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Abstract

Massive Multiple-Input Multiple-Output (M-MIMO) is a state of the art technology

in wireless communications, where hundreds of antennas are exploited at the base

station (BS) to serve a much smaller number of users. Employing large antenna

arrays can improve the performance dramatically in terms of the achievable rates

and radiated energy, however, it comes at the price of increased cost, complexity,

and power consumption.

To reduce the hardware complexity and cost, while maintaining the advantages of

M-MIMO, antenna selection (AS) techniques can be applied where only a subset of

the available antennas at the BS are selected. Optimal AS can be obtained through

exhaustive search, which is suitable for conventional MIMO systems, but is pro-

hibited for systems with hundreds of antennas due to its enormous computational

complexity. Therefore, this thesis address the problem of designing low complexity

AS algorithms for multi-user (MU) M-MIMO systems.

In chapter 3, different evolutionary algorithms including bio-inspired, quantum-

inspired, and heuristic methods are applied for AS in uplink MU M-MIMO sys-

tems. It was demonstrated that quantum-inspired and heuristic methods outperform

the bio-inspired techniques in terms of both complexity and performance.

In chapter 4, a downlink MU M-MIMO scenario is considered with Matched Filter

(MF) precoding. Two novel AS algorithms are proposed where the antennas are

selected without any vector multiplications, which resulted in a dramatic complex-

ity reduction. The proposed algorithms outperform the case where all antennas are

activated, in terms of both energy and spectral efficiencies.

In chapter 5, three AS algorithms are designed and utilized to enhance the per-

formance of cell-edge users, alongside Max-Min power allocation control. The

algorithms aim to either maximize the channel gain, or minimize the interference

for the worst-case user only.

The proposed methods in this thesis are compared with other low complexity AS

schemes and showed a great performance-complexity trade-off.
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Chapter 1

Introduction

1.1 Why massive MIMO?

Since the start of the new millennium, the demand for mobile devices has increased enormously,

and the growth of data traffic over wireless channels has followed Moore’s law. For over two

decades, researchers have shown that using systems with multiple antennas, known as Multiple-

Input Multiple-Output (MIMO), can enhance the performance dramatically, and since then,

MIMO systems have been part of many communications standards. However, for most of to-

day’s MIMO systems, the Base Station (BS) is equipped with only few antennas (less than 10),

and although the use of conventional MIMO systems has shown great performance advantages,

it is very unlikely to cope with the fast increasing demand for higher throughputs.

The exponential growth over data traffic during the last decade predicts that the number of

connected devices is expected to reach 25 billion by the year 2020 [1], out of which 15 billion

are phones, tablets, PCs, and laptops [2]. To meet the demands of such high data traffic, large

scale MIMO, also known as Massive MIMO (M-MIMO), systems were first introduced in [3],

where a BS with tens to hundreds of antenna elements is assigned to serve a much smaller

number of users in the same time-frequency resources. Since then, M-MIMO systems have

gathered the attention of researchers from all over the globe, and it was shown that employing

very large number of antennas have tremendous advantages. For example, with massive arrays,

the radiated power can be reduced dramatically, and the energy transmitted per bit vanishes

when the number of antennas grows to infinity. Furthermore, the effect of uncorrelated noise

as well as the small-scale fading are eliminated, and near optimal performance can be obtained

using simple linear signal processing techniques.
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1.2 Aims and motivation

1.2 Aims and motivation

Although there are tremendous theoretical advantages of using M-MIMO, there are many se-

rious practical considerations that limit the applications of such systems. For example, using

massive number of antennas at the BS at once means that each antenna must be connected to a

separate Radio Frequency (RF) chain, and unlike the antenna elements, RF chains are expen-

sive, since each RF chain consists of Low Noise Amplifier (LNA), mixer, and Analog to Digital

Converter (ADC) [4]. More importantly, RF chains are highly power demanding elements, and

they consume 50%-80% of the total trasceiving power [5]. Therefore, activating large number

of RF chains at the same time will degrade the energy efficiency performance of the system

dramatically.

One way to reduce the cost, complexity, and power consumption while preserving the great

advantages offered by M-MIMO systems, is through applying Antenna Selection (AS) tech-

niques, where massive number of antenna elements are placed at the BS with limited number

of RF chains.

For over a decade, AS has been a widely studied topic in conventional MIMO systems

[6–20]. It was first introduced as a tool to reduce the hardware complexity at the transmitter

and the receiver of multiple antenna systems. Moreover, dedicating a separate RF chain for

each radiating element was found to be the main reason behind causing higher and unstable

power consumption. However, the work originated on AS in conventional MIMO systems have

proven not to be suitable to apply for M-MIMO, due to their enormous complexity requirement

for systems with massive arrays.

In addition, Power Allocation (PA) schemes can be applied at the BS for many reasons,

such as: minimizing the total transmission power under a certain Quality of Service (QoS),

maximizing the total sum rate, increasing the fairness among the users, or maximizing the

Energy Efficiency (EE) of the system.

1.3 Challenges and solutions in M-MIMO systems

As explained above, employing large number of RF chains will impose extremely high hard-

ware complexity and cost, while degrading the energy efficiency performance of the system

dramatically. In addition, the existing algorithms for AS in conventional MIMO systems are

not suitable to be applied in M-MIMO, due to their enormously high computational complexity

requirement for systems with massive number of antenna elements.
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1.4 Literature review on AS and PA in M-MIMO systems

It is worth to mention that compared to the uplink case, performing AS in the downlink

scenario gives more options for performance improvement, especially when linear methods are

applied such as Matched Filter (MF) for signal processing. The reason behind this is that the

BS knows the effect of activating each antenna on the Signal to Interference plus Noise Ratio

(SINR) for each user. In contrast, and for the uplink case, the received signal at each antenna is

a combination of signals transmitted from all users, and therefore it is more difficult to decide

which antenna is suffering from the highest interference, as well as to separate the interference

from different users.

Furthermore, in practical scenarios the users are uniformly distributed and have different

distances from the BS. Therefore, to increase the fairness among the users, and to ensure that

each user meet a predefined threshold of QoS, max-min PA techniques can be applied at the

BS, where more power is allocated for users who are located far away from the BS.

Accordingly, in this thesis we design low complexity AS methods for MU M-MIMO sys-

tems in both uplink and downlink transmission scenarios. Different methodologies have been

adopted in our work, and the proposed methods target both high performance and low imple-

mentation complexity in terms of floating point operations (FLOPs). Furthermore, max-min PA

in a single-cell M-MIMO is also applied to enhance the rate for the worst case user and increase

the fairness between users.

1.4 Literature review on AS and PA in M-MIMO systems

Since our work in this thesis involves both PA and AS, we carry an extensive survey on the

related work on these subjects in the following subsections.

1.4.1 Related work on AS in M-MIMO systems

There has been a considerable amount of work recently on AS in M-MIMO systems. for exam-

ple, tshe authors in [21,22] proposed low complexity AS methods for energy efficient M-MIMO

systems, however, their algorithms were designed for point to point case, i.e. only one user is

scheduled to be served at a given time instant. In contrast, the authors in [23] proposed an

energy efficient AS method for Multi-User (MU) M-MIMO downlink transmission. However,

maximizing the EE results in poor spectral efficiency, and vice versa, therefore in this thesis

we address the problem of maximizing the SINR for any arbitrary number of selected anten-

nas. The authors in [24] proposed a novel iterative AS method for an uplink point to point
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1.4 Literature review on AS and PA in M-MIMO systems

M-MIMO with Maximum Ratio Combining (MRC) receiver, under spatially correlated chan-

nels. Their work focused on minimizing the Mean Square Error (MSE) of the received signal

to improve the error rate performance for a single user scenario. For capacity maximization in

an interference-free scenarios, the authors in [25] proposed a Rectangular Maximum-Volume

(RMV) theory based AS, for downlink M-MIMO systems, while the authors in [26] proposed

a Branch And Bound (BAB) based AS for an uplink M-MIMO transmission. Although their

methods demonstrate high performance, they suffer from relatively high complexity. Further-

more, the authors in [27, 28] applied AS in M-MIMO systems on measured channels using

both linear and cylindrical arrays equipped with 128 antennas, to maximize the sum rate with

Zero Forcing (ZF) precoder. In [29, 30], the authors designed an AS algorithm with quartic

complexity in point to point M-MIMO systems. While in [31], the authors designed a joint AS

and user scheduling in downlink MU M-MIMO systems with ZF precoder, while in [32] the

authors designed a joint antenna and user selection for M-MIMO with non-orthogonal multiple

access (NOMA) systems. Moreover, the authors in [33] studied the trade-off between energy

and spectral efficiencies under random AS in MU M-MIMO downlink systems. In addition,

the authors in [34, 35] proposed a novel AS by exploiting the known constructive interference

at the BS for downlink transmission. However, their method works efficiently only on low

modulation Phase Shift Keying (PSK) signalling, and it is data dependent, which means that

extremely fast RF switching are required. Furthermore, the same authors proposed in [36, 37]

a novel joint precoding and AS scheme relying on the constructive interference. In [38], the

authors proposed a joint AS and user scheduling scheme under ZF precoder. In [39] the authors

proposed a two-steps AS method for point to point M-MIMO systems, where in the first step

the algorithm focus on selecting the antennas that has the least spatial correlation between them,

followed by the second step which focuses on the performance. Moreover, in [40], the authors

proposed sub-optimal AS methods for multi-cell cooperative M-MIMO systems, their methods

focused on maximizing the Signal to Noise Ratio SNR while maintaining low computational

complexity. The authors in [41] proposed an AS method for power minimization in MU down-

link M-MIMO systems, under a predefined QoS requirement. Furthermore, in [42] the authors

proposed a bidirectional branch and bound method for AS in M-MIMO, although their method

demonstrates high performance, it suffers from large complexity requirement. In [43], the au-

thors proposed an AS under interference alignment, where the interference is forced to zero

through transmitter-receiver beamforming. Finally, the authors in [44], proposed joint AS and

PA schemes for MU downlink M-MIMO systems with linear precoding techniques.
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1.4.2 Literature review on PA in M-MIMO

The authors in [45] considered an uplink MU M-MIMO system, and proposed an optimal power

control that jointly selects the training duration, training pilots power, and data power. Their

results show that at low SNR, higher power needs to be adopted for training pilots than at high

SNR. Furthermore, they showed that the optimal training duration is always equal to the num-

ber of users regardless of the SNR regime. In [46], the authors studied joint PA and pilots

assignment to maximize the EE of a multi-cell MU M-MIMO system with pilot contamination.

Moreover, the authors in [47] investigated PA strategies for multi-cell MU M-MIMO system

for sum rate maximization in both uplink and downlink transmission, under ZF equalizer and

precoder. Their work demonstrated that optimal PA can highly improve the system performance

for practical number of antennas at the BS (e.g., tens to hundreds), however, for a fixed number

of users, equal PA becomes optimal as the number of antennas at the BS tends to infinity. Joint

PA and user association was proposed in [48] for multi-cell M-MIMO downlink system, under

both Maximum Ration Transmission (MRT) and ZF precoding techniques. The authors aimed

to minimize the total power transmission by optimizing the subset of BSs to serve each user.

Furthermore, the authors in [49] proposed a pilot power allocation (PPA) through user group-

ing, in a multi-cell M-MIMO systems. An EE PA method was proposed in [50] for downlink

M-MIMO with MF precoding. Their work showed an improved EE with reduced transmission

power compared to other PA schemes that ignores the interuser interference. While in [51], the

authors proposed an optimal PA schemes for MU M-MIMO systems under ZF detector. In their

work, an optimal power control was carried on both pilot and data signals based on the large

scale fading to maximize the total sum rate. The authors in [52] proposed a pilot design with

uplink PA for multi-cell MU M-MIMO systems to mitigate the pilot contamination problem,

and max-min power control was applied to ensure fairness between users. In [53], an uplink

power control was investigated in multi-cell MU M-MIMO systems, where the BS is equipped

with large but finite number of antennas, with Minimum Mean Square Error (MMSE) receivers,

under pilot-contaminated channel estimation. In addition, the authors in [54] developed a low

complexity PA scheme for EE MU M-MIMO systems with ZF processing, and they proposed

a joint PA, number of antenna elements, and user scheduling, assuming a Time Division Du-

plex (TDD) downlink scenario. In [55], the authors applied optimal PA for multi-pair amplify

and forward (AF) M-MIMO relaying under imperfect Channel State Information (CSI). Also

with AF M-MIMO relaying, the authors in [56] proposed an EE PA scheme, where the EE

performance was theoretically analysed by employing random matrix theory and large system
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1.5 Thesis organization and contribution

analysis. Finally, in [57], the authors applied PA for M-MIMO with decode and forward (DF)

relaying, assuming MMSE channel estimation and ZF transceivers.

1.5 Thesis organization and contribution

The aim of this thesis is to design and investigate novel AS schemes in MU M-MIMO systems,

in both uplink and downlink scenarios, as illustrated in Fig. 1.1. In the uplink case, the motiva-

tion was to optimize the sum rate capacity, i.e. the capacity that can be obtained by employing

successive interference cancellation (SIC) methods. For the downlink case, the motivation was

to maximize the SINR under MF precoding, in both cases when the users are equidistant to the

BS, and for uniformly distributed users.

This chapter presents the motivation behind employing M-MIMO systems, and the key role

of AS in reducing the cost and complexity of such systems. In addition, an extensive survey is

carried out about the previous work on AS as well as PA in M-MIMO systems.

Chapter 2 introduces the required background knowledge on the signal processing tech-

niques for MIMO systems, such as: different methods of linear and non-linear equalization and

precoding techniques. Moreover, the idea of AS in both uplink and downlink cases is explained,

with some benchmark methods of AS in conventional MIMO systems. In addition, a brief sum-

mary of the main challenges in employing M-MIMO systems are also briefly explained in both

time and frequency division duplex.

In Chapter 3, an uplink M-MIMO system is considered, and several evolutionary methods

for AS are applied to maximize the sum rate capacity. We design a classical Tabu Search (CTS)

method, and also apply a Quntum-inspired TS (QTS) for AS and compare our techniques with

well known bio-inspired algorithms, such as: Genetic Algrotihm (GA), Artificial Bee Colony

(ABC), as well as Particle Swarm Optimization (PSO). The proposed methods outperform the

bio-inspired techniques in terms of both performance and complexity requirements.

In Chapter 4, we aim to achieve a further reduction in complexity, in terms of both precoding

and AS schemes. Accordingly, a MF precoder is applied in MU M-MIMO downlink transmis-

sion, with equidistant users. Two novel AS schemes are proposed to maximize the SINR, and

hence maximizing the sum rate. Both algorithms achieve dramatic complexity reduction by

avoiding vector multiplications during the iterative selection process. Our results demonstrate

that the proposed methods can achieve higher sum rate and energy efficiency with a subset of

the available antennas than activating the full antenna subset.

In Chapter 5, a uniformly distributed users were assumed in a downlink M-MIMO scenario
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1.5 Thesis organization and contribution

with MF precoding. Three low complexity AS methods were proposed to maximize the SINR

for the cell-edge users. The first algorithm aims to maximize the channel gain for the worst-case

user, while the second method focuses on minimizing the interference, and the last method aims

to minimize the highest interference terms between any two given users. Furthermore, a max-

min power control is carried out to further enhance the achievable rate of the worst-case-users,

and hence higher fairness is achieved.

Chapter 6 concludes this thesis, and few conclusions are derived from each chapter to sum-

marize the work in this thesis. Furthermore, many interesting directions for future work are also

briefly explained.
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Chapter 2

MIMO Communications systems:

Detection, Precoding, and Antenna

Selection techniques

2.1 MIMO systems

The term MIMO simply refers to a system where multiple antennas are used at the transmitter

and receiver ends. Considering a system with Nt transmit antennas and Nr receive antennas,

The received signal can be given as

y = Hx + n, (2.1)

where y ∈ CNr×1 is the received signal by the Nr antennas, H ∈ CNr×Nt is the independent

and identically distributed (i.i.d) wireless channels between the transmitter and receiver, with

zero mean and unit variance. x ∈ CNt×1 is the transmitted information symbols vector, and

n ∈ CNr×1 is the AWGN noise vector at the receiver with zero mean and variance of σ2
n, i.e.

n ∼ CN (0, σ2
nINr). In a vector form, the equation in (2.1) can be expressed as


y1

...

...

yNr

 =


h1,1 . . . . . . h1,Nt

... . . . ...

... . . . ...

hNr,1 . . . . . . hNr,Nt




x1

...

...

xNt

+


n1

...

...

nNr

 , (2.2)
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2.1 MIMO systems

where hi,j represents the channel coefficient between the ith receive and the jth transmit anten-

nas.

2.1.1 Point-to-Point MIMO systems

In point to point MIMO systems, two different approaches can be employed to either enhance

the signal reliability, or the throughput. Consider a single-input single-output (SISO) system,

i.e. both transmitter and receiver are equipped with only one antenna, if the channel between the

transmitter and the receiver is experiencing a deep fade, the received signal will likely contain

errors. One way to improve the communication reliability is by sending the same signal through

different antennas, as long as these antennas have enough separation to obtain independent

channels, and at least one of the channels is strong. This technique is known as diversity gain

[58]. On the other hand, MIMO systems can be employed to increase the throughput of the

system via spatial multiplexing [58], where different data streams can be transmitted through

different antennas, and separated at the receiver end, using either linear or non-linear detection

methods.

Figure 2.1: Point-to-Point MIMO systems.

2.1.2 Multi-User MIMO systems

In MU MIMO systems, multiple users communicate simultaneously with the BS using the same

time-frequency resources as shown in Fig. 2.2. However, since the mobile users do not have

the same computational capacity to run the same amount of processing as the BS, it is desirable

that the BS will handle most of the processing, in both uplink and downlink scenarios.

11
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Figure 2.2: Multi-User MIMO systems.

2.2 Detection methods in MIMO systems

Consider a K single-antenna users transmitting their data to a BS equipped with N antennas,

i.e. uplink transmission with spatial multiplexing scenario. These data streams will be com-

bined at the receiver side, and therefore need to be separated to obtain the original data sent by

the different users. The detection methods are applied at the BS to obtain an estimate of the

unknown transmitted vector x, for a given channel matrix H, and received vector y. There are

two different types of detection methods: Linear and Non-linear detectors.

2.2.1 Non-linear detection methods

Non-linear detectors are known for their high performance, and they are able to achieve the

MIMO capacity [9], which for an uplink case with perfectly known channel at the BS and an

SNR of γ, can be given as [59]
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2.2 Detection methods in MIMO systems

Cul = log2 det
(
INr +

γ

Nt

HHH
)
. (2.3)

However, that comes at the price of high complexity. In the following section, we will

review two well known non-linear detection schemes: Maximum likelihood (ML), and SIC.

2.2.1.1 ML detector

In any communications system, the presence of the AWGN is inescapable, and therefore errors

are likely to occur. However, ML detector provides the optimum estimate of the transmitted vec-

tor x [60,61]. LetM represents the constellation set that contains the M− PSK or M−QAM

signals, where QAM refers to Quadrature Amplitude Modulation. For a system with K single-

antenna users, the number of different candidates for the transmitted vector x is MK , where M

is the size of the setM. For example, for system with 2 users transmitting a Quadrature PSK

(QPSK) signal, there will be 16 candidate solutions as demonstrated in Table 2.1.

ML detector aims to minimize the Euclidean distance of the noise, by carrying an exhaustive

search over all possible vector candidates in the following form

x̂ = arg min
x∈MK

‖y −Hx‖2 . (2.4)

Although ML detector provides optimal solution, it suffers from an enormous complexity

that grows exponentially with increasing the number of users or the size of the constellation

set M, which makes it only applicable for systems with small number of users, and small

constellation sets.

2.2.1.2 SIC detection

SIC detection methods are also non-linear techniques, and they rely on performing a linear

equalization techniques to remove the effect of the channel first, and then detect one stream of

data at each step. The procedure of SIC can be explained as follow [60]

• At the beginning, the strongest symbol in a given data stream is detected using a linear

detector such as Zero Forcing, referred to as ZF-SIC. The received streams from different

users are ordered based on their received SNRs.
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2.2 Detection methods in MIMO systems

Table 2.1: ML candidate solutions when K = 2, with QPSK constellation.

Candidate index Candidate Solution Candidate index Candidate Solution

1 1√
2

+ j 1√
2

, 1√
2

+ j 1√
2

9 − 1√
2

+ j 1√
2

, 1√
2

+ j 1√
2

2 1√
2

+ j 1√
2

, 1√
2
− j 1√

2
10 − 1√

2
+ j 1√

2
, 1√

2
− j 1√

2

3 1√
2

+ j 1√
2

, − 1√
2

+ j 1√
2

11 − 1√
2

+ j 1√
2

, − 1√
2

+ j 1√
2

4 1√
2

+ j 1√
2

, − 1√
2
− j 1√

2
12 − 1√

2
+ j 1√

2
, − 1√

2
− j 1√

2

5 1√
2
− j 1√

2
, 1√

2
+ j 1√

2
13 − 1√

2
− j 1√

2
, 1√

2
+ j 1√

2

6 1√
2
− j 1√

2
, 1√

2
− j 1√

2
14 − 1√

2
− j 1√

2
, 1√

2
− j 1√

2

7 1√
2
− j 1√

2
, − 1√

2
+ j 1√

2
15 − 1√

2
− j 1√

2
, − 1√

2
+ j 1√

2

8 1√
2
− j 1√

2
, − 1√

2
− j 1√

2
16 − 1√

2
− j 1√

2
, − 1√

2
− j 1√

2

• After detecting the strongest data, the BS estimates the interference caused by the detected

symbol, and then subtract the interference caused by it from the received signal.

• The output signal after subtracting the interference will then be used to detect the next

strongest symbol and subtract its interference and so on. The interference cancellation

will run until detecting the weakest received data stream.

It should be noted that although SIC methods have less complexity than ML, they still

impose high complexity requirement for system with large number of users or antennas, and

therefore they are unsuitable solutions for M-MIMO systems. Instead, simple linear detection

methods can achieve near optimal solutions when the BS is equipped with very large number

of antenna elements.

2.2.2 Linear detection techniques

Linear detectors in general require low complexity, and therefore they are highly used with

systems with high dimensions, such as M-MIMO. The main idea behind these techniques is to

equalize the effect of the channel at the receiver side first, then find the minimum euclidean

distance between the equalized symbols and the correspondent constellation. Two different

linear detectors are presented in this section, which are ZF and MF.
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2.2.2.1 Matched filter detector

MF represents the simplest form of linear detection, where the received signal is multiplied

at the BS with the Hermitian transpose of the channel matrix H. However, MF does not null

the interference between different users, and it treats it merely as a noise. Assuming K single

antenna users transmitting their data to a BS with N antennas, the received signal in (2.1) can

be re-written as

y = Hx + n

=
K∑
i=1

hixi + n

= hkxk +
K∑
i=1
i 6=k

hixi + n, (2.5)

To estimate the signal sent by the kth user, the BS multiplies the received signal with hHk [60],

i.e.

x̂k = hHk y

= hHk

(
K∑
i=1

hixi + n

)

= hHk hkxk +
K∑
i=1
i 6=k

hHk hixi + hHk n, (2.6)

where the first term in the right hand side of (2.6) represents the desired signal, the second term

represents the interference, while the last term is the noise. A hard decision will then be made to

map x̂k to the nearest symbol in the alphabet of the utilized modulation set. In a general vector

form, MF detection can be expressed as follow

x̂MF = HHy. (2.7)

The downside of the MF detector is the interuser interference, which becomes the dominant

degradation factor at high SNRs. However, with M-MIMO, the increase in the interuser inter-

ference term is smaller than the gain for the desired signal, therefore as the number of antennas

goes to infinity, the simple MF becomes a near optimal solution.
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2.2.2.2 Zero forcing detector

The ZF is another form of linear detection, and it eliminates the interuser interference by mul-

tiplying the received signal with the pseudo inverse of the channel matrix, H†, which can be

given as [60]

H† = (HHH)−1HH , (2.8)

let qk be the kth row of H†, the signal sent by the kth user can be estimated as follow

x̂k = qky

= qk(Hx + n)

= xk + qkn. (2.9)

In a general vector form, the ZF solution can be expressed as follow

x̂ZF = H†y. (2.10)

Although ZF cancels the interference, it does amplify the noise, i.e. it causes noise enhancement

at the receiver side [59, 61, 62].

2.3 Precoding methods in MIMO systems

In the downlink scenario, the BS transmit its data to the users simultaneously, and precoding

schemes need to be applied to convert the K symbols message vector into an N data vector,

whereN andK are the number of antennas at the BS and the number of users, respectively. The

maximum achievable capacity in the downlink scenario, with perfect knowledge of the channel

matrix and equal power allocation among the antennas, can be given as [7]

Cdl = log2 det
(
IK + γ HHH

)
. (2.11)

Precoding can be applied via either linear or non-linear methods, where the latter achieve

higher throughput at the cost of increased complexity.
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2.3.1 Non-linear precoding schemes

Although the purpose behind applying precoding techniques is mainly to reduce the complexity

at the receiver end, the complexity of Non-linear schemes might be infeasible to apply even at

the BS due to its high complexity. However, in this section we explain the optimum precoding

scheme in terms of the achievable sum rate capacity, i.e. ”dirty paper coding”, in the following

subsection.

2.3.1.1 Dirty paper coding

In order to achieve the sum rate capacity of MU MIMO systems giving in 2.11, Dirty Paper

Coding (DPC) needs to be applied [63–66], where the BS selects codewords for each user to

eliminate the effect of interuser interference.

The name ”dirty paper coding” refers to the fact that transmitting signal through a channel

with interference is similar to writing on a paper with dirt spots. Assume that we have the

message ”Hello World” that we aim to transmit to the receiver through the interfering channel,

as shown in Figs. 2.3a, and 2.3b, respectively. One way to transmit the signal is by avoiding the

dirt spots as much as possible, however some dirt will remain in the message and the receiver

might recover the original message with errors as shown in Fig. 2.3c. The optimum way

to transmit the message without being affected by the dirt spots, is through DPC, where the

transmitter and receiver agree upon a certain codeword that can adopt perfectly to the dirt spots,

as if they did not exist, as shown in Fig. 2.3d.

Although DPC proves to be optimum in terms of performance, its implementation impose

a significant complexity which makes it a prohibited approach for practical scenarios. Instead,

linear precoding techniques can be applied which have sub-optimal performance with affordable

complexity.

2.3.2 Linear precoding schemes

In practical scenarios, the mobile user does not have the knowledge of the channels between

the BS and other users, therefore, precoding techniques are applied at the BS to maximize the

SNR at the receiver end. In other words, in both uplink and downlink, the aim is to perform the

complex signal processing at the BS rather than at the mobile user. Two main linear precoding

techniques are presented in this section, MF and ZF.
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Hello

World

(a)

(c)

(b)

(d)

Hello

World

Hello

World

Figure 2.3: Writing on dirty paper: (a) ”Hello World” is the original message that we aim to
transmit, (b) The paper with dirt spots that we need to write our message on, (c) The transmitter
aims to avoid the dirt spots, however, some dirt still exist, (d) The transmitter and receiver agree
on a codeword that will adopt to the dirt spots and null the interference completely.

2.3.2.1 Matched filter precoding

MF precoding is the simplest form of linear precoding, and for a user k, it can be expressed as

wMF
k =

h∗k
‖hk‖

, (2.12)

where the term in the denominator of (2.12) is the scaling factor, and used to prevent the BS

from exceeding the power limit. The received signal at the kth user can be given as
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yMF
k =

√
pkh

T
kwMF

k xk +
K∑
i=1
i 6=k

√
pih

T
kwMF

i xi + nk, (2.13)

where
√
pk is the power allocated for the kth user, and the second term in the right hand side of

(2.13) represents the interuser interference.

2.3.2.2 Zero forcing precoding

The precoding matrix utilizing the ZF precoder can be expressed as

WZF = γZFHH(HHH)−1, (2.14)

where γZF is the scaling factor that is needed to satisfy the total power constraint, and it can be

given as [67]

γZF =
1√

Tr[(HHH)−1]
. (2.15)

The data symbols are multiplied by the precoding matrix before being transmitted through

the channel, and the received signal by the K users can be given as

yZF = HWZFx + n. (2.16)

The main advantage of ZF over MF precoding, is that it can null the interuser interference

at the receiver end. However, there are many disadvantages for this type of precoding. One

of the main limitations of ZF is that when the number of users grows large for a fixed number

of antennas at the BS, ZF precoder suffers from a sum rate loss. For example, in [27], the

authors showed that when the BS was equipped with 16 antennas, the sum rate achieved with

4 users was higher than that with 16 users. The reason behind this is that ZF wastes large

amount of the available power just to null the interference, which results in low signal power.

Moreover, ZF suffers from degraded performance when there are users located on the cell-edge,

also known as the ”near-far problem”. In addition, ZF precoder is very sensitive to different

types of distortions such as unmodeled interference [68, 69]. In contrast, MF precoding has

lower complexity and can accommodate more users than ZF, however, its performance is limited

by the interuser interference especially at high SNR regime.
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2.4 MIMO systems with limited number of RF chains

There is no doubt that employing multiple antennas can increase the capacity and reliability of

any communication system. However, employing large number of antennas, at the transmitter

or receiver, comes at the price of increased hardware complexity, cost, and power consumption,

which is caused by the demand for increased number of RF chains. Each RF chain consists

of power amplifier, ADC, LNA, and mixers [70], [71]. For those reasons, and unlike the an-

tenna elements, RF chains are not only expensive, but also highly power demanding elements.

Accordingly, reducing the number of RF chains can dramatically improve the EE of the com-

munication systems.

Two main methods have been proposed to employ MIMO systems with reduced number

of RF chains. The first approach is AS, where only the subset of antennas that maximize a

given performance metric is selected. The second approach is called Spatial Modulation (SM),

where the index of the antenna that is transmitting the signal is also carrying information. In

the following, we present the two aforementioned approaches.

2.4.1 Spatial modulation

In SM, the transmitter is equipped with multiple antennas, however, only one of them is acti-

vated in a given time instance. The main difference between the spatial modulation and spatial

multiplexing is depicted in Fig. 2.4, for a system equipped with two transmit antennas and two

BPSK symbols to be transmitted in a single channel use.

On one hand, transmitting the two symbols utilizing spatial multiplexing concept will lead

to each antenna being allocated one information symbol to transmit. Consequently, both RF

chains need to be activated at the transmitter, which can result in poor EE performance for the

system. On the other hand, SM can be utilized, where the first symbol can be assigned to one

antenna, while the second symbol determines the transmit antenna index. In other words, the

first and second information symbols are explicitly and implicitly transmitted, respectively, in a

single channel use utilizing only one RF chain.

In general, assuming that the transmitter is equipped with N antenna elements, and the

cardinality of the PSK constellation set equals to M , the achievable rate of SM system can be

given as follow [72–75]

RSM = log2N + log2M. (2.17)
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2.4 MIMO systems with limited number of RF chains

Figure 2.4: The concept of spatial multiplexing and spatial modulation

2.4.2 Generalized spatial modulation

The generalized spatial modulation (GSM) is an extension of the SM system, however, here

the transmitter can be equipped with multiple RF chains, that can be activated simultaneously

instead of only one RF in the SM. Although GSM suffers from higher detection complexity

than SM, it offers higher achievable rates for two reasons: First, the number of activated RF

chains is higher than that in SM. Second, the number of implicitly encoded bits is higher due to

the increased number of activated antenna subsets. The achievable rate for system employing

GSM can be given as follow

RGSM = log2

⌊(
N

NRF

)⌋
+NRF log2M. (2.18)

However, one of the main challenges for both SM and GSM is the fast RF switching required
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due to their encoding mechanism. In other words, SM and GSM both require RF switching that

operates at the symbol rate, with low insertion losses. In addition, and for the GSM techniques,

low complexity detection methods are essential due to the prohibited complexity of ML detector

for higher number of transmit antennas.

2.4.3 Antenna selection

Another way to maintain the advantages offered by MIMO systems while reduce the cost, com-

plexity, and power consumption is through applying AS techniques, where only a subset of the

antennas are activated. AS techniques can be applied at both transmitter and receiver, whether

its an uplink or a downlink scenario.

Although SM can achieve higher rates than AS, there are many advantages for applying

AS over SM. For example, the detection of the activated antennas when SM is applied impose

higher complexity at the receiver side. However, no such a problem exist in AS. Moreover,

SM requires extremely fast RF switching since it is data dependent technique, while AS can

be performed over several channel realizations, especially when dealing with slow time varying

channels.

Optimal AS can be obtained via exhaustive search, where all the different combinations of

antenna subset are tested, and the subset that gives the best performance metric will be selected.

However, with large number of antennas, this method becomes prohibited, due to its enormous

complexity requirement. Therefore, suboptimal solutions with lower complexity should be

applied.

AS methods can be applied in both MU MIMO systems, or point to point MIMO systems, as

demonstrated in Figs 2.5 and 2.6, respectively. In point to point MIMO systems, the AS can be

applied at the transmitter, receiver, or both at the same time. While in MU MIMO systems, AS

is usually applied at the BS since, in most scenarios, the mobile users are equipped with only

one antennas. AS methods can be applied to optimize different performance metrics. Most of

the work on AS has focused to improve one of the following metrics: maximizing the capacity,

minimizing the error rate, or to maximize the EE of a communication system. However, in this

section, we focus on AS methods to maximize the capacity of MIMO systems.

The idea behind the capacity maximizing AS is to select the subset of antennas that achieve

the maximum capacity with reduced dimensional systems. Different algorithms have been pro-

posed, and some benchmark techniques are given in the next sections.
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2.4 MIMO systems with limited number of RF chains

2.4.3.1 Optimal AS for capacity maximization

As mentioned earlier, optimal AS can be applied by evaluating the capacity for all different

antenna subset combinations, which for an uplink system with K single antenna users and N

antennas at the Bs, can be expressed as the following optimization problem

maximize
∆

log2 det
(
IN +

γ

K
∆HHH

)
subject to

∆n,n ∈ {0, 1}, (2.19a)
N∑
n=1

∆n,n = Ns, (2.19b)

where Ns is the number of selected antennas at the BS. Although this method provides

the optimal solution, it has a binomial coefficient of
(
N
Ns

)
different combinations, therefore it

becomes prohibited for large values of N and Ns.

Two well known methods that have near optimal performance in terms of capacity, known

as: Incremental AS and Decremental AS, were proposed by [12] for spatial multiplexing MIMO

systems, and are explained in the following subsections.

2.4.3.2 Incremental AS for capacity maximization

The incremental AS method starts with an empty set of antennas, and then at each iteration,

the antenna that will maximize the capacity will be selected. Assume that after n iterations,

the antennas indexed with {s1, s2, ..., sn} have been selected, and HS represents the n × K

submatrix of H, where S is a set containing the indices of selected antennas at a given iteration.

Appending the (n∗)th antenna yields to

C(HS ,hn∗) = log2 det
(
IK + γ(HH

SHS + hHn∗hn∗)
)

= log2 det
(
IK + γ HH

SHS
)

+ log2

(
1 + γhn∗(IN + γHH

SHS)−1hHn∗

)
. (2.20)

Therefore, selecting the antenna n∗ that will lead to maximizing the capacity can be expressed

as

sn+1 = arg max
n∗ /∈S

hn∗(γ−1IK + HH
SHS)−1 hHn∗ , (2.21)

25



2.4 MIMO systems with limited number of RF chains

Algorithm 1 Incremental AS algorithm

1: Input N , Ns, γ, and H,
2: Initialize
3: A = γIK , S = 01×N ,
4: s1 = arg max1≤n∗≤N ‖hn∗‖2,
5: Ss1 = 1,
6: for n = 1→ Ns − 1
7: update A← A−AhHsn(1 + hsnAhHsn)−1hsnA,
8: sn+1 = arg maxn∗ /∈S=1 hn∗AhHn∗ ,
9: Ssn+1

= 1,
10: end for
11: Output [Hj ]j∈S=1,

The selection process in (2.21) requires large number of matrix inversions, which leads to

an extremely high complexity. Therefore, a recursive update approach based on the matrix

inversion lemma can be applied to reduce the required complexity [76]. Let A denotes an n×n
positive definite matrix, and a be an n×1 vector, then the inverse of (A+aaH) can be computed

as follow [12]

(A + aaH)−1 = A−1 −A−1a(1 + aHA−1a)−1aHA−1. (2.22)

By employing the selection rule in (2.21) and the update in (2.22), the incremental AS

method can be applied as shown in Algorithm 1. This algorithm is an attractive solution when

the number of selected antennas is relatively small compared to the number of antenna at the BS.

Furthermore, this algorithm is designed to maximize the sum rate capacity, which can only be

obtained through SIC in the uplink, or DPC in the downlink scenarios. Therefore, for systems

with MF detection/precoding, applying this algorithm will result in poor performance, since it

ignores the interference which becomes the dominant degradation factor, especially at moderate

to high SNRs.

As demonstrated in [44], when MF precoding scheme is utilized, there are antennas that will

cause more interference than desired signal gain. Therefore, applying an algorithm that does

not take the interference into account, such as the incremental AS described above, when MF is

applied will not lead to the selection of the desired antennas, i.e. the antennas that lead to high

SINRs.

2.4.3.3 Decremental AS for capacity maximization

When the number of selected antenna is close to the number of receive antennas at the BS,

the decremental method becomes more attractive approach than the incremental selection. The
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2.5 MIMO systems with massive antenna arrays

Algorithm 2 Decremental AS algorithm
1: Input N , Ns, γ, and H,
2: Initialize
3: A = (γ−1IK + HHH)−1, S = 11×N ,
4: s = arg min1≤n∗≤N hn∗AhHn∗ ,
5: S = S \ s,
6: for n = 1→ N −Ns − 1
7: update A← A + AhHs (1− hsAhHs )−1hsA,
8: s = arg minn∗∈S hn∗AhHn∗ ,
9: S = S \ s,

10: end for
11: Output [Hj ]j∈S ,

decremental AS methods starts with a full set of activated antennas. At each iteration, the

decremental method deactivates one antenna that will lead to the minimum reduction in the

system capacity. The implementation of the decremental AS is similar to the incremental AS,

and it is shown in Algorithm 2. As for the incremental selection method, the decremental

technique was also designed to maximize the sum rate capacity.

It was shown that the decremental AS methods outperforms the incremental AS technique.

The reason behind that is with the decremental selection, the selection of the deactivated antenna

takes into account the contribution of all remaining (activated) antennas, while in the incremen-

tal method, the selection in done taking into account only the contribution of the appended

antenna [12].

In terms of complexity requirement, both methods, incremental and decremental AS, require

relatively high complexity for systems with large dimensions. The incremental selection method

requires an upper bound of NNsK
3 complex multiplications/additions, while the decremental

method suffers from higher complexity since it includes a matrix inversion at the start of the

algorithm.

2.5 MIMO systems with massive antenna arrays

In conventional MIMO systems, the transmitter/receiver are equipped with few antennas only,

and although it shows a decent performance gain compared to SISO systems, there is still space

for dramatic improvements. To fulfil the demand for higher achievable rates, and simplifying the

signal processing at the same time, MIMO systems with massive antenna arrays, also known as

Massive MIMO, have been introduced as a potential technology for next generation of wireless

communications systems.

M-MIMO is a scalable version of conventional MU MIMO systems, where the BS is equipped

with very large number of antennas to serve multiple users utilizing the same time/frequency
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resources. Employing massive antenna arrays can have great benefits, such as: 10 times or more

increase in capacity, dramatic reduction in the radiated energy, and a near optimal performance

can be obtained using linear signal processing techniques instead of more complex non-linear

techniques [77, 78].

Fig. 2.7 illustrates the concept of M-MIMO systems setup. BSs are usually equipped with

very large number of antennas N , serving K user terminals in the same time-frequency re-

sources, N � K. Increasing the number of antennas while keeping the same number of users

lead to a logarithmic increase in throughput, with linear increment in training time.

In the uplink scenario, the user terminals send their data to the BS simultaneously, and the

BS needs to separate the received signal to recover the K data streams sent by the users. In

contrast, the BS needs to apply channel precoding techniques before sending the information to

the users, to ensure that each user only receives the data intended for it. In both cases, only the

BS needs to have knowledge of CSI, to reduce the amount of processing at the user end.

2.5.1 Channel model in MU M-MIMO systems

In a single-cell MU M-MIMO, where one BS is equipped with N antennas, serving K single-

antenna users, the path gain between the kth user and the nth antenna at the BS consists of small

and large scale components, and can be expressed as

hn,k = gn,k
√
βk, (2.23)

where gk,n is the complex small scale fading, and it is different between each antenna and the

kth user, while βk represents the large scale fading component, and it is irrelevant of the antenna

index at the BS for a given user, since the distance between a certain user and the BS is much

greater than the distance between different antennas at the same BS. In a vectors form, the

channel matrix can be represented as

H =


h1,1 . . . h1,K

... . . . ...

hN,1 . . . hN,K

 = GD1/2, (2.24)

where
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Figure 2.7: Multi-User Massive MIMO systems: (a) uplink scenario, (b) downlink scenario.
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G =


g1,1 . . . g1,K

... . . . ...

gN,1 . . . gN,K

 , (2.25)

D =


β1

. . .

βK

 . (2.26)

Obtaining the knowledge of CSI is a crucial aspect in any communication system, and M-

MIMO system is no exception. Two different schemes can be adopted for data transmission in

M-MIMO. The first scheme is called time division duplex, where the uplink/downlink transmis-

sions occur in different time instances, however, the bandwidth is completely utilized during

the entire transmission interval. The second scheme, called frequency division duplex, utilizes

different frequency bands for the uplink and downlink transmissions.

2.5.1.1 CSI in time division duplex scenarios

In order to perform a detection in the uplink, or a precoding in the downlink, the CSI needs to

be known at the BS. To obtain the CSI, the BS needs to estimate the values of the channel gains

between the users and its antennas. Most of the work on M-MIMO considers a time division

duplex (TDD) scenario, where the channels are reciprocal in the uplink and downlink cases.

Fig. 2.8 illustrates the transmission protocol in TDD scenario for a single coherent interval,

where the users send their data followed by training pilots used by the BS to estimate their

channels. Unlike the data where it can be sent simultaneously by all users, the pilot signals

needs to be orthogonal, so that the BS can have an accurate estimate of the channels for each

user. Moreover, the length of the training depends on the number of users in the cell, and

is irrelevant to the number of antennas at the BS. Once the BS have an estimate of the CSI,

it can use the same CSI for downlink transmission due to the channel reciprocity property in

TDD [79].

2.5.1.2 CSI in frequency division duplex scenarios

In frequency division duplex (FDD), the uplink and downlink transmissions occur on different

frequency bands. Therefore, and unlike the TDD, the assumption of channel reciprocity does

not hold in this case. The estimate of the uplink channels can be obtained in a similar manner
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Figure 2.8: TDD protocol during one coherent interval.

to that in TDD scenario, however, the real challenge is to obtain CSI for the downlink channels.

To achieve that, the BS needs to send pilot signals to the users, and then each user will estimate

the channels and feed them back to the BS over a control channel.

2.5.1.3 TDD vs FDD in M-MIMO systems

Although TDD is more likely to be adopted in M-MIMO systems than FDD, the latter achieves

higher rates. For example, assume that B is the system bandwidth, and P is the received power

at the user terminal, while the noise spectral density is No. Utilizing TDD will lead to the

following achievable rate, in bits/sec, for the downlink case [78]

RTDD =
B

2
log2

(
1 +

P

BNo

)
, (2.27)

where the division of the bandwidth by 2 is due to the fact that the transmission is occupying

half of the time only. In contrast, for the same specifications, the achievable rate for FDD can

be expressed as [78]

RFDD =
B

2
log2

(
1 +

P

(B/2)No

)
, (2.28)

where the division of the bandwidth by 2 outside the logarithm and inside it is due to the fact

that only half the frequency is utilized for downlink transmission.

31



2.6 Challenges in M-MIMO systems

2.6 Challenges in M-MIMO systems

Although M-MIMO has significant advantages, there are many factors that limits either the

performance or the application of such systems and need to be considered. In the following, we

discuss the main challenges in M-MIMO systems.

2.6.1 Complexity requirement with massive arrays

As explained earlier in this chapter, the use of large number of RF chains impose a real challenge

in M-MIMO. Although the radiated power can be decreased dramatically in M-MIMO, the

energy efficiency suffers from large degradation due to the power consumed by the RF chains.

In addition, the use of large RF chains results in extremely high signal processing at the BS.

Therefore, using limited number of RF chains can improve the EE, cost, and reduce the amount

of data processing. The use of limited RF chains means that the asymptotic advantages of M-

MIMO can no longer be obtained. However, applying AS or SM with M-MIMO are far superior

to any conventional MIMO systems.

2.6.2 Equality for all users

In realistic scenarios, the number of antennas at the BS, even with M-MIMO, are limited. There-

fore, users who are located at the cell-edge might suffer from poor service due to the high inter-

ference and weak signal gain. Although PA techniques can be utilized to enhance the service of

the worst-case users, the performance can still be improved for all users.

Recent work in M-MIMO have proposed the concept of cell-free systems to tackle this

issue [80–84]. In cell-free, as illustrated in Fig. 2.9, the antennas are distributed in the cell as

access points, where each access point will have one or few antenna elements only. In this case,

there are no boundaries for the cell, and everyone can enjoy the high quality service. However,

cell-free MIMO suffers from other challenges that do not exist in centralized M-MIMO, such

as the synchronization of the access points as well as higher complexity.

2.6.3 Channel estimation in FDD systems

As mentioned earlier in this chapter, the uplink channels in FDD systems are estimated via

orthogonal pilots by the users. However, in the downlink scenario, the BS sends pilot signals

to the users, and the estimation will be fed back over a control channel to the BS. The main
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Figure 2.9: Cell Free M-MIMO systems.

disadvantage of this method is that the pilots sent by the BS needs to be orthogonal, and there-

fore as the number of antennas grows, most of the coherent interval (the interval over which the

channel is considered to be flat in both time and frequency), will be occupied only for training

purposes, which leads to an extremely short interval for data transmission.

To discuss the CSI in FDD with more details, assume that the BS is equipped with N

antennas, and K single-antenna users are being served under FDD scenario. In the uplink, the

minimum number of orthogonal pilots that needs to be sent is K, in addition to N coefficients

which are fed back by the users to inform the BS about the downlink channels. In the downlink

case, the BS needs to send N orthogonal pilots to the users to perform the CSI estimation in

the downlink case. In contrast, TDD only requires K orthogonal pilots, which is not only much

smaller than the number of pilots in FDD, but also is irrelevant of the number of antennas at the

BS. However, the applications of FDD in M-MIMO might be feasible in certain circumstances.

For example, the authors in [85] justified the use of FDD in M-MIMO and demonstrated its

feasibility under certain conditions such as the knowledge of channel covariance matrix.
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2.6.4 Pilot contamination in TDD systems

One of the main challenges in M-MIMO is the pilot contamination. As discussed earlier in

this chapter, and for TDD scenarios, the users need to send orthogonal pilots to the BS in order

to obtain CSI. For multi-cell scenario, ideally, the users in neighbouring cells need to send

orthogonal pilots as well to eliminate any interference between the cells. For example, Let

ψk,l = {ψ1
k,l, . . . , ψ

τ
k,l} be a pilot sequence of length τ from the kth user to the BS in cell l,

assuming orthogonal pilots between users in different cells leads to

ψH
k,lψm,j = δ[k −m] δ[l − j], (2.29)

where δ[i] is equal to 1 if i = 0, and 0 otherwise. However, assuming orthogonal pilots within

the same cell as well as neighbouring cells will greatly limits the number of users that can be

served in M-MIMO systems [77]. Therefore, the pilots are re-used in neighbouring cells to

serve larger number of users, which leads to degradation in the channel estimation accuracy.

This phenomenon is known as pilot contamination, which is illustrated in Fig. 2.10, and its

effect can not be eliminated by increasing the number of antenna elements at the BS.

Figure 2.10: Illustration of pilot contamination in M-MIMO.
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2.7 Chapter Summary

In this chapter, we presented the different types of conventional MIMO systems, and the com-

mon linear and non-linear techniques used for signal processing, in terms of both detection and

precoding. Moreover, the advantages of employing systems with limited number of RF chains

are justified. Accordingly, SM, GSM, and AS were explained in details alongside with their

advantages and challenges, where it was shown that SM and GSM achieve higher throughputs

at the cost of increased detection complexity. In contrast, AS can maintain low complexity re-

quirements at the receiver end, and two well-known near-optimal AS algorithms were presented

for conventional MIMO systems. In addition, MU M-MIMO systems were explained as a tool

to meet the demand of achieving much higher throughputs compared to conventional MIMO

systems. Finally, the main advantages and challenges of M-MIMO systems were explained in

details for both FDD and TDD scenarios.
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Chapter 3

Evolutionary optimization algorithms for

Antenna Selection in M-MIMO Systems

3.1 Introduction

Since mid-twentieth century, several scientists have suggested that evolution could be utilized

as an optimization tool for solving different engineering problems [86]. In this chapter we

apply different evolutionary algorithms for AS in M-MIMO system, these algorithms can be

divided into three different categories, which are: bio-inspired, heuristic, and quantum-inspired

techniques.

3.1.1 Bio-inspired optimization

Bio-inspired techniques have been used extensively to solve several engineering problems. The

main idea behind any bio-inspired algorithm is to evolve a population of candidates towards

a better solution for a given problem, by using operators inspired by natural selection. Three

bio-inspired algorithms are applied in this chapter for AS in M-MIMO systems, and they are:

Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony.

3.1.1.1 Genetic algorithm

Genetic Algorithms (GAs) have been used since the 1950s. One of the first people who worked

on these algorithms and also had the most influence on this field than any other was John Hol-

land of the University of Michigan [87]. Holland represented GA as a method for moving

from a certain population of “chromosomes” to another population by using genetics-inspired

operations such as Crossover, Reproduction, and Mutation [86].
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GA have been used as an optimization tool for different engineering-related problems. For

example, in [88–93] the authors have applied GA for AS in MIMO systems, while in [94], GA

was used for joint precoding and AS. Moreover, the authors in [95] have studied the convergence

performance of MIMO detection utilizing GA against ML approach.

3.1.1.2 Particle swarm optimization

Particle Swarm Optimization (PSO) algorithm was first developed by [96], and is a class of

evolutionary algorithms based on the intelligent behavior of biological organisms. The term

“swarm” refers to a collection of interacting agents. For example, a flock of birds can be thought

of as a swarm whose individual agents are birds, or a crowd is a swarm whose agents are people,

and so forth [87].

Similar to GA, PSO have been applied by researchers to tackle engineering optimization

problems. In [97] a modified PSO algorithm was designed for adaptive filtering, while in [98]

PSO was used for user scheduling in downlink MIMO systems. Moreover, in [99] the authors

designed a two-stage PSO algorithm for transmit beamforming. Finally, in [100–103] the au-

thors applied PSO algorithms for AS in MIMO systems.

3.1.1.3 Artificial bee colony

Artificial Bee Colony (ABC) is among the recent bio-inspired optimization algorithms, and

was developed by [104] to tackle optimization problems based on the intelligent behavior of

honey bees on finding food sources. In ABC algorithm, the colony of artificial bees consists of

three different types of bees, and they are used to search for the best solution. These bees are:

Employed, Onlooker, and Scout bees [105].

Since the ABC algorithm has been recently proposed, it has not been widely explored yet,

however, the authors in [106] and [107] employed the ABC algorithm for Peak to Average

Power Ratio (PAPR) reduction and interference cancellation, respectively, in MIMO-OFDM

systems, while in [108], the authors applied ABC algorithm for finding a suitable number of

active users as well as optimizing the size of antenna elements for energy-efficient M-MIMO

systems.

3.1.2 Quantum and classical tabu search algorithms

The term Tabu Search (TS) refers to a list of moves or actions that are tabooed for a certain

number of iterations. However, different actions are tabooed in classical and quantum-inspired
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methods as explained in the following sections.

3.1.2.1 Classical tabu search

Classical Tabu Search (CTS) is a metaheuristic search method, and it was first proposed by

Glover in [109]. CTS is a local search algorithm, that uses the memory to avoid revisiting

the previous moves (or solutions) to ensure an efficient search of the neighborhood. A special

matrix, called Tabu matrix, is used to save the previous visited solutions in the neighborhood,

and forbid using them for a certain number of upcoming iterations.

CTS has been widely applied for different optimization metrics in communications systems,

for example in [110] the authors proposed a CTS for beamforming in Millimeter-Wave M-

MIMO systems. While in [111] and [112] CTS method was proposed for detection in M-

MIMO, furthermore, the authors in [113] utilized CTS approach for detection in conventional

MIMO systems.

3.1.2.2 Quantum-inspired tabu search

Quantum-inspired Tabu Search (QTS) is an evolutionary algorithm proposed by [114] to solve

the 0/1 Knapsack problem. It takes the concept of tabu search and combines it with the char-

acteristics of quantum computing, such as superposition. The QTS algorithm does not use

memory to prevent certain moves or solutions. Instead, at each iteration, it prevents applying

the unitary operator on certain quantum bits, referred to as qubits, when a predefined condition

is met.

different Quantum-inspired algorithms have been proposed recently, for example in [115]

the authors applied a Quantum-inspired evolutionary algorithm for detection in M-MIMO sys-

tems, while the authors in [116] applied a Quantum-inspired algorithm for user selection and

PA in cognitive MIMO systems.

3.2 Motivation and contributions

As demonstrated in Chapter 2, exhaustive search method can not be applied for AS in M-MIMO

systems due to its enormous complexity requirement. In contrast, evolutionary algorithms have

been widely applied as low complexity optimization tools and can achieve near optimal perfor-

mance. Therefore, the motivation in this chapter is to apply and design different evolutionary

algorithms for AS in MU M-MIMO systems operating in the uplink scenario.
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Our novel contributions in this chapter can be summarized in the following list

1. We develop an ABC, a CTS, as well as a QTS algorithms for AS in M-MIMO systems.

We assume an uplink transmission scenario, and the cost function under optimization is

the sum rate capacity.

2. The optimization parameter for the QTS method, which is the rotation angle (θ) that

controls the evolution process of the QTS algorithm, is also found by exhaustive search

from 0o to 180o for the AS problem. The values of θ from 180o to 360o will give identical

results, since only the phase will be changing.

3. The complexity of the different algorithms was measured in terms of the CPU time re-

quired under different number of antennas and iterations.

4. The developed algorithms were compared with other well-known evolutionary algorithms

found in the literature, namely the GA and the PSO algorithms, and it was demonstrated

that classical and quantum-inspired tabu search algorithms outperform bio-inspired algo-

rithms in terms of both performance and complexity.

5. For the QTS algorithm, the effect of the rotation angle θ on the system capacity is demon-

strated for different initializations of α2 and β2, and conclusions were drawn based on the

observations. Moreover, the effect of changing the number of transmit, receive, and se-

lected antennas on the optimum rotation angle was also tested.

6. Finally, the convergence behaviour of the applied AS algorithms was also studied, and it

was demonstrated that QTS algorithm is more flexible than the classical tabu search as

well as the bio-inspired algorithms, since it only requires finding the optimum rotation

angle to evolve the system towards better solutions.

3.3 System Model

Consider an uplink M-MIMO system working in the TDD mode, where the users send an or-

thogonal pilots to the BS to obtain CSI. It should be noted that here we assume perfect CSI at the

BS. Moreover, the BS is equipped with Nr receive antennas1, while Nt represents the number

of transmit antennas (Nr � Nt). This system can be represented by the following equation

1Here we assume that the Nr antennas at the BS experience spatial correlation due to the limited spacing
between them.
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y = Gx + w, (3.1)

where x ∈ CNt×1 is the transmitted signal vector, G ∈ CNr×Nt is the channel matrix, w ∈
CNr×1 is the additive Gaussian noise with zero mean and variance of σ2

n, and y ∈ CNr×1 is

the received signal vector. Throughout this work, we consider spatial correlation between the

antennas at the BS. The adopted correlation model is introduced and explained in the following

Subsection.

3.3.1 Spatial correlation channel model

The correlated channel matrix G in (3.1) can be described using the Kronecker model as follows

[117]

G = R
1/2
R H R

1/2
T , (3.2)

where H ∈ CNr×Nt is a Gaussian matrix, with coefficients assumed to be independent and

identically distributed (i.i.d.), with zero mean and unit variance. RR and RT are the receive

and transmit correlation matrices, respectively. It should be clarified that the operator (.)1/2 in

(3.2) represents the Hermitian square root of a matrix. In this chapter, we consider a multi-

user uplink scenario, where there is no correlation between the users, while the antennas at the

BS are spatially correlated due to the limited spacing between them. The spatially correlated

channel matrix can then be given as

G = R
1/2
R H. (3.3)

The model of the Nr × Nr correlation matrix was assumed to have exponential correlation

structure, which is a common model and can effectively measure the level of spatial correlation

[117]. In this model, the correlation matrix can be implemented using only one coefficient

ρ ∈ C with |ρ| ≤ 1 as follows

Rmn =

ρ
|m−n| ,m ≥ n

(ρ|m−n|)∗ ,m < n,

(3.4)

where Rmn is the correlation between the mth and nth receive antennas, and | . | is the absolute
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value operator.

3.4 Antenna selection problem formulation and algorithms

We consider a BS with massive number of antenna elements (Nr ≥ 100), and choose the best

subset of these antennas to maximize the system capacity. For a MIMO system, the capacity

can be given using the following equation [79]

C = log2

(
det
(
INr +

γ

Nt

GGH
))

, (3.5)

where INr is the Nr × Nr identity matrix, γ is the SNR, and GH is the Hermitian (conjugate

transpose) of the channel matrix.

Out of the available Nr antennas at the BS, we employ the optimization algorithms to choose

the best Ns antennas that can maximize the capacity.

For simplicity, we will define the antenna selection operator as

s = [s1, s2, ....sNr ], (3.6)

where

si =

1 if the antenna is selected

0 Otherwise .
(3.7)

At first, s is initialized with zeros, and once the optimization algorithm choose the best antenna

subset, the location of these antennas will become 1s, while the rest of the elements will remain

0s. The optimized capacity can be then calculated as

C = log2

(
det
(
INr +

γ

Nt

diag(s)GGH
))

, (3.8)

where diag(s) is an Nr × Nr diagonal matrix with s is its diagonal entry. Before we introduce

the different AS algorithms, the basics of Quantum computing, which the QTS algorithm relies

on, are introduced in the next section.
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3.5 The basics of quantum computing

3.5.1 Quantum bit or “qubit”

In classical computers, the smallest unit of information is the bit, and it occurs in one of two

possible states, i.e. “0” or “1”. The analogous concept of a classical bit in a quantum computer

is the quantum bit, or “qubit” [118]. The qubit can be in the |0〉 state, |1〉 state, or in a linear

combination, i.e. superposition of the two states

|ψ〉 = α |0〉+ β |1〉 =

α
β

 , (3.9)

where α and β are real or complex numbers, and |α|2 and |β|2 represent the probabilities of

the qubit to be found in the “0” and “1” states, respectively. Moreover, following the rule of

probability, it should be noted that |α|2 + |β|2 = 1. The Dirac notation |.〉 , pronounced as

“ket”, is the standard notation in quantum mechanics, and it is used to represent the state of

qubits [119]. When measuring the qubit, it can only give a “0” or “1”, which means that the

measurement process will destroy any superposition states and the system will collapse into one

state only [118].

3.5.2 Multiple qubits

For a system with a string of n qubits, known as Q-bit individual (Q) [120], it can be represented

in the following form

Q =

 α1 α2 ... αn

β1 β2 ... βn

 , (3.10)

where |αi|2 + |βi|2 = 1, for i = 1, 2, ..., n. In quantum computing, a system with n qubits can

represent 2n states at the same time before performing the measurement process. While in a

classical system, a string of length n bits can only represent one of the 2n possible solution.

This is the key point that highlights the powerfulness of quantum systems.
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3.5.3 Evolution of quantum systems

In Quantum systems, all the candidate (possible) solutions have the same probability of observa-

tion at the beginning. The main goal is to iteratively evolve the system using certain operations

such that when performing the measurement process, the desired solution will be observed with

high probability, since the measurement process will destroy any superposition state.

Unitary operators, also known as quantum gates, are applied to evolve quantum systems.

A unitary operator can be defined as a matrix that obeys the condition U†U = I. Where U†

is the adjoint (conjugate transpose) of U, and I is the identity matrix. There are many unitary

operators that can be used to evolve a quantum system [121], such as the Hadamard gate, bit-

flip gate, phase-flip gate, and the rotation operator. However, in our work, we apply the rotation

operator Rθ [118]:

Rθ =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 , (3.11)

|ψ〉′ = U |ψ〉, (3.12)

where |ψ〉′ is the new quantum state after applying the unitary operator. It is worth mentioning

that applying the unitary operator will not affect the sum of the probabilities of any qubit in the

Q-bit individual. For a single qubit, the effect of applying the rotation operator can be seen in

Fig. 3.1, where the new qubit state is a rotated version of the original qubit state by an angle of θ

in the anticlockwise direction if θ was positive, and in the clockwise direction if θ was negative.

However, this geometrical representation is only valid when α and β are both real numbers.

In the following sections, we will introduce and explain the different evolutionary algo-

rithms adopted in this chapter to tackle the optimization problem of AS in MU M-MIMO sys-

tem.

3.6 Bio-inspired algorithms for antenna selection in M-MIMO

systems

As mentioned earlier, three bio-inspired methods were used in this chapter for AS in M-MIMO

systems, which are: PSO, GA, and ABC, and they are explained in details in the following

subsections.
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θ
|ψ〉

− |0〉 |0〉

|ψ〉′

− |1〉

|1〉

Figure 3.1: The effect of Rθ on a single qubit

3.6.1 PSO algorithm for AS

At first, a certain number of particles (i.e. possible solutions for the AS problem) are generated

randomly. Each possible solution can be represented as a vector of lengthNr withNs number of

1s located randomly along the vector. The capacity represented by the fitness value is measured

for each possible solution. Additionally, the velocity is calculated, which directs the particle to

fly towards the best solution. In PSO, every particle is influenced by its neighbors (called local

best) as well as by the best particle among the group (called global best). The velocity of the

particles is given as

vi(t) = vi(t− 1) + rand1 × k1(pli − fi(t− 1))

+ rand2 × k2(pgi − fi(t− 1)), (3.13)

where vi(t) represents the velocity of the current iteration for the ith antenna, and v(t − 1)

is the velocity of the previous iteration. rand1 and rand2 are random numbers drawn from a

uniform distribution between 0 and 1, and manipulating these values can have an effect on the

convergence behaviour of the algorithm. k1 and k2 are weighting factors with arbitrary values,

they are assumed to have a value of 2 in our simulations. pli represents the local best solution

for the ith antenna depending on the two neighbors of the current particle. In our simulations,
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the first and last particles were assumed to be connected, i.e. the neighbors of the first particle

are the second and last particle of the population. Moreover, the neighbors of the last particle

are the first and the second last particle in the population. pgi is the global best solution among

the whole population for the current antenna, and finally, f is a vector initialized with zeros, and

updated after each iteration as follow

fi(t) = fi(t− 1) + vi(t). (3.14)

After each iteration, the global best and the local best solutions are updated before the next

iteration starts. Furthermore, at the end of the iterations, the Ns maximum values of f will be

chosen as the surviving antennas, while the rest of antennas will be ignored.

Algorithm 3 PSO AS Algorithm
1: Input N , Nr, max iterations,

2: Initialize fn = 0Nr×max iterations, n = 1 : N ,

3: Generate N random particles,

4: Measure the capacity for the N particles,

5: iter ← 1,

6: while iter ≤max iterations
7: Find local best and global best solutions,

8: Measure the velocity for each antenna in each particle,

9: Update f ,

10: Select the highest Ns values of f for each particle,

11: Measure the modified capacity for all the particles,

12: iter = iter + 1,

13: end while

3.6.2 GA algorithm for antenna selection

At the beginning, a certain number of chromosomes (i.e. possible solutions for the AS problem)

are generated randomly. Every possible solution can be represented as a vector of “genes” (in

this case bits, 0s or 1s), and the number of 1s in each chromosome equal to Ns. The fitness

value for each chromosome (i.e. possible solution) will then be calculated and the best K

chromosomes will be chosen to a mating pool for the reproduction process.

3.6.2.1 Reproduction process

In the reproduction process, the best K chromosomes will be paired off randomly into pairs

of chromosomes, these chromosomes will then go through certain operations to produce a new
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population of chromosomes. In our simulations, K was equal to half the number of chromo-

somes.

3.6.2.2 Crossover process

In this process, a mask of length Nr is generated randomly with values of 0s and 1s, where the

probability of each bit being 0 is equal to the probability of being 1 (50% each). In the crossover

process, and for each gene of the chromosome, if the values for the two chromosomes in each

pair were not equal, and the value of the mask was 1 at the location of the current gene, then the

two chromosomes will exchange their genes to produce a new chromosome.

1     0   1  1   0    …    …   … Mask

Chromosome A

Chromosome B

Chromosome C

Chromosome D

1    2    … …   …   …   …   …   …  … …   …   …    …   …    …    𝑁𝑟

0    1     1  0     1    …    …    … 

1    0     0   0   1    …    …    … 

1   1    0    0 1    …    …    … 

0   0     1   0   1   … …  … 

𝑃 1 = 𝑃 0 = 0.5

Figure 3.2: Crossover process.

However, this might cause a problem, since the total number of 1s in the new chromosome

might be less or more than Ns. To overcome this issue, after generating each chromosome,

the number of 1s within this chromosome will be checked. If it is less than Ns, then random

locations of the chromosome will change their values from 0 to 1, until the total number of 1s is

46



3.6 Bio-inspired algorithms for antenna selection in M-MIMO systems

0     0    0    0     1     0     0     0    …   …  Mask

Chromosome 5

1    2   …  …  …  5  …    …  …  … …  …  … …  …  …  …  …  … …   𝑵

0     1     1     0    1    …    …    … 

𝑃 1 = 𝑃𝑚

Modified chromosome

1      2   … … … …  …  … … … …  … …   …   …  …  …  …  …  … 𝑵𝒓

0    0     1     1     1    …    …    … 

Figure 3.3: Mutation process.

equal to Ns. In contrast, if the total number of 1s within any generated chromosome is greater

than Ns, then random genes will be ignored so that the total number of 1s in any chromosome

will be equal to Ns.

3.6.2.3 Mutation process

The last process of the GA algorithm is the Mutation process, where a mutation mask will be

generated that consists of 0s and 1s according to the mutation probability Pm. In our simulation,

Pm was set equal to 0.09, if the element of the mask was equal to 1. Subsequently, two random

genes in the corresponding chromosome will exchange their information. If the two genes have

the same information, implying that both of them were zeros or ones, then the chromosome will

remain the same after the mutation process.

After finishing all the steps, the fitness value will be calculated for the new population

and the best K chromosomes will go through the same process in the next iteration until the

maximum number of iterations has been reached. In the final step, the chromosome with the

highest fitness value will be chosen.
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Algorithm 4 GA AS Algorithm
1: Input : N , K, and Max iter,

2: Generate N chromosomes randomly,

3: for iter = 1 : Max iter

4: Evaluate the capacity for the N chromosomes,

5: Select the best K chromosomes for the Reproduction process,

6: Apply Crossover process for the selected chromosomes,

7: Repair the new chromosomes,

8: Apply Mutation process,

9: end for

3.6.3 ABC algorithm for antenna selection

In the ABC algorithm, every bee represents a possible solution for the AS optimization prob-

lem. There are three different types of bees used in this algorithm, they are: Employed bees

(EB), Onlooker bees (OB), and Scouts. At first, a certain number of EB (initial solutions) are

generated randomly and their nectar amount, which is the capacity in this case, is measured.

The total number of solution, or food sources, is equal to the number of EB. Every solution

can be represented as a vector of length Nr, which is the number of parameters (0s and 1s)

in the solution, and the number of 1s in any solution is equal to Ns. These bees share their

nectar amount with the bees waiting on the dance area in the hive. Every EB will return to the

same food position visited by itself after sharing its nectar amount, and modifies its solution by

changing the parameters randomly, i.e. changing the location of the 0s and 1s, then measures

the modified fitness value. If the value of the modified solution for every bee is better than the

previous one, then the bee will forget its old solution and memorizes the position of the new

food source, otherwise the bee will return to the initial position.

TheOB will then choose a food source (solution) depending on the nectar amount measured

by the employed bee by using the following equation

Sourcei =
fi∑N
n=1 fn

, (3.15)

where fi represents the fitness value of the source i, and N is the total number of possible

solutions (EB). Once theOB has chosen the food source, then it will try to improve its solution

using other food sources by the following equation

vij = |xij − xkj| , (3.16)
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where k ∈ {1, 2, ....N} is a randomly selected index, and i 6= k. j ∈ {1, 2, ....Nr} represents

the parameter index of the food source i. The total number of OB is equal to the number of

solutions N .

This modification on the food sources might cause the problem of having more or less than

Ns number of 1s in any solution. To tackle this issue, random parameters will be chosen to

change their values so that the total number of 1s is equal to Ns in all the food sources. After

that the fitness value of the modified solution will be calculated, and if it shows an improvement

compared to the old solution, then it will memorize the modified solution, otherwise, the old

solution will be used.

Finally, in order to search the area for the best food source and not getting stuck in limited

number of solutions, one scout bee will be sent at each iteration to perform random search and

calculate the fitness value and compare it with the worst solution in the population, if it was

better then that food source will be replaced with the new food source found by the scout bee,

otherwise the population will remain the same without any further changes for the next iteration.

For the next iteration, the OB will modify the solutions provided by the EB and a scout bee

will be sent to perform a random selection until a certain number of iterations has been reached,

and the best food source will be chosen for the antenna selection operation.

Algorithm 5 The ABC Algorithm
1: Input: N , maximum iterations,

2: Generate N possible food sources randomly for the N Employed bees (EB),

3: Measure the nectar amount, and share it with the Onlooker bees (OB) at the hive,

4: Each EB modifies its solution and measure the modified nectar amount, every EB keeps the best food source

only,

5: iter ← 1,

6: while iter ≤ maximum iterations

7: Every OB chooses a food source based on Eq. (3.15),

8: Every OB modifies its solution according to Eq. (3.16),

9: Repair the modified solutions, and measure their fitness values,

10: Compare the old solutions with the modified ones, keep the one with highest capacity,

11: Send one Scout bee (SB) and compare its nectar amount with the worst solution, and keep

it if it shows improvement,

12: iter = iter + 1,

13: end while
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3.7 Metaheuristic methods for AS in M-MIMO systems

The second category of the evolutionary methods is the heuristic techniques used in this chapter,

which are: CTS and QTS. In the following, the two methods are introduced and explained in

details for the AS in M-MIMO systems. It should be noted that, to the best of our knowledge,

both of these methods have not been applied for AS before.

3.7.1 CTS algorithm for antenna selection

In the CTS algorithm, an initial solution will be generated randomly. This solution can be

represented as a vector of length Nr with Ns number of 1s and the rest are 0s. At each iteration,

a certain number of neighbors will be generated and their fitness values will be calculated. The

best among these neighbors will be chosen as the next move for the next iteration, even if its

fitness value is less than the fitness value of the current solution. The reason behind this is to

ensure exploring the area as wide as possible without getting stuck in certain locations.

We define the neighbor in this algorithm as a solution differs with the current solution by a

very few number of antenna locations, we call them the tabu antennas. For example: choosing

two out of the Ns antennas and change their locations while keeping the locations for the rest

of the antennas fixed.

After choosing the best among the neighbors, the old and new locations of the tabu antennas

will be stored in the tabu matrix, and they can not be used for the next L iterations, where L is

the length of the tabu matrix. The first set of tabu antennas to enter the tabu matrix will be the

first one to leave it.

In the next iteration, the new solution will be used and new neighbors will be generated,

and the best one will be considered as the next move, and the tabu antennas will be stored in

the tabu matrix and so on until we reach the maximum number of iterations. At the end, the

solution with the best fitness value in all the iterations will be declared as the final solution for

the antenna selection problem.
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Algorithm 6 The CTS Algorithm
1: Input: N , maximum iterations,

2: Generate random solution, then Evaluate its Capacity and store it in Rmax,

3: iter ← 1,

4: while iter ≤ maximum iterations

5: Generate N neighbors and Evaluate their capacities,

6: Select the neighbor with highest capacity as the next move,

7: Update the tabu matrix,

8: Update Rmax,

9: iter = iter + 1,

10: end while

3.7.2 QTS algorithm for antenna selection

The QTS algorithm starts by initializing every qubit in Q with equal probabilities of α and β,

i.e. |α|2 = |β|2 = 0.5. A matrix V ∈ RN×Nr will be generated with random values between

0 and 1, where N is the number of possible solutions. This matrix will be used to generate

the possible solutions or neighbors. Each solution in the neighborhood will be generated by

comparing each value of Vi,j with |βj|2 from Q, where i = 1, 2, ..., N and j = 1, 2, ..., Nr. If

the value of Vi,j was less than |βj|2, then Xi,j will be 1, otherwise it will be 0. Furthermore,

X ∈ RN×Nr is a matrix containing the set of possible solutions. Once the possible solutions

are set, they need to be repaired, since the number of 1s in any solution might be less or more

than Ns. To tackle this problem, the number of 1s within any possible solution will be checked.

If it was less than Ns, then random locations of the solution will change their values from 0

to 1, until the total number of 1s is equal to Ns. In contrast, if the total number of 1s within

any generated solution was greater than Ns, then random antenna locations will be ignored so

that the total number of 1s in any solution will be equal to Ns. After repairing all the solutions,

their capacities will be measured. The best solution sb and the worst solution sw will be used to

update Q for the next iteration. If sbj and swj were equal, i.e. they are both either 1s or 0s, then

the jth qubit in Q will be tabooed. Otherwise, the rotation operator in (3.11) will be applied

with either a positive or a negative value of θ, depending on the location of the qubit, to evolve

the qubit towards a better solution as shown in Table 3.1.

In the next iteration, a new matrix of random numbers V will be generated and compared

with the updated values of |β|2 from Q to generate a new set of solutions. The solution with

the highest capacity throughout the maximum number of iterations will be chosen as the final

solution for the antenna selection problem.
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Table 3.1: Rotation operator lookup table

Qubit location sbj swj Action on qubit

First or Third quadrant

0 0 Taboo
0 1 R−θ
1 0 Rθ

1 1 Taboo

Second or Forth quadrant

0 0 Taboo
0 1 Rθ

1 0 R−θ
1 1 Taboo

Algorithm 7 The QTS Algorithm
1: iter ← 1,
2: Initialize Q with |α|2 = |β|2 = 0.5,
3: Initialize highest capacity Rmax = 0,
4: while iter ≤ maximum iterations
5: Generate random matrix V,
6: Compare V with |β|2 to obtain X ,
7: Repair X and evaluate the Capacity,
8: Update Rmax,
9: Find sb and sw to update Q using the Lookup table,

10: iter = iter + 1,
11: end while

3.8 Processing time evaluation

To address the underlying complexity, the CPU time was measured for the different algorithms

on a 3.4 GHz intel Core i5 PC, with 8 GB of RAM using the MATLAB R2014a software

program. In Tables 3.2, 3.3, and 3.4 the SNR value was fixed at 0 dB, and the simulations

were carried out 50 times for each algorithm. In Tables 3.2 and 3.4, the number of iterations

were 50, while in Table 3.3, 75 iterations were used. On the other hand, the number of initial

solutions were 20 for PSO, GA and ABC respectively, and 10 neighbors for CTS and QTS in

Tables 3.2 and 3.3, while 40 initial solutions and 20 neighbors were considered in Table 3.3.

The reason behind this is that the complexity level of these algorithms depends on both the

number of iterations and the population size. In each case, the capacity as well as the CPU time

were captured and compared for the different algorithms.

It should be noted that the processing time required for the employed evolutionary algo-

rithms is normalized in the aforementioned tables, since it depends on the specifications of the

computer machine or the DSP board that runs these algorithms. In other words, performing the

same simulation codes on different machines will result in different processing time.

As shown from Tabules 3.2, 3.3, and 3.4, CTS and QTS require 50% shorter CPU time

than any bio-inspired algorithm and achieve at the same time higher capacities. Moreover, QTS
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Table 3.2: CPU time required for the different algorithms at SNR = 0 dB, Nt = 10, Nr = 400,
Ns = 100, and 50 iterations

Algorithm Specifications Capacity (bps/Hz) CPU time (normalized)

PSO 20 particles 34.4627 0.8352

GA 20 chromosomes 35.5471 0.7376

ABC 20 food sources 34.5867 1

CTS 10 neighbours 35.9624 0.3913

QTS 10 neighbours 36.4729 0.3377

Table 3.3: CPU time required for the different algorithms at SNR = 0 dB, Nt = 10, Nr = 400,
Ns = 100, and 75 iterations

Algorithm Specifications Capacity (bps/Hz) CPU time (normalized)

PSO 20 particles 34.4775 0.8954

GA 20 chromosomes 36.1473 0.7380

ABC 20 food sources 34.6487 1

CTS 10 neighbours 36.0814 0.3967

QTS 10 neighbours 36.6816 0.3489

outperform CTS in terms of both complexity and performance.

3.9 Simulation Results and Discussion

In this section, different simulation results will be presented for different evolutionary AS al-

gorithms. It should be noticed that unless stated otherwise, the number of possible solutions N

for the bio-inspired algorithms was set to 20, while 10 possible solutions was considered for the

metaheuristic methods. Moreover, the correlation factor |ρ| was set to 0.8, while the number

of iterations was 25 for all algorithms. Furthermore, the number of tabu antennas was set to 2,

while the length of tabu matrix L was chosen to be 20. Finally, the number of transmit antennas

Nt was 10.
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Table 3.4: CPU time required for the different algorithms at SNR = 0 dB, Nt = 10, Nr = 400,
Ns = 100, and 50 iterations

Algorithm Specifications Capacity (bps/Hz) CPU time (normalized)

PSO 40 particles 34.3620 0.8481

GA 40 chromosomes 36.2724 0.7505

ABC 40 food sources 34.7633 1

CTS 20 neighbours 36.5691 0.3811

QTS 20 neighbours 36.9215 0.3397

At the beginning, the best value of θ was determined by running extensive simulations, and

it was found to be around 41o as Fig 3.4 shows. The value of θ in [114] was set to 0.01π (1.8o),

however, this value is clearly not optimum for the antenna selection problem. The simulations

were carried out for 1000 different channel observations for each value of θ from 0 to π with a

step of 1o. It is worth noting that the values of θ from π to 2π will give identical results to the

values from 0 to π, since only the phase of Rθ will be different.
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Figure 3.4: Capacity vs θo for Nr = 200, and Ns = 50 at 0 dB SNR.
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3.9.1 Effect of changing the number of antennas and β on the rotation

angle

The validity of the optimum rotation angle θ was tested for different number of transmit, and

receive antennas. As shown in Fig. 3.5, the same behaviour is observed for the different cases,

and changing the number of antennas has no effect on the rotation angle. This is a great advan-

tage for the QTS algorithm over CTS and all other evolutionary algorithms. For example, in

CTS algorithm, the parameters of this algorithm, i.e. the length of tabu matrix and the number

of tabu antennas, are dynamic, and they are directly related to the number of iterations, number

of selected antennas, as well as number of receive antennas. Therefore, changing any of the

settings in the system means that these parameters need to be re-optimized. Moreover, the mu-

tation probability Pm, number of selected chromosomes for reproduction in GA, the weights of

the local global best antennas in PSO, ... etc, all need to be optimized in order to enhance the

performance of these algorithms. In contrast, in QTS, and as shown in Fig. 3.5, the only param-

eter that needs optimizing is the angle of rotation, and it does not depend on the specifications

of the system.

The performance of the QTS algorithm was further tested for different scenarios. For ex-

ample, in Fig. 3.6, different initial values of β, which were used to initialized each qubit in Q,

were applied, and the performance of the system was observed. The values of β that gave the

best performance were found to be
√

0.3 and
√

0.5, while the worst performance was observed

when β was set to
√

0.1 and
√

0.9. Furthermore, each value of β has different optimum angle

θ. It is worth to mention that sum of α2 and β2 should always be 1.

3.9.2 Capacity vs SNR for different AS algorithms

The system capacity was adopted as the performance metric for the different AS schemes ap-

plied in this chapter. Figs. 3.7 and 3.8 show the achievable capacity for the different evolution-

ary algorithms as well as Random Selection (RS) criteria, and for different number of receive

and selected antennas. QTS outperforms all other AS schemes for both cases, followed by CTS,

then GA. In contrast, PSO algorithm show the worst performance between the evolutionary al-

gorithms followed by the ABC scheme.
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Figure 3.5: Capacity vs θo for different number of transmit, receive, and selected antennas when
β =0.5, Number of iterations = 15, and SNR = 0 dB.
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Figure 3.7: Capacity vs SNR different AS algorithms with Nr = 200, Ns = 50.
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Figure 3.8: Capacity vs SNR for different AS algorithms with Nr = 400, Ns = 100.
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Figure 3.9: Convergence speed of different AS algorithms when Nr = 200, Ns = 50, SNR = 0
dB, N = 16.

3.9.3 Convergence speed for different AS algorithms

The convergence speed is one of the most important measures of any evolutionary algorithm,

since it gives a better understanding on the efficiency of the evolving process. The convergence

behaviour for the different AS algorithms was tested for different number of receive antennas,

and size of populations.

Fig. 3.9 shows the convergence behaviour when Nr = 200, and the population size N = 16

for all algorithms. The QTS shows the best convergence speed among the applied algorithms

followed by CTS then GA. Interestingly, the PSO and ABC algorithms considerably outperform

both CTS and GA when the number of iterations is small. However, both of ABC and PSO show

very small increase in capacity per iteration. Furthermore, when the size of population is small,

for example N = 8, PSO and ABC both show the same performance as shown in Fig. 3.10.

3.9.4 Effect of spatial correlation on the performance

In this section, we observe the effect of the spatial correlation on the capacity of the system

for different AS schemes. It should be noted that in our work we assume that the users do not

experience any correlation between them, and the spatial correlation only exists between the
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Figure 3.10: Convergence speed of different AS algorithms when Nr = 100, Ns = 50, SNR = 0
dB, N = 8.
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antennas at the BS. As Fig. 3.11 demonstrates, all the different AS algorithms show similar

behaviour, where their performance is highly degraded when |ρ| is ≥ 0.9.

3.10 Critical evaluation of different evolutionary algorithms

In this section, we evaluate the adopted optimization methods for AS in MU M-MIMO system.

For bio-inspired methods, GA requires lower complexity compared to PSO and ABC methods.

Moreover, GA has better convergence behaviour when the number of iterations is large. In

contrast, PSO and ABC demonstrated higher rates when small number of iterations is applied,

i.e. less than 10 iterations as demonstrated in Fig. 3.9. However, they show small improvement

in terms of sum rate capacity per iteration. Consequently, GA outperforms PSO and ABC as

the number of iterations becomes large.

For Tabu-based methods, both CTS and QTS show good convergence behaviour with low

complexity. However, QTS is preferable to tackle the AS optimization problem since it has only

one optimization parameter, which is the rotation angle. In contrast, CTS has many optimization

parameters such as: The number of tabu-antennas and the length of tabu-matrix, which are

directly affected by the number of iterations and the number of antennas.

It should be noted that although QTS showed superior performance compared to the other

adopted schemes in this chapter, this only holds for the AS case. For example, for user schedul-

ing or detection, QTS might not show the best performance compared to GA, CTS, ABS, or

PSO methods, since these algorithms evolve in a controlled random way which makes it diffi-

cult to predict their behaviour in solving different optimization problems.
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3.11 Chapter Summary

In this chapter, bio-inspired and metaheuristic algorithms were applied for AS in M-MIMO

systems. The bio-inspired algorithms included GA, PSO, and ABC, while the metaheuristic

methods included CTS and QTS algorithms. Different simulation results were presented to

compare the different algorithms, including: system capacity, complexity requirement, as well

as convergence speed. The QTS algorithm outperformed all other evolutionary algorithms in

terms of both complexity and system capacity, followed by CTS then GA. In contrast, PSO

algorithm showed the worst performance followed by the ABC algorithm which had the highest

complexity among the different algorithms. Moreover, in order to evolve the QTS algorithm

towards better solution, the optimum rotation angle θ needs to be optimized, and was found

in our work through exhaustive search. Our simulations demonstrated that the optimum angle

depends on the initialization of each qubit in the Q-bit individual Q, but it is irrelevant of

the number of transmit, receive, or selected antennas. In contrast, ABC, PSO, GA, and CTS

algorithms have multiple dynamic parameters, and they need to be optimized in order to enhance

their performance.
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Chapter 4

Reduced Search Space Antenna Selection

Methods for M-MIMO with MF precoding

4.1 Introduction

In the previous chapter, the cost function considered for optimization was the sum rate capac-

ity, which can be obtained via SIC for the uplink, or DPC in the downlink scenario. Such

methods require high complexity signal processing techniques as shown in Chapter 2. Further-

more, although evolutionary algorithms have low complexity compared to the exhaustive search

method, or other high complexity AS schemes, they still require large number of cost function

evaluations, in our case was the system capacity, which involves large number of complex vec-

tor multiplications.

In this chapter, and similar to our work in chapter 3, we focus on maximizing the spectral

efficiency of MU M-MIMO system, by designing novel algorithms for AS. However, we aim

to achieve further complexity reduction in terms of both precoding and algorithm design. In

addition, we evaluate the EE of the proposed system for different number of selected antennas

and over a wide range of SNRs.

Considering a system withN antennas at the BS servingK single-antenna users in the same

time-frequency resources, our contributions can be summarized as follow

1. We design a User-Centric AS (UCAS) algorithm with reduced search space, where the

available antennas are divided into K groups, and each group corresponds to one user

only, where the kth group contains the antennas that have the maximum channel norms

for the kth user. Therefore, to maximize the SINR for the kth user at a given iteration, the

proposed algorithm selects an antenna from the kth group only. This reduces the search
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4.2 System Model

space by a factor of K.

2. The second proposed algorithm, called a Semiblind Interference Rejection Antenna Se-

lection (SIRAS), was designed to reject the highest number of interuser interference terms

at any given iteration, based on the signs of the interference terms only.

3. The proposed designing criteria for both algorithms was intended to avoid any vector

multiplications during the iterative selection process, by storing the multiplications of

each two entries in the channel matrix before the iterative algorithms start. This resulted

in dramatic complexity reduction in terms of number of floating-point operations (FLOPs)

required for their implementations.

4. The performance of the proposed algorithms is evaluated in terms of the achievable sum

rate and EE, under perfect and imperfect CSI, and showed a significant gain compared to

other low complexity AS algorithms.

5. The complexity in terms of number of FLOPs is evaluated for the proposed algorithms,

and compared with the complexity of other AS schemes found in the literature. The

proposed schemes show a great performance-complexity trade-off.

4.2 System Model

In this section, we introduce in details the system model adopted in this chapter, and also the

SINR, sum rate achieved with MF, as well as the EE for such scenario.

4.2.1 Channel, signal, and noise models

We consider in this work a single cell MU M-MIMO system operating in the downlink scenario

as depicted in Fig. 4.1. A TDD transmission is assumed, where the users send orthogonal

pilots to the BS to obtain CSI. Let H = [h1, . . . ,hK ]T ∈ CK×N be the channel matrix, where

hk ∈ CN×1 represents the channel coefficients between the BS and the kth user, with hk,n ∼
CN (0, σ2

h), and wk ∈ CN×1 denotes the unit norm precoding vector for the kth user, and it can

be given as

wk =
h∗k
‖hk‖

. (4.1)
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4.2 System Model

Figure 4.1: Multi-user M-MIMO downlink system.

Assuming that the BS has a perfect knowledge of H, and MF precoding is applied at the

transmitter, the received signal at the kth user can be given as

yk =
√
pkh

T
kwkxk +

K∑
i=1
i 6=k

√
pih

T
kwixi + nk, (4.2)

where, nk ∼ CN (0, σ2
n) is the AWGN, x = [x1, ...., xK ]T is the information symbols vector

intended for the K users, with E{xxH} = IK ,
√
pk is the power allocated for the kth user, and

it follows the constraint
K∑
i=1

pi = PT , (4.3)

where PT is the total transmission power in Watts available at the BS for all users.

4.2.2 SINR, achievable rates, and energy efficiency

In this work, we will use the sum rate and EE metrics to demonstrate the efficiency of the

proposed AS algorithms. For systems with MF precoding, the SINR for the kth user can be

expressed as [122]

γk =
pk
∣∣hTkwk

∣∣2∑K
i=1, i 6=k pi |hTkwi|2 + σ2

n

, (4.4)

and the achievable rate for the same user is a function of the SINR, and it can be given as [122]
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Rk = log2(1 + γk), (4.5)

while the total sum rate is the sum of achievable rates for all users, i.e.

R =
K∑
k=1

Rk. (4.6)

Furthermore, the EE in bits/Joule can be defined as the total bandwidth, multiplied by the

total sum rate over the total power consumed [123], i.e.

EE =
B . R

Ptotal
, (4.7)

where B is the bandwidth, and Ptotal is the total power consumed at the transmitter and the

receiver, and can be given as [124]

Ptotal =
PT
η

+NRFPtx +KPrx, (4.8)

where η is the power amplifier efficiency, NRF is the number of activated RF chains at the

transmitter, while Ptx and Prx are the circuit power consumption per RF chain at the transmitter

and the receiver, respectively [124].

The aim is to design efficient low complexity AS algorithms to selectNs out of the available

N antennas at the BS to maximize the SINR. It should be noted that finding the optimal number

of antennas is not considered in this work, since optimizing the number of antennas to maxi-

mize the total sum rate will result in poor performance in terms of EE, and vice versa. More-

over, throughout this work, we assume frequency-flat fading channels. Similar assumptions in

M-MIMO systems with AS were made in [125], [43]. However, for system with frequency

selective channels, Orthogonal Frequency Division Multiplexing (OFDM) can be utilized, and

the proposed algorithms can be applied after averaging over all subcarriers as in [27].

4.3 Low complexity AS algorithms in M-MIMO

It is well known that optimal AS can be achieved through exhaustive search, however, this

method is prohibited for systems with large number of antennas due to its enormous complexity.

Therefore, in this section we present two low complexity AS algorithms found in the literature
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and shall be used for comparison reasons with our proposed methods.

4.3.1 Maximum SNR AS algorithm

The Maximum SNR (MS) algorithm represents the simplest selection method. After calculating

the channel norms for each antenna, theNs antennas with highest channel norms will be selected

as the final solution, this can analytically be given as

∆ = arg max
Ns

{‖hc1‖ , ‖hc2‖ , ..., ‖hcN‖} , (4.9)

where ∆ is a set containing the indices of the Ns antennas that have the highest channel norms.

4.3.2 Greedy AS algorithm

The authors in [44] showed that for systems with MF precoding, removing certain antennas

can increase the total sum rate. Two algorithms were proposed by the authors, the first is a

high complexity iterative algorithm, where at each iteration all the available antennas are tested,

and the antenna that causes the largest performance degradation is removed. Although this

algorithm guarantees near optimal results, its high complexity makes it an impractical solution

for the AS problem. The second algorithm that was proposed by the same authors is a low

complexity greedy selection algorithm, where the antennas are sorted based on their channel

norms values in a descending order, and at each iteration, the antenna with highest channel

norm will be tested, if it increases the total sum rate then it will be activated, otherwise it will be

deactivated. Since the authors consider a very similar scenario to that we consider in our work,

we shall compare our results with their algorithm in terms of sum rate performance, EE, as well

as implementation complexity. The greedy selection method is described in Algorithm 8.

66



4.4 Proposed AS algorithms

Algorithm 8 Greedy AS Algorithm
1: Input:

2: N , Ns, and H,

3: Initialize:

4: Λ← 1 : N , (Λ is a set of available antennas),

5: N = 01×N , (N is the set of selected antennas),

6: Rmax = 0,

7: while Λ 6= ø and
∑N
n=1Nn < Ns do

8: n? = arg maxn∈Λ ‖hcn‖ ,

9: Nn? ← 1,

10: Evaluate the Sum rate R in (4.6) using the activated antennas in N ,

11: if R > Rmax

12: Rmax = R,

13: else

14: Nn? ← 0,

15: end if

16: Λ = Λ \ n?,

17: end while

18: Output: [Hc
j ]j /∈Λ

4.4 Proposed AS algorithms

Although MF is one of the most attractive forms of linear precoding, it suffers from inter-

user interference, which causes a dramatic performance degradation. Both of the proposed

algorithms depend on the channel correlation matrix U = HHH, which can be expressed as

U =



hT1 h∗1 hT1 h∗2 · · · · · · hT1 h∗K

hT2 h∗1
. . . ...

... . . . ...

... . . . hTK−1h
∗
K

hTKh∗1 · · · · · · · · · hTKh∗K


, (4.10)

where the elements at the diagonal of (4.10) are related to the desired signal gain for each user,

while the elements in the upper and lower triangle parts are directly related to the inter-user

interference, since the interference from user j to user i is |h
T
i h∗

j |2
‖hj‖2

, for i, j = 1, 2, ... K, and

i 6= j. Each element in (4.10) is a summation of N multiplications between two complex

numbers, i.e.
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4.4 Proposed AS algorithms

hTi h∗j = hi,1h
∗
j,1 + hi,2h

∗
j,2 + .....+ hi,Nh

∗
j,N . (4.11)

Both of the proposed algorithms aim to increase the SINR, and hence increase the sum rate and

EE, while maintaining low implementation complexity requirement.

4.4.1 Proposed User-Centric Antenna Selection Algorithm

In this method, the antennas at the BS are divided into K groups based on their channel norms,

where each group corresponds to one user. Moreover, each group should be allocated exactly

N/K antennas, therefore, any group that reaches its maximum limit will not be considered in

the allocation process for the remaining set of available antennas. The nth antenna at the BS

will be allocated to the kth group, denoted as Gk, only if it satisfies the following condition

hk,n ∈ Gk ⇐⇒ |hk,n| > |hi,n| ,∀i ∈ K \ k. (4.12)

where K is a set containing the indices of groups with less than N/K antennas, the proposed

grouping technique is described in Algorithm 9. To reduce the computational complexity, we

store the values of the N complex multiplications in (4.11), and for each element in (4.10), in

a matrix Ξ ∈ CK2×N , this will result in avoiding any vector multiplication later on during the

iterative selection process. The matrix Ξ can be represented as

Ξ =



ξ1,1 . . . . . . ξ1,N

... . . . ...

... . . . ...

ξK,1 . . . . . . ξK,N
... . . . ...
... . . . ...

ξK2,1 . . . . . . ξK2,N


, (4.13)

where ξ1,1 = h1,1h
∗
1,1, ξ1,N = h1,Nh

∗
1,N , ξK,1 = h1,1h

∗
K,1, ξK,N = h1,Nh

∗
K,N , ξK2,1 = hK,1h

∗
K,1

and ξK2,N = hK,Nh
∗
K,N . Therefore, the SINR for the kth user depends mainly on rows {K(k −

1) + 1, K(k − 1) + 2, . . . , Kk} in Ξ. At a given iteration, the algorithm aims to maximize the

SINR for the kth user only, by selecting a single antenna from Gk. Let Rk denotes the set of

row indices in Ξ that corresponds to user k, withRki being the ith element ofRk, for example,
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Algorithm 9 Proposed grouping strategy for the UCAS method
1: Input K, N , and H,
2: Initialize
3: Gk = 0N

K×1, ∀k ∈ {1 : K},
4: tk = 0, ∀k ∈ {1 : K}, (Number of antennas in each group),
5: K = 1 : K, (Available groups with less than N

K antennas),
6: for n = 1→ N
7: k∗ = arg maxk∈K |hk,n|,
8: tk∗ = tk∗ + 1,
9: Gk∗(tk∗) = n, (Gk(i) is the ith element of Gk),

10: if tk∗ = N
K

11: K = K \ k∗,
12: end if
13: end for
14: Output Gk,∀k ∈ {1 : K}

R1 = {1, 2, . . . , K}, while R11 = 1, and let ω = [ω1, ω2, . . . , ωK2 ]T be a vector initialized

with zeros, and used to update the values of the signal and interference terms after each selected

antenna, since selecting any antenna from any group will result in adding a column from Ξ to

ω. To clarify this, assume at iteration t, the antenna ζ [t] was selected, the vector ω will then be

updated as follow

ω[t] = ω[t−1] + ξcζ[t] , (4.14)

each antenna is selected to maximize the SINR for a certain user k, this can analytically ex-

pressed as

ζ [t] = arg max
ns∈Gk

∣∣∣ω[t−1]
Rkk

+ ξRkk
,ns

∣∣∣2∑K
i=1
i 6=k

∣∣∣ω[t−1]
Rki

+ ξRki
,ns

∣∣∣2 + σ2
n

, (4.15)

note that the selection process was not only achieved without any vector multiplications, but

also the size of the search space was reduced by K times. For example, in selecting the 1st

antenna, the search space was reduced from N to N/K. Moreover, it should be noted that Gk
is updated after the selection, by removing the index that corresponds to the selected antenna

before the next iteration starts. In the next iteration, the selection will be carried out in a similar

manner to maximize the SINR for the next user, i.e. the (k + 1)th user. It is worth to mention

that exactly Ns/K antennas are selected from each group to ensure fairness between all users.

The UCAS scheme is fully described in Algorithm 10.
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Algorithm 10 Proposed UCAS algorithm
1: Input K, N , Ns, Ξ, Gk(∀k),Rk(∀k), and H,
2: Initialize
3: ω[0] = 0K2×1, t← 0,
4: for l = 1→ Ns/K
5: for k = 1→ K
6: t← t+ 1,

7: ζ [t] = arg maxns∈Gk

∣∣∣∣ω[t−1]
Rkk

+ξRkk
,ns

∣∣∣∣2∑K
i=1
i6=k

∣∣∣∣ω[t−1]
Rki

+ξRki
,ns

∣∣∣∣2+σ2
n

,

8: ω[t] = ω[t−1] + ξcζ[t] ,
9: Gk ← Gk \ ζ [t],

10: end for
11: end for
12: Output [Hc

j ]j /∈Gk,∀k

4.4.2 Proposed Semiblind Interference Rejection Antenna Selection Al-

gorithm

The SIRAS algorithm aims to minimize the interuser interference by minimizing the terms in

the upper and lower triangle parts of (4.10) relying on the signs of the interference terms only,

hence the name semiblind. Furthermore, since hTi h∗j = (hTj h∗i )
∗, it is sufficient to minimize the

elements in the upper triangle part only, and that will lead to the exact same minimization for

the terms in the lower triangle part, and vice versa. The algorithm starts by storing the M ×N
complex multiplications in Φ, where M = (K2 −K)/2 is the number of interference terms in

the upper triangle part of (4.10), and it can be expressed as follow

Φ =


φ1,1 . . . . . . φ1,N

... . . . ...

... . . . ...

φM,1 . . . . . . φM,N

 , (4.16)

since the upper triangle part of (4.10) is considered in this work, the N elements in the first row

of (4.16) are the values of the N complex number multiplications in the first interference term

in (4.10), i.e. φ1,n = h1,nh
∗
2,n, while φM,n = hK−1,nh

∗
K,n, for n = 1, 2, ..., N . The algorithm

then selects its first antenna based on the maximum total channel norms

ζ [0] = arg max
n∈1:N

‖hcn‖ , (4.17)
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where ζ [0] is the first selected antenna. After selecting the first antenna, a vectorψ ∈ CM×1 will

be initialized with the column in Φ that corresponds to the selected antenna, i.e. ψ[0] = φcζ[0] .

Note that the M values in ψ are complex, and they are directly related to the interference

between the users at any given iteration, hence minimizing these values will result in minimizing

the total interference and therefore higher SINR. Moreover, selecting any antenna will result in

adding a column from Φ to ψ. Assume that at iteration t, the antenna ζ [t] was selected, then ψ

will be updated as follow

ψ[t] = ψ[t−1] + φcζ[t] , (4.18)

therefore, the goal is to select the antenna that corresponds to the column in Φ which will

minimize the M complex values in ψ. In other words, at iteration t, the algorithm aims to

select the antenna ζ [t] from the set S, where the nth antenna (denoted as λn) belongs to S if it

satisfies the following condition

λn ∈ S ⇐⇒
{

sign(<[φm,n]) 6= sign(<[ψ[t−1]
m ])

}
∩{

sign(=[φm,n]) 6= sign(=[ψ[t−1]
m ])

}
,∀m,n ∈ A, (4.19)

where A is a set containing the indices of available antennas at a given iteration. However, it

is not guaranteed to find an antenna that satisfies the condition in (4.19), therefore, we relax

this condition and select the antenna that has the highest number of opposite signs between Φ

and ψ. In the next iteration, the vector ψ will be updated according to (4.18), and the same

procedure will be repeated again until maximum number of selected antennas is reached. The

proposed method is described in details in Algorithm 11.

4.5 Complexity Analysis

In order to show the efficiency of the proposed methods, the complexity of the proposed algo-

rithms, MS method, as well as the greedy selection proposed in [44] will be evaluated in terms

of number of FLOPs required for their implementation. We follow the analysis in [126], where

the addition between two real numbers is equivalent to 1 FLOP, while their multiplication is

equivalent to 4 additions. Moreover, we assume that comparing the signs of two real numbers

is equivalent to 1 addition, while finding the square root of a real number and division between

two real numbers are equivalent to one real multiplication.

It should be noted that the analysis carried out in this section is for the software complex-
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Algorithm 11 Proposed SIRAS algorithm
1: Input K, N , Ns, M , Φ, and H,
2: Initialize:
3: ψ = 0M×1,
4: M = 01×N , (set containing the indices of selected antennas)
5: A = 1→ N , (set containing the indices of available antennas)
6: ζ [0] = arg maxn∈1:N ‖hcn‖,
7: ψ[0] = φcζ[0] ,
8: for t = 1→ Ns-1
9: Mζ[t−1] = 1,

10: A = A \ ζ [t−1],
11: λ = 01×N−t, (vector containing the number of opposite signs

between φ and ψ for each available antenna),
12: for n = 1→ N − t
13: for m = 1→M
14: if sign(<[φm,ηn ]) 6= sign(<[ψ[t−1]

m ])
15: λn = λn + 1,
16: end if
17: if sign(=[φm,ηn ]) 6= sign(=[ψ[t−1]

m ])
18: λn = λn + 1,
19: end if
20: end for
21: end for
22: ζ [t] = arg maxλ,
23: ψ[t] = ψ[t−1] + φcζ[t] ,
24: end for
25: Output: [Hc

j ]j /∈A

ity of the system only in terms of the number of operations required, which in return will be

reflected on the time processing required to apply these algorithms in practical scenarios.

4.5.1 Complexity of MS scheme

The MS method has the lowest complexity, however that comes at the price of performance

degradation. Finding the channel norms for the N antennas requires N(10K+3) FLOPs, while

sorting the antennas requires N log10N FLOPs, therefore, the total complexity is

CMS = N(10K + log10N + 3). (4.20)

4.5.2 Complexity of greedy AS algorithm

The greedy algorithm starts by finding the channel norms for the N antennas and sorting them,

which requiresN(10K+log10N+3) FLOPs. The algorithm will then starts its iterations, where

at each iteration the sum rate in (4.6) will be evaluated. Finding the MF precoding weights for

all the users requires K
∑Ns

l=1(18l+ 3) FLOPs, while evaluating the SINRs for all users require∑Ns

l=1(20K2l + 20K2 + 3K) Flops. Finally, calculating the sum rate after obtaining the SINR
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values takes (2K− 1)Ns FLOPs, therefore, the total complexity of the greedy algorithm can be

given as

Cgreedy = N(10K + log10N + 3) +Ns(20K2 + 8K − 1)

+
Ns∑
l=1

l(20K2 + 18K). (4.21)

However, here we only consider an ideal case for the greedy algorithm by assuming that each

selected antenna will boost the total sum rate, therefore, the actual complexity of the greedy

algorithm is higher than that shown in this section, otherwise it would have shown the exact

same sum rate performance as the MS scheme.

4.5.3 Complexity of UCAS algorithm

The UCAS algorithm starts by evaluating the matrix Ξ that hasK2×N complex multiplications,

which results in 18K2N FLOPs. Then, the absolute channel values between the N antennas

and K users are evaluated before being allocated to Gk,∀k, which results in 14KN FLOPs.

The Ns/K iterations will then start to select K antennas at each iteration, which results in∑Ns/K
l=1 (20K+4)(N−Kl) FLOPs. Finally, the vectorω is updated after selecting each antenna,

which requires 2K2Ns FLOPs. Therefore, the total number of FLOPs required by the UCAS

algorithm can be given as

CUCAS = KN(18K + 14) + 2K2Ns

+

Ns/K∑
l=1

(20K + 4)(N −Kl). (4.22)

4.5.4 Complexity of SIRAS algorithm

The SIRAS algorithm requires 9N(K2−K) FLOPs to obtain Φ, after that,N(10K+4) FLOPs

are required to select the first antenna. The Ns−1 iterations will then start, and at each iteration

the vectorλ is used to store the number of opposite signs, which takes
∑Ns−1

l=1 2(N−l)(K2−K)

FLOPs. Finding the Ns − 1 antennas from λ requires
∑Ns−1

l=1 (N − l) FLOPs, and finally,

updating the vector ψ results in (Ns− 1)(K2−K) FLOPs. Therefore, the total complexity for

the SIRAS algorithm can be given as
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Table 4.1: Number of additions and multiplications for different AS schemes

Algorithm Operator Additions Multiplications

MS

‖hcn‖ ,∀n N(2K − 1) N(2K + 1)

Sorting N logN −−

Total N(2K + logN − 1) N(2K + 1)

Greedy

‖hcn‖ ,∀n N(2K − 1) N(2K + 1)

Sorting N logN −−

wk,∀k
∑Ns

l=1K(2l − 1)
∑Ns

l=1K(4l + 1)

γk,∀k K
∑Ns

l=1(4Kl − 1) K
∑Ns

l=1(4Kl + 5K + 1)

R (2K − 1)Ns −−

Total N(2K + logN − 1)−Ns +
∑Ns

l=1 l(4K
2 + 2K) N(2K + 1) +Ns(5K

2 + 2K) +
∑Ns

l=1 l(4K
2 + 4K)

UCAS

Ξ 2K2N 4K2N

Gk,∀k 2KN 3KN

ζ [t],∀t ∈ {1, ..., Ns}
∑Ns/K

l=1 (N
K
− l)4K2

∑Ns/K
l=1 (N

K
− l)(4K2 +K)

ω[t],∀t ∈ {1, ..., Ns} 2K2Ns −−

Total K(2KN + 2N + 2KNs) +
∑Ns/K

l=1 (N
K
− l)4K2 N(4K2 + 3K) +

∑Ns/K
l=1 (N

K
− l)(4K2 +K)

SIRAS

Φ N(K2 −K) 2N(K2 −K)

‖hcn‖ ,∀n N(2K − 1) N(2K + 1)

ζ [0] N −−

λ
∑Ns−1

l=1 2(N − l)(K2 −K) −−

ζ [t],∀t ∈ {1, ..., Ns − 1} ∑Ns−1
l=1 (N − l) −−

Ψ[t],∀t ∈ {1, ..., Ns − 1} (Ns − 1)(K2 −K) −−

Total N(K2 +K) + (Ns − 1)(K2 −K) +
∑Ns−1

l=1 (N − l)(2K2 − 2K + 1) N(2K2 + 1)

CSIRAS = N(9K2 +K + 4) + (K2 −K)(Ns − 1)

+
Ns−1∑
l=1

(N − l)(2K2 − 2K + 1). (4.23)

The number of additions and multiplications for the different AS schemes are shown for

each operator in Table 4.1. It should be noted that in the aforementioned table, the number of

additions also includes the comparison between the values or signs of two real numbers, while

the number of multiplications includes the division as well as finding the square root of a real

number. In addition, a critical example for the required number of additions and multiplications

for the different AS schemes is illustrated in Table 4.2, for the case when N = 256, Ns = 64,

and K = 8.

Fig 4.2 shows the complexity in number of FLOPs for different number of selected anten-

nas. The MS algorithm has the lowest complexity and it does not depend on the number of

selected antennas, since all the antennas will be sorted in descending order and the first Ns

antenna indices will be selected. In contrast, the complexity of the Greedy, SIRAS and UCAS
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Table 4.2: Number of additions and multiplications for different AS schemes when N = 256,
Ns = 64, and K = 8

Algorithm Operator Additions Multiplications

SM

‖hcn‖ ,∀n 3840 4352

Sorting 768 −−

Total 4608 4352

Greedy

‖hcn‖ ,∀n 3840 4352

Sorting 768 −−

wk,∀k 32768 67072

γk,∀k 531968 553472

R 960 −−

Total 570304 624896

UCAS

Ξ 32768 65536

Gk,∀k 4096 6144

ζ [t] 56320 58080

ω[t] 8192 −−

Total 101376 129760

SIRAS

Φ 14336 28672

‖hcn‖ ,∀n 3840 4352

ζ [0] 256 −−

λ 1580544 −−

ζ [t] 14112 −−

Ψ[t] 3528 −−

Total 1616616 33024
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Figure 4.2: Complexity in number of FLOPs vs number of selected antennas for different AS
schemes when N = 256, and K = 8.
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Figure 4.3: Complexity in number of FLOPs vs number of antennas at the BS for different AS
schemes when Ns = N/4, and K = 8.
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Figure 4.4: Complexity in number of FLOPs vs number of users for different AS schemes when
N = 256, Ns = N/4.
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Figure 4.5: Complexity in number of FLOPs vs number of antennas at the BS for different AS
schemes when Ns = N/2, and K = 16.
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algorithms all increase when the number of selected antennas increase. The greedy algorithm

requires the highest complexity among the three algorithm when the number of selected antenna

is equal to or larger than 40.

Figs. 4.3 and 4.4 show the complexity for different AS schemes for different number of

antennas N at the BS and different number of users K, respectively, with Ns = N/4. In

both results, the MS algorithm has the lowest complexity, followed by the UCAS algorithm,

then the SIRAS, while the greedy algorithm requires the highest complexity among the adopted

schemes. Fig. 4.5 demonstrates the complexity for different number of antennas at the BS when

Ns = N/2, and 16 users are being served, the UCAS algorithm show a significant reduction in

complexity compared to the greedy selection algorithm. Furthermore, the actual complexity for

the greedy algorithm is higher than the one shown in this section, and here we only consider an

ideal case.

4.6 Numerical Results and Discussion

Before discussing the results, we need to introduce the different parameters used in this work.

First, we define the SNR per user as

SNR =
σ2
h

σ2
n

PT
K
, (4.24)

where the channel variance σ2
h can be found by using the path loss formula for a general urban

channel model, which can be given as [127]

PL (dB) = 10 log10 d
α + β, (4.25)

where d is the distance between the users and the BS, α is the path loss component, and β is the

fixed-loss component. In our simulations, dwas set to 100 meters, α was assumed to be 2 [128],

and β = 10 dB, therefore, σ2
h = 10−5, while the noise variance σ2

n was assumed to have a value

of 10−9. For systems where users are uniformly distributed in the cell, PA techniques can be

applied to ensure that each user will meet a minimum pre-defined threshold of SINR, however,

this is out of the scope of this work. In addition, the bandwidth B was 20 MHz, the efficiency

of the power amplifier η was 0.35, while the receive and transmit circuit power consumption

per RF chain Prx and Ptx were set to 62.5 mW and 48.2 mW, respectively [124]. Finally, the

simulations were averaged over 104 different channels realizations for each SNR value.
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Figure 4.6: Sum rate vs number of selected antennas for the proposed AS schemes when N =
256 and K = 8.

4.6.1 Impact of AS on spectral and energy efficiencies

The advantage of designing efficient AS schemes when MF precoding is applied, in terms of

spectral and energy efficiencies, can be seen in Figs. 4.6 and 4.7. Both of the proposed algo-

rithms achieve higher rates with better EE than the full system case, where all the antennas are

employed, i.e. when Ns = N . Furthermore, in terms of sum rate performance, increasing the

SNR results in decreasing the number of antennas required to match the achievable rate where

all antennas are activated. The reason behind this is that as the SNR increases, the effect of

the noise becomes negligible, and the main factor that degrades the performance is the inter-

user interference, and our proposed algorithms selects the antennas that highly minimizes the

inter-user interference. In other words, although selecting a subset of the available antennas will

reduce the signal gain, but the resultant SINR will be higher, hence higher rates are achieved.

Moreover, in terms of EE, applying AS techniques can dramatically improve the system perfor-

mance as can be seen in Fig. 4.7. For example, when the number of selected antennas is 64, the

UCAS and SIRAS algorithms outperform the full system case by 190.8 and 184 Mbits/Joule,

respectively.
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Figure 4.7: Energy Efficiency vs number of selected antennas for the proposed AS schemes
when N = 256, K = 8, and SNR = 10 dB.

4.6.2 Achievable rates with fixed number of selected antennas

In this subsection, we show the performance of the proposed algorithms in terms of the achiev-

able rates, and compare our results with MS and greedy selection techniques for a wide range

of SNR values.

Fig. 4.8 shows the total sum rate when the BS is equipped with 128 antennas, out of which

32 are selected, for different AS schemes. The proposed algorithms outperform significantly

both greedy and MS methods. Moreover, the UCAS slightly outperforms the SIRAS algorithm

when the SNR is less than 10 dB, while they both show the same performance for higher SNR

values. For this scenario, employing all the available antennas at the BS achieves higher rates

than our proposed algorithms when the number of selected antennas is 32.

Fig. 4.9 shows the total sum rate when 256 antennas are placed at the BS, and 64 antennas

are selected by the proposed algorithms. The proposed methods not only outperform the greedy

and MS techniques, but also the case where all the antennas are activated for SNR values higher

than 0.5 dB and 3.5 dB for the UCAS and SIRAS algorithms, respectively.

From Fig. 4.9, the UCAS algorithm outperforms the full system, greedy, and MS selection

methods at 10 dB SNR by 5.44, 10.12, and 19.64 bps/Hz, respectively, which correspond to a

significant 108.8, 202.4, and 392.8 Mbps for a system with 20 MHz of bandwidth, while the
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Figure 4.8: Sum rate vs SNR (dB) for different AS schemes when N = 128, Ns = 32, and
K = 8.
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Figure 4.9: Sum rate vs SNR (dB) for different AS schemes when N = 256, Ns = 64, and
K = 8.
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Figure 4.10: Sum rate vs SNR (dB) for different AS schemes when N = 128, Ns = 64, and
K = 16.

SIRAS method shows an improvement of 2.46, 7.14, and 16.66 bps/Hz compared to the full

system, greedy, and MS selection methods, respectively, at the same SNR value.

Figs. 4.10 and 4.11 show the achievable rates when the number of users is 16, and the

BS is equipped with 128 and 256 antennas, respectively, and Ns = N/2. In both cases, the

SIRAS algorithm show better performance than UCAS, and the proposed methods significantly

outperform the greedy and MS selection methods. For example, when the BS is equipped

with 256 antennas, the SIRAS algorithm achieves the same rate as the full system case, and

outperform the UCAS, greedy, and MS methods by 2.57, 7.15, and 13.97 bps/Hz, respectively,

at SNR of 10 dB.

The reason behind the SIRAS outperforming the UCAS method is that increasing the num-

ber of users will increase the number of interference terms. Accordingly, the SIRAS method

selects the antennas the will reject the interference for all the users at the same time. In contrast,

the UCAS selects at each iteration the antenna that will maximize the SINR for one user only,

and as the number of users becomes large, this method becomes less efficient that the SIRAS as

demonstrated in Figs. 4.10 and 4.11.
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Figure 4.11: Sum rate vs SNR (dB) for different AS schemes when N = 256, Ns = 128, and
K = 16.

4.6.3 Energy efficiency performance

The same scenarios are considered for the EE, where in the first scenario N = 128 antennas are

available at the BS, while in the second scenario N = 256, and the number of selected antennas

Ns = N/4 in both cases.

As Figs. 4.12 and 4.13 show, at moderate SNR values, the proposed methods outperform

significantly all other schemes for both scenarios. Furthermore, activating all the antennas

results in extremely poor EE performance, which validates the importance of AS for energy ef-

ficient systems. Finally, the UCAS shows better EE performance than SIRAS when the number

of selected antennas was 64, especially at SNR values of less than 25 dB, while both algorithms

show the same performance when 32 antennas were selected for all the SNR values between 10

to 40 dB.

4.6.4 Achievable rates with imperfect channel state information

In practical scenarios, the complex channel matrix H is estimated at the BS through pilot signals

sent by the users, and channel estimation errors arise in any practical system. In this subsection,

we evaluate the performance of the proposed algorithms under imperfect CSI. The estimated
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Figure 4.12: EE vs SNR (dB) for different AS schemes when N = 256, Ns = 64, and K = 8.
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Figure 4.13: EE vs SNR (dB) for different AS schemes when N = 128, Ns = 32, and K = 8.

84



4.6 Numerical Results and Discussion

−8 −6 −4 −2 0 2 4 6 8 10 12 14 16
12

16

20

24

28

32

36

S
um

 R
at

e 
bp

s/
H

z

SNR (dB)

 

 

Full System
UCAS Algorithm
SIRAS Algorithm
Greedy Algorithm
MS Algorithm

Figure 4.14: Sum rate vs SNR (dB) for different AS schemes when N = 128, Ns = 32, K = 8
and ε = 0.2.

channel matrix Ĥ can be given as [129], [130]

Ĥ = H + εE, (4.26)

where εE represents the channel estimation error term, and is uncorrelated with H. The entries

ofE are independent and identically distributed random variables with zero mean and variance

of σ2
h. Furthermore, ε controls the estimation accuracy, and ε = 0 means the BS has a perfect

CSI.

Figs. 4.14 and 4.15 demonstrate the performance of different AS schemes under imperfect

CSI. In the aforementioned Figs., ε was set to 0.2, and the proposed method show small degra-

dation compared to the perfect CSI case. Furthermore, from Fig. 4.15, the UCAS and SIRAS

algorithms outperform the full system case at 2 dB and 7 dB, respectively, compared to 0 dB

and 4 dB for perfect CSI.

Fig. 4.16 show the achievable rates of the proposed methods under different amount of

channel estimation error. As expected, the achievable rates are effected by the estimation accu-

racy for both methods. In addition, at higher SNR, both methods becomes more sensitive under

imperfect CSI. The reason behind this is that as the SNR increases, the noise effect becomes
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Figure 4.16: Sum rate vs ε for the proposed AS schemes when N = 256, Ns = 64, and K = 8
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negligible, and the presence of CSI errors lead to the selection of sub-optimal antennas. For

example, when the SNR = −5 dB, the UCAS and SIRAS algorithms suffer a 3.57 and 3.23

bps/Hz rate loss when ε = 0.4 compared to the perfect CSI case, respectively. While the achiev-

able rates for the same algorithms degrade by 7.92 and 7.11 bps/Hz when ε = 0.4, respectively,

at SNR of 10 dB compared to perfect CSI case.

4.7 AS design considerations for different types of precoding

schemes

In this chapter, the AS methods proposed were specifically designed for systems where MF

precoding is applied. However, in certain circumstances, other types of linear precoding are

preferred, and it is important to discuss the designing criteria of AS with different precoding

schemes. In M-MIMO systems, one of the main challenges in designing any algorithm, es-

pecially iterative algorithms, is the associated computational complexity. Therefore, avoiding

vector multiplications, as shown in this chapter, is extremely important to significantly reduce

the number of FLOPs required.

For example, assuming the ZF precoder is applied, the designing criteria can target the

maximization of the weights of the ZF precoder matrix, which can be given as follows [67]

WZF = γZFHH(HHH)−1, (4.27)

where γZF is the normalization factor for ZF precoder, and it can be given as follows [67]

γZF =
1√

Tr[(HHH)−1]
. (4.28)

Therefore, one way to design AS algorithm when ZF precoding is utilized, is through selecting

the antennas that will maximize the normalization factor, which will lead to higher weights for

the precoding matrix. A special matrix can also be used to avoid vector multiplications and

reduce the computational complexity. In addition, efficient grouping of the antennas can also

result in dramatic complexity reduction, due to the reduced search space, as demonstrated with

the UCAS method. Therefore, antenna grouping can be considered for AS design with different

types of linear precoding.
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4.8 Chapter Summery

In this chapter, a single cell scenario was considered where a BS equipped with N antennas

communicating with K single antenna users in the same time-frequency resources, with MF

precoding. Two novel and highly efficient AS algorithms were proposed for the aforementioned

scenario. Both algorithms were designed in a way such that no vector multiplications were

involved during the iterative selection process, which in return resulted in a dramatic complexity

reduction. A user-centric approach was adopted for the first algorithm, where the antennas at

the BS are divided into K groups, with each group containing the N/K antennas that has the

maximum channel gain for the correspondent user. This resulted in a search space reduction

by a factor of K. The second algorithm focused on rejecting the interuser interference terms

based on the signs of the interference terms only. For the user-centric method, the antenna that

maximize the SINR for a certain user is selected at each iteration, while for the interference

rejection method, the antenna that rejects the highest number of interference terms at a given

iteration is selected. Several scenarios were considered, and our results demonstrated that when

the number of users is 8, the UCAS algorithm outperforms the SIRAS method in terms of the

achievable rates, while the latter showed better performance when 16 users were served. The

performance of the proposed methods was compared with other low complexity AS schemes in

terms of spectral and energy efficiencies, under perfect and imperfect CSI at the BS. Moreover,

the implementation complexity was evaluated in terms of number of FLOPs, and the proposed

methods showed a great performance-complexity trade-off.
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Chapter 5

Cell-Edge-Aware Antenna Selection and

Power Allocation for Multi-User

M-MIMO Systems

5.1 Introduction

In realistic scenarios, the users are randomly distributed within the cell, and have different dis-

tances from the BS, and hence experiencing different large scale fading effects. PA techniques

are employed to tackle this issue and make sure that each user will meet a predefined minimum

QoS threshold. So far, the work on AS in M-MIMO systems have only focused on improving

the overall performance of the system. In this chapter we design and utilize AS methods, in

addition to PA, to enhance the rates of users who have low SINRs, such as cell-edge users.

A MU downlink scenario is considered in this chapter, where a BS employing a MF precoder

is communicating with K single-antenna users in the same time-frequency resources. Our

contribution in this chapter can be summarized as follow

1. We propose a low complexity Successive Gain Maximization (SGM) algorithm, where

at each iteration, one antenna is chosen to maximize the gain of the user with minimum

SNR. Compared to the conventional Maximum SNR based AS, we show that maximizing

the gain successively not only increase the worst-case rate, but also the total sum rate for

all users.

2. Relying on the channel correlation matrix, we propose two iterative, and low complexity

antenna selection algorithms to minimize the inter-user interference. The first algorithm
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is the Successive Interference Minimization (SIM), where at each iteration, one antenna is

selected to minimize the interference for the user who is experiencing the highest interfer-

ence. While the second algorithm is the Simplified Successive Interference Minimization

(SSIM), where at a given iteration, one antenna is selected to minimize only the highest

interference term in the channel correlation matrix.

3. The complexity of the three proposed algorithms is evaluated in terms of number of

FLOPs and compared with other low complexity AS algorithms found in the literature.

Our proposed methods showed promising trade-offs in terms of complexity and perfor-

mance.

4. Our results demonstrate that minimizing the interference achieves higher rates than max-

imizing the channel gain. However, the latter achieves a considerably higher rate for the

worst-case user at low SNRs.

5. Finally, we build upon the change of variables idea proposed in [131], to perform fair

resource allocation between the users, by maximizing the worst-case rate. The complexity

of the PA problem is also evaluated in terms of number of FLOPs.

5.2 System Model

A similar system model to that in Chapter 4 is considered in this work, where a BS equipped

with N antennas serving K single-antenna users in the same time-frequency resources, and

MF precoding is applied before transmitting the information symbols. A Time Division Du-

plex (TDD) scenario is considered, and the channel is assumed to be perfectly known at the

BS through uplink pilot signals sent by the K users. However, in this chapter we consider a

realistic scenario, where users are distributed randomly in the cell with minimum and maximum

distances from the BS equal to dmin and dmax, respectively, as illustrated in Fig. 5.1. Moreover,

we develop low complexity AS algorithms to select Ns out of the available N antennas at the

BS, to either minimize the interference, or to maximize the channel gain for the worst-case user.

It is worth to mention that in this work we consider flat fading channels, which for example, has

been considered previously with M-MIMO AS in [125], [43].
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5.3 Proposed antenna selection algorithms

Figure 5.1: Uniformly distributed MU M-MIMO system.

5.3 Proposed antenna selection algorithms

In practical scenarios, users are distributed in the cell, and do not have equal distances from the

BS. Consequently, users who are close to the BS will have higher SINRs, and hence better rates,

while those who are on the edge of the cell will experience weak service. Therefore, selecting

the antennas for all the users at once will neither be optimal, nor fair, since the selection will

be highly influenced by users with high SINRs. In our work, only one antenna is selected at

each iteration, and the selection is done either to maximize the channel gain, or to minimize the

interference, of the worst-case user in that iteration. The three algorithms rely on the channel

correlation matrix U = HHH, which can be expressed as

U =



hT1 h∗1 hT1 h∗2 · · · · · · hT1 h∗K

hT2 h∗1
. . . ...

... . . . ...

... . . . hTK−1h
∗
K

hTKh∗1 · · · · · · · · · hTKh∗K


, (5.1)

where the kth element in the diagonal of U represents the channel gain for kth user, while

the upper and lower triangle parts of U are directly related to the interference between the

users. The proposed algorithms aim to achieve high performance, fairness, as well as low
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5.3 Proposed antenna selection algorithms

computational complexity by avoiding vector multiplications to reduce the number of FLOPs.

5.3.1 Successive gain maximization AS algorithm

The SGM algorithm aims to maximize the diagonal of U, where each element of the diagonal

represents the channel gain for a given user k before normalization, and it can be expressed as

hTkh∗k = hk,1h
∗
k,1 + hk,2h

∗
k,2 + .....+ hk,Nh

∗
k,N

=
N∑
n=1

(
<{hk,n}2 + ={hk,n}2

)
. (5.2)

To reduce the number of FLOPs, the values of the N multiplications in (5.2) are stored in one

row of the matrix V ∈ RK×N , which can be expressed as

V =


v1,1 . . . . . . v1,N

... . . . ...

... . . . ...

vK,1 . . . . . . vK,N

 , (5.3)

where v1,1 = h1,1h
∗
1,1, v1,N = h1,Nh

∗
1,N , vK,1 = hK,1h

∗
K,1, and vK,N = hK,Nh

∗
K,N . The first

antenna is then selected based on the maximum channel gain as follow

ξ[0] = arg max
n∈1:N

‖hcn‖ , (5.4)

after selecting the first antenna, a vector φ ∈ RK×1 will be initialized with the K values in

V associated with the selected antenna, and will be updated after selecting each of subsequent

antennas. The Ns − 1 iterations will then start, and at each iteration, the antenna that will

maximize the gain for the worst-case user, i.e. the user with lowest SNR, will be chosen as

follow

ξ[t] = arg max
n∈η

vu∗,n, (5.5)

where ξ[t] is the antenna selected at iteration t, η is a set of available antennas, and u∗ is the user

with lowest SNR at a given iteration t, and can be expressed as u∗ = arg minφ[t−1], since the

values in φ[t−1] are the channel gains for each user before normalization. Afterwards, the vector

φ will be updated as follow

φ[t] = φ[t−1] + vcξ[t] . (5.6)
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Algorithm 12 Proposed SGM AS algorithm
1: Input K, N , Ns, H,
2: Initialize:
3: V = 0K×N , φ = 0K×1,
4: χ = 0N×1, (χ sets the locations of selected antennas to ”1”),
5: η = 1 : N , (set of available antennas),
6: for k = 1← K
7: for n = 1← N
8: vk,n = <{hk,n}2 + ={hk,n}2,
9: end for

10: end for
11: ξ[0] = arg maxn∈1:N ‖hcn‖,
12: φ[0] = vcξ[0],
13: χξ[0] = 1,
14: η = η \ ξ[0],
15: for t = 1← Ns-1
16: u∗ = arg min φ[t−1],
17: ξ[t] = arg maxn∈η vu∗,n,
18: φ[t] = φ[t−1] + vc

ξ[t]
,

19: χξ[t] = 1,
20: η = η \ ξ[t],
21: end for
22: Output: [Hc

j ]j /∈η

The same procedure will be repeated for subsequent iterations until maximum number of

selected antennas is reached. The SGM method is described in detail in Algorithm (12).

5.3.2 Successive interference minimization antenna selection algorithm

The main drawback of MF precoding is the inter-user interference, and it causes dramatic per-

formance degradation, especially for a BS serving large number of users. The SIM algorithm

aims to minimize the inter-user interference by minimizing the terms in the upper and lower

triangle parts of (5.1). If we neglect the normalization at this point, the interference caused by

user j to user k can be expressed as

∣∣hTkh∗j
∣∣2 =

∣∣hk,1h∗j,1 + hk,2h
∗
j,2 + .....+ hk,Nh

∗
j,N

∣∣2
=

∣∣∣∣∣
N∑
n=1

hk,nh
∗
j,n

∣∣∣∣∣
2

, (5.7)

while the total interference for user k can be given as

Υk =
K∑
j=1
j 6=k

∣∣hTkh∗j
∣∣2 . (5.8)

93



5.3 Proposed antenna selection algorithms

For a system serving K users, there are L interference terms, where L = K2 −K. Each of

these L terms is an addition of N complex number multiplications. In our work, we store the

L×N complex multiplication values in Θ ∈ CL×N and use them at later stages when selecting

the antennas. The matrix Θ can be expressed as

Θ =



θ1,1 . . . . . . θ1,N

... . . . ...

... . . . ...

θK−1,1 . . . . . . θK−1,N

... . . . ...

... . . . ...

θK2−K,1 . . . . . . θK2−K,N


, (5.9)

where θ1,1 = h1,1h
∗
2,1, θ1,N = h1,Nh

∗
2,N , θK−1,1 = h1,1h

∗
K,1, θK−1,N = h1,1h

∗
K,N , θK2−K,1 =

hK,1h
∗
K−1,1, and θK2−K,N = hK,Nh

∗
K−1,N . The algorithm then starts by selecting the antenna

with highest channel norms. After that, the L interference terms in Θ associated with the

selected antenna are used to initialize the vector λ ∈ CL×1. It is worth to mention that, as

shown in (5.9), the (K − 1) interference terms for the kth user are indexed between rows (k −
1)(K − 1) + 1 and (k − 1)(K − 1) +K − 1, in both Θ and λ. The Ns − 1 iterations will then

start, where at each iteration, the algorithm finds the user with highest interference, and then

selects one antenna that will reduce the interference for that user to its minimum value as follow

k∗ = arg max
1≤k≤K

K−1∑
i=1

|λεk+i|2 , (5.10)

where εk = (k − 1)(K − 1), and k∗ is the user with the highest interference at a given iteration

t. The selected antenna can be expressed as

ξ[t] = arg min
ns∈η

K−1∑
i=1

|λε∗+i + θε∗+i,ns|2 , (5.11)

where ε∗ = (k∗ − 1)(K − 1), ξ[t] is the selected antenna at iteration t. The interference vector

λ is updated after selecting each antenna as follow

λ[t] = λ[t−1] + θcξ[t] , (5.12)

the same procedure will be repeated for Ns − 1 iterations. The steps of the SIM method are
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shown in Algorithm (13).

Algorithm 13 Proposed SIM AS algorithm
1: Input K, N , Ns, H, L = K2 −K,

2: Initialize:

3: Θ = 0L×N , λ = 0L×1,

4: χ = 0N×1, η = 1 : N , and l = 0,

5: for i = 1→K

6: for j = 1→K & j 6= i

7: l← l + 1,

8: for n = 1→ N

9: θl,n = hi,nh
∗
j,n,

10: end for

11: end for

12: end for

13: ξ[0] = arg maxn∈1:N ‖hcn‖,
14: χξ[0] = 1,

15: η = η \ ξ[0],

16: λ[0] = θcξ[0] ,

17: for t = 1→ Ns − 1

18: for k = 1→ K

19: εk = (k − 1)(K − 1),

20: Υk =
∑K−1
i=1 |λεk+i|2,

21: end for

22: k∗ = arg max Υ,

23: ξ[t] = arg minns∈η
∑K−1
i=1 |λε∗+i + θε∗+i,ns|2,

24: λ[t] = λ[t−1] + θcξ[t] ,

25: χξ[t] = 1,

26: η = η \ ξ[t],

27: end for

28: Output: [Hc
j ]j /∈η

5.3.3 Simplified successive interference minimization antenna selection

algorithm

The SSIM method is similar to the SIM algorithm, with less complexity. Instead of minimizing

the (K − 1) interference terms for a certain user each iteration, the SSIM minimizes only the

maximum interference term in U. Moreover, the elements in the upper triangle part are the

complex conjugate of the elements in lower triangle part of U, i.e. hTi h∗j = (hTj h∗i )
∗, hence
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5.4 Sum rate optimization through power allocation∣∣hTi h∗j
∣∣2 =

∣∣hTj h∗i
∣∣2. Therefore, reducing the interference in the upper triangle part leads to

the exact same interference reduction in the lower triangle part and vice versa. Thus, only M

interference terms need to be optimized, where M = L/2. In our work, we optimize the upper

triangle part of U. The M ×N complex multiplication values are stored in Ψ ∈ CM×N , which

can be represented as

Ψ =


ψ1,1 . . . . . . ψ1,N

... . . . ...

... . . . ...

ψM,1 . . . . . . ψM,N

 , (5.13)

where ψ1,1 = h1,1h
∗
2,1, ψ1,N = h1,Nh

∗
2,N , ψM,1 = hK−1,1h

∗
K,1, and ψM,N = hK−1,Nh

∗
K,N . The

antenna that has maximum channel norms will be selected as the first antenna, and a vector

ω ∈ CM×1 will then be initialized with the M inter-user interference terms in Ψ associated

with the first selected antenna. Each term in ω is a function of the interference between two

users i and j, where i, j = 1, ..., K, and i 6= j. The algorithm then starts its Ns − 1 iterations.

At each iteration, the algorithm finds the maximum term in ω, and then selects the antenna

that will reduce the interference between the two given users to its minimum value. This can

analytically be expressed as

ξ[t] = arg min
ns∈η
|ωm? + ψm?,ns|2 , (5.14)

where m? is the maximum term in ω, ξ[t] is the selected antenna, η is the set of available

antennas, and t is the current iteration. After each iteration, the M interference terms in ω are

updated with the interference values caused by adding the new selected antenna as follow

ω[t] = ω[t−1] +ψc
ξ[t], (5.15)

the same procedure will be repeated until the Ns antennas are selected. The steps of SSIM

method are described in detail in Algorithm (14).

5.4 Sum rate optimization through power allocation

After selecting the antennas, we shift our focus to optimize the allocation of total available

power at the BS. Recalling the formula in (4.6), the sum rate for a downlink multi-user system
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Algorithm 14 Proposed SSIM AS algorithm
1: Input K, N , Ns, H, M = (K2 −K)/2,
2: Initialize
3: Ψ = 0M×N , ω = 0M×1,
4: χ = 0N×1, η = 1 : N , m = 0,
5: for i = 1→ K − 1
6: for j = i+ 1→ K
7: m = m+ 1,
8: for n = 1→ N
9: ψm,n = hi,nh∗j,n,

10: end for
11: end for
12: end for
13: ξ[0] = arg maxn∈1:N ‖hcn‖,
14: χξ[0] = 1,
15: η = η \ ξ[0],
16: ω[0] = ψcξ[0] ,
17: for t = 1→ Ns − 1
18: m? = arg maxω[t−1],
19: ξ[t] = arg minns∈η|ωm? + ψm?,ns|2,
20: ω[t] = ω[t−1] + ψcξ[0] ,
21: χξ[t] = 1,
22: η = η \ ξ[t],
23: end for
24: Output: [Hc

j ]j /∈η

can be expressed as

R =
K∑
k=1

Rk =
K∑
k=1

log2(1 + γk)

= log2

(
K∏
k=1

(1 + γk)

)

= log2

 K∏
k=1

∑K
i=1 pi

∣∣hTkwi

∣∣2 + σ2
n∑K

i=1
i 6=k

pi |hTkwi|2 + σ2
n

 . (5.16)

Maximizing the total sum rate will result in allocating high power to users with high SINRs.

In contrast, users located far away from the BS will be allocated low or no power at all. There-

fore, maximizing the total sum rate is neither realistic, nor fair. To achieve fairness, more power

should be allocated to users experiencing poor channel conditions, this approach is known as

max-min optimization. However, complete fairness between the users might be costly, and

the total sum rate will experience dramatic degradation. Therefore, we add a per user power

constraint, such that no user should be allocated less than a predefined threshold of the total

available power. This way, we aim to maximize the rate for the worst-case user without causing

large degradation in the total sum rate. The problem can be formulated as

97



5.4 Sum rate optimization through power allocation

maximize
{p1,...,pK}

min
k

Rk

subject to
K∑
k=1

pk ≤ PT , (5.17a)

pk ≥
PT
K

ζ, ∀k, (5.17b)

where pk is the power allocated for the kth user, PT is the total transmission power in Watts

available at the BS, ζ is a parameter that controls the per-user power constraint threshold, and

0 < ζ < 1. Due to the inter-user interference, the objective function in (5.17) is a non-convex

problem. Therefore, we use the idea proposed by [131], which relies on change of variables, as

follow

euk =
K∑
i=1

pi
∣∣hTkwi

∣∣2 + σ2
n, ∀k, (5.18a)

esk =
K∑
i=1
i 6=k

pi
∣∣hTkwi

∣∣2 + σ2
n, ∀k. (5.18b)

After applying simple logarithmic and exponential functions, the objective function in (5.17)

can be expressed as maximize{min
k
uk − sk}. Where u = [u1, ..., uK ]T and s = [s1, ..., sK ]T

are slack variables. Moreover, the constraints of uk and sk are the expressions in the right hand

side of (5.18a) and (5.18b), respectively. Therefore, the optimization problem can be re-written

as follow
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maximize
{p1,...,pK}, u, s

min
k

uk − sk

subject to
K∑
i=1

pi
∣∣hTkwi

∣∣2 + σ2
n ≥ euk , ∀k, (5.19a)

K∑
i=1
i 6=k

pi
∣∣hTkwi

∣∣2 + σ2
n ≤ esk , ∀k, (5.19b)

K∑
k=1

pk ≤ PT , (5.19c)

pk ≥
PT
K

ζ, ∀k. (5.19d)

The only non-convex constraint in (5.19) is (5.19b). Therefore, the exponential term esk

needs to be linearised. To tackle this problem, a first order Taylor approximation is applied,

such that esk = es̄k(sk − s̄k + 1),∀k. Where the linearization is made around the points s̄ =

[s̄1, ..., s̄K ]T . Therefore, problem (5.19) can be reformulated to

maximize
{p1,...,pK}, u, s

min
k

uk − sk

subject to
K∑
i=1
i 6=k

pi
∣∣hTkwi

∣∣2 + σ2
n ≤ es̄k(sk − s̄k + 1), ∀k, (5.20a)

In addition to constraints (5.19a), (5.19c), (5.19d). (5.20b)

At this point, all the constraints are convex, and the optimization problem in (5.20) can

be solved iteratively, as shown in Algorithm (15), using the CVX software [132]. It is worth

mentioning that the initial values of {s̄1, ..., s̄K} for the first iteration, were obtained based on

Equal Power Allocation (EPA) criteria, and can be expressed as follow
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s̄k = log

PT
K

K∑
i=1
i 6=k

∣∣hTkwi

∣∣2 + σ2
n

 , ∀k. (5.21)

Algorithm 15 Iterative algorithm to solve problem (5.20)

1: Initialize:

2: s̄[0], t = 1, τ = 0.001, (τ is the error tolerance)

3: define err ,
∑K
k=1 |sk − s̄k|,

4: while err > τ do

5: Solve (5.20) and Calculate s[t],

6: Update s̄[t] = s[t],

7: Increment t = t+ 1,

8: end while

5.5 Complexity Analysis of PA and AS Techniques

In this section, we evaluate the computational complexity of the max-min PA (MMPA) and AS

algorithms used in this work. Since we perform power optimization after choosing the antennas,

their complexity will be evaluated separately.

5.5.1 Computational complexity of the proposed AS algorithms

In this subsection, the complexity of the proposed AS algorithms used in this chapter is evalu-

ated in terms of number of FLOPs. The same complexity analysis used in chapter 4 are followed

in this section. Furthermore, the number of additions and multiplications for the proposed meth-

ods are given for each operator in Table 5.1.

5.5.1.1 Complexity analysis of the SGM algorithm

The SGM algorithm starts by evaluating the matrix V which requires 9KN FLOPs, the first

antenna is then selected which results in N(10K + 4) FLOPs. The Ns − 1 iterations will

then start, and finding the user with minimum channel gain requires K(Ns − 1) FLOPs, and

selecting theNs−1 antennas takes
∑Ns−1

l=1 (N−l) FLOPs. Finally, updating the vectorφ results

in K(Ns − 1) FLOPs. Therefore, the total complexity for the SGM algorithm is

CSGM = N(19K + 4) + 2K(Ns − 1) +
Ns−1∑
l=1

(N − l). (5.22)
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5.5.1.2 Complexity analysis of the SIM algorithm

The SIM algorithm requires 18N(K2−K) FLOPs to obtain the matrix Θ, followed byN(10K+

4) FLOPs for selecting the first antenna ξ[0]. During the Ns − 1 iterations, finding the user with

maximum interference requires (Ns − 1)(18K2 − 12K) FLOPs, while selecting the (Ns − 1)

antennas result in
∑Ns−1

l=1 (N − l)(20K − 20) FLOPs. Finally, updating the vector λ requires

2(Ns − 1)(K2 −K) FLOPs. Therefore, the total number of FLOPs required for the SIM algo-

rithm can be given as

CSIM = N(18K2 − 8K + 4) + (Ns − 1)(20K2 − 14K)

+
Ns−1∑
l=1

(N − l)(20K − 20). (5.23)

5.5.1.3 Complexity analysis of the SSIM algorithm

Evaluating the matrix Ψ requires 9N(K2−K) FLOPs, which followed byN(10K+4) FLOPs

for selecting the first antenna. During theNs−1 iterations, finding the highest interference term

requires 7(K2 −K)(Ns − 1) FLOPs, while selecting the antennas results in
∑Ns−1

l=1 20(N − l)
FLOPs. Finally, updating ω results in (K2 −K)(Ns − 1) FLOPs. The total complexity of the

SSIM method can therefore given as

CSSIM = N(9K2 +K + 4) + 8(Ns − 1)(K2 −K)

+
Ns−1∑
l=1

20(N − l). (5.24)

Figs. 5.2 shows that when the number of antennas at the BS is 256, and out of which 64

are selected by the different AS schemes, the MS algorithm requires the lowest complexity

for any number of users served in the cell. In contrast, the greedy algorithm has the highest

complexity among the AS schemes used in this work for the given scenario. For the proposed

AS method, the SGM has the lowest complexity since it only deals with real numbers during

the iterative selection process. In contrast, the SSIM has the highest complexity between the

proposed algorithms, since at a given iteration, the available antennas are tested to minimize

the total interference for the worst case user. Finally, the SSIM has a lower complexity than the
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Table 5.1: Number of Additions and Multiplications for the proposed AS schemes

Algorithm Operator Additions Multiplications

SGM

V KN 2KN

ξ[0] 2KN N(2K + 1)

u∗ K(Ns − 1) −−

ξ[t], ∀t ∈ {1, ..., Ns − 1} ∑Ns−1
l=1 (N − l) −−

φ[t],∀t ∈ {1, ..., Ns − 1} K(Ns − 1) −−

Total 3KN + 2K(Ns − 1) +
∑Ns−1

l=1 (N − l) N(4K + 1)

SIM

Θ 2N(K2 −K) 4N(K2 −K)

ξ[0] 2KN N(2K + 1)

k∗ 2K2(Ns − 1) (Ns − 1)(4K2 − 3K)

ξ[t], ∀t ∈ {1, ..., Ns − 1} ∑Ns−1
l=1 (N − l)(4K − 4)

∑Ns−1
l=1 (N − l)(4K − 4)

λ[t],∀t ∈ {1, ..., Ns − 1} 2(Ns − 1)(K2 −K) −−

Total 2NK2 + (Ns − 1)(4K2 − 2K) +
∑Ns−1

l=1 (N − l)(4K − 4) N(4K2 − 2K + 1) + (Ns − 1)(4K2 − 3K) +
∑Ns−1

l=1 (N − l)(4K − 4)

SSIM

Ψ N(K2 −K) 2N(K2 −K)

ξ[0] 2KN N(2K + 1)

m∗ (K2 −K)(Ns − 1) 3
2
(K2 −K)(Ns − 1)

ξ[t], ∀t ∈ {1, ..., Ns − 1} ∑Ns−1
l=1 4(N − l) ∑Ns−1

l=1 4(N − l)

ω[t], ∀t ∈ {1, ..., Ns − 1} (K2 −K)(Ns − 1) −−

Total N(K2 +K) + 2(Ns − 1)(K2 −K) +
∑Ns−1

l=1 4(N − l) N(2K2 + 1) + 3
2
(K2 −K)(Ns − 1) +

∑Ns−1
l=1 4(N − l)

SIM algorithm, since the SSIM tries to minimize only the highest interference term in U. Both

SIM and SSIM algorithms deal with complex numbers, which requires more FLOPs than the

SGM algorithm, which only deals with real number operations.

Fig. 5.3 demonstrates the complexity when increasing the number of antennas at the BS.

The greedy algorithm requires the highest complexity followed by the SIM scheme when the

number of selected antennas is N/2. However, reducing the number of selected antennas to

N/8 results in higher complexity requirement for the SIM method between the applied AS

schemes when the number of users is 8, as demonstrated in Fig.5.4. Furthermore, regardless

of the number of selected antennas, the MS has the lowest complexity, followed by SGM, and

then SSIM method.

Fig. 5.5 shows the complexity in number of FLOPs for the different AS schemes for a

different number of selected antennas when the BS is equipped with 128 to serve 8 users. Unlike

the proposed methods, the complexity of the greedy algorithm is highly affected by increasing

the number of selected antennas, and hence requires the highest complexity when the number

of selected antennas is higher than 30. In contrast, the MS shows the lowest complexity and it

does not depend on the number of selected antennas.
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Figure 5.2: Complexity of different algorithms in number of FLOPs, forN = 256 andNs = 64.
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Figure 5.3: Complexity of different algorithms in number of FLOPs, for Ns = N/2 and K = 8.
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Figure 5.4: Complexity of different algorithms in number of FLOPs, for Ns = N/8 and K = 8.

16 32 48 64 80 96
10

3

10
4

10
5

10
6

10
7

C
om

pl
ex

ity
 (

FL
O

Ps
)

Number of selected antennas

 

 

Greedy Algorithm

SIM Algorithm

SSIM Algorithm

SGM Algorithm

MS Algorithm

Figure 5.5: Complexity of different algorithms in number of FLOPs, for N = 128 and K = 8.
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5.5.2 Complexity analysis of MMPA

The PA problem in (5.20) belongs to the class of linear programming (LP), in which the ob-

jective function and the constraints are linear in the optimization variables. The complexity of

achieving a solution of LP within an accuracy ε has been studied in [133]. The complexity of

(5.20) depends on the number of optimization variables, number of per scalar value constraints,

and the size of input data. Note that the solvers which are based on interior-point algorithm —

such those employed by CVX — do not support entropy functions such as logarithmic and ex-

ponential functions. Therefore, the constraints in (5.19a), which include exponential functions,

are linearised as
∑K

i=1 pi|hTkwi|2 + σ2
n ≥ eūk(uk − ūk + 1), ∀ k, where ūk is the point around

which the linearization is made. To apply the complexity analysis steps provided in [133],

we have to recast (5.20) into its standard LP form. First, the min operator in the objective

function mink uk − sk is replaced by a new slack variable ν along with adding the constraints

(uk − sk) ≥ ν, ∀ k. The per-iteration standard LP of (5.20) will become

maximize
{p1,...,pK}, u, s, ν

ν

subject to

uk − sk ≥ ν, ∀ k, (5.25a)
K∑
i=1

pi|hkwi|2 + σ2
n ≥ eūk(uk − ūk + 1), ∀ k, (5.25b)

In addition to constraints (5.20a), (5.19c), (5.19d). (5.25c)

The problem in (5.25) has the following parameters: number of optimization variables,

nv = 3K + 1, number of per scalar value constraints, nc = 4K + 1, number of input data

dim(d) = 2K + 5, where d = [nv, nc, [ū1, s̄1; . . . ; ūK , s̄K ], σ2, Pt, ζ] is the vector of

input data. Given these parameters, the per-iteration computational complexity of achieving a

solution of (25) within an accuracy ε is equal to [133]

C(d,ε) = (nv + nc)
3
2 n2

v ln
(

dim(d) + ‖d‖1 + ε2

ε

)
, (5.26)

where ‖a‖1 is the 1-norm of a and can be defined as ‖[a1, ..., aL]‖1 =
∑L

l=1 |al|. The result in

(5.26) has an asymptotic complexity of O(K
7
2 [ln(K) + ln(1

ε
)]).
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5.6 Results and Discussions

In this section, we show the simulation results for different AS algorithms under EPA and

MMPA schemes. Before discussing the results, we introduce the different parameters used

throughout our work. We start by defining the SNR for user k as follow

SNRk =
σ2
hk

σ2
n

PT
K
. (5.27)

To find the average SNR, we need to find the maximum and minimum variance of the

channel, σ2
hmax

and σ2
hmin

. We apply the same values for the path loss component and the fix-

loss component in Chapter 4, and assume that the minimum and maximum distances between

any user and the BS, dmin and dmax, were equal to 25 and 250 meters, respectively. Therefore,

the maximum channel variance σ2
hmax

is 1.6×10−4, which corresponds to a user located at dmin

meters away from the BS, hence the maximum SNR can be given as

SNRmax =
σ2
hmax

σ2
n

PT
K
, (5.28)

while the worst-case user, who is located at dmax meters away from the BS, has a channel

variance of σ2
hmin

= 1.6× 10−6, hence the minimum SNR can be expressed as

SNRmin =
σ2
hmin

σ2
n

PT
K
. (5.29)

Therefore, the average SNR can be expressed as

SNRaverage = 0.5 (SNRmax + SNRmin) , (5.30)

while the noise variance σ2
n was assumed to be 1.6×10−5. Furthermore, we assume throughout

our simulations that the number of antenna elements N = 128, number of selected antennas

Ns = 16, and the number of users K = 5. Finally, the value of ζ was set to 0.75, which

indicates that each user should be allocated at least 75% of the average power.

5.6.1 Achievable rates with EPA

Fig. 5.6 shows the total sum rate of the EPA strategy for different AS schemes. The SIM

achieves a superior performance compared to all other alogrithms, especially at high SNRs,
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Figure 5.6: Achievable sum rate vs. Average SNR under EPA of different algorithms, for
N = 128, Ns = 16, and K = 5.

followed by the SSIM, and then the greedy algorithm. In contrast, the MS algorithm has the

worst performance among the applied AS techniques for all SNR values investigated.

Since the users do not have equal distances from the BS, it is important to measure the

achievable rate of the worst-case user. Interestingly, Fig. 5.7 demonstrates the importance of

SGM algorithm, since it achieves the highest worst-case rate when the average SNR is less than

12 dB. Furthermore, the SIM algorithm shows the best performance at high SNRs followed by

both SSIM and greedy selection algorithms. However, the SSIM exhibits a higher total sum rate

than the greedy algorithm as shown in Fig. 5.6. In terms of total achievable sum rate, the SIM

and SSIM algorithms significantly outperform the greedy algorithm by 4.36 and 2.54 bps/Hz

at an average SNR of 15 dB, respectively. While the same algorithms outperform the MS

selection by 6.28 and 4.46 bps/Hz for the same SNR value. On the other hand, considering the

worst-case user only, the SGM algorithm outperforms all the other selection techniques applied

in this work by approximately 0.33 bps/Hz, which corresponds to 6.6 Mbps for a system with

20 MHz bandwidth at 0 dB of average SNR.
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Figure 5.7: Worst-case rate vs. Average SNR under EPA of different algorithms, for N = 128,
Ns = 16, and K = 5.

5.6.2 Achievable rates with MMPA

In this section, we show the achievable rates for the proposed algorithms after carrying MMPA.

The idea of this approach is to enhance the rates of users who are located far away from the BS,

by allocating them more power than users who are closer to the BS. However, this will result in

a small degradation in the total sum rate. Fig. 5.8 shows the achievable rate for the worst-case

user with EPA and MMPA. At low SNRs, the SGM algorithm achieves the highest worst-case

rate before and after applying MMPA, while at high SNRs, SIM algorithm achieves the highest

rate with EPA and MMPA, followed by SSIM algorithm. Fig. 5.9 shows the total sum rate

before and after applying MMPA. The SIM outperforms both SSIM and SGM, especially at

high SNRs. While the SGM has the lowest total sum rate between the proposed algorithms for

all SNR values.
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Figure 5.8: Worst-case rate vs. Average SNR under EPA and MMPA of different algorithms,
for N = 128, Ns = 16, and K = 5.
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Figure 5.9: Achievable sum rate vs. Average SNR under EPA and MMPA of different algo-
rithms, for N = 128, Ns = 16, and K = 5.
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Figure 5.10: MAR ratio vs Average SNR for the three proposed algorithms with EPA and
MMPA.
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Figure 5.11: Convergence speed vs MAR ratio for K = 5, and average SNR of 15 dB.
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As shown from Figs. 5.8 and 5.9, applying MMPA increased the worst-case user rate by

0.41, 0.37, and 0.22 bps/Hz for the SIM, SSIM, and SGM algorithms at an average SNR of

15 dB, respectively. However, that comes at the cost of decreasing the total achievable rate by

1.14, 1.11, and 0.41 bps/Hz for the SIM, SSIM, and SGM algorithms at the same SNR value,

respectively.

Moreover, Fig. 5.10 shows the Minimum to Average Rate (MAR) ratio, which indicates

the level of fairness achieved among the users. It is clear that applying MMPA guarantees

higher fairness between the users for all algorithms. Furthermore, SGM algorithm achieves a

considerably higher equality among users compared to SSIM and SIM algorithms, especially

at low SNRs, which confirms its advantage over the other two schemes for systems with low

power budgets. However, at high SNRs, the three methods show high fairness between the

users. Furthermore, Fig. 5.11 shows the number of iterations required for the iterative MMPA

algorithm to achieve convergence in terms of MAR ratio, for the three proposed algorithms

when the average SNR is 15 dB. The three algorithms require 12 iterations to converge with

τ = 10−3 bps/Hz of error tolerance.

Figs. 5.12 and 5.13 demonstrate the impact of ζ on the fairness level among the users and

the total sum rate, respectively. As shown in Fig. 5.12, SGM method achieves higher fairness

regardless of the value of ζ , which explains the small degradation in the total sum rate for the

SGM method in Fig. 5.13. In contrast, the SIM method suffers the highest performance degra-

dation in terms of total sum rate, since it has the lowest MAR among the proposed algorithms.

111



5.6 Results and Discussions

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
A

R

ζ

 

 

SIM algorithm
SSIM algorithm
SGM algorithm

Figure 5.12: ζ vs MAR for K = 5, N = 128, Ns = 16, and SNR = 30 dB.
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Figure 5.13: ζ vs total sum rate for K = 5, N = 128, Ns = 16, and SNR = 30 dB.
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5.7 Chapter Summary

In this chapter, three low complexity AS algorithms were proposed for distributed MU M-

MIMO downlink systems when MF precoding is applied. The first algorithm aimed to maxi-

mize the channel gain for the worst-case user, and it showed to have the least complexity and the

highest worst-case rate at low SNRs among the proposed methods. While the second algorithm

aimed to minimize the interference for worst-case user, and it showed to achieve the highest

sum rates compared to the other two algorithms, however, that came at the cost of increased

complexity. The final algorithm aimed to reduce the highest interference term between any two

users, and it showed good trade-off between complexity and performance compared to the other

two proposed methods. Furthermore, MMPA was applied to achieve higher fairness among the

users, however, that came at the cost of small degradation in the total sum rates. Finally, the

complexity of the proposed AS algorithms as well as the PA problem was evaluated in terms of

number of FLOPs required for their implementations.
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Chapter 6

Conclusions and Future Work

In order to satisfy the ever increasing demand for higher spectral efficiency in wireless commu-

nications systems, employing large antenna arrays at the BS seems to be an inevitable approach.

However, using large antenna arrays comes at huge price, in terms of cost, complexity, and

power consumption. To increase the achievable rates of a conventional MIMO system while

maintaining an affordable cost and complexity requirements, AS schemes can be utilized. This

thesis addressed the AS schemes in MU M-MIMO systems, in both uplink and downlink sce-

narios. Moreover, several low complexity, yet highly efficient, AS schemes were proposed for

SINR maximization in MU M-MIMO systems.

6.1 Summary and conclusions of the thesis

In this thesis, an overview of MIMO systems was presented in Chapter 2, were linear detec-

tion and precoding techniques were first introduced. Moreover, two well-known benchmark AS

schemes for conventional MIMO systems were presented. Then M-MIMO systems were intro-

duced and the key rule of AS in systems with massive arrays was explained. After highlighting

the main limitations of the existing AS schemes for M-MIMO systems, we present our main

research contribution in this thesis.

• In Chapter 3, an uplink MU M-MIMO system was considered, and several evolutionary

algorithms were applied to maximize the capacity for interference-free scenarios. The

key contributions of this chapter can be summarized as follow

C3.1 In terms of the achievable rates, the QTS algorithm demonstrated the best perfor-

mance among the employed evolutionary algorithms for AS in M-MIMO systems.

Followed by both CTS and GA. In contrast, the PSO method showed the worst
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capacity performance followed by the ABC algorithm. Furthermore, our results

demonstrated that the performance of both ABC and PSO methods becomes very

undesirable as the number of iterations increases, since both methods have the worst

convergence behaviour compared to the other employed evolutionary methods.

C3.2 In terms of complexity requirement, QTS and CTS require much lower complexity

than any of the bio-inspired algorithms. Moreover, the ABC method suffers from

the highest complexity, followed by PSO, and then GA.

C3.3 In addition to its low complexity requirement and high performance, QTS method

had an advantage over all other evolutionary methods in terms of optimizing its

parameters, since it only required finding the optimal rotation angle, which did not

depend on the dimensions of the system. In contrast, CTS, ABC, GA, and PSO

each have several parameters that needs to be optimized in order to obtain the best

performance.

• In Chapter 4, a single-cell downlink MU M-MIMO system was consider with MF pre-

coding. Two novel AS algorithms were proposed for SINR maximization with reduced

complexity. Our main contributions in this chapter were:

C4.1 A reduced search space UCAS algorithm was proposed, where each user was as-

signed a subset of antennas with high channel norms. Therefore, maximizing the

SINR for a certain user was achieved by selecting an antenna from the group which

was assigned to that user only, this resulted in dramatic complexity reduction while

maintaining high performance.

C4.2 A SIRAS algorithm was proposed, where at each iteration one antenna was selected

to reject the highest number of interference terms, without taking into account the

path gain of the antennas.

C4.3 Our results demonstrated that both methods significantly outperformed other low

complexity AS methods from the literature. In addition, the proposed methods

demonstrated higher sum rates and EE than the case where all the antenna elements

were activated. Furthermore, the SIRAS method outperformed the UCAS algorithm

as the number of users increased.

C4.4 A complexity analysis was carried out for the proposed methods in terms of num-

ber of floating-point operations. Our analysis demonstrated that the UCAS method

requires less complexity than SIRAS algorithm. However, both methods showed a
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significant performance-complexity trade-off compared to other low complexity AS

methods.

• In Chapter 5, different AS methods were proposed and utilized, alongside max-min PA

control, to enhance the performance of cell-edge users. The main contribution work in

this chapter can be summarized in the following

C5.1 Three low complexity AS methods were proposed to enhance the performance of the

worst-case user at each iteration. The first algorithm aimed to maximize the channel

gain, while the second method aimed to minimize the interuser interference. The

last method focused on minimizing the highest interference term only.

C5.2 Our results demonstrated that maximizing the channel gain is better at low SNRs,

since it achieves a considerably higher worst-case rate compared to the other pro-

posed methods. In contrast, at high SNRs, minimizing the interference outperform

significantly the SGM method.

C5.3 MMPA was carried out to maximize the worst-case user rate under total power con-

straint, and increase the fairness between the users.

C5.4 The complexity was analysed in terms of number of FLOPs for the different AS

schemes as well as the MMPA control. For the AS schemes, the SGM method had

the lowest complexity requirement among the proposed methods, while the SIM

suffered from the highest complexity. In addition, and for the PA scheme, it was

found that the complexity is a function of the number of users, and it does not

depend on the number of antennas at the BS.

6.2 Future Work

This thesis addressed the problem of designing low complexity AS schemes for MU M-MIMO

systems. The work in this thesis can be further investigated in the following directions:

1. In Chapter 3, both of CTS and GA showed close performance to the QTS algorithm with

good convergence behaviour. However, different parameters were used in both methods

such as the mutation probability, number of paired chromosomes, random repairing pro-

cedure, length of the tabu matrix, and number of tabu antennas, ... etc. Optimizing these

parameters can further improve the achievable rates of these methods. Furthermore, the
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evolutionary methods employed can also be investigated as a low complexity detection in

M-MIMO systems.

2. The AS methods proposed in Chapter 4, can be investigated for a Cell-Free M-MIMO

systems where the access points are distributed over large area, for both antenna and

access point selection.

3. In Chapter 5, the proposed AS methods can be improved by taking into account the pre-

coding normalization factors for each user during the iterative selection process, since

they depend on the large scale fading of each user. Therefore, ignoring these factors can

lead to the selection of suboptimal antennas. However, this will result in an increased

complexity. Furthermore, for systems with users located at the cell-edge, user scheduling

can be applied to achieve higher rates.

4. The same methodology used for PA in Chapter 5, can be utilized for different types of

precoding design, such as to maximize the SINR or the Signal to Leakage plus Noise

Ratio (SLNR). Furthermore, the joint AS and precoding design can be an interesting

approach for future work.

5. The work in Chapter 5 can be further extended for multi-cell M-MIMO scenario, where

both AS and PA methods can take into account inter-cell interference in addition to the

co-channel interference.

6. The work on AS can be further extended to consider a time-correlated channels, where

for different channel realizations, only a subset of the available antennas will go through

the selection process, which can result in dramatic complexity reduction.

7. The spectral efficiency of M-MIMO systems can further be improved by employing the

generalized spatial modulation (GSM), where the indices of the activated antennas bear

information. Therefore, combining AS with GSM can target both high energy and im-

proved spectral efficiencies at the same time. However, detecting the antenna indices at

the receiver side will impose higher complexity. Accordingly, reduced complexity detec-

tion method for joint AS and GSM is a very attractive direction for future research.
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