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Abstract

Quantum groups arose in the early 80’s in the investigation of integrable systems in math-

ematical physics. Quantum groups are a family of non-commutative, non-cocommutative

Hopf algebras which arise through deformation quantisation of universal enveloping alge-

bras of Lie algebras or of coordinate rings of affine algebraic groups. In this thesis, we

focus on quantum groups coming from universal enveloping algebras, known as ‘quantised

enveloping algebras’.

One of the fundamental properties of quantised enveloping algebras is that they give

rise to a universal R-matrix which provides solutions of the quantum Yang-Baxter equation

for each representation. The universal R-matrix allows applications of quantum groups in

the construction of invariants of knots and links. The main component of the universal

R-matrix is a quasi R-matrix, which has applications in other areas of representation

theory, for instance in Lusztig’s and Kashiwara’s theory of canonical bases. Also essential

to the theory of quantised enveloping algebras is the existence of a braid group action by

algebra automorphisms, due to Lusztig. This braid group action allows the definition of

root vectors and PBW bases.

Parallel to quantised enveloping algebras is the notion of quantum symmetric pair

coideal subalgebras, developed by G. Letzter in a series of papers from 1999 to 2004. These

are quantum group analogues of Lie subalgebras which are fixed under an involution. Over

the past five years it has become increasingly clear that many of the results for quantised

enveloping algebras have analogues in the quantum symmetric pair setting. An important

example of this is the construction of a universal K-matrix for quantum symmetric pairs

by Balagović and Kolb following earlier work by Bao and Wang. The universal K-matrix

provides solutions to the reflection equation, which is an analogue of the quantum Yang-

Baxter equation. The main ingredient of the universal K-matrix is a quasi K-matrix which

is an analogue of the quasi R-matrix. The quasi K-matrix recently played a crucial role in

the theory of canonical bases for quantum symmetric pairs, developed by Bao and Wang.

Until recently, only a recursive formula for the quasi K-matrix was known. The first

main result of this thesis is to give an explicit formula for the quasi K-matrix in many

cases. This formula closely resembles the known formula for the quasi R-matrix, which

admits a factorisation as a product of rank one quasi R-matrices. In particular, the quasi

K-matrix has a factorisation into a product of quasi K-matrices for Satake diagrams of

rank one. This factorisation depends on the restricted Weyl group of the symmetric Lie

algebra similarly to how the quasi R-matrix depends on the Weyl group of the Lie algebra.

The key idea is to calculate the quasi K-matrix explicitly in rank one and in rank two.



Lusztig’s braid group action is then used to build the quasi K-matrix in higher rank. We

conjecture that the resulting formula holds in full generality.

In the second part of this thesis, we investigate the analogue of Lusztig’s braid group

action in the quantum symmetric pair setting. It was conjectured by Molev and Ragoucy,

and more generally by Kolb and Pellegrini that there are two braid group actions on the

quantum symmetric pair coideal subalgebras, one of which comes from the restricted Weyl

group. This is known to be true in many cases where the underlying Satake diagram has

either no black nodes or a trivial diagram automorphism. Lusztig’s automorphisms for

the restricted Weyl group do not leave the quantum symmetric pair coideal subalgebra

invariant. Nevertheless, they can still be used as a useful guide in the constructions.

Here, we consider Satake diagrams of type AIII, which is the first instance involving black

nodes and a non-trivial diagram automorphism. We show that the braid group of the

restricted Weyl group acts on the quantum symmetric pair coideal subalgebra by algebra

automorphisms if the underlying Satake diagram has at most two black nodes. To assist

in the verification of braid group and algebra relations, we rely on the package QUAGROUP

of the computer algebra program GAP.
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Chapter 1

Introduction

1.1 Quantum symmetric pairs

Let g be a complex semisimple Lie algebra and Uq(g) the corresponding Drinfeld-Jimbo

quantised enveloping algebra. Let θ : g → g be an involutive Lie algebra automorphism

and k = {x ∈ g | θ(x) = x} the corresponding fixed Lie subalgebra. We call the pair

(g, k) a symmetric pair. Involutive automorphisms are parameterised up to conjugation

by combinatorial data attached to the Dynkin diagram of g known as Satake diagrams

(I,X, τ). Here I denotes the nodes of the Dynkin diagram, X denotes a subset of I and

τ denotes a diagram automorphism. Through Satake diagrams we obtain a classification

for symmetric pairs, see [1] and also [38].

Quantum symmetric pairs provide quantum group analogues of the universal envelop-

ing algebra U(k). In particular, families of subalgebras Bc,s ⊂ Uq(g) are constructed which

depend on parameters c and s, see [42], [44] and [38]. Such subalgebras are quantum ana-

logues of U(k) in the sense that Bc,s specialises to U(k) as q tends to 1. The crucial

property of Bc,s is that it is a right coideal subalgebra of Uq(g), meaning

∆(Bc,s) ⊆ Bc,s ⊗ Uq(g)

where ∆ denotes the coproduct of Uq(g). We call the pair (Uq(g), Bc,s) a quantum sym-

metric pair.

The origin of quantum symmetric pairs lies in the theory of quantum integrable sys-

tems with boundary. The integrability of such systems required solutions of the so-called

reflection equation, an analogue of the well-known quantum Yang-Baxter equation. The

pioneers in this field were I. Cherednik [12] and E. Sklyanin [61] who studied factorised

scattering on a half-line and lattice models with boundary conditions using the quantum

inverse scattering method.

From the perspective of noncommutative geometry, quantum symmetric pairs give rise

to quantum homogeneous spaces. In particular, instead of studying quantum groups that

1



Chapter 1. Introduction

arise as deformations of universal enveloping algebras of Lie algebras, one looks at de-

formations of coordinate rings of affine algebraic groups. The first examples of quantum

homogeneous spaces to be studied in detail were due to P. Podleś [56] and L. Vaksman

and Y. Soibelman [64]. Podleś investigated quantum 2-spheres, that is, quantum homo-

geneous spaces of the quantum group SUq(2), while Vaksman and Soibelman considered

higher dimensional spheres. A historical overview from this viewpoint can be found in [36,

Section 11.7].

In order to perform harmonic analysis on quantum analogues of compact symmetric

spaces, M. Noumi, T. Sugitani and M. Dijkhuizen developed a theory of quantum symmet-

ric pairs for classical Lie algebras, see [54], [15] and [55] which was based on solutions of

the reflection equation. The starting point for these constructions was T. Koornwinder’s

observation in [41] that the Podleś quantum sphere can be realised as infinitesimal in-

variants for a twisted primitive element in the quantised enveloping algebra of sl2(C). A

comprehensive theory of quantum symmetric pairs avoiding casework was developed by

G. Letzter in [42], [43] and [44], also with harmonic analysis in mind. In this setting, the

construction of quantum symmetric pairs only relies on the Drinfeld-Jimbo presentation

of quantised enveloping algebras and on involutive automorphisms of g. An extension of

the theory to the Kac-Moody case was developed in [38].

Recently, quantum symmetric pairs have appeared in many different contexts. In [5],

H. Bao and W. Wang constructed canonical bases for quantum symmetric pair coideal

subalgebras of type AIII/AIV. The theory of canonical bases has many applications, in-

cluding category O, algebraic combinatorics, categorification and geometric representation

theory. Independently, M. Ehrig and C. Stroppel observed a link between quantum sym-

metric pairs of type AIII/AIV and the type D category O in [18]. This places quantum

symmetric pairs in a much broader representation theoretic context.

Both of the papers [5] and [18] consider a bar involution for quantum symmetric pair

coideal subalgebras of type AIII/AIV. Moreover, Bao and Wang construct an intertwiner

X (denoted by Υ in [5]) between the bar involutions on Bc,s and on Uq(g). The intertwiner

X is an analogue of the quasi R-matrix for Uq(g). Using the intertwiner X, Bao and Wang

show that large parts of Lusztig’s theory of canonical bases [51, Part IV] extend to the

theory of quantum symmetric pairs. More recently, Bao and Wang have extended the

theory of canonical bases to all quantum symmetric pairs of finite type, [6].

Following the program of [5], the existence of a bar involution for Bc,s was established

in full generality by Balagović and Kolb in [3]. In the sequel [4] it was proved that the

intertwiner X exists for general quantum symmetric pairs. This was used in [4] to construct

a universal K-matrix for Bc,s, which is an analogue of the universal R-matrix for Uq(g).

It is for this reason that Balagović and Kolb call the intertwiner X the quasi K-matrix

for Bc,s. It has recently been discovered in [39] that the universal K-matrix gives suitable

2



Chapter 1. Introduction

categories of Bc,s-modules the structure of a braided monoidal category and hence has

applications in low-dimensional topology.

1.2 Quasi K-matrices for quantum symmetric pairs

Let U+ and U− denote the positive and negative parts of the Drinfeld-Jimbo quantised

enveloping algebra Uq(g), respectively. The quasi R-matrix for Uq(g) is a canonical element

in a completion of U− ⊗ U+ that plays a pivotal role in many applications for quantum

groups. In the theory of canoncial or crystal bases developed by G. Lusztig [50] and M.

Kashiwara [31], the quasi R-matrix appears as an intertwiner of two bar involutions on

∆(Uq(g)). The quasi R-matrix is used to define canonical bases of tensor products of

Uq(g)-modules, see [51, Part IV].

We denote the quasi R-matrix of Uq(g) by R as in the paper [4]. For each i ∈ I let

Uq(sl2(i)) denote the subalgebra of Uq(g) generated by Ei, Fi and K±1
i . One of the key

properties of the quasi R-matrix is that it admits a factorisation as a product of quasi

R-matrices for Uq(sl2(i)). Let {αi | i ∈ I} denote the set of simple roots of g. Then the

quasi R-matrix corresponding to Uq(sl2(i)) is given by

Ri =
∑
r≥0

(−1)rq
−r(r−1)/2
i

(qi − q−1
i )r

[r]qi !
F ri ⊗ Eri (1.1)

where qi = q(αi,αi)/2. In order to build the quasi R-matrix in general from quasi R-matrices

for Uq(sl2(i)) we use the braid group action on Uq(g) by algebra automorphisms. Let σi

for i ∈ I denote the generators of the Weyl group W of g and let Ti : Uq(g)→ Uq(g) denote

the corresponding Lusztig automorphisms. For any reduced expression w0 = σi1σi2 · · ·σit
of the longst word w0 ∈W define

R[j] = (Ti1 · · ·Tij−1 ⊗ Ti1 · · ·Tij−1)(Rij ) for j = 1, . . . , t. (1.2)

The quasi R-matrix for Uq(g) is then given by

R = R[t] ·R[t−1] · · ·R[2] ·R[1], (1.3)

see [35], [48], [34] and [27, 8.30]. This is independent of the chosen reduced expression for

w0.

In Chapters 5 and 6 we construct an analogue of (1.3) in the setting of quantum

symmetric pairs. In particular we provide a general closed formula for the quasi K-

matrix X in many cases, and conjecture that our formula holds in general for all quantum

symmetric pairs of finite type. We take the construction of the quasi R-matrix (1.3) as a

guide. The Weyl group W plays a crucial role in the construction of R so it is expected that

a subgroup of W should be the key ingredient for the quasi K-matrix. Here, we take the

subgroup W̃ = W (Σ) which is the Weyl group associated to the restricted root system Σ of

3



Chapter 1. Introduction

the symmetric Lie algebra (g, θ). The Coxeter generators σ̃i of W̃ are parameterised by the

τ -orbits of I \X. We introduce the notion of a partial quasi K-matrix Xw̃ for any w̃ ∈ W̃
with reduced expression w̃ = σ̃i1 · · · σ̃it . More precisely, for j = 1, . . . , t let Xj denote the

rank one quasi K-matrix for the rank one Satake subdiagram (X∪{i, τ(i)}, X, τ |X∪{i,τ(i)})

of (I,X, τ). This is the analogue of the rank one quasi R-matrix Ri corresponding to

i ∈ I given by (1.1). Using the Lusztig automorphisms Ti : Uq(g) → Uq(g) we define

automorphisms T̃i := Tσ̃i : Uq(g)→ Uq(g) for all i ∈ I \X. This provides us with an action

of the braid group Br(W̃ ) corresponding to W̃ on Uq(g) by algebra automorphisms. For

j = 1, · · · , t we define

X
[j]
w̃ = Ψ ◦ T̃i1 · · · T̃ij−1 ◦Ψ−1(Xij ). (1.4)

Here, Ψ denotes an algebra automorphism of an extension Ũ+ = ⊕µ∈Q+(2Σ)U
+
µ defined in

(5.32). In analogy to (1.3) we define

Xw̃ = X
[t]
w̃ · · ·X

[1]
w̃ . (1.5)

The following theorem is the the first main result of this thesis. It gives an explicit formula

for X for many examples when s = (0, . . . , 0).

Theorem A. (Corollary 5.29) Let g be of type An or X = ∅. Then the quasi K-matrix

for Bc,0 is given by X = Xw̃0
for any reduced expression of the longest element w̃0 ∈ W̃ .

We conjecture that Theorem A holds true for all quantum symmetric pairs of finite

type. There are three key steps to prove Theorem A which proceed similarly to the

construction of the quasi R-matrix found in [34]. First we construct the quasi K-matrix

corresponding to rank one Satake subdiagrams of type An in the case where s = (0, . . . , 0).

The difficulty here is that there are many rank one cases, see Table 5.1. Next, we verify

Theorem A in rank two by direct calculation. The key idea here is that in rank two

the longest element w̃0 ∈ W̃ has only two reduced expressions. In each case we show

that Xw̃0
coincides with the quasi K-matrix by showing that Xw̃0

satisfies the defining

recursive relations for the quasi K-matrix. All of the rank two calculations are completed

in Chapter 6. In order to do these calculations, one is required to know explicitly the

quasi K-matrices corresponding to rank one Satake subdiagrams. It is for this reason that

Theorem A is stated with the restriction that g is of type An or X = ∅. The calculations

of Chapter 6 suggest that the partial quasi K-matrix Xw̃0
is independent of the chosen

reduced expression for w̃0. We conjecture that this is true in general.

Conjecture B. (Conjecture 5.22) Assume that (I,X, τ) is a Satake diagram of rank two.

Then the element Xw̃ only depends on w̃ ∈ W̃ and not on the chosen reduced expression.

Conjecture B is all that is needed in order to prove Theorem A. Assuming that Con-

jecture B holds, we use the fact that the automorphisms T̃i satisfy braid relations in order

to show that Xw̃ is independent of the chosen reduced expression of w̃ ∈ W̃ in higher rank.

4



Chapter 1. Introduction

In the case of the longest element Xw̃0
, we choose different reduced expressions for w̃0 in

order to show that the partial quasi K-matrix in this case satisfies the defining relations

for the quasi K-matrix for Bc,0. In summary, we obtain the following result in the case

s = 0.

Theorem C. (Theorems 5.25, 5.28) Let (I,X, τ) be a Satake diagram such that all rank

two Satake subdiagrams satisfy Conjecture B. Then the following hold:

1. The partial quasi K-matrix Xw̃ depends only on w̃ ∈ W̃ and not on the chosen

reduced expression.

2. The quasi K-matrix X for Bc,0 is given by X = Xw̃0
where w̃0 ∈ W̃ denotes the

longest element.

In the case s 6= 0 it is harder to give an explicit formula for the quasi K-matrix Xc,s

of Bc,s. However, we can make use of the fact that Bc,s is obtained from Bc,0 via a twist

by a character χs of Bc,0. We consider the element Rθc,s = ∆(Xc,s)R(X−1
c,s ⊗ 1) which was

introduced in [5] under the name quasi R-matrix for Bc,s, and which lives in a completion

of Bc,s ⊗ U+, see also [39, Section 3.3]. We show that the quasi K-matrix Xc,s for Bc,s

satisfies the relation

Xc,s = (χs ⊗ id)(Rθc,0). (1.6)

Hence the explicit formulas (1.3) and (1.5) for R and Xc,0, respectively, provide a formula

for the quasi K-matrix of Bc,s also in the case s 6= 0. However, in this case we do not

obtain a factorisation as in Equation (1.5). The results of Chapters 5 and 6 are available

in [16].

1.3 Braid group actions for Bc,s

Recall the the Lusztig automorphisms Ti : Uq(g) → Uq(g) give rise to a representation

of Br(g) on Uq(g), where Br(g) denotes the associated braid group corresponding to g,

see [51]. This is the quantum analogue of the braid group action on g by Lie algebra

automorphisms, see Section 2.2.4. In the theory of quantum groups, the automorphisms

Ti play a crucial role in the definition of root vectors and in the constructions of PBW

bases for Uq(g). Further, they are the fundamental objects needed in the construction of

canonical bases for Uq(g), as well as in the construction of quantum symmetric pairs.

Classically we can also build a braid group action on the fixed Lie subalgebra k of g. In

this instance, we obtain an action of Br(WX)oBr(W̃ ) on k by Lie algebra automorphisms.

Here WX is a parabolic subgroup of W corresponding to the subset X. It is natural

to ask if there is an analogous braid group action for quantum symmetric pairs. The

5
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following theorem implies that we have a braid group action of Br(WX) on Bc,s by algebra

automorphisms.

Theorem D. (Proposition 7.13) For any i ∈ X the Lusztig automorphism Ti : Uq(g) →
Uq(g) restricts to an automorphism of Bc,s.

Theorem D was also independently proved in [6, Theorem 4.2]. A more difficult prob-

lem is establishing a braid group action of Br(W̃ ) on Bc,s by algebra automorphisms.

Many cases have already been checked in the literature. Initially, Molev and Ragoucy [53]

constructed an action of Br(W̃ ) on Bc,s if the underlying Satake diagram is of type AI.

1 2 n

This case was also checked independently by Chekov [10]. It was conjectured in [53,

Conjecture 4.7] that there is a braid group action if the Satake diagram is of type AII.

1 2 n

This was confirmed by Kolb and Pellegrini in [40] where actions of Br(W̃ ) on Bc,s were

constructed for numerous examples. In particular, they considered the following three

classes of Satake diagram.

1. g arbitrary, X = ∅, and τ = id,

2. g arbitrary, X = ∅, and τ 6= id,

3. g = sl2n(C), X = {1, 3, 5, . . . , 2n− 1}, and τ = id.

However, so far braid group actions of Br(W̃ ) on Bc,s have not been known for Sa-

take diagrams with black dots and non-trivial diagram automorphisms. In Chapter 7 we

consider the case AIII/AIV with black dots and a non-trivial diagram automorphism.

1 r

n − r + 1n

In this case the parameters s always satisfy s = (0, 0, . . . , 0), see (3.34). Additionally

Br(W̃ ) is isomorphic to the braid group of type Br. It is necessary for two or more black

6



Chapter 1. Introduction

dots to consider a larger Hopf algebra than Uq(g) which we construct by enlarging the

group algebra U0. This is done by using the weight lattice instead of the root lattice. The

resulting coideal subalgebra we obtain is denoted by B̌c.

Following the methods of Kolb and Pellegrini, the main tool we use is the package

QUAGROUP [14] of the computer algebra program GAP, [22]. In order to use GAP we have to

specify parameters c and s for the coideal subalgebra Bc,s. We assume that the parameters

c only take values that are integer powers of q. This assumption has appeared earlier, for

instance in the construction of canonical bases from [6]. The following general theorem

tells us that it does not matter what choice we make for the parameters.

Proposition E. (Proposition 7.16) Let (X, τ) be any Satake diagram and suppose c, c′ ∈
(±qZ)I\X . Then there is an algebra isomorphism Ac,c′ : Bc,s → Bc′,s.

One of the limitations of using GAP is that as we increase the number of black dots the

running time for calculations increase massively. For this reason we can only use GAP to

find a braid group action in the cases where we have one or two black dots. We describe

the general procedure for constructing a braid group action of Br(W̃ ) on B̌c in these two

cases when n = 7 and n = 8. For i ∈ I \X the algebra automorphisms T̃i := Tσ̃i of Uq(g)

do not restrict to Bc,s. Despite this, they are still useful as a guide for our constructions.

In particular we construct algebra automorphisms Ti of B̌c for 1 ≤ i ≤ r such that Ti(Bj)
and T̃i(Bj) have identical terms containing maximal powers of the generators Fk, k ∈ I,

for j ∈ I \X. An inverse automorphism T −1
i is similarly constructed and we check that

Ti and T −1
i are mutually inverse algebra automorphisms for each i ∈ I \ X. We then

check that the automorphisms Ti satisfy the braid relations for Br(W̃ ). For 1 ≤ i < r the

algebra automorphisms Ti correspond directly to those constructed in [40, Theorem 4.6].

It follows that we only need to construct Tr and check that the corresponding braid

relations hold. With the assistance of GAP we construct algebra automorphisms Tr when

n = 7 and n = 8 and show that these satisfy the corresponding braid relations.

Theorem F. (Theorems 7.22, 7.24) Let (X, τ) be a Satake diagram of type AIII with

|X| = 1 or |X| = 2. Then there exists a braid group action of Br(W̃ ) on B̌c by algebra

automorphisms. This action is explicitly given by the formulas Ti for 1 ≤ i < r given in

(7.57) and Tr given in (7.51) and (7.55).

In the general case, we can no longer rely on GAP for assistance due to memory issues.

Based on the constructions when |X| = 1 and |X| = 2 we suggest a formula for Tr for any

|X| ≥ 1, see Equation (7.62). We make the following conjecture.

Conjecture G. (Conjecture 7.27) For any |X| ≥ 1 the formulas for Tr given in (7.62)

define algebra automorphisms of B̌c.

The difficulty in showing this in general comes from proving that Tr(Bi) satisfy the

7
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quantum Serre relations for B̌c. However, we show that if Tr is an algebra automorphism,

then the correct braid relations are satisfied.

In Section 7.4.5 we prove Theorem F in full generality, assuming that the formulas for

Tr define algebra automorphisms of B̌c. This proceeds by case-by-case computations and

does not require the use of GAP. In particular, the results here suggest that many of the

cases in [40] can be addressed without use of computer packages. In the final section of

Chapter 7 we show that the two braid group actions of the preceding sections commute.

Theorem H. (Theorem 7.35) Let (X, τ) be a Satake diagram of type AIII with |X| = 1

or |X| = 2. Then there exists an action of Br(WX)×Br(W̃ ) on B̌c by algebra automor-

phisms.

We give a proof of Theorem H that does not make any assumptions on the size of X. As

a result, if Conjecture G holds, then we immediately obtain an action of Br(WX)×Br(W̃ )

on B̌c for any |X| ≥ 1.

1.4 Organisation

This thesis is organised as follows. In Chapter 2 we provide background material on Hopf

algebras and quantised enveloping algebras. In particular, we recall the factorisation (1.3)

of the quasi R-matrix in Section 2.2.8. Chapter 3 provides an overview of the theory of

quantum symmetric pairs and give a presentation in terms of generators and relations for

Bc,s. This follows [45] and [38]. The connection between the symmetric Lie algebra (g, θ)

and the restricted Weyl group is reviewed in Chapter 4, following the work of [60].

The main results of this thesis are contained in Chapters 5, 6 and 7. In Chapter 5 we

recall the recursive definition of the quasi K-matrix and use this to explicitly compute the

quasi K-matrix in many rank one cases in Section 5.3. In Section 5.4 we develop the theory

of partial quasi K-matrices. Chapter 6 contains the rank two calculations for the quasi

K-matrix. Finally in Chapter 7 we construct a braid group action on quantum symmetric

pairs of type AIII/AIV. In particular, we use GAP to construct a braid group action for one

or two black nodes and using this we suggest a general construction. In Section 7.4.5 we

prove that our general construction satisfies the braid relations for Br(W̃ ). This requires

many additional relations, which we prove in Appendix A.

8



Chapter 2

Background

In this chapter we introduce the theory of quantised enveloping algebras that is required

for the remainder of this thesis. We set the scene in section 2.1 by recalling the definition

of Hopf algebras, of which quantised enveloping algebras form an important family of

examples. This is shown in Section 2.2.2. Notation for semisimple Lie algebras and

quantised enveloping algebras is set up in Sections 2.2.1 and 2.2.2. We establish a braid

group action on semisimple simple Lie algebras following [62] in Section 2.2.4. This is

the starting point for Chapter 7. The quasi R-matrix is introduced in Section 2.2.8. In

particular we exhibit an explicit formula for the quasi R-matrix, due to [48], [35] and [34].

2.1 Hopf algebras

In the theory of quantum groups, a crucial role is played by algebras which have an

additional coalgebra structure. Such objects are called Hopf algebras. We review the

construction of Hopf algebras in this section. In order to do this, we require the notion of

a tensor product.

2.1.1 Tensor products

Fix a field K. Given vector spaces U and V , a näıve definition of the tensor product U⊗V
is to take the vector space generated by symbols u ⊗ v with u ∈ U and v ∈ V such that

the operator ⊗ is a bilinear operator. A more precise characterisation is given through a

universal property regarding bilinear maps.

Definition/Theorem 2.1 ([32, Theorem II.1.1]). Given vector spaces U and V there

exists a vector space denoted U ⊗ V and a bilinear map φ : U × V → U ⊗ V such that for

every vector space W and for any bilinear map f : U × V → W , there is a unique linear

map g : U ⊗V →W such that f = g ◦φ. In other words, the following diagram commutes.

9



Chapter 2. Background

U × V U ⊗ V

W

φ

f
g (2.1)

Further, U ⊗ V is the unique vector space up to isomorphism satisfying this property.

Proof. Consider the vector space K[U ×V ] whose basis is the set U ×V . Define U ⊗V as

the quotient space K[U × V ]�R where R is the subspace generated by the elements

(u+ u′, v)− (u, v)− (u′, v), (u, v + v′)− (u, v)− (u, v′),

(λu, v)− λ(u, v), (u, λv)− λ(u, v)

where u ∈ U , v ∈ V and λ ∈ K. We define φ : U × V → U ⊗ V to be the canonical

map that sends (u, v) ∈ U × V to the associated equivalence class in the quotient. By

construction, this map is bilinear.

Let W be a vector space and f : U × V →W a bilinear map. We show that there is a

unique linear map g : U ⊗ V → W such that f = g ◦ φ. To show the existence of such a

map, we define g(u⊗ v) = f(u, v) and extend this linearly. Hence

g(λ1(u1 ⊗ v1) + λ2(u2 ⊗ v2)) = λ1g(u1 ⊗ v1) + λ2g(u2 ⊗ v2)

for all u1, u2 ∈ U , v1, v2 ∈ V and λ1, λ2 ∈ K. This satisfies f = g ◦ φ and further g

is a well-defined linear map. The uniqueness of g comes from the fact that any other

choice for g would contradict f = g ◦ φ. Finally suppose there is a vector space Z also

satisfying the universal property. Then there are unique linear maps ψ1 : U ⊗ V → Z and

ψ2 : Z → U ⊗ V such that the diagram

U × V U ⊗ V

Z

U ⊗ V

φ

f

ψ

ψ1

ψ2

commutes. By the universal property for U ⊗V it follows that ψ2 ◦ψ1 = idU⊗V . Similarly,

we also have ψ1 ◦ ψ2 = idZ and hence U ⊗ V ∼= Z.

Tensor products are useful objects to study in algebra since the universal property

reduces the study of bilinear maps to that of linear maps. The following lemma provides

three canonical isomorphisms for tensor products of vector spaces.

Lemma 2.2 ([32, Proposition II.1.3]). Let U, V and W be vector spaces. Then there are

isomorphisms

10
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(1) (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) defined by

(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w).

(2) K⊗ V ∼= V ∼= V ⊗K defined by

λ⊗ v 7→ λv 7→ v ⊗ λ.

(3) U ⊗ V ∼= V ⊗ U defined by

u⊗ v 7→ v ⊗ u.

Proof. We only prove (1) as the other isomorphisms are similar. Fix u ∈ U and define

a bilinear map f : V ×W → (U ⊗ V ) ⊗W by f(v, w) = (u ⊗ v) ⊗ w. By the universal

property, this induces a linear map gu : V ⊗W → (U ⊗ V )⊗W such that the diagram

V ×W V ⊗W

(U ⊗ V )⊗W

φ

f
gu

commutes i.e. gu(v ⊗ w) = (u ⊗ v) ⊗ w for each v ∈ V,w ∈ W . Using this, we define a

bilinear map f ′ : U × (V ⊗W )→ (U ⊗ V )⊗W by

(u, v ⊗ w) 7→ gu(v ⊗ w).

The universal property implies that there is a unique linear map g : U ⊗ (V ⊗ W ) →
(U ⊗ V )⊗W such that the diagram

U × (V ⊗W ) U ⊗ (V ⊗W )

(U ⊗ V )⊗W

φ′

f ′
g

commutes. Similarly, a linear map g′ : (U ⊗ V )⊗W → U ⊗ (V ⊗W ) can be constructed

in the opposite direction. Using the universal property again implies that g and g′ are

inverses to one another and hence (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) as required.

If U,U ′, V and V ′ are vector spaces and f : U → U ′ and g : V → V ′ are two linear

maps, then we can construct the tensor product of the linear maps f and g, denoted by

f ⊗ g : U ⊗ V → U ′ ⊗ V ′, by defining

(f ⊗ g)(u⊗ v) = f(u)⊗ g(v) (2.2)

for all u ∈ U and v ∈ V . This map arises naturally through the universal property. This

is so since there is a bilinear map f × g : U × V → U ⊗ V defined by

(f × g)(u, v) = f(u)⊗ g(v)

which induces the map (2.2).

11
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2.1.2 Algebras and coalgebras

Recall that we can define an algebra through commutative diagrams [32, Section III.1]. In

particular, an algebra is a triple (A,µ, η) where A is a K-vector space and µ : A⊗A→ A

and η : K→ A are linear maps satisfying the following two axioms.

(Assoc): The square

A⊗A⊗A A⊗A

A⊗A A

µ⊗id

id⊗µ µ

µ

(2.3)

commutes i.e. µ ◦ (µ ⊗ id) = µ ◦ (id ⊗ µ). This expresses the usual requirement that

multiplication is associative.

(Unit): The diagram

K⊗A A⊗A A⊗K

A

η⊗id

∼=
µ

id⊗η

∼=
(2.4)

commutes i.e. µ ◦ (η ⊗ id) = µ ◦ (id⊗ η). This is equivalent to the requirement that η(1)

is a left and right unit for the multiplication map µ.

Additionally, the algebra A is commutative if the triangle

A⊗A A⊗A

A

µ

flip

µ
(2.5)

commutes. Here flip : A⊗A→ A⊗A is the unique linear map that maps a⊗ b to b⊗ a.

A morphism of algebras f : (A,µ, η)→ (A′, µ′, η′) is a linear map f from A to A′ such

that the diagrams

A⊗A A′ ⊗A′ K A

A A′ A′

f⊗f

µ µ′

η

η′
f

f

(2.6)

commute. In other words,

f ◦ µ = µ′ ◦ (f ⊗ f), f ◦ η = η′. (2.7)

This is just another way of stating the usual properties of morphisms that f(ab) =

f(a)f(b) and f(idA) = idA′ .

To obtain the definition of a coalgebra, we systematically reverse all of the arrows in

diagrams (2.3)–(2.6).

Definition 2.3 ([32, Definition III.1.1(a)]). A coalgebra is a triple (C,∆, ε) where C is a

12
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K-vector space and ∆ : C → C ⊗ C and ε : C → K are linear maps satisfying the follow

axioms.

(Coass): The square

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ id⊗∆

∆⊗id

(2.8)

commutes i.e. (id⊗∆) ◦∆ = (∆⊗ id) ◦∆.

(Coun): The diagram

C ⊗K C ⊗ C K⊗ C

C

id⊗ε ε⊗id

∼=
∆ ∼=

(2.9)

commutes i.e. (id ⊗ ε) ◦∆ = (ε ⊗ id) ◦∆. The map ∆ is called the comultiplication and

the map ε is called the counit. Additionally, the coalgebra is said to be cocommuative if

the following triangle commutes

C

C ⊗ C C ⊗ C

∆ ∆

flip

(2.10)

The intuition behind the (Coun) axiom is that if we apply ∆ to an element c ∈ C and

collapse either the left or right tensor components, then we retrieve c again.

Definition 2.4 ([32, Definition III.1.1(b)]). If (C,∆, ε) and (C ′,∆′, ε′) are two coalgebras,

then f : (C,∆, ε)→ (C ′,∆′, ε′) is a coalgebra morphism if the diagrams

C C ⊗ C C K

C ′ C ′ ⊗ C ′ C ′

∆

f f⊗f

ε

f

∆′

ε′
(2.11)

commutes. In other words,

∆′ ◦ f = (f ⊗ f) ◦∆, ε′ ◦ f = ε. (2.12)

Example 2.5. The field K has a natural coalgebra structure with ∆(1) = 1 ⊗ 1 and

ε(1) = 1. For any coalgebra (C,∆, ε) the map ε : C → K is a coalgebra morphism.

Example 2.6. Let S be a set and C = K[S] be the K-vector space with basis S. Then

C admits a cocommutative coalgebra structure with ∆(s) = s ⊗ s and ε(s) = 1 for any

s ∈ S.

Example 2.7 ([32, Section III.8, 2.]). Consider the polynomial ring C = K[x] in one

variable. Then C obtains a coalgebra structure, called the divided power coalgebra by

13
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setting

∆(xn) =

n∑
k=0

(
n

k

)
xk ⊗ xn−k, ε(xn) =

1 if n = 0,

0 if n > 0.

This is again a cocommutative coalgebra, since
(
n
k

)
=
(
n

n−k
)
.

Another important concept that we will make use of is that of a coideal.

Definition 2.8 ([32, Definition III.1.5]). Let (C,∆, ε) be a coalgebra. A subspace I of C

is called a coideal if ∆(I) ⊂ I ⊗ C + C ⊗ I and ε(I) = 0.

Given a coalgebra (C,∆, ε) and a coideal I, we can construct a new coalgebra, called

the quotient coalgebra, in the following way. First, the comultiplication ∆ factors through

a map ∆ from C�I to

(C ⊗ C)�(I ⊗ C + C ⊗ I) = C�I ⊗ C�I .

The counit map factors similarly through a map ε : C�I → K. This gives a coalgebra

structure on C�I.

We also have the notions of a left coideal and right coideal. In particular, a subspace

I of C is a left coideal if

∆(I) ⊆ C ⊗ I (2.13)

and a right coideal if

∆(I) ⊆ I ⊗ C. (2.14)

Note that we do not require ε(I) = 0 for left or right coideals. Right coideals play a major

role in the construction of quantum symmetric pairs in Chapter 3.

The definition of coalgebra suggests that algebras and coalgebras should be dual to

one another. Recall that for a K-vector space V , we define the dual vector space V ∗ =

Hom(V,K) consisting of linear functions f : V → K. The following proposition, given

without proof, provides the link between algebras and coalgebras.

Proposition 2.9 ([32, Proposition III.1.2/1.3]). (1) The dual vector space of a coalge-

bra is an algebra.

(2) The dual vector space of a finite-dimensional algebra has a coalgebra structure.

Remark 2.10. For any vector space V , there is an injective homomorphism λ : V ∗⊗V ∗ →
(V ⊗ V )∗ defined by

λ(f ⊗ g)(v1 ⊗ v2) = f(v2)⊗ g(v1). (2.15)

This is an isomorphism if V is finite-dimensional, see [32, Corollary II.2.2]. The require-

ment in Proposition 2.9 (2) that the algebra A is finite-dimensional comes about since
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we define the comultiplication on A∗ using λ−1. If A is infinite dimensional, with basis

{eβ}β∈B indexed by an infinite set B, then we proceed using the finite dual A◦ ⊂ A∗

defined by

A◦ := {f ∈ A∗ | µ∗(f) ∈ A∗ ⊗A∗}, (2.16)

see [32, Section III.9]. Then the alternative statement is that the finite dual has a coalgebra

structure.

2.1.3 Bialgebras and Hopf algebras

We now let H be a K-vector space equipped simultaneously with an algebra structure

(H,µ, η) and with a coalgebra structure (H,∆, ε).

Definition 2.11 ([32, Definition III.2.2]). A bialgebra is a 5-tuple (H,µ, η,∆, ε) such that

(H,µ, η) is an algebra, (H,∆, ε) is a coalgebra and the maps ∆ and ε are morphisms of

algebras.

The condition that ∆ and ε are morphisms of algebras is equivalent to the commuta-

tivity of the following diagrams.

H ⊗H (H ⊗H)⊗ (H ⊗H) K H

H H ⊗H K⊗K H ⊗H

∆⊗∆

µ (µ⊗µ)(id⊗flip⊗id)

η

∼= ∆

∆ η⊗η

and

H ⊗H K⊗K K H

H K K

ε⊗ε

µ ∼=

η

∼=
ε

ε

These four commutative diagrams are equivalent to the statement that µ and η are mor-

phisms of coalgebras [32, Theorem III.2.1] which gives a compatability between the algebra

and coalgebra structures on H.

We say that a morphism of bialgebras is a morphism for both of the underlying algebra

and coalgebra structures.

Example 2.12. If H is a finite-dimensional bialgebra, then by Proposition 2.9 the dual

vector space H∗ has a natural bialgebra structure.

Example 2.13 ([32, Section III.3, Example 2.]). Following Example 2.6, assume instead

that the set S comes with a unital monoid structure with a binary operation µ : S×S → S

and a left and right unit e. Then the map µ induces an algebra structure on K[S]. Further,
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the maps ∆ and ε are morphisms of algebras since

∆(xy) = xy ⊗ xy = (x⊗ x)(y ⊗ y) = ∆(x)∆(y),

ε(xy) = 1 = ε(x)ε(y)

and hence K[S] has the structure of a bialgebra.

We are now ready to give the following important definition.

Definition 2.14 ([32, Definition III.3.2]). A Hopf algebra H is a 6-tuple (H,µ, η,∆, ε, S)

such that (H,µ, η,∆, ε) is a bialgebra and S : H → H is a K-linear map which makes the

following diagram commute.

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

S⊗id

µ∆

ε

∆

η

id⊗S

µ

(2.17)

The map S : H → H is called the antipode.

The following example suggests that the antipode can be thought of as a generalisation

of the inverse map of a group.

Example 2.15. Let G be a monoid and consider the bialgebra K[G] of Example 2.13. If

the antipode S exists, then by the antipode law (2.17) it must satisfy

S(x)x = xS(x) = ε(x)1 = 1.

Hence the antipode exists if and only if each x ∈ G is invertible i.e. G is a group and then

S(x) = x−1 for all x ∈ G.

Definition 2.16 ([9, p. 103]). A Hopf ideal of a Hopf algebra H is a subspace I which is

simultaneously an ideal and coideal, and satisfies S(I) ⊆ I.

For a Hopf ideal I of H, the quotient H�I obtains the structure of a Hopf algebra in

the same way as the construction of the quotient coalgebra.

Given a Hopf algebra H, we define the left adjoint representation of H on itself in

the following way, see [32, Section IX.3]. We make H into a (H ⊗H)-module by setting

(x ⊗ y) · z = xzS(y) for all x, y, z ∈ H. Via the coproduct, we then make H into a

H-module where we denote the action by ad. Hence for any x, y ∈ H we have

ad(x)(y) = ∆(x) · y =
∑
i

xiyS(x′i) (2.18)

where ∆(x) =
∑

i xi ⊗ x′i. There is a corresponding right adjoint representation, where

instead we set (x⊗ y) · z = S(x)zy for any x, y, z ∈ H.
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2.1.4 Universal enveloping algebras

The crucial example of Hopf algebra that we study comes from Lie theory. Any Lie

algebra g can be embedded into a larger associative algebra A in such a way that the Lie

bracket [x, y] in g corresponds to taking the commutator xy − yx in A. The idea behind

the universal enveloping algebra is to take the associative algebra obtained by forming all

formal products and sums of elements in g, subject to the relations of g.

Since every Lie algebra is a vector space, we can construct the tensor algebra T (g)

from it. This is the key ingredient in the construction of the universal enveloping algebra.

We recall how T (V ) is constructed for any vector space V .

Definition 2.17 ([25, Section 17.1]). Let V be a vector space over a field K and for any

non-negative integer k, let T kV = V ⊗k = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
k factors

. The tensor algebra T (V ) is

defined as

T (V ) =
∞⊕
k=0

T kV = K⊕ V ⊕ (V ⊗ V )⊕ · · · . (2.19)

The multiplication in T (V ) is determined by the canonical isomorphism

ϕ : T kV ⊗ T lV → T k+lV

which extends linearly to all of T (V ). This further implies that T (V ) is a graded alge-

bra where T kV is the kth-graded component. Let i : V → T (V ) denote the canonical

embedding of V into T (V ). The tensor algebra has the following universal property.

Proposition 2.18 ([32, Proposition II.5.1]). For any algebra A and linear map f : V → A,

there exist a unique algebra morphism g : T (V ) → A such that the following diagram

commutes.

V T (V )

A

i

f
g (2.20)

The following proposition endows the tensor algebra with a Hopf algebra structure,

which is proved by checking all of the necessary axioms are satisfied.

Proposition 2.19 ([32, Theorem III.2.4]). Given a vector space V , there exists a unique

cocommutative Hopf algebra structure on T (V ) such that

∆(v) = 1⊗ v + v ⊗ 1,

ε(v) = 0,

S(v) = −v

for all v ∈ V .
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We can now define the universal enveloping algebra U(g) in the following way by

quotienting the tensor algebra by a suitable subspace.

Definition 2.20 ([32, Section V.2]). The universal enveloping algebra U(g) is defined as

the quotient space

U(g) = T (g)�J

where J is the two-sided ideal generated by elements of the form x⊗ y− y⊗ x− [x, y] for

x, y ∈ g.

The tensor algebra is infinite-dimensional, which implies that U(g) is also infinite-

dimensional. Further, the algebra structure on U(g) is induced by the algebra structure on

T (g). Since U(g) is generated by the Lie algebra g, we often use the following notational

convention. Restricting to the case where g is semisimple, the generators of U(g) are

denoted by {Ei, Fi, Hi | i ∈ I} which correspond to the Chevalley generators {ei, fi, hi |
i ∈ I} of g. The relations satisfied in U(g) are induced by the relations in g. For instance,

for all i, j ∈ I the relation [hi, ej ] = ajiej holds in g which corresponds to the relation

HiEj − EjHi = ajiEj

in U(g), where now we omit the tensor product when multiplying elements in T (g). As

one may expect, the universal enveloping algebra satisfies a universal property. Recall

that any associative algebra A is made into a Lie algebra by defining the Lie bracket as

[x, y] = xy − yx, see [19, Section 1.5].

Proposition 2.21 ([25, 17.2]). Suppose we have a Lie algebra map φ : g→ A such that

φ([x, y]) = φ(x)φ(y)− φ(y)φ(x) for all x, y ∈ g

and A is a unital, associative algebra over K. Then there exists a unique unital algebra

homomorphism ϕ : U(g)→ A such that the diagram

g U(g)

A

j

φ
ϕ

commutes, where j : g → U(g) is the canonical embedding of g into T (g), composed

with the quotient map. Further, U(g) is the unique algebra satisfying this property, up to

isomorphism.

Proof. By the universal property 2.18 of the tensor algebra, the Lie algebra map φ : g→ A
extends to a morphism of algebras φ : T (g)→ A such that

φ(x1x2 · · ·xn) = φ(x1)φ(x2) · · ·φ(xn)

18
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for x1, x2, . . . , xn ∈ g. The existence of a unital algebra homomorphism ϕ : U(g) → A
follows since

φ(xy − yx− [x, y]) = φ(x)φ(y)− φ(y)φ(x)− φ([x, y]) = 0.

Hence φ(J) = 0. The uniqueness follows from the fact that T (g), and hence U(g), is

generated by g.

Suppose U ′ is another associative algebra satisfying the universal property with a

canonical embedding j′ : g→ U ′. By the universal properties for U(g) and U ′, there exists

unique algebra homomorphisms f : U(g)→ U ′ and g : U ′ → U(g) such that the following

diagram commutes.

g U(g)

U ′

U(g)

j

j′

j

f

g

It follows from the commutativity of the above diagram and the universal property for

U(g) that g ◦ f = idU ′ . Similarly, the universal property for U ′ implies that f ◦ g = idU(g).

This gives U ′ ∼= U(g) as required.

In particular, Proposition 2.21 implies that U(g) does not depend on the chosen basis

for g. We now give a basis for U(g). The proof is technical, so we skip the details here.

Theorem 2.22 ([25, 17.3, Corollary C]). Let x1, x2, . . . , xn be a basis for g. Then U(g)

has basis

{Xa1
1 Xa2

2 · · ·Xan
n | a1, a2, . . . , an ≥ 0} (2.21)

where Xi is the element in U(g) corresponding to xi ∈ g.

Showing that the basis elements span U(g) is done by using the defining relations; the

difficulty comes from showing that the described elements are linearly independent. Such

a basis is called a PBW basis, due to the constructions of Poincaré, Birkhoff and Witt,

see [7] and [65] for example.

Example 2.23. Let g = sl3 which has a basis

{e1, [e1, e2], e2, h1, h2, f1, [f1, f2], f2}.

Then the universal enveloping algebra U(g) has basis given by{
Ea1

1 (E1E2 − E2E1)a2Ea3
2 Hb1

1 H
b2
2 F

c1
1 (F1F2 − F2F1)c2F c32 | ai, bi, ci ≥ 0

}
.

So any element of U(g) can be written as a linear combination of these elements. For
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instance,

F2F1E1 = F2(E1F1 −H1)

= E1F2F1 − F2H1

= E1

(
F1F2 − (F1F2 − F2F1)

)
− (H1F2 − F2)

= E1F1F2 − E1(F1F2 − F2F1)−H1F2 + F2.

An important corollary to the Theorem 2.22 is the following, which follows from the

linear independence of the elements X1, X2, . . . , Xn.

Corollary 2.24 ([19, Section 15.2]). The Lie algebra g can be viewed as a subspace of

U(g). More generally, if k is a Lie subalgebra of g, then U(k) is a Hopf subalgebra of U(g).

We finish this section by assigning a Hopf algebra structure to U(g). This in essence

comes for free from the Hopf algebra structure on T (g) from Proposition 2.19. Since g

generates U(g) as an algebra, we only need to determine the structure on generators of g.

Proposition 2.25 ([9, Example 4.1.8]). The universal enveloping algebra U(g) admits a

unique cocommutative Hopf algebra structure such that

∆(X) = 1⊗X +X ⊗ 1,

ε(X) = 0,

S(X) = −X

for all X ∈ g.

Proof. We check that the ideal J is a Hopf ideal, from which it follows that U(g) has the

structure of a Hopf algebra. Recall that J is generated by elements of the form

XY − Y X − [X,Y ]

for X,Y ∈ g. Using Proposition 2.19 we obtain ε(XY − Y X − [X,Y ]) = 0 and

∆
(
XY − Y X − [X,Y ]

)
= ∆(X)∆(Y )−∆(Y )∆(X)−∆([X,Y ])

= (1⊗X +X ⊗ 1)(1⊗ Y + Y ⊗ 1)− (1⊗ Y + Y ⊗ 1)(1⊗X +X ⊗ 1)

− (1⊗ [X,Y ] + [X,Y ]⊗ 1)

= 1⊗XY + Y ⊗X +X ⊗ Y +XY ⊗ 1− 1⊗ Y X − Y ⊗X
−X ⊗ Y − Y X ⊗ 1− 1⊗ [X,Y ]− [X,Y ]⊗ 1

= 1⊗ (XY − Y X − [X,Y ]) + (XY − Y X − [X,Y ])⊗ 1

which lies in T (g)⊗ J + J ⊗ T (g) as required. Hence U(g) has a bialgebra structure. It is

an easy check to show that the antipode is defined by S(X) = −X for all X ∈ g. Indeed,
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we have

µ ◦ (S ⊗ id)(1⊗X +X ⊗ 1) = 0 = µ ◦ (id⊗ S)(1⊗X +X ⊗ 1)

for all X ∈ U(g) and hence S satisfies the antipode law. This implies U(g) has a Hopf

algebra structure. The cocommutativity of the comultiplication follows from the fact that

flip ◦∆(X) = ∆(X) for all X ∈ g.

2.2 Quantised enveloping algebras

2.2.1 Semisimple Lie algebras

Let g be a finite-dimensional complex semisimple Lie algebra. Let h ⊂ g be a Cartan

subalgebra and Φ ⊂ h∗ the corresponding root system. Choose a set of simple roots

Π = {αi | i ∈ I} where I denotes an indexing set for the nodes of the Dynkin diagram

of g. Let Φ+ be the corresponding set of positive roots and set V = RΦ. Recall that g

admits a root space decomposition

g = h⊕
⊕
α∈Φ

gα (2.22)

where gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h} is the root space corresponding to α ∈ Φ

[19, Section 10.3].

For i ∈ I, let σi : V → V denote the reflection in the hyperplane Hi orthogonal to

αi. We write W to denote the Weyl group generated by the reflections σi. Fix a W -

invariant scalar product (−,−) on V such that (α, α) = 2 for all short roots α ∈ Φ in each

component. With this notation, the reflection of λ ∈ V in the hyperplane Hi is given by

the formula

σi(λ) = λ− 2(λ, αi)

(αi, αi)
αi, (2.23)

see [26, Section 1.1]. Equation (2.23) implies in particular that there is a natural action

of the Weyl group W on h∗. Let {ei, fi, hi | i ∈ I} denote the Chevalley generators for g

where the elements hi correspond to the generators of the Cartan subalgebra h. Let n+

and n− denote the Lie subalgebras of g generated by elements of the sets {ei | i ∈ I} and

{fi | i ∈ I}, respectively. Then the Lie algebra g has a triangular decomposition

g = n+ ⊕ h⊕ n−, (2.24)

see [19, Section 15.1].

2.2.2 Definition of quantised enveloping algebras

Semisimple Lie algebras over C are rigid objects meaning that any formal deformation as

an algebra is trivial. By passing to the universal enveloping algebra, any formal deforma-
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tion as an algebra remains trivial. However, U(g) admits non-trivial deformations as a

coalgebra. The theory of rigidity requires some cohomology, which is not discussed here,

but details can be found in [9, Section 6.1] and [32, Sections XVIII.1 & XVIII.2].

The resulting algebra due to Drinfeld, [17] and Jimbo, [28] is denoted Uq(g) where q is

an indeterminate. We give a definition in terms of generators and relations. Let K(q) be

the field of rational functions in q with coefficients in K and let qi = q
(αi,αi)

2 for any i ∈ I.

Recall from [27, Chapter 0] the definition of the q-number

[n]qi = [n]i =
qni − q−ni
qi − q−1

i

(2.25)

for any n ∈ Z and i ∈ I. Using this, we define the q-factorial and q-binomial coefficients

in the natural way

[n]i! = [n]i[n− 1]i · · · [1]i,

[
n

m

]
i

=
[n]i!

[m]i![n−m]i!
. (2.26)

If all roots α ∈ Φ are of the same length, then we write [n], [n]! and
[
n
m

]
.

Definition 2.26. ([27, Definition 4.3]) The quantised enveloping algebra Uq(g) is defined

as the associative K(q)-algebra with generators {Ei, Fi,K±1
i | i ∈ I} subject to relations

(Q1) KiK
−1
i = K−1

i Ki, KiKj = KjKi,

(Q2) KiEjK
−1
i = q(αi,αj)Ej ,

(Q3) KiFjK
−1
i = q−(αi,αj)Fj ,

(Q4) EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

where δij is the Kroenecker delta function,

(Q5)
1−aij∑
r=0

(−1)r
[
1− aij
r

]
i

E
1−aij−r
i EjE

r
i = 0 for i 6= j,

(Q6)
1−aij∑
r=0

(−1)r
[
1− aij
r

]
i

F
1−aij−r
i FjF

r
i = 0 for i 6= j.

The relations (Q5) and (Q6) are known as the quantum Serre relations. The quantised

enveloping algebra Uq(g) inherits a deformed Hopf algebra structure from that of U(g),

which is given in the following proposition.

Proposition 2.27 ([27, Proposition 4.11]). There is a unique structure of a Hopf algebra

on Uq(g) such that

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ε(Ei) = 0, S(Ei) = −K−1
i Ei, (2.27)

∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ε(Fi) = 0, S(Fi) = −FiKi, (2.28)

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1, S(Ki) = K−1
i (2.29)

for all i ∈ I.
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We don’t give a proof here, but instead give the general strategy. A full detailed proof

can be found in [27, Sections 4.8–4.11]. We let U be the algebra generated by the same

elements {Ei, Fi,K±1
i | i ∈ I} but only satisfying relations (Q1)–(Q4). One shows that

U has a Hopf algebra structure given by the same formulas by showing that the relations

are preserved under ∆, ε and S. To then show Uq(g) has a Hopf algebra structure, we

quotient U by a suitable two-sided ideal I in U which adds in the relations (Q5) and (Q6).

Such an ideal satisfies

∆(I) ⊆ U ⊗ I + I ⊗ U, ε(I) = 0, S(I) ⊆ I

and hence I is a Hopf ideal, and induces a Hopf structure on Uq(g).

Let U+, U0 and U− denote the subalgebras of Uq(g) generated by {Ei | i ∈ I}, {K±1
i |

i ∈ I} and {Fi | i ∈ I}, respectively. The following lemma is proved by a simple check

using relations (Q1)-(Q6).

Lemma 2.28 ([27, Lemma 4.6]).

1) There is a unique algebra automorphism γ of Uq(g) such that γ(Ei) = Fi, γ(Fi) = Ei

and γ(Ki) = K−1
i for all i ∈ I.

2) There is a unique algebra antiautomorphism σ of Uq(g) such that σ(Ei) = Ei,

σ(Fi) = Fi and σ(Ki) = K−1
i for all i ∈ I.

Let Q = ZΦ be the root lattice for g and Q+ = N0Φ ⊂ Q the positive part of Q. For

λ =
∑

i∈I niαi ∈ Q, we write

Kλ =
∏
i∈I

Kni
i . (2.30)

The elements Kλ for λ ∈ Q form a vector space basis for U0, see [27, 4.17/4.21]. Recall

from Equation (2.18) that there is a left adjoint representation of Uq(g) on itself. We make

this explicit using Proposition 2.27. In particular, we have

ad(Ei)(u) = Eiu−KiuK
−1
i Ei, (2.31)

ad(Fi)(u) = (Fiu− uFi)Ki, (2.32)

ad(Ki)(u) = KiuK
−1
i (2.33)

for any u ∈ Uq(g). For any U0-module M and λ ∈ Q, let

Mλ = {m ∈M | Kim = q(λ,αi)m for all i ∈ I} (2.34)

denote the corresponding weight space [27, 5.1]. Note that all weight spaces encountered

in this thesis correspond to weights in the root lattice and not in the weight lattice. Both

of the subalgebras U+ and U− are U0-modules with respect to the left adjoint action so
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we can apply the above notation. We hence obtain algebra gradings

U+ =
⊕
µ∈Q+

U+
µ , U− =

⊕
µ∈Q+

U−−µ, (2.35)

see [27, Section 5.2]. Additionally, one can show that there is a triangular decomposition

for Uq(g) similar to the triangular decomposition of g from (2.24)

Uq(g) ∼= U+ ⊗ U0 ⊗ U−, (2.36)

see [27, 4.21].

2.2.3 Completion of quantised enveloping algebras

It will be necessary in Chapter 5 to consider a completion U of Uq(g). We recall the

construction of U , following [4, Section 3.1].

Let O be the category of all finitely-generated Uq(g) modules M which decompose as a

direct sum of weight spaces M = ⊕λ∈QMλ and on which the action of U+ is locally finite.

Let Oint be the subcategory of O consisting of all finite-dimensional Uq(g)-modules.

Let Vect denote the category of K(q)-vector spaces. Both of the categories Oint and

Vect can be equipped with a tensor product, which makes these examples of monoidal

categories. In the case of Vect, we take the ordinary tensor product of vector spaces

and linear maps as in Section 2.1.1. A similar construction is used for Oint, see [32,

Section III.5]. Denote by For the forgetful functor For : Oint → Vect. This is a monoidal

functor since it preserves tensor products.

We let U = End(For) be the set of all natural transformations from the functor For
to itself. So elements of U are families of vector space endomorphisms(

ϕM : For(M)→ For(M)
)
M∈Ob(Oint)

such that for any Uq(g)-module homomorphism φ : M → N , the diagram

For(M) For(N)

For(M) For(N)

For(φ)

ϕM ϕN

For(φ)

(2.37)

commutes. The composition of natural transformations equips U with a multiplication

and hence we may consider U as a K(q)-algebra.

Lemma 2.29 ([58, Section 1.3]). The algebra Uq(g) is a subalgebra of U .

Proof. Let u ∈ Uq(g). For each M ∈ Ob(Oint) the action of u on M gives rise to a Uq(g)-

module homomorphism ϕM,u : M → M such that ϕM,u(m) = u ·m for all m ∈ M . The

family ϕu = (ϕM,u)M∈Ob(Oint) is a natural transformation of the functor For to itself.
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This is so since

For(φ)(u ·m) = u · For(φ)(m)

for any Uq(g)-module homomorphism φ : M → N . This gives an injective algebra ho-

momorphism Uq(g) → U by [51, Proposition 3.5.4] and [27, 5.11]. Hence Uq(g) is a

subalgebra of U .

Let Û+ =
∏
µ∈Q+ U+

µ . This is an algebra with multiplication given by component-wise

multiplication.

Lemma 2.30 ([4, Example 3.2]). The algebra Û+ =
∏
µ∈Q+ U+

µ is a subalgebra of U .

Proof. Let (Xµ)µ∈Q+ ∈ Û+. Let M ∈ Ob(Oint) and m ∈ M . We can decompose M into

weight spaces M = ⊕λ∈QMλ such that Mλ 6= 0 for finitely many λ.

Since EiMλ ⊂ Mλ+αi for all i ∈ I, λ ∈ Q it follows that there are only finitely many

µ ∈ Q+ such that Xµm = 0. Hence the expression
∑

µ∈Q+ Xµm is well-defined.

This gives rises to a map ϕM : M → M such that ϕM (m) =
∑

µ∈Q+ Xµm and the

commutative diagram 2.37 commutes. Hence we can view (Xµ)µ∈Q+ as an endomorphism

of For. This implies that Û+ is a subalgebra of U .

2.2.4 Braid group action on semisimple Lie algebras

Recall that there is a symmetric, non-degenerate bilinear form on g called the Killing

form, defined by

κ(x, y) := tr(ad x ◦ ad y) for x, y ∈ g (2.38)

where tr : gl(g)→ C denotes the trace map and ad : g→ gl(g) denotes the adjoint action

[19, Definition 9.5]. This is an associative bilinear form, meaning

κ([x, y], z) = κ(x, [y, z]) for all x, y, z ∈ g.

The Killing form induces a g-module isomorphism

φ : g→ g∗, φ(x) = κ(x,−). (2.39)

Here, the g-module structure on g is determined by the adjoint map. We make the dual

Lie algebra g∗ into a g-module by defining

(x · ψ)(y) = −ψ(x · y) for x, y ∈ g, ψ ∈ g∗, (2.40)

see [19, Exercise 7.12]. Using the g-module isomorphism φ, we can identify the Cartan

subalgebra h with its dual h∗. This gives a natural action of the Weyl group W on h. We

would like to extend the action of W on h to an action on g, but this fails in general.

Example 2.31. Suppose g = sln+1(C) and let h have generators {hi | i = 1, . . . , n} such

that hi = ei,i − ei+1,i+1 where ei,j denotes the matrix with a 1 in the ij-th position and 0
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elsewhere. The Weyl group for g is given by the symmetric group Sn+1 on n+ 1 elements.

Since any element of h is an (n + 1) × (n + 1) diagonal matrix, we may identify h with

vectors in Cn+1. Hence we see that Sn+1 acts on h ∈ h by permuting the diagonal entries

of h. More precisely, for i, j ∈ {1, . . . , n+ 1} we have

σi(hj) =


−hi if i = j,

hi + hj if i = j ± 1,

hj otherwise.

(2.41)

This representation has a description in terms of matrices. Let

J =

(
0 1

−1 0

)
.

For each i ∈ {1, . . . , n} let Mi be the (n+ 1)× (n+ 1) block matrix defined by

Mi =

Ii−1 0 0

0 J 0

0 0 In−i

 (2.42)

where Ik denotes the k × k identity matrix and 0 denotes the zero matrix of the correct

size. Then for any h ∈ h and any i ∈ {1, . . . , n}, we have σi(h) = MihM
−1
i . For each

i ∈ {1, . . . , n}, we extend σi to a Lie algebra homomorphism ϕi : g→ g defined by

ϕi(x) = MixM
−1
i for x ∈ g. (2.43)

By Equation (2.41) each σi has order two. However, since J2 = −I2 it follows that each

ϕi has order four. Hence the map ρ : Sn → Aut(g) given by ρ(σi) = ϕi is not a group

homomorphism and we can not extend the action of W on h given by (2.41) to an action

on g.

More generally, it is known that the action of W on h does not extend to an action on

g, see [63]. Let G denote the Lie group of g and let T be the maximal torus of G. Then

the Weyl group has a realisation as the quotient NT /CT of the normaliser and centraliser

of T , respectively. In the current setting, CT = T = diagn+1 ∩G.

Now, the quotient group NT /T acts on h via the adjoint representation of G. This is

so since NT is a subgroup of G and T acts trivially on h. However, T does not act trivially

on g. To see this, note that for any D = diag(d1, . . . , dn+1) ∈ T we have

Dei,jD
−1 = did

−1
j ei,j

for all i, j ∈ {1, . . . , n+ 1}. As a result NT /T does not act on g.

In the above example, we come across a problem by requiring that the extension of σi

to a Lie algebra homomorphism ϕi : g→ g should have order two. This suggests that we

should instead consider the action of the Artin braid group Br(g) on g.
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Definition 2.32 ([33, Section 6.6.2]). The Artin braid group Br(g) corresponding to g is

the group generated by elements {ςi | i ∈ I} subject to relations

ςiςjςi · · ·︸ ︷︷ ︸
mij factors

= ςjςiςj · · ·︸ ︷︷ ︸
mij factors

(2.44)

where mij denotes the order of σiσj in W .

The difference between the Weyl group W and the Artin braid group Br(g) is that we

have omitted the condition σ2
i = 1 in W for each i ∈ I. For an element w ∈ W which is

reduced, we write m to denote the corresponding element in Br(g) in order to distinguish

between the Weyl group and the braid group.

Following [62], we give a description of the action of Br(g) on g. Let exp : gl(g)→ gl(g)

denote the exponential power series for linear transformations which is defined in the usual

way by

exp(X) =
∞∑
k=0

Xk

k!
for X ∈ gl(g). (2.45)

In the case where X is a nilpotent map (i.e. Xn = 0 for some n ≥ 1), the exponential

exp(X) makes sense since it has only finitely many terms. Recall that a derivation of g is

a linear map δ : g→ g such that

δ(xy) = xδ(y) + δ(x)y for all x, y ∈ g. (2.46)

The following lemma is taken from [25, Section 2.3].

Lemma 2.33 ([25, Section 2.3]). Suppose that δ : g → g is a nilpotent derivation of g.

Then exp(δ) is an automorphism of g.

Proof. Since g is semisimple, it is isomorphic to a linear Lie algebra and hence for x, y ∈
g, the product xy can be given by matrix multiplication. Recall the Leibniz rule for

derivations [25, Section 2.3]:

δk(xy) =

k∑
l=0

(
k

l

)
δl(x)δk−l(y) for all x, y ∈ g. (2.47)

Using this and δn = 0, we obtain

exp(δ)(x) exp(δ)(y) =

( n−1∑
k=0

δk(x)

k!

)( n−1∑
k=0

δk(y)

k!

)

=

2n−2∑
l=0

l∑
k=0

(
δk(x)

k!

)(
δl−k(y)

(l − k)!

)
(2.47)

=

2n−2∑
l=0

δl(xy)

l!
= exp(δ)(xy).
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It follows from this that [exp(δ)(x), exp(δ)(y)] = exp(δ)([x, y]) and hence exp(δ) is a Lie

algebra homomorphism. Set η = exp(δ)− 1. This is also nilpotent since

ηn =

( n−1∑
k=1

δk

k!

)n
= 0

and δn = 0. Additionally, since (1 + η)−1 = 1 − η + η2 − η3 + · · · ± ηn−1 it follows that

exp(δ) is invertible.

We recall the link between representations of g with representations of the correspond-

ing simply connected Lie group G with Lie(G) = g, see [20, Section 8.3] for example. For

a finite dimensional vector space W , there are representations

ρg : g→ End(W ) = gl(W ) (2.48)

ρG : G→ Aut(W ) = GL(W ). (2.49)

We always pass from a representation of the Lie group to a representation of the Lie

algebra by taking the derivative at the identity. Recall that there is an exponential map

exp : g → G which is also given by Equation (2.45) where instead X ∈ g since G is

a matrix group [37, Chapter 1, Section 17]. Then the following diagram commutes [20,

pg 116].

g End(W )

G Aut(W )

ρg

exp exp

ρG

In other words, exp(ρg(x)) = ρG(exp(x)) for all x ∈ g. In particular, if we take the adjoint

representation Ad : G→ Aut(g) then the corresponding representation of the Lie algebra

is the adjoint representation ad : g→ End(g).

The adjoint map is a nilpotent derivation and hence by Lemma 2.33, the map exp(ad(x))

is an automorphism of g for all x ∈ g. Let πG : Br(g)→ G be the map such that

πG(ςi) = exp(ei) exp(−fi) exp(ei). (2.50)

By [30, Remark 3.8], πG is a group homomorphism. For each i ∈ I let

Ad(πG(ςi)) = exp(ad(ei)) exp(ad(−fi)) exp(ad(ei)) ∈ Aut(g). (2.51)

To shorten notation, we write Ad(ςi) instead of Ad(πG(ςi)).

The first observation about the automorphisms Ad(ςi) is that we can recover the action

of W on h by a direct calculation. Let A = (aij) denote the Cartan matrix of g, with

entries given by aij = 2
(αi,αj)
(αi,αi)

.

Lemma 2.34 ([30, Lemma 3.8]). For any i, j ∈ I, we have

Ad(ςi)(hj) = hj − aijhi. (2.52)
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Proof. We proceed by direct calculation. First note that the Serre relations (see [19,

Lemma 14.5]) yield

exp(ad(ei))(hj) = hj − aijei,
exp(ad(−fi))(hj) = hj − aijfi,
exp(ad(−fi))(ei) = ei + hi − fi.

Substituting these identities into the formula for Ad(ςi), we obtain

Ad(ςi)(hj) = exp(ad(ei)) exp(ad(−fi)) exp(ad(ei))(hj)

= exp(ad(ei)) exp(ad(−fi))
(
hj − aijei

)
= exp(ad(ei))

(
hj − aijhi − aijei

)
= hj − aijhi

as required.

Viewing the elements of W as acting on the Cartan subalgebra h, we have

Ad(ςi)|h = σi.

Additionally by [30, Lemma 3.8], the automorphisms Ad(ςi) satisfy Ad(ςi)(x) ∈ gσi(α) for

any i ∈ I and α ∈ Φ. Indeed, let x ∈ gα and h ∈ h. Then

[h,Ad(ςi)(x)] = Ad(ςi)[σ
−1
i (h), x] = Ad(ςi)(α(σ−1

i (h))x) = σi(α)(h)Ad(ςi)(x)

and hence Ad(ςi)(x) ∈ gσi(α). It follows from this that Ad(ςi)(gα) ⊆ gσi(α). By a similar

argument, the reverse inclusion also holds which implies Ad(ςi)(gα) = gσi(α).

The following lemma requires an sl2-argument which will occur again in Lemma 3.5

and Lemma 3.6. In particular for i ∈ I let sl2(i) denote the Lie subalgebra generated by

the set {ei, fi, hi}. Further, let SL2(i) denote the corresponding Lie group with sl2(i) =

Lie(SL2(i)).

Lemma 2.35. The relation

Ad(ςi) = exp(ad(−fi)) exp(ad(ei)) exp(ad(−fi)) (2.53)

holds in Aut(g) for each i ∈ I.

Proof. As elements of sl2(i) we have

ei =

(
0 1

0 0

)
, fi =

(
0 0

1 0

)
, hi =

(
1 0

−1 0

)
.

Since ad2(ei) = ad2(fi) = 0, we obtain matrix representations

exp(ei) =

(
1 1

0 1

)
, exp(−fi) =

(
1 0

−1 1

)
. (2.54)

29



Chapter 2. Background

This implies that

exp(ei) exp(−fi) exp(ei) = exp(−fi) exp(ei) exp(−fi).

These two elements coincide in the corresponding Lie group SL2(i) and hence they coincide

under any representation also. In particular, taking the adjoint representation, it follows

that

exp(ad(ei)) exp(ad(−fi)) exp(ad(ei)) = Ad(exp(ei))Ad(exp(−fi))Ad(exp(ei))

= Ad(exp(−fi))Ad(exp(ei))Ad(exp(−fi))
= exp(ad(−fi)) exp(ad(ei)) exp(ad(−fi))

from which the result follows.

Lemma 2.36. For each i ∈ I the relation

Ad(ςi)
−1 = exp(ad(−ei)) exp(ad(fi)) exp(ad(−ei)) (2.55)

holds in Aut(g).

Proof. The result follows from the same argument as in the proof of Lemma 2.35, by

noting that the relations

exp(ei)
−1 = exp(−ei),

exp(fi)
−1 = exp(−fi)

hold in sl2(i). It then follows that Ad(ςi)Ad(ςi)
−1 = id = Ad(ςi)

−1Ad(ςi).

Using Equation (2.53), we also see that the relation

Ad(ςi)
−1 = exp(ad(fi)) exp(ad(−ei)) exp(ad(fi)) (2.56)

holds in Aut(g). We are now ready to give the main result of this Section. The proof

follows that of Steinberg [62] given in the setting of Chevalley groups.

Theorem 2.37 ([62, Lemma 56]). There is a group homomorphism

Ad : Br(g)→ Aut(g) (2.57)

such that Ad(ςi) is given by (2.51).

Proof. We only need to show that

Ad(ςi)Ad(ςj)Ad(ςi) · · ·︸ ︷︷ ︸
n factors

= Ad(ςj)Ad(ςi)Ad(ςj) · · ·︸ ︷︷ ︸
n factors

where σiσj has order n in W . For ease of notation, we assume that n = 3. It follows from
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a direct sl3-calculation that

Ad(ςi)Ad(ςj)(ei) = ej ,

Ad(ςi)Ad(ςj)(fi) = fj .

Let

X = Ad(ςi)Ad(ςj)Ad(ςi)Ad(ςj)
−1Ad(ςi)

−1Ad(ςj)
−1.

For any automorphism φ of g and x ∈ g, we have

φ ◦ ad(x) ◦ φ−1 = ad(φ(x)) (2.58)

by definition of the adjoint map ad(x). We hence have

Ad(ςi)Ad(ςj) exp(ad(ei))Ad(ςj)
−1Ad(ςi)

−1 = exp(ad(ej)),

Ad(ςi)Ad(ςj) exp(ad(−fi))Ad(ςj)
−1Ad(ςi)

−1 = exp(ad(−fj)).

Using this we obtain

XAd(ςj) = Ad(ςi)Ad(ςj)Ad(ςi)Ad(ςj)
−1Ad(ςi)

−1

= exp(ad(ej)) exp(ad(−fj)) exp(ad(ej))

= Ad(ςj).

This implies that X = id as required.

2.2.5 The Lusztig automorphisms on Uq(g)

Recall from Equations (2.31)-(2.33) the adjoint action on Uq(g). By [29], the adjoint action

of Uq(g) on itself is not locally finite. This means that there exists x ∈ Uq(g) such that

dim(ad(Uq(g))(x)) =∞. Hence in order to obtain an analogue of Theorem 2.37 for Uq(g)

we require a new construction. In this section, we recall Lusztig’s braid group action on

Uq(g) by algebra automorphisms, as in [51, Part VI].

In order to ease notation, we introduce the divided powers

E
(n)
i =

Eni
[n]i!

, F
(n)
i =

Fni
[n]i!

(2.59)

for each n ∈ N0. For any M ∈ Ob(Oint) and i ∈ I, let Ti be the linear isomorphism of M

defined by

Ti(m) =
∑

a,b,c≥0; a−b+c=λ(hi)

(−1)bq
(b−ac)
i E

(a)
i F

(b)
i E

(c)
i m (2.60)

for m ∈ Mλ, λ ∈ Q. These linear isomorphisms are denoted by T ′′i,1 in [51, 5.2.1]. By [51,

Proposition 5.2.3], the inverse of Ti is given by

T−1
i (m) =

∑
a,b,c≥0; a−b+c=−λ(hi)

(−1)bq
(ac−b)
i F

(a)
i E

(b)
i F

(c)
i m. (2.61)
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The following theorem, given without proof, shows that the linear maps Ti : M → M

satisfy braid relations.

Theorem 2.38 ([51, Theorem 39.4.3]). For any i 6= j in I the isomorphisms Ti and Tj

of M satisfy the equality

TiTjTi · · ·︸ ︷︷ ︸
mij factors

= TjTiTj · · ·︸ ︷︷ ︸
mij factors

(2.62)

where mij denotes the order of σiσj ∈W.

The above theorem implies that for any w ∈W with reduced expression w = σi1 · · ·σit ,
there is a well-defined isomorphism denoted Tw : M →M such that

Tw = Ti1 · · ·Tit , (2.63)

see [27, 8.14, (1)]. The isomorphism Ti : M →M induces an automorphism of Uq(g), also

denoted by Ti such that for all u ∈ Uq(g),m ∈M we have

Ti(um) = Ti(u)Ti(m). (2.64)

By Theorem 2.38, the algebra automorphisms Ti : Uq(g) → Uq(g) also satisfy braid rela-

tions.

Corollary 2.39 ([51, Theorem 39.4.3]). For any i 6= j in I the algebra automorphisms Ti

and Tj of Uq(g) satisfy the equality

TiTjTi · · ·︸ ︷︷ ︸
mij factors

= TjTiTj · · ·︸ ︷︷ ︸
mij factors

(2.65)

where mij denotes the order of σiσj ∈W.

Proof. Let u ∈ Uq(g). Set u1 = (TiTjTi · · · )(u) ∈ Uq(g) and u2 = (TjTiTj · · · )(u) ∈ Uq(g).

Using Equation (2.64) and Theorem 2.38 twice, we see that

u1 · (TjTiTj · · · )(m) = u1 · (TiTjTi · · · )(m)

= (TiTjTi · · · )(um)

= (TjTiTj · · · )(um) = u2 · (TjTiTj · · · )(m).

It follows from this that u1−u2 acts as zero on M since TjTiTj · · · is an isomorphism of M .

Further, since M is chosen arbitrarily, we must have (u1−u2)M = 0 for all M ∈ Ob(Oint).

It follows from [27, Proposition 5.11] that u1 = u2.

Hence for any w ∈ W with reduced expression w = σi1 · · ·σit we also obtain a well-

defined algebra automorphism Tw = Ti1 · · ·Tit of Uq(g). Using Equation (2.64), we have

the following frequently used formulas for the actions of Ti and T−1
i on the generators of
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Uq(g) [51, 37.1.3], [27, 8.14]

Ti(Kλ) = Kσi(λ) = T−1
i (Kλ), (2.66)

and

Ti(Ei) = −FiKi, T−1
i (Ei) = −K−1

i Fi, (2.67)

Ti(Fi) = −K−1
i Ei, T−1

i (Fi) = −EiKi. (2.68)

For i 6= j we have

Ti(Ej) =

−aij∑
r=0

(−1)rq−ri E
(−aij−r)
i EjE

(r)
i , (2.69)

T−1
i (Ej) =

−aij∑
r=0

(−1)rq−ri E
(r)
i EjE

(−aij−r)
i , (2.70)

Ti(Fj) =

−aij∑
r=0

(−1)rqriF
(r)
i FjF

(−aij−r)
i , (2.71)

T−1
i (Fj) =

−aij∑
r=0

(−1)rqriF
(−aij−r)
i FjF

(r)
i . (2.72)

From these formulas, it follows that for any w ∈W and λ ∈ Q we have

Tw(Kλ) = Kw(λ) (2.73)

and T−1
i = σ ◦Ti ◦σ, where σ is the antiautomorphism from Lemma 2.28. A harder check

is showing that

γ(Ti(u)) = (−qi)2
(λ,αi)

(αi,αi)Ti(γ(u)) (2.74)

for i ∈ I and u ∈ Uλ where γ is the automorphism from Lemma 2.28. This is also observed

through the formulas for the action of Ti on the generators of Uq(g). For instance,

γ(Ti(Ej)) = γ
( (−aij)∑

r=0

(−1)rq−ri E
(−aij−r)
i EjE

(r)
i

)
= (−qi)aij

(−aij)∑
r=0

(−1)r−aijq
−r−aij
i F

(−aij−r)
i FjF

(r)
i

= (−qi)aijTi(Fj)
= (−qi)aijTi(γ(Ej))

and similarly for the other generators of Uq(g).

Using the Lusztig automorphisms Ti for i ∈ I, we can now construct a PBW basis for

Uq(g), similar to that in Theorem 2.22. In particular, we construct a basis for U+ and a

corresponding basis for U−. The following proposition is the first step in this construction.
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Proposition 2.40 ([27, Proposition 8.20]). Let w ∈ W and αi ∈ Π. If wαi > 0, then

Tw(Ei) ∈ U+
w(αi)

. If wαi ∈ Π, then Tw(Ei) = Ew(αi).

As a consequence of this, if w ∈ W has reduced expression w = σi1 · · ·σit , then all

products of the form

Ti1Ti2 · · ·Tit−1(Eit)
at · · ·Ti1(Ei2)a2Ea1

i1
(2.75)

such that ai ∈ N0 lie in U+. This is so because the sequence

αi1 , σi1(αi2), . . . , σi1 · · ·σit−1(αit)

consists of t positive roots [26, 5.6 Exercise 1]. For any w ∈W let U+[w] be the subspace

of U+ spanned by all elements of the form (2.75). Similarly, we obtain subspaces U−[w]

by replacing Ei with Fi in (2.75). By [13, 2.2] the subspace U+[w] is always a subalgebra

of U+. We are interested in the structure of U+[w] particularly in the case where we take

a reduced expression for the longest element of W . This is given by the following theorem.

Theorem 2.41 ([27, Proposition 8.22 a), Theorem 8.24]).

1) The subalgebras U+[w] of U+ depend only on w ∈ W and not on a chosen reduced

expression.

2) If w0 ∈ W is the longest element with reduced expression w0 = σi1 · · ·σit then

U+[w0] = U+ and all elements of the form (2.75) form a basis for U+.

Using (2.74), we immediately acquire a a PBW basis for U− by applying γ to the PBW

basis of U+. This gives the following corollary.

Corollary 2.42 ([27, Remark 8.24]). Let w0 ∈ W be the longest element with reduced

expression w0 = σi1 · · ·σit. Then all products

Ti1Ti2 · · ·Tit−1(Fit)
at · · ·Ti2(Fi2)a2F a1

i1
(2.76)

with ai ∈ N0 form a basis for U−.

2.2.6 Lusztig’s skew derivations

Let ′f denote the free associaive K(q)-algebra generated by elements fi for i ∈ I as in [51,

1.2.1]. The algebra ′f is a U0-module algebra with Kλ · fi = q(λ,αi)fi for any i ∈ I and

λ ∈ Q+. Hence ′f is a Q+-graded algebra with

′f =
⊕
λ∈Q+

′fλ.

34



Chapter 2. Background

The natural projection map π : ′f → U+ with fi 7→ Ei respects the Q+-grading. There

are uniquely determined K(q)-linear maps ri : ′f → ′f and ir : ′f → ′f such that

ri(fj) = δij , ri(xy) = q(αi,ν)ri(x)y + xri(y), (2.77)

ir(fj) = δij , ir(xy) = ir(x)y + q(αi,µ)xir(y) (2.78)

for all i, j ∈ I, x ∈ ′fµ and y ∈ ′fν [51, 1.2.13]. In particular, these equations imply that

that ri(1) = 0 = ir(1) for all i ∈ I since for any j 6= i we have

0 = ri(fj) = ri(fj · 1) = fjri(1)

and similarly for ir. Using the projection π, there exist linear maps ri, ir : U+ → U+

satisfying Equations (2.77) and (2.78) with x ∈ U+
µ , y ∈ U+

ν and fj replaced by Ej . Such

maps are called skew derivations due to the similarity between (2.77) and (2.78) and the

usual notion of a derivation, see (2.46).

Example 2.43. We use Equation (2.77) to find ri(E
n
i ) for n ≥ 1, [27, Section 8.26,(3)].

We claim that

ri(E
n
i ) =

q2n
i − 1

q2
i − 1

(E2n−1
i ). (2.79)

If n = 1 then ri(Ei) = 1. Proceeding by induction on n we have

ri(E
n+1
i ) = q(αi,nαi)ri(Ei)E

n
i + Eiri(E

n
i )

= q2nEni +
q2n
i − 1

q2
i − 1

Eni =
q

2(n+1)
i − 1

q2
i − 1

Eni

as required. Similarly, using Equation (2.78) one obtains

ir(E
n
i ) =

q2n
i − 1

q2
i − 1

En−1
i . (2.80)

In view of the q-number [n]i we introduce the following modification which will appear

in Section 2.2.8 and the calculations of Chapter 5 and Chapter 6, see [16, Equations (3.36)-

(3.38)]. For n ≥ 1 define

{n}i = qn−1
i [n]i = 1 + q2

i + q4
i + . . .+ q

2(n−1)
i . (2.81)

Using this notation we have

ri(E
n
i ) = ir(E

n
i ) = {n}iEn−1

i (2.82)

for n ≥ 1 and i ∈ I. Additionally define {n}i! =
∏n
k=1{k}i and let {n}i!! denote the

double factorial of {n}i defined by

{n}i!! =

dn
2
e−1∏

k=0

{n− 2k}i. (2.83)

For n = 0 we set {0}i! = 1 and {0}i!! = 1. As with the q-number, we omit the subscript i
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if all roots are of the same length.

The maps ri and ir appear in many different contexts; here we give two equivalent

properties regarding the algebra and coalgebra structure of Uq(g).

Proposition 2.44 ([51, Proposition 3.1.6]). For all x ∈ U+ and i ∈ I we have

[x, Fi] = (qi − q−1
i )−1

(
ri(x)Ki −K−1

i ir(x)
)
. (2.84)

Proposition 2.45 ([27, 6.14]). For all x ∈ U+
µ we have

∆(x) = x⊗ 1 +
∑
i∈I

ri(x)Ki ⊗ Ei + (rest)1, (2.85)

∆(x) = Kµ ⊗ x+
∑
i∈I

EiKµ−αi ⊗ ir(x) + (rest)2 (2.86)

where (rest)1 ∈
∑

α/∈Π∪{0} U
+
µ−αKα ⊗ U+

α and (rest)2 ∈
∑

α/∈Π∪{0} U
+
α Kµ−α ⊗ U+

µ−α.

In Section 2.2.7, we give one additional equivalent property which is useful for induc-

tive arguments. The original definitions (2.77) and (2.78) are also effective for inductive

arguments; the value of this will be made clear in Chapter 5.

Remark 2.46. We could instead factor ri, ir : ′f → ′f over U−. Then the linear maps

ri, ir : U− → U− satisfy (2.77) and (2.78) with fi replaced by Fi and x ∈ U−−µ, y ∈ U−−ν .

They also satisfy corresponding versions of Propositions 2.44 and 2.45.

By an inductive argument, one shows that the following lemma holds.

Lemma 2.47 ([27, Lemma 10.1]). For all i, j ∈ I, the relation

ri ◦ jr(x) = jr ◦ ri(x) (2.87)

holds for all x ∈ Uq(g).

Proof. Both sides of (2.87) clearly coincide for x = 1 and x = Ek for k ∈ I. By linearity,

we only need to show that if the claim holds for x ∈ U+
µ and y ∈ U+

ν , then it holds for

element xy.

Indeed, we have

(ri ◦ jr)(xy) = ri
(
jr(x)y + q(αj ,µ)xjr(y)

)
= q(αi,ν)(ri ◦ jr)(x)y + jr(x)ir(y) + q(αj ,µ)q(αi,ν−αj)ri(x)jr(y)

+ q(αj ,µ)x(ri ◦ jr)(y)

= q(αi,ν)(jr ◦ ri)(x)y + jr(x)ir(y) + q(αj ,µ)q(αi,ν−αj)ri(x)jr(y)

+ q(αj ,µ)x(jr ◦ ri)(y).

36



Chapter 2. Background

On the other hand, we have

(jr ◦ ri)(xy) = jr
(
q(αi,ν)ri(x)y + xri(y)

)
= q(αi,ν)(jr ◦ ri)(x)y + q(αi,ν)q(αj ,µ−αi)ri(x)jr(y) + jr(x)ri(y)

+ q(αj ,µ)x(jr ◦ ri)(y).

It follows by comparison that ri ◦ jr(xy) coincides with jr ◦ ri(xy) as required.

Using the antiautomorphism σ of Uq(g) from Lemma 2.28 we can relate the skew

derivations ri and ir by a similar inductive argument as in the proof of Lemma 2.47.

Lemma 2.48 ([27, Lemma 6.14 c)]). The map σ intertwines the skew derivations ri and

ir, i.e.

σ ◦ ri(x) = ir ◦ σ(x) (2.88)

for all i ∈ I and x ∈ U+.

Recall that there is a K-algebra automorphism U : Uq(g) → Uq(g), called the bar

involution, that is defined by

qU = q−1, Ei
U

= Ei, Fi
U

= Fi, Kλ
U

= K−λ (2.89)

for i ∈ I and λ ∈ Q, see [51, Section 3.1.12]. The bar involution satisfies the following

property.

Lemma 2.49 ([51, Lemma 1.2.14]). The bar involution intertwines the skew derivations

ri and ir for each i ∈ I

ir(x
U ) = q(αi,µ−αi)ri(x)

U
for all x ∈ U+

µ , µ ∈ Q+. (2.90)

Let i ∈ I and let w0 ∈ W denote the longest element. Then the subspaces U+[σiw0]

and U−[σiw0] can be determined using the skew derivations. Here, we allow both ri and

ir to act on elements of U− as in Remark 2.46.

Lemma 2.50 ([27, Lemma 8.26]). For i ∈ I and w0 ∈W we have

Ti(U
+[σiw0]) = {x ∈ U+ | ri(x) = 0}. (2.91)

To obtain the following corollary, we use Lemma 2.48 and the relation T−1
i = σ ◦Ti ◦σ.

Corollary 2.51 ([27, Remark 8.26]). For i ∈ I and w0 ∈W the following equalities hold.

U+[σiw0] = {x ∈ U+ | ir(x) = 0}, (2.92)

U−[σiw0] = {x ∈ U− | ri(x) = 0}, (2.93)

Ti(U
−[σiw0]) = {x ∈ U− | ir(x) = 0}. (2.94)
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2.2.7 The bilinear pairing on Uq(g)

The PBW bases for U+ and U− from Theorem 2.41 and Corollary 2.42 are dual to one

another, which we make more explicit here.

Let A and B be K-algebras with a bilinear pairing 〈−,−〉 : A × B → K. Using the

tensor product, we may extend this to a new bilinear pairing 〈−,−〉 : A⊗n×B⊗n → K by

setting

〈a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn〉 =
n∏
i=1

〈ai, bi〉. (2.95)

We use this in the current setting as in [27, Proposition 6.12]. Let U≥0 = U+U0 and

U≤0 = U−U0. Then there exists a unique bilinear pairing 〈−,−〉 : U≤0 × U≥0 → K(q)

such that for any x, x′ ∈ U≥0, y, y′ ∈ U≤0, µ, ν ∈ Q and i, j ∈ I we have

〈y, xx′〉 = 〈∆(y), x′ ⊗ x〉, 〈yy′, x〉 = 〈y ⊗ y′,∆(x)〉, (2.96)

〈Kµ,Kν〉 = q−(µ,ν), 〈Fi, Ej〉 = −δij(qi − q−1
i )−1, (2.97)

〈Kµ, Ei〉 = 0, 〈Fi,Kµ〉 = 0. (2.98)

Equation (2.97) implies that the elements Fi and Ei are dual to one another with respect

to 〈−,−〉, up to a scalar. We extend the duality to the bases for U− and U+. First, using

the skew derivations ri and ir from Section 2.2.6 we obtain an inductive formula for the

bilinear pairing.

Proposition 2.52 ([51, 1.2.13]). For all x ∈ U+, y ∈ U− and i ∈ I we have

〈Fiy, x〉 = 〈Fi, Ei〉〈y, ir(x)〉, 〈yFi, x〉 = 〈Fi, Ei〉〈y, ri(x)〉. (2.99)

Proof. We only prove the first equality; the second is obtained similarly. The bilinearity

of 〈−,−〉 implies that we only need consider x ∈ U+
µ for µ ∈ Q+ \ {0}. Using Proposition

2.45 and Equation (2.96) we have

〈Fiy, x〉 = 〈Fi ⊗ y,∆(x)〉
= 〈Fi ⊗ y,Kµ ⊗ x+

∑
j

EjKµ−αj ⊗ jr(x) + (rest)2〉

= 〈Fi ⊗ y,Kµ ⊗ x〉+
∑
j

〈Fi ⊗ y,EjKµ−αj ⊗ jr(x)〉+ 〈Fi ⊗ y, (rest)2〉

=
∑
j

〈Fi, EjKµ−αj 〉〈y, jr(x)〉+ 〈Fi ⊗ y, (rest)2〉
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since 〈Fi,Kµ〉 = 0 for all i ∈ I and µ ∈ Q+. Again using Equation (2.96) it follows that

〈Fi, EjKµ−αj 〉 = 〈∆(Fi),Kµ−αj ⊗ Ej〉
= 〈Fi ⊗K−1

i + 1⊗ Fi,Kµ−αj ⊗ Ej〉
= 〈Fi,Kµ−αj 〉〈K−1

i , Ej〉+ 〈1,Kµ−αj 〉〈Fi, Ej〉
= δij〈Fi, Ej〉

for all i, j ∈ I. By a similar argument, one shows that

〈Fi ⊗ y, (rest)2〉 = 0.

Hence we obtain

〈Fiy, x〉 = 〈Fi, Ei〉〈y, jr(x)〉

as required.

Example 2.53. We claim that for any i ∈ I and n ≥ 1 we have

〈Fni , Eni 〉 = (−1)n
{n}i!

(qi − q−1
i )n

, (2.100)

see [27, Section 3.16,(4)]. By (2.97) we have 〈Fi, Ei〉 = −(qi − q−1
i )−1. Using Proposition

2.52 and Equation (2.82) we have

〈Fn+1
i , En+1

i 〉 = 〈Fi, Ei〉〈Fni , {n+ 1}iEni 〉 = (−1)n+1 {n+ 1}i!
(qi − q−1

i )n+1

which proves the claim.

The following is a technical proposition that is not proved here, but the details can be

found in [27, Chapter 8A].

Proposition 2.54 ([27, Lemma 8.27, Proposition 8.28]). Let i ∈ I, x ∈ U+[σiw0] and

y ∈ U−[σiw0]. Then

〈Ti(y)Fni , Ti(x)Emi 〉 = δnm〈y, x〉〈Fni , Eni 〉 for all n,m ∈ N0. (2.101)

Using Proposition 2.54, we now show that PBW bases for U+ and U− are dual to one

another with respect to 〈−,−〉. This follows [27, Proposition 8.29].

Proposition 2.55 ([27, Proposition 8.29]). Let w ∈W and let w = σi1 · · ·σit be a reduced

expression. Then the expression

〈Ti1Ti2 · · ·Tit−1(F atit ) · · ·Ti1(F a2
i2

)F a1
i1
, Ti1Ti2 · · ·Tit−1(Ebtit ) · · ·Ti1(Eb2i2 )Eb1i1 〉 (2.102)

is 0 if there exists an index 1 ≤ k ≤ t with ak 6= bk; otherwise it is equal to
∏t
k=1〈F akik , E

ak
ik
〉.

Proof. We proceed by induction on the length `(w) where ` : W → N0 denotes the length

function with respect to w. The result is clear when `(w) ≤ 1. For t = `(w) > 1 suppose
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w = σi1 · · ·σit is a reduced expression. Set

x = Ti2 · · ·Tit−1(Eatit ) · · ·Ti2(Ea3
i3

)Ea2
i2
,

y = Ti2 · · ·Tit−1(F btit ) · · ·Ti2(F b3i3 )F b2i2 .

Then x ∈ U+[σi1w0] and y ∈ U−[σi1w0]. By Proposition 2.54 we have

〈Ti1(y)F b1i1 , Ti1(x)Ea1
i1
〉 = δa1b1〈y, x〉〈F a1

i1
, Ea1

i1
〉.

We can now apply the inductive hypothesis to x and y since σi1w = σi2 · · ·σit is reduced

and `(σi1w) < `(w). The result follows from this.

The following corollary shows that the pairing 〈−,−〉 respects weights.

Corollary 2.56 ([27, Corollary 8.30]). The restriction of 〈−,−〉 to U−−µ × U+
ν vanishes

for any µ, ν ∈ Q+ with µ 6= ν. If µ = ν, then the restriction of the bilinear pairing to

U−−µ × U+
µ is non-degenerate.

The non-degeneracy of 〈−,−〉 : U−−µ×U+
µ → K(q) and Proposition 2.52 imply that for

any x ∈ U+
µ with µ ∈ Q+ \ {0} we have

ri(x) = 0 for all i ∈ I ⇐⇒ x = 0 ⇐⇒ ir(x) = 0 for all i ∈ I, (2.103)

as in [51, 1.2.15].

2.2.8 The quasi R-matrix

Let µ ∈ Q+ and let {uµi }i be a basis of U−−µ. By Corollary 2.56 we can find a dual basis

{vµi }i of U+
µ with respect to the bilinear pairing 〈−,−〉. Define

Rµ =
∑
i

uµi ⊗ v
µ
i ∈ U−−µ ⊗ U+

µ , (2.104)

see [27, Section 7.1]. The element Rµ does not depend on the chosen basis for U−−µ.

For M,M ′ ∈ Ob(Oint) we have

Rµ(Mλ ⊗M ′λ′) ⊂Mλ−µ ⊗M ′λ′+µ for all λ, λ′ ∈ Q,µ ∈ Q+.

Hence there are only finitely many µ ∈ Q+ such that Rµ acts non-trivially on M ⊗M ′.
This allows us to define a linear transformation

R = RM,M ′ : M ⊗M ′ →M ⊗M ′, R =
∑
µ∈Q+

Rµ ∈
∏
µ∈Q+

U−−µ ⊗ U+
µ (2.105)

which we call the quasi R-matrix.

Example 2.57 ([27, Section 3.11]). The fundamental example which is crucial to our

later constructions is the quasi R-matrix for Uq(sl2). Here we have Q = Zα1 and hence

any µ ∈ Q+ must be of the form nα1 for n ≥ 0. The subspace U−−nα1
has a basis given by
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the element Fn1 , whilst by Equation (2.100) the element

(−1)n
(q − q−1)n

{n}! En1

generates the dual basis of U+
nα1

. It hence follows that

Rnα1 = (−1)n
(q − q−1)n

{n}! Fn1 ⊗ En1

which implies that the quasi R-matrix is given by

R =
∑
n≥0

Rnα1 =
∑
n≥0

(−1)n
(q − q−1)n

{n}! Fn1 ⊗ En1 . (2.106)

For any i ∈ I, let Ri denote the quasi R-matrix corresponding to the copy of Uq(sl2(i))

labelled by i. Then we have

Ri =
∑
n≥0

(−1)n
(qi − q−1

i )n

{n}i!
Fni ⊗ Eni . (2.107)

By [51, Theorem 4.1.2] there is a second important characterisation of the quasi R-matrix

which uses the bar involution from Equation (2.89). We define a bar involution U⊗U on

Uq(g)⊗ Uq(g) by setting

u⊗ vU⊗U = uU ⊗ vU (2.108)

for all u, v ∈ Uq(g). We normally omit the superscripts U and U ⊗ U if it is clear which

space the bar involution is acting on. Generally for u ∈ Uq(g) we have ∆(u) 6= ∆(u) and

further, the element ∆(u) is not an element of ∆(Uq(g)). However, the quasi R-matrix

allows one to intertwine between the two bar involutions.

Theorem 2.58 ([51, Theorem 4.2.1]). The quasi R-matrix is the uniquely determined

element R =
∑

µ∈Q+ Rµ ∈
∏
µ∈Q+ U

−
−µ ⊗ U+

µ with R0 = 1⊗ 1 and Rµ ∈ U−−µ ⊗ U+
µ which

intertwines the bar involution in the sense that

∆(u)R = R∆(u) for any u ∈ Uq(g). (2.109)

A crucial property of the quasi R-matrix is that it admits a factorisation as a product

of quasi R-matrices for Uq(sl2), see [47], [35], [27, Remark 8.30] and [34] for example.

Let w0 = σi1σi2 · · ·σit denote a reduced expression for the longest element w0 ∈ W .

For 1 ≤ j ≤ t set γj = σi1 · · ·σij−1(αij ) and define

Eγj = Ti1 · · ·Tij−1(Eij ), Fγj = Ti1 · · ·Tij−1(Fij ). (2.110)

The elements Eγj and Fγj are the root vectors used in the construction of the PBW basis

elements corresponding to U+ and U−, respectively. Whilst root vectors in g have simple

commutator formulas, e.g. [25, Proposition 8.4(d)], this is not true for Uq(g).
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Lemma 2.59 ([48, Lemma 1]). For all i < j we have

EγjEγi − q−(γi,γj)EγiEγj =
∑

i<k1<k2<···<ks<j
Ck,nE

n1
γk1
En2
γk2
· · ·Ensγks (2.111)

where Ck,n = Ck1,k2,...,ks,n1,n2,...,ns are constants.

The above lemma states that for i < j the element EγjEγi − q−(γi,γj)EγiEγj is a linear

combination of basis elements as in (2.75) only involving Eγk with i < k < j, see [27,

Remark 8.24]. We make use of Theorem 2.59 in Section 5.3.

For µ ∈ Q+ a basis for U−−µ is given by the elements

F atγt F
at−1
γt−1
· · ·F a1

γ1

for ai ∈ N0 and µ =
∑t

i=1 aiγi. By Equation (2.100) and Proposition 2.55 the elements( t∏
i=1

(−1)ai
(qi − q−1

i )ai

{ai}i!

)
EatγtE

at−1
γt−1
· · ·Ea1

γ1

such that µ =
∑t

i=1 aiγi form the dual basis of U+
µ with respect to the bilinear pairing

〈−,−〉. For 1 ≤ j ≤ t define

R[j] = (Ti1 · · ·Tij−1 ⊗ Ti1 · · ·Tij−1)(Rij ) =
∑
r≥0

(−1)r
(qij − q−1

ij
)r

{r}ij !
F rγj ⊗ Erγj . (2.112)

Theorem 2.60 ([34],[47],[35] ). The quasi R-matrix is given by

R = R[t] ·R[t−1] · · ·R[2] ·R[1] (2.113)

Remark 2.61. The quasi R-matrix plays a pivotal role in many deep applications of

quantum qroups, which we outline here. By Theorem 2.58 the quasi R-matrix is the unique

element that intertwines between two bar involutions on Uq(g)⊗Uq(g). This relation first

appeared in the development of canonical (or crystal) bases for Uq(g), established by G.

Lusztig [50] and M. Kashiwara [31].

For M,M ′ ∈ Ob(Oint) let κ : M ⊗M ′ →M ⊗M ′ be the linear map defined by

κ(m⊗m′) = q(µ,ν)m⊗m′ for m ∈Mµ,m
′ ∈M ′ν . (2.114)

The quasi R-matrix gives rise to a universal R-matrix R such that

R = R ◦ κ−1 ◦ flip : M ⊗M ′ →M ′ ⊗M (2.115)

is an isomorphism of Uq(g)-modules, see [27, Theorem 7.3]. In the theory of integrable

systems, the R-matrix is a crucial tool for providing solutions to the quantum Yang-Baxter

equation (or QYBE).
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Quantum symmetric pairs

Let θ : g → g be an involutive automorphism. We recall the construction of involutive

automorphisms of g in Section 3.1. Up to conjugation, these are classified by Satake

diagrams (X, τ). This allows one to construct fixed Lie subalgebras k of g. In order to

define quantum symmetric pairs, a quantum analogue of U(k) is constructed in Section

3.2. Recall that the construction depends on additional parameters c ∈ C and s ∈ S,

see Definition 3.21. Importantly, we obtain a family of right coideal subalgebras instead

of Hopf subalgebras. In Section 3.6 we give relations for quantum symmetric pairs. The

results of this chapter follow mostly the papers [45] and [38].

3.1 Involutive automorphisms of semisimple Lie algebras

For any subset X ⊆ I, let gX be the Lie subalgebra of g generated by {ei, fi, hi | i ∈ X}.
Let QX denote the subgroup of Q generated by {αi | i ∈ X}. This is the root lattice for

gX . Let ρX ∈ V and ρ∨X ∈ V ∗ denote the half sum of positive roots and coroots for gX ,

respectively. Let WX ⊆ W be the corresponding parabolic subgroup of W generated by

{σi | i ∈ X}. This is the Weyl group for gX . Let wX ∈WX denote the longest element of

WX . Let τ : I → I denote a diagram automorphism for the Dynkin diagram of g. This

can be viewed as an automorphism of g by setting

τ(ei) = eτ(i), τ(fi) = fτ(i), τ(hi) = hτ(i), for i ∈ I. (3.1)

The induced map of h∗ further satisfies τ(αi) = ατ(i) for all i ∈ I.

Definition 3.1 ([59, p. 109], see also [38, Definition 2.3]). Let X ⊆ I and let τ : I → I be

a diagram automorphism such that τ(X) = X. The pair (X, τ) is called a Satake diagram

if it satisfies the following properties:

(1) τ2 = idI .

(2) The action of τ on X coincides with the action of −wX .
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(3) If j ∈ I \X and τ(j) = j, then αj(ρ
∨
X) ∈ Z.

Graphically, the components of a Satake diagram are recorded in the Dynkin diagram

of g. The nodes labelled by X are coloured black and a double sided arrow is used to

denote the diagram automorphism.

Remark 3.2. We denote a Satake diagram by a triple (I,X, τ) if we need to identify

the underlying Lie algebra. With this notation, if (I,X, τ) is a Satake diagram and

i ∈ I \X, then (X ∪ {i, τ(i)}, X, τ |X∪{i,τ(i)}) is also a Satake diagram. This notation will

be extensively used in Chapter 5.

Recall that there exists a diagram automorphism τ0 : I → I such that the longest

element w0 ∈W satisfies

w0(αi) = −ατ0(i). (3.2)

It follows from this and the definition that the pair (X = I, τ = −wX) is always a Satake

diagram. A complete list of Satake diagrams for simple g can be found in [1, pp. 32/33].

Additionally, by inspection of the list of Satake diagrams one sees that the set X is τ0-

invariant.

Example 3.3. Consider g = so8(C) which is of Dynkin type D4 and the standard choice

of simple roots and coroots.

1 2

3

4

Then the pair ({3, 4}, id) is a Satake diagram since −wX acts as the identity on X and

ρ∨X = 1
2(h3 + h4) satisfies

α1(ρ∨X) = 0, α2(ρ∨X) = −1.

The pairs ({1, 3}, id) and ({1, 4}, id) are also Satake diagrams for similar reasons. The

pair (∅, (3, 4)) is a Satake diagram since conditions (2) and (3) are empty. However, the

pair ({2}, id) is not a Satake diagram, since in this case ρ∨X = 1
2h2 satisfies α1(ρ∨X) = −1

2 .

The Satake diagrams ({3, 4}, id) and (∅, (3, 4)) are represented graphically by

1 2

3

4

1 2

3

4

respectively.
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Let ω : g→ g be the Chevalley involution given by

ω(ei) = −fi, ω(hi) = −hi, ω(fi) = −ei (3.3)

for all i ∈ I. Denote by mX ∈ Br(g) the element of the braid group that corresponds to

the longest element wX ∈WX .

Lemma 3.4 ([38, Proposition 2.2, Part 3)]). Let τ : I → I be a diagram automorphism

such that τ(X) = X. Then the automorphism Ad(mX) of g commutes with both τ and ω.

Proof. By definition the relation

τ(Ad(ςi)(x)) = Ad(ςτ(i))(τ(x)) (3.4)

holds for any i ∈ I and x ∈ g. Since wX ∈WX is τ -invariant, it follows that

τ(Ad(mX)(x)) = Ad(mX)(τ(x))

and hence τ and Ad(mX) commute. Equation (2.53) immediately implies that ω commutes

with Ad(ςi) for any i ∈ I and hence also with Ad(mX).

The following Lemma from [2, Lemme 4.9] has been rewritten for the convenience of

the reader. Recall from the proof of Lemma 2.35 the Lie subalgebra sl2(i) of g and the

corresponding Lie subgroup SL2(i) of G for each i ∈ I.

Lemma 3.5 ([2, Lemme 4.9]). The automorphism Ad(m0) of g satisfies

Ad(m0) = τ0 ◦ ω. (3.5)

Proof. We only need to verify the lemma on the generators ei, fi and hi for i ∈ I. The result

follows for the elements hi by using Lemma 2.34 and Equation (3.2). Since Ad(m0)(ei) ∈
g−τ0(αi) and Ad(m0)(fi) ∈ gτ0(αi) there exist scalars cτ0(i), dτ0(i) such that

Ad(m0)(ei) = −cτ0(i)fτ0(i),

Ad(m0)(fi) = −dτ0(i)eτ0(i).

In fact, since

−hτ0(i) = Ad(m0)(hi) = Ad(m0)([ei, fi]) = cτ0(i)dτ0(i)[fτ0(i), eτ0(i)] = −cτ0(i)dτ0(i)hτ0(i),

it follows that cτ0(i) = d−1
τ0(i) for all i ∈ I. We show that cτ0(i) = 1 for all i ∈ I from which

the statement of the lemma follows.

The relation w0σiw
−1
0 = στ0(i) holds in W . This implies that

πG(m0ςim
−1
0 ) = πG(ςτ0(i)) = exp(eτ0(i)) exp(−fτ0(i)) exp(eτ0(i)).

On the otherhand, since the adjoint representation Ad : G→ Aut(g) acts by conjugation

45



Chapter 3. Quantum symmetric pairs

we have

πG(m0ςim
−1
0 ) = πG(m0) exp(ei) exp(−fi) exp(ei)πG(m−1

0 )

= Ad(m0)
(

exp(ei) exp(−fi) exp(ei)
)

= exp(Ad(m0)(ei)) exp(Ad(m0)(−fi)) exp(Ad(m0)(ei))

= exp(−cτ0(i)fτ0(i)) exp(c−1
τ0(i)eτ0(i)) exp(−cτ0(i)fτ0(i)).

For any t ∈ C let πtG : Br(g)→ G be the map that sends

ςi 7→ exp(tei) exp(−t−1fi) exp(tei).

In this way, we have πG = π1
G. Considering ei and fi as elements of sl2(i) we have

πtG(ςi) =

(
0 t

−t−1 0

)
∈ SL2(i).

It follows that the map πtG is injective for all t ∈ C. By comparison of the two expressions

for πG(m0ςim
−1
0 ) above, we hence obtain cτ0(i) = 1 as required.

Let τX denote the diagram automorphism of gX corresponding to the longest element

wX ∈ WX and let ωX be the restriction of the Chevalley involution to gX . As a conse-

quence of the previous lemma, the automorphism Ad(mX) of g leaves gX invariant and

satisfies

Ad(mX)|gX = τX ◦ ωX . (3.6)

We now give an expression for Ad(mX)2 which will be needed in the proof of Theorem

3.9. This follows [2, Lemme 4.10] where we fill in some of the details.

Lemma 3.6 ([2, Lemme 4.10]). The relation

Ad(ς2
i ) = exp(ad(iπα∨i )) (3.7)

holds in Aut(g).

Proof. Recall from Equation (2.50) that there is a group homomorphism πG : Br(g)→ G

such that ςi 7→ exp(ei) exp(−fi) exp(ei) for each i ∈ I. Over the Lie subgroup SL2(i) we

have

πSL2(i)(ςi) = exp(ei) exp(−fi) exp(ei) =

(
0 1

−1 0

)
which implies that πSL2(i)(ς

2
i ) = −id. Recall from [25, Chapter 7] that the simple sl2

representations are given by finite dimensional modules Vd of dimension d+ 1 with basis

vd, vd−2, . . . , v−d such that hvj = jvj for j = d, d− 2, . . . ,−d. The vector vd is the highest

weight vector for Vd. We want to find the action of πSL2(i)(ς
2
i ) on Vd. Let V = V1 = C2.
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Then

Vd ⊆ V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
d times

= V ⊗d.

Indeed, since V = Cv1⊕Cv−1 and v1 is a highest weight vector for V of weight 1, it follows

that v1 ⊗ v1 ⊗ · · · ⊗ v1 ∈ V ⊗d is a highest weight vector of weight d. This implies that to

understand the action of πSL2(i)(ς
2
i ) on Vd, we should consider the action on V ⊗d instead.

To keep track of the underlying vector space W , we write ρg,W : g → End(W ) and

ρG,W : G→ Aut(W ) for representations of g and the corresponding simply connected Lie

group G, respectively. Then for any vector space W we have(
ρG,V ⊗ ρG,W

)
(πSL2(i)(ς

2
i ))

=
(
ρG,V ⊗ ρG,W

)(
(exp(ei) exp(−fi) exp(ei))

2
)

=
(
(ρG,V ⊗ ρG,W )(exp(ei)) · (ρG,V ⊗ ρG,W )(exp(−fi)) · (ρG,V ⊗ ρG,W )(exp(ei))

)2
.

For x ∈ g we have (
ρg,V ⊗ ρg,W

)
(x) = ρg,V (x)⊗ 1 + 1⊗ ρg,W (x)

and hence (
ρG,V ⊗ ρG,W

)
(exp(x)) = exp(ρg,V ⊗ 1 + 1⊗ ρg,W (x))

= exp(ρg,V (x)⊗ 1) exp(1⊗ ρg,W (x))

= exp(ρg,V (x)⊗ ρg,W (x)) = ρG,V⊗W (exp(x))

where the second equality follows from the fact that ρg,V (x)⊗1 and 1⊗ρg,W (x) commute.

This implies that(
ρG,V ⊗ ρG,W

)
(πSL2(i)(ς

2
i )) =

(
ρG,V⊗W (exp(ei))ρG,V⊗W (exp(−fi))ρG,V⊗W (exp(ei))

)2
= ρG,V⊗W

(
(exp(ei) exp(−fi) exp(ei))

2
)

= ρG,V⊗W (πSL2(i)(ς
2
i )).

It follows that πSL2(i)(ς
2
i ) acts on V ⊗W diagonally. Since πSL2(i)(ς

2
i ) acts on V as −idV ,

it follows by extension that πSL2(i)(ς
2
i ) acts on V ⊗d as (−1)didV ⊗d and therefore ς2

i acts

on Vd by multiplication by (−1)d.

On the otherhand the element exp(iπα∨i ) acts on vj ∈ Vd by expiπj = (−1)j = (−1)d.

These two actions coincide and hence they also coincide under any representation of G.

In particular, we see that

Ad(ς2
i ) = Ad(exp(iπα∨i )) = exp(ad(iπα∨i ))

as required.

Proposition 3.7 ([2, Proposition 4.10.1]). Let w ∈W and let w = σi1 · · ·σit be a reduced
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expression. Then in Aut(g) the relation

Ad
(
(ςit · · · ςi1)(ςi1 · · · ςit)

)
= exp(ad(iπHw)) (3.8)

holds, where Hw =
∑

α∈Φ(w) α
∨ and Φ(w) = {α ∈ Φ+ | w(α) ∈ Φ−}.

Proof. We proceed by induction on the length `(w) of w ∈W , where ` : W → N0 denotes

the length function with respect to W . If `(w) = 1, then Ad(ς2
j ) = exp(ad(iπα∨j )) by

Lemma 3.6.

Suppose that w′ = σi1 · · ·σit−1 is reduced with `(w′) = `(w)− 1 such that

Ad
(
(ςit−1 · · · ςi1)(ςi1 · · · ςit−1)

)
= exp(ad(iπHw′)) = Ad(exp(iπHw′)).

From this, we deduce that

Ad
(
(ςit · · · ςi1)(ςi1 · · · ςit)

)
= Ad(ςit)Ad(exp(iπHw′))Ad(ςit)

−1Ad(ς2
it)

= Ad
(

exp(iπ(σit(Hw′) + α∨it))
)
.

It remains to show that Hw = σit(Hw′) + α∨it , or equivalently, Φ(w) = σit(Φ(w′)) ∪ {αit}.
Since `(w) = t, we have w(αit) ∈ Φ− and thus αit ∈ Φ(w). Let α ∈ Φ(w) − {αit}, then

σit(α) ∈ Φ+ − {αit}. Since α ∈ Φ(w), it follows that w(α) = w′(σit(α)) ∈ Φ− which

implies σit(α) ∈ Φ(w′). Hence we have Φ(w)− {αit} ⊆ σit(Φ(w′)).

On the other hand, let α ∈ Φ(w′). Since `(w′σit) > `(w′) we have α 6= αit and hence

σit(α) ∈ Φ+ − {αit}. As wσit(α) = w′(α) ∈ Φ−, it follows that σit(α) ∈ Φ(w) which

implies σit(Φ(w′)) ⊆ Φ(w)− {αit}.
Therefore we have Φ(w)− {αit} = σit(Φ(w′)) as required.

Corollary 3.8 ([2, Corollaire 4.10.3]). The relation

Ad(m2
X) = exp(ad(iπ2ρ∨X)) (3.9)

holds in Aut(g).

Proof. Let wX ∈WX have reduced expression wX = σi1 · · ·σit . Since w2
X = 1, the element

σit · · ·σi1 is another reduced expression for wX . By Proposition 3.7 we have

Ad(m2
X) = Ad

(
(σit · · ·σi1)(σi1 · · ·σit)

)
= Ad(exp(iπHwX ).

Since wX(Φ−) ∩ Φ+ = Φ+
X , it follows that Φ(wX) = Φ+

X and hence HwX = 2ρ∨X as

required.
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It follows from Corollary 3.8 that if x ∈ gαi for i ∈ I then

Ad(mX)2(x) = exp(ad(iπ2ρ∨X))(x)

=

∞∑
k=0

adk(iπ2ρ∨X)(x)

k!

=

( ∞∑
k=0

(iπαi(2ρ
∨
X))k

k!

)
x

= (−1)αi(2ρ
∨
X)x.

Let s : I → C× be a function satisfying

s(i) = 1 if i ∈ X or τ(i) = i, (3.10)

s(i)

s(τ(i))
= (−1)αi(2ρ

∨
X) if i /∈ X and τ(i) 6= i. (3.11)

This function extends to a group homomorphism sQ : Q → C× such that sQ(αi) = s(i)

for each simple root αi. Using the group homomorphism sQ, we define a Lie algebra

automorphism Ad(s) : g→ g by

Ad(s)|h = id|h, Ad(s)(x) = sQ(α)x for α ∈ Φ, x ∈ gα. (3.12)

We now associate an involutive automorphism to any Satake diagram (X, τ), following

[38, Theorem 2.5].

Theorem 3.9 ([38, Theorem 2.5]). Let (X, τ) be a Satake diagram. Then

θ(X, τ) = θ = Ad(s) ◦Ad(mX) ◦ τ ◦ ω (3.13)

is an involutive automorphism of g.

Proof. Suppose x ∈ gX . By Equation (3.6) and Equation (3.10) we have

θ2(x) =
(
τX ◦ ωX ◦ τ ◦ ω

)2
(x) = x

as required. If instead x ∈ h, then since Ad(wX) ◦ τ ◦ ω(h) ⊆ h it follows that

θ2(x) =
(
Ad(mX) ◦ τ ◦ ω

)2
(x).

By Lemma 3.4 and Corollary 3.8, we obtain θ2(x) = x. Hence we may assume that

x ∈ gαi for some i ∈ I \X. Note that applying Ad(s) to an element y ∈ gα has the effect

of multiplying by a scalar which depends on the given α ∈ Φ. Hence

θ2(x) =
(
Ad(s) ◦Ad(mX) ◦ τ ◦ ω

)2
(x)

= sQ
(
(wX ◦ τ ◦ ω)2(αi)

)
sQ
(
wX ◦ τ ◦ ω(αi)

)(
Ad(mX) ◦ τ ◦ ω

)2
(x).

Viewed as involutive automorphisms of h∗, both τ and ω commute with wX . This and
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Lemma 3.4 imply

θ2(x) = sQ(wX(−ατ(i)))sQ(αi)Ad(mX)2(x).

It follows from Equation (3.10) that sQ(wX(−ατ(i))) = sQ(−ατ(i)). Using this, we obtain

θ2(x) =
s(i)

s(τ(i))
Ad(mX)2(x).

By Corollary 3.8, we have Ad(mX)2(x) = (−1)αi(2ρ
∨
X)x. The result follows from Condition

(3) of Definition 3.1 and Equation (3.11).

Remark 3.10. A full classification of involutive automorphisms of g is approached in

[38, Appendix A]. In particular, it is shown that given any involutive automorphism ϑ,

there is a Satake diagram (X, τ) such that ϑ is Aut(g)-conjugate to θ = θ(X, τ), see [38,

Proposition A.6].

For any Satake diagram (X, τ), the automorphism θ = θ(X, τ) satisfies θ(h) = h. More

explicitly, Equation (3.13) implies that

θ(h) = Ad(wX) ◦ ω ◦ τ(h) = −wX ◦ τ(h) (3.14)

for h ∈ h. This restriction defines a dual map Θ : h∗ → h∗ which is given by the same

expression

Θ = −wX ◦ τ (3.15)

where now both wX and τ act on h∗. For later use, we note the following lemma.

Lemma 3.11 ([3, Lemma 3.2]). Let (X, τ) be a Satake diagram. For all i ∈ I, we have

αi −Θ(αi) = ατ(i) −Θ(ατ(i)). (3.16)

Proof. We have wX(αi) − αi ∈ QX for any i ∈ I. The claim of the lemma follows from

Property (2) of Definition 3.1 by observing that

wX(wX(αi)− αi) = −τ(wX(αi)− αi))

holds for any i ∈ I.

3.2 The fixed Lie subalgebra

Let (X, τ) be a Satake diagram and let θ = θ(X, τ) : g→ g be the corresponding involutive

automorphism, as defined in Equation (3.13). Then the Lie algebra g has a decomposition

g = k⊕ p (3.17)

into the +1 and −1 eigenspace of θ with k = {x ∈ g | θ(x) = x}. Note that k is a Lie

subalgebra of g. On the other hand, for any x, y ∈ p with [x, y] 6= 0 we have

θ([x, y]) = [θ(x), θ(y)] = [−x,−y] = [x, y]
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and hence [p, p] ⊆ k.

The following lemma gives a description of the generators of the Lie subalgebra k.

Lemma 3.12 ([38, Lemma 2.8]). The Lie algebra k is generated by the elements

ei, fi for i ∈ X, (3.18)

h ∈ h with θ(h) = h, (3.19)

fi + θ(fi) for i ∈ I \X. (3.20)

Proof. Let k denote the Lie subalgebra of g generated by all elements of the form (3.18),

(3.19) and (3.20). By Equation (3.6), the generators (3.18) are invariant under θ. The

remaining generators are invariant under θ by definition, hence k ⊆ k.

Conversely, suppose x ∈ k. By the triangular decomposition (2.24) we write

x = x+ + x0 + x−

with x+ ∈ n+, x0 ∈ h and x− ∈ n−. Since θ(fi) ∈ n+ for i ∈ I \X, it follows that there

exists an element y ∈ k such that x− y ∈ n+⊕ h. Such an element is a linear combination

of elements of the form (3.18), (3.20) and all possible Lie brackets between these elements.

We may hence assume that x− = 0. Further, since θ(x0) = x0 we have x0 ∈ k. We can

hence assume that x0 = 0.

It follows that we can write x = x+ ∈ n+ as a sum of weight vectors x =
∑

α∈Q+ xα.

As θ(gα) = g−wXτ(α), it follows from (2) that xα 6= 0 implies α =
∑

i∈X niαi for ni ∈ N0.

Hence x ∈ k as required.

Example 3.13. Let g = sl4 with Satake diagram ({2}, (13)).

1 2 3

Here, the fixed Lie subalgebra k is isomorphic to sl4 ∩ (gl3 ⊕ gl1). In this case, the corre-

sponding involutive automorphism θ is of the form

θ = Ad(s) ◦Ad(ς2) ◦ τ ◦ ω.

By relation (3.11) we have s(1) = −s(3) so we assume s(1) = 1 and s(3) = −1. Hence θ

acts on the Chevalley generators by

θ(e1) = [f3, f2], θ(h1) = −h2 − h3, θ(f1) = [e2, e3],

θ(e2) = e2, θ(h2) = h2, θ(f2) = f2,

θ(e3) = −[f1, f2], θ(h3) = −h1 − h2, θ(f3) = −[e2, e1].
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The generators of the fixed Lie subalgebra k are then given by the elements

e2, f2,

h2, h1 − h3,

f1 − s(3)[e2, e3], f3 − s(1)[e2, e1].

3.3 Quantum involutions

By Corollary 2.24, the universal enveloping algebra of k is a Hopf subalgebra of U(g).

Further, using Lemma 3.12 we can write down the generators of U(k) by modifying by

constant terms.

Lemma 3.14 ([38, Corollary 2.9]). Let s = (si)i∈I\X ∈ CI\X . The universal enveloping

algebra U(k) is generated by the elements

Ei, Fi for i ∈ X,

H ∈ h with θ(H) = H,

Fi + θ(Fi) + si for i ∈ I \X. (3.21)

as a unital algebra.

We would like to construct a subalgebra of Uq(g) which is a quantum analogue of U(k).

U(g) Uq(g)

U(k) ?

Even if k is semisimple, the natural candidate of taking the quantised enveloping algebra

Uq(k) turns out to be incorrect; it is not even a Hopf subalgebra of Uq(g), see [8] so this can

never work. Instead, we construct a new algebra, denoted by Bc,s, which has the desired

properties. We recall this, following the work of G. Letzter [42] and the conventions of

S. Kolb [38].

The first step in the construction is to deform the involutive automorphism θ(X, τ) :

g → g to an automorphism θq(X, τ) : Uq(g) → Uq(g). To do this we use the Lusztig

automorphism corresponding to the longest element wX of the parabolic subgroup WX .

Let κ : Uq(g)→ Uq(g) denote the algebra automorphism defined by

κ(Ei) = EiKi, κ(Fi) = K−1
i Fi, κ(Ki) = Ki (3.22)

for all i ∈ I. Let ω : Uq(g)→ Uq(g) be the algebra automorphism defined by

ω(Ei) = −Fi, ω(Fi) = −Ei, ω(Kλ) = K−λ (3.23)

for all i ∈ I. This is the quantum analogue of the Chevalley involution of g, denoted
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by the same symbol. The diagram automorphism τ induces an algebra automorphism of

Uq(g), also denoted by τ such that

τ(Ei) = Eτ(i), τ(Fi) = Fτ(i), τ(Ki) = Kτ(i) (3.24)

for all i ∈ I. Recall the Lusztig automorphisms Tw for w ∈W from Section 2.2.5.

Definition 3.15 ([38, Definition 4.3]). The automorphism θq(X, τ) : Uq(g) → Uq(g)

defined by

θq(X, τ) = θq = Ad(s) ◦ TwX ◦ κ ◦ ω ◦ τ (3.25)

is called the quantum involution corresponding to (X, τ).

The map θq is not an involutive automorphism of Uq(g), but it does retain the crucial

properties of θ, motivating the use of the name ‘quantum involution’. Let MX be the

subalgebra of Uq(g) generated by {Ei, Fi,K±1
i | i ∈ X}. Using Proposition 2.40 we can

determine the action of TwX on the generators of MX .

Lemma 3.16 ([38, Lemma 3.4]). For all i ∈ X one has

TwX (Ei) = −Fτ(i)Kτ(i), TwX (Fi) = −K−1
τ(i)Eτ(i), TwX (Ki) = K−1

τ(i), (3.26)

T−1
wX

(Ei) = −Kτ(i)Fτ(i), T−1
wX

(Fi) = −Eτ(i)Kτ(i), T−1
wX

(Ki) = K−1
τ(i). (3.27)

Proof. Since wX(αi) = −ατ(i) by Condition (2) of Definition 3.1, it follows that TwX (Ki) =

K−1
τ(i) = T−1

wX
(Ki). Write wX = w′σi for some w′ ∈ WX . Again, Condition (2) of 3.1

implies that w′(αi) = ατ(i). By Proposition 2.40 it follows that Tw′(Ei) = Eτ(i) and hence

by Equation 2.68 we have

TwX (Fi) = Tw′Ti(Fi) = Tw′(−K−1
i Ei) = −Kτ(i)Eτ(i).

The expression for T−1
wX

(Fi) follows by conjugation with the antiautomorphism σ from

Lemma 2.28. The expressions for TwX (Ei) and TwX (Eτ(i)) follow smilarly.

Recall from (3.15) the dual map Θ : Q→ Q. The algebra automorphism κ : Uq(g)→
Uq(g) introduced in (3.22) is needed in order for the following proposition to hold.

Proposition 3.17 ([38, Theorem 4.4], [4, Section 5.2]). The automorphism θq satisfies

the following properties:

(1) θq|MX
= id|MX

.

(2) θq(Kµ) = KΘ(µ) for all µ ∈ Q.

(3) θq(K
−1
i Ei) = −s(τ(i))−1TwX (Fτ(i)) ∈ U−Θ(αi)

for all i ∈ I \X.

(4) θq(FiKi) = −s(τ(i))TwX (Eτ(i)) ∈ U+
−Θ(αi)

for all i ∈ I \X.
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Proof. Parts (1) and (2) follow from Lemma 3.16 and the definition of θq. Parts (3) and

(4) are similar so we only consider (4). We have

θq(FiKi) = Ad(s) ◦ TwX ◦ κ ◦ ω ◦ τ(FiKi)

= Ad(s) ◦ TwX ◦ κ ◦ ω(Fτ(i)Kτ(i))

= Ad(s) ◦ TwX ◦ κ(−Eτ(i)K−τ(i))

= −Ad(s) ◦ TwX (Eτ(i)) = −s(τ(i))TwX (Eτ(i))

as required.

3.4 Quantum symmetric pair coideal subalgebras

The elements θ(FiKi) for i ∈ I \ X are a major ingredient in our constructions of a

quantum analogue of U(k). As in [4, (5.4)] to shorten notation we write

Xi = θq(FiKi) = −s(τ(i))TwX (Eτ(i)) for i ∈ I \X. (3.28)

Let QΘ = {λ ∈ Q | Θ(λ) = λ} and denote by U0
Θ the subalgebra of U0 generated by

{Kλ | λ ∈ QΘ}. By Condition (2) of Definition 3.1 and Lemma 3.11, the subalgebra UΘ
0

is generated by the elements K±1
i for i ∈ X and KjK

−1
τ(j) for j ∈ I \X.

Definition 3.18 ([38, Definition 5.1]). Let (X, τ) be a Satake diagram, c = (ci)i∈I\X ∈
K(q)I\X and s = (si)i∈I\X ∈ K(q)I\X . Define Bc,s to be the subalgebra generated by

MX , U
0
Θ and elements of the form

Bi = Fi + ciXiK
−1
i + siK

−1
i (3.29)

for all i ∈ I \X.

The key property of Bc,s is that it is a right coideal subalgebra of Uq(g) [42, Theo-

rem 4.9], meaning

∆(Bc,s) ⊆ Bc,s ⊗ Uq(g). (3.30)

Indeed, it is clear that MX and U0
Θ are Hopf subalgebras of Uq(g). Hence we only need

to find ∆(Bi) for i ∈ I \X.

Lemma 3.19 ([38, Propoistion 5.2]). For any i ∈ I \X we have

∆(Bi)−Bi ⊗K−1
i ∈MXU

0
Θ ⊗ Uq(g). (3.31)

Proof. Using Equation (2.85) for i ∈ I \X we have

∆(TwX (Eτ(i))) = TwX (Eτ(i))⊗ 1 +
∑
j∈I

rj(TwX (Eτ(i)))Kj ⊗ Ej + (rest)1

where (rest)1 ∈
∑

α/∈Π∪{0} U
+
wX(ατ(i))−α

Kα ⊗ U+
α . By Lemma 2.50 it follows that the

element rj(TwX (Eτ(i))) is nonzero only if j = τ(i). Since rτ(i)(TwX (Eτ(i))) ∈ M+
X it
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follows that

(rest)1 ∈
∑

α>ατ(i)

U+
wX(ατ(i))−α

Kα ⊗ U+
α ⊆MXKτ(i) ⊗ Uq(g).

This implies

∆(Bi)−Bi ⊗K−1
i = 1⊗ Fi − cis(τ(i))rτ(i)

(
TwX (Eτ(i))

)
Kτ(i)K

−1
i ⊗ Eτ(i)K

−1
i + Y

∈MXU
0
Θ ⊗ Uq(g)

as required, where Y = (rest)1(K−1
i ⊗K−1

i ).

By Lemma 3.14 one of the properties that U(k) satisfies is U(k) ∩ h = hθ where hθ =

{h ∈ h | θ(h) = h}. For Bc,s to be a quantum analogue of U(k) a similar property should

be satisfied, namely

Bc,s ∩ U0 = U0
Θ.

For this to hold, restrictions are imposed on the parameters c and s, as in [38, Lemma 5.3–

5.5]. Let

Ins = {i ∈ I \X | τ(i) = i and aij = 0 for all j ∈ X} (3.32)

and let

C = {c ∈ (K(q)×)I\X | ci = cτ(i) if τ(i) 6= i and (αi,Θ(αi)) = 0}, (3.33)

S = {s ∈ (K(q)×)I\X | sj 6= 0⇒ (j ∈ Ins and aij ∈ −2N0 ∀i ∈ Ins \ {j})}. (3.34)

Example 3.20. We give an example to show that it is necessary to have restrictions on

the parameters c and s. Consider the Satake diagram

1 2 3

with c /∈ C and s = 0. By (3.11), we assume that s(1) = s(3) = 1. Then

[B1, B3] = [F1 − c1E3K
−1
1 , F3 − c3E1K

−1
3 ]

= −c3[F1, E1K
−1
3 ]− c1[E3K

−1
1 , F3]

= c3
K1 −K−1

1

q − q−1
K−1

3 − c1
K3 −K−1

3

q − q−1
K−1

1

= (q − q−1)−1
(
c3K1K

−1
3 − c1K3K

−1
1 − (c3 − c1)K−1

1 K−1
3

)
.

Since c /∈ C it follows that K−1
1 K−1

3 ∈ Bc,s. However, K−1
1 K−1

3 6∈ U0
Θ.

On the other hand suppose that s1 6= 0 which implies that s /∈ S. Then

q2(K1K
−1
3 )B1(K3K

−1
1 )−B1 = (q2 − 1)K−1

1

which implies K−1
1 ∈ Bc,s. However, K−1

1 /∈ U0
Θ.
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From now on, we will only consider Bc,s with c ∈ C and s ∈ S.

Definition 3.21 ([38, Definition 5.6]). The subalgebra Bc,s for c ∈ C and s ∈ S is called

a quantum symmetric pair coideal subalgebra of Uq(g).

3.5 Specialisation

It can be shown that Bc,s specialises to U(k), see [42, Theorem 4.9]. We give a brief

overview here. Details are omitted but can be found in [38, Section 10], for example. Let

A = K[q](q−1) denote the localization of the polynomial ring K[q] with respect to the prime

ideal generated by (q−1). Define the A-form UA of Uq(g) to be the A-subalgebra of Uq(g)

generated by Ei, Fi,K
±1
i and elements

Ki − 1

q − 1

for i ∈ I. The specialization of Uq(g) at q = 1 is the algebra

U1 = K⊗A UA.

Here, K is viewed as an A-module via the evaluation at 1. By [38, Theorem 10.1], U1 is

isomorphic to U(g) as an algebra. We extend this notion to subalgebras B of Uq(g) by

defining the specialization at q = 1 to be the algebra

B1 = K⊗A (UA ∩B).

It follows from the algebra isomorphism φ : U1 → U(g) that B1 is isomorphic to a subal-

gebra of U(g).

The notion of specialization can also be applied to algebra automorphisms of Uq(g).

In particular if ζ is an automorphism of Uq(g) such that ζ(UA) ⊂ UA and ζ ′ is an auto-

morphism of U(g) such that

U1 3 1⊗ ζ(x) = ζ ′(φ(x)) for all x ∈ UA
then we say that ζ specializes to ζ ′. In Section 3.3 we defined the quantum involution θq

as a deformation of the involution θ : g→ g. One can make this more precise by showing

that θq specializes at q = 1 to θ [38, Proposition 10.2].

3.6 Relations for Bc,s

The algebra Bc,s can be described explicitly by generators and relations. Using [44, Sec-

tion 7] and [38, Section 7] we give a summary of the relations. To unify notation we let

Bi = Fi and ci = si = 0 if i ∈ X. For i, j ∈ I let Fij denote the function in two variables
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defined by

Fij(x, y) =

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

x1−aij−ryxr. (3.35)

With this notation, the quantum Serre relations (Q5) and (Q6) can be rewritten as

Fij(Ei, Ej) = Fij(Fi, Fj) = 0 for all i ∈ I.

In the below theorem, the ‘order’ of an expression refers to the maximal number of Fi’s

appearing over all summands.

Theorem 3.22 ([44, Theorem 7.1], [38, Theorem 7.1]). The algebra Bc,s is generated over

M+
XU

0
Θ by the elements {Bi | i ∈ I} subject to the following relations:

KλBi = q−(λ,αi)BiKλ for all λ ∈ QΘ, i ∈ I, (3.36)

EiBj −BjEi = δij
Ki −K−1

i

qi − q−1
i

for all i ∈ X, j ∈ I, (3.37)

Fij(Bi, Bj) = Cij(c) for all i, j ∈ I with i 6= j (3.38)

where Cij(c) is a formal expression independent of s ∈ S with lower order than Fij(Bi, Bj).

Remark 3.23. The expressions Cij(c) can be determined in all cases. In [44, Theorem 7.1]

expressions for Cij(c) are found when g is of finite type. This was generalised to the Kac-

Moody case in [38, Theorems 7.4 and 7.8] for aij ∈ {0,−1,−2} and [3, Section 3.2] which

includes the case aij = −3. Further, in [3, Theorem 3.6] a closed formula for Ciτ(i)(c) is

given for i 6= τ(i). More recently, in [11, Theorems 3.1 and 3.7] expressions for Ciτ(i)(c)

are found for i = τ(i).

Following the method of Letzter [44, Section 7], we recall how to determine Cij(c) for

i /∈ {τ(i), τ(j)} or aij ∈ {0,−1} as seen in [38, Theorems 7.3, 7.4, 7.8]. By (2.27) and

(2.36) there is a direct sum decomposition

Uq(g) =
⊕
λ∈Q

U+KλS(U−).

For λ ∈ Q, let Pλ : Uq(g)→ U+KλS(U−) denote the corresponding projection map. The

formula for the coproduct implies

∆ ◦ Pλ(x) = (id⊗ Pλ)∆(x) for all x ∈ Uq(g). (3.39)

There is a second direct sum decomposition

Uq(g) =
⊕

µ,ν∈Q+

U+
µ U

0U−−ν

that we consider. With respect to this decomposition we obtain projections Qµ,ν : Uq(g)→
U+
µ U

0U−−ν for all µ, ν ∈ Q+. Let γij = (1−aij)αi+αj for i, j ∈ I. The following technical

proposition is given without proof, but is the main tool for computing Cij(c).
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Proposition 3.24 ([44, Proof of Theorem 7.4], [38, Equation (7.8)]). For any i, j ∈ I we

have

Cij(c) = −(id⊗ ε)
(
id⊗ (P−γij ◦Q0,0)

)(
∆(Fij(Bi, Bj))− Fij(Bi, Bj)⊗K−γij

)
. (3.40)

Remark 3.25. Note that for si to be non-zero for i ∈ I \X we must have i ∈ Ins. In this

case we have

Bi = Fi − ciEiK−1
i + siK

−1
i .

It follows from this that

∆(Bi) = Bi ⊗K−1
i + 1⊗ (Fi − ciEiK−1

i ).

By Equation (3.40) this implies that Cij is indeed independent of s ∈ S.

In Chapter 7 we focus on a particular Satake diagram of type A. For this reason, we

only give the expressions Cij(c) explicitly for aij = 0 and aij = −1. The same method can

be used to find Cij(c) for aij ≤ −2 but the calculations become more involved, see [38,

Sections 7.2 and 7.3] and [3, Theorems 3.7 and 3.8]. One can show directly that Cij(c) = 0

if i ∈ X, [38, Lemma 5.11]. Let

Zi = −s(τ(i))rτ(i)(TwX (Eτ(i)))Kτ(i)K
−1
i (3.41)

for i ∈ I \X. For all i, j ∈ I \X we have

rτ(i)

(
TwX (Eτ(i)

)
Bj = Bjrτ(i)

(
TwX (Eτ(i))

)
by Equation (3.37). It follows from this and Equation (3.36) that

ZiBj = q(αi−ατ(i),αj)BjZi (3.42)

for all i, j ∈ I \X. Recall from the proof of Lemma 3.19 that for i ∈ I \X we have

∆(Bi) = Bi ⊗K−1
i + 1⊗ Fi + ciZi ⊗ Eτ(i)K

−1
i + Y (3.43)

where Y ∈MXU
0
Θ ⊗

∑
α>ατ(i)

U+
α K

−1
i , [38, Lemma 7.2]. This implies the following.

Lemma 3.26 ([38, Theorem 7.3]). For any i, j ∈ I with i /∈ {τ(i), τ(j)} we have Cij(c) =

0.

Proof. The statement of the lemma follows from the fact that many terms of (id ⊗
Q0,0)(∆(Fij(Bi, Bj))) vanish. Indeed, Q0,0 only acts non-trivially on elements of Uq(g)

if they contain an equal number of Ei’s and Fi’s for each i ∈ I. By (3.43) this can only

happen in the second tensor factor if i = τ(i) or i = τ(j).

There are two cases to consider. If j ∈ I \ X then all summands of ∆(Fij(Bi, Bj))

involving Y from (3.43) are killed off under (id⊗Q0,0).
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Theorem 3.27 ([38, Theorem 7.4]). Assume that i, j ∈ I \X. Then if aij = 0 we have

Cij(c) = δi,τ(j)(qi − q−1
i )−1(ciZi − cjZj). (3.44)

If aij = −1 we have

Cij(c) = δi,τ(i)qiciZiBj − δi,τ(j)(qi + q−1
i )(qicjZj + q−2

i ciZi)Bi. (3.45)

Proof. Suppose that aij = 0. Then Fij(Bi, Bj) = BiBj − BjBi. Let Xij = (id ⊗ (P−γij ◦
Q0,0)). By Proposition 3.24 we have

Cij(c) = −(id⊗ ε)Xij(∆(BiBj −BjBi)− (BiBj −BjBi)⊗K−γij ).

By Equation (3.43) we have

∆(BiBj) =
(
Bi ⊗K−1

i + 1⊗ Fi + ciZi ⊗ Eτ(i)K
−1
i + Y

)
+
(
Bj ⊗K−1

j + 1⊗ Fj + cjZj ⊗ Eτ(j)K
−j
i + Y

)
.

It follows that Xij acts non-trivially on the terms BiBj⊗K−1
i K−1

j and ciZj⊗FiEτ(i)K
−1
j .

This implies

Xij(∆(BiBj)−BiBj ⊗K−γij ) = Xij(cjZj ⊗ FiEτ(i)K
−1
j )

= Xij

(
cjZj ⊗

(
Eτ(j)Fi − δi,τ(j)

Ki −K−1
i

qi − q−1
i

)
K−1
j

)
= Xij(−δi,τ(j)(qi − q−1

i )−1cjZj ⊗ (Ki −K−1
i )K−1

j )

= δi,τ(j)(qi − q−1
i )−1cjZj ⊗K−γij .

Similarly we have

Xij(∆(BjBi)−BjBi ⊗K−γij ) = δi,τ(j)(qi − q−1
i )−1ciZi ⊗K−γij .

Substituting both into the expression for Cij(c) we obtain

Cij(c) = δi,τ(j)(qi − q−1
i )−1(ciZi − cjZj)

as required.

Now suppose aij = −1. Then Fij = B2
iBj − (qi + q−1

i )BiBjBi +BjB
2
i . Calculating as
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above and using Equation (3.42) when necessary, we find

Xij(∆(B2
iBj)−B2

iBj ⊗K−γij )

= δi,τ(j)
q3
i (1 + q−2

i )

qi − q−1
i

cjZjBi ⊗K−γij + δi,τ(i)
1

qi − q−1
i

ciZiBj ⊗K−γij ,

Xij(∆(BiBjBi)−BiBjBi ⊗K−γij )

= δi,τ(j)
q−3
i

qi − q−1
i

ciZiBi ⊗K−γij + δi,τ(j)
1

qi − q−1
i

cjZjBi ⊗K−γij

+ δi,τ(i)
qi

qi − q−1
i

ciZiBj ⊗K−γij ,

Xij(∆(BjB
2
i )−BjB2

i ⊗K−γij )

= δi,τ(j)
1 + q−2

i

qi − q−1
i

ciZiBi ⊗K−γij + δi,τ(i)
1

qi − q−1
i

ciZiBj ⊗K−γij .

Equation (3.45) follows from this by substituting these expressions into (3.40).

If instead j ∈ X then any summands of ∆(Fij(Bi, Bj)) involving Y are killed off unless

they include terms of weight αi +αj . We expand the expression for ∆(Bi) from Equation

(3.43) by including the summand belonging toMXU
0
Θ⊗U+

αi+αj
K−1
i . Recall the definition

of the left adjoint representation of Uq(g) on itself from (2.31).

Lemma 3.28 ([38, Lemma 7.7]). Assume i ∈ I \X, j ∈ X and τ(i) = i. Then there exist

elements Wij ∈MX such that

∆(Bi) = Bi ⊗K−1
i + 1⊗ Fi + ciZi ⊗ EiK−1

i + ciWijKj ⊗ ad(Ej)(Ei)K
−1
i + Y (3.46)

where Y ∈MXU
0
Θ ⊗

∑
α>αi;α 6=αi+αj U

+
α K

−1
i .

The elements Wij can be expressed in terms of the skew derivations.

Lemma 3.29 ([3, Lemma 3.4]). Let i ∈ I \X such that τ(i) = i and j ∈ X. If aij 6= 0

then the relation

Wij = (1− q2(αi,αj))−1rj(Zi) (3.47)

holds.

The proof of the following theorem is similar to that of Theorem 3.27 and is seen in

[38, Theorem 7.8]. For this reason, we omit the proof here.

Theorem 3.30 ([38, Theorem 7.8]). Assume i ∈ I \ X and j ∈ X. Then if aij = 0 we

have

Cij(c) = 0. (3.48)

If aij = −1 we have

Cij(c) = δi,τ(i)ci

(
1

qi − q−1
i

(q2
iBjZi −ZiBj) +

qi + q−1
i

qj − q−1
j

WijKj

)
. (3.49)
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The restricted Weyl group

Involutive automorphisms of g allows one to construct a subgroup WΘ of the Weyl group

W consisting of elements fixed under the corresponding group automorphism of W . Of

particular importance is a subgroup W̃ of WΘ which has an interpretation as the Weyl

group of the corresponding restricted root system. In Section 4.1 we define W̃ and give

an alternative description of this subgroup which is useful for many of the arguments in

Section 4.2. More explicitly we show that WΘ is a semidirect product of the subgroup WX

with the subgroup W̃ . In order to provide the connection between W̃ and the restricted

root system established in Section 4.4, we first show that W̃ is realised as a Coxeter

subgroup of W . The results in this chapter do not claim originality. Most of the results

can be found in [60], which is influenced by the results of [49], [52] and [21].

4.1 The subgroup W̃

For any subset J ⊆ I, write wJ to denote the longest element in the parabolic subgroup

WJ of W . For i ∈ I \X, define

σ̃i = wX∪{i,τ(i)}w
−1
X . (4.1)

By Remark 3.2, the triple (X∪{i, τ(i)}, X, τ |X∪{i,τ(i)}) is a Satake diagram for any i ∈ I\X.

Let WX∪{i,τ(i)} denote the Weyl group of the corresponding Dynkin diagram with nodes

labelled by the set X ∪{i, τ(i)}. We can hence consider WX as a subgroup of WX∪{i,τ(i)}.

Similar to Equation (3.2), there exists a diagram automorphism τ0,i : X ∪ {i, τ(i)} →
X ∪ {i, τ(i)} such that X ∪ {i, τ(i)} is τ0,i-invariant and

wX∪{i,τ(i)}(αj) = −ατ0,i(j) (4.2)

for j ∈ X ∪ {i, τ(i)}.

Lemma 4.1. The elements wX and wX∪{i,τ(i)} commute for any i ∈ I \X.
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Proof. By the notation (4.2), it follows that

wX∪{i,τ(i)}σj = στ0,i(j)wX∪{i,τ(i)}. (4.3)

Hence we obtain

wX∪{i,τ(i)}wX = τ0,i(wX)wX∪{i,τ(i)} = wXwX∪{i,τ(i)} (4.4)

as required.

Denote by W̃ ⊂ WΘ the subgroup of W generated by σ̃i for i ∈ I \ X. We study

the subgroup W̃ in more detail, following the Weyl group combinatorics of [21] and [60]

and also taking guidance from [49] and [52] which we do not pursue here. Recall that

` : W → N0 denotes the length function with respect to W . For any subset J ⊆ I let

W J = {w ∈W | `(σiw) > `(w) for all i ∈ J} (4.5)

denote the set of minimal length left coset representatives of W/WJ . Similarly, define

JW = {w ∈W | `(wσi) > `(w) for all i ∈ J} (4.6)

to be the set of minimal length right coset representatives of WJ\W . Since `(σiw) =

`(w−1σi) for any w ∈W and i ∈ I, it follows that w ∈W J if and only if w−1 ∈ JW . This

implies that any properties for W J have a corresponding version for JW .

Lemma 4.2 ([60, Proposition 2.7.2]). Any element w ∈ W is in W J if and only if all

reduced expressions for w begin with a σi with i ∈ I \ J . Correspondingly, any element

w ∈W is in JW if and only if all reduced expressions for w end with a σi with i ∈ I \ J .

Proposition 4.3 ([26, Proposition p. 19]). Any w ∈W can be written uniquely as w = uv,

where u ∈WJ and v ∈W J such that the lengths satisfy

`(w) = `(u) + `(v).

We now consider the subset

W = {w ∈WX | wWX = WXw} (4.7)

of W . We show that any element of W belongs to XW .

Lemma 4.4. The set W is a subset of WX ∩ XW .

Proof. Since w ∈ W it follows that `(σiw) = `(w) + 1 for all i ∈ X. Let ϕ : WX → WX

be the map that sends s ∈WX to the element ϕ(s) ∈WX such that

sw = wϕ(s)

holds. The map ϕ is a group homomorphism since for any s, t ∈WX we have

wϕ(st) = (st)w = swϕ(t) = wϕ(s)ϕ(t)
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and hence ϕ(st) = ϕ(s)ϕ(t). For any s ∈WX we have `(ϕ(s)) = `(s) since

`(w) + `(ϕ(s)) ≥ `(wϕ(s)) = `(sw) = `(s) + `(w)

where the last equality follows since wWX = WXw. This implies that ϕ is surjective, hence

also a group isomorphism. For any s ∈ WX we obtain `(ws) = `(ϕ−1(s)w) = `(s) + `(w)

and thus w ∈ XW as required.

A consequence of this is that W is a subgroup of W , see [52, 25.1]. In order to prove

this we require use of the Deletion Condition, see [26, pg. 14], which we state here.

Deletion Condition ([26, pg. 14]). Given an expression w = σi1σi2 · · ·σit that is not

reduced, there exist indices 1 ≤ ij < ik ≤ n such that w = σi1 · · · σ̂ij · · · σ̂ik · · ·σit where σ̂ij
denotes the omission of the factor σij .

Corollary 4.5. The subset W is a subgroup of W .

Proof. We need only show that if w1, w2 ∈ W then w1w2 ∈ W. It is clear from the

definition of W that w1w2WX = WXw1w2 so we only need to show that w1w2 ∈ WX .

Suppose for a contradiction that for some i ∈ X we have `(σiw1w2) = `(w1w2)− 1. Then

σiw1w2 is not a reduced expression. By the Deletion Condition a reduced expression for

σiw1w2 must be obtained by omitting the factor σi and a factor from w1w2.

Since w1WX = WXw1 we have σiw1 = w1σj for some j ∈ X. By Lemma 4.4 both w1

and w2 are elements of WX ∩ XW hence both w1σj and σjw2 are reduced expressions.

This gives a contradiction since a reduced expression for σiw1w2 = w1σjw2 can only

be obtained by omitting a factor from both w1 and w2, which is not possible in view

of `(σiw1w2) = `(w1w2) − 1. This implies that `(σiw1w2) > `(w1w2) for all i ∈ X as

required.

By (4.1) and (4.3) we have σ̃i ∈ W for all i ∈ I \X. Let

Wτ = {w ∈ W | τ(w) = w}. (4.8)

Then since τ(X) = X, it follows that σ̃i ∈ Wτ for all i ∈ I \X and hence W̃ ⊆ Wτ . The

following Lemma is a generalisation of [52, A1(a)] and [21, Lemma 2] as indicated by [21,

Remark 8]. The argument appears in [60, Lemma 3.4.2], so we repeat it here.

Lemma 4.6 ([60, Lemma 3.4.2]). Any w ∈ Wτ can be written as w = σ̃i1 σ̃i2 · · · σ̃it such

that σ̃i1 , . . . , σ̃it ∈ W̃ and `(w) = `(σ̃i1) + · · · `(σ̃it).

Proof. We use induction on the length of w ∈ W . When `(w) = 0 there is nothing to

show so suppose `(w) > 0. Since w ∈ W, the element u = wwX satisfies

u = wwX = wXw
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where `(u) = `(w)+`(wX). As `(w) > 0 and w ∈WX , all reduced expressions for w begin

with an σi where i ∈ I \X. Hence there exists an i ∈ I \X such that `(σiu) < `(u). Since

τ(u) = u and τ is a length-preserving function we also have `(στ(i)u) < `(u). Further, for

all i ∈ X we have `(σiu) < `(u) since `(σiwX) = `(wX)− 1. By Proposition 4.3 u can be

written uniquely as u = vx where v ∈WX∪{i,τ(i)}, x ∈WX∪{i,τ(i)} and `(u) = `(v) + `(x).

For all j ∈ X ∪ {i, τ(i)} we have σjv ∈ WX∪{i,τ(i)} and hence `(σjvx) = `(σjv) + `(x).

Since `(σju) < `(u), this implies that `(σjv) < `(v) for all j ∈ X ∪ {i, τ(i)}. It follows

from this that v = wX∪{i,τ(i)} and

w = wXu = wXwX∪{i,τ(i)}x = σ̃ix.

We have

`(w) = `(u)− `(wX) = `(wX∪{i,τ(i)}) + `(x)− `(wX) = `(σ̃i) + `(x)

and so we can apply the inductive hypothesis to the element x to obtain the result.

As a result of Lemma 4.6, we see that Wτ = W̃ . This gives an alternative description

of the subgroup W̃ which will be used in the next section.

4.2 The subgroup WΘ

Using the involutive automorphism Θ : h∗ → h∗ from (3.15), we obtain a group automor-

phism

ΘW : W →W, w 7→ Θ ◦ w ◦Θ. (4.9)

Let WΘ = {w ∈ W | ΘW (w) = w} denote the subgroup of elements fixed by ΘW . For

i ∈ I we have

ΘW (σi) = (−wX ◦ τ) ◦ σi ◦ (−wX ◦ τ) = wXστ(i)wX . (4.10)

It follows from this and Condition (2) of Definition 3.1 that ΘW (σi) = σi for i ∈ X and

hence WX is a subgroup of WΘ.

It follows from Lemma 4.1 and Equation (4.10) that for all i ∈ I \X,

ΘW (σ̃i) = (−wXτ)wXwX∪{i,τ(i)}(−wXτ)

= wXτwX∪{i,τ(i)}τ

= wXwX∪{i,τ(i)} = σ̃i.

Hence σ̃i ∈WΘ for all i ∈ I \X which implies that W̃ is a subgroup of WΘ. The following

proposition implies that the subgroup WΘ is generated by WX and W̃ , as shown in [60,

Proposition 3.5.3, Corollary 3.5.4]. Recall from Lemma 4.6 that W̃ = Wτ = {w ∈ WX |
wWX = WXw, τ(w) = w}.
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Proposition 4.7 ([60, Proposition 3.5.3]). Any element w ∈WΘ can be written as w = uv

with u ∈WX and v ∈ W̃ . In other words, WΘ = WXW̃ .

Proof. Since WX and W̃ are subgroups of WΘ, the containment WXW̃ ⊆WΘ is immedi-

ate. We show that the containment WΘ ⊆WXW̃ holds.

Let w ∈ WΘ. By Proposition 4.3 we can write w uniquely as w = uv where u ∈ WX

and v ∈ WX . Since ΘW is a group automorphism we have ΘW (w) = ΘW (u)ΘW (v). The

elements w and u are ΘW -invariant which implies that v must also satisfy ΘW (v) = v.

By Equation (4.9) we have wXvwX = τ(v). Since the left-hand side of this expression is

non-reduced and W is a Coxeter group we may apply the Deletion Condition `(wX) times.

As τ is a length-preserving function we have

`(vwX) = `(τ(v)wX) = `(wXv) = `(wX) + `(v)

which implies v ∈ XW . Hence the elements wXv and vwX are reduced. As a result, each

time the Deletion condition is applied to wXvwX we remove one factor from each wX . It

follows from this that τ(v) = v.

Let x be a reduced expression for σiwX where i ∈ X. Then we have

xvwX = σiv.

In the same way as above, we use the Deletion Condition `(x) = `(wX)− 1 times to find

a reduced expression for xvwX . This leaves the equation

vσj = σiv

for some j ∈ X. Since this equation holds for all i ∈ X it follows that

vWX = WXv

and hence v ∈ Wτ = W̃ as required.

Theorem 4.8 ([60, Corollary 3.5.4]). The subgroup WΘ is a semidirect product of the

subgroups WX and W̃

WΘ = WX o W̃ . (4.11)

Proof. By Proposition 4.7 we have seen that WΘ = WXW̃ . It remains to show that

WX ∩ W̃ = {id} and WX is a normal subgroup of WΘ.

Let w ∈ W̃ = Wτ . Then w ∈ WX and by Lemma 4.2 all reduced expressions for

w do not begin with an σi with i ∈ X. Hence the only way for w to be an element of

WX is if w = 1. This implies that WX ∩ W̃ = {id}. By definition of Wτ , it follows that

wWXw
−1 = WX for w ∈ W̃ which implies that WX CWΘ as required.
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4.3 A Coxeter subgroup of W

The results of this section do not claim any originality, but are contained in the MMath

project of Sarah Sigley, [60]. The author feels it is to the benefit of the reader to include

these results here.

The subgroup WX is realised as the Weyl group of the Lie subalgebra gX in the

natural way. The subgroup W̃ also has an interpretation as a Weyl group. In particular

it is realised as the Weyl group of the restricted root system of the symmetric Lie algebra

(g, θ). In order to make this connection more explicit, we first show that W̃ is a Coxeter

group. We write x • y to denote xy with `(xy) = `(x) + `(y).

Lemma 4.9 ([60, Lemma 3.4.3], [21, Lemma 4 (Special case)]). Let w ∈ Wτ and assume

we have two expressions

w = σ̃i1 • . . . • σ̃ip = σ̃j1 • . . . • σ̃jr

for ik, jl ∈ I \X. Then p = r.

Proof. We proceed by induction on the length of w. If `(w) = 0, then w = 1 and there is

nothing to show. Suppose that `(w) > 0. Then p ≥ 1 and r ≥ 1.

If i1 = j1 then

w′ = σ̃i1w = σ̃i2 • . . . • σ̃ip = σ̃j2 • . . . • σ̃jr

so by the induction hypothesis we have p− 1 = r − 1 and hence p = r.

Suppose instead that i1 6= j1. Let K = X ∪ {i1, τ(i1)} ∪ {j1, τ(j1)}. Consider the

element

w′ = wXw = wX∪{i1,τ(i1)} • σ̃i2 • . . . • σ̃ip = wX∪{j1,τ(j1)} • σ̃j2 • . . . • σ̃jr .

By Proposition 4.3 we can uniquely write w′ = v • x where v ∈ WK and x ∈ WK . We

have `(σiw
′) < `(w′) for all i ∈ K so it follows that `(σiv) < `(v) for all i ∈ K. Hence v

must be the longest element of WK i.e. v = wK . Consider the subgroup

Wτ
K := {w ∈WK ∩WX | wWX = WXw, τ(w) = w} =Wτ ∩WK .

We claim that the element wXwK is in Wτ
K . Since τ(X) = X and τ(K) = K, it follows

that τ(wXwK) = wXwK . Since we can consider wX as an element of WK , we have

`(wXwK) = `(wK)− `(wX). Hence for i ∈ X we have

`(σiwXwK) ≥ `(wK)− `(σiwX) = `(wK)− `(wX) + 1 = `(wXwK) + 1

from which it follows that wXwK ∈ WX . Let u be a reduced expression for wXwK .

Consider the element uσiu for i ∈ X. Since σiu ∈WK and `(uσiu) = `(σi), it follows that

uσiu is not a reduced expression in W . As the pair (W,S = {σi | i ∈ I}) is a Coxeter

system, we may apply the Deletion condition to remove factors and obtain a reduced
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expression. The expressions uσi and σiu are both reduced. Hence the Deletion condition

forces a factor from each u to be deleted. It follows that uσiu = σi which implies that

wXwKWX = WXwXwK and hence wXwK ∈ Wτ
K .

As w = wXw
′ = wXwK • x and both w and wXwK are elements of Wτ , it follows that

x ∈ Wτ . By Lemma 4.6 we may write x = σ̃l1 • · · · • σ̃lq for li ∈ I \X. Further, W̃ =Wτ

impliesWτ = 〈σ̃i | i ∈ I \X〉 and henceWτ
K = 〈σ̃i1 , σ̃j1〉. Since σ̃i1 and σ̃j1 are involutions,

it follows that Wτ
K is the dihedral group of order 2m. As wXwK is an involution and is

an element of Wτ
K it follows that

wXwK = σ̃i1 • σ̃j1 • σ̃i1 • . . .︸ ︷︷ ︸
m terms

= σ̃j1 • σ̃i1 • σ̃j1 • . . .︸ ︷︷ ︸
m terms

Using this, we obtain

σ̃j1 • . . . • σ̃jr = w = wXwK • x = σ̃j1 • σ̃i1 • σ̃j1 • . . .︸ ︷︷ ︸
m terms

• σ̃l1 • . . . • σ̃lq .

Cancelling σ̃j1 from both sides gives

σ̃j2 • . . . • σ̃jr = σ̃i1 • σ̃j1 • σ̃i1 • . . .︸ ︷︷ ︸
m− 1 terms

• σ̃l1 • . . . • σ̃lq

from which it follows that (r − 1) = (m− 1) + q. Similarly, we also have

σ̃i2 • . . . • σ̃ir = σ̃j1 • σ̃i1 • σ̃j1 • . . .︸ ︷︷ ︸
m− 1 terms

• σ̃l1 • . . . • σ̃lq

which implies (p− 1) = (m− 1) + q. This gives p = r, as required.

Let λ : W̃ → N0 denote the length function with respect to W̃ .

Lemma 4.10 ([60, Lemma 3.4.4]). Let w ∈ W̃ and w = σ̃i1 · · · σ̃it with λ(w) = t. Then

w = σ̃i1 • . . . • σ̃it.

Proof. We use induction on t. If t = 0 or 1, then there is nothing to show so suppose t ≥ 2.

Let w̃′ = σ̃i1w with λ(w′) = t− 1. By the inductive hypothesis we have w′ = σ̃i2 • . . . • σ̃it .

There are two cases to consider.

If `(σiw
′) > `(w′) for all i ∈ {i1, τ(i1)}, then w′ ∈W {i1,τ(i1)} ∩WX . This implies that

`(σ̃i1w
′) = `(σ̃i1) + `(w′) and hence w = σ̃i1 • w

′ as required.

On the other hand, suppose `(σiw
′) < `(w′) for some i ∈ {i1, τ(i1)}. We will show

that this gives a contradiction. Since the length function is τ -invariant, it follows that

`(στ(i)w
′) < `(w′) also. As in the proof of Lemma 4.6 this implies that we may write

w′ = σ̃j1 • . . . • σ̃jr for jk ∈ I \X and j1 = i1. By Lemma 4.9, we have t− 1 = r and hence

we obtain

w = σ̃i1w
′ = σ̃j2 • . . . • σ̃jr

where λ(w) = r − 1 < λ(w′) which gives a contradiction.
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As a corollary to this, we see that reduced expressions in W̃ are also reduced in W .

Corollary 4.11 ([60, Corollary 3.4.5]). Let w,w′ ∈ W̃ . Then `(ww′) = `(w) + `(w′) if

and only if λ(ww′) = λ(w) + λ(w′).

Proof. Suppose λ(w) = p and λ(w′) = q. By Lemma 4.6 we have

w = σ̃i1 • . . . • σ̃ip ,

w′ = σ̃j1 • . . . • σ̃jq .

If `(ww′) = `(w) + `(w′), then ww′ = σ̃i1 • . . . • σ̃ip • σ̃j1 • . . . • σ̃jq . Let r ≤ λ(ww′) = p+ q.

By Lemma 4.6 we have ww′ = σ̃l1 • . . . • σ̃lr where r ≤ λ(ww′) = p+ q. By Lemma 4.9 we

have r = p+ q as required.

Suppose instead that λ(ww′) = λ(w) +λ(w′) = p+ q. Then ww′ = σ̃i1 · · · σ̃ip σ̃j1 · · · σ̃jq
and Lemma 4.10 implies that ww′ = σ̃i1 • . . . • σ̃ip • σ̃j1 • . . . • σ̃jq . It follows from this that

`(ww′) = `(w) + `(w′).

Let S̃ = {σ̃i | i ∈ I \ X}. Recall from [26, 1.7, 1.9] that a pair (W,S) is a Coxeter

system if and only if the Exchange condition holds for (W,S). For reference, we restate

the Exchange condition for (W,S).

Exchange Condition ([26, pg. 14]). Let w ∈W and suppose w = σi1 · · ·σit is a reduced

expression. If `(σjw) < `(w) for some j ∈ I, then there exists some k ∈ {1, . . . , t} such

that σjw = σi1 · · ·σik−1
σik+1

· · ·σit.

The following theorem is proved in [49, Theorem 5.9(i)] and [52, 25.1]. We give a

combinatorial proof as indicated in [21, Remark 8].

Theorem 4.12 ([60, Theorem 3.4.6, Corollary 3.4.7]). The pair (W̃ , S̃) is a Coxeter

system.

Proof. We show that the Exchange condition is satisfied for (W̃ , S̃) from which the result

follows. Let w ∈ W̃ and w = σ̃i1 · · · σ̃it be a reduced expression. Suppose λ(σ̃jw) < λ(w)

for some j ∈ I \X. If `(σkw) > `(w) for all k ∈ X ∪ {j, τ(j)}, then w ∈ WX∪{j,τ(j)} and

hence `(σ̃jw) = `(σ̃j) + `(w) by Proposition 4.3. Corollary 4.11 implies that λ(σ̃jw) =

λ(σ̃j) + λ(w) which contradicts the assumption that λ(σ̃jw) < λ(w).

Hence there exists some k ∈ X∪{j, τ(j)} such that `(σkw) < `(w). Since w ∈ W̃ =Wτ ,

it follows that k ∈ {j, τ(j)}. As the Exchange condition holds for (W,S), there exists some

index l ∈ {1, . . . , t} such that

σkw = σ̃i1 · · · σ̃il−1
xσ̃il+1

· · · σ̃it
where x ∈ WX∪{il,τ(il)} is the reduced expression for σ̃il minus one factor. Let z =

σ̃i1 · · · σ̃il−1
. Then

z−1σkz = xσ̃il ∈WX∪{il,τ(il)}.

68



Chapter 4. The restricted Weyl group

Since z ∈ W̃ = Wτ , we have τ(z−1σkz) = z−1στ(k)z = τ(xσ̃il) ∈ WX∪{il,τ(il)}. Further,

by Condition (2) of Definition 3.1 and (4.3) we have zσi = σiz for all i ∈ X. Hence

z−1σiz = σi ∈WX∪{il,τ(il)} for all i ∈ X. As a result we have z−1σ̃kz ∈ W̃ ∩WX∪{il,τ(il)}.

Hence z−1σ̃kz ∈ 〈σ̃il〉 = {1, σ̃il} so we must have z−1σ̃kz = σ̃il . Using this we obtain

σ̃kw = zσ̃ilz
−1w = σ̃i1 · · · σ̃il−1

σ̃il+1
· · · σ̃it

as required.

4.4 The restricted Weyl group

We now explain the connection between W̃ and the restricted root system of the symmetric

Lie algebra (g, θ) in some detail. This is a fact implicit in [49], but here we avoid Lusztig’s

more sophisticated setting and give a more pedestrian approach.

Since θ(h) = h we may decompose h as a direct sum

h = h1 ⊕ a (4.12)

where h1 = {x ∈ h | θ(x) = x} and a = {x ∈ h | θ(x) = −x} denote the +1– and

−1–eigenspaces of h, respectively.

Definition 4.13. The restricted root system Σ ⊂ a∗ is the set obtained by restricting all

roots in Φ to a. In other words,

Σ = Φ|a \ {0}. (4.13)

Recall from Section 2.2.1 that V = RΦ. As Θ(Φ) = Φ, we have Θ(V ) = V . Any

element α ∈ V can be written as

α =
α+ Θ(α)

2
+
α−Θ(α)

2
. (4.14)

Since the inner product (−,−) is Θ-invariant we hence obtain a direct sum decomposition

V = V+1 ⊕ V−1 (4.15)

where Vλ = {v ∈ V | Θ(v) = λv} and 1/2(α+ λΘ(α)) ∈ Vλ for λ ∈ {±1}. If β ∈ V−1 and

h ∈ h1, then β(h) = 0 since

β(h) = β(Θ(h)) = Θ(β)(h) = −β(h).

This allows us to consider V−1 as a a subspace of a∗, with V−1 = RΣ. For any β ∈ V ,

define

β̃ =
β −Θ(β)

2
, (4.16)

see [46, Equation (1.4)]. Equation (4.14) implies that Σ = {β̃ | β ∈ Φ, β̃ 6= 0}. We write

Π̃ = {α̃i | i ∈ I \X} and we define Q(Σ) = ZΣ = ZΠ̃ and Q+(Σ) = N0Π̃.

Lemma 4.14. The group WΘ acts on Σ.
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Proof. We calculate directly. For any w ∈WΘ and β̃ ∈ Σ we have

w(β̃) = w

(
β −Θ(β)

2

)
=
w(β)− w(Θ(β))

2

=
w(β)−Θ(w(β))

2
= w̃(β)

as required.

By restricting the inner product on V , we obtain an inner product on V−1. Since the

inner product is W -invariant and V−1 is a WΘ-invariant subspace, it follows that the inner

product on V−1 is WΘ-invariant. For any i ∈ X, we have αi ∈ V+1. The decomposition

(4.15) implies that σi(β̃) = β̃ for all i ∈ X and β̃ ∈ Σ. On the other hand, we can interpret

the subgroup W̃ using the restricted root system Σ.

Proposition 4.15 ([16, Proposition 2.7(1)]). The reflections at the hyperplanes perpen-

dicular to elements of Σ generate a finite reflection group W (Σ).

Proof. For any i ∈ I \X we have

σ̃i(α̃i) =
(
w−1
X wX∪{i,τ(i)}

)
(α̃i)

= wX∪{i,τ(i)}(α̃i)

=
(
wX∪{i,τ(i)}(αi)

)
|a.

It hence follows from (4.2) that

σ̃i(α̃i) = −α̃i. (4.17)

Now suppose β̃ ∈ V−1 such that (β̃, α̃i) = 0. Using the WΘ-invariance of the bilinear form

on V−1, we obtain

(σ̃i(β̃), α̃i) = (β̃, σ̃i(α̃i))

= −(β̃, α̃i)

= 0.

On the other hand, by the definition of σ̃i we have

σ̃i(β) = β + niαi + nτ(i)ατ(i) +
∑
j∈X

njαj

for some nj ∈ Q. From this we obtain

σ̃i(β̃) = β̃ +miα̃i

where mi = ni + nτ(i). Hence,

0 = (σ̃i(β̃), α̃i) = (β̃ +miα̃i, α̃i)

= (β̃, α̃i) +mi(α̃i, α̃i)

= mi(α̃i, α̃i).
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The inner product is positive definite so it follows that mi = 0. Hence σ̃i(β̃) = β̃. This

together with (4.17) implies that σ̃i is the reflection at the hyperplane orthogonal to α̃i.

By the above, the action of W̃ on V−1 gives a group homomorphism

ρ : W̃ →W (Σ) (4.18)

which sends σ̃i to the reflection at the hyperplane perpendicular to the element α̃i for any

i ∈ I \X. We check that ρ is a group isomorphism. Adapting the proof of [26, Theorem

1.5] one shows that ρ is surjective. Showing that ρ is injective is a consequence of Lemma

4.16 below.

Lemma 4.16 ([16, Proposition 2.8]). The action of W̃ on Σ is faithful.

Proof. Assume that there exists w ∈ W̃ such that w 6= 1
W̃

and

w(α̃i) = α̃i for all i ∈ I.

We can rewrite this formula as

w(αi)− w(Θ(αi)) = αi −Θ(αi). (4.19)

For all i ∈ X we have w(αi) > 0 as l(wσi) = l(w) + 1. Hence there exists i ∈ I \X such

that w(αi) < 0. In this case also w(ατ(i)) < 0 since elements of W̃ are fixed under τ .

Consider Equation (4.19) for this i: The right hand side lies in Q+ and is of the form

αi + ατ(i) +
∑
j∈X

njαj (4.20)

where nj ∈ N0 for each j ∈ X. We can write the left hand side as

w(αi)− w(Θ(αi)) = w(αi) + w(ατ(i)) +
∑
j∈X

mjw(αj) (4.21)

where mj ∈ N0 for each j ∈ X. Hence inserting (4.20) and (4.21) into (4.19), we get

w(αi) + w(ατ(i)) +
∑
j∈X

mjw(αj) = αi + ατ(i) +
∑
j∈X

njαj .

Now we apply the tilde map to the above equation. The terms involving αj for j ∈ X
vanish, because the tilde map is zero on QX and w commutes with Θ. We get

w̃(αi) + w̃(ατ(i)) = α̃i + α̃τ(i).

The right hand side lies in Q+(Σ). The left hand side lies in −Q+(Σ) because w(αi) and

w(ατ(i)) lie in −Q+. Hence both sides of the equation must vanish. However, this is not

possible, in particular for the right hand side which is 2α̃i. We have a contradiction.

Proposition 4.15 has the following consequence, which will be used in Section 5.4.
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Corollary 4.17. For any i ∈ I \X and µ ∈ Q(Σ) the relation

σ̃i(µ) = µ− 2
(µ, α̃i)

(α̃i, α̃i)
α̃i (4.22)

holds and 2
(µ, α̃i)

(α̃i, α̃i)
∈ Z.
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Factorisation of quasi K-matrices

for quantum symmetric pairs

The quasi K-matrix X is an element lying in a completion of Uq(g) that is an analogue

of the quasi R-matrix R. In particular X satisfies an intertwiner property similar to the

property (2.109) of the quasi R-matrix. In order to construct the quasi K-matrix we first

define a bar involution for Bc,s in Section 5.1, following [3]. In Section 5.2 we recall many

of the notions and known properties of the quasi K-matrix following [4].

Recall by Theorem 2.60 the quasi R-matrix has a deep connection to the Weyl group

W . In the remainder of this chapter, we establish a similar connection between the quasi

K-matrix and the restricted Weyl group W̃ . In particular, we will see that in many cases

the quasi K-matrix factorises into a product of quasi K-matrices for Satake diagrams

of rank one. In Sections 5.3 and 5.4 we establish explicit formulas for X in the case

s = (0, . . . , 0). The case with general parameters s is then considered in Section 5.5. The

results of Sections 5.3, 5.4 and 5.5 are joint with Stefan Kolb and can be found in [16,

Section 3].

5.1 Bar involution for Bc,s

Recall the bar involution U : Uq(g) → Uq(g) given by (2.89). The bar involution is

a crucial ingredient in the theory of quantum groups. For instance, the quasi R-matrix

is characterised by the bar involution, see Theorem 2.58. The bar involution hence has

applications in low-dimensional topolgy, see for example [57].

The papers of Bao and Wang [5] and Ehrig and Stroppel [18] suggest that the bar

involution plays an important role in the context of quantum symmetric pairs. In Section

5.2 we consider an analogue of Theorem 2.58 in the setting of quantum symmetric pairs.

In order to do this we require a bar involution for Bc,s. Since U does not leave Bc,s
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invariant we construct a new automorphism of Bc,s which is an analogue of U . We

denote this automorphism by B : Bc,s → Bc,s. The first examples were constructed in

[6] and [18] for specific quantum symmetric pair coideal subalgebras of type AIII/AIV.

Here, we recall the general constructions of Balagović and Kolb in [3, Section 3.3]. Recall

from Section 3.4 the subalgebras MX and U0
Θ of Uq(g) and also the elements Zi from

Equation (3.41).

Theorem 5.1 ([3, Theorem 3.11]). The following are equivalent:

(1) There exists a K(q)-algebra automorphism B : Bc,s → Bc,s such that

Bi
B

= Bi for all i ∈ I \X (5.1)

and B coincides with U on MXU
0
Θ.

(2) The relation

ciZiB = q(αi,ατ(i))cτ(i)Zτ(i) (5.2)

holds for all i ∈ I \X for which τ(i) 6= i or for which there exists j ∈ I \ {i} such

that aij = 0.

In order to construct the quasi K-matrix in Section 5.2 it is necessary to assume that

(5.2) holds for all i ∈ I \X, see [4, Lemma 6.7]. We will hence make the assumption that

(5.2) holds for the remainder of this thesis. One can show that

ZiB = q(αi,αi−wX(αi)−2ρX)Zτ(i), (5.3)

see [3, Proposition 3.5]. Using this and Lemma 3.11, it follows that Part (2) of Theorem

5.1 is equivalent to the condition

cτ(i) = q(αi,Θ(αi)−2ρX)ci for all i ∈ I \X. (5.4)

In [4, Section 5.4] the assumption

si = si
U (5.5)

for all i ∈ I \X is introduced. We also require this assumption in Section 5.5.

5.2 Quasi K-matrices

The bar involution U on Uq(g) and the bar involution B on Bc,s do not coincide when

restricted to elements of Bc,s. However, as in Section 2.2.8 we can find an element which

intertwines between the two bar involutions. Recall the root lattice Q = ZΦ for g and its

positive part Q+ = N0Φ ⊂ Q.
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Theorem 5.2 ([4, Theorem 6.10]). There exists a uniquely determined element X =∑
µ∈Q+ Xµ ∈ Û+ with X0 = 1 and Xµ ∈ U+

µ such that

xBX = XxU (5.6)

holds for all x ∈ Bc,s.

This is a direct analogue to Theorem 2.58 in which we stated that the quasi R-matrix

is an intertwiner between two bar involutions on Uq(g)⊗ Uq(g). It is for this reason that

we call the element X the quasi K-matrix for Bc,s. In [5, Theorems 2.10, 6.4] the first

known examples of X were constructed in types AIII/AIV. There, Bao and Wang denoted

the quasi K-matrix as the intertwiner Υ.

Recall from Section 2.2.6 the skew derivations ri, ir : U+ → U+ for i ∈ I. Further

recall from (3.28) the elements Xi for i ∈ I. The crucial property of the quasi K-matrix is

that it satisfies a recursive formula. The proof makes use of Proposition 2.44 and is given

in [4, Proposition 6.1].

Proposition 5.3 ([4, Proposition 6.1]). The following are equivalent.

(1) The quasi K-matrix satisfies xBX = XxU for all x ∈ Bc,s.

(2) For any µ ∈ Q+ and all i ∈ I we have

ri(Xµ) = −(qi − q−1
i )
(
Xµ+Θ(αi)−αiciXi

U
+ si

UXµ−αi
)
, (5.7)

ir(Xµ) = −(qi − q−1
i )
(
q−(Θ(αi),αi)ciXiXµ+Θ(αi)−αi + siXµ−αi

)
. (5.8)

Proof. By the definition of Bi the property (5.6) implies(
Fi + ciXiK

−1
i + siK

−1
i

)
X = X

(
Fi + ciXi

U
Ki + si

UKi

)
for any i ∈ I \X. Hence by Equation (2.84) we have

[X, Fi] =
(
ciXiK

−1
i + siK

−1
i

)
X− X

(
ciXi

U
Ki + si

UKi

)
.

Note that [Xµ, Fi] is an element of U+
µ−αi so we compare the (µ− αi) homogeneous com-

ponents in the equation above for all µ ∈ Q+. Since Xi has weight −Θ(αi) we have

[Xµ, Fi] = −
(
Xµ−αi+Θ(αi)ciXi

U
+ si

UXµ−αi
)
Ki

+K−1
i

(
q−(Θ(αi),αi)ciXiXµ−αi+Θ(αi) + siXµ−αi

)
.

By Proposition 2.44 we have

[Xµ, Fi] = (qi − q−1
i )−1(ri(Xµ)Ki −K−1

i ir(Xµ))

which implies the statement of the proposition.
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Remark 5.4. The proof of Theorem 5.2 requires the use of the recursive formulas (5.7)

and (5.8). In order to show that the quasi K-matrix exists, one is required to show that

solutions to the recursions (5.7) and (5.8) exist. This is addressed in [4, Sections 6.2,6.4].

In view of [4, Proposition 6.3] and Remark 5.4 we need only consider one system of

recursions. In order to avoid any complications with the bar involution, we choose to only

consider the system (5.8). Recalling that si = ci = 0 for i ∈ X, Equation (5.8) implies

that

ir(Xµ) = 0 for all i ∈ X. (5.9)

We can extend the skew derivation ir : U+ → U+ to a linear map

ir : Û+ → Û+,
∑
µ∈Q+

uµ 7→
∑
µ∈Q+

ir(uµ) (5.10)

where ir(uµ) is the component in U+
µ−αi for all µ ∈ Q+ with µ ≥ αi, see [16, Equa-

tion (3.12)]. Similarly we extend the skew derivation ri : U+ → U+ to a linear map

ri : Û+ → Û+. Using this we can rewrite the recursions (5.7) and (5.8) more compactly

as

ri(X) = −(qi − q−1
i )
(
XciXi

U
+ si

UX
)
, (5.11)

ir(X) = −(qi − q−1
i )
(
q−(Θ(αi),αi)ciXiX + siX

)
. (5.12)

The compact form for ir(X) is used to perform calculations in Section 5.3 and Chapter 6.

As a consequence of Equation (5.9) we obtain the following result which was already

observed in [6, Proposition 4.15]. We give an alternative proof, as in [16, Lemma 3.2]. For

any w ∈W recall the definition of the subalgebra U+[w] of Uq(g) from Section 2.2.5.

Lemma 5.5 ([16, Lemma 3.2]). For any µ ∈ Q+ the relation Xµ ∈ U+[wXw0] holds.

Proof. By Equations (5.9) and (2.92) we have Xµ ∈ U+[σjw0] for all j ∈ X. By [23,

Theorem 7.3] we have ⋂
j∈X

U+[σjw0] = U+[wXw0]

as required.

Using the involution Θ : h∗ → h∗ we can determine many of the components Xµ. Recall

the height function ht : Q+ → N0 which sends µ =
∑

i∈I niαi 7→
∑

i∈I ni, see [26, pg.11].

The following lemma is (3) ⇒ (4) in [4, Proposition 6.1].

Lemma 5.6 ([4, Proposition 6.1, (4)]). For any µ ∈ Q+ such that Xµ 6= 0, we have

Θ(µ) = −µ.

Proof. We proceed by induction of the height of µ. If ht(µ) = 0 then there is nothing to

show. Assume that ht(µ) > 0. If Xµ 6= 0 then by (2.103) there exists i ∈ I such that
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ir(Xµ) 6= 0. By (5.8) we either have Xµ+Θ(αi)−αi 6= 0 or siXµ−αi 6= 0. If Xµ+Θ(αi)−αi 6= 0,

then since ht(µ+ Θ(αi)− α(i)) < ht(µ) the induction hypothesis implies

Θ(µ+ Θ(αi)− αi) = −(µ+ Θ(αi)− αi).

Rearranging gives Θ(µ) = −µ.

On the other hand if siXµ−αi 6= 0 then si 6= 0. By (3.34) it follows that τ(i) = i and

aij = 0 for all j ∈ X, hence Θ(αi) = −αi. Again using the inductive hypothesis we have

Θ(µ− αi) = −(µ− αi)

from which we obtain Θ(µ) = −µ as required.

The above lemma implies that if Θ(µ) 6= −µ, then Xµ = 0. We write Xc,s if we need to

specify the dependence on the parameters c and s. Any diagram automorphism η : I → I

induces a map η : K(q)I\X → K(q)I\X by

η
(
(ci)
)

= (di) with di = cη−1(i), (5.13)

see [16, Equation (3.28)]. We can record the effect of the diagram automorphism on the

quasi K-matrix using this notation. This will be used in Proposition 5.26.

Lemma 5.7 ([16, Lemma 3.3]). Let η : I → I be a diagram automorphism and c ∈ C,

s ∈ S. Then η(c) ∈ C, η(s) ∈ S and

η(Xc,s) = Xη(c),η(s). (5.14)

Proof. The relations η(c) ∈ C, η(s) ∈ S follow from the definitions (3.33) and (3.34),

respectively. By [4, Proposition 6.1], relation (5.6) is equivalent to

Bc,s
i X = XBc,s

i

U
for all i ∈ I \X. (5.15)

Here we write Bc,s
i to also denote the dependence of the elements Bi on the parameters

c and s. By construction we have η(Bc,s
i ) = B

η(c),η(s)
η(i) . Further the bar involution U

commutes with η. Applying η to (5.15) we have

B
η(c),η(s)
η(i) η(Xc,s) = η(Xc,s)B

η(c),η(s)
η(i)

U

.

It hence follows that η(Xc,s) = Xη(c),η(s) as required.

5.3 Rank one quasi K-matrices

For the remainder of this chapter, following Remark 3.2, we denote Satake diagrams as

triples (I,X, τ) to also indicate the underlying Lie algebra. The remainder of this chapter

is taken from the author’s recent paper [16, Section 3.3].
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Definition 5.8 ([16, Definition 3.4]). A subdiagram of a Satake diagram (I,X, τ) is a

triple (J,X ∩ J, τ |J) such that J ⊂ I and (J,X ∩ J, τ |J) is a Satake diagram for the

subdiagram of the Dynkin diagram of g indexed by J .

We only consider subdiagrams (J,X ∩ J, τ |J) with the property that any connected

component of X ∩ J is connected to a white node of J . Let Ĩ be the set of τ -orbits of

I \X. There is a projection map

π : I \X −→ Ĩ (5.16)

that takes any white node to the τ -orbit it belongs to.

Definition 5.9 ([16, Definition 3.6]). The rank of a Satake diagram (I,X, τ) is defined

by rank(I,X, τ) = |π(I \X)|.

In other words, a Satake diagram has rank n if there are n distinct orbits of white

nodes. By Proposition 4.15 the rank of a Satake diagram coincides with the rank of the

corresponding restricted root system Σ.

Given a Satake diagram (I,X, τ), any i ∈ I \X determines a subdiagram ({i, τ(i)} ∪
X,X, τ |{i,τ(i)}∪X) of rank one. Let Xi be the quasi K-matrix corresponding to this rank

one subdiagram. For any w ∈ W we define Û+[w] =
∏
µ∈Q+ U+[w]µ. As U [w]+ is a

subalgebra of U+ we obtain that Û+[w] is a subalgebra of Û+ and hence of U by Lemma

2.30. Formulating Lemma 5.5 in the present setting we obtain

Xi ∈ Û+[σ̃i]. (5.17)

In the following lemma we consider the case τ(i) = i and make the dependence of Xi on

the parameters ci more explicit.

Lemma 5.10 ([16, Lemma 3.7]). Assume that s = (0, . . . , 0) and i ∈ I \ X satisfies

τ(i) = i. Then

Xi =
∑
n∈N0

cni En(αi−Θ(αi)) (5.18)

where En(αi−Θ(αi)) ∈ U+
n(αi−Θ(αi))

is independent of c.

Proof. It follows from the recursion (2.78) and the assumption si = 0 that

Xi =
∑
n∈N0

Xn(αi−Θ(αi))

with Xn(αi−Θ(αi)) ∈ U+
n(αi−Θ(αi))

. Again by (2.78), the elements

En(αi−Θ(αi)) = c−ni Xn(αi−Θ(αi))

for n ∈ N satisfy the relations

ir(En(αi−Θ(αi))) = −(q − q−1)q−(Θ(αi),αi)XiE(n−1)(αi−Θ(αi)) for i ∈ I \X (5.19)
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and

jr(En(αi−Θ(αi))) = 0 for j ∈ X. (5.20)

The relations (5.19) and (5.20) are independent of c and determine En(αi−Θ(αi)) uniquely

if we additionally impose E0 = 1.

The quasi K-matrices of rank one are the building blocks for quasi K-matrices of higher

rank. In the following we give explicit formulas for rank one quasi K-matrices of type A

shown on the left hand side of Table 5.1 in the case s = (0, . . . , 0). These were calculated

in [16, Lemmas 3.8–3.10]. Additionally, we present the rank one quasi K-matrices for

Satake diagrams of types BII and DII not contained in [16].

Recall from Equation (2.81) and Equation (2.83) the modified q-number {n}i, the

factorial {n}i! and the double factorial {n}i!!. Further, we use the following conventions.

For any x, y ∈ Uq(g), a ∈ K(q) we denote by [x, y]a the element xy− ayx. For any i, j ∈ I
we write Tij = Ti◦Tj : Uq(g)→ Uq(g) and we extend this definition recursively. In Sections

5.3.5 and 5.3.6 we shorten notation further by writing

Ti−−j = TiTi+1 · · ·Tj−1Tj , (5.21)

Tj−−i = TjTj−1 · · ·Ti+1Ti

for 1 ≤ i ≤ j ≤ n.

Table 5.1: Satake diagrams of symmetric pairs of rank one

AI1
1

BII, n ≥ 2
1 2 n

AII3
1 2 3

CII, n ≥ 3
1 2 3 n

AIII11
1 2

DII, n ≥ 4
1 2

n − 1

n

AIV, n ≥ 2

1 2 n

FII
1 2 3 4

5.3.1 Type AI1

Consider the Satake diagram of type AI1.

1
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Lemma 5.11 ([16, Lemma 3.7]). The quasi K-matrix X of type AI1 is given by

X =
∑
n≥0

(q − q−1)n

{2n}!! (q2c1)nE2n
1 . (5.22)

Proof. By Equation 2.78, we need to show that

1r(X) = (q − q−1)(q2c1)E1X.

Recall from (2.82) the relation

1r(E
n
1 ) = {n}En−1

1 for all n ∈ N.

Hence

1r(X) =
∑
n≥0

(q − q−1)n

{2n}!! (q2c1)n1r(E
2n
1 )

=
∑
n≥1

(q − q−1)n

{2n}!! (q2c1)n{2n}E2n−1
1

=
∑
n≥0

(q − q−1)n+1

{2n}!! (q2c1)n+1E2n+1
1

= (q − q−1)(q2c1)E1X

as required.

5.3.2 Type AII3

Consider the Satake diagram of type AII3.

1 2 3

Lemma 5.12 ([16, Lemma 3.8]). The quasi K-matrix X of type AII3 is given by

X =
∑
n≥0

(qc2)n

{n}! [E2, T13(E2)]nq−2 . (5.23)

Proof. Since T13(E2) = [E1, T3(E2)]q−1 , Property (2.78) of the skew derivative 1r im-

plies that 1r(T13(E2)) = (1 − q−2)T3(E2). Again by Property (2.78), it follows that

1r([E2, T13(E2)]q−2) = 0. Hence 1r(X) = 0. By symmetry, we also have 3r(X) = 0.

We want to show that

2r(X) = (q − q−1)c2T13(E2)X.

Since 2r(T13(E2)) = 0 by (2.92), the relation

2r([E2, T13(E2)]q−1) = (1− q−2)T13(E2)

holds in Uq(sl4).
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Moreover, the element T13(E2) commutes with the element [E2, T13(E2)]q−2 . Indeed,

this follows from the fact that E2 commutes with [T213(E2), E2]q−2 by applying the auto-

morphism T13. This implies that the relation

2r([E2, T13(E2)]nq−2) = (1− q−2){n}T13(E2)[E2, T13(E2)]n−1
q−2

holds in Uq(sl4). Using this, we obtain

2r(X) =
∑
n≥0

(qc2)n

{n}! 2r([E2, T13(E2)]nq−2)

= (1− q−2)T13(E2)
∑
n≥1

(qc2)n

{n− 1}! [E2, T13(E2)]n−1
q−2

= (q − q−1)c2T13(E2)X

as required.

5.3.3 Type AIII11

Consider the Satake diagram of type AIII11.

1 2

Note that s(1) = s(2) = 1 by (3.11) and c1 = c2 by (3.33) and (5.4).

Lemma 5.13 ([16, Lemma 3.9]). The quasi K-matrix X of type AIII11 is given by

X =
∑
n≥0

(q − q−1)n

{n}! cn1 (E1E2)n. (5.24)

Proof. By symmetry, we only need to show that

1r(X) = (q − q−1)c1E2X.

By (2.82), we have

1r(X) =
∑
n≥0

(q − q−1)n

{n}! cn1 1r((E1E2)n)

=
∑
n≥1

(q − q−1)n

{n}! {n}cn1En−1
1 En2

= (q − q−1)c1E2X

as required.

5.3.4 Type AIV for n ≥ 2

Consider the Satake diagram of type AIV for n ≥ 2.
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1 2 n

By (3.11), we have s(1) = −s(n) and by (5.4), we have c1 = q−2cn.

Lemma 5.14 ([16, Lemma 3.10]). The quasi K-matrix X of type AIV is given by

X =

(∑
k≥0

(c1s(n))k

{k}! T1TwX (En)k
)(∑

k≥0

(cns(1))k

{k}! TnTwX (E1)k
)
. (5.25)

Proof. We have ir(X) = 0 for i ∈ X. Hence by symmetry we only need to show that

1r(X) = (q − q−1)q−1c1s(n)TwX (En)X

since T1TwX (En) and TnTwX (E1) commute. We have

1r(TnTwX (E1)k) = 0,

1r(T1TwX (En)k) = q−1(q − q−1){k}TwX (En)T1TwX (En)k−1.

Using this, we obtain

1r(X) =

(∑
k≥0

(c1s(n))k

{k}! 1r(T1TwX (En)k)

)(∑
k≥0

(cns(1))k

{k}! TnTwX (E1)k
)

= q−1(q − q−1)c1s(n)TwX (En)X

as required.

5.3.5 Type BII for n ≥ 3

Consider the Satake diagram of type BII for n ≥ 3.

1 2 n

In this case we have

w0 = σn(σn−1σnσn−1) · · · (σ1 · · ·σn · · ·σ1).

The following lemma is necessary for Lemma 5.16.

Lemma 5.15. The element E1 commutes with [T1TwX (E1), E1]q−4.

Proof. We have

T1TwX (E1) = T1T2−−n−−2(E1) = T1−−n−−3([E2, E1]q−2)

= [T1−−n−−3(E2), T12(E1)]q−2

= [T1−−n−−3(E2), E2]q−2 .
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The fact that T12(E1) = E2 follows from Proposition 2.40 by noting that σ1σ2(α1) = α2.

The element E1T1−−n−−3(E2) has weight 2α1 +α2 + 2(α3 + · · ·+αn). Hence by Theorem

2.59 it follows that

E1T1−−n−−3(E2) = q2T1−−n−−3(E2)E1. (5.26)

Since T1(E2) = E1E2 − q−2E2E1 we obtain

E1T1TwX (E1) = E1T1−−n−−3(E2)E2 − q−2E1E2T1−−n−−3(E2)

= q2T1−−n−−3(E2)E1E2 − q−2
(
T1(E2) + q−2E2E1

)
T1−−n−−3(E2)

= q2T1−−n−−3(E2)
(
T1(E2) + q−2E2E1

)
− q−2T1(E2)T1−−n−−3(E2)

− q−2E2T1−−n−−3(E2)E1

= q2[T1−−n−−3(E2), T1(E2)]q−4 + T1TwX (E1)E1.

This implies

E1[T1TwX (E1), E1]q−4 = [E1T1TwX (E1), E1]q−4

= [T1TwX (E1), E1]q−4E1 + q2
[
[T1−−n−−3(E2), T1(E2)]q−4 , E1

]
q−4 .

By Equation (5.26) and the fact that T1(E2)E1 = q−2E1T1(E2) it follows that[
[T1−−n−−3(E2), T1(E2)]q−4E1

]
q−4 = 0.

Hence we have E1[T1TwX (E1), E1]q−4 = [T1TwX (E1), E1]q−4E1 as required.

Lemma 5.16. The quasi K-matrix X in type BII is given by

X =
∑
m≥0

(q2c1)m

{m}1!
[E1, TwX (E1)]mq−4 . (5.27)

Proof. By Equation (5.12) we want to show that 1r(X) = (q2 − q−2)c2TwX (E1)X. By

(2.92) we have 1r(TwX (E1)) = 0 so it follows that

1r([E1, TwX (E1)]q−4) = (1− q−4)TwX (E1).

Since σ1wX(α1) = wXα1 we have wXσ1wX(α1) = α1 and hence Proposition 2.40 im-

plies that TwXT1TwX (E1) = E1. Applying TwX to the relation E1[T1TwX (E1), E1]q−4 =

[T1TwX (E1), E1]q−4E1 from Lemma 5.15 we obtain

TwX (E1)[E1, TwX (E1)]q−4 = [E1, TwX (E1)]q−4TwX (E1).

Using Property (2.78) of the skew derivation 1r we have

1r([E1, TwX (E1)]2q−4) = {2}1(1− q−4)TwX (E1)[E1, TwX (E1)]q−4 .

Continuing inductively it follows that

1r([E1, TwX (E1)]mq−4) = (1− q−4){m}1TwX (E1)[E1, TwX (E1)]m−1
q−4 .
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This implies that

1r(X) =
∑
m≥0

(q2c1)m

{m}1!
1r([E1, TwX (E1)]mq−4)

= (1− q−4)TwX (E1)
∑
m≥1

(q2c1)m

{m− 1}1!
[E1, TwX (E1)]m−1

q−4

= (q2 − q−2)c1TwX (E1)X

as required.

5.3.6 Type DII for n ≥ 4

Consider the Satake diagram of type DII for n ≥ 4.

1 2

n − 1

n

In this case we have

w0 = (σnσn−1)(σn−2σnσn−1σn−2) . . . (σ1 . . . σn−2σn−1σnσn−2 . . . σ1). (5.28)

Before constructing the quasi K-matrix in this case, we need the following lemma, similar

to Lemma 5.15.

Lemma 5.17. The element E1 commutes with [T1TwX (E1), E1]q−2.

Proof. We have

T1TwX (E1) = T1T2−−nTn−2−−2(E1)

= T1−−nTn−2−−3([E2, E1]q−1)

= [T1−−nTn−2−−3(E2), E2]q−1

where we use T12(E1) = E2 by Proposition 2.40. The element E1T1−−nTn−2−−3(E2) has

weight 2α1 +α2 + 2(α3 + · · ·+αn−2) +αn−1 +αn. Hence by Theorem 2.59 it follows that

E1T1−−nTn−2−−3(E2) = qT1−−nTn−2−−3(E2)E1. (5.29)

Since T1(E2) = E1E2 − q−1E2E1 we obtain

E1T1TwX (E1) = E1T1−−nTn−2−−3(E2)E2 − q−1E1E2T1−−nTn−2−−3(E2)

= qT1−−nTn−2−−3(E2)
(
T1(E2) + q−1E2E1

)
− q−1

(
T1(E2) + q−1E2E1

)
T1−−nTn−2−−3(E2)

= q[T1−−nTn−2−−3(E2), T1(E2)]q−2 + T1TwX (E1)E1.
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This implies that

E1[T1TwX (E1), E1]q−2 = [T1TwX (E1), E1]q−2E1

+ q
[
[T1−−nTn−2−−3(E2), T1(E2)]−2

q , E1

]
q−2 .

By Equation (5.29) and the fact T1(E2)E1 = q−1E1T1(E2), it follows that[
[T1−−nTn−2−−3(E2), T1(E2)]−2

q , E1

]
q−2 = 0.

Hence E1[T1TwX (E1), E1]q−2 = [T1TwX (E1), E1]q−2E1 as required.

Lemma 5.18. The quasi K-matrix X in type DII is given by

X =
∑
m≥0

(qc1)m

{m}! [E1, TwX (E1)]mq−2 . (5.30)

Proof. By Equation (5.12) we want to show that 1r(X) = (q−q−1)c1TwX (E1)X. By (2.92)

we have 1r(TwX (E1)) = 0 so it follows that

1r([E1, TwX (E1)]q−2) = (1− q−2)TwX (E1).

Since σ1wX(α1) = wXα1 we have wXσ1wX(α1) = α1 and hence Proposition 2.40 im-

plies that TwXT1TwX (E1) = E1. Applying TwX to the relation E1[T1TwX (E1), E1]q−2 =

[T1TwX (E1), E1]q−2E1 from Lemma 5.17 we obtain

TwX (E1)[E1, TwX (E1)]q−2 = [E1, TwX (E1)]q−2TwX (E1).

Using Property (2.78) of the skew derivation 1r we have

1r([E1, TwX (E1)2
q−2) = {2}(1− q−2)TwX (E1)[E1, TwX (E1)]q−2 .

Continuing inductively it follows that

1r([E1, TwX (E1)]mq−2) = (1− q−2){m}TwX (E1)[E1, TwX (E1)]m−1
q−2 .

This implies that

1r(X) =
∑
m≥0

(qc1)m

{m}! 1r([E1, TwX (E1)]mq−2)

= (1− q−2)TwX (E1)
∑
m≥1

(qc1)m

{m− 1}! [E1, TwX (E1)]m−1
q−2

= (q − q−1)c1TwX (E1)X

as required.

Remark 5.19. Let A = Z[q, q−1] and let A U
+ be the A -subalgebra of U+ generated by

E
(n)
i =

Eni
[n]! for all n ∈ N0, i ∈ I. Set A Û+ =

∏
µ∈Q+ A U

+
µ where A U

+
µ = A U

+ ∩ U+
µ for

all µ ∈ Q+. By [6, Theorem 5.3] we have X ∈ A Û+ if cis(τ(i)) ∈ ±qZ for all i ∈ I \X.
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This integrality property is crucial for the theory of canonical bases of quantum symmetric

pairs developed in [6].

We observe that the integrality of the quasi K-matrix in rank one can in some cases

be read off the explicit formulas given in this section. Indeed, Lemma 5.11, 5.13 and 5.14

imply that X ∈ A Û+ in the rank one cases of type AI, AIII and AIV . The rank one

cases AII3, BII and DII are more complicated, and Lemmas 5.12, 5.16 and 5.18 does

not give an obvious way to see that X ∈ A Û+. Nevertheless, X is also integral in this case,

as shown in [6, A.5]. Based on the present remark, the integrality of X in higher rank is

discussed in Remark 5.31.

5.4 Partial quasi K-matrices

All through this section we make the assumption that s = 0 = (0, 0, . . . , 0) ∈ S. In Section

5.5 we discuss the case of general parameters s ∈ S. We provide a construction for the

quasi K-matrix analogous to the construction of the quasi R-matrix in Theorem 2.60.

Recall from Section 4.4 the restricted Weyl group W̃ and the set of simple roots

Π̃ = {α̃i | i ∈ I \ X}. By Corollary 2.39 the Lusztig automorphisms Ti of Uq(g) for all

i ∈ I give rise to a representation of Br(W ) on Uq(g). Since W̃ is a subgroup of W , we

hence obtain algebra automorphisms of Uq(g) defined by

T̃i := Tσ̃i for each i ∈ I \X.

By Theorem 4.12 and Corollary 4.11 the algebra automorphisms T̃i give rise to a repre-

sentation of Br(W̃ ) on Uq(g).

Define Q(2Σ) = 2ZΠ̃ and Q+(2Σ) = 2N0Π̃. By Equation (5.8) and the assumption

s = 0 we have

ir(Xµ) = −(qi − q−1
i )q−(Θ(αi),αi)ciXiXµ−2α̃i for any µ ∈ Q+.

By Lemma 5.18 it follows that Xµ 6= 0 only if µ ∈ Q+(2Σ). Hence by Lemma 2.30 we

may consider the quasi K-matrix X as an element in
∏
µ∈Q+(2Σ) U

+
µ ⊂ Û+ ⊂ U . For any

w ∈W define

Ũ+[w] =
⊕

µ∈Q+(2Σ)

U+[w]µ

and set Ũ+ =
⊕

µ∈Q+(2Σ) U
+
µ . Then Ũ+ and Ũ+[w] are K(q)-subalgebras of U+ and

U+[w], respectively. In particular by Equation (5.17) we have

Xi ∈ Ũ+[σ̃i]

∧

=
∏

µ∈Q+(2Σ)

Ũ+[σ̃i]µ for any i ∈ I \X.

86



Chapter 5. Factorisation of quasi K-matrices for quantum symmetric pairs

Let K′ be a field extension of K(q) which contains q1/2 and elements c̃i such that

c̃ 2
i = cicτ(i)s(i)s(τ(i)) for all i ∈ I \X. (5.31)

We extend Ũ+ and Ũ+[w] for w ∈ W to K′-algebras Ũ+
1/2 = K′ ⊗K(q) Ũ

+ and Ũ+
1/2[w] =

K′ ⊗K(q) Ũ
+[w]. Define an algebra automorphism Ψ : Ũ+

1/2 → Ũ+
1/2 by

Ψ(E2α̃i) = q(α̃i,α̃i)c̃iE2α̃i for all E2α̃i ∈ U+
2α̃i

. (5.32)

For each i ∈ I \X define an algebra homomorphism

Ωi = Ψ ◦ T̃i ◦Ψ−1 : Ũ+
1/2[σ̃iw0]→ Ũ+

1/2. (5.33)

We consider the restriction of the algebra homomorphism Ωi to the subalgebra Ũ+[σ̃iw0],

and we denote this restriction also by Ωi. Crucially, by the following proposition, the

image of the restriction Ωi belongs to Ũ+ and does not involve any of the adjoined square

roots.

Proposition 5.20 ([16, Proposition 3.12]). For every i ∈ I \X the map Ωi : Ũ+[σ̃iw0]→
Ũ+ is a well defined algebra homomorphism.

Proof. It remains to show that the image of Ωi is contained in Ũ+. Observe that T̃i(Ũ
+
µ ) ⊆

Ũ+
σ̃i(µ) for all µ ∈ Q+(2Σ). By Corollary 4.17 we have

σ̃i(µ) = µ− 2(µ, α̃i)

(α̃i, α̃i)
α̃i for all µ ∈ Q+(2Σ).

Hence Equation (5.32) implies that

Ωi|Ũ+
µ

= q−(µ,α̃i)c̃
−(µ,α̃i)/(α̃i,α̃i)
i T̃i|Ũ+

µ
.

Since µ ∈ Q+(2Σ) it follows that the exponent −(µ, α̃i) is an integer. Moreover, Corollary

4.17 implies that the exponent −(µ, α̃i)/(α̃i, α̃i) is an integer.

If i = τ(i) then Equation (5.31) and Condition (3.10) imply that c̃i = ±ci. This implies

that the image of Ωi is contained in Ũ+ in this case.

Suppose instead that i ∈ I \X satisfies i 6= τ(i). If additionally (αi,Θ(αi)) = 0, then

(3.33) implies that ci = cτ(i). Moreover in this case Θ(αi) = −ατ(i) by [38, Lemma 5.3]

and hence s(i) = s(τ(i)) by (3.11). Hence we get c̃i = ±cis(i) in the case i 6= τ(i),

(αi,Θ(αi)) = 0 which implies that the image of Ωi is contained in Ũ+ in this case.

Finally, we consider the case that i 6= τ(i) and (αi,Θ(αi)) 6= 0. We are then in Case

3 in [46, p. 17] and hence the restricted root system Σ is of type (BC)n for n ≥ 1 and

(α̃i, α̃i) = 1
4(αi, αi). Since µ ∈ Q+(2Σ) ⊂ Q we have

(µ, α̃i)

(α̃i, α̃i)
= 4

(µ, αi)

(αi, αi)
∈ 2Z.

Hence the image of Ωi is contained in Ũ+ in all cases as required.
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Consider w̃ ∈ W̃ and let w̃ = σ̃i1 σ̃i2 . . . σ̃it be a reduced expression. For k = 1, . . . , t

let

X
[k]
w̃ = Ωi1Ωi2 · · ·Ωik−1

(Xik) = Ψ ◦ T̃i1 · · · T̃ik−1
◦Ψ−1(Xik). (5.34)

By Corollary 4.11 we have U+[σ̃ik ] ⊂ U+[σ̃ik−1
(w0)] for k = 2, . . . , t, and

T̃il · · · T̃ik−1
(U+[σ̃ik ]) ⊂ U+[σ̃il−1

(w0)] for l = 2, . . . , k − 1

and hence the elements X
[k]
w̃ are well-defined. Moreover, by Proposition 5.20 we have

X
[k]
w̃ ∈ Ũ+[w̃]

∧

=
∏

µ∈Q+(2Σ)

U+[w̃]µ for k = 1, . . . , t.

When clear, we omit the subscript w̃ and write X[k] instead of X
[k]
w̃ .

Definition 5.21 ([16, Definition 3.13]). Let w̃ ∈ W̃ and let w̃ = σ̃i1 σ̃i2 . . . σ̃it be a re-

duced expression. The partial quasi K-matrix Xw̃ associated to w̃ and the given reduced

expression is defined by

Xw̃ = X[k]X[k−1] · · ·X[2]X[1]. (5.35)

We expect that the partial quasi K-matrix Xw̃ only depends on w̃ ∈ W̃ and not on

the chosen reduced expression. As we will see in Theorem 5.25 it suffices to check the

independence of the reduced expression in rank two. If the Satake diagram is of rank two

then the restricted Weyl group W̃ is of one of the types A1 × A1, A2, B2 or G2. In each

case, only the longest word for W̃ has distinct reduced expressions.

Conjecture 5.22 ([16, Conjecture 3.14]). Assume that (I,X, τ) is a Satake diagram of

rank two. Then the element Xw̃ ∈ U defined by (5.35) depends only on w̃ ∈ W̃ and not

on the chosen reduced expression.

In Chapter 6, we prove the following Theorem which confirms Conjecture 5.22 in many

cases. The proof is performed by showing that for both reduced expressions of the longest

word in W̃ the resulting elements Xw satisfy the relations (5.12).

Theorem 5.23 ([16, Theorem 3.15]). Assume that g = sln(C) or X = ∅. Then Conjecture

5.22 holds.

Remark 5.24. The Hopf algebra automorphism Ψ in the definition of Ωi turns out to

be necessary for the rank two calculations in Chapter 6 which prove Theorem 5.23. The

conjugation by Ψ affects the coefficients in the partial quasi K-matrix associated to a

reduced expression of an element w̃ ∈ W̃ . In rank two the two partial quasi K-matrices

associated to the longest word w̃0 ∈ W̃ coincide only after this change of coefficients. The

effect of the conjugation by Ψ can be seen in particular in Sections 6.3 and 6.4 which treat

type AIIIn for n ≥ 3.
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Once the rank two case is established, we can generalise to higher rank cases.

Theorem 5.25 ([16, Theorem 4.16]). Suppose that (I,X, τ) is a Satake diagram such

that all subdiagrams (J,X ∩ J, τ |J) of rank two satisfy Conjecture 5.22. Then the element

Xw̃ ∈ U depends on w̃ ∈ W̃ and not on the chosen reduced expression.

Proof. Let w̃ and w̃′ be reduced expressions which represent the same element in W̃ .

Assume that w̃ and w̃′ differ by a single braid relation. The following are the possible

braid relations:

σ̃pσ̃r = σ̃rσ̃p,

σ̃pσ̃rσ̃p = σ̃rσ̃pσ̃r, (5.36)

(σ̃pσ̃r)
2 = (σ̃rσ̃p)

2,

(σ̃pσ̃r)
3 = (σ̃rσ̃p)

3.

The argument for each relation is the same, so we only consider the second case. Assume

that w̃ and w̃′ differ by relation (5.36), that is

w̃ = σ̃i1 · · · σ̃ik−1

(
σ̃pσ̃rσ̃p

)
σ̃ik+3

· · · σ̃it ,
w̃′ = σ̃i1 · · · σ̃ik−1

(
σ̃rσ̃pσ̃r

)
σ̃ik+3

· · · σ̃it
for some k = 1, . . . , t− 2. For l = 1, . . . , k − 1, we have

X
[l]
w̃ = Ψ ◦ T̃i1 · · · T̃il−1

◦Ψ−1(Xil) = X
[l]
w̃′ .

Since the algebra automorphisms T̃i satisfy braid relations, we have

X
[l]
w̃ = Ψ ◦ T̃i1 · · · T̃ik−1

(
T̃pT̃rT̃p

)
T̃ik+3

· · · T̃il−1
◦Ψ−1(Xil)

= Ψ ◦ T̃i1 · · · T̃ik−1

(
T̃rT̃pT̃r

)
T̃ik+3

· · · T̃il−1
◦Ψ−1(Xil) = X

[l]
w̃′

for l = k+ 3, . . . , t. Finally, consider the rank two subdiagram (J,X ∩ J, τ |J) obtained by

taking J = J1 ∪ J2, where J1 = {r, p, τ(r), τ(p)} and J2 ⊂ X is the union of connected

components of X which are connected to a node of J1. By assumption,

Xσ̃pσ̃rσ̃p = Xp ·ΨT̃pΨ−1(Xr) ·ΨT̃pT̃rΨ−1(Xp)

= Xr ·ΨT̃rΨ−1(Xp) ·ΨT̃rT̃pΨ−1(Xr) = Xσ̃rσ̃pσ̃r .

It follows from this that

X
[k]
w̃ X

[k+1]
w̃ X

[k+2]
w̃ = ΨT̃i1 · · · T̃ik−1

Ψ−1
(
Xσ̃pσ̃rσ̃p

)
= ΨT̃i1 · · · T̃ik−1

Ψ−1
(
Xσ̃rσ̃pσ̃r

)
= X

[k]
w̃′X

[k+1]
w̃′ X

[k+2]
w̃′

Hence we have Xw̃ = Xw̃′ as required.

If w̃ and w̃′ differ by more than a single relation, then we can find a sequence of reduced
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expressions

w̃ = w̃1, w̃2, . . . , w̃n = w̃′

such that for each i = 1, . . . , n− 1, the expressions w̃i and w̃i+1 differ by a single relation.

We repeat the above argument at each step and obtain Xw̃ = Xw̃′ .

Recall from Equation (3.2) that there exists a diagram automorphism τ0 : I → I such

that the longest element w0 ∈W satisfies

w0(αi) = −ατ0(i) (5.37)

for all i ∈ I.

Proposition 5.26 ([16, Proposition 3.18]). Let w̃0 ∈ W̃ be the longest element with

reduced expression w̃0 = σ̃i1 · · · σ̃it. Then

X
[t]
w̃0

= Xτ0(it). (5.38)

Proof. To simplify notation we write it = i. By construction we have

w̃0wX = w0,

wX σ̃i = w{i,τ(i)}∪X for all i ∈ I \X.

By Lemma 4.1 the elements wX and w{i,τ(i)}∪X commute so we get

X
[t]
w̃0

= Ψ ◦ Tw̃0
T−1
σ̃i
◦Ψ−1(Xi)

= Ψ ◦ Tw0T
−1
wX
TwXT

−1
w{i,τ(i)}∪X

◦Ψ−1(Xi)

= Ψ ◦ Tw0T
−1
w{i,τ(i)}∪X

◦Ψ−1(Xi).

Recall that

Tw0 = tw−1 ◦ τ0 (5.39)

where tw : Uq(g)→ Uq(g) is the algebra automorphism defined by

tw(Ei) = −K−1
i Fi, tw(Fi) = −EiKi, tw(Ki) = K−1

i

for i ∈ I, see [4, Section 7.1]. Analogously we have on Uq(g{i,τ(i)}∪X) the relation

Tw{i,τ(i)}∪X = tw−1 ◦ τ0,i = τ0,i ◦ tw−1 (5.40)

where τ0,i : {i, τ(i)} ∪ X → {i, τ(i)} ∪ X is the diagram automorphism satisfying (4.2).

We obtain

X
[t]
w̃0

= Ψ ◦ tw−1 ◦ τ0 ◦ tw ◦ τ0,i ◦Ψ−1(Xi)

= Ψ ◦ τ0τ0,i ◦Ψ−1(Xi). (5.41)

Case 1. τ(i) = i.
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In this case Lemma 5.7 implies that

τ0,i(Xi) = Xi. (5.42)

Moreover s(τ(i)) = s(i) = 1 and hence by Lemma 5.10 and by definition of Ψ we have

X
[t]
w̃0

=
∑
n∈N0

Ψ ◦ τ0τ0,i ◦Ψ−1(cni En(αi−Θ(αi)))

=
∑
n∈N0

q−n/2(αi−Θ(αi),αi)Ψ ◦ τ0τ0,i(En(αi−Θ(αi)))

(5.42)
=

∑
n∈N0

q−n/2(αi−Θ(αi),αi)Ψ ◦ τ0(En(αi−Θ(αi)))

=
∑
n∈N0

q−n/2(αi−Θ(αi),αi)Ψ(En(ατ0(i)−Θ(ατ0(i)))

where we use the notation from Lemma 5.10 also for Xτ0(i).

As (ατ0(i) −Θ(ατ0(i)), ατ0(i)) = (αi −Θ(αi), αi) and s(τ0(i)) = 1, formula (5.32) gives

us

X
[t]
w̃0

=
∑
n∈N0

cnτ0(i)En(ατ0(i)−Θ(ατ0(i))) = Xτ0(i) (5.43)

which proves the Lemma in this case.

Case 2. τ(i) 6= i.

In this case the rank one Satake subdiagram is either of type AIII11 or of type AIV

for n ≥ 2 as in Table 5.1.

If the rank one Satake subdiagram is of type AIV for n ≥ 2 then τ = τ0 and τ0,i

coincide on {i, τ(i)} ∪X and hence (5.41) implies that

X
[t]
w̃0

= Xi = Xττ0(i) = Xτ0(i). (5.44)

If the rank one subdiagram is of type AIII11 then τ0,i(i) = i. If additionally τ0(i) = i

then τ0(τ(i)) = τ(i) and hence (5.41) implies that X
[t]
w̃0

= Xi = Xτ0(i) in this case.

If on the other hand τ0(i) 6= i then τ0 = τ and we invoke the fact that

s(i) = s(τ(i)), ci = cτ(i) (5.45)

which holds by (3.11) and (3.33). Relation (5.45) and τ = τ0 imply that τ0 ◦ Ψ−1(Xi) =

Ψ−1 ◦ τ0(Xi). Hence Equation (5.41) implies that X
[t]
w̃0

= Xτ0(i) also in this case.

Lemma 5.27 ([16, Lemma 3.19]). Let w̃0 = σ̃i1 · · · σ̃it be a reduced expression for the

longest word in W̃ . Then X
[i]
w̃0
∈ ̂U+[σ̃kw̃0] for i = 1, . . . , t− 1 and k = τ0(it).

Proof. We have

σ̃kw̃0 = σ̃kw0wX = w0σ̃τ0(k)wX = w0wX σ̃τ0(k) = w̃0σ̃it = σ̃i1 · · · σ̃it−1 .
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By definition of U+[w] for each w ∈W and Corollary 4.11 we have

T̃i1 · · · T̃ij−1(U+[σ̃ij ]) ⊆ U+[σ̃kw̃0]

for j = 1, . . . , t−1. Now the claim of the lemma follows from Equation (5.17), Proposition

5.20 and the fact that

X
[j]
w̃0

= Ψ ◦ T̃i1 · · · T̃ij−1 ◦Ψ−1(Xij )

for j = 1, . . . , t− 1.

With the above preparations we are ready to prove the main result of the chapter, cf.

Theorem 2.60.

Theorem 5.28 ([16, Theorem 3.20]). Suppose that (I,X, τ) is a Satake diagram such that

all subdiagrams (J,X ∩ J, τ |J) of rank two satisfy Conjecture 5.22. Then Xw̃0
coincides

with the quasi K-matrix X.

Proof. It suffices to show that

ir(Xw̃0
) = (q − q−1)q−(Θ(αi),αi)cis(τ(i))TwX (Eτ(i))Xw̃0

(5.46)

for all i ∈ I \X. By Theorem 5.25, we can choose any reduced expression w̃0 = σ̃i1 · · · σ̃it
of the longest element of W̃ . Proposition 5.26 implies that

Xw̃0
= Xτ0(it)X

[t−1] · · ·X[2]X[1].

Suppose τ0(it) ∈ I is a representative of the τ -orbit {k, τ(k)} for some k ∈ I \X.

By the previous lemma we have X[i] ∈ ̂U+[σ̃kw̃0] for i = 1, . . . , t− 1. By [27, 8.26, (4)]

this implies that kr(X
[i]) = 0 for i = 1, . . . , t− 1. By Equation 5.12, we have

kr(Xτ0(it)) = (q − q−1)q−(Θ(αk),αk)cks(τ(k))TwX (Eτ(k))Xτ0(it)

and similarly an expression for τ(k)r(Xτ0(it)). Equation (5.46) for k, τ(k) follows from the

above and the skew derivation property (2.78). Since we can arbitrarily choose the reduced

expression for w̃0, the result follows.

Combining Theorems 5.23 and 5.28 we obtain the following result.

Corollary 5.29 ([16, Corollary 3.21]). Let g be of type A or X = ∅. Then the quasi

K-matrix X is given by X = Xw̃0
for any reduced expression of the longest word w̃0 ∈ W̃ .

Conjecture 5.30 ([16, Conjecture 3.22]). The statement of Corollary 5.29 holds for any

Satake diagram of finite type.

Remark 5.31. We continue the discussion of the integrality of the quasi K-matrix X

from Remark 5.19 under the assumption that cis(τ(i)) ∈ ±qZ for all i ∈ I \X. In this case

X
[k]
w̃ ∈ A Û+ for k = 1, . . . , t if w̃ ∈ W̃ has a reduced expression w̃ = σ̃i1 σ̃i2 . . . σ̃it . Indeed,
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the discussion in the proof of Proposition 5.20 shows that X
[k]
w̃ differs from T̃i1 . . . T̃i1(Xik)

by a factor in ±qZ. Hence we obtain Xw̃ ∈ A Û+ for all w̃ ∈ W̃ . By Corollary 5.29,

choosing w̃ = w̃0, we obtain X ∈ A Û+ whenever g is of type A or X = ∅. In these cases

we have hence reproduced [6, Theorem 5.3] for s = 0 without the use of canonical bases.

The case of general Satake diagrams hinges on Conjecture 5.30 and the integrality in rank

one from [6, Appendix A].

5.5 Quasi K-matrices for general parameters

We now give a description of the quasi K-matrix X for general parameters s ∈ S from

[16, Section 3.5]. Recall from the proof of Lemma 5.7 that we denote the generators Bi

by Bc,s
i if we need to specify the dependence on the parameters.

The following lemma provides an algebra isomorphism between the subalgebras Bc,s

for different parameters s, s′ ∈ S. This follows from Theorem 3.22 since none of the

defining relations for Bc,s depend on the parameters s.

Lemma 5.32. Let s, s′ ∈ S. Then the map ϕs,s′ : Bc,s → Bc,s′ given by

ϕs,s′(B
c,s
i ) = Bc,s′

i , ϕs,s′(b) = b for all i ∈ I \X, b ∈MXU
0
Θ (5.47)

is an algebra isomorphism.

We write ϕs to denote the isomorphism ϕ0,s. This algebra isomorphism allows us to

define a one dimensional representation χs : Bc,0 → K(q) by χs = ε ◦ϕs. By definition we

have

χs(B
c,0
i ) = si for all i ∈ I \X, χs|MXU

0
Θ

= ε|MXU
0
Θ
.

By Lemma 3.19 we have

∆(Bi)−Bi ⊗K−1
i ∈MXU

0
Θ ⊗ Uq(g) (5.48)

which implies that

ϕs = (χs ⊗ id) ◦∆ (5.49)

on Bc,0. For later use we observe the following compatibility with the bar involution.

Lemma 5.33 ([16, Lemma 3.24]). For all b ∈ Bc,0 we have

(χs ⊗ id) ◦ ( Bc,0 ⊗ U ) ◦∆(b) = ϕs(b)
U
. (5.50)

Proof. As (χs ⊗ id) ◦ ( Bc,0 ⊗ U ) ◦ ∆ and U ◦ ϕs are K-algebra homomorphisms, it

suffices to check Equation (5.50) on the generators Bc,0
i for i ∈ I \X and on MXU

0
Θ. If

b ∈ MXU
0
Θ then both sides of (5.50) coincide with b

U
. If b = Bc,0

i for some i /∈ {j ∈
Ins | ajk ∈ −2N0 for all k ∈ Ins \ {j}} then si = 0 by the definition of S in (3.34) and
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hence Bc,0
i = Bc,s

i . Using the membership property (5.48) we get

((χs ◦ Bc,0)⊗ U ) ◦∆(Bc,0
i ) = (( U ◦ ε)⊗ U ) ◦∆(Bc,0

i ) = Bc,0
i

U
= ϕs(b)

U

which proves (5.50) in this case. Finally, if i ∈ {j ∈ Ins | ajk ∈ −2N0 for all k ∈ Ins \ {j}},
then the definition (3.32) of Ins implies that

Bc,s
i = Fi − ciEiK−1

i + siK
−1
i .

Hence, using si = si
U from (5.5), we get

((χs ◦ Bc,0)⊗ U ) ◦∆(Bc,0
i ) = ((χs ◦ Bc,0)⊗ U )(Bc,0

i ⊗K−1
i + 1⊗Bc,0

i )

= siKi +Bc,0
i

U

= Bc,s
i

U

= ϕs(B
c,0
i )

U

which completes the proof of the lemma.

As in [4, 3.2] we consider the algebra

U
(2)

0 = End(For ◦ ⊗ : Oint ×Oint → Vect)

and observe that
∏
µ∈Q+ U−µ ⊗ U+

µ is a subalgebra of U
(2)

0 . Recall from Section 2.2.8 the

quasi R-matrix R ∈∏µ∈Q+ U−µ ⊗ U+
µ . Following [5, 3.1] we define an element

Rθ = ∆(X) ·R · (X−1 ⊗ 1) ∈ U
(2)

0 , (5.51)

see also [39, Section 3.3]. In [5] the element Rθ is called the quasi R-matrix for Bc,s. By

[5, Proposition 3.2] it satisfies the following intertwiner property

∆(b
B

) ·Rθ = Rθ · ( B ⊗ U ) ◦∆(b) for all b ∈ B = Bc,s (5.52)

in U
(2)

0 . Moreover, by [5, Proposition 3.5], [39, Proposition 3.6] we can write Rθ as an

infinite sum

Rθ =
∑
µ∈Q+

Rθµ with Rθµ ∈ Bc,s ⊗ U+
µ . (5.53)

Similarly to the notation Xc,s introduced in Lemma 5.7, we write Rθc,s if we need to specify

the dependence on the parameters. Observe that once we have an explicit formula for

Xc,0, Equation (5.51) provides us with an explicit formula for Rθc,0. This in turn provides

a formula for the quasi K-matrix Xc,s for general parameters s ∈ S. Indeed, by Equation

(5.53) we can apply the character χs to the first tensor factor of Rθc,0 to obtain an element

X′ = (χs ⊗ id)(Rθc,0) which can be written as

X′ =
∑
µ∈Q+

X′µ with X′µ ∈ U+
µ .
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Moreover, Equation (5.53) implies that X′0 = 1. By the following proposition the element

X′ ∈ U is the quasi K-matrix for Bc,s.

Proposition 5.34 ([16, Proposition 3.25]). For any c ∈ C, s ∈ S we have Xc,s = (χs ⊗
id)(Rθc,0).

Proof. We keep the notation X′ = (χs⊗ id)(Rθc,0) from above. By Equation (5.52) we have

∆(b
Bc,0

) ·Rθc,0 = Rθc,0 · ( Bc,0 ⊗ U ) ◦∆(b) for all b ∈ Bc,0.

Applying χs ⊗ id to both sides of this relation, we obtain in view of Equation (5.49) the

relation

ϕs(b
Bc,0

) · X′ = X′(χs ⊗ id) ◦ ( Bc,0 ⊗ U ) ◦∆(b) for all b ∈ Bc,0.

By Lemma 5.33 the above relation implies that

ϕs(b
Bc,0

)X′ = X′ϕs(b)
U

for all b ∈ Bc,0.

This gives in particular Bc,s
i X′ = X′Bc,s

i

U
for all i ∈ I and bX′ = X′b for all b ∈ MXU

Θ
0 .

This means that X′ satisfies the defining relation (5.6) of Xc,s and hence, in view of the

normalisation X′0 = 1⊗ 1 observed above, we get X′ = Xc,s.

Remark 5.35. The existence of the quasi K-matrix Xc,s was established in [4, Theorem

6.10] by fairly involved calculations. It was noted in [4, Remark 6.9] that these calculations

simplify significantly if one restricts to the case s = 0. Proposition 5.34 now shows that

in the presence of (5.53) the existence of Xc,0 implies the existence of Xc,s for any s ∈ S
satisfying (5.5). Relation (5.53) was established in [39] for g of finite type.
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Chapter 6

Quasi K-matrices in rank two

In rank two, there are two distinct reduced expressions for the longest word w̃0 ∈ W̃ . All

irreducible Satake diagrams of rank 2 are shown in Table 6.1. In this chapter we verify

Theorem 5.23 using the explicit formulas from Section 5.4. We do this by confirming that

the partial quasi K-matrices for the two reduced expressions for w̃0 coincide with the quasi

K-matrix. With the exception of type G2 in Section 6.6, all of the calculations of this

chapter come from [16, Appendix A].

6.1 Type AI2

Consider the Satake diagram of type AI2.

1 2

Since Θ = −id the restricted Weyl group W̃ coincides with the Weyl group W . The

longest word of the Weyl group has two reduced expressions given by

w0 = σ1σ2σ1,

w′0 = σ2σ1σ2.

Proposition 6.1. In this case, the partial quasi K-matrices Xw0 and Xw′0 coincide with

the quasi K-matrix X. Hence Xw0 = Xw′0.

Before we prove this, we need to know how the Lusztig skew derivations 1r and 2r act on

certain elements and their powers, and also some commutation relations. These are given

in the following two lemmas, whose proofs are obtained by straightforward computation.

Lemma 6.2. For any n ∈ N, the relations

En2E1 = qnE1E
n
2 − q{n}En−1

2 T1(E2),
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En1E2 = qnE2E
n
1 − q{n}En−1

1 T2(E1),

T1(E2)nE1 = q−nE1T1(E2)n,

T2(E1)nE2 = q−nE2T2(E1)n

hold in Uq(sl3).

Lemma 6.3. For any n ∈ N, the relations

1r(E
n
2 ) = 1r(T2(E1)n) = 2r(E

n
1 ) = 2r(T1(E2)n) = 0,

1r(E
n
1 ) = {n}En−1

1 ,

2r(E
n
2 ) = {n}En−1

2 ,

1r(T1(E2)n) = (1− q−2){n}E2T1(E2)n−1,

2r(T2(E1)n) = (1− q−2){n}E1T2(E1)n−1

hold in Uq(sl3).

Table 6.1: Irreducible Satake diagrams of rank two for simple g

AI2
1 2

CII4
1 2 3 4

AII5
1 2 3 4 5

DIn,

n ≥ 5
1 2

n − 1

n

AIII3
1 2 3

DIII4
1 2

3

4

AIIIn,

n ≥ 4
1 2 n

DIII5
1 2 3

4

5

(BC)2
1 2

EIII

1 3 4 5

2

6

BIn,

n ≥ 3 1 2 n

EIV

1 3 4 5

2

6

CIIn,

n ≥ 5 1 2 n
G

1 2
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Proof of Proposition 6.1. Consider first the element Xw0 . Using (5.35) and Lemma 5.11,

we write

Xw0 = X[3]X[2]X[1] (6.1)

where

X[3] (5.38)
= X2 =

∑
n≥0

(q − q−1)n

{2n}!! (q2c2)nE2n
2 ,

X[2] = Ψ ◦ T1 ◦Ψ−1(X2) =
∑
n≥0

(q − q−1)n

{2n}!! (q2c1)n(q2c2)nT1(E2)2n,

X[1] = X1 =
∑
n≥0

(q − q−1)n

{2n}!! (q2c1)nE2n
1 .

For i = 1, 2, 3, let X[i] = K1X
[i]K−1

1 . The difference between X[i] and X[i] is the occurrence

of a q-power in each summand of the infinite series. By Equation (5.12), to show that Xw0

coincides with the quasi K-matrix X we show that

1r(Xw0) = (q − q−1)(q2c1)E1Xw0 ,

2r(Xw0) = (q − q−1)(q2c2)E2Xw0 .

By Lemma 6.3 and 5.11, we see that

2r(Xw0) = 2r(X
[3])X[2]X[1]

= (q − q−1)(q2c2)E2X
[3]X[2]X[1]

= (q − q−1)(q2c2)E2Xw0 .

By the property (2.78) of the skew derivative 1r, we have

1r(Xw0) = X[3]1r(X
[2])X[1] + X[3]X[2]1r(X

[1]) (6.2)

Using Lemma 6.3, we have

1r(X
[2]) =

∑
n≥

(q − q−1)n

{2n}!! (q2c1)n(q2c2)n1r(T1(E2)2n)

= q−1(q − q−1)E2

∑
n≥1

(q − q−1)n

{2n− 2}!! (q2c1)n(q2c2)nT1(E2)2n−1

= (q − q−1)2q−1(q2c1)(q2c2)E2T1(E2)X[2],

1r(X
[1]) = (q − q−1)(q2c1)E1X

[1].

The second summand of Equation (6.2) is of the form

(q − q−1)(q2c1)X[3]X[2]E1X
[1].
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Chapter 6. Quasi K-matrices in rank two

We use Lemma 6.2 to bring the E1 in the above summand to the front. We have

X[2]E1 =
∑
n≥0

(q − q−1)n

{2n}!! (q2c1)n(q2c2)nq2nT1(E2)2nE1

= E1

∑
n≥0

(q − q−1)n

{2n}!! (q2c1)n(q2c2)nT1(E2)2n

= E1X
[2],

X[3]E1 =
∑
n≥0

(q − q−1)n

{2n}!! (q2c2)nq−2nE2n
2 E1

=
∑
n≥0

(q − q−1)n

{2n}!! (q2c2)nq−2n(q2nE1E
2n
2 − q{2n}E2n−1

2 T1(E2))

= E1X
[3] − q

∑
n≥1

(q − q−1)n

{2n− 2}!! (q2c2)nq−2nE2n−1
2 T1(E2)

= E1X
[3] − (q − q−1)q−1(q2c2)X[3]E2T1(E2).

Hence,

(q − q−1)(q2c1)X[3]X[2]E1X
[1] = (q − q−1)(q2c1)X[3]E1X

[2]X[1]

= (q − q−1)(q2c1)E1X
[3]X[2]X[1]

− (q − q−1)2q−1(q2c1)(q2c2)X[3]E2T1(E2)X[2]X[1]

= (q − q−1)(q2c1)E1Xw0 − X[3]1r(X
[2])X[1].

It follows from (6.2) that 1r(Xw0) = (q−q−1)(q2c1)E1Xw0 , so Xw0 coincides with the quasi

K-matrix X. Instead of repeating the same calculation for Xw′0 , we use the underlying

symmetry in type AI2, which implies that Xw′0 also coincides with the quasi K-matrix

X.

6.2 Type AII5

Consider the Satake diagram of type AII5.

1 2 3 4 5

In this case the involutive automorphism Θ : h∗ → h∗ is given by

Θ = −σ1σ3σ5.

There are two τ -orbits of white nodes given by the sets {2} and {4}. The restricted root

system is of type AI2 since the restricted roots

α̃2 =
α1 + 2α2 + α3

2
, α̃4 =

α3 + 2α4 + α5

2
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have the same length. The subgroup W̃ ⊂WΘ is generated by the elements

σ̃2 = σ2σ1σ3σ2, σ̃4 = σ4σ3σ5σ4.

The longest word of the restricted Weyl group has two reduced expressions given by

w̃0 = σ̃2σ̃4σ̃2, w̃′0 = σ̃4σ̃2σ̃4.

By Lemma 5.12 we have

X2 =
∑
n≥0

(qc2)n

{n}! [E2, T13(E2)]nq−2 ,

X4 =
∑
n≥0

(qc4)n

{n}! [E4, T35(E4)]nq−2 .

Proposition 6.4. The partial quasi K-matrices Xw̃0
and Xw̃′0 coincide with the quasi

K-matrix X.

We have the following relations needed for the proof of Proposition 6.4. These are

proved by induction.

Lemma 6.5. For any n ∈ N the relations

[E4, T35(E4)]nq−2T13(E2) = qnT13(E2)[E4, T35(E4)]nq−2 (6.3)

− q{n}[E4, T35(E4)]n−1
q−2 [T3(E4), T1235(E4)]q−2 ,

[T23(E4), T1235(E4)]nq−2T13(E2) = q−nT13(E2)[T23(E4), T1235(E4)]nq−2 (6.4)

hold in Uq(sl6).

Lemma 6.6. For any n ∈ N the relation

2r([T23(E4), T1235(E4)]nq−2)

= q−1(q − q−1){n}[T3(E4), T1235(E4)]q−2 [T23(E4), T1235(E4)]n−1
q−2

(6.5)

holds in Uq(sl6).

Proof of Proposition 6.4. We only confirm that Xw̃0
coincides with the quasi K-matrix X.

By the underlying symmetry in type AII5, the calculation for Xw̃′0 is the same up to a

change of indices. By defintion, we have

Xw̃0
= X[3]X[2]X[1]

where

X[3] (5.38)
= X4,

X[2] = Ψ ◦ T2132 ◦Ψ−1(X4) =
∑
n≥0

(q2c2c4)n

{n}! [T23(E4), T1235(E4)]nq−2 ,

X[1] = X2.
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Using Lemma 5.12 and Corollary 2.51 we see that

4r(Xw̃0
) = 4r(X4)X[2]X[1]

= (q − q−1)c4T35(E4)X4X
[2]X[1]

= (q − q−1)c4T35(E4)Xw̃0
.

We want to show that

2r(Xw̃0
) = (q − q−1)c2T13(E2)Xw̃0

.

For i = 1, 2, 3, let X[i] = K2X
[i]K−1

2 . By property (2.78) of the skew derivative 2r and

Corollary 2.51 we have

2r(Xw̃0
) = X[3]2r(X

[2])X[1] + X[3]X[2]2r(X
[1]). (6.6)

By Lemma 5.12 we have

2r(X
[1]) = (q − q−1)c2T13(E2)X[1].

By Lemma 6.6 we have

2r(X
[2]) =

∑
n≥1

(q2c2c4)n

{n}! 2r([T23(E4), T1235(E4)]nq−2)

(6.5)
= q(q − q−1)c2c4[T3(E4), T1235(E4)]q−2X[2].

The second summand of Equation (6.6) is of the form (q−q−1)c2X[3]X[2]T13(E2)X[1]. Using

Lemma 6.5, we bring the T13(E2) term in this expression to the front. We have

X[2]T13(E2)
(6.4)
= T13(E2)X[2], (6.7)

X[3]T13(E2)
(6.3)
= T13(E2)X[3] − qc4X[3][T3(E4), T1235(E4)]q−2 . (6.8)

Substituting (6.7) and (6.8) into (q − q−1)c2X[3]X[2]T13(E2)X[1], we obtain

(q − q−1)c2X[3]X[2]T13(E2)X[1] (6.7)
= (q − q−1)c2X[3]T13(E2)X[2]X[1]

(6.8)
= (q − q−1)c2T13(E2)X[3]X[2]X[1]

− (q − q−1)qc2c4X
[3][T3(E4), T1235(E4)]q−2X[2]X[1]

= (q − q−1)c2T13(E2)Xw̃0
− X[3]2r(X

[2])X[1].

It follows from (6.6) that 2r(Xw̃0
) = (q − q−1c2T13(E2)Xw̃0

as required.

6.3 Type AIII3

We consider the diagram of type AIII3 with non-trivial diagram automorphism τ and no

black dots.
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1 2 3

Here, we see that there are 2 nodes in the restricted Dynkin diagram, corresponding to

the restricted roots

α̃1 =
α1 + α3

2
, α̃2 = α2.

A quick check confirms that 1/2(α1 + α3) is the short root, and hence the restricted root

system is of type B2. The subgroup W̃ is generated by the elements

σ̃1 = σ1σ3, σ̃2 = σ2.

The longest word of the restricted Weyl group has two reduced expressions given by

w̃0 = σ̃1σ̃2σ̃1σ̃2, w̃′0 = σ̃2σ̃1σ̃2σ̃1.

The definition (3.33) and condition (5.4) imply that c1 = c3 = c1. By Lemmas 5.11 and

5.13 we have

X1 =
∑
n≥0

(q − q−1)n

{n}! cn1 (E1E3)n, (6.9)

X2 =
∑
n≥0

(q − q−1)n

{2n}!! (q2c2)nE2n
2 . (6.10)

Proposition 6.7. The partial quasi K-matrix Xw̃0
coincides with the quasi K-matrix X.

The following relations are needed for the proof of Proposition 6.7. They are checked

by induction.

Lemma 6.8. For any n ∈ N, the relations

T13(E2)nE3 = q−nE3T13(E2)n, (6.11)(
T1(E2)T3(E2)

)n
E3 = E3

(
T1(E2)T3(E2)

)n
(6.12)

− q{n}
(
T1(E2)T3(E2)

)n−1
T3(E2)T13(E2),

En2E3 = qnE3E
n
2 − q{n}En−1

2 T3(E2) (6.13)

hold in Uq(sl4).

Lemma 6.9. For any n ∈ N, the relations

1r(T13(E2)n) = q−1(q − q−1){n}T3(E2)T13(E2)n−1, (6.14)

1r(
(
T1(E2)T3(E2)

)n
) = q−1(q − q−1){n}E2T3(E2)

(
T1(E2)T3(E2)

)n−1
(6.15)

hold in Uq(sl4).

Proof of Proposition 6.7. Take w̃0 = σ̃1σ̃2σ̃1σ̃1. Then we have

Xw̃0
= X[4]X[3]X[2]X[1]
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where

X[4] (5.38)
= Xτ0(2) = X2,

X[3] = Ψ ◦ T̃1T̃2 ◦Ψ−1(X1) =
∑
n≥0

(q − q−1)n

{n}! (q2c1c2)n(T3(E2)T1(E2))n,

X[2] = Ψ ◦ T̃1 ◦Ψ−1(X2) =
∑
n≥0

(q − q−1)n

{2n}!! (q4c2
1c2)nT13(E2)2n,

X[1] = X1.

By Lemma 5.11, property (2.78) of the skew derivative 2r and Corollary 2.51, we see that

2r(Xw̃0
) = (q − q−1)q2c2E2Xw̃0

. Due to the underlying symmetry in this case, we only

need to show that

1r(Xw̃0
) = (q − q−1)c1E3Xw̃0

.

For each i = 1, 2, 3, 4, let X[i] = K1X
[i]K−1

1 . Then by the property (2.78) of the skew

derivation 1r, we have

1r(Xw) = X[4]1r(X
[3])X[2]X[1] + X[4]X[3]1r(X

[2])X[1] + X[4]X[3]X[2]1r(X
[1]).

Using Lemmas 5.13 and 6.9, it follows that

1r(X
[3])

(6.15)
= q−1(q − q−1)2(q2c1c2)E2T3(E2)X[3], (6.16)

1r(X
[2])

(6.14)
= q−1(q − q−1)2(q4c2

1c2)T3(E2)T13(E2)X[2], (6.17)

1r(X
[1])

(5.24)
= (q − q−1)E3X

[1]. (6.18)

Using Lemma 6.8, we look at the term X[4]X[3]X[2]1r(X
[1]) in more detail. We have

X[2]E3
(6.11)

= E3X
[2], (6.19)

X[3]E3
(6.12)

= E3X
[3] − q(q − q−1)(q2c1c2)X[3]T3(E2)T13(E2), (6.20)

X[4]E3
(6.13)

= E3X
[4] − q−1(q − q−1)(q2c2)X[4]E2T3(E2). (6.21)

It follows that

X[4]X[3]X[2]1r(X
[1])

(6.19)
= (q − q−1)c1X[4]X[3]E3X

[2]X[1]

(6.20)
= (q − q−1)c1X[4]

(
E3X

[3] − q(q − q−1)(q2c1c2)X[3]T3(E2)T13(E2)
)
X[2]X[1]

(6.21)
= (q − q−1)c1

(
E3X

[4] − q−1(q − q−1)(q2c2)X[4]E2T3(E2)
)
X[3]X[2]X[1]

− X[4]X[3]1r(X
[2])X[1]

= (q − q−1)c1E3Xw̃0
− X[4]1r(X

[3])X[2]X[1] − X[4]X[3]1r(X
[2])X[1]

by equations (6.16), (6.17) and (6.18). Hence, it follows that 1r(Xw̃0
) = (q−q−1)c1E3Xw̃0

,
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as required.

Proposition 6.10. The partial quasi K-matrix Xw̃′0 coincides with the quasi K-matrix X.

The following relations are needed for the proof of Proposition 6.10. They are checked

by induction.

Lemma 6.11. For any n ∈ N, the relations(
T2(E3)T2(E1)

)n
E2 = q−2nE2

(
T2(E3)T2(E1)

)n
, (6.22)

T213(E2)nE2 = E2T
n
213(E2)− (q − q−1){n}T213(E2)n−1T2(E3)T2(E1), (6.23)(

E1E3

)n
E2 = q2nE2

(
E1E3

)n − q{n}(E1E3

)n−1
(E3T2(E1) + e1T2(E3) (6.24)

− q2{n}2
(
E1E3

)n−1
T213(E2)

hold in Uq(sl4).

Lemma 6.12. For any n ∈ N, the relations

2r(T213(E2)n) = q−2(q − q−1)2{n}E1E3T213(E2)n−1, (6.25)

2r(T2(E3)nT2(E1)n) = q−1(q − q−1){n}E3T2(E3)n−1T2(E1)n (6.26)

+ q−1(q − q−1){n}E1T2(E3)nT2(E1)n−1

+ (q − q−1){n}2T213(E2)
(
T2(E1)T2(E3)

)n−1

hold in Uq(sl4).

Proof of Proposition 6.10. For w̃′0 = σ̃2σ̃1σ̃2σ̃1 we have

Xw̃′0 = X[4]X[3]X[2]X[1],

where

X[4] (5.38)
= Xτ0(1) = X1,

X[3] = Ψ ◦ T̃2T̃1 ◦Ψ−1(X2) =
∑
n≥0

(q − q−1)n

{2n}!! (q4c2
1c2)nT213(E2)2n,

X[2] = Ψ ◦ T̃2 ◦Ψ−1(X1) =
∑
n≥0

(q − q−1)n

{n}! (q2c1c2)nT2(E1)nT2(E3)n,

X[1] = X2.

By Lemma 5.13, property (2.78) of the skew derivative 1r and Corollary 2.51 we have

1r(Xw̃′0) = (q − q−1)c1E3Xw̃′0 . We want to show that

2r(Xw̃′0) = (q − q−1)(q2c2)E2Xw̃′0 .
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For i = 1, 2, 3, 4, we let X[i] = K2X
[i]K−1

2 . Note that we have X[3] = X[3]. By the property

(2.78) of the skew derivative 2r, we have

2r(Xw̃′0) = X[4]2r(X
[3])X[2]X[1] + X[4]X[3]2r(X

[2])X[1] + X[4]X[3]X[2]2r(X
[1]).

Using Lemma 6.12, we have

2r(X
[3]) =

∑
n≥0

(q − q−1)n

{2n}!! (q4c2
1c2)n2r(T213(E2)2n)

(6.25)
= q−2(q − q−1)2

∑
n≥1

(q − q−1)n

{2n}!! (q4c2
1c2)n{2n}E1E3T213(E2)2n−1

= q−2(q − q−1)2E1E3

∑
n≥0

(q − q−1)n+1

{2n}!! (q4c2
1c2)n+1T213(E2)2n+1

= (q − q−1)3(q2c2
1c2)E1E3T213(E2)X[3]. (6.27)

Similarly, we have

2r(X
[2]) =

∑
n≥0

(q − q−1)n

{n}! (q2c1c2)n2r(T2(E1)nT2(E3)n)

(6.26)
= q−1(q − q−1)2(q2c1c2)

(
E3T2(E1) + E1T2(E3)

)
X[2]

+ (q − q−1)T213(E2)
∑
n≥1

(q − q−1)n

{n}! (q2c1c2)n{n}2T2(E1)n−1T2(E3)n−1

= (q − q−1)2(qc1c2)
(
E3T2(E1) + E1T2(E3)

)
X[2]

+ (q − q−1)2(q2c1c2)T213(E2)
∑
n≥0

(q − q−1)n

{n}! (q2c1c2)n{n+ 1}T2(E1)nT2(E3)n.

We want to write the last summand in terms of X[2]. To do this, we use the fact that

{n + 1} = 1 + q2{n} for n ≥ 1. This is a useful fact that will be used again in future

calculations. Using this, we have∑
n≥0

(q − q−1)n

{n}! (q2c1c2)n{n+ 1}T2(E1)nT2(E3)n

= 1 +
∑
n≥1

(q − q−1)n

{n}! (q2c1c2)n(1 + q2{n})T2(E1)nT2(E3)n

= X[2] + q2
∑
n≥1

(q − q−1)n

{n− 1}! (q2c1c2)nT2(E1)nT2(E3)n

= X[2] + q2
∑
n≥0

(q − q−1)n+1

{n}! (q2c1c2)n+1T2(E1)n+1T2(E3)n+1

= X[2] + (q − q−1)(q4c1c2)T2(E1)T2(E3)X[2].
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Inserting this equation into the expression for 2r(X
[2]), we obtain

2r(X
[2]) = (q − q−1)2(qc1c2)

(
E3T2(E1) + E1T2(E3)

)
X[2] (6.28)

+ (q − q−1)2(q2c1c2)T213(E2)X[2]

+ (q − q−1)3(q6c2
1c

2
2)T213(E2)T2(E1)T2(E3)X[2].

Finally, we have

2r(X
[1])

(5.24)
= (q − q−1)(q2c2)E2X

[1]. (6.29)

Now, we use Lemma 6.11 to rewrite the term X[4]X[3]X[2]2r(X
[1]). By calculations similar

to those leading to (6.27) and (6.28), we obtain

X[2]E2 = E2X
[2], (6.30)

X[3]E2 = E2X
[3] − (q − q−1)2(q4c2

1c2)X[3]T213(E2)T2(E1)T2(E3), (6.31)

X[4]E2 = E2X
[4] − q−1(q − q−1)c1X[4]

(
E1T2(E3) + E3T2(E1)

)
(6.32)

− (q − q−1)c1

(
X[4] + (q − q−1)c1X[4]E1E3

)
T213(E2).

We use these to obtain the following.

X[4]X[3]X[2]2r(X
[1])

(6.29)
= (q − q−1)(q2c2)X[4]X[3]X[2]E2X

[1]

(6.30)
= (q − q−1)(q2c2)X[4]X[3]E2X

[2]X[1]

(6.31)
= (q − q−1)(q2c2)X[4]E2X

[3]X[2]X[1]

− (q − q−1)3(q6c2
1c

2
2)X[4]X[3]T213(E2)T2(E1)T2(E3)X[2]X[1]

(6.32)
= (q − q−1)(q2c2)

(
E2X

[4] − q−1(q − q−1)c1X[4]

(
E1T2(E3) + E3T2(E1)

)
− (q − q−1)c1

(
X[4] + (q − q−1)c1X[4]E1E3

)
T213(E2)

)
X[3]X[2]X[1]

− (q − q−1)3(q6c2
1c

2
2)X[4]X[3]T213(E2)T2(E1)T2(E3)X[2]X[1].

We gather terms now and get

X[4]X[3]X[2]2r(X
[1])

= (q − q−1)(q2c2)E2Xw̃′0

− (q − q−1)2(qc1c2)X[4]

(
E1T2(E3) + E3T2(E1)

)
X[3]X[2]X[1]

− (q − q−1)2(q2c1c2)X[4]X[3]T213(E2)X[2]X[1]

+ (q − q−1)3(q6c2
1c

2
2)X[4]X[3]T213(E2)T2(E1)T2(E3)X[2]X[1]

− (q − q−1)3(q2c2
1c2)X[4]E1E3T213(E2)X[3]X[2]X[1]

= (q − q−1)(q2c2)E2Xw̃′0 − X[4]X[3]2r(X
[2])X[1] − X[4]2r(X

[3])X[2]X[1]

where we use the fact that E1T2(E3) and E3T2(E1) both commute with T213(E2), and
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hence with X[3]. It follows that

2r(Xw̃′0) = X[4]2r(X
[3])X[2]X[1] + X[4]X[3]2r(X

[2])X[1] + X[4]X[3]X[2]2r(X
[1])

= (q − q−1)(q2c2)E2Xw̃′0

as required.

6.4 Type AIIIn for n ≥ 4

Consider the Satake diagram of type AIIIn for n ≥ 4.

1 2 n

In this case the restricted root system is of type B2 with

α̃1 =
α1 + αn

2
, α̃2 =

α2 + α3 + · · ·+ αn−1

2
.

The subgroup W̃ ⊂WΘ is generated by the elements

σ̃1 = σ1σn, σ̃2 = wXw{2,n−1}∪X = σ2σ3 . . . σn−1 . . . σ3σ2.

The longest word of the restricted Weyl group has two reduced expressions given by

w̃0 = σ̃1σ̃2σ̃1σ̃2, w̃′0 = σ̃2σ̃1σ̃2σ̃1.

The definition (3.33) and condition (5.4) imply that c1 = cn = c1. By Lemmas 5.13 and

5.14 we have

X1 =
∑
k≥0

(q − q−1)k

{k}! ck1(E1En)k,

X2 =

(∑
k≥0

(c2s(n− 1))k

{k}! T2TwX (En−1)k
)(∑

k≥0

(cn−1s(2))k

{k}! Tn−1TwX (E2)k
)
.

Proposition 6.13. The partial quasi K-matrix Xw̃0
coincides with the quasi K-matrix X.

We have the following relations needed in the proof of Proposition 6.13, proved by

induction.

Lemma 6.14. For any k ∈ N the relations

T1n(n−1)TwX (E2)kEn = q−kEnT1n(n−1)TwX (E2)k,

T12nTwX (En−1)kEn = q−kEnT12nTwX (En−1)k,

Tn−−3(E2)kEn = q−kEnTn−−3(E2)k,

T1−−(n−2)(En−1)kEn = qkEnT1−−(n−2)(En−1)k
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− q{k}T1−−(n−2)(En−1)k−1T12nTwX (En−1),

Tn−1TwX (E2)kEn = qkEnTn−1TwX (E2)k

− q{k}Tn−1TwX (E2)k−1Tn−−3(E2),

T2TwX (En−1)kEn = qkEnT2TwX (En−1)k

− q{k}T2TwX (En−1)k−1T2nTwX (En−1),

T2nTwX (En−1)Tn−1TwX (E2)k = q−kTn−1TwX (E2)kT2nTwX (En−1) (6.33)

+ q1−k(q − q−1){k}Tn−1TwX (E2)k−1T2TwX (En−1)Tn−−3(E2),

T12nTwX (En−1)kTn−−3(E2) (6.34)

=
(
q−k + (q − q−1)q1−k{k}

)
Tn−−3(E2)T12nTwX (En−1)k

hold in Uq(sln+1).

Lemma 6.15. For any k ∈ N the relations

1r(T1−−(n−2)(En−1)k) (6.35)

= q−1(q − q−1){k}T2−−(n−2)(En−1)T1−−(n−2)(En−1)k−1,

1r(T12nTwX (En−1)k) (6.36)

= q−1(q − q−1){k}T2nTwX (En−1)T12nTwX (En−1)k−1,

1r(T1n(n−1)TwX (E2)k) (6.37)

= q−1(q − q−1){k}Tn(n−1)TwX (E2)T1n(n−1)TwX (E2)k−1

hold in Uq(sln+1).

One can show that the above Lemmas still hold if we consider the case where we have

no black dots. In this situation, the calculations differ slightly but the results still hold.

Proof of Proposition 6.13. We write

Xw̃0
= X[4]X[3]X[2]X[1], (6.38)

where, recalling the notation c̃ 2
2 = c2cn−1s(n− 1)s(2), we have

X[4] (5.38)
= X2,

X[3] =
∑
k≥0

(q − q−1)k

{k}! (qc1c̃
2

2 )kTn−−3(E2)kT1−−(n−2)(En−1)k,

X[2] =

(∑
k≥0

(qc1c2s(n− 1))k

{k}! T12nTwX (En−1)k
)

(∑
k≥0

(qc1cn−1s(2))k

{k}! T1n(n−1)TwX (E2)k
)
,

X[1] = X1.
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When necessary, since X[4] and X[2] are a product of two infinite sums, we write X[4] =

X[4;1]X[4;2] and X[2] = X[2;1]X[2;2].

For each i = 1, 2, 3, 4, let X[i] = K1X
[i]K−1

1 . We write X[4] = X[4;1]X[4;2] and X[2] =

X[2;1]X[2;2]. Now, by the rank one case for X2 given in Lemma 5.14 and Corollary 2.51, we

obtain

2r(Xw̃0
) = (q − q−1)c2s(n− 1)TwX (En−1)Xw̃0

. (6.39)

The underlying symmetry implies that we only need to show that

1r(Xw̃0
) = (q − q−1)c1EnXw̃0

.

By Property (2.78) of the skew derivative 1r and Corollary 2.51 we have

1r(Xw̃0
) = X[4]1r(X

[3])X[2]X[1] + X[4]X[3]1r(X)[2]X[1] + X[4]X[3]X[2]1r(X
[1]). (6.40)

Using Lemma 6.15 and Lemma 5.13 we find that

1r(X
[3])

(6.35)
= (q − q−1)2c1c̃

2
2 Tn−−3(E2)T2−−(n−2)(En−1)X[3], (6.41)

1r(X
[1])

(5.24)
= (q − q−1)c1EnX

[1]. (6.42)

To write an expression for 1r(X
[2]), we use the splitting of X[2] into a product of two infinite

sums. By equations (6.36) and (6.37) of Lemma 6.15 we have

1r(X
[2]) = 1r(X

[2;1])X[2;2] + X[2;1]1r(X
[2;2]) (6.43)

= (q − q−1)c1c2s(n− 1)T2nTwX (En−1)X[2]

+ (q − q−1)c1cn−1s(2)X[2;1]Tn(n−1)TwX (E2)X[2;2].

We would like the last summand of this expression to be in terms of X[2]. To this end, we

use Equation (6.34) in Lemma 6.14 to obtain

X[2;1]Tn(n−1)TwX (E2)

=

(
1 +

∑
k≥1

(qc1c2s(n− 1))k

{k}! qkT12nTwX (En−1)k
)
Tn(n−1)TwX (E2)

(6.34)
= Tn(n−1)TwX (E2)X[2;1]

+ q2(q − q−1)c1c2s(n− 1)Tn(n−1)TwX (E2)T12nTwX (En−1)X[2;1].

Substituting this into (6.43) it follows that

1r(X
[2]) = (q − q−1)c1c2s(n− 1)T2nTwX (En−1)X[2] (6.44)

+ (q − q−1)c1cn−1s(2)Tn(n−1)TwX (E2)X[2]

+ q2(q − q−1)2c2
1c̃

2
2 Tn(n−1)TwX (E2)T12nTwX (En−1)X[2].

When we calculate 1r(Xw̃0
), we obtain a component of the form X[4]X[3]X[2]1r(X

[1]). From

Equation (6.42), we see that we obtain an En term that we want to pass to the front of
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this expression. We use Lemma 6.14 to do this. We have

X[2]En = EnX
[2], (6.45)

X[3]En = EnX[3] − q2(q − q−1)c1c̃
2

2 Tn−−3(E2)X[3]T12nTwX (En−1), (6.46)

X[4;2]En = EnX
[4;2] − c1cn−1s(2)X[4;2]Tn−−3(E2), (6.47)

X[4;1]En = EnX
[4;1] − c1c2s(n− 1)X[4;1]T2nTwX (En−1). (6.48)

Now, using Equation (6.33), we obtain the following expression for X[4]En.

X[4]En
(6.47)

= X[4;1]

(
EnX

[4;2] − c1cn−1s(2)X[4;2]Tn−−3(E2)
)

(6.48)
=

(
EnX

[4;1] − c1c2s(n− 1)X[4;1]T2nTwX (En−1)
)
X[4;2]

− c1cn−1s(2)X[4]Tn−−3(E2)

(6.33)
= EnX

[4] − c1cn−1s(2)X[4]Tn−−3(E2)

− c1c2s(n− 1)X[4;1]X[4;2]T2nTwX (En−1)

+ (q − q−1)c2
1c2cn−1s(2)s(n− 1)X[4;1]X[4;2]T2TwX (En−1)Tn−−3(E2)

= EnX
[4] − c1cn−1s(2)X[4]Tn−−3(E2)− c1c2s(n− 1)X[4]T2nTwX (En−1) (6.49)

− (q − q−1)c2
1c̃

2
2 X[4]T2TwX (En−1)Tn−−3(E2).

Using equations (6.45), (6.46) and (6.49), and comparing with equations (6.41), (6.42) and

(6.44), one finds that

X[4]X[3]X[2]1r(X
[1]) = (q − q−1)X[4]X[3]X[2]EnX

[1]

= (q − q−1)EnXw̃0
− X[4]1r(X

[3])X[2]X[1] − X[4]X[3]1r(X
[2])X[1],

and hence it follows that

1r(Xw̃0
) = (q − q−1)EnXw̃0

,

as required. This completes the proof.

Proposition 6.16. The partial quasi K-matrix Xw̃′0 coincides with the quasi K-matrix X.

We have the following relations needed in the proof of Proposition 6.16, proved by

induction.

Lemma 6.17. For any k ∈ N the relations

T2−−(n−1)(En)kTwX (En−1) = TwX (En−1)T2−−(n−1)(En)k,

T(n−1)−−2(E1)kTwX (En−1) = q−kTwX (En−1)T(n−1)−−2(E1)k,

T2−−(n−1)T12nTwX (En−1)kTwX (En−1) = TwX (En−1)T2−−(n−1)T12nTwX (En−1)k,

T(n−1)−−2T1n(n−1)TwX (E2)kTwX (En−1) = TwX (En−1)T(n−1)−−2T1n(n−1)TwX (E2)k

− (q − q−1){k}T(n−1)−−2T1n(n−1)TwX (E2)k−1T3−−(n−1)(En)T(n−1)−−2(E1),
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Ek1TwX (En−1) = TwX (En−1)Ek1 ,

EknTwX (En−1) = qkTwX (En−1)Ekn − q{k}Ek−1
n TwXTn−1(En)

hold in Uq(sln+1).

Lemma 6.18. For any k ∈ N the relations

2r(T2−−(n−1)(En)k) = q−1(q − q−1){k}T3−−(n−1)(En)T2−−(n−1)(En)k−1,

2r(T2−−(n−1)T12nTwX (En−1)k)

= q−2(q − q−1)2{k}E1T3−−(n−1)(En)T2−−(n−1)T12nTwX (En−1)k−1

hold in Uq(sln+1).

Proof of Proposition 6.16. We write

Xw̃′0 = X[4]X[3]X[2]X[1],

where we have

X[4] (5.38)
= X1,

X[3] =

( ∑
k1≥0

(qc1c2s(n− 1))k1

{k1}!
T2−−(n−1)T12nTwX (En−1)k1

)
( ∑
k2≥0

(qc1cn−1s(2))k2

{k2}!
T(n−1)−−2T1n(n−1)TwX (E2)k2

)
,

X[2] =
∑
k≥0

(q − q−1)k

{k}! (qc1c̃
2

2 )kT(n−1)−−2(E1)kT2−−(n−1)(En)k,

X[1] = X2.

For i = 1, 2, 3, 4 let X[i] = K2X
[i]K−1

2 . By Lemma 5.13 and Corollary 2.51 it follows that

1r(Xw̃′0) = 1r(X
[4])X[3]X[2]X[1]

= (q − q−1)EnXw̃′0 .

Hence, we only need to check that

2r(Xw̃′0) = q−1(q − q−1)c2s(n− 1)TwX (En−1)Xw̃′0 .

By Corollary 2.51 and property (2.78) of the skew derivative 2r we have

2r(Xw̃′0) = X[4]2r(X
[3])X[2]X[1] + X[4]X[3]2r(X

[2])X[1] + X[4]X[3]X[2]2r(X
[1]).

Using Lemmas 5.14 and 6.18, we have

2r(X
[3]) = q−1(q − q−1)2c1c2s(n− 1)E1T3−−(n−1)(En)X[3],

2r(X
[2]) = (q − q−1)2c1c̃

2
2 T3−−(n−1)(En)T(n−1)−−2(E1)X[2],

2r(X
[1]) = q−1(q − q−1)c2s(n− 1)TwX (En−1)X[1].
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By Lemma 6.17, we have

X[2]TwX (En−1) = TwX (En−1)X[2],

X[3]TwX (En−1) = TwX (En−1)X[3]

− q(q − q−1)c1cn−1s(2)X[3]T3−−(n−1)(En)T(n−1)−−2(E1),

X[4]TwX (En−1) = TwX (En−1)X[4] − (q − q−1)c1X[4]E1T3−−(n−1)(En).

It follows that

X[4]X[3]X[2]2r(X
[1]) = q−1(q − q−1)c2s(n− 1)TwX (En−1)Xw′

− X[4]2r(X
[3])X[2]X[1] − X[4]X[3]2r(X

[2])X[1]

and therefore we obtain

2r(Xw̃′0) = q−1(q − q−1)c2s(n− 1)TwX (En−1)Xw̃′0

as required.

6.5 Type CI2

Consider the Satake diagram of type CI2.

1 2

Since Θ = −id the subgroup W̃ coincides with W . The longest word of the Weyl group

has two reduced expressions given by

w0 = σ1σ2σ1σ2, w′0 = σ2σ1σ2σ1.

By Lemma 5.11 we have

X1 =
∑
n≥0

(q2 − q−2)n

{2n}1!!
(q4c1)nE2n

1 ,

X2 =
∑
n≥0

(q − q−1)n

{2n}2!!
(q2c2)nE2n

2 .

Proposition 6.19. The partial quasi K-matrix Xw0 coincides with the quasi K-matrix X.

The following relations are necessary for the proof of Proposition 6.19, proved by

induction.

Lemma 6.20. For any n ∈ N the relations

En2E1 = q2nE1E
n
2 − q2{n}2En−1

2 T1(E2)− q3{n}2{n− 1}2En−1
2 T12(E1), (6.50)

T1(E2)nE1 = q−2nE1T1(E2)n, (6.51)
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T12(E1)nE1 = E1T12(E1)n − (q2 − 1)

[2]2
{n}1T12(E1)n−1T1(E2)2 (6.52)

hold in Uq(so5).

Lemma 6.21. For any n ∈ N the relations

1r(T1(E2)n+1) = q−2(q2 − q−2){n+ 1}2E2T1(E2)n (6.53)

+ q−1(q2 − q−2){n+ 1}2{n}2T12(E1)T1(E2)n−1,

1r(T12(E1)n) = q−3(q − q−1)2{n}1E2
2T12(E1)n−1 (6.54)

hold in Uq(so5).

Proof of Proposition 6.19. We have

Xw0 = X[4]X[3]X[2]X[1]

where

X[4] (5.38)
= X2,

X[3] = Ψ ◦ T12 ◦Ψ−1(X1) =
∑
n≥0

(q2 − q−2)n

{2n}1!!
(q4c1)n(q2c2)2nT12(E1)2n,

X[2] = Ψ ◦ T1 ◦Ψ−1(X2) =
∑
n≥0

(q − q−1)n

{2n}2!!
(q4c1)n(q2c2)nT1(E2)2n,

X[1] = X1.

By Lemma 5.11 and Corollary 2.51 we have

2r(Xw0) = 2r(X2)X[3]X[2]X[1]

= (q − q−1)(q2c2)E2X2X
[3]X[2]X[1]

= (q − q−1)(q2c2)E2Xw0 .

We want to show that

1r(Xw0) = (q2 − q−2)(q4c1)E1Xw0 .

For each i = 1, 2, 3, 4 let X[i] = K1X
[i]K−1

1 . Note that X[3] = X[3]. By property (2.78) of

the skew derivative 1r we see that

1r(Xw0) = X[4]1r(X
[3])X[2]X[1] + X[4]X[3]1r(X

[2])X[1] + X[4]X[3]X[2]1r(X
[1]). (6.55)

Lemma 6.21 gives

1r(X
[3]) = q−3(q − q−1)2(q2 − q−2)(q4c1)(q2c2)2E2

2T12(E1)X[3], (6.56)

1r(X
[1]) = (q2 − q−2)(q4c1)E1X

[1]. (6.57)

113



Chapter 6. Quasi K-matrices in rank two

By Equation (6.53) we have

1r(X
[2]) = q−2(q − q−1)(q2 − q−2)(q4c1)(q2c2)E2T1(E2)X[2]

+ q−1(q − q−1)(q2 − q−2)(q6c1c2)T12(E1)X̂[2]
(6.58)

where

X̂[2] =
∑
n≥0

(q − q−1)n

{2n}2!!
(q6c1c2)n{2n+ 1}2T1(E2)2n.

For any n ≥ 1 we have

{2n+ 1}2 = 1 + q2{2n}2. (6.59)

It hence follows that∑
n≥0

(q − q−1)n

{2n}2!!
(q4c1)n(q2c2)n{2n+ 1}2T1(E2)2n

= X[2] + q2(q − q−1)(q4c1)(q2c2)T1(E2)2X[2].

Substituting this into Equation (6.58) we see that

1r(X
[2]) = q−2(q − q−1)(q2 − q−2)(q4c1)(q2c2)E2T1(E2)X[2]

+ q−1(q − q−1)(q2 − q−2)(q4c1)(q2c2)T12(E1)X[2]

+ q(q − q−1)2(q2 − q−2)(q4c1)2(q2c2)2T12(E1)T1(E2)2X[2]

(6.60)

When we calculate 1r(Xw0), we obtain a component of the form X[4]X[3]X[2]1r(X
[1]). From

Equation (6.57), this contains an E1 term that we pass to the front using Lemma 6.20.

We have

X[2]E1
(6.51)

= E1X
[2], (6.61)

X[3]E1
(6.52)

= E1X
[3] − q(q − q−1)2(q4c1)(q2c2)2X[3]T12(E1)T1(E2)2, (6.62)

X[4]E1
(6.50)

= E1X
[4] − q−2(q − q−1)(q2c2)E2X[4]T1(E2) (6.63)

− q−1(q − q−1)(q2c2)X[4]T12(E1)

− q−3(q − q−1)2(q2c2)2X[4]E
2
2T12(E1)

where we also use (6.59) to obtain (6.63). Note that X[3] commutes with E2T1(E2). Using

(6.61), (6.62) and (6.63), and comparing with (6.56) and (6.60) we obtain

X[4]X[3]X[2]1r(X
[1])

= (q2 − q−2)(q4c1)E1Xw0 − X[4]X[3]1r(X
[2])X[1] − X[4]1r(X

[3])X[2]X[1].

Hence by (6.55) we have

1r(Xw0) = (q2 − q−2)(q4c1)E1Xw0

as required.
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We now consider the reduced expression w′0 = σ2σ1σ2σ1.

Proposition 6.22. The partial quasi K-matrix Xw′0 coincides with the quasi K-matrix X.

The following relations are needed for the proof and are obtained by induction.

Lemma 6.23. For any n ∈ N the relations

En1E2 = q2nE2E
n
1 − q2{n}1En−1

1 T21(E2), (6.64)

T2(E1)nE2 = q−2nE2T2(E1)n, (6.65)

T21(E2)nE2 = E2T21(E2)n − [2]2{n}2T21(E2)n−1T2(E1) (6.66)

hold in Uq(so5).

Lemma 6.24. For any n ∈ N the relations

2r(T2(E1)n) = (q − q−1){n}1T21(E2)T2(E1)n−1, (6.67)

2r(T21(E2)n) = q−2(q2 − q−2){n}2E1T21(E2)n−1 (6.68)

hold in Uq(so5).

Proof of Proposition 6.22. We have

Xw′0 = X[4]X[3]X[2]X[1]

where

X[4] (5.38)
= X1,

X[3] =
∑
n≥0

(q − q−1)n

{2n}2!!
(q4c1)n(q2c2)nT21(E2)2n,

X[2] =
∑
n≥0

(q2 − q−2)n

{2n}1!!
(q4c1)n(q2c2)2nT2(E1)2n,

X[1] = X2.

By Lemma 5.11 and Corollary 2.51 we have 1r(Xw′0) = (q2 − q−2)(q4c1)E1Xw′0 . We want

to show that

2r(Xw′0) = (q − q−1)(q2c2)E2Xw′0 .

For each i = 1, 2, 3, 4 let X[i] = K2X
[i]K−1

2 . By property (2.78) of the skew derivative 2r

we have

2r(Xw′0) = X[4]2r(X
[3])X[2]X[1] + X[4]X[3]2r(X

[2])X[1] + X[4]X[3]X[2]2r(X
[1]). (6.69)

Using Lemma 6.24 we obtain

2r(X
[3])

(6.68)
= q−2(q − q−1)(q2 − q−2)(q4c1)(q2c2)E1T21(E2)X[3], (6.70)

2r(X
[2])

(6.67)
= (q − q−1)(q2 − q−2)(q4c1)(q2c2)2T21(E2)T2(E1)X[2], (6.71)
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2r(X
[1])

(5.22)
= (q − q−1)(q2c2)E2X

[1]. (6.72)

By Lemma 6.23 we have

X[2]E2
(6.65)

= E2X
[2], (6.73)

X[3]E2
(6.66)

= E2X
[3] − (q2 − q−2)(q4c1)(q2c2)X[3]T21(E2)T2(E1), (6.74)

X[4]E2
(6.64)

= E2X
[4] − q−2(q2 − q−2)(q4c1)X[4]E1T21(E2). (6.75)

Using equations (6.73), (6.74) and (6.75), and comparing with equations (6.70) and (6.71)

we can rewrite the term X[4]X[3]X[2]2r(X
[1]) as

X[4]X[3]X[2]2r(X
[1])

(6.72)
= (q − q−1)(q2c2)X[4]X[3]X[2]E2X

[1]

= (q − q−1)(q2c2)E2Xw′0 − X[4]2r(X
[3])X[2]X[1] − X[4]X[3]2r(X

[2])X[1].

It hence follows from (6.69) that 2r(Xw′0) = (q − q−1)(q2c2)E2Xw′0 as required.

6.6 Type G2

Consider the Satake diagram of type G2.

1 2

Here the subgroup W̃ coincides with W and the longest element of the Weyl group

has two reduced expressions given by

w0 = σ1σ2σ1σ2σ1σ2, w′0 = σ2σ1σ2σ1σ2σ1.

We introduce the following terms in order to reduce the length of the proceeding calcula-

tions. In particular let

Q(n) = qn − q−n for n ∈ N,

C1 = q2c1,

C2 = q6c2.

Further, we write X[i]X[j] = X[ij]. By Lemma 5.11 we have

X1 =
∑
n≥0

Q(1)n

{2n}1!!
Cn1E

2n
1 ,

X2 =
∑
n≥0

Q(3)n

{2n}2!!
Cn2E

2n
2 .

Proposition 6.25. The partial quasi K-matrix Xw0 coincides with the quasi K-matrix X.
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We have the following necessary relations needed for the proof of Proposition 6.25.

Lemma 6.26. For any n ∈ N the relations

T1(E2)nE1 = q−3nE1T1(E2)n, (6.76)

T12(E1)nE1 = q−nE1T12(E1)n − q−1[3]1{n}1T12(E1)n−1T1(E2), (6.77)

T121(E2)nE1 = E1T121(E2)n − qQ(1){n}2T121(E2)n−1T12(E1)2, (6.78)

T1212(E1)2nE1 = q2nE1T1212(E1)2n − q[2]1{2n}1T1212(E1)2n−1T12(E1) (6.79)

− q[3]1{2n}1{2n− 1}1T1212(E1)2n−2T121(E2),

En2E1 = q3nE1E
n
2 − q3{n}2En−1

2 T1212(E1) (6.80)

hold in Uq(g2) where g2 is the exceptional Lie algebra with root system of type G2.

Lemma 6.27. For any n ∈ N the relations

1r(E
n
1 ) = {n}1En−1

1 , (6.81)

1r(T1212(E1)n) = q−3Q(3){n}1E2T1212(E1)n−1, (6.82)

1r(T12(E1)2n) = q−1[2]1Q(1){2n}1T1212(E1)T12(E1)2n−1

+ q−1Q(3){2n}1{2n− 1}1T121(E2)T12(E1)2n−2, (6.83)

1r(T1(E2)n) = qQ(1){n}2T12(E1)T1(E2)n−1, (6.84)

1r(T121(E2)n) = q−1Q(1)2{n}2T1212(E1)2T121(E2)n−1 (6.85)

hold in Uq(g2).

Proof of Proposition 6.25. We have

Xw0 = X[6]X[5]X[4]X[3]X[2]X[1] = X[654321]

where

X[6] (5.38)
= X2,

X[5] = Ψ ◦ T1212 ◦Ψ−1(X1) =
∑
n≥0

Q(1)n

{2n}1!!
Cn1C

n
2 T1212(E1)2n,

X[4] = Ψ ◦ T121 ◦Ψ−1(X2) =
∑
n≥0

Q(3)n

{2n}2!!
C3n

1 C2n
2 T121(E2)2n,

X[3] = Ψ ◦ T12 ◦Ψ−1(X1) =
∑
n≥0

Q(1)n

{2n}1!!
C2n

1 Cn2 T12(E1)2n,

X[2] = Ψ ◦ T1 ◦Ψ−1(X2) =
∑
n≥0

Q(3)n

{2n}2!!
C3n

1 Cn2 T1(E2)2n,

X[1] = X1.
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By Lemma 5.11 and Corollary 2.51 we have

2r(Xw0) = 2r(X2)X[54321]

= Q(3)C2E2X2X
[54321]

= Q(3)C2E2Xw0 .

We want to show that

1r(Xw0) = Q(1)C1E1Xw0 .

For each i = 1, . . . , 6 let X[i] = K1X
[i]K−1

1 and write X[i]X[j] = X[ij]. By property (2.78)

of the skew derivative

1r(Xw0) = X[6]1r(X
[5])X[4321] + X[65]1r(X

[4])X[321] + X[654]1r(X
[3])X[21]

+ X[6543]1r(X
[2])X[1] + X[65432]1r(X

[1]).

By Lemma 6.27 we have

1r(X
[1])

(6.81)
= Q(1)C1E1X

[1], (6.86)

1r(X
[2])

(6.84)
= qQ(1)Q(3)C3

1C2T12(E1)T1(E2)X[2], (6.87)

1r(X
[4])

(6.85)
= q−1Q(1)2Q(3)C3

1C
2
2T1212(E1)2T121(E2)X[4], (6.88)

1r(X
[5])

(6.82)
= q−3Q(1)Q(3)C1C2E2T1212(E1)X[5]. (6.89)

By Equation (6.83) we have

1r(X
[3]) = q−1Q(1)2[2]1C

2
1C2T1212(E1)T12(E1)X[3] (6.90)

+ q−1Q(1)Q(3)C2
1C2T121(E2)X̂[3]

where

X̂[3] =
∑
n≥0

Q(1)n

{2n}1!!
C2n

1 Cn2 {2n+ 1}1T12(E1)2n.

Recall that for n ≥ 1 and i = 1, 2 we have {2n + 1}i = 1 + q2
i {2n}i. It follows from this

that

X̂[3] = X[3] + q2Q(1)C2
1C2T12(E1)2X[3].

Substituting this into Equation (6.90) we get

1r(X
[3]) = q−1Q(1)2[2]1C

2
1C2T1212(E1)T12(E1)X[3] + q−1Q(1)Q(3)C2

1C2T121(E2)X[3]

+ qQ(1)2Q(3)C4
1C

2
2T121(E2)T12(E1)2X[3]. (6.91)

When we calculate 1r(Xw0) we obtain a component of the form X[65432]1r(X
[1]). By Equa-

tion (6.86) this contains an E1 term that we pass to the front using Lemma 6.26. We

have

X[2]E1
(6.76)

= E1X
[2], (6.92)
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X[3]E1
(6.77)

= E1X
[3] − qQ(3)C2

1C2X[3]T12(E1)T1(E2), (6.93)

X[4]E1
(6.78)

= E1X
[4] − qQ(1)Q(3)C3

1C
2
2X

[4]T121(E2)T12(E1)2, (6.94)

X[5]E1
(6.79)

= E1X
[5] − q−1Q(1)[2]1C1C2X

[5]T1212(E1)T12(E1)− q−1Q(3)C1C2X[5]T121(E2)

− q−1Q(1)Q(3)C2
1C

2
2X[5]T1212(E1)2T121(E2), (6.95)

X[6]E1
(6.80)

= E1X[6] − q−3Q(3)C2X[6]E2T1212(E1) (6.96)

where we also use {2n+1}1 = 1+q2{2n}1 for n ≥ 1 to show (6.95). Comparing Equations

(6.86)–(6.89) and (6.91) with Equations (6.92)–(6.96) we see that

X[65432]1r(X
[1]) = Q(1)C1E1Xw0 − X[6543]1r(X

[2])X[1] − X[654]1r(X
[3])X[21]

− X[65]1r(X
[4])X[321] − X[6]1r(X

[5])X[4321]

from which it follows that

1r(Xw0) = Q(1)C1E1Xw0

as required.

We now consider the reduced expression w′0 = σ2σ1σ2σ1σ2σ1.

Proposition 6.28. The partial quasi K-matrix Xw′0 coincides with the quasi K-matrix X.

The following relations are needed for the proof of Proposition 6.28. We split such

relations among three lemmas. In Lemma 6.29 we show how the element E2 commutes

past the PBW elements corresponding to the longest element w′0. Lemma 6.30 gives

additional relations required in the latter parts of the proof. Finally, we give the skew

derivative 2r of PBW basis elements in Lemma 6.31.

Lemma 6.29. For any n ∈ N the relations

T2(E1)nE2 = q−3nE2T2(E1)n, (6.97)

T21(E2)nE2 = q−3nE2T21(E2)n −Q(1)3Q(3)−1{n}2T21(E2)n−1T2(E1)3, (6.98)

T212(E1)nE2 = E2T212(E1)n − qQ(1){n}1T212(E1)n−1T2(E1)2

− q2Q(3){n}1{n− 1}1T212(E1)n−2T21(E2)T2(E1)

−Q(3){n}1{n− 1}1{n− 2}1T212(E1)n−3T21(E2)2, (6.99)

T2121(E2)nE2 = q3nE2T2121(E2)n − q4Q(1){n}2T2121(E2)n−1T212(E1)T2(E1)

− (q6 − q4 − q2){n}2T2121(E2)n−1T21(E2)

− q6Q(1)3Q(3)−1{n}2{n− 1}2T2121(E2)n−2T212(E1)3, (6.100)

En1E2 = q3nE2E
n
1 − q3{n}1En−1

1 T2(E1)− q5{n}1{n− 1}1En−2
1 T212(E1)

− q6{n}1{n− 1}1{n− 2}1En−3
1 T2121(E2), (6.101)

hold in Uq(g2).
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Lemma 6.30. For any n ∈ N the relations

E1T2(E1)T2121(E2)n = q−3nT2121(E2)nE1T2(E1)

+ q−3n+4Q(1)T2121(E2)n−1E1T212(E1)2, (6.102)

E1T2(E1)T212(E1)n = T212(E1)nE1T2(E1)− [3]1{n}1T2121(E2)T2(E1)T212(E1)n−1

+ [3]1{n}1T212(E1)n−1E1T21(E2), (6.103)

E1T2(E1)T21(E2)n = q3nT21(E2)nE1T2(E1)

− q4Q(1){n}2T212(E1)2T2(E1)T21(E2)n−1 (6.104)

hold in Uq(g2). Additionally, for n ≥ 1 the relations

T212(E1)T2121(E2)n =
(
q−3n + q−3(n−1)Q(3){n}2

)
T2121(E2)nT212(E1), (6.105)

T212(E1)T21(E2)n =
(
q3n − q−3(n−1)Q(3){n}2

)
T21(E2)nT212(E1) (6.106)

hold in Uq(g2).

Lemma 6.31. For any n ∈ N the relations

2r(E
n
2 ) = {n}2En−1

2 , (6.107)

2r(T2(E1)n) = q−3Q(3){n}1E1T2(E1)n−1

+ q−1Q(3){n}1{n− 1}1T212(E1)T2(E1)n−2, (6.108)

2r(T212(E1)n) = q−5Q(1)Q(3){n}1E2
1T212(E1)n−1

+ q−4Q(3)2{n}1{n− 1}1E1T2121(E2)T212(E1)n−2

+ q−6Q(3)2{n}1{n− 1}1{n− 2}1T2121(E2)2T212(E1)n−3, (6.109)

2r(T2121(E2)) = q−6Q(3){n}2E3
1T2121(E2)n−1, (6.110)

2r(T21(E2)n) = q−2Q(1)Q(3){n}2E1T212(E1)T21(E2)n−1

+ q−2(q2 − 1− q−2)Q(3){n}2T2121(E2)T21(E2)n−1

+Q(1)3{n}2{n− 1}2T212(E1)3T21(E2)n−2 (6.111)

hold in Uq(g2).

Proof of Proposition 6.28. We have

Xw′0 = X[6]X[5]X[4]X[3]X[2]X[1]

where

X[6] (5.38)
= X1,

X[5] = Ψ ◦ T2121 ◦Ψ−1(X2) =
∑
n≥0

Q(3)n

{2n}2!!
C3n

1 Cn2 T2121(E2)2n,

X[4] = Ψ ◦ T212 ◦Ψ−1(X1) =
∑
n≥0

Q(1)n

{2n}1!!
C2n

1 Cn2 T212(E1)2n,
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X[3] = Ψ ◦ T21 ◦Ψ−1(X2) =
∑
n≥0

Q(3)n

{2n}2!!
C3n

1 C2n
2 T21(E2)2n,

X[2] = Ψ ◦ T2 ◦Ψ−1(X1) =
∑
n≥0

Q(1)n

{2n}1!!
Cn1C

n
2 T2(E1)2n,

X[1] = X2.

By Lemma 5.11 and Corollary 2.51 we have

1r(Xw′0) = 1r(X1)X[54321]

= Q(1)C1E2X1X
[54321]

= Q(1)C1E2Xw′0 .

We want to show that

2r(Xw′0) = Q(3)C2E2Xw′0 .

For each i = 1, . . . , 6 let X[i] = K2X
[i]K−1

2 . By Property (2.78) of the skew derivative we

have

2r(Xw′0) = X[6]2r(X
[5])X[4321] + X[65]2r(X

[4])X[321] + X[654]2r(X
[3])X[21]

+ X[6543]2r(X
[2])X[1] + X[65432]2r(X

[1]). (6.112)

We use Lemma 6.29 to calculate 2r(X
[i]) for i = 1, . . . , 5. We obtain

2r(X
[1])

(6.107)
= Q(3)C2E2X

[1], (6.113)

2r(X
[5])

(6.110)
= q−6Q(1)3Q(3)C3

1C2E
3
1T2121(E2)X[5]. (6.114)

We now consider 2r(X
[2]) in some detail using Equation (6.108). We have

2r(X
[2]) = q−3Q(1)Q(3)C1C2E1T2(E1)X[2]

+ q−1C1C2Q(1)Q(3)T212(E1)
∑
n≥0

Q(1)n

{2n}1!!
Cn1C

n
2 {2n+ 1}1T2(E1)2n

+Q(1)2Q(3)C2
1C

2
2T21(E2)T2(E1)

∑
n≥0

Q(1)n

{2n}1!!
Cn1C

n
2 {2n+ 3}1T2(E1)2n.

(6.115)

Recall that for n ≥ 1 we have {2n+ 1}1 = 1 + q2{2n}1. Additionally we have

{2n+ 3}1 = (1 + q2 + q4) + q6{2n}1
for n ≥ 1. Using this we get∑

n≥0

Q(1)n

{2n}1!!
Cn1C

n
2 {2n+ 1}1T2(E1)2n = X[2] + q2Q(1)C1C2X

[2]T2(E1)2
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and∑
n≥0

Q(1)n

{2n}1!!
Cn1C

n
2 {2n+ 3}1T2(E1)2n = (1 + q2 + q4)X[2] + q6Q(1)C1C2X

[2]T2(E1)2.

Substituting both of these identities into (6.115) and using (1 + q2 + q4)Q(1) = q2Q(3) we

obtain

2r(X
[2]) = q−3Q(1)Q(3)C1C2E1T2(E1)X[2] + q−1C1C2Q(1)Q(3)T212(E1)X[2]

+ qC2
1C

2
2Q(1)2Q(3)T212(E1)T2(E1)2X[2]

+ q2Q(1)Q(3)2C2
1C

2
2T21(E2)T2(E1)X[2]

+ q6Q(1)3Q(3)C3
1C

3
2T21(E2)T2(E1)3X[2]. (6.116)

Similarly we obtain the following expressions for 2r(X
[3]) and 2r(X

[4]) using Equations

(6.111) and (6.109), respectively.

2r(X
[3]) = q−2Q(1)Q(3)2C3

1C
2
2E1T212(E1)T21(E2)X[3]

+ q−2Q(3)2(q2 − 1− q−2)C3
1C

2
2T2121(E2)T21(E2)X[3]

+Q(1)2Q(3)C3
1C

2
2T212(E1)3X[3]

+ q6Q(1)3Q(3)2C6
1C

4
2T212(E1)3T21(E2)2X[3], (6.117)

2r(X
[4]) = q−5Q(1)2Q(3)C2

1C2E
2
1T212(E1)X[4] + q−4Q(1)Q(3)2C2

1C2E1T2121(E2)X[4]

+ q−2Q(1)2Q(3)2C4
1C

2
2E1T2121(E2)T212(E1)2X[4]

+ q−4Q(1)Q(3)3C4
1C

2
2T2121(E2)2T212(E1)X[4]

+Q(1)3Q(3)2C6
1C

3
2T2121(E2)2T212(E1)3X[4]. (6.118)

When calculating 2r(Xw′0) we obtain a summand of the form

X[65432]2r(X
[1]) = Q(3)C2X[65432]E2X

[1].

We bring the E2 term to the front using Lemma 6.29. We have

X[2]E2
(6.97)

= E2X
[2], (6.119)

X[3]E2
(6.98)

= E2X
[3] − q6Q(1)3C3

1C
2
2X[3]T21(E2)T2(E1)3, (6.120)

X[5]E2
(6.100)

= E2X
[5] − q−2Q(1)Q(3)C3

1C2X[5]T2121(E2)T212(E1)T2(E1)

− q−6(q6− q4− q2)Q(3)C3
1C2X[5]T2121(E2)T21(E2)−Q(1)3C3

1C2X[5]T212(E1)3

−Q(1)3Q(3)C6
1C

2
2X[5]T2121(E2)2T212(E1)3. (6.121)

Additionally, using {2n+ 3}i = (1 + q2
i + q4

i ) + q6
i {2n}i for i = 1, 2 we obtain

X[4]E2
(6.99)

= E2X
[4] − qQ(1)2C2

1C2X[4]T212(E1)T2(E1)2

− q2Q(1)Q(3)C2
1C2X[4]T21(E2)T2(E1)

− q4Q(1)2Q(3)C4
1C

2
2X[4]T212(E1)2T21(E2)T2(E1)
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− q2Q(1)Q(3)2C4
1C

2
2X[4]T212(E1)T21(E2)2

− q6Q(1)3Q(3)C6
1C

2
2X[4]T212(E1)3T21(E2)2, (6.122)

(6.101)
= E2X

[6] − q−3Q(1)C1X[6]E1T2(E1)− q−1Q(1)C1X[6]T212(E1)

− q−5Q(1)2C2
1X[6]E

2
1T212(E1)− q−4Q(1)Q(3)C2

1X[6]E1T2121(E2)

− q−6Q(1)3C3
1X[6]E

3
1T2121(E2). (6.123)

We substitute the expressions (6.113), (6.114) and (6.116)–(6.118) into (6.112). Then we

use Equations (6.119)–(6.123) to expand the term X[65432]2r(X
[1]). We do not write the

full expression but many of the terms cancel by Theorem 2.59. For instance, there is an

expression

qQ(1)2Q(3)C2
1C

2
3

(
X[6543]T212(E1)T2(E1)2X[21] − X[654]T212(E1)T2(E1)2X[321]

)
which appears. We note that [

T212(E1), T21(E2)
]
q−3 = 0[

T21(E2), T212(E1)
]
q3 = 0

by Theorem 2.59 and hence T212(E1)T2(E1)2X[3] = X[3]T212(E1)T2(E1)2 which implies that

the expression above is zero. We are left with the following expression.

2r(Xw′0) = Q(3)C2E2Xw′0 + q−2Q(1)Q(3)2C3
1C

2
2X[654]E1T212(E1)T21(E2)X[321]

+ q−2Q(1)2Q(3)2C4
1C

2
2X[65]E1T2121(E2)T212(E1)2X[4321]

+ q−4Q(1)Q(3)3C4
1C

2
2X[65]T2121(E2)2T212(E1)X[4321]

− q−2Q(1)Q(3)2C3
1C

2
2X[65]T2121(E2)T212(E1)T2(E1)X[4321]

− q4Q(1)2Q(3)2C4
1C

3
2X[654]T212(E1)2T21(E2)T2(E1)X[321]

− q2Q(1)Q(3)3C4
1C

3
2X[654]T212(E1)T21(E2)2X[321]

+ q−1C1C2Q(1)Q(3)
(
X[6543]T212(E1)X[21] − X[6]T212(E1)X[54321]

)
+ q−3Q(1)Q(3)C1C2

(
X[6543]E1T2(E1)X[21] − X[6]E1T2(E1)X[54321]

)
.

(6.124)

We consider the expression E1T2(E1)X[321] in more detail using Lemma 6.30and the facts

T2121(E2)E1 = q3E1T2121(E2),

T2(E1)T212(E1) = qT212(E1)T2(E1) + [3]1T21(E2),

T212(E1)E1 = qE1T212(E1) + [3]1T2121(E2).

We have

E1T2(E1)X[5] (6.102)
= X[5]E1T2(E1) + qQ(1)Q(3)C3

1C2X[5]E1T2121(E2)T212(E1)2, (6.125)

E1T2(E1)X[4] (6.103)
= X[4]E1T2(E1)− qQ(3)C2

1C2T2121(E2)T212(E1)T2(E1)X[4]
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+ qQ(3)C2
1C2X[4]E1T212(E1)T21(E2), (6.126)

E1T2(E1)X[3]
(6.104)

X [3]E1T2(E1)− q4Q(1)Q(3)C3
1C

2
2T212(E1)2T2(E1)T21(E2)X[3]. (6.127)

Substituting Equations (6.125)–(6.127) into (6.124) we obtain

2r(Xw′0) = Q(3)C2E2Xw′0 + q−4Q(1)Q(3)3C4
1C

2
2X[65]T2121(E2)2T212(E1)X[4321]

− q2Q(1)Q(3)3C4
1C

3
2X[654]T212(E1)T21(E2)2X[321]

+ q−1C1C2Q(1)Q(3)
(
X[6543]T212(E1)X[21] − X[6]T212(E1)X[54321]

)
. (6.128)

(6.129)

We use Equations (6.105) and (6.106) to simplify this expression further. We have

T212(E1)X[5]

=
∑
n≥0

Q(3)n

{2n}2!!
C3n

1 Cn2 T212(E1)T2121(E2)2n

(6.105)
= T212(E1) +

∑
n≥1

Q(3)n

{2n}2!!
C3n

1 Cn2
(
q−6n + q−6n+3Q(3){2n}2

)
T2121(E2)2nT212(E1)

=

(
1 +

∑
n≥1

Q(3)n

{2n}2!!
C3n

1 Cn2 q
−6nT2121(E2)2n

)
T212(E1)

+ q3Q(3)
∑
n≥1

Q(3)n

{2n}2!!
C3n

1 Cn2 q
−6n{2n}2T2121(E2)2nT212(E1)

= X[5]T212(E1) + q−3Q(3)2C3
1C2X[5]T2121(E2)2T212(E1).

This implies

q−3Q(3)2C3
1C2X[5]T2121(E2)2T212(E1) = T212(E1)X[5] − X[5]T212(E1).

In the same way, Equation (6.106) gives

−q3Q(3)2C3
1C

2
2T212(E1)T21(E2)2X[3] = T212(E1)X[3] − X[3]T212(E1).

Substituting both of these into Equation (6.128) we obtain

2r(Xw′0) = Q(3)C2E2Xw′0 + q−1Q(1)Q(3)C1C2X[6]

(
T212(E1)X[5] − X[5]T212(E1)

)
X[4321]

+ q−1Q(1)Q(3)C1C2X[654]

(
T212(E1)X[3] − X[3]T212(E1)

)
X[21]

+ q−1C1C2Q(1)Q(3)
(
X[6543]T212(E1)X[21] − X[6]T212(E1)X[54321]

)
.

= Q(3)C2Xw′0

as required.
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Chapter 7

Braid group actions for quantum

symmetric pairs

In the first part of this chapter, we return to the classical setting and establish a braid

group action on the fixed Lie subalgebra k. This action depends on the subgroups Br(WX)

and Br(W̃ ) of Br(g). In Section 7.2 we explicitly construct an action of Br(W̃ ) on k by

Lie algebra automorphisms.

We extend this theory to the quantum symmetric pair setting. In particular we show

that there is an action of Br(WX) on Bc,s in Section 7.3. This is in full generality. In many

cases one can exhibit an action of Br(W̃ ) on Bc,s, see [40]. In Section 7.4 we construct

such an action when the Satake diagram is of type AIII. Our initial constructions require

the use of the computer algebra program GAP but our arguments thereafter are general.

We round off this chapter by combining the results of Sections 7.3 and 7.4 by showing

that the two actions commute in type AIII.

7.1 The braid group action on k

Recall from Theorem 2.37 that we established a braid group action of Br(g) on g by

Lie algebra automorphisms. We aim to construct an analogous braid group action on

k = {x ∈ g | θ(x) = x} by Lie algebra automorphisms. Generally we have Ad(b)(k) 6= k for

b ∈ Br(g).

Example 7.1. Let g = sl3(C) and consider the Satake diagram (∅, (12)), which is of type

AIII. Graphically, we have the following diagram.

Here, the involution associated to this Satake diagram is given by θ = τ ◦ ω. By Lemma
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3.12, the Lie subalgebra k is generated by the elements

h1 − h2, f1 − e2, f2 − e1.

Then Ad(ς1)(f1 − e2) = −e1 − [e1, e2] 6∈ k and therefore Br(g) does not act on k by Lie

algebra automorphisms.

In order to obtain a braid group action on k we instead consider a suitable subgroup

of Br(g). Since k depends on θ, we expect that the subgroup we take should also depend

on θ. We construct a subgroup Br(g)Θ analogously to WΘ from Section 4.2. Recall from

Section 3.1 that mX ∈ Br(g) denotes the braid group element obtained from the longest

element wX ∈WX . Define a group automorphism

ΘB : Br(g)→ Br(g), b 7→ mXτ(b)m−1
X . (7.1)

Let Br(g)Θ = {b ∈ Br(g) | ΘB(b) = b} denote the subgroup of elements fixed by ΘB.

Recall from Section 4.12 that W̃ is a Coxeter group generated by {σ̃i | i ∈ I \X}. Hence

W̃ has a braid group associated to it. Let Br(WX) and Br(W̃ ) denote the associated

braid groups corresponding to the Weyl subgroups WX and W̃ , respectively. Observe that

both Br(WX) and Br(W̃ ) are subgroups of Br(g)Θ.

Remark 7.2. In Theorem 4.8 we showed that WΘ = WX o W̃ . Proving a similar result

for the structure of Br(g)Θ is a hard problem not considered in this thesis. Instead, we

will only consider an action of Br(WX)oBr(W̃ ) on k by Lie algebra automorphisms.

The following lemma shows that the action Ad restricted to Br(WX)×Br(W̃ ) almost

commutes with θ. Recall from Equation (3.3) the Chevalley involution ω : g→ g.

Lemma 7.3. For any b ∈ Br(WX)oBr(W̃ ), the relation

Ad(b) ◦Ad(mX) ◦ τ ◦ ω = Ad(mX) ◦ τ ◦ ω ◦Ad(b) (7.2)

holds.

Proof. By Equations (2.53) and (3.4), we observe that

Ad(ςi) ◦ τ ◦ ω = τ ◦ ω ◦Ad(ςτ(i))

for all i ∈ I. Hence for any b ∈ Br(WX)×Br(W̃ ) and x ∈ g we have

Ad(mX) ◦ τ ◦ ω ◦Ad(b)(x) = Ad(mX) ◦Ad(τ(b)) ◦ τ ◦ ω
= Ad(mXτ(b)mXm

−1
X ) ◦ τ ◦ ω(x)

= Ad(b) ◦Ad(mX) ◦ τ ◦ ω(x)

since b ∈ Br(WX)oBr(W̃ ) ⊆ Br(g)Θ.

Generally, Ad(s) as defined in (3.12) does not commute with Ad(b) for b ∈ Br(WX)×
Br(W̃ ). However, we can find explicit maps s′ : I → C× such that θ′ = Ad(s′)◦Ad(mX)◦
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τ ◦ ω commutes with Ad(b). The idea after finding such an s′ is to modify the group

homomorphism Ad to a new group homomorphism Ad′ such that the Br(WX)× Br(W̃ )

maps k to itself under the action Ad′.

We fix a total order > on the set I. With this total order, we let s′ : I → C be the

function defined by

s′(αj) =


1 if j ∈ X or τ(j) = j,

iαj(2ρ
∨
X) if j 6∈ X or τ(j) > j,

(−i)αj(2ρ∨X) if j 6∈ X or j > τ(j).

(7.3)

for j ∈ I, where i ∈ C denotes the square root of −1. This is the same map as [38,

Equation (2.7)]. If we choose a different total order on I, then the map s′ may change

by a factor −1 on the roots αj and ατ(j) where j 6= τ(j) and j, τ(j) 6∈ X. The following

proposition implies that there are limited choices for s such that Ad(s) commutes with

Ad(b).

Proposition 7.4. Suppose that Ad(s) ◦ Ad(b) = Ad(b) ◦ Ad(s) for all b ∈ Br(WX) ×
Br(W̃ ). Then there exists a total order > on I such that s(i) = s′(i) for all i ∈ I.

Proof. Since Ad(s) and Ad(b) are automorphisms of g, we only check on the Chevalley

generators ei, fi and hi for i ∈ I. Without loss of generality, we only consider the generators

ei, since Ad(s)|h = idh and the calculations for fi are the same up to a change of sign.

Let π : Br(g) → W denote the group homomorphism that associates an element b ∈
Br(g) to an element w ∈ W by including the relation ς2

i = 1 for all i ∈ I. Given

b ∈ Br(WX)×Br(W̃ ), we have w = π(b) ∈WΘ. Then

Ad(s) ◦Ad(b)(ei) = sQ(w(αi))Ad(b)(ei),

Ad(b) ◦Ad(s)(ei) = sQ(αi)Ad(b)(ei).

Hence Ad(s) ◦Ad(b) = Ad(b) ◦Ad(s) if and only if sQ(w(αi)) = sQ(αi). If w ∈WX , then

there is nothing to check by Condition (3.10). So suppose w ∈ W̃ . As sQ : Q → C× is

a group homomorphism, we may assume that w = σ̃j for some j ∈ I \X. We make the

following assumptions on i and j:

• j 6= τ(j), otherwise (3.10) implies that s(k) = 1 for all k ∈ {j, τ(j)} ∪X and hence

sQ(σ̃j(αi)) = sQ(αi). This further implies that the Satake diagram (I,X, τ) is of

type ADE. Without loss of generality, we assume τ(j) > j with respect to the total

order >.

• i ∈ I\X, otherwise w{j,τ(j)}∪X(αi) = −ατ0,j(i) ∈ ΦX and thus sQ(σ̃j(αi)) = sQ(αi) =

1.

• If X = ∅, then σ̃j(αi) = αi+njαj+nτ(j)ατ(j) where nj , nτ(j) ∈ {0, 1}. It follows that

sQ(σ̃j(αi)) = sQ(αi) if and only if sQ(njαj + nτ(j)ατ(j)) = 1. By Condition (3.11)
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we have s(j) = s(τ(j)) so we can choose s(j) = ±1. Hence we can assume X 6= ∅.
Similarly we also assume that αj(2ρ

∨
X) 6= 0. This means that the τ -orbit {j, τ(j)} is

adjacent to a connected component of black nodes.

Let i = j. Then w{j,τ(j)}∪X(αj) = −ατ(j) since τ 6= id and j 6= τ(j). Then

sQ(αi) = sQ(w{j,τ(j)}∪X(αj)) = sQ(−ατ(j))

which implies s(j)s(τ(j)) = 1. It follows from this and condition (3.11) that s(j)2 =

(−1)αj(2ρ
∨
X). We hence obtain s(j) = iαj(2ρ

∨
X) and s(τ(j)) = (−i)αj(2ρ∨X).

We now check the cases that arise when i 6= j, τ(j). We may assume that X 6= ∅ and

αj(2ρ
∨
X) 6= 0, since otherwise there is nothing to show. Further, we consider cases where

w{j,τ(j)}∪X(αi) 6= wX(αi). Graphically this means that the node i is connected to the

τ -orbit {j, τ(j)} where any path only goes through nodes belonging to X. In other words,

we need only check rank two cases. By our previous assumptions, there are only three

cases to check.

1 2 n

1 2 3

4

5

1 3 4 5

2

6

In each case, one checks that sQ(w{j,τ(j)}∪X(αi)) = sQ(αi) for i 6= j, τ(j), as required.

Remark 7.5. The function s′ has the additional advantage that Ad(s′) commutes with

the involutive automorphism θ. This is so since Ad(s′) commutes with Ad(mX) and τ ◦ω,

see [38, Theorem 2.5]. The latter follows since s′(αj) = s′(−ατ(j)).

Denote the involutive automorphism corresponding to s′ and the Satake diagram

(I,X, τ) by

θ′ = Ad(s′) ◦Ad(mX) ◦ τ ◦ ω (7.4)

Let k′ be the associated fixed Lie subalgebra. Then Lemma 7.3 and Remark 7.5 imply

that Br(WX)oBr(W̃ ) maps k′ to itself under the action Ad. We observe that given any

involutive automorphism θ = Ad(s) ◦ Ad(mX) ◦ τ ◦ ω associated to (I,X, τ), we can find

a Lie algebra automorphism ψ such that

θ = ψ ◦ θ′ ◦ ψ−1. (7.5)
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Since θ and θ′ only differ by a scalar on each root space, such a Lie algebra automor-

phism will only act as a rescaling. In particular, we take ψ = Ad(s) where we choose

s : I → C× such that

s(i) = 1 for i ∈ X or i = τ(i), (7.6)

s(i) = (−1)αi(2ρ
∨
X)s(τ(i)) for i /∈ X and i 6= τ(i). (7.7)

Then for x ∈ gαi we have

ψ ◦ θ′ ◦ ψ−1(x) =
s′(i)

s(i)s(τ(i))
·Ad(mX) ◦ ω ◦ τ(x)

=
s′(i)s(τ(i))

(−1)αi(2ρ
∨
X)s(i)2

· θ(x).

This implies that ψ ◦ θ′ ◦ ψ−1 = θ for i ∈ X or i = τ(i). If i /∈ X and i 6= τ(i) then

s(i)2 = s′(i)s(i) and hence we choose to take s(i) = (s′(i)s(i))1/2.

Lemma 7.6. Under the action ψ ◦ Ad ◦ ψ−1, the subgroup Br(WX)o Br(W̃ ) maps k to

itself.

Proof. Let θ′ be as in Equation (7.4). Then for any b ∈ Br(WX)oBr(W̃ ), we have

θ′ ◦Ad(b) = Ad(b) ◦ θ′

by Lemma 7.3 and Remark 7.5. Using Equation (7.5), we see that

ψ−1 ◦ θ ◦ ψ ◦Ad(b) = Ad(b) ◦ ψ−1 ◦ θ ◦ ψ.

Applying ψ on the left and ψ−1 on the right gives

θ ◦ ψ ◦Ad(b) ◦ ψ−1 = ψ ◦Ad(b) ◦ ψ−1 ◦ θ.

This implies that ψ ◦Ad(b) ◦ ψ−1(k) = k as required.

Remark 7.7. In [40, Lemma 2.1], the Lie algebra automorphism ψ does not appear. The

reason for this is that Kolb and Pellegrini take s(i) = 1 for all i ∈ I since they only

consider cases where either X = ∅ or τ = id.

7.2 An explicit example: AIII

We construct the action of Br(W̃ ) on k explicitly when the Satake diagram (X, τ) is of

type AIII.
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1 r

n − r + 1n

In Section 7.4 we construct a quantum analogue of this action on the coideal subalgebra

Bc,s. Using Lemma 7.6 we calculate the action of Br(W̃ ) on k. Recall that the generators

of W̃ are invariant under τ , i.e. σ̃τ(i) = σ̃i for all i ∈ I \X. Hence in this setting Br(W̃ )

is generated by elements ς̃i for 1 ≤ i ≤ r where

ς̃i = m{i,τ(i)}∪Xm
−1
X =

ςiςτ(i) if 1 ≤ i < r,

ςrςr+1 · · · ςn−r+1 · · · ςr+1ςr if i = r.
(7.8)

Remark 7.8. In this case the subgroups Br(WX) and Br(W̃ ) commute hence by Lemma

7.6 we have an action of Br(WX) × Br(W̃ ) on k by Lie algebra automorphisms. Indeed

for j ∈ X we have

ς̃rςj = ςrςr+1 · · · ςn−r+1 · · · ςjςj−1 · · · ςr+1ςrςj

= ςrςr+1 · · · ςn−r+1 · · · ςj−1ςjςj−1 · · · ςr+1ςr

= ςrςr+1 · · · ςj−1ςjςj−1 · · · ςn−r+1 · · · · · · ςr+1ςr

= ςj ς̃r.

Recall from Lemma 3.12 that the subalgebra k is generated by elements

ei, fi for i ∈ X,

hi − wX(hτ(i)) for i ∈ I \X,

bi := fi + θ(fi) for i ∈ I \X.

In this setting, let

e+
X :=

[
er+1, [er+2, . . . , [eτ(r+2), eτ(r+1)] . . . ]

]
, (7.9)

e−X :=
[
eτ(r+1), [eτ(r+2), . . . , [er+2, er+1] . . . ]

]
. (7.10)

Then the elements bi are given explicitly by

bi =


fi − s(τ(i))eτ(i) if i 6= r, τ(r),

fr − s(τ(r))[e+
X , eτ(r)] if i = r,

fτ(r) − s(r)[e−X , er] if i = τ(r).

(7.11)

We only calculate the action of Br(W̃ ) on the elements bi for i ∈ I \X. By Lemma 2.34

and Lemma 3.5, we effectively know how Br(W̃ ) acts on the remaining elements of k.
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To shorten notation, let Adi = ψ ◦ Ad(ς̃i) ◦ ψ−1 where ψ = Ad(s) as at the end of

Section 7.1. In the current setting we have s(i) = s(i)1/2 if i 6= r, τ(r).

We recall how Ad(ςi) acts on ej , fj for i, j ∈ I. We have

Ad(ςi)(ej) =


ej if aij = 0,

[ei, ej ] if aij = −1,

−fj if aij = 2,

Ad(ςi)(fj) =


fj if aij = 0,

[fj , fi] if aij = −1,

−ej if aij = 2.

(7.12)

There are many different cases to check in order to compute Adi(bj) for i, j ∈ I \X. We

only look in more detail at the more involved calculations. The following is a consequence

of (7.12).

Lemma 7.9. For i < r and j ∈ I \X we have

Adi(bj) =



bj if aij = 0 and aiτ(j) = 0,

bτ(j) if aij = 2 or aiτ(j) = 2,

s(i)−1/2[bj , bi] if aij = −1,

s(τ(i))−1/2[bj , bτ(i)] if aiτ(j) = −1.

(7.13)

Proof. We only calculate Adr−1(br) since Adr−1(bτ(r)) is a similar calculation and the

others are straightforward checks. We have

Adr−1(br) = Ad(s) ◦Ad(ςr−1ςτ(r−1)) ◦Ad(s)−1
(
fr − s(τ(r))[e+

X , eτ(r)]
)

= Ad(s)
(
s(r)Ad(ςr−1)(fr)− s(τ(r))s(τ(r))−1Ad(ςτ(r−1))([e

+
X , eτ(r)])

)
= s(r − 1)[fr, fr−1]− s(τ(r))s(τ(r − 1))

[
e+
X , [eτ(r−1), eτ(r)]

]
.

On the other hand, we also have

[br, br−1] =
[
fr − s(τ(r))[e+

X , eτ(r)], fr−1 − s(τ(r − 1))eτ(r−1)

]
= [fr, fr−1]− s(τ(r − 1))[fr, eτ(r−1)]− s(τ(r))

[
[e+
X , eτ(r)], fr−1

]
+ s(τ(r − 1))s(τ(r))

[
[e+
X , eτ(r)], eτ(r)

]
= [fr, fr−1]− s(τ(r − 1))s(τ(r))

[
e+
X , [eτ(r−1), eτ(r)]

]
Since s(r − 1)−1/2s(τ(r − 1)) = s(τ(r − 1))1/2 by Condition 3.11, it follows that

Adr−1(br) = s(r − 1)−1/2[br, br−1]

as required.

Now we only need to compute Adr(bi) for i ∈ I \ X. The two key cases are when

i = r − 1 or i = r.
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Lemma 7.10. We have

Adr(br) = s′(τ(r))br, (7.14)

Adr(bτ(r)) = s′(r)bτ(r). (7.15)

Proof. We check Adr(br); the computation for Adr(bτ(r)) is similar. We make two obser-

vations. First of all,

Ad(ς̃r)(fr) = Ad(ςrςr+1 · · · ςτ(r) · · · ςr+1ςr)(fr)

= Ad(ςτ(r) · · · ςr+1ςrςr+1)(fr)

= Ad(ςτ(r) · · · ςr+1)(fr+1)

= Ad(ςτ(r) · · · ςr+2)(−er+1)

= (−1)|X|+1[e+
X , eτ(r)].

Additionally, by Lemma 3.5 we have

Ad(ς̃r)([e
+
X , eτ(r)]) = Ad(w{r,τ(r)}∪Xw

−1
X )Ad(wX)(eτ(r)) = Ad(w{r,τ(r)}∪X)(eτ(r))

= −fr.

Hence we obtain

Adr(br) = Ad(s) ◦Ad(ς̃r) ◦Ad(s)−1
(
fr − s(τ(r))[e+

X , eτ(r)]
)

= Ad(s)
(
s(r)Ad(ς̃r)(fr)−

s(τ(r))

s(τ(r))
Ad(ς̃r)([e

+
X , eτ(r)])

)
= (−1)|X|+1s(r)s(τ(r))[e+

X , eτ(r)] +
s(τ(r))

s(r)s(τ(r))
fr.

By the definition of s and s′ we have

s(τ(r))

s(r)s(τ(r))
=

(−1)αr(2ρ
∨
X)s(τ(r))

s(r)2

=
(−1)αr(2ρ

∨
X)s(τ(r))

s(r)s′(r)

=
1

s′(r)
= s′(τ(r))

where the last equality follows since s′(r)s′(τ(r)) = (−i2)αj(2ρ
∨
X) = 1. We therefore have

Adr(br) = s′(τ(r))fr − (−1)|X|
s(τ(r))

s′(τ(r))
[e+
X , eτ(r)]

= s′(τ(r))
(
fr − s(τ(r))[e+

X , eτ(r)]
)

= s′(τ(r))br

as required.

We define elements f+
X and f−X similarly to the definitions of e+

X and e−X from (7.9) and
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(7.10) by

f+
X :=

[
fr+1, [fr+2, . . . , [fτ(r+2), fτ(r+1)] . . . ]

]
, (7.16)

f−X :=
[
fτ(r+1), [fτ(r+2), . . . , [fr+2, fr+1] . . . ]

]
. (7.17)

Lemma 7.11. We have

Adr(br−1) =
s′(r)

s(r)

[
br−1, [br, [f

+
X , bτ(r)]]

]
+ s′(r)br−1, (7.18)

Adr(bτ(r−1)) =
s′(τ(r))

s(τ(r))

[
bτ(r−1), [bτ(r), [f

−
X , br]]

]
+ s′(τ(r))bτ(r−1). (7.19)

Proof. Since both alculations are similar, we only consider Adr(br−1). We have

Adr(br−1) = Ad(s) ◦Ad(ς̃r) ◦Ad(s)−1
(
fr−1 − s(τ(r − 1))eτ(r−1)

)
= Ad(s̃)

(
s(r − 1)Ad(ς̃r)(fr−1)− s(τ(r − 1))

s(r − 1)
Ad(ς̃r)(eτ(r−1))

)
.

Repeatedly using Equation (7.12) we obtain

Ad(ς̃r)(fr−1) = Ad(ςτ(r) · · · ςr)(fr−1) =
[
fr−1, [fr, · · · , [fτ(r+1), fτ(r)] · · · ]

]
=
[
fr−1, [fr, [f

+
X , fτ(r)]]

]
,

Ad(ς̃r)(eτ(r−1)) = Ad(ςr · · · ςτ(r))(eτ(r−1)) =
[
er, [e

+
X , [eτ(r), eτ(r−1)]]

]
= −

[
eτ(r−1), [eτ(r), [e

+
X , er]]

]
.

It follows that

Adr(br−1) =
1

s(r)s(τ(r))

[
fr−1, [fr, [f

+
X , fτ(r)]]

]
− s(r)s(τ(r))

[
− s(τ(r − 1))eτ(r−1), [eτ(r), [e

+
X , er]]

]
.

As br−1 = fr−1 − s(τ(r − 1))eτ(r−1) and [ei, fj ] = δijhi for i, j ∈ I we have

Adr(br−1) =
1

s(r)s(τ(r))

[
br−1 + s(τ(r − 1))eτ(r−1), [fr, [f

+
X , fτ(r)]]

]
− s(r)s(τ(r))

[
br−1 − fr−1, [eτ(r), [e

+
X , er]]

]
=
s′(r)

s(r)

[
br−1,

[
fr, [f

+
X , fτ(r)]

]
− s(r)2

s′(r)2

[
eτ(r), [e

+
X , er]

]]
where we use the fact that s(r)s(τ(r)) = s(r)

s′(r) . Since br = fr − s(τ(r))[e+
X , eτ(r)] we have

Adr(br−1) =
s′(r)

s(r)

[
br−1,

[
br + s(τ(r))[e+

X , eτ(r)], [f
+
X , fτ(r)]

]
+
s(r)2

s′(r)2

[
[e+
X , eτ(r)], er

]]
=
s′(r)

s(r)

[
br−1,

[
br, [f

+
X , fτ(r)]

]
+ s(τ(r))

[
[e+
X , eτ(r)], [f

+
X , fτ(r)]

]
+
s(r)2

s′(r)2

[
[e+
X , eτ(r)], er

]]
.
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Since [e+
X , eτ(r)] = Ad(wX)(eτ(r)) and [f+

X , fτ(r)] = (−1)|X|Ad(wX)(fτ(r)) we rewrite[
[e+
X , eτ(r)], [f

+
X , fτ(r)]

]
= (−1)|X|[Ad(wX)(eτ(r),Ad(wX)(fτ(r))]

= (−1)|X|Ad(wX)(hτ(r))

= (−1)|X|
τ(r)∑
i=r+1

hi.

Hence

Adr(br−1) =
s′(r)

s(r)

[
br−1,

[
br, [f

+
X , fτ(r)]

]
+ s(τ(r))(−1)|X|

τ(r)∑
i=r+1

hi +
s(r)2

s′(r)2

[
[e+
X , eτ(r)], er

]]
.

Finally, we use bτ(r) = fτ(r) − s(r)[e−X , er] and the fact that

[
br−1, s(τ(r))(−1)|X|

τ(r)∑
i=r+1

hi

]
= [br−1, s(r)hτ(r)]

to obtain

Adr(br−1) =
s′(r)

s(r)

[
br−1,

[
br, [f

+
X , bτ(r) + s(r)[e−X , er]]

]
+ s(r)hτ(r) +

s(r)2

s′(r)2

[
[e+
X , eτ(r)], er

]]
.

We have f+
X = Ad(ςτ(r+1) · · · ςr+2)(fr+1) and e−X = Ad(ςτ(r+1) · · · ςr+2)(er+1) which implies[

f+
X , [e

−
X , er]

]
=
[
[f+
X , e

−
X ], er] (7.20)

= [−Ad(ςτ(r+1) · · · ςr+2)(hr+1), er] (7.21)

= −
[ τ(r+1)∑
i=r+1

hi, er

]
= er. (7.22)

Substituting this into the expression for Adr(br−1) and using the fact that

s(r)2

s′(r)2
= (−1)|X|s(r)2 = s(r)s(τ(r))

we hence have

Adr(br−1) =
s′(r)

s(r)

[
br−1,

[
br, [f

+
X , bτ(r)]

]
+ s(r)hτ(r) + s(r)[br, er] +

s(r)2

s′(r)2

[
[e+
X , eτ(r)], er

]]
=
s′(r)

s(r)

[
br−1,

[
br, [f

+
X , bτ(r)]

]
+ s(r)hτ(r) + s(r)[fr, er]

]
=
s′(r)

s(r)

[
br−1, [br, [f

+
X , bτ(r)]]

]
+ s′(r)[br−1, hr + hτ(r)]

=
s′(r)

s(r)

[
br−1, [br, [f

+
X , bτ(r)]]

]
+ s′(r)br−1

as required.
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7.3 Braid group action of Br(WX) on Bc,s

By Lemma 7.6 the construction of the braid group action on k by Lie algebra automor-

phisms is guided by the braid group action of Br(g) on g. We expect a similar connection in

the setting of quantum symmetric pairs. In particular, we use the Lusztig automorphisms

Ti as a guide for constructing a braid group action on Bc,s by algebra automorphisms.

Recall that Ti for i ∈ X give rise to a representation of Br(WX) on Uq(g). We show that

the subalgebra Bc,s of Uq(g) is invariant under Ti for i ∈ X. This implies that there is a

representation of Br(WX) on Bc,s.

We note that although similar, the results of this section were found independently

from [6, Section 4.1].

By Equations (2.66)–(2.72) it follows that Ti(MXU
0
Θ) =MXU

0
Θ. Hence we only need

to compute Ti(Bj) for j ∈ I \X. The following lemma provides the key step.

Lemma 7.12. The relation

TiTwX (Eτ(j)) =

−aij∑
r=0

(−1)rqriF
(r)
i TwX (Eτ(j))K

−1
j F

(−aij−r)
i Kσi(αj) (7.23)

holds for any i ∈ X, j ∈ I \X.

Proof. First observe that for any i ∈ X we have TiTwX = TwXTτ(i) since σiwX = wXστ(i).

Recall from (3.26) that TwX (Eτ(i)) = −FiKi. Using this and Equation (2.69) we have

TiTwX (Eτ(j)) = TwXTτ(i)(Eτ(j))

= TwX

(−aij∑
s=0

(−1)sq−si E
(−aij−s)
τ(i) Eτ(j)E

(s)
τ(i)

)

=

−aij∑
s=0

(−1)s−aijq−si
(
FiKi

)(−aij−s)TwX (Eτ(j))
(
FiKi

)(s)
.

By Relation (Q3) of Definition 2.26 we have KiFi = q−2
i FiKi and hence it follows that(

FiKi

)(s)
= q
−s(s−1)
i F

(s)
i Ks

i

for all i ∈ I. Substituting this into the expression fr TiTwX (Eτ(j)) we obtain

TiTwX (Eτ(j)) =

−aij∑
s=0

(−1)s−aijq
−a2

ij−2saij−2s2−aij−s
i F

(−aij−s)
i K

−aij−s
i TwX (Eτ(j))F

(s)
i Ks

i .

By Relation (Q2) of Definition 2.26 we have

KiTwX (Eτ(j)) = q(αi,wX(ατ(j)))TwX (Eτ(j))Ki.

Since the inner product (−,−) is invariant under wX and τ we have q(αi,wX(ατ(j))) = q
−aij
i .
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Hence

TiTwX (Eτ(j)) =

−aij∑
s=0

(−1)s−aijq
−saij−2s2−aij−s
i F

(−aij−s)
i TwX (Eτ(j))K

−aij−s
i F

(s)
i Ks

i .

As K
−aij
i = Kσi(αj)K

−1
j and Kσi(αj)Fi = q

aij
i FiKσi(αj) we have

TiTwX (Eτ(j)) =

−aij∑
s=0

(−1)s−aijq
−aij−s
i F

(−aij−s)
i TwX (Eτ(j))K

−1
j F

(s)
i Kσi(αj).

The result follows from a change of index by setting r = −aij − s above.

Proposition 7.13. For any i ∈ X we have Ti(Bc,s) = Bc,s.

Proof. By Equation (2.71) and the previous lemma we have

Ti(Bj) =

−aij∑
r=0

(−1)rqriF
(r)
i

(
Bj − sjK−1

j

)
F

(−aij−r)
i + sjK−σi(αj)

for j ∈ I \X. If sj 6= 0 then j ∈ Ins and hence aij = 0. This implies

Ti(Bj) = Bj . (7.24)

On the other hand, if sj = 0, then

Ti(Bj) =

−aij∑
r=0

(−1)rqriF
(r)
i BjF

(−aij−r)
i ∈ Bc,s. (7.25)

Therefore Ti(Bc,s) ⊆ Bc,s. Using the relation T−1
i = σ ◦Ti ◦σ one shows that T−1

i (Bc,s) ⊆
Bc,s and hence Bc,s ⊆ Ti(Bc,s). This implies Ti(Bc,s) = Bc,s as required.

Since the algebra automorphisms Ti satisfy braid relations, the following corollary

follows immediately.

Corollary 7.14. There exists an action of Br(WX) on Bc,s by algebra automorphisms

given by Ti for i ∈ X.

7.4 Braid group action of Br(W̃ ) on Bc,s in type AIII

Recall from Chapter 5 that the algebra automorphisms T̃i = Tσ̃i for i ∈ I \X give rise to a

representation of Br(W̃ ) on Uq(g). The problem we encounter is that T̃i does not restrict

to an algebra automorphism of Bc,s.

Example 7.15. Let g = sl6(C) and consider the Satake diagram

1 2 3 4 5
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Then B1 = F1 − c1s(5)E5K
−1
1 + s1K

−1
1 . However, we have

T̃1(B1) = T1T5(B1) = c1s(5)F5K5K1 −K−1
1 E1 + s1K1

which is not an element of Bc,s.

Recall from Chapter 5 that there is an algebra isomorphism ϕs,s′ : Bc,s → Bc,s′ such

that ϕs,s′(B
c,s
i ) = Bc,s′

i and ϕs,s′ |MXU
0
Θ

= id|MXU
0
Θ

. This implies that we can assume

s = 0. In order to give a corresponding algebra isomorphism for the parameters c ∈ C we

make an additional assumption. More specifically we assume

ci ∈ ±qZ for all i ∈ I \X. (7.26)

It follows from this and Equation (5.4) that

cicτ(i) = q(αi,Θ(αi)−2ρX) for all i ∈ I \X. (7.27)

The following proposition is a general result that holds for all Satake diagrams. Recall

that the subalgebra U0
Θ is generated by the elements {KiK

−1
τ(i) | i ∈ I \X} and {Kj | j ∈

X} ⊂ MX .

Proposition 7.16. Let (X, τ) be any Satake diagram and suppose c, c′ ∈ C satisfy Equa-

tion (5.4) and Condition (7.26). Then the map Ac,c′ : Bc,s → Bc′,s defined by

Ac,c′(B
c,s
i ) = Bc′,s

i for all i ∈ I \X, (7.28)

Ac,c′(KiK
−1
τ(i)) =

c′τ(i)

cτ(i)
KiK

−1
τ(i) for all i ∈ I \X, i 6= τ(i), (7.29)

and Ac,c′ |MX
= id|MX

is an algebra isomorphism.

Proof. To show that Ac,c′ is an algebra homomorphism, we only need to check that all

relations of Bc,s are preserved. By (7.27) we have

Ac,c′(KiK
−1
τ(i))Ac,c′(Kτ(i)K

−1
i ) =

c′τ(i)

cτ(i)

c′i
ci

= 1 = Ac,c′(Kτ(i)K
−1
i )Ac,c′(KiKτ(i)).

Since Ac,c′ rescales elements of U0
Θ and Ac,c′ |MX

= id|MX
we only need to check relation

(3.38). In particular Ac,c′ preserves (3.38) if

Ac,c′(Cij(c)) = Cij(c
′)

for all i, j ∈ I \X. This is immediate by Theorems 3.27 and 3.30 by noting that

Ac,c′(Zi) =
c′i
ci
Zi for all i ∈ I \X

and

Ac,c′(Wij) =
c′i
ci
Wij for all i ∈ I \X, j ∈ X.

The checks for aij = −2 or aij = −3 are done using [3, Theorem 3.7/3.8].
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7.4.1 Generators and relations in type AIII

For the remainder of this chapter, we consider quantum symmetric pairs arising from the

Satake diagram of type AIII

1 r

n − r + 1n

where we assume X 6= ∅. This is the type An example containing black nodes and a

non-trivial diagram automorphism.

Recall from (7.8) that Br(W̃ ) is generated by the elements ς̃i for 1 ≤ i ≤ r since

ς̃i = ς̃τ(i) for any i ∈ I \X. In the type AIII setting the generators ς̃i are given explicitly

by

ς̃i =

ςiςτ(i) if 1 ≤ i < r,

ςrςr+1 · · · ςτ(r) · · · ςr+1ςr if i = r

subject to the relations

ς̃iς̃j = ς̃j ς̃i if aij = 0 and 1 ≤ i, j ≤ r, (7.30)

ς̃iς̃j ς̃i = ς̃j ς̃iς̃j if aij = −1 and 1 ≤ i, j < r, (7.31)

ς̃iς̃j ς̃iς̃j = ς̃j ς̃iς̃j ς̃i if aij = −1 and i = r, j = r − 1. (7.32)

Hence Br(W̃ ) is isomorphic to the braid group of type B in r generators, denoted by

Br(br).

By Conditions (3.10) and (3.11) of s : I → C× we have

s(i) = s(τ(i)) if i ∈ I \ (X ∪ {r, τ(r)}),
s(r) = (−1)|X|s(τ(r)).

We are free to choose s subject to these conditions so we let

s(i) =

(−1)|X| if i = r,

1 otherwise.
(7.33)

By the definition (3.33) and (7.27) we have ci ∈ {±1} for all i ∈ I \ (X ∪ {r, τ(r)}) and

crcτ(r) = q|X|+1. In view of Proposition 7.16 we fix

ci =


1 if i 6= r, τ(r),

q|X| if i = r,

q if i = τ(r).

(7.34)
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For technical reasons also observed in [40] we require the field K(q) to contain the square

roots of q and −1.

Recall from Equation (5.21) the notation Ti−−j and Tj−−i for 1 ≤ i ≤ j ≤ n. In this

setting, Bc = Bc,0 is the subalgebra of Uq(sln+1(C)) generated by

Bi =


Fi − Eτ(i)K

−1
i if i ∈ I \ (X ∪ {r, τ(r)}),

Fr − (−q)|X|Tr+1−−τ(r+1)(Eτ(r))K
−1
r if i = r,

Fτ(r) − qTτ(r+1)−−r+1(Er)K
−1
τ(r) if i = τ(r)

(7.35)

and the elements

Ei, Fi,K
±1
i for i ∈ X,

KiK
−1
τ(i) for i ∈ I \X.

By (3.41) and (2.77) one finds that the elements Zi for i ∈ I \X are given by

Zi =


−(1− q−2)Tr+1−−τ(r+2)(Eτ(r+1))Kτ(r)K

−1
r if i = r,

−(−1)|X|(1− q−2)Tτ(r+1)−−r+2(Er+1)KrK
−1
τ(r) if i = τ(r),

−Kτ(i)K
−1
i otherwise.

(7.36)

By Theorems 3.27 and 3.30 the algebra Bc is generated over MXU
0
Θ by the elements Bi

for i ∈ I \X subject to the relations

BiKjK
−1
τ(j) = q(αj−ατ(j),αi)KjK

−1
τ(j)Bi for i, j ∈ I \X, (7.37)

BiEj − EjBi = 0 for i ∈ I \X, j ∈ X, (7.38)

Fij(Bi, Bj) = δi,τ(j)(q − q−1)−1(ciZi − cjZj) for i, j ∈ I \X, aij = 0, (7.39)

Fij(Bi, Bj) = 0 otherwise. (7.40)

7.4.2 The case |X| = 1

In order to construct an action of Br(W̃ ) on Bc, we first complete the constructions in

small rank cases with |X| = 1 and |X| = 2. We explain this procedure in detail through

the following example.

1 2 3 4 5 6 7

In Theorem 7.22 we show that it is enough to consider this case to obtain a braid group

action in general for |X| = 1. We first note that T̃i(U
0
Θ) = U0

Θ and T̃i|MX
= id|MX

. This

allows us to define

Ti|U0
Θ

= T̃i|U0
Θ
, Ti|MX

= id|MX
(7.41)
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for all i = 1, . . . , r. The generators Bi of Bc are given by

B1 = F1 − E7K
−1
1 , B5 = F5 − q[E4, E3]q−1K−1

5 ,

B2 = F2 − E6K
−1
2 , B6 = F6 − E2K

−1
6 ,

B3 = F3 + q[E4, E5]q−1K−1
3 , B7 = F7 − E1K

−1
7

and the elements Zi are given by

Z1 = −K7K
−1
1 , Z5 = −(1− q−2)E4K3K

−1
5 ,

Z2 = −K6K
−1
2 , Z6 = −K2K

−1
6 ,

Z3 = (1− q−2)E4K5K
−1
3 , Z7 = −K1K

−1
7 .

By evaluating T̃1 = T1T7 on each generator Bi, we obtain an ansatz for T1 by calculating

the summand with the highest order. We use the notation T ′1 to denote this ansatz, and

any updates to this are denoted by T ′′1 , T ′′′1 and so on. We have

T1T7(B1) = −K−1
1 E1 + F7K7K1

with highest order summand F7K7K1. We hence define

T ′1 (B1) = B7.

Calculating similarly we have

T1T7(B2) = [F2, F1]q − [E7, E6]q−1K−1
1 K−1

2 ,

T1T7(B3) = B3,

T1T7(B5) = B5,

T1T7(B6) = [F6, F7]q − [E1, E2]q−1K−1
6 K−1

7 ,

T1T7(B7) = −K−1
7 E7 + F1K1K7

and thus the ansatz for T1 on the generators Bi is

T ′1 (B1) = B7, T ′1 (B5) = B5,

T ′1 (B2) = [B2, B1]q, T ′1 (B6) = [B6, B7]q,

T ′1 (B3) = B3, T ′1 (B7) = B1.

Using the relations of Bc we modify this ansatz. For example, the relation

B1B6 −B6B1 = 0

holds in Bc but we see that

T ′1 (B1)T ′1 (B6)− qT ′1 (B6)T ′1 (B1) = 0.

In order to correct this we observe that

T ′1 (B6)K7K
−1
1 = q−1K7K

−1
1 T ′1 (B6)
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holds by Relation (7.37). This implies that we may correct T ′1 (B1) by setting

T ′′1 (B1) = B7K7K
−1
1 . (7.42)

By symmetry, we also let

T ′′1 (B7) = B1K1K
−1
7 .

With this, we now have the relation

T ′′1 (B1)T ′′1 (B7)− T ′′1 (B7)T ′′1 (B1) = q2(B7B1 −B1B7).

for symmetry reasons we give both T ′′1 (B1) and T ′′(B7) a factor q−1. Similarly, in view of

the relation

B2B6 −B6B2 = (q − q−1)−1(Z2 −Z6)

one finds that

T ′1 (B2)T ′1 (B6)− T ′1 (B6)T ′1 (B2) = q(q − q−1)−1(T1T7(Z2)− T1T7(Z6)

holds in Bc and hence we choose to give T ′1 (B2) and T ′1 (B6) a factor q−1/2 each. Putting

this together we define

T1(Bi) =



q−1Bτ(i)Kτ(i)K
−1
i if i = 1, 7,

q−1/2[B2, B1]q if i = 2,

q−1/2[B6, B7]q if i = 6,

Bi if i = 3, 5.

(7.43)

Proposition 7.17. Let r = 3 and X = {4}.

(1) There exists a unique algebra automorphism T1 of Bc such that T1(Bi) is given by

(7.43) for i ∈ I \X and T1|MXU
0
Θ

= T1T7|MXU
0
Θ

.

(2) The inverse automorphism T −1
1 of Bc is defined by

T −1
1 (Bi) =



qBτ(i)KiK
−1
τ(i) if i = 1, 7,

q−1/2[B1, B2]q if i = 2,

q−1/2[B7, B6]q if i = 6,

Bi if i = 3, 5.

(7.44)

with T −1
1 |MXU

0
Θ

= T−1
1 T−1

7 |MXU
0
Θ

.

Sketch of proof. The proof is given by direct calculation using the package QUAGROUP under

GAP using the file A7_oneblacknode.txt contained in [24]. First we define the generators

of Bc and check that the defining relations are satisfied. We then check that the images

T1(Bj) and T −1
1 (Bj) also satisfy the relations which implies that T1 and T −1

1 are well-

defined algebra endomorphisms of Bc. Finally, we confirm that T1 and T −1
1 are mutual
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inverses to one another by showing T1T −1
1 (Bj) = T −1

1 T1(Bj) for all j ∈ I \X.

Remark 7.18. The algebra automorphism T1 has already been observed in [40, Theo-

rems 4.3 and 4.6] when |X| = 0. The main difference is [40, Equation (4.6)] which considers

the case aij = −1 and aτ(i)j = −1. This condition does not appear in the current setting

since |X| 6= ∅. It is hence reasonable to expect that the algebra automorphisms Ti for

i < r have the same form. This is so since the automorphisms T̃i that we use to guide our

constructions do not depend on X for i < r.

Taking the above remark into account we define

T2(Bi) =


q−1Bτ(i)Kτ(i)K

−1
i if i = 2, 6,

q−1/2[B2, Bi]q if i = 1, 3,

q−1/2[B6, Bi]q if i = 5, 7.

(7.45)

The following proposition also requires the use of GAP, as in the sketch proof of Proposition

7.17. This is also contained in the file A7_oneblacknode.txt in [24].

Proposition 7.19. Let r = 3 and X = {4}.

(1) There exists a unique algebra automorphism T2 of Bc such that T2(Bi) is given by

(7.45) for i ∈ I \X and T2|MXU
0
Θ

= T2T6|MXU
0
Θ

.

(2) The inverse automorphism T −1
2 of Bc is given by

T −1
2 (Bi) =


qBτ(i)KiK

−1
τ(i) if i = 2, 6,

q−1/2[Bi, B2]q if i = 1, 3,

q−1/2[Bi, B6]q if i = 5, 7.

(7.46)

and T −1
2 |MXU

0
Θ

= T−1
2 T−1

6 |MXU
0
Θ

.

We now construct the algebra automorphism T3, using the Lusztig automorphism

T34543 = T3T4T5T4T3 as a starting point. Since

T34543(F2) =
[
F2, [F3, [F4, F5]q]q

]
q

and

T34543(F6) =
[
F6, [F5, [F4, F3]q]q

]
q

we obtain the ansatz

T ′3 (B1) = B1, T ′3 (B5) = B5,

T ′3 (B2) =
[
B2, [B3, [B4, B5]q]q

]
q
, T ′3 (B6) =

[
B6, [B5, [B4, B3]q]q

]
q
,

T ′3 (B3) = B3, T ′3 (B7) = B7.
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The automorphism T34543 acts as the identity on B1 and B7 so we expect that no correc-

tions need to be made to T ′3 (B1) and T ′3 (B7). In order to improve the ansatz for T ′3 , GAP

is used directly to check relations. Such checks are not shown in our files. In view of the

relation B2E4 − E4B2 we find that

T ′3 (B2)E4 − E4T ′3 (B2) = s(3)c5q
(
E4B2K3K

−1
5 K−1

4 −B2K3K
−1
5 K−1

4 E4

)
.

Here we keep note of ci and s(i) in order to make clear the dependence on the parameters.

Rearranging the above equality we have(
T ′3 (B2) + s(3)c5qB2K3K

−1
5 K−1

4

)
E4 = E4

(
T ′3 (B2) + s(3)c5qB2K3K

−1
5 K−1

4

)
.

Following this, we update the ansatz by letting

T ′′3 (B2) = T ′3 (B2) + qs(3)c5B2K3K
−1
5 K−1

4 .

Similarly we let

T ′′3 (B6) = T ′3 (B6) + qs(5)c3B6K5K
−1
3 K−1

4 .

We now consider the relation B2B5 −B5B2 = 0. In view of this we have

qT ′′3 (B2)T ′3 (B5)− T ′3 (B5)T ′′3 (B2) = 0.

Similar to the reasoning used to define T ′′1 (B1) in Equation (7.42) we let

T ′′3 (B5) = B5K5K
−1
3

and symmetrically, we define

T ′′3 (B3) = B3K3K
−1
5

Finally, comparing with the relations

B3B5 −B5B3 = (q − q−1)−1(qZ3 − qZ5),

B2B6 −B6B2 = (q − q−1)−1(Z2 −Z6)

we see that

T ′′3 (B3)T ′′3 (B5)− T ′′3 (B5)T ′′3 (B3) = q−2(q − q−1)−1(qT̃3(Z3)− qT̃3(Z5)),

T ′′3 (B2)T ′′3 (B6)− T ′′3 (B6)T ′′3 (B2) = −q−3(q − q−1)−1(T̃3(Z2)− T̃3(Z6)).

Hence we give T ′′3 (B3) and T ′′3 (B5) a factor q−1 each, whilst both T ′′3 (B2) and T ′′3 (B6) are

given a factor
√
−1 q−3/2.

Proposition 7.20. Let r = 3 and X = {4}.
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(1) There exists a unique algebra automorphism T3 of Bc such that

T3(Bi) =



Bi if i = 1, 7,
√
−1 q−3/2

([
B2, [B3, [B4, B5]q]q

]
q

+ s(3)c5qB2K3K
−1
5 K−1

4

)
if i = 2,

√
−1 q−3/2

([
B6, [B5, [B4, B3]q]q

]
q

+ s(5)c3qB6K5K
−1
3 K−1

4

)
if i = 6,

q−1BiKiK
−1
τ(i) if i = 3, 5

(7.47)

with T3|MXU
0
Θ

= T̃3|MXU
0
Θ

.

(2) The inverse automorphism T −1
3 of Bc is given by

T −1
3 (Bi) =



Bi if i = 1, 7,
√
−1 q−3/2

([
B5, [B4, [B3, B2]q]q

]
q

+ s(5)c3B2K5K
−1
3 K−1

4

)
if i = 2,

√
−1 q−3/2

([
B3, [B4, [B5, B6]q]q

]
q

+ s(3)c5B6K3K
−1
5 K−1

4

)
if i = 6,

qBiKτ(i)K
−1
i if i = 3, 5

(7.48)

with T −1
3 |MXU

0
Θ

= T̃−1
3 |MXU

0
Θ

.

(3) The algebra automorphisms Ti satisfy the braid relations (7.30), (7.31) and (7.32).

Sketch of proof. Parts (1) and (2) proceed in the same way as in the proof of Proposition

7.17 with the disclaimer that computations that involve the terms T3(B2), T3(B6), T −1
3 (B2)

or T −1
3 (B6) tend to take a few days to complete. For this reason, these checks are included

at the end of the file A7_oneblacknode.txt. To prove part (3), we verify the braid

relations on each generator Bi. Since the element q1/2 can not be defined in QUAGROUP

we track where half powers appear in our constructions. This has the effect of adding in

extra powers of q. In order to cut the computation time down, we make the observation

that T2T3(Bi) = T −1
3 (Bτ(i)) for i = 2, 6.

We now consider the case of general r with |X| = 1. For 1 ≤ i ≤ r − 1 define

Ti(Bj) =



q−1Bτ(j)Kτ(j)K
−1
j if j = i or j = τ(i),

q−1/2[Bj , Bi]q if aij = −1,

q−1/2[Bj , Bτ(i)]q if aτ(i)j = −1,

Bj if aij = 0 and aτ(i)j = 0.

(7.49)

Theorem 7.21. Let 1 ≤ i ≤ r − 1 and X = {r + 1}.

(1) There exists a unique algebra automorphism Ti of Bc such that Ti(Bj) is given by

(7.49) for j ∈ I \X and Ti|MXU
0
Θ

= TiTτ(i)|MXU
0
Θ

.
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(2) The inverse automorphism T −1
1 is given by

T −1
i (Bj) =



qBτ(j)KjK
−1
τ(j) if j = i or j = τ(i),

q−1/2[Bi, Bj ]q if aij = −1,

q−1/2[Bτ(i), Bj ]q if aτ(i)j = −1,

Bj if aij = 0 and aτ(i)j = 0.

(7.50)

and T −1
i |MXU

0
Θ

= T−1
i T−1

τ(i)|MXU
0
Θ

.

(3) The relation TiTi+1Ti = Ti+1TiTi+1 holds for 1 ≤ i ≤ r − 2. Further, the relation

TiTj = TjTi holds if aij = 0.

It remains to construct the algebra automorphism Tr. For j ∈ I \X define

Tr(Bj) =



Bj if arj = 0 and aτ(r)j = 0,
√
−1 q−3/2

([
Bj , [Br, [Br+1, Br+2]q]q

]
q

+ s(r)cr+2qBjKrK
−1
r+2K

−1
r+1

)
if arj = −1,

√
−1 q−3/2

([
Bτ(j), [Br+2, [Br+1, Br]q]q

]
q

+ s(r+2)crqBτ(j)Kr+2K
−1
r K−1

r+1

)
if aτ(r)j = −1,

q−1BjKjK
−1
τ(j) if j = r or j = τ(r).

(7.51)

Theorem 7.22. Let X = {r + 1}.

(1) There exists a unique algebra automorphism Tr of Bc such that Tr(Bj) is given by

(7.51) for j ∈ I \X and Tr|MXU
0
Θ

= T̃r|MXU
0
Θ

.

(2) The inverse automorphism T −1
r is given by

T −1
r (Bj) =



Bj if arj = 0 and aτ(r)j = 0,
√
−1 q−3/2

([
Br+2, [Br+1, [Br, Bj ]q]q

]
q

+ s(r+2)crBjKr+2K
−1
r K−1

r+1

)
if arj = −1,

√
−1 q−3/2

([
Br, [Br+1, [Br+2, Bτ(j)]q]q

]
q

+ s(r)cr+2Bτ(j)KrK
−1
r+2K

−1
r+1

)
if aτ(r)j = −1,

qBjKτ(j)K
−1
j if j = r or j = τ(r).

(7.52)

(3) The relation TrTr−1TrTr−1 = Tr−1TrTr−1Tr holds. Additionally, the relations TrTi =

TiTr hold for ari = 0 with 1 ≤ i < r..

Sketch of proof. We explain why it suffices to consider the case r = 3. In this case by

Proposition 7.17 and Proposition 7.19, T1 and T2 are algebra automorphisms with inverses

T −1
1 and T −1

2 , respectively. This implies that Ti and T −1
i are mutually inverse algebra
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automorphisms for general r and 1 ≤ i ≤ r − 1 through an appropriate relabelling of

indices. Similarly, when r = 3 Proposition 7.20 implies that T3 and T −1
3 are mutually

inverse algebra automorphisms. It follows that Tr and T −1
r are mutually inverse algebra

automorphisms in the general case. The braid relations for r = 3 imply the braid relations

for general r. The result for r = 1 or r = 2 follows by noting that these cases embed into

the case r = 3.

7.4.3 The case |X| = 2

In the case |X| ≥ 2 it is necessary to use a larger Hopf algebra than Uq(g) which we

construct be enlarging the group algebra U0. For i ∈ I let $i ∈ h∗ denote the ith

fundamental weight. Recall that the fundamental weights have the property that $i(hj) =

δij for all i, j ∈ I. Let P =
∑

i∈I Z$i denote the weight lattice. Recall from Section 2.2.3

the completion U of Uq(g). For any λ ∈ P define Kλ ∈ U to be the element such that

Kλ · vµ = q(λ,µ)vµ for all weight vectors vµ of weight µ. With respect to the left adjoint

action we have

K$iEj = qδijEjK$i ,

K$iFj = q−δijFjK$i

for all i, j ∈ I. Let Ǔ0 denote the subalgebra of U generated by {Kλ | λ ∈ P}. As in

[46, Section 1] we define Ǔq(g) to be the Hopf subalgebra of U generated by Uq(g) and

Ǔ0. Let PΘ = {λ ∈ P | Θ(λ) = λ}. Denote by Ǔ0
Θ the subalgebra of Ǔ0 generated by the

elements {Kλ | λ ∈ PΘ}. We extend the right coideal subalgebra to a larger subalgebra

by including the elements Kλ ∈ Ǔ0
Θ . In the current setting, we can define such elements

explicitly.

Lemma 7.23. Let g = sln+1(C). For any i ∈ I we have

Θ($i −$τ(i)) = $i −$τ(i). (7.53)

Proof. The proof is similar to that of 3.11 by noting that σj($i) = $i − δij(αj) for all

i, j ∈ I and hence wX($i)−$i ∈ QX for any i ∈ I.

We define B̌c to be the subalgebra of Ǔq(g) generated byMX , Ǔ0
Θ and the elements Bi

for i ∈ I. This is also a right coideal subalgebra of Uq(g) and contains Bc as a subalgebra.

If λ ∈ PΘ then for any i ∈ I \X we have

Θ(σ̃i(λ)) = −wX ◦ τ ◦ wX∪{i,τ(i)}wX(λ)

= σ̃i ◦ −τ ◦ wX(λ) = σ̃i ◦Θ(λ)

= σ̃i(λ).
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It hence follows that T̃i(Ǔ
0
Θ) = Ǔ0

Θ. We now repeat our constructions from the previous

section in the case |X| = 2. For 1 ≤ i ≤ r − 1 we define algebra automorphisms T̃i

of B̌c following the construction of Theorem 7.21. All that remains is to construct the

algebra automorphism Tr. Here, the elements K$i−$τ(i)
∈ Ǔ0

Θ play a crucial role in our

constructions. To shorten notation we write

$′i = $i −$τ(i) (7.54)

for i ∈ I. We define

Tr(Bj) =



q−1BrKrK
−1
r+3K$′r+1

if j = r,

q−1Br+3Kr+3K
−1
r K$′r+2

if j = r + 3,

q−2
([
Br−1, [Br, [[Fr+1, Fr+2]q, Br+3]q]q

]
q

+ s(r)cr+3qBr−1KrK
−1
r+3K

−1
r+1K

−1
r+2

)
if j = r − 1,

q−2
([
Br+4, [Br+3, [[Fr+2, Fr+1]q, Br]q]q

]
q

+ s(r + 3)crqBr+4Kr+3K
−1
r K−1

r+1K
−1
r+2

)
if j = r + 4,

Bj if ajr = 0 and aj(r+3) = 0.

(7.55)

Theorem 7.24. (1) There exists a unique algebra automorphism Tr of B̌c such that

Tr(Bi) is given by Equation (7.55) and Tr|MX Ǔ
0
Θ

= T̃r|MX Ǔ
0
Θ

.

(2) The inverse automorphism T −1
r is given by

T −1
r (Bj) =



qBrKr+3K
−1
r K$′r+2

if j = r,

qBr+3KrK
−1
r+3K$′r+1

if j = r + 3,([
Br+3, [[Fr+2, Fr+1]q, [Br, Br−1]q]q

]
q

+ s(r)cr+3Br−1Kr+3K
−1
r K−1

r+1K
−1
r+2

)
if j = r − 1,([

Br, [[Fr+1, Fr+2]q, [Br+3, Br+4]q]q
]
q

+ s(r + 3)crBr+4KrK
−1
r+3K

−1
r+1K

−1
r+2

)
if j = r + 4,

Bj if ajr = 0 and aj(r+3) = 0

(7.56)

and T −1
r |MX Ǔ

0
Θ

= T̃−1
r |MX Ǔ

0
Θ

.

(3) The relation TrTr−1TrTr−1 = Tr−1TrTr−1Tr holds. Additionally the relations TrTi =

TiTr hold for air = 0.

The proof is the same as that for Theorem 7.22 where we now consider the case n = 8

and r = 3. This is performed in the GAP file A8_twoblacknodes.txt contained in [24]. As

in the n = 7 case of the previous section, we make the disclaimer that the time it takes to

compute with T3 or T −1
3 is in the order of days.
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Observe that we require the elements K$′r+1
in order that the relations between Tr(Bj)

and elements of MX hold for j = r, r + 3. For instance, defining Tr(Br) = q−1BrKrK
−1
τ(r)

is incorrect here, since then Tr(Br) does not commute with Er+1.

An important point to mention is that the GAP file does not include the elements K$′i
.

The reason for this is that we require fractional powers in order to define K$′i
as a product

of Kj ’s for j ∈ I, which we can not do using QUAGROUP. However, in view of the fact that

K$′r+1
commutes with Tr(Bi) for all i ∈ I \X it is not necessary to include these elements

in GAP. As a result of this, we no longer check the relations between Tr(Bj) and elements

of MX for j = r, r + 3.

Remark 7.25. Introducing the additional elements K$′i
does not lead to any consistency

issues in the case where X = ∅ with n odd [40] and the case |X| = 1 from Theorem 7.22.

In both cases we have K$′r+1
= 1 and hence we should not expect to see these elements

appear.

7.4.4 The general case

The major difference between the results of [40] and the current setting is that GAP can

not be used in order to construct a braid group action of Br(br) on Bc in general. The

reason for this is that GAP begins to encounter memory problems when n ≥ 9. Based on

the completion times of the files A7_oneblacknode.txt and A8_twoblacknodes.txt, this

is to be expected. As a result GAP can, at best, only provide a braid group action for

|X| ≤ 2. For 1 ≤ i ≤ r − 1 define

Ti(Bj) =



q−1Bτ(j)Kτ(j)K
−1
j if j = i or j = τ(i),

q−1/2[Bj , Bi]q if aij = −1,

q−1/2[Bj , Bτ(i)]q if aτ(i)j = −1,

Bj if aij = 0 and aτ(i)j = 0.

(7.57)

The construction of Ti from 7.21 does not depend on X and hence implies the following

theorem, also seen in [40, Theorem 4.6].

Theorem 7.26. Let 1 ≤ i ≤ r − 1 and X = {r + 1}.

(1) There exists a unique algebra automorphism Ti of Bc such that Ti(Bj) is given by

(7.49) for j ∈ I \X and Ti|MXU
0
Θ

= TiTτ(i)|MXU
0
Θ

.
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(2) The inverse automorphism T −1
i is given by

T −1
i (Bj) =



qBτ(j)KjK
−1
τ(j) if j = i or j = τ(i),

q−1/2[Bi, Bj ]q if aij = −1,

q−1/2[Bτ(i), Bj ]q if aτ(i)j = −1,

Bj if aij = 0 and aτ(i)j = 0.

(7.58)

and T −1
i |MXU

0
Θ

= T−1
i T−1

τ(i)|MXU
0
Θ

.

(3) The relation TiTi+1Ti = Ti+1TiTi+1 holds for 1 ≤ i ≤ r − 2. Further, the relation

TiTj = TjTi holds if aij = 0.

In order to define Tr, we introduce the following notation in the spirit of (7.16) and

(7.17). For a subset J = {i, i+ 1, . . . , j} of I with i ≤ j define

F+
J =

[
Fi, [Fi+1, . . . [Fj−1, Fj ]q . . . ]q

]
q
, (7.59)

F−J =
[
Fj , [Fj−1, . . . [Fi+1, Fi]q . . . ]q

]
q
. (7.60)

Additionally, let

KJ = KiKi+1 · · ·Kj−1Kj . (7.61)

Using Theorem 7.22 and 7.24 as a guide we define

Tr(Bj) =



q−1BrKrK
−1
τ(r)K$′r+1

if j = r,

q−1Bτ(r)Kτ(r)K
−1
r K$′

τ(r+1)
if j = τ(r),

C
([
Br−1, [Br, [F

+
X , Bτ(r)]q]q

]
q

+ s(r)cτ(r)qBr−1KrK
−1
τ(r)K

−1
X

)
if j = r − 1,

C
([
Bτ(r−1), [Bτ(r), [F

−
X , Br]q]q

]
q

+ s(τ(r))crqBτ(r−1)Kτ(r)K
−1
r K−1

X

)
if j = τ(r − 1),

Bj if ajr = 0 and ajτ(r) = 0.

(7.62)

where

C =

iq−3/2 if |X| odd,

q−2 if |X| even.
(7.63)

In view of the relations

Br−1Bτ(r−1) −Bτ(r−1)Br−1 = (q − q−1)−1(cr−1Zr−1 − cτ(r−1)Zτ(r−1)),

B2
r−1Br − (q + q−1)Br−1BrBr−1 +BrB

2
r−1 = 0

the following is presented as a conjecture.

Conjecture 7.27. Suppose (X, τ) is a Satake diagram of type AIII with X = {r +

1, . . . , τ(r + 1)} and r ≤ dn2 e − 1.
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(1) There is a unique algebra automorphism Tr of B̌c such that Tr(Bj) is defined by

(7.62) and Tr|MX Ǔ
0
Θ

= T̃r|MX Ǔ
0
Θ

.

(2) The inverse automorphism T −1
r is given by

T −1
r (Bj) =



qBrKτ(r)K
−1
r K$′

τ(r+1)
if j = r,

qBτ(r)KrK
−1
τ(r)K$′r+1

if j = τ(r),

C
([
Bτ(r), [F

−
X , [Br, Br+1]q]q

]
q

+ s(τ(r))crBr−1Kτ(r)K
−1
r K−1

X

)
if j = r − 1,

C
([
Br, [F

+
X , [Bτ(r), Bτ(r−1)]q]q

]
q

+ s(r)cτ(r)Bτ(r−1)KrK
−1
τ(r)K

−1
X if j = τ(r − 1),

Bj if ajr = 0 and ajτ(r) = 0

(7.64)

and T −1
r |MX Ǔ

0
Θ

= T̃−1
r |MX Ǔ

0
Θ

.

Assuming that Conjecture 7.27 holds we obtain the following theorem which is the

generalisation of part (3) of Theorem 7.22 and Theorem 7.24.

Theorem 7.28. Let (X, τ) be a Satake diagram of type AIII with X 6= ∅. If Conjec-

ture 7.27 is satisfied then the relation TrTr−1TrTr−1 = Tr−1TrTr−1Tr holds. Further, the

relations TrTi = TiTr hold for any i < r − 1.

The proof of Theorem 7.28 requires many calculations so it is given in Section 7.4.5.

Corollary 7.29. Suppose (X, τ) is a Satake diagram of type AIII with X = {r + 1, r +

2, . . . , τ(r + 1)} and r ≤ dn2 e − 1. If Conjecture 7.27 then there is a braid group action of

Br(W̃ ) on B̌c by algebra automorphisms given by Ti for i ∈ I \X.

7.4.5 Proof of Theorem 7.28

Since Tj |MX Ǔ
0
Θ

= T̃j |MX Ǔ
0
Θ

for all j ∈ I \X it follows that the braid relations of Theorem

7.28 hold on elements of MX Ǔ
0
Θ. It hence suffices to check the relations on the elements

Bi for i ∈ I \X. We first check that the relation TrTi = TiTr holds for all 1 ≤ i ≤ r − 2.

Proposition 7.30. For 1 ≤ i ≤ r − 2 and j ∈ I \X the relation

TrTi(Bj) = TiTr(Bj) (7.65)

holds.

Proof. By symmetry, we only check (7.65) for 1 ≤ j ≤ r. We do this by a case-by-case

analysis.
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Case 3. aij = 0, ajr = 2.

In this case we have j = r and Ti(Br) = Br. This implies

TrTi(Br) = Tr(Br) = q−1BrKrK
−1
τ(r)K$′r+1

= TiTr(Br)

as required.

Case 4. aij = 0, ajr = −1.

Then j = r − 1 and we have

TrTi(Br−1) = Tr(Br−1) = TiTr(Br−1).

Case 5. aij = 0, ajr = 0.

Then Tr(Bj) = Bj and Ti(Bj) = Bj so the statement of the proposition holds in this case.

Case 6. aij = −1, ajr = 0.

Then Tr(Bj) = Bj and Ti(Bj) = q−1/2[Bj , Bi]q. Hence

TrTi(Bj) = q−1/2[Tr(Bj), Tr(Bi)]q
= q−1/2[Bj , Bi]q = TiTr(Bj).

Case 7. aij = −1, ajr = −1.

This case only occurs if i = r − 2 and j = r − 1. We have

Tr−2Tr(Br−1) = CTr−2

([
Br−1, [Br, [F

+
X , Bτ(r)]q]q

]
q

+ s(r)cτ(r)qBr−1KrK
−1
τ(r)K

−1
X

)
= q−1/2C

([
[Br−1, Br−2]q, [Br, [F

+
X , Bτ(r)]q]q

]
q

+ s(r)cτ(r)q[Br−1, Br−2]qKrK
−1
τ(r)K

−1
X

)
= q−1/2C

([
[Br−1, [Br, [F

+
X , Bτ(r)]q]q]q, Br−2

]
q

+ s(r)cτ(r)q[Br−1KrK
−1
τ(r)K

−1
X , Br−2]q

)
= q−1/2[Tr(Br−1), Tr(Br−2)]q

= TrTr−2(Br−1).

Case 8. aij = 2.

Then j = i. We have Tr(Bi) = Bi and Tr(Ti(Bi)) = Ti(Bi) which implies

TrTi(Bi) = TiTr(Bi)

as required.

We now check that the relations

TrTr−1TrTr−1(Bj) = Tr−1TrTr−1Tr(Bj)
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hold for all j ∈ I \X. Again by symmetry, we need only consider 1 ≤ j ≤ r. Many of the

remaining claims in this section require the use of relations that are proved in Appendix A.

The following lemma is immediate since Tr(Bj) = Bj and Tr−1(Bj) = Bj for 1 ≤ j < r−2.

Lemma 7.31. For 1 ≤ j < r − 2 the relation

TrTr−1TrTr−1(Bj) = TrTr−1TrTr−1(Bj) (7.66)

holds.

Hence we need only consider the cases when j ∈ {r − 2, r − 1, r}. By (A.9) we have

Tr−1Tr(Br−1) = T −1
r (Bτ(r−1)).

Proposition 7.32. The relation

TrTr−1TrTr−1(Br−1) = Tr−1TrTr−1Tr(Br−1) (7.67)

holds.

Proof. Using Equation (A.9) we have

TrTr−1TrTr−1(Br−1) = TrTr−1Tr(q−1Bτ(r−1)Kτ(r−1)K
−1
r−1)

= q−1Br−1Kr−1K
−1
τ(r−1)

= Tr−1(Bτ(r−1))

and hence (7.67) holds.

We now consider the case j = r−2. By Lemma A.5 the element [Br−1, T −1
r (Bτ(r−1))]q

is invariant under Tr.

Proposition 7.33. The relation

TrTr−1TrTr−1(Br−2) = Tr−1TrTr−1Tr(Br−2) (7.68)

holds.

Proof. On one hand, we have

TrTr−1TrTr−1(Br−2) = TrTr−1Tr
(
q−1/2[Br−2, Br−1]q

)
= TrTr−1

(
q−1/2[Br−2, Tr(Br−1)]q

)
= Tr

(
q−1[[Br−2, Br−1]q, Tr−1Tr(Bτ(r−1))]q

)
.

Again by Equation (A.9) it follows that

TrTr−1TrTr−1(Br−2) = q−1[[Br−2, Tr(Br−1)]q, Bτ(r−1)]q

= q−1[Br−2, [Tr(Br−1), Bτ(r−1)]q]q
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where the last equality follows since Br−2 commutes with Bτ(r−1). On the other hand we

obtain

Tr−1TrTr−1Tr(Br−2) = Tr−1TrTr−1(Br−2)

= q−1[[Br−2, Br−1]q, T −1
r (Bτ(r−1))]q.

Since Bτ(r−1) commutes with Tr(Br−2) it follows that

Br−2T −1
r (Bτ(r−1)) = T −1

r (Bτ(r−1))Br−2.

This and Lemma A.5 imply

Tr−1TrTr−1Tr(Br−2) = q−1[Br−2, [Br−1, T −1
r (Bτ(r−1))]q]q

= q−1[Br−2, [Tr(Br−1), Bτ(r−1)]q]q

= TrTr−1TrTr−1(Br−2)

which proves the claim of the proposition.

All that remains now is to consider the element Br.

Proposition 7.34. The relation

TrTr−1TrTr−1(Br) = Tr−1TrTr−1Tr(Br) (7.69)

holds.

Proof. We consider the right hand side of (7.69) first. We have

Tr−1TrTr−1Tr(Br)
= q−1Tr−1TrTr−1(BrKrK

−1
τ(r)K$′r+1

)

= q−3/2Tr−1Tr([Br, Br−1]q)KrK
−1
τ(r)K$′r+1

= q−5/2Tr−1([BrKrK
−1
τ(r)K$′r+1

, Tr(Br−1)]q)KrK
−1
τ(r)K$′r+1

= q−3
[
[Br, Br−1]qKrK

−1
τ(r)Kr−1K

−1
τ(r−1)K$′r+1

, T −1
r (Bτ(r−1))

]
q
KrKτ(r)K$′r+1

Using Relation 7.37 and noting that K$′r+1
commutes with T−1

r (Bτ(r−1)) we have

Tr−1TrTr−1Tr(Br) = q−2
[
[Br, Br−1]q, T −1

r (Bτ(r−1))
]
q
K2
rK
−2
τ(r)Kr−1K

−1
τ(r−1)K

2
$′r+1

.

Using (A.11) and the fact that [Br, T −1
r (Bτ(r−1))]q−1 = 0 by we obtain[

[Br, Br−1]q, T −1
r (Bτ(r−1))

]
q

=
[
Br, [Br−1, T −1

r (Bτ(r−1))]q
]

=
[
Br, [Tr(Br−1), Bτ(r−1)]q

]
.

It hence follows that

Tr−1TrTr−1Tr(Br) = q−2
[
Br, [Tr(Br−1), Bτ(r−1)]q

]
K2
rK
−2
τ(r)Kr−1K

−1
τ(r−1)K

2
$′r+1

.
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Considering now the left hand side of (7.69) we obtain

TrTr−1TrTr−1(Br)

= q−1/2TrTr−1Tr([Br, Br−1]q)

= q−3/2TrTr−1([BrKrK
−1
τ(r)K$′r+1

.Tr(Br−1)]q)

= q−2Tr
([

[Br, Br−1]qKrK
−1
τ(r)Kr−1K

−1
τ(r−1)K$′r+1

, T −1
r (Bτ(r−1))

]
q

)
= q−2

[
[BrKrK

−1
τ(r)K$′r+1

, Tr(Br−1)]q, Bτ(r−1)

]
KrK

−1
τ(r)Kr−1K

−1
τ(r−1)K$′r+1

= q−2
[
Br, [Tr(Br−1), Bτ(r−1)]q

]
K2
rK

2
τ(r)Kr−1K

−1
τ(r−1)K

2
$′r+1

= Tr−1TrTr−1Tr(Br)

as required.

The results of this section imply Theorem 7.28.

7.5 The action of Br(WX)×Br(W̃ ) on B̌c in type AIII

We now combine the results of Section 7.3 and Section 7.4 to give a quantum analogue of

the action of Br(WX)×Br(W̃ ) on k by Lie algebra automorphisms established in Lemma

7.6 when we consider Satake diagrams of type AIII.

Theorem 7.35. Let g = sln+1(C) and (X, τ) a Satake diagram of type AIII such that

|X| = 1 or |X| = 2. Then there exists an action of Br(WX) × Br(W̃ ) on B̌c by algebra

automorphisms. The action of Br(WX) on B̌c is given by the Lusztig automorphisms Ti

for i ∈ X and the corresponding action of Br(W̃ ) is given by the algebra automorphisms

Ti for 1 ≤ i ≤ r given by Theorem 7.26 and the formulas (7.62).

Conjecture 7.36. The statement of Theorem 7.35 above holds for all |X| ≥ 1.

In order to prove Theorem 7.35 it suffices by Corollary 7.14 and Corollary 7.29 to

show that the actions of Br(WX) and Br(W̃ ) on B̌c commute. The remainder of this

section shows this by casework on the elements of B̌c. We work in the general setting with

|X| ≥ 1. As a result of this it follows that if Conjecture 7.27 holds then also Conjecture

7.36 holds.

Lemma 7.37. If x ∈MX Ǔ
0
Θ then TiTj(x) = TjTi(x) for all j ∈ X and 1 ≤ i ≤ r.

Proof. Recall that Ti|MX Ǔ
0
Θ

= T̃i|MX Ǔ
0
Θ

for all 1 ≤ i ≤ r. If i ≤ r − 1 then Ti|MX Ǔ
0
Θ

=

TiTτ(i)|MX Ǔ
0
Θ

commutes with Tj for any j ∈ X. If i = r then T̃r|MX Ǔ
0
Θ

= id|MX Ǔ
0
Θ

and

hence there is nothing to show in this case.

By symmetry it is enough to show

TiTj(Bk) = TjTi(Bk)
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for 1 ≤ i ≤ r, j ∈ X and 1 ≤ k ≤ r.

Lemma 7.38. If 1 ≤ i ≤ r − 1 and j ∈ X \ {r + 1} then the relation

TiTj(Bk) = TjTi(Bk)

holds for all 1 ≤ k ≤ r.

Proof. We have Tj(Bk) = Bk for all j ∈ X \ {r + 1} and 1 ≤ k ≤ r. By the definition

(7.57) of Ti the statement of the lemma follows.

Lemma 7.39. If 1 ≤ i ≤ r − 1 then

TiTr+1(Bk) = Tr+1Ti(Bk)

holds for all 1 ≤ k ≤ r.

Proof. By Equation (7.25) we have

Tr+1(Bk) =

Bk if 1 ≤ k ≤ r − 1,

[Br, Fr+1]q if k = r.

There are three cases to consider, depending on the value of aik. If aik = 0, then Ti(Bk) =

Bk for all 1 ≤ k ≤ r and hence the claim follows. If aik = −1 then Ti(Bk) = q−1/2[Bk, Bi]q

which implies that we need only check the claim when k = r and i = r − 1. We obtain

Tr+1Tr−1(Br) = q−1/2Tr+1([Br, Br−1]q)

= q−1/2[[Br, Fr+1]q, Br−1]q

= q−1/2[[Br, Br−1]q, Fr+1]q = Tr−1Tr+1(Br)

since Br−1 commutes with Fr+1.

Finally, if aik = 2 the result follows immediately since Ti(Bi) = q−1Bτ(i)Kτ(i)K
−1
i is

invariant under Tr+1.

Lemma 7.38 and Lemma 7.39 imply that

TiTj(Bk) = TjTi(Bk)

for all 1 ≤ i ≤ r − 1, j ∈ X and 1 ≤ k ≤ r. All that remains is the case i = r.

Lemma 7.40. For all j ∈ X and 1 ≤ k ≤ r with k 6= r − 1, the relation

TrTj(Bk) = TjTr(Bk)

holds.

Proof. For 1 ≤ k ≤ r − 2 both Tj and Tr act as the identity on Bk so there is nothing to

show. Suppose that k = r. Then

Tr(Br) = q−1BrKrK
−1
τ(r)K$r+1−$τ(r+1)

.
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Let λ = αr−ατ(r) +$r+1−$τ(r+1). Since αr = −$r+1 +2$r−$r−1 it follows (αj , λ) = 0

for all j ∈ X. This implies σj(λ) = λ for all j ∈ X and hence Tj(Kλ) = Kλ.

If j 6= r + 1 then Tj(Br) = Br and the result follows. Otherwise we have

Tr+1Tr(Br) = q−1Tr+1(Br)Kλ

= q−1[Br, Fr+1]qKλ = TrTr+1(Br)

where we use the fact that Fr+1 commutes with Kλ. This completes the proof.

Lemma 7.41. For all j ∈ X \ {r + 1} the relation

TrTj(Br−1) = TjTr(Br−1)

holds.

Proof. By Lemma A.6 the result is clear for j 6= τ(r + 1) since Tj acts as the identity on

the elements F+
X ,KrK

−1
τ(r),K

−1
X and Bk for k ∈ I \X. On the other hand if j = τ(r + 1)

then

Tτ(r+1)([F
+
X , Bτ(r)]q) = [F+

X\{τ(r+1)}, [Fτ(r+1), Bτ(r)]q]q

= [FX , Bτ(r)]q

by noting that [Fτ(r+1), Bτ(r)]q = T−1
τ(r+1)(Bτ(r)). The result hence follows in this case

also.

Lemma 7.42. The relation

TrTr+1(Br−1) = Tr+1Tr(Br−1)

holds.

Proof. Recall from (7.62) that

Tr(Br−1) = C
[
Br−1, [Br, [F

+
X , Bτ(r)]q]q

]
q

+ Cs(r)cτ(r)qBr−1KrK
−1
τ(r)K

−1
X .

We are done if we show that Tr(Br−1) is invariant under Tr+1. We use Lemmas A.7 and

A.8 to do this, depending on whether |X| = 1 or |X| ≥ 2. If |X| = 1 then Lemma A.7

implies

Tr+1

([
Br−1, [Br, [Fr+1, Br+2]q]q

]
q

)
=
[
Br−1, [Br, [Fr+1, Br+2]q]q

]
q

+ s(r)cr+2qBr−1KrK
−1
r+2(K−1

r+1 −Kr+1).

Further, we have

Tr+1(Br−1KrK
−1
r+2K

−1
r+1) = Br−1KrK

−1
r+2Kr+1.
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Combining these we see that

Tr+1Tr(Br−1) = C
[
Br−1, [Br, [Fr+1, Br+2]q]q

]
q

+ Cs(r)cr+2qBr−1KrK
−1
r+2(K−1

r+1 −Kr+1)

+ Cs(r)cτ(r+2)qBr−1KrK
−1
r+2Kr+1

= Tr(Br−1).

On the other hand if |X| = 2 then Lemma A.8 implies that

Tr+1

([
Br−1, [Br, [F

+
X , Bτ(r)]q]q

]
q

)
=
[
Br−1, [Br, [F

+
X , Bτ(r)]q]q

]
q

+ s(r)cτ(r)qBr−1KrK
−1
τ(r)(K

−1
r+1 −Kr+1)K−1

X\{r+1}.

We have

Tr+1(Br−1KrK
−1
τ(r)K

−1
X ) = Br−1KrK

−1
τ(r)Kr+1K

−1
X\{r+1}.

Calculating similarly, one obtains

Tr+1Tr(Br−1) = Tr(Br−1)

also in this case.
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Appendix A

Useful relations in Bc

In order to prove Theorem 7.28 and Theorem 7.35 we require the use of many relations,

which are collected here for the reader’s convenience. We recall that in Section 7.4 we

only considered Satake diagrams of type AIII. This will be the setting for this appendix.

Further recall the notation F+
J , F

−
J and KJ from (7.59), (7.60) and (7.61) where J ⊂ I

is of the form J = {i, i+ 1, . . . , j − 1, j} for i ≤ j. We similarly define elements

E+
J =

[
Ei, [Ei+1, . . . , [Ej−1, Ej ]q−1 · · · ]q−1

]
q−1 = TiTi+1 · · ·Tj−1(Ej), (A.1)

E−J =
[
Ej , [Ej−1, . . . , [Ei+1, Ei]q−1 · · · ]q−1

]
q−1 = TjTj−1 · · ·Ti+1(Ei), (A.2)

By definition of F+
J , F−J , KJ , E+

J and E−J 1 the relation

E+
J F
−
J − F−J E+

J =
KJ −K−1

J

q − q−1
= E−J F

+
J − F+

J E
−
J (A.3)

holds in Uq(g). Additionally the q-commutator satisfies[
[x, y]q, z

]
q
−
[
x, [y, z]q

]
q

= q
[
[x, z], y

]
(A.4)

for all x, y, z ∈ Uq(g). Recall from (7.57) the algebra automorphisms Ti for 1 ≤ i ≤ r − 1.

Lemma A.1. The relation[
Tr−1(Br−1), [F+

X , [Bτ(r), Bτ(r−1)]q]q
]

= 0 (A.5)

holds in Bc.

Proof. Since Tr−1(Br−1) = q−1Bτ(r−1)Kτ(r−1)K
−1
r−1 it follows that Tr−1(Br−1) commutes

with Fj for j ∈ X. Further the relation

B2
τ(r−1)Bτ(r) − (q + q−1)Bτ(r−1)Bτ(r)Bτ(r−1) +Bτ(r)B

2
τ(r−1) = 0

implies that

Bτ(r−1)[Bτ(r), Bτ(r−1)]q = q[Bτ(r), Bτ(r−1)]qBτ(r−1)

and hence Tr−1(Br−1) commutes with [Bτ(r), Bτ(r−1)]q. The result follows from this.
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Lemma A.2. For any i ∈ I \ (X ∪ {r, τ(r)}) the relations[
Bτ(i)Kτ(i)K

−1
i , [Bi±1, Bi]q

]
q

= q2Bi±1, (A.6)[
[Bi, Bi±1]q, Bτ(i)K

−1
τ(i)Ki

]
q

= Bi±1. (A.7)

hold in Bc.

Proof. The relations follow immediately by applying the automorphisms Ti and T −1
i to

T −1
i (Bi±1) = q−1/2[Bi, Bi±1]q,

Ti(Bi±1) = q−1/2[Bi±1, Bi]q,

respectively.

Lemma A.3. The relation

Tr−1TrTr−1Tr(Br−1) = Tr−1(Bτ(r−1)) (A.8)

holds.

Proof. We first calculate Tr−1Tr(Br−1). We have

Tr−1Tr(Br−1)

= Cn

([
Tr−1(Br−1), [Tr−1(Br), [F

+
X , Tr−1(Bτ(r))]q]q

]
q

+ s(r)cτ(r)qTr−1(Br−1)Tr−1(KrK
−1
τ(r))K

−1
X

)
= Cn

(
q−2
[
Bτ(r−1)Kτ(r−1)K

−1
r ,
[
[Br, Br−1]q, [F

+
X , [Bτ(r), Bτ(r−1)]q]q

]
q

]
q

+ s(r)cτ(r)Bτ(r−1)KrK
−1
τ(r−1)K

−1
X

)
= T −1

r (Bτ(r−1)). (A.9)

where the last equality holds by Equations (A.5) and (A.6). It follows from this that

Tr−1TrTr−1Tr(Br−1) = Tr−1(Bτ(r−1))

as required.

Lemma A.4. The relation[
Br−1, [Br, [F

+
X , [Bτ(r), Bτ(r−1)]q]q]q

]
q

=
[
[Br−1, [Br, [F

+
X , Bτ(r)]q]q]q, Bτ(r−1)

]
q

(A.10)

holds in Bc.

Proof. First observe that since Bτ(r−1) commutes with Br and F+
X we have[

Br, [F
+
X , [Bτ(r), Bτ(r−1)]q]q

]
q

=
[
[Br, [F

+
X , Bτ(r)]q]q, Bτ(r−1)

]
q
.

To shorten notation let Y = [Br, [F
+
X , Bτ(r)]q]q. Recall the relation

Br−1Bτ(r−1) −Bτ(r−1)Br−1 = (q − q−1)−1
(
cr−1Zr−1 − cτ(r−1)Zτ(r−1)

)
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where Zr−1 = −Kτ(r−1)K
−1
r−1 and Zτ(r−1) = −Kr−1K

−1
τ(r−1), see (7.36). Further note that

Y commutes with both Zr−1 and Zτ(r−1) by (7.37). Hence[
Br−1, [Y,Bτ(r−1)]q

]
q

= Br−1Y Bτ(r−1) − qBr−1Bτ(r−1)Y − qY Bτ(r−1)Br−1 + q2Bτ(r−1)Y Br−1

= Br−1Y Bτ(r−1) − q
(
Bτ(r−1)Br−1 + (q − q−1)−1(cr−1Zr−1 − cτ(r−1)Zτ(r−1))

)
Y

− qY
(
Br−1Bτ(r−1) − (q − q−1)−1(cr−1Zr−1 − cτ(r−1)Zτ(r−1))

)
+ q2Bτ(r−1)Y Br−1

=
[
[Br−1, Y ]q, Bτ(r−1)

]
q
− q(q − q−1)−1

[
cr−1Zr−1 − cτ(r−1)Zτ(r−1), Y

]
=
[
[Br−1, Y ]q, Bτ(r−1)

]
q

as required.

Lemma A.5. The element [Br−1, T −1
r (Bτ(r−1))]q is Tr-invariant i.e.

[Br−1, T −1
r (Bτ(r−1))]q = [Tr(Br−1), Bτ(r−1)]q. (A.11)

Proof. We have

[Br−1, T −1
r (Bτ(r−1))]q =

[
Br−1, Cn[Br, [F

+
X , [Bτ(r), Bτ(r−1)]q]q]q

]
q

+ Cns(r)cτ(r)

[
Br−1, Bτ(r−1)KrK

−1
τ(r)K

−1
X ]q

(A.10)
=

[
Cn[Br−1, [Br, [F

+
X , Bτ(r)]q]q]q, Bτ(r−1)

]
q

+
[
Cns(r)cτ(r)qBr−1KrK

−1
τ(r)K

−1
X , Bτ(r−1)]q

= [Tr(Br−1), Bτ(r−1)]q

as required.

Lemma A.6. For any j ∈ X \ {r + 1, τ(r + 1)} the relation

Tj(F
+
X ) = F+

X (A.12)

holds.

Proof. Recall from (7.59) that

F+
X =

[
Fr+1, [Fr+2, . . . , [Fτ(r+2), Fτ(r+1)]q · · · ]q

]
q
.

Observe that the automorphism Tj only acts non-trivially on the Fj−1, Fj and Fj+1. The

result follows from this, since

Tj
([
Fj−1, [Fj , Fj+1]q

]
q

)
= Tj([Fj−1, T

−1
j (Fj+1)]q)

=
[
[Fj−1, Fj ]q, Fj+1

]
q

=
[
Fj−1, [Fj , Fj+1]q

]
q
.
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Lemma A.7. If |X| = 1 then the relation

Tr+1

([
Br−1, [Br, [Fr+1, Br+2]q]q

]
q

)
=
[
Br−1, [Br, [Fr+1, Br+2]q]q

]
q

+ s(r)cr+2qBr−1KrK
−1
r+2(K−1

r+1 −Kr+1) (A.13)

holds.

Proof. We have

Tr+1

([
Br−1, [Br, [Fr+1, Br+2]q]q

]
q

)
=
[
Br−1, [[Br, Fr+1]q, Br+2]q

]
q

by noting that [Fr+1, Br+2]q = T−1
r+1(Br+2). Using the relation

[Br, Br+2] = (q − q−1)−1(crZr − cr+2Zr+2)

it follows that[
[Br, Fr+1]q, Br+2

]
q

=
[
Br, [Fr+1, Br+2]q

]
q
− q(q − q−1)−1[Fr+1, crZr − cr+2Zr+2].

Recall that in the current setting we have

Zr = −(1− q−2)s(r + 2)Er+1Kr+2K
−1
r ,

Zr+2 = −(1− q−2)s(r)Er+1KrK
−1
r+2.

Hence

[Fr+1, crZr − cr+2Zr+2] = q−1(Kr+1 −K−1
r+1)(s(r + 2)crKr+2K

−1
r − s(r)cr+2KrK

−1
r+2).

This and the fact that [Br−1,Kr+2K
−1
r ]q = 0 imply

Tr+1

([
Br−1, [Br, [Fr+1,Br+2]q]q

]
q

)
−
[
Br−1, [Br, [Fr+1, Br+2]q]q

]
q

= (q − q−1)−1[Br−1, (Kr+1 −K−1
r+1)s(r)cr+2KrK

−1
r+2)]q

= s(r)cr+2qBr−1KrK
−1
r+2(K−1

r+1 −Kr+1)

as required.

Lemma A.8. If |X| ≥ 2 then the relation

Tr+1

([
Br−1, [Br, [F

+
X , Bτ(r)]q]q

]
q

)
=
[
Br−1, [Br, [F

+
X , Bτ(r)]q]q

+ s(r)cτ(r)qBr−1KrK
−1
τ(r)(K

−1
r+1 −Kr+1)K−1

X\{r+1}

(A.14)

holds.

Proof. Let Y = X \ {r + 1}. Observing that [F+
X , Bτ(r)]q = T−1

r+1([F+
Y , Bτ(r)]q) we have

Tr+1

([
Br−1, [Br, [F

+
X , Bτ(r)]q]q

]
q

)
=
[
Br−1,

[
[Br, Fr+1]q, [F

+
Y , Bτ(r)]q

]
q

]
q
.

By (A.4) we obtain[
[Br, Fr+1]q, [F

+
Y , Bτ(r)]q

]
q
−
[
Br, [F

+
X , Bτ(r)]q

]
q

= q
[
[Br, [F

+
Y , Bτ(r)]q], Fr+1

]
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= q
[
[F+
Y , [Br, Bτ(r)]]q, Fr+1

]
. (A.15)

Recall that

[Br, Bτ(r)] = (q − q−1)−1(crZr − cτ(r)Zτ(r))

where

Zr = −s(τ(r))(1− q−2)E+
XKτ(r)K

−1
r ,

Zτ(r) = −s(r)(1− q−2)E−XKrK
−1
τ(r).

Using Equation (A.3) it follows that

[FY , E
−
X ] =

[
[F+
Y , E

−
Y ], Er+1]q−1

= (q − q−1)−1[K−1
Y −KY , Er+1]q−1

= q−1K−1
Y Er+1.

This implies that[
[F+
Y , E

−
XKrK

−1
τ(r)]q, Fr+1

]
= q
[
[F+
Y , E

−
X ], Fr+1

]
q−1KrK

−1
τ(r)

= [K−1
Y Er+1, Fr+1]q−1KrK

−1
τ(r)

= (q − q−1)−1KrK
−1
τ(r)(Kr+1 −K−1

r+1)K−1
Y . (A.16)

Further, since [Br−1,Kτ(r)K
−1
r ]q = 0 it follows that[
Br−1,

[
[F+
Y ,Zr]q, Fr+1

]]
q

= 0. (A.17)

By (A.16) and (A.17) we obtain

Tr+1

([
Br−1,

[
[Br, Fr+1]q, [F

+
Y , Bτ(r)]q

]
q

]
q

)
−
[
Br−1,

[
[Br, Fr+1]q, [F

+
Y , Bτ(r)]q

]
q

]
q

= −q(q − q−1)−1cτ(r)

[
Br−1,

[
[F+
Y ,Zτ(r)]q, Fr+1

]]
q

= s(r)cτ(r)(q − q−1)−1
[
Br−1,KrK

−1
τ(r)(Kr+1 −K−1

r+1)K−1
Y

]
q

= s(r)cτ(r)qBr−1KrK
−1
τ(r)(K

−1
r+1 −Kr+1)K−1

Y

as required.
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