp(t′)

〉
x

dt′ ρ (x, t)

]
(6.7)

In this the familiar interpretations Rji

(
x′p, t

′; x, t
)

=
〈
fj (x′, t′) fi (x, t)

〉∣∣
x′=xp(t′)

from

(4.25) and Hkj [t; t′] = δxpk(t)/δfj (xp(t
′), t′) from (4.27) can be reintroduced, following

which the definitions of the velocity averaged dispersion tensors κ (x, t), λ (x, t) emerge,

and further consistent with the specification of f (x, t) = βu′ (x, t) for the Stokes drag

model in (4.3) and use of (6.6) produces the general result

β
〈
u′ (xp(t), t)

〉
x
ρ (x, t) = κ (x, t) ρ (x, t)− ∂

∂x
·
[
λ (x, t) ρ (x, t)

]
(6.8)

For the homogeneous configuration under consideration the spatial gradient can be

neglected, and the conditional average reduces to an ensemble average, finally yielding

κ(t) = β
〈
u′ (xp(t), t)

〉
(6.9)

It can be seen that equating (6.9) with the result (6.2) from the particle mass flux

interpretation reproduces the expression (6.4) from the equilibrium form of the aver-

aged Stokes drag model, demonstrating the robustness of these two representations.

Furthermore, because the interpretation of κ/β is known to be identical to the increase

in average particle settling velocity from section 6.2.1, the result (6.9) implies that the

average fluctuating fluid velocity along particle trajectories can also be interpreted as

this enhancement in settling velocity. There are therefore a number of ways to deter-

mine the settling velocity enhancement experienced by inertial particles, which provide

useful benchmarks against which both the validity of numerical simulations and the

accuracy of closures for the PDF kinetic model can be assessed.
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6.3 Validation of the PDF Kinetic Model using KS

With appropriate means in place for verifying the level of description provided by the

PDF kinetic model in the context of particle settling subject to gravity, numerical

simulation is the natural way of making this assessment. To that end, the KS velocity

field outlined in Chapter 5 has been used to run parametric simulations across a range

of Stokes numbers 0.05 < StE < 5 and gravitational settling velocities 0.05 < Vg < 2 in

order to quantify the increase in settling velocity under different conditions. The exact

version of κ is evaluated directly using (4.30), whilst also storing values of
〈
u′ (xp(t), t)

〉
from the simulation so that (6.9) can be used to judge the efficacy of κ. To assist

with both the computational expense and subsequent modelling process, it is helpful

to consider the restricted case of a two-dimensional domain so that the analysis is

somewhat simplified. Then for g = (0,−g), it is expected that only κ2 will yield a

non-zero result, due to there being no body force on particles in the x1 direction.

The results for the asymptotic values of the component in the gravitational direction

are shown in Figure 6.1 for a selection of different values of Vg, in which data points

coloured in black represent normalised values of κ2 and data points coloured in blue

represent normalised values of
〈
u′p2

〉
=
〈
u′2 (xp)

〉
. All values are normalised with

respect to the fluid RMS velocity u′ in order to provide a consistent scaling for the

different values of StE and Vg used, and error bars represent the standard deviation

from time averaging once κ2 has reached an equilibrium in the sampling period. It is

seen that the expected modification in settling rate emerges, and is further only positive

as anticipated, with the omission of nonlinear drag effects precluding the occurrence

of loitering. The resultant enhancement in average particle settling velocity tails off

to zero as StE → ∞, and would also decrease to zero in the limit StE → 0, however

the lowest Stokes number in the simulations of StE = 0.05 still shows a non-zero

enhancement. Notably a pronounced peak in the settling velocity enhancement is

observed at StE ≈ 0.1 and Vg ≈ 1 of around a 7% increase. This is in line with previous

studies using KS [91], and notably does not match the increase of up to 50% as seen

in DNS [163], highlighting the effect of neglecting the physical detail of the flow at the

microscales. Nonetheless, it can be seen that the reference values of
〈
u′p2

〉
are closely

matched by those of κ2 across the entire range of StE and Vg. This demonstrates that

the PDF kinetic model captures the physical mechanisms responsible for the increase

in average particle settling velocity within a Gaussian flow field, and is therefore a

suitable framework for model development of this phenomenon. Furthermore, although

not shown here for brevity, the expected result of κ1 = 0 is also retrieved from the
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Figure 6.1: Variation of —◦— |κ2|/βu′ and —◦— |〈u′p2
〉|/u′ with StE and Vg/u

′ in a
two-dimensional fluid velocity field. Error bars represent the standard deviation from
time averaging. —— Vg/u

′ = 0.1; - - - Vg/u
′ = 0.3; − · − · −· Vg/u′ = 1.0; · · · · ··

Vg/u
′ = 1.5

simulations, verifying that this form of the PDF kinetic model does not introduce any

spurious drift into the results. Finally, it is worth noting that although the use of

a KS flow field to evaluate the increase in particle settling velocity means that only

mechanisms associated with the large-scale flow structures are captured in this case,

the PDF kinetic approach can in principle be extended to include the mechanisms

which arise from the small-scale features that are characteristic of true turbulence.

This is achieved by the inclusion of higher-order terms in the expansion (4.9) from

which the PDF kinetic framework is formulated, and verification that the drift tensors

which emerge from this approach are able to account for the finer level of detail is then

possible through numerical evaluation using data obtained from a full DNS flow field.

6.4 Understanding the PDF Dispersion Tensors in

an Isotropic Flow Field

In order to use the PDF kinetic framework for the development of closure models that

attempt to capture the effect of particle settling rate enhancement, it is first instructive
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to analyse the conditional average appearing within the dispersion tensor κ given in

(4.30). To proceed with such an analysis, it is appropriate to express κ in component

form

κi (x, t) =

∫ t

t0

〈
Hkj [t; t′]

∂

∂xk
Rji

(
x′p, t

′; x, t
)〉

x

dt′ (6.10)

Consideration of this expression raises the question of how the particle response tensor

H [t; t′] influences drift enhancement, and specifically its interaction with∇R
(
x′p, t

′; x, t
)
.

For an isotropic flow field, the form of the spatial derivative ∇R (x′, t′; x, t) expressed

explicitly in terms of the separation vector r = x− x′ is calculated in Appendix C for

the choice of longitudinal decorrelation function f(r) specified in (5.19). The result is

given by combining equations (C.10) and (C.16), and for d = 2 this results in ∂
∂xk

Rji

taking the form

∂

∂xk
Rji(r, s) = β2u2σ2

kf(r)
[ (
σ2
kr

2 − 3
)

rkδij − σ2
krkrjri + riδjk + rjδik

]
Eω(s) (6.11)

where r = |r|. Substitution of the isotropic tensor (6.11) into the integrand for κ in

(6.10), performing the contraction between Hkj and ∂
∂xk

Rji, and evaluating for i = 2

since the drift enhancement is only expected to occur in the gravitational direction

gives an expression for κ2 in a two-dimensional isotropic flow field

κ2 (x, t) = β2u2σ2
k

∫ t

t0

(〈
H11f(rp)

[
1− σ2

krp
2
1

]
rp2

〉
x

+
〈
H12f(rp)

[
σ2
krp

2
1 − 3

]
rp1

〉
x

+
〈
H21f(rp)

[
1− σ2

krp
2
2

]
rp1

〉
x

+
〈
H22f(rp)

[
σ2
krp

2
1 − 1

]
rp2

〉
x

)
Eω(t− t′) dt′

(6.12)

where rp (t′; t) = x− xp (t′) is the separation along particle trajectories, rp = |rp|, and

rpi = (rp)i. It is seen that the enhancement in the average particle drift velocity is

therefore a consequence of the interaction that exists between rp (t′; t) and H [t; t′].

Further insight into this dependence can be obtained from simulation, and this is

illustrated in Figure 6.2 in terms of the correlation of rp1 and H as computed using

KS data. It can be observed that the correlation of rp1 with the diagonal components

of H is negligible, with product-moment correlation coefficients ρ that are zero to

within noise. In contrast, correlation of rp1 with the non-diagonal components of

H is marked, demonstrated by the distinctly non-zero values of the product-moment

correlation coefficient (0.2441 and -0.1308) and the skewness of the distribution in the
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Figure 6.2: Correlation of rp1 (t′; t) and H [t; t′] for StE = 0.1 and Vg/u
′ = 1.0 in a

two-dimensional fluid velocity field, with product-moment correlation coefficients ρ:
—— Average of rp1 (t′; t) conditional on H [t; t′]

scatter plots for these two components. Another way of visualising this is to consider

the average of rp1 conditional onH, denoted by 〈rp1〉H. If rp1 andH were uncorrelated

this conditional average would be constant across different values of all components in

H, however in Figure 6.2 it is seen that for the non-diagonal components of H the

conditional average 〈rp1〉H does in fact vary, providing a graphical interpretation of the

product-moment correlation coefficient for these components. In contrast, the value

of 〈rp1〉H does not vary with the diagonal components of H, in agreement with the

product-moment correlation coefficient vanishing. The outcome of this is that the

correlations between rp (t′; t) and H [t; t′] require modelling in order to explain the

physical mechanisms responsible for the observed drift enhancement, and this is then

the fundamental requirement of any proposed closure strategy.

6.5 Symmetry Considerations

As a further precursor to the development of closures using the PDF kinetic model, it is

also helpful to consider the reduction of symmetry that is inherent to the particle phase
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in this configuration. Specifically, the isotropic nature of the flow field with an external

body force acting in only one direction means that the particle behaviour can be likened

to an axisymmetric configuration, in which symmetry arguments hold in every direction

except that in which gravity acts. For the more general three-dimensional domain with

g = (0, 0,−g), the aim is then to use such arguments to show that κ1 = κ2 = 0, and

simplify the model development required for quantification of κ3.

6.5.1 Characterisation of Rotations and Reflections

Intuitively, the PDF φ (r) is even in r1 and r2 since there is no direction bias in the x1 and

x2 directions. That is, φ (−r1,−r2, r3) = φ (+r1,+r2, r3), and hence 〈rp1〉 ≡ 〈rp2〉 ≡ 0.

In the light of the interaction between the separation along particle trajectories rp (t′; t)

and the particle response tensor H [t; t′] in section 6.4, extension of this reasoning to

the joint distribution of rp and H is required.

Formalisation of this is possible by considering the invariance of the system for defining

κ under a number of co-ordinate transforms which correspond to certain rotations and

reflections of axes. In particular, with a co-ordinate axis system xi, the following

transformations xi → x̃i concerning all permutations of sign changes in x1 and x2 are

of interest

(x1, x2, x3)→ (x̃1, x̃2, x̃3) =



(−x1,−x2, x3) 1©
(−x1,+x2, x3) 2©
(+x1,−x2, x3) 3©
(+x2,+x1, x3) 4©
(+x2,−x1, x3) 5©
(−x2,+x1, x3) 6©

(6.13)

These transformations can all be defined in the form x̃ = P·x, where the transformation

matrix P is a signed permutation matrix of the form

P =

 A
0

0

0 0 1

 (6.14)

in which det(A) = ±1 and P−1 = P>.
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6.5.2 Invariance of the System Governing Equations

The usefulness of the type of coordinate transformations described by P emerges by

considering their application to the evolution of rp (t′; t) and H [t; t′], which are each

governed by an equation of motion. In the case of rp, the governing equation for the

particle position xp (t) is the Stokes drag model 2.22 written in the form

d2xp
dt2

= β

[
u (xp(t), t)−

dxp
dt

]
+ g ,

xp (t′) = X′

dxp

dt
(t′) = V′

(6.15)

in which X′ and V′ are the initial conditions for the trajectory. Then for the separation

along particle trajectories rp (t′; t) = x−xp (t′), the corresponding equation of motion

is given by

d2rp
dt′2

= β

[
u (rp(t

′) + x, t′)− drp
dt′

]
+ g ,

rp (t; t) = 0
drp
dt

(t; t) = V
(6.16)

where 0 and V are now interpreted as final conditions for the trajectory. Then in

terms of the signed permutation matrix P, the first-order tensors are transformed to

the coordinate system x̃ by means of the relations

x̃ = P·x, ũ (x̃, t) = P·u (x, t) , r̃p (t′; t) = P·rp (t′; t) , Ṽ = P·V, g̃ = P·g = g

(6.17)

where the invariance of g in the final relation is due to the form of P specified in

(6.14). Then applying the transformations in (6.17) to the governing equation for the

separation rp (t′; t) (6.16) results in

d2r̃p
dt′2

= β

[
ũ (r̃p(t

′) + x̃, t′)− dr̃p
dt′

]
+ g ,

r̃p (t; t) = 0
dr̃p
dt

(t; t) = Ṽ
(6.18)

Comparison of (6.16) and (6.18) therefore reveals that the equation of motion for

rp (t′; t) remains unchanged under the type of transformation described by P. In terms

of the the particle response tensor H [t; t′], the governing equation given in (4.28)

evaluated for the Stokes drag model with mean continuous phase driving force F (x,v, t)

and fluctuating particle acceleration f (x, t) as given by equations (4.2) and (4.3) is
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Ḧ [t; t′] = −βḢ [t; t′] + β∇u>(xp(t), t) ·H [t; t′] ,
H [t′; t′] = 0

Ḣ [t′; t′] = I
(6.19)

Since H [t; t′] is a second-order tensor, the appropriate transformation to the frame of

reference x̃ is given by

H̃ [t; t′] = P ·H [t; t′] ·P> (6.20)

Furthermore, using the first and second relations in (6.17) for x̃ and ũ respectively it

can be shown that for the specific transformations given by P such that P−1 = P>,

the fluid velocity gradient along particle trajectories ∇u>(xp(t), t) transforms in the

same manner

∇̃ũ>(x̃p(t), t) = P · ∇u>(xp(t), t) ·P> (6.21)

Applying the transformations in the definition (6.20) and result (6.21) to the governing

equation for the particle response tensor H [t; t′] (6.19) then yields

¨̃H [t; t′] = −β ˙̃H [t; t′] + β∇̃ũ>(x̃p(t), t) · H̃ [t; t′] ,
H̃ [t′; t′] = 0
˙̃H [t′; t′] = I

(6.22)

Comparing (6.22) and (6.19) shows that the governing equation forH [t; t′] also remains

unchanged in the coordinate system x̃. The evolution equations (6.18) and (6.22)

demonstrate that r̃p and H̃ can be considered realisations of the system associated with

the corresponding realisation ũ of the fluid velocity field. Since the averaged particle

concentration field remains spatially uniform, the distribution of rp and H will be

independent of x, and as the governing equations for both r̃p and H̃ remain unchanged

it then follows that the system is statistically invariant under transformations with P as

defined in (6.14). Then denoting the phase-space vector of the system as z = (rp,H),

it follows that

z̃ =
(
r̃p, H̃

)
=
(
P · rp,P ·H ·P>

)
:= P(z) (6.23)

where det (P) = ±1. The foregoing discussion shows that the distribution of z̃ is

the same as that of z, and this property can be used to make inferences about the

symmetries inherent in z.
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6.5.3 Deductions Regarding the System Symmetry

For the different transformations listed in equation (6.14), the signed permutation

matrix P and relations between the components of r̃p and H̃ with those of rp and H
respectively are given by

Case P r̃p H̃

1©

 −1 0 0
0 −1 0
0 0 +1

 (
−rp1,−rp2,+rp3

)  +H11 +H12 −H13

+H21 +H22 −H23

−H31 −H32 +H33



2©

 −1 0 0
0 +1 0
0 0 +1

 (
−rp1,+rp2,+rp3

)  +H11 −H12 −H13

−H21 +H22 +H23

−H31 +H32 +H33



3©

 +1 0 0
0 −1 0
0 0 +1

 (
+rp1,−rp2,+rp3

)  +H11 −H12 +H13

−H21 +H22 −H23

+H31 −H32 +H33



4©

 0 +1 0
+1 0 0

0 0 +1

 (
+rp2,+rp1,+rp3

)  +H22 +H21 +H23

+H12 +H11 +H13

+H32 +H31 +H33



5©

 0 +1 0
−1 0 0

0 0 +1

 (
+rp2,−rp1,+rp3

)  +H22 −H21 +H23

−H12 +H11 −H13

+H32 −H31 +H33



6©

 0 −1 0
+1 0 0

0 0 +1

 (
−rp2,+rp1,+rp3

)  +H22 −H21 −H23

−H12 +H11 +H13

−H32 +H31 +H33



Table 6.1: The different cases of coordinate system transformations which are invariant
in the configuration of particle settling under gravity in an isotropic flow field

Since all the cases of transformation listed in Table 6.1 are invariant in this system,

direct comparison of the components of r̃p and H̃ with the corresponding components

of rp and H reveals which components exhibit symmetric behaviour. It then follows

directly from 1© and 2© that the following components have even distributions, and

therefore zero means

rp1, rp2, H12, H13, H21, H23, H31, H32 (6.24)
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Moreover, 4© is simply the case where the indices 1 and 2 are interchanged, and can

be used to identify components with the same distribution, namely

rp1 ∼ rp2, H11 ∼ H22, H12 ∼ H21, H13, H23 (6.25)

Considering the components of ũ and ∇̃ũ>(x̃p(t), t) in the same manner produces

corresponding relations which are equivalent, specifically that the following components

have even distributions and therefore zero means

u1, u2, ∇1u2, ∇1u3, ∇2u1, ∇2u3, ∇3u1, ∇3u2 (6.26)

whilst the components with the same distribution are

u1 ∼ u2, ∇1u1 ∼ ∇2u2, ∇1u2 ∼ ∇2u1, ∇1u3 ∼ ∇2u3 (6.27)

An immediate consequence of this is that all the non-diagonal components of∇u>(xp(t), t)

have zero means, implying that the antisymmetric contribution from the fluid velocity

gradient sampled by particles is on average zero. This is more concisely expressed in

terms of the fluid rotation rate Ω(xp(t), t) as

〈
Ω(xp(t), t)

〉
= 0 (6.28)

This makes sense intuitively, as when particles settle in the gravitational direction x3,

they would not be expected to be biased in either of the x1 or x2 directions as they

alter their trajectory to pass around regions of high rotation. Consequently, sampling

of the fluid rotation rate by particles would be expected to be evenly distributed in

both the x1 and x2 directions. The implication of this is that the contribution to〈
∇u>(xp(t), t)

〉
emerges entirely from sampling of the average fluid strain rate along

particle trajectories
〈
Σ(xp(t), t)

〉
.

6.5.4 Implications on the PDF Dispersion Tensors

Application of this analysis to the PDF dispersion tensor κ (t) given in (6.10) requires

use of the joint distribution of rp and H, denoted φ (rp,H) = φ (z). The transforma-

tion of this PDF into the frame of reference x̃ can then be realised using results from
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probability theory. Specifically, for the arbitrary random variables x and y related to

each other by y = F (x), the transformation between the associated PDFs φX (x) and

φY (y) is given by [140]

φY (y) = φX (x)

∣∣∣∣det

(
∂F
∂x

)∣∣∣∣−1

(6.29)

In terms of the distributions under consideration, taking x = z, y = z̃, the Jacobian

of the transformation as ∂F/∂x = P, the relation z̃ = P · z shown to hold in (6.23),

and further that φZ̃ = φZ since it was demonstrated that the distribution of z̃ is the

same as that of z then extracts from (6.29) the relation

φZ (P · z) = φZ (z) (6.30)

It follows from the definition of expectation that for any function F (ζ)

〈
F (z)

〉
=
〈
F (P · z)

〉
(6.31)

In the context of the PDF kinetic framework, using the interpretation z = (rp,H) it is

necessary to consider sets of functions Fn (ζ) indexed by n ∈ S3, S = {1, 2, 3} in order

to understand the symmetries that are inherent within κ (x, t). The specific cases of

interest are sets of functions such that

1. Fn (P · ζ) = −Fn (ζ) giving 〈Fn (z)〉 = −〈Fn (z)〉 = 0

2. Fn (P · ζ) = ±Fm (ζ) giving 〈Fn (z)〉 = ±〈Fm (z)〉

Considering the integrand of κ (t) in (6.10), denote the expression within the condi-

tional average as

Fkji (z; t, t′) = Hkj [t; t′]
∂

∂xk
Rji (rp (t′; t) , t− t′) (6.32)

The two-point two time correlation tensor R (rp (t′; t) , t− t′) and spatial gradient op-

erator ∂/∂x are further defined in the transformed coordinate system x̃ by

R̃ (r̃p (t′; t) , t− t′) = P ·R (rp (t′; t) , t− t′) ·P> ,
∂

∂x̃
= P · ∂

∂x
(6.33)
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Then, omitting explicit reference to the time dependencies in Fkji, it follows that

representation of Fkji in the frame of reference x̃ is given by the direct transformation

Fkji (z̃) = Fkji (P · z) = H̃kj [t; t′]
∂

∂x̃k
R̃ji (r̃p (t′; t) , t− t′) (6.34)

As a first-order tensor, ∂/∂x̃ is transformed for a given instance of P in the same

manner as r̃p, whilst as a second-order tensor R̃ transforms in the same manner as H̃,

as both set out in Table 6.1. The conditional average of equation (6.34) is equal to the

integrand of the dispersion tensor κ̃i (t) in the coordinate system x̃, meaning that the

different cases of P given by 1© - 6© can be used to infer which components of Fkji are

symmetric, and thereby which components of κi (t) are non-zero. For instance, taking

P = P1 corresponding to the transform 1©, by Table 6.1 it can be seen that

F111 (z̃) = H̃11
∂

∂x̃1

R̃11 = (+H11)

(
− ∂

∂x1

)
(+R11) = −F111 (z) (6.35)

This component satisfies instance 1 of the sets of functions that are of interest in this

system, and therefore F111 (z) is an even function, and it follows that

〈
F111 (z)

〉
=

〈
H11

∂

∂x1

R11

〉
= 0 (6.36)

In the same fashion, using the transforms 1©, 2©, and 3©, it is established for all values

of k and j with i = 1, 2 that

〈
Fkji (z)

〉
=

〈
Hkj

∂

∂xk
Rji

〉
= 0 , ∀k, j ∈ S , i ∈ {1, 2} (6.37)

Since (6.37) constitutes the integrand of κi (t) as given in (6.10), then by contraction

of k and j for a given value of i, it immediately follows that κ1 (t) ≡ κ2 (t) ≡ 0.

Thus the symmetries inherent in the system imply that there is no drift enhancement

in the non-gravitational direction as required, however the transforms 1©, 2©, and 3©
provide no information about κ3 (t), simply stating that Fkj3 (z̃) = Fkj3 (z) ∀k, j ∈ S.

Simplification of κ3 (t) is achieved using P = P4 corresponding to the transform 4©,

then use of Table 6.1 results in, for example,

F113 (z̃) = H̃11
∂

∂x̃1

R̃13 = (+H22)

(
+

∂

∂x2

)
(+R23) = F223 (z) (6.38)
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From this the equivalence of these two components of
〈
Fkj3 (z)

〉
follows

〈
F113 (z)

〉
=

〈
H11

∂

∂x1

R13

〉
=

〈
H22

∂

∂x2

R23

〉
=
〈
F223 (z)

〉
(6.39)

Likewise, using the transform 4© to interchange the subscripts 1 and 2 also produces

〈
H12

∂

∂x1

R23

〉
=

〈
H21

∂

∂x2

R13

〉
〈
H13

∂

∂x1

R33

〉
=

〈
H23

∂

∂x2

R33

〉
(6.40)〈

H31
∂

∂x3

R13

〉
=

〈
H32

∂

∂x3

R23

〉

Contraction of k and j in the expression Hkj
∂
∂xk

Rji along with use of the results (6.39)

and (6.40) means that the number of terms appearing in the explicit expression for

κ3 (t) can be reduced to

κ3 (t) =

∫ t

t0

[
2

{〈
H11

∂

∂x1

R13

〉
+

〈
H12

∂

∂x1

R23

〉
+

〈
H13

∂

∂x1

R33

〉
+

〈
H31

∂

∂x3

R13

〉}
+

〈
H33

∂

∂x3

R33

〉]
dt′ (6.41)

Making use of the fluid incompressibility expressed in the form ∂
∂x
·R = 0 yields the

alternative expression

κ3 (t) =

∫ t

t0

[
2

{〈
H12

∂

∂x1

R23

〉
+

〈
H13

∂

∂x1

R33

〉
+

〈
H31

∂

∂x3

R13

〉}
+

〈
(H33 −H11)

∂

∂x3

R33

〉]
dt′ (6.42)

In a two-dimensional system with g = (0,−g), this formula simplifies to

κ2 (t) =

∫ t

t0

[〈
H12

∂

∂x1

R22

〉
+

〈
H21

∂

∂x2

R12

〉
+

〈
(H22 −H11)

∂

∂x2

R22

〉]
dt′ (6.43)
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In conclusion, the preceding symmetry analysis has demonstrated that the components

of κ (t) are zero for directions which gravity does not act in, and further reduces

the number of individual terms which require modelling for κd (t), where d = {2, 3}.
Notwithstanding this, the terms in equations (6.42) and (6.43) are all of the same

form, meaning that it is still appropriate to use a general modelling approach for the

average
〈
Hkj

∂
∂xk

Rji

〉
rather than model different components separately. Furthermore,

the symmetry considerations do not provide any insight into the subsequent modelling

process except that models should be compatible with these results, meaning that a

more specific focus on the roles played by the separation along a particle trajectory

rp (t′; t) and the particle response tensor H [t; t′] is required.

6.6 Model Development in the PDF Kinetic Frame-

work

In contrast to a homogeneous flow with no external body forces in which κ (t) = 0, the

symmetry analysis of section 6.5 reveals that the addition of a gravitational body force

means that the general form of κ (t) becomes non-zero in the gravitational direction,

however no information regarding the quantification of this value is provided. This

naturally poses the question as to whether this phenomenon can be effectively modelled,

however the majority of existing work on particle settling rate enhancement has focused

upon furthering the understanding of the physical mechanisms involved rather than

developing a simplified description of the behaviour. In terms of modelling this drift

enhancement using the PDF kinetic framework, it is consequently prudent to start by

examining the ability of existing closures developed for other flow configurations to

capture this effect.

6.6.1 Use of Existing Closure Models

The existing closure strategies for the PDF dispersion tensors outlined in sections 4.4

and 4.5 make varying levels of approximation to the two-point two-time correlation ten-

sor R
(
x′p, t

′; x, t
)
, dependent on whether local or non-local effects are included within

the modelling procedure. However, all previous work has approximated the particle

response tensor H [t; t′] by using the Green’s function approximation of neglecting the

fluid velocity gradients in the governing equation (6.19), leading to the deterministic

model given by (4.65). As discussed in section 4.6, attempting to use this manner of
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closure for H [t; t′] in a configuration with a zero-mean flow results in κLHA (t) becom-

ing identically zero, thus in the present context failing to capture any of the expected

increase in particle settling velocity. In light of section 6.4 this is unsurprising, since

the non-zero drift velocity observed by particles settling under gravity is seen to be

a result of the hydrodynamic interaction between the separation along particle tra-

jectories rp (t′; t) and H [t; t′] within the conditional average in the expression (6.10)

for κ (t). Because the LHA completely neglects the stochasticity of H [t; t′], the effect

of any interaction with rp (t′; t) is therefore lost using this simple level of approxima-

tion, necessitating the need for a model which provides a more complete description

of H [t; t′]. This presents the challenge which is inherent in capturing the increase

in particle settling velocity, and thereby highlights the need for an improved closure

methodology for κ (t) in this context.

6.6.2 Cumulant Expansion of the Conditional Average

From the isotropic representation of κ (t) in the expression (6.12) it is explicit that

the stochastic quantities within the conditional average that determine the drift en-

hancement are rp (t′; t) and H [t; t′]. In order to include the full physical description

of these quantities within the representation of κ (t) given by (6.10), it is noted that

the stochasticity which is intrinsic within the expression ∂
∂x

R
(
x′p, t

′; x, t
)

is solely char-

acterised by rp (t′; t) in an isotropic flow field. The conditional average that requires

closure can then expressed as a function of just rp (t′; t) and H [t; t′], and further since

the distribution of these two quantities is independent of x in this configuration, the

conditional average can be written simply as the ensemble average

〈
Hkj

∂

∂xk
Rji (rp)

〉
(6.44)

where all time dependencies are omitted for notational clarity. Considering rp and H
as random variables, it is possible to formally express this ensemble average in terms

of the joint PDF φ (rp,H) of rp and H using the definition of expectation

〈
Hkj

∂

∂xk
Rji (rp)

〉
=

∫
H

∫
rp

Hkj
∂

∂xk
Rji (rp)φ (rp,H) drp dH (6.45)

Thus in order to close the ensemble average using this means, the distribution φ(rp,H)

needs to be known, requiring that a suitable model is proposed. In section 6.4 it was
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noted that it is the variation in the distribution of rp conditional onH which results in

the increased settling velocity of particles, however a probability distribution including

such information would be non-trivial to model. An alternative method of expressing

the ensemble average (6.44) more directly in terms of the stochastic quantities rp and

H rather than the full PDF would provide a more tractable modelling framework,

and therefore an appropriate way of examining the intrinsic behaviour of the system

before introducing any approximations. In particular, since a PDF is fully determined

by its moments, a means of expressing (6.44) in terms of the moments of φ (rp,H)

would retain all the information embedded within the distribution whilst leading to

a simplified description. Accordingly, a cumulant expansion of the average (6.44) in

terms of rp and H is performed in Appendix B, with the result for the first four

cumulants given by (B.11) as

〈
Hkj

∂

∂xk
Rji(rp)

〉
≈
〈
Hkj

〉〈 ∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

1

+
〈
H′kjr′pm

〉〈 ∂

∂rm

∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

2

+
1

2

〈
H′kjr′pmr

′
pn

〉〈 ∂

∂rm

∂

∂rn

∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

3

+

1

6

[〈
H′kjr′pmr

′
pn
r′pq
〉
−
〈
H′kjr′pm

〉〈
r′pnr

′
pq

〉
−
〈
H′kjr′pn

〉〈
r′pmr

′
pq

〉
−
〈
H′kjr′pq

〉〈
r′pmr

′
pn

〉]〈 ∂

∂rm

∂

∂rn

∂

∂rq

∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

4

(6.46)

This expression then describes the interaction between rp and H in the ensemble

average (6.44) without any inferences made upon the form of the joint distribution

φ (rp,H), and indeed the only approximation involved is truncation after the first four

cumulants. To determine the relative contribution of each cumulant to the expansion

(6.46), and in particular ascertain the significance of the higher-order cumulants on the

mechanism of drift enhancement, the terms 1 − 4 can be evaluated using numerical

simulation. Additionally, the expansion (6.46) provides a framework for modelling the

physical behaviour inherent in the ensemble average (6.44) at a more basic level, thus

reducing the generality of the closure problem to a more specific set of unknown expres-
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sions, which can be approached in a more straightforward manner from a modelling

perspective.

6.6.3 Implications of the Cumulant Expansion on Existing

Closures

The Green’s function approximation for the particle response tensor H [t; t′] is effec-

tively a model for the average
〈
H [t; t′]

〉
, meaning that the decoupling between

〈
H
〉

and〈
∂
∂x

R(rp)
〉

in the first term 1 of the expansion (6.46) is an automatic consequence of

using such an approximation, and as a result the Green’s function approximation only

has the capacity to include information contained within the first cumulant K1 =
〈
H
〉

of φ (rp,H). However, in the context of gravitational setting in a homogeneous flow,

use of the Green’s function approximation in the expression for κ (t) produces a result

of zero. Consequently the true contribution from the first term 1 of the expansion

can be assumed to be negligible, and therefore the dominant contribution towards the

increase in particle settling velocity is likely to come from the second term 2 in (6.46).

The second cumulant K2 =
〈
H′r′p

〉
is the cross-correlation of the fluctuating quanti-

ties r′p and H′, and due to the Green’s function approximation being a deterministic

quantity it only describes average behaviour, and therefore cannot contain any of the

information within K2. On the other hand, the form of K2 explicitly accounts for the

interaction between r′p and H′ that was observed in section 6.4, and thus it is foreseen

that the second term 2 in (6.46) will be fundamental to the modelling process for cap-

turing the increase in particle settling velocity in this context. Furthermore, there are

no reasonable grounds on which to assume that the contributions from the third and

fourth cumulants K3 and K4 can be neglected at this stage, which would be equivalent

to assuming r′p and H′ have a joint Gaussian distribution.

It is also worthwhile to note that all existing closures for the PDF kinetic model only

include information about φ (rp,H) contained within the first cumulant K1 =
〈
H
〉

as

a direct result of the average treatment of H [t; t′]. The reason that such an approach

is able to produce accurate models is due to the behaviour of the ensemble average

(6.44) being dominated by the effect of a non-zero mean flow on
〈
H [t; t′]

〉
over the

interactions between r′p andH′, meaning that the the second cumulant K2 is relatively

insignificant in such flow configurations. On the other hand, for a configuration with

a zero-mean flow, the contribution of
〈
H [t; t′]

〉
to the first cumulant K1 is negligible

compared to the interactions between r′p andH′, inferring that the second cumulant K2
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encompasses the dominant contribution to the behaviour of the ensemble average (6.44)

in these cases. Consequently, the effect of this higher-order behaviour will be smaller

in magnitude than that of systems in which the first cumulant K1 is dominant, and

furthermore the modelling process required to capture such higher-order behaviour is

expected to be more intricate, with additional detail being needed in order to construct

an accurate closure.

6.7 Closure of the Cumulant Expansion

To utilise the cumulant expansion (6.46) for modelling purposes, closure of the averages

within the expansion still remains; specifically for the cumulants themselves as specified

in terms of certain moments of φ (rp,H) in (B.7), and the average of derivatives of the

two-point two-time correlation tensor R (x′, t′; x, t) evaluated along particle trajectories

rp (t′; t). Both of these averages depend upon the stochastic particle behaviour through

the particle response tensorH [t; t′] and separation along a particle trajectory rp (t′; t),

and a closure methodology will require models for these two quantities. To that end,

the evolution of both H [t; t′] and particle trajectories xp (t′) is governed by associated

equations of motion which can be used for modelling purposes.

6.7.1 Representation of Separation along Particle Trajectories

Considering the particle trajectory xp (t′), in the case of Stokes drag model (6.15) the

solution can be represented directly since the equation of motion is linear. Subject

to arbitrary initial conditions at time t′ of xp(t
′) and ẋp(t

′) and the assumption that

up(s) = u(xp(s), s) is considered to be a process along the particle trajectory, the

solution is given by the integral form of a trajectory

xp(t) = xp(t
′) + Vg(t− t′) + h (t, t′)

[
ẋp(t

′)−Vg

]
+ β

∫ t

t′
h (t, s) up(s) ds (6.47)

in which the kernel of the integral h(t, t′) is the Green’s function of the Stokes drag

model (6.15), given by

h (t, t′) =
1

β

[
1− exp

[
− β(t− t′)

]]
(6.48)

141



CHAPTER 6. DRIFT ENHANCEMENT IN GRAVITATIONAL SETTLING

The form of particle trajectory described by (6.47) is for a particle moving away from

fixed initial conditions (FIT dispersion), and indeed this is reflected by the causality

condition inherent in h(t, t′), with the Green’s function growing exponentially for times

t < t′. This poses a problem, as the particle trajectory xp(t
′) which emerges in the dis-

persion tensors of the PDF kinetic model evolves through time towards final conditions

xp(t) = X and ẋp(t) = V (BIT dispersion), as stipulated by the conditional average

within the dispersion tensors [13]. The correct physical description of such motion is

given by the time-reversed particle equation of motion, however this is formally unsta-

ble, since the input from the fluid velocity u (x, t) then acts in the same direction as

the particle velocity vp(t). Consequently the transformed contribution
(
u (x, t)+vp(t)

)
that characterises the drag force within the time-reversed particle equation of motion

is no longer physically representative of a slip velocity, and this causes numerical solu-

tions to grow exponentially in time [63]. This is consistent with the causality condition

in h(t, t′), and therefore explicit treatment of the time-reversed particle trajectories is

not advisable.

As it is the spatial distribution of particles that are of interest in this work and not that

of particle velocities, it is sufficient to consider the velocity averaged form of the PDF

dispersion tensors throughout the present work. This only requires that the particle

trajectory satisfies xp(t) = X at a later time t, with no need for trajectories to also

satisfy ẋp(t) = V as part of the conditional averaging involved. Thus to obtain an

expression for xp(t
′) as it moves along a trajectory towards a fixed endpoint, it is

permissible to rearrange (6.47) for xp(t
′) and apply the fixed final condition on particle

location of xp(t) = X and arbitrary initial condition on particle velocity of ẋp(t
′) = v0

[20]. This then yields an expression for the particle position at time t′ given these

conditions

xp(t
′) = X−Vg(t− t′)− h (t, t′)

[
v0 −Vg

]
− β

∫ t

t′
h (t, s) up(s) ds (6.49)

As a result, (6.49) is formally a boundary value problem, subject to an initial velocity

v0 and final position X. Then taking the separation along a particle trajectory rp(t
′; t)

to be given by the endpoint of that trajectory X relative to the particle position xp(t
′),

i.e. rp(t
′; t) = X− xp(t′), use of (6.49) produces

rp(t
′; t) = Vg(t− t′) + h(t, t′)

[
v0 −Vg

]
+ β

∫ t

t′
h (t, s) up(s) ds (6.50)
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This then provides a full description of the separation of a particle xp(t
′) from the fixed

trajectory endpoint X as the particle moves along its trajectory towards this endpoint.

Furthermore, the spatial independence of rp(t
′; t) emerges as expected through this

manner of description, which is consistent with equation (6.50) only being of relevance

in an isotropic velocity field. This is also accordant with the conditioning on the tra-

jectory endpoint X not being necessary in homogeneous systems, in which case all

trajectories then contribute to the ensemble average (6.44). Consequently, use of the

time-reversed particle equation of motion to adequately capture the BIT dispersion that

is intrinsic in the conditioning on particle trajectories is not required in homogeneous

systems, with FIT dispersion providing an appropriate description of the particle evo-

lution. This is reflected in the form of the separation along particle trajectories rp(t
′; t)

given in (6.50), with this expression being identical to the FIT description of a particle

trajectory xp(t) in (6.47) save for the initial position term. Nonetheless, for general

inhomogeneous systems the conditioning on the trajectory endpoint X must be taken

into account by considering the BIT dispersion of particles.

6.7.2 Representation of the Particle Response Tensor

Considering the particle response tensorH [t; t′], in the case of a Stokes drag model the

fluid velocity gradient along particle trajectories ∇u>(xp(t), t) appears as a multiplica-

tive coefficient to H [t; t′] in the final term of the governing equation (6.19), meaning

that a direct integral solution of this equation cannot be obtained in the same man-

ner as for the particle equation of motion. Indeed, the analytical solution of (6.19)

for H [t; t′] can be shown to be an infinite series involving time-ordered products of

∇u>p (t) (see Appendix A), the involvement of which makes it unsuitable for modelling

purposes. Notwithstanding this, a simpler explicit representation ofH [t; t′] can be ob-

tained by starting from the more basic level of the particle equation of motion. Using

the integral form of the Stokes drag model given in (6.47), and taking the functional

derivative with respect to the fluid velocity along a particle trajectory at an earlier

time t′ yields

δxp(t)

δu(xp(t′), t′)
=

δxp(t
′)

δu(xp(t′), t′)
+h(t, t′)

δẋp(t
′)

δu(xp(t′), t′)
+β

∫ t

t′
h(t, s)

[
∂up(s)

∂x

]>
· δxp(s)

δu(xp(t′), t′)
ds

where the chain rule for functional differentiation has been applied to the final term.

Making the interpretation H [t; t′] = δxp(t)/δu(xp(t
′), t′) as valid for a zero-mean flow
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and consistent with the definition of the particle response tensor in (4.27), and also

further subject to the appropriate initial conditions in (6.19), it is seen that H [t; t′]

therefore satisfies the integral equation

H [t; t′] = h(t, t′)I + β

∫ t

t′
h(t, s)∇u>p (s) ·H [s; t′] ds (6.51)

Note that (6.51) expresses H [t; t′] as the sum of an average particle response h (t, t′) I

and a fluctuating response given by the integral term, in which ∇u>(xp(t), t) is intrin-

sic. In particular, the first term of (6.51) is precisely the Green’s function approximation

for H [t; t′] given in (4.65), meaning that in order to include sufficient information for

describing the increase in particle settling velocity, at least some detail from the second

term in (6.51) must be included within a representation forH [t; t′]. This highlights the

dependence of H [t; t′] on ∇u>(xp(t), t), with the implication that the true solution of

H [t; t′] is inherently trajectory dependent. In principle (6.51) can be used recursively

to include further detail within an explicit representation for H [t; t′] [175, 176], and

using this procedure once results in

H [t; t′] = h(t, t′)I + β

∫ t

t′
h(t, s)∇u>p (s)h(s, t′) ds

+ β2

∫ t

t′

∫ t

t′
h(t, s)h(t, s1)∇u>p (s) · ∇u>p (s1) ·H [s1; t′] ds ds1 (6.52)

Continued use of such recursion results in higher-order terms which converge to zero

due to the increased appearances of h (t; t′) with differing time arguments, and the

exponential form of h (t; t′) in (6.48) then guaranteeing that the higher-order contribu-

tions have successively decreasing importance. It is therefore acceptable to truncate

the expression (6.52) forH [t; t′] by simply neglecting these higher-order contributions,

and in this case taking just the first two terms leaves the approximation

H [t; t′] ≈ h(t, t′)I + β

∫ t

t′
h(t, s)∇u>p (s)h(s, t′) ds (6.53)

This expression is equivalent to simply substituting the Green’s function approximation

(4.65) forH [t; t′] into the final term of the exact integral equation (6.51), and results in

an explicit integral representation forH [t; t′] which can be used for modelling purposes.

The approximation (6.53) can be considered the logical approach to including the

next level of detail in an expression for H [t; t′] within the framework of the recursion
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(6.52). This is since the LHA constitutes the zeroth-order contribution to H [t; t′],

which is insufficient by itself for describing the increase in particle settling velocity, and

therefore including the first-order contribution from (6.52) will incorporate the detail

necessary for representing this effect. Note that the Green’s function of the particle

response tensor governing equation (6.19) is the same as that of Stokes drag model

(6.15), resulting in the appearance of h(t, t′) as both the kernel of the integral term

and also as the approximation to the response tensor within this term in (6.53), with

differing time arguments for each. Crucially, this expression also retains information

about the fluid velocity gradient along the particle trajectories, which is important in

accounting for the history of fluid-particle interaction as this can have a substantial

effect upon particle dispersion statistics. However, it should be noted that the coupling

between components of ∇u>(xp(t), t) and H [t; t′] that is inherent in (6.51) is lost in

(6.53), which may be significant in some flow configurations. In order to account for

this coupling within an explicit representation for H [t; t′], at least the second-order

contribution from the recursion (6.52) would need to be included.

6.7.3 Decomposition into Mean and Fluctuating Contribu-

tions

For the purposes of model development using the cumulant expansion (6.46), the mean

and fluctuating parts of the integral representations for rp(t
′; t) and H given by (6.50)

and (6.53) respectively are also needed. The corresponding mean parts are given by

〈
rp(t

′; t)
〉

= Vg(t− t′) + h(t, t′)
[〈
v0
〉
−Vg

]
+ β

∫ t

t′
h(t, s)

〈
up(s)

〉
ds (6.54)

〈
H [t; t′]

〉
≈ h(t, t′)I + β

∫ t

t′
h(t, s)

〈
∇u>p (s)

〉
h(s, t′) ds (6.55)

whilst the associated fluctuating contributions, defined in the usual manner as r′p(t
′; t) =

rp(t
′; t)−

〈
rp(t

′; t)
〉

and H′ [t; t′] =H [t; t′]−
〈
H [t; t′]

〉
respectively, are then

r′p(t
′; t) = h(t, t′)v0′ + β

∫ t

t′
h(t, s)u′p(s) ds (6.56)

H′ [t; t′] ≈ β

∫ t

t′
h(t, s)∇u>p

′
(s)h(s, t′) ds (6.57)
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This provides expressions for evaluating the cumulants Kn of the expansion (6.46),

which has the effect of reducing the required closures from the level of rp(t
′; t) and

H [t; t′] to the more fundamental processes up(s) and ∇u>p (s). The modelling of these

closures is now considered.

6.7.4 Simple Approximations for the Mean Contributions

In the same vein as the LHA, the simplest possible model for stochastic quantities

involves approximating them by their mean part. However for the mean contributions

to rp(t
′; t) and H [t; t′] given in (6.54) and (6.55) respectively, it is observed that in

order to close these expressions there are three averages that require specification.

Specifically, following the results in sections 6.2.1 and 6.2.2, use of both the particle

mass flux representation and correlation splitting show that within the context of

gravitational settling the averages
〈
v0
〉

and
〈
up(s)

〉
are both directly proportional

to κ(t) in equations (6.2) and (6.9) respectively. Thus closure of the averages
〈
v0
〉

and〈
up(s)

〉
is equivalent to developing an approximation for κ(t) at the top level of the

problem under consideration. Without developing a recursive approach to the closure

of κ(t) which would considerably complicate the modelling process, this leaves the only

reasonable approximation as using the existing LHA for these expressions. In the case

of
〈
up(s)

〉
, using (6.9) with κLHA = 0 simply yields

〈
up(s)

〉
≈ 0 (6.58)

Use of (6.58) in the averaged equilibrium form of the Stokes drag model (6.4) then

leads to approximation of
〈
v0
〉

as the Stokes settling velocity Vg

〈
v0
〉
≈ Vg (6.59)

For the average
〈
∇u>p (s)

〉
, it is possible to develop a closure by application of cor-

relation splitting in the same manner as for
〈
up(s)

〉
in section 6.2.2. The result for〈

∇u>p (s)
〉

is derived in Appendix D.1, and consistent with the approximations for〈
up(s)

〉
and

〈
v0
〉
, using the Green’s function approximation in equation D.16 leads to

〈
∇u>p (s)

〉
≈ 0 (6.60)
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Substituting the three approximations (6.58) - (6.60) into the expressions for the mean

parts of rp(t
′; t) and H [t; t′] given by (6.54) and (6.55) respectively then yields

〈
rp(t

′; t)
〉
≈ Vg(t− t′) (6.61)〈

H [t; t′]
〉
≈ h(t, t′)I (6.62)

Thus (6.61) approximates
〈
rp(t

′; t)
〉

as the average rate of particle settling due to grav-

ity, whilst (6.62) simply retrieves the existing Green’s function approximation (4.65)

for
〈
H [t; t′]

〉
. As a consequence of the basic estimates (6.58) - (6.60) neglecting all

fluctuations which occur in rp(t
′; t) and H [t; t′] due to the stochastic nature of the

underlying flow field, the drift enhancement that the modelling process is attempting

to capture is also neglected in the approximations (6.61) and (6.62). Whilst this is a

major shortcoming of these simple models, no alternative exists without analysing the

processes rp(t
′; t) and H [t; t′] in a higher level of detail.

6.7.5 Modelling the Spatial Derivatives of the Two-Point Two-

Time Correlation Tensor along Particle Trajectories

Within the cumulant expansion (6.46), the terms 1 - 4 all contain spatial deriva-

tives of the two-point two-time correlation tensor R (rp). In order to specify these

derivatives, the spatial component of R is represented by appealing to isotropy as in

(5.17). This enables an explicit representation for the spatial derivatives of R to be

calculated for an isotropic flow, the detail of which is outlined in Appendix C. A nat-

ural approach to evaluating these derivatives along the particle trajectories rp(t
′; t) is

then to continue considering rp as a random variable, and perform further expansions

in terms of the cumulants of the distribution φ(rp). Whilst this approach clearly has

the scope to include all the physical effects that are manifest in rp, it is appropriate

to make simpler approximations at this stage since the spatial derivatives of R (rp)

are expressed in terms of just rp, and no longer dependent on the particle response

tensor H. Specifically, the model r0(t′; t) is introduced as the mean separation along a

particle trajectory given in (6.61)

r0(t′; t) =
〈
rp(t

′; t)
〉
≈ Vg(t− t′) (6.63)
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This approximation removes the stochastic element of rp(t
′; t), and therefore produces

closures for the desired expressions

〈
∂

∂xk
Rji(rp)

〉
≈ ∂

∂xk
Rji

(
r0(t′; t)

)
(6.64)〈

∂

∂rm

∂

∂xk
Rji(rp)

〉
≈ ∂

∂rm

∂

∂xk
Rji

(
r0(t′; t)

)
(6.65)〈

∂

∂rm

∂

∂rn

∂

∂xk
Rji(rp)

〉
≈ ∂

∂rm

∂

∂rn

∂

∂xk
Rji

(
r0(t′; t)

)
(6.66)〈

∂

∂rm

∂

∂rn

∂

∂rq

∂

∂xk
Rji(rp)

〉
≈ ∂

∂rm

∂

∂rn

∂

∂rq

∂

∂xk
Rji

(
r0(t′; t)

)
(6.67)

The models (6.64) - (6.67) can then be expressed explicitly in terms of r0 using the

isotropic form of the spatial derivatives of R as given by (C.16), (C.20), (C.23), and

(C.26) respectively. To further account for the fact that the correlations are along par-

ticle trajectories, the fluid Eulerian integral timescale τE associated with the temporal

decorrelation Eω(t − t′) can be replaced with an appropriate Lagrangian timescale.

Specifically, using τE as given in (5.27) for the KS velocity field in conjunction with the

definition of Eω(t − t′) in (5.15) and substituting the fluid timescale along a particle

trajectory τLp for τE results in the modified temporal decorrelation

EτLp
(t− t′) = exp

[
−1

2

π

2τ 2
Lp

(t− t′)2

]
(6.68)

Use of this decorrelation within the models (6.64) - (6.67) then completes the closure

of the spatial derivatives of R along particle trajectories, leaving just modelling of the

cumulants (B.7) themselves remaining to be specified within the expansion (6.46).

6.7.6 Inefficacy of the Green’s Function Approximation

Although the focus is on developing an accurate model which captures the effect of the

drift enhancement and is able to relate this to the underlying fluid-particle interaction

mechanisms, it is worth considering application of the Green’s function approxima-

tion to the cumulant expansion (6.46) to determine if a simple model for the drift

enhancement can be produced from existing approximations. This would attribute
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any improvement in accuracy to the closure strategy of utilising a cumulant expansion,

rather than alternative physical assumptions or additional input from simulation data.

The higher-order cumulants 3 and 4 in (6.46) will contribute less to the drift en-

hancement than the first two, and therefore attention is restricted to 1 and 2

〈
Hkj

∂

∂xk
Rji(rp)

〉
≈
〈
Hkj

〉〈 ∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

1

+
〈
H′kjr′pm

〉〈 ∂

∂rm

∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

2

(6.69)

Within these terms, it is the cumulants K1 and K2 themselves which require ap-

proximating. In 1 , this entails modelling of
〈
H [t; t′]

〉
, for which the Green’s function

approximation (6.62) can be used directly. The consequence of this is that the isotropic

form of (6.62) immediately results in the contraction ∂
∂xj

Rji(rp), producing a result of

zero due to incompressibility of the flow field, meaning that there is no contribution

from the first cumulant.

〈
Hkj

〉〈 ∂

∂xk
Rji(r)

〉
≈ h(t, t′)

〈
∂

∂xj
Rji(r)

〉
≡ 0 (6.70)

This leaves the remaining term 2 , in which the second cumulant
〈
H′r′p

〉
requires

modelling, necessitating the use of expressions for the fluctuating quantities H′ and

r′p. However, the Green’s function approximation only describes average behaviour,

and therefore consistent with (6.61) and (6.62) approximations for the fluctuations are

given by

r′p(t
′; t) ≈ 0 (6.71)

H′[t; t′] ≈ 0 (6.72)

Thus the second cumulant K2 is simply approximated as

〈
H′kjr′pm

〉
≈ 0 (6.73)

Therefore in keeping with direct use in the dispersion tensor κ(t), use of the Green’s

function approximation in the cumulant expansion (6.69) also produces a trivial ap-
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proximation which does not capture any of the observed drift enhancement. This is

also consistent with the discussion in section 6.6.3 that the Green’s function approxi-

mation is only capable of retrieving behaviour contained within the first cumulant K1

of the distribution φ (rp,H), highlighting the need for more detailed modelling of the

cumulants themselves that is able to include the higher-order behaviour.

6.7.7 Modelling of the Second Cumulant

Focusing attention upon the second term 2 in the expansion (6.69), it is evident

that the Local Homogeneous Approximation breaks down in (6.73) due to inadequate

representations of the fluctuating quantities H′ and r′p. In order to develop a model

which includes sufficient information about these processes, the integral forms presented

in (6.56) and (6.57) are utilised; note that at this level the expression for r′p is exact,

whilst that forH′ is an approximation due to the truncation of the recursive expression

(6.52). This produces an associated integral expression for the second cumulant

〈
H′kj[t, t′] r′pm(t′; t)

〉
≈ βh(t, t′)

∫ t

t′
h(t, s)

〈
∇jupk

′(s)v0
m
′
(t′)
〉
h(s, t′) ds

+ β2

∫ t

t′

∫ t

t′
h(t, s1)h(t, s2)

〈
∇jup

′
k(s1)u′pm(s2)

〉
h(s1, t

′) ds1ds2

(6.74)

It is seen that the stochastic behaviour in this expression is contained within the

cross-correlations of the fluctuating fluid velocity gradient along particle trajectories

∇u>p
′
(s1) with the fluctuating fluid velocity along particle trajectories u′p(s2) and initial

fluctuating particle velocity v0′(t′). To develop a closure model for the second cumulant

of the expansion, these correlations require specification.

To begin with, the correlation
〈
∇u>p

′
(s1)u′p(s2)

〉
in the second term of (6.74) is focused

upon. Writing the fluctuating components in terms of their original full and averaged

variables gives

〈
∇jup

′
k(s1)u′pm(s2)

〉
=
〈
∇jupk(s1)upm(s2)

〉
−
〈
∇jupk(s1)

〉〈
upm(s2)

〉
(6.75)

In the second term of (6.75), closure of the averages
〈
∇u>p (s1)

〉
and

〈
up(s2)

〉
is equiv-

alent to modelling of the drift enhancement effect at the top level, and therefore as
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before these averages are simply approximated as zero in (6.58) and (6.60). This leaves

the cross-correlation in the first term of (6.75) remaining. For a standard correlation

of fluid velocities along a particle trajectory, the usual modelling approach consists

of using a temporal decorrelation function ψ (s1 − s2) characterised by an appropriate

timescale τLp along particle trajectories, with the one-point one-time RMS fluid ve-

locity u′ as a multiplier. However, since the cross-correlation of the Lagrangian fluid

velocity and fluid velocity gradients are being dealt with in this case, the approach

of assuming a simple decorrelation function cannot be applied. The current literature

does not address the direct modelling of the cross-correlation (6.75), with the most

appropriate work being an examination into the structure of the velocity-vorticity cor-

relations [29], which provided insight into the form of these correlations using DNS but

did not attempt modelling of the behaviour.

The form of the correlation (6.75) is expected to be inherently anisotropic, due to

the Lagrangian nature of the quantities ∇u>p
′
(s1) and u′p(s2) and the reduction in

symmetry of the particle phase within this configuration. Nonetheless, to proceed

from here the lack of a suitable model necessitates a simplified approach, and to that

end it is noted that the spatial derivative of the Eulerian two-point two-time correlation

tensor R(x′, t′; x, t) can be expressed for a zero-mean flow field as

1

β2

∂

∂xk
Rji(x

′, t′; x, t) ≡
〈

uj(x
′, t′)∇kui(x, t)

〉
(6.76)

Since ∂
∂xk

Rji(r) is a third-order tensor isotropic tensor, it is an odd function of the

spatial separation r = x− x′ (as seen upon examination of (C.16)). This implies that

for r = 0 the one-point cross-correlation in the Eulerian sense is equal to zero, demon-

strating that the behaviour of this cross-correlation is not that of a simple decorrelation

function. In order to model the correlation of the Lagrangian quantities ∇u>p
′
(s1) and

u′p(s2) along particle trajectories consistently with the forms that arise in equation

(6.74), the descriptions must be restricted to time-dependent processes rather than

a location and time dependent fields. To that end, the spatial dependence within
∂
∂xk

Rji(r) is manifest within the separation vector r, meaning that a suitable model

is required that represents this separation in terms of time. Since the correlation in

question (6.75) is for quantities that are evaluated along particle trajectories, it is ap-

propriate to also use a model for rp(t
′; t) to account for this, and specifically the simple

approximation of using the average particle separation r0(t′; t) ≈ Vg(t− t′) in (6.63) is

invoked. The cross-correlation (6.75) along particle trajectories is then approximated

by the isotropic model
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〈
∇jupk(t)upm(t′)

〉
≈ 1

β2

∂

∂xj
Rmk

(
r0(t′; t)

)
(6.77)

Some detail of the true structure of these cross-correlations is unavoidably lost by

using an isotropic model, however (6.77) is still expected to capture the leading-order

behaviour of this interaction. Evaluating the right hand side of (6.77) through use

of the expression for ∂
∂xj

Rmk(r) given in (C.16), approximation for separation along

particle trajectories r0(t′; t) in (6.63), and the model for the temporal decorrelation

function along particle trajectories in (6.68) produces the explicit form

〈
∇jupk(t)upm(t′)

〉
≈ 1

d− 1
u′

2
σ2
k

[(
σ2
kV

2
g (t− t′)2 − (d+ 1)

)
Vgjδkm(t− t′)

−σ2
kVgjVgmVgk(t− t

′)3 + Vgmδjk(t− t
′) + Vgkδmj(t− t

′)
]

· exp

[
−1

2

{
σ2
kV

2
g +

π

2τ 2
Lp

}
(t− t′)2

]
(6.78)

Within this isotropic expression three terms are of leading order in (t− t′), whilst two

third-order terms appear. To simplify the modelling procedure it is chosen to neglect

the third-order terms, both because their contribution is negligible compared to terms

which are linear in time separation, but also since Vgi = 0 for i 6= d the second third-

order term is non-zero for just one component of the tensor. The final model for the

cross-correlation of the fluctuating Lagrangian fluid velocity gradient and fluid velocity

in (6.75) is then

〈
∇jup

′
k(t)u

′
pm

(t′)
〉
≈ 1

d− 1
u′

2
σ2
k

[
Vgmδjk + Vgkδmj − (d+ 1)Vgjδkm

]
· (t− t′) exp

[
−1

2

{
σ2
kV

2
g +

π

2τ 2
Lp

}
(t− t′)2

]
(6.79)

The first term of (6.74) contains the correlation
〈
∇u>p

′
(s)v0′(t′)

〉
, and in the same

manner as before this can be expressed using the decomposition

〈
∇jup

′
k(s)v

0
m
′
(t′)
〉

=
〈
∇jupk(s)v

0
m(t′)

〉
−
〈
∇jupk(s)

〉〈
v0
m(t′)

〉
(6.80)
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Making the approximation
〈
∇u>p (s)

〉
= 0 as before leaves just the first term remaining,

for which there is no obvious method of evaluation. In the absence of an established

model for such a correlation, in this case explicit approximation of the particle velocity

v0(t′) is considered. In particular, using the equilibrium form of the instantaneous

Stokes drag model (6.15) as an approximation yields the simple substitution v0(t′) ≈
up(t

′) + Vg, resulting in (6.80) becoming

〈
∇jupk(s)v

0
m(t′)

〉
≈
〈
∇jupk(s)upm(t′)

〉
+
〈
∇jupk(s)

〉
Vgm (6.81)

This a strong approximation, and neglects the true behaviour of the fluid velocity gradi-

ent - particle velocity interactions. In principle, it is possible to include some of this be-

haviour by constructing a model for the one-point one-time correlations
〈
∇u>p (t)v0(t)

〉
as outlined in Appendix D.2, however this approach is not considered in the present

modelling procedure. Using the simple model in (6.81), the second term vanishes due

to the existing approximation of
〈
∇u>p (s)

〉
= 0, whilst the first term is now equal to

the first term of (6.75), and can thus also be modelled using (6.79). This therefore

leads to the same model as before for (6.80)

〈
∇jup

′
k(t)v

0
m
′
(t′)
〉
≈ 1

d− 1
u′

2
σ2
k

[
Vgmδjk + Vgkδmj − (d+ 1)Vgjδkm

]
· (t− t′) exp

[
−1

2

{
σ2
kV

2
g +

π

2τ 2
Lp

}
(t− t′)2

]
(6.82)

Specification of (6.79) and (6.82) completes the closure of the expression for the second

cumulant
〈
H′[t, t′] r′p(t′; t)

〉
in (6.74), resulting in the explicit model

〈
H′kj[t; t′]r′pm(t′; t)

〉
≈ 1

d− 1
βu′

2
σ2
k

[
Vgkδmj + Vgmδjk − (d+ 1)Vgjδkm

]
h(t, t′)

·
∫ t

t′
(s− t′)h(t, s)h(s, t′) exp

[
−1

2

{
σ2
kV

2
g +

π

2τ 2
Lp

}
(s− t′)2

]
ds

+
1

d− 1
β2u′

2
σ2
k

[
Vgkδmj + Vgmδjk − (d+ 1)Vgjδkm

] ∫ t

t′

∫ t

t′
(s1 − s2)

· h(t, s1)h(t, s2)h(s1, t
′) exp

[
−1

2

{
σ2
kV

2
g +

π

2τ 2
Lp

}
(s1 − s2)2

]
ds1ds2

(6.83)
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Denoting the decorrelation parameter by

A =
1

2

{
σ2
kV

2
g +

π

2τ 2
Lp

}
(6.84)

along with the two integrals which appear as

Mint(t; t
′) = βh(t, t′)

∫ t

t′
(s− t′)h(t, s)h(s, t′) exp

(
−A(s− t′)2

)
ds (6.85)

Nint(t; t
′) = β2

∫ t

t′

∫ t

t′
(s1 − s2)h(t, s1)h(t, s2)h(s1, t

′) exp
(
−A(s1 − s2)2

)
ds1ds2

(6.86)

leads to the more compact form

〈
H′kj[t; t′]r′pm(t′; t)

〉
≈ 1

d− 1
u′

2
σ2
k

[
Vgkδmj+Vgmδjk−(d+1)Vgjδkm

](
Mint(t; t

′)+Nint(t; t
′)
)

(6.87)

To complete the modelling of the second term 2 in the expansion (6.69), the cumu-

lant
〈
H′r′p

〉
is contracted with the second derivative of the correlation tensor evaluated

along particle trajectories
〈

∂
∂rm

∂
∂xk

Rji

(
r0(t′; t)

)〉
, as given in (6.65). The explicit ex-

pression for the latter model in d-dimensional physical space is

∂

∂rm

∂

∂xk
Rji

(
r0(t′; t)

)
=

1

d− 1
β2u′

2
σ2
k

{
σ4
kVgmVgkVgjVgi (t− t

′)
4

+σ2
k

[
(d+ 3)− σ2

kV
2
g (t− t′)2

]
VgmVgkδji (t− t

′)
2 − σ2

k

[
VgjVgiδmk

+ VgkVgiδmj + VgkVgjδmi + VgmVgjδki + VgmVgiδkj

]
(t− t′)2

+
[
σ2
kV

2
g (t− t′)2 − (d+ 1)

]
δmkδji + δmjδik + δmiδjk

}
· exp

[
−A (t− t′)2

]
(6.88)

in which the decorrelation parameter A defined in (6.84) is again used. Then contrac-

tion of
〈
H′r′p

〉
given by (6.87) with (6.88) presents the final expression for the second

term 2 of (6.69) as
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〈
H′kj[t; t′]r′pm(t′; t)

〉〈 ∂

∂rm

∂

∂xk
Rji

(
rp
)〉

≈− d+ 1

d− 1
β2u′

4
σ4
kVgi

[
σ2
kV

2
g (t− t′)2 − (d+ 2)

]
exp

[
−A (t− t′)2

] (
Mint(t; t

′) +Nint(t; t
′)
)

(6.89)

From the appearance of Vgi within this expression it directly follows that this cumulant

only makes a contribution in the direction which gravity acts in, consistent with the

symmetry arguments in section 6.5. In principle the two integrals given by Mint(t; t
′)

and Nint(t; t
′) in (6.85) and (6.86) respectively can be evaluated analytically, however

the number of terms quickly becomes excessive due to h(t; t′) containing two terms and

the complexities involved in integrating the error function, meaning that such an ap-

proach would produce expressions which are unsuitable for modelling purposes. This is

compounded in the case of Nint(t; t
′) as it is a double integral. Yet further time integra-

tion would then be required to evaluate the drift enhancement directly by calculating

κ(t) from the resultant expressions within the cumulant expansion (6.46). This final

step of integration contains terms which cannot be evaluated using standard analytical

techniques, and therefore it is most appropriate to evaluate the closure model for the

second cumulant
〈
H′r′p

〉
numerically over an appropriate time interval. Alternative

analytical approaches are to consider the asymptotic behaviour of the closure under

certain limiting constraints, e.g. small St, large Vg, or small rp, or linearisation of

certain parts of the integrands for Mint(t; t
′) and Nint(t; t

′), however these avenues of

investigation are not pursued here.

6.7.8 Modelling of the First Cumulant

Now considering the first term 1 in the cumulant expansion (6.69), it is clear that the

LHA gives a net zero result in (6.70) due to inadequate representation of the mean of

the response tensor
〈
H[t; t′]

〉
using (6.62). To include a fuller description of

〈
H[t; t′]

〉
,

it is appropriate to use the integral representation for the average of
〈
H[t; t′]

〉
as given

in (6.55), namely

〈
H [t; t′]

〉
≈ h(t, t′)I + β

∫ t

t′
h(t, s)

〈
∇u>p (s)

〉
h(s, t′) ds (6.90)

Therefore the problem at this point is focused upon closure of the average fluid veloc-

ity gradient along a particle trajectory
〈
∇u>p (s)

〉
. In the same manner as for the fluid
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velocity along a particle trajectory
〈
up(s)

〉
in section 6.2.2, it is possible to use cor-

relation splitting on this expression, the detail of which is contained within Appendix

D.1. In the case of a homogeneous Gaussian fluid velocity field, the result is given by

D.16 as the dispersion tensor

〈
∇lupi(t)

〉
=

1

β

∫ t

t0

〈
Hkj[t; t

′]
∂

∂xl

∂

∂xk
Rji(x

′
p, t
′; x, t)

〉
dt′ (6.91)

In order to capture the behaviour of
〈
∇u>p (t)

〉
adequately, the integrand in (6.91)

requires closure in the same manner as that of κ(t) (compare to equation (6.10)). To

that end, the cumulant expansion for an arbitrary phase-space variable z as given in

(B.8) is applied to the integrand of (6.91) with the interpretations z = (rp,H), and

f(z) = ∂
∂xl

∂
∂xk

Rji(z). Since the random variable z is the same as in section 6.6.2, the

cumulants themselves are still given by equation (B.7), with the distinct interpretation

of f(z) in this case then resulting in the expansion

〈
Hkj

∂

∂xl

∂

∂xk
Rji(rp)

〉
≈
〈
Hkj

〉〈 ∂

∂xl

∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

I

+
〈
H′kjr′pm

〉〈 ∂

∂rm

∂

∂xl

∂

∂xk
Rji(rp)

〉
︸ ︷︷ ︸

II
(6.92)

in which only the contributions from the first two cumulants are taken into account.

Considering the first cumulant I of this expansion, the problem of closure here also

reduces to specification of
〈
H[t; t′]

〉
. At this point, the problem is the same as that

encountered in the modelling of the first cumulant 1 of the original expansion, and be-

comes circular. Thus at this level it is prudent to assume the LHA for
〈
H[t; t′]

〉
as given

by (6.62), which once again causes contraction of I to zero due to incompressibility of

the flow field

〈
Hkj

〉〈 ∂

∂xl

∂

∂xk
Rji(rp)

〉
≈ h(t, t′)

〈
∂

∂xl

∂

∂xj
Rji(rp)

〉
≡ 0 (6.93)

Therefore attention can be restricted to the second cumulant II of (6.92). Closure of

both of the necessary quantities in this expression has already been undertaken within

the scope of the second term 2 of the original expansion in section 6.7.7, with the

model for
〈
H′r′p

〉
given in (6.87) and the model for

〈
∂
∂rm

∂
∂xl

∂
∂xk

Rji(rp)
〉

given in (6.66).

The explicit expression for the latter model in d-dimensional physical space is
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∂

∂rm

∂

∂xl

∂

∂xk
Rji

(
r0(t′; t)

)
=

1

d− 1
β2u′

2
σ4
k

{
σ2
k

[
VgkVgjVgiδml + VglVgjVgiδmk

+VglVgkVgiδmj + VglVgkVgjδmi + VgmVgjVgiδlk + VgmVgkVgiδlj

+VgmVgkVgjδli + VgmVglVgjδik + VgmVglVgiδjk

]
(t− t′)3

−σ4
kVgmVglVgkVgjVgi (t− t

′)
5

+
[
(d+ 3)− σ2

kV
2
g (t− t′)2

]
·
[
Vgkδlmδij + Vglδkmδij + Vgmδlkδij

]
(t− t′)

−σ2
k

[
(d+ 5)− σ2

kV
2
g (t− t′)2

]
VgmVglVgkδji (t− t

′)
3

−
[
Vgmδljδmk + Vgmδliδjk + Vgiδjmδkl + Vgjδimδkl + Vgkδimδlj

+Vgiδkmδlj + Vgkδjmδli + Vgjδkmδli + Vglδjmδik + Vgjδlmδik

+Vglδimδjk + Vgiδlmδjk

]
(t− t′)

}
exp

[
−A (t− t′)2

]
(6.94)

Contraction of
〈
H′r′p

〉
as given in (6.87) with (6.94) then produces the final result for

the second term II in the expansion (6.92) of

〈
H′kj[t; t′]r′pm(t′; t)

〉〈 ∂

∂rm

∂

∂xl

∂

∂xk
Rji(rp)

〉
≈− d+ 1

(d− 1)2
β2u′

4
σ6
k

(
d VglVgi − V

2
g δli

)[
(d+ 4)− σ2

kV
2
g (t− t′)2

]
(t− t′)

· exp
[
−A (t− t′)2

] (
Mint(t; t

′) +Nint(t; t
′)
)

(6.95)

Due to Vg being nonzero only in the gravitational direction, the tensorial component(
d VglVgi − V

2
g δli
)

within (6.95) implies that the expression is zero for i 6= l, and for

the case of d = 2 the components i = l are of equal and opposite values. Then since

the components of (6.95) transfer directly to those of
〈
∇u>p (t)

〉
in (6.91), the mean

fluid velocity gradient along particle trajectories is also nonzero only for i = l, with

the condition of equal and opposite values for these two cases demonstrating that

incompressibility is satisfied by this modelling procedure.

Owing to the appearance of the integrals Mint(t; t
′) and Nint(t; t

′) within (6.95), a

compact analytical representation explicitly in terms of times t and t′ is not available,

meaning that it must be evaluated numerically in the same vein as the second term 2

of the original expansion. This then completes the closure of the cumulant expansion
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(6.92) for the integrand of the dispersion tensor
〈
∇u>p (t)

〉
, which can subsequently

be evaluated numerically through use of (6.91). Specification of
〈
∇u>p (t)

〉
in turn

allows numerical evaluation of the mean particle response tensor
〈
H[t; t′]

〉
using (6.90).

As a consequence of
〈
H[t; t′]

〉
being a linear function of

〈
∇u>p (t)

〉
, it follows that〈

Hkj[t; t
′]
〉

= 0 for k 6= j, and has non-zero and differing values for the two cases in

which k = j. This contrasts with the LHA (6.62), in which the non-zero values of

the components given by k = j are equal. This qualitative difference in the resulting

model for
〈
H[t; t′]

〉
reflects the effect of the drift enhancement that is present in the

system, and therefore constitutes an improvement that adequately captures the form

of the required behaviour within the first cumulant 1 of the original expansion.

Since
〈
H[t; t′]

〉
must be evaluated numerically, explicit representation of its time de-

pendence within the first cumulant 1 in (6.69) is not tractable. However, the expres-

sion for the derivative of the correlation tensor evaluated along particle trajectories〈
∂
∂xk

Rji(rp)
〉

as given in (6.64) is known, which has the form

∂

∂xk
Rji

(
r0(t′; t)

)
=

1

d− 1
β2u′

2
σ2
k

{[
σ2
kV

2
g (t− t′)2 − (d+ 1)

]
Vgkδji (t− t

′)

−σ2
kVgkVgjVgi (t− t

′)
3

+ Vgjδik (t− t′) + Vgiδjk (t− t′)
}

· exp
[
−A (t− t′)2

]
(6.96)

Contraction of
〈
H[t; t′]

〉
with (6.96) then produces an expression for the first term 1

of the original cumulant expansion

〈
Hkj[t; t

′]
〉〈 ∂

∂xk
Rji(rp)

〉
≈ 1

d− 1
β2u′

2
σ2
k

{[
σ2
kV

2
g (t− t′)2 − (d+ 1)

] 〈
Hdi[t; t

′]
〉
Vg (t− t′) +

〈
Hid[t; t

′]
〉
Vg (t− t′)

−σ2
k

〈
Hdd[t; t

′]
〉
V 2
g Vgi (t− t

′)
3

+
〈
Hjj[t; t

′]
〉
Vgi (t− t

′)

}
exp

[
−A (t− t′)2

]
(6.97)

in which d is the index associated with the direction xd that the gravitational body force

acts in, with no summation implied, and j is a standard dummy variable over which

summation is implied. In particular, as the index i corresponds to the component κi

then taking i 6= d (in the non-gravitational direction(s)) in (6.97) reduces the result to
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zero (since
〈
Hkj[t; t

′]
〉

= 0 for k 6= j), consistent with the fact that there is no drift

enhancement for i 6= d. On the other hand, taking i = d in (6.97) results in

〈
Hkj[t; t

′]
〉〈 ∂

∂xk
Rjd(rp)

〉
≈ 1

d− 1
β2u′

2
σ2
k

{〈
Hjj[t; t

′]
〉
− d

〈
Hdd[t; t

′]
〉}
Vg (t− t′) exp

[
−A (t− t′)2

]
(6.98)

This demonstrates that the existence of the first term 1 within the cumulant expan-

sion (6.69) is dependent on
〈
Hjj[t; t

′]
〉

and d
〈
Hdd[t; t

′]
〉

having different values in the

modelling approach which is used, which is only satisfied in the event that
〈
H[t; t′]

〉
is

not isotropic. This is in agreement with the LHA (6.62) resulting in no contribution

from (6.98), whereas taking the mean fluid velocity gradient along particle trajectories

into account through use of (6.90) is sufficient to include this anisotropy, and thereby

the effect of drift enhancement within
〈
H[t; t′]

〉
. The form of the model (6.98) is also

consistent with the results from the symmetry analysis for d = 2, 3 given in (6.43) and

(6.42) respectively, clarifying that the reduction in symmetry which is inherent to the

flow configuration is respected by this modelling procedure. In particular, the assump-

tion of modelling the Lagrangian correlations
〈
∇u>p

′
(s1)u′p(s2)

〉
and

〈
∇u>p

′
(s)v0′(t′)

〉
as isotropic tensors does not introduce a spurious drift in the non-gravitational di-

rection(s), meaning that even though such models do not constitute a full physical

description of the behaviour intrinsic to these correlations, they do adhere to the sys-

tem configuration.

6.7.9 Higher Order Cumulants

Specification of terms 1 and 2 by (6.89) and (6.97) respectively is sufficient to close

the truncated cumulant expansion (6.69) in which only the first two cumulants K1 and

K2 are included. Furthermore, if the assumption is made that the random variables

rp and H have a joint Gaussian distribution, then the approximation (6.69) becomes

exact. However, in the context of particle settling velocity enhancement this is not

an obvious assumption to make as alluded to in section 6.6.3, even in the case of the

underlying flow field u(x, t) being Gaussian. This naturally leads to consideration

of the higher order contributions 3 and 4 in (6.46). Within these expressions, the

average of the derivatives of R evaluated along particle trajectories have already been

modelled in (6.66) and (6.67), leaving just the third and fourth cumulants K3 and K4

themselves which require modelling, given by
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K3
kjmn =

1

2

〈
H′kjrp′mrp

′
n

〉
(6.99)

K4
kjmnq =

1

6

[〈
H′kjrp′mrp

′
nrp
′
q

〉
−
〈
H′kjrp′m

〉〈
rp
′
nrp
′
q

〉
−
〈
H′kjrp′n

〉〈
rp
′
mrp

′
q

〉
−
〈
H′kjrp′q

〉〈
rp
′
mrp

′
n

〉]
(6.100)

For these the same approach as the second cumulant can be taken, with the integral

representations of r′p and H′ given by (6.56) and (6.57) utilised to express the cumu-

lants in terms of correlations of the underlying processes v0′(t′), u′p(s) and ∇u>p
′
(s).

However at this level the resultant expressions for K3 and K4 are somewhat involved,

and in particular the quantities which require closure are three-time and four-time cor-

relations of v0′(t′), u′p(s) and ∇u>p
′
(s). Even with the assumption of isotropy, there is

no analytical expression available in the current body of literature that can represent

such quantities. Additionally, attempting to use correlation splitting on the terms in

(6.99) and (6.100) is of no further avail, since the quantities involved are the random

variables r′p and H′ themselves. As such, the modelling of K3 and K4 is not tractable

at this level, and is not considered further in this work.

6.8 Numerical Evaluation of the Cumulant Expan-

sions

Before assessing the model developed in section 6.7, it is first prudent to evaluate the

true contribution of the separate terms 1 - 4 in the cumulant expansion (6.46) to

the average
〈
Hkj

∂
∂xk

Rji(rp)
〉

that arises within κ, and also the terms I - II for

the corresponding expansion (6.92) for the average
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

that emerges

within the dispersion tensor description of
〈
∇u>p (t)

〉
. This is performed using KS

simulation data, with the cumulants Kn being directly computed, and the various

spatial derivatives of R(r) expressed using the formulae (C.16), (C.20), (C.23), and

(C.26), and evaluated along particle trajectories rp.

6.8.1 Numerical Evaluation of (6.46)

Considering the average
〈
Hkj

∂
∂xk

Rji(rp)
〉

for just the gravitational direction i = 2, the

contributions arising from the terms 1 - 4 in (6.46) are displayed in Figure 6.3. It is
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immediately seen that the dominant contribution comes from the second cumulant K2

of the expansion, as reasoned in section 6.6.3. Of the remaining cumulants, K1 offers

the most significant contribution by a small margin, although its effect is somewhat

less than K2. The relatively small magnitude of K1 is consistent with the LHA for κ

being zero, as making such an approximation for just K1 only neglects a small part of

the true value of
〈
Hkj

∂
∂xk

Rj2(rp)
〉
, and then the averaged nature of the LHA is unable

to retrieve any information about the higher-order cumulants due to their dependence

on the fluctuating quantities r′p and H′. The cumulant K3 offers an almost negligible

contribution, whilst K4 is slightly more distinct, and becomes of more importance at

larger time separations t − t′. This confirms that the distribution φ (rp,H) is not

Gaussian, demonstrating that the inertia of particles affects the distribution of the

variables rp and H so that they differ from that of the underlying fluid velocity field

u (x, t), which is Gaussian in this case.
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Figure 6.3: Contribution of individual cumulants Kn to the average〈
Hkj[t; t

′] ∂kRj2(rp(t
′; t))

〉
for n ≤ 4, obtained from KS evaluation for StE = 0.1 and

Vg/u
′ = 1.0 in a two-dimensional fluid velocity field: —4—

〈
Hkj ∂kRj2(rp)

〉
; ——

K1; - - - - K2; · · · · · · K3; − · − · −·K4

In terms of the combined effect of the individual terms 1 - 4 , Figure 6.4 shows

the sum of the first n cumulants for n ≤ 4. As discussed, the first cumulant K1

is relatively small in magnitude, and by itself cannot be considered as a meaningful
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descriptor of the average
〈
Hkj

∂
∂xk

Rj2(rp)
〉

. However, due to the dominant contribution

of K2, the sum of K1 and K2 is seen to account for the majority of the effect that is

present in the true value
〈
Hkj

∂
∂xk

Rj2(rp)
〉

, representing ∼ 80% of the full behaviour.

The addition of the third cumulant K3 includes only marginally more detail, whilst

inclusion of K4 brings the cumulant expansion up to accounting for ∼ 90% of the

true value, with the remaining deficiency concentrated around the peak in amplitude

of
〈
Hkj

∂
∂xk

Rj2(rp)
〉

and at larger time separations t − t′. This also demonstrates

that the effect of the cumulants K5 and K6 of φ (rp,H) will barely be discernible

relative to the full behaviour of the average, justifying their omission. The outcome

then is that the information contained within K1 and K2 is certainly an adequate

enough contribution to be used for making inferences about the physical mechanisms

responsible for the increase in particle settling velocity, with the inclusion of this level

of detail corresponding to the closure model developed in section 6.7.
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Figure 6.4: Sum of contributions from cumulants Kn compared to the average〈
Hkj[t; t

′] ∂kRj2(rp(t
′; t))

〉
for n ≤ 4, obtained from KS evaluation for StE = 0.1 and

Vg/u
′ = 1.0 in a two-dimensional fluid velocity field: —4—

〈
Hkj ∂kRj2(rp)

〉
; ——K1;

- - - - K1 + K2; · · · · · · K1 + K2 + K3; − · − · −·K1 + K2 + K3 + K4
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Figure 6.5: Contributions from cumulants Kn to the average
〈
Hkj ∂l∂kRji(rp)

〉
for

n ≤ 2, obtained from KS evaluation for StE = 0.1 and Vg/u
′ = 1.0 in a two-dimensional

fluid velocity field: —4—
〈
Hkj ∂kRj2(rp)

〉
; ——K1; - - - - K2; − · − · −·K1 + K2

6.8.2 Numerical Evaluation of (6.92)

Now focusing upon the average
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

for just the non-zero components

i = l, the contributions arising from the terms I - II in (6.92) are shown in Figure

6.5. It is seen that the two components for i = l = 1 and i = l = 2 are of equal

and opposite magnitude as a consequence of the incompressibility of the fluid velocity

field in the two-dimensional configuration, and as with the average
〈
Hkj

∂
∂xk

Rj2(rp)
〉

,

the dominant contribution again comes from the second cumulant K2. The input

from the first cumulant K1 is again relatively unimportant, however in this case it

also acts in the opposite sense to K2. The upshot of this is that K2 is a better

predictor of the true behaviour of the average
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

than the combined

sum of K1 and K2, meaning that by neglecting the contribution from K1, a closure

model for this average will actually see an improvement in accuracy. Together with the

increasingly diminshing contributions of the higher-order cumulants, this characteristic

in the behaviour of
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

means that a closure of sufficient accuracy for

this average can in theory be constructed from consideration of K2 alone.

6.9 Model Assessment using KS

In order to construct a closure for the cumulant expansion (6.46), models for both the

spatial derivatives of the correlation tensor R evaluated along particle trajectories and

the cumulants K1 and K2 of φ (rp,H) themselves were developed in section 6.7. The
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assessment of both aspects of the closure is addressed in this section via the use of KS

data for a two-dimensional system.

6.9.1 Average of Spatial Derivatives of the Correlation Tensor

Evaluated along Particle Trajectories

In terms of the average of the spatial derivatives of the correlation tensor R(rp), the

closures proposed in section 6.7.5 that are relevant to K1 and K2 are given in (6.64)

and (6.65) by

〈
∂

∂xk
Rji(rp)

〉
≈ ∂

∂xk
Rji

(
r0(t′; t)

)
〈

∂

∂rm

∂

∂xk
Rji(rp)

〉
≈ ∂

∂rm

∂

∂xk
Rji

(
r0(t′; t)

)
where the model separation along particle trajectories in (6.63) is r0(t′; t) = Vg(t− t′),
and the temporal decorrelation is also modified using the model EτLp

(t− t′) in (6.68).

These closures therefore completely neglect the effect of the covariance of rp on the

behaviour of the isotropic tensors ∂
∂xk

Rji(r) and ∂
∂rm

∂
∂xk

Rji(r) when evaluated along

particle trajectories, only accounting for the mean behaviour that arises due to the

presence of the gravitational body force.

The performance of these models is shown in Figures 6.6 and 6.7 respectively. In

the case of
〈

∂
∂xk

Rji(rp)
〉

, it is seen that half of the components are identically zero

due to the isotropic form of the tensor, with this also being the case for the model
∂
∂xk

Rji

(
r0(t′; t)

)
. For the non-zero components, since

〈
∂
∂xk

Rji(rp)
〉

is a third-order

isotropic tensor it is an odd function, and therefore will have an amplitude of zero at

t− t′ = 0. This gives rise to behaviour that becomes more significant for t− t′ / 0.3τE,

before decorrelating to zero for large time separations as expected. It is seen in Figure

6.6 that despite not including any detail about the covariance of rp, both the amplitude

and timescale inherent to the behaviour of this average are well approximated by

the model ∂
∂xk

Rji

(
r0(t′; t)

)
, with only small deviations noticeable around the peak in

amplitude and as the function decorrelates.

For the average
〈

∂
∂rm

∂
∂xk

Rji(rp)
〉

, Figure 6.7 reveals that again half the components

are identically zero, however since this average is a fourth-order isotropic tensor and

therefore an even function, the non-zero components will have a non-zero value at
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Figure 6.6: Evaluation of all components of the model
〈
∂kRji(rp)

〉
≈ ∂kRji(r0) using

KS for StE = 0.1 and Vg/u
′ = 1.0 in a two-dimensional fluid velocity field: Symbols

© , × , ��� , 4 components of
〈
∂kRji(rp)

〉
; lines - - - - , —— , · · · · · · , − · − · −·

components of ∂kRji(r0)

t − t′ = 0. The behaviour of the average is then that of an exponential decorrelation

function, with different scalings for the various non-zero components determined by the

values at zero time separation, which the isotropic form of the model ∂
∂rm

∂
∂xk

Rji

(
r0(t′; t)

)
captures exactly. As in Figure 6.7, this model is also seen to capture the timescale

associated with this decorrelation reasonably well, with only a slight over-prediction

evident. Thus it is concluded that both of these models provide an acceptable level of

accuracy, which can nonetheless be refined by including detail about the covariance of

rp through further use of correlation splitting on
〈

∂
∂xk

Rji(rp)
〉

.

6.9.2 Cumulants

For modelling of the cumulant K2, the representations of rp and H used led to the

expression (6.74), in which the correlations
〈
∇u>p

′
(s1)u′p(s2)

〉
and

〈
∇u>p

′
(s)v0′(t′)

〉
emerged. For

〈
∇u>p

′
(s1)u′p(s2)

〉
, the modelling approach which was implemented used

the leading order contribution to the isotropic approximation (6.77) of

〈
∇jupk(t)upm(t′)

〉
≈ 1

β2

∂

∂xj
Rmk

(
r0(t′; t)

)
The efficacy of such a closure is shown in Figure 6.8. It is immediately apparent that in

contrast to the average
〈

∂
∂xj

Rmk(rp)
〉

in section 6.9.1, the correlation
〈
∇u>p

′
(s1)u′p(s2)

〉
is not strictly an odd function, exhibiting non-zero values at t − t′ = 0. The conse-

quence of modelling such behaviour using the isotropic model β−2 ∂
∂xj

Rmk

(
r0(t′; t)

)
is

that this information is lost, which is significant for the majority of the non-zero com-
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Figure 6.7: Evaluation of all components of the model
〈
∂m∂kRji(rp)

〉
≈ ∂m∂kRji(r0)

using KS for StE = 0.1 and Vg/u
′ = 1.0 in a two-dimensional fluid velocity field:

Symbols© , × , ��� , 4 components of
〈
∂m∂kRji(rp)

〉
; lines - - - - , —— , · · · · · ·

, − · − · −· components of ∂m∂kRji(r0)

ponents. Nonetheless, half of the total components of
〈
∇u>p

′
(s1)u′p(s2)

〉
are seen to

be zero on average, which corresponds with the associated components of the isotropic

model. As with the behaviour of
〈

∂
∂xj

Rmk(rp)
〉

, since
〈
∇u>p

′
(s1)u′p(s2)

〉
is a third-

order tensor there is still a peak in amplitude of the correlation at t− t′ ≈ 0.3τE, with

a decorrelation to zero at larger time separations. The amplitude of the behaviour

is captured reasonably well by the model, however the timescale associated with the

correlation is seen to differ markedly between components. This highlights the dis-

advantage of using an isotropic model, in which the single timescale characterised by

EτLp
(t − t′) is intrinsic to all components, with the result that the decorrelation of〈

∇u>p
′
(s1)u′p(s2)

〉
is captured sufficiently for some components, but not all. In par-

ticular, the component
〈
∇1up

′
1(s1)up

′
2(s2)

〉
is seen to decorrelate in Figure 6.8 more

like O(t) than the other non-zero components which decorrelate like O(t2), with this

behaviour not being captured by the O(t2) decay inherent in EτLp
(t− t′). As a result,

the model β−2 ∂
∂xj

Rmk

(
r0(t′; t)

)
amounts to only a rudimentary approximation in this

context, and leaves the question remaining as to what appropriate timescales for these
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Figure 6.8: Evaluation of all components of the model〈
∇juk

′(xp)u
′
m(x′p)

〉
≈ β−2∂jRmk(r0) using KS for StE = 0.1 and Vg/u

′ = 1.0
in a two-dimensional fluid velocity field: Symbols © , × , ��� , 4 components of〈
∇juk

′(xp)u
′
m(x′p)

〉
; lines − · − · −· , —— , · · · · · · , - - - - components of

β−2∂jRmk(r0)

correlations would be.

In terms of the correlation
〈
∇u>p

′
(s)v0′(t′)

〉
the chosen modelling approach used the

approximation v0(t′) ≈ up(t
′) + Vg to yield (6.81) from which emerges the relation

〈
∇jupk(s)v

0
m(t′)

〉
≈
〈
∇jupk(s)upm(t′)

〉
Thus the information pertaining to the particle velocity is lost in this model, and Figure

6.9 illustrates the repercussions of this. As a third-order tensor,
〈
∇u>p

′
(s)v0′(t′)

〉
still

exhibits a peak amplitude at t− t′ ≈ 0.3τE, however both the value of the correlation

at t− t′ = 0 and the decorrelation rates of the components are seen to vary more than

those of
〈
∇u>p

′
(s1)u′p(s2)

〉
displayed in Figure 6.8. Consequently, use of the leading

order contribution from the model β−2 ∂
∂xj

Rmk

(
r0(t′; t)

)
to represent

〈
∇u>p

′
(s)v0′(t′)

〉
produces an approximation of questionable quality. The peak in amplitude is captured

less accurately in this case, however the major shortcomings are the omission of the

behaviour for the non-zero components at t− t′ = 0, which is distinctly non-zero, and

the decorrelation rate of the different components. Although the latter is adequately

addressed by the model for some components, again the behaviour of one specific

component
〈
∇1up

′
1(s1)v0

2
′
(t′)
〉

is more characteristic of decay like O(t) than O(t2),

with the single timescale of the isotropic model encapsulated in EτLp
(t − t′) failing

to capture this. Therefore in addition to refinement of appropriate timescales for

the various components of
〈
∇u>p

′
(s)v0′(t′)

〉
, the values of the one-time correlation〈

∇u>p
′
(t′)v0′(t′)

〉
also ideally need to be accounted for, with the use of correlation

167



CHAPTER 6. DRIFT ENHANCEMENT IN GRAVITATIONAL SETTLING

0 0.5 1 1.5

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.9: Evaluation of all components of the model〈
∇juk

′(xp)v
0
m
′〉 ≈ β−2∂jRmk(r0) using KS for StE = 0.1 and Vg/u

′ = 1.0 in
a two-dimensional fluid velocity field: Symbols © , × , ��� , 4 components of〈
∇juk

′(xp)v
0
m
′〉

; lines− · − · −· , —— , · · · · · · , - - - - components of β−2∂jRmk(r0)

splitting on this average detailed in Appendix D.2.

On balance, the models for
〈
∇u>p

′
(s1)u′p(s2)

〉
and

〈
∇u>p

′
(s)v0′(t′)

〉
both capture the

essential behaviour of each component, and therefore constitute a starting point for

representing these correlations. However, important aspects of the detail inherent in

both correlations are lost through using an isotropic model, which naturally leads

to consideration of how best to represent these interactions given the reduction in

symmetry of the particle phase in this flow configuration. Furthermore, the models

for both
〈
∇u>p

′
(s1)u′p(s2)

〉
and

〈
∇u>p

′
(s)v0′(t′)

〉
are also used in closure of the first

cumulant K1 in section 6.7.8, meaning that the accuracy of these models affects that

of the model forms for both K1 and K2.

6.9.3 Capturing the Increase in Particle Settling Velocity

The models developed for the spatial derivatives of the correlation tensor R(rp) and the

cumulants K1 and K2 of φ (rp,H) together determine the accuracy of the dispersion

tensor κ(t) at the top level of the problem. Verification of the model performance in

this aspect must be undertaken numerically, since the time integrals Mint(t; t
′) and

Nint(t; t
′) that arise in the modelling process in (6.85) and (6.86) are too complicated

to admit tractable analytical expressions. This process is however computationally

undemanding, with three nested integrations being required in total to evaluate κ(t).

To begin with, the average
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

is evaluated for just the non-zero com-

ponents i = l, the outcome of which is shown in Figure 6.10. As noted in section
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Figure 6.10: Model assessment for the average
〈
Hkj[t; t

′] ∂l∂kRji(rp(t
′; t))

〉
, obtained

from KS evaluation for StE = 0.1 and Vg/u
′ = 1.0 in a two-dimensional fluid velocity

field: —4—
〈
Hkj ∂kRj2(rp)

〉
; ——True contribution from K2; - - - - Model for K2

6.8.2, omission of the first cumulant K1 actually improves the model for this average

since it acts in the opposite sense to K2, and following this it is seen that the model

for K2 is a good approximation to
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

. The peak in amplitude is

slightly overpredicted, whilst the decorrelation rate is also marginally too large, but

the model otherwise describes the behaviour well. The reason that the model man-

ages to overpredict these characteristics is due both to the adequacy of the models for〈
∂
∂rm

∂
∂xk

Rji(rp)
〉

,
〈
∇u>p

′
(s1)u′p(s2)

〉
and

〈
∇u>p

′
(s)v0′(t′)

〉
, but also due to the filtering

effect arising from multiple appearances of the particle Green’s function h(t; t′) that is

embedded within the time integrals Mint(t; t
′) and Nint(t; t

′). In particular, specifica-

tion of the temporal decorrelation function along particle trajectories EτLp
(t− t′), and

notably the selection of model for τLp, will have a significant influence on the timescale

associated with the overall model for K2 within this average.

For the average
〈
Hkj

∂
∂xk

Rji(rp)
〉

models for both K1 and K2 are needed, with the

model for K1 being directly dependent on
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

by virtue of (6.90) and

(6.91). Accordingly, the relative accuracy of the model for this average observed in

Figure 6.10 is transferred to the model for K1, which is seen from Figure 6.11 to

capture most of the behaviour associated with this cumulant. Notwithstanding this,

the relative contribution of K1 is small compared to that of K2, which is where the

real shortcomings of the modelling procedure become apparent. It is seen that the

model for K2 is a reasonable descriptor of the behaviour, however it underpredicts

the peak in amplitude by a small margin, whilst in common with K1 overpredicts the

decorrelation timescale. As for the average
〈
Hkj

∂
∂xl

∂
∂xk

Rji(rp)
〉

, this variation from the

true behaviour is attributable both to the suitability of the various models used and
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the filtering effect of h(t; t′) in Mint(t; t
′) and Nint(t; t

′), with the choice of τLp being

a key factor in determining the effective decorrelation timescale of the overall model.

Consequently, the model for K2 is seen to retrieve most, but not all, of the contribution

that this cumulant makes in reality. This then compounds the issue that K1 and K2

only account for ∼ 80% of the full behaviour in the average
〈
Hkj

∂
∂xk

Rji(rp)
〉

, with the

model further representing only ∼ 80% of the contribution that K1 and K2 make. The

resultant final model therefore omits a not-insignificant portion of the detail contained

within this average, although this is somewhat mitigated by the fact that only K1 and

K2 are accounted for in the modelling procedure.
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Figure 6.11: Model assessment for the average
〈
Hkj[t; t

′] ∂kRj2(rp(t
′; t))

〉
, obtained from

KS evaluation for StE = 0.1 and Vg/u
′ = 1.0 in a two-dimensional fluid velocity field:

—4—
〈
Hkj ∂kRj2(rp)

〉
; · · ·���· · · K1; · · · · · · Model for K1; −·© −· K2; − · − · −·

Model for K2; —♦♦♦— K1 + K2; —— Model for K1 + K2

Evaluation of the evolution for κ2(t) as predicted by this modelling procedure is carried

out by a simple numerical integration of the closure for
〈
Hkj

∂
∂xk

Rj2(rp)
〉

over the

sampling period. This is illustrated in Figure 6.12, with the true behaviour of K1 and

K2 falling ∼ 20% short of that of κ2(t), and the model further underpredicting by

another ∼ 20%. Thus overall the model is able to retrieve ∼ 65% of the true increase

in particle settling velocity, and therefore whilst the full effect is not captured, it is

useful in the context of making inferences about the mechanisms that are responsible
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for this behaviour. Indeed, on the basis that the starting point for this modelling

procedure is the LHA prediction of κLHA
2 = 0, the model constitutes an improvement

in the sense that it is able to capture an increase in particle settling velocity as a

direct consequence of accounting for the interactions between rp and H. Nonetheless,

in order to accurately represent this effect requires further refinement to the physical

assumptions made within the modelling process, which from section 6.9.2 is seen to

apply principally to the representations of
〈
∇u>p

′
(s1)u′p(s2)

〉
and

〈
∇u>p

′
(s)v0′(t′)

〉
that

are used.
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Figure 6.12: Model assessment for |κ2(t)|/βu′, obtained from KS evaluation for StE =
0.1 and Vg/u

′ = 1.0 in a two-dimensional fluid velocity field: —4— |κ2(t)|/βu′;
—���— True contribution from K1 and K2; − · − · −· Model evaluation for K1 and
K2

6.10 Consideration of the Fluid Strain and Rota-

tion Rates

As it stands, the model descriptions for both
〈
∇u>p

′
(s1)u′p(s2)

〉
and

〈
∇u>p

′
(s)v0′(t′)

〉
present the sticking point to ultimately developing a more accurate representation of

the increase in particle settling velocity. It is therefore of interest to consider how these
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correlations can be represented in order to include more of the underlying physical

behaviour that is intrinsic to these quantities. One such approach is to decompose the

fluid velocity gradient tensor ∇u into its symmetric and antisymmetric parts as given

by the fluid strain Σ and rotation Ω [118]

Σjk(x, t) =
1

2

[
∇kuj(x, t) +∇juk(x, t)

]
(6.101)

Ωjk(x, t) =
1

2

[
∇kuj(x, t)−∇juk(x, t)

]
(6.102)

This is consistent with the work of Maxey [91] and Wang & Maxey [163], in which

the primary physical mechanism attributed to causing the increase in particle settling

velocity was identified as the interaction of particles with the structures in the under-

lying flow field, in particular the regions of strain and rotation. Therefore inclusion

of such information is a natural way of refining the closure model in section 6.7, and

accordingly the correlation
〈
∇u>p

′
(t)u′p(t

′)
〉

becomes

〈
∇jup

′
k(t)u

′
pm

(t′)
〉

=
〈

Σp
′
jk(t)u

′
pm

(t′)
〉
−
〈

Ωp
′
jk(t)u

′
pm

(t′)
〉

(6.103)

Use of the leading order contribution from the isotropic model for
〈
∇u>p

′
(t)u′p(t

′)
〉

in

(6.77) can then be used to gain insight into the ramifications of using such a modelling

procedure on the separate correlations
〈
Σp
′(t)u′p(t

′)
〉

and
〈
Ωp
′(t)u′p(t

′)
〉
. Making such

an assumption, it follows from (6.101) and (6.102) that the associated models are given

by

〈
Σp
′
jk(t)u

′
pm

(t′)
〉
≈ 1

2β2

[
∂

∂xk
Rji

(
r0(t′; t)

)
+

∂

∂xj
Rki

(
r0(t′; t)

)]
(6.104)〈

Ωp
′
jk(t)u

′
pm

(t′)
〉
≈ 1

2β2

[
∂

∂xk
Rji

(
r0(t′; t)

)
− ∂

∂xj
Rki

(
r0(t′; t)

)]
(6.105)

The assessment of these models in the two-dimensional KS velocity field is shown in

Figures 6.13 and 6.14 respectively. It is observed that the behaviour of the symmet-

ric part of the correlation
〈
Σp
′(t)u′p(t

′)
〉

in Figure 6.13 is represented fairly well by

the model, with a very good fit seen for some components, however the peak ampli-

tude of the remaining components is slightly overpredicted. Notwithstanding this, the

timescales of all components decay at very similar rates, and all like O(t2). Addi-

tionally, the correlation is well approximated at small time separations, and although
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Figure 6.13: Evaluation of all components of the model〈
Σ′jk(xp)u

′
m(x′p)

〉
≈ 0.5β−2 [∂kRmj(r0) + ∂jRmk(r0)] using KS for StE = 0.1 and

Vg/u
′ = 1.0 in a two-dimensional fluid velocity field: Symbols© , × , ��� , 4 compo-

nents of
〈
Σ′jk(xp)u

′
m(x′p)

〉
; lines − · − · −· , —— , · · · · · · , - - - - components of

0.5β−2 [∂kRmj(r0) + ∂jRmk(r0)]

it does not pass exactly through zero at t − t′ = 0, it is not considerably different.

On the other hand, the antisymmetric part of the correlation
〈
Ωp
′(t)u′p(t

′)
〉

in Figure

6.14 is seen to behave in a markedly different manner, and although the peak ampli-

tude is well approximated by the model, the subsequent temporal decorrelation rate

is overpredicted. Notably, the true decorrelation in this case behaves more like O(t)

rather than O(t2), and this highlights the difference in timescales associated with the

fluid strain and rotation rates respectively. Furthermore, at t − t′ = 0 the correlation〈
Ωp
′(t)u′p(t

′)
〉

is distinctly non-zero, implying that this hallmark of
〈
∇u>p

′
(t)u′p(t

′)
〉

arises chiefly from its antisymmetric part. As a result,
〈
Σp
′(t)u′p(t

′)
〉

can be fairly well

described by an isotropic model, whilst the anisotropy that arises in the particle phase

due to the reduction in symmetry in this flow configuration is intrinsic to
〈
Ωp
′(t)u′p(t

′)
〉
,

and should ideally be accounted for in an improved model.

This evaluation in terms of the symmetric and antisymmetric parts of
〈
∇u>p

′
(t)u′p(t

′)
〉

includes no new assumptions in the modelling procedure and therefore results in the

same closure model as before, however it does highlight the fundamental role that the

fluid strain and rotation tensors play in causing particles to experience an increase

in settling velocity. In particular, the values of the different timescales for Σ and Ω

along particle trajectories is seen to play a key role in the ability of the closure model

to accurately capture this behaviour, and as such this constitutes the starting point

for further refinement to the existing model. As noted in section 3.4.5, the different

timescales associated with Σ and Ω have been modelled in an Eulerian sense [21, 60],

however a general form of Lagrangian model for these timescales does not currently
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Figure 6.14: Evaluation of all components of the model〈
Ω′jk(xp)u

′
m(x′p)

〉
≈ 0.5β−2 [∂kRmj(r0)− ∂jRmk(r0)] using KS for StE = 0.1 and

Vg/u
′ = 1.0 in a two-dimensional fluid velocity field: Symbols© , × , ��� , 4 compo-

nents of
〈
Ω′jk(xp)u

′
m(x′p)

〉
; lines − · − · −· , —— , · · · · · · , - - - - components of

0.5β−2 [∂kRmj(r0)− ∂jRmk(r0)]

exist in the literature. This then requires that an approximation for these timescales

is developed using a physically valid means as an additional precursor to being able to

account for the full detail of the observed increase in particle settling velocity.

6.11 Concluding Comments

The foregoing research has shown that the increase in inertial particle settling velocity

when subject to a gravitational body force in a zero-mean homogeneous flow is a second-

order effect that arises mainly due to interaction of particles with the fluid velocity field,

and is not determined solely by mean statistics of the particle phase. Notably, by use

of a symmetry analysis the preferential sampling of the average fluid strain rate along

particle trajectories is seen to characterise this behaviour entirely, whereas in contrast

the average fluid rotation rate experienced by particles is unbiased. Furthermore, it

has been demonstrated that it is possible to capture the higher-order phenomenological

behaviour inherent in this configuration within a model description, and in particular

that the approach of using a cumulant expansion within the PDF kinetic framework

is able to account for part of the increase in particle settling velocity. As a result,

this modelling procedure has a clear scope for describing particle behaviour that arises

due to interaction with turbulent structures in other flow configurations, although it is

noted that such models would necessarily need evaluating numerically due to the level

of detail contained.
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Chapter 7

Analysis of the Particle Velocity

Field

7.1 Background

One approach of analysing the various flux contributions arising from particle-fluid

interactions is that of a particle velocity field, as discussed in section 3.3. First intro-

duced by Maxey [91], the idea stems from the treatment of the particles as a continuous

medium, with the divergence of such a particle velocity field then being a measure of

the local compressibility of the particle phase. Maxey applied this idea in the limit of

small particle inertia, and was able to derive an expression for the increase in average

settling velocity of inertial particles relative to their terminal velocity Vg for the case

of a linear drag law. Specifically, by neglecting terms above O(St) and obtaining an

alternative particle equation of motion for small St, a particular form of a particle

velocity field V(x, t) emerged, namely [91]

dxp
dt

= V(xp(t), t) (7.1)

V(x, t) = u(x, t) + Vg +
1

β

[
∂u

∂t
+ u · ∇u + Vg · ∇u

]
(7.2)

Consequently, the divergence of particle velocity field for St� 1 is given by [91]

∇ · V(x, t) = − 1

β

∂ui
∂xj

∂uj
∂xi

(7.3)
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which can be written in terms of the fluid rate of strain Σ(x, t) and rotation Ω(x, t)

tensors, thereby implicating these quantities as key determinants of the compressibility

of the particle phase. The resultant expression derived for the increase in average

settling velocity in a zero-mean homogeneous flow, valid for St� 1, is [91]

V(x, t) = Vg +
1

β

∫ t

t0

〈
u(x, t)

∂u

∂x

(
xp(t

′), t′
)

:
∂u

∂x

(
xp(t

′), t′
)〉

dt′ (7.4)

A more general construction of the particle velocity field framework is provided by

Reeks [129], in which an arbitrary particle velocity field V(x, t) is defined without

restricting to the case of small particle inertia. An expression for the particle drift

velocity is obtained in this case in terms of the underlying process

[
V(t′),∇ · V(t′)

]
(7.5)

where formally the process V(t′) represents the field V(xp(t
′), t′), and xp(t

′) = xp(t
′ |

x, t) denotes a trajectory passing through (x, t) for a given realisation of the process

(7.5) for t0 < t′ < t. It is implicit here that the divergence operator is applied to

the spatial components of the particle velocity field V(x, t), and does not operate on

x in the expression xp(t
′ | x, t). Assuming a Gaussian distribution of this process

gives an expression for the average increase in particle settling velocity in a zero-mean

homogeneous flow as [129]

V(x, t) = Vg −
∫ t

t0

〈
V ′(x, t)∇ · V(t′ | x, t)

〉
dt′ (7.6)

where V ′(x, t) is the fluctuating part of V(x, t) relative to its mean, and the shorthand

notation ∇ · V(t′ | x, t) ≡ ∇ · V(xp(t
′ | x, t), t′) is used for the explicit values of the

divergence of particle velocity along particle trajectories that pass through (x, t). It can

be seen that the expression (7.4) derived by Maxey is a special case of (7.6) specific to

the particle velocity field pertaining to a linear drag model and for St� 1. The point

of interest then is to assess the ability of the general particle velocity field formulation

to capture the increase in particle settling velocity by numerical evaluation of (7.6).
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7.2 Computing the Divergence of the Particle Ve-

locity Field

In order to determine the particle velocity field V(t | x0, t0) needed to evaluate the

expression (7.6), the Jacobian of the Eulerian-Lagrangian transformation is utilised.

This is denoted by the deformation tensor with respect to the initial position x0 outlined

in section 3.3.1, defined as

J (x0, t) =
∂xp(t)

∂x0
(7.7)

Therefore taking the derivative of the equation of evolution (7.1) for V(t | x0, t0) with

respect to the position x0 yields [129]

∂ẋp(t)

∂x0
=

[
∂V(t | x0, t0)

∂x

]>
· ∂xp(t)
∂x0

Then interpretation in terms of the Jacobian (7.7) produces the governing equation for

J (x0, t)

J̇ (x0, t) = ∇V>(t | x0, t0) ·J (x0, t) , J (x0, t0) = I (7.8)

with the value for the initial condition of J (x0, t) being clear from (7.7). The formal

solution is subsequently given by the matrix exponential for the integral of ∇V>(t |
x0, t0) along a trajectory [12, 129]

J (x0, t) = exp

[∫ t

t0

∇V>(t′ | x0, t0) dt′
]

(7.9)

The compressibility of the particle phase is related to the Jacobian J (x0, t) through

the elemental deformation J(x0, t) = det [J (x0, t)], which represents the fractional

change in an elemental volume at time t along an inertial particle trajectory relative

to the position x0. Therefore it is also instructive to consider the evolution of J(x0, t)

through the expression

J̇(x0, t) =
d

dt

[
det

(
∂xp(t)

∂x0

)]
(7.10)
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To proceed, Jacobi’s formula from linear algebra can be employed. This states that for

an invertible matrix A

d

dt

[
det(A)

]
= det(A) tr

[
A−1 · dA

dt

]
(7.11)

Making use of (7.11) and assuming that the deformation tensor J (x0, t) is invertible

results in

d

dt

[
det

(
∂xp(t)

∂x0

)]
= det

(
∂xp(t)

∂x0

)
tr

[(
∂xp(t)

∂x0

)−1

·
(
∂ẋp(t)

∂x0

)]
(7.12)

Then consistent with the definitions of J (x0, t) and J(x0, t) this yields

J̇(x0, t) = J(x0, t) tr
[
J −1(x0, t) · J̇ (x0, t)

]
(7.13)

Evaluation for the specific particle velocity field V(t | x0, t0) in (7.1) is then possible

using the governing equation (7.8) for J (x0, t), which simplifies (7.13) to

J̇(x0, t) = J(x0, t)∇ · V(t | x0, t0) , J(x0, t0) = 1 (7.14)

This then constitutes the equation of evolution for J(x0, t), with the initial condition

arising directly from that in (7.8). It is seen from (7.14) that the divergence of the par-

ticle velocity field is thus uniquely determined from the elemental deformation J(x0, t).

The solution then follows in the same manner as for (7.9) [129]

J(x0, t) = exp

[∫ t

t0

∇ · V(t′ | x0, t0) dt′
]

(7.15)

Previous work [129, 130, 73] has arrived at the solution (7.15) by means of the con-

centration equation for particle number density φ (x, t), however the approach outlined

here uses only the equation (7.1) that describes particle motion within a velocity field,

which is of consequence when it comes to the numerical computation of∇·V(t′ | x0, t0).

The usual procedure for this involves rearrangement of (7.14) to directly yield

∇ · V(t | x0, t0) =
1

J(x0, t)
J̇(x0, t) (7.16)
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Knowledge of the Jacobian J (x0, t) can be used to directly compute the elemental de-

formation J(x0, t), and from this a numerical procedure used to calculate the derivative

J̇(x0, t). From (7.16) it is also explicit that if the elemental deformation J(x0, t) = 0

at any point along a particle trajectory, then the divergence of the particle velocity

field V(t | x0, t0) will be infinite, which represents either a zero or infinite concentra-

tion of particles depending upon the sign of ∇ · V(t | x0, t0) [91]. On the other hand,

substitution of the general expression (7.13) into (7.16) determines the divergence of

the particle velocity field solely in terms of the Jacobian inverse and its derivative

∇ · V(t | x0, t0) = tr
[
J −1(x0, t) · J̇ (x0, t)

]
(7.17)

The key assumption in determining ∇ · V(t | x0, t0) using (7.17) is that the Jacobian

J (x0, t) is invertible and therefore non-singular in order for the specification of∇·V(t |
x0, t0) to be well-posed, which is equivalent to the condition J(x0, t) 6= 0 inherent in

(7.16). However, the advantage of (7.17) is that ∇·V(t | x0, t0) can then be calculated

directly from the more basic quantity of J (x0, t) rather than its determinant, since for

a given particle equation of motion, both J (x0, t) and J̇ (x0, t) are necessarily known

at any given point in time. The exact operations of computing the inverse J −1(x0, t)

and taking the trace then require no numerical approximation, meaning that any error

introduced from the numerical treatment of J̇(x0, t) in (7.16) is avoided, and thereby

yielding a less involved means of evaluating ∇ · V(t | x0, t0).

In terms of the particle velocity field itself, from a computational viewpoint it is only

reasonable to define V(t | x0, t0) using the individual velocities of an ensemble of

particles. Together with (7.17) the process
[
V(t′),∇·V(t′)

]
involved in the formulation

is then fully specified, from which the increase in particle settling velocity can be

determined using (7.6).

7.3 Interpretation in terms of a Linear Drag Law

Within a simulation study, the statistics of the process (7.5) are required to determine

the evolution of the particle velocity field V(t | x0, t0) in time, however this reasoning

is somewhat circular since V(t | x0, t0) itself constitutes part of (7.5). Such statistics

would in practice be computed by solving the particle equation of motion backwards

(7.1) in time along trajectories, which in turn requires the prescription of a particle

velocity field V(t | x0, t0). To circumvent this, the required statistics can be computed
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directly using data from individual trajectories in a particle tracking simulation by

employing the JacobianJ (x0, t). This requires that the governing equation forJ (x0, t)

is determined for a specific particle equation of motion, and using the standard Stokes

drag model (6.15) and taking the derivative with respect to x0 results in

∂ẍp(t)

∂x0
= β

[
∂u(xp, t)

∂x

]>
· ∂xp(t)
∂x0

− β∂ẋp(t)
∂x0

Making the interpretation (7.7) then yields the equation of evolution for J (x0, t) spe-

cific to the Stokes drag model as

J̈ (x0, t) = −βJ̇ (x0, t) + β∇u>(xp(t), t) ·J (x0, t) (7.18)

Upon examination it is noticed that this is identical to the governing equation (6.19)

of the particle response tensor H [t; t′] which appears in the dispersion tensors of the

PDF kinetic model for the case of Stokes drag model. However, the distinction between

the evolution of J (x0, t) and H [t; t′] lies within the initial conditions. From (7.7) it is

clear that J (x0, t0) = I is the first initial condition as in (7.8), however since (7.8) is a

first-order system it contains no information about the initial specification of J̇ (x0, t).

By definition this represents the Jacobian of the particle velocity along its trajectory

with respect to its starting location

J̇ (x0, t) =
∂vp(t)

∂x0
(7.19)

Therefore the initial condition on J̇ (x0, t) depends on the initial distribution v0 of

particle velocities at time t0. In existing work [130, 72] it has been recognised that this

second initial condition is unconstrained by the physical evolution of the deformation

tensor, and that a careful choice is therefore required. The simplest approach is to take

v0 as being equal to the fluid velocity at the particle position, specifically v0 = u0 =

u(xp(t0), t0). This implies that in this case the initial condition on J̇ (x0, t) is equal to

J̇ (x0, t0) =
∂u0

∂x0
(7.20)

Using the same principle for any choice of initial particle velocity v0 enables an ap-

propriate initial condition to be imposed on J̇ (x0, t). In particular, if the particle

velocities are initialised in the manner outlined in section 5.3 using the conditional
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Gaussian distribution φ (v | u) as given by (5.58), then the specification of v0 is as in

equation (5.65)

v0 =
1

1 + StLp

[√
2StLp u

′ erf−1(2ψ − 1) + up(t0)
]

+ Vg

where ψ ∼ U[0,1] is a uniformly distributed parameter. Thus by (7.19) the initial

condition for J̇ (x0, t) in this case is given by

J̇ (x0, t0) =
1

1 + StLp

∂u0

∂x0
(7.21)

This completes the specification of the evolution of J (x0, t), which can then be deter-

mined from a simulation by numerically solving the governing equation (7.18) along

particle trajectories with the initial conditions J (x0, t0) = I and (7.21).

7.4 Comparison with the PDF Kinetic Model

For the time arguments that emerge from the derivation of the particle velocity field

drift tensor (7.6), the value for the divergence of the particle velocity field which is

required is given by ∇ · V(t′ | x, t). Using the appropriate arguments in (7.17) yields

∇ · V(t′ | x, t) = tr
[
J −1(x, t′) · J̇ (x, t′)

]
(7.22)

Thus in order to correctly compute the increase in settling velocity that particles ex-

perience when subject to a gravitational body force, it is the Jacobian J (x, t′) which

is required, or in other words the particle deformation tensor at time t′ with respect

to the trajectory endpoint x. Thus in this problem the initial conditions J (x0, t0) = I

and (7.21) become the equivalent final conditions, meaning that the governing equation

(7.18) for J (x, t′) formally requires solution backwards in time to produce the correct

interpretation of J (x, t′). This presents a problem however, as numerical solution of

(7.18) for times before the initial condition results in a solution which grows exponen-

tially, in the same manner as for the particle equation of motion outlined in section

6.7.1.

This highlights the difference between the particle velocity field approach and the PDF

kinetic model; the particle response tensorH [t; t′] which emerges in the dispersion ten-

sor κ(t) is evaluated forwards in time, however the particle Jacobian J (x, t′) requires
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evaluation backwards in time. The inherent difference between the FIT and BIT forms

of the governing equation (7.18) therefore means that using the FIT form to com-

pute J (x0, t′) with standard numerical methods will provide incorrect behaviour for

∇ · V(t′ | x, t). Thus despite H [t; t′] and J (x, t′) sharing a governing equation, it is

the respective imposition of conditions at the initial and final points on the trajectory

which distinguishes the behaviour of these quantities, and ultimately determines the

tractability of the approaches they correspond to. Nonetheless, in the absence of a

suitable procedure for computing the BIT Jacobian J (x, t′), the FIT form J (x0, t′) is

instead used in this work. This still permits a meaningful analysis of the evolution of

J (x0, t′) and J(x0, t), however evaluation of (7.6) may not be exact.

7.5 Numerical Assessment of the Particle Velocity

Field Approach

To test the efficacy of particle velocity field formulation at capturing the increase in

particle settling velocity, the KS velocity field specified in Chapter 5 is utilised. The

numerical treatment is identical to that outlined in section 5.2, with fact that the

governing equation (7.18) of the Jacobian J (x0, t) is the same as that of the particle

response tensor H [t; t′] meaning that the procedure for computation in section 5.2.2

and timestep criterion (5.33) remain the same.

To demonstrate the intricacies involved in computing ∇·V(t | x0, t0), it is appropriate

to consider the evolution of the elemental deformation J(x0, t) along a single trajectory,

in view of the condition J(x0, t′) 6= 0 needed to ensure the well-posedness of ∇ · V(t |
x0, t0). Such a realisation is seen in Figure 7.1, which shows that J(x0, t) evolves from

its initial condition J(x0, t0) = 1 but experiences a rapid decrease along this particular

trajectory such that it passes through zero at t ≈ τE. The implication of this is that

the reciprocal 1/J(x0, t) naturally experiences a singularity where the magnitude not

only becomes infinite, but a sign change also occurs. Evaluation of ∇ · V(t | x0, t0)

using (7.16) will therefore explicitly include this singularity, meaning that any average

statistics calculated using the contribution form this trajectory will be biased.

This is mostly easily seen through consideration of the average
〈
∇ · V(t | x0, t0)

〉
, as

shown in Figure 7.2. Use of (7.16) and the elemental deformation J(x0, t) results in〈
∇·V(t | x0, t0)

〉
decreasing smoothly from zero to a minimum at t ≈ 0.25τE, however

the average becomes increasingly noisy as it increases to an equilibrium value due to
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Figure 7.1: A single realisation of the evolution of J(x0, t) along a particle trajectory
obtained using KS for StE = 0.1 and Vg/u

′ = 1.0 in a two-dimensional fluid velocity
field: × J(x0, t);© 1/J(x0, t)
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Figure 7.2: Comparison of evolution of the average
〈
∇ · V(t | x0, t0)

〉
evalu-

ated from both (7.16) and (7.17), obtained using KS for StE = 0.1 and Vg/u
′ =

1.0 in a two-dimensional fluid velocity field: ×
〈

[1/J(x0, t)] J̇(x0, t)
〉
; ©〈

tr
[
J −1(x0, t)·J̇ (x0, t)

]〉
the presence of singularities in 1/J(x0, t). On the other hand, using (7.17) and the

Jacobian J (x0, t) actually amplifies the effect that J (x0, t) being almost singular has

on
〈
∇ ·V(t | x0, t0)

〉
, to the extent that it cannot be considered a meaningful average.

In this case then, using the expression
〈

[1/J(x0, t)] J̇(x0, t)
〉

provides a more useful

means of evaluating ∇ · V(t | x0, t0) and statistics arising from it.

This naturally begs the question as to whether specific treatment of either J(x0, t)

or J (x0, t) can provide an expression for ∇ · V(t | x0, t0) which is relatively free of

the effect from singularities. In particular, setting a limit on the degree of singularity

that J (x0, t) can possess in order to contribute to average statistics is an elementary

method of filtering out the confounding effect of singularities, with the practical use of

such a limit requiring fine tuning to exclude only the extreme values of ∇·V(t | x0, t0).

This is considered in further detail here, with only the realisations in which J (x0, t)
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Figure 7.3: Comparison of evolution of the average
〈
∇ · V(t | x0, t0)

〉
evaluated from

both (7.16) and (7.17) by setting a limit on the degree of singularity that J (x0, t)
can instantaneously experience in order to be included in the average, obtained us-
ing KS for StE = 0.1 and Vg/u

′ = 1.0 in a two-dimensional fluid velocity field: ×〈
[1/J(x0, t)] J̇(x0, t)

〉
;©

〈
tr
[
J −1(x0, t)·J̇ (x0, t)

]〉
is almost singular being removed from the average

〈
∇ · V(t | x0, t0)

〉
. The outcome

of this procedure is shown in Figure 7.3, from which it is seen that the filtering of

singularities has a substantial smoothing effect on the value of
〈
∇ · V(t | x0, t0)

〉
as

it equilibrates. Furthermore, the separate evaluations of
〈

[1/J(x0, t)] J̇(x0, t)
〉

and〈
tr
[
J −1(x0, t)·J̇ (x0, t)

]〉
are now in agreement as expected, demonstrating the ability

of such a filtering procedure to produce consistent results from distinct expressions

which each require different numerical treatment. It is worth noting however that this

procedure results in
〈
∇ · V(t | x0, t0)

〉
equilibrating at a higher value than that of the

average asymptotic value of
〈

[1/J(x0, t)] J̇(x0, t)
〉

in Figure 7.2, implying that such a

filtering procedure may produce a bias if there are more near singularities in J (x0, t)

which are negative than positive. Additionally, by the end of the sampling period

∼ 25% of trajectories failed to satisfy the limit set on the singularity of J (x0, t), with

the occurrence of singularities appearing to increase as time progresses.

With this restriction onJ (x0, t) being non-singular, it is now meaningful to use∇·V(t |
x0, t0) for the evaluation of other statistics, and specifically the drift tensor in (7.6)

which is used to determine the increase in particle settling velocity. The outcome of

this is shown in Figure 7.4, and it is seen that the particle velocity field |V2(t)−Vg|/u′

correctly retrieves an increase in the average settling velocity, however the magnitude

of this effect does not reach the full extent of the observed value |v2(t)−Vg|/u′, falling

∼ 30% short. At least some of this discrepancy can be attributed to the filtering

procedure used for ensuring that J (x0, t) remains non-singular, however this does not

explain other features of the qualitative behaviour of |V2(t)−Vg|/u′. In particular, the

184



7.6. CONCLUDING COMMENTS

PDF dispersion tensor |κ2(t)|/βu′ increases monotonically from zero to its asymptotic

value after ∼ 1.5τE, in contrast with |V2(t)− Vg|/u′ which first decreases to a negative

value. Furthermore, |V2(t)− Vg|/u′ also only reaches its asymptotic value after ∼ 2τE,

with a slower convergence rate than |κ2(t)|/βu′. These aspects are likely to be affected

by the fact that J (x0, t) is being computed FIT in this work rather than the correct

BIT from that is required for the drift tensor (7.6) as indicated in section 7.4, however

a thorough appraisal of the consequences arising from this numerical treatment of

J (x0, t) requires the equivalent BIT form to be known, and is therefore beyond the

scope of this preliminary investigation.
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Figure 7.4: Evolution of |V2(t) − Vg|/u′ compared to |κ2(t)|/βu′ and |v2(t) − Vg|/u′,
obtained from KS evaluation for StE = 0.1 and Vg/u

′ = 1.0 in a two-dimensional fluid
velocity field: —���— |V2(t)− Vg|/u′; —4— |κ2(t)|/βu′; —©— |v2(t)− Vg|/u′

7.6 Concluding Comments

The outcome from this analysis is that the particle velocity field formulation requires

further consideration with regards to the numerical treatment of the Jacobian J (x0, t′),

in order to provide a meaningful computational approach to evaluating inertial particle

behaviour. It is worth noting that alternative specification of a compressible fluid
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velocity field in which ∇ · u(x, t) 6= 0 and subsequent tracking of the fluid elements

along their trajectories would be another way of assessing the drift tensor (7.6). Such

an approach does however raise the question of how this compressibility would be

determined, and moreover how the inclusion of a gravitational body force could be

accounted for, since tracking fluid elements does not allow for the inclusion of gravity.

In the case of particle settling under gravity in an incompressible velocity field, eval-

uation of ∇ · V(t′ | x, t) is able to capture some of the observed increase in settling

velocity by computing J (x0, t′) forwards in time, however it does not retrieve the full

effect as in the case of the dispersion tensor κ(t) which arises from the PDF kinetic

model. As discussed in section 7.4, this is because the PDF kinetic model is capable of

correctly quantifying this effect through the particle response tensorH [t; t′] using stan-

dard numerical methods, however the particle velocity field approach formally requires

backward in time evaluation of J (x, t′), meaning that the correct behaviour cannot be

obtained with the same treatment. Nonetheless, the potential of the particle velocity

field approach to well describe the true particle behaviour may be possible to exploit

with specific numerical treatment, and remains as an avenue of future investigation.
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Chapter 8

Particle-Pair Models

8.1 Background

The phenomenon of particle clustering within turbulent flows is a subject that has

attracted widespread attention, with particles not being uniformly mixed by the tur-

bulence but instead tending to accumulate in low vorticity regions of the flow in the

same manner as particles settling under gravity, as outlined in section 3.4. The ma-

jority of existing work is predominantly concerned with the clustering of small inertial

particles that are governed using a simple linear drag law, with a mixture of simulation

studies that seek to gain further understanding into the physical mechanisms respon-

sible for clustering [171, 30, 18], but also the development of modelling approaches

which aim to describe the behaviour in terms of a more general theoretical framework

[177, 31, 15]. In particular a number of studies have investigated this effect via the

application of two-particle descriptions and the analysis of corresponding radial dis-

tribution functions in homogeneous flows as discussed in section 3.4.5, which involves

considering the particle concentration in terms of the separation distance between par-

ticles. In such a formulation, for two mono-dispersed particles with trajectories x1
p(t),

x2
p(t) and velocities v1

p(t), v
2
p(t), the inter-particle separation rp(t) = x2

p(t)−x1
p(t) and

relative velocity wp(t) = v2
p(t)−v1

p(t) define a Lagrangian frame of reference by setting

the particle x1
p(t) as the datum point. If the particle dynamics are governed by the

Stokes drag model (2.22) in a flow which is described by a velocity field U (x, t) and

subject to no external body forces, then the two-particle equation of motion is given

by the difference of the respective one-particle equations of motion
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r̈p(t) = β
[
U
(
rp(t) + x1

p(t), t
)
−U

(
x1
p(t), t

)
−wp(t)

]
,

rp(t0) = r0

wp(t0) = w0
(8.1)

For a homogeneous flow field the notion of an effective relative velocity field ũ(r, t) can

be introduced for small separations in space r = |r| by using a Taylor expansion of

U (x2, t) about x1, which to leading order yields the approximation [31]

U
(
x2, t

)
−U

(
x1, t

)
≈ r · ∇U

(
x1, t

)
≡ ũ (r, t) (8.2)

Then the two-particle equation of motion (8.1) is statistically equivalent to

r̈p(t) = β
[
ũ (rp(t), t)−wp(t)

]
,

rp(t0) = r0

wp(t0) = w0
(8.3)

This equation of motion takes the same form as the single particle model given by (8.1),

meaning that the associated two-particle PDF p (r,w, t) can be interpreted directly

within the existing framework for the usual one-particle PDF p (x,v, t). Of specific

interest is then the expression for the particle mass flux (4.48), in this case namely

ρw = ρ

[
〈ũ〉+ τp

{[
κ−∇ · λ

]︸ ︷︷ ︸
1

−∇ · cc︸ ︷︷ ︸
2

− D

Dt
w︸ ︷︷ ︸

3

}]

︸ ︷︷ ︸
convective flux

− τp
(
cc + λ

>
)
· ∇ρ︸ ︷︷ ︸

4
diffusive flux

(8.4)

Within the context of a particle-pair framework which exhibits a steady state, it is

then the convective flux contributions 1 and 2 to ρw that determine the equilibrium

distribution of ρ(r, t), which is also interpreted as the RDF in this case. The distinction

between the two-particle and one-particle models resides in the statistical properties

of ũ (r, t) and U (x, t), as while U (x, t) represents a homogeneous flow clearly ũ (r, t)

does not, with the consequence that the frame of reference resulting from use of the

separations rp(t) and wp(t) introduces an inhomogeneity to the model. This inhomo-

geneity is manifest within the contributions 1 and 2 to the particle mass flux, and as

discussed in section 4.2.3 previous modelling approaches either do not explicitly take

into account these terms [31], or assume that 1 ≡ 0 across all values of St [178].
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However, the balance between 1 and 2 can become a non-negligible contribution in

some flow configurations, the verification of which remains as an outstanding matter.

8.2 Inhomogeneous Flow Field Model

8.2.1 Specification

In order to investigate the phenomenon of particle clustering, the inhomogeneity that

is intrinsic to two-particle descriptions in a homogeneous flow can be likened to that

arising from one-particle behaviour within an inhomogeneous flow, thereby motivating

the construction of an inhomogeneous fluid velocity field. Taking inspiration from the

statistically equivalent form (8.3) of the two-particle equation of motion and follow-

ing the approach implicit in the work of Zaichik [177, 178, 179, 181], an appropriate

Eulerian velocity field u (x, t) can be specified by utilising the approximation for the

relative fluid velocity ũ (r, t) in (8.2), and fixing the position at which one of the fluid

velocities U (x, t) acts. Specifically, making the location-independent assignment of

x1 = 0 and also taking x2 = x in (8.2) yields the following approximation to ũ (r, t)

u(x, t) = U(x, t)−U(0, t) (8.5)

Thus this creates an inhomogeneity in the resultant velocity field u (x, t) from the

underlying homogeneous field U (x, t), and while (8.5) does not capture the exact

dynamics of particle-pair behaviour, it does offer a simple method for both evaluating

the various particle mass flux contributions in (8.4) and testing closure approximations.

8.2.2 Deductive Properties

Since the form of inhomogeneous flow field u (x, t) specified in (8.5) is determined

directly from the homogeneous velocity field U (x, t), relevant properties of u (x, t) can

be deduced in a straightforward manner from those of U (x, t). Most notably it is clear

that u(0, t) = 0 thereby creating an artificial sink at the reference point x = 0, and

the various characteristics of u (x, t) that arise due to this phenomenon are detailed in

the following.
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Invariance of Fluid Velocity Gradient

From the definition of u(x, t) in (8.5), since the term U(0, t) contains no spatial de-

pendence it directly follows that

∇u(x, t) = ∇U(x, t) (8.6)

Thus the fluid velocity gradient is unchanged from that of the homogeneous flow field

U(x, t). An immediate consequence of this is that if U(x, t) is incompressible, then so

is u(x, t).

Periodicity

If U(x, t) is taken to be periodic such that U(x + L, t) = U(x, t), then by (8.5)

u(x + L, t) = U(x + L, t)−U(0, t)

= U(x, t)−U(0, t)

= u(x, t) (8.7)

and thus u(x, t) is also periodic.

Zero-mean Flow

Taking
〈
U(x, t)

〉
= 0 when considered as a statistically stationary flow field in the

long-time limit, then using (8.5) yields

〈
u(x, t)

〉
=
〈
U(x, t)

〉
−
〈
U(0, t)

〉
= 0 (8.8)

Therefore the steady state form of u(x, t) is also a zero-mean flow field.

8.2.3 Interpretation in terms of the KS Velocity Field

From a simulation perspective, the specific form of the inhomogeneous velocity field

u(x, t) in (8.5) can be used to make further inferences about the statistical properties
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of the flow as well as computational aspects. In particular, for the KS velocity field

U(x, t) defined in Chapter 5 by (5.2), u(x, t) is consequently determined by

u(x, t) =
∑

k

ck(t)
[

exp
[
ik · x

]
− 1
]

(8.9)

Since the only modification required is a constant shift of the spatial exponential com-

ponent in the sum, (8.9) is therefore no more computationally demanding to con-

struct than the homogeneous velocity field (5.2). Furthermore, assuming that U(x, t)

conforms to a Gaussian distribution, then it follows that u(x, t) is also normally dis-

tributed. This can be seen by considering that if the form of U(x, t) as given by (5.2)

is Gaussian by the central limit theorem, then the distribution of u(x, t) defined by

(8.9) should be qualitatively the same as that of U(x, t), since all the random variables

in the KS procedure are within the ck(t) component of (8.9) and the shift is only ap-

plied to the deterministic exponential tail of (8.9). This important fact enables use of

the PDF kinetic model as an exact means of describing particle behaviour in the flow

field u(x, t) without requiring the contributions from the higher-order cumulants of

the expansion (4.9). The remaining implications of (8.5) are then on the fluid velocity

correlations which result from using this specific form of u(x, t).

Two-point Two-time Fluid Velocity Correlation Tensor

From the definition of u(x, t) in (8.5), a direct consequence is that the two-point two-

time fluid velocity correlations take the form

〈
u(x′, t′)u(x, t)

〉
=
〈
U(x′, t′)U(x, t)

〉
−
〈
U(x′, t′)U(0, t)

〉
−
〈
U(0, t′)U(x, t)

〉
+
〈
U(0, t′)U(0, t)

〉
Furthermore, the fluid velocity correlations of the zero-mean homogeneous KS velocity

field constructed in Chapter 5 are decomposed into the separate spatial and temporal

correlations Q(r) and Eω(s) respectively for r = x − x′ and s = t − t′, as given by

(5.10). Additionally, since U(x, t) is taken to be isotropic, and also denoting the two-

point correlations of u(x, t) by Q̃(x′; x) =
〈
u(x′, t)u(x, t)

〉
leads to the more compact

expression
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Q̃(x′; x)Eω(s) =
[
Q(r)−Q(x′)−Q(x) + Q(0)

]
Eω(s) (8.10)

This has the implication that even though u(x, t) is inhomogeneous and anisotropic,

the specific definition of the velocity field in (8.5) crucially enables the two-point cor-

relations Q̃(x′; x) to be represented as a superposition of isotropic correlation tensors.

As a result Q̃(x′; x) can be expressed in terms of the separation r and longitudinal

and lateral correlation coefficients f(r) and g(r) of U(x, t) by means of (5.17). Since

they are functions of spatial separation, the corresponding forms of f̃(r) and g̃(r) for

u(x, t) can also be decomposed in the same manner as (8.10). This has the consequence

that the longitudinal integral lengthscale L11 becomes location dependent on both the

points x and x′, and is therefore an intrinsically local quantity within the flow field.

In contrast, the temporal decorrelation function Eω(s) remains the same as for the

homogeneous velocity field U(x, t), meaning that the Eulerian integral timescale τE is

still that given by the global value of (5.27). This will not however be the case for

the model of the fluid timescale along inertial particle trajectories τLp given in (4.63),

which will be dependent on x in the inhomogeneous velocity field u(x, t), with this

dependence manifest in the Lagrangian fluid timescale τL. Thus the existing model for

τLp may still be applicable within this flow field, however it would require the additional

input of simulation data from τL(x). Furthermore, from (8.10), the one-point one-time

correlation of u(x, t) directly emerges as

〈
u(x, t)u(x, t)

〉
= 2
[
Q(0)−Q(x)

]
(8.11)

This implies that the mean square fluid velocities in the flow field u(x, t) are dependent

on the position x, which is of consequence when it comes to evaluating the LHA for

the PDF dispersion tensors in this configuration.

Implications on the PDF Dispersion Tensors

Following from (C.1) and (8.10), the specific form of the correlation tensor R̃ (x′, t′; x, t)

that emerges in the PDF kinetic model as defined in (4.25), applies in the case of Stokes

drag law with the fluctuating particle acceleration f(x, t) = βu′(x, t), and which is

associated with the inhomogeneous velocity field u(x, t), is given by

R̃ (x′; x, s) = β2
[
Q(r)−Q(x′)−Q(x) + Q(0)

]
Eω(s) (8.12)
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Additionally, the spatial gradient of R̃ (x′, t′; x, t) required for evaluation of the PDF

dispersion tensor κ (x, t) is then

∂

∂x
R̃ (x′; x, s) = β2

[
∂

∂x
Q(r)− ∂

∂x
Q(x)

]
Eω(s) (8.13)

where the expression for ∂
∂x

Q(r) is given in Appendix C by (C.16). One implication

from (8.12) is that at x = 0 it follows that R̃ (x′, t′; 0, t) = 0, and therefore the disper-

sion tensors λ (0, t) and µ (0, t) are identically zero. On the other hand, evaluation of

(8.13) at x = 0 yields that

∂

∂x
R̃ (x′, t′; 0, t) = β2 ∂

∂x
Q(−x′)Eω(s)

which highlights that in contrast to λ (0, t) and µ (0, t) the behaviour of κ (0, t) is

highly dependent on the non-local contribution arising from x′ in this specific inho-

mogeneous velocity field. On this basis alone, it is therefore appropriate to use the

velocity field u(x, t) as a means of investigating the convective flux contribution 1

given by κ−∇ ·λ that emerges within the expression for the particle mass flux (8.4).

Periodicity Considerations

In the same manner as in section 5.2.5, the periodic treatment of the particle separation

rp(t) = x − xp(t′) along trajectories requires careful handling. Specifically, as rp(t) is

the distance between two points on a trajectory, if this quantity becomes discontinuous

when it passes through a boundary this will give an incorrect result, therefore requiring

that the true non-periodic trajectory is constructed in order to correctly compute rp(t).

In contrast, x and xp(t
′) describe positions relative to the fixed origin, and as this

is located at the centre of the box B = [−L,+L]d the correct treatment of these

quantities is necessarily with the periodic values. Notwithstanding this, even though

the distance of particles from the origin remains continuous when they pass through

boundaries, there is a discontinuity in the value of the components of x itself. To rectify

this discrepancy, it is therefore a necessary condition that the domain boundaries are

sufficiently far from the origin in order for the fluid velocity U(x, t) to be fully spatially

decorrelated over this distance. This ensures that the change in sign to components of x

when they pass through boundaries does not inappropriately influence the behaviour of

the two-point two-time correlation tensor R (x′, t′; x, t) in which all components should
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behave continuously, and is equivalent to the condition of L/L11 � 1 given in (5.30)

arising from the construction of the KS velocity field. Then as long as this condition

is satisfied, the evaluation of R (x′, t′; x, t) for the required values of rp(t), x and xp(t
′)

can be performed correctly.

Particle Velocity Initialisation for Inhomogeneous Flow

To initialise the particle velocities using the conditional distribution developed in sec-

tion 5.3, it is necessary to replace the appearance of the mean square fluctuating fluid

velocity u′2 appropriate for a homogeneous flow with the expression for the location-

dependent Reynolds stresses in (8.11) that are associated with the velocity field u(x, t).

Then taking the distribution characterised by the mean qm(u) and covariance matrix

QΘ in (5.58) and further omitting the inclusion of gravity yields

qm(u) =
1

1 + StLp
u , QΘ =

2StLp
(1 + StLp)2

[
Q(0)−Q(x)

]
(8.14)

Initialising the velocity of particles within a simulation in accordance with (8.14) will

subsequently enable the steady state behaviour to be reached sooner.

8.2.4 Representation in a Radial Frame of Reference

Owing to the presence of a stagnation point in the fluid velocity field at x = 0 that arises

from the definition (8.5), in addition to being inhomogeneous the resultant velocity field

exhibits a radial symmetry about the origin. Consequently it is instructive to consider

the problem in an appropriate frame of reference, and taking d = 2 this determines

polar coordinates as being the obvious choice.

Polar Conversion of the Dispersion Tensors

Although it is possible to formulate the PDF kinetic model in a polar frame of reference

from first principles, the resulting complexity of the description that arises due to the

basis vectors being non-constant complicates both the computational implementation

and subsequent modelling procedure. As an alternative, it is proposed to run simula-

tions and carry out modelling in a Cartesian frame of reference, and then transform

the results to the required polar representation. Since it is the behaviour of the PDF
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dispersion tensors κ (x, t), λ (x, t) and µ (x, t) which is of interest in this system, it is

representations of these which are sought in polar form. Defining the polar coordinates

by q = (q, θ), then the standard transformations (q, θ)↔ (x1, x2) given by x1 = q cos θ

and x2 = q sin θ define the change of basis matrix

P(θ) =

[
cos θ sin θ

− sin θ cos θ

]
(8.15)

As all of κ (x, t), λ (x, t) and µ (x, t) describe the particle behaviour at the single point

x, it is permissible to simply use (8.15) for the polar angle θ associated with x to

transform these tensors

κ (q, t) = P(θ) · κ (x, t)

λ (q, t) = P(θ) · λ (x, t) ·P>(θ) (8.16)

µ (q, t) = P(θ) · µ (x, t) ·P>(θ)

(8.17)

Fluid Velocity Correlation Tensor

In order to make inferences about the PDF dispersion tensors in this frame of reference,

the structure of the fluid velocity correlations also needs to be considered. For the two-

point correlation tensor Q(r) in the simplified case of a homogeneous isotropic flow, the

difficulties arise due to the components of the separation vector r = x − x′ not being

expressible as a simple difference of the corresponding components for the points x

and x′ in polar coordinates. To illustrate this, consider the points denoted by (q, θ)↔
(x1, x2) and (q′, θ′) ↔ (x′1, x

′
2), then representation of the separation (p, ϕ) ↔ (r1, r2)

in polar coordinates is given by

p =
√

q2 − 2qq′ cos(θ − θ′) + q′2 (8.18)

ϕ = arctan

(
q sin θ − q′ sin θ′

q cos θ − q′ cos θ′

)
(8.19)

Thus the decoupling between the components of r that exists in the Cartesian frame of

reference is no longer present in polar coordinates. Accordingly, the transformation of
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the two point correlation tensor Q(x; x′) as given in (5.17) using the associated change

of basis matrices P(θ) and P(θ′) such that Q(q; q′) = P(θ′) ·Q(x; x′) ·P>(θ) yields

Qqq(q; q′) = u′
2

[
f(p) cos(θ − θ′)−

[
f(p)− g(p)

]qq′

p2
sin2(θ − θ′)

]
Qqθ(q; q′) = −u′2

[
g(p) +

[
f(p)− g(p)

] q′

p2

[
q′ − q cos(θ − θ′)

]]
sin(θ − θ′)

Qθq(q; q′) = u′
2

[
g(p) +

[
f(p)− g(p)

] q

p2

[
q− q′ cos(θ − θ′)

]]
sin(θ − θ′)

Qθθ(q; q′) = u′
2

[
g(p) cos(θ − θ′) +

[
f(p)− g(p)

]qq′

p2
sin2(θ − θ′)

]
(8.20)

where the components of Q(q; q′) are such that Qqq(q; q′) = Q‖(q; q′), Qθθ(q; q′) =

Q⊥(q; q′) etc. It is seen that the resultant correlation tensor is a function of the

separation displacement p but not the angular separation ϕ, however an explicit de-

pendence on both q and q′ also emerges. As a result, using the general form of (8.20)

for constructing closure models is too complicated to be tractable, meaning that the

non-local contribution from q′ cannot easily be accounted for with such an approach.

Nonetheless, and consistent with the local homogeneous approximation, the one-point

correlation at q′ = q can still be utilised as the basis of a simple model, whereby (8.20)

reduces to

Q(q; q) = u′
2

[
f(q) 0

0 g(q)

]
(8.21)

Thus the one-point correlations Q(q; q) depend only upon the radial displacement q

from the origin, and are independent of θ. For the inhomogeneous velocity field u(q, t),

this results in the Reynolds stresses given by (8.11) taking the form

〈
u(q, t)u(q, t)

〉
= 2u′

2

[
1− f(q) 0

0 1− g(q)

]
(8.22)

For the choice of longitudinal correlation coefficient f(r) specified in (5.19), the vari-

ation of the mean square fluid velocity profile is shown in Figure 8.1. At large radial

displacements q towards the domain edges the correlation profile is uniform as in a

homogeneous velocity field, however at small radial displacements the correlations de-

crease toward zero producing a region of marked inhomogeneity, with
〈
u′q(q)u′q(q)

〉
= 0
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Figure 8.1: Variation of the mean square fluctuating fluid velocity correlation profile〈
u′q(q)u′q(q)

〉
with radial displacement q for u′ = 1

at the origin. It is the profiles of the dispersion tensors κ (q, t), λ (q, t) and µ (q, t)

which are of interest within this region.

Local Homogeneous Approximations for the Dispersion Tensors

The steady state LHA expressions for κ (q), λ (q) and µ (q) which are appropriate to

the inhomogeneous flow field u(q, t) in the polar frame of reference can be obtained

by replacing the appearance of u′2 in the homogeneous version of the model given by

(4.66) with the Reynolds stresses associated with u(q, t) as in (8.22), leading to the

expressions

λ
LHA

(q) = 2u′
2 1

StLp (1 + StLp)

[
1− f(q) 0

0 1− g(q)

]

µLHA(q) = 2u′
2 β

1 + StLp

[
1− f(q) 0

0 1− g(q)

]
=

1

τLp
λ

LHA
(q) (8.23)

κLHA(q) = 0

The approximation for κ(q) remains zero due to the Green’s function approximation

H [t; t′] in (4.65) causing ∂
∂x

R̃ (x′; x, s) to contract to zero as a consequence of the

incompressibility of u(x, t). Furthermore, the model for the decorrelation function

E(s; x) given in (4.62) remains the same with the global form of the fluid decorrelation

timescale along particle trajectories τLp in (4.63) being used, which in the context of
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an inhomogeneous flow is an approximation that is likely to cause shortcomings in

the resultant models. Nonetheless, the approximations (8.23) provide a basic level of

description for particle behaviour in the inhomogeneous velocity field u(x, t), as well

as a benchmark against which models can be assessed.

A direct consequence of (8.23) is that ∇ · λLHA
(q) = 0 due to the contraction ∂

∂q
·

R̃ (q; q, s) = 0, and as a result the LHA fails to capture any of the convective flux

contribution κ − ∇ · λ. Additionally, an estimate for the particle kinetic stresses

cc (q, t) can be constructed from the kinetic stress transport equation (4.44) using

assumptions consistent with the LHA. Specifically, taking the steady state form of

(4.44) and neglecting all spatial gradients, making the approximation cκ (q, t) ≈ 0

discussed in section 4.3, and from (4.56) using that F = −βv for the Stokes drag

model yields the approximation

cc (q, t) ≈ 1

β
µLHA(q) (8.24)

with µLHA(q) as given in (8.23). This then predicts that turbophoretic contribution

2 arising from the expression for the particle mass flux (8.4) is ∇ · cc (q, t) ≈ 0 again

owing to the contraction ∂
∂q
· R̃ (q; q, s) = 0, meaning that as with 1 this term is

also neglected using simple local homogeneous approximations. Substitution of the

appropriate approximations into (8.4) then yields for the particle number density that

ρ(q) = C, with C being a constant, and therefore modelling at the level of the LHA fails

to retrieve any evidence of the expected build up in particle concentration associated

with particle-pair behaviour that is characterised by the RDF.

8.3 Numerical Assessment using KS

To investigate the importance of the various contributions to the particle mass flux

expression (8.4) in the inhomogeneous flow field u(x, t) = U(x, t) − U(0, t), the KS

velocity field in Chapter 5 is utilised along with the additional considerations outlined

in section 8.2.3. All particle statistics including those for the PDF dispersion tensors

κ (q, t), λ (q, t) and µ (q, t) are evaluated conditional on the radial coordinate q, and

in particular, the steady state particle number density ρ(q) is calculated such that

ρ(q) =
Nq

δAq

(8.25)
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where Nq is the number of particles at radial displacement q, and δAq is the area of

the sampling region at radial displacement q. Normalisation of ρ(q) is then carried out

using

ρ̂(q) =
ρ(q)A
N

(8.26)

where N is the total number of particles in the domain, and A is the total domain area.

Therefore ρ̂(q) is equal to the RDF, and provides a measure of the concentration build-

up around the origin that arises due to the form of the inhomogeneous velocity field

u(q, t). The simulations have been initialised with a uniform particle distribution, and

run until a steady-state concentration ρ̂(q) is reached before the sampling of statistics is

carried out. Furthermore, the spatial derivatives required for the quantities∇·λ(q) and

∇ · cc(q) are calculated numerically using fourth order central differencing, reducing

to second-order forward and backward differencing at the boundaries. The results

presented are for two different Stokes numbers, StE = 0.1 and StE = 1.0, across two

different fluid RMS values for the velocity field U(x, t), u′ = 1.0 and u′ = 4.0.

8.3.1 Particle Concentration and PDF Dispersion Tensor Be-

haviour

To begin with, the radial profiles of the normalised particle number density ρ̂ and

dispersion tensor components κqq/βu
′, λqq/u

′2, and µqq/βu
′2 are considered, with the

behaviour across the respective cases being illustrated in Figures 8.2 - 8.5.

Due to the method in which the inhomogeneous flow field (8.5) is defined, a radial

variation in the particle number density ρ̂(q) is observed across all cases of StE and u′.

Near the origin there is a noticeable build up of particles as u(x, t) decreases to zero, and

within the context of a particle-pair framework this is equivalent to particle clustering

at small spatial separations, in agreement with previous work [31, 178]. On the other

hand, a uniform concentration is observed away from the origin, which corresponds to

no preferential concentration at larger separations in the particle-pair sense.

Across the different cases in Figures 8.2 - 8.5, the profile for ρ̂(q) is seen to be sensitive

to changes in both StE and u′. It is observed as expected that at the smaller Stokes

number StE = 0.1 there is more pronounced clustering at smaller separations, with a

sharp concentration gradient being evident compared to the relatively shallow slope for

StE = 1.0. Notably, for the case of StE = 0.1 and u′ = 1.0 in Figure 8.2 the particle
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Figure 8.2: Radial profiles of the steady-state normalised particle number density ρ̂
and dispersion tensor components κq/βu

′, λqq/u
′2, and µqq/βu

′2 obtained using KS for

StE = 0.1 and u′ = 1.0: × ρ̂, κKS
q /βu′, λ

KS

qq /u
′2, µKS

qq /βu
′2; —— κLHA

q /βu′, λ
LHA

qq /u′2,

µLHA
qq /βu′2

concentration actually decreases below its uniform value as the radial separation grows

before equilibrating, and in general at StE = 0.1 an increase in concentration is only

seen within a radial distance of L11 from the origin. By contrast, for StE = 1.0 evidence

of preferential concentration is seen up to a displacement of 1.5L11 from the origin,

and this is due to the higher inertia of particles enabling them to escape further from

the origin whilst the effect of the inhomogeneous flow field still makes a contribution

towards the recent path-history.

The magnitude of the clustering effect at the origin is seen to be dependent on changes

in both StE and u′, with the highest concentration observed as being ∼ 130% greater

than the uniform level for the case StE = 0.1 and u′ = 4.0 in Figure 8.4, however the

lowest concentration increase of ∼ 8% is also for u′ = 4.0, this time with StE = 1.0

in Figure 8.5. Consequently, the higher level of RMS fluctuation intensity does not

uniformly affect the peak concentration of particles across different values of StE.

However at u′ = 1.0, the increase in concentration at the origin of ∼ 40% and ∼ 60%
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Figure 8.3: Radial profiles of the steady-state normalised particle number density ρ̂
and dispersion tensor components κq/βu

′, λqq/u
′2, and µqq/βu

′2 obtained using KS for

StE = 1.0 and u′ = 1.0: × ρ̂, κKS
q /βu′, λ

KS

qq /u
′2, µKS

qq /βu
′2; —— κLHA

q /βu′, λ
LHA

qq /u′2,

µLHA
qq /βu′2

for StE = 0.1 and StE = 1.0, as shown in Figures 8.2 and 8.3 respectively, demonstrates

that the decreased value of u′ produces a more uniform effect on the peak concentration

level. Furthermore, previous work [15] has shown that peak clustering occurs at around

Stη = 1, below which the preferential concentration diminishes regardless of the value

of u′ as the particle inertia tends to that of fluid points.

In terms of the radial component for the PDF dispersion tensors λqq (q) and µqq (q)

the expected zero behaviour at the origin is observed, away from which an increase

with radial position is exhibited that levels off to a uniform value once the statistics

are taken sufficiently far from the origin, where the effect of inhomogeneity in the

flow field is no longer seen. This behaviour is also captured by the LHA expressions

λ
LHA

qq (q) and µLHA
qq (q) given in (8.23), although the values for the uniform region near

the domain boundaries differ from those given in simulations. From (8.23), the radial

dependence of these profiles is therefore determined by the parameter σk intrinsic to

the definition (5.19) of f(q) in this work, and since this is uniquely determined by the
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Figure 8.4: Radial profiles of the steady-state normalised particle number density ρ̂
and dispersion tensor components κq/βu

′, λqq/u
′2, and µqq/βu

′2 obtained using KS for

StE = 0.1 and u′ = 4.0: × ρ̂, κKS
q /βu′, λ

KS

qq /u
′2, µKS

qq /βu
′2; —— κLHA

q /βu′, λ
LHA

qq /u′2,

µLHA
qq /βu′2

longitudinal integral lengthscale L11 which is not varied in these simulations, the form

of radial profile for λqq (q) and µqq (q) is qualitatively similar across all values of StE

and u′ in Figures 8.2 - 8.5. The magnitude of both λqq (q) and µqq (q) away from the

stagnation point at q = 0 is seen to be almost independent of u′, but does however vary

strongly with StE such that λqq (q) is over an order of magnitude greater at StE = 0.1

than StE = 1.0, whilst µqq (q) is around twice as prominent. This is a consequence

of the contribution that the particle response tensor H[t; t′] and its derivative Ḣ[t; t′]

make within the respective expressions for λqq (q) and µqq (q), with the smaller particle

inertia meaning that more of the path history interactions are accounted for byH[t; t′]

and Ḣ[t; t′] in this case, subsequently leading to the higher values of λqq (q) and µqq (q).

The accuracy of the approximations λ
LHA

qq (q) and µLHA
qq (q) is seen to vary across the

different values of StE and u′, and despite successfully giving the zero behaviour at the

origin, they fail to capture the true values of these dispersion tensors at increasing radial

displacements in this inhomogeneous configuration. In the case of StE = 0.1 the LHA
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Figure 8.5: Radial profiles of the steady-state normalised particle number density ρ̂
and dispersion tensor components κq/βu

′, λqq/u
′2, and µqq/βu

′2 obtained using KS for

StE = 1.0 and u′ = 4.0: × ρ̂, κKS
q /βu′, λ

KS

qq /u
′2, µKS

qq /βu
′2; —— κLHA

q /βu′, λ
LHA

qq /u′2,

µLHA
qq /βu′2

for µqq(q) captures the true behaviour better than that for λqq(q), and as discussed in

section 4.5 previous work has shown that this is due to µqq(q) sampling less of the non-

local particle path history than λqq(q), meaning that µLHA
qq (q) is able to account for a

greater proportion of the true behaviour than λ
LHA

qq (q). Nonetheless, for the particular

values of StE = 0.1 and u′ = 4.0 in Figure 8.4, the behaviour of µqq(q) observed from

the simulation is seen to depart from the expected profile whereas that for λqq(q) does

not, demonstrating that µLHA
qq (q) is not uniformly a better approximation than λ

LHA

qq (q)

across the entire parameter space {StE, u′}.

Furthermore, for the case StE = 1.0 and u′ = 4.0 in Figure 8.5, the LHA values

are seen to be closely aligned with the correct behaviour of λqq(q) and µqq(q), and

indeed are actually a slight over-approximation. This can only occur if the model for

the fluid timescale along particle trajectories τLp provides an overestimation, and for

the particular case of the Wang & Stock [165] model utilised here, reference to the

turbulence structure parameter m in (5.34) shows why this is the case. Since the Wang
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& Stock model was proposed using simulation data in which m = 1, this necessarily

implies that for fixed L11 and τE the condition u′ = 1.0 must be met in this KS velocity

field in order for τLp to be a valid model. Consequently, for the case in question with

u′ = 4.0, a more appropriate model for τLp is needed to provide a realistic assessment

of the LHA. Nonetheless, use of the existing model for τLp still captures the qualitative

characteristics of λqq(q) and µqq(q) for u′ = 4.0, and produces a first approximation to

the correct behaviour.

For the dispersion tensor κq(q), the LHA from (8.23) is identically zero irrespective

of the values of StE and u′, however in all of Figures 8.2 - 8.5 the simulation results

demonstrate that κq(q) is distinctly non-zero. As with λqq(q) and µqq(q), κq(q) exhibits

uniform behaviour when far from the origin, and in this region of the domain is equal

to zero in agreement with κLHA
q (q). However as the origin is approached at decreasing

radial displacements, κq(q) becomes markedly variable, reaching a peak in magnitude

before reducing to varying values at q = 0. The normalised value of this peak is seen

to exhibit a strong dependence on the Stokes number, being two orders of magnitude

greater at StE = 0.1 than StE = 1.0. In contrast, for a given value of StE the different

cases of u′ do not see much variation in this magnitude, however crucially the sense in

which κq(q) acts is reversed, with the net result being negative for both cases in which

u′ = 1.0 but positive for the cases with u′ = 4.0. Furthermore, the radial displacement

at which the peak magnitude of κq(q) is observed increases as a function of both

increasing StE and increasing u′, whilst the value of κq(q) at q = 0 is seen to increase

when both StE and u′ are decreased. This clearly demonstrates the requirement for

an improved description of this behaviour over the trivial approximation κLHA
q (q) = 0,

and warrants further investigation into the relative contributions of the particle mass

flux terms.

8.3.2 Diffusive and Convective Flux Contributions

Evaluation of the various contributions arising in the expression for the particle mass

flux (8.4) using KS data is now considered across the same values of StE = {0.1, 1.0}
and u′ = {1.0, 4.0}, with the results given in Figures 8.6 - 8.9. Specifically, the ratio

of the diffusive flux contributions given by λ
KS

qq /cqcq
KS and the individual effect of

the normalised convective flux contributions (κ −∇ · λ)KS
q /βu′ and (∇ · cc)KS

q /βu′ is

analysed.

In terms of the dispersion tensor λqq(q), the efficacy of the LHA for retrieving the

correct behaviour at different radial displacements q can be seen by analysing the ratio
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Figure 8.6: Evaluation of the relative contributions of the radial mass flux terms using

KS for StE = 0.1 and u′ = 1.0. Left: ◦ assessment of the LHA using λ
KS

qq /λ
LHA

qq ; ♦♦♦

ratio of the diffusive flux contributions λ
KS

qq /cqcq
KS. Right: 4 normalised convective

drift flux contribution (κ−∇·λ)KS
q /βu′; ��� normalised turbophoretic flux contribution

(∇ · cc)KS
q /βu′

λqq/λ
LHA

qq . Due to the fact that both of these quantities reduce to zero at the origin,

even though the absolute difference between them is small their ratio is not, enabling

the relative sizes of λqq and λ
LHA

qq to be discerned. From this it is clear that only at the

grid point closest to the origin does the true value of λqq differ significantly from that

of λ
LHA

qq , with this simply representing the numerical error involved in the calculation of

λqq(0) from an ensemble of particles, which by contrast λ
LHA

qq (0) = 0 does not exhibit.

Aside from this, the ratio λqq/λ
LHA

qq takes on a near unity value away from the fluid

stagnation point at the origin in all cases of StE and u′, showing that the dominant

contribution to λqq(q) is retrieved by λ
LHA

qq (q), and that the non-local effects omitted

from λ
LHA

qq (q) are less important in this inhomogeneous configuration.

Such an approach can also be utilised for analysing the relative importance of the

diffusive flux contributions λqq(q) and cqcq(q) from the term 4 in the particle mass

flux expression (8.4). The ratio λqq/cqcq is seen to varying significantly across the

different cases of StE and u′ shown in Figures 8.6 - 8.9, with a strong dependence

on Stokes number observed. Notably, away from the stagnation point at q = 0 the

diffusive contribution from λqq(q) is seen to be ∼ 5 times greater than that from cqcq(q)

in the cases for StE = 0.1, however for StE = 1.0 the kinetic stresses cqcq(q) are around

twice the magnitude of λqq(q). This is chiefly because the value of λqq(q) for StE = 0.1

is seen to be a full order of magnitude greater than at StE = 1.0 as seen in Figures 8.2

- 8.5, whereas the kinetic stresses do not exhibit such a marked change with variation

of StE. In contrast, almost no change in the ratio λqq/cqcq is observed away from the

stagnation point at the origin for the different cases of u′ at a given StE, however the
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Figure 8.7: Evaluation of the relative contributions of the radial mass flux terms using

KS for StE = 1.0 and u′ = 1.0. Left: ◦ assessment of the LHA using λ
KS

qq /λ
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KS

qq /cqcq
KS. Right: 4 normalised convective

drift flux contribution (κ−∇·λ)KS
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relative importance of λqq(q) and cqcq(q) does change in the region of q = 0 for the

different values of u′ at StE = 0.1. Specifically, for u′ = 1.0 it is λqq(q) which becomes

the dominant contribution in the limit q→ 0, whereas for u′ = 4.0 the kinetic stresses

cqcq(q) are dominant in this limit. On the other hand, when StE = 1.0 it is cqcq(q)

which is dominant in the limit q → 0 for both values of u′. Thus overall the relative

contributions of λqq(q) and cqcq(q) to the diffusive flux are strongly dependent on only

the Stokes number away from the stagnation point at q = 0.

For the drift flux contributions (κ−∇·λ)q and (∇·cc)q that constitute the respective

terms 1 and 2 in the particle mass flux expression (8.4), it is more appropriate to

analyse these two quantities directly due to the near-zero values they take on away

from the effect of inhomogeneity in the fluid velocity field. These two quantities do

display non-zero behaviour in the region near the stagnation point q = 0 however, as

evidenced in Figures 8.6 - 8.9, with the relative importance of each being determined

by both the values of StE and u′, and also the radial displacement q. For StE = 0.1

the dominant contribution is found to be from the non-local drift (κ−∇·λ)q, however

it acts in different directions depending on the value of u′, being positive for u′ = 1.0

in Figure 8.6, but negative for u′ = 4.0 in Figure 8.8. Furthermore, in Figure 8.6 it is

seen that (κ−∇ · λ)q is only dominant over the turbophoretic contribution (∇ · cc)q

in the region 0.5L11 < q < 1.5L11, being of the same magnitude in the region near to

q = 0. In comparison, (∇·cc)q is seen to be dominant for StE = 1.0, notably becoming

an order of magnitude greater than (κ − ∇ · λ)q at q = 0 for u′ = 1.0 in Figure 8.7,

and further this expression always acts in a positive sense.
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Figure 8.8: Evaluation of the relative contributions of the radial mass flux terms using

KS for StE = 0.1 and u′ = 4.0. Left: ◦ assessment of the LHA using λ
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From the particle mass flux expression (8.4) the net drift flux in a steady-state system

is seen to be the difference between the terms 1 and 2 , and in light of the foregoing

discussion will therefore be larger when these contributions are of opposite signs and

compound each other, which only happens in the case of low particle inertia and high

fluid RMS velocity fluctuation intensity in Figure 8.8 which corresponds to StE = 0.1

and u′ = 4.0. Then since it is the convective flux contribution which determines the

particle concentration profile, this is consistent with the case for StE = 0.1 and u′ = 4.0

displaying the highest preferential particle concentration observed in Figure 8.4. As

a result, since the expression (κ − ∇ · λ)q is the dominant contribution to the drift

flux, it is therefore this quantity which is chiefly responsible for the pronounced build-

up of particle concentration at q = 0 in this instance. Additionally, it is noted that

the particle concentration increase for StE = 1.0 and u′ = 1.0 is attributable to the

turbophoretic contribution which is dominant in this case, with (κ−∇·λ)q being much

smaller in comparison. This still causes an increase in particle concentration as (∇·cc)q

is always positive, but acts inward radially in the particle mass flux expression, thereby

inducing a drift flux towards the stagnation point at q = 0. In contrast, (κ −∇ · λ)q

acts outward radially in the particle mass flux expression, and therefore it is only when

this contribution becomes negative that it acts to enhance the clustering of particles

in the region of q = 0. Thus this identifies two separate mechanisms which are capable

of inducing a drift flux that results in an increased preferential particle concentration

occurring, and which further can act together or against each other depending upon

the values of StE and u′.
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Figure 8.9: Evaluation of the relative contributions of the radial mass flux terms using

KS for StE = 1.0 and u′ = 4.0. Left: ◦ assessment of the LHA using λ
KS

qq /λ
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KS. Right: 4 normalised convective

drift flux contribution (κ−∇·λ)KS
q /βu′; ��� normalised turbophoretic flux contribution

(∇ · cc)KS
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8.4 Concluding Comments

Numerical assessment of the different terms within the particle mass flux expression

using the specifically constructed KS velocity field u(x, t) = U(x, t)−U(0, t) has shown

that the dominant contribution to both the diffusive and convective fluxes is determined

principally by the value of StE, with u′ playing a lesser role and only affecting the

magnitude of the resultant fluxes. For the diffusive fluxes, the dispersion tensor λqq(q)

is dominant for small StE, whereas the kinetic stresses cqcq(q) dominate for large StE.

In terms of the convective fluxes, (κ −∇ · λ)q is the dominant contribution for small

StE, whilst the turbophoretic term (∇ · cc)q dominates for large StE. Furthermore,

the direction in which (κ−∇ · λ)q acts varies depending upon u′, becoming negative

for large u′. Since the two contributions to the net convective flux act opposite to each

other within the expression for the particle mass flux, the highest build up of particle

concentration is accordingly seen for small StE and large u′ for which (κ − ∇ · λ)q

becomes negative, as the individual contributions that (κ−∇·λ)q and (∇· cc)q make

to the particle mass flux are then in the same direction. This is notable in the context of

developing closure models, as the approximation κ−∇·λ = 0 has been used as the basis

for forming closures in previous work on the premise that this expression only makes

a negligible contribution to the convective flux. However, the findings presented here

indicate that there are no solid grounds for making such an approximation uniformly

across all cases of StE and u′, thereby providing the motive for developing improved

closures for the expression κ−∇ · λ in future work.
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Chapter 9

Conclusions and Future Work

The research presented in this thesis has focused upon using the PDF kinetic model

as a means of describing the behaviour of dispersed inertial particles in a zero-mean

Gaussian fluid velocity field, with the efficacy of this framework at capturing the phe-

nomenological behaviour in different flow configurations being numerically assessed

through the use of a flow field constructed via kinematic simulation. The formulation

of a new closure model appropriate to these specific flow configurations has been car-

ried out, and it has been demonstrated that the proposed model captures the leading

order effects of the particle behaviour which is exhibited in these configurations. Fur-

thermore, the ability of the particle velocity field description to capture this behaviour

has also been assessed. The following summary appraises the contributions made by

this research in more detail, and outlines the subsequent avenues of investigation which

naturally follow on from the work undertaken.

9.1 Distribution for Particle Velocity Initialisation

Although mainly a point of computational interest, a probability distribution of the

particle velocity conditional on the fluid velocity has been constructed in section 5.3 as

a means of initialising particle velocities within a simulation so that the steady-state

statistics of the particle phase are conformed to. This distribution has been shown

to noticeably reduce the initial transience which occurs, and consequently decreases

the time needed for simulations to reach a steady-state. As further demonstrated

in section 8.2.3, this distribution can be adapted to cater for inhomogeneous flows

by replacement of the mean-square fluctuating fluid velocities u′2 with the Reynolds
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stresses
〈
u(x)u(x)

〉
which are appropriate to the specific flow configuration that is

under consideration. In the context of particle tracking simulations that require a

large number of particles to be included within the ensemble in order for sufficiently

noise-free averaged statistics to be obtained, this represents a noteworthy saving in the

overall computational expense of a simulation, and as such may be of interest to other

researchers working with simulations of disperse particle transport.

9.2 Drift Enhancement in Gravitational Settling

9.2.1 Conclusions

Analysis has been carried out on the enhancement in settling rate experienced by in-

ertial particles under the influence of a gravitational body force in a zero-mean homo-

geneous flow, and this has shown that the reduction in symmetry which is intrinsic to

this configuration can be used to determine which components of quantities associated

with the particle phase will be non-zero. It is shown that the dispersion tensor κ that

emerges within the PDF kinetic model [44, 124, 150, 71] is an exact representation of

the modification in particle settling velocity, and furthermore this is also demonstrated

numerically for the case of a linear drag law through the use of kinematic simulation in

which the Eulerian fluid velocity has a Gaussian distribution. Additionally, by using

a cumulant expansion on the unclosed average within κ, it is demonstrated that the

dominant contribution to the increase in particle settling velocity is a second-order

effect that arises due to interaction of particles with the structures of the fluid velocity

field. In contrast, the leading-order contribution that arises from the mean behaviour of

particles only plays a minor role in causing the increase in particle settling velocity, to

the extent where it can realistically be neglected in a closure model. A closure model

accounting for the particle-fluid interactions that result in the settling enhancement

has further been developed, and is found to retrieve a significant portion of the drift

enhancement exhibited by particles. Notwithstanding this, the full effect of the be-

haviour is not captured by the modelling procedure used, with the attributable factors

for this being the use of isotropic tensors for particle phase statistics, and a timescale

model for τLp which does not account for the presence of a gravitational body force.
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9.2.2 Future Work

Owing to the deficiencies which are present in the current closure model arising mainly

from the use of isotropic tensors to model correlations taken along particle trajectories,

an appropriate starting point for an improved model would be to use axisymmetric

tensors for these quantities, an assumption which is consistent with the reduced sym-

metry that is intrinsic to the particle phase in this configuration. Such an approach

would utilise the theories of axisymmetric turbulence developed by Batchelor [7] and

Chandrasekhar [27], which develop expressions for axisymmetric tensors from the start-

ing point of assuming that they are invariant by an arbitrary rotation of the axes of

reference about a given direction. Choosing this direction to be given by the nor-

malised gravitational acceleration ĝ, determination of the various coefficients in terms

of the longitudinal and lateral fluid velocity correlation coefficients f(r) and g(r) would

then provide a model which would be expected to constitute an improvement over the

isotropic form.

The secondary consideration for improving the existing model is to split the correla-

tions which require modelling into symmetric and antisymmetric parts, as discussed in

section 6.10. This follows on from existing work [91, 163] having established the impor-

tance of the distinct mechanisms of fluid strain and rotation at inducing the observed

modification in settling velocity, and therefore undertaking the modelling explicitly in

terms of these mechanisms would be a natural way of incorporating this information

into the closure model that is developed in this work. In particular, modelling of the

separate timescales for the fluid strain and rotation rates along inertial particle trajec-

tories would be needed in such an approach, and in the absence of any existing models

in the literature these would have to be developed as a further precursor to such work.

The simple approximation of
〈
∇jupk(s)v

0
m(t′)

〉
≈
〈
∇jupk(s)upm(t′)

〉
was utilised in this

work, however it was noted that in Figure 6.9 the one-time correlations
〈
∇jupk(t)v

0
m(t)

〉
are not equal to zero. This is not accounted for by the current model, and therefore

development of an expression for this quantity using correlation splitting is a natural

improvement. Such a procedure is undertaken in Appendix D.2, however application

of this to a closure model remains to be done. Furthermore, this would also require

the specification of a suitable decorrelation function, which could be constructed as an

axisymmetric tensor in the fashion outlined above.

It should be noted that the level of detail involved in any of these improvements would

necessarily mean that the resultant closure model has to be evaluated numerically if it

is developed for arbitrary St and Vg. This naturally brings about the question as to
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whether it is possible to derive a useful analytical result for the modification in gravi-

tational settling velocity using the cumulant expansion approach in this work. Possible

avenues of investigation along these lines could include a perturbation expansion of the

particle equation of motion in either of the limits St→ 0 or Vg →∞, and application

of the resultant asymptotic form in the cumulant expansion. Furthermore, it may be

worth investigating the modification in particle settling velocity in the limit of small

separations rp, which could be accomplished using a Taylor expansion of the isotropic

two-point two-time correlation tensor R(x′p, t
′; x, t). The other possibility for extract-

ing an analytical result is an appropriate linearisation of the second cumulant
〈
H′r′p

〉
of the expansion, which could be done by linearising the Green’s function h(t; t′) that

makes multiple appearances within the resultant time integrals.

9.3 Analysis of the Particle Velocity Field

9.3.1 Conclusions

The form of particle velocity field proposed by Reeks [129] has been numerically evalu-

ated using kinematic simulation to compute the particle Jacobian J (x0, t) as it evolves

along trajectories. Distinction is made between two expressions that can be used for

evaluating the divergence of the particle velocity field ∇·V(t′ | x, t), which use J (x0, t)

and the elemental deformation J(x0, t) respectively, and the performance of these ex-

pressions is assessed numerically. It is found that due to the occurrence of J (x0, t)

becoming singular along some trajectories, evaluation of ∇ · V(t | x0, t0) using either

expression is affected to the extent that the average
〈
∇ · V(t | x0, t0)

〉
cannot be con-

sidered meaningful. A simple filtering procedure on the conditionality of J (x0, t) is

tested to see whether valid results for ∇ · V(t | x0, t0) can be obtained, and in this

case the average
〈
∇ · V(t | x0, t0)

〉
is found to be consistent when calculated using

both J (x0, t) and J(x0, t). Subsequent evaluation of the drift tensor associated with

the particle velocity field formulation in the case of particles settling under gravity re-

veals that this framework is able to retrieve some but not all of the increase in settling

enhancement, and this highlights that the correct interpretation of J (x, t′) needed

to calculate ∇ · V(t′ | x, t) as used within this drift tensor is only obtainable when

computed backwards-in-time.
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9.3.2 Future Work

The work carried out on numerical solution for the divergence of the particle velocity

field raises two main issues which need to be addressed for this to be viable method of

accurately analysing particle behaviour. Firstly, computation of the Jacobian J (x, t′)

that is needed for evaluation of ∇ · V(t′ | x, t) requires special numerical treatment,

since calculation of the deformation at time t′, with respect to the trajectory endpoint

x at a later time t at which the initial conditions are imposed, necessary implies that

the solution is sought at earlier times. For the particular second-order equation (7.18)

in the case of a linear drag law, although the backwards-in-time solution is technically

well-posed it is also numerically unstable, meaning that standard numerical methods

will produce a solution which grows exponentially with reversed time. This issue has

been addressed in the case of determining inertial particle trajectories at times earlier

than the initial conditions through the use of dynamical systems theory, which entails

construction of an attracting slow manifold that governs the asymptotic behaviour of

particles [63], thereby avoiding the instability that is inherent in the backward-in-time

particle equation of motion. Due to the similarity of the particle equation of motion in

the case of a linear drag law with the governing equation for J (x, t′), it is reasoned that

such an approach would also be applicable to determining J (x, t′) at times earlier than

the initial conditions are applied, thus providing the correct interpretation of J (x, t′)

for use in evaluation of ∇ · V(t′ | x, t).

Additionally, the issue of J (x0, t) becoming singular along some trajectories requires

further treatment to ensure that the numerical values for ∇·V(t′ | x, t) can be deemed

as physically representative of the true compressibility along these trajectories. The

approach taken in this work of using a simple filter on the conditionality of J (x0, t) has

no rational grounds for being used, and the development of a method for dealing with

these singularities which has a more justifiable physical basis is therefore an obvious

extension of the current research.

9.4 Particle-Pair Models

9.4.1 Conclusions

Within the context of particle-pair models, the various terms that emerge in the expres-

sion for the particle mass flux have been assessed numerically using an inhomogeneous
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velocity field with a stagnation point at x = 0 which is specifically constructed using

kinematic simulation. It is found that the dominant contribution to both the diffusive

and convective fluxes is determined principally by the Stokes number StE, with RMS

fluid velocity fluctuation intensity u′ not being as important a factor. The role of the

expression (κ−∇·λ)q in determining the net convective flux is analysed, and it is found

that this contribution can be both positive and negative depending upon the value of

u′, becoming negative when u′ is large. Furthermore, (κ − ∇ · λ)q is the dominant

contribution to the net convective flux for small StE, whereas the turbophoretic term

(∇·cc)q is more important at large StE. As the net convective flux is determined by the

difference between (κ−∇·λ)q and (∇· cc)q, it accordingly becomes most pronounced

for the case of small StE and large u′ in which case (κ−∇ · λ)q is negative, and this

corresponds to the highest value of particle concentration observed at the stagnation

point x = 0. Furthermore, the turbophoretic flux (∇ · cc)q is seen to be positive for

all values of StE and u′, and therefore always contributes towards an increase in pref-

erential concentration of particles, in contrast to (κ − ∇ · λ)q which acts to decrease

the preferential concentration of particles unless it is negative. This demonstrates that

there are therefore two distinct mechanisms which can result in a build-up of particle

concentration, and that there are no solid grounds on which to uniformly neglect the

contributions associated with either of these mechanisms in closure models.

9.4.2 Future Work

Although a numerical investigation into the relative importance of the convective flux

contributions of the non-local drift (κ−∇ · λ)q and turbophoresis (∇ · cc)q has been

carried out, development of a closure model that can describe the observed behaviour

remains to be done. The starting point for this would be application of the cumulant

expansion used on the PDF dispersion tensors within the context of gravitational set-

tling of particles in this research. In the event that this did not provide a satisfactory

description of the behaviour, a closure strategy based on construction of a PDF model

that represents the non-local contributions which are lost in the local homogeneous ap-

proximations would contain the required information, for which some work has already

been done in the context of boundary layers [13]. A further outcome from developing

an improved closure methodology would be to evaluate the profile of the associated

radial distribution function ρ̂(q), and see how it compares with both the concentration

profiles obtained using KS and other existing closure models [31, 178].

It is noted that the level of detail inherent in such a closure would necessarily preclude
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analytical results for both the convective flux contributions (κ−∇ ·λ)q and (∇ · cc)q,

and also the RDF ρ̂(q), which leads to consideration of whether developing a closure

in a limit of particular parameters would yield such an expression. Existing work has

taken the limits of both the inter-particle separation rp → 0 and St → 0 and been

able to produce expressions for the RDF [177, 31], and if these limits are also applied

to the PDF kinetic model framework by means of appropriate asymptotic expansions

or linearisation procedures, then it may be possible to extract a corresponding form of

the RDF.

9.5 General Extensions

Including the full physical description of the fluid and in particular detail of the be-

haviour at the microscales is of interest both in the context of gravitational settling of

particles for which an increase of up to 50% has been observed using DNS [163, 69],

and also particle-pair dispersion for small St which is strongly dependent on the be-

haviour of small scale structures within the fluid velocity field [31, 15]. Consequently,

numerical assessment of the PDF kinetic model using DNS would be of great inter-

est in both of these configurations, and further enable closure methodologies to use

existing models that have been developed from the full description provided by the

Navier-Stokes equation [96, 79]. This could lead to more refined closure models for

both particle settling velocity modification and particle-pair dispersion, and hence also

improved descriptions of particle collision and agglomeration rates. A further point of

interest would be to assess the closure model developed in this work using DNS data,

in order to see how well it captures the particle settling velocity enhancement that

arises for the case of a linear drag law in true turbulence.

The use of the PDF kinetic model in this work has made it convenient to assume that

the Eulerian fluid velocity field is normally distributed, however it is known that this

is not the case for a true turbulent flow, with the higher-order moments of the PDF

for fluid velocity deviating significantly from that of a Gaussian distribution [118].

Whilst this issue is avoided in the present work by using a synthetic flow field which is

constructed such that the fluid velocities conform to a Gaussian distribution, it would

become a consideration if the PDF kinetic model is used evaluate the behaviour of

particles using DNS. This would involve including the higher-order cumulants of b(x, t)

within the expansion (4.9), in order to determine the contribution that they make to the

overall behaviour for true turbulence. Notwithstanding this, as a first approximation
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it is appropriate to omit the contribution from these higher-order cumulants since

statistical considerations based upon the central limit theorem argue that non-extreme

values of fluid velocity should be close to a normal distribution, and it is these non-

extreme values which constitute the majority of the velocity field. As a consequence, the

truncated form of the PDF kinetic model used in the present work would be expected to

capture the leading-order behaviour of particles in a DNS fluid velocity field, especially

for homogeneous flows. However, it may be found that in other flow configurations the

omitted contribution is of greater importance, and would therefore have to be included

in order for the PDF kinetic model to accurately capture the particle behaviour in such

cases.

The other complication arising when the PDF kinetic model is used to describe particle

behaviour in a DNS flow field is that the form of the two-point two-time fluid velocity

correlation tensor R(x′, t′; x, t) is no longer automatically specified. For the case of

isotropic turbulence, this is due to the longitudinal autocorrelation function f(r, t) not

being uniquely determined by the full Navier-Stokes equation, and therefore requiring

non-trivial surface fitting using DNS data. A suitable form of such a fit would be a

bivariate Gaussian of r and t, and although the integral lengthscale L11 and Eulerian

integral timescale τE of the fluid would determine the marginal distributions for each of

f(r, 0) and f(0, t), these spatial and temporal decorrelations would not be independent

in contrast to the KS flow field used for the present work. Thus it is the correlation

coefficient between the respective spatial and temporal autocorrelation functions f(r, 0)

and f(0, t) that would need to be calculated using DNS data for the specific flow

configuration which is being considered.

Whilst capturing the particle behaviour is only dealt with in this work using the PDF

kinetic model, such an approach may also be tractable using the GLM to describe both

particle settling velocity enhancement and particle-pair dispersion. The development

of a corresponding closure model and assessment of its performance relative to that of

the model constructed in the present work would therefore be of interest as a means

of comparing these different PDF descriptions. Furthermore, since the PDF kinetic

model is not restricted to describing the behaviour of only point particles, extension of

the closure model to account for a wider range of physical particle behaviour could be

carried out by considering arbitrary density particles for which added mass effects are

important, such as in the case of bubble flows.
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9.6 Summary

This work has shown that the PDF kinetic framework provides a fundamental means of

describing the behaviour of inertial particles in Gaussian flow fields within the context

of both gravitational settling and particle-pair dispersion, and is able to numerically

capture the different convective contributions to the particle mass flux that emerge

in each case. It has been further demonstrated that it is possible to construct closure

models for this particular form of PDF framework which are capable of capturing these

flux contributions, although accounting for the full effect of the higher-order physical

behaviour that is observed in the specific zero-mean flow configurations which are

considered is not achieved by the models in their current form. Nonetheless, the full

behaviour is seen to be contained within the description provided by the unclosed form

of the PDF kinetic model, which highlights the potential for improved closures to be

developed using this framework in future research.
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Appendix A

Analytical Solution for the Particle

Response Tensor

The particle response tensor H [t; t′] plays a key role in quantifying the history of

fluid-particle interaction within the PDF kinetic framework, and is accordingly highly

sensitive to variations in the underlying fluid velocity field. In the case of the Stokes

drag model (6.15), the equation of evolution for H [t; t′] takes the form

Ḧ [t; t′] = −βḢ [t; t′] + β∇u>(xp(t), t) ·H [t; t′] ,
H [t′; t′] = 0

Ḣ [t′; t′] = I
(A.1)

The appearance of the fluid velocity gradient along particle trajectories∇u>(xp(t), t) as

a coefficient toH [t; t′] in the final term of (A.1) precludes an explicit analytical solution

using Green’s functions in the same manner as for the Stokes drag model, requiring

that a more considered approach is taken to constructing a solution. Accordingly, for

ease of working it is instructive to first put (A.1) into canonical form such that the first

derivative does not appear. Specifically, let

H [t; t′] = φ (t; t′)L [t; t′] ,
L [t′; t′] = 0

L̇ [t′; t′] = I
(A.2)

where L [t; t′] is the transformed version of H [t; t′] which satisfies the canonical form

of the governing equation (A.1), and φ (t; t′) is a scalar function to be determined. For

convenience L [t; t′] is chosen to have the same initial conditions asH [t; t′], which then

uniquely determines the initial condition on φ (t; t′) as
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φ (t′; t′) = 1 (A.3)

Substitution of (A.2) into the governing equation (A.1) results in the transformed

equation

φL̈+
[
2φ̇+ βφ

]
L̇+

[
φ̈I + βφ̇I− β∇u>φ

]
·L = 0 (A.4)

The canonical form of (A.4) then requires that the L̇ term vanishes, which is satisfied

when

2φ̇+ βφ = 0 (A.5)

With use of the initial condition (A.3), this admits the solution

φ (t; t′) = exp

[
−β

2
(t− t′)

]
(A.6)

Evaluation of the transformed equation (A.4) using (A.6) then yields the canonical

form of (A.1)

L̈ [t; t′] = β

[
β

4
I +∇u>(xp(t), t)

]
·L [t; t′] (A.7)

in which L̇ does not feature as desired. Casting (A.7) into first-order system form

results in

[
L̇
L̈

]
=

[
0 I

β
[
β
4
I +∇u>

]
0

]
·

[
L
L̇

]
(A.8)

Then defining the following variables

Q =

[
L
L̇

]
, N(t) =

[
0 I

F(t) 0

]
, F(t) = β

[
β

4
I +∇u>(xp(t), t)

]
(A.9)

the system (A.8) is written simply as
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Q̇ [t; t′] = N(t) ·Q [t; t′] , Q [t′; t′] =Q0 =

[
0

I

]
(A.10)

The solution to (A.10) is then given by the matrix exponential as

Q [t; t′] = exp

[∫ t

t′
N(s) ds

]
·Q0 (A.11)

In order to make further inferences, (A.11) can be expanded formally as a time-ordered

exponential

Q [t; t′] =

[
∞∑
k=0

1

k!

∫ t

t′

∫ t

t′
· · ·
∫ t

t′
T
[
N(s1) ·N(s2) · · ·N(sk)

]
dsk · · · ds2 ds1

]
·Q0

(A.12)

where T [·] is the time-ordering operator which for times s1, s2, · · · , sk is defined such

that

T
[
N(s1) ·N(s2) · · ·N(sk)

]
= N(s1) ·N(s2) · · ·N(sk) ⇐⇒ sk < · · · < s2 < s1 (A.13)

Then by respecting the time-ordering condition sk < sk−1 , ∀k ∈ N, (A.12) can be

written formally as the Magnus expansion [88]

Q [t; t′] =

[
∞∑
k=0

∫ t

t′

∫ s1

t′
· · ·
∫ sk−1

t′
T
[
N(s1) ·N(s2) · · ·N(sk)

]
dsk · · · ds2 ds1

]
·Q0

(A.14)

in which the first term of the expansion for k = 0 is I. To extract an expression for

L [t; t′] from (A.14), the time-ordered product T
[∏k

n=1 N(sn)
]

needs to be calculated.

Then with the definition of N(t) from (A.9), the first k terms in the product are found

to be
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N(s1) =

[
0 I

F(s1) 0

]

N(s1) ·N(s2) =

[
F(s2) 0

0 F(s1)

]

N(s1) ·N(s2) ·N(s3) =

[
0 F(s2)

F(s1) · F(s3) 0

]

N(s1) ·N(s2) ·N(s3) ·N(s4) =

[
F(s2) · F(s4) 0

0 F(s1) · F(s3)

]

N(s1) ·N(s2) ·N(s3) ·N(s4) ·N(s5) =

[
0 F(s2) · F(s4)

F(s1) · F(s3) · F(s5) 0

]

N(s1) ·N(s2) ·N(s3) ·N(s4) ·N(s5) ·N(s6) =

[
F(s2) · F(s4) · F(s6) 0

0 F(s1) · F(s3) · F(s5)

]

By extension, the general product is seen to be

k∏
n=1

N(sn) =



 ∏ k
2
n=1 F(s2n) 0

0
∏ k

2
n=1 F(s2n−1)

 k = 2m, m ∈ N 0
∏ k−1

2
n=1 F(s2n)∏ k+1

2
n=1 F(s2n−1) 0

 k = 2m+ 1 , m ∈ N

(A.15)

The advantage of using canonical form is evident from this expression, with the fact

that the coefficient matrix N(t) only has non-zero elements on the trailing diagonal

blocks yielding a more tractable form of (A.15). The formal solution to Q [t; t′] in

(A.14) can then be written
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Q [t; t′] =
∞∑
m=0

{
∫ t

t′

∫ s1

t′
· · ·
∫ s2m−1

t′

[
T
[∏m

n=1 F(s2n)
]

0

0 T
[∏m

n=1 F(s2n−1)
] ] ds2m · · · ds2 ds1

+

∫ t

t′

∫ s1

t′
· · ·
∫ s2m

t′

[
0 T

[∏m
n=1 F(s2n)

]
T
[∏m+1

n=1 F(s2n−1)
]

0

]
ds2m+1 · · · ds2 ds1

}
·Q0

(A.16)

Then using the system form definitions of Q [t; t′] from (A.9) and Q0 from (A.10)

results in expressions for L [t; t′] and L̇ [t; t′]

L [t; t′] =
∞∑
m=0

∫ t

t′

∫ s1

t′
· · ·
∫ s2m

t′
T

[
m∏
n=1

F(s2n)

]
ds2m+1 · · · ds2 ds1 (A.17)

L̇ [t; t′] =
∞∑
m=0

∫ t

t′

∫ s1

t′
· · ·
∫ s2m−1

t′
T

[
m∏
n=1

F(s2n−1)

]
ds2m · · · ds2 ds1 (A.18)

Therefore it is seen that only the odd terms of the expansion contribute to L [t; t′],

whilst only the even terms contribute to L̇ [t; t′]. Since the solution for just L [t; t′] is

of immediate interest, taking (A.17) and substituting back into the canonical transfor-

mation (A.2) along with the specific form of φ (t; t′) in (A.6) and F(t) as denoted in

(A.9) yields the analytical solution for the particle response tensor H [t; t′] in the case

of the Stokes drag model

H [t; t′] = exp

[
−β

2
(t− t′)

]
·
∞∑
m=0

∫ t

t′

∫ s1

t′
· · ·
∫ s2m

t′
T

[
m∏
n=1

β

[
β

4
I +∇u>(xp(s2n), s2n)

]]
ds2m+1 · · · ds2 ds1

(A.19)

Since this expression contains an infinite number of terms, some form of approximation

is required for (A.19) to be of practical use from a modelling perspective. To that end,

the simplest approach of setting ∇u>(xp(s2n), s2n) = 0 removes the time dependence
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of the integrand, and with it the need for time-ordering

H [t; t′] = exp

[
−β

2
(t− t′)

] ∞∑
m=0

∫ t

t′

∫ s1

t′
· · ·
∫ s2m

t′

m∏
n=1

β2

4
I ds2m+1 · · · ds2 ds1

= exp

[
−β

2
(t− t′)

] ∞∑
m=0

(
β2

4

)m
1

(2m+ 1)!
(t− t′)2m+1

I

= exp

[
−β

2
(t− t′)

]
2

β
sinh

(
β

2
(t− t′)

)
I

=
1

β

[
1− exp

[
− β(t− t′)

]]
I

Thus the full solution to H [t; t′] in (A.19) is consistent with the Green’s function

approximation (4.65) as expected. For a more detailed approximation, taking the first

few terms of (A.19) can be done to include the desired level of information about

∇u>(xp(t), t). The same detail is also contained within the integral representation for

H [t; t′] given by (6.51), which can be used recursively as needed, and is ultimately a

more effective means of including this information in a closure model.
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Appendix B

Cumulant Expansion of the

Conditional Average within the

PDF Dispersion Tensors

In order to include the behaviour which is needed to describe the increase in settling

velocity experienced by particles under the influence of a gravitational body force within

a model that is developed using the PDF kinetic framework, it is necessary to extract

higher-order information from the unclosed conditional average that constitutes the

integrand of the PDF dispersion tensor κ, given by (6.44)

〈
Hkj

∂

∂xk
Rji (rp)

〉
(B.1)

One such approach to this is further use of correlation splitting, which is most easily re-

alised by utilising the phase-space vector z = (rp,HV ), whereHV [t; t′] is the response

tensor H [t; t′] reshaped into first-order tensor form. This leads to consideration of

(B.1) in the higher-dimensional form given by

〈
zl

∂

∂xk
Rji(z)

〉
(B.2)

Motivated by the potential to describe (B.2) in terms of the moments of φ(z), it is

suitable to consider a series expansion of this correlation in terms of the cumulants of

φ(z) by making the interpretation f(z) = ∂
∂xk

Rji(z), and then using the general result

for a random variable z of [82, p. 53]
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〈
zif(z)

〉
=

 ∞∑
k=0

1

k!

∑
jk

Kk+1
i,jk

∂k

∂zj1 · · · ∂zjk

〈f(z)
〉

(B.3)

where
∑

jk indicates a sum over all components of the k-tuple jk = (j1, ..., jk), and

Kk+1 is the (k + 1)th cumulant of the distribution φ(z). It should be noted that

it is implicit in (B.3) that the partial derivative operator ∂k

∂zj1 ···∂zjk
is applied to the

deterministic function f(z) before evaluation using the random variable z is made, and

the ensemble average then subsequently taken. Without recourse to a specific choice of

probability distribution for φ(z) (i.e. Gaussian), it is necessary to consider a sufficient

number of terms in this expansion in order to account for all the physical effects that

are manifest within the correlation. In practice the fifth and higher cumulants have

negligible influence on the form of φ(z), and therefore only the first four cumulants are

considered here, resulting in the approximation

〈
zif(z)

〉
≈ K1

i

〈
f(z)

〉
+K2

ij

〈
∂

∂zj
f(z)

〉
+

1

2
K3
ijk

〈
∂

∂zj

∂

∂zk
f(z)

〉
+

1

6
K4
ijkl

〈
∂

∂zj

∂

∂zk

∂

∂zl
f(z)

〉
(B.4)

The task is then to express the cumulants Kn in terms of the more versatile moments

of φ(z). To proceed, the cumulants in this expression can be written in terms of the

moments for an arbitrary probability distribution as [132]

K1
i = M1

i

K2
ij = M2

ij −M1
iM

1
j

K3
ijk = M3

ijk −M2
ijM

1
k −M2

ikM
1
j −M2

jkM
1
i + 2M1

iM
1
jM

1
k

K4
ijkl = M4

ijkl −M3
ijkM

1
l −M3

ijlM
1
k −M3

iklM
1
j −M3

jklM
1
i −M2

ijM
2
kl −M2

ikM
2
jl

−M2
ilM

2
jk + 2M2

ijM
1
kM

1
l + 2M2

ikM
1
jM

1
l + 2M2

ilM
1
jM

1
k + 2M2

jkM
1
iM

1
l

+ 2M2
jlM

1
iM

1
k + 2M2

klM
1
iM

1
j − 6M1

iM
1
jM

1
kM

1
l (B.5)

where Mn is the nth moment of φ(z) about the origin. These expressions can be

simplified using the central moments of φ(z), specifically for the fluctuating part of

the phase-space variable z′ = z − 〈z〉 the covariance Θij =
〈
z′iz
′
j

〉
, coskewness γijk =〈

z′iz
′
jz
′
k

〉
, and cokurtosis κijkl =

〈
z′iz
′
jz
′
kz
′
l

〉
which are defined in terms of the moments

about the origin Mn respectively by
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Θij = M2
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1
j
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klM
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jM

1
kM
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l (B.6)

Along with the first moment about the origin M 1 being the mean mi =
〈
zi
〉
, use of

the relations (B.6) then enables the cumulants as expressed in (B.5) to be written in

terms of the moments of φ(z) as desired

K1
i = mi

K2
ij = Θij

K3
ijk = γijk

K4
ijkl = κijkl −ΘijΘkl −ΘikΘjl −ΘilΘjk (B.7)

Then the cumulant expansion (B.4) explicitly expressed in terms of the moments of

φ(z) is given by

〈
zif(z)

〉
= mi

〈
f(z)

〉
+ Θij

〈
∂

∂zj
f(z)

〉
+

1

2
γijk

〈
∂

∂zj

∂

∂zk
f(z)

〉
+

1

6

[
κijkl −ΘijΘkl −ΘikΘjl −ΘilΘjk

]〈 ∂

∂zj

∂

∂zk

∂

∂zl
f(z)

〉
(B.8)

The components of this higher-dimensional correlation which are of interest in the

context of the interpretation f(z) = ∂
∂xk

Rji(z) in (B.2) can be considered by expressing

the moments of φ(z) in terms of the phase-space variable z as follows
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〈
zl

∂

∂xk
Rji(z)

〉
≈
〈
zl
〉〈 ∂

∂xk
Rji(z)

〉
+
〈
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′
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〉〈 ∂

∂zm

∂

∂xk
Rji(z)

〉
+
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2

〈
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∂zm
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Rji(z)

〉
+

1

6
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q

〉
−
〈
z′lz
′
m

〉〈
z′nz

′
q

〉
−
〈
z′lz
′
n

〉〈
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q

〉
−
〈
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′
q

〉〈
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n

〉]〈 ∂

∂zm

∂

∂zn

∂

∂zq

∂

∂xk
Rji(z)

〉
(B.9)

Then identifying the separate parts of the phase-space variable z as (z1, z2) = (rp,HV )

enables the relevant part of the correlation to be considered. Specifically, since it is

the ensemble average (B.1) involving only the correlation of HV with ∂
∂xk

Rji(rp) that

is of interest, it is possible to retrieve this contribution by setting zl = z2
l in (B.9).

Further, as ∂
∂xk

Rji(rp) is a function of only rp and notHV , the partial derivatives that

emerge from the cumulant expansion and act upon ∂
∂xk

Rji(rp) only make a non-zero

contribution to the expansion for z = z1. Restricting attention to these cases extracts

from (B.9) the expression

〈
z2
l
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∂xk
Rji(z

1)

〉
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〈
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〉
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∂z1
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∂
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∂
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〉
+
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n z
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〉
−
〈
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〉
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〈
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〈
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〉]〈 ∂
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∂z1
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∂z1
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Rji(z

1)

〉
(B.10)

Finally, reinterpreting the phase-space variable z in terms of rp andHV using (z1, z2) =

(rp,HV ), and reshaping HV back into the original form of the second order tensor H
gives the required expansion for the ensemble average (B.1) up to the fourth cumulant

as
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〈
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〉
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〈
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〉
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〈
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〉〈 ∂
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∂
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〉
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2
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〉〈 ∂
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〉
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1
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〉
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〈
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〉
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〈
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〉
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〉
(B.11)

This provides the required description of the interaction between rp and H within the

expression for κ, and is the result presented in (6.46).
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Appendix C

Spatial Derivatives of the

Two-Point Fluid Velocity

Correlation Tensor in an Isotropic

Flow Field

In order to develop models for the expressions that arise within the cumulant expansion

(6.46), it is necessary to calculate the higher-order spatial derivatives of the Eulerian

two-point two-time correlation tensor R (x′, t′; x, t) as given in (4.25) for the fluctuating

particle acceleration f (x, t). Evaluation for the form f (x, t) = βu′(x, t) associated with

the Stokes drag model as given by (4.3) results in

Rji (x
′, t′; x, t) = β2

〈
uj (x′, t′) ui (x, t)

〉
(C.1)

To proceed, a specific form of the two-point two-time fluid velocity correlation tensor〈
u (x′, t′) u (x, t)

〉
must be invoked, and assuming an isotropic flow field yields

Rji(x
′, t′; x, t) = β2u′

2
[
g(r, s)δji +

(
f(r, s)− g(r, s)

)rjri
r2

]
(C.2)

where r = x−x′ is the spatial separation, s = t− t′ is the temporal separation, r = |r|
is the magnitude of spatial separation, and f(r, s) and g(r, s) are the longitudinal and

lateral correlation coefficients of the underlying flow field respectively. For a general

turbulent flow f(r, s) and g(r, s) do not have analytical forms [42], and must be nu-

merically fitted using DNS data, a non-trivial exercise. However, in several common
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forms of energy spectrum which are used to initialise turbulent flows that satisfy the

full Navier-Stokes equations, a prescribed form of f(r, s) is used, and it is this approach

which is adopted here. Specifically, the work of Batchelor and Townsend [8] on decay

in the final period of turbulence determined f(r, s) to have a self-similar profile in this

case, and motivated by this a general Gaussian decorrelation is chosen to represent

f(r, s) in this work

f(r, s) = exp

[
−1

a
σ2
kr

2 − 1

b
σ2
ωs

2

]
(C.3)

where σk and σω are parameters for the rate of decorrelation spatially and temporally

respectively, and a and b are constants that can also be used to tune the rate of

decorrelation. This choice of longitudinal decorrelation function enables the spatial

and temporal decorrelation functions to be written as separate expressions such that

f(r, s) = f(r)Eω(s), where

f(r) = exp

[
−1

a
σ2
kr

2

]
(C.4)

Eω(s) = exp

[
−1

b
σ2
ωs

2

]
(C.5)

In turn, this enables the two-point two-time correlation tensor R(r, s) to be specified as

the product of the separate spatial correlations Q(r) and temporal correlations Eω(s)

involved, meaning that R (x′, t′; x, t) decomposes such that

Rji (r, s) = β2 Qji(r) Eω(s) (C.6)

in which Q(r) is defined according to isotropy by

Qji(r) = u′
2
[
g(r)δji +

(
f(r)− g(r)

)rjri
r2

]
(C.7)

With Eω(s) fully determined up to choice of the temporal decorrelation rate, it remains

to specify the lateral correlation coefficient g(r) of the flow field. Assuming the flow

field is incompressible, g(r) is consequently related to f(r) by the relationship

g(r) = f(r) +
1

d− 1
r
∂

∂r
f(r) (C.8)
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in which d is the number of physical spatial dimensions in the system under considera-

tion, valid for d = {2, 3}. Using the form of f(r) defined in (C.4) then fully determines

g(r), with the resultant expression for Q(r) for this specific choice of f(r) being

Qji(r) = u′
2
f(r)

{[
1− 2σ2

kr
2

a(d− 1)

]
δji +

2σ2
k

a(d− 1)
rjri

}
(C.9)

The first cumulant in (6.46) requires knowledge of the gradient of R(r), and since

this is purely a spatial gradient the problem can be restricted to the gradient of Q(r),

with the temporal correlation Eω(s) remaining constant. Noting that the definition of

r = x− x′ implies that by the chain rule the derivative in r can be substituted for the

derivative in x results in the expression of interest becoming

∂

∂xk
Rji(r, s) = β2 ∂

∂rk
Qji(r)Eω(s) (C.10)

The gradient of Q(r) is calculated by making use of results from tensor analysis

∂

∂rk
[r] =

rk
r

(C.11)

∂

∂rk

[
r2
]

= 2rk (C.12)

Following from these, for the specific choice of f(r) in (C.4) we have

∂

∂rk
[f(r)] = −2

a
σ2
krkf(r) (C.13)

∂

∂rk

[
r2f(r)

]
= 2rkf(r)− 2

a
σ2
kr

2rkf(r) (C.14)

∂

∂rk
[rjrif(r)] = rjδikf(r) + riδjkf(r)− 2

a
σ2
krkrjrif(r) (C.15)

Using (C.13) - (C.15), the resultant expression for the gradient of Q(r) as given in

(C.9) is

∂

∂rk
Qji(r) =

2

a(d− 1)
u′

2
σ2
kf(r)

{[
2

a
σ2
kr

2 − (d+ 1)

]
rkδji −

2

a
σ2
krkrjri + rjδik + riδjk

}
(C.16)
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For the second cumulant in (6.46), the expression
〈

∂
∂rm

∂
∂xk

Rji(r)
〉

is required. Then

making use of (C.10), it is seen that the expression required in the second cumulant is

the gradient of ∂
∂r

Q(r) as given in (C.16). The results of interest for the given choice

of f(r) in this case are

∂

∂rl
[rkf(r)] = δlkf(r)− 2

a
σ2
krlrkf(r) (C.17)

∂

∂rl

[
r2rkf(r)

]
= 2rlrkf(r) + r2δlkf(r)− 2

a
σ2
kr

2rlrkf(r) (C.18)

∂

∂rl
[rkrjrif(r)] = rjriδlkf(r) + rkriδljf(r) + rkrjδlif(r)− 2

a
σ2
krlrkrjrif(r) (C.19)

Using (C.17) - (C.19), the resultant expression for the gradient of ∂
∂r

Q(r) is

∂

∂rl

∂

∂rk
Qji(r) =

2

a(d− 1)
u′

2
σ2
kf(r)

{
4

a2
σ4
krlrkrjri +

2

a
σ2
k

[
(d+ 3)− 2

a
σ2
kr

2

]
rlrkδji

−2

a
σ2
k

[
rjriδlk + rkriδlj + rkrjδli + rlrjδki + rlriδkj

]
+

[
2

a
σ2
kr

2 − (d+ 1)

]
δlkδji + δljδik + δliδjk

}
(C.20)

For the third cumulant in (6.46), the calculation of the expression
〈

∂
∂rm

∂
∂rn

∂
∂xk

Rji(r)
〉

follows the same procedure, meaning that the gradient of (C.20) is required. The

results needed for this step are

∂

∂rm

[
r2rlrkf(r)

]
= 2rmrlrkf(r) + r2rkδlmf(r) + r2rlδkmf(r)

− 2

a
σ2
kr

2rmrlrkf(r) (C.21)

∂

∂rm
[rlrkrjrif(r)] = rkrjriδmlf(r) + rlrjriδmkf(r) + rlrkriδmjf(r)

+ rlrkrjδmif(r)− 2

a
σ2
krmrlrkrjrif(r) (C.22)

Using (C.13) - (C.15) and (C.21) - (C.22), the resultant expression for the gradient of
∂2

∂r2
Q(r) is
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∂

∂rm

∂

∂rl

∂

∂rk
Qji(r) =

4

a2(d− 1)
u′

2
σ4
kf(r)

{
2

a
σ2
k

[
rkrjriδml + rlrjriδmk

+ rlrkriδmj + rlrkrjδmi + rmrjriδlk + rmrkriδlj + rmrkrjδli

+ rmrlrjδik + rmrlriδjk

]
− 4

a2
σ4
krmrlrkrjri

+

[
(d+ 3)− 2

a
σ2
kr

2

] [
rkδlmδij + rlδkmδij + rmδlkδij

]
− 2

a
σ2
k

[
(d+ 5)− 2

a
σ2
kr

2

]
rmrlrkδji −

[
rmδljδik + rmδliδjk

+ riδjmδkl + rjδimδkl + rkδimδlj + riδkmδlj + rkδjmδli

+ rjδkmδli + rlδjmδik + rjδlmδik + rlδimδjk + riδlmδjk

]}
(C.23)

Finally, the fourth cumulant in (6.46) requires calculation of the expression〈
∂
∂rm

∂
∂rn

∂
∂rq

∂
∂xk

Rji(r)
〉

, which is the gradient of (C.23). The results used at this stage

are

∂

∂rn

[
r2rmrlrkf(r)

]
= 2rnrmrlrkf(r) + r2rlrkδnmf(r) + r2rmrkδnlf(r)

+ r2rmrlδnkf(r)− 2

a
σ2
kr

2rnrmrlrkf(r) (C.24)

∂

∂rn
[rmrlrkrjrif(r)] = rlrkrjriδmnf(r) + rmrkrjriδnlf(r) + rmrlrjriδnkf(r)

+ rmrlrkriδnjf(r) + rmrlrkrjδnif(r)− 2

a
σ2
krnrmrlrkrjrif(r) (C.25)

Making use of (C.17) - (C.19) and (C.24) - (C.25), the resultant expression for the

gradient of ∂3

∂r3
Q(r) is
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∂

∂rn

∂

∂rm

∂

∂rl

∂

∂rk
Qji(r) =

4

a2(d− 1)
u′

2
σ4
kf(r)

{
8

a3
σ6
krnrmrlrkrjri

− 4

a2
σ4
k

([
2

a
σ2
kr

2 − (d+ 7)

]
rnrmrlrkδij + rmrlrkriδnj + rnrmrlriδkj

+ rnrkrjriδml + rnrlrjriδmk + rnrlrkriδmj + rnrlrkrjδmi

+ rlrkrjriδmn + rmrkrjriδnl + rmrlrjriδnk + rmrlrkrjδni

+ rnrmrjriδkl + rnrmrkriδlj + rnrmrkrjδli + rnrmrlrjδki

)
+

2

a
σ2
k

([
2

a
σ2
kr

2 − (d+ 5)

] [
rnrkδlmδij + rnrlδkmδij

+ rnrmδlkδij + rlrkδmnδij + rmrkδnlδij + rmrlδnkδij

]
+ rjriδnkδml + rkriδnjδml + rkrjδniδml + rjriδnlδmk

+ rlriδnjδmk + rlrjδniδmk + rkriδnlδmj + rlriδnkδmj

+ rlrkδniδmj + rkrjδnlδmi + rlrjδnkδmi + rlrkδnjδmi

+ rnrmδljδik + rnrmδliδjk + rnriδjmδkl + rnrjδimδkl

+ rnrkδimδlj + rnriδkmδlj + rnrkδjmδli + rnrjδkmδli

+ rnrlδjmδik + rnrjδlmδik + rnrlδimδjk + rnriδlmδjk

+ rjriδmnδkl + rmriδnjδkl + rmrjδniδkl + rkriδnmδlj

+ rmriδnkδlj + rmrkδniδlj + rkrjδnmδli + rmrjδnkδli

+ rmrkδnjδli + rlrjδnmδik + rmrjδnlδik + rmrlδnjδik

+ rlriδnmδjk + rmriδnlδjk + rmrlδniδjk

)
−
([

2

a
σ2
kr

2 − (d+ 3)

] [
δnkδlmδij + δnlδkmδij + δnmδlkδij

]
+ δnmδljδik + δnmδliδjk + δniδjmδkl + δnjδimδkl

+ δnkδimδlj + δniδkmδlj + δnkδjmδli + δnjδkmδli

+ δnlδjmδik + δnjδlmδik + δnlδimδjk + δniδlmδjk

)}
(C.26)

In principle further cumulants could be obtained in the expansion (6.46), however

(C.26) is the highest order derivative of Q(r) which can be practically used in simulation

post-processing or modelling, thus the limit of including only the first four cumulants

in (6.46) is imposed.
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In this work f(r) and Eω(s) are both taken to be Gaussian with a = 2 and b = 2,

consistent with the form of Eω(s) given by (5.15) that is used in the KS velocity field

constructed in Chapter 5, whilst the flow configuration under consideration is left in

general d-dimensional form for d ∈ {2, 3}.

253



254



Appendix D

Correlation Splitting Results

D.1 Correlation Splitting of the Lagrangian Fluid

Velocity Gradient

The aim here is to derive an expression for the fluid velocity gradient along an inertial

particle trajectory
〈
∇u (xp(t), t)

〉
x,v

via the use of correlation splitting, as required for

modelling of the first cumulant in section 6.7.8. To begin with, the PDF p (x,v, t) can

be used to write

p (x,v, t)
〈
∇u (xp(t), t)

〉
x,v

=
〈
P (x,v, t)∇u (x, t)

〉
(D.1)

Then manipulation of this average yields

〈
P (x,v, t)

∂ui
∂xl

(x, t)

〉
=

∂

∂xl

〈
P (x,v, t) ui (x, t)

〉
−
〈
∂P
∂xl

(x,v, t) ui (x, t)

〉
(D.2)

Decomposing the fluid velocity into mean and fluctuating parts produces
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〈
P (x,v, t)

∂ui
∂xl

(x, t)

〉
=

∂

∂xl

[
p (x,v, t) ui (x, t)

]
︸ ︷︷ ︸

1

+
∂

∂xl

[〈
P (x,v, t) u′i (x, t)

〉]
︸ ︷︷ ︸

2

− ∂p

∂xl
(x,v, t) ui (x, t)︸ ︷︷ ︸

3

−
〈
∂P
∂xl

(x,v, t) u′i (x, t)

〉
︸ ︷︷ ︸

4

(D.3)

Terms 1 and 3 are already closed, term 2 can be closed using the same correlation

splitting procedure outlined in section 6.2.2, whilst term 4 is the expression of interest

in this case.

To proceed, assuming that u′ (x, t) is a zero-mean stochastic Gaussian field then the

Furutsu-Novikov correlation splitting result in (4.10) can be utilised. To keep consistent

with the definitions in this thesis, the interpretation used for the zero-mean stochastic

field is taken to be b (x, t) = f (x, t) = βu′ (x, t). Furthermore, since the derivative

of P (x,v, t) is with respect to only x and not v, it is helpful to work explicitly with

x and v rather than the phase-space vector ξ in the following. Therefore correlation

splitting is used on 4 in the form

〈
∂P
∂xl

(x,v, t) f′i (x, t)

〉
=

∫ t

t0

∫
x′

∫
v′

Rij(x, t; x
′, t′)

〈
δ

δfj(x′, t′)

∂P
∂xl

(x,v, t)

〉
dv′ dx′ dt′

(D.4)

Then using the chain rule for functional differentiation yields

δ

δfj(x′, t′)

∂P
∂xl

(x,v, t) =
δxpk(t)

δfj(x′, t′)

∂

∂xpk

[
∂P
∂xl

(x,v, t)

]
+

δvpk(t)

δfj(x′, t′)

∂

∂vpk

[
∂P
∂xl

(x,v, t)

]
= −

δxpk(t)

δfj(x′, t′)

∂2P
∂xk∂xl

(x,v, t)−
δvpk(t)

δfj(x′, t′)

∂2P
∂vk∂xl

(x,v, t) (D.5)

Formally, and consistent with the definitions of the particle response tensor H [t; t′]

and its derivative Ḣ [t; t′] in (4.27)
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δxpk(t)

δfj(x′, t′)
=

δxpk(t)

δfj(x′p(t
′), t′)

δ(x′ − xp(t′)) = Hkj [t; t′] δ(x′ − xp(t′)) (D.6)

δvpk(t)

δfj(x′, t′)
=

δvpk(t)

δfj(x′p(t
′), t′)

δ(x′ − xp(t′)) = Ḣkj [t; t′] δ(x′ − xp(t′)) (D.7)

Then using (D.6) and (D.7) in (D.5)

δ

δfj(x′, t′)

∂P
∂xl

(x,v, t) =−Hkj [t; t′]
∂2P
∂xk∂xl

(x,v, t) δ(x′ − xp(t′))

− Ḣkj [t; t′]
∂2P
∂vk∂xl

(x,v, t) δ(x′ − xp(t′)) (D.8)

Accordingly, the closure (D.4) becomes

〈
∂P
∂xl

(x,v, t) f′i (x, t)

〉
=−

〈∫ t

t0

∫
x′

∫
v′

Rij(x, t; x
′, t′)Hkj [t; t′]

∂2P
∂xk∂xl

(x,v, t) δ(x′ − xp(t′)) dv′ dx′ dt′
〉

−
〈∫ t

t0

∫
x′

∫
v′

Rij(x, t; x
′, t′)Ḣkj [t; t′]

∂2P
∂vk∂xl

(x,v, t) δ(x′ − xp(t′)) dv′ dx′ dt′
〉
(D.9)

in which the operations of ensemble averaging and integration have been commuted.

Evaluation of the integrals over x′ and v′ then produces the simplification

〈
∂P
∂xl

(x,v, t) f′i (x, t)

〉
=−

∫ t

t0

〈
Hkj [t; t′] Rji(xp(t

′), t′; x, t)
∂2P
∂xk∂xl

(x,v, t)

〉
dt′

−
∫ t

t0

〈
Ḣkj [t; t′] Rji(xp(t

′), t′; x, t)
∂2P
∂vk∂xl

(x,v, t)

〉
dt′

(D.10)

where the property Rij(x, t; x
′, t′) = Rji(x

′, t′; x, t) has also been used. Then manipu-

lation of the derivatives acting on P (x,v, t) yields
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〈
∂P
∂xl

(x,v, t) f′i (x, t)

〉
=− ∂2

∂xl∂xk

∫ t

t0

〈
Hkj [t; t′] Rji(xp(t

′), t′; x, t)P (x,v, t)

〉
dt′

+
∂

∂xk

∫ t

t0

〈
∂

∂xl

[
Hkj [t; t′] Rji(xp(t

′), t′; x, t)
]
P (x,v, t)

〉
dt′

+
∂

∂xl

∫ t

t0

〈
∂

∂xk

[
Hkj [t; t′] Rji(xp(t

′), t′; x, t)
]
P (x,v, t)

〉
dt′

−
∫ t

t0

〈
∂2

∂xl∂xk

[
Hkj [t; t′] Rji(xp(t

′), t′; x, t)
]
P (x,v, t)

〉
dt′

− ∂2

∂xl∂vk

∫ t

t0

〈
Ḣkj [t; t′] Rji(xp(t

′), t′; x, t)P (x,v, t)

〉
dt′

+
∂

∂vk

∫ t

t0

〈
∂

∂xl

[
Ḣkj [t; t′] Rji(xp(t

′), t′; x, t)
]
P (x,v, t)

〉
dt′

+
∂

∂xl

∫ t

t0

〈
∂

∂vk

[
Ḣkj [t; t′] Rji(xp(t

′), t′; x, t)
]
P (x,v, t)

〉
dt′

−
∫ t

t0

〈
∂2

∂xl∂vk

[
Ḣkj [t; t′] Rji(xp(t

′), t′; x, t)
]
P (x,v, t)

〉
dt′

(D.11)

In this expression, the final two terms are identically zero, since neither Ḣ [t; t′] or

R(xp(t
′), t′; x, t) contain a dependence of the phase-space velocity v. Then making the

interpretation f ′ (x, t) = βu′ (x, t) and extracting the fine-grained PDF P (x,v, t) from

the averages finally results in
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〈
∂P
∂xl

(x,v, t) u′i (x, t)

〉
=− 1

β

∂2

∂xl∂xk

[∫ t

t0

〈
Hkj [t; t′] Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]

+
1

β

∂

∂xk

[∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]

+
1

β

∂

∂xl

[∫ t

t0

〈
Hkj [t; t′]

∂

∂xk
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]

− 1

β

∫ t

t0

〈
Hkj [t; t′]

∂2

∂xl∂xk
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

− 1

β

∂2

∂xl∂vk

[∫ t

t0

〈
Ḣkj [t; t′] Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]

+
1

β

∂

∂vk

[∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
(D.12)

The result obtained from correlation splitting of term 2 in (D.3) is that of the standard

phase-space diffusion current given by

〈
P (x,v, t) u′i (x, t)

〉
=

1

β

∫ t

t0

〈
Hkj [t; t′]

∂

∂xk
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

− 1

β

∂

∂xk

[∫ t

t0

〈
Hkj [t; t′] Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]

− 1

β

∂

∂vk

[∫ t

t0

〈
Ḣkj [t; t′] Rji(xp(t

′), t′; x, t)

〉
x,v

p (x,v, t) dt′

]
(D.13)

Then substitution of (D.12) and (D.13) into (D.3) along with (D.1), and subsequent

cancellation of terms yields
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p (x,v, t)

〈
∂ui
∂xl

(xp(t), t)

〉
x,v

= p (x,v, t)

〈
∂ui
∂xl

(x, t)

〉
+

1

β

∫ t

t0

〈
Hkj [t; t′]

∂2

∂xl∂xk
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

− 1

β

∂

∂xk

[∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]

− 1

β

∂

∂vk

[∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
(D.14)

The corresponding velocity averaged version of this result in terms of the number

density ρ (x, t) is

ρ (x, t)

〈
∂ui
∂xl

(xp(t), t)

〉
x

= ρ (x, t)

〈
∂ui
∂xl

(x, t)

〉
+

1

β

∫ t

t0

〈
Hkj [t; t′]

∂2

∂xl∂xk
Rji(xp(t

′), t′; x, t)

〉
x

dt′ ρ (x, t)

− 1

β

∂

∂xk

[∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x

dt′ ρ (x, t)

]
(D.15)

In the case of a homogeneous fluid velocity field, this result reduces further to

〈
∂ui
∂xl

(xp(t), t)

〉
=

1

β

∫ t

t0

〈
Hkj [t; t′]

∂2

∂xl∂xk
Rji(xp(t

′), t′; x, t)

〉
dt′ (D.16)

This then provides an expression for
〈
∇u (xp(t), t)

〉
in terms of a dispersion tensor

consisting of the standard particle response tensor H [t; t′] and two-point two-time

correlation tensor R(xp(t
′), t′; x, t) which arise in the PDF kinetic framework, and is

the result given by (6.91).
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D.2 Correlation Splitting of the One-time Fluctu-

ating Particle Velocity and Fluctuating Lagrangian

Fluid Velocity Gradient

The aim here is to develop a closure for the one-time fluctuating particle velocity -

fluctuating Lagrangian fluid velocity gradient correlations
〈
v′p (t)∇u′ (xp(t), t)

〉
x

via

the use of PDF methods. To begin with, the PDF p (x,v, t) and number density ρ (x, t)

can be used to write

〈
v′p (t)∇u′ (xp(t), t)

〉
x

=
1

ρ (x, t)

〈
% (x, t)v′p (t)∇u′ (xp(t), t)

〉
=

1

ρ (x, t)

∫
v

〈
P (x,v, t)

[
vp (t)− v (xp(t), t)

]
∇u′ (xp(t), t)

〉
dv

(D.17)

Then the filtering property of the fine-grained PDF P (x,v, t) can be used to replace

the fluctuating particle velocity v′p (t) = vp (t)−v (xp(t), t) with the fluctuating phase-

space velocity c (x, t) = v−v (x, t), which is deterministic. Further manipulation then

yields

〈
v′p (t)∇u′ (xp(t), t)

〉
x

=
1

ρ (x, t)

∫
v

[
v − v (x, t)

]〈
P (x,v, t)∇u′ (xp(t), t)

〉
dv

=
1

ρ (x, t)

∫
v

c (x, t) p (x,v, t)
〈
∇u′ (xp(t), t)

〉
x,v

dv

=
1

ρ (x, t)

∫
v

c (x, t) p (x,v, t)
〈
∇u (xp(t), t)

〉
x,v

dv

− 1

ρ (x, t)

∫
v

c (x, t) p (x,v, t)∇u (xp(t), t) dv (D.18)

For the second term, it follows that
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1

ρ (x, t)

∫
v

c (x, t) p (x,v, t)∇u (xp(t), t) dv

=∇u (xp(t), t)

[
1

ρ (x, t)

∫
v

vp (x,v, t) dv − v (x, t)
1

ρ (x, t)

∫
v

p (x,v, t) dv

]
=∇u (xp(t), t)

[
v (x, t)− v (x, t)

]
= 0

Thus the result for (D.18) reduces to

〈
v′p (t)∇u′ (xp(t), t)

〉
x

=
1

ρ (x, t)

∫
v

c (x, t) p (x,v, t)
〈
∇u (xp(t), t)

〉
x,v

dv (D.19)

The average p (x,v, t)
〈
∇u (xp(t), t)

〉
x,v

is closed in Appendix D.1, and using the rel-

evant result given by (D.14), (D.19) then accordingly becomes

〈
vp
′
m (t)

∂ui
∂xl

′
(xp(t), t)

〉
x

=
1

ρ (x, t)

∫
v

cm (x, t) p (x,v, t)

〈
∂ui
∂xl

(x, t)

〉
dv︸ ︷︷ ︸

1©

+
1

ρ (x, t)

∫
v

cm (x, t)
1

β

∫ t

t0

〈
Hkj [t; t′]

∂2

∂xl∂xk
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t) dv︸ ︷︷ ︸
2©

− 1

ρ (x, t)

∫
v

cm (x, t)
1

β

∂

∂xk

[∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
dv︸ ︷︷ ︸

3©

− 1

ρ (x, t)

∫
v

cm (x, t)
1

β

∂

∂vk

[∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
dv︸ ︷︷ ︸

4©
(D.20)

Where possible, evaluation of the separate integrals produces
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1©

1

ρ (x, t)

∫
v

cm (x, t) p (x,v, t)

〈
∂ui
∂xl

(x, t)

〉
dv

=

〈
∂ui
∂xl

(x, t)

〉[
1

ρ (x, t)

∫
v

vmp (x,v, t) dv − vm (x, t)
1

ρ (x, t)

∫
v

p (x,v, t) dv

]
= 0

3©

1

ρ (x, t)

∫
v

cm (x, t)
1

β

∂

∂xk

[∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
dv

=
1

β

1

ρ (x, t)

∫
v

∂

∂xk

[
cm (x, t)

∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
dv

− 1

β

1

ρ (x, t)

∫
v

∂cm
∂xk

(x, t)

∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t) dv

=
1

β

1

ρ (x, t)

∂

∂xk

[∫
v

cm (x, t)

∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t) dv

]

− 1

β

∂vm
∂xk

(x, t)

∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x

dt′
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4©

1

ρ (x, t)

∫
v

cm (x, t)
1

β

∂

∂vk

[∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
dv

=
1

β

1

ρ (x, t)

∫
v

∂

∂vk

[
cm (x, t)

∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]
dv

− 1

β

1

ρ (x, t)

∫
v

∂

∂vk

[
cm (x, t)

] ∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t) dv

=
1

β

1

ρ (x, t)

[
cm (x, t)

∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t)

]v=∞

v=−∞

− 1

β

1

ρ (x, t)

∫
v

δmk

∫ t

t0

〈
Ḣkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t) dv

= − 1

β

∫ t

t0

〈
Ḣmj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x

dt′

where in 4© the first term is equal to zero since p (x,v, t)→ 0 as v→ ±∞. Using the

results for 1©, 3©, and 4© in equation (D.20) yields the result

〈
vp
′
m (t)

∂ui
∂xl

′
(xp(t), t)

〉
x

=
1

β

1

ρ (x, t)

∫
v

cm (x, t)

∫ t

t0

〈
Hkj [t; t′]

∂2

∂xl∂xk
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t) dv

− 1

β

1

ρ (x, t)

∂

∂xk

[∫
v

cm (x, t)

∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x,v

dt′ p (x,v, t) dv

]

+
1

β

∂vm
∂xk

(x, t)

∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x

dt′

+
1

β

∫ t

t0

〈
Ḣmj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x

dt′ (D.21)

The corresponding velocity averaged version of this result is
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〈
vp
′
m (t)

∂ui
∂xl

′
(xp(t), t)

〉
x

=
1

β

∂vm
∂xk

(x, t)

∫ t

t0

〈
Hkj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x

dt′

+
1

β

∫ t

t0

〈
Ḣmj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
x

dt′ (D.22)

where the integral result for 1© is used in which the velocity averaged value of c (x, t)

is zero. In the case of a homogeneous fluid velocity field, this result reduces further to

〈
vp
′
m (t)

∂ui
∂xl

′
(xp(t), t)

〉
=

1

β

∫ t

t0

〈
Ḣmj [t; t′]

∂

∂xl
Rji(xp(t

′), t′; x, t)

〉
dt′ (D.23)

This then provides an expression for
〈
v′p (t)∇u′ (xp(t), t)

〉
in terms of a dispersion ten-

sor consisting of the standard particle response tensor derivative Ḣ [t; t′] and two-point

two-time correlation tensor R(xp(t
′), t′; x, t) which arise in the PDF kinetic framework.

D.2.1 Closure Consistent with the LHA for the case of Grav-

itational Settling

Using the result (D.23) and taking the Green’s function approximation toH [t; t′] given

in (4.65) such that

Ḣ [t; t′] ≈ Ḣ [t; t′] = ḣ(t, t′)I = exp
[
− β(t− t′)

]
I

reduces the closure required to

〈
vp
′
m (t)

∂ui
∂xl

′
(xp(t), t)

〉
≈ 1

β

∫ t

t0

exp
[
−β(t− t′)

]〈 ∂

∂xl
Rmi(xp(t

′), t′; x, t)

〉
dt′ (D.24)

To close this average, in the case of gravitational settling in an isotropic flow, the

separation along a particle trajectory can be approximated as rp(t
′; t) ≈ r0(t′; t) =

Vg(t− t′) as given by (6.63). Then using the approximation

〈
∂

∂xl
Rmi(rp)

〉
≈ ∂

∂xl
Rmi

(
r0(t′; t)

)
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as in (6.64) where the isotropic form of ∂
∂xl

Rmi

(
r, t− t′)

)
is given by (C.16) with only

the leading order terms in time considered in this case, and further consistent with

the LHA replacing the temporal decorrelation function Eω(t− t′) with the exponential

decorrelation exp
[
− 1/τLp(t− t′)

]
produces the closure

〈
∂

∂xl
Rmi(xp(t

′), t′; x, t)

〉
≈ 1

d− 1
β2u′

2
σ2
k

[
Vgmδli + Vgiδml − (d+ 1)Vglδmi

]
· (t− t′) exp

[
− 1

τLp
(t− t′)

]
(D.25)

Substitution into (D.24) yields

〈
vp
′
m (t)

∂ui
∂xl

′
(xp(t), t)

〉
≈ 1

d− 1
βu′

2
σ2
k

[
Vgmδli + Vgiδml − (d+ 1)Vglδmi

]
·
∫ t

t0

(t− t′) exp
[
− β(t− t′)

]
exp

[
− 1

τLp
(t− t′)

]
dt′

(D.26)

Evaluation of the time integral is tractable due to the use of an exponential decorrela-

tion function, and then taking the limit t→∞ to obtain the steady-state value finally

yields

〈
vp
′
m (t)

∂ui
∂xl

′
(xp(t), t)

〉
≈ 1

d− 1

1

β(1 + StLp)2
u′

2
σ2
k

[
Vgmδli + Vgiδml − (d+ 1)Vglδmi

]
(D.27)

Thus this provides a model for the one-time correlation
〈
v′p (t)∇u′ (xp(t), t)

〉
that

direct use of an isotropic assumption for the two-time correlation
〈
v′p (t′)∇u′ (xp(t), t)

〉
fails to extract. The approach outlined here can then be used as a basis for modelling

these two-time correlations in conjunction with a suitable time decorrelation function

ψ (t− t′) such that

〈
v′p (t′)∇u′ (xp(t), t)

〉
≈
〈
v′p (t)∇u′ (xp(t), t)

〉
ψ (t− t′)
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Appendix E

Stability Analysis of the Four-step

Explicit Adams-Bashforth Method

for the Response Tensor Governing

Equation

The general form of a multistep method for numerical solution of the first order system

Ẏkl = fkl(Y ) can be written as [22]

Y
(t)
kl =

n∑
j=1

αjY
(t+1−j)
kl +

n∑
j=0

hβjf
(t+1−j)
kl (E.1)

where (t) denotes a discrete time point, and h is the timestep for the numerical method.

For the system form G[t; t′] of the response tensor in the case of Stokes drag law, the

governing equation is given in (5.31) by

Gkl[t; t′] = Mkr(t)Grl[t; t′] , M(t) =

[
0 I

β∇u>(xp(t), t) −βI

]
(E.2)

Further, in the case of the four-step explicit Adams-Bashforth method given by (5.28),

the coefficients for (E.1) with n = 4 are
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ADAMS-BASHFORTH METHOD FOR THE RESPONSE TENSOR GOVERNING
EQUATION

α1 = 1 , α2 = α3 = α4 = 0 (E.3)

β0 = 0 , β1 =
55

24
, β2 = −59

24
, β3 =

37

24
, β4 = − 9

24
(E.4)

This produces the difference equation with constant coefficients

G(t+1)
kl −

[
δkr +

55

24
hMkr

]
G(t)
rl +

59

24
hMkrG(t−1)

rl −37

24
hMkrG(t−2)

rl +
9

24
hMkrG(t−3)

rl = 0 (E.5)

To analyse this equation, it is useful to set G(t)
kl = ziδkl where i is interpreted as an

exponent acting upon z. This results in

zi+1δkl −
[
δkl +

55

24
hMkl

]
zi +

59

24
hMklz

i−1 − 37

24
hMklz

i−2 +
9

24
hMklz

i−3 = 0 (E.6)

To obtain the stability polynomial for AB4 in the case of the linear system (E.2), this

equation is divided by zi+1−n = zi−3

z4δkl −
[
δkl +

55

24
hMkl

]
z3 +

59

24
hMklz

2 − 37

24
hMklz +

9

24
hMkl = 0 (E.7)

The solution of this stability polynomial for the timestep h yields

h =
−z4δkl + z3δkl

−55
24
Mklz3 + 59

24
Mklz2 − 37

24
Mklz + 9

24
Mkl

(E.8)

The stability of (E.7) is ensured if |z| < 1 [22], therefore evaluating (E.8) for z = ±1

will give the limiting values of the timestep size h

z = 1 ⇒ h = 0 (E.9)

z = −1 ⇒ h =
−3δkl
10Mkl

(E.10)

Thus z = −1 determines the timestep constraint in this case. Moreover, the limiting

factor on timestep size will be the component of M in (E.2), as given by
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{0, I, β∇u>(xp(t), t),−βI}, which has the largest magnitude. Therefore neglecting

the constant blocks 0 and I, the constraint that exists on the timestep size for the

components of M is given by Mkl = −max
(
β, β|∇u>(xp(t), t)|

)
. Thus this specifies

the final condition on the timestep size h in order for the numerical solution of AB4 to

remain stable for the system (E.2) as

h <
3

10 max (β, β|∇u>(xp(t), t)|)
(E.11)

which is the result given in (5.32).
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