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Abstract

Quantum groups arose in the early 80’s in the investigation of integrable systems in math-
ematical physics. Quantum groups are a family of non-commutative, non-cocommutative
Hopf algebras which arise through deformation quantisation of universal enveloping alge-
bras of Lie algebras or of coordinate rings of affine algebraic groups. In this thesis, we
focus on quantum groups coming from universal enveloping algebras, known as ‘quantised
enveloping algebras’.

One of the fundamental properties of quantised enveloping algebras is that they give
rise to a universal R-matrix which provides solutions of the quantum Yang-Baxter equation
for each representation. The universal R-matrix allows applications of quantum groups in
the construction of invariants of knots and links. The main component of the universal
R-matrix is a quasi R-matrix, which has applications in other areas of representation
theory, for instance in Lusztig’s and Kashiwara’s theory of canonical bases. Also essential
to the theory of quantised enveloping algebras is the existence of a braid group action by
algebra automorphisms, due to Lusztig. This braid group action allows the definition of
root vectors and PBW bases.

Parallel to quantised enveloping algebras is the notion of quantum symmetric pair
coideal subalgebras, developed by G. Letzter in a series of papers from 1999 to 2004. These
are quantum group analogues of Lie subalgebras which are fixed under an involution. Over
the past five years it has become increasingly clear that many of the results for quantised
enveloping algebras have analogues in the quantum symmetric pair setting. An important
example of this is the construction of a universal K-matrix for quantum symmetric pairs
by Balagovi¢ and Kolb following earlier work by Bao and Wang. The universal K-matrix
provides solutions to the reflection equation, which is an analogue of the quantum Yang-
Baxter equation. The main ingredient of the universal K-matrix is a quasi K-matrix which
is an analogue of the quasi R-matrix. The quasi K-matrix recently played a crucial role in
the theory of canonical bases for quantum symmetric pairs, developed by Bao and Wang.

Until recently, only a recursive formula for the quasi K-matrix was known. The first
main result of this thesis is to give an explicit formula for the quasi K-matrix in many
cases. This formula closely resembles the known formula for the quasi R-matrix, which
admits a factorisation as a product of rank one quasi R-matrices. In particular, the quasi
K-matrix has a factorisation into a product of quasi K-matrices for Satake diagrams of
rank one. This factorisation depends on the restricted Weyl group of the symmetric Lie
algebra similarly to how the quasi R-matrix depends on the Weyl group of the Lie algebra.

The key idea is to calculate the quasi K-matrix explicitly in rank one and in rank two.



Lusztig’s braid group action is then used to build the quasi K-matrix in higher rank. We
conjecture that the resulting formula holds in full generality.

In the second part of this thesis, we investigate the analogue of Lusztig’s braid group
action in the quantum symmetric pair setting. It was conjectured by Molev and Ragoucy,
and more generally by Kolb and Pellegrini that there are two braid group actions on the
quantum symmetric pair coideal subalgebras, one of which comes from the restricted Weyl
group. This is known to be true in many cases where the underlying Satake diagram has
either no black nodes or a trivial diagram automorphism. Lusztig’s automorphisms for
the restricted Weyl group do not leave the quantum symmetric pair coideal subalgebra
invariant. Nevertheless, they can still be used as a useful guide in the constructions.
Here, we consider Satake diagrams of type AIII, which is the first instance involving black
nodes and a non-trivial diagram automorphism. We show that the braid group of the
restricted Weyl group acts on the quantum symmetric pair coideal subalgebra by algebra
automorphisms if the underlying Satake diagram has at most two black nodes. To assist
in the verification of braid group and algebra relations, we rely on the package QUAGROUP
of the computer algebra program GAP.
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Chapter 1

Introduction

1.1 Quantum symmetric pairs

Let g be a complex semisimple Lie algebra and U,(g) the corresponding Drinfeld-Jimbo
quantised enveloping algebra. Let 6 : g — g be an involutive Lie algebra automorphism
and ¢ = {x € g | 0(x) = z} the corresponding fixed Lie subalgebra. We call the pair
(g,%) a symmetric pair. Involutive automorphisms are parameterised up to conjugation
by combinatorial data attached to the Dynkin diagram of g known as Satake diagrams
(I,X,7). Here I denotes the nodes of the Dynkin diagram, X denotes a subset of I and
7 denotes a diagram automorphism. Through Satake diagrams we obtain a classification
for symmetric pairs, see [I] and also [3§].

Quantum symmetric pairs provide quantum group analogues of the universal envelop-
ing algebra U (). In particular, families of subalgebras B. s C U,y(g) are constructed which
depend on parameters c and s, see [42], [44] and [3§]. Such subalgebras are quantum ana-
logues of U(£) in the sense that B.g specialises to U(t) as ¢ tends to 1. The crucial
property of B¢ is that it is a right coideal subalgebra of Uy(g), meaning

A(Bes) C Bes © Uy(g)

where A denotes the coproduct of Uy(g). We call the pair (Uy(g), Be,s) a quantum sym-
metric pair.

The origin of quantum symmetric pairs lies in the theory of quantum integrable sys-
tems with boundary. The integrability of such systems required solutions of the so-called
reflection equation, an analogue of the well-known quantum Yang-Baxter equation. The
pioneers in this field were I. Cherednik [I2] and E. Sklyanin [61] who studied factorised
scattering on a half-line and lattice models with boundary conditions using the quantum
inverse scattering method.

From the perspective of noncommutative geometry, quantum symmetric pairs give rise

to quantum homogeneous spaces. In particular, instead of studying quantum groups that
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arise as deformations of universal enveloping algebras of Lie algebras, one looks at de-
formations of coordinate rings of affine algebraic groups. The first examples of quantum
homogeneous spaces to be studied in detail were due to P. Podles [56] and L. Vaksman
and Y. Soibelman [64]. Podle$ investigated quantum 2-spheres, that is, quantum homo-
geneous spaces of the quantum group SU,(2), while Vaksman and Soibelman considered
higher dimensional spheres. A historical overview from this viewpoint can be found in [36,
Section 11.7].

In order to perform harmonic analysis on quantum analogues of compact symmetric
spaces, M. Noumi, T. Sugitani and M. Dijkhuizen developed a theory of quantum symmet-
ric pairs for classical Lie algebras, see [54], [15] and [55] which was based on solutions of
the reflection equation. The starting point for these constructions was T. Koornwinder’s
observation in [41] that the Podle§ quantum sphere can be realised as infinitesimal in-
variants for a twisted primitive element in the quantised enveloping algebra of sl3(C). A
comprehensive theory of quantum symmetric pairs avoiding casework was developed by
G. Letzter in [42], [43] and [44], also with harmonic analysis in mind. In this setting, the
construction of quantum symmetric pairs only relies on the Drinfeld-Jimbo presentation
of quantised enveloping algebras and on involutive automorphisms of g. An extension of
the theory to the Kac-Moody case was developed in [38].

Recently, quantum symmetric pairs have appeared in many different contexts. In [5],
H. Bao and W. Wang constructed canonical bases for quantum symmetric pair coideal
subalgebras of type AIII/AIV. The theory of canonical bases has many applications, in-
cluding category O, algebraic combinatorics, categorification and geometric representation
theory. Independently, M. Ehrig and C. Stroppel observed a link between quantum sym-
metric pairs of type AIII/AIV and the type D category O in [I§]. This places quantum
symmetric pairs in a much broader representation theoretic context.

Both of the papers [5] and [I8] consider a bar involution for quantum symmetric pair
coideal subalgebras of type AIII/AIV. Moreover, Bao and Wang construct an intertwiner
X (denoted by Y in [5]) between the bar involutions on B s and on Ugy(g). The intertwiner
X is an analogue of the quasi R-matrix for U,(g). Using the intertwiner X, Bao and Wang
show that large parts of Lusztig’s theory of canonical bases [51], Part IV] extend to the
theory of quantum symmetric pairs. More recently, Bao and Wang have extended the
theory of canonical bases to all quantum symmetric pairs of finite type, [6].

Following the program of [5], the existence of a bar involution for B s was established
in full generality by Balagovi¢ and Kolb in [3]. In the sequel [4] it was proved that the
intertwiner X exists for general quantum symmetric pairs. This was used in [4] to construct
a universal K-matrix for B, which is an analogue of the universal R-matrix for Ug(g).
It is for this reason that Balagovi¢ and Kolb call the intertwiner X the quast K-matriz

for Bes. It has recently been discovered in [39] that the universal K-matrix gives suitable
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categories of Bcg-modules the structure of a braided monoidal category and hence has

applications in low-dimensional topology.

1.2 Quasi K-matrices for quantum symmetric pairs

Let U™ and U~ denote the positive and negative parts of the Drinfeld-Jimbo quantised
enveloping algebra U, (g), respectively. The quasi R-matrix for U,(g) is a canonical element
in a completion of U~ ® U™ that plays a pivotal role in many applications for quantum
groups. In the theory of canoncial or crystal bases developed by G. Lusztig [50] and M.
Kashiwara [31], the quasi R-matrix appears as an intertwiner of two bar involutions on
A(Uqy(g)). The quasi R-matrix is used to define canonical bases of tensor products of
U,(g)-modules, see [51, Part IV].

We denote the quasi R-matrix of U,(g) by R as in the paper [4]. For each i € I let
U,(sla(i)) denote the subalgebra of U,(g) generated by E;, F; and K:*'. One of the key
properties of the quasi R-matrix is that it admits a factorisation as a product of quasi
R-matrices for Uy(slz(7)). Let {oy | i € I} denote the set of simple roots of g. Then the
quasi R-matrix corresponding to U,(slz(7)) is given by

R, = Z(_I)T —r(r—1)/2 (QZ - Q;l)rFr ® E" (1 1)

? 4; [7’] i 7 7 .
>0 4

where ¢; = ¢(*»%)/2_In order to build the quasi R-matrix in general from quasi R-matrices

for Uy (sl2(i)) we use the braid group action on U,(g) by algebra automorphisms. Let o;

for i € I denote the generators of the Weyl group W of g and let T; : U,(g) — U,(g) denote

the corresponding Lusztig automorphisms. For any reduced expression wy = ;,04, - - - 03,

of the longst word wg € W define
RV = (T}, Ty, ,®@T; - Tj, ,)(Ri;) forj=1,....¢t (1.2)
The quasi R-matrix for Ugy(g) is then given by
R=RW. gli-1... gEI. R (1.3)

see [35], [48], [34] and [27, 8.30]. This is independent of the chosen reduced expression for
wo.

In Chapters [5| and @] we construct an analogue of in the setting of quantum
symmetric pairs. In particular we provide a general closed formula for the quasi K-
matrix X in many cases, and conjecture that our formula holds in general for all quantum
symmetric pairs of finite type. We take the construction of the quasi R-matrix (1.3]) as a
guide. The Weyl group W plays a crucial role in the construction of R so it is expected that
a subgroup of W should be the key ingredient for the quasi K-matrix. Here, we take the
subgroup W= W (%) which is the Weyl group associated to the restricted root system % of
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the symmetric Lie algebra (g, 8). The Coxeter generators &; of W are parameterised by the
7-orbits of I\ X. We introduce the notion of a partial quasi K-matriz Xz for any w € 1%
with reduced expression w = 03, - - - 0;,. More precisely, for j = 1,...,t let X; denote the
rank one quasi K-matrix for the rank one Satake subdiagram (X U{4, 7 (i)}, X, 7| xufir(i)})
of (I, X,7). This is the analogue of the rank one quasi R-matrix R; corresponding to
i € I given by . Using the Lusztig automorphisms T; : Uy(g) — U,(g) we define
automorphisms T} := T5, : Uqg(g) = Uqy(g) for all @ € I\ X. This provides us with an action
of the braid group BT(W) corresponding to W on U,(g) by algebra automorphisms. For
j=1,--- t we define

w J—

Lo W), (1.4)

Here, ¥ denotes an algebra automorphism of an extension Ut = @#GQWQE)U; defined in
(5.32)). In analogy to (|1.3)) we define
xp=xl.. 200 (1.5)

w
The following theorem is the the first main result of this thesis. It gives an explicit formula

for X for many examples when s = (0,...,0).

Theorem A. (Corollary [5.29)) Let g be of type A, or X = (. Then the quasi K-matrix

for Be g is given by X = Xg, for any reduced expression of the longest element wg € w.

We conjecture that Theorem A holds true for all quantum symmetric pairs of finite
type. There are three key steps to prove Theorem A which proceed similarly to the
construction of the quasi R-matrix found in [34]. First we construct the quasi K-matrix
corresponding to rank one Satake subdiagrams of type A,, in the case where s = (0, ...,0).
The difficulty here is that there are many rank one cases, see Table Next, we verify
Theorem A in rank two by direct calculation. The key idea here is that in rank two
the longest element wy € W has only two reduced expressions. In each case we show
that Xg, coincides with the quasi K-matrix by showing that Xg, satisfies the defining
recursive relations for the quasi K-matrix. All of the rank two calculations are completed
in Chapter [6] In order to do these calculations, one is required to know explicitly the
quasi K-matrices corresponding to rank one Satake subdiagrams. It is for this reason that
Theorem A is stated with the restriction that g is of type A, or X = (). The calculations
of Chapter |§| suggest that the partial quasi K-matrix Xg; is independent of the chosen

reduced expression for wy. We conjecture that this is true in general.

Conjecture B. (Conjecture|5.22) Assume that (I, X,T) is a Satake diagram of rank two.

Then the element Xz only depends on w € W and not on the chosen reduced expression.

Conjecture B is all that is needed in order to prove Theorem A. Assuming that Con-
jecture B holds, we use the fact that the automorphisms ﬁ satisfy braid relations in order

to show that Xz is independent of the chosen reduced expression of w € W in higher rank.
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In the case of the longest element Xg,, we choose different reduced expressions for wg in
order to show that the partial quasi K-matrix in this case satisfies the defining relations
for the quasi K-matrix for Bco. In summary, we obtain the following result in the case
s=0.

Theorem C. (Theorems 5.28) Let (I, X,7) be a Satake diagram such that all rank
two Satake subdiagrams satisfy Conjecture B. Then the following hold:

1. The partial quasi K-matriz Xz depends only on w € W and not on the chosen

reduced expression.

2. The quasi K-matriz X for Beg is given by X = Xg, where wy € W denotes the

longest element.

In the case s # 0 it is harder to give an explicit formula for the quasi K-matrix X ¢
of Bes. However, we can make use of the fact that B¢ is obtained from B g via a twist
by a character xs of Beo. We consider the element R, = A(Xcs)R(X: ® 1) which was
introduced in [5] under the name quasi R-matrix for B s, and which lives in a completion
of Bes @ UT, see also [39, Section 3.3]. We show that the quasi K-matrix X¢s for Beg
satisfies the relation

Xes = (s ©id)(R2). (1.6)

Hence the explicit formulas (1.3]) and (1.5 for R and X g, respectively, provide a formula
for the quasi K-matrix of B¢ also in the case s # 0. However, in this case we do not
obtain a factorisation as in Equation (1.5)). The results of Chapters |5 and |§| are available
in [16].

1.3 Braid group actions for B

Recall the the Lusztig automorphisms T; : Uy(g) — Uy(g) give rise to a representation
of Br(g) on U,(g), where Br(g) denotes the associated braid group corresponding to g,
see [51]. This is the quantum analogue of the braid group action on g by Lie algebra
automorphisms, see Section In the theory of quantum groups, the automorphisms
T; play a crucial role in the definition of root vectors and in the constructions of PBW
bases for U,(g). Further, they are the fundamental objects needed in the construction of
canonical bases for U,(g), as well as in the construction of quantum symmetric pairs.
Classically we can also build a braid group action on the fixed Lie subalgebra € of g. In
this instance, we obtain an action of Br(Wx ) x BT(W) on ¢ by Lie algebra automorphisms.
Here Wx is a parabolic subgroup of W corresponding to the subset X. It is natural

to ask if there is an analogous braid group action for quantum symmetric pairs. The
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following theorem implies that we have a braid group action of Br(Wx ) on B¢ s by algebra

automorphisms.

Theorem D. (Proposition [7.13) For any i € X the Lusztig automorphism T; : Uy(g) —

Uq(g) restricts to an automorphism of Beg.

Theorem D was also independently proved in [0, Theorem 4.2]. A more difficult prob-
lem is establishing a braid group action of BT(W) on B¢ by algebra automorphisms.
Many cases have already been checked in the literature. Initially, Molev and Ragoucy [53]

constructed an action of Br(W) on By if the underlying Satake diagram is of type Al

This case was also checked independently by Chekov [10]. It was conjectured in [53|
Conjecture 4.7] that there is a braid group action if the Satake diagram is of type AIL

This was confirmed by Kolb and Pellegrini in [40] where actions of Br(W) on Bgg were
constructed for numerous examples. In particular, they considered the following three

classes of Satake diagram.
1. g arbitrary, X = (), and 7 = id,
2. g arbitrary, X = 0, and 7 # id,

3. g =5l,(C), X ={1,3,5,...,2n — 1}, and 7 = id.

However, so far braid group actions of Br(W) on Bgs have not been known for Sa-
take diagrams with black dots and non-trivial diagram automorphisms. In Chapter [7| we

consider the case AIII/AIV with black dots and a non-trivial diagram automorphism.

In this case the parameters s always satisfy s = (0,0, ...,0), see (3.34). Additionally

Br(W) is isomorphic to the braid group of type B,. It is necessary for two or more black
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dots to consider a larger Hopf algebra than U,(g) which we construct by enlarging the
group algebra U°. This is done by using the weight lattice instead of the root lattice. The
resulting coideal subalgebra we obtain is denoted by Be.

Following the methods of Kolb and Pellegrini, the main tool we use is the package
QUAGROUP [14] of the computer algebra program GAP, [22]. In order to use GAP we have to
specify parameters ¢ and s for the coideal subalgebra B, s. We assume that the parameters
c only take values that are integer powers of ¢. This assumption has appeared earlier, for
instance in the construction of canonical bases from [6]. The following general theorem

tells us that it does not matter what choice we make for the parameters.

Proposition E. (Proposition [7.16)) Let (X, 7) be any Satake diagram and suppose c,c’ €
(:I:qZ)I\X. Then there is an algebra isomorphism Ag ¢ @ Bes — Ber s

One of the limitations of using GAP is that as we increase the number of black dots the
running time for calculations increase massively. For this reason we can only use GAP to
find a braid group action in the cases where we have one or two black dots. We describe
the general procedure for constructing a braid group action of BT(W) on B, in these two
cases when n = 7 and n = 8. For i € I\ X the algebra automorphisms T} := T; 5, of Uy(g)
do not restrict to B¢ . Despite this, they are still useful as a guide for our constructions.
In particular we construct algebra automorphisms 7; of Be for 1 < i < r such that Ti(B;)
and ﬁ-(Bj) have identical terms containing maximal powers of the generators Fy, k € I,
for j € I'\ X. An inverse automorphism ’7;_1 is similarly constructed and we check that
T; and 7;71 are mutually inverse algebra automorphisms for each i € I\ X. We then
check that the automorphisms 7; satisfy the braid relations for BT(W). For 1 <4 < r the
algebra automorphisms 7; correspond directly to those constructed in [40, Theorem 4.6].

It follows that we only need to construct 7, and check that the corresponding braid
relations hold. With the assistance of GAP we construct algebra automorphisms 7, when

n =7 and n = 8 and show that these satisfy the corresponding braid relations.

Theorem F. (Theorems 7.24) Let (X,7) be a Satake diagram of type AIII with
|X| =1 or |X| = 2. Then there exists a braid group action of Br(W) on Be by algebra

automorphisms. This action is explicitly given by the formulas T; for 1 < i < r given in
(7.57) and T, given in (7.51) and (7.55)).

In the general case, we can no longer rely on GAP for assistance due to memory issues.
Based on the constructions when | X| = 1 and | X| = 2 we suggest a formula for 7, for any
| X| > 1, see Equation (7.62)). We make the following conjecture.

Conjecture G. (Conjecture [7.27) For any |X| > 1 the formulas for 7, given in (7.62))

define algebra automorphisms of Be.

The difficulty in showing this in general comes from proving that 7,(B;) satisfy the
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quantum Serre relations for Be. However, we show that if 7;. is an algebra automorphism,
then the correct braid relations are satisfied.

In Section [7.4.5| we prove Theorem F in full generality, assuming that the formulas for
7, define algebra automorphisms of B.. This proceeds by case-by-case computations and
does not require the use of GAP. In particular, the results here suggest that many of the
cases in [40] can be addressed without use of computer packages. In the final section of

Chapter [7] we show that the two braid group actions of the preceding sections commute.

Theorem H. (Theorem [7.35) Let (X,7) be a Satake diagram of type AIII with | X| =1
or | X| = 2. Then there exists an action of Br(Wx) x Br(W) on Be by algebra automor-

phisms.

We give a proof of Theorem H that does not make any assumptions on the size of X. As

a result, if Conjecture G holds, then we immediately obtain an action of Br(Wx ) x Br(W)
on B, for any |X| > 1.

1.4 Organisation

This thesis is organised as follows. In Chapter [2] we provide background material on Hopf
algebras and quantised enveloping algebras. In particular, we recall the factorisation
of the quasi R-matrix in Section [2.2.8] Chapter [3] provides an overview of the theory of
quantum symmetric pairs and give a presentation in terms of generators and relations for
Bes. This follows [45] and [38]. The connection between the symmetric Lie algebra (g, 6)
and the restricted Weyl group is reviewed in Chapter 4} following the work of [60].

The main results of this thesis are contained in Chapters [f [6] and [7] In Chapter [f] we
recall the recursive definition of the quasi K-matrix and use this to explicitly compute the
quasi K-matrix in many rank one cases in Section In Section 5.4 we develop the theory
of partial quasi K-matrices. Chapter [6] contains the rank two calculations for the quasi
K-matrix. Finally in Chapter [7] we construct a braid group action on quantum symmetric
pairs of type AIII/AIV. In particular, we use GAP to construct a braid group action for one
or two black nodes and using this we suggest a general construction. In Section we
prove that our general construction satisfies the braid relations for BT‘(W). This requires

many additional relations, which we prove in Appendix [A]



Chapter 2
Background

In this chapter we introduce the theory of quantised enveloping algebras that is required
for the remainder of this thesis. We set the scene in section by recalling the definition
of Hopf algebras, of which quantised enveloping algebras form an important family of
examples. This is shown in Section Notation for semisimple Lie algebras and
quantised enveloping algebras is set up in Sections [2.2.1] and [2.2.2] We establish a braid

group action on semisimple simple Lie algebras following [62] in Section This is
the starting point for Chapter [7] The quasi R-matrix is introduced in Section In

particular we exhibit an explicit formula for the quasi R-matrix, due to [48], [35] and [34].

2.1 Hopf algebras

In the theory of quantum groups, a crucial role is played by algebras which have an
additional coalgebra structure. Such objects are called Hopf algebras. We review the
construction of Hopf algebras in this section. In order to do this, we require the notion of

a tensor product.

2.1.1 Tensor products

Fix a field K. Given vector spaces U and V', a naive definition of the tensor product U®V
is to take the vector space generated by symbols u ® v with v € U and v € V such that
the operator ® is a bilinear operator. A more precise characterisation is given through a

universal property regarding bilinear maps.

Definition/Theorem 2.1 ([32, Theorem II.1.1]). Given vector spaces U and V there
exists a vector space denoted U @ V' and a bilinear map ¢ : U XV — U ® V such that for
every vector space W and for any bilinear map f: U x V. — W, there is a unique linear

map g : UV — W such that f = go¢. In other words, the following diagram commutes.
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S b 21)

Further, U ® V' 1s the unique vector space up to isomorphism satisfying this property.

Proof. Consider the vector space K[U x V| whose basis is the set U x V. Define U @ V' as

the quotient space KU x V]/R where R is the subspace generated by the elements

(u+u',v) — (u,v) — (', v), (u,v +v") — (u,v) — (u,v'),
(Au,v) — Au,v), (u, \v) — Au,v)

where u € U, v € V and A € K. We define ¢ : U x V — U ® V to be the canonical
map that sends (u,v) € U x V to the associated equivalence class in the quotient. By
construction, this map is bilinear.

Let W be a vector space and f: U x V — W a bilinear map. We show that there is a
unique linear map g : U ® V — W such that f = g o ¢. To show the existence of such a

map, we define g(u ® v) = f(u,v) and extend this linearly. Hence
g (u1 @ v1) + Aa(ug ® v2)) = A1g(ur @ v1) + Aag(ug ® v)

for all uy,uo € U, vi,v2 € V and A1, Ay € K. This satisfies f = g o ¢ and further ¢
is a well-defined linear map. The uniqueness of g comes from the fact that any other
choice for g would contradict f = g o ¢. Finally suppose there is a vector space Z also
satisfying the universal property. Then there are unique linear maps 1 : U ®V — Z and
Yo : Z — U ® V such that the diagram

UxV 25UV
\ iwl
¥ z

Wz

~

UV
commutes. By the universal property for U ® V' it follows that ¢¥9 01 = idygy. Similarly,
we also have 91 09 =idz and hence U @ V = Z. O

Tensor products are useful objects to study in algebra since the universal property
reduces the study of bilinear maps to that of linear maps. The following lemma provides

three canonical isomorphisms for tensor products of vector spaces.

Lemma 2.2 ([32 Proposition I1.1.3]). Let U,V and W be vector spaces. Then there are

isomorphisms

10
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(1) UV)oW =2U® (VeW) defined by

(uRV)@w—u® (vew).
(2) KoV =V=VaK defined by
AQUIH AV = UV ® A,

(3) UV =2V U defined by
URU—= VR U.

Proof. We only prove (1) as the other isomorphisms are similar. Fix v € U and define
a bilinear map f: VX W - (U@ V)® W by f(v,w) = (u®v) ® w. By the universal
property, this induces a linear map g, : V@ W — (U ® V) ® W such that the diagram

VW —2 s vew

f\) \}/g“

UeV)oW

commutes i.e. g, (v @ w) = (u®v) ® w for each v € V,w € W. Using this, we define a
bilinear map f': U x (VW) = (U®V)® W by

(u,v @ w) = gu(v@w).

The universal property implies that there is a unique linear map g : U ® (V@ W) —
(U®V)® W such that the diagram

Ux(Vow) 25 Us WV aw)
\ '\
f v

UeaV)eW

commutes. Similarly, a linear map ¢’ : (U® V)W — U ® (V ® W) can be constructed
in the opposite direction. Using the universal property again implies that g and ¢’ are
inverses to one another and hence (U® V)@ W = U ® (V ® W) as required. O

If U,U’,V and V' are vector spaces and f : U — U’ and g : V — V' are two linear
maps, then we can construct the tensor product of the linear maps f and g, denoted by
f®g: UV - U @V’ by defining

(f@g)(uev) = f(u) @g(v) (2.2)

for all u € U and v € V. This map arises naturally through the universal property. This
is so since there is a bilinear map f X g: U x V — U ® V defined by

(f x g)(u,v) = f(u) @ g(v)
which induces the map .

11
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2.1.2 Algebras and coalgebras

Recall that we can define an algebra through commutative diagrams [32], Section III.1]. In
particular, an algebra is a triple (A, p,n) where A is a K-vector space and p: A®@ A — A
and 7 : K — A are linear maps satisfying the following two axioms.

(Assoc): The square
A AeA X, Ap A
id®ul lu (2.3)

ARA ———— A

commutes i.e. po (u®id) = po (id ® p). This expresses the usual requirement that

multiplication is associative.
(Unit): The diagram

Ko A 1249, M4 oK
\\\\l//// (2.4)

commutes i.e. po (n®id) = po (id ® ). This is equivalent to the requirement that 7(1)
is a left and right unit for the multiplication map p.

Additionally, the algebra A is commutative if the triangle

A9 A —T° L AgA

N % (2.5)
A

commutes. Here flip: A ® A — A ® A is the unique linear map that maps a ® b to b ® a.
A morphism of algebras f : (A, u,n) — (A, 1/, 1) is a linear map f from A to A’ such
that the diagrams

A AL e a K—"T4 A

#l lu’ 77\,4 lf (2-6)
A/

AﬁA’

commute. In other words,

fou=po(f®f), fon=n. (2.7)
This is just another way of stating the usual properties of morphisms that f(ab) =

f(a)f(b) and f(ida) = idar.

To obtain the definition of a coalgebra, we systematically reverse all of the arrows in
diagrams (2:3)(Z6)-

Definition 2.3 ([32] Definition III.1.1(a)]). A coalgebra is a triple (C, A, e) where C' is a

12
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K-vector space and A : C — C ® C' and ¢ : C' — K are linear maps satisfying the follow
axioms.
(Coass): The square

c—42 LcoeC

Al lid@m (2.8)

C®CWC®C®C

commutes i.e. (id® A)o A = (A®id)o A.
(Coun): The diagram

CoK &% oo 2 ke

K;\Ji//éﬂ (2.9)

commutes i.e. (id®¢e) oA = (¢ ®id) o A. The map A is called the comultiplication and
the map ¢ is called the counit. Additionally, the coalgebra is said to be cocommuative if

the following triangle commutes

C
?/; \< (2.10)

CxC —2 s 0xC

The intuition behind the (Coun) axiom is that if we apply A to an element ¢ € C' and

collapse either the left or right tensor components, then we retrieve c again.

Definition 2.4 ([32, Definition IIL.1.1(b)]). If (C, A,¢) and (C’, A’,&’) are two coalgebras,
then f: (C,Ae) = (C',A’,€) is a coalgebra morphism if the diagrams

cC-2,0C C—<.K

fl lf@f fl ///f;z (2.11)
C/

c’ — '
commutes. In other words,
ANof=(fxf) oA, dof=e. (2.12)

Example 2.5. The field K has a natural coalgebra structure with A(1) = 1 ® 1 and
£(1) = 1. For any coalgebra (C, A, ¢) the map ¢ : C — K is a coalgebra morphism.

Example 2.6. Let S be a set and C' = K[S] be the K-vector space with basis S. Then
C' admits a cocommutative coalgebra structure with A(s) = s ® s and ¢(s) = 1 for any
seS.

Example 2.7 ([32, Section IIL.8, 2.]). Consider the polynomial ring C' = K[z] in one

variable. Then C obtains a coalgebra structure, called the divided power coalgebra by

13
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setting
1 ifn=0,

A(z™) = Z <Z> @k e(a™) =
k=0 0 if n > 0.

This is again a cocommutative coalgebra, since (Z) = (nr_l k)

Another important concept that we will make use of is that of a coideal.

Definition 2.8 (|32, Definition III.1.5]). Let (C, A, ¢) be a coalgebra. A subspace I of C
is called a coideal if A(I) CI®C+C®1I and e(I) = 0.

Given a coalgebra (C, A, ¢) and a coideal I, we can construct a new coalgebra, called
the quotient coalgebra, in the following way. First, the comultiplication A factors through

a map A from C/I to

(C®C)/(I®C+C®I):C/I®C/I.

The counit map factors similarly through a map z : C/ 7 — K. This gives a coalgebra
structure on C/ T
We also have the notions of a left coideal and right coideal. In particular, a subspace
I of C'is a left coideal if
A(l)CCw®I (2.13)

and a right coideal if
A(l)CI®C. (2.14)

Note that we do not require £(I) = 0 for left or right coideals. Right coideals play a major
role in the construction of quantum symmetric pairs in Chapter

The definition of coalgebra suggests that algebras and coalgebras should be dual to
one another. Recall that for a K-vector space V, we define the dual vector space V* =
Hom(V,K) consisting of linear functions f : V' — K. The following proposition, given

without proof, provides the link between algebras and coalgebras.

Proposition 2.9 ([32, Proposition II1.1.2/1.3]). (1) The dual vector space of a coalge-

bra is an algebra.
(2) The dual vector space of a finite-dimensional algebra has a coalgebra structure.

Remark 2.10. For any vector space V, there is an injective homomorphism A : V*QV* —
(V ® V)* defined by
A(f ®g)(v1 @v2) = f(v2) ® g(v1). (2.15)

This is an isomorphism if V' is finite-dimensional, see [32] Corollary II1.2.2]. The require-

ment in Proposition (2) that the algebra A is finite-dimensional comes about since

14



Chapter 2. Background

we define the comultiplication on A* using A~!. If A is infinite dimensional, with basis
{es}sep indexed by an infinite set B, then we proceed using the finite dual A° C A*
defined by

A°:={f e A" | u*(f) € A* @ A*}, (2.16)

see [32, Section II1.9]. Then the alternative statement is that the finite dual has a coalgebra

structure.

2.1.3 Bialgebras and Hopf algebras

We now let H be a K-vector space equipped simultaneously with an algebra structure

(H, p,n) and with a coalgebra structure (H, A, ¢).

Definition 2.11 ([32, Definition I11.2.2]). A bialgebra is a 5-tuple (H, u,n, A, €) such that
(H,u,n) is an algebra, (H,A,¢) is a coalgebra and the maps A and e are morphisms of

algebras.

The condition that A and e are morphisms of algebras is equivalent to the commuta-

tivity of the following diagrams.

H®H%(H®H)®(H®H) K—"7 H
Ml l(lt@/i)(id@ﬂip@id) =5 l A
H——Fx—HeH KoK — HoH
A nen
and
HoH <25, KoK K" H
Ml ig ::\\ ls
¥ =y
H— K K

These four commutative diagrams are equivalent to the statement that p and n are mor-
phisms of coalgebras [32, Theorem I11.2.1] which gives a compatability between the algebra
and coalgebra structures on H.

We say that a morphism of bialgebras is a morphism for both of the underlying algebra

and coalgebra structures.

Example 2.12. If H is a finite-dimensional bialgebra, then by Proposition the dual

vector space H* has a natural bialgebra structure.

Example 2.13 (|32, Section III1.3, Example 2.]). Following Example assume instead
that the set S comes with a unital monoid structure with a binary operation p: S x5 — S

and a left and right unit e. Then the map p induces an algebra structure on K[S]. Further,

15
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the maps A and e are morphisms of algebras since
Alzy) =ay@zy = (z @ z)(y ®y) = Alz)Aly),
g(wy) =1 =e(x)e(y)

and hence K[S] has the structure of a bialgebra.

We are now ready to give the following important definition.

Definition 2.14 ([32, Definition 111.3.2]). A Hopf algebra H is a 6-tuple (H, u,n, A, e, S)
such that (H, p,n, A, €) is a bialgebra and S : H — H is a K-linear map which makes the
following diagram commute.

HoH —2% . geoH

A H
H//! K {\\H (2.17)
A

H®Hw>H®H

The map S : H — H is called the antipode.

The following example suggests that the antipode can be thought of as a generalisation

of the inverse map of a group.

Example 2.15. Let G be a monoid and consider the bialgebra K[G] of Example If
the antipode S exists, then by the antipode law (2.17)) it must satisfy

S(x)x =zS(z) =¢(z)l = 1.
Hence the antipode exists if and only if each z € G is invertible i.e. G is a group and then

S(x)=a"1forall z € G.

Definition 2.16 ([9, p. 103]). A Hopf ideal of a Hopf algebra H is a subspace I which is

simultaneously an ideal and coideal, and satisfies S(I) C I.

For a Hopf ideal I of H, the quotient H/ 7 obtains the structure of a Hopf algebra in
the same way as the construction of the quotient coalgebra.

Given a Hopf algebra H, we define the left adjoint representation of H on itself in
the following way, see [32, Section IX.3]. We make H into a (H ® H)-module by setting
(r®y)- -2z = xzS(y) for all x,y,z € H. Via the coproduct, we then make H into a

H-module where we denote the action by ad. Hence for any x,y € H we have
ad(z)(y) = Ax) -y = Z z;yS(z}) (2.18)

where A(z) = >, z; ® 2f. There is a corresponding right adjoint representation, where

instead we set (r ®y) - z = S(x)zy for any z,y,z € H.

16
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2.1.4 Universal enveloping algebras

The crucial example of Hopf algebra that we study comes from Lie theory. Any Lie
algebra g can be embedded into a larger associative algebra A in such a way that the Lie
bracket [z,y] in g corresponds to taking the commutator xy — yx in A. The idea behind
the universal enveloping algebra is to take the associative algebra obtained by forming all
formal products and sums of elements in g, subject to the relations of g.

Since every Lie algebra is a vector space, we can construct the tensor algebra 7'(g)
from it. This is the key ingredient in the construction of the universal enveloping algebra.

We recall how T'(V) is constructed for any vector space V.

Definition 2.17 ([25, Section 17.1]). Let V be a vector space over a field K and for any
non-negative integer k, let TFV = V®* = V@V ®---® V. The tensor algebra T(V) is

~
k factors

defined as

TW%%%TW:K®V@W®W®~m (2.19)
k=0

The multiplication in T'(V) is determined by the canonical isomorphism
o : TV @ T'V — TH Y

which extends linearly to all of T(V)). This further implies that T'(V') is a graded alge-
bra where T*V is the k*'-graded component. Let i : V — T(V) denote the canonical
embedding of V into T'(V'). The tensor algebra has the following universal property.

Proposition 2.18 ([32], Proposition I1.5.1]). For any algebra A and linear map f : V — A,
there exist a unique algebra morphism g : T(V) — A such that the following diagram

commutes. A
vV ——=T(V)

\‘ o (2.20)

A
The following proposition endows the tensor algebra with a Hopf algebra structure,

which is proved by checking all of the necessary axioms are satisfied.

Proposition 2.19 ([32) Theorem II1.2.4]). Given a vector space V, there exists a unique

cocommutative Hopf algebra structure on T(V') such that
Av)=10v+v®1,
e(v) =0,

forallveV.

17
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We can now define the universal enveloping algebra U(g) in the following way by

quotienting the tensor algebra by a suitable subspace.

Definition 2.20 ([32], Section V.2]). The universal enveloping algebra U(g) is defined as

the quotient space

where J is the two-sided ideal generated by elements of the form z ® y — y ® = — [z, y] for
x,y €g.

The tensor algebra is infinite-dimensional, which implies that U(g) is also infinite-
dimensional. Further, the algebra structure on U(g) is induced by the algebra structure on
T(g). Since U(g) is generated by the Lie algebra g, we often use the following notational
convention. Restricting to the case where g is semisimple, the generators of U(g) are
denoted by {E;, F;, H; | i € I} which correspond to the Chevalley generators {e;, fi, h; |
i € I} of g. The relations satisfied in U(g) are induced by the relations in g. For instance,

for all 7, j € I the relation [h;, e;] = ajie; holds in g which corresponds to the relation
HZ'E]‘ — E]Hl = ajl-Ej

in U(g), where now we omit the tensor product when multiplying elements in T'(g). As
one may expect, the universal enveloping algebra satisfies a universal property. Recall
that any associative algebra A is made into a Lie algebra by defining the Lie bracket as

[x,y] = zy — yz, see [19], Section 1.5].

Proposition 2.21 ([25, 17.2]). Suppose we have a Lie algebra map ¢ : g — A such that
o([z,y]) = 6(x)o(y) — d(y)d(x) for allz,y € g

and A is a unital, associative algebra over K. Then there exists a unique unital algebra

homomorphism ¢ : U(g) — A such that the diagram

g —— Ulg)
é "
A

commutes, where j : g — U(g) is the canonical embedding of g into T(g), composed
with the quotient map. Further, U(g) is the unique algebra satisfying this property, up to

isomorphism.

Proof. By the universal property of the tensor algebra, the Lie algebra map ¢ : g — A
extends to a morphism of algebras ¢ : T(g) — A such that

P(z132 - T0) = P(71)P(22) - - - P(T7)

18
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for z1,22,...,2, € g. The existence of a unital algebra homomorphism ¢ : U(g) — A

follows since

o(zy — yr — [2,y]) = d(2)9(y) — ¢(y)9(x) — ¢([z,y]) = 0.

Hence ¢(J) = 0. The uniqueness follows from the fact that T'(g), and hence U(g), is
generated by g.

Suppose U’ is another associative algebra satisfying the universal property with a
canonical embedding j' : g — U’. By the universal properties for U(g) and U’, there exists
unique algebra homomorphisms f : U(g) — U’ and g : U’ — U(g) such that the following
diagram commutes.

8 —— Ulo)

~

-

U

g

<

U(g)

It follows from the commutativity of the above diagram and the universal property for
U(g) that go f = idys. Similarly, the universal property for U’ implies that fog = idy(g).-
This gives U’ = U(g) as required. O

In particular, Proposition implies that U(g) does not depend on the chosen basis
for g. We now give a basis for U(g). The proof is technical, so we skip the details here.

Theorem 2.22 (|25 17.3, Corollary C]). Let x1,x2,...,zy be a basis for g. Then U(g)
has basis
{X{*X5% - Xpm | ay,az,...,a, > 0} (2.21)

where X; is the element in U(g) corresponding to x; € g.

Showing that the basis elements span U(g) is done by using the defining relations; the
difficulty comes from showing that the described elements are linearly independent. Such
a basis is called a PBW basis, due to the constructions of Poincaré, Birkhoff and Witt,

see [7] and [65] for example.

Example 2.23. Let g = sl3 which has a basis

{e1, [e1, ea], €2, h1, ha, f1,[f1, f2], f2}-

Then the universal enveloping algebra U(g) has basis given by
{EY (B By — BoEr)? B HY HR FPH (R Fy — FoFy)2FS® | ag, by, c; > 0.

So any element of U(g) can be written as a linear combination of these elements. For
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instance,
R By = F(E Py — Hy)
= E by Fy — FoHy
=E\(F\F,— (FLF, — FbF)) — (H F, — F)
=P~ E\(F - BRFy) — HiFy + Fy.
An important corollary to the Theorem is the following, which follows from the

linear independence of the elements X1, Xo,..., X,,.

Corollary 2.24 ([19, Section 15.2]). The Lie algebra g can be viewed as a subspace of
U(g). More generally, if € is a Lie subalgebra of g, then U(t) is a Hopf subalgebra of U(g).

We finish this section by assigning a Hopf algebra structure to U(g). This in essence
comes for free from the Hopf algebra structure on T'(g) from Proposition Since g

generates U(g) as an algebra, we only need to determine the structure on generators of g.

Proposition 2.25 ([9, Example 4.1.8]). The universal enveloping algebra U(g) admits a
unique cocommutative Hopf algebra structure such that

AX)=10X+X®1,

e(X) =0,

S(X)=-X
forall X € g.

Proof. We check that the ideal J is a Hopf ideal, from which it follows that U(g) has the
structure of a Hopf algebra. Recall that J is generated by elements of the form
XY -YX - [X,Y]
for X,Y € g. Using Proposition we obtain (XY —YX — [X,Y]) =0 and
A(XY =YX - [X,Y))
= AX)AY) - A(Y)A(X) - A([X, Y])
—(IX+XeD)(IeY+Yel)—(19Y+Y )10 X +X®1)
- (1IX,) Y]+ [X,)Y]®1)
=1 XY +YQ@X+XQY+XYR®1I-1YX-Y®X
XY -YX®1-18[X,Y]-[X,Y]®1
=1(XY -YX-[X,)Y)+ (XY -YX-[X)Y])®l1

which lies in T'(g) ® J 4+ J ® T'(g) as required. Hence U(g) has a bialgebra structure. It is
an easy check to show that the antipode is defined by S(X) = —X for all X € g. Indeed,
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we have
po (S®Id)(1X+X®1)=0=po(ideS)(1eX+X®1)

for all X € U(g) and hence S satisfies the antipode law. This implies U(g) has a Hopf
algebra structure. The cocommutativity of the comultiplication follows from the fact that
flipo A(X) = A(X) for all X € g. O

2.2 Quantised enveloping algebras

2.2.1 Semisimple Lie algebras

Let g be a finite-dimensional complex semisimple Lie algebra. Let h C g be a Cartan
subalgebra and ® C bh* the corresponding root system. Choose a set of simple roots
IT = {a; | i € I} where I denotes an indexing set for the nodes of the Dynkin diagram
of g. Let ®* be the corresponding set of positive roots and set V = R®. Recall that g
admits a root space decomposition

g=bhe P (2.22)

acd

where go = {x € g | [h, 2] = a(h)z for all h € b} is the root space corresponding to o € ®
[19, Section 10.3].

For i € I, let o; : V — V denote the reflection in the hyperplane H; orthogonal to
a;. We write W to denote the Weyl group generated by the reflections ;. Fix a W-
invariant scalar product (—, —) on V such that (o, o) = 2 for all short roots a € ® in each
component. With this notation, the reflection of A € V' in the hyperplane H; is given by

the formula
2 ()‘a Q; )

(Oéi, ai)
see [26], Section 1.1]. Equation (2.23)) implies in particular that there is a natural action
of the Weyl group W on h*. Let {e;, fi;,h; | i € I} denote the Chevalley generators for g

oi(A) = o, (2.23)

where the elements h; correspond to the generators of the Cartan subalgebra §. Let n™
and n~ denote the Lie subalgebras of g generated by elements of the sets {¢; | i € I} and
{fi | i € I}, respectively. Then the Lie algebra g has a triangular decomposition

g=n"ohon, (2.24)

see [19, Section 15.1].

2.2.2 Definition of quantised enveloping algebras

Semisimple Lie algebras over C are rigid objects meaning that any formal deformation as

an algebra is trivial. By passing to the universal enveloping algebra, any formal deforma-
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tion as an algebra remains trivial. However, U(g) admits non-trivial deformations as a
coalgebra. The theory of rigidity requires some cohomology, which is not discussed here,
but details can be found in [9, Section 6.1] and [32] Sections XVIIL.1 & XVIIL.2].

The resulting algebra due to Drinfeld, [I7] and Jimbo, [28] is denoted U, (g) where ¢ is

an indeterminate. We give a definition in terms of generators and relations. Let K(gq) be
(a

i)
the field of rational functions in ¢ with coefficients in K and let ¢; = ¢ 2 for any ¢ € I.
Recall from [27, Chapter 0] the definition of the g-number
_ W4
= -1
qi — g,

for any n € Z and i € I. Using this, we define the ¢-factorial and g-binomial coefficients

[nlg, = [ni (2.25)

in the natural way

[n]i! = [n]in —1]; - [1]s, [ZL] = MZL]:‘W ) (2.26)

If all roots a € ® are of the same length, then we write [n], [n]! and [].

Definition 2.26. ([27, Definition 4.3]) The quantised enveloping algebra Uy(g) is defined
as the associative K(g)-algebra with generators {E;, Fi, K | i € I} subject to relations
Q) KK ' =K 'K;,, KK;=KK,,

(Q2) KK = g E,,

(Q3) KiFjK;l — q_(aiyaj)Fj’

-1
(Q4) E;F; — FjE; = 6Z-j[2i_fi1 where §;; is the Kroenecker delta function,
i~ 4
F % 1 —ajj 1—a;;—r . .
@) 5[] s s =0 i
r=0 r i
" 1 —a l—a;j—r . .
(Q6) TZO (_1)7[ , ]] BT B =0 for i # j.
= i

The relations|(Q5)| and are known as the quantum Serre relations. The quantised
enveloping algebra U,(g) inherits a deformed Hopf algebra structure from that of U(g),

which is given in the following proposition.

Proposition 2.27 ([27, Proposition 4.11]). There is a unique structure of a Hopf algebra
on Uy(g) such that

A(E)=E;®1+K;® F;, e(E;) =0, S(E;)) = —K; 'E;, (2.27)

AF)=FoK '+1F, e(F;) =0, S(F;) = —F,K;, (2.28)

A(K;) = K; ® K;, e(K;) =1, S(K;)=K; ! (2.29)
for alli e 1.
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We don’t give a proof here, but instead give the general strategy. A full detailed proof
can be found in [27, Sections 4.8-4.11]. We let U be the algebra generated by the same
elements {E;, F;, K | i € I} but only satisfying relations [(Q1)H(Q4)l One shows that
U has a Hopf algebra structure given by the same formulas by showing that the relations
are preserved under A, e and S. To then show U,(g) has a Hopf algebra structure, we
quotient U by a suitable two-sided ideal I in U which adds in the relations and

Such an ideal satisfies
AN CU®I+I®U, ¢I)=0 S(I)CI

and hence I is a Hopf ideal, and induces a Hopf structure on Uy(g).
Let U+, U and U~ denote the subalgebras of U, (g) generated by {E; |i € I}, {KF' |
i € I} and {F; | i € I}, respectively. The following lemma is proved by a simple check

using relations [(Q1)H(Q6)]

Lemma 2.28 (|27, Lemma 4.6]).

1) There is a unique algebra automorphism v of Uy(g) such that v(E;) = F;, v(F;) = E;
and v(K;) = K; ' for alli € 1.

2) There is a unique algebra antiautomorphism o of Uy(g) such that o(E;) = Ej;,
o(F;) =F, and o(K;) = K; " foralli €.

Let Q = Z® be the root lattice for g and Q™ = Ng® C  the positive part of Q. For
A=) icrnicy € Q, we write
Ky =[] K7 (2.30)
i€l
The elements K for A € @ form a vector space basis for U, see [27, 4.17/4.21]. Recall
from Equation that there is a left adjoint representation of Uj(g) on itself. We make
this explicit using Proposition In particular, we have

ad(F;)(u) = Bju — KjuK; ' E;, (2.31)
ad(F) (u) = (Fu — uFy) K, (2.32)
ad(K;)(u) = KjuK; " (2.33)

for any u € Uy(g). For any U-module M and X € Q, let
My ={m e M | K;m = ¢™*)m for all i € I} (2.34)

denote the corresponding weight space [27, 5.1]. Note that all weight spaces encountered
in this thesis correspond to weights in the root lattice and not in the weight lattice. Both

of the subalgebras Ut and U~ are U%modules with respect to the left adjoint action so
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we can apply the above notation. We hence obtain algebra gradings
+_ + - _ —
vt=@pu;, v=gUu, (2.35)
peQ+ peQt
see [27, Section 5.2]. Additionally, one can show that there is a triangular decomposition
for U,(g) similar to the triangular decomposition of g from ([2.24))

Ug)2UT0U U™, (2.36)

see [27, 4.21].

2.2.3 Completion of quantised enveloping algebras

It will be necessary in Chapter |5 to consider a completion % of Uy(g). We recall the
construction of %, following [4, Section 3.1].

Let O be the category of all finitely-generated U,(g) modules M which decompose as a
direct sum of weight spaces M = @®xe M)y and on which the action of U™ is locally finite.
Let Oyt be the subcategory of O consisting of all finite-dimensional U, (g)-modules.

Let Vect denote the category of K(g)-vector spaces. Both of the categories Oy, and
Vect can be equipped with a tensor product, which makes these examples of monoidal
categories. In the case of Vect, we take the ordinary tensor product of vector spaces
and linear maps as in Section A similar construction is used for Oy, see [32]
Section I11.5]. Denote by For the forgetful functor For : Oiy — Vect. This is a monoidal
functor since it preserves tensor products.

We let % = End(For) be the set of all natural transformations from the functor For

to itself. So elements of % are families of vector space endomorphisms
(goM s For(M) — ]:OT(M))MeOb(Omt)
such that for any U,(g)-module homomorphism ¢ : M — N, the diagram
For(M) 2 For(N)
@NIJ/ lgazv (2.37)
For(M) mg For(N)

commutes. The composition of natural transformations equips % with a multiplication

and hence we may consider % as a K(q)-algebra.
Lemma 2.29 ([58| Section 1.3]). The algebra Uy(g) is a subalgebra of % .

Proof. Let u € Uy(g). For each M € Ob(Ojynt) the action of w on M gives rise to a Uy(g)-
module homomorphism ¢y, : M — M such that ppr,(m) = w-m for all m € M. The

family ¢, = (Yrmu)reob(0y,) 18 @ natural transformation of the functor For to itself.

24



Chapter 2. Background

This is so since

For(o)(u-m) =u-For(p)(m)

for any U,(g)-module homomorphism ¢ : M — N. This gives an injective algebra ho-
momorphism U,(g) — % by [51l, Proposition 3.5.4] and [27, 5.11]. Hence U,(g) is a
subalgebra of % . O

Let U+ = I ueot U, j . This is an algebra with multiplication given by component-wise

multiplication.
Lemma 2.30 (][4, Example 3.2]). The algebra U+ = [Tco+ Ul is a subalgebra of % .

Proof. Let (X,),cq+ € U*. Let M € Ob(Oipnt) and m € M. We can decompose M into
weight spaces M = ®xcqM) such that M)y # 0 for finitely many .

Since E; My C Mytq, for all 2 € I, A € @ it follows that there are only finitely many
p € QT such that X,m = 0. Hence the expression peQt Xpum is well-defined.

This gives rises to a map ¢y @ M — M such that oy (m) = 32 o+ Xum and the
commutative diagram commutes. Hence we can view (X},),co+ as an endomorphism
of For. This implies that Ut is a subalgebra of % . O

2.2.4 Braid group action on semisimple Lie algebras

Recall that there is a symmetric, non-degenerate bilinear form on g called the Killing
form, defined by
k(z,y) :=tr(adzxoady) forz,y€eg (2.38)

where tr : gl(g) — C denotes the trace map and ad : g — gl(g) denotes the adjoint action
[19, Definition 9.5]. This is an associative bilinear form, meaning
k([x,y], 2) = k(z, [y, 2]) forall z,y,z € g.
The Killing form induces a g-module isomorphism
¢:9—=0, o) =nrz,-) (2.39)

Here, the g-module structure on g is determined by the adjoint map. We make the dual

Lie algebra g* into a g-module by defining

(z-P)(y) = —(x-y) forx,y€gegh, (2.40)

see [19] Exercise 7.12]. Using the g-module isomorphism ¢, we can identify the Cartan
subalgebra b with its dual h*. This gives a natural action of the Weyl group W on . We

would like to extend the action of W on h to an action on g, but this fails in general.

Example 2.31. Suppose g = sl,+1(C) and let h have generators {h; | i =1,...,n} such

that h; = e;; — €;41,,+1 where e; ; denotes the matrix with a 1 in the ij-th position and 0
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elsewhere. The Weyl group for g is given by the symmetric group S,,+1 on n+ 1 elements.
Since any element of  is an (n + 1) x (n 4+ 1) diagonal matrix, we may identify h with
vectors in C"T!. Hence we see that S, ;1 acts on h € h by permuting the diagonal entries

of h. More precisely, for i,j € {1,...,n+ 1} we have

—h; if i = j,
oi(hj) = Qhi+h; ifi=j+1, (2.41)
hj otherwise.

This representation has a description in terms of matrices. Let

J:(_Ol ;).

For each i € {1,...,n} let M; be the (n + 1) x (n + 1) block matrix defined by

i1 0 0
Mi=| 0 J o0 (2.42)
0 0 I,

where I, denotes the k X k identity matrix and O denotes the zero matrix of the correct
size. Then for any h € h and any i € {1,...,n}, we have o;(h) = M;hM; . For each
i€{l,...,n}, we extend o; to a Lie algebra homomorphism ¢; : g — g defined by

¢i(r) = MizM; ' for x € g. (2.43)

By Equation (2.41)) each o; has order two. However, since J? = —1I, it follows that each
¢; has order four. Hence the map p : S, — Aut(g) given by p(o;) = ¢; is not a group
homomorphism and we can not extend the action of W on § given by to an action
on g.

More generally, it is known that the action of W on h does not extend to an action on
g, see [63]. Let G denote the Lie group of g and let T' be the maximal torus of G. Then
the Weyl group has a realisation as the quotient Np/Crp of the normaliser and centraliser
of T', respectively. In the current setting, Cr =T = diag,, .1 N G.

Now, the quotient group Ny /T acts on h via the adjoint representation of G. This is
so since N is a subgroup of G and T acts trivially on h. However, T' does not act trivially

on g. To see this, note that for any D = diag(dy,...,dp+1) € T we have
Dez"ijl = didj_lei,j
for alli,5 € {1,...,n+ 1}. As a result Np/T does not act on g.

In the above example, we come across a problem by requiring that the extension of o;
to a Lie algebra homomorphism ¢; : g — g should have order two. This suggests that we
should instead consider the action of the Artin braid group Br(g) on g.
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Definition 2.32 ([33] Section 6.6.2]). The Artin braid group Br(g) corresponding to g is
the group generated by elements {g; | ¢ € I'} subject to relations

GiSiSi T = GGGt (2.44)
N—— N——
m;; factors m;; factors

where m;; denotes the order of o;0; in W.

The difference between the Weyl group W and the Artin braid group Br(g) is that we
have omitted the condition 02 = 1 in W for each i € I. For an element w € W which is
reduced, we write m to denote the corresponding element in Br(g) in order to distinguish
between the Weyl group and the braid group.

Following [62], we give a description of the action of Br(g) on g. Let exp : gl(g) — gl(g)
denote the exponential power series for linear transformations which is defined in the usual

way by

oo Xk
exp(X) =) S for X eglg). (2.45)
k=0

In the case where X is a nilpotent map (i.e. X™ = 0 for some n > 1), the exponential
exp(X) makes sense since it has only finitely many terms. Recall that a derivation of g is

a linear map d : g — g such that
d(zy) = xd(y) + 0(x)y for all z,y € g. (2.46)

The following lemma is taken from [25 Section 2.3].

Lemma 2.33 (|25, Section 2.3]). Suppose that § : g — @ is a nilpotent derivation of g.

Then exp(0) is an automorphism of g.

Proof. Since g is semisimple, it is isomorphic to a linear Lie algebra and hence for x,y €
g, the product xy can be given by matrix multiplication. Recall the Leibniz rule for
derivations [25, Section 2.3]:

k

F(ay) = (’;) 6 (x)"(y) for all z,y € g. (2.47)

=0
Using this and ™ = 0, we obtain

exp(8)(x) exp(8)(y) = <n§ 52{%‘)) <n§ 523@, )>

1
VR

[«%)
x| =
&
N———
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It follows from this that [exp(d)(x), exp(d)(y)] = exp(d)([z,y]) and hence exp(d) is a Lie

algebra homomorphism. Set n = exp(d) — 1. This is also nilpotent since
no__ _ —
=X ) =0
k=1

and 6" = 0. Additionally, since (1+7n)"' =1—-n+n?>—n®>+---£n* 1 it follows that
exp(d) is invertible. O

We recall the link between representations of g with representations of the correspond-
ing simply connected Lie group G with Lie(G) = g, see |20} Section 8.3] for example. For

a finite dimensional vector space W, there are representations
pg : 9 — End(W) = gl(W) (2.48)
pc: G — Aut(W) = GL(W). (2.49)
We always pass from a representation of the Lie group to a representation of the Lie
algebra by taking the derivative at the identity. Recall that there is an exponential map

exp : g — G which is also given by Equation (2.45) where instead X € g since G is
a matrix group [37, Chapter 1, Section 17]. Then the following diagram commutes [20),

pg 116].
g —2 End(W)

expl lexp

In other words, exp(py(z)) = pg(exp(z)) for all € g. In particular, if we take the adjoint
representation Ad : G — Aut(g) then the corresponding representation of the Lie algebra
is the adjoint representation ad : g — End(g).

The adjoint map is a nilpotent derivation and hence by Lemma the map exp(ad(z))
is an automorphism of g for all x € g. Let g : Br(g) — G be the map such that

(i) = exp(e;) exp(—fi) exp(e;). (2.50)
By [30, Remark 3.8], ¢ is a group homomorphism. For each i € I let
Ad(mg(s;)) = exp(ad(e;)) exp(ad(—f;)) exp(ad(e;)) € Aut(g). (2.51)

To shorten notation, we write Ad(s;) instead of Ad(mg(s;)).
The first observation about the automorphisms Ad(g;) is that we can recover the action

of W on h by a direct calculation. Let A = (aj;) denote the Cartan matrix of g, with
(aivaj)

entries given by a;; = 2275

Lemma 2.34 ([30, Lemma 3.8]). For any i,j € I, we have

Ad(si)(hj) = hj — aijhs. (2.52)
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Proof. We proceed by direct calculation. First note that the Serre relations (see [19}
Lemma 14.5]) yield

exp(ad(e;))(hy) = hj — aijei,

exp(ad(—fi))(hj) = hj — ai; fi,

exp(ad(—f;))(ei) = € + hi — fi.
Substituting these identities into the formula for Ad(s;), we obtain

Ad(5:)(h5) = explad(es)) explad(~ £;) explad(e:)) (hy)

= exp(ad(e;)) exp(ad(—fi)) (hj — aije;)

= exp(ad(e;)) (h; — aijh; — aje;)

= hj — a;jh;

as required. ]

Viewing the elements of W as acting on the Cartan subalgebra b, we have
Ad(gl)\b = 0j.

Additionally by [30, Lemma 3.8], the automorphisms Ad(s;) satisfy Ad(<;)(z) € go,(a) for
any ¢ € I and o € ®. Indeed, let x € g, and h € h. Then

[h, Ad(<i) ()] = Ad(<) o7 (), 2] = Ad(s) (o7 (h))z) = oi(a) (h)Ad(s)(x)

and hence Ad(;)(z) € go,(a)- It follows from this that Ad(;)(ga) € 80,(a)- By a similar
argument, the reverse inclusion also holds which implies Ad(<;)(ga) = 8o,(a)-

The following lemma requires an slp-argument which will occur again in Lemma [3.5
and Lemma In particular for i € I let sl(i) denote the Lie subalgebra generated by
the set {e;, fi, hi}. Further, let SLo(7) denote the corresponding Lie group with sla(i) =
Lie(SLy(7)).

Lemma 2.35. The relation

Ad(s;) = exp(ad(—fi)) exp(ad(e;)) exp(ad(— fi)) (2.53)
holds in Aut(g) for each i € I.

Proof. As elements of sly(i) we have

ei:(o 1>, fz-:(O 0)7 hi:<1 0).
00 10 1 0

Since ad?(e;) = ad?(f;) = 0, we obtain matrix representations
11 1 0
expl(e;) = , exp(—fi)= . 2.54
p(e) (O 1) b(—f) (_1 1) (250
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This implies that

exp(e;) exp(—f;) exp(e;) = exp(—fi) exp(e;) exp(—f;).

These two elements coincide in the corresponding Lie group SLa(47) and hence they coincide
under any representation also. In particular, taking the adjoint representation, it follows
that

exp(ad(e;)) exp(ad(—f;)) exp(ad(e;)) = Ad(exp(e;))Ad(exp(—fi))Ad(exp(e;))
= Ad(exp(—fi))Ad(exp(e;))Ad(exp(—f;))
= exp(ad(—f;)) exp(ad(e;)) exp(ad(—f;))

from which the result follows.

Lemma 2.36. For each v € I the relation
Ad(gi)_1 = exp(ad(—e;)) exp(ad(f;)) exp(ad(—e;)) (2.55)
holds in Aut(g).

Proof. The result follows from the same argument as in the proof of Lemma by

noting that the relations

exp(ei)*1 = exp(—¢;),

hold in sly(i). Tt then follows that Ad(s;)Ad(s;) ™! = id = Ad(c;) "t Ad(s;). O
Using Equation ([2.53)), we also see that the relation

Ad(s) ™" = exp(ad(fi)) exp(ad(—e;)) exp(ad(f;)) (2.56)

holds in Aut(g). We are now ready to give the main result of this Section. The proof
follows that of Steinberg [62] given in the setting of Chevalley groups.

Theorem 2.37 ([62, Lemma 56]). There is a group homomorphism
Ad : Br(g) — Aut(g) (2.57)

such that Ad(s;) is given by (2.51]).
Proof. We only need to show that

Ad(6)Ad(6j)Ad(s;) - - - = Ad(s;)Ad(s)Ad(s)) - -

~
n factors n factors

where 0;0; has order n in W. For ease of notation, we assume that n = 3. It follows from
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a direct slz-calculation that
Ad(s)Ad(s5)(ei) = ey,
Ad(s)Ad()(fi) = fj-
Let
X = Ad()Ad(g)Ad(s)Ad(g;) "M Ad(q) T Ad(g)
For any automorphism ¢ of g and x € g, we have

$oad(z)o ¢t =ad(e(x)) (2.58)
by definition of the adjoint map ad(x). We hence have
Ad(si)Ad(s)) exp(ad(e;))Ad(s;) T Ad(s) " = exp(ad(ey)),
Ad(;)Ad(s;) exp(ad(—f;))Ad(¢;) "t Ad(q;) ™" = exp(ad(—f;)).
Using this we obtain
XAd(sj) = Ad(;)Ad(sj)Ad()Ad(g;) T Ad(6) ™"
= exp(ad(e;)) exp(ad(—f;)) exp(ad(e;))
= Ad(g)).-

This implies that X = id as required. O

2.2.5 The Lusztig automorphisms on U,(g)

Recall from Equations (2.31)-(2.33) the adjoint action on Uy(g). By [29], the adjoint action
of Uy(g) on itself is not locally finite. This means that there exists x € U,(g) such that
dim(ad(Uy(g))(x)) = oo. Hence in order to obtain an analogue of Theorem for U,(g)
we require a new construction. In this section, we recall Lusztig’s braid group action on
Uy(g) by algebra automorphisms, as in [51, Part VI].
In order to ease notation, we introduce the divided powers
n _ B ) _ I
E [l [n];!
for each n € Ny. For any M € Ob(Ojy) and i € I, let T; be the linear isomorphism of M
defined by

(2.59)

Ty(m) = oo DB R Em (2.60)
a,b,c>0; a—b+c=A(h;)

for m € My, A € Q. These linear isomorphisms are denoted by TZ-’y’1 in [51, 5.2.1]. By [51],
Proposition 5.2.3], the inverse of T; is given by

T, (m) = 3 (-1)q " FOEL Fm. (2.61)
a,b,c>0; a—b+c=—A(h;)
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The following theorem, given without proof, shows that the linear maps T; : M — M

satisfy braid relations.

Theorem 2.38 ([51, Theorem 39.4.3]). For any i # j in I the isomorphisms T; and Tj
of M satisfy the equality

TTT; - = Ty - - (2.62)
—_— Y
m;; factors m;; factors

where m;; denotes the order of o;o; € W.

The above theorem implies that for any w € W with reduced expression w = oy, - - - 0y,

there is a well-defined isomorphism denoted Ty, : M — M such that

see [27, 8.14, (1)]. The isomorphism T; : M — M induces an automorphism of U,(g), also
denoted by T; such that for all u € U,(g), m € M we have

T,(um) = Ty(u) Ty(m). (2.64)

By Theorem the algebra automorphisms T; : U,(g) — U,(g) also satisfy braid rela-

tions.

Corollary 2.39 ([51l Theorem 39.4.3]). For any i # j in I the algebra automorphisms T;
and T of Uy(g) satisfy the equality

TTT; - = T - - (2.65)
—_— —\—
m;; factors my; factors

where m;; denotes the order of o;o; € W.

Proof. Let u € Uy(g). Set ui = (T;I;T; - - )(u) € Uy(g) and ug = (T;T;T; - - - )(u) € Uy(g).
Using Equation ([2.64]) and Theorem twice, we see that
uy - (T Ty - ) (m) = wy - (TTGT5 - - ) (m)
= (LT - ) (um)
= (T - - )(um) = ug - (TTiT; - - - ) (m).

It follows from this that u; —usg acts as zero on M since T;T;7} - - - is an isomorphism of M.
Further, since M is chosen arbitrarily, we must have (u; —ug2)M = 0 for all M € Ob(Oiny).
It follows from [27, Proposition 5.11] that u; = us. O

Hence for any w € W with reduced expression w = oy, - -- 0;, we also obtain a well-
defined algebra automorphism T, = Tj, - - - T;, of Uy(g). Using Equation (2.64), we have

the following frequently used formulas for the actions of T; and T[l on the generators of
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U,(g) |51, 37.1.3], [27, 8.14]

Ti(Ky) = Ky = T; 1K), (2.66)
and
Ti(E) = —FK;, T, '(E)=-K;'F, 2.67
T,(F)) = —K;'E;, T, '(F)) = —EK; (2.68)
For i # j we have
Ca;
T(Ey) = > (-1)'q "B BB, (2.69)
=0
s
T E) = Y (~1)q BV BT, (2.70)
r=0
oy
T(F) = Y (<) g FV R, (2.71)
r=0
s
TONF) = Y (g E T R EY. (2.72)
r=0

From these formulas, it follows that for any w € W and A € Q we have
Tw(Ky) = Kw()\) (2.73)

and TZ»_1 = o oT; 00, where o is the antiautomorphism from Lemma A harder check

is showing that
(N, e)

V(Ti(w)) = (=qi)” o0 Ti(y(u)) (2.74)

for i € I and u € Uy where 7 is the automorphism from Lemma[2.28] This is also observed

through the formulas for the action of T; on the generators of U,(g). For instance,
g (aiy=1) (1)
VWT(E)) =~( Y (~1)'q B EE")

r=0
(—aij) , :
.. — Qs T Tr—ag4 —Q;5—T
= (—a)™ Y (1) g TR TR
r=0

= (=@)" Ti(F})
(—@)* Ti(v(Ej))

and similarly for the other generators of Ug(g).

Using the Lusztig automorphisms 7; for ¢ € I, we can now construct a PBW basis for
Uqy(g), similar to that in Theorem In particular, we construct a basis for U and a

corresponding basis for U~. The following proposition is the first step in this construction.
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Proposition 2.40 ([27, Proposition 8.20]). Let w € W and «o; € II. If wa; > 0, then
Tw(Ez) S UJ(OQ) If way € 11, then Tw(E,L) = Ew(ozi)'

As a consequence of this, if w € W has reduced expression w = oy, --- 0y, then all
products of the form
Ty Ty - T

Tt—1

(B, )" - Ty (B3 ) B! (2.75)
such that a; € Ny lie in U™T. This is so because the sequence

Q504 (aiz)v sy Oy e Uiz—l(ait)

consists of ¢ positive roots |26, 5.6 Exercise 1]. For any w € W let U™ [w] be the subspace
of UT spanned by all elements of the form . Similarly, we obtain subspaces U~ [w]
by replacing E; with F; in (2.75). By [13| 2.2] the subspace U™ [w] is always a subalgebra
of UT. We are interested in the structure of U™t [w] particularly in the case where we take

a reduced expression for the longest element of W. This is given by the following theorem.
Theorem 2.41 (|27, Proposition 8.22 a), Theorem 8.24]).

1) The subalgebras U™ [w] of UT depend only on w € W and not on a chosen reduced

expression.

2) If wg € W is the longest element with reduced expression wy = oy, --- 0y, then
Utlwe] = U™ and all elements of the form (2.75)) form a basis for UT.

Using (2.74]), we immediately acquire a a PBW basis for U™ by applying 7 to the PBW
basis of U™, This gives the following corollary.

Corollary 2.42 ([27, Remark 8.24]). Let wo € W be the longest element with reduced

expression wy = oy, -+ - 04,. Lhen all products
TilTiz T Tit4 (Fl )at o 'Ti2 (Fiz)mFicil (2'76)

with a; € Ng form a basis for U™ .

2.2.6 Lusztig’s skew derivations

Let 'f denote the free associaive K(q)-algebra generated by elements f; for i € I as in [51],
1.2.1]. The algebra 'f is a U%-module algebra with K - f; = gt for any i € I and
A € Qt. Hence 'f is a QT -graded algebra with

'f = @ 'f\.

et
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The natural projection map 7 : 'f — U™ with f; — E; respects the Q"-grading. There
are uniquely determined K(g)-linear maps r; : 'f — 'f and ;r : 'f — 'f such that
() = b, riley) = )y + 2mi(y), (2.77)
ir(ty) = dij, ir(zy) = ir(@)y + ¢ M (y) (2.78)
for all 4,5 € I, x € 'f, and y € 'f, [51), 1.2.13]. In particular, these equations imply that
that r;(1) =0 = ;r(1) for all ¢ € I since for any j # ¢ we have
0= Ti(fj) = T’i(fj . 1) = fjri(l)

and similarly for ;r. Using the projection , there exist linear maps r;,;r : UT — U™
satisfying Equations (2.77) and (2.78) with = € Uf,y € U} and f; replaced by Ej;. Such
maps are called skew derivations due to the similarity between and and the
usual notion of a derivation, see .

Example 2.43. We use Equation (2.77) to find r;(E") for n > 1, [27), Section 8.26,(3)].

We claim that )
n qin —1 n—
ri(BY) =" (B (2.79)

If n =1 then r;(E;) = 1. Proceeding by induction on n we have

ri(Bf ) = ¢one)ry (B B} + Eiry(E})

2(n+1)
Gl 4 lp
2 T 2 i

qg —1 q; — 1

)

as required. Similarly, using Equation (2.78) one obtains

— anEZn 4

2n
2n

(B = 15" o (2.80)
4q;

In view of the g-number [n]; we introduce the following modification which will appear
in Section and the calculations of Chapter [5|and Chapter|[6] see [16, Equations (3.36)-
(3.38)]. For n > 1 define

_ 2(n—1
yi=¢" =1+ +q¢ +...+¢" V. (2.81)

Using this notation we have

ri(Ef) = i (B]') = {n} B}~ (2.82)
for n > 1 and i € I. Additionally define {n};! = [[,_;{k}; and let {n};!! denote the
double factorial of {n}; defined by

[31-1

{n}ilt= ] {n- 2k} (2.83)

k=0
For n = 0 we set {0};! =1 and {0};!! = 1. As with the ¢g-number, we omit the subscript i
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if all roots are of the same length.
The maps r; and ;r appear in many different contexts; here we give two equivalent

properties regarding the algebra and coalgebra structure of U,(g).
Proposition 2.44 ([51] Proposition 3.1.6]). For allx € U and i € I we have
[z, B = (g — q; )" (ri(e) Ki — K ir()). (2.84)

Proposition 2.45 ([27, 6.14]). For all x € U we have

Alr)=z@1+ Y ri(x)K; ® E; + (rest)s, (2.85)
el
Alw)=K,@x+ Y EK,u o ®(z)+ (rest); (2.86)
el

where (rest)1 € 3 gm0} U:_QKQ @ U}l and (rest)y € 2 adIu{0} UTKy—o® U:_a.

In Section we give one additional equivalent property which is useful for induc-
tive arguments. The original definitions (2.77) and (2.78)) are also effective for inductive
arguments; the value of this will be made clear in Chapter

Remark 2.46. We could instead factor r;, ;7 : 'f — 'f over U~. Then the linear maps
riyir 2 U — U™ satisfy (2.77) and (2.78)) with f; replaced by F; and 2 € UZ,,y € U_,,.
They also satisfy corresponding versions of Propositions and

By an inductive argument, one shows that the following lemma holds.

Lemma 2.47 (|27, Lemma 10.1]). For alli,j € I, the relation
riojr(xz) = jrory(x) (2.87)
holds for all z € Uy(g).

Proof. Both sides of (2.87)) clearly coincide for x = 1 and x = Ej, for k € I. By linearity,
we only need to show that if the claim holds for € U and y € U,f, then it holds for
element xy.

Indeed, we have
(ri 0 jr)(ay) = ri(jr(2)y + ¢ M (y))
= ¢V (ry 0 yr)(@)y + jr(@)ir(y) + ¢ 9 ¢ @) () jr(y)
+¢ M (ri 0 jr)(y)
= ¢V (o) (2)y + jr()ir(y) + ¢ @ =D p (1) r(y)
+ ¢ Mz (jr 0 ry)(y).
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On the other hand, we have

(rori)(zy) = jr(d i)y + ari(y))
= ¢ (jr o) (@)y + ¢ gy (2) e (y) + jr(x)ri(y)
+q' (i1 or)(y).

It follows by comparison that r; o jr(zy) coincides with jr o rj(zy) as required. O

Using the antiautomorphism o of Uy(g) from Lemma we can relate the skew

derivations r; and ;r by a similar inductive argument as in the proof of Lemma

Lemma 2.48 (|27, Lemma 6.14 c)]). The map o intertwines the skew derivations r; and
i i.e.
ogori(x) =;roo(x) (2.88)

forallicI andx € UT.

Recall that there is a K-algebra automorphism —V : U,(g) — U,(g), called the bar
inwolution, that is defined by

— — U —U —U

¢'=q', Ei =E, F, =F, K, =K_, (2.89)
for i € I and X\ € @, see [51, Section 3.1.12]. The bar involution satisfies the following
property.

Lemma 2.49 ([51, Lemma 1.2.14]). The bar involution intertwines the skew derivations

r; and ;v for each i € 1
(@) = q(o‘i’“_o‘i)ri(x)U forallz cUf, peQ. (2.90)

Let i € I and let wy € W denote the longest element. Then the subspaces U™ [o;wo]

and U~ [o;wp] can be determined using the skew derivations. Here, we allow both r; and
;7 to act on elements of U™ as in Remark

Lemma 2.50 (|27, Lemma 8.26]). Fori € I and wy € W we have
Ti(U " [owp]) = {z € Ut | ri(x) = 0}. (2.91)
To obtain the following corollary, we use Lemma and the relation Ti_1 =ooT;00.

Corollary 2.51 (|27, Remark 8.26]). Fori € I and wo € W the following equalities hold.

Utloiwo) = {x € U | ir(x) = 0}, (2.92)
U~ [oywo) ={x € U™ | ri(z) = 0}, (2.93)
T;(U [ojwg]) = {z € U™ | ;r(z) = 0}. (2.94)
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2.2.7 The bilinear pairing on U,(g)

The PBW bases for UT and U~ from Theorem and Corollary are dual to one
another, which we make more explicit here.
Let A and B be K-algebras with a bilinear pairing (—, —) : A x B — K. Using the

tensor product, we may extend this to a new bilinear pairing (—, —) : A®" x B®" — K by
setting
n
(a1 @+ ® an, b1 @+ @ by) = [ [(as, bi). (2.95)
i=1

We use this in the current setting as in [27, Proposition 6.12]. Let U=? = UTU° and
US0 = U~U". Then there exists a unique bilinear pairing (—, —) : US? x UZ? — K(q)
such that for any z,2' € UZ0,y,v/ € USY, u,v € Q and i,j € I we have

(y,z2) = (A(y), 2’ ® z), (y',z) = (yoy, Ax)), (2.96)
(K, Ky) =g~ ), (Fi, Bj) = =bij(qi —q; )71, (2.97)
(K, E;) =0, (F,K,) =0. (2.98)

Equation (2.97)) implies that the elements F; and E; are dual to one another with respect
to (=, —), up to a scalar. We extend the duality to the bases for U~ and U™. First, using
the skew derivations r; and ;r from Section [2.2.6] we obtain an inductive formula for the

bilinear pairing.
Proposition 2.52 ([51} 1.2.13]). Forallz € Ut,y € U~ and i € I we have
(Fiy, ) = (Fy, Ei)(y,ir(2)),  (yFi, ) = (F5, Ei)(y,ri(2)). (2.99)

Proof. We only prove the first equality; the second is obtained similarly. The bilinearity
of (—, —) implies that we only need consider = € U, for u € Q™ \ {0}. Using Proposition

and Equation ([2.96|) we have

=(Foy, K, @+ Z EjK, o; ® jr(x) + (rest)s)
J
= (Fioy K, @x)+ Y (F 0y EjK, o @ jr(x)) + (F; @y, (rest)2)
J

= S EL B K o) (9, (@) + (Fr @y, (rest)2)
J
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since (F;, K,) =0 for all i € I and € Q1. Again using Equation (2.96)) it follows that
( ) H—Qj ® E; >

FoK '+1®F, K, o; ® Ej)

= (Fi, Ko, ) (K} Y Bj) 4 (1L Ky, ) (F, Ej)

= 0ij(Fi, Ej)

(i BjKp—a;) = (A
=

for all ¢,j € I. By a similar argument, one shows that
(F; ®y, (rest)2) = 0.

Hence we obtain

(Fiy,x) = (Fi, Bi)(y, jr(2))

as required. ]

Example 2.53. We claim that for any i € I and n > 1 we have
{n}!
(B E") = (—1)nma (2.100)
7
see [27, Section 3.16,(4)]. By ([2.97) we have (F}, E;) = —(¢; — ¢; *)~!. Using Proposition
and Equation ([2.82)) we have
1}!
(FPHL B = (B B (FP, o+ 11 = (—1pt AL
(¢ —q; )"t

which proves the claim.

The following is a technical proposition that is not proved here, but the details can be
found in [27, Chapter 8A].

Proposition 2.54 (|27, Lemma 8.27, Proposition 8.28]). Let i € I,x € U™ [o;wo] and
Y € U_[ino]. Then
(Ti(y)F', Ti(x)E™) = Spm(y, x)(F*, El')  for all n,m € Ny. (2.101)

Using Proposition we now show that PBW bases for U and U~ are dual to one
another with respect to (—, —). This follows [27, Proposition 8.29].

Proposition 2.55 ([27, Proposition 8.29]). Let w € W and let w = oy, - - - 0, be a reduced

expression. Then the expression

(T, Ty Ty, (F) - Ty (FE) S Ty Ty - T,

21 1t—1

(EY)- Ty (E2)EN) (2.102)

is 0 if there exists an index 1 < k < t with ay, # by; otherwise it is equal to [ [f,_, (Fi*, E{*).

1 )Tk

Proof. We proceed by induction on the length ¢(w) where ¢ : W — Ny denotes the length
function with respect to w. The result is clear when ¢(w) < 1. For ¢t = ¢(w) > 1 suppose
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w = 0y, -+ 0;, is a reduced expression. Set

x="T, T,

it—1

y="T, T

T—1

(E3) - Top (B3 EL
b3\ b
() - Ty () F.
Then z € Ut[o;,wo| and y € U™ [0, wp]. By Proposition we have
b
<Ti1 (y)Fi117Ti1 (x)E;Z11> = 5a151 <y7 w> <Fz‘ail ) E;l11>'
We can now apply the inductive hypothesis to  and y since o;, w = 0y, - - - 0;, is reduced
and {(o;, w) < {(w). The result follows from this. O
The following corollary shows that the pairing (—, —) respects weights.

Corollary 2.56 ([27, Corollary 8.30]). The restriction of (—,—) to UZ, x U, vanishes
for any p,v € QT with u # v. If u = v, then the restriction of the bilinear pairing to
UZ, x U is non-degenerate.
The non-degeneracy of (—, —) : UZ, x U, lf — K(g) and Proposition imply that for
any = € U} with p € Q" \ {0} we have
ri(z)=0forallie] < x=0 <= ;r(z)=0forallicl, (2.103)

as in [51], 1.2.15).

2.2.8 The quasi R-matrix
Let p € QT and let {u}'}; be a basis of UZ,. By Corollary we can find a dual basis
{v'}i of U with respect to the bilinear pairing (—, —). Define

R,=> ufeu el , U/, (2.104)
%

see [27, Section 7.1]. The element I, does not depend on the chosen basis for U ,.
For M, M’ € Ob(Oipnt) we have

Ry (My® M},) C My_, ® M}, forall \,X € Q,pu€ Q"

Hence there are only finitely many p € Q7 such that R, acts non-trivially on M @ M’.

This allows us to define a linear transformation
R=Ryy MeM >MeoM, R=Y R,e [[ v,oU; (2.105)
peQT peEQT

which we call the quasi R-matriz.

Example 2.57 ([27, Section 3.11]). The fundamental example which is crucial to our
later constructions is the quasi R-matrix for U,(slz). Here we have () = Zay and hence

any p € QT must be of the form na;y for n > 0. The subspace U_, .. has a basis given by

—nay
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the element F7*, whilst by Equation (2.100)) the element

2(@—q 1)

generates the dual basis of U} . It hence follows that

noy*
n (q - q—l)n

Bt

Rna1 = (_]‘) {n}| F{L®E?
which implies that the quasi R-matrix is given by
n (q — qil)n n n
R=> Rpo, =» (-1) Wﬂ ® E}. (2.106)
n>0 n>0 '

For any i € I, let R; denote the quasi R-matrix corresponding to the copy of U,(sl2(4))
labelled by . Then we have
Ri=) (-1 { } '1) F'® B (2.107)
n>0
By [561, Theorem 4.1.2] there is a second important characterisation of the quasi R-matrix
which uses the bar involution from Equation . We define a bar involution —V®V on
Uq(9) ® Uqy(g) by setting

UeU

wev Y =Y @Y (2.108)

for all u,v € Uy(g). We normally omit the superscripts U and U ® U if it is clear which
space the bar involution is acting on. Generally for v € U,(g) we have A(w) # A(u) and
further, the element A(u) is not an element of A(U,(g)). However, the quasi R-matrix

allows one to intertwine between the two bar involutions.

Theorem 2.58 ([51, Theorem 4.2.1]). The quasi R-matriz is the uniquely determined
element R =3 o+ Ry € [[,cq+ UZ, ® Uy with Ro=1®1 and R, € UZ, ® Ul which

intertwines the bar involution in the sense that
A(@)R = RA(u) for any u € Uy(g). (2.109)

A crucial property of the quasi R-matrix is that it admits a factorisation as a product
of quasi R-matrices for Uy(sla), see [47], [35], [27, Remark 8.30] and [34] for example.
Let wo = 04,04, - - - 0;, denote a reduced expression for the longest element wy € W.

For 1 <j <tsety; =0y ---0i_,(a;;) and define

Ey, =T, T (E), F,=T, T,

ij—1\Fi; ij—1

(F3))- (2.110)

The elements E,; and F); are the root vectors used in the construction of the PBW basis
elements corresponding to U™ and U™, respectively. Whilst root vectors in g have simple

commutator formulas, e.g. [25, Proposition 8.4(d)], this is not true for Ug(g).
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Lemma 2.59 ([48, Lemma 1]). For all i < j we have

B, E, —q OWE E, = > Cin B} EY? - El: (2.111)
1<ki1<ko<--<ks<j

where Cx n = Cky ky.... ks n1,n2,....ns OTE CONStants.

The above lemma states that for ¢ < j the element E, E,, — g O E,, E,; is a linear
combination of basis elements as in (2.75) only involving E,, with i < k < j, see [27,
Remark 8.24]. We make use of Theorem in Section

For ;1 € Q% a basis for UZ, s given by the elements
Fat F%t 11 L F$11

for a; € Ng and p = Zle a;7v;- By Equation (2.100) and Proposition the elements
¢ 0t
(i —gq )™
-1 a; EatEat 1., ,Eal
<H( ) {az}z Yt—1 71

such that p = 25:1 a;7y; form the dual basis of U: with respect to the bilinear pairing
(—,—). For 1 < j <t define

r(qi' B qi_'l)r r r
R[j] = ( 1 "',Tij71 ®,—Ti1"'T’ij71)(RZj) :Z(_l) J{TﬁFw ®E'y]~' (2112)
>0 KA

Theorem 2.60 ([34],[47],[35] ). The quasi R-matriz is given by

R=RWY.pt-1... gl . gl (2.113)
Remark 2.61. The quasi R-matrix plays a pivotal role in many deep applications of
quantum qroups, which we outline here. By Theorem 2.58|the quasi R-matrix is the unique
element that intertwines between two bar involutions on U,(g) ® Uy(g). This relation first
appeared in the development of canonical (or crystal) bases for U,(g), established by G.

Lusztig [50] and M. Kashiwara [31].
For M, M’ € Ob(Oipt) let k: M @ M — M ® M’ be the linear map defined by

k(m@m') =¢*Imem’ forme M,,m' € M, (2.114)
The quasi R-matrix gives rise to a universal R-matriz R such that
R=Ror toflip: MM - M oM (2.115)

is an isomorphism of U,(g)-modules, see [27, Theorem 7.3]. In the theory of integrable
systems, the R-matrix is a crucial tool for providing solutions to the quantum Yang-Baxter
equation (or QYBE).
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Chapter 3
Quantum symmetric pairs

Let 6 : ¢ — g be an involutive automorphism. We recall the construction of involutive
automorphisms of g in Section Up to conjugation, these are classified by Satake
diagrams (X, 7). This allows one to construct fixed Lie subalgebras ¢ of g. In order to
define quantum symmetric pairs, a quantum analogue of U(£) is constructed in Section
Recall that the construction depends on additional parameters ¢ € C and s € S,
see Definition Importantly, we obtain a family of right coideal subalgebras instead
of Hopf subalgebras. In Section [3.6] we give relations for quantum symmetric pairs. The

results of this chapter follow mostly the papers [45] and [38].

3.1 Involutive automorphisms of semisimple Lie algebras

For any subset X C I, let gx be the Lie subalgebra of g generated by {e;, fi,h; | i € X}.
Let Qx denote the subgroup of @ generated by {«; | i € X}. This is the root lattice for
gx. Let px € V and p% € V* denote the half sum of positive roots and coroots for gx,
respectively. Let Wx C W be the corresponding parabolic subgroup of W generated by
{oi | i € X}. This is the Weyl group for gx. Let wx € Wx denote the longest element of
Wx. Let 7 : I — I denote a diagram automorphism for the Dynkin diagram of g. This

can be viewed as an automorphism of g by setting

T(ei) = €r(3); T(fl) = f'r(i)a T(hl) = hT(i)? forieI. (31)
The induced map of h* further satisfies 7(a;) = ;) for all i € I.

Definition 3.1 ([59, p. 109], see also [38, Definition 2.3]). Let X C I and let 7: I — I be
a diagram automorphism such that 7(X) = X. The pair (X, 7) is called a Satake diagram

if it satisfies the following properties:
(1) 72 =1id;.

(2) The action of 7 on X coincides with the action of —wx.
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(3) If j e I'\ X and 7(j) = j, then a;(p%) € Z.

Graphically, the components of a Satake diagram are recorded in the Dynkin diagram
of g. The nodes labelled by X are coloured black and a double sided arrow is used to

denote the diagram automorphism.

Remark 3.2. We denote a Satake diagram by a triple (I, X,7) if we need to identify
the underlying Lie algebra. With this notation, if (I, X,7) is a Satake diagram and
i€ I'\ X, then (X U{i,7(i)}, X, 7| xu{i,r5)}) is also a Satake diagram. This notation will
be extensively used in Chapter

Recall that there exists a diagram automorphism 79 : I — I such that the longest
element wy € W satisfies

wo (o) = —Qry(i)- (3.2)

It follows from this and the definition that the pair (X = I, 7 = —wy) is always a Satake
diagram. A complete list of Satake diagrams for simple g can be found in [1 pp. 32/33].
Additionally, by inspection of the list of Satake diagrams one sees that the set X is 79-

invariant.

Example 3.3. Consider g = s0g(C) which is of Dynkin type D4 and the standard choice

of simple roots and coroots.

Then the pair ({3,4},id) is a Satake diagram since —wx acts as the identity on X and
p% = 5(hs + ha) satisfies

ai(px) =0, aa(px) =—1.
The pairs ({1,3},id) and ({1,4},id) are also Satake diagrams for similar reasons. The

pair (0, (3,4)) is a Satake diagram since conditions and are empty. However, the

pair ({2},id) is not a Satake diagram, since in this case p% = 3hs satisfies oy (p%) = —3.

The Satake diagrams ({3,4},1d) and (0, (3,4)) are represented graphically by

3 3

respectively.
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Let w : g — g be the Chevalley involution given by
wlei) = —fi, w(hi)=—hi, w(fi)=—e (33)
for all ¢ € I. Denote by mx € Br(g) the element of the braid group that corresponds to

the longest element wx € Wx.

Lemma 3.4 ([38, Proposition 2.2, Part 3)]). Let 7 : I — I be a diagram automorphism
such that 7(X) = X. Then the automorphism Ad(mx) of g commutes with both T and w.

Proof. By definition the relation
T(Ad(6i)(z)) = Ad(er()) (7(2)) (3-4)
holds for any ¢ € I and = € g. Since wy € Wx is T-invariant, it follows that
T(Ad(mx)(z)) = Ad(mx)(7(z))
and hence 7 and Ad(mx) commute. Equation immediately implies that w commutes

with Ad(g;) for any i € I and hence also with Ad(mx). O

The following Lemma from [2, Lemme 4.9] has been rewritten for the convenience of
the reader. Recall from the proof of Lemma the Lie subalgebra sl3(7) of g and the
corresponding Lie subgroup SLsy(i) of G for each i € I.

Lemma 3.5 ([2, Lemme 4.9]). The automorphism Ad(mg) of g satisfies
Ad(mg) =m0 ow. (3.5)
Proof. We only need to verify the lemma on the generators e;, f; and h; for ¢ € I. The result

follows for the elements h; by using Lemma and Equation (3.2)). Since Ad(mg)(e;) €
O—ry(ay) and Ad(mo)(fi) € 9ry(a,) there exist scalars c;(;), dr ;) such that

Ad(mo)(el) = _CTO(i)fTo(i)7
Ad(mo)(fi) = —dry )€y (i)-
In fact, since
—hro@) = Ad(mo)(hi) = Ad(mo)([ei, fi]) = Cry()@ro i) [fro()s €r0(6)] = —Cro () ro (i) Piro i)
it follows that c; ;) = dT_Ol(l.) for all 7 € I. We show that c; ;) =1 for all ¢ € I from which

the statement of the lemma follows.

The relation woo;wg 1= Ory(i) holds in . This implies that

Ta(mosimg ') = 76 (S (i) = exP(€ry(i)) €XP(— fro (i) €XP(Ery (i))-

On the otherhand, since the adjoint representation Ad : G — Aut(g) acts by conjugation
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we have
ma(mosimg ') = ma(mo) exp(e;) exp(—f;) exp(e;)ma (mg *)
= Ad(mo) (exp(e;) exp(—f;) exp(e;))
= exp(Ad(mo)(e;)) exp(Ad(mo)(—fi)) exp(Ad(mo)(e;))
= exp(—Cry (i) fro (i) eXP(C;Ol(i) €r0(i)) €XP(—Cry (i) fro (i) )-
For any t € C let wl, : Br(g) — G be the map that sends
Gi > exp(te;) exp(—t~" fi) exp(te;).

In this way, we have mg = m5,. Considering e; and f; as elements of sl(i) we have
0 t .
Th(s) = (—tl 0) € SLa(7).

It follows that the map wl, is injective for all ¢t € C. By comparison of the two expressions

for mq(mosimg 1) above, we hence obtain Cro(i) = 1 as required. ]

Let 7x denote the diagram automorphism of gx corresponding to the longest element
wx € Wx and let wx be the restriction of the Chevalley involution to gx. As a conse-
quence of the previous lemma, the automorphism Ad(myx) of g leaves gx invariant and
satisfies

Ad(mx)|gx = Tx o wx. (3.6)

We now give an expression for Ad(m.x)? which will be needed in the proof of Theorem
This follows [2, Lemme 4.10] where we fill in some of the details.

Lemma 3.6 ([2, Lemme 4.10]). The relation
Ad(c?) = exp(ad(ira))) (3.7)
holds in Aut(g).

Proof. Recall from Equation (2.50|) that there is a group homomorphism 7 : Br(g) — G
such that ¢; — exp(e;) exp(—f;) exp(e;) for each i € I. Over the Lie subgroup SLs(i) we

have

msLy(5) (i) = expleq) exp(—fi) exp(es) = <—01 (1)>

which implies that 7gy, ;) (s?) = —id. Recall from [25, Chapter 7] that the simple sly
representations are given by finite dimensional modules V; of dimension d 4+ 1 with basis
Vg, Vd—2, - - -, V—q such that hv; = jv; for j =d,d—2,...,—d. The vector v, is the highest
weight vector for V. We want to find the action of 75z, ;) (¢?) on V. Let V =V, = C2%
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Then
VaCVeve. -V =ve.

d times

Indeed, since V' = Cv; ®Cv_1 and v; is a highest weight vector for V of weight 1, it follows
that v, @ v1 ® --- @ v1 € VO is a highest weight vector of weight d. This implies that to
understand the action of 7g Lz(i)(giQ) on Vy, we should consider the action on V& instead.

To keep track of the underlying vector space W, we write pgw : g — End(1V) and
pa,w : G — Aut(W) for representations of g and the corresponding simply connected Lie

group G, respectively. Then for any vector space W we have
(PG,V ® PG,W) (TsL203) (s7))
= (pa,v @ pa,w) ((exp(e;) exp(—f;) exp(e;))?)
2
= ((r,v @ paw)(explei)) - (pa,v © paw)(exp(—f)) - (pav @ pa,w)(exp(e;)))™.

For z € g we have

(Pov © paw) () = pgv(z) © 141 @ pgw ()

and hence

(pa,v ® paw)(exp(x)) = exp(pgy @ 1+ 1® pgw(z))
= exp(pg,v (z) ® 1) exp(1 ® pgw (z))
= exp(pg,v () ® pgw () = pc,vew (exp())

where the second equality follows from the fact that pg v (z) ®1 and 1® pgw (x) commute.
This implies that

2
(pav ® paw ) (Tsr,)(sP)) = (pavew (exp(e:))pavew (exp(—fi))pa,vew (exp(e:)))

= pc,vew ((exp(e;) exp(—f;) exp(e;))?)

= pG,V®W(7TSL2 (7) (%‘2))-
It follows that 7y, ;) (s?) acts on V @ W diagonally. Since TS Ly(i) (s?) acts on V as —idy,
it follows by extension that mgr, ;) (s?) acts on V&4 as (—1)%dy s and therefore ¢? acts
on V by multiplication by (—1)%.

On the otherhand the element exp(ima)’) acts on vj € Vy by exp™ = (=1)7 = (-1)<.

These two actions coincide and hence they also coincide under any representation of G.

In particular, we see that
Ad(¢?) = Ad(exp(ima)) = exp(ad(ira)))

as required. ]

Proposition 3.7 ([2, Proposition 4.10.1]). Let w € W and let w = oy, - - - 04, be a reduced
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expression. Then in Aut(g) the relation
Ad((Si iy ) (Siy -+ i) = exp(ad(imHy)) (38)

holds, where Hy, = aV and ®(w) ={a € ®T |w(a) € D~ }.

a€d(w)

Proof. We proceed by induction on the length ¢(w) of w € W, where ¢ : W — Ny denotes
the length function with respect to W. If ¢(w) = 1, then Ad(g?) = exp(ad(imay)) by
Lemma

Suppose that w’ = gy, - - - 0y,_, is reduced with ¢(w') = ¢(w) — 1 such that

Ad((git—l e gil)(gil T git—l)) = exp(ad(iﬂﬂw’)) = Ad(exp(inw/)).
From this, we deduce that

Ad((si, -+ 50 )(Siy -+ 5ir)) = Ad(sy,)Ad (exp(im Hyr))Ad(ss,) " Ad(S7)
= Ad(exp(in(ci,(Hy) + ).

It remains to show that H, = o;,(Hy) + oy,
Since {(w) = t, we have w(«a;,) € ®~ and thus «o;, € ®(w). Let a € ®(w) — {ey, }, then
oi,(a) € ®t — {a;,}. Since a € ®(w), it follows that w(a) = w'(0y,()) € ®~ which
implies 0y, () € ®(w’). Hence we have ®(w) — {a;, } C 0y, (P (w')).

On the other hand, let o € ®(w’). Since ¢(w'o;,) > ¢(w') we have o # «;, and hence
oi,(a) € &t — {a;,}. As woy,(a) = w'(a) € &7, it follows that o, () € ®(w) which
implies oy, (®(w')) C ®(w) — {a, }-

Therefore we have ®(w) — {a;, } = 04, (P(w’)) as required. O

or equivalently, ®(w) = oy, (®(w')) U {, }.

Corollary 3.8 ([2, Corollaire 4.10.3]). The relation
Ad(m%) = exp(ad(in2p%)) (3.9)
holds in Aut(g).

Proof. Let wx € Wx have reduced expression wx = o0y, - - - 04,. Since w% =1, the element

0;, - -+ 04, is another reduced expression for wy. By Proposition we have
Ad(m%) = Ad((o4, -+ 0i,) (03, -+ 03,)) = Ad(exp(imHyy ).

Since wx(®7) N &+ = &%, it follows that ®(wx) = ®% and hence H,, = 2pY% as

required. O
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It follows from Corollary [3.8] that if x € gq, for i € I then
Ad(mx)?(x) = exp(ad(in2p))(x)

Z ad®( meX (x)

(= (imai(2p%))"
- <z =)
— (_1)ai(20§()$_

Let s: I — C* be a function satisfying

s(i) =1 ifi € X or 7(i) =1, (3.10)

s) (—1)(2e%) if i ¢ X and 7(i) # i. (3.11)

This function extends to a group homomorphism sg : @ — C* such that sg(a;) = s(i)
for each simple root «;. Using the group homomorphism sg, we define a Lie algebra

automorphism Ad(s) : g — g by
Ad(s)|y =1id]p, Ad(s)(z) = sg(a)z for a € @, x € gq. (3.12)

We now associate an involutive automorphism to any Satake diagram (X, 7), following
[38, Theorem 2.5].

Theorem 3.9 ([38, Theorem 2.5]). Let (X, 7) be a Satake diagram. Then
0(X,7)=60=Ad(s)oAd(mx)oTow (3.13)

s an tnvolutive automorphism of g.

Proof. Suppose x € gx. By Equation and Equation we have
0%(z) = (Tx owx o7 ow)z(x) =z
as required. If instead x € b, then since Ad(wx) o7 ow(h) C b it follows that
6%(x) = (Ad(mx) o 7o w)’(x).

By Lemma and Corollary we obtain #?(x) = x. Hence we may assume that
T € go, for some i € I'\ X. Note that applying Ad(s) to an element y € g, has the effect
of multiplying by a scalar which depends on the given v € ®. Hence

6%(z) = (Ad(s) o Ad(mx) o T 0 w)*(x)
— SQ((wX oToO w)2(ai))sQ (wX oTO w(ai)) (Ad(mX) oToO w)Q(x).

Viewed as involutive automorphisms of §*, both 7 and w commute with wx. This and
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Lemma [3.4] imply
0°(x) = sq(wx (—ar@))so () Ad(mx)*(z).

It follows from Equation (3.10) that sq(wx(—a;@))) = sg(—az¢)). Using this, we obtain

2,y S(i) ms)2(z

By Corollary [3.8] we have Ad(mx)2(z) = (—1)®(2°X)z. The result follows from Condition

of Definition and Equation (3.11)). O

Remark 3.10. A full classification of involutive automorphisms of g is approached in
[38, Appendix A]. In particular, it is shown that given any involutive automorphism 4,
there is a Satake diagram (X, 7) such that ¢ is Aut(g)-conjugate to 6 = 6(X, 1), see [38,
Proposition A.6].

For any Satake diagram (X, 7), the automorphism 6 = (X, ) satisfies 0(h) = . More
explicitly, Equation (3.13) implies that
0(h) = Ad(wx)owoT(h) = —wx o7(h) (3.14)

for h € h. This restriction defines a dual map © : h* — bh* which is given by the same
expression
©=—-wxor (3.15)

where now both wx and 7 act on h*. For later use, we note the following lemma.
Lemma 3.11 (3] Lemma 3.2]). Let (X, 7) be a Satake diagram. For all i € I, we have
o — @(Ozz) = ar(i) - @(aT(l)) (316)

Proof. We have wx(a;) — a; € Qx for any ¢ € I. The claim of the lemma follows from
Property of Definition by observing that

wy (wx (i) — ;) = —7T(wx (a;) — a;))

holds for any 7 € I. O

3.2 The fixed Lie subalgebra

Let (X, 7) be a Satake diagram and let # = (X, 7) : g — g be the corresponding involutive
automorphism, as defined in Equation (3.13). Then the Lie algebra g has a decomposition
g=tdp (3.17)

into the +1 and —1 eigenspace of § with ¢ = {z € g | () = x}. Note that ¢ is a Lie
subalgebra of g. On the other hand, for any =,y € p with [z,y] # 0 we have

0z, y]) = [0(2),0(y)] = [-2, —y] = [z, 9]
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and hence [p,p] C ¢.

The following lemma gives a description of the generators of the Lie subalgebra &.

Lemma 3.12 ([38, Lemma 2.8]). The Lie algebra € is generated by the elements

ei, fi forie X, (3.18)
heb with O(h) = h, (3.19)
fi+0(fi) foriel\X. (3.20)

Proof. Let € denote the Lie subalgebra of g generated by all elements of the form (3.18)),
(3.19) and (3.20). By Equation (3.6)), the generators (3.18|) are invariant under #. The

remaining generators are invariant under 6 by definition, hence € C &.

Conversely, suppose = € . By the triangular decomposition ([2.24]) we write
r=xt+2%+2”

with 2+ € nt, 2% € h and 2= € n~. Since 6(f;) € nT for i € I\ X, it follows that there
exists an element y € € such that x —y € n* @ bh. Such an element is a linear combination
of elements of the form , and all possible Lie brackets between these elements.
We may hence assume that = = 0. Further, since 6(2°) = 20 we have 2° € £. We can
hence assume that 20 = 0.

It follows that we can write x = 27 € n™ as a sum of weight vectors z = Za€Q+ Loy
As 0(ga) = 9—wyr(a), it follows from that z, # 0 implies o = ) .y njoy; for n; € N.

Hence = € £ as required. ]

Example 3.13. Let g = sly with Satake diagram ({2}, (13)).

Here, the fixed Lie subalgebra ¢ is isomorphic to sly N (gl; @ gl;). In this case, the corre-

sponding involutive automorphism @ is of the form
0 = Ad(s) o Ad(s2) o T o w.

By relation (3.11]) we have s(1) = —s(3) so we assume s(1) = 1 and s(3) = —1. Hence 6

acts on the Chevalley generators by

O(e1) = [f3, fa], 0(h1) = —ha — hs, 0(f1) = [e2, es],
(e2) = e2, 6(h2) = ha, 0(f2) = fo,
O(es) = —[f1, f2l, 0(h3) = —h1 — ha, 0(f3) = —[ez, e1].
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The generators of the fixed Lie subalgebra ¢ are then given by the elements
€2, f27
ha,  hi — hs,
fi—s@)ez,es],  f3—s(1)[ez, el

3.3 Quantum involutions

By Corollary the universal enveloping algebra of £ is a Hopf subalgebra of U(g).
Further, using Lemma we can write down the generators of U(¢) by modifying by

constant terms.

Lemma 3.14 ([38, Corollary 2.9]). Let s = (s;);enx € C\X. The universal enveloping
algebra U (£) is generated by the elements

E,F, forieX,

Hebh with(H)=H,

Fi+0(F;)+s; foriel\X. (3.21)

as a unital algebra.

We would like to construct a subalgebra of U,(g) which is a quantum analogue of U (¢).

)
U(g) — Uq(0)

]

Even if ¢ is semisimple, the natural candidate of taking the quantised enveloping algebra
U, (%) turns out to be incorrect; it is not even a Hopf subalgebra of U, (g), see [§] so this can
never work. Instead, we construct a new algebra, denoted by Bc s, which has the desired
properties. We recall this, following the work of G. Letzter [42] and the conventions of
S. Kolb [38].

The first step in the construction is to deform the involutive automorphism 6(X, 1) :
g — ¢ to an automorphism 6,(X,7) : Uy(g) — Uy(g). To do this we use the Lusztig
automorphism corresponding to the longest element wx of the parabolic subgroup Wx.
Let £ : Uy(g) — Ugy(g) denote the algebra automorphism defined by

w(E;) = BiK;, w(F)=K;'F, k(K;)=K; (3.22)
for all i € I. Let w: Uy(g) — Uy(g) be the algebra automorphism defined by
w(k;) = —F;, w(l)=-E;, w(K\)=K_\ (3.23)

for all ¢ € I. This is the quantum analogue of the Chevalley involution of g, denoted
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by the same symbol. The diagram automorphism 7 induces an algebra automorphism of
Uy(g), also denoted by 7 such that

for all ¢ € I. Recall the Lusztig automorphisms Ty, for w € W from Section [2.2.5

Definition 3.15 ([38, Definition 4.3]). The automorphism 6,(X,7) : Uy(g) — U,(g)
defined by
0,X,7)=0,=Ad(s)oTy, okowor (3.25)

is called the quantum involution corresponding to (X, 7).

The map 6, is not an involutive automorphism of Uy (g), but it does retain the crucial
properties of #, motivating the use of the name ‘quantum involution’. Let Mx be the
subalgebra of U,(g) generated by {E;, F;, KX' | i € X}. Using Proposition we can

determine the action of T},, on the generators of Mx.

Lemma 3.16 ([38, Lemma 3.4]). For all i € X one has

Ty (Bi) = =Fr i), Tux(F) = —K_j) (Ki) =K ;.  (3.26)

K, Friy,  Tor(F) =—E.3)Kyq),  Tor(Ki)=K_ L. (3.27)

wx wx 7(4)

Proof. Since wx (o) = —a(; by Conditionof Deﬁnition it follows that T, (K;) =
K;é) = T,L;; (K;). Write wy = w'o; for some w' € Wx. Again, Condition |(2) of

implies that w'(a;) = a;¢;). By Proposition it follows that Ty (E;) = Er(;) and hence
by Equation [2.6§ we have

E’T‘(i)? T,

wx

T (E:)

wx

Ty (FZ) = Tw’ﬂ(ﬂ) =Ty <_K1_1Ei) = _KT(i)ET(’i)'

X

The expression for TJ; (F;) follows by conjugation with the antiautomorphism o from
Lemma The expressions for Ty (E;) and Ty (Er(;)) follow smilarly. O

Recall from ({3.15)) the dual map © : Q — Q. The algebra automorphism « : Uy(g) —
Uy(g) introduced in (3.22)) is needed in order for the following proposition to hold.

Proposition 3.17 ([38, Theorem 4.4], [4, Section 5.2]). The automorphism 6, satisfies

the following properties:
(1) Oglrmy = id| -
(2) 04(Ku) = Koy for all p € Q.
(3) O4(K;'E;) = —s(7(i)) Ty (Fra)) € Ug(a, for alli € I\ X.

(4) 04(FiK;) = —s(7(i)) Twy (Er)) € Ufe(ai) forallie I\ X.
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Proof. Parts (1) and (2) follow from Lemma and the definition of 6,. Parts (3) and

(4) are similar so we only consider (4). We have

0,(FiK;) = Ad(s) o onnowor(FK)
= Ad(s) o Ty o ko w(F; ()
= Ad(s) o Tuy © K(=Ero) K_rq) )
—Ad(s) o Ty (Er)) = —s(7(2)) Twx (Er))
as required. O

3.4 Quantum symmetric pair coideal subalgebras

The elements §(F;K;) for i« € I\ X are a major ingredient in our constructions of a
quantum analogue of U(¢). As in [4, (5.4)] to shorten notation we write
X; = Gq(Fle) = —S(T(i))TwX (ET(Z)) foriel \ X. (328)

Let Q° = {\ € Q | ©(\) = A} and denote by Ug the subalgebra of U° generated by
{Ky | A € Q®}. By Condition [(2) . of Definition and Lemma the subalgebra U$

is generated by the elements KjEl forie X and K;K_, ( ) forjel \ X.

Definition 3.18 ([38, Definition 5.1]). Let (X, 7) be a Satake diagram, ¢ = (¢;);en x €
K(g)"\X and s = (si)ienx € K(g)"\X. Define Bcgs to be the subalgebra generated by
My, Ug) and elements of the form

Bi=F+ XK, '+ 5K (3.29)
forallie I\ X.

The key property of Beg is that it is a right coideal subalgebra of Uy(g) [42, Theo-

rem 4.9], meaning
A(Bes) € Bes @ Ug(g). (3.30)

Indeed, it is clear that My and UQ are Hopf subalgebras of U,(g). Hence we only need
to find A(B;) fori e I\ X.

Lemma 3.19 ([38, Propoistion 5.2]). For anyi € I\ X we have
A(B;) - Bi® K; ' € MxUS @ Uy(g). (3.31)
Proof. Using Equation ([2.85|) for i € I\ X we have

A(Tux (Er() = Tux (Br) @ 1+ > 1i(Tuy (Br))K; ® Ej + (rest);
Jel

where (rest)1 € > enuqo) UJX(%(@)—&KO‘ ® UF. By Lemma [2.50| it follows that the

element r;(Tyy (Er(;))) is nonzero only if j = 7(i). Since 7, (Tuwy (Erp)) € MY it
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follows that

(rest)1 S Z UJX(aT(i))fozKa X U; - MXKT(i) X Uq(g).

oz>o¢7_(i)
This implies
A(Bl) —B;® K;l =1®F, — CiS(T(i))TT(i) (wa (ET(Z)))KT(Z)K;I & ET(Z)K;I +Y
€ ./\/le(% ®@ Uq(g)
as required, where Y = (rest); (K; ' ® K, 1). O
By Lemma one of the properties that U () satisfies is U(£) N h = h? where h? =
{h € b |0(h) =h}. For B¢ to be a quantum analogue of U (£) a similar property should

be satisfied, namely
BesNUY = UQ.

For this to hold, restrictions are imposed on the parameters ¢ and s, as in [38, Lemma 5.3—
5.5]. Let
I ={ieI\ X |7(i) =7 and a;; =0 for all j € X} (3.32)

and let
C={ce (K(q))"* | ¢; = ¢, if 7(i) # i and (e, O(ay)) = 0}, (3.33)
S={sec (K@) |s; #0= (j € Ins and a;; € —2Ng Vi € I,s \ {j})}.  (3.34)

Example 3.20. We give an example to show that it is necessary to have restrictions on

the parameters ¢ and s. Consider the Satake diagram

with ¢ ¢ C and s = 0. By (3.11]), we assume that s(1) = s(3) = 1. Then
[B1, Bs] = [Fi — 1 Es Ky, Fs — 3 B G ]
= —c3[F1, B K5 ') — e1[ Bs K, F
K —K;! K — Kj3!
= 0317711.[(3_1 — 01377?.[{1_1
q9—4q qa—4q

=(q—q ") ez K3 ' — et KKy — (e3 — e1) KT KG ).

Since ¢ ¢ C it follows that K; 'K;' € Bcs. However, K, 'K; ' ¢ US.
On the other hand suppose that s; # 0 which implies that s ¢ S. Then
¢ (KK ) Bi(KsK ') = B = (¢ = DRy

which implies K ' € Beg. However, K, * ¢ US.
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From now on, we will only consider B, s with c € C and s € S.

Definition 3.21 ([38, Definition 5.6]). The subalgebra B¢ for ¢ € C and s € S is called

a quantum symmetric pair coideal subalgebra of U,(g).

3.5 Specialisation

It can be shown that B.s specialises to U(¥), see [42, Theorem 4.9]. We give a brief
overview here. Details are omitted but can be found in [38] Section 10], for example. Let
A = K]q](4—1) denote the localization of the polynomial ring K|[g] with respect to the prime
ideal generated by (¢ —1). Define the A-form Uy of U,(g) to be the A-subalgebra of U,(g)
generated by E;, F;, K iil and elements

Ki—1

q—1

for i € I. The specialization of Uy(g) at ¢ = 1 is the algebra
U =K®4Ujyu.

Here, K is viewed as an A-module via the evaluation at 1. By [38, Theorem 10.1], U; is
isomorphic to U(g) as an algebra. We extend this notion to subalgebras B of U,(g) by
defining the specialization at ¢ = 1 to be the algebra

B =K®a (UanB).

It follows from the algebra isomorphism ¢ : Uy — U(g) that Bj is isomorphic to a subal-
gebra of U(g).

The notion of specialization can also be applied to algebra automorphisms of Uy(g).
In particular if ¢ is an automorphism of Ugy(g) such that ((Us) C Ua and ¢’ is an auto-
morphism of U(g) such that

Ui 21®(¢(x) = (¢p(x)) forall x € Uy

then we say that ¢ specializes to ’. In Section we defined the quantum involution 6,
as a deformation of the involution 8 : g — g. One can make this more precise by showing

that 6, specializes at ¢ = 1 to 6 [38, Proposition 10.2].

3.6 Relations for B

The algebra B s can be described explicitly by generators and relations. Using [44], Sec-
tion 7] and [38, Section 7] we give a summary of the relations. To unify notation we let

B;=F;and ¢; =s; =0if i« € X. For 4,5 € I let F}; denote the function in two variables
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defined by

1—a;;

1_ ..
Fytoa) = 3 (1|1 atmerya, (3.35)
r=0 q

With this notation, the quantum Serre relations (Q5)| and can be rewritten as
Fz‘j(Ez’,Ej) = FZJ(E,F]) =0 foralliel.
In the below theorem, the ‘order’ of an expression refers to the maximal number of F;’s

appearing over all summands.

Theorem 3.22 ([44, Theorem 7.1|, [38, Theorem 7.1]). The algebra B is generated over
MHLUS by the elements {B; | i € I} subject to the following relations:

K\B; = ¢ M) B,K, forall\e Q®,iel, (3.36)
K — K;!
EiBj — BJEZ = (51]7_21 forallie X,j€l, (337)
qi — 4;
Fij(Bia BJ) = C’z(c) fO’F all i,j € I with 1 75 j (338)

where Cyj(c) is a formal expression independent of s € S with lower order than Fij(B;, Bj).

Remark 3.23. The expressions Cjj(c) can be determined in all cases. In [44, Theorem 7.1]
expressions for Cj;(c) are found when g is of finite type. This was generalised to the Kac-
Moody case in [38, Theorems 7.4 and 7.8] for a;; € {0, —1, —2} and [3], Section 3.2] which
includes the case a;; = —3. Further, in [3, Theorem 3.6] a closed formula for C;,;(c) is
given for i # 7(i). More recently, in [I1, Theorems 3.1 and 3.7] expressions for C;(;(c)

are found for i = 7(i).

Following the method of Letzter [44], Section 7], we recall how to determine Cj;(c) for
i ¢ {7(i),7(j)} or a;; € {0,—1} as seen in [38, Theorems 7.3, 7.4, 7.8]. By and
there is a direct sum decomposition
Uy(a) = EQUTKAS(U).
AEQ
For A € Q, let Py : Uy(g) = UTK,\S(U™) denote the corresponding projection map. The

formula for the coproduct implies
Ao Py(z) = (id® Py)A(z) for all z € Uy(g). (3.39)

There is a second direct sum decomposition
U0)= @ Uiu'U-,
preQt
that we consider. With respect to this decomposition we obtain projections @, : Uy(g) —
UJUOU__V for all p,v € Q. Let vi; = (1 —ayj)a; +«;j for 4,5 € I. The following technical

proposition is given without proof, but is the main tool for computing Cj;(c).
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Proposition 3.24 ([44, Proof of Theorem 7.4], [38, Equation (7.8)]). For any i,j € I we

have
Cij(e) = —(i[d® ) (id ® (P-y,; © Qo)) (A(Fyj(Bi, By)) — Fij(Bi, Bj) @ K_,,;).  (3.40)

Remark 3.25. Note that for s; to be non-zero for i € I\ X we must have i € I,,5. In this

case we have
Bi=F, — ;B K7 + s, K7
It follows from this that
AB) =B @K' +1® (F, — ¢;E:K; ).
By Equation this implies that Cj; is indeed independent of s € S.

In Chapter [7] we focus on a particular Satake diagram of type A. For this reason, we
only give the expressions Cj;(c) explicitly for a;; = 0 and a;; = —1. The same method can
be used to find Cj;(c) for a;; < —2 but the calculations become more involved, see [38,
Sections 7.2 and 7.3] and [3, Theorems 3.7 and 3.8]. One can show directly that Cj;(c) =0
if i € X, [38, Lemma 5.11]. Let

2; = =s(7(0)72) (T (Br)) ) Ko K (341)
fori e I'\ X. For all 4,j € I \ X we have
72(i) (Twx (Er(i) Bj = Birri) (Twx (Briy))
by Equation . It follows from this and Equation that
Z;Bj = ¢“i~% %) B, Z, (3.42)
for all 4,5 € I\ X. Recall from the proof of Lemma that for ¢ € I\ X we have
AB) =B @ K; '+ 1@ F;+ ¢;Z; ® E; ) K ' +Y (3.43)

where Y € /\/lXUg ® > UOTK;I, [38, Lemma 7.2]. This implies the following.

o¢>o¢7_(i)

Lemma 3.26 ([38, Theorem 7.3]). For any i,j € I with i ¢ {7(i),7(j)} we have Cj;(c) =
0.

Proof. The statement of the lemma follows from the fact that many terms of (id ®
Q0,0)(A(F;;(By, Bj))) vanish. Indeed, Qoo only acts non-trivially on elements of U,(g)
if they contain an equal number of E;’s and F;’s for each ¢ € I. By (3.43)) this can only

happen in the second tensor factor if i = 7(i) or i = 7(j). O

There are two cases to consider. If j € I\ X then all summands of A(F;;(B;, Bj))
involving Y from (3.43)) are killed off under (id ® Qo).
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Chapter 3. Quantum symmetric pairs

Theorem 3.27 ([38, Theorem 7.4]). Assume that i,j € I\ X. Then if a;j = 0 we have
Cij() = 6i () (G — @, 1) HeiZi — ¢ Z5). (3.44)
If a;; = —1 we have
Ci (C) = 6i,r(i)QiCiZiBj — (51'77-(]') (qi + qi_l)(quij + qi_QCiZi)Bi. (345)
Proof. Suppose that a;; = 0. Then F;(B;, B;) = B;B; — B;B;. Let X;; = (id® (P_,; o
(Q0,0))- By Proposition we have
CZ(C) = —(id (= €)Xij(A(BiBj — BjBi) — (BiBj — BjBZ') & K_%.].).
By Equation (3.43)) we have
A(B;iBj)= (Bi® K, ' +1® F; + ¢;2; ® ET(i)Kfl +Y)
+(Bj @ K; ' + 10 Fj +¢;2;® B,y K7 +Y).
It follows that X;; acts non-trivially on the terms B;B;® K; 'K ' and ¢;Z; @ F; - K .
This implies
Xij(A(BiBj) = BiBj © K_v,;) = Xij(¢jZ; ® FiB, (K ')
K, — K '\ __
= Xij (Cij ® (ET(j)Fi - 52#(3’)211) K; 1)
qi — g,
= Xij(=0iry(ai — a7 ) e 25 @ (K — KK )
= 5i,r(j)(%’ - qz'il)_lcjzj @Ky,
Similarly we have
Xij(A(B;Bi) = BiBi ® K_v,)) = 875y (6i — 4; )" eiZi @ Koy
Substituting both into the expression for Cj;(c) we obtain
Cij(c) = iy (G — ;") HeiZi — ¢ Z;)
as required.
Now suppose a;; = —1. Then F;; = B?B; — (¢; + q[l)BiBjBi + B;B2. Calculating as
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Chapter 3. Quantum symmetric pairs

above and using Equation (3.42]) when necessary, we find
Xij(A(B}B)) - B{B; ® K_,,)
3 -2
@ (1+q7) 1
,T(j)li—llcjszi & Ky + 0ir(i) ——=7CiZiBj @ Ky,
qi — g; qi — g,
XZ](A(BZB]Bl) — BZBJBz ® K—’Yij)
-3

q.
= 5i,T<j>$CiZiBz’ ® K_v; +0i7(j)

=5

1
3G ZBi © Ky,
i i qi — q;

qi
7_16121-8] & K—’yijv

+ 0i.7(3)

(2 q’L
Xij(A(BjBiQ) - BjBi2 ® K_’Yij)

1+ q-f2
ﬁciZiBi & K_%.]- + (51-7.,.(1-)

1
= 0ir(j) —— —GZB @K .

(2 '3 q’L 7qz

Equation ({3.45) follows from this by substituting these expressions into (3.40)). O

If instead j € X then any summands of A(Fj;(B;, B;)) involving Y are killed off unless
they include terms of weight o; + «;. We expand the expression for A(B;) from Equation
(3:43) by including the summand belonging to M xUg ® U, + . K:! Recall the definition

;o
of the left adjoint representation of U,(g) on itself from (2.31)).
Lemma 3.28 ([38, Lemma 7.7]). Assumei € I\ X,j € X and 7(i) =i. Then there exist
elements W;; € Mx such that

AB)=BioK; ' +1®F+¢;2, @ BEiK; ' + Wi K; @ ad(E;)(E)K; ' +Y  (3.46)

where Y € MxUg @ UFK;.

a>agaFa;+o;
The elements W;; can be expressed in terms of the skew derivations.
Lemma 3.29 ([3, Lemma 3.4]). Let i € I\ X such that 7(i) =i and j € X. Ifa;; # 0

then the relation
Wis = (1 — ¢?leo)) "1y (Z)) (3.47)

holds.
The proof of the following theorem is similar to that of Theorem and is seen in

[38, Theorem 7.8]. For this reason, we omit the proof here.

Theorem 3.30 ([38, Theorem 7.8]). Assume i € I\ X and j € X. Then if a;j; = 0 we
have
Cii(c) = 0. (3.48)

If a;; = —1 we have

1 G+t

WZ-J»Kj) (3.49)
% —q; 9 — 4;
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Chapter 4
The restricted Weyl group

Involutive automorphisms of g allows one to construct a subgroup W® of the Weyl group
W consisting of elements fixed under the corresponding group automorphism of W. Of
particular importance is a subgroup W of W® which has an interpretation as the Weyl
group of the corresponding restricted root system. In Section we define W and give
an alternative description of this subgroup which is useful for many of the arguments in
Section More explicitly we show that W€ is a semidirect product of the subgroup Wy
with the subgroup W. In order to provide the connection between W and the restricted
root system established in Section we first show that W is realised as a Coxeter
subgroup of W. The results in this chapter do not claim originality. Most of the results
can be found in [60], which is influenced by the results of [49], [52] and [21].

4.1 The subgroup w

For any subset J C I, write wy to denote the longest element in the parabolic subgroup
Wy of W. For i € I\ X, define
Gi = Wx Ui () Wy - (4.1)
By Remark 3.2} the triple (XU{4, 7(i)}, X, 7| xU(i,r(i)}) 18 a Satake diagram for any i € I\ X.
Let Wixuyir(i)y denote the Weyl group of the corresponding Dynkin diagram with nodes
labelled by the set X U {i,7(i)}. We can hence consider W as a subgroup of Wx g 7(i)}-
Similar to Equation (3.2)), there exists a diagram automorphism 7 ; : X U {7, 7(i)} —
X U {i,7(i)} such that X U{i,7(4)} is 19 -invariant and
Wx UG ()} () = =0y () (4.2)
for j € X U {i,7(i)}.

Lemma 4.1. The elements wx and wxyg; )y commute for any i € 1 \ X.
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Chapter 4. The restricted Weyl group

Proof. By the notation (4.2)), it follows that

WXU{i,r (i)} 05 = Oro,:(j) WXU{i,m(i)} - (4.3)

Hence we obtain
WX UL, r() WX = T0,i (WX )WxXU{i,r (1)} = WXWXULG,r(7)} (4.4)
as required. ]

Denote by W C W the subgroup of W generated by o; for i € I\ X. We study
the subgroup W in more detail, following the Weyl group combinatorics of [21] and [60]
and also taking guidance from [49] and [52] which we do not pursue here. Recall that
£: W — Ny denotes the length function with respect to W. For any subset J C I let

W' ={weW | l(o;w) > L(w) for all i € J} (4.5)
denote the set of minimal length left coset representatives of W/W ;. Similarly, define
TW = {w e W | {(wo;) > £(w) for all i € J} (4.6)

to be the set of minimal length right coset representatives of W;\W. Since {(o;w) =
{(w™o;) for any w € W and i € I, it follows that w € W7 if and only if w™' € /W. This

implies that any properties for W+ have a corresponding version for /.

Lemma 4.2 ([60, Proposition 2.7.2]). Any element w € W is in WY if and only if all
reduced expressions for w begin with a o; with i € I\ J. Correspondingly, any element

w € W is in 7W if and only if all reduced expressions for w end with a o; with i € I\ J.

Proposition 4.3 ([26, Proposition p. 19]). Anyw € W can be written uniquely as w = uv,
where v € Wy and v € WY such that the lengths satisfy

l(w) = L(u) + £(v).
We now consider the subset
W= {weW¥ | wWx = Wxw} (4.7)
of W. We show that any element of W belongs to XW.

Lemma 4.4. The set W is a subset of WX N XW.

Proof. Since w € W it follows that {(o;w) = f(w) + 1 for all i € X. Let ¢ : Wx — Wx
be the map that sends s € Wy to the element ¢(s) € Wy such that

sw = we(s)
holds. The map ¢ is a group homomorphism since for any s,t € Wx we have

wep(st) = (sthw = swe(t) = we(s)e(t)
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and hence ¢(st) = p(s)p(t). For any s € Wx we have {(¢(s)) = £(s) since
U(w) + U (s)) > Lwp(s)) = L(sw) = €(s) + E(w)

where the last equality follows since wWx = Wxw. This implies that ¢ is surjective, hence
also a group isomorphism. For any s € Wx we obtain £(ws) = (oL (s)w) = £(s) + {(w)
and thus w € XW as required. O

A consequence of this is that W is a subgroup of W, see [52), 25.1]. In order to prove

this we require use of the Deletion Condition, see [26l pg. 14], which we state here.

Deletion Condition ([26, pg. 14]). Given an expression w = 04,04, - - - 0;, that is not

reduced, there exist indices 1 < i; < i < n such that w = o4, ---6;, -~

;e Oy, s 0q, where 6y,

denotes the omission of the factor 0.
Corollary 4.5. The subset W is a subgroup of W.

Proof. We need only show that if w;,ws € W then wjws € W. It is clear from the
definition of W that wiwsWx = Wxwiws so we only need to show that wiws € WX.
Suppose for a contradiction that for some i € X we have ¢(c;wiwz) = f(wiw2) — 1. Then
ojwiws is not a reduced expression. By the Deletion Condition a reduced expression for
o;wiwy must be obtained by omitting the factor o; and a factor from wyws.

Since w1Wx = Wxw; we have o;w; = wio; for some j € X. By Lemma @ both wq
and wy are elements of WX N XW hence both wyo;j and ojwy are reduced expressions.
This gives a contradiction since a reduced expression for o;wiwy = wiojws can only
be obtained by omitting a factor from both w; and wsy, which is not possible in view
of £(o;wiwg) = L(wiws) — 1. This implies that ¢(c;wiwse) > L(wiws) for all i € X as
required. O

By (4.1) and (4.3]) we have 5; € W for all i € I\ X. Let
Wl ={weW|r(w) =w}. (4.8)

Then since 7(X) = X, it follows that o; € W7 for all i € I \ X and hence W CW". The
following Lemma is a generalisation of [52, Al(a)] and [2I, Lemma 2] as indicated by [21],

Remark 8]. The argument appears in [60, Lemma 3.4.2], so we repeat it here.

Lemma 4.6 ([60, Lemma 3.4.2]). Any w € W™ can be written as w = 7;,0;, - - - 04, such
that 5;,,...,0:, € W and £(w) = 0(G,) + - - £(53,).

Proof. We use induction on the length of w € W. When ¢(w) = 0 there is nothing to

show so suppose ¢(w) > 0. Since w € W, the element u = wwx satisfies

U= WWx = WxW
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where £(u) = £(w)+£(wx). As £(w) >0 and w € W, all reduced expressions for w begin
with an o; where ¢ € I\ X. Hence there exists an i € I\ X such that ¢(o;u) < £(u). Since
7(u) = v and 7 is a length-preserving function we also have £(o,;yu) < £(u). Further, for
all i € X we have ¢(o;u) < £(u) since {(o;wx) = ¢(wx) — 1. By Proposition 4.3/ u can be
written uniquely as u = vz where v € Wxyy; (i)}, T € WX} and £(u) = £(v) + £(z).
For all j € X U {i,7(i)} we have ojv € Wxyy; +(;)y and hence {(ojvx) = €(ojv) + L(z).
Since £(oju) < £(u), this implies that ¢(ojv) < £(v) for all j € X U {3,7(d)}. It follows
from this that v = wxy(; ()} and
w=wxu = waXU{i,T(i)}x = 5137
We have
U(w) = L(u) — L(wx) = Lwxugirey) +0Uz) — Hwx) = £(0:) + £(z)

and so we can apply the inductive hypothesis to the element x to obtain the result. ]

As a result of Lemma we see that W7 = W. This gives an alternative description

of the subgroup W which will be used in the next section.

4.2 The subgroup W°

Using the involutive automorphism © : h* — b* from (3.15]), we obtain a group automor-
phism
Ow W =W, w—OowoO. (4.9)

Let WO = {w € W | O (w) = w} denote the subgroup of elements fixed by Oy. For
t € I we have

Ow(0i) = (~wx oT)o0;0 (~wx 0T) = WXT,(;WX- (4.10)

It follows from this and Condition of Definition that O (0;) = o; for i € X and
hence Wy is a subgroup of W©.
It follows from Lemma [4.1] and Equation (4.10) that for all i € I\ X,

Ow (0i) = (—wxT)wxWwx i)} (—WxT)
= WXTWXULE,(0)}T
= WXWxUu{ir()} = ;.
Hence o; € W for all i € I\ X which implies that Wisa subgroup of W®. The following
proposition implies that the subgroup W® is generated by Wx and W, as shown in [60,
Proposition 3.5.3, Corollary 3.5.4]. Recall from Lemma that W = WT = {we WX |

wiWyx = Wxw, 7(w) = w}.
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Proposition 4.7 ([60, Proposition 3.5.3]). Any element w € W® can be written as w = uv
with w € Wx and v € W. In other words, we = WX/VTV/.

Proof. Since Wx and W are subgroups of W, the containment WXW C W is immedi-
ate. We show that the containment W€ C WXW holds.

Let w € W®. By Proposition we can write w uniquely as w = uv where u € Wy
and v € WX, Since Oy is a group automorphism we have Oy (w) = O (u)Ow (v). The
elements w and w are Oy -invariant which implies that v must also satisfy Ow (v) = v.
By Equation we have wyvwyx = 7(v). Since the left-hand side of this expression is
non-reduced and W is a Coxeter group we may apply the Deletion Condition ¢(wx) times.

As 7 is a length-preserving function we have
Lvwx) =L(T(v)wx) = L(wxv) = lwx) + £(v)

which implies v € XW. Hence the elements wxv and vwx are reduced. As a result, each
time the Deletion condition is applied to wxvwyx we remove one factor from each wy. It
follows from this that 7(v) = v.

Let = be a reduced expression for o;wx where i € X. Then we have
TVWYX = O4.
In the same way as above, we use the Deletion Condition ¢(x) = ¢(wx) — 1 times to find
a reduced expression for zvwy. This leaves the equation
Voj = oW
for some j € X. Since this equation holds for all ¢ € X it follows that
vWx = Wxwv

and hence v € W™ = W as required. ]

Theorem 4.8 ([60, Corollary 3.5.4]). The subgroup W® is a semidirect product of the
subgroups Wx and w
WO =Wy xW. (4.11)

Proof. By Proposition we have seen that W = WXV[N/. It remains to show that
Wx NW = {id} and Wy is a normal subgroup of W®.

Let w € W = W™. Then w € WX and by Lemma all reduced expressions for
w do not begin with an ¢; with ¢ € X. Hence the only way for w to be an element of
Wy is if w = 1. This implies that Wy N W = {id}. By definition of W7, it follows that
wWxw ™ = Wx for w € W which implies that Wx < W as required. ]
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4.3 A Coxeter subgroup of W

The results of this section do not claim any originality, but are contained in the MMath
project of Sarah Sigley, [60]. The author feels it is to the benefit of the reader to include
these results here.

The subgroup Wy is realised as the Weyl group of the Lie subalgebra gx in the
natural way. The subgroup W also has an interpretation as a Weyl group. In particular
it is realised as the Weyl group of the restricted root system of the symmetric Lie algebra
(g,0). In order to make this connection more explicit, we first show that W is a Coxeter

group. We write z ey to denote xy with ¢(zy) = () + £(y).

Lemma 4.9 ([60, Lemma 3.4.3], [2I, Lemma 4 (Special case)]). Let w € W™ and assume

we have two expressions
w:Jh'-“'&ip:5j1'---°b—vjr
forig, ;€ I\X. Thenp=r.

Proof. We proceed by induction on the length of w. If ¢(w) = 0, then w = 1 and there is
nothing to show. Suppose that ¢(w) > 0. Then p > 1 and r > 1.
If il = jl then

/ ~

w :Ui1w:0i2'---’0ip:Uj2°---‘0jr

so by the induction hypothesis we have p — 1 = r — 1 and hence p = r.
Suppose instead that iy # ji. Let K = X U {i1,7(i1)} U {j1,7(j1)}. Consider the

element
o _ ~ ~ ~ -
W =wxw = wXU{il,T(il)} ¢ 0y ®...*04, = wXU{j1,T(j1)} ®0j,®...20j,..

By Proposition we can uniquely write w’ = v e 2 where v € Wx and z € WX, We
have {(o;w') < £(w') for all i € K so it follows that ¢(c;v) < £(v) for all i € K. Hence v

must be the longest element of Wi i.e. v = wg. Consider the subgroup
Wk = {w € Wg N W¥ | wWx = Wxw, 7(w) = w} =W NWk.

We claim that the element wywg is in WJ.. Since 7(X) = X and 7(K) = K, it follows
that T(wxwg) = wxwg. Since we can consider wx as an element of Wx, we have

lwxwg) =l(wg) — l(wyx ). Hence for i € X we have
lowxwg) > U wg) — lowx) =l wg) — lwx) +1 =l wxwg) + 1

from which it follows that wywr € WX. Let u be a reduced expression for wyxywg.
Consider the element uo;u for i € X. Since o;u € Wi and ¢(uo;u) = £(0;), it follows that
uoju is not a reduced expression in W. As the pair (W,S = {o; | i € I}) is a Coxeter

system, we may apply the Deletion condition to remove factors and obtain a reduced
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expression. The expressions uo; and o;u are both reduced. Hence the Deletion condition
forces a factor from each u to be deleted. It follows that uc;u = o; which implies that
wxwgWx = Wxwxwg and hence wxwg € Wry.

As w = wxw' = wxwg *x and both w and wxwyg are elements of W7, it follows that
xr € W". By Lemmawe may write x = gy, ¢---e0y, for l; € 1 \ X. Further, W=wr
implies W™ = (g, | i € I\ X) and hence Wi = (0y,,7;,). Since ¢;, and ¢;, are involutions,
it follows that W} is the dihedral group of order 2m. As wxwg is an involution and is

an element of Wy it follows that

WXWK = 04, 05, ®*04 ®...=0j, 04, 05, ®...

m terms m terms

Using this, we obtain

5j1'...°5jr:w:waK°$:5j1°5il'5]'1'...0&11'...'51(1.

vV
m terms

Cancelling 0;, from both sides gives

UjZ."'.UjT:Uil.ajl.o'il."'.Ull."'.o-lq

m — 1 terms

from which it follows that (r — 1) = (m — 1) + ¢. Similarly, we also have

GiQ'...'UiT:O'jl'O'Z'l'O'jIO...OO'll'...'O'lq

Vv
m — 1 terms

which implies (p — 1) = (m — 1) + ¢. This gives p = r, as required. O
Let \: W — Ny denote the length function with respect to w.

Lemma 4.10 ([60, Lemma 3.4.4]). Let w € W and w = &;, - - - 55, with AN(w) = t. Then

w:Eilo...-ﬁit.

Proof. We use induction on t. If t = 0 or 1, then there is nothing to show so suppose t > 2.
Let w' = o, w with A(w’) = ¢t — 1. By the inductive hypothesis we have w' = 7;,e...¢0;,.
There are two cases to consider.

If {(osw') > £(w') for all i € {i1,7(i1)}, then w’ € Wm0} 4 WX This implies that
(o, w') = £(d,) + £(w') and hence w = 7;, » w' as required.

On the other hand, suppose {(o;w’) < ¢(w') for some i € {i1,7(i1)}. We will show
that this gives a contradiction. Since the length function is 7-invariant, it follows that
lorpw') < L(w') also. As in the proof of Lemma this implies that we may write
w' =0y e...00; for j, € I\ X and j; =i;. By Lemma[d.9] we have t —1 = 7 and hence
we obtain

W=0,W =0j,°...20j,

where AM(w) =7 — 1 < A(w’) which gives a contradiction. O
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As a corollary to this, we see that reduced expressions in W are also reduced in W.

Corollary 4.11 ([60, Corollary 3.4.5]). Let w,w' € W. Then f(ww') = £(w) + £(w') if
and only if N(ww') = AMw) + A(w').

Proof. Suppose A(w) = p and A(w') = ¢q. By Lemma we have
w:O'h'...'&ip,
w :UjIO...'gjq.

If L(ww') = L(w) + L(w'), then ww' =Gy, 0... 00,00, ¢...00;,. Let r < Nww') =p+q.
By Lemma we have ww' =y, ... e7;, where r < A\(ww’) = p+ ¢. By Lemma we
have r = p + ¢ as required.

Suppose instead that A(ww’) = A(w) + A(w’) = p+¢q. Then ww' =4, --- 74,05, --- 7},
and Lemma, implies that ww' =7, e...e gi, *0j *...20 . It follows from this that
L(ww') = L(w) + L(w'). O

Let S = {5; | i € I\ X}. Recall from [26, 1.7, 1.9] that a pair (W,S) is a Coxeter
system if and only if the Exchange condition holds for (W, S). For reference, we restate
the Exchange condition for (W, S).

Exchange Condition ([26, pg. 14]). Let w € W and suppose w = oy, - - - 0, is a reduced
expression. If {(ojw) < l(w) for some j € I, then there exists some k € {1,...,t} such

that ojw = o)~ 04 Oj = Ty

The following theorem is proved in [49, Theorem 5.9(i)] and [52, 25.1]. We give a

combinatorial proof as indicated in [2I, Remark §].

Theorem 4.12 ([60, Theorem 3.4.6, Corollary 3.4.7]). The pair (W,S) is a Cozeter

system.

Proof. We show that the Exchange condition is satisfied for (W, S ) from which the result
follows. Let w € W and w = gi, -+ - 04, be a reduced expression. Suppose A(gjw) < A(w)
for some j € I\ X. If {(opw) > £(w) for all k € X U {4, 7(j)}, then w € WXV} and
hence ¢(c;w) = £(d;) + ¢(w) by Proposition Corollary implies that A\(cjw) =
A(@j) + A(w) which contradicts the assumption that A\(gjw) < A(w).

Hence there exists some k € XU{j, 7(j)} such that ¢(crw) < £(w). Since w € W=Wwr,
it follows that k € {j,7(j)}. As the Exchange condition holds for (W, S), there exists some
index [ € {1,...,t} such that

OrW = 04y * - .O—ilflxo-ilJﬁl cc Oy

where x € Wxyg, +(i,)y 18 the reduced expression for o;, minus one factor. Let z =
51'1 < '5iz_1' Then

1 ~
2 opz = w04, € WXU{iz,T(il)}'
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Since z € W = WT, we have 7(2 lopz) = z_laT(k)z = 7(20;;) € Wxugi,r(i,)}- Further,
by Condition of Definition and (4.3) we have zo; = 0z for all i € X. Hence
2 loz=0;€ Wxugir@ip)y for all i € X. As a result we have 2152 e WN Wxugiy, (i)} -

Hence 2~ 642 € (5;,) = {1,5;,} so we must have 2~ 642 = 7;,. Using this we obtain
Fow— 25w = G G F S
OpW = 2042 W =04 -+ O4y_, 04y, * O,

as required. ]

4.4 The restricted Weyl group

We now explain the connection between W and the restricted root system of the symmetric
Lie algebra (g, 0) in some detail. This is a fact implicit in [49], but here we avoid Lusztig’s
more sophisticated setting and give a more pedestrian approach.

Since 6(h) = h we may decompose h as a direct sum
b=b1®a (4.12)
where by = {z € h | 0(z) = 2} and a = {z € b | () = —x} denote the +1- and
—1—eigenspaces of h, respectively.

Definition 4.13. The restricted root system 3 C a* is the set obtained by restricting all

roots in ® to a. In other words,
¥ =9|,\ {0}. (4.13)

Recall from Section that V = R®. As ©(®) = ®, we have O(V) = V. Any
element o € V' can be written as
a+0(a) a—06(a)

= . 4.14
Since the inner product (—, —) is ©-invariant we hence obtain a direct sum decomposition
V=ViidV_, (4.15)

where V) = {v € V| ©(v) = A} and 1/2(a + A\O(a)) € V), for A € {£1}. If B € V_; and
h € b1, then S(h) = 0 since

B(h) = B(O(h)) = B(B)(h) = —B(h).

This allows us to consider V_; as a a subspace of a*, with V_; = RY. For any 8 € V,
define
> B-0()

b="—5" (4.16)

see |46, Equation (1.4)]. Equation (4.14) implies that ¥ = {E | B € 3,3 # 0}. We write
II={a; |iel\ X} and we define Q(X) = Z¥ = ZII and Q*(X) = NI

Lemma 4.14. The group W€ acts on X.
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Proof. We calculate directly. For any w € W® and 5 € X we have

3 _ . (B—00B)) _ wB)—wOp))
wif) = w( =) - MO
_ w(B) —S(w(ﬂ)) — w?)
as required. O

By restricting the inner product on V', we obtain an inner product on V_;. Since the
inner product is W-invariant and V_; is a W®-invariant subspace, it follows that the inner
product on V_; is W®-invariant. For any i € X, we have oy € V1. The decomposition
implies that ai(g) = Bforalli € X and B € 3. On the other hand, we can interpret
the subgroup w using the restricted root system 3.

Proposition 4.15 ([16, Proposition 2.7(1)]). The reflections at the hyperplanes perpen-

dicular to elements of ¥ generate a finite reflection group W(X).

Proof. For any i € I \ X we have
i) = (wy'wxogray) (@)
= wWxui,r()} (@)
= (wxugirin (@)l
It hence follows from that
oi(a;) = —aq. (4.17)

Now suppose E € V_1 such that (E , ;) = 0. Using the W®-invariance of the bilinear form

on V_1, we obtain
= 0.

On the other hand, by the definition of &; we have

51(,3) =B+ nsay; + Nor (7) O (4) + Z njQ
jeX
for some n; € Q. From this we obtain
5i(B) = B+ mid;
where m; = n; + n.(;. Hence,
0= (G:(B), @) = (B + madi, &)
= (B, &) + mi(@;, &)

= m;(0y, ).
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The inner product is positive definite so it follows that m; = 0. Hence &Z-(E) = B This
together with (4.17]) implies that o; is the reflection at the hyperplane orthogonal to ;. [

By the above, the action of W on V_1 gives a group homomorphism
p: W = W(E) (4.18)

which sends &; to the reflection at the hyperplane perpendicular to the element a; for any
i€ I\ X. We check that p is a group isomorphism. Adapting the proof of |26, Theorem

1.5] one shows that p is surjective. Showing that p is injective is a consequence of Lemma

[4.16] below.
Lemma 4.16 ([I6, Proposition 2.8]). The action of W on S is faithful.

Proof. Assume that there exists w € W such that w # 13 and
w(a;) =a; foralliel.
We can rewrite this formula as
w(a;) —w(O(a;)) = a; — O(ay). (4.19)

For all i € X we have w(a;) > 0 as {(wo;) = l[(w) + 1. Hence there exists ¢ € I\ X such
that w(a;) < 0. In this case also w(a,(;)) < 0 since elements of W are fixed under 7.
Consider Equation (4.19)) for this i: The right hand side lies in @ and is of the form
o; + Qir(4) + Z n;o; (4.20)
JjEX

where n; € Ny for each j € X. We can write the left hand side as

w(os) — w(O(en)) = w(as) + wlarg) + > mjw(ay) (4.21)

JEX
where m; € Ny for each j € X. Hence inserting (4.20) and (4.21)) into (4.19)), we get
w(a;) +w(are)) + Z mjw(ay) = a; + ) + Z nja;.
JEX JEX

Now we apply the tilde map to the above equation. The terms involving «; for j € X

vanish, because the tilde map is zero on Q) x and w commutes with ©. We get

w(ai) + w(aT(i)) =qo; + &T(i).

The right hand side lies in Q*(X). The left hand side lies in —Q™(X) because w(q;) and
w(aT(i)) lie in —Q*. Hence both sides of the equation must vanish. However, this is not

possible, in particular for the right hand side which is 2a;. We have a contradiction. [

Proposition has the following consequence, which will be used in Section [5.4
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Corollary 4.17. For anyi € I\ X and p € Q(X) the relation

(1, 06)
(6o 1) a; (4.22)

oi(p) =p—2

holds and 229 ¢ 7.
(aivai)
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Factorisation of quasi K-matrices

for quantum symmetric pairs

The quasi K-matrix X is an element lying in a completion of U,(g) that is an analogue
of the quasi R-matrix R. In particular X satisfies an intertwiner property similar to the
property of the quasi R-matrix. In order to construct the quasi K-matrix we first
define a bar involution for B s in Section following [3]. In Section [5.2f we recall many
of the notions and known properties of the quasi K-matrix following [4].

Recall by Theorem the quasi R-matrix has a deep connection to the Weyl group
W. In the remainder of this chapter, we establish a similar connection between the quasi
K-matrix and the restricted Weyl group W. In particular, we will see that in many cases
the quasi K-matrix factorises into a product of quasi K-matrices for Satake diagrams
of rank one. In Sections |5.3| and we establish explicit formulas for X in the case
s = (0,...,0). The case with general parameters s is then considered in Section The
results of Sections and are joint with Stefan Kolb and can be found in [I6),
Section 3].

5.1 Bar involution for B

Recall the bar involution —V : Uy(g) — Uy(g) given by (2.89). The bar involution is
a crucial ingredient in the theory of quantum groups. For instance, the quasi R-matrix
is characterised by the bar involution, see Theorem The bar involution hence has
applications in low-dimensional topolgy, see for example [57].

The papers of Bao and Wang [5] and Ehrig and Stroppel [I8] suggest that the bar
involution plays an important role in the context of quantum symmetric pairs. In Section
[6.2] we consider an analogue of Theorem in the setting of quantum symmetric pairs.

In order to do this we require a bar involution for Bcs. Since —U does not leave B s
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invariant we construct a new automorphism of Bcgs which is an analogue of —U. We
denote this automorphism by —bB. Bcs — Bcs. The first examples were constructed in
[6] and [I8] for specific quantum symmetric pair coideal subalgebras of type AIII/AIV.
Here, we recall the general constructions of Balagovi¢ and Kolb in [3, Section 3.3]. Recall
from Section the subalgebras Mx and U of U,(g) and also the elements Z; from
Equation (3.41])).

Theorem 5.1 ([3, Theorem 3.11]). The following are equivalent:

(1) There exists a K(q)-algebra automorphism — P : Be s — Bes such that
B” = B forallie I\ X (5.1)
and —B coincides with —V on Mx Ug.

(2) The relation

GZ = g e 2, (5.2)

holds for all i € I\ X for which 7(i) # i or for which there exists j € I\ {i} such
that aij =0.

In order to construct the quasi K-matrix in Section it is necessary to assume that
(5.2)) holds for all i € I\ X, see [4, Lemma 6.7]. We will hence make the assumption that
(5.2) holds for the remainder of this thesis. One can show that

Z5 = q(aivai*wX(ai)*sz)ZT(i)7 (5.3)

see [3, Proposition 3.5]. Using this and Lemma it follows that Part (2) of Theorem
[5.1]is equivalent to the condition

Criiy = q @025 forallie I\ X. (5.4)
In [4 Section 5.4] the assumption
si =50 (5.5)

for all i € I\ X is introduced. We also require this assumption in Section

5.2 Quasi K-matrices

The bar involution —Y on U,(g) and the bar involution —%

restricted to elements of B.s. However, as in Section we can find an element which
intertwines between the two bar involutions. Recall the root lattice QQ = Z® for g and its
positive part QT = No® C Q.

on B¢ do not coincide when
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Theorem 5.2 ([4, Theorem 6.10]). There exists a uniquely determined element X =
> e+ Xu € UT with Xg =1 and X, € Ul such that

#Px = xzv (5.6)
holds for all x € Bey.

This is a direct analogue to Theorem [2.58|in which we stated that the quasi R-matrix
is an intertwiner between two bar involutions on U,(g) ® Uy(g). It is for this reason that
we call the element X the quasi K-matriz for Beg. In [5, Theorems 2.10, 6.4] the first
known examples of X were constructed in types AIII/AIV. There, Bao and Wang denoted
the quasi K-matrix as the intertwiner Y.

Recall from Section the skew derivations r;,;7 : UT — U™ for ¢ € I. Further
recall from the elements X; for ¢ € I. The crucial property of the quasi K-matrix is
that it satisfies a recursive formula. The proof makes use of Proposition and is given
in [4, Proposition 6.1].

Proposition 5.3 ([4, Proposition 6.1]). The following are equivalent.
(1) The quasi K-matriz satisfies 72X = XzU for all x € Beg.
(2) For any u € Q" and all i € I we have
ri(Xu) = —(qi — Qi_l)(%u-‘r@(ai)—aim[] + 5 Xu—ar), (5.7)
7(X) = ~(a = a7 ) (67O XX o0 0, + 5iFuar). (5:8)
Proof. By the definition of B; the property implies
(F+ XK + iKY = X(Fi + o X, Ki+5VK;)
for any i € I\ X. Hence by Equation we have
X, F)] = (XK 4+ iK% - (X Ki+5VK).

Note that [X,, F;] is an element of U, ;—ai so we compare the (¢ — a;) homogeneous com-

ponents in the equation above for all u € QT. Since X; has weight —©(q;) we have
—U  _
[:{}“ Fz] = —(x'u,fai‘f’@(ai)ciXi + SiU%M_ai)Ki
+ Ki_l (qi(@(ai%ai)ciXi%ufozrk@(ai) 4 Si:{u—ai)'
By Proposition [2.44] we have
[Xps Fi] = (0 — ;)7 (ri( %) Ki — K (%))

which implies the statement of the proposition. ]
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Remark 5.4. The proof of Theorem requires the use of the recursive formulas (5.7
and ([5.8)). In order to show that the quasi K-matrix exists, one is required to show that
solutions to the recursions (5.7)) and (5.8)) exist. This is addressed in [4, Sections 6.2,6.4].

In view of [4, Proposition 6.3] and Remark we need only consider one system of
recursions. In order to avoid any complications with the bar involution, we choose to only
consider the system (5.8). Recalling that s; = ¢; = 0 for i € X, Equation (j5.8]) implies
that

ir(X,) =0 forallieX. (5.9)
We can extend the skew derivation ;7 : UT — U™ to a linear map
Ut = UT, Z uy, — Z ir(uy) (5.10)
peEQT peQT

where ;r(u,) is the component in U;r_ai for all 4 € Q1 with u > «;, see [16, Equa-
tion (3.12)]

—_~ T~

r; : Ut — U*. Using this we can rewrite the recursions (5.7) and (5.8)) more compactly

as

Similarly we extend the skew derivation r; : UT — U™ to a linear map

ri(%) = —(q — q; (X Xy +5U%), (5.11)

ir(X) = —(a—q; ") (q‘(e("i)’ai)ciXi% + si%). (5.12)

The compact form for ;7(X) is used to perform calculations in Section and Chapter [6]
As a consequence of Equation (5.9) we obtain the following result which was already

observed in 6 Proposition 4.15]. We give an alternative proof, as in [16, Lemma 3.2]. For
any w € W recall the definition of the subalgebra U™ [w] of Uy(g) from Section

Lemma 5.5 ([16, Lemma 3.2]). For any p € Q" the relation X,, € Ut [wxwo] holds.

Proof. By Equations (5.9) and (2.92) we have X, € Ut[ojw] for all j € X. By [23]
Theorem 7.3] we have

ﬂ Utlojwe] = UT [wxwo)
jeX

as required. ]
Using the involution © : b* — h* we can determine many of the components X,,. Recall

the height function ht : @t — Ny which sends p = Y, nija; = Y, c; ni, see [26, pg.11].
The following lemma is (3) = (4) in [4, Proposition 6.1].

Lemma 5.6 ([4, Proposition 6.1, (4)]). For any p € Q1 such that X, # 0, we have
O(u) = —p.

Proof. We proceed by induction of the height of p. If ht(u) = 0 then there is nothing to
show. Assume that ht(n) > 0. If X, # 0 then by (2.103) there exists ¢ € I such that
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ir(X,) # 0. By (5.8) we either have X, o(a,)—a; 7 0 0Or 8:X,—a, # 0. If X, 6(a;)—a; # 0,
then since ht(p + O(a;) — a(i)) < ht(u) the induction hypothesis implies

@(/L + @(Oéz) — ai) = —(M + @(Oél) — Ozi).

Rearranging gives O(u) = —p.
On the other hand if 5;X,_n; # 0 then s; # 0. By (3.34) it follows that 7(i) = i and
a;j = 0 for all j € X, hence O(o;) = —y. Again using the inductive hypothesis we have

O(n —a;) = —(p — o)
from which we obtain O(u) = —pu as required. O

The above lemma implies that if ©(p) # —p, then X, = 0. We write X s if we need to
specify the dependence on the parameters ¢ and s. Any diagram automorphism n: I — [
induces a map 7 : K(¢)"\¥ — K(q)"\¥ by

17((62)) = (d@) with dz = Cnfl(i)a (5.13)

see |16, Equation (3.28)]. We can record the effect of the diagram automorphism on the

quasi K-matrix using this notation. This will be used in Proposition [5.26

Lemma 5.7 ([I6, Lemma 3.3]). Let n : I — I be a diagram automorphism and ¢ € C,
se€S. Thenn(c) € C,n(s) € S and

N(Xes) = Xp(e)ms)- (5.14)

Proof. The relations n(c) € C,n(s) € S follow from the definitions (3.33)) and (3.34)),
respectively. By [4, Proposition 6.1], relation (5.6) is equivalent to

—U )
B%*x = XB®®  forallie I\ X. (5.15)
Here we write B;® to also denote the dependence of the elements B; on the parameters
c and s. By construction we have n(B{*®) = BZ((;)’”(S) . Further the bar involution —V
commutes with 7. Applying 1 to (5.15) we have
— U
B ) = nEen BT
It hence follows that 7(Xcs) = Xy (c)n(s) as required. O

5.3 Rank one quasi K-matrices

For the remainder of this chapter, following Remark we denote Satake diagrams as
triples (I, X, 7) to also indicate the underlying Lie algebra. The remainder of this chapter

is taken from the author’s recent paper [16, Section 3.3].
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Definition 5.8 ([16, Definition 3.4]). A subdiagram of a Satake diagram (I,X,7) is a
triple (J, X N J,7|y) such that J C I and (J,X N J,7|;) is a Satake diagram for the
subdiagram of the Dynkin diagram of g indexed by J.

We only consider subdiagrams (J, X N J,7|;) with the property that any connected
component of X N J is connected to a white node of J. Let T be the set of T-orbits of

I'\ X. There is a projection map
T I\NX — 1T (5.16)
that takes any white node to the 7-orbit it belongs to.

Definition 5.9 ([16, Definition 3.6]). The rank of a Satake diagram (I, X, 7) is defined
by rank(l,X,7)=|7n(I\ X)|.

In other words, a Satake diagram has rank n if there are n distinct orbits of white
nodes. By Proposition the rank of a Satake diagram coincides with the rank of the
corresponding restricted root system .

Given a Satake diagram (I, X, 7), any ¢ € I \ X determines a subdiagram ({7, 7(:)} U
X, X, 7lirypux) of rank one. Let X; be the q@si\K—matrix corresponding to this rank
one subdiagram. For any w € VV/W\e define Ut[w] = H/#\GQ+ Utlw],. As Ulw]" is a

subalgebra of U™ we obtain that U~ [w] is a subalgebra of U+t and hence of % by Lemma
2:30] Formulating Lemma [5.5 in the present setting we obtain

o —

X, € Ut[o;]. (5.17)
In the following lemma we consider the case 7(i) = ¢ and make the dependence of X; on
the parameters ¢; more explicit.
Lemma 5.10 ([16, Lemma 3.7]). Assume that s = (0,...,0) and i € I\ X satisfies
7(i) =1i. Then

X = Z i En(ai—0(a)) (5.18)
n€eNg

where By, —0(a;)) € U:(avi@(a.)) is independent of c.
Proof. 1t follows from the recursion ([2.78) and the assumption s; = 0 that

X = Z -}:n(ai—Q(ai))

neNy
with X,,(0,—6(a:)) € U:(ai_e(ai)). Again by (2.78)), the elements
Epai—0(a:) = € " Xn(ai—0(ar)
for n € N satisfy the relations

i (Ep(ai—o(an)) = —(@— ¢ g CC DX B, 1) (0—e@) forieI\X  (5.19)
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and
jT(En(ai—G(ai))) =0 forjeX. (5.20)

The relations (5.19) and ([5.20) are independent of ¢ and determine E,,(,,_g(q,)) uniquely
if we additionally impose Ey = 1. O

The quasi K-matrices of rank one are the building blocks for quasi K -matrices of higher
rank. In the following we give explicit formulas for rank one quasi K-matrices of type A
shown on the left hand side of Table in the case s = (0,...,0). These were calculated
in [16, Lemmas 3.8-3.10]. Additionally, we present the rank one quasi K-matrices for
Satake diagrams of types BIT and DII not contained in [16].

Recall from Equation and Equation the modified ¢g-number {n};, the
factorial {n};! and the double factorial {n};!!. Further, we use the following conventions.
For any x,y € Uy(g), a € K(q) we denote by [z, y], the element xy — ayz. For any 4,j € I
we write Tj; = T;0T} : Uy(g) — Uq(g) and we extend this definition recursively. In Sections

and we shorten notation further by writing
Ty =TT T T, (5.21)
Tj——i =TT - Tin Ty

forl1 <i<j<n.

Table 5.1: Satake diagrams of symmetric pairs of rank one

Al o BIL, n > 2 O— @08

Alls o—O—e ClLn>3 | &—0O0—@------ *——o

Allly4 G DII, n >4

ALV, n > 2 ) FII o oo O

5.3.1 Type Al

Consider the Satake diagram of type Aly.
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Lemma 5.11 ([16, Lemma 3.7]). The quasi K-matriz X of type Aly is given by
-1

(g—q
n>0 {2 }”
Proof. By Equation [2.78] we need to show that

17(X) = (¢ =g () 1 X.

Recall from (2.82) the relation

X = (¢Pc1)"E?". (5.22)

r(EY) = {n}Er""  foralln € N.

Hence
(%) = Z (¢—gq )

"
= {2n}N

ln

(¢Pc1)™1r(EF™)

_ (¢—q

e o
n>1

(q—q ')

= (¢*cr
I
= {2n}!

q—q (1)1 X

as required. O

)n+1 E%n-ﬁ-l

—~

5.3.2 Type All;

Consider the Satake diagram of type Alls.

o—OCO—©

1 2 3

Lemma 5.12 ([16, Lemma 3.8]). The quasi K-matriz X of type Alls is given by

x= Z:O (4{122}>!" (B, Tia(En)]Is. (5.23)

Proof. Since T13(FE2) = [E1,T3(E2)],-1, Property of the skew derivative 17 im-
plies that 17(T13(E2)) = (1 — ¢~ 2)T3(E2). Again by Property (2.78), it follows that
17([E2, T13(E2)]4-2) = 0. Hence 17(X) = 0. By symmetry, we also have 3r(X) = 0.

We want to show that

or(X) = (¢ — ¢ )2 T13(E2) X.
Since or(T13(E2)) = 0 by (2.92)), the relation
o1 ([Ba, Thz(E2)] 1) = (1 — ¢ *)T13(Eo)
holds in Uy (sly).

80



Chapter 5. Factorisation of quasi K-matrices for quantum symmetric pairs

Moreover, the element T13(F2) commutes with the element [Ea, Ti3(E2)],-2. Indeed,
this follows from the fact that Eo commutes with [T513(E2), E2],~2 by applying the auto-
morphism T33. This implies that the relation

o1 ([E2, Th3(E2)|y-2) = (1 — q_z){n}T13(E2)[32,T13(E2)]Zf21

holds in Uy (sly). Using this, we obtain

(%) =3 (?;2})!n2r([E2,T13(E2)]Z2)

n>0

—(1- q72)T13(E2) Z {iLqC_Q):}'[EQ, T13(E2)]Z__21
1 !

= (q—q HeaTi3(En)X

as required. O

5.3.3 Type AIIl;

Consider the Satake diagram of type AIlly;.

O O
1 2
Note that s(1) = s(2) = 1 by (3.11)) and ¢; = ¢ by (3.33) and (5.4).
Lemma 5.13 ([16, Lemma 3.9]). The quasi K-matriz X of type Allly; is given by

(g—q Y

n>0 {n}'

Proof. By symmetry, we only need to show that

(%) = (¢ — ¢ HerExX.

X = ELEy)™. (5.24)

By (2.82)), we have

_ ,—1\n
(%) = (q{?f}!)c?lr((ElEz)”)
n>0
- L e g

= (q —q N EX

as required. ]

5.3.4 Type AIV for n > 2

Consider the Satake diagram of type AIV for n > 2.
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By BI1), we have s(1) = —s(n) and by (54), we have ¢ = ¢ ¢,

Lemma 5.14 ([16, Lemma 3.10]). The quasi K-matriz X of type AIV is given by

= M k M i
X = (;0 By T1Twx (En) )(;O 0y T, T (E1) > (5.25)

Proof. We have ;7(X) =0 for i € X. Hence by symmetry we only need to show that
17‘(:{) = (q - qil)qilcls(n)TwX (En):{
since T1 Ty, (Ey) and T, Ty, (Eq) commute. We have

17(Ta Ty (E1)*) =0,
17(T1 Ty (En)k) = q_l(q - q_l){k}wa (En)ThTwy (En)k_l-

Using this, we obtain

r(X) = Mr k M k
) = (3 g T (50 ) (32 it (1)

=q¢ g —q Hers(n) Ty (Bn)X

as required. O

5.3.5 Type BII for n > 3

Consider the Satake diagram of type BII for n > 3.

In this case we have

wo = Un(an—lgnan—l) T (Ul T Op ot 0'1)‘
The following lemma is necessary for Lemma, [5.16)

Lemma 5.15. The element By commutes with [T1 Ty (E1), E1]g-4.

Proof. We have
T Twy(Br) =TTy o(E1) =T 3([F2, E1],-2)

= [T1——n——3(E2), T12(E1)]g2

- [Tl——n——3(E2), EQ]q72 .
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The fact that Th2(F1) = Eo follows from Proposition by noting that o102(a1) = ae.
The element F1T1-_,,—_3(F2) has weight 2a1 + g + 2(a3 + - - - + v, ). Hence by Theorem
2,59 it follows that
BT 3(F) = ¢*T1—___3(Fs)Fy. (5.26)
Since Ty (Es) = E1Es — ¢ 2E9E; we obtain
E\Ti Ty (Er) = E\Ti——p——3(E2)Ey — ¢ *E1EoTh——y—3(E»)
= ¢*T——n——3(E2) E1Ey — ¢ *(T1(E2) + ¢ > B2 By ) Ti——n——3(E»)
=T 3(E)(T1(E2) + ¢ *E2Er) — ¢ *T1(E2)Ti - —3(E>)
—q PEyT__3(E2)Ey
= ¢*[T1——n——3(E2), T1(E2)] ;-1 + T1Twy (E1)E1.
This implies
E\[ThTy, (Er), El]q—4 = [E1Th Ty, (EY), El]q—4
= [N Twy (Er), E1) 1B + ¢*[[T1——n——3(Es), T1 (E2)] -1, El}q_4.
By Equation and the fact that Ty (Eq)Ey = ¢ 2E1T1(E») it follows that
[[T1——p——3(E2), Th (EQ)]q*‘lEl]qu; =0.

Hence we have Ey[T1Twy (E1), Erly-4 = [T1Twy (E1), E1],-4E1 as required. O

Lemma 5.16. The quasi K-matriz X in type BII is given by

=3 (q%l)m[El T (E1)]™ (5.27)
{m}! 7T ¢ ‘
m>0

Proof. By Equation (5.12) we want to show that 17(X) = (¢> — ¢ 2)c2Twy (E1)X. By
(2.92) we have 17(Ty (E1)) = 0 so it follows that

1T([E13wa (El)]q_4) = (1 - q_4)wa (El)

Since ojwx (1) = wxo; we have wxojwx(a1) = a1 and hence Proposition im-
plies that Ty 11Ty, (E1) = E1. Applying Ty to the relation By [T1Tyy (E1), Er],-4 =
[T1Twy (), E1]y-4E; from Lemma we obtain

Ty (EV)[Er, Twy (E1)]g=1+ = [E1, Twy (E1)]g=4Twx (E1).
Using Property of the skew derivation ;7 we have
1 ([By, Ty (B))2-4) = {2111 — ¢ ) Tuy (B1)[By, Tuy (1)) g4
Continuing inductively it follows that

17([B, Ty (B1)ljta) = (1= ¢~ ) {mhi Tuy (B1)[Er, Tuy (B0
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This implies that

(@) = Sy T (B

m>0 {m}i!

C _
= (1_q 4 wX El Z {Tf’zL _11}1 E17TwX(E1)]ZI—41
m>1

= (¢* — ¢ Her1Tuwy (E1)X

as required. O

5.3.6 Type DII for n > 4

Consider the Satake diagram of type DII for n > 4.

n—1
O—@------
1 2
n
In this case we have
wo = (0non—1)(On—20n0n—10p-2)...(01...0p_20n_10,0p—2...01). (5.28)

Before constructing the quasi K-matrix in this case, we need the following lemma, similar
to Lemma (.15l

Lemma 5.17. The element By commutes with [T1 Ty (E1), E1],-2.
Proof. We have
T Ty (Er) =TT _pyTh—o——2(Er)
= Tl——nTn—Q——3([E2a El]qfl)
= [T1——nTh—2——3(E2), Ea]g—

where we use T12(E1) = Eo by Proposition The element F1T1-_,T),—o—_3(F2) has
weight 2a1 + g + 2(as + - - + ap—2) + ap—1 + . Hence by Theorem it follows that

BTy T o —3(E2) = qT1— —nTo——3(E2)Ey. (5.29)
Since Ty (E2) = E1Fy — q ' EoEy we obtain
E\T1 Ty (E1) = BT Tyo3(F2)Es — ¢ ' By BTy, T—o—3(E2)
= qT1——yTn—o——3(Es) (T1(E2) + q71E2E1)
—q N (T(E2) + ¢ ' BBy ) Ti— Ty —3(E»)
= QT Ty o 5(E2), Ty(Ey)],2 + Ty Ty, (E1)Ey.
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This implies that
E\[T1Twy (Er), Erlg—2 = [T1Twy (Er), Er]g—2 By
+ q[[T1——nTh—2——3(E2), T1(E2)], > E1]
By Equation (5 and the fact T} (Fs)
([T Th—2——3(E2), Ty(E2)],” El] ,=0.
Hence E1[T1Tyy (E1), E1]g—2 = [T1Twy (

E1 = ¢ BT (Ey), it follows that

E1), E1],—2E1 as required. O

Lemma 5.18. The quasi K-matriz X in type DII is given by

(Bl (5.30)

Proof. By Equation ((5.12)) we want to show that 17(X) = (¢—¢ 1)1 Twy (E1)X. By (2.92)
we have 17(T, (E1)) = 0 so it follows that

lr([E17TwX (El)]qu) = (1 - q_Q)TwX (El)

Since ojwx (1) = wxa; we have wxojwyx (1) = a1 and hence Proposition im-
plies that Toyy T1Twy (E1) = E1. Applying Ty, to the relation E1[T1Twy (E1), E1]—2 =
[T1Twy (E1), E1]g—2E1 from Lemma we obtain

wa (El)[Ela wa (El)]q—2 = [Ela wa (El)]q—Qwa (El)
Using Property of the skew derivation 17 we have
17([B1, Tux (B1)22) = {211 — ) Ty (BB, Tuy (B1)] g2
Continuing inductively it follows that
1([Brs Tux (B)]gte) = (1= ¢ ) {m} Ty (B1)[Br, Tuy (B1)])75!

This implies that

17.(:{) — Z (qcl)

1
= {m}!

qc m—
= (1_(] 2 wx El Z { il}' Eq1, Ty (El)]q—zl

m>1

m

r([E1, Twy (B1)]g"2)

= (¢ — ¢ NerTwy (E1)X

as required. ]

Remark 5 19. Let & = Z[q,q '] and let ,,U™ be the «7-subalgebra of UT generated by

EM = [ ], for all n € No, i € I. Set UT = [[,cq+ U, where ,U;f = ;U N U, for

all p € Q*. By [6, Theorem 5.3] we have X € SUT if cis(1(i)) € £¢% for alli € T\ X.
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This integrality property is crucial for the theory of canonical bases of quantum symmetric
pairs developed in [6].

We observe that the integrality of the quasi K-matrix in rank one can in some cases
be read off the explicit formulas given in this section. Indeed, Lemma [5.11] [5.13] and [5.14]
imply that X € {Qﬂﬁ in the rank one cases of type AI, AIIl and AIV. The rank one
cases AII3, BII and DII are more complicated, and Lemmas [5.12] [5.16] and [5.18| does

not give an obvious way to see that X € ,,UT. Nevertheless, X is also integral in this case,

as shown in [6l A.5]. Based on the present remark, the integrality of X in higher rank is
discussed in Remark (.31}

5.4 Partial quasi K-matrices

All through this section we make the assumption that s = 0 = (0,0,...,0) € S. In Section
.5 we discuss the case of general parameters s € S. We provide a construction for the
quasi K-matrix analogous to the construction of the quasi R-matrix in Theorem [2.60

Recall from Section the restricted Weyl group W and the set of simple roots
Il ={a; | i € I\ X}. By Corollary the Lusztig automorphisms T; of U,(g) for all
i € I give rise to a representation of Br(W') on Uy(g). Since W is a subgroup of W, we
hence obtain algebra automorphisms of U,(g) defined by

ﬁ:zTgi for each i € I'\ X.

By Theorem and Corollary the algebra automorphisms T give rise to a repre-
sentation of BT(W) on Uy(g).
Define Q(2%) = 2ZII and QT (2%) = 2NoII. By Equation (5.8) and the assumption

s = 0 we have
(X)) = (g — g g~ @@ XX, oz, for any p e Q%.

By Lemma it follows that X, # 0 only if p € QT (2X). Hence by Lemma we
may consider the quasi K-matrix X as an element in [] peo+es) U, J c Ut Cc%. For any
w € W define

Utlwl = €@ Utul,
HEQT(2%)
and set Ut = D,co+ex) Uf. Then Ut and Ut[w] are K(q)-subalgebras of Ut and
U™ [w], respectively. In particular by Equation (5.17) we have

X eU[5] = H (7+[&i}li for any i € I\ X.
HEQT(2Y)
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Let K’ be a field extension of K(gq) which contains ¢*/? and elements ¢; such that
¢ = cicrys(i)s(r(i))  foralliel\X. (5.31)

We extend U+ and Ut |w] for w € W to K'-algebras ﬁfr/g =K' ®k(q) Ut and ﬁfb[w] =

K’ ®k(q) Ut[w]. Define an algebra automorphism ¥ : (7;“/2 — (7;72 by
U (Eag,) = q(&'i,&‘i)EiEQai for all Eyg, € U;}i. (5.32)

For each i € I\ X define an algebra homomorphism

Q=VoT, oW t: (7;72[51%00] - (71+/2

(5.33)
We consider the restriction of the algebra homomorphism 2; to the subalgebra U *owo),
and we denote this restriction also by €2;. Crucially, by the following proposition, the
image of the restriction 2; belongs to U™ and does not involve any of the adjoined square

roots.

Proposition 5.20 ([I6, Proposition 3.12]). For everyi € I\ X the map Q; : Ut [55wo] —

Ut is a well defined algebra homomorphism.

Proof. 1t remains to show that the image of €; is contained in U*. Observe that ﬂ(ﬁ 1) C

ﬁ;;(u) for all p € Q7 (2%). By Corollary 4.17| we have
2(p, &)
oi(p) = p— (g%’g;ai for all p € Q1 (2%).

Hence Equation (5.32)) implies that

Since u € QT (2X) it follows that the exponent —(u, @;) is an integer. Moreover, Corollary
implies that the exponent —(u, ;)/(a, @;) is an integer.

If i = 7(i) then Equation and Condition imply that ¢; = +¢;. This implies
that the image of ; is contained in U™ in this case.

Suppose instead that ¢ € I\ X satisfies ¢ # 7(i). If additionally (cy;, ©(«;)) = 0, then
implies that ¢; = c,(;). Moreover in this case ©(a;) = —a,(; by [38, Lemma 5.3]
and hence s(i) = s(7(i)) by (3.11). Hence we get ¢ = *c¢;s(i) in the case i # 7(i),
(ai, ©(ey)) = 0 which implies that the image of €; is contained in U* in this case.

Finally, we consider the case that ¢ # 7(i) and (a4, O(a;)) # 0. We are then in Case
3 in [46, p. 17] and hence the restricted root system ¥ is of type (BC),, for n > 1 and
(i, ;) = 1(cy, ;). Since p € QT(2X) C Q we have

(@i, i) (v, )

Hence the image of €); is contained in U™ in all cases as required. O
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Consider @ € W and let @ = 0,0y - .. 0, be a reduced expression. For k =1,...,t
let
:{E’? = Qilgiz T Qik—l(:{ik) =Wo T’il . 'ﬁk—l ° Wﬁl(%ik)' (5‘34)

By Corollary we have Ut [oy,] C Ut (g, _, (wo)] for k =2,...,t, and

Ty T (U 53] C UG (w)]  ford=2, k1

and hence the elements %gf] are well-defined. Moreover, by Proposition we have
xevtw= ] U'lal, fork=1,...t
HEQT (2X)

When clear, we omit the subscript @ and write X instead of %g].
Definition 5.21 ([I6, Definition 3.13]). Let @ € W and let @ = 0i,Ti, - .. 0, be a re-
duced expression. The partial quasi K-matriz X5 associated to w and the given reduced

expression is defined by
xg = xWxlk-1. . xRxl, (5.35)

We expect that the partial quasi K-matrix X5 only depends on w € W and not on
the chosen reduced expression. As we will see in Theorem [5.25] it suffices to check the
independence of the reduced expression in rank two. If the Satake diagram is of rank two
then the restricted Weyl group W is of one of the types A1 X Ay, As, Bs or Go. In each

case, only the longest word for W has distinct reduced expressions.

Conjecture 5.22 ([I6, Conjecture 3.14]). Assume that (I, X,7) is a Satake diagram of
rank two. Then the element X5 € % defined by (5.35)) depends only on w € W and not

on the chosen reduced expression.

In Chapter [6] we prove the following Theorem which confirms Conjecture in many
cases. The proof is performed by showing that for both reduced expressions of the longest
word in W the resulting elements X, satisfy the relations (5.12)).

Theorem 5.23 ([16, Theorem 3.15]). Assume that g = s,(C) or X = (. Then Conjecture
[5.22 holds.

Remark 5.24. The Hopf algebra automorphism W in the definition of 2; turns out to
be necessary for the rank two calculations in Chapter [6] which prove Theorem The
conjugation by ¥ affects the coefficients in the partial quasi K-matrix associated to a
reduced expression of an element w € W. In rank two the two partial quasi K-matrices
associated to the longest word wg € W coincide only after this change of coefficients. The
effect of the conjugation by W can be seen in particular in Sections and which treat
type AIII, for n > 3.
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Once the rank two case is established, we can generalise to higher rank cases.

Theorem 5.25 ([16, Theorem 4.16]). Suppose that (I,X,T) is a Satake diagram such
that all subdiagrams (J, X N J,7|;) of rank two satisfy Conjecture . Then the element

X5 € % depends on w € W and not on the chosen reduced exrpression.

Proof. Let w and @’ be reduced expressions which represent the same element in w.
Assume that w and @’ differ by a single braid relation. The following are the possible
braid relations:
Op0y = 0,0p,

0p0,0p = 0r0p0r, (5.36)

(51)57")2 = (5r5p)2a

(51957")3 = (a&p)g'
The argument for each relation is the same, so we only consider the second case. Assume

that w and w’ differ by relation (5.36)), that is

W =04 - 0ip_, (Epa&p)gik% c Oy,
w =04, -0y, (ETEPGT)EiHB 0y,
forsome k=1,...,t—2. Forl=1,...,k — 1, we have

A —woTy, T o0 () = X1

Since the algebra automorphisms Ti satisfy braid relations, we have

%[l] \I’OT ’ le 1(TTT)Tik+3"'T‘i171O\Ij_l(:{iz)
:\I’OTil" le 1(TTT)TZ1€+3 ) ﬁzﬂoql_l(xiz):%g/

for | = k+3,...,t. Finally, consider the rank two subdiagram (J, X N J, 7|;) obtained by
taking J = Ji U Jo, where J; = {r,p,7(r),7(p)} and Jo C X is the union of connected
components of X which are connected to a node of J;. By assumption,
X5,5,5, = Xp VLU 1(X,) - OT,T, 071 (X,)
=X, - VLU (X)) T, 1,91 (X,) = X5,5,5,-
It follows from this that

Wl _ g T T (X5 5,5,)
OpOrOp

1k—1

=0T, T 0 (,5,5,)

1k—1

= xxn

Hence we have X; = X5 as required.

If w and @’ differ by more than a single relation, then we can find a sequence of reduced
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expressions

W= Wi, Wa, ..., Wy =W
such that for each ¢ = 1,...,n — 1, the expressions w; and w;4 differ by a single relation.
We repeat the above argument at each step and obtain X5z = Xz . 0

Recall from Equation (3.2) that there exists a diagram automorphism 7y : I — I such
that the longest element wy € W satisfies
wo (o) = Qg (i) (5.37)
for all i € I.

Proposition 5.26 ([16, Proposition 3.18]). Let wy € W be the longest element with

reduced expression wy = 0;, - - 0;,. Then
t
xl =% ) (5.38)

Proof. To simplify notation we write i; = ¢. By construction we have

ﬁ)/OU)X' = Wo,

wxo; = W5 r(3)UX forallt el \ X.

By Lemma the elements wx and wy; ;(;ux commute so we get

¢ _ _

xl = wory T ou(xy)
=Uo T, T T, T} o UTH(%))

WoTwx TWX T WL 7 (i) ux
= Vo Tug Ty, ok © ¥ (X0)
Recall that
Ty = tw o (5.39)
where tw : Uy(g) = U,(g) is the algebra automorphism defined by
tw(E;) = —K; 'F,, tw(F) = -EK;, tw(K;) =K,
for i € I, see [4, Section 7.1]. Analogously we have on U, (gy; r()jux) the relation

T,

Wi, (i) }ux
where 79 : {i,7(1)} UX — {i,7(i)} UX is the diagram automorphism satisfying (4.2)).
We obtain

=tw lo T0,i = T0,i © twt (5.40)

.’{g}]o =Votw 'omotwor; oW (&)

="Yo T0T0,i © \Ilil(%i). (5.41)

Case 1. 7(i) = i.
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In this case Lemma [5.7) implies that
70,i(Xi) = Xi. (5.42)
Moreover s(7(i)) = s(i) = 1 and hence by Lemma and by definition of ¥ we have

xg)]o = Z Vo T070,; © \II_ (C En(OM O(a; )))
n€Np
— Z q*’rL/Q Q;— CY'L) Oéz)q:j o) T0T07’L(E7L(Oéz—9(az)))
n€Ny
5.42 —n o a o
! Z q /2(ei=8(av), Z)WOTO(En(ar@(Oéi)))
n€eNg
—n/2(a; —O(a;),04
Z q /2 (1) )\II(E (a Qrg (i)~ e(aTO(i)))
n€Np

where we use the notation from Lemma also for X, ;).
As (aTo(i) - @(aTg(i))? aTo(i)) = (ai - ®(ai)7ai) and S(TO(i)) =1, formula " gives

us
M _ n _
Xy = Z Cro(6) By 5y~ O(ary ) = Fro(i) (5.43)

which proves the Lemma in this case.
Case 2. 7(i) # i.

In this case the rank one Satake subdiagram is either of type AIII;; or of type AIV
for n > 2 as in Table

If the rank one Satake subdiagram is of type AIV for n > 2 then 7 = 79 and 79
coincide on {4, 7(¢)} U X and hence implies that

%[t] =Xi = Xy (5) = X (0)- (5.44)

If the rank one subdiagram is of type Al then 19;(i) = 4. If additionally 7o(i) = 4
then 79(7(2)) = 7(¢) and hence 1)) implies that %[t} = X; = X;,(;) in this case.
If on the other hand 79 (i) ;é i then 79 = 7 and we 1nvoke the fact that

s(i) = s(7(i), ¢ =cr (5.45)
which holds by (3.11] - and - Relation (5.45) and 7 = 79 imply that 79 o U~1(¥;) =
U1 o79(X;). Hence Equation (5.41)) implies that 36,%]0 = X;,() also in this case. O

Lemma 5.27 ([I6, Lemma 3.19]). Let wy = 0y, ---0;, be a reduced expression for the
longest word in W. Then f{[%]o € Ut[ogwo] fori=1,...,t—1 and k = 19(i¢).

Proof. We have

ORWo = ORWOWX = W00 (k)WX = WOWXOro (k) = W0Ti, = Oy *** Tiy_y -
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By definition of U™ [w] for each w € W and Corollary we have
T, T, ,(UT[63,])) € U [oxo]
for j=1,...,t—1. Now the claim of the lemma follows from Equation (5.17)), Proposition

(.20 and the fact that
}:m _ \I’Oj:il"'j:

wo -1

Oqj_l(:{ij)
forj=1,...,t—1. O

With the above preparations we are ready to prove the main result of the chapter, cf.
Theorem [2.601

Theorem 5.28 ([16, Theorem 3.20]). Suppose that (I, X, T) is a Satake diagram such that
all subdiagrams (J, X N J,7|5) of rank two satisfy Conjecture . Then Xz, coincides
with the quasi K-matriz X.

Proof. 1t suffices to show that
ir(Xay) = (¢ — ¢ 1)g~ D) e;5(7(0)) T (Briy) Xy (5.46)

for all i € I'\ X. By Theorem we can choose any reduced expression wg = 0, - - - 0y,
of the longest element of W. Proposition implies that

Xa, = %To(it)%[til} xRl

Suppose 1o(i) € I is a representative of the 7-orbit {k,7(k)} for some k € I\ X.
By the previous lemma we have Xl € U+[5,wo] for i = 1,...,t — 1. By [27, 8.26, (4)]
this implies that (X)) =0 fori=1,...,¢t — 1. By Equation we have
(X)) = (@ — ¢ g ©@ ) ey s(7(k)) T (B (1)) X i)

and similarly an expression for -;)7(X;,¢,))- Equation (5.46) for &, 7 (k) follows from the
above and the skew derivation property (2.78]). Since we can arbitrarily choose the reduced

expression for wy, the result follows. O
Combining Theorems and we obtain the following result.

Corollary 5.29 ([16, Corollary 3.21]). Let g be of type A or X = (. Then the quasi

K-matriz X is given by X = Xg, for any reduced expression of the longest word wy € W.

Conjecture 5.30 ([16, Conjecture 3.22]). The statement of Corollary[5.29 holds for any
Satake diagram of finite type.

Remark 5.31. We continue the discussion of the integrality of the quasi K-matrix X
from Remark under the assumption that ¢;s(7(7)) € £q¢% for all i € I\ X. In this case

%g] € ,Qﬂj; for k =1,...,tif w € W has a reduced expression w = 7;,0j, ...0;,. Indeed,
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the discussion in the proof of Proposition m shows that X%} differs from Til . .f’il (%i,)

by a factor in +¢%. Hence we obtain Xz € ,U~ for all @ € W. By Corollary
choosing w = wy, we obtain X € @/ﬁ; whenever g is of type A or X = (). In these cases
we have hence reproduced [6, Theorem 5.3] for s = 0 without the use of canonical bases.
The case of general Satake diagrams hinges on Conjecture [5.30] and the integrality in rank
one from [0, Appendix A].

5.5 Quasi K-matrices for general parameters

We now give a description of the quasi K-matrix X for general parameters s € S from
[16, Section 3.5]. Recall from the proof of Lemma that we denote the generators B;
c,S - .
by B;”" if we need to specify the dependence on the parameters.
The following lemma provides an algebra isomorphism between the subalgebras Be g
for different parameters s,s’ € S. This follows from Theorem since none of the

defining relations for B¢ s depend on the parameters s.

Lemma 5.32. Lets,s’ € S. Then the map psg : Bes — Beg given by
055 (BSS) = BSS | osg(b)=b  forallie I\ X,be MxUS (5.47)

2

1s an algebra isomorphism.

We write ¢s to denote the isomorphism g . This algebra isomorphism allows us to
define a one dimensional representation xs : Beo — K(gq) by xs = € 0 ¢s. By definition we

have
Xs(Bf%) =s; foralli € INX,  Xsluyvg = elayug:
By Lemma [3.19 we have
A(B) - Bi® K; ' € MxUQ @ U,(g) (5.48)

which implies that
¢s = (xs @id) o A (5.49)

on B . For later use we observe the following compatibility with the bar involution.

Lemma 5.33 ([16, Lemma 3.24]). For all b € Bc o we have

. U
(xs ®id) 0 (Fe0 © ) 0 A(B) = paB). - (5.50)
Proof. As (xs ® id) o (B0 ® U)o A and Y o g are K-algebra homomorphisms, it
suffices to check Equation (5.50) on the generators Bf’o fori € I'\ X and on MxUQ. If
b € MxUg then both sides of (5.50) coincide with I = BZ-C’0 for some i ¢ {j €
Ins|ajr, € —2Ng for all k € Ins \ {j}} then s; = 0 by the definition of S in ([3.34) and
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hence B 0= B{®. Using the membership property (5.48) we get

(xs0%0) @ ) 0 A(BE®) = (U 0c) 0 V) 0 A(BE®) = BY® = (5)”

(2

which proves (5.50)) in this case. Finally, if i € {j € Ips|ajr € —2Ng for all k € I,,s\ {j}},
then the definition (3.32)) of I,,5 implies that

BY® = F, — ; BiK; ' + 5, K.
Hence, using s; = 5;U from (5.5)), we get
((xsoP°) @) o A(Bf®) = ((xs o Pe0) @ ~U)(Bf° @ K; ' +1® B{”)
c OU
= s, K; + Bi,
= B?SU
(2

—U
= ‘PS(B?O)

which completes the proof of the lemma. ]

As in [4, 3.2] we consider the algebra
%0(2) = End(For o ® : Ot X Ojpe — Vect)

and observe that []| pegt Uy ® Uj is a subalgebra of %0(2). Recall from Section [2.2.8 the
quasi R-matrix R € [[,cq+ U, ® U, Following [5, 3.1] we define an element

R=A(X)-R-(x'o1) %, (5.51)

see also [39, Section 3.3]. In [5] the element R’ is called the quasi R-matrix for Beg. By
[5, Proposition 3.2] it satisfies the following intertwiner property

AGB) RO=R . (B U)o A®) forallbe B = Bes (5.52)
in %0(2). Moreover, by [5, Proposition 3.5], [39, Proposition 3.6] we can write R? as an

infinite sum

R'= >R  with R} € Bes@U,. (5.53)
HeEQT
Similarly to the notation X s introduced in Lemma we write Rg}s if we need to specify
the dependence on the parameters. Observe that once we have an explicit formula for
Xc¢,0, Equation (5.51f) provides us with an explicit formula for Rg,o- This in turn provides
a formula for the quasi K-matrix X s for general parameters s € S. Indeed, by Equation
(5.53]) we can apply the character xs to the first tensor factor of Rg,o to obtain an element
X' = (xs ®1d)(RY ) which can be written as
X¥'=) x,  withX), €U}
et
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Moreover, Equation (5.53)) implies that X, = 1. By the following proposition the element
X' € % is the quasi K-matrix for Besg.

Proposition 5.34 ([16, Proposition 3.25]). For any c € C, s € S we have Xc¢s = (Xs ®
id)(RY ).
c,0

Proof. We keep the notation X' = (s ®id)(R270) from above. By Equation we have
AB™°) Ry =Ry (Peo U)o A(b)  forall b€ Beg.
Applying xs ® id to both sides of this relation, we obtain in view of Equation the
relation
0s(07°) - % = X (xs ®@id) o (B0 U)o A(b)  for all b € Bey.

By Lemma the above relation implies that

0s(070)X = X5 ()" for all b € Bep.

—=sU
This gives in particular B{*X' = X'B{*®" for all i € I and bX' = X'b for all b € MxUy.
This means that X satisfies the defining relation (5.6 of X¢s and hence, in view of the

normalisation X{, = 1 ® 1 observed above, we get X' = Xcs. O

Remark 5.35. The existence of the quasi K-matrix X ¢ was established in [4, Theorem
6.10] by fairly involved calculations. It was noted in [4, Remark 6.9] that these calculations
simplify significantly if one restricts to the case s = 0. Proposition [5.34] now shows that
in the presence of the existence of X¢ o implies the existence of X.¢ for any s € S
satisfying (5.5]). Relation was established in [39] for g of finite type.
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Chapter 6

Quasi K-matrices in rank two

In rank two, there are two distinct reduced expressions for the longest word wg € W. All
irreducible Satake diagrams of rank 2 are shown in Table In this chapter we verify
Theorem [5.23] using the explicit formulas from Section We do this by confirming that
the partial quasi K-matrices for the two reduced expressions for wg coincide with the quasi
K-matrix. With the exception of type Go in Section all of the calculations of this
chapter come from [16, Appendix A].

6.1 Type Al

Consider the Satake diagram of type Als.
o——=0

1 2

Since © = —id the restricted Weyl group W coincides with the Weyl group W. The

longest word of the Weyl group has two reduced expressions given by
Wo = 010201,

w6 = 090102.

Proposition 6.1. In this case, the partial quasi K-matrices X,,, and %wé coincide with

the quasi K-matriz X. Hence X, = :{wg-

Before we prove this, we need to know how the Lusztig skew derivations 17 and or act on
certain elements and their powers, and also some commutation relations. These are given

in the following two lemmas, whose proofs are obtained by straightforward computation.

Lemma 6.2. For any n € N, the relations

E}Ey = ¢"E\E} — ¢{n}E} ' Ti(E,),
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Chapter 6. Quasi K-matrices in rank two

EYEy = ¢"EsEY — ¢{n}E} ' Ta(Ey),
T (E2)"Ey = ¢ "E\T1(EQ)",
Ty(E1)"Ey = ¢ "ExTo(Ey)"

hold in Ug(sl3).

Lemma 6.3. For any n € N, the relations

1r(Ey) = 1r(Ta(E1)") = 2r(EY) = or(Ti(E2)") =0,
1

hold in Ug(sl3).

Table 6.1: Irreducible Satake diagrams of rank two for simple g

Al oO—0O Clly e ® O
1 2 1 2 3 4
AIL DI, 3
; T S n25 | oo ea

AITIs ) R DIII,
o——_0—20
1 2 3 1 2
AllL,,
DIIIs A
n 2 4 & A 2 3
oO—O0—@--—---- —0—0 : .

(BC)2 O——0 EIIT T
' ’ o—e O
1 3 4 6
Bln, EIV
O—O—@--- *—
n>3 1 2 ?
o0—e e—O
1 3 4 5 6
CII,,
° ® ®------ *——0 G O==0
n>>5 1 2 n 1 5
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Proof of Proposition[6.1 Consider first the element X,,,. Using (5.35)) and Lemma

we write

Xy = XBxPx (6.1)
where
1\n
3 E33) _Z(q—q )" 2 \nm2n
% :{2 - {2n}” (q 62) 2 >
n>0
o ey N~ @D o e on
X2 = ToTi oW (X =) (¢ c1)"(q7c2)" T (E2)™",
=~ {2n}!!
n _ o (q_qil)n 2 . \n2n
X —fl—g (¢"c1)"ET".

1
= {2n}N

Fori=1,2,3,let X = K XK 1 1 The difference between X} and Xl is the occurrence
of a g-power in each summand of the infinite series. By Equation , to show that X,
coincides with the quasi K-matrix X we show that
17(Xwy) = (¢ — ¢ ") (q%c1) ErXu,,
27 (Xuwy) = (¢ — ¢ ) (¢ c2) BrXuy,-
By Lemma and we see that
o (Xuy) = or(XB) xR 2l
= (¢— ¢ ")(¢Pco) B X Xzl
= (¢4 ")(¢*c2) EoXuy.

By the property (2.78)) of the skew derivative 17, we have

17(Xw,) = 36[3]17“(36[2])36[1] + %[3]%[2]1?”(:{[1}) (6.2)
Using Lemma [6.3], we have
2]y (q — qil)n 2.\n(,2,\n 2n
(X)) = ZW(Q c1)"(qe2)"1r(T1(E2)™")

n>

—1\n

B 0 o il C Ak Bl

¢ (g—q )22{271—2}!!
n>1

= (¢ — ¢ Y2 H%e1)(qPeo) BTy (Er) X2

(XY = (¢ — ¢7H(Per) B X,

(q201)n(q202)nTI (E2)2n—1

The second summand of Equation (6.2)) is of the form
(0= q (@) Xy X Er X,
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Chapter 6. Quasi K-matrices in rank two

We use Lemma to bring the E; in the above summand to the front. We have
X By = Z (q_q—l)n( 20 )n( 20 )n 2np (E )ZnE
[2]1 {Qn}!!Q1Q2Q12 1
n>0
—l)n

_ (g—gq
B Elgo {2n

— Elx[Q]’

x(g—q
Xghi=) {2n}!
n>0

(q201)”(q202)”T1(E2)2"

—1)n 2 n _—2n p2n
(¢°c2)"q " E3"Er

—1\n
44 - -
=2 ({2n}”)(q2cz)”q "M BVES" — q{2n} B3 T ()
n>0 h

= B xBl - qz {(]2; a 21}:: (q%ca)"q > B3 Ty (EBy)
= B X — (¢ — ¢ g (Poa) X5 B2 T ().
Hence,
(@ — a )(Pe) XX B = (¢ — ¢ 1) (@Per) X BrxPxl
= (¢ — ¢ ) (¢Pcr) B xBlx Pl
— (@ —a7"’q " (¢Per) (@ ca) Xy BT () XP 2l
= (q— ¢ )(Pc1) Br X, — Xpgpr(XE) 21,
It follows from that 17(Xw,) = (¢— ¢ 1) (¢Pc1) E1 Xy, 50 Xy, coincides with the quasi
K-matrix X. Instead of repeating the same calculation for %w(), we use the underlying

symmetry in type Al>, which implies that }:wé also coincides with the quasi K-matrix
Xx. O

6.2 Type All;

Consider the Satake diagram of type Alls.

® O ® O L
2 4

1 3 5

In this case the involutive automorphism © : h* — h* is given by
© = —010305.

There are two T-orbits of white nodes given by the sets {2} and {4}. The restricted root
system is of type Al since the restricted roots
~ a1 + 209 + ag - as + 204 + a

ang, Qg = B
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Chapter 6. Quasi K-matrices in rank two

have the same length. The subgroup W C W is generated by the elements
09 = 090103039, 04 = 04030504.
The longest word of the restricted Weyl group has two reduced expressions given by
Wy = 0204072, Wy = G40204.

By Lemma [5.12| we have

Xp = §>:o (?ZQ})!H [E2, Ti3(E2)] -2

x, = ;} (c{zﬁf 1, Ts5(Eq)] .

Proposition 6.4. The partial quasi K-matrices Xg, and f{% coincide with the quasi
K-matriz X.

We have the following relations needed for the proof of Proposition These are

proved by induction.

Lemma 6.5. For any n € N the relations

[Ed, Ts5(E4)]y-2Th3(E2) = ¢"Ti3(E2)[Es, T35(E4)]; -2 (6.3)
— q{n}[E4, T35(E4)]2f21 [13(E4), Th235(E4)] 42,
[To3(E4), Thass (Ea)l;-2T13(E2) = ¢ "Ti3(E2)[T23(E4), Ti2ss(Ea)]y-» (6.4)

hold in Ugy(slg).

Lemma 6.6. For any n € N the relation
o1 ([T23(Ed), Th235(E4)]y-2)
=q (g — ¢ Y{n}HT3(Es), Thoss(Es)] g2 [Tos(Ed), T1235(E4)]Zf21
holds in Ugy(slg).

(6.5)

Proof of Proposition[6.4 We only confirm that X, coincides with the quasi K-matrix X.
By the underlying symmetry in type AIIs, the calculation for Xz is the same up to a

change of indices. By defintion, we have
Xa, = xBlx2 Nl

where

X E= 2y

)

2 n
%[2] —To T2132 o \Ilil(%zl) — Z (q 0204)

> [T23(E4), Tr235(Ea)]f)-2,

xl = x,.

100



Chapter 6. Quasi K-matrices in rank two

Using Lemma and Corollary we see that
ir(Xg,) = ar(Xg)xHx 0
= (q— ¢ ")eaTss(By) X P21
= (¢ —q )eaTss5(Ea) X,
We want to show that
2r(Xa,) = (¢ — g~ eaTiz(Ba) X,

For i = 1,2,3, let X = Kg.’{[i]Kz_l. By property (2.78) of the skew derivative 9r and
Corollary we have

o7 (Xae) = Xpaor (X)X 4 x5 X pgor (). (6.6)
By Lemma we have
or(XM) = (¢ — ¢ HeaTiz(Bo) XM,
By Lemma [6.6] we have

(X)) = ZWzr([ﬂs(&)fm%(&)]g2)
n>1 ’

€ a(q — g~ ") eoea[T3(Ey), Tross (Ey)] -2 X2,

The second summand of Equation is of the form (q—q_1)023€[3]36[2]T13(E2)%[1]. Using
Lemma we bring the T13(F2) term in this expression to the front. We have

(6. ’

X Tia(E2) & Ty ()22, (6.7)
(6.3)

%[3]T13(E2) T15(E2) X — qesX(3)[T3(Ey), Trass (Ex)] -2 (6.8)

Substituting (6.7) and ( into (¢ — ¢ 1)62%[3}%[2}T13(E2)%[1], we obtain

_ ()
(a—q 1)0235[3]35[2]T13(E2) x

q—q ")eoXp Tis(En) X xl

( )

(g — 1)02T13(E2)x[3}x[2}x[1}

— (g — ¢ ")qeacs XT3 (Ey), Tios5(Ey)] -2 X X1
= (q—q eaTi3(Ea) X g, — 3€[3pr(%[2})}:m.

It follows from that or(Xg,) = (¢ — qilchlg(Eg)%@O as required. O

6.3 Type AIll;

We consider the diagram of type AIll3 with non-trivial diagram automorphism 7 and no
black dots.
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Chapter 6. Quasi K-matrices in rank two

Here, we see that there are 2 nodes in the restricted Dynkin diagram, corresponding to
the restricted roots

. _O£1—|—043 ~
o = 5 Qs = Q9.

A quick check confirms that 1/2(a; + ag) is the short root, and hence the restricted root

system is of type By. The subgroup W is generated by the elements
01 = 0103, 09 = 09.
The longest word of the restricted Weyl group has two reduced expressions given by
Wy = 01020102, Wy = 02010207

The definition (3.33) and condition (5.4]) imply that ¢; = ¢3 = ¢7. By Lemmas and
(.13l we have

q —q 1 n "
%1 = Z { }' — (E1E3) N (69)
n>0
_ ,—1\n
2= W(q%z)nEgn. (6.10)
n>0

Proposition 6.7. The partial quasi K-matriz Xz, coincides with the quasi K-matriz X.

The following relations are needed for the proof of Proposition They are checked

by induction.

Lemma 6.8. For any n € N, the relations

Ti3(E2)"Es = q "E3Ti3(Es)", (6.11)

(Ty(E2)T5(E»))" Es = E3(Ti(E2)T5(E»))" (6.12)
— q{n}(T\(B2)T3(Bs))" T3(Bs)Tha(Ea),

Ey B3 = q"E3Ey — q{n}Ey ' T3(Ey) (6.13)

hold in Uy(sly).
Lemma 6.9. For any n € N, the relations

17(Ths(E2)") = ¢ (g — ¢~ ){n}Ts(E2)Tis(E2)" Y, (6.14)
(B T3(B2))") = 4 Ha — ¢~ ) {n} BaTs(Bs) (Ty (E2) T3 (E2)) "
hold in Ugy(sly).

q
q

Proof of Proposition[6.7. Take wy = 61020101. Then we have
Xy, = xWxBlxR %l
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where

639)
xt Xro2) = X2,

~ o~ _ ,—1\n
X = wo 0w (X)) = (q{nq};)(q26102)”(T3(E2)T1(Ez))"a
n>0 '
2] 7 -1 (a=a )" 42 \n 2n
¥ = ToTioWU (X)) =) W(q cica)"Tig(E2)™",
= i

= x.

By Lemma property of the skew derivative 91 and Corollary we see that
or(Xg,) = (¢ — ¢ 1)gPcaEaXy,. Due to the underlying symmetry in this case, we only
need to show that

17(Xa,) = (¢ — g~ )1 EsX .

For each i = 1,2,3,4, let X};) = Kl.’{[i]Kl_l. Then by the property (2.78) of the skew

derivation 17, we have
1r(Xy) = %[4]17“(:{[3}):{[2]%[1] + %[4]:{[3]17“(:{[2]):{[1} + %[4]3:[3]3:[2]17“(%[1]).
Using Lemmas [5.13] and [6.9 . it follows that

17«(35[31) 1) g — ¢ )2 (Perc) EaTs (Ey) X8, (6.16)

(2 22 71 (g — g2 (g o) Ty () T (B2) X2, (6.17)
5.24 _

() B2 (g g pexly, (6.18)

Using Lemma we look at the term %[4]%[3]%[2]17"(%[”) in more detail. We have

X B3 €D g, 502l (6.19)
Xy s B2 By — (g — 1) (Peren) Xy T (o) Tis (Ea), (6.20)
36[4}E3 = el g Yq — a7 ) (@ c2) Xy B2 T3(Eo). (6.21)
It follows that
Xy Xz Xpar (X

S
=] <
K=

)

(=g ")er XXy Bz xPxl

(0 — ¢ er X (BsXB — q(q — ¢ (qPerc0) X T (B) Th3(Ey) ) X P xl
)

(q—q Der(Bsx™ — g (g — ¢ 1)(qPca) Xpy B T3 (Ey) ) X 2P %
— %[4}:{[3}17’(.%[ ])3€[”

&
19
=

6.

[l
=

= (¢—q HerEsXg, — Xpur(XP)xBxlt — xp2 5,02 xY

by equations (6.16)), (6.17) and (6.18)). Hence, it follows that 17(Xg,) = (¢— ¢ 1)c1 E3Xg,,
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as required.

O
Proposition 6.10. The partial quasi K-matrix %% coincides with the quasi K-matriz X.

The following relations are needed for the proof of Proposition They are checked

by induction.

Lemma 6.11. For any n € N, the relations

(To(E3)To(Ey))" By = 2" Ey(To(E3)Ta(Er))", (6.22)
To13(E2)" Ey = ExT35(E2) — (q — g~ ) {n}To1s(E2)" ' To(E3) Ta(Ey), (6.23)
(E1E3)" By = ¢ By (E1E3)" — q{n}(E1Es)" " (BsTy(Er) + 1 Ta(Es) (6.24)

— ¢*{n}? (E1E3)n_1T213(E2)

hold in Ugy(sly).

Lemma 6.12. For any n € N, the relations

o1 (To13(Fo)™) = ¢ 2(q — ¢~ V)2 {n}E1 EsTh13(Fo)" L, (6.25)
o (To(E3)"To(E)") = q ' (¢ — ¢ " ){n} EsTo(E3)" ' To(E1)" (6.26)
+q (g — ¢ DH{n}E1To(Es)" To(Er)"

+ (g — ffl){TL}QTng(Ez)(T2(11*71)T2(E3))W1
hold in Ugy(sly).
Proof of Proposition[6.10, For W), = 62010201 we have
X~ = x@xBlxlxl]
wO Y

where

©39)
x4 X)) = X1,

~ ~ _ ,—1\n
¥ = woBTiol (X)) =Y (q&?‘j}”)(q‘*c%cQ)"Tzlg(EQ)?n,
= I
2] T -1 (q — qil)n 2 n n n
X = Vol o () :ZW(Q c1e2)"To(Ey )" Ty(E3)",
n>0 '

U = x,.

By Lemma property ([2.78]) of the skew derivative ;7 and Corollary we have
1r(Xg) = (g - q_l)clng%. We want to show that

or(Xgy) = (¢ — ¢ ) (¢ c2) B2 Xy
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Fori=1,2,3,4, we let X;) = KQ.’{MKgl. Note that we have X3 = xBl. By the property
(2.78) of the skew derivative o7, we have

27“(:{@6) = }:[4}27“(:{[3}):{[2]%[1] + :f[4]:f[3]27“(%[2]):{[1] + :{[4}:{[3}%[2}2?”(:{[1]).

Using Lemma [6.12] we have

or(XF) = ZW(Q4C%C2)H2T(T2l3(E2)2n)
n>0 -

—1\n
(6.25) _ - q—4q -
! q 2((] —q 1)2 § : ( {Zn}”) (q46%02)n{2n}E1E3T213<E2)2n 1

n>1
— P PR Y T e T
1483 {2 }” q0162 213(L£2
n>0
= (¢—q ) (¢*e) BLEsTors(Bo)XB. (6.27)

Similarly, we have

r(xtl) = Yl

n>0 {n}'

—1\n

(¢*crc2)"ar (To(Ey) " To(E3)")

B2Y g — Y2 (Peren) (E3T2(E1) + E1T2(E3))%[2]

+(g—q Tos(E) Y (q;j},
n>1 ’

= (g— ) (gereo) (BsTo(Br) + By To(By) ) X

—1\2(,2 (g—q )"
+ (¢ —¢q )" (¢°c1c2)T213(En) Z i
= {n}!
We want to write the last summand in terms of X2/, To do this, we use the fact that

{n+1} =1+ ¢*{n} for n > 1. This is a useful fact that will be used again in future
calculations. Using this, we have

" (2o n) 2T Br ) Ty (B!

(q20162)n{n + 1}T2 (El)nTQ (Eg)n

(q_qil)n 2 n VT (BT ( Ee)™
ZW((] ciez)"{n + 1}T5(E1)" T (E3)
n>0
_ 1 n
=1+ Z . { q}' (@Pcrea)"(1+ ¢* {n}) To(E1)" To(E3)"
n>1
9, o (a—ghH"
=xP g Z 1y (g°crc2)" o (B )" Ta(E3)"
n>1
n+1
= x4 2 Z {n}' (gPcreo)" M T (By) "M Ty (B5)™ !
n>0

=X + (¢ — ¢ V(g cr100) To (1) To(Bs) X,
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Inserting this equation into the expression for 27’(.’7’5[2]), we obtain
(X)) = (¢ — ¢7Y)2(gerc2) <E3T2(E1) n Eng(Eg))%m (6.28)
+ (g — ¢ H2(¢Pc102)Tors(E2) X1
+ (g — ¢ (O AE) T (B2) To(E1) To(E3) X2

Finally, we have

() B2 (4 — 71y (g2e,) Bz, (6.29)

Now, we use Lemma to rewrite the term .’{[4}.’{[3}.’{[2}27’(.’{[1]). By calculations similar
to those leading to (6.27) and (/6.28]), we obtain

X B2 = E2x1, (6.30)
Xig B2 = By xXB — (g - q )¢ ea) X3 Tor3(E2) To(E1 ) To(Es), (6.31)
%[4]E2 = EQ%M] — qil(q — qil)cl.%[z;] (ElTQ(E3) + EgTQ(El)) (6.32)

—(¢—q¢ e (X + (¢ — ¢ e Xy BLE3) Toz(Ea).

We use these to obtain the following.

(@ e2) Xy X X Eo X
q- )(QQCZ)% X g B2 X x
q—q (@)X ]E23€[3]3€[2]3€[1]
—(g—q "% 0102)%[4]%[3]T213(EQ)TQ(El)TQ(Eg)%[Q]%[I]
(¢ —a (e (EQ%[‘” — ¢ g— Ve X (1 To(Bs) + EsTo(Er))
—(g—q Ha (3[4] + (g — q71)01%[4]E1E3)T213(E2)>j{[@:{[ﬂ:{[l}
— (0= a7 (°cie3) Xy Xpsy Tora () Ta(Bn) T B) X1,
We gather terms now and get
X[y Xy Xppor (X1)
= (- q (@) ExXy
— (4= ¢ ") (gerea) X1y (B1To(Bs) + B3To(Er)) P21l
— (4= g ") (¢Pcr102) X1y X5y Tora (Bo) X2 X1
+ (¢ — ¢ 1) (¢°FB) Xy X 3 Tors (B2) Ta(E1 ) To(E3) X2 1
—(g—q )¢ 0102)3[4]E1E3T213(E2)%[3}%[2}j{[1}
= (¢ — ¢ ") (¢Pc2) BaX gy — Xy X3 (XD — % 0r(B) 2P0

where we use the fact that E1T5(F3) and E3T»(E;) both commute with T513(FE2), and
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hence with X3, Tt follows that
or(Xgy) = Xpayar (KPR 4 20 2 0r (X 2 4 20 25 X 2r (X1
= (¢—q ")(¢Pcr) EaX

as required. O

6.4 Type AIII, for n >4

Consider the Satake diagram of type AIIl, for n > 4.

In this case the restricted root system is of type Bg with
~ ayl + an ~ aztasz+ -+ an—1

OCIZT, Qg = 9

The subgroup W CWe is generated by the elements

01 = 010np, 09 = wa{2,n—1}UX — 0903...0p-1...0309.
The longest word of the restricted Weyl group has two reduced expressions given by
~ ~ o~ o~ A~ ~/ ~ o~ o~ o~
Wy = 01020102, Wy = 02010201 .

The definition (3.33]) and condition (5.4)) imply that ¢; = ¢, = ¢7. By Lemmas and
(.14l we have

(g—q H)*

X = Z Wclf(&En)k,

k>0 )

_ (o (estn —1))F k (en15(2)* A
o= (3 g s ) (3 g T T Bl ).

Proposition 6.13. The partial quasi K-matriz Xz, coincides with the quasi K-matriz X.

We have the following relations needed in the proof of Proposition proved by

induction.

Lemma 6.14. For any k € N the relations
Tln(n—l)TwX (E2)kETL = q_kEnTln(n—l)TwX (E2)k>
T12nTwX (Enfl)kEn = q_kEnT12nTwX (Enfl)ka
T —3(E2)" Ep = ¢ " E, T —3(Eo)",
T1——(n—2)(En—1)kEn = qunTl——(n—Q)(Enfl)k
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— {E}T1__(n—2)(Bn—1)* " T12nTux (En-1),
T 1Ty (E2)*Ey = ¢"EnTy 1Ty (E2)*
— q{k} T 1Ty (B2)" ' T 3(Ey),
TyTy (B 1) Ey = "B ToT (En1)”
— (kYT (B ) ¥ 1T, T (Br1),
TonTwy (Bn1)Tn1Twy (E2)* = 7T 1Ty (E2)*Ton Ty (Bn_1)
+ ¢ (g — ¢ BT 1 Ty (E2) ' Ty (Bp1) T —3(EBo),
Ti90Twx (EBn_1)* T _3(E2)
= (¢ "+ (= a7 ")a" "k} Toe—3(E2) Tion Ty (Bnoy)"

hold in Uy(sl,41).

Lemma 6.15. For any k € N the relations

17"(T177(n72)(En—1)k)

=q (g — g YWk} o (o) (Bn-1)T1—_ () (En—1)* ",
17(T12n Ty (En-1))

= ¢ g — ¢ Wk} Ton Ty (Bn—1)TionTuy (En1)* ",
17“(T1n(n—1)wa (EZ)k)

=q (¢ — ¢ kYT -1) Ty (B2) Tin(n—1)Tuwyx (B2) "

hold in Uy(sl,+1).

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

One can show that the above Lemmas still hold if we consider the case where we have
no black dots. In this situation, the calculations differ slightly but the results still hold.

Proof of Proposition[6.13. We write
Xg, = :{[4]:{[3]:{[2]:{[1]7

where, recalling the notation ¢ = cac,—15(n — 1)s(2), we have

x4 Xo,
B _ G=a D owp gy Ep1)*
xb = Z T (qe165) " Tn——3(E2)"T1 - — (n—2)(En-1)",
k>0 '
— 1))k
k>0 ’
qcicn_15(2))F
(2 Py (82
k>0 )
x = x

108

(6.38)
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When necessary, since xM and %P are a product of two infinite sums, we write X4 =
642 gng xR = x2:10x221,

For each i = 1,2,3,4, let X = K1XUK;'. We write Xy = X(4,1) X9 and Xpg =
X[2;11X[2;2- Now, by the rank one case for X3 given in Lemma and Corollary we

obtain
21 (Xa,) = (¢ — ¢ eas(n = )Ty (Bn-1) X, (6.39)

The underlying symmetry implies that we only need to show that
1r(Xg,) = (0 —q e EnXa,.

By Property (2.78]) of the skew derivative 17 and Corollary we have

17‘(%@0) = %[4}17"(%[3})%[2]%[1] + 36[4]36[3]17“(36)[2]36“] + %[4]%[3]%[2]17”(%[1}). (6.40)
Using Lemma and Lemma we find that
(B B2 (g - 20,827, (BT gy (Bu )X, (6.41)

@0y B2 (e B x . (6.42)

To write an expression for 17 (%[?!), we use the splitting of X2/ into a product of two infinite
sums. By equations (6.36]) and (6.37)) of Lemma we have

(X = (X2 4 oxp 00X (6.43)

=(q— q_l)clcgs(n — 1)1, T (En_l)%p]
+ (q - qil)Clcn—l5(2):{[2;1]Tn(n—1)TwX (EZ):{D;Q]-
We would like the last summand of this expression to be in terms of X2, To this end, we
use Equation (/6.34]) in Lemma to obtain
X Ton—1)Twy (E2)

cicas(n §
14 (gerc2s(n — 1)) qkT12nwa(En71>k Ttn—1)Twy (E2)
k>1 (k!

€3 Tp(n—1)Twy (E2) X%
+¢*(q — g Hereas(n — )T 1) Ty (B2)Ti2n Ty (Ep—1) X2,
Substituting this into it follows that
(X)) = (¢ — ¢ Hereas(n — )12 Ty (En_1)xP (6.44)
+ (g — ¢ Meren-15(2) T (1) Tuoy (B2) X
+ (¢ — ¢ ) Ton-1)Twy (B2)Ti2nTwy (Ep_1)x.

When we calculate 17(Xg,), we obtain a component of the form .’{[4}.’{[3}.’{[2}17‘(.’{[1]). From
Equation ((6.42), we see that we obtain an FE, term that we want to pass to the front of
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this expression. We use Lemma to do this. We have

X En = E,XP, (6.45)
X5 Bn = EnXpy — ¢*(q— ¢ ety T —3(B2) XPT19, T (1), (6.46)
X2 En = En X — c1en_15(2) X (4.9 T —3(E2), (6.47)
X Bn = Eo XU — creas(n — 1) Xy Ton Ty (Bn-1).- (6.43)

Now, using Equation (§6.33]), we obtain the following expression for Xy E,.

) .
Xy En X (Enx[4’2] — c160-15(2) X g9 T —3(E2))

C2 (B, x4 — ¢y co5(n — 1)) Ton Ty (Fn_1)) X152

—c16p-18(2) Xy Th——3(E2)
B, x4 _ clcn_15(2)%[4]Tn__3(E2)
—cie28(n — 1) X)X o) TonTwx (En—1)
+ (g — a7 )efeacn-15(2)s(n — )Xy X g Lo Loy (Bn—1) T3 (E2)
= E,xW — cich_18(2) Xy The—3(E2) — creas(n — D)Xy Ton Ty (Eno1)  (6.49)
—(q— ¢ A X ToTwx (En1)Tn——3(E>).
Using equations (6.45)), (6.46) and (6.49)), and comparing with equations (6.41)), and
, one finds that
XX Xr(X) = (g — ¢ Xy X X B X
= (q— ¢ NEXg, — Xpapr(XPH RN — 20025, r(x2) 2,

and hence it follows that
17(Xa,) = (¢ — ¢ EnXg,,

as required. This completes the proof. O

Proposition 6.16. The partial quasi K-matriz .’{@6 coincides with the quasi K-matriz X.

We have the following relations needed in the proof of Proposition proved by

induction.

Lemma 6.17. For any k € N the relations

Ty —(n-1)(En) Ty (En-1) = Tuy (Bn-1)Ta—_(n—1)(En)",

Tin—1)——2(B1)* Ty (Bn1) = ¢ " Tu (En1)Te1)——2(E1)",

Ty (n-1)T120 Ty (Bne1) Ty (Bn1) = Ty (Ba—1)To— —(n—1)T120 Ty (En—1)",

Tin—1)——2T1n(n—1)Twx (B2) Tuy (En-1) = Tu (En-1)T(n—1)——2Tin(n—1)Twx (E2)*
— (g = ¢ {E} 1) —2Tin(n—1)Twx (B2)* ' T3 (n_1) (En) T(n—1)——2(E1),
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Efwa (Enfl) = wa (Enfl)Ef»
EﬁTwX (En—l) = qkTwX (En—l)Eﬁ - Q{k}Es_lTwXTn—l(En)
hold in Ug(sly41).

Lemma 6.18. For any k € N the relations
27 (Ta—(n1)(En)*) = a7 (g — ¢RI T3 (1) (Bn) Toe— -1y (En)* 1,
2T(T2——(n—1)T12nTwX (Enfl)k)
= q_2(q - q_l)Q{k}ElTi’)——(n—l) (En)TZ——(n—l)THnTwX (Enfl)k_l
hold in Uy(sly+1).
Proof of Proposition[6.16, We write
¥~ = x@xBlxllxl]
’UJO I

where we have

x4 X1,
(gercas(n — 1))k
k1>0
C1Cn—_15(2 ko
(Z (q ! k,l |( )) T(n—l)——2T1n(n—1)TwX(EQ)k2>7
= {ka }!

xl2 _ ZM( L (BE)FT (Ey)*

= (el qciCy ) L(n-1)——2\1) L2——(n—1){Ln)",
k>0
L - Xs.

Fori=1,2,3,4 let X;; = Kg%ngl. By Lemma and Corollary it follows that
1r(Xg) = () xBlx Rl
=(¢—q EXg,
Hence, we only need to check that
2 (X) = 4 Mg — 4 Veas(n — 1) T (Bu )Xy,
By Corollary and property of the skew derivative or we have
or(Xgy) = Xpgor (X XERM 4+ 3 2 50m (X)X 4 2 X5 X gor ().
Using Lemmas and we have
o (BN = ¢ g — ¢ ereas(n — 1)E1T3,,(n,1)(En)f{[3},
27“(%[2}) =(q— q71>201522T377(n71)(EH)T(nfl)fo(El)xm,
(X)) = g7 (g — g Veas(n — 1) Ty (Ep1) XM,
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By Lemma [6.17] we have
%[Q]T’LUX (En—l) = T’LUX (En—l)%m?
X3 Twx (En-1) = Tuy (Enfl)%[g}

—qlg— q_l)clcn*13(2)%[3]T3——(n—1) (En)T(n—l)——Q(E1)¢
Xy Ty (Bn-1) = Tuwy (Bn-1)X — (¢ — ¢ s X (g E1 Ty (1) (En).

It follows that

Xy Xy Xpppr(X) = g7 (g — a7 eas(n = 1)y (Bn1) Xy
_ %[4}271(%[3])3{[2]3{[1] _ %[4]%[3]27“(%[2])%[1]

and therefore we obtain
or(Xgy) = q ' (q—q Heas(n — )Ty (En—1)Xg,

as required. ]

6.5 Type CI,

Consider the Satake diagram of type Cls.

O=—=0

1 2

Since ©® = —id the subgroup W coincides with W. The longest word of the Weyl group

has two reduced expressions given by
/
Wy = 01020102, Wy = 02010201.

By Lemma [5.11 we have

2 _ . —2\n
%IZZ(Q q ) (q4cl)nE%n’

>0 {2n}1”
—1\n
q—dq n n
X2 = Z ({2n}”)(q262) E3".
"0 oll

Proposition 6.19. The partial quast K-matriz X, coincides with the quasi K-matriz X.

The following relations are necessary for the proof of Proposition proved by

induction.

Lemma 6.20. For any n € N the relations
E3E1 = ¢ E\EY — ¢*{n}2B3 ' Ti(E2) — ¢* {n}o{n — 1}2E3 ' Tiz(Ey), (6.50)
T1(E2)"Ey = ¢ " E\Th(Ea)", (6.51)
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(¢* - 1)
2]2

T1o(E1)"Ey = BTy (Fy)" — {n}1Tio(E)" 1T (Fy)? (6.52)
hold in Uy(s05).

Lemma 6.21. For any n € N the relations

r(TH(E)™) = ¢72(¢* — ¢ ) {n + 1} Ex T (Ep)" (6.53)
+q g — ) {n+ 1ha{n}oTia(E) T (Ey)" Y,
17 (Th2(E1)") = q 3((1 — ¢ D nhE3To(Ey)" (6.54)

hold in Uy(so05).

Proof of Proposition[6.19. We have
Xy = X xBlxRxM

where
x[4] %27
B GoTmou-lx) = S =) 4 a2 e o2
= 12 © (%1) - Z {2%}1” (q Cl) (q 62) 12( 1) )
= I
)
xBl = VoT oW ! q{2nq}2” QC1)n<q202)nT1(E2)2n,
n>0
= %y

By Lemma [5.11] and Corollary 2.51] we have
o (Xuwy) = 27«(:{2):{[3]:{[2]:{[1]
= (¢ — ¢ ") (¢ c2) By X X1 x P11
= (¢~ ")(¢*c2) BoXu.
We want to show that
17(Xwy) = (@° — ¢ ) (g 1) BEr Xy,

For each i = 1,2,3,4 let X|; = Klf[i]Kfl. Note that X5 = xB3. By property (2.78) of

the skew derivative 17 we see that

1m(Xy,) = %[4}17'(%[3})%[2]%[1] + x[4]%[3]17“(%[2])%[1] + %[4]%[3]%[2]17"(%[1}). (6.55)
Lemma [6.21] gives

17’(%[3]) =q¢ % (q—q (& - ¢ )¢ 1) (Pe2) B3 Tua(E) X, (6.56)

1r(XM) = (¢ = ) (¢ ) B X (6.57)
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By Equation (6.53|) we have
(X)) = ¢72(g = ¢ )@ — ¢ ) (g 1) (P c2) Eo Ty (Ey) X

1 —1y/ 2 N 2[2] (6.58)
+q (=g )q¢" —q ) crca)Ta( E) X
where
X2 = Z la—a” )" q—l)n( bc1e0)™{2n 4 1}oT1(Eo) ™
= {2n}2!! q-cic2 241( L2
n>0
For any n > 1 we have
{2n +1}2 = 1 4+ ¢*{2n}s. (6.59)
It hence follows that
(q B q—l)n 4 ns 2 n 2n
Y (@) (dPer) {(2n + 1} Ti ()
{277,}2”
n>0
=X+ ¢*(qg — a7V (¢ er1) (qPe2) T (B2)? X2,
Substituting this into Equation (6.58|) we see that
17"(f[2]) =q *(q—q (¢ — q72)(q401)(q202)E2T1(E2)3‘5[2]
+q (g — a7 (@ — a D) (g 1) (@Per) Tra(Ey) X (6.60)
+a(g—a)%(@* — a2 (g 1) (¢%c2)  Ti2(B1) Ty (B2)* X

When we calculate 17(X,,), we obtain a component of the form .’{[4}.’{[3}%[2}17’(.’{[1]). From
Equation (6.57)), this contains an E; term that we pass to the front using Lemma
We have

Xp B L &2 a2, (6.61)

Xy B 22 BB - (g - ¢ )2 (¢he) (o) X T(B) T ()%, (6.62)
(650 _ _

Xy Er By XM — 72 (qg — ¢ ) (¢’ c2) BaX g T1 () (6.63)

—q (g —a ) (@ ca) Xy Tha(Er)
—q (g - q_1)2(Q2C2)23€[4}E%T12(E1)
where we also use ) to obtain (6.63). Note that 36[3] commutes with EsT(FE2). Using
(6.61), (6.62) and (|6 63|) and comparing Wlth and ( we obtain

XpgXpg Xpar(X1)
= (¢* — a7 (g 1) E1 X, — X Xpanr (X)X — 20y0r (B 2B,

Hence by (6.55) we have
11(Xuy) = (@° = ¢7?)(g 1) E1 X

as required. O
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We now consider the reduced expression w() = 09010907].
Proposition 6.22. The partial quast K-matriz %wé coincides with the quasi K-matriz X.
The following relations are needed for the proof and are obtained by induction.

Lemma 6.23. For any n € N the relations

EUEy = ¢*"EREY — ¢*{n}1 B} ' Ty (Ey), (6.64)
Ty(E1)"Ey = 2" EyTy(Ey)", (6.65)
TQl(EQ)nEQ = E2T21(E2)n — [Q]Q{H}QTgl(Eg)n_ng(El) (666)

hold in Uy(s05).
Lemma 6.24. For any n € N the relations
or(Ta(E1)") = (¢ — ¢ ) {nh Ta (B2) To(E1)", (6.67)
or(To1(B2)") = ¢ %(¢* — ¢ ) {n}o EaTor (B2)" ! (6.68)
hold in Ug(sos).
Proof of Proposition[6.22. We have
Xy = x4 3Bl g2 1

where
x4 63 5
—1\n
q—q n n n
xB = Z({Zn}»g”)(q401) (¢%ca)"To1 (E2)*",
= "
2 —2\n
qa —dq n n n
£ ZW@%) (Pe)™ To(By ),
= "
x = x,.

By Lemma and Corollary we have 17(X,;) = (® — q_2)(q4cl)Elf{w6. We want
to show that

o7 (Xuy) = (¢ — ¢ ) (P c2) EaXoy -

For each i = 1,2,3,4 let X|; = Kg%[i]Kgl. By property (2.78)) of the skew derivative or

we have

27 (X)) = Xpagor (XF)XPIRM 4 20 2500m (KB X0 4 20 Xy Xppor(X1). (6.69)
Using Lemma [6.24] we obtain
(6.68) _ _ _
or(XP) q (¢ — (@ — a ) (g c1)(qPco) ExTor (Ea) X, (6.70)
(&) B (¢ (@2 — ) (o) (@) T (B To(B)XE,  (6.71)
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() BB (o 1y (20, By a1, (6.72)
By Lemma [6.23] we have
X By = EpXP, (6.73)
X3 E2 ByxBl — (42 - q—2)(q4cl)(q2cQ)3€[3]T21(E2)T2(E1), (6.74)
X B2 EyX" — q72(¢* — ¢ (¢" 1) Xy By Taa (E). (6.75)

Using equations (6.73)), (6.74) and (6.75]), and comparing with equations (6.70]) and (6.71))
we can rewrite the term %[4]%[3]%[2]27“(%[1]) as

Xpy)Xpg X pzjor (1)
(e —1y(,2 1]

= (¢ —q " )(q"c2) Xy X5 X g B X
= (¢—q ") ca) BaXyy — Xpayor (XPH XM — 20 2 50r (2P 21,

It hence follows from that or(X,;) = (¢ — q_l)(QQCg)ng{wé as required. O

6.6 Type G,

Consider the Satake diagram of type Gbs.

O==0

1 2

Here the subgroup W coincides with W and the longest element of the Weyl group

has two reduced expressions given by
/
Wy = 010201020102, Wy = 02010201020].

We introduce the following terms in order to reduce the length of the proceeding calcula-

tions. In particular let
Qn)=q"—q¢ " forneN,
C1 = ¢*c,
Cy = qﬁcg.
Further, we write X1%U! = 2l4], By Lemma we have

o Q<1)n n m2n
xl - Z {2”}1”01 El )
n>0

QE3)" 2
X9 = E CyE5S™.
I
>0 {271}2..
Proposition 6.25. The partial quasi K-matriz X,,, coincides with the quasi K-matriz X.
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We have the following necessary relations needed for the proof of Proposition [6.25)

Lemma 6.26. For any n € N the relations

T1(E2)"Ey = ¢ " ExTy(E»)", (6.76)

Ti2(Er)"Er = ¢ "E\Ti2(E1)" — ¢ Bl {nh Tia(E1)" ' Ti(E,), (6.77)

Ti21(E2)" Er = E\T1o1(E2)" — qQ(1){n}aTio1(Es)" ' Th2(E1)?, (6.78)

Ti212(E1)*"Er = ¢*"ErTia12(E1)™" — q[211{2n}1 Th212(E1) > Tha(Ey) (6.79)
—q[3]1{2n}1{2n — L1 Ti212(E1)*" 2 Tio (E2),

EVYE) = ¢"E1EY — ¢*{n}o By ' Ti912(F) (6.80)
hold in Uy(g2) where go is the exceptional Lie algebra with root system of type Gs.
Lemma 6.27. For any n € N the relations

1r(EY) = {nh E7 7, (6.81)
1r(Ti212(E1)") = ¢ Q(3){n} EaTior2(E1)" (6.82)

17(Ti2(E1)™™) = ¢ [2h Q{2 Tio1a(E) ) Tia(Er )
+ ¢ ' QB){2nh{2n — 1}1 191 (E2) Tha(E1)*" 2, (6.83)

17(T1(B2)") = qQ(1){n}2T12(E1)T1(E2)" ", (6.84)

17(Th21(B2)") = ¢ ' Q(1)*{n}oTi212(E1)* Tho (Eo)" (6.85)

hold in Uy(g2).

Proof of Proposition[6.25 We have
Xy = X0 x0IxMxBlxRIx M — x[654321]

where
x0 6D
5] _ -1 . Q(l)n nm 2n
XP = WoTppo¥ (Xy) —Z 5 7 CTC3 T2 (E)™,
nzO{ n}l..
4] _ —1 _ Q(S)n 3n ~2n 2n
% = \I/OT1210\I/ (:{2)—2{2 } ”01 C2 T121(E2) ;
>0 Ngg-.
B = woTpou (@) =Y LW gy "
= 12 © (%1) - Z {2n} ”CI C2T12(E1) ’
750 13
3\
%[2] = Yo T1 o \I/_l(%Q) = Z {gfl}) ”C%nCSTI(EQ)an
>0 o!!
x = x;.
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By Lemma and Corollary we have
o1 (X ) = o7 (X2) X032
Q(3)Ca By Xy x1P4521]
Q(3)C2E2X .

We want to show that
17“(%100) = Q(l)CIEI%wO-

For each i = 1,...,6 let X};) = Kl.’{[i]Kfl and write X[;X[;) = X[;;). By property (2.78)
of the skew derivative
17’(:{1,]0) = %[6]17’(:{[5})%[4321] + 36[65]17*(36[4})36[32” + :{[654]17’(:{[3})%[21]
+ X(osazr (X)X + Xgaazopr(X0).
By Lemma we have

() €2 Q( )CE X1, (6.86)
17"(352]) gQ(1)Q(3)CCoTys(Er )Ty (Ea) X, (6.87)
() B -10(112Q(3)CH CE 1By )T (B2) 31, (6.88)
r(xB) B2 1-830(1)Q(3)C1 o Ba T (B1) XD (6.89)

By Equation we have
1’/"(%[3]) = q_lQ(1)2[2]101202T1212(E1)T12(E1)%[3] (6.90)
+ ¢ Q()Q(3)C2Co T2 (Eo) XV

where

~ Q)" _onm n
xBl = Z {27(1})1!!0% Cy{2n + 1}1T12(E1)2
>0

Recall that for n > 1 and i = 1,2 we have {2n + 1}; = 1 + ¢?{2n};. It follows from this
that
B = 2B 4 2Q(1)CICTra ()2 %0,

Substituting this into Equation we get
(X8 = ¢71Q(1)2[2]1 CFCoTion2(E1) T2 (E1) X + ¢71Q(1)Q(3)CFCoT1an (E2) X1
+qQ(1)2Q(3)CHC2T 191 (Eo)Tyo(E1)? x5 (6.91)

When we calculate 17(X,,) we obtain a component of the form %[65432]17"(%[1]). By Equa-
tion (6.86]) this contains an E; term that we pass to the front using Lemma We

have

Xp B = Bx (6.92)
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Xz B B X8 — qQ(3)CECo% 5 T12 ()T (E2), (6.93)
X B2 B xl - 0Q(1)QB)CECERINT (B Tha(E1)?, (6.94)
X5 B E xP - ¢7'Q(1)[211C1CoXPI Tya15(E1) T12(E1) — 7' Q(3)C1Co% 5 Th21 (E2)
—¢'Q()QB)CTCEX 5 Tha12(E1)* Tiar (Ea), (6.95)
xl6 g, E\Xj5) — ¢ *Q(3)CaX(g E2T1212(E)) (6.96)

where we also use {2n+1}; = 1+¢?{2n}; for n > 1 to show (6.95)). Comparing Equations
(6.86)—(6.89) and (6.91)) with Equations (6.92)—(6.96) we see that
35[65432]17“(%[1]) = Q(1)C1E1 Xy, — 3"5[6543]17“(%[2])%[1] - 36[654}17"(%[3])35[21]
— %[65}1,”(%[4]):{[321] — :{[6]17«(x[5}):{[4321]

from which it follows that
17(Xw,) = Q(1)CLE Xy,

as required. ]

We now consider the reduced expression w, = o20102010207.
Proposition 6.28. The partial quasi K-matrix %w() coincides with the quasi K-matriz X.

The following relations are needed for the proof of Proposition We split such
relations among three lemmas. In Lemma [6.29] we show how the element Es commutes
past the PBW elements corresponding to the longest element w(. Lemma m gives
additional relations required in the latter parts of the proof. Finally, we give the skew

derivative or of PBW basis elements in Lemma [6.31

Lemma 6.29. For any n € N the relations
Ty(E1)"Ey = ¢ " EaTy(En)", (6.97)
To1(E2)"Ey = q~°" EyTor (E2)" — Q(1)°Q(3) " {n}o T (E2)" ' Ta(E1)?, (6.98)
Toa(E1)"Ey = ExTora(E1)" — qQ(1){n} Tora(E1)" ™ To(E1)?
— QE){n}1{n — L Tor2(E1)"*Tor(E2) Ta(Er)
—QB){n}1{n — 1}1{n — 211 To1a(E1)" > To1(E)?, (6.99)
To121(E2)" Ey = ¢*" ExTo21(E2)" — ¢ Q(1){n}oTo101(Ea)" ™ Tora(E1) To(Ey)
—(¢° = ¢* = @){n}2 T2 (E2)" ' T (E2)
—¢"Q(1)*Q(3) Hn}o{n — 1}2To101 (E2)" *To12(E1)?,  (6.100)
ElEy = ¢"EyE} — ¢*{n W EY ' To(Er) — ¢*{nhi{n — T E} *Toa(Ey)
— ¢*{n}i{n — 1}i{n — 2L B} Toia (Ea), (6.101)

hold in Uy(g2).

119



Chapter 6. Quasi K-matrices in rank two

Lemma 6.30. For any n € N the relations
ErTo(E1)Tor01(E2)" = ¢ " Tor01 (E2)"E1 To(E1)
+ ¢ MQ(1) Torar (Ba)™ t E1Tona(Er)?,

(6.102)

E\To(E1)To12(E1)" = Tor2(B1) " ExTo(Er) — [31{n}1To121(E2) To(Er ) Tor2( Er)"

+ Bli{nh Toia(E1)" E\ T (E2),
E\To(E1)To1(E2)"™ = ¢*"To1 (E2)" ErT(E))
— ¢'Q(1){n}oTr12(E1)*To(E1) T (E2)"
hold in Uy(g2). Additionally, for n > 1 the relations
Tor12(E1)Taro1 (B2)" = (¢7%" + ¢ > HQ(3){n}2) Toro1 (E2)"Ta12(Er),
To12(E1)To1(Er)" = (q3n - q_3("_1)Q(3){n}2)T21(Eg)”TQH(El)
hold in Uy(g2).

Lemma 6.31. For any n € N the relations
or(E3) = {n}2 By,
2r(T2(E1)") =¢q 3@(3){n}1E1T2(E1)" !
¢ 'QB){n}i{n — 1hTora(E1)Ta(E1)" 2,
or(To12(E1)" )—q 5@(1) QB){nh E{Tora(E1)"~
+q¢7'Q(B)*{n}1{n — 11 E1Tor1 (E2) Tora(Er)" 2

+q7%Q3)* {n}1{n — 1}1{n — 2}1To121(E2)*To12(E1)" 2

o7 (To121(E2)) = q~°Q(3){n}2 B} Tor01 (E2)" Y,
o (To1(E2)") = ¢ *Q(1)QB){n}2Er Tora(Ey ) Tor ()"
+q ¢ =1 — ¢ QM) {n}aTo101 (Ea) o1 (Ea)"~
+ Q(1)* {n}2{n — 1}2Th12(E1)*Toy (E2)"

hold in Uy(g2).

Proof of Proposition[6.28 We have
%, = x6lxBl x4l 2Bl xRl 51
Wo

where
x16] X1,
X = W0 Ty 0 U H(2y) = Z {2723});!C§”C§1T2121(E2)2n,
>0
X = ToTyyo U (X)) =) {27(11})17;!012” 5 To12(E1)*",
n>0
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— 3 " n n n
X = WoTy ol (Xy) =) {22})2.,05” C2" Ty (Eq)*",
= 1
2 _ iy N QD" o
¥ = UoTyow (%1)—7;{2”}1”0102%(&) ,
M = x,.
By Lemma and Corollary we have
lr(%wé) — 17“(%1)%[54321]
= Q(1)C  Eyx, X432
= Q(1)C1ExX,;.

We want to show that
2r(Xyy) = Q(3)CoEaX,, .

For each i = 1,...,6 let Xp; = Kg.’{[i]Kgl. By Property (2.78)) of the skew derivative we

have

o (Xyy) = Xpg2r (XPHRM32Y 4 x50 0r (X 2B2Y 4 %5500 (2B 212

+ :{[6543]27“(:{[2])%[1] + 35[65432]2T(x[1])- (6.112)
We use Lemma to calculate 27’(%“1) fori=1,...,5. We obtain
(1) B2 55y 00 g1, (6.113)
@1mo) _
(1) 0 5Q(1)3Q(3)C3CoE3 Toron (B) X1, (6.114)

We now consider »7(X12) in some detail using Equation (6.108)). We have

(X2 = ¢73Q(1)Q(3)C1CLE Ty (B ) X P

+¢71C102Q(1)Q(3)To12(Er) Z 87(:});'0?05{271 + 1 Ta(B)*"
= I

+Q(1)*Q(3)CFC5 T (Ea) To(En) Z 3721})17:,0?05{2” + 3hTo(E1)™™.
= "

(6.115)
Recall that for n > 1 we have {2n + 1}; = 1 + ¢?{2n};. Additionally we have
{2n+3h = (1+¢*+q") +¢°{2nh

for n > 1. Using this we get

1 n
) {%(1})1110?03{2” +1hTa(E)™ = XP 4+ 2Q(1) 1 Cox P Ty (Ey )
>0 -
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and

1 n
> {gi})l,,c?cg{% +3MT(E)™ = (1+ ¢ + ¢ X 4 Q1) 010X Ty (B )2,
=~ I

Substituting both of these identities into and using (1+¢? +¢"Q(1) = ¢*Q(3) we
obtain
or(XB) = ¢73Q(1)Q(3)C1Co By Tn(E) X + 71 C1CoQ(1)Q(3) Ta12(B1) X2
+4CtC3Q(1)*Q(3) Tara () T (1) X
+4q Q( )Q(3)*CYCTo1 (Bs) To(E1) X7
Q(1)*Q(3)CYCaTyy (By) To(F1) %P, (6.116)

Similarly we obtain the following expressions for or(XP]) and or(X[*) using Equations
(6.111]) and , respectively.
or (X)) = 72Q(1)Q(3)*CYCE By Tora(Br ) Toa (E2) XV
+a72Q(3)%(q* — 1 — A CIC3 Tor01 () Ty (E2) X
+Q(1)2Q(3)CYC3 To1o (B )X
+¢°Q(1)*Q(3)2CY Cy Tora (B )* Ty (£2)? X1, (6.117)
(X)) = ¢7°Q(1)2Q(3)CYCL EY Tara(E1) XM + ¢4 Q(1)Q ) ( 3)2CFCo By To191 (F2) X1
+ ¢ 2Q(1)*Q(3)*CLCS By Tar01 (Ea) Tora(Er ) * X
+q 4@( )Q(3)>CLC3To191(E) T212(E1)3€[4]
Q(1)*Q(3)>CC3To121 (B2)*Tora(Er ) X1 (6.118)

/'\\/

When calculating o7 (X, ) we obtain a summand of the form
%[65432]27"(:{[1}) = Q(3)02%[65432]E2%[1]-
We bring the Es term to the front using Lemma We have

XpiBe = EnXl, (6.119)
[6.95)

B2 B B2l — Q)P AR Ton (B) o (1), (6.120)
(6 _

X5 L o q°Q(1)Q(3)CY CoX 5 Ta121 (F2) Th12 (Fr ) To(Er)

— ¢ %(¢°— ¢" = ¢*)Q(3)C} CoX 5y Tor21 (E2) To1 (E2) — Q(1)*CF CoX 5 Ta12(E1)?
— Q(1)°Q(3)CYCI X 5 Ta121(F2) * Tora(En ). (6.121)
Additionally, using {2n + 3}; = (1 + ¢? + ¢}) + ¢®{2n}; for i = 1,2 we obtain
XqE2 B XM — qQ(1)2C3 0% 1y Tor2(E1) Ta(Er )
— *Q(1)Q(3)CF CoX y To1 (E2) To(Er)
— ¢'Q(1)°Q(3)C1C3 Xy Tor2(E1)* Tor (E2) To(Ey)
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— *Q(1)Q(3)*CLC3 Xy Tor2(E1) To1 (E2)”
— ¢°Q(1)°Q(3)CYC3 Xy Tor2(E1)* To1 (E2)?, (6.122)
E X% - ¢3Q )C1X g E1T2(Er) — ¢q o )C1 X[ T212(En)
- q¢°Q(1)*C 6]E1T212(E1) — ¢ ' Q(M)Q(3)CT X5 E1Ta101 (E2)
-q¢%Q(1)? 01%[6]E1T2121(E2)- (6.123)

We substitute the expressmns m m and m into - Then we

use Equations (6.119 m ) to expand the term .’{[65432]27‘(%[ }). We do not write the
full expression but many of the terms cancel by Theorem [2.59] For instance, there is an

expression

qQ(1)*Q(3)CiC3 (%[6543]T212(El)T2(E1)2%[21] - 3€[654}T212(El)T2(El)2x[321])
which appears. We note that
[T12(E), T21(E2)]q73 =0
[T21(E»), T212(E1)}q3 =0
by Theorem and hence T212(E1)T2(E1)2x[3} = Xz T212(E£1)T2 (E1)? which implies that
the expression above is zero. We are left with the following expression.
o7 (X ) = Q(3)CaFaXyy + ¢ Q(1HQ(3 )2CPC3 % 6554 E1 Tor2 (B ) To (E2) X B2
+q72Q(1)°Q(3)*CLC3 X 65 Er Ta121 (E2) Tor2(E1) 2xlas2]
+q71Q(1)Q(3)3CLCF X o5 Ta121 (F2)* Tar2 (Fr ) X132
— q72Q(1)Q(3)*CC3X 65 To121 (B2) Tora (E1 ) T (Eq) X132
—¢'Q(1)’Q(3)2CL C3 X 65 Tor2(E1 ) * Ty (Eo) To (B ) X121
— *Q(1)Q(3)3CL O3 X 54 Tor2(E1 ) Tar (E2) 2 X B
+¢71C1C2Q(1)Q(3) (X g5z To12 (B1) XY — Xy Tora (E1) xP1321)

+¢73Q(1)Q(3) 010 (X543 Er To (E1) XPY — X By To () X452,
(6.124)

\_/\_/

AA

We consider the expression E;T5 (El)%ml] in more detail using Lemma e nd the facts
To191(F2)E1 = ¢* 1 To121(E2),
To(E1)To12(Er) = qTo12(E1)To(Er) + [3]1T21(E2),
To12(Er)Er = qE1To12(E1) + [3]1T2121(E2).
We have
©-109)
Er\Ty(E) X = 25 E\Ty(B1) + ¢Q(1)Q(3)CFCoX 5y ExToran (Ba) To12(E1)?,  (6.125)

(6.103)
EyTy(Eqp)x! X ErTa(Er) — qQ(3)C3CoTo101 (Ea) Tora(E1 ) To(Er) X1
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+ QQ(3)C1202%[4]E1T212(E1)T21(EQ), (6.126)

E\T(E)XP X 3 E1Ta(Er) — ¢ Q(1)Q(3)C3C3 Tar2(Er ) To (B ) Tor (E2) XB). (6.127)

Substituting Equations (6.125)—(6.127)) into (6.124) we obtain
2r(Xyy) = Q(3)CaErX,, + g 'Q(1)Q(3)3CL C3X 65y Ta121 (E2) *Ta12(E7 ) X432
- Q)Q(3)* C 8 X g5y Torz(B1) T (Eo) X121
+q ' CLC2Q(1)Q(3) (X653 Tor2 (1) XY — X Toyo (B XPH321) - (6.128)
(6.129)
We use Equations and to simplify this expression further. We have
Ta12(Ey)XP)

3 n
= > {C;( )”C?"C§T212(E1)T2121(E2)2n
= n}oll

To12(Er) + Z {2723});,05)“03 (7% + ¢~ " 3Q(3){2n}2) To121 (E2)*" Tor2(E1)
= "

3 n —6n n
= (14—2 37(1) O CYq " To191 (E)? )T212(E1)
n>1

Tol

+4°Q(3)) {27(3);' CP"Cyq " {2n} 9 To101(Es)* Tora(Er)
et "

= X Tor2(Er) + q_3Q(3)2C?02%[5]T2121(E2)2T212(E1)~

This implies

0 2Q(3)2CT CoX 5 Tor21 (E2)* Tora(B1) = Tora(B1)XP — X5y Ta1a(En).
In the same way, Equation ((6.106|) gives

—*Q(3)2C3C3 Tor2(E1) To1 (B2 )* X1 = Toyp (1) XB) — X131 To12(E).
Substituting both of these into Equation (6.128) we obtain

2r(Xyy) = Q(3)CaEaXyy + ¢ ' Q(1)Q(3)C1CoX (g (Tarz(Er) XP — X5 Toyp(Ey) ) X142
+q7'Q(1)Q(3)CrCoX G541 (Tor2 (B1) XP — X3 Th15(En)) X P
+q ' C10Q(1)Q(3) (Xjesaz Tar2( B XY — X (g Toro(Er) xPH321).
= Q(S)CQZ{'LU(’)

as required. ]
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Chapter 7

Braid group actions for quantum

symmetric pairs

In the first part of this chapter, we return to the classical setting and establish a braid
group action on the fixed Lie subalgebra €. This action depends on the subgroups Br(Wx)
and BT(W) of Br(g). In Section we explicitly construct an action of BT’(W) on ¢ by
Lie algebra automorphisms.

We extend this theory to the quantum symmetric pair setting. In particular we show
that there is an action of Br(Wx) on Bes in Section[7.3] This is in full generality. In many
cases one can exhibit an action of Br(W) on Begg, see [40]. In Section ﬂ we construct
such an action when the Satake diagram is of type AIIL. Our initial constructions require
the use of the computer algebra program GAP but our arguments thereafter are general.
We round off this chapter by combining the results of Sections and by showing

that the two actions commute in type AIII.

7.1 The braid group action on ¢

Recall from Theorem that we established a braid group action of Br(g) on g by
Lie algebra automorphisms. We aim to construct an analogous braid group action on
t={x € g|0(x) =z} by Lie algebra automorphisms. Generally we have Ad(b)(£) # ¢ for
b€ Br(g).

Example 7.1. Let g = sl3(C) and consider the Satake diagram (), (12)), which is of type
AIII. Graphically, we have the following diagram.

p

Oo—O

Here, the involution associated to this Satake diagram is given by § = 7 ow. By Lemma
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Chapter 7. Braid group actions for quantum symmetric pairs

the Lie subalgebra t is generated by the elements

hi—ha,  fi—e2 fo—er.
Then Ad(c1)(f1 — e2) = —e1 — [e1,e2] & ¢ and therefore Br(g) does not act on € by Lie

algebra automorphisms.

In order to obtain a braid group action on £ we instead consider a suitable subgroup
of Br(g). Since £ depends on 6, we expect that the subgroup we take should also depend
on . We construct a subgroup Br(g)® analogously to W® from Section Recall from
Section that myx € Br(g) denotes the braid group element obtained from the longest

element wx € Wx. Define a group automorphism
©p: Br(g) — Br(g), b~ mx7(b)my'. (7.1)

Let Br(g)® = {b € Br(g) | ©p(b) = b} denote the subgroup of elements fixed by ©p.
Recall from Section that W is a Coxeter group generated by {oi|ieI\X}. Hence
W has a braid group associated to it. Let Br(Wx) and BT(W) denote the associated
braid groups corresponding to the Weyl subgroups Wx and W, respectively. Observe that
both Br(Wy) and Br(W) are subgroups of Br(g)®.

Remark 7.2. In Theorem we showed that W€ = Wy x w. Proving a similar result

S}

for the structure of Br(g)® is a hard problem not considered in this thesis. Instead, we

will only consider an action of Br(Wx) x Br(W) on ¢ by Lie algebra automorphisms.

The following lemma shows that the action Ad restricted to Br(Wx) x Br(W) almost
commutes with 6. Recall from Equation (3.3) the Chevalley involution w : g — g.

Lemma 7.3. For any b € Br(Wx) x BT(W), the relation

Ad(b) o Ad(mx)oTow = Ad(mx)oTowo Ad(b) (7.2)
holds.
Proof. By Equations and , we observe that

Ad(g;) oTow = Towo Ad(s(;))
for all i € I. Hence for any b € Br(Wy) x Br(W) and z € g we have
Ad(mx)oTowoAd(b)(z) = Ad(mx) o Ad(7(b)) oTow
— Ad(mxr(B)mxmi) o 7 o w(z)
= Ad(b) o Ad(mx) o T ow(x)
since b € Br(Wx) x Br(W) C Br(g)®. O
Generally, Ad(s) as defined in does not commute with Ad(b) for b € Br(Wx) x
Br(W). However, we can find explicit maps s’ : I — C* such that #’ = Ad(s’) o Ad(mx)o
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7 o w commutes with Ad(b). The idea after finding such an s’ is to modify the group
homomorphism Ad to a new group homomorphism Ad’ such that the Br(Wx) x BT(VT/)
maps £ to itself under the action Ad’.

We fix a total order > on the set I. With this total order, we let s’ : I — C be the

function defined by

1 ifjeXorr(j)=j
s'(aj) = 4 %(20%) if j ¢ X or 7(j) > 4, (7.3)
(=) 20%) if j & X or j > 7(j).

for j € I, where i € C denotes the square root of —1. This is the same map as [38,
Equation (2.7)]. If we choose a different total order on I, then the map s’ may change
by a factor —1 on the roots a; and a, ;) where j # 7(j) and j,7(j) € X. The following
proposition implies that there are limited choices for s such that Ad(s) commutes with
Ad(b).

Proposition 7.4. Suppose that Ad(s) o Ad(b) = Ad(b) o Ad(s) for all b € Br(Wx) X

Br(W). Then there exists a total order > on I such that s(i) = §'(i) for alli € I.

Proof. Since Ad(s) and Ad(b) are automorphisms of g, we only check on the Chevalley
generators e;, f; and h; for i € I. Without loss of generality, we only consider the generators
ei, since Ad(s)|y = idy and the calculations for f; are the same up to a change of sign.
Let m : Br(g) — W denote the group homomorphism that associates an element b €
Br(g) to an element w € W by including the relation ¢ = 1 for all i € I. Given
b€ Br(Wy) x Br(W), we have w = n(b) € W©. Then

Ad(s) o Ad(b)(e;) = sg(w(ay))Ad(D)(es),

Ad(b) o Ad(s)(e;) = sg(a;)Ad(b)(e;).
Hence Ad(s) o Ad(b) = Ad(b) o Ad(s) if and only if sg(w(a;)) = sg(cy). If w € W, then
there is nothing to check by Condition (3.10). So suppose w € W. As 50 :Q — C*is

a group homomorphism, we may assume that w = 7; for some j € I\ X. We make the
following assumptions on ¢ and j:

e j # 7(j), otherwise (3.10) implies that s(k) =1 for all k € {j,7(j)} U X and hence

5Q(0j(a;)) = sg(a;). This further implies that the Satake diagram (I, X, 7) is of

type ADE. Without loss of generality, we assume 7(j) > j with respect to the total

order >.

e i € I\ X, otherwise wy; - jjux (i) = —ar, ;) € Px and thus sg(0;()) = sg(a;) =
1.

o If X = (), then 7;(c;) = a; +njoy +nr(jyar ;) where nj, n. ) € {0,1}. It follows that
5Q(0j(aq)) = sq(a;) if and only if sg(nja; + ny(jyar;)) = 1. By Condition (3.11))

127



Chapter 7. Braid group actions for quantum symmetric pairs

we have s(j) = s(7(j)) so we can choose s(j) = +1. Hence we can assume X # ().
Similarly we also assume that o;(2p%) # 0. This means that the 7-orbit {j,7(j)} is

adjacent to a connected component of black nodes.
Let i = j. Then wy;,(j)ux(@j) = —arg) since 7 # id and j # 7(j). Then

Qi) = sQ(wij-(inux(a)) = sQ(—aq(;)
which implies s(j)s(7(j)) = 1. It follows from this and condition that s(j)? =
(—=1)%(20%) . We hence obtain s(j) = i%2°%) and s(7(j)) = (—i)®20%),

We now check the cases that arise when i # j, 7(j). We may assume that X # () and
a;j(2p%) # 0, since otherwise there is nothing to show. Further, we consider cases where
wijrnux (i) # wx(a;). Graphically this means that the node i is connected to the
7-orbit {7,7(j)} where any path only goes through nodes belonging to X. In other words,
we need only check rank two cases. By our previous assumptions, there are only three

cases to check.

In each case, one checks that sq(w; ;ux (i) = sq(a;) for i # j, 7(j), as required. [

Remark 7.5. The function s’ has the additional advantage that Ad(s") commutes with
the involutive automorphism 6. This is so since Ad(s’) commutes with Ad(my) and Tow,

see [38, Theorem 2.5]. The latter follows since s'(a;) = s'(—a.(;))-

Denote the involutive automorphism corresponding to s’ and the Satake diagram
(I,X,T) by

0 = Ad(s') o Ad(my) oTow (7.4)

Let ¢ be the associated fixed Lie subalgebra. Then Lemma and Remark imply

that Br(Wx) x Br(W) maps ¥ to itself under the action Ad. We observe that given any

involutive automorphism 6§ = Ad(s) o Ad(mx) o 7 o w associated to (I, X, 7), we can find

a Lie algebra automorphism v such that

f=1pof oyt (7.5)
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Since # and ¢ only differ by a scalar on each root space, such a Lie algebra automor-
phism will only act as a rescaling. In particular, we take ¢ = Ad(S) where we choose
5 : 1 — C* such that
(1)=1 fori € X or i = 7(4), (7.6)
3(1) = (=1)%CrX)5(7 (i) for i ¢ X and i # 7(i). (7.7)

|

Then for x € g,, we have

/ —1 _
1 .
@)
(—1)>2rX)5(4)2
This implies that ¢ o @ o¢p™! =0 fori € X ori = 7(i). If i ¢ X and i # 7(i) then

5(i)? = §'(i)s(i) and hence we choose to take 5(i) = (s'()s(i))"/2.

-Ad(mx)oworT(z)

Lemma 7.6. Under the action 1 o Ad op~1, the subgroup Br(Wyx) x Br(W) maps € to
itself.
Proof. Let ¢ be as in Equation (7.4). Then for any b € Br(Wx) x BT(W), we have
0 o Ad(b) = Ad(b) o &

by Lemma and Remark Using Equation , we see that

Y lofhorpoAd(b) =Ad(b) ot oho.
Applying ¢ on the left and 1~! on the right gives

BorpoAd(b)orp ™t =1 oAd(b) oyt 0.
This implies that 1 o Ad(b) o 1y ~1(€) = £ as required. O

Remark 7.7. In [40, Lemma 2.1], the Lie algebra automorphism ) does not appear. The
reason for this is that Kolb and Pellegrini take s(i) = 1 for all ¢ € I since they only

consider cases where either X = () or 7 = id.

7.2 An explicit example: AIII

We construct the action of BT(W} on ¢ explicitly when the Satake diagram (X, 7) is of
type AIII.
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In Section[7.4) we construct a quantum analogue of this action on the coideal subalgebra
B¢ s. Using Lemma . 6| we calculate the action of Br(W) on €. Recall that the generators
of W are invariant under 7, i.e. & i) = 0i for all i € I'\ X. Hence in this setting BT(W)

is generated by elements ¢; for 1 < i < r where

~ _ SiSr(4) ifl1<i<r,
1 T
Si =M r@puxMy = o (7.8)
SrSr4+1 " Sn—r41 " Sr+15r ifi=r.

Remark 7.8. In this case the subgroups Br(Wx) and BT(W) commute hence by Lemma
we have an action of Br(Wx) x BT(W) on € by Lie algebra automorphisms. Indeed
for j € X we have
SrSj = SrSr4lt Sner 1SS =1t S 16rS)
= SrSr41 - Sn—r41 " Sj—155S5—1 " " Sr+1Sr
= SrSr41 7S —155Sj—1 " Sp—r4+1 Sr4+16r
= GjSr-
Recall from Lemma that the subalgebra ¢ is generated by elements
e, fi forie X,
hi —wx (hrq)) foriel\X,
bi:=fi+0(f;) foriel\X.

In this setting, let

6_—)‘_{ = [6,«4_1, [67«4_2, ey [67(r+2), eT(r+1)] ce H, (79)
€;< = [ET(T+1), [er(r+2)¢ ceey [67«4_2, 67«_._1] ce H . (710)

Then the elements b; are given explicitly by

—s(7(7))e, if i #r,7(r),
b; = (T(r))[eX, ) ifi=r, (7.11)
—s(r)lex,er] if i = 7(r).

We only calculate the action of BT(W) on the elements b; for i € I \ X. By Lemma [2.34
and Lemma we effectively know how BT(W) acts on the remaining elements of €.
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To shorten notation, let Ad; = 1 o Ad($;) o 9p~! where ¢ = Ad(3) as at the end of
Section In the current setting we have 3(i) = s(i)%/2 if i # r, 7(r).
We recall how Ad(g;) acts on e, f; for i,5 € I. We have

ej if a;; =0, fi if a;; =0,
_fj if Q5 = 2, —€5 if Qi5 = 2.

There are many different cases to check in order to compute Ad;(b;) for i,j € I\ X. We

only look in more detail at the more involved calculations. The following is a consequence
of ([712).

Lemma 7.9. Fori <r and j € I\ X we have

bj Zf Qi5 = 0 and aiT(j) = 0,
b7— y 1) T 2 1T 27
Ad;(b) = (‘]) if aij or i) = (7.13)
8(2)71/2[1)]‘,[),'] if Qjj = -1,
S(r(@) 2By brw)]  if airgg) = —1.

Proof. We only calculate Ad,_1(b,) since Ad,_1(by(y) is a similar calculation and the

others are straightforward checks. We have
Ady-1(br) = Ad(5) © Ad(5-1571)) © Ad(3) ™ (fr = s(r(1) e €50
= Ad(E) (5AA(G-1) () = s(r()5(7(r) T Ad (1) ([ )]
=35(r = V[fr, fr—1] = s(r(r))3(r(r — 1)) [ex, [er(rr)s €rm)]] -
On the other hand, we also have
by, br1] = [fr — s(T(r)eX, exm)], fro1 — s(7(r — 1))e (1))
= [frs fr1] = s(r(r = D) frs er(r—1)] = 8(7(r)) [[eX er(m), Fr1]
+s(7(r = 1))s(7(r)) [[exs ex(r) ] er(r]
= [fr, fra] = s(7(r = 1))s(7(r)) [eX [e r(r71),6r(r)ﬂ
Since s(r — 1)~Y2s(7(r — 1)) = s(r(r — 1))/2 by Condition it follows that
Ady 1 (by) = s(r —1)7?[b,, by 1]

as required. ]

Now we only need to compute Ad,(b;) for ¢ € I \ X. The two key cases are when

t=r—1lorit=r.
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Lemma 7.10. We have
Adr(br) = 8,(7—(7"))137«, (714)
Adr(bT(r)) = S,(’l“)bT(r). (7.15)

Proof. We check Ad,(b,); the computation for Ad,(br(,)) is similar. We make two obser-

vations. First of all,

Ad(G)(fr) = Ad(SrSr1 -+ Sy = - Sr1se) (fr)
d(§7(7~) “Sr15r5r+1) (fr)

(

(

d Sr(r) " §r+1)(fr+1)

d Sr( '§r+2)(_6r+1)
1)|XH—1[

|
T o

€x, 6T(7‘)] .
Additionally, by Lemma we have
AdG)([ek, erm]) = Ad(wi puxwy)Ad(wx) (e(y) = Ad(Wr - (yox) (€r(r)
= _fr-
Hence we obtain

Ad,(by) = Ad(3) 0 Ad(s,) © Ad(?)fl(fr — s(r(r))[e;, eT(T)])

= Ad(S) (DA () — ST A (e erco])
= ORISR e erio] + 5oy

By the definition of s and s’ we have

where the last equality follows since s'(r)s'(7(r)) = (—i2)®(2PX) = 1. We therefore have

1x) $(7(r)) et ]

Ad,(b,) = SI(T(T))fr —(-1) s (r(r)) X €7(r)
= §'(1(r) (fr — s(1(r))[ex, exr)])
= s'(7(r))b,
as required. O

We define elements f; and fy similarly to the definitions of e} and e from (7.9)) and
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(7.10) by
¥ = e ez Urrroys Fran)] -1 7.16)
fx = [freenys ey a2, frn] ) (7.17)
Lemma 7.11. We have
Ad(by1) = f)) o, s [F5 b l] + /(b1 (7.18)
Ay (br) = S0 . o el + 50y (719)

Proof. Since both alculations are similar, we only consider Ad,(b,—1). We have

Ady(br—1) = Ad(5) 0 Ad(S) 0 Ad(s) " (fror — s(7(r — 1))er(r—1))
= @) (5t - DA ) — T @) ).

Repeatedly using Equation ([7.12]) we obtain

Ad(a’)(fr—l) = Ad(gT(T) fr 1y frv o [fr r+1)» f‘r(r)] o ]]

=
[fr 1 frv fXaf‘rr H]
= [er

Ad(a)(er(rq)) = Ad(§7~ ce (7« [€X7 T(r), € T(T‘*l)]]]

= _[ €r(r—1), [ €r(r); [ejﬁ 67’“] :
It follows that
1
Ar r— = =7 7 | Jr—=1sJr +u7—r
d (b 1) S(T)S(T(T)) [f 1 [f [fX f ( )H]
- §(T)§(T(T)) [ - S(’T(T - 1))67(7'—1)’ [67—(7')’ [6}, 67”]]] :
As by—1 = fro1— 8(7(r — 1))er(r—1y and [e;, f;] = dijh; for 4, j € I we have

Ady(by—1) = M [br—l + s(7(r — 1))€T(r—1)7 [frs [f;t, fT(’I”)]H

- E(T)E(T(T)) [bT’—l = fr-1, [67’(7“)7 [6}, er“]
s'(r s(r)?
- S((T)) [br_l’ [fr’ [f§’f7(r)]] - S’((T)) [ Er(r) [CX,eT]H
where we use the fact that 5(r)s(7(r)) = ;,7;)). Since b, = fr — s(7(r))[eX, e-(r)] we have
s'(r s(r)2
Adr(brfl) ((T)) [ r— 1, eX> ] [fX?fT(T)]] (( )) [[6}767(7‘)]’67":”
= 20 ot s 75 o] + s e 5 ]
+ 2 e enol ]
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Since [, ex(n] = Ad(wx)(er() and (£, fr)] = ()X Ad(wx) (fr) we rewrite
[[€Xa Er(r) ] [fX?f’T () H - ( 1)‘XI[Ad(wX)(eT(T)aAd(wX)(f'r(r))]
= (=)XAd(wx) (r(r)

7(r)
IS

i=r+1
Hence
s/(,,,,) X 7' ,r
Adr(br—l) = S(T) |:b7"—17 [ TJ[fX?fT T‘)H +3 l Il;lh + =53 7“ (r)]aer]]'
Finally, we use b.(;) = fr(») — s(r)[ex, e;] and the fact that
7(r)
|:b7‘71) |X| Z h:| — 7‘ 1,$ )h"r(’l‘)]
i=r+1
to obtain

Ady(br—1) = Zl((:)) [br—h [0r, 113, brry + s(P)lex, enl]] + s(r)hrgy + 9 (r)? [lex s exm]; er}]-

We have [y = Ad(Gr (1) -+ r42) (frr1) and e = Ad(sy (11 - - - Sr42) (€741) Which implies

[f;{_7 [6)_(,67«]] = [[f;’e;(]aer] (7.20)
= [—Ad((T(r+1) c '§T+2)(hr+1)a er] (721)

T(r+1)
{ 3 hl,er} _— (7.22)

i=r+1

Substituting this into the expression for Ad,(b,—1) and using the fact that

s(r)?

Sz = CDYIs(r)? = s(r)s((0)

we hence have

/(T
(r
/(,r

= ( [bT—lﬁ [brv[f;(_,bf(r)]] +8(T)h7(r +3( )[fﬁe?‘]]

= /<(: [br—h [brv [f;(_, b,,.(,,,)H] + Sl(r)[br_h hr n hT(T)]

as required. ]

Vo)

~—

S\7r 2
b (b [F5r]] + 5 + 50 o] + 20 (i )]

Ad,(by—1) = s (r)2

V)

~—

V)

~—

¥

e —

V)

~—

v

~—

V)
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7.3 Braid group action of Br(Wx) on B

By Lemma the construction of the braid group action on £ by Lie algebra automor-
phisms is guided by the braid group action of Br(g) on g. We expect a similar connection in
the setting of quantum symmetric pairs. In particular, we use the Lusztig automorphisms
T; as a guide for constructing a braid group action on B¢ by algebra automorphisms.
Recall that T; for i € X give rise to a representation of Br(Wx) on U,(g). We show that
the subalgebra B s of U,(g) is invariant under T; for ¢ € X. This implies that there is a
representation of Br(Wyx) on Bcs.

We note that although similar, the results of this section were found independently
from [6l, Section 4.1].

By Equations f it follows that T;(Mx Ug) = Mx Ug. Hence we only need
to compute T;(B;j) for j € I'\ X. The following lemma provides the key step.

Lemma 7.12. The relation
—aij
TiTuy (Br(y) = > (1) G F ) T (Br () K F 7 Ky (7.23)
r=0
holds for anyie€ X,j eI\ X.

Proof. First observe that for any i € X we have Ty, = Ty T (;) since o,wx = wx o ().
Recall from (3.26)) that T,y (E,(;)) = —F; K;. Using this and Equation (2.69)) we have

TiTwx (Er(j)) = Tux Tri) (Br(j))

—a;j

_ $,—S (—aij 5) (s)

= Tux < Z( 1)°¢°E 7(i) ’ T(J)ET(1)>
s=0

(_1)s—aij q;s (EKz) (—aij—S)TwX (ET(j
s=0

By Relation |(Q3)| of Definition we have IGF; = q; 2F,K; and hence it follows that

D (FE)®.

(Fsz)(S) — qi_s(s_l)F;(S)Kf

for all i € I. Substituting this into the expression fr ;T (E-(j)) we obtain

—aij )
2sa;;—2s°—a;;—s

*a?-* —a;;—S§ —aii—S8 S
Ty (Brggy) = 3 (—1)" g, "™ FO KT, (B, ) UK
s=0

By Relation |(Q2)| of Definition we have
KiTuy (Br(j)) = qloiwx (Oé‘r(j)))TwX (B, () Ki.

Since the inner product (—, —) is invariant under wy and 7 we have glewx (o)) = q Wi
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Hence
—ai; .
TiTwy (Er(j)) — Z (—1)5 qi—smj —2s —aij—SFi(_aij—S)TwX (ET(j))Ki_aij_sF;'(S)K’f'
s=0

As Ki_a” =K (aj)Kj_l and Ko (o Fi = qf”FiKm(aj) we have

(&4

—ai;
TiTwX (Er(j)) _ Z (_l)s—aij q;aij sti(*aij*S)TwX (Er(j))Kj_lFi(S)KUi(aj)'
s=0
The result follows from a change of index by setting r = —a;; — s above. O

Proposition 7.13. For any i € X we have Tj(Bcs) = Bes.

Proof. By Equation (2.71]) and the previous lemma we have
.y
T(B) = Y (1 GF (B — 5KV E ™ 4 8K 0
r=0
for j € I\ X. If s; # 0 then j € I,,; and hence a;; = 0. This implies

T;(B;) = B;. (7.24)
On the other hand, if s; = 0, then
—aij
T(B) = Y (-1 GFBF " € Bes. (7.25)
r=0

Therefore T;(Bcs) C Bes. Using the relation TZ»_1 = goT; o0 one shows that Ti_l(Bc,s) C
Bes and hence Bgg C T;(Bcg). This implies Tj(Bes) = Be s as required. O

Since the algebra automorphisms 7; satisfy braid relations, the following corollary

follows immediately.

Corollary 7.14. There ezists an action of Br(Wx) on Bcs by algebra automorphisms
gwen by T; forie X.

o~

7.4 Braid group action of Br(W) on B.s in type AIII

Recall from Chapterthat the algebra automorphisms T, = Ty, for i € I'\ X give rise to a
representation of BT(W) on Uy(g). The problem we encounter is that T; does not restrict

to an algebra automorphism of B .

Example 7.15. Let g = sls(C) and consider the Satake diagram
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Then B; = F} — 015(5)E5K1_1 + lel_l. However, we have
Tl(Bl) = T1T5(Bl) = 618(5)F5K5K1 — Kl_lEl =+ 81K1
which is not an element of Bgg.

Recall from Chapter |§| that there is an algebra isomorphism g ¢ : Bes — Be g such
that ¢sg(B;®) = BZ.C’S/ and @s| v o = 1d[pqpg- This implies that we can assume
s = 0. In order to give a corresponding algebra isomorphism for the parameters ¢ € C we

make an additional assumption. More specifically we assume
ci€ ¢t foralliel)\ X. (7.26)
It follows from this and Equation that
cicray = ¢ @072 forall i€ I\ X. (7.27)

The following proposition is a general result that holds for all Satake diagrams. Recall
that the subalgebra Ug is generated by the elements {KzKT_é) |ie I\ X} and {Kj | j €
X} C Mx.

Proposition 7.16. Let (X, 7) be any Satake diagram and suppose c,c’ € C satisfy Equa-
tion (5.4) and Condition (7.26). Then the map Ac ¢ : Bes — Bers defined by

Ace(BSS) = B foralli e I\ X, (7.28)

K (2

/

c .
Acor (KzKT_i (i)
Cr(i)

i) KiK_ forallie I\ X,i+#7(i), (7.29)

(%)

and Ac.c'| My = id|pmy s an algebra isomorphism.

Proof. To show that A¢ o is an algebra homomorphism, we only need to check that all
relations of B ¢ are preserved. By ([7.27) we have

/
iy A
(i) G

Cr(i) ;z

-Ac,c/(KiK;i))AC,C/(KT(i)Ki_l) =

( =1 = Ao (Kr K; ) Ac.o (KiFr (i)

Since A ¢ rescales elements of Ug and A¢¢/|my = id|pm, we only need to check relation
(3-38). In particular Ac preserves (3.38) if

Ac.er(Cij(e)) = Cij(c)
for all i,5 € I'\ X. This is immediate by Theorems and by noting that

/
Acor(2) = Z—Z for all i € I\ X
T

and ,
Aeer(Wij) = %WU forallie I\ X,j € X.
The checks for a;; = —2 or a;; = —3 are done using [3, Theorem 3.7/3.8]. O
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7.4.1 Generators and relations in type AIII

For the remainder of this chapter, we consider quantum symmetric pairs arising from the

Satake diagram of type AIII

where we assume X # (). This is the type A, example containing black nodes and a
non-trivial diagram automorphism.

Recall from that BT(W) is generated by the elements ¢; for 1 < i < r since
Si = Sy for any i € I'\ X. In the type AIII setting the generators ¢; are given explicitly
by

~ SiSr(i) ifl1<i<r,
gl - . .
SrSr41° " Sr(r) Sr1sy if i =7

subject to the relations

S = S ifa;;j =0and 1 <i,j5 <r, (7.30)
GiSiSi = SjSiS; ifa;j=—-land1<i,j<r, (7.31)
GiSjSiS; = $j%i%;%i ifaj=—-landi=rj=r—1 (7.32)

Hence Br(W) is isomorphic to the braid group of type B in r generators, denoted by
Br(b,).
By Conditions (3.10) and (3.11]) of s : I — C* we have
s(i) =s(r(@)) ifeelI\ (XU{r,1(r)}),
s(r) = (=1)Xs(r(r)).

We are free to choose s subject to these conditions so we let

, ()X if =,
s(i) = (7.33)
1 otherwise.

By the definition (3.33) and (7.27) we have ¢; € {£1} for all i € I\ (X U {r,7(r)}) and
CrCr(ry = ¢X*1. In view of Proposition we fix

1 if i #r,7(r),
ci =Xl ifi=r, (7.34)

q if i = 7(r).
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For technical reasons also observed in [40] we require the field K(gq) to contain the square
roots of ¢ and —1.

Recall from Equation the notation T;__; and Tj__; for 1 < ¢ < j < n. In this
setting, Be = B o is the subalgebra of Ug(sl,,+1(C)) generated by

1«"2._1};T(i)[('1.—1 ifiel\ (XU{r7(r)}),
B = F. — (_Q)|X‘Tr+1——7(r+l) (ET(T))K;1 ifi=r, (735)
FT(T) - qTT(TJrl)ffrJrl(Er)KT_(}«) if i = T(T)

and the elements
E;, F, K foric X,
KK ;) foriel\X.
By and one finds that the elements Z; for i € I \ X are given by
—(1 = ¢ ) Tri1——r(rr2) (B Kr o K7 ifi=r,
Zi = ()1 = )Ty rea(Bro) KK i = 7(0), (7.36)
— T(i)Ki_l otherwise.
By Theorems and the algebra B is generated over M XUg by the elements B;
for i € I\ X subject to the relations

BinKT_(}) = gl —ar() ) KjK;(})Bi fori,j eI\ X, (7.37)
B,E; — E;B; =0 foricI\X,jeX, (7.38)
Fij(Bi, Bj) = i ry(a—a ) NeiZi—¢;j2;)  fori,j €I\ X, a5 =0, (7.39)
F;j(B;,Bj) =0 otherwise. (7.40)

7.4.2 The case |X| =1

In order to construct an action of Br(W) on B, we first complete the constructions in
small rank cases with |X| =1 and |X| = 2. We explain this procedure in detail through

the following example.

O O O @ O O O
1 2 3 4 5 6 7

In Theorem [7.22] we show that it is enough to consider this case to obtain a braid group
action in general for |X| = 1. We first note that ﬁ(Ug) = U and Tilamy = id|aty. This
allows us to define

Tilyg = Ti‘Ugv Tilmx = id|my (7.41)
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for all i = 1,...,r. The generators B; of B¢ are given by

B, :FI—E7K1_1, 35:F5_q[E47E3]q*1K5_17
By = Fy — EeKy ', Bs = Fs — Bo Ky ',
By = Fs + q|Ey, Bs) 1 K3 By =F; — E1K; !

and the elements Z; are given by

2y = —K;K{, Z5=—(1-q *)EsK3K; ",
Zy = —K¢K; !, Zg = —K,Ky ',
Z3=(1—q )EKs Ky !, Zr = K K71

By evaluating T, = Ty Ty on each generator B;, we obtain an ansatz for 77 by calculating
the summand with the highest order. We use the notation 7] to denote this ansatz, and

any updates to this are denoted by 7/, 7{" and so on. We have
T\T7(By) = —K; 'Ey + F; K7 K,
with highest order summand F; K7 K;. We hence define
T{(B1) = Br.

Calculating similarly we have

T\T7(Bs) = [Fy, Fi]q — [E7, Egl—1 K 'K
TT7(Bs) = Bs,

TT7(Bs) = Bs,

Ty T+(Bs) = [Fs, Fr]q — [B1, Ea] 1 K ' K7,
T\T+(B;) = —K; 'E; + F1 K1 K

T{(B1) = B, T{(Bs) = Bs,
T{(B2) = [Ba, Bi]y, T{(Bs) = [Bs, Brlq,
73,(33) = B37 7-1/(37) =B

Using the relations of B, we modify this ansatz. For example, the relation
B1Bs — BgB1 =0
holds in B but we see that
T{(B1)T{(Bs) — qT{(Bs)T{(B1) = 0.
In order to correct this we observe that

T!(Bs)K7K "' = ¢ ' K7 K "T/(Bs)
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holds by Relation (7.37). This implies that we may correct 7 (B1) by setting
T/ (By) = By K7 K *. (7.42)

By symmetry, we also let
T/ (B7) = B1 K1 K .
With this, we now have the relation
TV(B)T!(Br) = T"(B7)T{"(B1) = ¢*(B7B1 — B1Bx).

for symmetry reasons we give both 7{"(B;) and T”(B;) a factor ¢!. Similarly, in view of
the relation
ByBs — BsBy = (¢ — ¢~ )" (22 — Z)

one finds that
T{(B2)T{(Bs) — T{(Bs)T{ (B2) = q(qg — ¢ ") " (T1T%(Z2) — T T(Z6)

holds in B, and hence we choose to give T{(Ba) and T (Bg) a factor ¢~'/2 each. Putting
this together we define

¢ By Ko K ifi=1,7,
T e (7.43)
¢~ ?[Bs, Brlq if i = 6,
| B; if i = 3, 5.

Proposition 7.17. Let r =3 and X = {4}.

(1) There exists a unique algebra automorphism Ty of Be such that Ti(B;) is given by
[T33) fori € T\ X and Tiluy, g = TiTrlag, g,

2) The inverse automorphism T; Lof Be is defined by
1

qBT(Z)K’LKT_(i) ’ifi = 1, 7,

T N(B) = ¢ PlBBaly ifi=2, (7.44)
¢ '/?[B7, Bg), ifi=F6,
B; if i = 3,5.

1 11
with Ty | pmyvg =11 T7 vy

Sketch of proof. The proof is given by direct calculation using the package QUAGROUP under
GAP using the file A7_oneblacknode.txt contained in [24]. First we define the generators
of B¢ and check that the defining relations are satisfied. We then check that the images
T1(B;) and T;'(B;) also satisfy the relations which implies that 7; and 7, " are well-

defined algebra endomorphisms of B.. Finally, we confirm that 7; and Tfl are mutual
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inverses to one another by showing 717, (B;) = T, "T1(B;) for all j € I\ X. O]

Remark 7.18. The algebra automorphism 7; has already been observed in [40, Theo-
rems 4.3 and 4.6] when | X| = 0. The main difference is [40, Equation (4.6)] which considers

the case a;; = —1 and a,(;); = —1. This condition does not appear in the current setting

since | X| # (. Tt is hence reasonable to expect that the algebra automorphisms 7; for
i < r have the same form. This is so since the automorphisms T; that we use to guide our

constructions do not depend on X for i < r.

Taking the above remark into account we define
qilBT(i)KT(i)Ki_l if 1 = 2,6,
T2(Bi) = {aV?[B2, B, ifi=13, (7.45)
q~/?|Bs, Bil, ifi=5,7.
The following proposition also requires the use of GAP, as in the sketch proof of Proposition
This is also contained in the file A7_oneblacknode.txt in [24].
Proposition 7.19. Let r = 3 and X = {4}.

(1) There exists a unique algebra automorphism Ta of Be such that Ta(B;) is given by

(7.45) forie I\ X and T2|MXU(% = T2T6|MXU(%'

(2) The inverse automorphism 7;_1 of Be is given by
Ty {(B) = a7 B, Bo)y ifi=1.3, (7.46)

¢ '?[B;,Bg), ifi=>5,17.
~1 11
and Ty |MXUg =T, 1 ’MXUQ)'

We now construct the algebra automorphism 73, using the Lusztig automorphism

T34543 = 15Ty 15T, T3 as a starting point. Since

Tsa543(F2) = [F3, [F3, [Fu, Fslglq]

and
Tsa543(Fe) = [Fo, [F5, [Fu, Fslglq],

we obtain the ansatz

T3(B1) = B, 73(Bs) = Bs,
T3(B2) = [Ba, [Bs, [Bs, Bslqlq] - T3 (Bs) = [Bs, [Bs, [Ba, Bslqlq]
73 (B3) = Bs, T3 (B7) = By.
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The automorphism 734543 acts as the identity on By and B7 so we expect that no correc-
tions need to be made to 75 (B;) and 75 (By). In order to improve the ansatz for 73, GAP
is used directly to check relations. Such checks are not shown in our files. In view of the
relation By FE4 — E4 By we find that

T5(B2)Ey — E4T(B2) = 5(3)c5q(E4Bo K3 K5 'Kt — BoK3 Ky 'K Ey).

Here we keep note of ¢; and s(i) in order to make clear the dependence on the parameters.

Rearranging the above equality we have
(T3(B2) + s(3)esqBa K3 K35 'K 1) Ey = Ey(T3(B2) + s(3)esqBa K3 K5 'K ).
Following this, we update the ansatz by letting
T3'(Bs) = T4 (Ba2) + qs(3)cs BaKs K5 K, !

Similarly we let
T4 (Bs) = T3 (Bs) + qs(5)c3s Be K5 K3 'K, .

We now consider the relation By Bs — B5By = 0. In view of this we have
qT3'(B2)T3(Bs) — T3(Bs5) T3’ (Bz) = 0.
Similar to the reasoning used to define 7,"(B;) in Equation we let
T3'(Bs) = BsKs K3 '

and symmetrically, we define
T3'(Bs) = BsK3K; '

Finally, comparing with the relations
B3Bs — BsBs = (¢ —q ') ' (425 — ¢25),
ByBg — BgBa = (¢ —q 1)1 (25 — Z5)
we see that
T3 (B3) T (Bs) — T3 (Bs) T3 (Bs) = ¢ (g — ¢~ 1) " H(qT3(23) — qT3(Z5)),
T3(B2)T'(Bs) — T3 (Be) T3 (B2) = —q3(q — ¢~ ") "1 (T3(22) — T3(Z5)).

Hence we give T3'(Bs) and 73'(Bs) a factor ¢~ ! each, whilst both 73'(B2) and 73'(Bg) are
given a factor v/—1 ¢~ 3/2.

Proposition 7.20. Let r = 3 and X = {4}.
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(1) There exists a unique algebra automorphism T3 of Be such that

(

B;

T3(B;) =

qile’KiKT_(%)

ifi=1,1,

V=1q ([ By, [Bs, [By, Bslgl],, + s(3)csaBo K3 K5 ' Ky t) if i = 2,
\/jlq_3/2([B6a [B5; [B4, B3]q]q:|q + S(5)C3qBﬁK5K3_1K4_1) ’Lf’L = 6,

(2) The inverse automorphism 75_1 of Be is given by

B;

¢BiK- () K; "

1 el
with T3~ [ pmxv9 =I5 vy vy -

ifi=35
(7.47)
ifi=1,1,

V=1q7*?([Bs, [By, [B3, Balglg| , + 5(5)es Ba Ks K LK) if i = 2,
V=1q73?([Bs, [Ba, [Bs. Belg)q] , + s(3)es Be K35 'K ') if i = 6,

ifi =35
(7.48)

(3) The algebra automorphisms T; satisfy the braid relations (7.30), (7.31]) and (7.32)).

Sketch of proof. Parts (1) and (2) proceed in the same way as in the proof of Proposition
With the disclaimer that computations that involve the terms T3(Ba), T3(Bs), T3 ' (Ba)
or 7};1(36) tend to take a few days to complete. For this reason, these checks are included
at the end of the file A7_oneblacknode.txt. To prove part (3), we verify the braid

relations on each generator B;. Since the element ¢'/2 can not be defined in QUAGROUP

we track where half powers appear in our constructions. This has the effect of adding in

extra powers of ¢. In order to cut the computation time down, we make the observation

that T273(B;) = T3 (By;)) for i = 2,6.

We now consider the case of general r with |X|=1. For 1 <i <r — 1 define

Ti(Bj) =

B;

\

— -1
¢ Br(j) K () K
¢ '*1B;, Bil,

q /2 [Bj, Bri)lq

O
if j =iorj=r(i),
if Qi5 = —1, (7 49)
if aT(i)j == *1,

;= 0.

if aj; = 0 and a,;),;

Theorem 7.21. Let 1 <i<r—1and X = {r +1}.

(1) There ezists a unique algebra automorphism T; of Be such that T;(B;) is given by
(7.49) for j € I\ X and Tilp vy = TiTr ()| myug -
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(2) The inverse automorphism T, ' is given by

(
aBr(yKGK L if i =i orj=7(),
g 2By Blg if argey; = 1,

Bj Zf Q5 = 0 and aT(i)j =0.

-1 _ =11
and T; |MXU£) =T TT(,;)|MXUg-

(3) The relation T;Tix1T; = Tix1TiTix1 holds for 1 < i < r — 2. Further, the relation
Ti'T; = T;7T; holds if a;; = 0.

It remains to construct the algebra automorphism 7,. For j € I \ X define

p
Bj if Qrj = 0 and Ar(r)j = 0,

v—1 q_3/2([Bj [Brv [Br+la Br+2]q]Q]q

+ i0qB K, K LKL if ap; = —1,
7;(33') _ 5(:))/62 +245; r+2 T+1) 1 Grj (7_51)
V=1q7*2([B.(j), [Br+2, [Br41, Br]q]q]q

+ 8(r+2)ergBr() Kr 2K K ) i any; = 1,

q—lBjKjKT_(;) if j=rorj=7(r).
Theorem 7.22. Let X = {r+1}.

(1) There exists a unique algebra automorphism T, of Be such that T.(Bj) is given by
(7.51) for j € I'\ X and 7;|MXU8) = TT|MXU8)'

(2) The inverse automorphism T, is given by

B; if arj =0 and ar); =0,
V=1¢732([By+2,[Br41, By, Bj]q]‘l]q
TU(B,) = + 5(r+2)e, B K, 2 K K ) if apj = —1,
V=1q7*%([B,, [By41, [Br+2, BT(j)]q}QJQ
+ 8(r)ers2 B Ko K LK) if arryy; = —1,
qujKT(j)Kj_l ifj=rorj=1(r).

(7.52)

(3) The relation Ty Tr—1TrTr—1 = Tr—1 T Tr—1Tr holds. Additionally, the relations T, T; =
T: T hold for ar; =0 with 1 <i<r..

Sketch of proof. We explain why it suffices to consider the case r = 3. In this case by
Proposition and Proposition T1 and Ts are algebra automorphisms with inverses
’Tfl and 7‘271, respectively. This implies that 7; and 771 are mutually inverse algebra
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automorphisms for general r and 1 < ¢ < r — 1 through an appropriate relabelling of
indices. Similarly, when r = 3 Proposition implies that 73 and 7'371 are mutually
inverse algebra automorphisms. It follows that 7, and 7,7! are mutually inverse algebra
automorphisms in the general case. The braid relations for » = 3 imply the braid relations
for general r. The result for » = 1 or r = 2 follows by noting that these cases embed into
the case r = 3. ]

7.4.3 The case | X| =2

In the case |X| > 2 it is necessary to use a larger Hopf algebra than U,(g) which we
construct be enlarging the group algebra U°. For i € I let w; € h* denote the ith
fundamental weight. Recall that the fundamental weights have the property that w;(h;) =
d;j for all4,j € I. Let P =), ; Zw,; denote the weight lattice. Recall from Section m
the completion % of U,(g). For any A € P define K\ € % to be the element such that
Ky -v, = q(/\’“)v# for all weight vectors v, of weight p. With respect to the left adjoint

action we have

K Ej = " B Ko,

K Fj = ¢ % FjK,
for all i,j € I. Let U° denote the subalgebra of % generated by {Ky | A € P}. As in
[46, Section 1] we define U,(g) to be the Hopf subalgebra of % generated by U,(g) and
U0 Let P® = {\ € P|©(\) = A}. Denote by U the subalgebra of U" generated by the
elements {K) | A € P®}. We extend the right coideal subalgebra to a larger subalgebra

by including the elements K € Ug . In the current setting, we can define such elements

explicitly.
Lemma 7.23. Let g = sl,41(C). For any i € I we have
O(w; — Wf(i)) = Wi — Wr(y)- (7.53)

Proof. The proof is similar to that of by noting that o;(w;) = w; — d;;(a;) for all
i,7 € I and hence wx(w;) — w; € Qx for any i € I. O

We define Be to be the subalgebra of Uq(g) generated by M x, Ug and the elements B;
for i € 1. This is also a right coideal subalgebra of U,(g) and contains B, as a subalgebra.
If A € P® then for any i € I \ X we have
O(0i(N)) = —wx o T o wx g (i) wx (A)
= 5, o —TO wx()\) = 5, o @(/\)

= (V).
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It hence follows that i( Vg) = Ug. We now repeat our constructions from the previous
section in the case |X| = 2. For 1 < ¢ < r — 1 we define algebra automorphisms ﬁ
of B following the construction of Theorem All that remains is to construct the
algebra automorphism 7,.. Here, the elements Kei—w. ) € Ug play a crucial role in our

constructions. To shorten notation we write

W = Wi — W) (7.54)
for i € I. We define
¢ B KK Ko if j =7,
q_lBr+3Kr+3Kfle;+2 if j=r+3,
q_Q([Br—lv (Br, [[Fr+1, Fra2lgs Br+3]q]q]q
T(Bj) = +s(r)ersaBra KoK KL K) i j=r—1,

q_2 ( [Br+4a [Br+3a [[Fr+27 Fr+1]qa Br]q]q] q

+8(r +3)erqBra K s KWK KL) ifj =1 +4,

Bj if Qjr = 0 and aj(r+3) =0.
(7.55)

Theorem 7.24. (1) There exists a unique algebra automorphism T, of Be such that
T-(B;) is given by Equation (7.55) and ﬁ‘MXUg = TT‘MXU(S)'

(2) The inverse automorphism T, is given by

4B, K3 K Koy ifj=r,
4By 3K K 3K if j=r+3,
([BT+3> [[Fr+27 Fr+1]q> [B,«, Br—l]q}Q]q

T, H(B)) = +8(r)ers B Ks I KL KC) if j=r— 1

([BT‘7 [[FT+17 F7"+2]q7 [BT+37 B'I‘+4]q}q:|q
+ 8(r + 3)e, Brya K K S KL KLY ifj =1+ 4,

B; if ajr =0 and aji43) =0
(7.56)

\

-1 . -1 .
and’ﬁ |Mng_TT ’MXUg'

(3) The relation Ty Tr—1Tr Tr—1 = Tr—1 Ty Tr—1Ty holds. Additionally the relations T, T; =
T T hold for a;. = 0.

The proof is the same as that for Theorem where we now consider the case n = 8
and r = 3. This is performed in the GAP file A8_twoblacknodes.txt contained in [24]. As
in the n = 7 case of the previous section, we make the disclaimer that the time it takes to

compute with 73 or 7}:1 is in the order of days.
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Observe that we require the elements Kw/TH in order that the relations between 7,.(B5;)
and elements of M x hold for j = r,7 + 3. For instance, defining 7,(B,) = q_lBTKTK;(}a)
is incorrect here, since then 7,(B,) does not commute with E, .

An important point to mention is that the GAP file does not include the elements Kw;.
The reason for this is that we require fractional powers in order to define ng as a product
of K;’s for j € I, which we can not do using QUAGROUP. However, in view of the fact that
Ko, commutes with T-(B;) for all i € I'\ X it is not necessary to include these elements
in GAP. As a result of this, we no longer check the relations between 7,.(B;) and elements

of Mx for j =r,r+3.

Remark 7.25. Introducing the additional elements Kw; does not lead to any consistency
issues in the case where X = ) with n odd [40] and the case | X| =1 from Theorem
In both cases we have Kw/Hl = 1 and hence we should not expect to see these elements

appear.

7.4.4 The general case

The major difference between the results of [40] and the current setting is that GAP can
not be used in order to construct a braid group action of Br(b,) on B, in general. The
reason for this is that GAP begins to encounter memory problems when n > 9. Based on
the completion times of the files A7_oneblacknode.txt and A8_twoblacknodes.txt, this
is to be expected. As a result GAP can, at best, only provide a braid group action for
| X| < 2. For 1 <i<r—1define

q "By KK it j =i orj =7(i),

~12(B;, B; if a;; = —1,
T:(B;) = q/*[Bj, Bil 1L Gij (7.57)

g 2By, Brply i agy; = —1,

i =0.

Bj if Qi5 = 0 and Qr(i)j

The construction of 7; from does not depend on X and hence implies the following

theorem, also seen in 40, Theorem 4.6].
Theorem 7.26. Let 1 <i<r—1and X = {r+1}.

(1) There exists a unique algebra automorphism T; of Be such that T;(B;) is given by
(7.49)) for j € I\ X and ’mMXUg = TiTr(i)|MXUg-
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(2) The inverse automorphism T,” " is given by

(

qBT(j)KjK;é) ifj =i orj=1(i),
¢ 2By, Bjly  ifay =1,

7. 4B;) = (7.58)
¢ 2[Brays Bilg  if argiy; = —1,

B; if aij =0 and ar;y; = 0.

\

—1 _ m—1p—1
and T; |MXUg =T TT(i)|MXUg'

(3) The relation T;Tix1T; = Tix1TiTix1 holds for 1 < i < r — 2. Further, the relation
Ti'T; = T;T; holds if a;; = 0.

In order to define 7,, we introduce the following notation in the spirit of (7.16|) and
(7.17). For a subset J ={i,i+1,...,5} of I with ¢ < j define

Fy = [F, [Fia,. - [Fio1, Filg -] (7.59)
F; = [F; [Fj_l,...[E+1,Fi]q...]q]q. (7.60)

Additionally, let
K;=KKi1 KiK. (7.61)

Using Theorem and as a guide we define

¢ "B K K Koy if j=r,
¢ Bry KoK Koy if j =7(r),
C([Br—h [Br, [F)J(rv BT(T)]q]Q]q
To(Bj) =4 +s(r)ermaBr 1 K KoLK ifj=r—1, (7.62)

O([BT(T_l)’ [BT(T)7 [F)Z7 Br]q]q]q
+5(r(1)eraBrr—) Ko K Ky i j = 7(r — 1),
Bj if ajr = 0 and Ujr(r) = 0.

where
ig=3/? if | X| odd,
C - (7.63)
q 2 if | X| even.
In view of the relations

Br1Br(ro1y — Brp—1yBro1 = (0 — ¢ ) N erm1Zr21 — ey Zr(r—1))s
B? B, —(q+q YB,_1B,B,_1+ B,B2 =0
the following is presented as a conjecture.
Conjecture 7.27. Suppose (X,7) is a Satake diagram of type AIII with X = {r +
L...,7(r+1)} andr < [5] —1.
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(1) There is a unique algebra automorphism T, of Be such that T.(B;) is defined by
‘. and 7;‘|MXUg = TT|MXUg

(2) The inverse automorphism T, is given by

4B Ko K Ky ifj=r,
qBT(r)Krf(;(i)ler+1 if j =7(r),
C([BT(T% [Fx, [Br, Br+1}q]q]q
TUB) =1 +s(r(r)erBra Ko K UKRY) ifj=r—1, (7.64)

C([B’N [F_;(_7 [BT(T‘)’ BT(r—l)]q]q]q
+ S(T)CT(T)BT(Tfl)KTK;(}“)K)_(l ifj=7(r—1),

B; if ajr =0 and ajr;) =0
and 7;’71|Mx08 = TTil‘MXUg‘

Assuming that Conjecture holds we obtain the following theorem which is the
generalisation of part (3) of Theorem and Theorem

Theorem 7.28. Let (X,7) be a Satake diagram of type AIIl with X # 0. If Conjec-
ture is satisfied then the relation T, Tr— 1T Tr—1 = Tr_1TrTr—1T, holds. Further, the
relations T, T; = T; T, hold for any i <r — 1.

The proof of Theorem [7.28| requires many calculations so it is given in Section

Corollary 7.29. Suppose (X, 1) is a Satake diagram of type AIIT with X = {r + 1,r +
2,...,7(r+ 1)} andr < [5] = 1. If Conjecture then there is a braid group action of
BT(WN/) on B¢ by algebra automorphisms given by T; fori € I\ X.

7.4.5 Proof of Theorem [7.28

Since Tj|pq,, o = IN“]] Mx U8 for all j € I'\ X it follows that the braid relations of Theorem
hold on elements of MxUJ. It hence suffices to check the relations on the elements
B; for i € I\ X. We first check that the relation 7,7; = 7;7, holds for all 1 <i <r —2.

Proposition 7.30. For1 <i<r—2 and j € I\ X the relation
T.Ti(Bj) = TiT:(B;) (7.65)
holds.

Proof. By symmetry, we only check (7.65) for 1 < j7 < r. We do this by a case-by-case

analysis.
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Case 3. a;; = 0,a;, = 2.
In this case we have j = r and 7;(B,) = B,. This implies
T Ti(Br) = To(By) = ¢ ' Byl K- Koy = TiTo(By)

as required.

Case 4. Qj; = 0, Qjr = —1.

Then j =r — 1 and we have
7;‘7;(37‘71) = 7;‘(37"71) = 7;7;(-87“71)'

Case 5. a;; = 0,a;, = 0.
Then 7,(Bj) = Bj and T;(Bj) = Bj so the statement of the proposition holds in this case.

Case 6. a;; = —1,a; = 0.
Then 7,(B;) = Bj and T;(B;) = ¢~ '/?|B;, B;],. Hence

T.Ti(B)) = ¢ [T (B)), T(Bi)lg
=q 2B}, Bil; = TiT:(B;).

Case 7. Qi5 = —1,(Lj,n = —1.

This case only occurs if ¢ = r — 2 and j = r — 1. We have

7;'—27;(37'—1) = 07;—2 ( [Br—la [Bm [F_;{_7 BT(’I’)]Q]Q] q + S(T)CT(r)qBr—lKrKRi)K)_g)

o)A Br1, Bralo o K2 K
[[B’I‘—17 [Bm [F;(—, B‘r(r)]q]q]qa Br—2]q
oy Brala)
= ¢ [To(B,-1), To(Br-2)lg

Case 8. a;; = 2.
Then j =i. We have 7,(B;) = B; and 7,(7;(B;)) = T:(B;) which implies

T.Ti(B;) = T T (B;)

as required.

We now check that the relations

T T Ty Tr=1(Bj) = Trea T Tr—1 T (By)
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hold for all j € I'\ X. Again by symmetry, we need only consider 1 < j < r. Many of the
remaining claims in this section require the use of relations that are proved in Appendix [A]
The following lemma is immediate since 7.(B;) = Bj and T,—1(Bj) = B; for 1 < j <r—2.

Lemma 7.31. For 1 < j <r —2 the relation
T T AT Tr—1(Bj) = T Tr 1 T Tr—1(Bj) (7.66)
holds.
Hence we need only consider the cases when j € {r — 2,7 — 1,7}. By we have
Tr1To(Br-1) = T, H(Briro1y)-

Proposition 7.32. The relation

T Tr1 T Tr—1(Br—1) = Tr1 T Tr—1 Ty (Br—1) (7.67)
holds.
Proof. Using Equation we have

T Tr AT Tr—1(Br1) = 7;7?—17?(q_lBT(T_UKT(T_nK:l)
=q¢ "B K, 1K)

7(r—1)
= Tr-1(Br(r-1))
and hence ([7.67)) holds. O

We now consider the case j = r—2. By Lemma the element [B,_1, ﬁ_l(BT(T,l))]q

is invariant under 7.
Proposition 7.33. The relation

T T Tr Tr—1(Br—2) = Tra T Tr -1 Tr (Br—2) (7.68)
holds.

Proof. On one hand, we have

T T AT Tr1(Br—2) = Ty Tr—1Tr (¢ Y?(By—2, Br—1],)

Again by Equation (A.9)) it follows that
T T 1T Tr—1(Br—2) = _1[[Br7237;(BT*1)]q’BT(T—I)]q

"By, [T5(Br-1), Brr—1ldla
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where the last equality follows since B,_2 commutes with B (._1). On the other hand we

obtain
Tr-1 Ty Tr1Tr (Br—2) = Tr—1T; Tr—1(Br—2)
¢ [Br—2, Br—1lg, T, (Brr—1))la-
Since Br(,_1) commutes with 7,.(B,_2) it follows that
T, N(B;, (r—1)) = ﬁ_l(Br(r—l))Brd-
This and Lemma imply

T T o1 To(Bra) = 4 [Br2, [Brt, T (Br(r—1))ldla
=q 1[B7‘—2> [ﬁ(BT—l)v BT(T—l)]q]q
=T Tr1T:Tr-1(Br-2)
which proves the claim of the proposition. O

All that remains now is to consider the element B,.

Proposition 7.34. The relation
T T AT T (Br) = Tr A Tr T Tr(Br) (7.69)
holds.

Proof. We consider the right hand side of (7.69) first. We have

Tr1 T Tr—1Tr(By)

=q T T T (B IG K Koy )

= q¢ T T([Br, Bra]g) Ko K- L Ko

T(r)" @t

:q—5/27;,1([BrKrK’(1)K 1oy Tr(Bre1)]g) IG K
(r) T(r— 1)K g 7;

( )
= q°[[Br, Byl K K '
Using Relation and noting that Kw;+1 commutes with 7,1 (Br(r—1)) we have

VK, K} <T >}KK<>Kw

r+1

7;717;7;”717;(37") = q_2 [[Bra Brfl]qa 7;_1(37—(1"—1))] qKq?K;(i)KrflK;( )K2 @l
Using (A.11)) and the fact that [B,, T, *(B;(—1))];-1 = 0 by we obtain
“BT> Br—l]q, 7;_1(37(7“—1))] P [BT7 [BT—la ﬁ_l(BT(r—l))]Q]
= [BT7 [7;(37“—1)7 BT(T—l)]q] :
It hence follows that
7;—17;’7;‘—17;(37”) = q72 [Bm [7;’(BT—1)7BT(T‘71)] ]K K_, (r )Kr IK r(r— 1)K2 @y
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Considering now the left hand side of (7.69) we obtain

T T Ty Tr1(B,)
= ¢ V2T T (B, Broily)

= T (B K ) Koy T (Bren)lo)

= q727; ( [[BTa BT—I]QKTKT_(l)KT—lKT_(:«,l)Kw7',+1 ’ 7;71 (BT(Tfl))] q)

T

K, 1K} K_

T(T_l) Wrp1

q_2 “BTKTK;&)K@;+1 5 ﬁ(Brfl)]qv BT(T’—I)] KTK;&,)

q_2 [BTv [7;(37’—1)7 B’T(’I‘—l)]q} KEKE(T)KT—lK;ifl)K;;+1
Tr 1T Tr1 T (By)

as required. ]

The results of this section imply Theorem |7.28

7.5 The action of Br(Wyx) x Br(W) on B, in type AIII

We now combine the results of Section [7.3] and Section [7.4] to give a quantum analogue of

the action of Br(Wx) x Br(W) on £ by Lie algebra automorphisms established in Lemma
when we consider Satake diagrams of type AIIL.

Theorem 7.35. Let g = sl,+1(C) and (X, 7) a Satake diagram of type AIIl such that
| X| =1 or|X| = 2. Then there exists an action of Br(Wx) X B,(W) on Be by algebra

automorphisms. The action of Br(Wx) on Be is given by the Lusztig automorphisms Tj

for i € X and the corresponding action of Br(W) is given by the algebra automorphisms

Ti for 1 <i<r given by Theorem and the formulas ((7.62)).
Conjecture 7.36. The statement of Theorem above holds for all | X| > 1.

In order to prove Theorem it suffices by Corollary and Corollary to
show that the actions of Br(Wx) and BT(W) on B, commute. The remainder of this
section shows this by casework on the elements of B.. We work in the general setting with
|X| > 1. As a result of this it follows that if Conjecture holds then also Conjecture
[7.36] holds.

Lemma 7.37. If z € MxUQ then TiTj(z) = T;T;(z) for all j € X and 1 <i <r.

Proof. Recall that Til v o = Tilpyerg for all 1< <. If i <7 =1 then Til g =
TiTr(i)’MXUg commutes with T} for any j € X. If i = r then TT|MXUg = id|MXUg and

hence there is nothing to show in this case. O

By symmetry it is enough to show

T:Tj(By) = T;Ti(Bx)
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forl1<i<r,jeXandl<k<r.

Lemma 7.38. If1<i<r—1andje€ X\ {r+1} then the relation
TiT;(Br) = T;Ti(Br)

holds for all 1 < k <.

Proof. We have T;(By) = By, for all j € X \ {r+ 1} and 1 < k < r. By the definition
(7.57)) of 7; the statement of the lemma follows. O

Lemma 7.39. If1 <i<r—1 then

TiT41(Bk) = Tr41Ti(By)
holds for all 1 < k <.
Proof. By Equation we have

By fl1<k<r—I1,
[BT';FT+1]q ifk=r.

Try1 (Bk) =

There are three cases to consider, depending on the value of a;. If a; = 0, then T;(By) =
By, for all 1 < k < r and hence the claim follows. If a;; = —1 then 7;(By) = q_1/2[Bk, B,

which implies that we need only check the claim when £ = r and ¢ = r — 1. We obtain

Tr+17;—1(Br) = qil/QTr—‘rl([Bra B’r‘—l]q)
= qil/Q[[Bra F’I‘-i—l](p Br—l]q
= qil/Q[[Bra BT‘—l]Q7 Fr+1]q - 7;’—1T7“+1(B7’)

since B,_; commutes with Fj 1.
Finally, if a;; = 2 the result follows immediately since 7;(B;) = q_lBT(i)KT(i)Ki_ Lis

invariant under 7} . ]
Lemma [7.38] and Lemma [7.39| imply that
TiTj(Bi) = T;Ti(Bx)
forall1<i<r—1,57€ X and 1 < k <r. All that remains is the case i = r.
Lemma 7.40. For all j € X and 1 < k <r with k #r — 1, the relation
T-T;(Bk) = T;7T:(By)
holds.

Proof. For 1 <k <r — 2 both T; and 7, act as the identity on B}, so there is nothing to
show. Suppose that &k = r. Then

T(Br) = ¢ "B K K Kaoiy o)
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Let A = ap — i (p) + @r g1 — @r(r41)- Since @, = —wy41 + 2w, — w,—1 it follows (o, A) =0
for all j € X. This implies 0(A) = A for all j € X and hence T;(K)) = K.
If j # r+ 1 then T}(B,) = B, and the result follows. Otherwise we have

Tr—l—l’Tr(Br) = q_lTr—H(Br)K)\
= q_l[Br, Fr+1]qK)\ = 7;'Tr+1(Br)

where we use the fact that F,,; commutes with K. This completes the proof. O

Lemma 7.41. For all j € X \ {r + 1} the relation
T:15(Br—1) = T; T (Br-1)
holds.
Proof. By Lemma the result is clear for j # 7(r + 1) since T} acts as the identity on
the elements Fy, KTKT_(}”), Kx' and By, for k € T\ X. On the other hand if j = 7(r + 1)
then
TT(T"F].)([F_;(‘_? BT(T)](I) = [F;\{T(r+1)}u [FT(T‘-‘F].)? BT(T)]Q]Q
= [FX, BT(T)]q
by noting that [Fr(.41), Byl = TT_& +1)(BT(T)). The result hence follows in this case
also. O

Lemma 7.42. The relation
T Tr11(Br—1) = Tr41 T (Br-1)

holds.

Proof. Recall from (7.62]) that

To(Br-1) = C[Br—1, [Br, [F¥, By(n)la] , + C5(r)cr(aBro1 K K K
We are done if we show that 7,(B,_1) is invariant under T}.;1. We use Lemmas and
to do this, depending on whether |X| =1 or |X| > 2. If |X| = 1 then Lemma

implies
Tr+1 ( [BT—17 [Bra [F’I“-‘rlu Br+2]q]q} ) = [Br—la [Bra [Fr—i—h Br+2]q]q] q

+ S(T)Cr+2qBr—1KTK;+12(K;+11 — Kyt1).

q

Further, we have

Tr1(Br 1 Ko K LK) = B i KK K
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Combining these we see that
Tr1T(Br1) = C[By—1, [Br, [Frs1, Brialglg) , + Cs(r)erraqBr1 K K (KT — Kp)
+ Cs(r)er(ran)qBr 1 Ko K K
=Tr(Br-1).
On the other hand if | X| = 2 then Lemma implies that
To1([Br1, [Br, [Fx. Brnlla] ) = [Br—1, [Br. [FX, Brndld],,
+8(r)er(raBro K K (K = K ) KX gy
We have
To1(Bro1 Ko K Kx') = Bra KoK K Ky gy
Calculating similarly, one obtains

TT+17;‘(B7‘—1) = 7;(Br—1)

also in this case. O
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Appendix A

Useful relations in B¢

In order to prove Theorem and Theorem we require the use of many relations,
which are collected here for the reader’s convenience. We recall that in Section [T.4] we

only considered Satake diagrams of type AIIl. This will be the setting for this appendix.

Further recall the notation F;, F; and K from (7.59)), (7.60) and (7.61) where J C I
is of the form J = {i,i+1,...,5 — 1,5} for i <j. We similarly define elements

E'L_]‘— = [Ez [Ei+17 cey [Ej—lij]qfl s ]qfl]qfl = TiT‘i—J,-l o 'T’j—l(Ej)v (Al)
E; = [E] [Ej*h ey [Ei+17 Ei]q* T ]qil]qfl = T.‘jj—‘j*l T E+I(Ei)’ (A2)
By definition of F}, F;, K;, E} and E; 1 the relation
N K;—K;' _
ETF; — F; Ej:F:EJFj—FjEJ (A.3)

holds in Uy(g). Additionally the g-commutator satisfies

[[$7y]q7 Z]q - [QS‘, [yv Z]q]q = Q[[Jf, Z], y} (A4)

for all ,y,z € Uy(g). Recall from (7.57) the algebra automorphisms 7; for 1 < <r — 1.

Lemma A.1. The relation
[7;—1(37“—1)7 [F;a [BT(T)7 Br(r—l)]q}q] =0 (A.5)
holds in Be.

Proof. Since T,_1(Br—1) = qilBT(r,l)Kf(r,l)Kr__ll it follows that 7,_1(B,_1) commutes
with F} for j € X. Further the relation

B 1)Br(r) = (4+ ¢ ) Br(r-1) Brn) Br(r-1) + Br(r) B (1) = 0

implies that
B (r-1)[Br(r), Br(r—1)lq = 4[Br(r), Br(r—1)|¢Br(r-1)

and hence 7,_1(B;_1) commutes with [B(y, B-(;_1)lg- The result follows from this. [

158



Appendix A. Useful relations in B

Lemma A.2. For anyie€ I\ (X U{r,7(r)}) the relations

[Bry Ky K; s [Bis1, Bil),, = ¢° Bis, (A.6)
HBi7Bi:|:1]quT(z)K ()K] = Bi41. (A.7)

hold in Be.

Proof. The relations follow immediately by applying the automorphisms 7; and 7;71 to
T (Biz1) = ¢ "?[B;, Bixilg,
Ti(Biz1) = ¢ Y/*[Bix1, B,

respectively. ]

Lemma A.3. The relation
Tr AT Tr1Tr(Br-1) = Tr—1(Br(r—1)) (A.8)
holds.
Proof. We first calculate 7,_17,(B,—1). We have
T A To(Br 1>

= O ( [Troa( Tr-1(By), [FX, Tr-1(Brr)lald] ,
+3(7") —1(Br—1)Tr—1 (K T(r)>K)_<1>
= O (a2 [Brir— ) Err1y Ky [[Bry Broils [FX [Br(rys Brie—)ldla ]
+ 8(r)er () Br(rony Kr K 1)K)_(1)
=T (Br)- (4.9)

where the last equality holds by Equations and . It follows from this that
Tr1 T Tr1Tr(Br-1) = Tr-1(Br(r-1))
as required. ]
Lemma A.4. The relation
[Br—1, [Br, [F [Br(ry: Brr—1)laldlal y = [[Br—1, [Br. [FX, Brnlalalgs Brir—1)],  (A.10)
holds in Be.

Proof. First observe that since B.(._;) commutes with B, and F '+ we have

[BT’y [F;(_) [B-r(r)a BT(rfl)]q]q] = [[B’h [F;(_a B‘r(r)]q]qu BT(T*l)} q

To shorten notation let Y = [By, [F¥, B;(]qlq. Recall the relation

q

B'f’*lBT(T—l) - BT(T—I)BTfl = (q - q_l)_l(CTflszl - CT(T—I)ZT(T—I))
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where Z,_ 1 = —KT(T,l)KT__ll and Z.(,_1) = _Kr—lKT_(}«—l)v see (7.36]). Further note that

Y commutes with both Z,_1 and Z(,_1) by (7.37). Hence
[Br_1,[Y, BT(rfl)]q]q
= B’I’—].YBT(T‘*l) - qBr—lBT(rfl)Y - qYBT(rfl)Br—l + QQBT(rfl)YBr—l
=B, 1Y B (1) — ¢(Bro—1)Br—1 + (¢ — ¢ ) " Her—1Zr-1 — Crrm1) Zr(r-1)) Y
- qY(Br—lBT(rfl) - (q - qil)il(c’r—lz’/‘—l - Cr(rfl)ZT(rfl))) + QQBT(rfl)YBT—l
= [[BT—lv Y]LI7 BT(T‘*l)]q - q(q - qil)il [CT—IZT’—I - C‘r(rfl)Z‘r(rfl); Y]
= [[BT—lv Y]q’ BT(T*l)]q
as required. ]
Lemma A.5. The element [B,_1,T,” (B.(_1))lq is Tr-invariant i.e.
[Br—la 7;71(37(7"71))]11 = [7;“(B7"—1)7 BT(T*l)]Q' (A'll)
Proof. We have
[BT*b 7;~_1(B7'(7"—1))]q = [BT*M C7L[B7’> [F;7 [BT(T)v BT(T—I)]C]]Q]Q](]
+ Cns(r)c’r(r) [Brfl) BT(T—I)KTK;O{)K;(I]q
(A.10)
— [Cn [Brfla [Bra [F)J(ra BT(r)]q]q]qv BT(T—I)] q
+ [Cns(T)Cr(r)qBrflKrK;(i)K;(lv BT(’I‘—l)]q
= [77"(37”*1)’ BT(r—l)]q
as required. ]
Lemma A.6. For any j € X \{r+1,7(r + 1)} the relation
Ty(Fy) = Fy (A.12)
holds.
Proof. Recall from (7.59)) that
F+ = [FT'+17 [Fr+27 ) [FT(T+2)7 FT(?"-‘rl)]q T ]q]q-

Observe that the automorphism 7} only acts non-trivially on the F;_1, F; and Fj 1. The

result follows from this, since
Ti([Fi-1, [, Fialg) ) = T ([Fj-1, T (Ej)]g)
= [[F}'*l»Fj]anjH}q
= [Fj-1, [Fj, Fild]
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Lemma A.7. If | X| =1 then the relation

Tr—i—l ( [Br—la [Bra [FT+17 Br+2]q]q] q) = [BT—la [Bm [Fr—i-h BT—i—ﬂq]q] q
+ 5(r)erp2qBr 1 K K (K — Kpqq)  (A13)

T

holds.
Proof. We have

Toi1([Br=1, [Br, [Frs1, Bri2lglq) ) = [Br-1, [[BraFT—i-l]anr—‘rQ](I]q

by noting that [F,.11, Byy2]q = Trll1(Br+2)' Using the relation

[Bm B’I‘+2] = (q - qil)il(crzr - CT—I—ZZT—I—Q)

q

it follows that
“Br7 FT‘+].L]7 Br+2] g [Br’ [Fr+17 Br+2]q]q - Q(q - q_l)_l[FrJrl’ CrZr — CrJrQZrJrQ]-
Recall that in the current setting we have
Z,=—(1- q_Q)S(T + Q)ET+IKT+2KT_1;
Zra=—(1—q 2)s(r)Ern K, K, .

Hence
[Fri1.6r2r — Crg2Zrgo] = 7 (Kogr — K2 (s(r + 2) e Ko K1 = s(r)ergn K KL).
This and the fact that [B,_1, KT+2K,’,._1]q = 0 imply
TTH([BT—lv [Bra [FT+17B7’+2]Q]‘1]q) - [Br—l’ [Bra [Fr+17 Br—i—?]q]q]q

= (q— ¢ OBt (K1 — Ki)s(r)erpa K Kl
= s(r)cra2qBr 1 Ko KT (K — Ki)

as required. ]
Lemma A.8. If | X| > 2 then the relation

TT+1([BT_1’ [BT’ [F;{_, BT(T‘)]Q](]] q) = [Br—la [B'I") [F;(_7 BT(T)]Q](I
+ 5(r)er(naBra K K oy (K = Ke) K gy
(A.14)

holds.
Proof. Let Y = X \ {r +1}. Observing that [Fy, By )]q = T (5, B;(y]q) we have
L1 ([Br—1, [Br, [Fx . Brnlalal ) = [Br-1. [[Bry Frialg, [Fy s Brgla]
By we obtain
[Br, Frialg: (15, Brnlal , = [Bro [FX Brnyla) , = a[[Br. [Fy Brnylgl, Frs]

q]q'
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= q[[FY, [Br, Br(p)llg, Fr41]. (A.15)
Recall that
[Bry Br(n) = (4 — a7 ) e Zr = Cr()Zr(r)
where
Z, = —=s(r(n)(1 — ¢ ) EX K- K,
Z = —s(r)(1— q—Q)E;(KTKg(i).
Using Equation it follows that
[Py, Ex] = [[FY, By, Bralg
=(¢—q¢ )7 Ey — Ky, Erqilg
=q 'Ky By
This implies that

[[F{}_7 E)_(KTK;(}")]‘I’ F7'+1} = Q[[F{l_, E)_{]v Fr—i—l] q71KrKT_(}q)

= [Ky By, Fra] g1 KK

7(r)
=(q—q ) KK (K1 — KK (A.16)
Further, since [By_1, K,y K, ] = 0 it follows that
[Br-1, [[FY, 21q, Fria]], = 0. (A.17)

By and we obtain
L1 ([Br—1, [[Br, Frlgs [y, Brnlal,],) = [Br—1, [[Br, Frsalg: [y, Brnylq]
=—q(q— a7 e [Brot, [[B5 2oy Fraa]],
s(r)exy (g —a ) [Broy, K K (K — KR
= 8(r)er(yaBro Ko K (K — K ) Ky

as required. ]

q]q
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