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Abstract 

Extremely preterm infants are susceptible to life-threatening diseases, specifically late onset 

sepsis (LOS) and necrotising enterocolitis (NEC). Both these diseases are associated with 

changes in the gut microbiota and an immature immune response. Mother’s own milk (MOM) 

has been shown to reduce the incidence of both NEC and LOS. When MOM is not available, the 

alternatives are donor human milk (DHM) or cow’s milk formula (CMF). Clinical trials have 

shown an inconsistent effect on rates of NEC or LOS when DHM is used instead of CMF to 

make up any shortfall of MOM, although the use of DHM or CMF as sole diet tends to favour 

DHM. Inconsistencies or lack of effect could be due to differences in the concentration of 

bioactive components of DHM compared to MOM, as DHM is usually from donors who are 

longer post-partum, and is usually pasteurised and frozen. The diet of preterm infants affects 

both their gut microbiota and gut mucosal T cells, which may be instrumental to any impact on 

LOS and NEC. 

This study aimed to identify differences in gut microbial or T cell composition if infants were 

fed an exclusively human milk (MOM+/-DHM) diet (Intervention) compared to a diet 

containing bovine products (MOM+/-CMF) (Control). 

The hypothesis was that an exclusively human milk diet would be associated with changes in 

microbial diversity, abundance of Bifidobacteria, Regulatory T cells, Mucosa-associated 

invariant T cells and invariant natural killer T cells. 

Infants of less than 30 weeks gestational age (GA) were recruited to a randomised controlled 

trial comparing the two diets until 34 weeks GA. Stool samples were taken throughout the trial 

period, which were analysed using 16S rRNA sequencing at 5 time-points, and blood samples 

taken at 2 time-points were analysed using mass cytometry. 

This report provides data from a pilot study of 59 infants. Infants in the intervention group 

paradoxically received less MOM overall and had decreased rate of growth (weight). There was 

a significant difference in unweighted microbial beta-diversity at 34 weeks GA and a 

significantly increased abundance of lactobacillus at 34 weeks GA in the control group. There 

was no difference in T cell populations between the trial populations, however clear 

differences were noted when compared to adult control samples. 

In conclusion, an exclusively human milk diet did not result in measurable changes in gut 

bacterial community structure or changes in T cell immunophenotype when compared to a 

diet containing bovine products. However, the routine use of supplemental probiotics 
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containing Bifidobacteria and Lactobacillus in this study population may mask important 

effects. 
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Chapter 1. Introduction 

1.1 Diet and extremely preterm infants 

 Extremely preterm infants 

Extremely preterm infants are those born prior to 28 completed gestational weeks. Whilst the 

majority of preterm infants (those born <37 weeks gestation) require intervention to establish 

oral feeding and maintain a normal body temperature, extremely preterm infants typically 

require additional support, including respiratory and nutritional support. Without this 

additional support the mortality rate in this group is high, as seen in low- and middle-income 

countries (Katz et al., 2013, Gladstone et al., 2015). In high income countries the mortality rate 

remains around 30%, with an even higher morbidity burden (Stoll et al., 2015). The causes of 

mortality and morbidity have changed in this population over the last 20 years, with reduced 

deaths from respiratory causes but increases in the proportion of infants that are dying from 

other conditions such as necrotising enterocolitis (NEC) and late onset sepsis (LOS) (Berrington 

et al., 2012). 

 Necrotising Enterocolitis 

NEC is a disease characterised by necrotic or inflamed bowel confirmed during post-mortem or 

surgery. Diagnosis is initially based on clinical findings which can be subjective. NEC can 

present in a myriad of ways with intestinal symptoms of obstruction, inflammation or 

perforation, or with cardio-respiratory compromise.  

The condition primarily affects infants born before 32 weeks gestational age (GA) (Rose and 

Patel, 2018). Investigations typically include serum C-reactive protein, full blood count and 

abdominal radiograph although these investigations lack specificity and sensitivity, which 

continues to present a major challenge in accurate diagnosis and subsequent management.  

There are have been a number of attempts to provide diagnostic or grading schemes for NEC, 

which is unsurprisingly difficult for a condition that is in reality a pathological description. The 

first grading criteria were proposed by Bell et al in 1978 which used risk factors, signs, 

symptoms and x-ray findings to categorise NEC into one of three stages (Bell M. J., 1978). This 

grading system has been modified to include laboratory findings and remains widely used in 

clinical trials. Diagnostic criteria widely used in the United Kingdom are those of the National 

neonatal audit programme (NNAP) which include a combination of clinical and radiological 
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findings to diagnose NEC (Health, 2017). A weakness of most clinical diagnostic criteria used in 

NEC is the interpretation of abdominal x-rays. Whilst the diagnosis of free intra-peritoneal air 

is relatively unambiguous, the pathognomic finding of intra-mural gas (also known as 

pneumatosis intestinalis, example in highlighted area on Figure 1) is more difficult as impacted 

stool can resemble this appearance in a well infant. 

1.1.2.1 Disease Burden 

Between 2-10% of infants born less than 32 weeks corrected GA (CGA) are diagnosed with NEC 

(Battersby et al., 2018) which has a mortality rate of 20-40% (Battersby et al., 2018). Long-term 

sequelae are also important and can include intestinal stricture, short bowel syndrome, or 

renal failure, and the risk of impaired neuro-development is also increased (Hickey et al., 

2018).  A greater understanding of the underlying mechanisms may improve these outcomes.  

1.1.2.2 Pathogenesis 

Although the underlying mechanisms for NEC are not known, current data suggest a role for 

environmental and genetic factors that influence the gut microbiota and hence the integrity of 

the gut epithelial barrier as illustrated in Figure 1. Impaired barrier function results in bacterial 

translocation and initiation of an immature immune response, eventually manifesting as a 

systemic disease (Bode, 2018). An association that has been the focus of research for over 30 

years is that NEC is more likely to occur in infants fed cow’s milk formula (CMF) based diets 

rather than their mother’s own breast milk (MOM) (Meinzen-Derr et al., 2009, Corpeleijn et 

al., 2016, Lucas and Cole, 1990, E Corpeleijn et al., 2012). It is not clear if this is due to 

protective properties of MOM or detrimental properties of CMF. MOM has been the focus of 

research regarding the prevention and treatment of NEC. 
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Figure 1 - Current understanding of the risk factors and pathogenesis of Necrotising 

Enterocolitis (Bein et al., 2018, Rose and Patel, 2018, Stewart et al., 2016, Remon et 

al., 2015, Mara et al., 2018, Chew et al., 2018) 

 Late Onset Sepsis 

LOS is a disease that may present in a similar fashion to NEC. LOS is typically defined as sepsis 

occurring more than 72 hours after birth, and this thesis will refer only to blood culture-

positive LOS unless otherwise stated. LOS is diagnosed in 20-40 % of infants born extremely 

preterm and contributes to the death of 4-11% of infants born before 32 weeks (Stoll et al., 

2015, Berrington et al., 2012). It can be difficult to distinguish LOS from NEC, and these 

diseases are commonly grouped together when reporting outcomes in clinical research. This is 

in part due to NEC and LOS sharing similar risk factors, and the lack of robust case definitions.  

Organisms associated with LOS are typically commensals of either the skin or the gastro-

intestinal tract. Risk factors include prematurity, poor hand hygiene and repeated intravenous 

catheter insertion. Importantly, prospective studies have shown that the abundance of the LOS 

pathogen expands in the gastro-intestinal tract of preterm infants before the onset of LOS 

(Stewart et al., 2017b). This raises the possibility that the gut microbiota is involved in initiation 

of LOS. Modulation of the gut microbiota through the use of medications that contain 

(probiotics) or promote (prebiotics) specific bacteria has been an area of intense interest 
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(AlFaleh and Anabrees, 2014). Similar to NEC, a reduction in LOS has been shown with a diet of 

MOM (Patel et al., 2013), again suggesting that an understanding of the diet of preterm infants 

is important in improving outcomes. 

 Preterm Nutrition 

Preterm infants have increased energy requirements compared to infants born at term 

(Joosten et al., 2018), although extremely preterm infants are not able to tolerate large 

volumes of enteral milk in the first days of life. Parenteral nutrition is therefore used to 

provide nutrition whilst enteral feeding is established slowly over a period of days (Dutta et al., 

2015) and most Neonatal Intensive Care Units (NICU) provide parenteral nutrition immediately 

from birth. Infants are typically able to feed orally starting from 32-34 weeks’ gestational age, 

so prior to this point, all enteral nutrition is administered via a gastric tube (nasogastric or 

orogastric). When enteral feed nutrient intakes are tolerated (between 135-200ml/kg/day) 

parenteral nutrition is stopped (Agostoni et al., 2010). If the enteral nutrition consists of MOM, 

which has lower protein and energy concentration than CMF (explored in Section 1.1.6), then a 

breast milk fortifier is commonly added to MOM in order to meet recommended nutrient 

intakes (Dutta et al., 2015).  

1.1.4.1 Breast milk fortifier 

Breast milk fortifiers are food supplements than contains protein, energy, minerals and other 

micronutrients and increases the nutrient density of MOM-based diets. This is typically as a 

freeze-dried powder derived from cow’s milk, which will be referred to as bovine-milk based 

breast milk fortifier (BMF). More recently, a breast milk fortifier derived from donated human 

milk has become commercially available, which will be referred to as human-milk based breast 

milk fortifier (HMF). 

 Comparison between human milk and cow’s milk formula 

1.1.5.1 Clinical trials 

MOM is the optimal diet of preterm infants, primarily due to the lower risk of LOS and NEC (E 

Corpeleijn et al., 2012, Sisk et al., 2007). Unfortunately, many mothers are unable to or may 

choose not to meet their infant’s requirements with MOM alone (Victora, 2016). As a result, 

MOM is often supplemented or replaced altogether with either CMF or donor human milk 

(DHM). The question of whether to supplement MOM with DHM or CMF, if there is a shortfall, 
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was considered in clinical trials conducted in the 1980’s. These trials showed lower rates of 

NEC but found low birthweight infants had slower growth when DHM was used (Behrman et 

al., 1983, Lucas et al., 1984). Clinical care (both maternal and neonatal), processing of DHM 

and CMF have since changed dramatically, making it difficult to draw strong conclusions for 

current practice from these historic trials for current populations of preterm infants (McGuire 

and Anthony, 2003). 

In the last 20 years, six randomised clinical trials have explored the role of DHM diets. These 

trials have had different designs and primary outcomes which are summarised in Table 1. 

Unfortunately, none of these trials were powered solely for NEC or LOS as a primary outcome, 

however two used a composite outcome involving these diseases. A meta-analysis conducted 

in 2018 reviewed 5 of the trials in Table 1 as well as including trials performed in the 1980’s. 

The meta-analysis concluded that DHM reduced the incidence of severe NEC (RR 1.87 (95% CI 

1.23-2.85)) compared to CMF when there is a shortfall of MOM (Quigley et al., 2018) however 

there was no difference in mortality or neuro-development which might have been expected 

to accompany a reduction in severe NEC. Furthermore, as was found in the earlier trials, there 

was greater weight gain and increase in head circumference in infants fed CMF when there is a 

shortfall of MOM.  Poor weight gain is associated with worse neuro-development so this 

finding remains a concern for exclusive human milk diets.  

1.1.5.1.1 Comparison of fortifiers 

Only two trials listed in Table 1 used a HMF, with the others using a BMF. Cristofalo et al. 

compared a group receiving CMF with a group receiving DHM with HMF and therefore did not 

compare the use of different fortifiers for MOM (Cristofalo et al., 2013). Sullivan et al. used 

both a HMF and a BMF in the intervention and comparison arms respectively, finding no 

significant difference in their primary outcome (duration of parenteral nutrition). However, 

they did report a high use of MOM (>70%) and a significant reduction in NEC as a secondary 

outcome (Sullivan et al., 2010).  

Differences in clinical outcomes depending on the type of fortifier used have been explored by 

O’Connor et al. who compared the effect of using either a HMF or a BMF on feeding tolerance 

and morbidity in a blinded study of low-birth weight (birth weight <1250 grams) infants. 

Infants (n = 127) were randomised to receive either HMF or BMF when they were receiving 

100ml/kg/day of either MOM or DHM. The intervention stopped when the infant was either 84 

days old, discharged or established oral feeding. The primary outcome was interruption in 

feeding for >12 hours or >50% reduction in feeding volume at any time. No significant 

difference was found in this primary outcome or a secondary outcome using a morbidity and 

mortality index (O'Connor et al., 2018). 
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In summary, no adequately powered trials to determine a reduction in NEC or LOS as a primary 

outcome have been conducted that compare preterm infants fed an exclusive human milk diet 

to one containing bovine products, there remain concerns regarding growth using an exclusive 

human milk diet.
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Table 1 - Summary of Randomised trials comparing DHM and CMF in preterm infants from the year 2000-2020.  BW (birth weight)

(Primary 
author, Year) 

Population Intervention Comparison 
Primary 

Outcome 
Results Strengths Limitations 

(Schanler et al., 
2005)  

23-30 weeks GA at 
birth.                               

N = 243 (81 DHM, 92 
CMF, 70 MOM only) 

DHM if shortfall of MOM.                              
 

Intervention from 4-90 
days age (or discharge) 

CMF if shortfall of 
MOM or MOM only 

                                                   
BMF used in both 

groups 

Composite outcome 
of NEC/LOS.  

MOM group had lowest 
rates of LOS +/-NEC.  

DHM group had lower 
rate of NEC than CMF 

group (6 vs 11%) but not 
significant 

Blinded, 3 groups 
(including MOM 

only group) 

Over recruited to meet 
MOM group numbers.                                                                

17 (21%) of DHM group 
given CMF due to poor 

weight gain 
BMF in both groups 

(Sullivan et al., 
2010) 

BW 500-1250g.                              
N = 207 (HM 100 = 67, 
HM 40 = 71, CMF =69) 

DHM if shortfall of MOM. 
HMF used as fortifier 

     
Intervention until either 
91-days, discharge or 4 

oral feeds/day 

CMF if shortfall of 
MOM 

 
BMF used as fortifier. 

Duration of 
parenteral nutrition 

(days) 

No change in primary 
outcome.                                       

Significant reduction in 
NEC/surgical NEC in HM 

groups 

Kept to study 
protocol. 

 
HMF and BMF used 

Not blinded. Not 
powered for any 

clinical outcomes. 
>70% of all enteral 
nutrition was MOM 
(82% in CMF group) 

(Cristofalo et al., 
2013) 

BW 500-1250g.                              
N = 53 (DHM = 29, 

CMF =24) 
Eligible if no MOM to 

be provided 

DHM as sole diet. 
HMF used as fortifier.                                      

 
Intervention until either 
91 days, discharge or 4 

oral feeds/day 

CMF as sole diet. 
Duration of 

parenteral nutrition 
(days). 

Significant reduction in 
primary outcome 

 Significant reduction in 
NEC (21% vs 3%) 

Blinded, powered. 
Not powered for 

clinical outcomes. 

(Corpeleijn et al., 
2016) 

BW < 1500g                                     
N = 373 (DHM = 183, 

CMF = 199) 

DHM if shortfall of MOM                                                       
 

Intervention for first 10 
days of life 

CMF if shortfall of 
MOM  

Composite outcome 
of survival without 
NEC/LOS (until 60 

days) 

No change in primary 
outcome (at 10 or 60 

days) 

Double blinded, 
powered. 

More than 80% of 
enteral nutrition was 

MOM 
BMF in both groups 

(O’Connor et al., 
2016) 

BW < 1500 g                                          
N = 363 (DHM = 181, 

CMF = 182)  

DHM if shortfall of MOM                                      
 

Intervention until 90 
days of age or discharge 

CMF if shortfall of 
MOM                                                     

Cognitive Score on 
Bayley Score (3rd 

Edition) at 18 months 
CGA  

No change in primary 
outcome.  

Significant changes were 
seen in NEC (worse in 

CMF group) and in severe 
cognitive impairment 
(worse in DHM group) 

Blinded, powered. 
Not powered for NEC 

outcome 
BMF in both groups 

(Costa et al., 
2018) 

<32 weeks GA at birth                        
N = 70 (DHM = 35, 

CMF = 35) 

DHM if shortfall of MOM 
                                

Intervention until 
primary outcome 

CMF if shortfall of 
MOM                              

Day of full enteral 
feeds (150ml/kg/day 

for 3 consecutive 
days) 

No change in primary 
outcome 

Powered. 90% 
recruitment rate of 

eligible 
participants 

Not blinded. Relatively 
mature cohort (mean 

GA 30.1 weeks and BW 
1350g)                

No cases of NEC 
BMF in both groups 
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1.1.5 Growth of preterm infants 

1.1.5.2 Growth references and standards 

The optimal growth of preterm infants is not clearly defined. The UK-World Health 

Organisation (WHO) growth chart is based on birth weights of infants who were part of 3 

studies in different areas of the United Kingdom between 1983 and 1994 (Cole, 1998). This 

growth chart is a reference chart for the birthweights of preterm infants. In a similar fashion, 

Fenton et al. have published a meta-analysis of birthweights of 34,639 infants from 8 countries 

who were all born less than 30 weeks GA, providing a reference range of birthweights (Fenton 

and Kim, 2013). These birthweight references are often used as growth standards, with the 

extra-uterine growth of a neonate being expected to follow their birth centile, therefore 

matching intra-uterine growth. This may be unrealistic because of the increased energy 

requirements of preterm infants (Joosten et al., 2018) and indeed may not be desirable when 

longer term metabolic outcomes are considered.  

The development of growth standards based on the postnatal growth of preterm infants 

appears a more realistic target. The INTERGROWTH-21st Project is a recent example, where the 

growth of 201 preterm infants born after 26 weeks GA was followed for the first 5 months of 

life (Villar et al., 2015) This project was conducted in 8 different countries including the United 

Kingdom. There are still challenges in the interpretation of these data as infants were excluded 

if intra-uterine growth restriction or congenital abnormalities were present. Despite optimal 

growth being difficult to define, poor growth is known to be associated with worse cognitive 

outcomes in preterm infants. 

1.1.5.3 Consequence of abnormal growth 

Optimal growth is difficult to define in preterm infants, however poor growth is commonly 

reported. This is felt to be mainly due to high macronutrient needs and because of the 

practical difficulties in providing adequate nutrient intakes. Poor growth has been associated 

with early morbidities and poor neurodevelopmental outcomes, whilst excessive growth in 

early life has been associated with adverse metabolic outcomes. 

1.1.5.3.1 Early morbidities 

Regev et al. retrospectively explored a group of 12,992 infants born extremely preterm from 

1995 to 2013. They hypothesised that head growth failure, defined as a decrease in z-score of 

>=2 between birth and discharge, would be associated with common morbidities (NEC, 



 

 32 

respiratory distress syndrome (RDS), broncho-pulmonary dysplasia (BPD), sepsis (early or late-

onset)). They found that there was an association between all morbidities and head growth 

failure, however not for infants that were small for gestational age (SGA), based on weight 

(Regev et al., 2016). 

1.1.5.3.2 Neurodevelopmental outcome 

Ramel et al. retrospectively explored the association between growth and cognitive outcome 

at 2 years in very low birth weight (LBW) but appropriate for gestational age (AGA) infants 

(n=62). They found that shorter length, using z-scores, at 4 months and 24 months once 

corrected for weight and head circumference was associated with worse 2 year 

neurodevelopment outcomes (Ramel et al., 2012). Meyers et al. conducted a similar study 

retrospectively analysing 1227 infants born between 23 and 29 weeks. They defined two 

groups based on the change in body length between birth and discharge, hypothesising that 

poor linear growth would be associated with poor neurodevelopmental outcomes at 2 years. 

They demonstrated a linear relationship between poor growth (length) and reduction in scores 

in the language and cognitive domains of the Bayley III test (Meyers et al., 2019). Similarly, 

Pfister et al. prospectively followed up a cohort (n=32) for 4 years hypothesising that poor 

weight gain would be associated with slower speed of processing, whilst fast weight gain 

would be associated with hypertension. They demonstrated a linear relationship between 

weight gain (from term corrected age to 4 months) and hypertension but not speed of 

processing (as measured by visual evoked potentials) at 4 years (Pfister et al., 2018). However, 

Belfort et al. demonstrated a positive linear relationship between weight gain from birth to 

term GA and Bayley III scores, in a group of 613 infants less than 33 weeks GA. They also found 

a linear correlation in motor scores and weight gain from term to 4 months of age (Belfort et 

al., 2011) 

These studies highlight that appropriate weight gain in the first few months of life appears 

important for normal neurodevelopment. Research associating growth with outcomes is 

difficult to conduct therefore studies are often subject to limitations. Namely, they are often 

retrospective studies, have poor follow-up rates, and in the studies mentioned above there 

was no correction for false discovery rates (due to repeated statistical tests being used). 

Nonetheless, the consistent association between poor weight gain in preterm infants and 

adverse neurodevelopmental outcomes is a concern. An understanding of the variation in 

nutrient composition of human milk and CMF is therefore vital. 

1.1.5.3.3 Metabolic outcomes 

The period of early growth that impacts on metabolic outcomes is unclear. Kerkhof et al. 

investigated 162 adolescents who were born preterm (<36 weeks GA) and a term control 
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group with a range of metabolic investigations. They demonstrated that rapid weight gain up 

until 3 months of age was associated with increased body fat percentage and waist 

circumference at 20 years of age (Kerkhof et al., 2012). A similar study investigating metabolic 

outcomes in 153 children born at a median GA of 30 weeks did not confirm this. Although, it 

did demonstrate strong associations between rapid growth after 1 year of age and a range of 

metabolic outcomes including insulin sensitivity and fat mass. (Embleton et al., 2016).  

 Composition of human and cow’s milk formula 

Human milk varies in composition depending on the time of day, the length of the feed (fore 

and hind-milk) and the age of the child. Milk composition is described as going through 3 

stages; colostrum, transitional milk (5 days to 2 weeks post-delivery) and mature milk (Ballard 

and Morrow, 2013). The constituents vary depending on the stage of the milk. This is in 

distinction to the constituents of CMF which vary little due to being manufactured according to 

strict guidance (Health, 2013). The contents of milk can be broadly separated into the 

macronutrients, micronutrients and bioactive components. 

1.1.6.1 Macronutrient content 

The macronutrient content of milk mainly comprises protein, fat and lactose (major 

carbohydrate). The mean macronutrient intake from CMF, DHM and MOM that a preterm 

infant may receive are summarised in Table 2 assuming a fluid intake of 165ml/kg/day and a 

weight of 1kg. They are shown alongside nutrient intake recommendations for preterm infants 

from the ESPGHAN (European Society of Paediatric Gastroenterology, Hepatology and 

Nutrition). The ESPGHAN recommendations are based upon a systematic review of prospective 

studies and the use of a factorial model based on in-utero accretion of macro-nutrients 

(Agostoni et al., 2010). 

The protein content of human milk varies depending on post-conceptual age, with higher 

concentrations in preterm milk (Stoltz Sjostrom et al., 2014). Human milk protein content 

decreases with age after birth and is lowest at approximately 6 months of age (Saarela et al., 

2005, Lucas and Hudson, 1984). As DHM is commonly from mothers who are more than 6 

months post-partum, this explains the lower protein content of DHM compared to MOM 

(Table 2). 

The fat content of human milk provides the majority of the calories. If considered in a 24 hour 

period, the amount of fat does not differ greatly between human milk and CMF, however the 
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amount is highly variable depending on being from hind or fore milk (Ballard and Morrow, 

2013).  

Lactose is the main carbohydrate of human milk. There is little variability in lactose 

concentration between preterm or term human milk or between fore and hind milk (Saarela et 

al., 2005).  

Table 2 - Macronutrient content of Preterm CMF, DHM, MOM and Fortified MOM 

assuming a 1kg infant and a fluid intake of 165ml/kg/day. Mean values are shown (1 

decimal place). Values highlighted orange are below recommended levels and values 

highlighted red are above recommended level. 

*Preterm CMF includes SMA® PRO Gold Prem 1, Cow & Gate® Nutriprem 1 Low Birthweight 

formula and Cow and Gate Hydrolysed Nutriprem (range shown) 

^Fortified MOM represents MOM fortified with Cow and Gate® Nutriprem human 

milk fortifier (BMF) 

Nutrient Preterm CMF* 

DHM (mean 

values)                 

(Wojcik et al., 

2009) 

MOM (Preterm)               

(Stoltz Sjostrom 

et al., 2014) 

Fortified^ 

MOM         

(Preterm) 

ESPGHAN 

recommendations 

(Agostoni et al., 

2010) 

Energy (kcal) 132 107 114 139 110-135 kcal/day 

Protein (g) 4.29-4.78 1.9 2 - 3.6 3.8 - 5.4 
3.5-4.5              

g/day 

Protein: Energy 

(% of kcal) 
13 - 14.5 7.1 7 - 12.6 10.9 - 15.5 12.8-16.4 

Carbohydrate 

(g) 
13.4 - 13.9 12.9 10.6 15 

11.6-13.2            

g/day 

Fat (g) 6.5 - 6.6 5.3 5.8 5.8 
4.8-6.6             

g/day 

1.1.6.2 Micronutrient content 

Micronutrients including vitamins, minerals and trace elements are found in breast milk. 

Human milk is known to contain relatively low amounts of certain vitamins, especially vitamin 

K and vitamin D (Ballard and Morrow, 2013). Trace elements found in human milk are known 
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to vary between geographical populations with less variance within a population (Bjorklund et 

al., 2012). Whilst variability has been attributed to diet, it is difficult to draw strong conclusions 

due to limited sample size and heterogeneity in the design of studies exploring micronutrient 

content of human milk (Bravi et al., 2016). In order to reduce micronutrient deficiencies, 

supplementation with vitamins A, C and D is recommended by the National Institute of Clinical 

Excellence (NICE) to breastfeeding women and children between 6 months and 4 years of age 

who receive less than 500ml CMF per day. Vitamin D supplementation is recommended to 

breast fed infants from one month if their mother did not take vitamin D during pregnancy 

(Excellence, 2014a, Excellence, 2014b). Whilst it may be possible to control the intakes of 

certain nutrients that infants receive, the same is not possible for bioactive components.  

1.1.6.3 Bioactive components 

Bioactive components likely drive the health benefits of human milk. These are non-nutritive 

elements with functional activity (e.g. for immunity) and include human milk oligosaccharides 

(HMO’s), lactoferrin, bacteria and immune cells. These components have all been implicated in 

the host-microbe interaction, explored further in Section 1.4.  

1.1.6.3.1 Human Milk Oligosaccharides 

HMO’s are carbohydrates that comprise 1-2% of the total carbohydrates of human milk. They 

are not digestible by the infant but have been shown to stimulate the growth of specific 

bacteria which are deemed beneficial, as well as being absorbed intact into the vasculature 

(Underwood et al., 2015). Whilst they are seen as a key component of MOM, the composition 

and balance of HMOs differs between women possibly explaining some of the variation in the 

effect of MOM (Azad et al., 2018). The inclusion of HMO’s in CMF is now being explored 

(Puccio et al., 2017). 

1.1.6.3.2 Lactoferrin 

Lactoferrin is a member of the transferrin family. The concentration of lactoferrin is higher in 

preterm than term MOM, and is highest in colostrum (Villavicencio et al., 2017). Lactoferrin 

has bactericidal, bacteriostatic and bacteria-stimulating properties, and is part of the innate 

response to infection (Legrand, 2016). 

1.1.6.3.3 Bacteria 

Human milk is known to contain diverse microbes, which vary between individuals and are not 

solely due to skin bacterial colonisation (Gomez-Gallego et al., 2016). DHM undergoes 

pasteurisation, largely to destroy any pathogenic bacteria and viruses, however this also 

eliminates beneficial bacteria (Lima et al., 2017). Whether DHM can be personalised with the 
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microbiome of MOM in order to convey benefit to the infant is an area of ongoing research 

(Cacho et al., 2017). The human milk microbiota are explored in more detail in section 1.2.4.3. 

1.1.6.3.4 Immune cells 

Human milk contains leucocytes (neutrophils, eosinophils, basophils, lymphocytes and 

monocytes) and stem cells, which are all in greater abundance in early human milk (Trend et 

al., 2015). Milk derived maternal stem cells have been shown to translocate from the infant 

gut to distant organs including the brain, kidneys, thymus and liver in a mouse model 

(Hassiotou et al., 2015). Once there, stem cells have been shown to differentiate (Aydin et al., 

2018). If this were shown to be true in humans, this could help to explain the diverse range of 

benefits of MOM. 

Unfortunately, the processing of DHM is known to affect its bioactive components, eliminating 

viable cells (Table 3). This may explain why it does not have the same effect as MOM in 

extremely preterm infants. 

 Donor human milk production 

A challenge of using DHM is the inter-sample variation in the concentration of nutrients and 

bioactive components. This may lead to concerns regarding the adequacy of nutritional intake 

and growth of preterm infants fed DHM. Bulk processing of DHM and subsequent production 

of a standardised content of DHM can overcome some of the nutrient variation (Medo, 2017). 

Pasteurisation is still deemed necessary to ensure DHM is microbiologically safe. New 

pasteurisation techniques are being explored to minimise the effect on the bioactive 

components of human milk (Escuder-Vieco et al., 2018). 
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 Summary of the diet of extremely preterm infants 

All infants less than 32 weeks GA need additional nutritional intakes of calories, protein and 

vitamins. 

NEC is a disease predominantly affecting infants born less than 32 weeks GA that frequently 

leads to death or long-term morbidity. Diet is a known risk factor with MOM the preferential 

choice. When there is a shortfall of available MOM, the best alternative is not clear. DHM is an 

alternative however its nutrient and bioactive content can vary. This variation can be 

minimised through processing of DHM, as well as use of a fortifier. 

The bioactive components of human milk are what likely convey its benefits to infants, they 

are virtually absent from CMF and reduced in DHM. Due to this reduction in bioactive 

components, any beneficial effect of DHM is likely reduced compared to MOM. Whilst a large 

randomised clinical trial (RCT) with clinical outcomes is unlikely to occur due to the size and 

therefore expense required, mechanistic research may help uncover differences. Diet, NEC and 

LOS have been shown to be associated with changes in the gut microbiota and immune system 

of preterm infants. Modulation of the gut microbiota may be the reason for the beneficial 

effect of MOM, and any effect of DHM or HMF. 

Table 3 - Effect of pasteurisation on bioactive components of human milk 

Bioactive Component Effect of pasteurisation 

HMO’s 

No reduction 

(Hahn et al., 2017) 

Lactoferrin 

More than 50% reduction 

(Daniels et al., 2017) 

Bacteria 
Almost total loss, Bacillus cereus can survive 

(Lima et al., 2017) 

Leucocytes 
More than 90% reduction 

(Contador et al., 2013) 
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1.2 The preterm gut microbiota 

 The microbiota 

The microbiota describes the microbial community of a particular site, including bacteria, 

fungi, viruses and protozoa. This work focuses on the bacterial microbiota, and uses the term 

microbiota to refer to the bacterial microbiota.  The human body is known to contain more 

bacteria than human cells, with the gut containing approximately 1011 bacteria/ml, which are 

collectively termed the gut microbiota (Sender et al., 2016). 

The identification of these bacteria was made possible by culture-independent techniques 

which identify bacteria by the presence of their genetic material. The most commonly used 

technique in recent years is 16S rRNA gene sequencing (16S). The 16S region of the ribosomal 

RNA is highly variable between bacteria but is also slow to evolve making it ideal for identifying 

different bacteria. Bacterial identification is made by correlation with a known database, with 

the output referred to as the operational taxonomic unit (OTU). 16S sequencing can reliably 

identify bacteria to the genus taxonomic level. This may be a limitation, as specific species or 

strains of bacteria may be important, which cannot be precisely identified using 16S. The 

microbiome refers to the microbiota and their associated genetic material. 

There are other culture-independent techniques including Denaturing Gradient Gel 

Electrophoresis (DGGE), quantitative polymerase chain reaction (qPCR) and whole genome 

sequencing (WGS). The limitations of DGGE and qPCR include bias due to the use of primers 

and lack of resolution between bacterial communities. qPCR does have a useful role in the 

quantitative measurement of bacteria whereas 16S will only provide relative abundance of 

OTU’s. Whole genome sequencing (WGS) is increasingly being utilised as it becomes cheaper. 

WGS allows resolution of bacterial communities to a sub-species (strain) level.  

1.2.1.1 Why is the microbiome important? 

The microbiome has been the subject of intense research over the last 10 years with over 

12,000 publications devoted to this topic in a 5 year period up to 2017 (Cani, 2018). This is due 

to the association of changes in the microbiome with a number of diseases ranging from 

Inflammatory Bowel Disease to Alzheimer’s Disease (Vogt et al., 2017, Gkouskou et al., 2014). 

The majority of human studies can only demonstrate an association between the gut 

microbiome and disease, and not any causal relationship. This is because experimentally it is 

difficult to manipulate the microbiome, hence to demonstrate causality. Understanding how 

different microbiota may be causing disease is therefore best understood from animal studies. 
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1.2.1.2 By what mechanism do microbiota affect their host? 

Animal models have demonstrated a number of mechanisms by which microbiota may induce 

disease, two examples below highlight the role of Klebsiella in inducing colitis and 

Bifidobacterium longus in protecting from Escherichia Coli (E. Coli) 0157 infection. 

White et al. (2017) investigated the role of Paneth cells in the development of colitis in mice. 

They demonstrated that colitis only occurred after the intestine matured to contain Paneth 

cells. Colitis only developed in the presence of live (not dead) bacteria and when the Paneth 

cells were chemically disrupted. A combination of chemical disruption of Paneth cells and 

pathogenic bacteria (Klebsiella) was shown to result in translocation of intra-intestinal 

contents through the intestinal epithelial barrier with measurement of increased 

concentrations of FITC-tagged dextran in the serum compared to controls. Either Klebsiella or 

Paneth cell disruption in isolation did not have the same effect (White et al., 2017). 

Bifidobacteria are of intense interest in newborn infants due to their increased presence in the 

gut of breast-fed infants. In mice, it has been shown that a specific Bifidobacterium species 

(Bifidobacterium longum) protects mice from a usually fatal E. Coli 0157 infection. Fukuda et al. 

used metabolomics and transcriptomics to demonstrate that this protection was due to the 

ability of Bifidobacterium longum to secrete acetate, which reduced inflammation and 

apoptosis in epithelial cells (Fukuda et al., 2012). 
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Table 4 – Bacterial taxonomy using the example of the species Escherichia coli 

Domain Bacteria 

  Phylum Proteobacteria 

        Class Gammaproteobacteria 

            Order  Enterobacteriales 

                 Family Enterobacteriacae 

                     Genus Escherichia 

                           Species Escherichia coli 

                               Strain Escherichia Coli 0157:H7 

1.2.1.3 How is the microbiome analysed? 

Analysis and interpretation of a high-dimensional dataset such as WGS or 16S is a major 

challenge. During analysis, the microbiome is commonly described in terms of diversity and 

composition. Alpha-diversity refers to the variation in OTU’s within a sample, commonly 

described in terms of number of different OTU’s and total number of OTU’s (richness). Beta-

diversity is used to describe the variation in OTU’s between groups of samples, which can take 

into account alpha-diversity. Beta-diversity can be used to compare diversity between two 

groups of samples but cannot be quantified to be higher or lower in one group. Microbiome 

composition typically describes the relative abundance of different microbials at a particular 

taxonomic level (Zalewski et al., 2018). 

Inferred metabolic profiling can be derived from the bacteria identified, when a database is 

used with information about specific bacteria’s metabolic potential. This can become more 

specific when OTU’s can be identified to the species or strain level. 

There is no standard method of reporting microbiome data, however maintaining consistent 

analysis by minimising variation in sample collection and processing is thought to be vital 

(Pollock et al., 2018). This includes immediate freezing of samples and use of an appropriate 

lysis method to ensure breakdown of all bacteria. 

 Development of the preterm gut microbiome 

The preterm gut microbiome has been shown to be influenced by a number of demographic 

(e.g. gestational age) and environmental factors (e.g. diet, disease). This review will focus on 
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research using 16S or WGS techniques on stool samples from a population including infants 

born less than 32 weeks GA unless otherwise stated. The descriptor “preterm infants” will 

refer to infants born less than 32 weeks GA unless stated otherwise.  

Microbial colonisation of the preterm gut may start before birth with one study suggesting 

that amniotic fluid contains bacteria (Urushiyama et al., 2017). Immediately following birth, 

the faeces show a unique composition dominated by human proteins. It takes approximately 2 

weeks for the abundance of faecal bacterial proteins to exceed the faecal human proteins 

(Brown et al., 2018, Xiong et al., 2017). The preterm gut microbiome has a simpler composition 

when compared to adults and consists of between 6-7 preterm gut community types (PGCT) 

(Brown et al., 2018, Stewart et al., 2016). Samples in these studies were divided into PGCT’s 

based on the abundance of a particular OTU. 

Time (gestational age or postnatal age) has a major influence on the preterm gut microbiome 

(Brown et al., 2018, Zwittink et al., 2017, Korpela et al., 2018). At the genus level, 

Staphylococci and Enterococci dominate the first weeks of life (Zwittink et al., 2017, Korpela et 

al., 2018, Stewart et al., 2016). There is less agreement on how the preterm gut microbiome 

changes after this time. Korpela et al. described four phases of microbial development based 

on post-menstrual age, with phases dominated by the genera; Staphylococcus, Enterococcus, 

Enterobacteriacae and Bifidobacterium respectively (Figure 2) (Korpela et al., 2018). A similar 

pattern of development has not been described in such a clear manner elsewhere which may 

reflect differences in interpretation of the data or be due to true variation in the gut 

microbiota between different locations. The importance of the local environment as a variable 

has been highlighted as infants nursed together in the same room have been shown to share 

similarities in microbiome composition (Brooks et al., 2018). Environmental factors may be 

indirectly affected by location, through variation in clinical practice, including diet and delivery 

mode. 
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Figure 2 - Development of the most abundant bacterial genera in preterm and term-

born infants with respect to postmenstrual age. The trend lines show the best-fit 

(second polynomial) and the shaded areas represent 95% confidence intervals. 

Figure taken from (Korpela et al., 2018) 

EP (Extremely preterm), MVP (moderate to very preterm, 28-33+6 weeks GA) 
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 Effect of mode of delivery on the preterm gut microbiota  

1.2.3.1 Term infants 

Delivery by caesarian section has been associated with an increased risk of childhood obesity 

and asthma in term infants (Keag et al., 2018). The mechanism by which this occurs is not 

known however the altered patterns of microbial colonisation may be important (Dogra et al., 

2015). In term infants the gut microbiome is influenced by delivery mode to resemble the 

microbiome of the maternal skin (caesarean section) or vagina (vaginal delivery) (Dominguez-

Bello et al., 2010). Delivery mode continues to have some influence on the composition of the 

gut microbiome throughout the first year of life (Stewart et al., 2018). 

1.2.3.2 Preterm infants 

Mode of delivery does not appear to have the same effect on the gut microbiome of preterm 

infants. Ho et al. described an increase in the bacterial class Gammaproteobacteria and 

phylum Firmicutes in vaginal and caesarean delivered infants respectively, however no 

difference in microbiota composition was found in larger cohorts (Zwittink et al., 2017, Stewart 

et al., 2017a, Ho et al., 2018). Interestingly, there has been a report of increased abundance of 

Staphylococci in vaginally born preterm infants which is contrary to the findings in term infants 

(Korpela et al., 2018). Most studies suggest any impact of mode of delivery upon the gut 

microbiota is not sustained beyond the first few weeks of life (Korpela et al., 2018, Stewart et 

al., 2017a, Ho et al., 2018). The limit of any effect of mode of delivery in preterm infants 

compared to term infants may be related to variation in environmental exposures, such as high 

rates of antibiotic exposure in preterm infants, in the first weeks of life. 

 Effect of diet on the gut microbiota 

1.2.4.1 Term infants 

The gut microbiota of term infants fed MOM contains an increased abundance of Lactobacillus 

and Bifidobacterium species compared to infants not fed MOM. MOM feeding has a major 

influence on the gut microbiota for more than 6 months after birth (Stewart et al., 2018). This 

finding correlates with the ability of Bifidobacteria to utilise HMO’s as a substrate (Bode, 

2012). MOM does not seem to have the same effect on the gut microbiota of preterm infants 

as it does on term infants (Underwood et al., 2017). 
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1.2.4.2 Preterm infants 

In preterm infants the relative abundance of the genus Bifidobacterium, is decreased 

compared to term infants, even when supplemented by probiotics (Underwood et al., 2017), 

or in an RCT comparing two predominantly MOM diets (Butcher et al., 2018). However, an 

increase in Bifidobacteria abundance in MOM-fed compared with CMF-fed preterm infants has 

been demonstrated (Parra-Llorca et al., 2018). Studies by Cong et al. and Gregory et al. have 

conflicted with regards to the genera Lactobacillus, showing an increased relative abundance 

in CMF-fed or conversely MOM-fed preterm infants respectively, suggesting that any beneficial 

effects of MOM may not be specifically due to this group of bacteria (Cong et al., 2016, 

Gregory et al., 2016). 

1.2.4.2.1 MOM vs CMF vs DHM 

A more striking effect of diet appears to be the rate of change in diversity of bacteria seen 

when comparing a MOM and CMF diet. A predominantly MOM diet is associated with an 

increased initial α-diversity before a more gradual increase while α-diversity is initially lower 

then increases faster in preterm infants fed a CMF diet (Gregory et al., 2016). This suggests 

that microbial stability or rate of change may be a factor promoting health in MOM fed infants. 

Exclusive feeding with DHM appears to give a microbiome composition and diversity more 

similar to a MOM-fed than a CMF-fed preterm infant (Gregory et al., 2016, Parra-Llorca et al., 

2018). However, neither of the studies by Gregory et al. or Parra-Llorca et al. reported using 

fortifier. 

As described in Section 1.1.5 the normal situation in a NICU is a predominantly MOM diet with 

small amounts of DHM or CMF, with the introduction of a fortifier when an infant is fully 

enterally fed. There is a paucity of evidence exploring this normal situation. 

1.2.4.2.2 Exploring the impact of the normal preterm infant diet on the gut 

microbiota 

Butcher et al. have reported gut microbiome data from an RCT exploring a dietary intervention 

when there was a shortfall of MOM, however only infants who were exclusively MOM-fed 

were included in the microbiome analysis (Butcher et al., 2018). Cong et al. reported on a 

group of infants stratified into 6 feeding groups (MOM; MOM + DHM; MOM + CMF; DHM; 

CMF; DHM+CMF) based on the percentage of feeds the infant received in a 10-day period 

(Cong et al., 2017). They reported a higher α-diversity with MOM feeding, and that feeding 

type explained the greatest variance in β-diversity, with changes in relative abundance of 

bacterial species depending on feeding type (Figure 3). A limitation of the analysis as 

represented by Figure 3 appears to be the use of repeated measures for each infant as this 
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figure represents 389 samples from 33 infants. Infants have therefore been represented more 

than once in some columns, which is a limitation as an infant’s sample is more likely to be 

similar to itself. However, the stratification into 6 feeding groups gives a closer representation 

of the variation in diet found in a typical NICU. After reviewing the literature, there are no 

studies assessing the effect of fortifier on the preterm gut microbiome. 

 

Figure 3 - Comparison of mean relative abundance of [OTUs within the] gut microbiome 

(order level) in preterm infants in the first 30 days of life. Samples stratified by feeding type 

in each 10-day period. 389 samples from 33 infants represented. 

Figure 3 taken from (Cong et al., 2017)  

1.2.4.3 Breast milk microbiome & colonisation of the preterm gut 

As briefly mentioned In Section 1.1.6.3 breast milk has been shown to contain bacteria 

(Damaceno et al., 2017, Cacho et al., 2017) but it is unclear whether bacteria reach the 

lactating breast by ascent from the skin, the infant’s oral cavity or translocation from the 

maternal intestine. Sample contamination appears unlikely as a microbiome has been 

identified both using sterile techniques (Sakwinska et al., 2016) and in the mammary glands of 
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non-lactating women (Urbaniak et al., 2014). In the latter study, breast tissue from planned 

operations was collected and bacterial DNA extracted sterilely. Following 16S analysis, 

individual bacteria were isolated and cultured proving their viability. 

Studies looking at the breast milk microbiome have predominantly included mothers of term 

infants. Bifidobacteria have been shown to be the most abundant bacteria shared between the 

mother and infant in a study examining paired maternal milk and infant gut microbiome (Biagi 

et al., 2017). Interestingly, one study has shown that the milk microbiome has decreased α and 

β diversity, together with decreased abundance of a Bifidobacterium species, when the infant 

is indirectly breast fed (pumped or bottled breast milk) (Moossavi et al., 2019). Moossavi et al 

suggest this may be due in part to a breast pump biofilm.  

This is relevant for preterm infants who are almost all exclusively fed by a gastric tube until at 

least 32 weeks corrected gestational age. This may explain the finding of decreased 

Bifidobacteria in the preterm gut compared to term infants mentioned in section 1.2.4.2 

(Underwood et al., 2017). Feeding by naso-gastric tube may have other effects on the gut 

microbiota, as naso-gastric tubes removed from preterm infants have been shown to be 

colonised by large numbers of potentially pathogenic live bacteria even after use for only one 

day (Petersen et al., 2016). 

 Intestinal maturation 

When considering the preterm microbiota, it is important to understand their intestine is not 

mature, and that bacteria have been demonstrated to aid that maturation. 

The microstructure of the fetal intestine resembles the adult by 20 weeks gestation, with 

Paneth cells, Peyer’s patches, goblet cells and all major epithelial cell lines (Colony, 1983, 

Montgomery et al., 1999). However, the maturation of the intestine, both in terms of structure 

and function, continues until adulthood (Montgomery et al., 1999). Important deficits in the 

preterm intestine include a deficiency in producing mucus, poorly regulated tight junctions and 

increased response to antigens. Immaturity is exacerbated by gut motility being impaired until 

approximately 36 weeks GA (Humphrey and Caud, 2018). 

1.2.5.1 Mucus production 

The mucus lining of the intestine functions to limit epithelial exposure to the luminal bacteria. 

The colonic mucus has two layers, a thicker outer layer, containing the majority of bacteria, 

and a watery inner layer where bacterial penetration is limited (Hooper et al., 2012). The 

mucus is produced mainly by goblet cells. Buisine et al. used in situ hybridisation to measure 
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the messenger RNA (mRNA) expression of eight mucin genes in fetal intestines from 8 to 27 

weeks GA and adults. They found that mucin genes were expressed in different locations early 

in gestation and did not have an adult expression pattern until 23 weeks GA in the small 

intestine or 27 weeks GA in the colon (Buisine et al., 1998). 

The ability of gut bacteria to influence mucus secretion has been demonstrated. In vivo, Mack 

et al. demonstrated through co-culturing E. Coli and a Lactobacillus species with intestinal 

epithelial cells (IEC’s) that the Lactobacilli inhibited the bind of E. Coli to the IEC’s. They 

demonstrated upregulation of mRNA for mucin 2 and 3, hypothesising that the action of 

Lactobacillus was through stimulating mucus production (Mack et al., 1999). 

Whilst enhanced mucus production appears to be a desirable effect of bacteria, 

Bifidobacterium species have been demonstrated to break down mucin in an in vitro 

experiment (Ruas-Madiedo et al., 2008). The breakdown of the mucus barrier has been 

thought to be detrimental, with pathogenic bacteria such as E. Coli having an enhanced ability 

to do this (Cornick et al., 2015). However, the breakdown of mucin by Bifidobacteria has been 

shown to release oligosaccharides, which then influence the growth of other bacteria 

(Bunesova et al., 2018). This highlights that a similar action of different bacterial species in the 

intestine may have both detrimental and positive effects. 

1.2.5.2 Intestinal permeability 

Newborns show increased intestinal permeability in the first few days of life, this is thought to 

be prolonged to around 1 week in preterm infants based on data from a study measuring the 

urinary excretion of two sugars (mannitol and lactulose) that are not readily absorbed in the 

intestine, as a surrogate of intestinal permeability in infants of 34 weeks GA (Riezzo et al., 

2009). 

Bifidobacteria have been shown to modulate several gut proteins (claudin 4, occludin and 

zonulin) that are known to be important in maintaining tight junction integrity between IEC’s 

in both a mouse model and in vitro (Bergmann et al., 2013, Ling et al., 2016). NEC was 

inhibited in the presence of Bifidobacteria in mouse models in both studies and was attributed 

to the effect on tight junction integrity. 
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 Medical interventions and the gut microbiota 

1.2.6.1 Probiotics 

Probiotics have been shown to be beneficial in reducing the risk of NEC in preterm infants and 

are therefore used in NICU’s (Chang et al., 2017, Dermyshi et al., 2017). A meta-analysis by 

Chang et al. included 7345 infants from 25 RCT’s demonstrating a reduction in risk of NEC, with 

a pooled odds ratio of 0.6 (95% Confidence interval 0.48 - 0.74) (Chang et al., 2017). The effect 

of probiotics may be due to enhancing tight junctions between IEC’s or by modulation of the 

microbiota as discussed in Section 1.4.1.2.  A probiotic containing both Lactobacilli and 

Bifidobacteria led to an increase only in the relative abundance of the Bifidobacteria in the 

stool during administration, which persisted after administration (Abdulkadir et al., 2016). 

1.2.6.2 Antibiotics 

Antibiotics have a key impact on the preterm gut microbial landscape, with changes in both 

relative abundance and richness of bacterial species, especially with broad spectrum 

antibiotics such as meropenem (Gibson et al., 2016). This effect is however short-lived and not 

all infants exhibit the same response in gut microbiota to antibiotics (Korpela et al., 2018). 

1.2.6.3 Iron 

Iron supplementation is common in preterm infants due to their increased needs and irons low 

concentration in MOM. Whilst no studies have addressed associated gut microbial changes in a 

preterm population, iron supplementation is associated with an increased abundance of 

Enterococcus in the first year of life in term infants (Jaeggi et al., 2015). This would be 

consistent with iron being preferentially utilised by certain bacteria. 

1.2.6.4 Multivitamins 

As mentioned in Section 1.1.6.2, MOM is low in certain micronutrients, this means that 

multivitamins are commonly used on the neonatal unit. Specific bacteria are known to 

synthesise vitamins (LeBlanc et al., 2013) which may in turn influence the composition of the 

microbiota. There are no studies assessing the influence of vitamins on the gut microbiota in 

preterm infants. However, Talsness et al. performed an observational study involving qPCR on 

stools of 616 term infants, hypothesising that vitamin D supplementation (maternal or infant) 

would result in changes in abundance of gut microbial OTUs. There was no difference 

comparing infants who received or did not receive supplementation with vitamins A-D 
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(Talsness et al., 2017). Similarly, Sordillo et al postulated that maternal vitamin D exposure 

would lead to changes in the gut microbiome in a group of 333 infants. They found that 

vitamin D levels in umbilical cord blood were negatively associated with Lactococcus and 

positively associated with Lachnobacterium (Sordillo et al., 2017).  

 NEC, LOS and the gut microbiota 

As mentioned in Sections 1.1.2  and 1.1.3, the gut microbiota of infants developing NEC and 

LOS differs from healthy controls. However, a limitation of comparing gut microbial changes, 

from stool, is the fact that these two diseases often cause an ileus leading to infrequent 

stooling, especially in severe disease, meaning that data is limited at a time of interest (Roze et 

al., 2017). Whilst multiple bacteria or bacterial patterns have been associated with NEC, these 

have not been consistent between studies (Morrow et al., 2013, Warner et al., 2016, Sim et al., 

2015) however infants who display more fluctuation in their microbiome composition appear 

at increased risk of NEC (Stewart et al., 2016). It has also been suggested that immunoglobulin 

A (IgA) from MOM plays an important role. A study involving humans and mice demonstrated 

that the IgA unbound bacteria may be important in the development of NEC (Gopalakrishna et 

al., 2019) . This highlights an interaction between the diet, microbiota and immune system that 

is described in more detail in Section 1.4.2.2.2. As described in section 1.1.3, an increased 

abundance of the bacteria causing LOS has been demonstrated in the gut microbiota prior to 

disease onset (Stewart et al., 2017b, Carl et al., 2014). 

 Influence of the gut microbiota on the host 

There is limited knowledge of how the microbial changes associated with LOS and NEC may be 

having detrimental interactions within the host. In order to investigate possible mechanisms, 

studies in preterm infants have focused on the interaction between the microbiome and 

metabolites, volatile organic compounds and immune cells. 

1.2.8.1Metabolites 

Whilst the inferred metabolomic potential of bacteria can be derived from microbiome 

datasets, this type of analysis is limited if using 16S due to the inability to determine the 

species or strain of bacteria present. One study quantifying faecal metabolites in infants with 

LOS demonstrated that metabolites correlating with Bifidobacterium were increased in control 

samples. Furthermore, when samples were categorised into PGCT’s based on the abundance 

of different bacterial genera, the PGCT characterised by Bifidobacterium was never present in 
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LOS infants (Stewart et al., 2017b). In a subsequent study, Stewart et al. demonstrated five 

metabolites which increased in abundance prior to the onset of NEC, and then decreased 

following disease (Stewart et al., 2016). Wandro et al. performed a similar study and did not 

find any gut metabolites associated with NEC, however they were limited by having only three 

NEC cases in a group of 32 infants (Wandro et al., 2018). 

1.2.8.2Volatile organic compounds (VOC) 

VOC are the gaseous carbon-based compounds produced following metabolic or physiological 

processes in the body. Microbial VOC often have distinctive odours and are measurable by 

flowing the ionised VOC through an electric field and separating them based on their ionic 

charge (Berkhout et al., 2019). Infants who subsequently develop NEC or LOS show an 

alteration in VOC profiles 2-3 days before clinical diagnosis compared to controls (Berkhout et 

al., 2019, de Meij et al., 2015). No difference was found when comparing the VOC profiles of 

preterm infants fed either CMF or MOM at specific time-points (El Manouni El Hassani et al., 

2018).  

Should clear perturbations in VOC be found in health or disease, VOC analysis offers the 

potential for a point of care diagnostic tool through the use of an electronic nose (Wilson, 

2018). However, due to their volatile nature, VOC are difficult to measure. Furthermore, VOC 

analysis requires comparison between two groups to define normality or abnormality. The 

development of a normal comparison group would likely have to be NICU site-specific due to 

the variation in gut microbiota as described above. 

1.2.8.3 Immune system 

There are limited data exploring interactions between the microbiome and immune system in 

preterm infants. However, a study using mass cytometry and 16S on the blood and stool 

respectively of preterm infants found that those with an altered gut microbiome early in life 

had a perturbed immune system development at 3 months (Olin et al., 2018). Section 1.3 

explores further what is known about the T lymphocytes in preterm infants, and what can be 

derived from laboratory studies regarding the interaction between the microbiome and T 

lymphocytes. The term T cells will refer to T lymphocytes in the remainder of this thesis. 

 Areas of uncertainty regarding the preterm gut microbiome 

The preterm gut microbiome is mainly influenced by age, diet and antibiotic administration 

and differs systemically from that of a term infant, likely due to variations in their 
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environmental exposures (i.e. relatively sterile NICU vs home). An assumption of infant gut 

microbial analysis is that the pattern seen in MOM-fed infants is optimal, therefore the aim for 

dietary interventions is for resemblance to this microbial pattern. Whether the preterm 

infant’s diet consists solely of MOM, DHM, or CMF produces differences in both composition 

and diversity of the gut microbiome. Feeding with a solely DHM diet leads to a gut microbiome 

more closely resembling a MOM diet than a CMF diet. 

However, there are few mechanistic studies exploring current feeding strategies and hence 

able to support typical clinical decision-making with regards to feeding, namely: 

1. What should be given should there be a shortfall of MOM; decision in first few days? 

2. If a fortifier is deemed necessary for weight gain, should this be derived from human 

(HMF) or cow’s milk (BMF); decision following establishment of MOM feeding? 

As described in Section 1.1.5, the diet of preterm infants is predominantly MOM, with RCT’s 

exploring diet commonly reporting more than 70% MOM diet (Corpeleijn et al., 2016, Sullivan 

et al., 2010). It is therefore important to explore this situation and establish if DHM can be 

shown to have an influence. Should changes in the gut microbiome be identified, correlation 

with changes in immune or metabolic function would suggest a possible mechanism and 

increase confidence in a real effect on the infant. 
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1.3 T Cells in preterm infants 

The immune system of preterm infants differs from that of adults, being generally 

hyporesponsive. T cells are a population of lymphocytes that develop in the thymus, before 

further differentiation in the periphery. T cells are an important component of the adaptive 

immune response, although some T cells display innate properties. T cells are of particular 

interest when considering the newborn, who is exposed to many potential pathogens soon after 

birth. At birth, infants are thought to be antigen naïve leading to an increased reliance on the 

innate immune system, however some T cells in the fetal blood and intestine have been shown 

to have a memory phenotype raising the possibility of fetal antigen exposure (Schreurs et al., 

2019, Li et al., 2019, Zhang et al., 2014).  

A challenge of studying T cells in preterm infants is the difficulty of obtaining sufficient samples 

of a suitable tissue, commonly peripheral blood. Umbilical cord blood is often available in 

sufficient volumes and has been taken to represent the immune system of preterm infants, 

however a systems level analysis by Olin et al., revealed it to be a poor surrogate for peripheral 

blood. This included when umbilical cord blood was compared to blood taken on the day of birth 

suggesting that umbilical cord blood is more representative of the placental environment. The 

same analysis showed that the immunophenotype of leucocytes in preterm infants differs from 

term infants after birth with a convergence over the first months of life, highlighting the 

importance of early life exposures (Olin et al., 2018). 

The next section is a description of how immune cells can be identified and categorised. I will 

then focus on fetal T cell development before describing what is known about the T cell 

compartment of preterm infants. Based upon laboratory and animal studies I will then describe 

what is known about the interaction between diet, gut microbiome and T cells. 

 Identification of immune cells 

1.3.1.1 Categorisation 

Immune cells are distinguished by a combination of appearance, function and expression of 

cell surface proteins. Over the last 40 years a large number of cell surface proteins have been 

identified and given cluster of differentiation (CD) numbers, allowing for the standardised 

description of immune cells based on their expression of combinations of these proteins. For 

example, T cells are CD45+CD3+, and further split into two major categories of CD4+ T cells 

and CD8+ T cells. Proteins expressed intra-cellularly are given names but not CD numbers, such 
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as the transcription factor, T-bet. The function of a cell can be marked by the expression of 

cytokines (e.g. Interleukin (IL) 4, interferon-γ (IFN-γ)). Cells typically require stimulation in the 

laboratory in order for cytokine expression to be detected.  

Several techniques can be used to measure the protein expression of cells including Western 

Blots, ELISA, immunofluorescence and flow cytometry. These techniques all depend on the 

recognition of specific antigens and are limited by the number of different antibodies that can 

be detected within any individual assay. In the last 20 years technologies have been developed 

that allow for a greater number of gene products to be detected simultaneously. These include 

techniques that identify cells based on their genetic material (e.g. transcriptomics) or antibody 

labelling with rare heavy metals (e.g. mass cytometry). Flow cytometry and mass cytometry 

are two commonly used techniques for measuring protein expression on a single cell basis, 

however both have limitations.  

1.3.1.2 Flow Cytometry 

Flow cytometry describes a technique to analyse cells in suspension on a single cell level. A 

typical experiment will involve a sample of cells being stained with antibodies that have been 

tagged with a variety of known fluorochromes. A suspension of these cells is run through a 

flow cytometer. Cells can initially be identified on the basis of light scattering at two angles, 

with one perpendicular to the other, named forward scatter and side scatter. Forward scatter, 

when the light is behind the cell, gives an idea of cell size. Side scatter, which is perpendicular 

to this, gives an idea of cell granularity. In this way, lymphocytes, granulocytes and debris can 

be easily separated.  Furthermore, lasers can be used to identify cells by the emission, or lack 

of emission, of fluorescent light. This technique can allow for the identification of over 20 

antibodies in a cell suspension, however a typical experiment might only involve 5-10 

antibodies. The two main limitations of this technique are overlap between different spectra 

of the light emitting fluorochromes therefore making analysis difficult, and as a result limiting 

the number of antibodies that can be analysed at any single time-point. These limitations have 

been overcome to a degree by the introduction of increasingly sophisticated fluorochromes 

and instrumentation. 

1.3.1.3 Mass Cytometry 

Mass cytometry combines a flow cytometer with a time-of-flight mass spectrometer. A sample 

is stained with antibodies tagged with rare heavy metals (of the lanthanide group). The sample 

is then introduced into the instrument and nebulised, using an inert gas (argon), into a single 

cell suspension. The cells are vaporised with an argon laser creating an ion cloud. Light 
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molecules (such as oxygen and nitrogen) are removed by a quadrupole leaving the heavy metal 

ions. Ions are projected and their molecular weight calculated based on their time-of-flight. A 

cell is identified based on the presence of their signature of heavy metal ions. This technique 

has the advantage compared to flow cytometry of the possibility to detect over 100 

antibodies; but currently a panel of around 40 antibodies is achievable due to the difficult in 

obtaining lanthanide metals and maintaining purity. Mass cytometry provides less spillover 

between channels giving cleaner data than conventional flow cytometry. Importantly, mass 

cytometry does not support the measurement of side or forward scatter so cell populations 

are identified based on the presence of cell surface or intracellular proteins. The limitations 

include that the signal, in comparison to a fluorochrome, is much weaker and there are 

challenges with analysing the resultant large datasets. Furthermore, cells are destroyed as part 

of the detection process, and data acquisition is currently slow (Gadalla et al., 2019). 

1.3.1.4 Analysis 

Techniques such as mass cytometry produce huge datasets creating difficulties in analysis. 

Standard techniques for analysing flow cytometry data involve the identification of 

populations that are positive or negative for a particular antibody by successive gating (often 

presented in a dot plot). The main limitation in this approach is bias in the choice of which 

antibodies to gate on, which could potentially miss important information. The emergence of 

mass cytometry has led to the use of statistical techniques that allow for visualisation and 

comparison of a whole population of cells (Olsen et al., 2019, Bendall et al., 2011). The 

techniques used to define a population involve less bias, however, do require knowledge to 

gain meaningful conclusions from the data and are dependent on users having bioinformatic 

expertise. 

 T-Cell development 

1.3.2.1 Thymic development 

Lymphocytes (B, NK and T cells) have common progenitors in the bone marrow. T progenitor 

cells exit the bone marrow into the vasculature, and enter the thymus around 8 weeks 

gestation, where they are then termed thymocytes. This has been demonstrated by the 

presence of thymocytes in fetuses at 8 but not 7 weeks gestation (Haynes and Heinly, 1995). T 

cell maturation in the thymus is described related to CD4 and CD8 expression. Thymocytes are 

initially double negative (CD4-CD8-) before becoming double positive (CD4+CD8+), and finally 

single positive (CD4+CD8- or CD4-CD8+) T cells (Shah and Zuniga-Pflucker, 2014). They must go 
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through a process of positive and negative selection. Positive selection is to ensure that the T 

cell receptor (TCR) is able to bind to a major histocompatibility complex (MHC) molecule, and 

therefore support tonic TCR signalling. If this is not the case, the cell undergoes apoptosis. 

Negative selection ensures that the TCR does not bind too strongly to MHC molecules as this 

could lead to self-reactivity as seen in auto-immune conditions.  T cells predominantly display a 

TCR with both α and β chains however approximately 5% of T cells display γ and δ chains of 

TCR and are known as γδ T cells. The double negative stage of thymic development is when the 

thymocytes undergo rearrangement of the TCR gene loci to either become αβ or γδ T cells 

(Krueger et al., 2017).  Whilst early thymocytes do not display the full range of TCR, by 16 

weeks gestation the full range is established (Michaelsson et al., 2006).  T cells are present in 

the fetus as early as 8 weeks’ GA and fetus-derived T cells have the capacity to proliferate and 

produce cytokines (Michaelsson et al., 2006). In order to proliferate, T cells need to bind their 

TCR, as well as receive secondary activation through binding other molecules. CD28 is an 

example of a secondary activation molecule of CD4+ T cells. 

1.3.2.2 T cell migration 

T cell migration to the peripheries has been confirmed with identification of T cells in the 

mesenteric lymph nodes as early as 12 weeks’ GA (Michaelsson et al., 2006) and the spleen 

and intestinal mucosa as early as 14 weeks’ GA (Darrasse-Jeze et al., 2005, Li et al., 2019, 

Schreurs et al., 2019). 

The destination of the T cell is influenced by chemokines. Chemokines are soluble signaling 

proteins that guide immune cells to different locations in the body. Chemokine receptors (CCR) 

on T cells provide information to guide the tissue homing of that cell. Broadly, the intestine-

homing chemokine receptor is CCR9, the skin homing chemokine receptor is CCR4 whilst the 

secondary lymphoid tissue homing receptor is CCR7. CCR4 is also associated with a Th2 

response whilst another chemokine receptor, CXCR3, is associated with a Th1 response (see 

Section 1.3.4) (Bonnechi et al., 1998). 

1.3.2.3 Maturation 

T cells that egress from the thymus are naïve. Upon recognition of their cognate antigen 

presented by antigen presenting cells (APC’s), T cells proliferate and may develop effector 

function. A population of T cells then go on to develop memory function in case of future 

antigen exposure. The maturity of T cells can be identified by the expression of cell surface 

antigens. CD45 has two major isoforms, CD45RA is expressed by naïve T cells whilst CD45RO is 

expressed by memory or effector T cells. Furthermore, CCR7 can be used to categorise CD45RA 
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negative cells as either effector memory T cells (CCR7-) or central memory T cells (CCR7+) 

(Romero et al., 2007)(Figure 4). Central memory T cells reside in the secondary lymphatic 

tissue, hence the expression of CCR7, whilst effector memory T cells circulate in the blood and 

enter the tissues. CD8 T cells can differentiate further into a population that is CD45RA+ and 

CCR7-, termed Temra (effector memory RA+ T cells). These cells lack the capacity to persist long-

term but have increased capacity to secrete perforin/granzyme B, cytolytic proteins associated 

with cytotoxic function (Sallusto et al., 1999).  

Unsurprisingly, the majority of T cells derived from cord blood in preterm or term infants are 

naïve (Quinello et al., 2014). Using CD45RA as a marker of naivety, the proportion of naive T 

cells has been shown to remain high (median 85%) at 6-8 weeks of age, although significantly 

less than term infants at the same postnatal age (Berrington et al., 2005). 

 Compartmentalisation of T cells 

A feature of immune cell populations is that their composition and function may vary 

depending on tissue location, including term cord blood. The expression of cell surface 

markers and cytokines is distinct for CD4+ and CD8+ T cells in each tissue (Wong et al., 2016, 

Thome et al., 2016). 

This is highlighted by findings in a study on human fetal tissue. Fetal CD4 T cells in the 

intestinal lamina propria but not spleen or liver were shown to have a predominantly memory 

phenotype (Schreurs et al., 2019, Li et al., 2019). This suggests prior antigen exposure and 

these cells were shown to have the capacity to produce a broad cytokine repertoire upon 

stimulation (Li et al., 2019). Fetal mesenteric lymph node (MLN) derived T cells have been 

shown to proliferate and secrete IFN-γ. Both proliferation and cytokine production are 

increased with the removal of regulatory T cells (Tregs) (Michaelsson et al., 2006).  
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Figure 4 - Graphical representation of T cell development(A-C), differentiation of Th 

cells following antigen presentation(D) and a gating strategy to define maturation of 

T cells (E) 

 CD4+ T cells (T-helper (Th) cells) 

Naïve T cells in the peripheral blood of infants are predominantly CD4+ and hence recognise 

peptide antigen in the context of class II MHC. CD4+ T (Th) cells play a central role in the 

adaptive immune system by supporting the function of other immune cell populations through 

cytokine secretion, as well as regulating immune responses. Preterm infants have a decreased 

number and abundance (as percentage of lymphocytes) of Th cells at 6 weeks compared to 

term infants (Berrington et al., 2005). 

1.3.4.1 The Th Response 

Naïve Th cells can differentiate based on the cytokines to which they are exposed. Interleukin 

(IL) -12 leads to the promotion of a Th1 response. IL-4 exposure leads to a Th2 response, 

Transforming Growth Factor – beta (TGF-β) induces Tregs whilst TGF-β, IL-16 and IL-23 lead to a 

Th17 response. Furthermore, a Th19 response is elicited by IL-19 and a Th22 response is elicited 

by IL-22 (Raphael et al., 2015). Lastly, T follicular helper cells (Tfh), which are important for the 

development of germinal centres in secondary lymph nodes, are promoted by exposure to IL-

21 (Eyerich and Zielinski, 2014). Each Th response results in different actions through cytokine 

secretion, for example a Th1 response drives cell mediated immunity whilst a Th2 response 

helps B cells produce antibodies. Th subsets are ideally identified by the cytokines the cells 
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produce. However, Th subsets also show distinctive patterns of expression of various 

transcription factors and chemokine receptors. Figure 4 lists the main ways of identifying a Th1, 

Th2, Th17 or Treg population based on protein expression (Eyerich and Zielinski, 2014, Raphael 

et al., 2015). 

Whilst Th1 and Th2 responses are mutually exclusive there does appear to be overlap between 

Th1 and Th17 responses as well as the Th2 response and Tregs (Kunicki et al., 2018). Importantly, 

an excessive Th response is associated with the development of disease. An excessive Th1 

response can lead to tissue damage whilst an excessive Th2 response can result in atopy 

(Berger, 2000). In contrast, an inadequate Th response can result in disease, an infant’s 

predisposition to viral infections has been related to the inability of T cells to secrete sufficient 

IFN-γ (Melville and Moss, 2013). 

1.3.4.2 Th2 skewing in preterm infants 

Preterm infants have been suggested to have a skewed Th2 response based on increased 

production of  IL-5 (Th2 cytokine) and decreased production of IFN-γ (Th1 cytokine) upon 

stimulation of peripheral blood compared to term cord blood (Dirix et al., 2013). The skewed 

Th2 response appears to start in utero and may be driven by antigen-presenting cells (APCs) as 

T cells cultured with fetal APCs have been shown to produce significantly more IL-4 (Th2 

cytokine) in comparison to T cells cultured with adult APCs (McGovern et al., 2017). This 

skewed Th2 response is possibly a protective mechanism to limit reaction to maternal antigens. 

Pregnant women have similarly been found to have a skewed Th2 response, due to 

suppression of the Th1 response which is felt to be important to prevent fetal rejection (Sykes 

et al., 2012). 

Postnatally, the ability of preterm Th cells to secrete IFN-γ remains low, however αβ T cells are 

able to secrete a significantly increased amount of IL-2 (Th1 cytokine) at 1 month compared to 

birth (Gibbons et al., 2009). This is consistent with single cell RNA-seq analysis comparing 

peripheral blood mononuclear cells (PBMC’s) of term and preterm infants at 12 weeks of age 

demonstrating upregulation of genes that suppress IFN-γ (Olin et al., 2018).  

1.3.4.3 IL-8 Secretion 

An effector function of T cells in newborns that is distinct from adults is a significantly 

increased ability to produce IL-8/CXCR8 upon stimulation (Gibbons et al., 2014). IL-8 is a 

cytokine associated with myeloid and endothelial cells and is involved in neutrophil migration 

towards a site of inflammation (Gibbons et al., 2014). Olin et al. found an upregulation of IL-8 
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transcripts in preterm compared to term infants blood at 12 weeks age, as well as an increased 

plasma concentration of IL-8 in early preterm peripheral and cord blood, compared to early 

term or later preterm blood (Olin et al., 2018).  

Pekalski et al. demonstrated that recent thymic emigrants (RTE’s) derived from term cord 

blood expressed more IL-8 than older infants (Pekalski et al., 2017). Scheible et al. explored 

RTE’s further demonstrating that both the population of CD4+ RTE’s and the production of IL-8 

from Th cells correlated positively with GA at birth. They demonstrated that IL-8 production 

was increased in RTE’s compared to the rest of the T cells (Scheible et al., 2018).  

Combined, these data suggest that newborn infants’ T cells are able to secrete more IL-8 

compared to adults and there is an increased concentration in the blood of preterm infants in 

the first months of life.  These data suggest an important role of T cells in innate immunity in 

preterm infants.  

1.3.4.4 Intestinal Th population 

A skewed Th2 response in the peripheral blood contrasts with the environment in the fetal 

intestine. Schreurs et al. have shown that fetal gut Th cells have an increased tendency to 

secrete tumour-necrosis factor α (TNF-α) and IL-2, cytokines associated with a Th1 response, 

when compared to infant intestinal samples. TNF-α was shown, in a human fetal organoid 

model, to be important in intestinal epithelial growth via its effects on intestinal stem cells, 

however high levels of TNF-α suppressed epithelial growth. Furthermore, this study 

demonstrated an increased production of TNF-α from Th cells in intestinal samples of infants 

with NEC compared to controls (Schreurs et al., 2019). McGovern et al. (2017) explored the 

interaction between APC’s and T cells in fetal life. They demonstrated that TNF-α expression by 

T cells was reduced in fetal spleen compared to adult samples. They attributed this effect to 

the expression of arginase-2 by fetal T cells, independent of Toll-like receptor (TLR) 

stimulation. The exact mechanism by which arginase-2 expression increased was not found, 

however arginase is known to deplete the tissue of L-arginine which is essential for TNF-α 

production (Morris, 2010).  The expression of TNF-α was increased with the introduction of 

arginase inhibitors to the experiment (McGovern et al., 2017).  

Together, this work highlights the compartmentalisation of T cells and suggests that fetal 

intestinal Th cells may influence intestinal mucosal integrity.  Excessive TNF-α production by 

preterm T cells may be implicated in the pathogenesis of NEC. Should this be proven, 

modulation of L-arginine levels may be a potential therapeutic intervention, through its 

alteration of TNF-α signalling. 
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 Regulatory T cells (Tregs) 

Regulatory T cells (Tregs) are defined by their suppressive function towards effector T cell 

responses. They are characterised by expression of CD4, high levels of CD25, low levels of 

CD127 and the transcription factor FOXP3. Tregs are known to develop in the thymus as well as 

being induced in the peripheral immune system, with different transcriptome signatures 

respective of location (Miragaia et al., 2019). Tregs comprise approximately 8% of the Th cells in 

peripheral blood of preterm infants, this is significantly more that term infants and adults and 

is inversely correlated with GA (Pagel et al., 2016, Zahran et al., 2019). Tregs help regulate the 

immune response through suppression, which could be particularly important in early life 

when the newborn is exposed for the first time to a large number of bacterial antigens. These 

exposures could otherwise lead to an excessive immune response, which in turn would cause 

tissue inflammation and potentially gut failure. 

1.3.5.1 Fetal development of Tregs 

In humans, Tregs have been identified in the thymus as early as 13 weeks gestation and in the 

periphery (spleen) from 14 weeks gestation (Darrasse-Jeze et al., 2005)  The proportion of Tregs 

in the fetal MLN’s has been shown to be significantly increased compared to adults (Schreurs 

et al., 2019, Michaelsson et al., 2006).  

1.3.5.2 Suppressor function of Tregs 

Whilst the population of circulating Tregs is increased in preterm infants compared to term 

infants, they are predominantly naive (Dirix et al., 2013, Zahran et al., 2019). The PBMC’s of 

preterm infants show transcriptional up-regulation of genes associated with IL-10 secretion 

compared to term infants (Olin et al., 2018). IL-10 is a known mediator of the suppressive 

function of Tregs as well as inducing their expansion (Raphael et al., 2015). Michaelsson et al. 

demonstrated this with fetal Tregs: in culture, stimulated T cells were able to proliferate and 

increase cytokine production after removal of Tregs, confirming a tonic suppressor effect 

(Michaelsson et al., 2006) 

In contrast to the blood and MLN’s, the abundance of Tregs in the fetal lamina propria is 

reduced compared to infants (median age 4 months) but it is not known if this in true in 

preterm infants. Interestingly the ability of fetal lamina propria Tregs to produce IL-10 is greatly 

reduced compared to infants, and is absent in the presence of NEC (Schreurs et al., 2019). 
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Together, this suggests that Tregs play an important role in the preterm immune system 

including through their secretion of IL-10, however whilst the population is expanded in 

preterm infants, they may have impaired effector function. 

 CD8+ T cells (Cytotoxic T(Tc) cells) 

Tc cells represent approximately 30% of the peripheral T cell population in the preterm infant 

(Berrington et al., 2005). They display mainly a naive phenotype in the first 12 weeks of life 

(Walker et al., 2010). The absolute Tc cell population is significantly expanded compared to 

adults but similar to term infants (Olin et al., 2018, Scheible et al., 2015). 

1.3.6.1 Fetal development and effector function of Tc cells 

Tc cells begin to exit the thymus between 7 and 16 weeks GA and have been demonstrated in 

the fetal intestine as early as 16 weeks GA (Zhang et al., 2014, Michaelsson et al., 2006). 

There is little known about the effector function of Tc cells in peripheral blood of preterm 

infants. However, using cord blood-derived Tc cells from varying gestations (23-41 weeks GA), 

Scheible et al. demonstrated there is an increased ability to secrete IFN-γ, TNF-α and IL-2 at 

earlier gestations in response to a cognate antigen. However, they found that the significance 

of IFN-γ was lost when correcting for prolonged rupture of membranes in the infants’ mothers. 

The authors suggested the finding of enhanced effector response was due to a pro-

inflammatory state at earlier gestations (Scheible et al., 2015).  

1.3.6.2 Newborn Tc cells have a distinctly different phenotype to adults 

Using a transcriptome analysis of the cord blood from term infants, Galindo-Albarran et al. 

were able to demonstrate that Tc cells from cord blood had a completely different phenotype 

to adults. The cord blood had upregulation of genes associated with innate immunity, viral 

infection and cell cycle processes, whilst adult blood upregulated genes were associated with 

cytotoxicity and effector function (Galindo-Albarrán et al., 2016). Functionally, however, fetal 

(term and preterm cord blood) and adults have been shown to develop a similar memory Tc 

cell population that is able to produce perforin and cytokines in response to Cytomegalovirus 

(CMV) infection (Marchant et al., 2003). 

 Gamma-delta (γδ) T cells 

γδ T cells comprise 4-10% of T cells in the peripheral blood of adults compared to 1-3% and 

<1% of T cells in the cord blood of term and preterm infants respectively (Li et al., 2013). They 
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are distinct from αβ T cells in that they show reduced clonal diversity of an alternative antigen 

receptor that is not restricted by classical MHC molecules. γδ T cells seem particularly 

important early in life. They have an innate-like ability to become activated and display 

effector function without prior clonal expansion (Vantourout and Hayday, 2013).  

1.3.7.1 Maturity and effector function of γδ T cells 

Whilst γδ T cells are predominantly naïve in the cord and peripheral blood of preterm infants, 

they develop a memory (CD45RO+) phenotype in the first month of life (Gibbons et al., 2009). 

Unlike αβ T cells, a large number reside in non-lymphoid tissues including the gut, spleen and 

lungs.  

The ability of peripheral blood γδ T cells from preterm infants to secrete IFN-γ and IL-10 on 

stimulation with PMA and ionomycin is increased compared to both γδ T cells in term infants 

and αβ T cells (Gibbons et al., 2009). However, upon influenza virus stimulation, cord blood γδ 

T cells were found to have a decreased ability to proliferate and produce IFN-γ compared to 

term infants and adults (Li et al., 2013). There is known to be interplay between Tregs and γδ T 

cells through mouse models of intestinal inflammation: mice deficient in Tregs have intestinal 

inflammation mediated by γδ T cells which is suppressed following the introduction of Tregs 

(Yurchenko et al., 2011). Furthermore, γδ T cells have been shown to have important roles in 

responding to chronic bacterial as well as viral infections (Zhao et al., 2018) 

Li et al. used cord blood for their analysis whilst Gibbons et al. used peripheral blood following 

birth from preterm infants, so it may be that IFN-γ production improves with age. This suggests 

that preterm γδ T cells may have an important role in T cell response to viruses and immune 

regulation, due to changes in their ability to secrete IFN-γ and IL-10 respectively. 

 Invariant natural killer T (iNKT) cells 

Natural killer T (NKT) cells are a population of T cells that bear TCR’s restricted by the non-

classical MHC molecule CD1d, and express cell surface antigens associated with NK cells. There 

are two main populations of NKT cells, type 1 NKT (or iNKT) cells express the invariant TCR 

(Vα24-Jα18) whilst type 2 NKT cells express a broader range of TCR’s. Type 1/invariant NKT 

cells have been of particular interest, partly as it is difficult to conclusively identify type 2 NKT 

cells (Balato et al., 2009). 
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1.3.8.1 Abundance of iNKT cells 

 iNKT cells are rare and vary hugely in abundance depending on tissue. iNKT cells comprise just 

0.01-0.1% of lymphocytes in peripheral blood but 10% of lymphocytes in the omentum 

(Berzins et al., 2011). There is an increased abundance of iNKT cells in preterm cord blood 

compared to term cord blood (Ladd et al., 2010). 

1.3.8.2 Effector function and association with disease 

iNKT cells are able to secrete cytokines that mediate Th1, Th2 and Th17 responses, as well as 

recognise specific glycolipid antigens, which are presented by a MHC-1 like molecule, CD1d 

(Moreira-Teixeira et al., 2011). In mice, the alternative cytokine secretion patterns are 

reflected in the nomenclature for iNKT subsets iNKT1, iNKT2 and iNKT17 cells by analogy with 

Th1, Th2 or Th17 responses(Krovi and Gapin, 2018, Crosby and Kronenberg, 2018). The ability of 

preterm iNKT cells to produce these cytokines is not known, however term infant cord blood 

iNKT’s are able to secrete IL-17, IL-4, IL-10, but not IFN- γ. Their secretion of IL-10 is particularly 

increased compared to adult PBMC’s suggesting a regulatory role (Moreira-Teixeira et al., 

2011). 

 iNKT cells have been of particular interest due to their association with autoimmunity, colitis 

and cancers (Berzins et al., 2011). In a mouse model, mice that were bred to be deficient in 

iNKT cells have been shown to have a predisposition to cancer (Swann et al., 2009). Whilst 

deficiency of iNKT cells may lead to disease, an experimental colitis has been shown to be 

driven by iNKT cells producing IL-13 (Heller et al., 2002). Subsequently, it has been 

demonstrated that germ-free mice have an increased proportion of iNKT cells in their colon 

associated with increased susceptibility to colitis, however colonisation of the intestine with 

bacteria early in life leads to a decreased iNKT population and provides protection from colitis 

(Olszak et al., 2012). Together, these studies suggest a regulatory role of iNKT cells which is 

influenced by environmental factors. 

 Mucosa-associated invariant T (MAIT) cells 

MAIT cells are a population of T cells predominantly found in the lung and intestinal mucosa. 

They develop in the thymus before post-thymic maturation in the mucosal tissues and liver 

(Leeansyah et al., 2014). Similar to iNKT cells, they recognise non-peptide antigens presented 

in the context of a non-classical major histocompatibility complex (MHC) 1 molecule, MR1. 

MAIT cells represent less than 1% of peripheral blood T cells in infants (term or preterm) 

compared to up to 10% in adults (Ben Youssef et al., 2018). 
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MAIT cells are of particular interest as MR-1 presents microbial derived metabolites of 

riboflavin (Le Bourhis et al., 2011), which is an essential vitamin found in many foods. 

Riboflavin is present in human milk but the concentration varies depending on maternal intake 

(Hampel et al., 2017). Furthermore, multi-vitamin supplements commonly given to preterm 

infants contain riboflavin. Riboflavin is synthesised by over 80% of gut commensal bacteria, 

preferentially the bacterial phyla Proteobacteria and Bacteroidetes (Tastan et al., 2018). The 

preterm gut microbiome has a very low abundance of Bacteroidetes making it likely that 

Proteobacteria species are the predominant bacteria involved in riboflavin synthesis in 

preterm infants.  

MAIT cells are CD4- T cells identified by the expression of CD161 as well as the semi-invariant 

TCR (Vα 7.2 – Jα3.3/20/12 (Vα 7.2)) which binds the MR-1 tetramer. The expression of the 

transcription factor PLZF, CD45RO and the β chain of the CD8 TCR are associated with a mature 

MAIT cell state and effector function (Ben Youssef et al., 2018). MAIT cells are described as 

innate-like as they do not require repeated antigen exposure to display effector functions (Ben 

Youssef et al., 2018). 

1.3.9.1 Fetal development of MAIT cells 

MAIT cells, as defined as CD45+CD3+CD161+Vα 7.2+, were demonstrated by Leeansyah et al. 

to be present in the fetal thymus between 18 to 23 weeks gestation. In the thymus, MAIT cells 

do not express the activation marker, PLZF. PLZF induces proliferation of NKT cells and is 

expressed in MAIT cells derived from the fetal intestine, MLN and spleen suggesting activation 

in the periphery. Supporting this, fetal intestinal, liver and lung but not thymic or spleen MAIT 

cells were shown to produce IFN-γ following stimulation (Leeansyah et al., 2014). 

1.3.9.2 MAIT cell maturation over the first months of life  

The dramatic difference between the abundance of MAIT cells in infants compared to adults 

suggests a postnatal expansion which happens over years. Whilst the expansion does not occur 

quickly, MAIT cells develop a mature phenotype, defined by the expression of CD45RO and the 

β-chain of the CD8 TCR in the first 2 months of life (Ben Youssef et al., 2018, Walker et al., 

2014). 

1.3.9.3 Population expansion and effector function 

Upon recognition of a cognate ligand MAIT cells are able to produce inflammatory cytokines 

(IFN-γ, TNF-α and IL-17) as well as cytotoxic molecules such as granzyme B and perforin in 
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adults (Ghazarian et al., 2017). Functionally, production of granzyme and perforin enables 

MAIT cells to exert cytotoxic function via degranulation (Kurioka et al., 2015).  

The role of MAIT cells in disease is not clear, although the number and capacity of MAIT cells 

has been shown to vary in a number of autoimmune conditions. They have been suggested to 

have immune-suppressive effects in multiple sclerosis and to migrate to inflamed tissue in 

inflammatory bowel disease (Chiba et al., 2018). The latter effect was however not evident 

when Ben Youssef et al. (2018) examined the intestinal mucosa samples of three infants with 

necrotizing enterocolitis.  Mucosal MAIT cells were however found to have a memory 

phenotype, contrary to the naïve MAIT cells found in the thymus or peripheral blood (Ben 

Youssef et al., 2018). What role, if any, these cells have in the pathogenesis of disease remains 

to be elucidated.  
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Table 5 - Summary of differences between peripheral blood T cell populations in 

preterm infants compared to term infants, *indicates cord blood 

 Summary of T cells in preterm infants 

The T cell population in preterm infants differs in both composition and function from both 

adults and term infants.Error! Reference source not found. highlights the key differences b

etween preterm infants and term infants. 

Preterm infant T cells are characterised by an increased Treg proportion, an increased ability to 

produce Th2 cytokines and a decreased ability to produce Th1 cytokines in peripheral blood. 

 Relative abundance  

(Preterm compared to 

term infants, population as 

% of T cells) 

Relative Function 

(Preterm compared to 

term infants) 

Th cells 

(Gibbons et al., 2014) 
↑↑ 

↑ IL-5 

↓ IFN-γ 

Tregs 

(Dirix et al., 2013) ↑↑ ↑ IL-10 

Tc cells  

(Berrington et al., 2005, 

Scheible et al., 2015) ↔ 

Not known 

↑IFN-γ* 

↑TNF-α* 

↓IL-2* 

γδ T cells 

(Gibbons et al., 2009, Li et al., 

2013) 

↓↓ 
↑ IFN-γ 

↑ IL-10 

iNKT cells 

(Ladd et al., 2010) 
↑* Not known 

MAIT cells 

(Ben Youssef et al., 2018, 

Walker et al., 2014) 

↓ Not known 
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However, other important differences compared to older humans have been highlighted such 

as an increased ability of γδ T cells to produce IFN-γ and IL-10, as well as Th cells to produce IL-

8. 

T cells have the ability to influence both the innate and humoral immune systems. What role 

innate like cells such as iNKT and MAIT cells play in this has yet to be unravelled, however 

studies on iNKT cells in animals are compelling and imply these cells may have an important 

role preventing intestinal inflammation in infants. 

The number of studies performed on the peripheral blood or tissues of preterm infants is 

small, and findings from fetal or umbilical cord samples may not be representative of preterm 

infants. 
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1.4 Interaction between the diet, gut microbiome and T cells 

 Interaction between the diet and the immune system 

1.4.1.1 Colostrum 

As described in Section 1.1.6, colostrum has a markedly higher concentration of bioactive 

components than other breastmilk. Ren et al. postulated that in preterm pigs at increased risk 

of NEC, following intrauterine intraamniotic LPS injection, a bovine colostrum diet would 

protect against NEC and systemic inflammation. Pigs were euthanised on day 5 of life. Pigs that 

had been fed colostrum did not have a significant reduction in NEC however there was a trend 

towards decreased NEC severity. Pigs fed colostrum did have decreased levels of distal ileal IL-

8 and IL-1β, as well as increased distal ileal intestinal fatty acid binding protein and goblet cell 

density. This was combined with increased abundance of blood Th cells (as % of lymphocytes). 

The authors have concluded that a colostrum diet led to maturation of the intestinal mucosa 

as well as the systemic immune system (Ren et al., 2019).  

There has been some work exploring bovine colostrum in preterm infants albeit without 

exploration of either gut microbial or immune cell changes. Juhl et al. (2018) conducted a small 

RCT (n=40) aiming to identify if it is safe and feasible to supplement MOM with bovine 

colostrum during the first weeks of a preterm infant’s life. They concluded that bovine 

colostrum appeared safe, although there was a rise in serum tyrosine in infants given bovine 

colostrum, this was felt to reflect a higher content of this amino acid in bovine colostrum and 

thought unlikely to be of clinical relevance (Juhl et al., 2018). This RCT has led to a further 

larger RCT which is due to complete recruitment in late 2020, which aims to identify if 

supplementation with bovine colostrum improves feed tolerance (Clinical Trials.gov identifier 

NCT03085277).  

1.4.1.2 Human Milk Oligosaccharides (HMO’S) 

As described in Section 1.1.6.3.1, HMO’s are an important component of MOM. HMO’s have 

been shown to promote the expansion of Bifidobacterium species in vivo whilst suppressing 

potentially pathogenic organisms including Group B streptococcus and Candida albicans in 

vitro (Gonia et al., 2015, Bode, 2012).  

Maternal HMO secretion is dependent on the maternal Lewis Blood Group (Bode, 2015, Azad 

et al., 2018). HMO’s have been suggested to modulate the immune system. This was 

demonstrated in a study that isolated HMO’s from both colostrum and mature milk. Specific 
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HMO’s were present in high concentrations only in colostrum. The HMO’s were added to in-

vitro organ cultures of fetal intestines (GA 7-22 weeks) before measuring gene expression of 

chemokines and chemokine receptors in the intestine. There was modulation of gene 

expression by colostrum HMOs, but not mature milk HMO’s, affecting transcripts associated 

with signaling pathways relevant to Th cell differentiation. Specifically, the observed 

transcriptional modulation following exposure to colostrum HMO’s was deduced to promote a 

Th1 response whilst suppressing the Th17 response, Th2 response and IL-8 expression. In order 

to investigate the influence of colostrum HMO’s in inflamed tissue, intestinal epithelial cells 

were co-cultured with colostrum HMO’s before the addition of pattern associated molecular 

protein (PAMP) stimulation. An upregulation in transcripts associated with recruitment of 

immune cells for bacterial clearance (neutrophils and macrophages) as well as tissue repair 

was found when colostrum HMO’s were present, this was associated with a reduction in the 

concentration of IL-8, which was used as a marker of inflammation (He et al., 2014). Whilst this 

suggests that HMO’s have local immunomodulatory effects especially in early life, they have 

also been detected in the plasma of term infants suggesting the potential for systemic effects 

(Ruhaak et al., 2014). 

Together this suggests that HMO’s could impact the T cell population in the intestine, including 

at the preterm stage.  

1.4.1.3 Immune cells 

As described in Section 1.1.6.3.4, human milk is known to contain both stem cells and 

leucocytes (Foteini et al., 2012, Trend et al., 2015), the numbers of which increase in response 

to not only maternal (mastitis) but also infant illness (viral infection) (Hassiotou et al., 2013). A 

number of studies have reported that immune cells can translocate from the intestine into the 

circulation or distal organs of animals (Ma et al., 2008, Hassiotou et al., 2015, Aydin et al., 

2018). Stem cells derived from milk have been shown to translocate to the brain of mice, and 

once there they have been shown to be widespread and differentiate into glial and neuronal 

cells (Aydin et al., 2018). 

In mouse models, maternal T cells are the predominant cell type that transfers across the 

intestinal epithelium despite their relative paucity in milk (Cabinian et al., 2016, Ma et al., 

2008).  Tc cells translocate into the intestinal Peyer’s patches, reflected in their expression of a 

gut homing receptor (CCR9).  The Tc cells present in mouse milk show an increased ability to 

produce cytokines upon stimulation compared to peripheral blood Tc cells (but similar to 

mature mouse Tc cells) (Cabinian et al., 2016). It is unclear whether milk-derived T cells migrate 

beyond the murine gut: Ma et al. found maternal derived T cells in the spleen and thymus of 
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pups, whilst Cabinian et al. only found maternal derived T cells localised to the intestinal 

mucosa, Peyer’s patches and mesenteric lymph nodes (Cabinian et al., 2016, Ma et al., 2008). 

1.4.1.4 Lactoferrin 

Lactoferrin is the major whey protein of human milk. It is a glycoprotein that has been the 

subject of research for over 50 years due to its ability to inhibit bacteria through the 

sequestration of iron (Oram and Reiter, 1968). Lactoferrin affects bacteria by other 

mechanisms including cell membrane disruption, biofilm disruption and inhibiting bacterial 

adhesion to cells (Ward and Conneely, 2004). Lactoferrin has also been shown to bind to 

immune cells and influence their function (Legrand, 2016). 

1.4.1.4.1 Interaction with bacteria and T cells 

In vitro, lactoferrin inhibits the growth of bacteria that rely heavily on iron for growth such as 

E. Coli (Ward and Conneely, 2004). This is combined with an ability to increase the growth of 

Bifidobacterium. Interestingly bovine and human lactoferrin influence growth of different 

Bifidobacteria (Petschow et al., 1999). 

Most lymphocytes can express a lactoferrin receptor including αβ and γδ T cells, however only 

when stimulated (Mincheva-Nilsson et al., 1997). Furthermore, T cells in the lamina propria of 

pigs have been shown to bind lactoferrin (Nielsen et al., 2010). In a mouse colon cancer model, 

T cells in the lamina propria were shown to proliferate in mice with and without cancer when 

administered enteral bovine lactoferrin. These T cells secreted IFN-γ and IL-18 suggesting that 

they were immunologically active (Wang et al., 2000). 

1.4.1.4.2 Clinical trials 

As a result of laboratory work demonstrating effective actions in inhibiting bacteria that are 

associated with LOS, it was hypothesised that administration of bovine lactoferrin to preterm 

infants would reduce LOS rates (Group, 2013). Promisingly a study in Italy did show a reduction 

in LOS (n= 472, RR 0.34 (CI 0.17-0.7)). The trial had 2 groups exposed to lactoferrin, with and 

without probiotics, and the reduction in LOS occurred in both intervention groups compared 

to the control group (Manzoni et al., 2009). The validity of these results was explored in a UK 

based RCT, Enteral Lactoferrin in Neonates (ELFIN) noting that a reduction in the rate of fungal 

sepsis seen in the Manzoni et al. trial explained some of the effect. Fungal sepsis is rarely seen 

in many UK NICUs since the introduction of antifungal prophylaxis (Cleminson et al., 2015).  

The ELFIN study was a double blinded, multi-centre, randomised controlled trial that consisted 

of 2203 infants born less than 32 weeks GA. There was 90% power to detect a relative risk 
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reduction of 24-28% in the rate of LOS.  The study found no difference in the rate of LOS 

between study groups (RR 1.05 (CI 0.87-1.26)) (Griffiths et al., 2019). 

Both trials mentioned above used bovine lactoferrin, which though very similar to human 

lactoferrin has potentially important differences. Therefore, there is a question of whether 

supplementation with lactoferrin derived from humans could affect disease. 

There has been one clinical trial exploring the use of recombinant human lactoferrin in low-

birth weight (750-1500 grams) infants (n = 120). The trial was not powered to detect a 

reduction in infection but concluded that human lactoferrin was safe and there was a trend 

towards less infectious morbidity. The trial was limited by an unclear definition of hospital 

acquired infection (Sherman et al., 2016). 

 Interaction between the microbiome and the immune system 

Much of our knowledge of the interaction between the microbiome and the immune system 

derives from the use of animal models. Germ-free animals can be bred offering a model that 

can then be manipulated to investigate this interaction. These mice can be inoculated with 

single bacterial strains or combinations (Hooper et al., 2012). The studies below refer to mouse 

models unless otherwise stated. 

1.4.2.1 Increased innate inflammatory response in preterm infants 

There are important deficiencies in the preterm intestine highlighted in Section 1.2.5. This 

includes an increased innate inflammatory response.  Intestinal epithelial cells have TLR’s on 

their cell surface and NOD-like receptors (NLR’s) intracellularly. These receptors sample the 

intestinal contents for possible pathogens and recognise microbe associated molecular 

patterns (MAMP’s) such as lipopolysaccharide (LPS). 

As part of normal development, preterm infants are known to express high levels of TLR-4 in 

the intestinal mucosa compared to term infants(Hackam and Sodhi, 2018). TLR-4 is the 

receptor for LPS, which is the outer component of gram-negative bacteria. Increased 

expression of TLR-4 has been associated with the development of NEC (Afrazi et al., 2011, 

Hackam and Sodhi, 2018). Egan et al. showed that preterm infants and mice with NEC have an 

increased expression of the chemoattractant receptor CCL25 and IL-17RA, as a result of 

increased TLR-4 expression. These molecules lead to the induction of Th17 cells which weaken 

the IEC tight junctions and infiltrate the intestinal mucosa, predisposing mice to develop NEC. 

This study demonstrated the plasticity of Th cells to be induced to either display a Th17 or Treg 
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response. They also demonstrated that a dietary intervention with all-trans retinoic acid to 

suppress the Th17 response could decrease the risk of disease in mice (Egan et al., 2016). 

Pharmacological intervention with a TLR-4 inhibitor is possible and is being explored (Neal et 

al., 2013). However, human milk is already known to contain a number of molecules, including 

lactoferrin and HMO’s, which have been shown to inhibit TLR-4 expression (He et al., 2016). 

1.4.2.2 Immunoglobulin 

The ability of the newborn intestine to secrete immunoglobulins develops over the first few 

weeks of life, being low at birth. Rognum et al. analysed duodenal samples from infants that 

had died postnatally and stained with antibodies to immunoglobulin and Human Leukocyte 

Antigens (HLA). This demonstrated low levels or absence of immunoglobulin (Ig) (IgA, IgG and 

IgM) and HLA at birth with a gradual increase in specimens from the first weeks of life. All the 

preterm infants in the study died in the first 3 days of life so it is unclear whether they had the 

same postnatal maturation as term infants (Rognum et al., 1992). 

1.4.2.2.1 Specific Immunoglobulin production 

MacPherson et al. demonstrated that commensal gut bacteria influence specific IgA 

production in mice. Germ-free mice were administered Enterobacter cloacae enterally, before 

mesenteric adenectomy. The presence of viable Enterobacter cloacae, using culture and 16S, 

was demonstrated in MLN’s and dendritic cells. The number of bacteria correlated with the 

quantity of bacteria administered to the mice, however, when comparing intravenous injection 

of bacteria with gastric lavage, bacteria were only present in the mesenteric lymph nodes 

following gastric lavage. Furthermore, translocation was demonstrated to be through the 

Peyer’s patches and not the lamina propria by identification of APC combined with bacteria in 

the Peyer’s patches. Immunoglobulin A was found to be significantly increased in the intestinal 

mucosa and serum of mice inoculated with live but not dead bacteria. They concluded that 

dendritic cells originating in the Peyer’s patches engulf bacteria following penetration of the 

intestinal barrier before transporting them to the mesenteric lymph nodes, where specific 

immunoglobulin is produced (Macpherson et al., 2000, Macpherson and Uhr, 2004). IgA is 

known to be important in the intestinal lumen by blocking bacterial access to epithelial 

receptors, keeping the bacteria within the mucus layer to facilitate removal from the body 

(Mantis et al., 2011). 

Antigen specific IgA production has been shown to be heavily reliant on MyD88 signaling in T 

cells (Kubinak et al., 2015). However, in the mesenteric lymph nodes, IgA production is not 

entirely T cell dependent (Macpherson et al., 2000). B cells are not thought to populate the gut 
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mucosa until a few weeks of age, meaning host IgA production would be dependent on other 

mechanisms before then (Macpherson et al., 2000, Macpherson and Uhr, 2004). After this 

time, B cells are thought to secrete IgA into the intestinal lumen, as demonstrated by a linear 

relationship between age and fecal IgA in CMF fed infants (Gopalakrishna et al., 2019).  

1.4.2.2.2 IgA impact on the microbiome and disease 

The timing of secretion of IgA by host B cells is compelling as a study by Gopalkrishna et al., 

involving preterm infants and a mouse model, demonstrated that the IgA bound component of 

bacteria was protective of NEC. In particular they found an increased abundance of 

Enterobacteria in the IgA unbound bacteria. IgA was demonstrated to offer mice protection 

from NEC (Gopalakrishna et al., 2019).  

Combining this data suggests that IgA is important for preventing the action of specific bacteria 

in the gut. In the first weeks of life, breast milk derived IgA may be particularly important 

before the intestinal mucosa has the capacity to produce IgA.  

1.4.2.2.3 Should there be further clinical trials involving IgA? 

Unfortunately, trials examining the use of oral immunoglobulin to prevent NEC in the late 

1980’s and early 1990’s found no evidence of protection (Foster et al., 2016). With one 

exception, these trials used IgG, with the trial of IgA having a high risk of bias. A further study 

comparing oral IgA administration with oral gentamicin administration found a rate of NEC of 

13% vs 1% respectively (n=200) (Fast and Rosegger, 1994).  

Following on from the study by Gopalakrishna et al., the question of IgA supplementation 

remains, possibly with the use of specific IgA, or IgA originating from human milk rather than 

plasma. 

1.4.2.3 Induction of Regulatory T cells by commensal bacteria 

1.4.2.3.1 Clostridia species 

Similar to humans, mice harbour high concentrations of Tregs in the intestine compared with 

other organs. In mice, the introduction of gut bacteria induces an increase in the population of 

colonic but not small intestinal Tregs which appears driven by a Clostridium species. The Tregs 

are thought to have been peripherally induced (rather than thymus-derived) on the basis that 

they lack expression of the transcription factor Helios (K. et al., 2011). 

1.4.2.3.2 Bacteroides fragilis 

Induction of Tregs does not seem to be isolated to Clostridium species. Bacteroides fragilis has 

also been shown to induce Tregs (Round et al., 2011, Ramakrishna et al., 2019). Production of 
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polysaccharide A (PSA) by Bacteroides fragilis in the presence of TLR-2, has been shown to 

drive this change. Induction of Tregs with treatment by PSA from Bacteroides fragilis has been 

implicated in the suppression of not only intestinal diseases (colorectal cancer, colitis) but 

encephalitis suggesting a systemic effect of this interaction (Sittipo et al., 2018, Ramakrishna et 

al., 2019, Round et al., 2011). These induced Tregs have been shown to produce IL-10. 

Interestingly, a mutation causing loss of function in the IL-10 receptor has been found in 

human infants with early-onset enterocolitis (Glocker et al., 2009), highlighting the importance 

of IL-10 in intestinal health in early life. 

1.4.2.4 Induction of iNKT cells by gut bacteria 

Shen et al. demonstrated that mice deficient in iNKT cells had a different gut microbial 

composition compared with wild-type mice. Furthermore intestinal leucocyte infiltration, 

especially neutrophils, was increased in iNKT deficient mice, not dependent on the microbial 

composition (Shen et al., 2018). 
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Figure 5 – Graphical summary of possible interactions between components of human milk, the gut microbiome and T cell populations in the 

preterm intestine. This includes work using human, animal and laboratory-based experiments.  E indicates ex-vivo experiment, I indicates in-vivo 

experiment.  Experiments with animal tissue are indicated by red circle whilst all grey circles indicate experiments using human tissue.
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 Summary of introduction 

The optimal diet of preterm infants is MOM due to a wide range of benefits including the 

reduced risk of serious disease, such as NEC and LOS. There are a number of mechanisms by 

which the diet, gut microbiome and the immune system have been demonstrated to interact 

in human, mouse and laboratory experiments, some of which are summarised in Figure 5. 

Currently, there is uncertainty as to the relative importance of different constituents of MOM 

in mediating the net protective effect. 

When there is a shortfall of MOM, the impact of DHM on NEC and LOS compared to CMF 

appears inconsistent from the published literature to date, exemplified by the studies 

described in Table 1, and hence further study is merited. DHM differs from MOM in part due 

to the effects of pasteurisation and storage, especially on cellular constituents. If DHM were to 

have a beneficial effect over CMF it may be due to HMO’s or lactoferrin, as the concentration 

of these molecules is relatively stable upon processing of DHM. There are likely to be other 

mechanisms, and it is also possible that there are detrimental effects of CMF e.g. foreign 

proteins inducing an allergic type response. However, it is plausible that DHM may be inferior 

to CMF in certain situations possibly due to variation in the processing of DHM as well as the 

natural variation in bioactive components.  

However, given the interactions that have been described, it is reasonable to hypothesise that 

any difference in disease risk consequent upon infant dietary manipulations would be 

accompanied by alterations in the gut microbiome and/or T cells. 
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 Study Design 

This thesis concerns infants recruited in Newcastle as part of the Interactions between the 

diet, gut microbes and body composition (INDIGO) study. 

This thesis describes a pilot study aiming to identify interactions between the diet, microbiome 

and T cell populations in preterm infants. Figure 6 offers a graphical representation of the 

study hypotheses.  

 

Figure 6 - Graphical representation of the hypotheses of the study 
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2.1 Aims 

The aim of the INDIGO study was to test the impact of an exclusively human milk diet 

compared to a diet containing bovine products on gut microbiota, growth and metabolic 

outcomes. 

There were two main aims of the pilot study described in this thesis: 

• To identify alterations in the gut microbiome and T cell population, associated with 

the exposure of preterm infants to different diets.  

• To describe the peripheral blood T cell immunophenotype in the preterm infant 

2.2 Study Hypothesis 

The hypotheses in the study are derived from evidence in the literature. They are presented as 

null hypotheses. 

1. There is no association between the dietary intervention and the gut microbiome, 

either in terms of alpha diversity, beta diversity or composition at genus level, at 34 

weeks corrected GA. 

2. There is no association between the dietary intervention and peripheral blood T cell 

subsets, specifically the abundance of Th1, Th2 or Th17 cells or abundance of iNKT 

cells, MAIT cells or Tregs 

3. There is no association between gut microbiome composition and peripheral blood T 

cell subsets, specifically the abundance of Th1, Th2 or Th17 cells or abundance of iNKT 

cells, MAIT cells or Tregs 

4. There are no significant differences in iNKT, MAIT or Treg cell abundance in preterm 

infants compared to adults 
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  Methods 

3.1 Graphical Methods 

 

Figure 7 
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3.2 Resource Table 

Table 6 – Resource Table *denotes conjugation using antibody labelling kit with 

metal listed in Section 3.5.6 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

(Antibody (Clone) – Isotope of metal (unless conjugated on site) or fluorochrome) 

CD45 (HI30) – 89Y Fluidigm® Catalog # 3089003B 

CD19 (HIB19)* Biolegend® Catalog # 302247 

CD196/CCR6 (GO34E3) – 141Pr Fluidigm® Catalog # 3141003A 

CD152/CTLA-4 (14D3) * Thermofisher Catalog # 16-1529-82 

TCR y/d (B1) * Biolegend® Catalog # 331202 

CD3 (UCHT1) * Biolegend® Catalog # 300443 

CD4 (RPA-T4) -145Nd Fluidigm® Catalog # 3145001B 

CD8a (RPA-T8) – 146Nd Fluidigm® Catalog #3146001B 

CD161 (HP-3G10) * Biolegend® Catalog # 339919 

CD86 (IT2.2) * Biolegend® Catalog # 305402 

CD25 (2A3) – 149Sm Fluidigm® Catalog # 3149010B 

CD199/CCR9 (L053E8) * Biolegend® Catalog # 358902 

CXCR3 (G025H7) * Biolegend® Catalog # 353702 

CD1d (51.1) * Biolegend® Catalog # 350302 

CD56 (REA196) * Miltenyi Biotech® Catalog # 130-108-016 

CD49b (P1E6-C5) * Biolegend® Catalog # 359301 

CD45RA (HI100) -155Gd Fluidigm® Catalog # 3155011B 

CD335 (9E2) * Biolegend® Catalog # 331902 

Anti-FITC (FIT-22) * Biolegend® Catalog # 408305 

Va24-FITC (6B11) Biolegend® Catalog # 342906 

CD279(PD-1) (EH12.2H7) * Biolegend® Catalog # 329941 

CD197/CCR7 (G043H7) – 159Tb Fluidigm® Catalog # 3159003A 

Vα7.2-APC Biolegend® Catalog # 351708 

Anti-APC (APC003) * Biolegend® Catalog #408005 

Anti-Human/Mouse Tbet (4B10) – 161Dy Fluidigm® Catalog # 3161014B 

Anti-Human FoxP3 (259D/C7) – 162Dy Fluidigm® Catalog # 3162024A  

Anti-Human CD294/CRTH2 (BM16) – 163Dy Fluidigm® Catalog # 3163003B 

CD69 (FN50) * Biolegend® Catalog # 310939 



 

 81 

REAGENT or RESOURCE SOURCE IDENTIFIER 
TIGIT (A151536) * Biolegend® Catalog # 372702 

Granzyme B/Perforin (REA226) * Miltenyi Biotech® Catalog #  

130-108-055 

Anti-Human/Mouse Gata3 (TWAJ) – 167Er Fluidigm® Catalog # 3167007A 

ROR-y (600214) * R&D Systems® Catalog # MAB6109 

CXCR5(RF8B2) * BD Biosciences® Catalog # 552032 

5-OP-RU (tetramer) – PE NIH tetramer 

core facility 

Not applicable 

Anti-PE (PE001) * Biolegend® Catalog # 408105 

CD28 (CD28.2) * Biolegend® Catalog # 302937 

CD14 (M5E2) * Biolegend® Catalog # 301802 

CD117/c-kit (104D2) * Biolegend® Catalog # 313223 

HLA-DR (L243) -174Yb Fluidigm® Catalog # 3174001B 

CCR4 (L291H4) – 174Lu Fluidigm® Catalog # 3175035A 

CD127 (A019D5) – 175Yb Fluidigm® Catalog # 3176004B 

CD16 (3G8) – 209Bi Fluidigm® Catalog # 3209002B 

CD66b (G10F5) – FITC Biolegend® Catalog # 305104 

Metals 

Maxpar® X8 antibody Labelling Kits (multiple – see 

Section 3.5.8 for details) 

Fluidigm® Catalog # (multiple) 

201141A - 201176B 

Biological Samples 

Adult peripheral blood samples Newcastle 

University 

Permissions:          

AWERB Project ID: 633 

Preterm peripheral blood samples NICU, RVI Permissions: 

ISRCTN16799022 

Preterm stool samples NICU, RVI Permissions: 

ISRCTN16799022 

Reagents 

Red Cell lysis Buffer Biolegend® Catalog #420302 

Lymphoprep™ Stemcell 

technologies™ 

Catalog # 07851 

Maxpar® water Fluidigm® Catalog #201069 

Maxpar® cell staining buffer Fluidigm® Catalog # 201068 

Maxpar® Fix and Perm buffer Fluidigm® Catalog # 201067 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
Cell-ID™ intercalator 125uM Fluidigm® Catalog # 201192A 

Triton X-100  Sigma-Aldrich® Product no. X100-100ml 

Formaldehyde 16% Thermofisher® Catalog # 28906 

Hanks Balanced Salt Solution (HBSS) Sigma-Aldrich® Catalog # H9394-500ml 

Dimethyl sulfoxide (DMSO) Sigma Aldrich® Catalog # D9170-5VL 

Dulbecco’s Phosphate Buffer Solution (PBS) Sigma-Aldrich® Product no. D8537 

Fetal bovine serum (FBS) Gibco™ Thermofisher® Catalog # 10270-106 

Cell-ID™ Cisplatin – 194Pt Fluidigm® Catalog # 201194 

   

Laboratory Equipment 

Mr Frosty™ Freezing Container ThermoFisher® Catalog # 5100-0001 

NanoDrop™ One Thermofisher® Catalog # ND-ONE-W 

Helios™, mass cytometer Fluidigm®  

FACSCanto™, flow cytometer BD Biosciences®  

MiSeq™ Personal Sequencer Illumina®  

Amino Acid Analyser Biochrom®  

Critical Commercial Assays 

Powerlyzer® powersoil® DNA extraction kit Qiagen® Catalog # 12855-100 

MAXPAR® Antibody Labelling Kit Fluidigm® Catalog # 201142 

Multitest™ 6-colour TBNK BD® Catalog # 644611 

Key Documents 

INDIGO study protocol version 1.3 Available on 

request 

Details at 

www.isrctn.com 

ISRCTN: 16799022  

INDIGO study patient Information Leaflet (PIL) Appendix A  

INDIGO study consent form Appendix B  

INDIGO study data collection forms (Study 

enrolment and daily collection) 

Appendix C  

Software and Algorithms 

CyTOF software v6.7 Fluidigm® https://www.fluidigm.c

om/software 

FCS Express 6 DeNovo 

software® 

https://www.denovosof

tware.com 

http://www.isrctn.com/
https://www.fluidigm.com/software
https://www.fluidigm.com/software
https://www.denovosoftware.com/
https://www.denovosoftware.com/
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REAGENT or RESOURCE SOURCE IDENTIFIER 
R 3.5.1 R Core Team 

2018 

https://www.r-

project.org 

GraphPad Prism 8© GraphPad 

Software 

https://www.graphpad.

com/ 

Sealed Envelope Sealed Envelope 

Limited 

https://www.sealedenv

elope.com/ 

REDCap REDCap 

Consortium 

https://www.project-

redcap.org/ 

Measurement tool 

Leicester incubator measure Harlow 

Healthcare® 

Catalog Category: 

Height/Length 

Measuring Equipment  

3.3 Patient Cohort – INDIGO study 

 Study Design 

The Interactions between the diet, gut microbes, metabolism and body composition (INDIGO) 

study was a multicentre, stratified (using gestational age <25 weeks or 25-30 weeks, hospital 

site, and multiple pregnancy) with balanced randomisation (1:1), non-blinded, parallel group 

study conducted in the United Kingdom (initially 2 sites). The INDIGO study will now be 

referred to as “the study”. The study was designed to identify the impact of human milk-based 

products compared to cow’s milk-based products in the feeding regime of extremely preterm 

infants, when there is a shortfall of MOM. 

 Ethics Approval 

The study was approved by the National Health Service (NHS) Health Research Authority (HRA) 

North East – Tyne and Wear (T&W) South Research Ethics Committee (REC) on the 29th June 

2017. The Integrated Research Applications System (IRAS) Identification for the study is 

215037 and the International Standard Randomised Controlled Trial Number (ISRCTN) is 

16799022. 

 Changes to study design 

Whilst there were no major changes to protocol design, challenges in recruitment were 

experienced in the Chelsea and Westminster (C&W) Hospitals study site in early 2018 possibly 

due to the requirement of infants needing an MRI scan after 34 weeks GA. In addition, there 

https://www.r-project.org/
https://www.r-project.org/
https://www.graphpad.com/
https://www.graphpad.com/
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were a number of infants transferred to other hospitals before study completion at the Royal 

Victoria Infirmary (RVI) study site. As a result, three amendments to the eligibility criteria were 

submitted to the trial steering committee. Approval for these amendments (described below) 

was sought and obtained from the T&W South REC. This approval was obtained on the 13th 

June 2018.  

The amendments were as follows: 

1. Maximum gestational age of recruitment increased from 29 to 30 weeks  

2. The time to obtain consent and perform randomisation increased from 48 to 72 hours 

3. Permission to access ongoing care information using existing database systems if the 

infant was transferred to a different hospital so that outcome information of relevance 

to the study could be obtained 

Subsequently, due to ongoing recruitment issues within the funded time available in C&W 

Hospitals, permission was sought to open two further recruitment sites (James Cook University 

Hospital, Teesside and William Harvey Hospital, East Kent). This was agreed by the trial 

steering committee and T&W South REC approval for a non-substantial amendment was 

obtained on the 3rd October 2018.  

 Participants 

Inclusion criteria for the study were any infants born before 29 weeks (September 2017 – June 

2018) or 30 weeks (June 2018- March 2019) gestational age, who did not have any severe 

immediate life-threatening condition or congenital abnormalities. Infants were excluded if 

they had received any other milk apart from MOM or their mother had no intention to provide 

any MOM. To be eligible, infants had to be randomised before 72 hours of age (48 hours of age 

(September 2017 – June 2018)). 

Only those infants recruited in the Neonatal Intensive Care Unit (NICU) in the Royal Victoria 

Infirmary (RVI), Newcastle Upon Tyne Hospitals are described in this work. The NICU at the 

Royal Victoria Infirmary provides local neonatal care to a maternity unit with 6000-8000 

deliveries per year, as well as providing neonatal surgical care for infants from Cumbria, 

Northumberland, County Durham and Darlington and Teesside. The RVI NICU cared for 153 

infants born less than 32 weeks gestational age in 2017 (Fenton, 2017). The standard care in 

the RVI NICU at the time of the study was for cow’s milk formula(CMF) should there be a 

shortfall of MOM, and cow’s milk-based fortification(BMF) if fortification was clinically 

indicated. 
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 Consent process 

The consent process followed those outlined in the Good Clinical Practice (Authority, 2017). A 

study investigator (NDE, JEB, JG, AK, TDRS) would approach the parents of an infant typically 

within the first 24 hours of life. The study would be verbally explained in language that was 

easy to understand and a Patient information leaflet (PIL) given (Appendix A). Parents were 

made aware that the routine care of their infant would not be affected regardless of their 

participation and that they could withdraw from the study at any time. Parents were typically 

given 12-24 hours to consider the study before being approached by the study investigator for 

their decision regarding participation. Following verbal consent, participation was confirmed 

upon completion of a consent form which re-iterated the key aspects of the study (Appendix 

B). 

3.3.5.1 Language Difficulties 

The study protocol does not specify action with regards to parents who do not speak English.  

An infant was therefore deemed eligible if their parent could read English and gave informed 

consent following discussion with the aid of an interpreter. This ensured that all parents had 

both verbal and written information regarding the study before participation.  

 Randomisation 

Infants were randomised to either an exclusive human milk diet (intervention) or standard 

care (control). Both diets are detailed in Section 3.3.7. Randomisation was performed using an 

online software package with minimisation designed for this purpose 

(www.sealedenvelope.com). Randomisation was performed on a 1:1 basis, stratified by 

hospital site, gestational age (<25 weeks, or 25-29+6 weeks) and multiple pregnancy. Multiple 

deliveries were randomised individually. Once randomisation was performed, the parents, 

bedside nurse and attending clinician were informed of the randomisation allocation (i.e. no 

blinding). 

 Milk intervention  

Following informed consent and randomisation, the attending medical team were advised to 

commence enteral feeds before 72 hours unless there was a medical contraindication. 

Donated human milk was supplied for this study by Prolacta Biosciences© (California, USA) 

and consisted of unfortified human milk (HM), fortified human milk (RTF 26) and human milk-

based human milk fortifier (P+6). These products are produced exclusively from human milk 

and were couriered frozen from California to Newcastle in batches, to ensure there was no 
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shortfall in supply. The standard practice in the RVI NICU is for SMA Gold prem 1 (GP1) 

(Nestle©, UK) to supplement MOM should there be a shortfall, and for Cow and Gate© 

nutriprem breast milk fortifier (Nutricia©, UK) to be used to fortify MOM once preterm infants 

are fully enterally fed (defined at 150ml/kg/day). This standard practice was the diet used in 

the control arm of the study.  

The dietary intervention in the study had two components. The two components relate to the 

point at which an infant achieved full enteral feeds (defined as the day when 150ml/kg milk 

was tolerated). 

1. At any time in the study period (until 34 weeks CGA), infants were supplemented with 

RTF 26 (Intervention arm) or GP1 (Control) should there be a shortfall of MOM.  

2. From the day of achieving full enteral feeds (defined as 150ml/kg/day), fortification of 

MOM was commenced with either Prolacta P+6 (Intervention arm) or Cow and Gate 

nutriprem breast milk fortifier (Control). 

Table 7 and Table 8 compare the macronutrient content of the formulas and fortifiers used in 

the Control and Intervention arms of the study. 

Table 7 - Comparison of macronutrient concentrations of formulas used in the study 

 Control 

GP1/100ml  

Intervention 

RTF 26/100ml 

Energy (Kcal) 80 90 

Protein (g) 2.9 2.6 

Carbohydrates (g) 8.1 8.1 

Fat (g) 4 5.2 
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Table 8 - Comparison of macronutrient and folate concentrations of fortifiers used in 

the study. Concentrations of macronutrients were derived from (Stoltz Sjostrom et 

al., 2014) per 100 ml MOM as follows; 70kcal energy, 1.8g protein, 6.8g 

carbohydrates, 4g fat. *not including MOM  

 Control 

Cow and Gate Nutriprem 

Breast Milk Fortifier (100ml 

MOM and fortifier) 

Intervention 

Prolacta P + 6  

(70ml MOM and 30ml P+6) 

Energy (kcal) 85 88 

Protein (g) 2.9 2.8 

Carbohydrates (g) 9.5 7.6 

Fat (g) 4 5.2 

Folate/Folic Acid * 

(micrograms) 

30* 11.7* 

 

A discrepancy in the concentration of folate between the two fortifiers was noticed following 

the commencement of the study. Measurement of serum folate to ensure there was no 

deficiency was therefore arranged, combining with other blood tests to ensure no extra 

venepuncture for the study infants. 

 Data Collection 

Information regarding infants was collected using data collection forms (Appendix C) as 

outlined in the study protocol.  Admission details were collected at the time of recruitment. 

Anthropometry was collected weekly. Nutritional information was collected daily. 
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3.3.8.1 Admission details 

Admission details included birth mode, exposure to antenatal factors (prolonged rupture of 

membranes, reduced end-diastolic flow), condition at birth (heart rate at 5 minutes of age) 

and maternal details (NHS Ethnicity and antenatal steroids). 

3.3.8.2 Anthropometry  

Anthropometry included measurements of head circumference, length and weight. Weight 

measurements were made as part of routine infant care and the data recorded from the 

bedside nursing chart. Head circumference was measured using a tape measure with the 

occipito-frontal circumference (OFC) recorded. Length measurements were made using the 

Leicester Incubator measure by a researcher and an assistant, typically the infant’s bedside 

nurse. This enabled measurements of infants with minimal disturbance as has been reported 

(King and Dogra, 2011). Length was measured without the use of the length board in order to 

further minimise disruption of the infant, although this may impact the accuracy of results 

(Wood et al., 2013). For both OFC and length measurements, the largest of 3 recordings was 

recorded provided there was no more than 0.2cm between recordings, if there was greater 

than 0.2cm between measurements the recordings were repeated. 

3.3.8.3 Nutritional Data 

Nutritional data included any exposure that may impact the gut microbiome such as 

probiotics, antibiotics, vitamins and iron on a per sample (blood or stool) basis. Exposure at the 

time of sampling (Yes or No) and number of days the patient was exposed before sampling 

were recorded. With regards to milk, the following nutritional information was recorded:  

• Type (MOM, Prolacta Ready to Feed 26 (RTF), CMF, TPN or other) and volume 

(nearest milliliter)  

• Fortifier exposure and type (Human or bovine) 

• If the patient had been nil by mouth for greater than 4 hours on that day 

Following identification of the stool and blood samples for analysis, samples were categorised 

based on the percentage of enteral nutrition that was MOM in the 72 hours before a sample 

(including day of sample) using the equation: 

 Total volume of MOM (ml) / Total volume of enteral nutrition (ml) x 100.  

The categories used were: 

• 70-100% MOM 
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• 30-69% MOM 

• 0-29% MOM 

An infant receiving fortified MOM in the intervention arm could receive a maximum of 70% 

MOM (as the fortifier comprises 30ml for every 70ml MOM) therefore using these cut-offs 

offers the opportunity of a relevant comparison between the two study arms. 

3.3.8.4 Clinical Outcomes 

Usual practice at the RVI NICU is for preterm infants to be transferred to the paediatric service 

after they are post-term. Following transfer to paediatric services the availability of detailed 

information decreases. Therefore, details regarding clinical outcomes were collected at 

hospital discharge or 4 weeks post-term (whichever occurred first). Clinical outcomes included 

information about morbidity, mortality and hospital stay details. 

Morbidities were defined as: 

• LOS: microbiologically confirmed infection of blood or cerebro-spinal fluid with any 

organism, including coagulase-negative staphylococcus (CONS) only if the intention 

was to treat as LOS. LOS was defined after 72 hours of life and before 44 weeks 

postmenstrual age or discharge, whichever occurred first. This definition was used in a 

recent large multi-centre neonatal RCT (Costeloe et al., 2016) 

• NEC: at least one clinical and one radiological sign, as well as intention to treat for 

greater than or equal to 5 days with metronidazole. Clinical signs; abdominal 

distension, blood in stool, billous gastric aspirate or vomiting. Radiological (AXR) signs; 

pneumatosis, hepato-biliary gas, pneumoperitoneum. Alternatively, a diagnosis could 

be made histologically; either at post-mortem or following surgery. This is based on 

the definition used by the NNAP (RCPCH, 2017). Each case of NEC was independently 

reviewed by an additional consultant neonatologist to ensure robust agreement.  

• Intra-ventricular haemorrhage (IVH): Any stage recorded by radiologist on cranial 

ultrasound, stage defined as per ICD-10 (Organisation, 2004). 

• Retinopathy of Prematurity (ROP): Any stage recorded by consultant ophthalmologist. 

Screening undertaken as per local NICU guidance (any infant less than 32 weeks 

gestational age or <1500g at birth) 

• Chronic Lung Disease: Defined as mild (oxygen or respiratory support at 28 days), 

moderate (oxygen requirement at 36 weeks corrected gestational age) or severe 

(respiratory support at 36 weeks corrected gestational age) (Jobe and Bancalari, 2001) 
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Should a patient die before discharge or 4 weeks post-term, the primary causes of death as 

determined by multidisciplinary case review with clinicians independent of the research team 

including information from post-mortem (if performed), were recorded. Furthermore, factors 

that may have contributed to death, namely infection, NEC, brain injury, decision to withdraw 

intensive care, congenital anomaly and respiratory failure were recorded in a binary fashion. 

3.3.8.5 Patient Transfer 

Should a patient be transferred to another hospital before completion of the clinical study 

(defined as 34 weeks CGA), study outcome data was collected from the BadgerNet neonatal 

electronic patient record as per the study amendment detailed in Section 3.3.3. Additionally, 

should the transferred patient be in the study control group, a request was made to the local 

neonatal department to obtain detailed feeding and anthropometry information. Ethical 

approval and clinical governance issues did not permit the use of the intervention products 

(HMF) outside the recruiting NICUs, so growth and nutritional intakes from those infants were 

considered off-protocol.  

3.3.8.6 Data storage 

Data storage was conducted as outlined in Good Clinical Practice. The study site file was stored 

in a secure room. Original copies of consent forms were kept in the site file, any complete data 

collection forms were securely stored. A secure web-based application named research 

electronic data capture (REDCap®) was used to collate and store all clinical data in a central 

location. REDCap® is designed for data management and storage and allows for the creation of 

a bespoke data collection form. REDCap® was hosted at the RVI, Newcastle (Harris et al., 

2019). 

 Study withdrawal 

Should an infant withdraw from the study, data was collected up until the point of withdrawal 

from the study. If any stool or blood samples were collected before withdrawal from the study 

these were analysed. If any samples were collected following study withdrawal they were 

discarded. 

 Study completion 

An infant was deemed to have completed the study at 34 weeks CGA. However, as stool 

samples depend on stooling habits and collection by nursing staff, there would not necessarily 

be a sample available after 33 weeks CGA.  Preferentially, a sample obtained between 33-34 
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weeks CGA was used for the analysis, however infants who completed the intervention for at 

least 4 weeks and had stool samples available between 32-35 weeks corrected gestational age 

were deemed to have complete the study providing they had not deviated from the study 

intervention before 34 weeks CGA.  

 Sample Size 

The study was powered on detecting a difference in the gut microbiome between the study 

groups, specifically a 0.5 standard deviation (SD) difference in alpha-diversity between study 

groups. 40 infants in each study group would give a 95% power at a 5% significant level to 

detect this. 

For this pilot study, 16 infants in each study group would give an 80% power at a 5% 

significance level to detect a 0.5 SD difference in alpha-diversity between the study groups.  

3.4 Samples 

 Stool collection and storage 

Stool samples were collected from participants during routine care times by either their parent 

or the bedside nurse. A maximum of one sample was collected per day. Stool samples were 

collected in sterile glass containers before being transferred with patient details to a -20 

Celsius(C) refrigerator on the NICU. The samples were then anonymised by giving them a 

unique identification number. Samples were transferred weekly to a -80 C freezer for storage 

until DNA extraction.  

3.4.1.1 Selection of stool samples for analysis 

In order to understand about the effect of the diet on the gut microbiome, stools were 

identified from five time-points.  

The five time-points selected for analysis were: 

A. Earliest sample (before DOL 10) 

B. DOL 10 (+/- 2 days) 

C. Two days following full enteral feeding (150ml/kg/day) 

D. DOL 21-28 

E. Last sample before study end (range 32-35 weeks CGA) 
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Suitable stool samples were identified using their unique identification number in an online 

database. If a sample was identified that overlapped with a later time-point they were defined 

by the latter time-point. 

 Blood collection 

3.4.2.1 Infants 

Blood samples were collected from study infants as per the study protocol and timed to 

coincide with clinical blood tests.  

Blood samples were collected at time-points C and E to coincide with stool sampling. 

Clinical Research guidelines recommend a maximum draw of 1% of blood volume at any single 

time-point or 3% within a 4-week period ((CHMP) and (PDCO), 2008). Preterm infants are 

estimated to have a blood volume of 80-90ml/kg. When the infant weighed less than 1100 

grams and therefore would have a circulating blood volume of less than 100ml, the clinical full 

blood count was salvaged following completion of the clinical test. Analysis of salvaged blood 

samples was permitted as per the study protocol. Blood samples were collected as per Figure 8 

based on the infants’ weight. 
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Figure 8 - Blood sampling during the INDIGO study based on infants' weight 

Blood samples for amino acids analysis were centrifuged immediately, with the plasma 

isolated and then frozen at -20 C prior to analysis. Amino acid analysis occurred within 1 

month of sample collection. 

Blood samples to be analysed using mass cytometry were anonymised with the study 

identification number only. They were stored at room temperature prior to either red blood 

cell lysis or density gradient centrifugation, followed by staining with cell surface antibodies 

and freezing at -80 C within 24 hours of collection. 

Due to the small blood volume of samples, red blood cell (RBC) lysis was initially undertaken. 

However, this resulted in a large number of granulocytes being analysed using mass cytometry. 

Following optimization, it was found possible to perform a density gradient centrifugation on 

small volume blood samples. This was the preferable method for cell preparation. There is 

therefore a combination of samples where cell reduction was performed using RBC lysis and 

density gradient centrifugation. 

3.4.2.2 Adults 

Blood samples from adults were to establish staining protocols and as technical controls for 

infant samples. These were collected as part of the Understanding Mechanisms of Immune 
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Mediated Diseases study (Animal Welfare Ethical Review Body Project ID: 0633) in Newcastle 

University. Written consent was obtained from participants and a trained phlebotomist 

collected 9ml of blood into an Ethylene-diamine-tetraacetic acid (EDTA) container using a 

butterfly needle. All samples were stored anonymously at room temperature prior to staining. 

Cell reduction methods used for adult samples mimicked that used for the infant samples that 

were stained simultaneously. 

 Sample metadata 

Data were prospectively collected. After selection of the samples for analysis, this was collated 

against each sample time-point.  

This information covered four areas: 

1. Demographics Age, Sex, study group, admission details (see Section 3.3.8.1) 

2. Medications before (number of days medication given before day of sample) and 

during (medication given on day of sample) sample (Antibiotics, probiotics, iron, 

vitamins) 

3. Nutrition MOM category (see Section 3.3.8.3), fortifier exposure 

4. Disease NEC, LOS (temporal relationship to sample i.e. days before/after sample) 

3.5 Laboratory Techniques 

 Bacterial DNA extraction from stool 

Bacterial DNA was extracted from 200ug of stool. A MoBio™ Powerlyzer® Powersoil® DNA 

extraction kit was used as per the manufacturer’s instructions with the following 2 alterations. 

Bead beating combined with chemical lysis was undertaken for 20 rather than 10 minutes. 

Incubation with solutions C2 and C3, used to improve DNA quality by precipitating other 

organic material, was for 10 minutes rather than 5 minutes. A final volume of 100μl DNA was 

produced as per the manufacturer’s instructions. This was stored at -80 C until 16S rRNA gene 

sequencing. 

Bacterial DNA was extracted from 23 infant samples in each batch. A blank control sample was 

processed with each batch in order to detect background contamination. 

 Sequencing 

Bacterial profiling was performed by the NI-OMICS DNA sequencing research facility at 

Northumbria University using the Illumina® MiSeq™ Personal Sequencer. This utilised the 16S 

rRNA gene targeting variable region 4 based on the Schloss wet-lab MiSeq standard operating 
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protocol (Kozich and Schloss, 2014). Fastq data files were created using the MiSeq™ platform 

(Illumina®). The primers used for amplification were GGACTACHVGGGTWTCTAAT and 

GTGCCAGCMGCCGCGGTAA3. Read pairs were demultiplexed based on the unique molecular 

barcodes, and reads were merged using USEARCH v7.0.10015, allowing zero mismatches and a 

minimum overlap of 50 bases. Merged reads were trimmed at first base with Q5. In addition, a 

quality filter was applied to the resulting merged reads, and reads containing above 0.05 

expected errors were discarded. 

Subsequently the fastq files were processed by the Alkek Center for Metagenomics and 

Microbiome Research (Baylor University, USA) to produce a biom and tre file containing OTU’s 

and taxonomic information respectively for each sample as follows.  

16S rRNA gene sequences were assigned to OTUs or phylotypes at a similarity cut-off value of 

97% using the UPARSE algorithm. OTUs were then mapped to an optimised version of the 

SILVA Database6,7 containing only the 16S v4 region to determine taxonomies. Abundances 

were recovered by mapping the demultiplexed reads to the UPARSE OTUs. A custom script was 

constructed containing an OTU table from the output files (tre and biom files) generated in the 

previous two steps, which is then used to calculate alpha-diversity, beta-diversity, and provide 

taxonomic summaries that are leveraged for all subsequent analyses. 

 Serum Folate analysis 

Serum folate was measured by the RVI Biochemistry laboratory. The test was performed on 

blood that had been taken for clinical or research purposes. Folate was analysed using the 

Elecsys Folate III kit as per the manufacturer’s instructions and measured using a Cobas® e 411 

analyser (Roche®) 

 Plasma Amino acid analysis 

Plasma amino acids were analysed by the RVI Biochemistry department as follows.  

Blood samples in tubes containing lithium-heparin were centrifuged within one hour of being 

received in the laboratory. The plasma was separated and then frozen at -20 C until analysis. 

Following de-frosting, the plasma was de-proteinised with 10% sulphosalicylic acid containing 

500 umol/L amino-L-cysteine as the internal standard. The sample was then centrifuged before 

the supernatant was injected onto an amino acids analyser (Biochrom™, UK). 

The amino acids were separated by ion-exchange chromatography with lithium buffers of 

increasing pH and ionic strength. Post-column derivatisation with ninhydrin at 135°C formed 
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amino acid-ninhydrin conjugates with Amax 570 nm (440 nm for proline and hydroxyproline), 

which are detected on the photometric detector. 

Data were recorded using a chromatogram with each amino acid separated and the peak area 

proportional to the amount of amino acid-ninhydrin conjugate formed. The area of each peak 

was compared with the internal standard. This was further compared with results obtained 

from a calibration standard containing 500 μmol/L of each amino acid to calculate the 

concentration in the sample. 

 Flow Cytometry 

Blood sample analysis using conventional flow cytometry was performed in the Flow 

Cytometry Blood Sciences laboratory, RVI, Newcastle upon Tyne Hospitals. 

Blood samples were collected in EDTA tubes. The blood sample was gently mixed before 50μl 

of blood was added to a Trucount™ tube (BD®, USA) containing 10μl of BD Multitest™ 6-colour 

TBNK (BD®, USA) and 25μl of HLA-DR. Samples were incubated for 15 minutes. 450μl of 

FACSlyse (BD®, USA) (10:1 dilution with distilled water) was added before further incubation 

for 15 minutes. 

Samples were then analysed using a FACSCanto (BD®, USA) flow cytometer, acquiring 10,000 

events using a lymphocyte stopping gate based on forward and side scatter. The gating 

strategy used to identify T, B and NK cells is defined by the manufacturer. 

 Red Blood Cell (RBC) lysis 

For blood samples that underwent red blood cell lysis the protocol was as follows: 

1. RBC Lysis Buffer (Biolegend®) (1 x diluted with MaxPar water (Fluidigm®)) was added 

to blood at a ratio of 1:10 (i.e. 1ml of blood to 10ml of RBC Lysis Buffer) 

1. The solution was incubated for 5-10 minutes at room temperature inverting the tube 

every few minutes. RBC lysis was deemed complete when the solution was opaque 

2. Samples were centrifuged at 400ɡ for 5 minutes to pellet white blood cells (WBC) 

3. WBC were washed with 5ml of PBS (Sigma-Aldrich®), then centrifuged at 400ɡ for 5 

minutes, carefully pouring off the supernatant 

4. Step 4 was repeated 

5. WBC were counted using a counting chamber and a 10x microscope 

6. 3-6 x 10^6 WBC per well were placed into a 96 well plate. If there was more than 6 x 

10^6 WBC then the sample was split into 2 aliquots. One aliquot was re-suspended in 

freezing medium (10% DMSO (Sigma-Aldrich®) and 90% FBS (Thermofisher®)) and 
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placed in either a polystyrene box or Mr. Frosty™ (Thermofisher®) freezing container 

before entering a -80 C freezer. 

 Density Gradient Centrifugation 

For the isolation of peripheral blood mononuclear cells (PBMC’s) from whole blood the 

following protocol was used with a typical sample volume of 350-500ul (infant) or 2-3ml 

(adult) 

1.  Blood samples were re-suspended in HBSS (Sigma-Aldrich®) to final volume of 1.2ml 

(infant) or 4-6ml (adult) 

2. In a universal container, the blood suspension was gently pipetted on top of, 5ml 

(infant) or 20ml (adult), lymphoprep (Stemcell technologies©) 

3. The sample was centrifuged at 1200 ɡ for 20 minutes with an acceleration of 6 and 

deceleration of 1. 

4. The mononuclear layer, containing PBMC’s, was identified and aspirated with a 2ml 

Pasteur© pipette. 

5. PBMC’s were washed twice with PBS 

6. PBMC’s were counted using a counting chamber and a 10x microscope 

7. 3-6 x 106 PBMC’s were isolated for staining. Should a sample contain more than 6 x 106 

PBMC’s, the sample was split and frozen as described in the RBC lysis section. 

 Mass cytometry  

3.5.8.1 Antibody Panel design 

A mass cytometry panel was designed to identify populations of T cells. The primary focus was 

the Th response using chemokine receptors and transcription factors. The panel was designed 

to simultaneously explore Treg, MAIT and iNKT cell populations. This was similar to a study 

exploring an adult population identifying Th cells based on chemokine receptors and 

transcription factors (Kunicki et al., 2018). Dr Rebecca Payne designed the initial panel, using 

the MaxPar® Panel designer (Fluidigm®) to identify possible channel spillover issues, as well as 

published literature regarding T cell markers that tolerate freezing (Sumatoh et al., 2017). 

Table 9 details the initial antibody panel (Panel A) and the subsequent panels that were 

optimised over time. Panels C and D were used for the analysis of samples in this study.  
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Table 9 - Antibody panels used for mass cytometry. Changes made between panels 

are highlighted in red. *metal isotopes that were conjugated on site to a pure 

antibody 

Metal 

Isotope 

 

Panel A Panel B Panel C Panel D 

89Y CD45 CD45 CD45 CD45 

CD113* CD19 CD19 CD19 CD19 

141Pr CD196 (CCR6) CD196 (CCR6) CD196 (CCR6) CD196 (CCR6) 

142Nd* CTLA4 CTLA4 CTLA4 CTLA4 

143Nd* TCRgd TCRgd TCRgd TCRgd 

144Nd CD3 CD3 CD3 CD3 

145Nd CD4 CD4 CD4 CD4 

146Nd CD8a CD8a CD8a CD8a 

147Sm* CD161 CD161 CD161 CD161 

148Nd* CD86 CD86 CD86 CD86 

149Sm CD25 (IL-2R) CD25 (IL-2R) CD25 (IL-2R) CD25 (IL-2R) 

150Nd* CD199 (CCR9) CD199 (CCR9) CD199 (CCR9) CD199 (CCR9) 

151Eu* CXCR3 CXCR3 CXCR3 CXCR3 

152Sm*   CD1d CD1d 

153Eu* CD56 CD56 CD56 CD56 

154Sm* CD49b CD49b CD49b CD49b 

155Gd CD45RA CD45RA CD45RA CD45RA 

156Gd* CD335 (NKp46) CD335 (NKp46) CD335 (NKp46) CD335 (NKp46) 

   CD66b CD66b va24-FITC (iNKT) 

157Gd*  ant-FITC anti-FITC anti-FITC 

158Gd* CD279 (PD-1) CD279 (PD-1) CD279 (PD-1) CD279 (PD-1) 
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Metal 

Isotope 

 

Panel A Panel B Panel C Panel D 

159Tb CD197 (CCR7) CD197 (CCR7) CD197 (CCR7) CD197 (CCR7) 

  Valpha7.2-APC 

(MAIT) 

Valpha7.2-APC 

(MAIT) 

Valpha7.2-APC 

(MAIT) 

Valpha7.2-APC 

(MAIT) 

160Gd* anti-APC anti-APC anti-APC anti-APC 

161Dy Tbet Tbet Tbet Tbet 

162Dy Foxp3 Foxp3 Foxp3 Foxp3 

163Dy CD294 (CRTH2) CD294 (CRTH2) CD294 (CRTH2) CD294 (CRTH2) 

164Dy* CD69 CD69 CD69 CD69 

165Ho* TIGIT TIGIT TIGIT TIGIT 

166Er* Granzyme 

B/perforin 

Granzyme 

B/perforin 

Granzyme 

B/perforin 

Granzyme 

B/perforin 

167Er Gata3 Gata3 Gata3 Gata3 

168Er* ROR gamma 

(RORC, NR1F3) 

ROR gamma 

(RORC, NR1F3) 

ROR gamma 

(RORC, NR1F3) 

ROR gamma 

(RORC, NR1F3) 

169Tm* CXCR5 CXCR5 CXCR5 CXCR5 

  va24-PE (iNKT 

cells) 

va24-PE (iNKT 

cells) 

va24-PE (iNKT 

cells) 

5-OP-RU(MAIT)-

PE 

170Er* anti-PE PE001 anti-PE PE001 anti-PE PE001 anti-PE PE001 

171Yb* LAG3  CD28 CD28 

172Yb* CD14 CD14 CD14 CD14 

173Yb* CD117 (ckit) CD117 (ckit) CD117 (ckit) CD117 (ckit) 

174Yb HLADR HLADR HLADR HLADR 

175Lu CCR4 CCR4 CCR4 CCR4 

176Yb CD127 (IL-7Ra) CD127 (IL-7Ra) CD127 (IL-7Ra) CD127 (IL-7Ra) 
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Metal 

Isotope 

 

Panel A Panel B Panel C Panel D 

209Bi CD16 CD16 CD16 CD16 

3.5.8.2 Conjugation of monoclonal antibodies 

As the number of conjugated antibodies commercially available for mass cytometry is 

currently limited, 23 antibody conjugations were performed on site. Purified antibodies were 

purchased as detailed in the resource table (Table 6) and conjugated using a Maxpar® X8 

antibody Labelling Kit (Fluidigm) as per the manufacturer’s instructions. A Nanodrop One™ 

(Thermofisher Scientific) was used before and after conjugation to measure the protein 

concentration. A titration experiment was then performed to identify optimal antibody 

concentration. 

3.5.8.3 Staining of PBMC and WBC for mass cytometry analysis 

Following isolation of PBMC or WBC, samples were placed in a 96 well plate. The protocol had 

the following steps: 

1. Live dead stain using Cell-ID™ Cisplatin (Fluidigm®). Cells were required to be in 

concentration of 10x106/ml. Cell-ID™ Cisplatin was added to give a final concentration 

of 5μM before incubation for 5 minutes 

2. Primary antibody stain with antibodies bound to fluorochromes for 30 minutes. 

3. Secondary antibody stain with remaining cell surface antibodies for 30 minutes. 

4. Cell fixation; samples were suspended in 100μl PBS and 100μl 3.2% formaldehyde 

(16% formaldehyde diluted with PBS) added, before incubation for 1 hour. 

5. 200μl of freezing media (10% DMSO in FBS) was added to a sample in 20-50μl PBS 

following centrifugation 

6. Samples were immediately wrapped in parafilm and placed in either a polystyrene box 

or Mr. Frosty™, in a -80˚C freezer 

7. One day prior to mass cytometry analysis, samples were defrosted at room 

temperature 

8. Cells were permeabilised with 200μl Triton Perm Buffer (PBS + 2% FCS + 0.1% Triton X-

100) 

9. Cells were suspended in 50μl heparin (100 IU/ml) for 10 minutes 

10. Intracellular antibodies were added and samples were incubated overnight 
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11. Cell-ID™ Intercalator (Fluidigm®) diluted to a concentration 1:1000 with Maxpar 

Fix/perm buffer. Cells were suspended in 100μl of solution for 1 hour. 

12. Cells were washed twice with Maxpar® or MilliQ® water (Sigma Aldrich®) and filtered 

through a 40-micron nylon mesh into a Falcon™ tube (BD®) 

Each staining step was performed in 50μl Maxpar® cell staining buffer with 2% FBS. Cells were 

washed with either PBS or MaxPar® cell staining buffer between each step. 

3.5.8.4 Optimisation of mass cytometry panel 

Following panel design, before the use of patient samples, optimisation was required to 

ensure effective antibody staining and to detect any significant spillover between channels. 

3.5.8.4.1  Difficulty to detect antibody expression 

As with any cytometry panel, optimisation to ensure optimal staining by each marker in the 

panel was required. Following conjugation of each antibody, titrations were performed to 

ensure specific staining of the cells of interest and to ensure there was not significant spillover 

into adjacent channels. The expression of LAG3 was not detected, likely either due to poor 

antibody binding to cells or metal isotope. As this marker was not crucial it was removed from 

the panel. 

3.5.8.4.2  Signal spillover 

Signal spillover can commonly occur in two ways in mass cytometry:  

1. The signal in a channel for mass cytometry can spill over into the directly adjacent 

channels (+1 or –1).  

2. Following ionisation by the argon plasma in the mass cytometry instrument, ions can 

form oxides, causing signal spillover into the +16 channel. Oxidation is more likely to 

happen with the  heavy metals; lanthanum (La), cerium (Ce), praseodymium (Pr), and 

neodymium (Nd) (Fluidigm, 2016). 

Unfortunately, there was spillover demonstrated in our panel from the 146Nd channel to 

162Dy channel. This resulted in CD8+ cells in the 146Nd channel appearing to express FoxP3 in 

the 162Dy channel as demonstrated in Figure 9. As a result, FoxP3 was not used for clustering 

of cells as described in Section 3.6.5.  
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Figure 9 – Dot plots displaying T cells (CD45+CD3+), demonstrating spill over of signal 

from 146Nd to 162Dy channel. Axes have been scaled using Arcsinh to display all T 

cells. (A) Staining without 162Dy-FoxP3 or 146Nd-CD8α antibody. (B) Staining with 

146Nd-CD8α antibody. (C) Staining with both 162Dy-FoxP3 and 146Nd-CD8α 

antibody. (D) Density plot demonstrating that FoxP3 + cells in (B) express CD8α  

3.5.8.4.3  Heparin to reduce non-specific eosinophil staining 

It has been shown that heparin reduced the non-specific binding of antibodies to eosinophils 

after cells have been fixed and permeabilised (Rahman et al., 2016). This was therefore 

incorporated into the staining with intracellular markers in our protocol as described in Section 

3.5.8.3. 

Following analysis of all samples, the expression of the transcription factors T-bet, Gata-3 and 

ROR-γ was found to be below that expected biologically (Kunicki et al., 2018, Pandya et al., 

2016). A comparison was therefore made between samples stained using heparin and without 

heparin, which as demonstrated in Figure 10 showed that heparin reduces the binding of 

antibodies to intracellular T cell antigens. Figure 10 included only PBMC’s, as such there should 

be no eosinophils present. 
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This result suggests the transcription factor markers used in the analysis cannot be relied upon 

to define biological populations, however the expression of transcription factors could be 

compared between different groups of samples stained using the same technique. 

  

Figure 10 - Dot plots comparing intracellular staining of T cells with and without 

heparin. Axes have been scaled using Arcsinh to display all cells. Gates used to offer 

comparison between staining not to define cell populations. The plots on the left 

display density dot plots whilst the plots of the right are colour dot plots. 

3.5.8.5 Control samples 

3.5.8.5.1 Experimental controls 

One adult control sample was stained every time an infant sample was stained. If multiple 

infant samples were stained then only one adult sample was simultaneously stained as a 

technical control for the staining procedure. This provided an experimental control to ensure 

consistent staining over time, whilst the batch controls (described below) controlled for 
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consistent analysis on the mass cytometry instrument over time. To assess whether there was 

consistent staining between samples, control samples were compared against each other using 

dot plots gating for each antigen. This demonstrated the staining of each marker and minimal 

change between controls. 

3.5.8.5.2  Batch controls 

Batch controls were used to ensure there was minimal variation between runs on the mass 

cytometer. Blood obtained from a single adult donor underwent cell surface staining and 

freezing in multiple aliquots. One batch control sample was defrosted and analysed with each 

mass cytometry run. The variation in batch controls was assessed by using a multi-dimensional 

scaling (MDS) plot as described in Section 3.6.5.1 which demonstrated that batch controls 

clustered closely together (Figure 11). 

 

Figure 11 – Multi-dimensional scaling plot displaying infant and adult samples based on the 

median marker expression of 35 antibodies. Batch controls, adult and infant samples are 

represented in different colours as per the key to the right of the plot 

3.5.8.6 Data acquisition 

Prior to data acquisition, cells were counted using a BD Accuri™ C6 flow cytometer. Samples 

were then diluted in milli Q water containing 10% EQ™ Four Element Calibration Beads 

(Fluidigm®) to a final concentration of 5 x 105 cells/ml. Samples were acquired on a Helios mass 

cytometer (Fluidigm®). Sample acquisition occurred at a flow rate of 30 µL/min. The 

acquisition of samples was performed by a member of the Newcastle University Flow 

 

Batch controls 

Adult samples 

Infant samples 
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Cytometry Core Facility. Each sample was run for 30 minutes aiming for an acquisition of 5 x 

105 events per sample. 

3.6 Statistical Analysis 

When reporting the study, the Consolidated Standards of Reporting Trials (CONSORT) 

guidelines were used. Data from REDCap® were exported as a Microsoft Excel file. Statistical 

analyses of 16S and mass cytometry data were performed in R. All other analyses were 

performed in GraphPad Prism 8©. 

When analysing clinical, biometric and nutritional data, the Kolmogorov-Smirnov, Shapiro-Wilk 

and Anderson-Darling tests were used to assess normality. Normality was assumed if 2/3 of 

these tests assessed the data as normally distributed.  For normally distributed data, an 

unpaired t-test was applied. In the case of multiple comparisons, the two-stage linear step-up 

procedure of Benjamini, Krieger and Yekutieli, was used with a Q value of 5% to minimise the 

false discoveries. For non-normally distributed data a Mann-Whitney U test was performed. 

  Growth 

Weight gain per day was calculated by dividing weight gain between first and last 

measurements in study period, by the difference in CGA between the two measurements. 

Change in length (cm/week) and change in OFC (cm/week) were calculated in a similar fashion. 

Rate of weight gain (g/kg/day) was calculated by dividing the change in weight by the average 

weight over the time period and then by the number of days between measurements. Rate of 

weight gain (g/kg/day) was calculated for the whole study, and from full enteral feeds to the 

study end. The calculation is again described in Section 4.1.6. 

Z-scores derived from an international database of growth references were used (Fenton and 

Kim, 2013). A limitation of this growth reference is that it is based on birth-weights, however 

another publicly available growth standard based on postnatal growth only provides data from 

27 weeks GA (Villar et al., 2015). Use of a combination of these reference data sets was 

considered. However, one database describes a North Atlantic population whilst the other 

describes infants from all over the world (predominantly Asia, Africa and South America), 

therefore they may not be comparable in terms of growth. 
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 Amino Acids 

Values for the 22 amino acids analysed were given as μmol/L. The samples were grouped by 

study group (Control or Intervention) and time-point (C or E). Samples were compared 

between study groups and time-points. 

 Gut microbiome 

16S data was converted into tre and biom files as described above. 

Together with a metadata file, the tre and biom files were uploaded onto a graphical user 

interface called ATIMA (Agile Toolkit for Incisive Microbial Analyses) developed by the Alkek 

Center for Metagenomics and Microbial Research (Baylor University, USA), which is run 

through R. 

For identification of the impact of diet, samples were stratified by time-point (A-E) and then by 

study group. Furthermore, the use of MOM categories as described in Section 3.3.8.3 allowed 

the stratification of samples based on the amount of MOM received.  

Mass cytometry data from blood samples (taken within 3 days of stool samples) were 

integrated into the sample metadata so that correlations with T cells populations could be 

explored. Linear regression analysis was used for these correlations. 

Analysis of taxa (OTU) abundance focused on the genus and phylum taxonomic levels. 

 Flow Cytometry analysis 

The Flow Cytometry Blood Sciences laboratory, RVI, Newcastle upon Tyne Hospitals provided 

both absolute cell counts (cell/microliter) and percentage of lymphocytes for T, B, NK, CD4 T, 

CD8 T and HLA-DR positive T cells. This was using a gating strategy as per the manufacturer’s 

instructions. 

In order to align flow and mass cytometry data, an unconventional gating method was used. 

Lymphocytes are identified using CD45 in mass cytometry whereas ordinarily forward and side 

scatter would be used in flow cytometry to identify the lymphocyte population. To offer 

comparison, lymphocytes were identified using CD45 in flow cytometry as shown in Figure 12. 
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Figure 12 – Flow cytometry gating used to enable comparison with mass cytometry. 

A - All Cells were gated using forward and side scatter, lymphocytes highlighted in 

light blue are usually identified this way. B - CD45+ cells are identified for mass 

cytometry comparison, debris or calibration beads noted to be CD45+ on the y axis 

 Mass Cytometry 

Following acquisition, data were exported in a flow cytometry standard (FCS) file format file. 

The FCS file was processed using CyTOF software (Fluidigm®). CyTOF software performed 

normalisation using the EQ™ Calibration beads followed by Gaussian normalisation of the data.  

The resultant FCS files were then imported into FCS Express (De Novo Software) for the next 

part of the analysis. The gating strategy implemented in FCS Express, began with the exclusion 

of dead cells and doublets followed by positive gating of CD45+CD3+ T cells (Figure 13). They 

were then ensured to be CD19, CD66b, and CD14 negative. To explain further, Equilibrium 

beads were removed from the analysis in the first plot (Figure 13A). Live cells are then 

identified as cisplatin negative and iridium (DNA intercalator) positive (Figure 13B). Cytometry 

analysis can result in doublets, when two cells are processed at the same time, resulting in 

more DNA intercalator than single cells. Figure 13C displays the gating strategy used to identify 

single cells. The T cell gate was exported as a separate FCS file for analysis in R using the 

analysis described in Section 3.6.5.1. 

The T cell population was further split into iNKT, MAIT and Treg cells. iNKT cells were defined as 

T cells (CD45+CD3+) displaying the invariant TCR Vα24-Jα18. MAIT cells were defined as CD8+ T 

cells expressing CD161 and the invariant TCR Vα7.2. During the study, a tetramer for MR-1 was 
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supplied by the NIH Tetramer Core Facility (Atlanta, USA). This allowed for the definitive 

identification of MAIT cells. Tregs were identified as CD4+T cells that were CD25high CD127- and 

FoxP3+. All populations were assessed to ensure there was no spillover from adjacent 

channels. FCS files containing these cells were then exported and uploaded into R for analysis. 

 

Figure 13 - Gating strategy used for identifying T cells using mass cytometry. A - Gate 

to remove Equilibrium beads (EQ) (on channels 140Ce and 165Ho). B - Identification 

of live cells. Live cells are iridium positive and cisplatin negative. C – identification of 

single live cells. Cells are iridium single positive, note the population to the right of 

the gated poplulation representing doublets. D – Identification of T cells as CD45+ 

CD3+. 

3.6.5.1 Nowicka Analysis 

FCS files containing only T cells were analysed using a workflow in R devised by Nowicka et al. 

(Nowicka et al., 2017). Briefly, an arcsinh transformation of the data to allow symmetrical 

measurement is performed. An initial description of the data using a histogram of marker 

expression and a bar graph of cell numbers is produced. A multi-dimensionality scaling (MDS) 
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plot is then generated offering a point for each sample based on the expression of each 

marker, as shown in Figure 11. 

The MDS plot offers a broad comparison of the data stratified by variables. A non-redundancy 

score (NRS) is calculated from the MDS plot which indicates which markers have the most 

influence of the position of any sample in the MDS plot. The NRS was used to identify the 

markers to define the clusters in the t-distributed stochastic neighbour embedding (t-SNE) 

plots later in the workflow, as these markers were likely to contribute most to the differences 

between clusters. The NRS score for each marker in the mass cytometry panel is displayed in 

Figure 14. Using the NRS, and knowledge of important markers, 14 markers were chosen for 

the t-SNE plots in the further analysis. The cells in each sample were then down-sampled to 

2000 cells, using known cell numbers, in order to limit the computational memory required 

and so that each sample could be compared. Dimensionality reduction was then performed 

using t-SNE. Clusters of cells were defined using Flow self-organising maps (FlowSOM). A 

heatmap is generated with the t-SNE plots, which allows for the identification of cell 

populations using a cluster dendrogram and their corresponding expression of multiple 

markers. A generalised linear mixed model is then used to compare the normalised expression 

of other markers (not used in the initial clustering) between cell clusters and defined variables  

(Nowicka et al., 2017). 
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Figure 14 – Box plot displaying the NRS for each marker. 14 markers used to define 

clusters in the latter t-SNE plots are highlighted in bold. 

3.6.5.2 Cytofkit analysis 

Analysis of T cell populations (iNKT and MAIT cells) was performed using a bespoke package in 

R, named cytofkit (Chen et al., 2016). Cytofkit offers a number of ways to visualise (e.g. t-SNE) 

and interpret (eg. heatmaps) mass cytometry data. Unlike other mass cytometry packages 

there is an integrated user interface which makes analysis possible without bioinformatic 

expertise. 

Populations of iNKT and MAIT cells were made into individual FCS files. These files were 

uploaded into cytofkit. All cells in each file were analysed. The FCS files underwent an arcsinh 

transformation before clustering using Rphenograph and visualisation using t-SNE plots, based 

on the expression of 34 markers. Clusters were labelled and merged using a heatmap of the 

marker expression. Cytofkit was used to assess expression of individual markers in expression 

plots. Differences in cluster abundance was compared between sample variables. Cluster 

abundance was derived from the cytofkit analysis however the statistical analysis was 

performed in Graphpad Prism 8©. 

  

 

Adult samples 

Infant samples 
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 Results 

4.1 Clinical Data 

 Participant Flow 

The study was open to recruitment at the NICU, Royal Victoria Infirmary on the 29th 

September 2017. Figure 15 describes the study recruitment and outcomes for infants between 

the 29th September 2017 and the 8th March 2019. 

 

 

Figure 15 - Recruitment Flow for the INDIGO study *indicates at least one 

sample+ provided clinical data following transfer as per study amendments 
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All NICU admissions born less than 30 weeks GA were screened for eligibility. As detailed, 59 

infants out of 92 eligible mother-infant pairs gave consent to the study giving a recruitment 

rate of 64%. Considering the infants not recruited (Figure 16), 4 potentially eligible families not 

approached for consent, one was due to lack of availability of a study investigator during a 

holiday period. Other families were all approached unless ineligible or deemed not appropriate 

to approach by the study investigators. However, it should be noted that 14 families were not 

approached either because they were transferred to another hospital within 72 hours of birth 

or were likely to be transferred before the end of the study period. The reason for this is that 

the RVI NICU is a surgical referral centre in the North East of England and so has a high 

demand on the cots for infants, as well as a large number of infants transferred into the NICU 

more than 72 hours after birth. The most common reason given for not participating in the 

study was that the parents were not willing for their child to have DHM.  

Declined consent n = 33 

- No reason given     n = 17 
Reasons given: 

- Not willing to give DHM    n = 7 
- Twin randomisation    n = 2 
- Baby unwell    n = 3 
- Not willing to remain at study site   n =1 
- Sibling unwell     n =1 
- Religious reasons    n =1 
- Struggling with preterm birth   n =1 

Eligible, but not approached n = 4 

Reason for not approaching: 
- Lack of parental capacity    n = 1 
- Sibling demise     n = 1 
- Study investigator unavailable   n = 1 
- Unknown gestation    n = 1 

Ineligible n = 43 

Reason for ineligibility: 
- Transfer out before 72 hours   n = 11 
- Transfer in after 72 hours    n = 25 
- Congenital abnormality    n = 1 
- Unlikely to survive   n = 2 
- Likely to be transferred before study end  n = 3 
- Unable to read PILS   n =1 

Figure 16 - Reasons for non-participation of infants in the INDIGO study 
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 Demographics of study infants 

Table 10 - Admission demographics of study infants separated by study groups. P-

values were calculated using Student t-test or Mann Whitney U test. Kolmogrov-

Smirnov test was used to compare cumulative distributions. 

  Control (n= 29) Intervention (n =30) p-value 

White British (%) 24 (83) 29 (97) 0.93 

Birthweight (g), mean (SD) 879 (261) 974 (295) 0.25 

Gestation at birth (weeks), 

median (IQR) 

27 (26-28) 27 (26-28) 0.87 

Male (%) 16 (55) 19 (63) 1 

C-section (%) 18 (62) 15 (50) 0.98 

Multiple pregnancy (%) 5 (17) 6 (20) 1 

Antenatal steroids, 2 doses (%) 18 (62) 18 (60) 1 

Prolonged rupture of membranes 

(%) 

6 (21) 7 (23) 1 

Reversed placental end diastolic 

flow (%) 

9 (31) 4 (13) 0.74 

Heart rate >100 at 5 mins age (%) 28 (97) 26 (87) 1 

 

The majority of the population in the North East of England is white British reflected in the 

study population. The control group had a lower mean birth weight, corresponding with a 

higher rate of reversed end diastolic flow(rEDF) in the umbilical artery. The groups were 

otherwise well matched for demographic information (Table 10). The rate of caesarean section 

of 50-62% is reflective of the preterm population, which is likely increased in the control group 

due to the increased rate of umbilical artery rEDF leading to caesarean section for fetal 

reasons. 
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 Dietary intervention 

During the study period, the 59 infants received a total of 428.3 litres of nutrition (parenteral 

or enteral), 354.2 litres of this nutrition was given enterally, and 215.7 litres was MOM. MOM 

therefore comprised 60.9% of all enteral nutrition by volume (total MOM volume / total 

enteral volume) for all infants in this pilot study.  

Four infants in the intervention group did not complete the protocol in terms of the dietary 

intervention. Two infants received CMF 1 day before study completion at 33+6 weeks GA, 1 

infant incorrectly received bovine fortifier at 33+0 weeks GA and 1 infant received a specialised 

feed (monogen) from 1 week of age due to a persistent chylous pleural effusion. All infants 

were included as part of an intention to treat analysis but only those samples (blood and stool) 

taken whilst adhering to the dietary intervention were used for the microbiota analysis. 

As this study was not blinded, it was important to identify if there were variation in practice or 

exposures between study groups unrelated to study protocol which may have been related to 

bias in clinicians. Table 11 displays a comparison of dietary interventions and outcomes during 

the study period. 

 Table 11 - Dietary outcomes during study period for infants that completed the 

study. * Normally distributed data given as mean, SD; # Non-normally distributed 

data given as median, IQR; + Not all Infants received fortifier therefore number of 

infants contributing to analysis in brackets. Days of feeding exposures summed prior 

to 34 weeks CGA. p-values were calculated using an unpaired sample Student t test 

or Mann Whitney U test. 

 

 

Control (n =25) Intervention (n = 19) p-value 

First feed, day of life 2, 2-3 2, 2-3 0.567 

Day of life fully enterally 

fed # 

13, 11-18 12, 12-15 0.814 

Number of days enteral 

feeding withheld more 

than 4 hours # 

0, 0-3 0, 0-5 0.975 
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Control (n =25) Intervention (n = 19) p-value 

Total days of parenteral 

nutrition # 

12, 9-19 11, 9-19 0.777 

Days fully enterally fed 

prior to 34 weeks GA* 

32, 9 31, 9 0.61 

Days on which any MOM 

received* 

34, 16 32, 16 0.75 

Days fully MOM fed # 23, 8-33 19, 0-28  0.290 

Day of life fortifier started 

(n) #+  

17, 11-21 (22) 13, 11-21 (15) 0.544 

Receiving any MOM at 

study end, n (%) 

16 (59) 10 (53)  

 

There was no significant difference in any of the dietary outcomes measured in Table 11. Only 

one infant did not tolerate full feeds by 34 weeks CGA, this infant was in the control group and 

had a high stoma output following necrotising enterocolitis therefore was still receiving some 

parenteral nutrition. At the end of the study period, 59% and 53% of infants in the control and 

intervention group respectively were receiving some MOM as part of their diet, suggesting the 

intervention did not influence mothers’ decision to continue expressing milk. 

The donated human milk fortifier used in the study was a liquid of 30ml volume whereas the 

cow’s milk fortifier was powder. This meant that every 100ml of “fortified MOM” contained 

100mls MOM in the control group, but 30ml human milk fortifier(P+6) and 70ml MOM in the 

intervention group. We therefore measured the actual volume of MOM received in each study 

group.  
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Figure 17 - Comparison of volume of MOM received between study groups. (A) 

Volume of MOM per study group over weeks of the study. Box represents mean and 

whiskers represent 95% confidence interval (CI) of the mean. (B) Scatter plot 

comparing total volume of MOM received in study period. (C) Scatter plot comparing 

total volume of MOM as ml/kg/day over whole study period. (D) Scatter plot 

comparing total volume of MOM as ml/kg/day from DOL 14 to study end. For scatter 

plots, line represents mean, whiskers represent SD. Values were compared using 

unpaired Student t test with a Welch correction, p values are displayed above the 

plots (p <0.05, *; <0.01, **; <0.001, ***)  

 A comparison was made between the weekly intake of MOM between study groups (Figure 

17A). No statistical difference was found when comparing each week between study groups, 

although there was a clear trend towards higher MOM intake among infants in the control 

group.  
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Equally the total volume of MOM received by infants was not significantly different but there is 

a trend towards infants receiving more MOM in the control group. Figure 17B represents the 

participants for whom there was complete nutritional data at 34 weeks GA (control n =27, 

intervention n = 19). The characteristics of the infants that completed the study varied both in 

terms of weight, with a mean birth weight (BW) of 1054 (SD 356) vs 883 (SD 302) in the 

intervention and control groups respectively and in terms of duration, with a median number 

of days in the study of 43 (IQR 42-54) vs 45 (IQR 39-56) in the control and intervention group 

respectively. In order to correct for this discrepancy, I compared the volume each infant 

received as ml/kg/day. The infants in the intervention group received significantly less MOM 

than the infants in the control group after adjusting for weight and time in the study as shown 

in Figure 17C. Furthermore, I aimed to ensure that this difference was not due to difficulties in 

the mothers establishing good volumes of expressed MOM in the intervention group. I 

therefore compared the amount of MOM that each infant received between DOL 14 and the 

study end as most infants would be fully enterally fed around DOL 14 (Table 15). The 

significant difference in volume of MOM received between the two groups persisted after this 

comparison. 

The most obvious reason for the difference in MOM received, shown in Figure 17, is that the 

fortifier used in the intervention group had a 30ml volume, whilst the control group used a 

powder fortifier which would not alter the volume of MOM. Therefore, if both groups had the 

same availability of MOM, the intervention group would receive 70% of the MOM that the 

control group received, when infants were fully enterally fed. However, when comparing the 

mean volume (ml/kg/day) of MOM received between the two groups from DOL 14 to the study 

end, the control group received a mean volume of 98.8 ml/kg/day whilst the intervention 

group received a mean volume of 57.4 ml/kg/day, meaning the intervention group mean was 

59.2% (intervention mean volume / control mean volume) of the control mean. This is despite 

there being no significant differences in the variance of the values using an F test (p 0.157). 

The difference therefore, does not appear to be purely down to the fortifier volume but rather 

to limiting availability of MOM in the intervention arm of the study. This raises the possibility 

that this difference may reflect maternal attitudes towards expressing when infants are 

receiving DHM. There is a possibility that some mothers in the intervention group may have 

viewed DHM as ‘equivalent’ to MOM and therefore did not continue to express MOM as 

readily as mothers in the control group. It is also possible that the attitudes of staff towards 

the mothers differed, for example in continuing to support the mothers as actively. 

Alternatively, this finding may be due to chance as the study only compares small numbers of 

infants.  
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 Morbidity and mortality 

Tables 12-15 display the mortality and morbidity between study groups and relevant 

exposures. Nine infants died before hospital discharge with 8 infants dying during the study 

period. Mortality in the intervention group was higher than the control group. Deaths occurred 

at a median age of DOL 13 (Interquartile range (IQR) 9-22). The primary cause of death is given 

in Table 13. All causes of death are given in Table 14, categorised into 5 reasons as described in 

Section 3.3.8.4. All deaths were reviewed by the study investigators and no deaths were felt to 

be directly related to the study interventions. 

Table 12 - Comparison of mortality between study groups and exposure to dietary 
interventions (during the study period) 

 

  

  Control Intervention  

Death (number, %) 2 (7) 7 (23) 

Day of life (values or median (+/- IQR)) 34, 133 13 (8-17) 

DHM or CMF as % of all nutrition (incl. TPN), values 

or median, range 
0, 19 6 (0-31) 

DHM or CMF as % of enteral nutrition, values or 

median, range 
0, 100 55 (0-99) 

Total volume of enteral nutrition (ml)  

(values or mean (+/- SD)) 

422, 742 572 (1046) 

Total volume (ml) of CMF or DHM, (mean, SD) 0, 742 84 (132) 

Exposed to fortifier, n (%) 0 (0%) 1(14%) 
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Study 

number 

Study group GA (weeks), 

birthweight 

(grams) 

Age at 

death 

(DOL)  

Prior to death: Primary cause 

of death 
Days of 

MOM 

Days exposed 

to RTF or CMF 

Days of 

fortifier 

4 Intervention 27, 540 12 8 8 0 Respiratory 

failure 

13 Intervention 24, 640 3 0 0 0 Intraventricular 

haemorrhage 

16 Intervention 24, 470 19 1 15 0 Respiratory 

failure 

19 Intervention 25, 770 6 3 2 0 LOS 

24 Intervention 25, 895 10 4 7 0 Congenital 

anomaly* 

25 Control 28, 500 133 0 117 0 Chronic Lung 

Disease 

27 Intervention 26, 860 15 9 0 0 Intraventricular 

haemorrhage 

33 Control 23, 545 34 23 0 0 LOS 

52 Intervention 24, 550 32 29 0 0 Congenital 

infection 

Table 13 – Details of deaths before hospital discharge, with regards to dietary exposures. NB: Only the 

primary cause of death is listed *Congenital anomaly was not recognised in this infant until after study 

recruitment 
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Table 14 – Comparison of cause of death between study groups categorised into 

common causes. *Congenital anomaly was not recognised until after recruitment 

(NB. a death may have been attributable to more than one cause) 

  

 
Control (n=2) Intervention (n=7) 

Respiratory Failure 2 5 

Brain injury 1 2 

Infection 1 2 

Necrotising Enterocolitis 1 1 

Congenital Anomaly 0 1* 
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Table 15 – Common morbidities of preterm infants per study group at hospital 

discharge or time of death. *serious morbidity was defined as LOS, NEC, IVH Grade 3 

or 4, ROP requiring surgery, abdominal surgery(non-NEC) or moderate CLD (with 

oxygen requirement at 36 weeks CGA) 

 Control 

n = 29 

Intervention 

n =30 

LOS, n (%) 5 (17%) 6 (20%) 

NEC n (%) (medical, surgical) 4 (14%) (2,2) 1 (3%) (0,1) 

NEC cases exposed to formula 

(RTF 26 or CMF), and/or 

fortifier, n 

2 0 

Retinopathy of prematurity, 

any, n (%)  
10 (34%) 7 (24%) 

Retinopathy of prematurity, 

treated (laser or injection), n 

(%) 

3 (10%) 4 (13%) 

Intraventricular haemorrhage 

(IVH), any, n (%) 
8 (28%) 2 (7%) 

IVH severity, grade 1-2, grade 

3, grade 4, n 
5 ,0, 3 0, 0, 2 

Chronic Lung Disease, n (%) 

(mild, moderate, severe(n)) 
24 (83%) (1, 15, 7) 20 (67%) (6, 12, 3) 

Spontaneous Intestinal 

Perforation (non-NEC), n (%) 
1 (3%) 0 (0%) 

Discharge without serious 

morbidity*, n (%)  
5 (17%) 6 (20%) 

Discharge without NEC or LOS, 

n (%) 
21 (72%) 19 (63%) 
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Table 15 details the common morbidities found in this population. LOS was due to Coagulase 

negative Staphylococcus (n=7), Staphylococcus aureus (n=2) and Enterococcus faecalis (n=2) 

(Table 16). One infant, who sadly died, had Enterococcus faecalis isolated from blood cultures 

as well as Serratia marcescens isolated from throat swab, liver, spleen and lung tissue at post-

mortem.  A further case of Enterococcus faecalis LOS was preceded 20 days earlier by an 

episode of necrotising enterocolitis. Abdominal surgery (non-NEC) was performed in one case 

of spontaneous intestinal perforation.  

Caution should be taken in interpreting the numbers in Table 15 as this study was not powered 

for clinical outcomes, there was disparity in the mortality rate between study groups and there 

was variable exposure to dietary interventions. An example of caution is in terms of NEC, as 

only 2/4 infants who developed NEC in the control group were exposed to bovine products, 1 

to CMF and 1 to both CMF and fortifier.  Survival to discharge without any serious morbidities 

was similar in the two groups. Serious morbidity was defined as NEC, LOS, Abdominal surgery 

(non-NEC), IVH (Grade 3 or 4), ROP receiving treatment or CLD (moderate or severe). 

Table 16 - Comparison of organisms causing late onset sepsis between study groups. 

Numbers represent number of cases of LOS for each organism. 

Organism Control Intervention 

Coagulase negative 

Staphylococcus (n) 

3 4 

Staphylococcus aureus (n) 1 1 

Enterococcus faecalis (n) 1 1 

 Growth 

A concern of using unfortified DHM in preterm infants has been poor growth. This study used 

fortified DHM(RTF 26) and a HMF (P+6) which had a nutritional content that aims to match 

international recommendations and is similar to CMF and BMF as described in Section 3.3.7. 

We therefore did not expect any significant difference in the growth of infants depending on 

their study group.   
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Table 17 describes infants that had at least one measurement between 32-35 weeks corrected 

gestational age and had completed at least 4 weeks in the study. 

In order to correct for the length of time each infant was in the study and starting weight I 

compared grams/kilogram/day change between study groups. The following calculation was 

used: 

(Weight at end of study – birthweight(grams)) / (weight at study end – birthweight (kg))/2 / 

(number of days between measurements) 

Using the whole study period includes comparison when infants were parenterally fed. In 

order to compare growth when infants were enterally fed I compared growth between DOL 14 

and the end of the study period. Infants were fully enterally fed on a median of DOL 13 and 

DOL 12 in the intervention and control groups respectively (Table 11), hence the use of DOL 

14. The following calculation was used to calculate growth (g/kg/day) in this period (DOL 14 to 

study end): 

(Weight at end of study – weight at or after DOL 14 (grams)) / ((weight at study end – weight 

at or after DOL 14 (kg))/2) / (number of days between weight measurements) 
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Table 17 - Comparison of growth between study groups during study period. Z-scores 

were calculated using Fenton et al. database (Fenton and Kim, 2013). p-values were 

calculated using an unpaired sample t-test. + Mann-Whitney U test as not normally 

distributed, median values are given for weight z-scores 

 

Control 

(n =27) 

Intervention 

(n =19) 

Standard error of 

mean (95% CI), p-

value 

Rate of Growth from birth to study end (mean, SD) 

Weight (g/day) 17.8 (4.5) 17.5 (3.9) 
-0.25 (-2.84 – 2.337), 

0.85 

Weight (g/kg/day) 10.4 (1.5) 9.4 (1.3) 
-1 (-1.9 to -0.2), 

0.027 

Length (cm/week) 1.02 (0.25) 0.95 (0.23) 
-0.06 (-0.22 to 0.09), 

0.405 

OFC (cm/week) 0.85 (0.21) 0.80 (0.19) 
-0.05 (-0.17 to 0.07), 

0.399 

Rate of Growth from DOL 14 to study end (mean, SD) 

Weight (g/kg/day) 17.2 (4) 14.8 (3.3) 
-2.4 (-4.7 to -0.17), 

0.035 

Mean change in Z-scores, SD (z-score at study end – z-score from first measurement) 

Weight+ -0.8 (-1.2 to -0.15) + -1.1 (-1.4 to -0.9) + -0.3, 0.0745+ 

Length -0.78 (0.70) -0.99 (0.64) 
-0.22 (-0.65 to 0.21), 

0.312 

OFC -0.23 (1.13) -0.26 (1.08) 
-0.04 (-0.72 to 0.65), 

0.918 

 

There was no significant difference comparing gross growth (g/day) between study groups, 

however when correcting for weight and time in study as described above there was a 

significant difference in rate of growth (g/kg/day). This persisted even when comparing rate of 

growth from full enteral feeds (DOL 14) to the study end suggesting it was related to the 
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enteral diet rather than growth whilst parenterally fed (Table 17 and Figure 18).  The mean 

change in weight z-score was not significantly lower in the intervention group (p 0.0745). 

Fenton growth charts were used to calculate z-scores; therefore, the z-scores are compared 

against intra-uterine, not post-natal growth. 

These data suggest that rate of weight gain is lower in infants in the intervention arm 

compared to the control arm. This result was not due to difference in energy intake as the 

calorific intake was matched between study groups as discussed in Section 3.3.7.  
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Figure 18 - Comparison of change in weight between study groups. A – Rate of 

growth during whole study period (g/kg/day). B – Rate of growth from DOL 14 to 

study end (g/kg/day) C - Change in weight z-score during whole study period (birth to 

end of study period). The bold line represents the mean with the error bars 

representing standard deviation. Comparison between groups was made using 

unpaired sample t tests.   
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 Other interventions likely to impact on gut microbiome 

As described in Chapter 1.2.6, a number of other factors especially those related to feeding 

can impact on the gut microbiome. A comparison between the factors that may impact on the 

gut microbiome is made between the study groups in Table 18. 

Table 18 – Comparison of environmental exposures between study groups during the 

study period. Numbers represent days of exposure per infant between birth and 34 

weeks corrected gestational age. Comparison made using Mann Whitney U test 

 Control n = 27 Intervention n = 19 p-value 

Antibiotics (median, IQR) 7 (4-16) 7 (3-11) 0.568 

Probiotics (median, IQR) 36 (26-41) 34 (27-41) 0.654 

Multivitamins (median, 

IQR) 

31 (27- 36) 33 (24-39) 0.719 

Iron (median, IQR) 0 (0-7) 0 (0-5) 0.916 

 

There was little difference between the study groups. All infants received antibiotics, 

probiotics (Labinic drops™, Biofloratech Ltd.) and multivitamins. Only 14 infants received any 

enteral iron supplementation during the study period, 9/27 (33%) and 5/19 (26%) infants in 

the control and intervention groups respectively. 
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 Amino acid profiles 

A total of 70 samples from 47 infants were analysed for 22 different amino acids. Table 19 

provides comparison between the study groups with regards DOL and CGA of sampling. I 

hypothesised that both dietary regimes would result in normal AA profiles and that there 

would be no significant differences between the groups. 

 

 

 

Table 19 - Comparison of samples used for amino acid analysis between study 
groups.  

Sampling time-point (see 

Graphical Methods Section 

3.1) 

Time-point (TP) C Time-point (TP) E 

n = number of samples 

(control, intervention) 
n = 40 (23, 17) n = 30 (18,12) 

Control (n = 41) 

DOL median (IQR) 

CGA (IQR) 

13 (11-15) 

29+4 (28+2 – 29+6) 

45 (39-48) 

33+3(33+0- 33+4) 

Intervention (n = 29) 

DOL median (IQR) 

CGA (IQR)  

 

14 (13-17) 

29+6(28+4 – 301) 

 

38 (34-43) 

33+2(32+6- 33+4) 
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Figure 19 – Box and whisker plot comparing concentrations of 22 amino acids (9 

essential) between study groups and time-points. Mean is represented by either 

circle or square, whiskers show standard deviation. TP C refers to time-point C, TP E 

refers to time-point E. A gap has been inserted into the x axis with a change in the 

right x axis tick interval. # indicates an essential amino acid 

No statistical difference was found overall between the two dietary groups at either the early 

or later time point. However, when comparing samples in each study group separately, there 

was a significant increase in tryptophan in both the control infants (FDR p = 0.000003), and 

intervention group (FDR p = 0.019) between the two time-points. Whilst the majority of amino 

acid levels were within the normal range as defined by the clinical laboratory, four infants 

were found to have significantly increased tyrosine levels (3-5 times greater than upper 

reference range), and a fifth infant had borderline high tyrosine (1.5 times upper limit), all of 

which had resolved on repeat testing by 6 months of age. All 5 infants were in the intervention 
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group. The significance of this is unclear but transient tyrosinaemia has previously been 

reported in the preterm population (Juhl et al., 2018, Ventura and Brooke, 1987). Tyrosine can 

either be ingested in the diet or derived from the breakdown of another amino acid, 

phenylalanine in the liver, and is therefore not truly essential. The amount of tyrosine varies in 

human milk as the milk matures with higher concentrations in colostrum, with phenylalanine 

following a similar trajectory (Zhang et al., 2013). Transient tyrosinaemia, without an 

underlying error of metabolism, is thought to be benign with no impairment in neurological 

outcomes in preterm infants found, however there are a lack of recent studies in this area 

(Menkes et al., 1966). It has been suggested that term infants may have impaired neurological 

outcomes in later life following transient tyrosinaemia (Rice et al., 1989). 

 

In order to ensure that these outliers were not having an undue effect on the analysis, a 

method that combines non-linear regression and outlier removal was applied to the dataset. 

The Q value was set to 0.1%, aiming for no more than 0.1% of the identified outliers to be false 

(Motulsky and Brown, 2006). This method removed 23 outliers from the analysis. A 

comparison was again repeated between study groups at the two time-points (Figure 20). 

Following a correction for false discovery using a Benjamini, Krieger and Yekutieli test, no 

mean concentrations of amino acids were found to be different at either time point between 

the two study groups (Benjamini et al., 2006). 
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Figure 20 - Box and whisker plot comparing concentrations of 22 amino acids (9 

essential) between study groups and time-points. Mean is represented by either 

circle or square, whiskers show standard deviation. TP C refers to time-point C, TP E 

refers to time-point E. A gap has been inserted into the x axis with a change in the 

right x axis tick interval. # indicates an essential amino acid. Groups were compared 

using student t test. 

 Serum folate concentration 

There was a difference in the amount of folate provided by the two diets used in the study 

(Section 3.3.7) so we aimed to determine serum levels in a subset of patients.  

Serum folate was measured in 19 patients (9 in the Intervention group, 10 in the Control 

group). Any results above 20μg/l were given as greater than 20 μg/l only. Serum folate was 
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measured at a median of 19 and 24 days following the start of fortifier i.e. when stable on full 

enteral feeds, in the intervention and control groups respectively. 

The serum folate was greater than 20 μg/l in 9 of the 10 samples in the control group whilst 

the median value in the intervention group was significantly lower at 8.2 μg/l (range 3.5 – 12.6 

μg/l). All but one value (3.5 μg/l) in the intervention group were within the normal range for 

serum folate used by the Newcastle Upon Tyne Hospitals laboratories, which is 3.9-12.6 μg/l. 

This was an infant born at 29 weeks GA who had folate measured at 33 weeks CGA. The infant 

was not symptomatic and had a normal haemoglobin and mean corpuscular volume in their 

full blood count. 

Whilst the reported increase (control group) and reduction (intervention group) in serum 

folate did not appear clinically significant, these results emphasise that preterm infants are 

susceptible to biochemical disturbances, and clinicians should be vigilant as to nutrient intakes 

and the likelihood of them meeting recommended levels. 
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4.2 Gut microbiome 

DNA was extracted from 218 stool samples from 53 study infants, and the 16S rRNA amplified 

using PCR. Rarefaction was performed at 3000 reads and 5/218 samples were excluded from 

analysis due to a low number of reads. Four of these samples were in the first 5 days of life 

with the other sample taken on day of life 11 and are likely to represent low levels of 

colonisation in an immature gut. Table 20 offers a comparison between stool samples after 

rarefaction in each study group at the 5 time-points (A-E). Samples in time-point C were taken 

at a median of 5 days earlier in the intervention group due to availability of samples. There was 

minimal overlap between time-points. 

Table 20 - Comparison of the timing of stool samples analysed between study 

groups. Values represent day of life stool samples were taken with median (IQR) 

displayed 

 

 

We sought to identify any differential change in α or β diversity between study groups at 

different time-points, and whether there was any difference in abundance of key taxa (OTU). 

Relative abundance was defined as the percentage of annotated reads at a particular 

taxonomic level.  The null hypothesis was that there would be no association between the 

dietary intervention and the gut microbiome, either in terms of alpha-diversity, beta-diversity 

or composition at genus level, at 34 weeks CGA. 

 No change in alpha diversity between study groups 

 Figure 21-24 display the difference in alpha diversity. Figures 21 and 23 compare the Shannon 

diversity and observed OTU’s (richness) between the study groups respectively, stratified by 

Sampling time-point A B C D E 

n = control, intervention n = 23, 23 n = 21, 21 n = 20, 22 n = 22, 20 n = 23, 18 

Control (median DOL (IQR)) 

n = 109 
6 (4-8) 11 (10-12) 20 (15-23) 27 (25-28) 44 (39-50) 

Intervention (median DOL 

(IQR)) n = 104 
6 (4-7) 10 (9-11) 15 (14-21) 27 (24-28) 39 (34-46) 
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time-point (A-E). Figures 22 and 24 demonstrate the change in Shannon diversity and observed 

OTU’s (richness) over time respectively. 

 

Figure 21 (A-E) - Comparison of Shannon alpha diversity displaying all samples 

stratified by study group from time-point A-E. All values are displayed on the plots.  

FDR adjusted p-values using a Mann-Whitney U test are displayed on the plot. The y-

axis is scaled for each plot. The line represents the median value whilst the box 

represents the 25th and 75th centiles, the whiskers are a maximum of 1.5 x IQR 
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Figure 22 - Comparison of Shannon alpha diversity over time-points, summary data 

representing all samples stratified by study group and time-point. FDR adjusted p-

values comparing time-point A and time-point E, using a Mann-Whitney U test are 
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shown above the plots (* p-value <0.05). The box represents the median value whilst 

the whiskers represent the 25th and 75th centiles. 

Figure 23(A-E) - Comparison of number of OTU's (richness) in all samples stratified by study 

groups and time-point (A-E). FDR adjusted p-values are displayed using a Mann-Whitney U 

test. The y-axis is scaled for each plot. The line represents the median value whilst the box 

represents the 25th and 75th centiles. The whiskers are a maximum of 1.5 x IQR 
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Figure 24 - Comparison of observed OTU's over time, summary data representing all 

samples stratified by study group and time-point. FDR adjusted p-values comparing 

time-point A and time-point E, using a Mann-Whitney U test are shown above the 

plots (* p-value <0.05). The box represents the median value whilst the whiskers 

represent the 25th and 75th centiles. 

I found a significant increase in alpha-diversity (Shannon diversity) between time-point A and E 

(Figure 22). However, there is no significant difference in alpha-diversity between study groups 

either in terms of Shannon diversity or richness (number of OTU’s) by Mann-Whitney U test, 

before or after correcting for false discovery rate, as shown in Figures 21 and 23.  FDR-

corrected p-values are displayed on the plots in Figures 21 and 23.  
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 Significant difference in unweighted beta-diversity at study end   

A comparison in alpha-diversity can fail to identify true diversity differences between 

groups of samples. Beta-diversity takes into account alpha-diversity as well as the type 

of bacteria present. Weighted beta-diversity accounts for the abundance of bacteria 

whilst unweighted merely accounts for the presence or absense of specific bacteria. 

Beta-diversity can determine if groups are similar or not but not determine if diversity 

is increased or decreased.  

Figure 25 (A-E) and Figure 26 (A-E) consist of principal component analyses displaying 

the weighted and unweighted beta-diversity (respectively) stratified by time-point (A-

E). Samples are coloured by study group. Distance metric has been calculated using 

UniFrac. 
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Figure 25(A-E) - Principal Component analyses comparing the beta diversity between 

study groups stratified by time-point A-E. Distance metrics have been calculated 

using weighted Unifrac, p-values and R-squared values are displayed on the plot. 
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Figure 26(A-E) - Principal Component analyses comparing the beta diversity between 

study groups stratified by time-point. Distance metrics have been calculated using 

unweighted Unifrac, p-values and R-squared values are displayed on the plot. 

No significant differences between study groups in beta-diversity using weighted 

Unifrac distance metrics were found at any time-point. Using unweighted Unifrac 

distance metrics a significant difference was found between study groups at time-point 
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E. Unweighted (as compared to weighted) beta-diversity does not take account of OTU 

abundance, merely the presence or absence of a particular OTU.  

This finding suggests that there is a difference in the diversity of bacteria between the 

two study groups, which likely relates to the less abundant bacteria. We can therefore 

consider the populations dissimilar in this instance, however it is not possible to 

attribute higher or lower beta-diversity. Given that Figures 21 and 23 demonstrated a 

non-significant increase in the alpha-diversity (richness and Shannon diversity) in the 

control group, this suggests that the difference in beta-diversity may be due to an 

increased diversity of microbials in the control group.  
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 Significant difference in lactobacillus abundance between study 

groups 

Figure 27 and Figure 28 display the abundance of OTU’s at the family and genus level 

respectively stratified according to time-point A to E.  

 

Figure 27 (A-E) - Box plots displaying the relative abundance of the 4 most abundant 

OTU's (phylum level) for all samples stratified by study group and time-point (A-E). 

The y-axis has been square root transformed. A Mann-Whitney test could not detect 

any significant difference between study groups at any time-point. 
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Figure 28(A-E) - Box plots displaying the relative abundance of the 8 most abundant 

OTU’s (genus level) for all samples stratified by study group and time-point A-E. The 

y-axis has been square root transformed. Comparison between study groups was 

made using a Mann-Whitney test. Statistically significant (FDR adjusted p <0.05) 

differences between study groups are highlighted with an asterisk on the plot. 

The only significant difference found in OTU abundance between study groups was of 

Lactobacillus at genus level at time-point E (FDR adjusted p value of 0.0119). This is an 

interesting finding as an increased abundance of Lactobacilli is thought to be beneficial 

although it has been associated with both CMF and MOM feeding. Probiotics commonly 

contain Lactobacillus, including those used in the RVI NICU. Whilst I demonstrated that 

* 
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exposure to probiotics was not different between the two groups in the duration of the study 

(Table 18), I hypothesised that this difference could be due to infants being exposed to 

probiotics at the time of sampling. Figure 28 (C-E) was repeated limited to samples when 

infants were exposed to probiotics (Figure 29). This did not reveal a significant difference in 

Lactobacillus between study groups depending on probiotic exposure. Furthermore, when I 

compared samples from time-point E depending on probiotic exposure irrespective of study 

arm, this did not reveal any significant difference in the abundance of Lactobacillus (Figure 30). 

Together this suggests that the difference that has been observed in Figure 28 is not due to 

probiotic exposure. 

I next explored whether the increase in Lactobacillus was related to a greater exposure to 

MOM in the control group as highlighted in Figure 17. The amount of MOM received on the 

day of sample and the preceding two days was divided by the total enteral intake during this 

time, and each sample was placed in one of three MOM categories (A (0-29%), B (30-69%), C 

(>=70%)). There was a significant difference in Lactobacillus abundance between study groups 

only when the analysis was limited to samples in category A (0-29% MOM) suggesting that 

CMF feeding promotes Lactobacilli more than fortified DHM (RTF 26) (Figure 31). Gregory et al. 

reported increased Lactobacillales at a class bacterial level in CMF-fed compared to MOM-fed 

infants however conversely Cong et al reported increased Lactobacillus at genus level in MOM-

fed infants compared to non-MOM fed infants (Cong et al., 2016, Gregory et al., 2016). 

In order to ensure that the increased Lactobacillus was a true finding, I therefore compared 

the MOM categories A (0-29% MOM) and C (>=70% MOM) but limited to the Control group 

(Figure 32). There was no significant difference in Lactobacillus (FDR p value 0.25) with a 

higher mean in category A. Lastly, MOM categories were compared irrespective of study group 

(Figure 33), revealing no significant difference in Lactobacillus abundance between MOM 

categories. 

Taken together these results suggest that CMF-fed infants have an increased abundance of 

Lactobacillus compared to infants fed DHM, and a similar abundance of Lactobacillus 

compared to infants fed MOM fortified with BMF. 



 

 145 

 

 

Figure 29 - Box plots displaying the relative abundance of the 8 most abundant OTU’s 

(genus level) for only samples taken when infants were exposed to probiotics 

stratified by study group and limited to time-point C-E.  

The y-axis has been square root transformed. Comparison between study groups was 

made using a Mann-Whitney test.  
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Figure 30  - Box plots displaying the relative abundance of the 8 most abundant 

OTU’s (genus level) for samples stratified by probiotic exposure and limited to time-

point E.  

The y-axis has been square root transformed. Comparison between study groups was 

made using a Mann-Whitney U test.  
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Figure 31 - Comparison of OTU abundance (genus level) between study groups 
limited to samples when infants fed less than 30% MOM. The y-axis has been square 
root transformed. Comparison between study groups was made using a Mann-
Whitney test. Statistically significant (FDR adjusted p <0.05) differences between 
study groups are highlighted with an asterisk on the plot. 
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Figure 32 - Comparison of OTU abundance (genus level) between MOM categories A 
and C limited to control group at time-point E. The y-axis has been square root 
transformed. Comparison between study groups was made using a Mann-Whitney U 
test. 
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Figure 33 – Box plot comparing OTU abundance (genus level) when samples are 

stratified by MOM Category (A - 0-29%, B 30-69, C >=70%) limited to when infants 

were fully enterally fed. MOM Category calculated by dividing total amount of MOM 

received on day of sample and preceding 2 days by total enteral intake in this time. 

OTU’s with an abundance >1% are shown. The y-axis has been square root 

transformed. Kruskal-Wallis test did not detect any significant difference between 

the sample means. 

A striking observation when comparing the abundance of OTU’s is that Bifidobacterium was 

the 3rd most abundant OTU at the genus level, representing approximately 20% abundance by 

time-point B (DOL 10). This is in stark contrast to a study undertaken in the same NICU which 

found the mean abundance of Bifidobacterium only reached 20% after DOL 75 (Stewart et al., 

2017a). The difference likely relates to exposure to probiotics as they were introduced to the 

NICU practice in 2013, and reflects that some samples in the study by Stewart et al. were taken 

before 2013.  
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 Significant difference in beta diversity depending on type of fortifier 

The dietary intervention was variable in the study. Some infants received only MOM with 

fortifier added once they were fully enterally fed. I sought to determine if the type of fortifier 

used had any bearing on the gut microbial composition when infants received mainly MOM. I 

compared only samples in time-points C-E from infants who had been exposed to fortifier, 

excluding infants receiving either CMF or RTF-26. This analysis did not reveal any significant 

difference in alpha-diversity, weighted beta-diversity or OTU abundance between study 

groups. A plot comparing unweighted Unifrac beta-diversity between the two study groups is 

shown in Figure 34 which revealed a significant difference. These data suggest that using 

different fortifiers leads to variance in gut microbials, however does not promote the 

abundant growth of any individual genera consistent with what was demonstrated in Figure 

29. However, this finding may still be important for health. 

 

Figure 34 - Comparison of unweighted Unifrac beta-diversity stratified by study 

group and time-point C to E. Samples are limited to those taken when the infant was 

receiving fortifier. FDR adjusted p-values and R2 values are displayed above the plots. 
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 Microbiome changes over time 

Figure 35 displays stacked bar plots of the OTU abundance over time with plots stratified by 

study group. Each sample is represented by a stacked bar. 

 

Figure 35 (A-B) - Stacked bar graph displaying the relative abundance of the different 

taxa over time. All samples are displayed, sorted by DOL on the x-axis with each 

individual sample represented by a stacked bar. A – OTU are displayed at phylum 

level. B – OTU are displayed at genus level. 

Figure 35 visually demonstrates that the early life microbiota is dominated by Proteobacteria 

(phylum), Firmicutes (phylum), Staphylococcus (genus) and Escherichia/Shigella (genus) with 

an increase in the number of different OTU’s. In the later samples, there is an increase of 

Proteobacteria (phylum), Actinobacteria (phylum) corresponding to Enterobacter (genus) and 

Bifidobacterium (genus), whilst Firmicutes (phylum) and correspondingly Staphylococcus 

(genus) decrease. 

These visual findings are confirmed using linear regression analysis in Figure 36 and Figure 37. 

There is a significant increase in Proteobacteria (phylum) and correspondingly Enterobacter 

(genus) over time. There is a significant decrease in Firmicutes (phylum) and correspondingly 

Staphylococcus (genus) over time. These findings are present in both study groups. There is an 
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increase of Actinobacteria (phylum) and Bifidobacteria (genus) however neither is statistically 

significant. 

 

Figure 36 - Linear regression analysis displaying relative abundance of the 3 most 

abundant OTU over time (labels on right y axis; phylum level), stratified by study 

group. Line of best fit (blue) and 95% confidence intervals (grey) are displayed. P-

value and R-squared values are given based on the change in abundance of the OTU 

over time. 
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Figure 37 - Linear regression analysis displaying relative abundance of 3 most 

abundant OTU’s over time, (labels on right y axis; genus level), stratified by study 

group. Line of best fit (blue) and 95% confidence intervals (grey) are displayed. P-

value and R-squared values are given for the change in abundance over time 
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4.3 T cells in preterm infants 

In total, 12,387,800 live single cells from 66 samples (23 adult and 43 infant) were analysed 

using mass cytometry. This included 4,875,847 T cells, of which 3,126,571 T cells were from the 

infant samples. Red blood cell lysis was performed on 15 infant samples, whilst density 

gradient centrifugation was performed on 28 infant samples, to isolate leucocytes and 

lymphocytes respectively. These cells were exposed to a 39-marker antibody panel designed to 

differentiate T cells in order to identify Tregs, MAIT, iNKT and Th populations. The combined 

analysis of these samples is presented below. 

A further 590,000 lymphocytes from 59 samples were analysed using flow cytometry. These 

lymphocytes were exposed to a 6-colour panel designed to differentiate B, natural killer (NK) 

and T cell (CD4+ and CD8+) populations. 

 Comparison of lymphocyte populations between study groups 

First, I sought to identify if there was a difference in the relative abundance of lymphocytes 

between study groups. 

 

Figure 38 - Comparison of lymphocyte populations using flow cytometry. (A) Box plot 

displaying relative abundance of each lymphocyte population in 59 samples, box 
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represents mean and whiskers represent SD. (B) Box and whisker plot showing 

comparison between study groups and time-points. TP – time-point 

Lymphocyte populations were compared between study groups across the time-points. No 

significant difference was found using unpaired t-tests comparing each cell type between 

study groups and time-points (Figure 38). 

 Mass cytometry reveals comparable T cell proportions to 

conventional flow cytometry 

As mass cytometry remains a relatively new technology, I planned a comparison between flow 

and mass cytometry data to ensure I was obtaining a representative sample of cells, using data 

from blood samples taken at the same time. The gating strategies used for comparison are 

displayed in Figures 12 and 13 in Section 3.6, namely to identify live cells then single CD45+ 

cells. We found that flow cytometry identified significantly more lymphocytes as T, B and NK 

cells. The proportion of T cells identified as CD4 or CD8 positive was not different. 
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Figure 39 – Comparison of flow and mass cytometry (A) Relative abundance of 

lymphocyte populations using paired samples. Lines between paired samples are 

displayed. (B) Box plot displaying relative abundance of CD4 and CD8 T cells. (C) 

Ratios of lymphocytes are compared. Ratios calculated by dividing percentage of first 

population by total T, B and NK population. Lines between paired samples are 

displayed 

Asterisks denoting p values using a paired sample Student t-test are displayed above 

the plots (*  <0.05, ** <0.01, ***<0.001, **** <0.0001). 

These results demonstrate variation in identified populations using flow and mass cytometry. 

This could relate to variation in the gating or the cell staining. Figure 39A demonstrates that 

there was a significantly lower abundance of T, B and NK cells identified using mass cytometry. 

To investigate this further I analysed the population of CD45+ cells that were not identified as 

T, B, or NK cells using mass cytometry with the results visible in Supplementary figures A and B. 
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The heatmap in Supplementary Figure A demonstrates that the expression of CD16 is relatively 

high in this population. Supplementary Figure B demonstrates that for some samples CD14 and 

CD66b expression appears higher than expected. This would suggest that there are 

granulocytes and monocytes within the CD45+ population. A further comparison of samples 

where cell reduction was completed using either red cell lysis or density gradient 

centrifugation revealed that there were monocytes and granulocytes within the CD45+ 

population regardless of cell reduction technique, however a greater proportion of 

granulocytes (7% vs 2% CD66b+ cells respectively). I was not able to compare these results 

against flow cytometry as the same lineage markers were not present in the flow cytometry 

analysis. However, back-gating onto a forward and side scatter plot revealed that the 

lymphocyte populations were in the expected location (Supplementary Figure C). Reassuringly, 

Figure 39 demonstrates that the proportions of CD4 and CD8 T cells were not significantly 

different using either flow or mass cytometry suggesting that staining and gating of these 

populations within the CD45+CD3+ cells was consistent.  

A recent study comparing staining of cells using mass and flow cytometry that handled cells 

and tissue in the same way found that the two methods were comparable (Gadalla et al., 

2019). The study by Gadalla at al. was specifically designed to compare staining and cell 

identification with mass versus flow cytometry. They therefore used the same clones of 

antibodies for both techniques, each blood sample was split, the staining technique used was 

very similar and data acquisition was within a day of staining. As my primary aim was not to 

compare mass and flow cytometry results, my results possibly reflect that the viability of cells 

was lower in the mass cytometry group than the flow cytometry, and hence the ratios 

between cell types were maintained. The median time between acquiring a sample and initial 

staining was 20 hours for mass cytometry, whilst flow cytometry samples were typically 

stained and data acquired the same day. Mass cytometry staining required a two-stage 

process over 3 days as described in the Methods section, before data acquisition. However, 

this comparison suggests that T cells proportions were comparable between flow and mass 

cytometry. Mass cytometry offers the advantage of a more in-depth analysis of a cell 

population using one antibody panel therefore was felt preferable for this analysis. 

 Comparison of adult and infant samples demonstrates 

expected differences in T cell population 

In order to test the sensitivity and reproducibility of the mass cytometry staining method, I 

first looked for expected differences between infant and adult T cell populations (Figure 40). 

The heatmaps used for cell population identification used in Figure 40 are shown in 
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Supplementary Figures D and E. Supplementary Figure D shows the markers used for 

identification of cell clusters whilst Supplementary Figure E demonstrates how some clusters 

were merged and the expression of all markers in each cluster. I found a similar median 

abundance of Tregs (≈ 2%), MAIT (3%) and TCRγδ (5%) cells as % of T cells in adults to those 

reported (Walker et al., 2014, Jonuleit et al., 2001, Provine et al., 2018). As expected, a clear 

difference was found comparing infant and adult T cell populations as displayed by the stacked 

bar plot in Figure 40B and the boxplot in Figure 40C. Namely these differences are: 

• a significant decrease in the relative abundance of central, effector and terminal 

effector memory, and MAIT cells in infants compared to adults 

• a significant increase in the relative abundance of naïve CD4 T, DN T and Treg cells in 

infants.  

The differences are known and reflect the relative antigen naïve environment of the preterm 

infant with an increased population of naïve T cells and decreased population of memory T 

cells. This is together with a relatively tolerogenic state reflected in the increased population of 

Tregs. The population of MAIT cells is known to expand over the first years of life. 

In comparison to one another, most infant samples appeared similar in terms of the relative 

abundance of the T cell populations demonstrated in Figure 40. However, three samples are 

visually different when displayed in the stacked bar plot in Figure 40B.  Sample 32B (Infant 32, 

sample B) appeared clearly different due to an expanded EM CD8 population, and samples 55B 

and 56B had expanded EM CD4 and NKT cell populations. There was no obvious clinical 

explanation for this, these infants did not have LOS or NEC and were not unwell at the time of 

sampling. Retrospective testing of urine for cytomegalovirus (CMV) was however positive for 

infant 32 at the time of sample 32B (although negative in the first week of life), suggesting that 

CMV infection likely explains the expanded EM CD8 population. I could not identify any reason 

for the differences found in samples 55B and 56B, however interestingly infants 55 and 56 

were twin siblings. Three infants did develop LOS, two samples were available for two infants 

(patient 41 and 43) and one for the remaining infant (patient 59). The abundance of T cell 

populations did not appear different for these infants. This was despite Patient 41 also 

requiring abdominal surgery for a spontaneous intestinal perforation (SIP). 
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Figure 40 - Comparison of adult vs infant T cells using mass cytometry 
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Figure 40 - Comparison of adult versus infant T cells using mass cytometry.            

(A) T cells were defined as CD45+CD3+lineage- (CD14-CD19-CD66b-) live cells. tSNE 

plot representing 57 samples, based on the arcsinh transformed expression of 15 

markers. 14 clusters have been identified using a heatmap (not shown), and their 

identity deduced based on expression of key subset markers (right).  (B) Stacked bar 

plot derived from the tSNE plot displaying the relative abundance of the 14 clusters, 

identified in the key to the right of the plot. Infant samples are displayed on the left, 

adult samples on the right. (C) Box plot comparing relative abundance of each 

cluster. Line represents median value, box represents IQR and whiskers (max 1.5 x 

IQR). Left y axis scales vary to show range of data for each cluster. A generalised 

linear mixed model (GLMM) was used to compare the relative abundance of each 

cluster between adults and infants. FDR adjusted p values are displayed above each 

plot. (D) Heatmap displaying the differential normalised expression of cell markers 

comparing infant and adult samples, within each cluster (refer to legend in 40(A) for 

key). Each column represents a sample. A linear mixed model was used to calculate 

FDR adj p values. The cluster number is given on the left y axis whilst the 

differentially expressed protein is given on the right y axis. Key to the right of the 

plot displays meaning of asterisks. 

  Comparison of infant T cell subsets between study groups 

The same analysis as shown in Figures 40A and 40C was used to compare infants between 

study groups and between time-points (C and E). Only 16 preterm infants that provided 2 

samples were included in this analysis, with 8 in each study group. The analysis resulted in a t-

SNE plot as demonstrated in Figure 41a. The clusters were identified using a heatmap as 

described in Section 4.3.3. Figure 41(b and c) compare the relative abundance between 

Control and Intervention groups at both time-points. No significant difference was found 

between study groups either at time-point C or E, although there was a trend towards 

increased Resting Treg (cluster 13) and reduced CD8 TEMRA (cluster 8) populations in the 

intervention group 
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Figure 41 - Comparison of T cells between study groups. (a) tSNE plot created using 

infant T cells from paired samples. Clusters defined using heatmap (not shown). 

Cluster key given to right of tSNE plot (b) Comparison of relative abundance of each 

cluster between study groups at time-point C (c) Comparison of relative abundance 

of each cluster between study groups at time-point E 
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In order to further delineate the longitudinal changes in T cell subsets in early neonatal life, 

irrespective of dietary intervention, we sought to compare all samples at time-points C (full 

enteral feeds) and time-point E (study end (34 weeks CGA)) respectively. The results are 

displayed in Figure 42. 

This revealed that the relative abundance of CD8 TEMRA and activated Treg cells decreased whilst 

the abundance of TCR γδ cells increased at the later time point. When comparing the 

normalised relative expression of markers within each cluster, Granzyme B is increased in 

every cluster in the heat map (Figure 42C). The polarisation of cells towards a Th1 or Th17 

phenotype appears increased with time, as shown by increased relative expression of T-bet 

and ROR-γ in CD4, CD8 and TCRγδ cell clusters. 

Together the results demonstrate that the Treg compartment continues to evolve with fewer 

activated Tregs over time, although this may represent loss of maternal derived Treg s. Over time 

T cells appear to have an increased ability to express an effector response, by their increased 

expression of transcription factors as well as Granzyme B.
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Figure 42 - Comparison of T cells 

between time-point C and E. Cluster key 

for t-SNE as generated in Figure 40 (A) 

Box plot displaying relative abundance 

of each cluster between time-points. 

Line represents median, box represents 

IQR and whiskers 1.5 x IQR. (B) Heatmap 

demonstrating the normalised relative 

expression between time-points. 

Markers that are significantly different 

are displayed with asterisks indicating p-

value (*, **, ***, ****; <0.05, <0.01, 

<0.001, 0.0001) 
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 iNKT cells are predominantly of the iNKT2 subset in preterm infants 

iNKT cells were not identified as a separate cluster in the analysis above due to their rarity in 

peripheral blood. However, a targeted analysis defining iNKT cells as TCR Vα24-Jα18+ T cells, 

enabled the identification of interesting differences between adults and infants. These cells 

are rare in the peripheral blood, representing a mean of 0.05% (SD 0.07) and 0.17% (SD 0.11) 

of all T cells in adults and infants respectively. This represents a significant expansion in the 

population in infants compared to adults as demonstrated by Figure 43. 

iNKT cells, defined as CD45+CD3+TCR Vα24-Jα18+ live cells, were identified in FCS Express, 

exported and analysed using cytofkit. In keeping with the published literature, five clusters of 

iNKT cells were identified based on their expression of cell surface and transcription markers, 

into iNKT1 (CXCR3+CCR4-T-bet+), iNKT2 (CCR4+CXCR3-), iNKT17 (CCR6+ RORγ+), Naïve 

(CCR7+CD45RA+) and “CCR6+HLADR+”. The designation of iNKT1, iNKT2 and iNKT17 is in 

analogy with the Th response (Crosby and Kronenberg, 2018, Krovi and Gapin, 2018, Moreira-

Teixeira et al., 2011). 

Infant iNKT cells appear to be predominantly iNKT2 whilst adult iNKT cells are predominantly 

iNKT1 cells. No significant difference was found in the relative abundance of iNKT cells (as % of 

T cells) or iNKT2 cells (as % of iNKT cells) when comparing either study groups (Control vs 

Intervention), time-points (C vs E) or a combination of study groups and time-points (C vs C 

and E vs E) using Mann-Whitney U tests.  
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Figure 43 - Comparison of iNKT cells in adults compared to preterm infants. (A) 

Infants have an expanded iNKT population (% of T cells) in peripheral blood. (B) tSNE 

plot of iNKT cells based on expression of 33 cell markers, coloured by origin of 

samples. (C) tSNE plot displaying the identified iNKT subsets with key to the right 

showing defining markers (D) Relative abundance of each cluster between adult and 

infant samples. p-values unpaired student t-tests are displayed above the plots (*, 

**, ***, ****; <0.05, <0.01, <0.001, 0.0001). Cells defined as contamination were 

identified as MAIT cells or expressed multiple antibodies not consistent with a cell 

type. 

 MAIT cells are less abundant and less mature in infants than adults 

The majority of T cells are described as αβ T cells due to the expression of a TCR that has both 

an α and β chain. MAIT cells are unusual as they have a restricted TCR repertoire, and can be 

defined by the expression of the invariant α chain of the TCR, TCR Vα7.2 together with CD161. 

Interestingly, the normalised median expression of the TCR Vα7.2 in all T cells is similar 

between infants and adults. Infants were found to have a large Vα7.2 CD161- population, as 
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shown in Figure 41. We therefore sought to identify if Vα7.2 CD161- cells share antigenic 

specificity with MAIT cells, which typically utilise the same Vα chain to bind the MR-1 non-

classical HLA molecule, yet are CD161+. The tetramer specific for MAIT cells, MR1-5-OP-RU 

(MR-1), was acquired from the NIH tetramer core facility, USA. MR-1 mimics the natural ligand 

of MAIT cells, allowing the identification of these cells based on the specificity of their TCR (Le 

Bourhis et al., 2011). As expected, a significant proportion (30.6%) of adult 

Va7.2+CD8a+CD161+ T cells (n=3) bound MR-1, consistent with the classical description of 

MAIT cells.  In contrast 9.5% of infant Va7.2+CD8a+ CD161+ T cells bound MR-1 (n=4). 

Conversely only 0.06% and 0.01% of adult and infant Va7.2+CD8a+CD161- T cells respectively 

bound MR-1. This confirms that thymic re-arrangement of the TCR Vα7.2 happens equally in 

preterm infants and adults; however, this is not sufficient to confer the ability to bind MR-1.  

There is evidence that CD161 plays an important role in fetal T cell activation following TCR 

activation (Halkias et al., 2019). 

Figure 41(A-C) demonstrates that MAIT cells are significantly more abundant in adult than 

infant blood. We sought to determine whether these MAIT cells shared common properties in 

preterm infants and adults. CD3+CD8α+Vα7.2+CD161+ cells were identified in FCS express, 

exported and analysed using cytofkit as described in the Methods section. The results as 

displayed in Figure 44 reveal distinct clusters of MAIT cells. Adult MAIT cells formed 

populations distinct from infants. Clusters 2 and 7 were increased in abundance in adults. 

Cluster 7 has a mature phenotype with expression of the protein required for activation, CD28. 

Cluster 2 is identified by high expression of granzyme B and T-bet. Infant MAIT cells were 

predominantly in clusters 4 and 5. Cluster 5 has a naïve phenotype expressing CD45RA and 

CCR7, however cluster 4 was defined by cells displaying the early activation marker CD69, as 

well as CD28. Taken together, these results are consistent with the literature that the preterm 

MAIT cell compartment is both smaller and functionally less mature compared to that of adults 

(Walker et al., 2014, Ben Youssef et al., 2018). 
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Figure 44 - Comparison of MAIT cells between infants and adults. A - Heatmap used 

to re-annotate 20 clusters into 7 clusters. B - TSNE plot with 7 clusters labelled. C - T-

sne plot displaying whether cells are adult or infant derived. D - Bar graph displaying 

relative abundance of each cluster between adults and infants. p-values using 

unpaired student t-tests are displayed above the plots (*, **, ***, ****; <0.05, <0.01, 

<0.001, 0.0001)  

4.4  Integrative analysis of diet, microbiome and T cells 

The analyses above showed no clear effect of diet on either microbiome or T cell phenotype 

but did not address a putative relationship between microbiome and T cells. I therefore 

integrated the T cell abundance represented in Figure 41 into the sample metadata of each 

stool sample and performed a linear regression analysis to explore any correlation between 

abundance of T cell subsets and specific OTU’s (genus or phylum level). This identified a 

negative correlation between the abundance of Enterobacter (genus level) and naïve CD8 T 
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A 

B 

cells. This correlation was stronger in the control group as displayed in Figure 45. This may 

simply reflect a temporal relationship with the abundance of Enterobacter increasing over 

time, with an independent decrease in naïve CD8 T cells. However, a similar correlation was 

not seen with Staphylococcus which also showed a significant decrease over time.  

 

 

Figure 45 – Linear regression plots comparing the abundance of Enterobacter (A) and 

Staphylococcus (B) with the abundance of naive CD8+ T cells, stratified by study 

group. Relative abundance of Enterobacter is shown on the y- axis with relative 

abundance of naive CD8 T cells on the x-axis. 
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 Discussion 

The focus of the study was on identifying features of the gut microbiome and T cell 

populations associated with alternative milk diets in extremely preterm infants.  However, I 

uncovered potentially confounding differences between the study groups in relation to growth 

and receipt of MOM above and beyond the intended study intervention. Before discussing 

these findings, I present the four null hypotheses described in Section 2.2. The data presented 

in the results section meant that I was able to reject two of the four null hypotheses, these 

were the hypotheses numbered 1 and 4. Below I display and discuss the four null hypotheses 

before exploring other findings from the study, as well as the study’s strengths and limitations. 

5.1 Null Hypotheses 

1. There is no association between the dietary intervention and the gut microbiome, 

either in terms of alpha diversity, beta diversity or composition at genus level, at 34 

weeks corrected GA. 

When considering microbial composition in relation to the dietary intervention, I was able to 

find statistically significant differences between the control and intervention groups. There 

was a significant difference in unweighted beta diversity and abundance of Lactobacillus at 

genus level at the study end (34 weeks CGA). The increase in Lactobacillus was in the control 

group and did not appear attributable to any variation in probiotics (containing Lactobacillus) 

received or mode of delivery.  

Whilst it is extremely difficult to be sure of direction of benefit when exploring gut microbial 

communities, Lactobacillus is often considered a beneficial genus of bacteria. Therefore, from 

a microbial perspective I could not identify any potential benefit of an exclusive human milk 

diet over a diet containing bovine products. Conversely, an increased abundance of 

Lactobacillus may be beneficial in the control group, which as demonstrated in Figures 28-33. 

The abundance of Lactobacillus was similar in infants fed mainly CMF (<30% MOM) or MOM 

fortified with BMF (>70% MOM). 

2. There is no association between the dietary intervention and peripheral blood T cell 

subsets, specifically the abundance of Th1, Th2 or Th17 cells or abundance of iNKT 

cells, MAIT cells or Tregs 

When comparing dietary intervention and the abundance of T cells I could not detect any 

difference between study groups confirming the null hypotheses for iNKT, MAIT and Tregs. 
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However, due to inadequate optimization leading to an inability to detect biological levels of 

transcription factors I could not be certain about the Th1, Th2 or Th17 response.  

3. There is no association between gut microbiome composition and peripheral blood T 

cell subsets, specifically the abundance of Th1, Th2 or Th17 cells or abundance of 

iNKT cells, MAIT cells or Tregs 

I was able to use linear regression analysis as described in Section 4.4 to compare the 

abundance of bacteria at genus level with abundance of T cell sub-populations. This only 

revealed one statistically significant correlation; however, this was most likely due to a 

temporal relationship between the change in Enterobacter and naïve CD8 T cells over time.  

I believe this confirms the null hypothesis with no association between gut microbiome 

composition and T cell subsets, however as mentioned above, I cannot be certain about the 

Th1, Th2 or Th17 response. 

4. There are no significant differences in iNKT, MAIT or Treg cell abundance in preterm 

infants compared to adults 

I have been able to reject this null hypothesis demonstrating clear differences in iNKT, MAIT 

and Treg cell abundance, together with variable expression of cell and intracellular markers 

between preterm infants and adults. 

Preterm infants have increased populations of naïve and regulatory T cells, reflecting a tolerant 

state that is yet to encounter many antigens. Innate T cells are systematically altered in 

abundance, being increased, in the case of iNKT cells, and decreased, in the case of MAIT cells. 

I have been able to show that these T cells have different characteristics depending on 

whether they are adult or infant derived, highlighting the complexity of exploring the 

immunophenotype. 

5.2 Increased MOM in the control group 

The finding that infants in the control group received an increased volume of MOM after 

correcting for weight and duration in the study was an interesting but perhaps unsurprising 

finding given that the fortifier in the intervention group replaced 30% of MOM, compared to a 

dry powder in the control group. However, the data suggested that the difference may not 

have been entirely related to the fortifier volume as described in Section 4.1.3, as when 

comparing the mean volume of MOM received in both study groups, this was less than 70%.  

The question of how introduction of DHM affects rates of MOM feeding has been addressed 
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but not in an RCT setting. Studies that have addressed this question have been observational 

or retrospective studies and have generally found that DHM leads to increased provision of 

any MOM at discharge, but does not increase exclusive MOM feeding (Williams et al., 2016). 

Conversely one centre reported a decrease in MOM provision following the introduction of 

DHM (Esquerra-Zwiers et al., 2014). This suggests there may be variation in how the 

introduction of DHM affects MOM provision in different geographical locations, potentially 

influenced by local beliefs about MOM and DHM. 

This finding offers a word of caution about the introduction of DHM to any NICU. It would 

seem sensible for DHM introduction to occur alongside education of staff and parents about 

DHM, as well as monitoring the effect on MOM feeding rates. Monitoring would need to 

encompass detail of the amount of MOM received, as simply recording whether MOM was 

ever received, or received at specific time points would lose the impact on volume received as 

demonstrated by this study. However, the use of DHM to supplement the diet of preterm 

infants is not limited to the diet that was used in the INDIGO study. For instance, a diet could 

consist of DHM if there was a shortfall of MOM, but using BMF rather than HMF as a fortifier. 

This approach might have reduced the difference in MOM received between groups. 

5.3 Decreased weight gain in the intervention group 

As I have described in Section 1.1.5, it is not currently possible to define the optimal weight 

gain for a specific preterm infant. However, I found a disparity in weight gain between the two 

study groups with less weight gain in the intervention group. Whilst it is unclear if this will 

affect any meaningful clinical outcome, for example neurodevelopment, it might be a concern. 

A difficulty with interpreting this finding was that the increased mortality rate in the 

intervention group led to the skewing of infants completing the study towards increased birth 

weight and gestation compared to the control group. However, the disparity in weight gain 

was present when comparing two different time durations (whole study, and DOL14 to study 

end) so is not fully explained solely by differences in mortality. Furthermore, decreased weight 

gain has been reported in other studies of similar populations using donor human milk 

(Schanler et al., 2005, Cristofalo et al., 2013, Sullivan et al., 2010). For these reasons, I consider 

it likely that the differences in growth rates are a genuine finding, but are not explained by 

differences in macronutrient intakes which are similar. It is possible therefore, that differences 

in diet quality i.e. source of protein and lipids, impact on tissue accretion and growth, or there 

are other differences in metabolic processes that explain these growth effects. 
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5.4 Significant differences in functional and homing capacity of adult and 
infant Tregs populations 

Tregs were defined as a CD25+CD127-FoxP3+ population.  I identified two populations of Tregs, 

Activated Tregs and Resting Tregs based on their expression of CD45RA and CCR7 as has been 

described (Rosenblum et al., 2016). The activated Treg population would include effector and 

memory Tregs. The resting Treg population that is expanded in infants compared to adults, 

expressed CD45RA and CCR7, and describes an antigen naïve group of cells. Conversely, the 

activated Treg  population did not express CD45RA or CCR7 suggesting these are activated cells 

following antigen exposure. The activated Treg population expressed CCR4 and lacked 

expression of CXCR3 suggesting either a contaminating population of Th2 cells or a population 

of cells expressing markers associated with both Tregs and Th2 cells as has previously been 

described (Kunicki et al., 2018) . Figure 40D displays the differential expression of markers 

within each cluster, between adults and infants. Interestingly, the relative expression of TIGIT 

and PD-1 varies in infants compared with adults, with increased relative expression of TIGIT 

and PD-1 on activated infant Tregs. Resting Infant Tregs have an increased expression of PD-1 but 

a decreased expression of TIGIT relative to adult resting Tregs as shown in Figure 40D. TIGIT is 

an important co-inhibitory molecule, whilst PD-1 expressing Tregs have similarly been shown to 

be refractory to stimulation (Kamada et al., 2019). Thus, there may be a difference in the 

balance of resting or activated Tregs in infant compared to adult life. Furthermore, the infant 

activated Treg population had an increased relative expression of the gut homing receptor CCR9 

compared to adult activated Treg cells. I believe these findings are novel and suggest the 

possibility that infant Treg subsets defined on the basis of conventional markers may differ 

substantially from their adult counterparts in terms of functional capacity and homing.  

A further possibility is that activated Tregs are of maternal origin. Tregs are thought to be 

important for tolerance to paternally derived antigens in pregnancy with the population 

known to expand. It is not definitively known why there are memory Tregs, however it is 

thought they may confer a benefit in having an enhanced suppressor effect in antigen specific 

infections which has been demonstrated in mice (Rosenblum et al., 2016). They have been 

shown to transfer from mother to fetus in mice, and possibly confer a benefit for the next 

female generation in terms of exposure to paternal antigens (Kinder et al., 2015). The similar 

population of activated Treg between infants and adults may therefore reflect maternal micro-

chimerism, and this population being (at least partially) maternally derived may explain the 

decrease seen in activated Tregs in the first weeks of life, as shown in Figure 40B. 
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5.5 The study had several strengths. 

 Study population 

The study was designed to be minimally disruptive to normal neonatal care. This was 

facilitated by using non-invasive biological samples i.e. stool, for microbial analysis and timing 

blood samples to coincide with blood sampling for clinical reasons. Anthropometric 

measurements coincided with when the infant was being disturbed and form part of neonatal 

care. 

I described a randomized population with two groups that were similarly matched at study 

entry. However, an increased mortality rate in the intervention group was observed (Figures 

14-16). Three out of 7 of these deaths were in infants who had not been exposed to DHM. Of 

the remaining 4 infants, 3 ultimately died of respiratory failure (one had severe respiratory 

failure as a result of a congenital anomaly) and one infant had LOS. The 3 infants who 

deceased because of respiratory failure did so at 10, 12 and 19 days of age, making it unlikely 

that the respiratory failure was due to an enteral nutritional deficit. Otherwise it is hard to find 

a plausible link between these deaths due to respiratory failure and the intervention. The 

remaining infant who deceased with LOS was slightly unusual as they had Serratia Marescens 

isolated from autopsy samples, whilst the LOS was due to Enterococcus Faecalis.  This infant 

died on DOL 6 after receiving 17 ml of RTF 26, out of 35ml total milk. At day of life 6, the gut 

microbiota is still establishing and it is unlikely that any intervention causing microbial 

dysbiosis would result in LOS this early in life. Furthermore, poor growth leading to an 

increased susceptibility to LOS would likely occur later in life. A result of these deaths was that 

the surviving infants in the intervention group had a later gestational age and higher birth 

weight in comparison to the control group. More mature Infants with an appropriate weight 

for gestational age are more likely to have a stable clinical course than immature, growth 

restricted infants. I believe this advantage to the infants in the intervention group reinforces 

my findings of no apparent clinical benefit of being in the intervention group. However, 

conversely it could be argued that any effect of diet may be more pronounced in more 

immature, growth-restricted infants due to their increased risk of disease and greater time 

receiving the study intervention. 

I recorded a recruitment rate of 64% suggesting that the study was acceptable to a large 

number of parents, and I conducted the consent process carefully ensuring that parents could 

decline to participate in the study if they wished. Only one infant was withdrawn from the 

study, and there were no further discussions regarding study withdrawal, suggesting the study 

was acceptable to the majority. 
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I have been able to describe extensive longitudinal data consisting of every millilitre of 

nutrition the infants received during the study period. Typically, nutrition is recorded in a 

binary fashion on a daily basis, however detail is lost using this type of assessment. I was able 

to describe longitudinal sampling from birth until the end of the study period in 80% (41/51) of 

surviving recruits, enabling the identification of samples that would be most useful in isolating 

any effect of the dietary intervention. This was possible with minimal disturbance to normal 

neonatal care. 

 Laboratory techniques 

I have described in depth analysis of both immune cells and microbial communities in 

extremely preterm infants. Whilst 16S sequencing is a relatively established technique, mass 

cytometry has only developed over the last 5 years and enabled me to explore the T cell 

populations of preterm infants more extensively than previously possible.  

Investigating the immunophenotype of humans using this technique is now common, however 

I am aware of only one other study using mass cytometry in the postnatal samples of preterm 

infants (Olin et al., 2018). 

5.6 Limitations 

 Study population 

This study was designed only to explore a small number of infants, as previous studies suggest 

differences in gut microbial communities due to dietary interventions can be large. However, 

for any outcome, greater numbers of study recruits would have enabled more confidence in 

significant results. 

This study was conducted at a NICU that is the regional referral unit for all surgical and cardiac 

infants. From the study perspective, this meant that some infants were transferred out of the 

hospital to district general hospitals, earlier than anticipated, accounting for loss to the study 

group with limited data from 6 infants. Ideally follow-on sites would have been able to 

continue study interventions, sampling and data collection. As the early transfers were not 

anticipated, the feasibility of follow-on sites was investigated during the study however due to 

the large number of potential follow-on sites and the small (possibly none) number of infants 

they would have cared for, this was not deemed feasible. Likewise waiting until an infant was 

known to be being transferred and then setting up that specific unit would not allow study 

intervention to continue quickly enough and was also not deemed feasible.  



 

 176 

Unfortunately, when conducting research on extremely preterm infants, high rates of mortality 

and morbidity are expected. This can be a challenge in interpreting the data both because of 

loss of patients and also as a result of the introduction of variables (morbidities) that may 

influence the study outcome. I could not control for these variables as it is not clear what 

variation in morbidity would have on either immune cells or gut microbiota. 

A limitation of the study, which I regard as a positive is that we reported high rates of MOM 

intake, with over 60% of the enteral nutrition being provided in the study period being MOM. 

Whilst this is a strength at the individual patient and NICU level, this may limit any effect a 

dietary intervention may have, assuming quantity is an important factor. A HMF that is 15ml 

rather than 30ml in volume is now commercially available, which may reduce the amount of 

MOM that is replaced when using a similar feeding strategy as that in intervention group of 

the study. 

 Laboratory techniques 

5.6.2.1 Samples 

A potential limitation in the study design was that I was investigating an interaction that 

commences in the gut lumen, but had to use biological samples collected at a more remote 

location i.e. stool (as opposed to small intestinal bacteria) and blood samples (as opposed to 

immune cells in the gut epithelium or lamina propria). Currently, there are no validated non-

invasive methods to investigate interactions directly in the gut mucosa, but ex-vivo studies in 

the laboratory using organoid models may provide additional insights (Fofanova et al., 2019). 

5.6.2.2 Microbiome analysis 

5.6.2.2.1  Limitation of 16S rRNA sequencing 

When using 16S, bacteria can only be delineated to the genus taxonomic level. The 

differentiation of different species or strains of bacteria requires alternate approaches. As all 

infants were exposed to probiotics, I was unable to distinguish whether species or strains of 

Bifidobacteria or Lactobacillus originated from the probiotic. It is possible there may be 

variation at species or strain level in these bacteria between groups that I have not been able 

to detect. WGS would allow resolution of bacteria to the strain taxonomic level enabling 

differentiation of bacterial species that are probiotic strains from those that are not. WGS is 

now being undertaken on some samples from the study however is not available at this time. 
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5.6.2.3 Identification of Th response 

5.6.2.3.1 Transcription factors 

I planned to compare the expression of a number of transcription factors as part of my 

approach to immunophenotyping. I attempted to optimise the experiment to detect a range of 

transcription factors, however it became clear during later analysis that these transcription 

factors were not being measured at biological levels suggesting sub-optimal experiment 

conditions as highlighted in Section 3.5.8.4.3. This resulted in the inability to definitively 

compare the Th1, Th 2 and Th17 response using transcription factors. I was however able to 

compare relative expression of the transcription markers to indicate a direction of change 

between different populations. A limitation of this analysis is that what is detected may simply 

represent background variation in negatively stained cells. An alternative to this strategy 

would be the use of chemokine receptors to define the Th
 response as mentioned in Figure 4. 

As mentioned in Section 3.5.8.4 the reason for the decreased expression of T-bet, Gata3 and 

ROR-γ was likely due to heparin. Heparin is highly negative charged. Transcription factors have 

positively charged DNA binding domains, that enable binding to DNA (Liu et al., 2016). It is 

plausible heparin bound the transcription factors, and that the antibody was not able to bind. 

This would have resulted in minimal detection of transcription factor. Heparin was added to 

the mass cytometry staining as there have previously been reports of eosinophils non-

specifically binding transcription factors (Rahman et al., 2016). In future, when using PBMC’s, it 

seems pertinent to either not use heparin or compare staining without the addition of heparin. 

If leucocytes are used then the titration of heparin is important for mass cytometry analysis. 

5.7 Conclusion 

In conclusion, when comparing two groups of extremely preterm infants randomised either to 

an exclusive human milk diet or a diet containing bovine products, I was not able to identify 

any potentially beneficial changes in either gut microbiota, T cell, or amino acid composition. 

Preterm infants in the intervention group (receiving an exclusive human milk diet) received 

less MOM and had less weight gain, compared to the control group, which is consistent with 

previous work that explored a similar exclusive human milk diet (Cristofalo et al., 2013, Sullivan 

et al., 2010). This work is important as the most likely mechanism of any protective effect of 

DHM against NEC or LOS, in preterm infants, is through an effect on the gut microbiome. 
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5.8 Recommendations for future work 

Our understanding of why preterm infants are susceptible to NEC and LOS remains limited. The 

purpose of this study was to compare the effect of two different diets on the gut microbiota 

and T cell populations. Further analysis of these datasets could try to establish effects of diet 

or disease on the gut microbiota or T cell populations. As infants were required to be fully 

enterally fed for blood samples to be taken, no blood samples were available on infants with 

NEC, and only one infant with SIP. Future work could address the effect of gastro-intestinal 

surgery on the populations of T cells that are known to preferentially populate the gut mucosa 

(MAIT, iNKT, Tregs). 

As mentioned, expression of transcription factors was not at biological levels, possibly as a 

result of heparin used in the experiment. Further analysis of the differential expression of 

chemokine receptors within the CD4 T cells could enable an opportunity to compare the Th 

response between study groups. 

Outside this study, future work into LOS and NEC should aim to explore both why preterm 

infants have this increased susceptibilty and potential interventions that can reduce this risk. 

Alongside this, NEC is likely the end result of a number of different mechanisms, and 

considering dividing this disease into the likely cause may prove useful to develop our 

understanding regarding the underlying mechanisms.  

This study aimed to explore the diet, as a known risk factor for both NEC and LOS, in preterm 

infants. Alteration in the gut microbiome as a result of diet, is the most likely mechanism for 

any protective effect of diet. Considering this mechanism, this pilot study had more than 80% 

power to detect a 0.5SD difference in gut microbial alpha-diversity between study groups. This 

is a large difference in alpha diversity and future studies could attempt to exclude smaller 

differences in gut microbial compostion, in terms of effect on the gut microbiome of the 

exclusive human milk diet. The INDIGO study will comprise approximately 120 infants enabling 

greater resolution of any microbial differences. This will include a cohort of infants who have 

not been exposed to probiotics. It is possible the routine use of probiotics neutralises a major 

disadvantage of bovine milk products. 

The exclusive human milk diet comprised both fortified donor human milk (RTF 26) and donor 

human milk fortifier(HMF, P+6). Future work should aim to separate these two dietary 

interventions, aiming to address whether either component affects outcomes. Ideally this 

would be a large RCT powered for an important clinical outcome such as NEC, as a large RCT 

has shown no effect on 2 year neuro-development using DHM (albeit using a BMF not a HMF) 

(O'Connor et al., 2018). Unfortunately, a RCT powered to detect a change is NEC as a primary 
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outcome is unlikely due to the number of study recruits required and as DHM is being readily 

accepted as part of neonatal care. A mechanistic study investigating microbial, metabolomic or 

immunological outcomes to understand the mechanism of action therefore seem extremely 

important and plausible, particularly as DHM can be so variable in composition. Mechanistic 

work could then influence further clinical RCT’s.  

As DHM is being readily accepted as part of neonatal care, developing our understanding of 

how the bioactive components in human milk are affected by postnatal age, freezing and 

pasteurisation, will help our understanding of how human milk can differ, as it may be for this 

reason that some diets using DHM improve outcomes whilst others do not.  

As our understanding of the bioactive components improves, the use of organoid models using 

tissue samples obtained from surgery to explore gut mucosal interactions offer an opportunity 

to further investigate the influence of dietary components on the gut mucosa, which could 

then be supplemented with work in animal models. The difficulties with animal models are 

using a species that is able to survive extreme prematurity and can develop a similar disease to 

NEC without dramatic environment changes. Pigs offer the best model, as they develop a 

similar disease to NEC when given different enteral diets, however they are viable to survive at 

only 90% of normal gestation in comparison to 70% in humans which may be a limitation of 

this model. Nevertheless, there are many other similarities between preterm piglets and 

humans including size and the immaturity of their gastro-intestinal tract. They can also be 

nursed in a similar NICU environment (Sangild et al., 2013). 

When exploring the gut microbiome in preterm infants in a NICU that uses probiotics, analysis 

should include either WGS or culturing to identify specific species of bacteria. This will enable 

the distinguishing of probiotic species from other potentially important species, and as 

mentioned the INDIGO cohort that was not exposed to probiotics may help our understanding.  

There has been little research exploring the preterm immune system. This is despite not only 

diseases such as NEC and LOS, but chronic inflammatory diseases such as ROP and CLD being 

mediated by an immune response. In order to identify what effect interventions are having, 

we need to improve our understanding of the normal composition and function of the preterm 

infants immune system. Technologies utilising small sample volumes whilst delivering large 

datasets such as mass cytometry and transcriptomics could be extremely valuable in this area. 

This understanding could be utilised to develop our knowledge of why some preterm infants 

are preferentially susceptible to disease, and help understand the effect of interventions.  

Lastly, but most importantly, the introduction of DHM to a NICU should include work exploring 

any changes in the provision of MOM to infants following introduction of DHM, as well as the 
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growth of infants.  The introduction of DHM should not be at a cost in the provision of MOM to 

preterm infants.  
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Supplementary Figures 

 

Supplementary Figure A – Heatmap comparing expression of lineage markers of the CD45+ cells not identified as T, B or NK cells between 
samples. Each sample is represented in a row with the mean arithmetic mean displayed as an expression from high to low (see legend on right of 
the plot) 
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Supplementary Figure B – Colour dot plots displaying CD45+ cells not identified as T, B or NK cells. Each sample has been given a different colour. 
Each dot plot compares the expression of two lineage markers 
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Supplementary Figure C – Colour dot plot displaying all events in one representative sample of flow cytometry data. Forward scatter is on the x-
axis with side scatter on the y axis. The key displays the cells represented by the different colours. This demonstrates that the lymphocyte 
population was in the expected location with few CD45+ cells outside this area. 
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Supplementary Figure D - Heatmap used for the identification of cell clusters in tSNE plot in Figure 40A. Markers used to define clusters are 

displayed on the x axis. Cluster dendogram is displayed on the left y axis and cluster percentage of total population displayed on right y-axis. 

Expression bar is shown in top right of plot with relative expression shown in each square. 
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Supplementary Figure E  - 

Heatmap demonstrating 

expression of all markers in 

clusters in tsne plot in Figure 

40A. Clusters merged are 

displayed in top right and 

colour coded, left y-axis 

demonstrates how clusters are 

merged. Right y-axis 

demonstrates the % of the T 

cell population the cluster 

represents. The expression of 

each marker is colour coded as 

shown by the key in the top 

right, whilst the expression of 

each marker is displayed in 

each square  V
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Appendix A – INDIGO Patient Information Leaflet 
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Appendix B – INDIGO consent form 
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Appendix C – INDIGO data collection forms 
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