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Abstract 

Introduction: 

The aim of this thesis was to assess the safety profile of different novel nanoparticles when 

interacting with lung bronchial epithelial cells in vitro, especially their role in inflammation 

and cytotoxicity. In addition, the permeation behaviour of self-nanoemulsifying drug 

delivery systems (SNEDDS) was measured by a novel mucus diffusion model utilizing 

standardized transwell diffusion plates. 

Methods: 

Primary bronchial epithelial and Calu-3 cells were cultured in 24 and 96 well plates. 

Different formulations of nanoparticles (NPs) were used to measure IL-8 production by cells 

as a marker of inflammation (measured by sandwich ELISA). The Celltitre blue (CTB) and 

MTT assays were used to test cell viability. The effect of cell density on the CTB assay was 

studied (500k, 400k, 300k, 200k, 100k, 50k, 42k, 33k, 25k, 17k, and 8.3k) in 24 well plates. 

Permeation studies were examined by using a mucus diffusion model. The rheology of the 

mucus was investigated to evaluate the gel structure of the mucus. 

Results: 

The viability of cell exposed to 52nm polystyrene NPs showed no statistical difference 

between cells with NPs and cells without NPs after 24 hour of exposure. The nanoparticles 

were shown to interfere with both the CTB and MTT assays. The standard curves in the CTB 

assay vary as the cell density decreased. Although IL-8 was shown to be slightly increased in 

human primary cells after exposure to different concentrations of NPs, IL-8 increased 

significantly after exposures to the same proportion of sterile water as these nanoparticles were 

delivered in (a control for osmolarity). The composition of SNEDDS might play a major role 

in their capacity to permeate the mucus such as lauroglycol. The small intestine mucus gels 

have some degree of frequency dependency; between 0.1 and 1 Hz, there was a decline in both 
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G` and Gʺ followed by a rise over 1-10Hz. Gʺ increased relative to G` suggesting a tendency 

to flow. This change at high frequency is verified by an increase in the phase angle, 

demonstrating a weaker gel. This biphasic behaviour may be explained by the gel forming 

interactions having time to break and make at a low frequency but at a high frequency, they do 

not have time to reform. 

Conclusion: 

I have found that both CTB and MTT assays may not be sensitive enough to test viability 

of cells exposed to nanoparticles. Therefore, other assay systems are required to test these NPs 

with respect to cytotoxicity. The composition of the SNEDDS played an important role in 

determining the permeation of the mucus gel layer. 
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Chapter 1: Introduction 

1.1. Nanotechnology: 

1.1.1. Definitions: 

One of the most promising strategic technologies in the 21st century is nanotechnology 

[1]. Although there are uncertainties as to the definition of nanotechnology (Table 1), it can 

be defined as the manipulation and study of materials in the range between 1 and 100 

nm (a billionth of a meter) [2]. The use of nanotechnology in medicine is known as 

nanomedicine, which is the medical application of nanotechnology and related research [3]. 
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Table 1. Different definition of nanotechnology and nanomedicine 
 

Organization Definitions 

The Europische Akademie Nanotechnology is dealing with functional 

systems based on the use of sub-units with specific 

size dependent properties of the individual sub- 
units or of a system of those. 

Royal Society and Royal Academy of Engineering Nanoscience  is  the  study  of  phenomena  and 

manipulation of materials at atomic, molecular and 

macromolecular scales, where the properties differ 

significantly   from   those   at   a   larger   scale. 
Nanotechnologies are the design, characterisation, 

production and application of structures, devices 

and systems by controlling shape and size at a 

nanometer scale. 

Nanoforum Nanotechnology is made up of areas of technology 
where dimensions and tolerances in the range of 

0.1 nm to 100 nm play a critical role. 

National Institutes of Health Nanomedicine is an offshoot of nanotechnology 
which refers to highly specific medical 
interventions at the molecular scale for curing 
disease or repairing damaged tissues, such as bone, 
muscle or nerve. 

The European Science Foundation (ESF) Nanomedicine is the science and technology of 
diagnosing, treating and preventing disease and 
traumatic injury, of relieving pain, and of 
preserving human health using molecular tools and 
molecular knowledge of the human body. 

 

Adapted from [4, 5]. 
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1.1.2. History of Nanoparticles and Drug Targeting: 

The idea of nanoparticles and drug targeting was born when Paul Ehrich’s visited Karl 

Maria von Weber’s German romantic opera “Der Freischütz” (The Marksman). During this 

opera, “Frikugenln”, or “magic bullets” were made by calling the spirit of the devil. Although 

the rifleman didn’t aim well or the goal was out of reach, these Freikugln always hit their goal. 

After this opera, Paul Ehrlich thought that this concept of targeted delivery could greatly 

improve drug therapy. The first efforts to apply this concept were by Ursula Scheffel and 

colleagues, and the group of Professor Peter Speiser at the ETH (Swiss Federal Institute of 

Technology), Zürich in the late 1960s and early 1970s. In the early 1980s, Oppenheim and 

Kreuter presented a definition which was later adopted by the Encyclopaedia of Pharmaceutical 

Technology and the Encyclopaedia of Nanotechnology: ‘Nanoparticles for pharmaceutical 

purposes are solid colloidal particles ranging in size from 1 to 1000 nm (1µm). The first 

commercial nanoparticle product containing a drug (Abraxane™, human serum albumin 

nanoparticles containing paclitaxel) appeared on the market at the beginning of 2005. It was 

put on the market by a US company, Abraxis Oncology [6]. 

1.1.3. History of Nanotoxicology: 

While the production of nanoparticles has been increasing, research into the toxicology 

of these particles and their potential hazard to human health is still in its infancy [7]. 

Nanotoxicology is the study of the potential adverse effect of the nanoparticles (NPs) on living 

organisms and ecosystems. The roots of the existing science of nanotoxicology can be found 

from a diversity of origins (Figure.1) [3, 8]. The fate of nanoparticles needs to be understood 

with the consideration of the toxicology of metal fumes, radionuclides, nuisance dusts, the 

toxicology of silica, asbestos and synthetic vitreous fibres and,  more recently, from the 

toxicology of air pollution particles (PM10=particles below 10 µm). In addition to this, 

virology and other sciences have contributed to our understanding [9]. 
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Figure 1. Basis of nanotoxicology. Adapted from [9]. 
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There are many variables to consider when working with nanomedicine, including, 

but not limited to: material, size, shape, surface, charge, coating, dispersion, agglomeration, 

aggregation and concentration [7]. A detailed assessment is outside the scope of this thesis, 

however, excellent articles have been published regarding the physiochemical characterization 

of nanotechnology [10-12]. 

1.2.The Lungs: 

1.2.1. Anatomy and Physiology of the Lungs: 

The respiratory and circulatory systems work together to deliver oxygen and return carbon 

dioxide to the lungs. The conducting airways contain regions that do not undergo gaseous 

exchange and starts with the trachea (Table 2). The trachea divides into two main bronchi 

which separates into a sequence of intra- pulmonary bronchial and bronchiolar airways. 

Peripheral airways are followed by the respiratory bronchioles and the terminal parts of bronchi 

are the thin walled alveoli, where gas exchange occurs. The entire respiratory tree is lined by a 

continuous layer of epithelial cells which are essential to sustain the normal functions of the 

respiratory system. These include creating a barrier to various insults, driving mucociliary 

clearance and secreting protective substances (e.g. surfactant proteins, mucus and 

antimicrobial peptides). The pulmonary epithelial cells have the ability to repair, regenerate and 

modulate the response of other airway components. The conducting zone is a pseudo-stratified, 

columnar epithelium composed of secretory goblet cells, basal cells and ciliated cells that 

afford the mechanisms for mucocilary clearance. The respiratory zone contains alveolar type I 

and II cells which make up the alveolar epithelium. Only 5% of the internal lung surface is built 

by alveolar type I cells, which perform the role of gas exchange. The first line of 

physicochemical defence in the lung is the airway epithelial cells; this defence includes 

mucociliary clearance, secretion of ions, regulation of the airway surface liquid water content 

(dysregulation decreases defence against infections), and the production of anti-inflammatory, 

antibacterial and antioxidant molecules in the mucus. The second line of physicochemical 
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defence is by inter-cellular tight junctions that create a competent physical barrier against 

inhaled pathogens or noxious agent intrusions. Tight junctions are important to regulate the 

flow of molecules between the apical and basolateral compartments, regulating ion and 

solute homeostasis, controlling airway surface  liquid  height  and  ionic  composition  

necessary  for  lung  defence  [13].  The size-dependent regional deposition of micro- and 

nanoparticles in the lungs are summarized in table 3. 
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Table 2. Anatomy and structure of the human respiratory system. Adapted from [13]. 
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Table 3: the size dependent regional deposition of micro- and nanoparticles in the lungs. 

Airway Region Diameter of Airway Deposited Particle Size 

Trachea 1.7 cm 2-16 µm 

Bronchi  

8-13 generations 

2-8 mm 2-16 µm 

Bronchioles 

3-10 generations 

0.5-2 mm 2-16 µm 

Terminal Bronchioles 

1 generation 

0.6 mm 2-16 µm 

Respiratory Bronchioles 

3-5 generations 

0.5 mm < 2 µm 

Alveolar Ducts 

2-3 generations 

0.3- 0.5 µm < 2 µm 

Alveolar Sacs  

300-600 million 

250- 300 µm < 2 µm 

 

Consequently nanoparticles of 100- 200 nm would be deposited as far as the alveoli. Data taken from [14]. 
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1.2.2. The Mucus Layer: 

Mucus cannot be considered as simple because it is a heterogeneous hydrogel with 

properties of both a gel and a viscous liquid. The mucus layer is the thinnest in the eye (0.2-1.0 

µm) and thickest in the colon (800µm). Mucus consists of 95% of water and the major gel 

forming components, mucins (~5%). Mucus also contains other components such as IgA, actin, 

DNA, protein, and lipid. There are three subgroups of mucins: membrane bound, secreted 

soluble and secreted gel forming. They are commonly large molecular weight glycoproteins 

ranging from 200,000 to 3 million Daltons. They are synthesized as a protein core backbone 

with a region rich in serine, threonine and proline (STP). 50-90% of the accounted molecular 

weight of mucins are carbohydrates. They are joined to the protein core by N- acetyl 

galactosamine which is joined to the hydroxyl amino acids serine or threonine. The extent 

of the carbohydrate chains may vary from 1 to 20 residues and the other sugars are fucose, 

galactose, N-acetyl glucosamine and sialic acid. Furthermore, mucins also have N- 

glycosylation by links to asparagine. Therefore, mucins will be negatively charged at 

physiological pH due to the sialic acid content and ester sulphation. Mucins also consists of 

areas of the protein core which are globular and have little or no glycosylation. Membrane 

bound mucins contain sea urchin sperm protein enterokinase and agrin module (SEA domains) 

which are potential cleavage sites. Consequently, membrane bound mucins may be released 

from the cell membrane by proteolytic action. In addition, membrane bound mucins consist of 

a transmembrane domain and a small cytoplasmic tail containing tyrosine, serine and threonine 

residues that can be phosphorylated, indicating a signaling function. The N and C-terminals of 

the gel forming mucins are comprised of globular domains homologous with the B, C and 

cysteine rich D domains of von Willebrand factor [15]. Mucus gels can be reformed in vitro 

with gradual concentrations of the component mucins. Irreversible gel formation occurs at 

around 20mg/ml (in vivo mucin content of mucus gels is 30-50mg/ml). Gel forming mucins 

have a polymeric structure based on disulphide bridges. This polymeric structure is essential 
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for gel formation as depolymerised mucins will not form a gel. The gel properties of mucus 

gels can be characterised using a rheometer measuring G’ (Pa) elastic modulus, G’’ (Pa) loss 

modulus and the phase angle (δ). Mucus gels contain pores which vary in reported sizes of 

40nm-1µm based on methods such as particle tracking, atomic force microscopy, transwell 

diffusion and fluorescent recovery after photobleaching [16-19]. 

1.2.3. Cell Culture: 

Although exposure to and the delivery of nanoparticles is growing, there is no 

clear regulatory guidelines on testing and evaluating nanoparticles [1]. If all nanoparticles 

were investigated in animals – taking into account manipulations in composition, size, 

routes of exposure and so on – then massive numbers of animals would be required to 

comprehensively assess the effects of these materials [20]. Furthermore, scientists usually 

work within the three R's principles of ‘Reduction, Refinement and Replacement’ in animal 

experimentation [13]. Therefore, a major aim of the researcher is to establish and develop in 

vitro/in vivo systems to represent and show any toxic effects of nanoparticles in humans [20]. 

1.2.4. Cell Models: 

There are many advantages and disadvantages of using cell culture (Table 4). It should 

be noted that the correct choice of a cell system in vitro should be based on a working 

hypothesis [21]. For instance, Soto et al. (2007) demonstrated that the human alveolar 

macrophage (THB-1) cell line generally had very similar responses to a murine macrophage 

cell line, but inorganic nanoparticles were shown to be more toxic to the human lung epithelial 

cell line derived from a cancer cell (A549) [22]. It has been suggested that the usage of cancer 

cells should be minimized because this model may produce abnormal results [23]. Another 

consideration in lung deposition for nanoparticles is size, as smaller nanoparticles means they 

will penetrate deep into the lung [21]. In addition to that, it has been suggested that certain 

historical cell lines may be not the cell originally reported [13]. For example, an investigation 

by Drexler et al. (2003) demonstrated that over 500 reported human leukemia-lymphoma cell 

http://www.sciencedirect.com.libproxy.ncl.ac.uk/science/article/pii/S0300483X10001770#bib11
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lines had been misidentified by as much as 15% [24]. Another consideration is that the response 

of immortalised and primary cells to the same drug may be clearly different [13]. For instance, 

Wilkinson et al. (2011) demonstrated that human primary bronchial epithelial cells (PBEC) 

are more likely to internalize Palladium nanoparticles (Pd-NPs) and are also more vulnerable to 

cell death induction at higher doses of Pd-NPs compared to A549 cells. Therefore, using 

primary cells may be considered as the gold standard [25]. In vitro cell cultures of human 

bronchial epithelium may be sourced from primary cells obtained as (i) medical waste from 

lung resections and patient donations (includes post-mortem samples) or (ii) cell lines 

generated from cancerous tissues and (iii) primary cells transformed by viruses [13]. 



12  

Table 4. The advantage and disadvantage of cell cultures 
 

Advantages Disadvantages 

Efficiency, rapidity and cost-effectiveness. Limited to acute toxicity 

Identification of primary effects on target cells 

in the absence of secondary effects caused by 

cytokines. 

The time between exposure and the measurement 
of the subsequent biological effects. 

Identification of primary mechanisms of  
toxicity in the absence of the physiological  
and compensatory factors. 

The induction of genotoxicity can only be 
measured by post-exposure incubation of the 
challenged cells for different durations. 

Commercial cell cultures can be contaminated or 
no longer reliably represent the cell phenotype 
claimed. 

 

Adapted from [1, 20, 21, 26]. 
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1.2.5. Primary Bronchial Epithelial Cell Cultures: 

Forest et al. 2005 established primary bronchial epithelial cell cultures (PBEC) from 

lung allografts. In their study, PBECs were grown to confluence from 12 out of 33 (39%) 

brushings [27]. In another study, Brodlie et al. 2010 established PBECs from people’s lungs 

with cystic fibrosis – a chronic condition caused by abnormalities in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene. PBECs were grown to confluence from 

15 of 22 patients. In addition to that, they reported that the PBECs remained viable after storage 

in liquid nitrogen [28]. The unsuccessful cultures failed due to early infection with 

bacteria/fungi. Considering these two studies, we established a program to culture PBECs 

from lungs at the largest lung transplantation centre in the United Kingdom (UK) [27, 28]. 

The experience indicates that PBEC culture, though demanding, is possible even in patient 

groups where there is a high background rate of lung infection. 

1.2.6. Calu-3: 

Calu-3 is a lung adenocarcinoma cell line derived from a 25-year old Caucasian male. 

Calu-3 cells have been the subject of a large number of investigations, including tight barrier 

properties in electrophysiological studies and metabolic processes [29]. This cell line is 

immortalised, forms confluent mono-layers, develops cilia, and expresses mucin genes, 

particularly MUC5AC [13, 30]. Calu-3 cells have been used widely to study toxicology of 

nanoparticles for drug delivery [31-37]. 

1.2.7. Laboratory Considerations for Studying Cellular Nanotoxicology in lungs Vitro: 

There is a critical requirement for standardization of the protocols used with 

nanotoxicology to improve the comparison of generated data and to develop our understanding 

in nanotoxicology. For each type of nanoparticle, the concentration range and incubation times 

should be defined and should be the same for all studies. Cell viability is a general term and can 

be assessed using several assays that determine one or more cellular parameters such as: (1) 3-
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[4,5-dimethylthiazol-2-yl]-2,5- diphenyl tetrazolium bromide (MTT) assays (mitochondrial 

activity), (2) lactate dehydrogenase (LDH, cytosolic enzyme activity), trypan blue or 

propidium iodine assays (cell membrane permeability), (3) calcein AM (intracellular esterase 

activity), and (4) fluorescent Annexin V or caspase substrates (apoptosis indicators) [23]. 

These review articles [26, 38-41] deal with the subject in more detail. As they measure different 

parameters, the results from one assay cannot be compared directly with those of another [23]. 

In choosing an assay, all potential interfering factors must be considered to avoid obtaining 

false-positive or false-negative results. To avoid misinterpreting the results, cytotoxicity data 

should be verified with at least two or more independent tests [41]. It has been suggested to first 

test nanoparticles at a minimum of three different concentrations (low, middle, and high) 

based on doses required in vivo. Another consideration is interference with the assay used. 

Therefore, proper controls should also be carried out to confirm the results [42]. One method 

to reduce interference is to wash the cells with PBS after incubation with the NPs but prior to 

applying the cytotoxicity assay [43, 44]. Another method to avoid interference from 

nanoparticles is to centrifuge the plates [20, 45]. A further problem with nanotoxicology is 

agglomeration of nanoparticles in the culture media. It has been suggested that 5 minutes 

sonication with short times of vortexing is able to overcome this issue [20]. Moreover, multiple 

cell types should be included in models to generate data which is more representative for in vivo 

studies [23]. Another problem is the current deficiency of understanding between cell assays 

of nanoparticles in serum containing media versus those in serum free media. Serum free 

media is frequently employed to avoid the complication of protein particle interactions in the 

media [26], but this may not be the most physiologically accurate. As well as acute 

cytotoxicity, nanoparticles can interact with biological components in many ways; therefore, 

critical parameters must be selected, e.g. inflammation [23]. In addition to that, Geys et al. 

(2010) proposed the following consideration when publishing nanotoxicity studies: (1) a 

detailed explanation of the study design should include initial cell seeding density and 
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incubation time, and the dispersion medium (e.g. dispersion of the NPs, dilution steps, 

handling, vortexing, sonication time and so on), (2) metrics used for particle exposure should 

include volume and growing area (surface area) of the wells or cells, (3) state the cell type in 

the study as actively dividing or fully differentiated cells, and (4) nanoparticles should be 

suspended in physiologically relevant solutions [46]. 

1.3.The Oxidative Stress Model: 

Nanoparticles can cause the formation of pro-oxidants which disrupt the balance 

between the biological system's ability to produce and detoxify reactive oxygen species (ROS). 

ROS include free radicals such as the superoxide anion (O2•−), hydroxyl radicals (.OH), nitric 

oxide (NO), and the non-radical hydrogen peroxide (H2O2). They are always produced in cells 

under normal conditions as a result of aerobic respiration. When cells are exposed to any 

foreign body, this may results in the production of ROS and this is a useful and physiological 

response to infection and is part of “innate immunity”. Due to the highly chemical reactive 

nature of ROS, they can react with DNA, proteins, carbohydrates and lipids in a destructive 

manner causing cell death either by apoptosis or necrosis [1]; this shows poetential detrimental 

effect of ROS. The ability to characterize the effects of ROS, therefore, has a wide range of 

applications which include the potential for nanoparticles to cause ROS related damage. Nel 

et al. (2006) have categorized oxidative stress models as methods for evaluating a wide range 

of cellular injury responses when screening systems for nanoparticles toxicity (Figure 2). 

Firstly, tier 1 (lowest level of oxidative stress) represents the induction of antioxidant and 

protective responses which are mediated by the transcription factor, Nrf2. Nrf-2 activates the 

promoters of phase II genes via an antioxidant response element (ARE). This factor 

regulates the activation of the antioxidant response element in the promoters of phase II 

genes. Secondly, tier 2 (a higher level of oxidative stress) involves the protective response that 

might cause pro-inflammatory responses. Inflammation is initiated through the activation of 
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pro-inflammatory signalling cascades [e.g., mitogen-activated protein kinase (MAPK) and 

nuclear factor kB (NF- kB) cascades], whereas programmed cell death could result from 

mitochondrial perturbation and the release of proapoptotic factors. Finally, tier 3 (the highest 

level of oxidative stress) is indicated as damage of the mitochondrial inner membrane 

electron transfer chain and the open/closed status of the permeability transition pore which 

can trigger cellular apoptosis and cytotoxicity [47, 48]. 
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Figure 2. : An oxidative stress model. At a lower level of oxidative stress (tier 1), transcriptional 

activation of the antioxidant response element induces phase II antioxidant enzymes. At an 

intermediate level of oxidative stress (tier 2), pro-inflammatory responses are induced by 

activation of the MAPK and NF-ĸB cascades. At a high level of oxidative stress (tier 3), 

perturbation of the mitochondrial PT pore and disruption of electron transfer causes cellular 

apoptosis or necrosis. N/A means not applicable. Adapted from [47]. 
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1.4.Nanoparticles and Drug Delivery: 

1.4.1.The Route of Delivery: 

The major goal of designing NPs for drug delivery is to improve drug accumulation at the 

targeted disease site. Drugs can be given through different administration routes, including 

oral, parenteral, topical, ocular, pulmonary and nasal inhalation (Figure 3). The principal 

challenge in designing NPs for drug delivery is the necessity to know which route of 

administration will lead to the best accumulation at the target site. NPs drug based therapy is used 

to deliver drugs by traditional oral and/or topical routes. An example is 5 fluorouracil (5 FU) 

loaded within poly DL lactide co glycolide (PLGA) NPs, which has been developed for topical 

delivery. The main barrier for NPs in the subcutaneous route are the keratinous layer of the 

skin and the chemically  harsh  environment  in  the  intestinal  lumen  (digestive  enzymes  and  

diverse, fluctuating pH levels in the stomach, duodenum and small intestine). There are 

commonly three layers of topical/skin penetration: the epidermis (composed of stratum corneum 

(SC), lucidum, granulosum, spinosum, and basale from outermost to innermost), the dermis 

(a system of capillaries, nerves and epidermal appendages of hair follicles, sebaceous and 

sweat glands), and the hypodermis (including a layer of fat). Drugs mostly enter by transcytosis 

and adsorption mechanisms upon surface administration. The SC layer of the epidermis is regarded 

as being the main challenge for NPs because it contains a hydrophobic structure of several 

layers (10–20 µm) with non-living corneocytes (or bundles of keratin) surrounded by lipid 

bilayers. Chemical penetration enhancers (e.g., Monoolein) are used to stimulate drug diffusion 

and solubility within this skin layer. Therefore, disturbance of the lipid bilayers in the SC region is 

primarily utilised to improve permeation of the drug via the skin. On the other hand, 

hydrophobic encapsulation is ideal for lipophobic or hydrophilic drugs. Under the SC layer, the 

viable epidermis (50–100 µm) and the dermis (1–2 mm) form an immunological obstacle for 

foreign materials, since these layers are immunologically active regions as a result of the 
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existence of Langerhans and dendritic cells. Nevertheless, the coating of nanocarriers with 

polyethylene glycol (PEG) coating allows them to escape and avoid macrophage removal as 

well as improving their hydrophobicity, consequently helping NPs penetration through the SC 

layer. When drugs penetrate the dermis layer of the skin, they could be directed to the systemic 

circulation via the blood vessels of the dermis where they encounter the next obstacle –  the 

blood components [49]. 

    For orally administered NPs and drugs, the main challenge is the mucus layer in the 

intestine [49]. The mucus layer is an important component of the physical barrier and is made by 

a glycoprotein, mucin. Mucin comprises a glycosylated peptide backbone that generates an very 

viscous mucus layer effective at preventing pathogen penetration [50]. Furthermore, hydrated 

mucins act as a charge selective diffusion barrier. Components (cells, bacteria, lipid, salt, 

protein, macromolecules, and cellular debris) present in the mucus gel act to obstruct NP 

transportation. The morphological and physicochemical obstacles of the GI tract must be taken 

into account when designing orally administered NPs. The main problems include the proteolytic 

enzymes in the gut (pepsin, trypsin, and chymotrypsin), the brush border membrane enzymes 

(endopeptidases), bacterial gut flora, and the epithelial layer itself. Therefore, orally administered 

drugs need to be loaded in a colloidal carrier system, stimulating and extending the interaction 

between the drug delivery system and epithelial layer existing in the GI tract. For example, 

chitosan colloidal nanoparticles have been used to deliver drugs to the GI tract due to their 

exceptional solubility and muco-adhesive properties at acidic pH. These are insoluble at neutral 

pH while they become positively charged and soluble at acidic pH. This helps the muco-

adhesiveness and dissolution of chitosan colloidal nanoparticles in the acidic portions of the GI 

tract [49]. 

Due to the complications associated with orally administrated drugs, the parenteral route 

has been investigated to facilitate drug delivery directly to the systemic circulation, avoiding the 

intestinal or SC route. There are  three  categories  in  the  parenteral  route: intravenous  (vein  
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lumen),  intramuscular  (large  muscle  such  as  deltoid  and  triceps),  and subcutaneous (such 

as tissue under the skin). A range of NPs have been used in the parenteral routes, such as 

nanospheres, liposomes, niosomes and solid lipid NPs. For example, liposomes are an aqueous 

volume surrounded by lipid membranes, this facilitates drug delivery to the target site, in a 

nontoxic and rapid way. However, they have stability problems as they are susceptible to 

physical and chemical degradation. Thus, niosomes are used instead as they have vesicles 

consisting of non-ionic surfactant such as tweens, and have been studied to solve the problem of 

stability [49]. 

The injection of nanoparticles directly into the systemic circulation evades the problem of 

the skin and mucus barriers as well as helping in gaining access to some varieties of cancers; such 

as leukemia and breast cancer. The problem of this type of administration is that NPs interact with 

the plasma proteins and other blood components which reduces the chance of NPs reaching 

their target tissues. Opsonisation is a central controlling factor in the circulation, where the 

opsonins (e.g., complement proteins, albumin, fibrinogen, etc.) adsorb onto the surface of 

NPs. This renders the NPs noticeable to the mononuclear phagocyte system (MPS) (including 

blood monocytes and macrophages) of the immune system. The system generally works as a 

hunter to destroy any foreign particles in the human body. The immunological reactions 

produced by the MPS system, as well as the action of other plasma proteins (e.g., albumin 

and β-globulin) may weaken NPs and cause the premature release of the encapsulated drug [49]. 

The administration of NPs/drug by the pulmonary route (i.e., aerosol inhalation and intra- 

tracheal instillation) is being actively studied in respiratory illnesses (such as lung cancer, 

asthma and chronic obstructive pulmonary disorder). It is potentially the best method of drug 

delivery for respiratory illnesses because this route results in drug delivery straight into the 

lung alveoli, an environment that may not interfere with NP stability and which may have a 

less toxic effect. Nevertheless, the size of the NPs may affect their absorption efficiency in lung 

alveoli. The size range of ~50–200 nm is preferred for maximized drug localization upon 
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administration by inhalation. Besides the mucociliary (surface) and the macrophagic (on route) 

obstacles, there are further cellular obstacles in the lungs that challenge the internalization of 

particles (particularly hydrophilic NPs) through the cellular membrane via endocytosis. There 

are  five  mechanisms  controlling  the  uptake  of  NPs  in  the  lung  alveoli:  phagocytosis, 

macropinocytosis, clathrin-mediated, caveolin-mediated, and clathrin/caveolin-mediated 

endocytosis [49].  

To enter the central nervous system (CNS), the key restrictions for drugs to reach the 

brain are the sensitivity of the brain and blood brain barrier (BBB). This barrier severely limits 

the drug or nanocarrier delivery, both physically (endothelial tight junctions) and metabolically 

(enzymes). To bypass the highly selective boundary of the BBB, NPs need to have the features 

of high lipophilicity and a molecular weight˂500Da. It has been discovered that surface-charged 

and targeted molecule-loaded polymeric nanoparticles allow quick transcytosis by the brain 

capillary walls as a result of improved absorption into endothelial cells [49].  

Other, less used, methods of nano-drug administration are through the intranasal and 

the ocular route. The intranasal route is used to achieve rapid drug action avoiding the problem 

of degradation of labile drugs in the GI tract or inadequate transport through the epithelial cell 

layers. The hydrophilic coating of nanoparticles help in delivering the drugs through interaction 

with the nasal mucosa [49].
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Figure 3: (a) Routes of nano-drug administration (b) and various barriers faced by nanoparticles 

before they reach their respective targeted tumour site. Adapted from [49]. 
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1.4.2.Factors Affecting Drug Delivery with Nanoparticles: the Role of Particles Size and 

Shape: 

Particle size and size distribution are the most vital characteristics of nanoparticles 

which determines the in vivo distribution, biological fate, toxicity, and targeting ability of these 

delivery systems. Furthermore, size and size distribution can affect drug loading, drug release, 

and stability of nanoparticles. In general, NPs have shown greater cellular uptake compared to 

microparticles. Nanoparticles are suitable for a varied choice of cellular and intracellular targets 

because of their small size and mobility [51]. It has been shown that 100nm NPs had a 2.5- 

times greater uptake rate than 1µm microparticles, and a 6 times greater uptake than 10µm 

microparticles by Caco-2 cells [52]. In another study, NPs were revealed to penetrate into the 

submucosal layers of a rat intestinal loop model, whereas microparticles were mostly localized 

in the epithelial lining [53]. Dunn et al. (1997) prepared biodegradable poly (lactide-co- 

glycolide) (PLGA) nanosphere surface modified by the adsorption of poloxamers and 

poloxamines in the size range 80–150 nm. They found that PLGA nanospheres coated with 

poloxamer  or  poloxamine  showed  extended  blood  circulation  times  accompanied  by  a 

combined decrease in liver and spleen accumulation after intravenous injection in the rat. 

They also showed that 39% and 28% of the administered dose of poloxamer and poloxamine-

coated PLGA nanospheres remained in blood circulation three hours post intravenous 

injection [54]. Gaur et al. (2000) prepared hydrogel nanoparticles of polyvinylpyrrolidone of a 

size less than 100 nm diameter with a precise size distribution. They demonstrated that 

biodistribution of these particles showed minor (<1%) uptake by the macrophages in the liver 

and spleen, and ∼5–10% of these particles remained in circulation even 8 h after intravenous 

administration [55]. Liu et al. (2016) produced a novel gene carrier by binding low molecular 

weight chitosan with TAT (transactivator of transcription) peptide and LHRH (luteinizing 

hormone-releasing hormone). With the resultant TAT-LHRH-chitosan conjugate (TLC), they 
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studied the in vivo distribution of TLC/DNA NPs (TLCDNPs) in nude mice with subcutaneous 

hepatoma xenografts.  They found that TLCDNPs delayed renal clearance of  DNA and extended 

its time in the circulation compared to CS/DNA complexes (CDNPs) and naked DNA.  

However, it did not show improved build-up of DNA in the hepatoma xenografts [56]. Kumar 

et al. (2010) investigated multi modal orgranically modified silica (ORMOSIL) NPs 

(diameters of 20-25nm) and demonstrated that these NPs slowly clear out of the animal body 

by hepatobiliary excretion, without causing any clear toxicity and tissue damage [57]. Huang 

et al. (2011) studied the effect of shapes in fluorescent mesoporous silica NPs. They found that 

short rod NPs are easily trapped in the liver, while long rod NPs accumulate in the spleen. They 

also demonstrated that these NPs are mainly excreted in urine and faeces. The clearance rate 

of these NPs is mainly dependent on their shape as short rod NPs have a more rapid clearance rate 

than long rod NPs in urine and faeces [58]. It was shown that NPs can be also utilised in 

delivering therapeutic agents to try and treat diseases such as brain tumors since they can cross 

BBB by opening tight junctions through the action of hyper-osmotic mannitol. Tween-80 

coated nanoparticles have also been reported to cross the blood-brain barrier. Drug release is 

also affected by particle size, in which smaller particles have an overall larger surface area, 

consequently, much of the related drug may be at or closer to the surface of the particle, 

resulting in quick drug release. On the other hand, large size particles have big cores, allowing a 

larger quantity of drug to be packed in allowing the contents to slowly diffuse out [59]. In 

addition to the size of NPs, their hydrophobicity controls the level of blood components that 

bind to their surface; therefore, hydrophobicity influences the in vivo fate of NPs. Certainly, 

NPs with an unmodified surface are rapidly opsonized and quickly cleared by the 

mononuclear phagocyte system (MPS) once they are in the blood stream. It is important to 

reduce the opsonisation and extend the circulation of NPs in vivo to maximise their ability to 

target and deliver the drug. This can be accomplished by coating NPs with hydrophilic 

polymers/surfactants or formulating NPs with biodegradable copolymers with hydrophilic 
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characteristics such as polyethylene glycol (PEG), polyethylene oxide, polyoxamer, 

poloxamine and polysorbate 80 (tween 80) [51]. 

Cellular  internalization  or  uptake  is  the  essential  physicochemical  criteria  to  be 

achieved before in vivo application. Endocytosis is the main mechanism by which cells take up 

small molecules. Endocytosis is a bulk active transport process where the lipid bilayer wraps 

to form essential vesicles, consuming energy in the form of ATP. Phagocytosis and pinocytosis 

are the two main endocytosis mechanisms. Phagocytic cells such as macrophages, neutrophils 

and dendritic cells, mediate cellular internalization by surrounding large particles (>1μm). 

Adsorption or receptor dependent internalization is the key mechanism of pinocytosis, which is 

primarily associated with particle uptake by the cells via different pathways, for example, macro-

pinocytosis, clathrin mediated, caveolin dependent or independent pinocytosis. The size and 

surface charge of polymeric NPs are probably the primary physicochemical variables, which 

affect the endocytosis dependent, cellular uptake. Moreover, a positive charge on the surface 

of polymeric NPs might enhance further cellular attachment, initiating higher uptake either by 

endocytosis or by direct penetration. Cationic surfaces of polymeric NPs bind with anionic 

terminals of phospholipid, proteins and glycans on the cell surface [60]. Bhattacharjee et al. 

(2012) investigated the effects of size and surface charge of fluorescent, monodisperse tri-

block co-polymeric NPs based on cellular uptake via different endocytotic pathways. They 

found that positive, smaller NPs (45nm) showed a higher cytotoxicity compared to the positive, 

bigger NPs (90nm). They also showed the involvement of size and charge in cellular uptake of 

NPs by clathrin (for positive NPs), caveolin (for negative NPs), and mannose receptors (for 

hydroxylated NPs) with smaller NPs. This is because smaller NPs have stronger interactions 

with the receptors than bigger NPs [61]. 
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It has been suggested that NPs with a diameter of less than 100nm are considered best 

for tumor targeting via a leaky vasculature. NPs have to avoid the reticulo-endothelial system and 

escape early clearance by the spleen and liver to reach the targeted disease sites. The size of the 

particles might play a vital role in build up at diseased sites. The NPs used in nanomedicine 

typically range from 20 to 200 nm. NPs larger than 200 nm are automatically cleared by the 

spleen, whereas those smaller than 100 nm leave the blood vessels via openings in the 

endothelial lining [62]. 

1.4.3.The Concept of a Magic Bullet in Nanoparticles Drug Delivery: 

In 1900, Paul  Ehrlich theorized  the ‘‘side-chain  theory of  immunity,” later replacing ‘‘side-

chain” with ‘‘receptor.” This developed into the ‘‘magic bullet” idea of drugs being selective and 

effective for their chosen cell targets. This has led to the development of many choices  of  

molecules,  such  as  chemotherapeutic  drugs  and  tumour  specific  monoclonal antibodies with 

variable target specificity [63].Conceptually, “the magic bullet” may be able to bind selectively 

to specific types of cells. Due to this selective binding, the therapeutic effects of a drug occur at 

therapeutic sites and do not cause toxic side effects at non-therapeutic sites. This is accomplished 

by a carrier which has a precise affinity to specific organs, tissues, or cells [64]. 

Nanotechnology offers an innovative chance to represent this ‘‘magic bullet”, as seen in its use 

for the delivery of target-specific cytotoxic drugs, radionuclides and gene-silencing 

oligonucleotides as effective payloads to the tumour site [63]. It is commonly acknowledged 

that nano-sized carriers are a necessity for effective drug targeting. Carrier systems of 200nm 

diameter or less are used for drug targeting because carrier systems larger than 400nm in diameter 

have been shown to be quickly and easily captured by the reticuloendothelial systems. For 

example, big carrier systems cannot circulate in the bloodstream for a sufficient time to deliver 

efficient quantities to therapeutic targets [64]. There are several classification of drug delivery 

targeting. These include passive, active, or physical. These can target organs, cells and 

organelles. In passive targeting nanocarrier systems, drugs delivered intravenously have a 
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tendency to uniformly diffuse in the body. On the other hand, tumour cells may be able to 

take up particles of a definite size preferentially compared with healthy cells because of a 

combination of permeable tumour blood vessels and defective particle screening.  This can be 

identified as the enhanced permeation and retention (EPR) effect which is the mechanism behind 

passive targeting. It has been demonstrated that PEGylated NPs smaller than 100nm have 

reduced plasma protein adsorption on their surface and reduced hepatic filtration. NPs with a 

negatively charged surface will circulate longer in blood; however, NPs with a positive charged 

are more readily taken up by cancer cells as they have a negative surface charge [65]. 

In active targeting, ligands are bound to the NPs surface to enhance their uptake 

selectivity. These ligands can interact with target cells and can protect NPs from enzyme 

damage, increasing delivery efficacy. A simple form of active targeting contains a 

functionalizing NP with a ligand that binds to a molecule overexpressed on cancer cells. The 

problem with this is that healthy cells still express the same molecule, and as healthy cells 

significantly out number tumour cells, most of the NPs fail to get to their target. This concern 

can be moderated by using multiple ligands, or by using ligands of diverse types [65]. The 

methodology of active targeting is designed to raise interactions between NPs and cells and 

enhance internalization of drugs without changing the total biodistribution. There are several 

factors affecting the active targeting strategy. These include NP architecture, the ligand 

conjugating chemistry, the types of ligand available, administration route, non-specific binding 

of proteins during the NP’s journey through the bloodstream, physicochemical properties, and the 

choice of the targeting ligand. The interactions of ligand-functionalized NP systems with their 

target antigen are improved by the multivalent nature of the NP architecture and several copies of 

the ligand increase the avidity of the NP for its target. Actively-targeted NPs need to be in cloase 

proximity to their target antigen to identify and interact with it. That fundamental characteristic 

is revealed as a key test to the development of actively-targeted NPs [66]. 

With the aim of delivering satisfactory concentrations of systemically administered 
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therapeutics to target tissues, NPs need to circulate in the blood stream for as long as possible. On 

the other hand, proteins and peptides are quickly degraded and cleared from the blood stream, 

requiring methods for increasing circulation time. PEG is the typically the polymer used in the 

drug delivery field, as a result of its long history of safety in humans and classification as 

Generally Regarded As Safe (GRAS) by the FDA. The success of protein PEGylation as an 

approach for making longer circulating and, therefore, more effective intravenous therapies led 

to research of NP PEGylation for systemic uses in the early 80s and 90s [67]. Doxil® was the first 

FDA approved PEGylated NP product in 1995. As a result of its hydrophilic nature, PEG chains 

attached to NPs create a hydrated cloud with a big excluded volume that sterically prevents NPs 

from interacting with nearby NPs and/or blood components [68]. These particles are able to avoid 

clearance by cells of the MPS, therefore, increasing both circulation times and drug uptake by 

target cells. Therefore, these permitted NP carriers persist in the bloodstream to reach or 

recognize their therapeutic site of action [69]. Semete et al. (2012) investigate the effect of 

surface coating PLGA NPs with different concentration of polymeric surfactant (PEG and 

Pluronics F127). They demonstrated that the percentage of PEG and Pluronics coating particles 

detected in plasma was higher than that of uncoated particles, showing that systemic circulation 

time can also be increased with oral formulations [70]. Nissinen et al. (2016) developed a 

specific dual PEGylation (DPEG) for mesoporous silica and found that DPEG coating increased 

the circulation half-life from 1 to 241 minutes [71]. Saneja et al. (2017) developed betulinic 

acid (BA) loaded polylactide-co-glycolide- monomethoxy polyethylene glycol nanoparticles 

(PLGA-mPEG NPs) and showed that these NPs can extend the circulation of BA, remarkably 

enhancing its half-life by ~7 times [72]. Oh and Park (2014) showed that cationic gold NPs were 

taken by the cells and retained for a relatively long time, possibly as a result of their intracellular 

agglomeration. However, the PEGylated gold NPs migrated in the cytoplasm in the form of 

individual particles and left the cells quickly as the PEG coating stopped interactions between 

gold NPs and intracellular proteins [73]. 

https://www-sciencedirect-com.libproxy.ncl.ac.uk/topics/pharmacology-toxicology-and-pharmaceutical-science/nanoparticle
https://www-sciencedirect-com.libproxy.ncl.ac.uk/topics/pharmacology-toxicology-and-pharmaceutical-science/nanoparticle
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An alternative methodology to reduce non-specific clearance of NPs is to coat them 

with a biomimetic coating containing cell membranes – derived from erythrocytes or leukocytes – 

in an effort to stimulate self-recognition of the NP. This self-recognition approach depends on the 

interactions of anti-phagocytic ligands; one of which is mediated through CD47–SIRP/ (signal-

regulatory protein alpha), sending ‘do not eat me’ signals. Lastly, the extravasation of NPs into 

chosen tissues may also be effected by the margination effect, in which small spherical NPs 

cross the circulation by accumulating within the centre of the blood vessel, regulating their 

contact with endothelial surfaces [67]. 

1.4.4.Nanoparticles in the Market and in Clinical Trials: 

Around two thirds of the nanoparticles on the market or in clinical trials are focused on 

oncology nanomedicine therapeutics [74]. The benefit of using NPs in drug delivery for cancer 

cells is the ability to target delivery to the tumour and their capacity to hold thousands of drug 

molecules, as well as their capability to overcome solubility, stability and resistance issues [75]. 

Liposomal doxorubicin (Doxil™/Caelyx™) was the first anti-cancer nanomedicine accepted by 

the FDA in 1995 to exploit the improved permeability and retention (EPR) effect. Further 

nanomedicines accepted for clinical use in cancer treatment include: Myocet™, 

DaunoXome™, Depocyt™, Abraxane™, Genexol- PM™ and Onivyde™. Nanoparticles used in 

cancer therapeutics can be generally divided into five central types: liposomes, polymeric 

conjugates, polymeric nanoparticles, polymeric micelles and others. Most of the approved 

nanoparticles drugs have been designed to exploit the idea of the EPR effect with a lesser  

subcategory of  nanomedicines  developed  by  modifying  nanomedicine  behaviour  with 

additional ligand-mediated targeting (e.g., BIND-014 (BIND Therapeutics;) and MM-302 

(Merrimack Pharmaceuticals)). Generally, EPR-based therapeutics are intended to increase 

efficiency and tolerability by altering the pharmacokinetics and bio-distribution of the drug. 

They  can  produce  sustained  exposure  of  therapeutic  levels  of  drug  at  the  target.  By 

Accomplishing the ‘right target’ and ‘right exposure’, some nanomedicines have a considerably 
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improved therapeutic index  compared to current  therapy and supports a new innovative 

treatment approach (e.g., AZD2811 nanoparticle (AstraZeneca)) [74]. There are several 

investigations into the delivery of siRNA or mRNA in NPs for therapeutic uses and most of these 

systems are liposome based.  For example, SGT-53 has restored function of the human suppressor 

gene p53 by delivering a plasmid containing the wildtype p53 sequence. The potential 

consequences of this technology are huge because p53 dysfunction is a common feature in 

cancers. Furthermore, there are several research groups focusing on encapsulating and 

delivering chemotherapeutics in NPs, mostly liposomes.  For instance, VYEXOS/ CPX-351 is 

a combination therapy, a synergistic combination of two anticancer drugs (cytarabine and 

daunorubicin). Other systems used polymeric or micelle formulations of established 

chemotherapeutics and treatments. For instance, there are diverse paclitaxel or docetaxel 

micelle formulations currently in clinical trials. A number of other nanoparticle cancer 

therapies are aimed to treat cancer in non-standard methods. JVRS-100 is a cationic liposome 

incorporating noncoding plasmid DNA to stimulate the immune system to fight against the 

host’s cancer. Stimulation of the immune system is through the CpG motifs contained in the 

DNA, in combination with the adjuvant effects from the liposome [76]. The safety and toxicity of 

these products needs to be well understood before marketing can occur to avoid any unknown side 

effects. Therefore, investigations must be carried out to understand and predict how NPs will 

disturb or interact with biological systems. This will require the improvement of existing 

assays, or the development of new assays which are not interfered with by the NPs themselves. 

NPs may interact with numerous categories of cells, organs, and tissues on the way from the 

site of administration to the planned target. They can effect coagulation, complement activation, 

immune system compatibility, phagocyte activation, and other unwanted responses [77]. Tables 

5 and 6 show the nanomedicines currently on the market and those currently in development. 
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Table 5: Examples of marketed nanomedicines 

 
Nanoparticle type Drug Product 

name/company 

Indication 

Liposomes Doxorubicin Myocet™/Teva UK Metastatic breast 

cancer 

Doxil™/Janssen Ovarian cancer 

(secondary to 

platinum 

based therapies) 

HIV-associated 

Kaposi’s sarcoma 

(secondary to 

chemotherapy) 

Multiple myeloma 

(secondary) 

Vincristine Marqibo™/Spectrum 

Pharmaceuticals 

Acute lymphoblastic 

leukaemia 

Daunorubicin DaunoXome™/Galen HIV-related Kaposi's 

sarcoma 

Cytarabine Depocyt™/Pacira 

Pharmaceuticals 

Lymphomatous 

meningitis 

Irinotecan Onivyde™/Merrimack 

Pharmaceuticals 

Metastatic pancreatic 

cancer (2nd line) 

Gastric cancer 

Mifamurtide MEPACT/Millennium Treatment for 

osteosarcoma 

(primary 

following surgery 

Polymeric 

conjugates 

Asparaginase Oncaspar™ 

(PEG)/Baxalta 

Acute lymphoblastic 

leukaemia 

Polymeric 

micelles 

Paclitaxel Genexol-

PM™/Samyang 

Biopharmaceuticals 

Breast cancer 

Non-small cell lung 

cancer 

Ovarian cancer 

Other Paclitaxel Abraxane ™/Celgene Advanced breast 

cancer 

Advanced non-small 

cell lung cancer 

Advanced pancreatic 

cancer 

Iron-replacement nanoparticle therapies 

colloid Iron dextran CosmoFer/INFeD/ 

Ferrisat 

(Pharmacosmos) 

Iron deficient anaemia 

DexFerrum/DexIron 

(American Regent 

Iron deficient anaemia 

Iron gluconate Ferrlecit (Sanofi) Iron replacement for 

anaemia treatment 

in patients with 

chronic kidney disease 

Iron sucrose Venofer (American 

Regent) 

Iron replacement for 

anaemia treatment 

in patients with 

chronic kidney disease 
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Iron polyglucose 

sorbitol 

carboxymethylether 

Feraheme (AMAG)/ 

Rienso (Takeda)/ 

Ferumoxytol 

Iron deficiency in 

patients with chronic 

kidney disease 

Iron carboxymaltose Injectafter/Ferinject 

(Vifor) 

Iron deficient anaemia 

10% Iron isomaltoside 

1000 colloid 

Monofer 

(Pharmacosmos 

Treating iron 

deficiency and 

anaemia 

when oral methods do 

not work or 

when iron delivery is 

required 

immediately 

5% Iron isomaltoside 

1000 colloid 

Diafer 

(Pharmacosmos) 

Iron deficient anaemia 

Nanoparticle imaging agents 

colloid Iron dextran Feridex I.V. (AMAG)/ 

Endorem 

Imaging of liver 

lesions 

Iron carboxydextran Resovist (Bayer 

Schering Pharma)/ 

Cliavist 

Imaging of liver 

lesions 

Iron dextran Ferumoxtran-10/ 

Combidex/Sinerem 

(AMAG) 

Imaging lymph node 

metastases 

Nanoparticle vaccines 

Liposome Liposome with 

hepatitis 

A virus 

Epaxal (Crucell) Hepatitis A vaccine 

Liposome with 

trivalent-influenza 

Inflexal V (Crucell) Influenza vaccine 

Particle anesthetics 

Liposomall Liposomal propofol Diprivan Induction and 

maintenance of 

sedation or 

anaesthesia 

Nanoparticles for fungal treatments 

Liposomal Liposomal 

amphotericin B 

AmBisome (Gilead 

Sciences) 

Cryptococcal 

Meningitis in 

HIVinfected 

patients 

Aspergillus, Candida, 

and/or 

Cryptococcus species 

infections 

(secondary) 

Visceral leishmaniasis 

parasite in 

immunocompromised 

patients 

Nanoparticles for macular degeneration 

Liposomal Liposomal verteporfin Visudyne (Bausch and 

Lomb) 

Treatment of 

subfoveal choroidal 

neovascularization 

from age-related 

macular degeneration, 
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pathologic, or 

ocular histoplasmosis 

 
 

Adapted from [74, 76]. 
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Table 6: Examples of nanomedicines in clinical development 

Nanoparti

cle type 

Drug Product name/company Indication Phase 

Cancer therapy 

liposomes Doxorubicin ThermoDox™/Celsion Temperature-

triggered 

doxorubicin 

release: 

Breast cancer 

recurrence at 

chest wall 

(microwave 

hypothermia) 

Hepatocellul

ar carcinoma 

(radiofrequen

cy ablation) 

Liver 

tumours 

(mild 

hypothermia) 

Refractory 

solid 

tumours 

(magnetic 

resonance 

high 

intensity 

focused 

ultrasound) 

Phase I/II 

Phase III 

Phase I 

Phase I 

 

 

 

 

 

 

 

2B3–101/2-BBB Medicines BV Brain 

metastases 

Glioma 

Phase II 

Irinotecan Onivyde™/Merrimack 

Pharmaceuticals 

Gastric 

cancer 

Phase II 

Liposomal 

formulation of 

cytarabine: 

daunorubicin (5:1 

molar ratio) 

VYEXOS CPX-351 (Celator 

Pharmaceuticals) 

leukaemias Phase II 

Phase II 

Phase I 

Phase II 

Phase IV 

Phase III 

 

Cisplatin Lipoplatin/Regulon Non-small 

cell lung 

cancer 

Phase III 

SPI-77/ALZA Pharmaceuticals Ovarian 

cancer 

Phase II 

Aroplatin/Aronex Pharmaceuticals Malignant 

mesotheliom

a 

Phase II 

Oxaliplatin MBP-426/Mebiopharm Gastrointesti

nal 

adenocarcino

ma 

Phase II 
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Paclitaxel LEP—ETU/Insys Breast cancer Phase II 

EndoTAG-1/MediGene Breast cancer Phase II 

PNU-91934/MSKCC Esophageal 

cancer 

Phase II 

 

SN-38 LE-SN38/Neopharm Metastatic 

colorectal 

cancer 

Phase II 

 

Irinotecan: 

Floxuridine 

1:1 ratio 

CPX-1/Celator Colorectal 

cancer 

Phase II 

Pegylated liposomal 

mitomycin-C 

PROMITIL (Lipomedix 

Pharmaceuticals) 

Solid 

tumours 

Phase I 

FUS1 (TUSC2) 

encapsulated 

liposome 

Oncoprex (Genprex) Lung cancer Phase I/II 

Liposomal eribulin 

mesylate 

Halaven E7389-LF (Eisai) Solid 

tumours 

Phase I 

188Re-N,N-bis (2-

mercaptoethyl)-

N0,N0- 

diethylethylenediami

ne pegylated 

liposome 

188Re-BMEDA-liposome Advanced 

solid 

tumours 

Phase I 

Mitoxantrone 

liposome 

Mitoxantrone Hydrochloride 

Liposome (CSPC ZhongQi 

Pharmaceutical Technology) 

Lymphoma 

and breast 

cancer 

Phase I 

Phase II 

Phase I 

Phase II 

Phase II 

Cationic liposome 

incorporating 

plasmid DNA 

complex for immune 

system stimulation 

JVRS-100 Leukemia Phase I 

 

Liposomal curcumin Lipocurc (SignPath Pharma) Solid 

tumours 

Phase I/II 

 

Liposomal 

formulated cisplatin 

with 

specific degradation-

controlled drug 

release via 

phospholipase A2 

(PLA2) 

LiPlaCis (LiPlasome Pharma Advanced or 

refractory 

tumours 

Phase I 

 

HER2-targeted 

liposomal 

doxorubicin 

(PEGylated) 

MM-302 (Merrimack 

Pharmaceuticals) 

Breast cancer Phase I 

Phase 

II/III 

 

Paclitaxel Liposome LIPUSU® (Nanjing Luye 

Sike Pharmaceutical Co., 

Ltd.) 

Advanced 

solid 

tumours, or 

gastric, 

breast cancer 

Phase IV 

Phase IV 

Phase II 

 

Lipid particle 

targeting polo-like 

kinase 

TKM-080301 (Arbutus 

Biopharma) 

Hepatocellul

ar carcinoma 

Phase I/II 
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1 (PLK1) for 

delivery of siRNA 

siRNA liposome for 

EphA2 knockdown 

siRNA-EphA2-DOPC Solid 

tumours 

Phase I 

Proprietary single-

stranded DNAi 

(PNT100) 

encapsulated in lipid 

nanoparticles 

PNT2258 (ProNAi 

Therapeutics) 

Lymphomas Phase II 

Phase II 

Phase II 

 

Growth factor 

receptor bound 

protein- 

2 (Grb-2) antisense 

oligonucleotide 

encapsulated in 

neutral liposomes 

BP1001 (Bio-Path Holdings) Leukemias Phase I 

DsiRNA lipid 

nanoparticle for 

NYC 

oncogene silencing 

DCR-MYC (Dicerna 

Pharmaceuticals) 

Solid 

tumours, 

multiple 

myeloma, 

lymphoma, 

or 

hepatocellula

r carcinoma 

Phase I 

Phase I/II 

 

AtuRNAi liposomal 

formulation for 

PKN3 knockdown in 

vascular 

endothelium 

Atu027 (Silence 

Therapeutics GmbH) 

Pancreatic 

cancer 

Phase I/II 

 

Cationic liposome 

with anti-transferrin 

receptor antibody, 

encapsulating 

Wildtype p53 

sequence 

SGT-53 (SynerGene 

Therapeutics) 

Glioblastoma

, solid 

tumours, or 

pancreatic 

cancer 

Phase I 

Phase I 

Phase I 

Phase II 

RB94 plasmid DNA 

in a liposome with 

anti-transferrin 

receptor antibody 

SGT-94 (SynerGene 

Therapeutics) 

Solid 

tumours 

Phase I 

 

Double-stranded 

RNA mimic of miR- 

34 encapsulated in 

liposomes 

MRX34 (Mirna 

Therapeutics) 

Liver cancer Phase I 

 

Anti-EGFR 

bispecific antibody 

minicells 

(bacteria derived 

nanoparticles) with a 

miR-16 based 

microRNA payload 

TargomiRs (EnGeneIC) Mesotheliom

a and non-

small cell 

lung 

cancer 

Phase I 

 

Polymeric 

conjugates 

Paclitaxel Opaxio™ (Polyglycerol 

adipate)/CTI Biopharma 

Ovarian 

cancer 

Non-small 

Phase III 

maintenan

ce 
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cell lung 

cancer 

(women) 

Phase II 

Irinotecan NKTR102 (PEG)/Nektar Metastatic 

breast cancer 

Phase III 

Camptothecin CRLX101 (nanoparticle)/Cerulean Renal cell 

carcinoma 

(3rd/4th line) 

Ovarian 

cancer 

(2nd/3rd 

line) 

Phase II 

XMT1001 (Fleximer™)/Mersana Gastric 

cancer (2nd 

line) 

Non-small 

cell lung 

cancer 

(2nd/3rd 

line) 

Phase II 

Diaminocyclohexane 

(DACH) 

Platinum 

AP 5346 

(Hydroxypropylmethacrylate)/ProL

indac™ 

Ovarian 

cancer 

Phase II 

Docetaxel DEP™ (G5 PEG-

Polylysine)/StarPharma 

Advanced 

cancers 

Phase I 

CriPec™ docetaxel 

(nanoparticle)/Cristal Therapeutics 

Solid 

tumours 

Phase I 

Polymeric 

NPs AZD2811 

(AZD1152 

hydroxyquinazoline 

pyrazol 

anilide; Aurora-B 

Kinase 

Inhibitor) 

AZD2811 (Accurin™) 

nanoparticle/AstraZeneca 

Advanced 

solid 

tumours 

Phase I 

Cyclodextrin based 

nanoparticlecamptot

hecin 

conjugate 

CRLX101 (Cerulean) Ovarian, 

renal cell, 

small cell 

lung, or 

rectal 

cancers 

Phase II 

Phase I/II 

Phase I 

Phase II 

Phase II 

 

Cyclodextrin based 

nanoparticledocetaxe

l 

conjugate 

CRLX301 (Cerulean) Dose 

escalation 

study in 

advanced 

solid 

tumours 

 

Phase I/II 

 

Polymeric 

micelles 

Paclitaxel 

NC-4016/NanoCarrier™ Advanced 

solid 

tumours or 

lymphomas 

Phase I 

Genexol-PM (Samyang 

Biopharmaceuticals) 

Head and 

neck or 

Phase II 

Phase II 
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breast cancer Phase IV 

Docetaxel micelle Docetaxel-PM DOPNP201 

(Samyang 

Biopharmaceuticals) 

Head and 

neck cancer 

and 

advanced 

solid 

tumours 

Phase II 

Phase I 

CriPec (Cristal Therapeutics) Solid 

tumours 

Phase I 

Other Irinotecan HA-irinotecan HyACT™/Alchemia Colorectal 

cancer 

Lung cancer 

Phase II 

Phase III 

Tumour Necrosis 

Factor (TNF) 

CYT-6091/CytImmune Non-small 

cell lung 

cancer 

Phase II 

Albumin-bound ABI-009 (Aadi with 

Celgene) 

Bladder 

cancer, 

PEComa, or 

pulmonary 

arterial 

hypertension 

Phase I/II 

Phase I 

Phase II 

 

ABI-011 (NantBioScience) Solid 

tumours or 

lymphomas 

Phase I 

 

Hafnium oxide 

nanoparticles 

stimulated with 

external radiation to 

enhance tumor cell 

death via electron 

production 

NBTXR3 PEP503 

(Nanobiotix) 

Locally 

advanced 

squamous 

cell 

carcinoma 

Phase I 

 

Gene therapy 

liposomes

  

  

  

siRNA lipid 

nanoparticle 

conjugated to 

Vitamin A 

ND-L02-s0201 (Nitto 

Denko) 

Hepatic 

fibrosis 

Phase I 

Lipid particle 

containing three 

RNAi 

therapeutics that 

target three sites on 

the HBV genome 

ARB-001467 TKM-HBV 

(Arbutus Biopharma) 

Hepatitis B Phase II 

Lipid nanoparticle 

RNAi for the 

knockdown of 

disease-causing TTR 

protein 

Patisiran ALN-TTR02 

(Alnylam Pharmaceuticals) 

Transthyretin 

(TTR)-

mediated 

amyloidosis 

Phase III 

Phase II 

Phase III 

Other therapy 

liposomes 

  

  

  

Sphingomyelin and 

cholesterol 

liposomes for toxin 

neutralization 

CAL02 (Combioxin SA) Pneumonia Phase I 

 

Liposomal 

Prednisolone 

(PEGylated) 

Nanocort (Enceladus in 

collaboration with Sun 

Pharma Global) 

Rheumatoid 

arthritis and 

hemodialysis 

Phase II 

Phase III 
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fistula 

maturation 

Liposomal 

formulaton of α-

GalCer 

RGI-2001 (Regimmune) Mitigating 

graft versus 

host disease 

following 

stem cell 

transplant 

Phase I/II 

 

F-butane 

encapsulated in a 

lipid shell 

Sonazoid Contrast 

enhanced 

ultrasound 

for 

imaging 

hepatocellula

r carcinoma, 

skeletal 

muscle 

perfusion, or 

for 

estimating 

portal 

hypertension 

Phase II 

Phase IV 

 

Polymeric 

micelles 

PEG, iron, and 

amifostine micelle 

Transferrin-mediated 

chelation for 

amifostine release 

RadProtect (Original 

BioMedicals) 

Dose 

escalation 

and safety 

for acute 

radiation 

syndrome 

Phase I 

 

Adapted from [51, 74]. 
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1.4.5.Challenges Facing Mucosal Nanoparticles Drug Delivery: 

The mucosal barrier can be found in the respiratory, gastrointestinal and reproductive 

tracts as well as the nostrils, eyes and mouth. Mucus is essential for protecting the cellular 

epithelia from chemical and mechanical damage [78]. There are several physiological 

barriers in mucosal delivery, including the environment with varying pH and numerous 

enzymes, which challenges the bioactivity of agents. Furthermore, the intact epithelium and the 

sticky mucus layer are considered as the absorption and permeation barrier, respectively [79]. 

Mucus is a dynamic semipermeable  barrier  which  allows  the  exchange  of  nutrients,  water,  

gases,  odorants, hormones, and gametes, whereas being impermeable to most bacteria and 

many pathogens. Mucus is constantly secreted and shed or digested. Therefore, NPs drugs 

need to move ‘upstream’ via the unstirred layers of mucus adhering to the cells on the 

epithelium surface or penetrate  a  mucus  ‘blanket’ before  it  is shed. The balance between the 

rate of secretion and the rate of degradation and shedding will determine the thickness of the 

mucus. On the other hand, by constantly secreting fresh mucus, the unstirred layer is 

continually and rapidly replaced. Accordingly, NPs drug delivery need to migrate upstream to 

reach the epithelium [80]. There are two main layers of the airway mucus barrier: the 

periciliary layer (PCL, 10µm thick) overlying the cells and surrounding the cilia, and the mucus 

gel (60µm thick) sitting on top of the PCL [15]. The PCL lacks gel forming mucins, however, 

it does have membrane bound mucins expressed on the cilia surface and the epithelial cell 

apical surfaces [81]. During particles inhalation, they become attached to the mucus gel layer 

and are then cleared from the lungs by the action of the cilia moving the mucus layer up 

and out of the lungs [15]. In gastrointestinal tract, an effective NPs drug delivery needs to 

pass through three obstacles in adequate quantities to produce a biological effect. These include 

the digestive barrier in the lumen, the mucus barrier, and the epithelial barrier [81]. 

Nanoparticles drug systems need locally sustained and have controlled drug release, deep 

tissue penetration, and protection of cargo therapeutics at both extracellular and intracellular 
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levels. The drug formulations need to have mucoadhesive properties to improve the therapeutic 

efficacy of many drug across the mucus layers. Mucoadhesion can be known as an attractive 

interaction at the interface between a pharmaceutical dosage form and a mucosal membrane. 

In addition to that, NPs should be able to cross at least the outermost layers of the mucus 

barrier quickly to escape mucus clearance. NPs have to escape adhesion to mucin fibres 

and be small enough to escape significant steric inhibition by the dense fibre mesh [78]. 

The pore sizes of mucus gels are around 100-200nm while those in the lung membrane bound 

mucin layer are around 30nm; therefore, only NPs with similar to or less than mucus pore 

size may potentially penetrate without modification of these layers [15]. Inhaled NP drugs need 

to overcome the same primary defence mechanisms which prevent all inhaled insults from 

engagement with and adsorption by lung epithelial tissue and the mucus gel barrier (Figure 4). 

For ≤ 100nm NPs, diffusion is regular (i.e. Brownian) and fast, simply passing through the mucus 

gel barrier before clearance. Larger NPs maybe represent major challenges over mucosal drug 

delivery in which they are similar to or larger than the pores within the mucus gel network. 

Diffusion is not simple Brownian motion and usually much less quick [82]. It is essential for 

effective mucosal delivery, NPs need to penetrate the mucus layer with minimum damage to the 

mucus layer. Furthermore, NPs need to stay unchanged by extracellular secretions [15]. There 

are two goals desirable in mucosal drug delivery: 1) To ensure drug passage through the mucus 

barrier to the epithelium before drug elimination from the respective organ by mucus 

clearance; and 2) To ensure carrier particles accomplish a recommended arrival time and drug 

uptake schedule at the epithelium. This can be achieved if one can control (one-sided) the 

diffusive passage times of drug carrier particles, from deposition at the mucus interface, through 

the mucus barrier, to the epithelium [82]. 
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Figure 4: The effect of particle size on the nature (Brownian vs, non-Brownian) of diffusive motion 

in mucus barriers. Class 1: small molecules and nanoparticles ≤ 100nm which do not chemically 

bind to the mucus mesh are slightly affected by the mucus microstructure and quickly move by 

Brownian motion through the barrier. Class 2: Muco-inert particles of size related to mucus pores 

experience steric interactions with the mesh and entropic fluctuations from the mucus gel 

microstructure. Their increments are not only decreased compared with freely diffusing smaller 

particles, but they are associated, violating Brownian motion. Class 3: Muco-inert particles larger 

than the mucus pores (e.g. 500nm to 1µm) experience the full range of entropic fluctuations from 

the mucus microstructure. These particle increments are similarly correlated, replicating elastic 

memory of the mucus gel, and show transient, anomalous, sub-diffusive behaviour. Adapted from 

[82]. 
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1.4.6.The Release of Drug from Nanoparticles: 

Biodegradable NPs are gaining support based on their capability as a sustainable carrier 

for site specific delivery of vaccines, genes, drugs and other biomolecules in the body. They help 

in enhanced biocompatibility, superior drug/vaccine encapsulation and are suitable release 

profiles for numerous drugs, vaccines and biomolecules used in a variety of applications in the 

field of medicine. There are several biodegradable nanoparticles, these include poly-D-L- 

lactide-co-glycolide (PLGA), polylactic acid (PLA), poly-ε-caprolactone (PCL), chitosan, 

poly-alkyl-cyano-acrylates (PAC) and gelatin. A high loading ability for the NP drugs is 

considered to be one of the most desired qualities of successful drug delivery. The amount of 

polymer carrier needed for drug delivery in the body could be reduced by the high loading 

capacity of NPs. There are two methods of loading drugs into NPs: by incorporating the drug at 

the time of NP production, and by adsorbing the drug after the formation of the NP. These two 

methods allow several advantages such as the encapsulation of the drug in the polymer, 

dispersion of the drug in the polymer, adsorption of the drug onto the surface of the NPs and the 

chemical binding of the drug to the polymer. The chemical structure of both the drug and the 

polymer, as well as the conditions of the drug loading can be influenced by the amount of drugs 

bound to the NPs and the type of interaction between the drugs and the NPs. The drug release 

mechanism is also an essential factor during drug formulation. Ordinarily, the drug release 

rate can be determined by drug diffusion through the polymer matrix, solubility of the drug, 

desorption of the surface bound/adsorbed drug, NP matrix erosion/degradation, and the 

combination of the erosion diffusion process. Moreover, drug release may be influenced by the 

size of the NPs and the loading effectiveness of the drug. The drug loading efficiency is important 

to control the initial burst and the sustained release of the NP drug. It should be noted that 

larger particles have a smaller initial burst release than smaller particles. The release mechanism 

is predominately by diffusion when the diffusion of a drug is faster than the matrix erosion. 

The fast initial release or burst of drug is mostly due to weakly bound or adsorbed vaccine/drug 
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on to the surface [83].   

 Andersen et al. (2009) developed a DNA origami method in three dimensions by creating 

an addressable DNA box (42 X 36 X 36 nm3) in size that can be opened in the presence of 

externally supplied DNA (keys). They were able to functionalize the lid of the DNA box with a 

dual lock–key system consist of  DNA duplexes with sticky-end extensions to offer a ‘toehold’  for 

the displacement by externally added ‘key’ oligonucleotides. They found that the addition of  key  

oligonucleotides  leads  to the opening  of  the  lid,  causing  a  decline  in  the  efficient 

fluorescence resonance energy transfer (FRET) efficacy as the distance between the two dyes 

increases. They also investigated the kinetics of the opening process. They demonstrated that 

both keys are required for a full decrease in the FRET signal, indicating that a closed box can 

be programmed to open in response to at least two external signals. The box lid can be made to 

close again in the existence of specific signals. Therefore, the lid of the DNA box has the 

possibility to react to complex combinations of oligonucleotide sequences, for instance, cellular 

messenger RNAs or micro RNAs. The opening mechanism of the DNA box works in natural 

environments which lets biologically active components such as enzymes, to be packaged, 

offering control of access to their relevant substrates [84]. Consequently, the box can be 

programed to open and release the cargo at a specific site.  

There are several advantages for using magnetic NPs in drug delivery. These include the 

ability to target a specific site (e.g. tumour), reducing the systemic distribution of cytotoxic 

compound, and improving uptake at target site, leading to effective treatment at lower doses. 

When the magnetic carrier is concentrated at the tumour or other target in vivo, the therapeutic 

agent is released from the magnetic carrier, either by enzymatic activity or via changes in 

physiological conditions (for example pH, osmolality, or temperature). This results in improved 

uptake of the drug by the tumour cells at the target sites. Magnetic targeting is dependent on 

the attraction of magnetic NPs to an outer magnetic field source. [85]. Riedinger et al.(2013) 

investigated  the  thermal  decomposition  of  a  thermo-sensitive  molecule  (azobis[N-(2- 
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carboxyethyl)-2-methylpropionamidine] ). Fluoresceineamine (FA) was bound to the azo 

molecule at the iron oxide nanoparticle (IONP) surface, functionalized with poly (ethylene 

glycol) (PEG) spacers of different molecular weights. They found that by oscillating the 

magnetic field at the target site, a significant local heating occurred with a temperature increase 

of up to 45 °C. This lead to the decomposition of the NP and drug release. In addition to that, 

they replaced  FA  with  the  chemotherapeutic  agent  doxorubicin  (DOX)  in  the  same  

NP arrangement. They demonstrated that the alternating magnetic field (AMF) triggered 

distance- dependent release of the drug in a cytotoxicity assay on KB cancer cells [86]. 

1.5.. Cytotoxicity: 

1.5.1. Cytotoxicity of Nanoparticles: 

Although nanoparticle cytotoxicity in relation to the airways has been studied, different 

cells have been cultured, with varying incubation conditions and different assays published. 

These studies also contain different nanoparticle concentrations and exposure times, and 

overall it is hard to conclude whether the experimental cytotoxicity is physiologically relevant 

[38]. This section examines the cytotoxicity of several classes of nanoparticles currently being 

developed in vitro using lung epithelial cell models for drug delivery. A summary of the 

experimental setups and results for these nanoparticles are provided in Table 7. 

An example of this is the work of Tomoda et al. 2009. They prepared poly (lactide-co- 

glycolide) (PLGA) nanoparticles loaded with the anticancer drug, TAS-103, in the form of 

nanocomposite particles as an inhalable agent for the treatment of lung cancer. They also aimed 

to deposit the nanocomposite particles effectively deep in the lungs and evaluate cytotoxicity 

against adenocarcinomic human alveolar basal epithelial cells (A549) cells. They found that 

the sizes of 5% and 10% TAS-103 loaded PLGA were 201 and 212 nm, respectively. 

Furthermore, they also showed that there was no difference in cytotoxicity between 5% and 

10% TAS-103 loaded PLGA nanocomposite particles [87]. 

As previously discussed (section 1.4.2. Factors Affecting Drug Delivery with 
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Nanoparticles: the Role of Particles Size and Shape), it should be noted that smaller 

nanoparticles will penetrate deeper into the lung [21]. Therefore, they should have used 

smaller sized nanoparticle to ensure physiological relevance. It is also important to allow time 

for the plated cells to form tight junctions and pre-incubation of the plates for only 3h – as in 

this study – is not long enough. 

The coating of nanoparticles has been shown to be important to avoid cell death. For 

example, Baoum et al. 2010 examined poly (D, L-lactide-co-glycolide) (PLG) nanoparticles 

ability to transfect A549 cells. They demonstrated a minimum cytotoxic effect of cationic 

coating material [88]. 

Burgess et al. 2010 prepared a novel nano-sized delivery vehicle composed of 

phospholipid (PL) and apolipoprotein A-I, NanoDisk (ND), to which they added amphotericin 

B (AMB) as a payload (ND-AMB). They investigated whether ND-AMB compared to other 

formulations preserved lung cell integrity in vitro as AMB can be toxic to mammalian cells 

and reduce lung function when inhaled. AMB, a potent antifungal agent, has been employed 

as an inhalable therapy for pulmonary fungal infections. They found that Calu-3 cells incubated 

with AMB/Deoxycholate (DOC) were significantly less viable than controls incubated with 

PBS alone 16.1±5.6%, n=3 (p < 0.0001), assessed by MTT viability. This was also shown by 

LDH release which was significantly increased (p < 0.0001). However, cells exposed to the 

ND- vehicle alone (i.e. ND-empty of content), were fully protected from the cytotoxicity of 

AMB/DOC and were indistinguishable from control cells by MTT and LDH release. They also 

showed that the viability of cells exposed to ND-AMB was not significantly different from 

the control, while LDH release from cells treated with ND-AMB was lower than AMB/DOC 

alone (p < 0.0001). In addition, treatment with ND-AMB did not significantly affect MTT or 

LDH levels versus AMB/DOC. ND-empty, ND-AMB or ND-AMB, in the absence of 

AMB/DOC, did not reduce viability or promote LDH release. They concluded that ND-AMB 

and ND-empty, but not ND-AMB, are able to protect against cell death [34]. 
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Bains et al. 2010 investigated surfactant-coated micro emulsion pDNA nanoparticles to 

explore the potential of adapting a formulation process for pulmonary gene delivery. The 

statistical analysis for the study showed no significant loss in cell viability (p>0.05) between 

blank, untreated cells and cells treated with the washed, aerosolised pDNA formulation based 

on the MTT assay. A significant reduction in cell viability (p<0.05) was observed when 

dioleoyl trimethylammonium propane (DOTAP) liposomes, the transfection agent, were added 

to the cell culture medium. Statistical analysis showed a significant reduction (p<0.05) in cell 

viability when cells were treated with 80 pressurised metered dose inhalers (pMDI)-aerosolised 

doses, compared with 9 doses of the same formulation; this demonstrates the sensitivity of the 

MTT assay [89]. 

Alpha-1 antitrypsin deficiency is a cause of significant lung disease in some patients, 

which can lead to the need for lung transplantation. Pirooznia et al. 2012 encapsulated Alpha- 

1 antitrypsin in PLGA nanoparticles. Alpha 1- antitrypsin (α1AT) is a 54 kDa glycoprotein 

which belongs to the superfamily of serpins and inhibits different proteases. α1AT protects the 

lung from cellular inflammatory enzymes, especially elastase, therefore,  it is known as the 

human neutrophil elastase inhibitor. In the absence of α1AT, the neutrophil elastase released 

by lung neutrophil are not inhibited, leading to elastin breakdown and the loss of lung 

elasticity. This causes degradation of the lung tissue resulting in pulmonary complications 

such as emphysema and chronic obstructive pulmonary disease (COPD) in adults. α1AT is 

not only an anti-inflammatory protein but also an immune system regulator, regulating 

lymphocyte proliferation and cytotoxicity, as well as mediating monocyte and neutrophil 

functions. Besides an anti-apoptotic function in lung epithelial cells in-vitro, α1AT has a broad 

anti-inflammatory effect in humans. The aim of the above study was to prepare a wide range 

of particle sizes as a carrier for protein-loaded nanoparticles to deposit in different parts of the 

respiratory system, particularly in the deep lung. The sizes generated ranged from 1µm to 

100nm. Various lactide to glycolide ratios of the copolymer were used to obtain different 
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release profiles of the drug which covers extended and rapid drug release in one formulation. 

They found that the viability of CorL105 cells (a human lung epithelial cancer cell line) treated 

with different concentrations of free and loaded nanoparticles remained unchanged and cells 

were more than 80% viable. In addition, the morphology of cells before and after treatment 

with nanoparticles was unchanged [43]. The problem with this study is that the cells used do 

not form fully attached layers in culture and, as such, do not represent a true lung epithelium. 

Ungaro et al. 2012 designed and developed a pulmonary delivery system for antibiotics 

such as tobramycin (Tb), based on spray dried lactose/PLGA nano-embedded microparticles 

(NEM) engineered at both nanosize and microsize level. They demonstrated that MTT 

measured metabolic activity showed a nanoparticle dose dependent fall with calcium silicate 

(CS)/ alginate / PLGA particles being the most cytotoxic at 1 mg/ml causing 82% cell death 

but showed similar cytotoxicity to the other nanoparticles at 0.5 mg/ml ranging between 20- 

40% cell death, using A549 cells. Interestingly the presence of the antibiotic in the NPs reduced 

cytotoxicity [90]. 

Solid tumours have an acidic environment and lysosomes inside the cell are acidic 

compared to the rest of the cytoplasm. This may be useful for nanotechnology based therapies; 

for example, if the nanoparticles can swell in response to pH changes, their cargo could be 

released. In another example, crosslinked nanoparticles made of acrylate based hydrophilic 

polymers where the hydroxyl groups are masked by pH-labile protecting groups in 2, 4, and 6 

–trimethoxybenzaldehyde. They are stable at pH 7.0 but at pH 5.0 the hydroxyl groups are 

exposed (masking groups removed) making the nanoparticles hydrophilic which causes 

swelling and cargo release [91]. Boylan et al. 2012 formulated DNA containing 

nanoparticles that respond to changes in pH, resulting in gene transfer via a nucleoli- 

independent pathway. The nanoparticles were formed by a complex of polyethylene glycol 

(PEG), poly-L-histidine and poly-L-lysine forming a triblock copolymer system, PEG- 

CH12K18. They used transformed human bronchial epithelial cells BEAS-2b cells, seeded 
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and incubated overnight [92]. These cells are lung epithelial-like, however, they only represent 

an epithelial population before confluency. As once confluent they undergo squamous 

differentiation and, as such, are not a reliable model for lung epithelial cell toxicity studies (Data 

from ECACC general cell collection). They carried out cytotoxicity tests of the DNA 

nanoparticles made with PEI, PEG-CH12K18, or PEG-CK30 at various DNA doses using the 

MTT assay. The PEI DNA nanoparticles produced the highest cytotoxicity, with a 50% 

reduction in metabolic activity at the highest dose 10µg/well. Cells incubated with either 

PEG-CH12K18 DNA nanoparticles or PEG-CK30 DNA nanoparticles still had more than 

90% of their metabolic activity intact across all doses tested. Unlike PEG-CK30 DNA 

nanoparticles which enter cells and traffic to the nucleus via a nucleoli mediated pathway – 

BEAS-2b cells do not have surface nucleoli – PEG-CH12K18 DNA nanoparticles formulated 

at pH 7.5 entered cells via clathrin-coated pits, where the poly-L-histidine moieties appeared 

to have a proton sponge effect, due to their buffering capacity and this results in escape from 

lysosomes via rupture [92]. 

Murata et al. 2013 attempted to increase peptide absorption by lung cells by encasing 

the peptide in liposomes with surface modifications. They bound wheat germ agglutinin 

(WGA) – a lectin that interacts with alveolar epithelial cells – to carbopol (CP), a mucoadhesive 

polymer. They then studied the toxicity of CP-WGA surface modified liposomes in A549 cells 

using the MTS assay, a related assay to MTT. They found that CP–WGA solution and CP– 

WGA modified liposomes did not induce significant cytotoxicity. The cell viability of A549 

cells did not change after treatment with CP–WGA solution or CP–WGA-modified liposomal 

suspensions at 0.1 and 0.3% w/v the levels used in their pharmacological experiments [93]. 

Jiang et al. 2013 produced three types of nanoparticles from poly (ε-caprolactone) 

(PCL) and d-α- tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) for oral 

delivery of anti-lung cancer agents. The three types of nanoparticles were thiolated chitosan- 

modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated 
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chitosan-modified PLA-PCL-TPGS nanoparticles. In this study they used A549 cells as a 

cancer model and attempted to produce formulations that would increase cytotoxicity. They 

found that PLA-PCL-TPGS nanoparticles modified by thiolated chitosan enhanced the cellular 

uptake and cytotoxicity with A549 cells. In other words, there is a relationship between cellular 

uptake and cytotoxicity. The more nanoparticles inside the cells, the more they will interfere 

with the cell metabolism and a thiolated molecule could change the reduction/oxidation 

potential of the cell. They produced a thiolated chitosan-modified PLA-PCL-TPGS 

nanoparticle loaded with paclitaxel, an anticancer drug used for lung cancer chemotherapy. 

They tested all three nanoparticle formulations loaded with paclitaxel and showed greater 

decreases in cancer cell viability compared to the current clinical dosage form Taxol®, and 

the 5% thiolated chitosan-modified PLA-PCL-TPGS nanoparticles (TNP) performed better 

than the unmodified PLA-PCL-TPGS nanoparticles (UNP). The advantages in cancer cell 

viability of the TNP > UNP > the Taxol® formulation was dependent on the incubation time. 

This may be due to the controlled release manner of the nanoparticle formulation. The 

advantages in cancer cell viability of the TNP > UNP > the Taxol® formulation is also 

dependent on the drug concentration. From cell viability data,  an IC50 can be calculated 

and the differences in cytotoxicity of the TNP > UNP > Taxol® can be quantitatively 

analysed by constructing a dose–response curve [94]. 

Kim et al. 2013 set up a study to investigate the lung delivery potential of nanoparticles 

made from a conjugate of vascular endothelial growth factor receptor 1 (Flt1) peptide- 

hyaluronate acid (HA) and to assess in vitro cytotoxicity using a cell viability assay based on 

cellular dehydrogenase activity (similar to MTT) in A549 cells with HA receptors. They 

showed that these nanoparticles do not show any cytotoxicity with cell viability of over 98% 

up to the concentration of 20 µg/mL, whereas polyethylenimine (PEI) nanoparticles showed 

cell viability lower than 10% at concentrations of PEI above 20 µg/mL. The concentration of 

these Flt1 peptide-HA conjugate nanoparticles could be increased to a  concentration of 600 
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µg/ml without a significant reduction in cell viability (over 95%) [95]. 

Lee et al. 2012 attempted to develop a long acting anti-diabetic inhalation system by 

preparing deoxycholic acid-modified glycol chitosan (DOCA-GC) nanogels containing 

palmityl acylated exendin-4 (Ex4-C16) and investigated its cytotoxicity against A549 and 

Calu-3 cells. Below 0.1 mg/ml, DOCA-GC nanogels did not show significant cytotoxicity 

(90~97% cell viability) over a 12 hour incubation period, based on an MTT assay. DOCA-GC 

nanogels were slightly more cytotoxic to both cell types at over 0.3 mg/ml. However, the authors 

did not test the results statistically [36]. 

Arunraj et al. 2013 developed a delivery system to treat non-small cell lung cancer 

showed that Doxorubicin chitin-poly (caprolactone) composite nanogels (Dox-Chitin-PCL) 

had a dose dependent cytotoxicity toward A549 cells using the MTT assay. The exact 

mechanism of action of Dox is complex and unclear, though it is thought to interact with DNA 

by binding across the double helix. This will inhibit the action of topoisomerase II, thereby 

inhibiting replication. Chitin-PCL CNGs showed low levels of cytotoxicity with more than 

80% of the cells viable at 120µg/ml. However, as the concentration of Dox containing 

nanoparticles increased, there is a dose dependent toxicity. Free Dox showed a significantly 

enhanced toxicity compared to the drug loaded nanogels. The decreased toxicity of drug loaded 

nanogels could be due to the slow release of the cargo [96]. 

Mohammadi et al. 2011 were investigating nanoparticles as vectors for gene delivery 

to lung epithelial cells. They prepared chitosan–DNA nanoparticles and chitosan–DNA– 

fibronectin attachment protein of mycobacterium bovis (FAP-B) nanoparticles (polyplexes), 

and investigated cell viability using A549 cells and the MTT assay. An average cell viability 

of over 97% was obtained with naked DNA and chitosan – DNA nanoparticles, and chitosan 

– DNA – FAP-B nanoparticles. There was no significant decrease in viability found for 

A549 cells treated with polyplexes when compared to naked DNA. Chitosan–DNA 

nanoparticles and chitosan–DNA–FAP-B nanoparticles carried lower cytotoxicity than the 
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commercial carriers like Turbofect transfection reagents [97]. It should be noted that the 

authors used complete media with serum during stimulation of the cells with nanoparticles. This 

may result in aberrant results due to interaction of nanoparticles with proteins in the media. 

Grabowski et al. 2013 studied toxicity of PLGA nanoparticles with surface 

modifications against alveolar cells. They used three different PLGA nanoparticles (233-247 

nm) which were produced using different components (polyvinyl alcohol, chitosan, or 

Pluronic® F68). The produced nanoparticles were neutral, positively or negatively charged 

NPs, respectively. They found that low concentration (≤ 1mg/ml) of PLGA/PVA nanoparticle 

(neutral) showed no effect on cell viability in the MTT, LDH, trypan blue or propidium iodide 

assays. In contrast, low concertation of PLGA/CS nanoparticles showed around a  30% 

loss of viability with the MTT assay but no change with other assays. They also found 

that higher concentrations (≥ 1mg/ml) showed ~ 40% loss of viability for both PLGA/PVA and 

PLGA/CS with the MTT and trypan blue assays but no loss of viability with LDH or 

propidium iodide assays [45]. There is a problem with the interpretation of this data as 

high and low levels of nanoparticles are not defined consistently; high is defined as >1mg/ml 

or > 0.1mg/ml and low is defined as < 1.0mg/ml or < 0.1mg/ml. 

Feliu et al. 2015 produced a key paper through their studies using next generation 

sequencing to measure changes in gene expression that appear at levels of nanoparticles that do 

not cause effects on classical cell viability assays. They found that cationic poly 

(amidoamine) dendrimers (PAMAM-NH2) elicited acute cytotoxicity in primary human 

bronchial epithelial cells but PAMAMs-OH (neutral) did not. In addition, PAMAM-OH is only 

cytotoxic at 50 and 100 µM at 48 hours, while PAMAM- NH2 is cytotoxic at 0.5 µM and 

above at both 24 and 48 hours. With the A549 cells, PAMAM-OH is not cytotoxic and PAMAM- 

NH2 is between 5 and 100µM at 48 hours but not at 24 hours. Together, the data shows 

that the cationic PAMAMs exhibited stronger toxicity than PAMAMs with neutral surface 

charge. When the authors tested the effects on gene expression at a  nanoparticle level of 
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0.1µM (non- cytotoxic level), they showed a NF-κB dependent cell cycle arrest [98]. 

Consequently when considering nanotoxicity more sensitive tests of cell changes may need to 

be applied. 

Lee et al. 2013 prepared inhalable glycol chitosan-coated PLGA nanoparticles 

containing palmitic acid-modified exendin-4 (Pal-Ex4) (chitosan Pal-Ex4 PLGA NPs). 

Exendin-4 is a glucagon-like peptide 1 receptor agonist which increases insulin secretion and 

decreases glucagon secretion. They found that both chitosan-coated PLGA NPs and non-coated 

PLGA NPs appeared to be cytotoxic to A549 cells at concentrations over 0.03 mg/mL (~80% 

viability) as measured by a modified MTT assay. Thus, the cytotoxicity seemed not to be 

solely dependent on whether it was coated with chitosan. Empty PLGA NPs did not show 

significant cytotoxicity (∼95% cell viability) at 12 hours at a concentration of 0.03 mg/mL 

[99]. 

1.5.2. The Use of Nanoparticles to Improve the Effectiveness of Cytotoxic Drugs: 

Some studies actively aim to increase cytotoxicity, while most studies are trying to 

produce NPs with reduced cytotoxicity. For example, Zhao et al. 2013 studied three types of 

nanoparticle formulations from commercial PCL and synthesized TPGS-b-(PCL-ran- PGA) 

diblock copolymer for oral delivery of anticancer agents, comprising DDAB-modified PCL 

nanoparticles, unmodified TPGS-b-(PCL-ran-PGA) nanoparticles and DDAB-modified 

TPGS-b-(PCL-ran-PGA) nanoparticles. The role of DDAB is to increase cell surface residency 

time. In vitro cell viability studies using A549 cells showed advantages of the DDAB-modified 

TPGS-b-(PCL-ran-PGA) nanoparticles over commercial Taxotere®, an anti-mitotic agent. All 

three nanoparticle formulations performed better in decreasing the cancer cell viability 

compared to the current clinical dosage form Taxotere®. The 5% DDAB-modified TPGS-b- 

(PCL-ran-PGA) nanoparticles (CNP) were more effective than unmodified TPGS-b- (PCL- 

ran-PGA) nanoparticles (BNP). This is demonstrated by the fact that A549 cell viability after 

24 hours exposed to 10 µg/mL drug concentration was 44% for Taxotere®, and 29% for 5% 
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DDAB-modified TPGS-b-(PCL-ran- PGA) nanoparticles (CNP). In addition, compared with 

Taxotere®, the cytotoxicity was increased by 38% (p < 0:05, n = 6) and 19% (p < 0:05, n = 6) 

for 5% DDAB-modified TPGS-b-(PCL-ran-PGA) nanoparticles (CNP) after 48 h and 72 h 

exposure to 10 µg/mL of the drug. This increase in cell killing most likely results from the 

effects of the TPGS and DDAB components in increasing cellular uptake. The advantages in 

cancer cell viability is dependent on the incubation time and may result from the controlled 

release. This time dependent effect on cell killing by the nanoparticles is clearly demonstrated 

by the release characteristics of docetaxel with only 13.5%, 18.2% and 23% released for 5% 

DDAB-modified TPGS-b-(PCL-ran-PGA) nanoparticle formulation (CNP) after 24 h, 48 h and 

72 h, respectively. Also, the breakdown of the copolymer could release the TPGS components, 

which have additive antitumor activities in the presence of antitumor drugs, thereby increasing 

cancer cell death. In addition, DDAB has been shown to trigger caspase-3-mediated apoptosis. 

Therefore, DDAB may also increase cancer cell death [100]. 

Chittasupho et al. 2014 developed a nanoparticle delivery system for doxorubicin, an 

effective anti-cancer agent whose use is limited by toxicity. They produced an LFC131 peptide 

conjugated to sodium carboxyl methyl cellulose coated poly (DL-lactic-coglycolic acid) 

(PLGA) nanoparticles. The target for LFC131 is CXCR4, a chemokine receptor which is 

involved in metastasis of cancers. The cytotoxicity, measured by the MTT assay, of 

doxorubicin-loaded LFC131 conjugated nanoparticles (LFC131-DOX NP) in A549 cells 

increased in a dose dependent fashion. DOX-NP and LFC131-DOX-NP caused a significant 

reduction (40% compared to the control) in cell viability at the highest concentration tested 

(2.5 mg/ml), which was equivalent to 0.25 and 0.14 mg/ml of DOX entrapped in DOX-NP and 

LFC131-DOX NP, respectively. DOX alone reduced cell viability by 60% of the control at 0.5 

mg/ml [44]. This data demonstrated that encapsulation of doxorubicin does not reduce its 

cytotoxic effects on cancer cells but could allow targeted delivery and prevent/reduce systemic 

effects seen in vivo. 
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Table7. Cytotoxicity studies of nanoparticles involving lung epithelial cells (in vitro) 
 

NP type Cell type assay reference 

TAS-103-loaded PLGA 

nanoparticles 

201-211.8nm 

A549 MTT [87] 

i. PLG nanoparticles ~200nm. 
ii. PEI nanoparticles. 

A549 MTS [88] 

ND-AMB Calu-3 i. MTT. 
ii. LDH. 

[34] 

surfactant-coated micro 
emulsion pDNA nanoparticles 

A549 MTT [89] 

Chitosan–DNA nanoparticles 
227±43 and 279±27 nm. 

A549 MTT [97] 

i. PEG-CH12K18 based DNA 

nanoparticles 325±11 nm. 

ii. PEG-CK30 based DNA 
nanoparticles 300±11 nm. 
iii. EI based DNA 

nanoparticles 40±3.2 nm. 

BEAS-2B MTT [92] 

DOCA-GC nanogels 
~250nm 

i.A549. 
ii. Calu-3. 

MTT [36] 

Encapsulation of Alpha-1 

antitrypsin in PLGA 

nanoparticles range of 100 nm to 

1μ 

Cor L105 MTT [43] 

PLGA based nanoparticles 

containing PVA or CS with 

alginate. 

278-350nm. 

A549 MTT [90] 

i. PLGA chitosan coated 
nanoparticles 695.7 ± 62.7. 

ii. PLGA nanoparticles 594.7± 

33.3nm. 

A549 MTT [99] 

PLGA containing PVA or CS. 

200-400nm 

A549 1. MTT. 

2. LDH. 
3. Trypan blue. 

4. Propidium 

Iodide 

[45] 

i. Chitin-PCL CNGs 70±20nm. 

ii. Dox-chitin-PCL CNGs 

240±20nm. 

A549 MTT [96] 

i. Flt1 peptide-HA conjugate 

nanoparticles. 
ii. PEI nanoparticles. 

A549 WST-1. 

EL-cytox 

[95] 

i. 5% thiolated chitosan- 
modified 

PCL nanoparticles (CNP) 

203.56 ± 4.35. 

ii. Unmodified PLA-PCL-TPGS 

nanoparticles (UNP) 198.46 ± 

2.49. 

A549 MTT [94] 
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iii. 5% thiolated chitosan- 

modified 

PLA-PCL-TPGS nanoparticles 

(TNP) 206.15 ± 3.66. 

iv. 0% thiolated 

Chitosan-modified PLA-PCL- 

TPGS nanoparticles (DNP) 

219.33 ± 4.25. 

   

CP–WGA surface-modified 

liposomes 

400nm. 

A549 MTS [93] 

i. 5% DDAB-modified PCL 

nanoparticles (ANP) 235.52 ± 

9.97. 

ii. TPGS-b-(PCL-ran-PGA) 

nanoparticles (BNP) modified 

with a cationic 
surfactant 

didodecyldimethylammonium 

bromide 

(DDAB) 249.45 ± 3.58. 

iii. 5%DDAB-modified TPGS- 

b-(PCL-ran-PGA) 

nanoparticles (CNP) 228.33 ± 

2.01. 

iv. 0% DDAB-modified 

TPGS-b-(PCL-ran-PGA) 

nanoparticles (DNP) 222.25 ± 

4.26. 

A549 MTT [100] 

Doxorubicin-loaded LFC131 
conjugated 

nanoparticles. 

300nm 

A549 MTT [44] 

i. PAMAM-OH 5.6±0.9nm. 
ii. PAMAM-NH2 4.1±0.2nm. 

iii. L-PAMAM-OH 

1.0±0.2nm. 

iv. L-PAMAM-NH2 

4.4±0.3nm. 

1. PBECs. 
2.A549 

1. LDH. 

2. Alamar Blue 

Assay. 

[98] 

GAG PLGA nanoparticles 

100-150nm. 

A549 i.MTT. 

ii.LDH. 

[101] 
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Table 7 continues 

Concentrations Exposure 

conditions 

Exposure 

duration 

(hours) 

Results Reference 

1, 3, 10, 30, 
and 10nM 

i. 96 well 
plates. 

ii. Pre- 

incubated 
for 24h. 

24 i. Although ED50 of free drug was 

more than 30 nM, the ED50 of 
nanocomposite particles was 
approximately 10 nM. 
ii. There is almost no difference 

observed in cytotoxicity between 5% 

and 10% TAS-103-loaded PLGA 

nanocomposite particles. 

[87] 

0.1, 1, 10, 100, 
1000, and 

10000 µg/ml 

i. 96 well 
plates. 

ii. Pre- 

incubated 

for 24h. 

24 i. Minimum cytotoxic effect of 

cationic coating material 

(IC50~1190– 2450 µg/mL). 

ii. Branched PEI complexes showed 

significant cytotoxicity at low 

concentration (IC50 ~ 35 mg/mL) 

[88] 

75µg/ml i. 24 well 
plates. 

ii. Pre- 

incubated 

for 48h. 

18 i. Calu-3 cells incubated with 
AMB/DOC were significantly less 

viable than controls incubated with 

PBS alone 16.1±5.6%, n=3 (p < 

0.0001), assessed by MTT viability 

and LDH release, which was 

significantly increased 11.3±1.2-fold, 

n=3 (p < 0.0001). 

ii. Cells with ND-empty were fully 

protected from the cytotoxicity of 

AMB/DOC and were 

indistinguishable from control cells 

by MTT and LDH release. 

iii. The viability of ND-AMB was not 

significantly different from control 

while LDH release from cells treated 

with ND-AMB was lower than 

AMB/DOC alone 3.7±0.90-fold, n=3 

(p < 0.0001). 

iv. Treatment with ND-AMB+ did 

not significantly affect MTT or LDH 
levels versus AMB/DOC. ND-empty, 

ND-AMB or ND-AMB+ in the 

absence of AMB/DOC did not reduce 

viability or promote LDH release. 

[34] 

15µg/flask i. T25 
flask. 

ii. 50% 

confluency 

42 i. Statistical analysis showed no 

significant loss in cell viability 

(p>0.05) between blank, untreated 

cells and cells treated with the 

washed, aerosolised pDNA 

formulation. 

ii. A significant reduction in cell 

viability (p<0.05) was, however, 

observed when DOTAP was added to 

the cell culture medium. 

[89] 
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   iii. Statistical analysis showed a 
significant reduction (p<0.05) in cell 
viability when cells were treated with 

80 pMDI-aerosolised doses, 

compared with 9 doses of the same 

formulation. 

 

1µg/well i. 96 well 

plates. 

ii. Pre- 

incubated 

for 24h. 

48 i. Average cell viability of over 97% 

was obtained with naked DNA and 

chitosan–DNA nanoparticles and 

chitosan–DNA–FAP-B nanoparticles. 

ii. No significant decrease in viability 

was found for A549 cells treated with 

polyplexes when compared to naked 
DNA. 

iii. Chitosan–DNA nanoparticles and 

chitosan–DNA–FAP-B nanoparticles 

carried lower cytotoxicity than the 

commercial carriers such as 

Turbofect transfection reagents. 

[97] 

0.2, 2, 5, or 10 
µg DNA/well 

i. 96 well 
plates. 

ii. Pre- 

incubated 

for 24h. 

48 i. PEI DNA nanoparticles induced the 

greatest cytotoxicity, with a 50% 

reduction in metabolic activity at the 

highest dose (P < 0.01). 
ii. Cells incubated with either PEG- 

CH12K18 DNA nanoparticles or PEG- 

CK30 DNA nanoparticles retained 

greater than 90% of their metabolic 

activity across all DNA doses tested. 

iii. Unlike PEG-CK30 DNA 

nanoparticles which enter cells and 

traffic to the nucleus via a nucleoli 

mediated pathway, PEG-CH12K18 

DNA nanoparticles formulated at pH 

7.5 enter cells via clathrin-coated 

pits, where the poly-L-histidine 

moieties appear to have a proton 

sponge effect, resulting in escape 

from lysosomes. 

[92] 

0.01~1.0 mg i. 96 well 
plates 

 ii. Pre- 

incubated 

for 12 

hour 

6 or 12 i. At below 0.1 mg/ml the nanogels 
were not cytotoxic. 

ii. At 0.3 mg/well and above, there 

was an increase in cytotoxicity but 

this 

was not tested statistically. 

[36] 

0 to 1.5 
mg/ml 

i.96 well 

plates 

ii.Pre 

incubated 

for 24 

hour 

24 i. The viability of cells treated with 

different concentrations of free and 

loaded nanoparticles remains 

unchanged and cells retained more 

than 80% of their viability. 
ii. The morphology of cells before 

and after treatment with nanoparticles 

was similar. 

[43] 
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1 mg/ml and 

0.5 mg/ml 

i.96 well 
plates 
ii.Pre 

incubated 

for 24 h 

24 CS/ alginate / PLGA particles were 
the most cytotoxic at 10 mg/ml 
causing 82% cell death but showed 

similar cytotoxicity to the other 

nanoparticles at 0.5 mg/ml ranging 

between 20-40% cell death 

[90] 

0.003–0.3 

mg/mL 

i.96 well 

plates 

ii.Pre 

incubated 

for 24 h 

12 i. Both chitosan-coated PLGA NPs 

and non-coated PLGA NPs gave 

around 80% viability and were 

cytotoxic 

to A549 cells at concentrations of 
over 0.03 mg/mL. 
ii. PLGA NPs did not exhibit 

significant cytotoxicity (∼95% cell 
viability) at 12 hours post- 
administration at a concentration of 

0.03 mg/mL, regardless of the 

presence of a chitosan-coating. 

[99] 

From 0.005 to 
3 mg/mL 

i. 96 well 
plates for 

MTT and 

LDH. 

ii. 6 well 

plates for 
trypan 

blue and 

propidium 

iodide. 

iii. re- 

incubated 

for 24h. 

i. 24 
hours for 

MTT and 

LDH. 

ii. 48 

hours for 
trypan 

blue and 

propidium 

iodide. 

i. Low concentration (≤ 1mg/ml) of 
PLGA/PVA nanoparticle showed no 
effect on cell viability in the MTT, 

LDH, trypan blue or propidium 

iodide assays. 

ii. Whereas low concertation of 
PLGA/CS nanoparticles showed 

around 25% loss of viability with 

MTT assay but no change with other 

assays. 

iv. Higher concentration (≥ 1mg/ml) 

showed ~ 25% loss of viability for 

both PLGA/PVA and PLGA/CS 

with the MTT and trypan blue assays 

but no loss of viability with LDH or 

propidium 

Iodide assays. 

[45] 

24, 48, 72, 96 

and 120 

µg/mL 

i. 96 well 

plates 

ii. 90% 

confluency 

24 i. Empty chitin-PCL CNGs had 

little effect on the cells with over 

80% viability retained at all doses. 

ii. Doxorubicin containing chitin- 

PCL-CNG nanoparticles showed a 

dose dependent cytotoxicity. 

[96] 

up to 600 
µg/mL 

i. 24 well 
plates. 

ii. Pre- 

incubated 

for 24h. 

24 i. Flt1 peptide-HA conjugate 
nanoparticles showed a cell viability 
over 98% up to the concentration of 

20 µg/mL, whereas PEI exhibited a 

cell viability lower than 10% at the 

concentration of PEI higher than 20 

µg/mL. 

ii. Flt1 peptide-HA conjugate 

nanoparticles showed a cell viability 

over 95% up to the concentration of 

600 µg/mL 

[95] 
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0.25, 2.5, 12.5, 
and 25 μg/ml 

i. 96 well 
plates. 

24, 48, 
and 72. 

i. The advantages in cancer cell 
viability of the TNP > UNP > the 

[94] 

 ii. Pre- 

incubated 

overnight. 

 Taxol® formulation is dependent on 

the incubation time. 

ii. The advantages in cancer cell 

viability of the TNP > UNP > the 

Taxol® formulation is also dependent 

on the drug concentration. 

iii. The TNP showed better IC50 

values and better in vitro therapeutic 

effects for A549 cells than 

commercial Taxol®. 

 

150µl of 1-3 
mg/ml 

96 well 
plates 

2 i. Cell viability of A549 cells was 
almost unchanged after treatment 
with CP–WGA solution or CP– 

WGA-modified liposomal 

suspensions at the concentrations 

used in subsequent experiments. 

ii. In contrast, a positive control 
solution containing the nonionic 

water-soluble surfactant Triton X-100 

at 0.1% (w/v) significantly reduced 

the viability of A549 cells. 

[93] 

0.25, 2.5, 12.5, 
and 25 µg/mL 

i. 96 well 
plates. 

ii. Pre- 

incubated 

for 
overnight. 

24 , 48 
and 72 

The modified nanoparticles were 

more cytotoxic than unmodified 

based on IC50. 

[100] 

0.02–2.5 
mg/ml 

96 well 

plates 

80% 

confluent 

6 hours, 
then 
removed 

NPs and 

incubated 

with 

media for 

18 hour 

i. LFC131- DOX NP and DOX NP 
showed cytotoxicity to A549 cells, a 
reduction in cell viability was 

observed in a dose dependent 

manner. 

ii. DOX-NP and LFC131-DOX-NP 

caused a significant reduction (60% 

of control) in cell viability at the 

highest concentration tested (2.5 

mg/ml), which is equivalent to 246.5 

and 140 µg/ml of DOX entrapped in 

DOX-NP and LFC131-DOX NP, 
respectively. 
iii. ree DOX reduced cell viability to 

39% of the control at concentration 

of 500 µg/ml. 

iv. In addition, cell sensitivity to 

doxorubicin was greatly increased 

when the cells were treated with 

LFC131-DOX NPs and DOX NPs 

compared with free DOX at 

concentrations of 30–120 µg/ml 

doxorubicin entrapped in NPs. 

[44] 
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0.1, 0.5, 1, 5, 

10, 50, and 

100 µM 

96 well 

plates 

24 and 48 i. PAMAM-OH forms a neutral 

nanoparticles and PAMAM-NH2 forms 
a positively charged nanoparticles. 

PAMAM-NH2 is more cytotoxic to 

PBEC. 

ii. PAMAM-OH is only cytotoxic at 

50 and 100 µM at 48 hours. 

iii. AMAM- NH2 is cytotoxic at 0.5 

µM and above at both 24 and 48 

hours. 

iv. ith the A549 cells PAMAM-OH is 

not cytotoxic and PAMAM- NH2 is 
between 5 and 100µM at 48 hours 

but not at 24 hours. 

[98] 

100, 200, 300, 
400, 500, and 

600µg/ml 

i. 96 well 
plates. 

ii. Pre- 

incubated 
for 24h. 

24 i. Moderate decrease in viability with 
MTT assay. 

ii. LDH: minimal increase in ~ 10- 

20% loss of cell viability cellular 
toxicity 

[101] 

 

PLGA= poly (D, L-lactide-co-glycolide). PLG= poly (D, L-lactide-co-glycolide). PEI= poly 

(ethylenimine).pDNA=plasmid DNA. siRNA= small interfering RNA. PEG-CH12K18 = PEG maleimide 
12 histidines – 18 lysines forming a tripolymer. ND-AMB=- NanoDisk- Amphotericin B. LFC131= a 

peptide inhibitor of CXCR4-ligand binding. PAMAM-NH2= cationic poly (amidoamine) dendrimers. 

PLGA= poly (lactide-co-glycolide). PLA-PCL-TPGS= self-synthesized d-α- tocopheryl polyethylene 

glycol 1000 succinate. PCL= Poly (ε-caprolactone). HA= hyaluronic acid. DOCA-GC= deoxycholic 

acid-modified glycol chitosan. WGA= wheat germ agglutinin, a ligand that specifically interacts with 

alveolar epithelial cells. CP= carbopol, a mucoadhesive polymer. α1AT= Alpha 1- antitrypsin, belongs 

to the superfamily of serpins and inhibits different proteases. TAS-103= the anticancer drug 6-{[2- 

(dimethylamino) ethyl] amino}-3-hydroxyl-7H- indeno[2,1-c]quinolin-7-one dihydrochloride. GPs= 

gelatin nanoparticles. CDDP = cisplatin. bEGF= biotinylated-EGF. GP-PT = the anticancer activities 

of CDDP-incorporated in GPs. GP–Pt–bEGF= the anticancer activities of GP–Pt with bEGF 
modification. DDAB= didodecyldimethylammonium bromide. TPGS= Vitamin E d-α-tocopheryl 

polyethylene glycol 1000 succinate. Chitin-PCL CNGs= chitin-poly (caprolactone) composite 

nanogels. Dox-chitin-PCL CNGs = Doxorubicin chitin-poly (caprolactone) composite nanogels. Calu- 

3 = Human airway submucosal epithelial cell line. PVA= polyvinyl alcohol. A549 = adenocarcinomic 

human alveolar basal epithelial cells) cancer cells. BEAS-2B= human bronchial epithelial cells. 

PBECs= primary human bronchial epithelial cells. Cor L105 = human epithelial like lung cell line. 

MTS= the 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl) - 2-(4-sulfophenyl)-2H- 

tetrazolium. MTT= the colorimetric 3-[4, 5–dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide. 

LDH=cytosolic enzyme lactate dehydrogenase. WST-1=Cell Proliferation Reagent. 
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1.6. Nanoparticles as Promoters of Inflammation: 

1.6.1. The Use of Nanoparticles to Modulate Immunological Responses: 

It is not possible to comprehensively measure inflammation in vitro due to the 

involvement of multiple cell types in vivo, but there is the possibility to measure markers of 

pro-inflammatory signalling and the gene expression involved in inflammation. The most 

common technique for measuring pro-inflammatory responses is to measure cytokine and/or 

chemokine protein production by cells. The measurements include assays of cytokines such as 

tumour necrosis factor alpha (TNFα), interleukin (IL), IL1α, IL1β, IL6, IL8 and so on. One 

of the most frequent assay methods used is enzyme linked immunosorbent assay (ELISA) 

which is able to measure cytokines. In addition to ELISA, cytokine mRNA expression can be 

measured as an indicator of changes at the gene expression level using the polymerase chain 

reaction (PCR) technique. It should be noted that mRNA content is not absolutely reflective 

of the protein production because of posttranscriptional modification, changes in protein 

stability and mRNA stability [20]. 

Grabowski et al. 2013 investigated three different modified PLGA NPs; polyvinyl 

alcohol, chitosan, or Pluronic® (F68) which formed respectively neutral, positively or 

negatively charged NPs. They found that the inflammatory response from A549 cells, 

evaluated by measurement of the cytokines IL-6, IL-8, MCP-1, and TNF-α, was low for all 

NPs. There were some differences, especially for negative PLGA NPs which produced a higher 

inflammatory response, related to a higher uptake of these negative nanoparticles. IL-6, IL-8, 

and MCP-1 levels were in a dose response and peaked at 1 µg/mL lipopolysaccharide 

(LPS, positive control). Other tested cytokines could not be detected. At a concentration of 

0.1mg/ml PLGA/PVA, PLGA/CS and polystyrene NPs exposure, the cytokine levels were 

between the levels of cytokines produced by non-treated cells and LPS treated cells. PLGA/PF68 

NPs induced higher cytokine secretions than other NPs, with values equivalent or above LPS-
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treated cells [45]. 

1.7. Permeation of Mucus: 

Although human mucus is not easy to obtain, an alternative mucus source can be used from 

animal’s sources (especially if it is obtained immediately after death). The most useful method 

to isolate the mucin, while still retaining the ability to function with relevant physiological 

properties is by isolation in the presence of proteolytic inhibitors. After that, purification is by 

a CsCl equilibrium density gradient avoiding any chaotropic agents that could denature the 

protein: protein, carbohydrate: carbohydrate and protein: carbohydrate interactions which are 

essential for gel formation. Another approach is using cell models secreting mucus, allowing a 

dynamic mucus barrier to be used and allowing permeation and uptake of labelled particles 

to be measured. This can also allow simultaneous cytotoxicity studies. It should be noted that 

care should be taken with labelled particles because adding the label may seriously alter the 

particle properties. Caco-2, HT29MTX co-cultures and HT29MTX have been used to 

produce a measurable mucus layer in cell culture. However, these cell cultures have several 

limitations. Firstly, the thickness in vivo reported for the total mucus bilayer in the small 

intestine is 170, 133 and 480µm in the duodenum, jejunum and ileum, respectively, while the 

mucus thickness reported for co-culture after 16 days was 2-10µm. Secondly, the mucus appears 

in blobs above the goblet cells with thinner areas above the Caco-2 cells, rather than the 

continuous layer observed physiologically. Thirdly, HT29-MTX cells are derived from a 

colonic adenoma with altered gene expression with down regulation of MUC 2 production 

[15]. Mucus permeation studies can be measured by a transwell-snapwell system and transwell 

diffusion studies. In the transwell-snapwell system, permeation studies across freshly excised 

tissue are usually accomplished with using chambers. The mucus layer is surrounded with two 

penetrable filters linked to the snapwell ring and incorporated between the donor and the 

acceptor compartments, allowing particles to permeate through the mucus. Therefore, this 
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system is based on a donor and acceptor compartment detached by a fundamental compartment 

which contains a vertical layer of mucus. However, because of the separation of the mucus layer 

from the donor chamber the transwell/snapwell diffusion system has an additional barrier for 

particles compared to the in vivo situation. In other words, direct exchange of particles with 

the mucus layer is avoided by the penetrable filter and so the simulation of the in vivo situation 

is restricted. In transwell diffusion studies, one of the systems to assess mucus diffusion is the 

side by side® diffusion device containing one donor and one receiver as well as a custom 

membrane holder. The membrane holder is located between the two compartments, 

containing the mucus separated between two drug penetrable membranes. The transwell 

diffusion system represents a novel method involving a two compartment system. A 24 well 

plate comprises the acceptor compartment and an additional 24 inserts make up the donor 

compartments. The two compartments are separated from each other by a membrane covered 

with 50 mg of fresh mucus. One of the main advantages of using this newly established method 

is that it allows the use of samples introduced straight on to the surface of the mucus, simulating 

much closer the in vivo situation; therefore, the direct interaction between mucus and a drug 

delivery system can be assessed. This system also allows rapid comparison of different 

samples. In addition to that, permeation of particles can be investigated within different 

purified mucus samples, different mucus layer locations or at different pH values at the same 

time [102]. 

1.8. Rheology of Mucus: 

The selective barrier function of mucus is very tightly regulated by its biochemical 

composition. Physically mucus behaves as a non-Newtonian gel, which can be characterised 

by its response to shear rate and shear stress. The important physical characteristics of mucus 

can be studied by advanced rheological characterization, and this has produced some 

understanding of mucus physiology and disease pathology. The interaction of nanoparticles 
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with mucus and its effect on mucus rheology is, therefore, an important consideration since 

mucus is the first barrier that nanoparticles may encounter. It is also important to consider the 

effect of non-mucin components during the investigation of rheological properties of mucus 

gels. Mucus gels can be considered as viscoelastic and plastic. They can deform under load 

and return to their original shape during loading removal. However, these gels may be deformed 

in a long-lasting manner under excess load. There are many methods to investigate the 

rheological properties of mucins. These include solution viscosity measurements, as well as 

analysis of native and reconstituted gels using creep compliance methods, spinability, 

magnetic rheogoniometry, nuclear magnetic resonance (NMR), light scattering, and cone 

and plate mechanical spectroscopy [103]. 

Viscosity measurements of mucin solution can give information about the size and shape 

of mucins, as well as interactions among and within mucin molecules, especially the 

interactions preceding gel formation. As the viscosity of purified mucins increases, the 

concentration of mucins increases until the solution forms a gel. Solution viscosity 

measurements can be helpful in investigating potential muco-adhesives and mucin polymeric 

structure. From a methodological viewpoint, correct storage of samples is essential since the 

properties of mucus can be altered by incorrect freezing, degradative enzyme activity or 

dehydration. Spinability is the simplest methods but the least accurate for investigating 

viscoelasticity, and is based on drawing out a thread of mucus and recording the length 

achieved before it breaks. It only gives information about the tensile strength of the gel. 

However, it has been linked to at least one biological function (the ability of cilia to move 

mucous blankets using frog palates, giving a relative transport rate). NMR has been used to 

measure gel strength and relies on measuring the line width of the signal from a water proton 

to give a measure of viscosity. Dynamic laser light scattering has also been used to assess 

rheological properties of mucins and give information about G' (storage or elastic modulus) 



66 
 

and G" (loss or viscous modulus). Dynamic and transient testing are the most reliable methods 

to assess the physical behaviour of mucous gels. In these two methods, a stress is applied to 

the gel and the resulting strains or rate of strain is measured. Creep testing, which is a 

transient method, has been used widely to measure the rheological behaviour of mucus 

secretions and reconstituted mucin gels. Two methods of dynamic testing have been used: 

magnetic rheogoniometry, and conventional cone and plate mechanical spectroscopy. 

Magnetic rheogoniometry is based on the photoelectric analysis of the motion of a small steel 

ball in a mucus sample. However, mucus is non-homogeneous and the small ball may be in an 

area of weak gel or strong gel and give a misleading report on overall gel strength. Conventional 

cone and plate mechanical spectroscopy is, therefore, regarded as the  most reliable and 

informative method for the rheological characterization of mucus [103]. 

1.9. The Aims of the Thesis: 

The aim of my thesis is to assess the safety profile of different novel NPs when interacting 

with mucosal barriers in vitro. In chapter three, I investigated the role of inflammation and 

cytotoxicity. I also studied the effect of cell density of Calu-3 cells on the CellTiter blue assay 

and the influence of nanoparticles on a standard curve for IL-8. In chapter four, I measured the 

potential cytotoxicity of self-nanoemulsifying drug delivery systems (SNEDDS) and assessed 

the mucus permeation behaviour of SNEDDS within a novel mucus diffusion model 

utilizing standardized Transwell diffusion plates. 
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Chapter Two: Methodology and Materials 

2.1.Cell Cultures: 

2.1.1. Primary Bronchial Epithelial Cells (PBEC): 

Cell cultures were carried out as described previously [27, 28]. Epithelial cells were 

retrieved from a bronchoscopy of lung transplant recipients. Ethical approval had been obtained 

from the Local Research Ethics Committee and all patients gave informed consent. After 

the bronchoscopy and short-term storage (approximately 2 hour) of the brushings, the 

samples were suspended in transport media (5ml sterile PBS, 5ml RPMI with 10% FCS) and 

centrifuged for 7 minutes at 200xg. The cell pellet was suspended in 2ml of clonetics bronchial 

epithelial cell basal medium (Clonetics BEBM, (Lonza), San Diego, CA, USA) together with 

bronchial epithelial cell growth medium (BEGM) single quots (Clonetics), 50 U/ml penicillin, 

50 mg/ml streptomycin (Sigma, UK), 50 mg/ml gentamycin and 50 µg/ml amphotericin B 

(Lonza, USA). Then the cells were transferred into T25cm2 Flasks pre-coated with a 1% 

collagen solution (Vitrogen 100, cohesion, Palo Alto, CA, USA) and placed in a CO2 incubator 

(37 ºC and 5% CO2). After the first 48 hours, another 3ml of supplemented medium was added 

with a subsequent exchange (3ml) every 48 hours until the cells reached 90% confluency. 

Once the cells reached confluence, PBECs were passaged using 3ml trypsin which was 

neutralized using an equal volume of Roswell Park Memorial Institute Media (RPMI) 

supplemented with 10% foetal calf serum (FCS). After that, the cells were put in 10ml of 

culture medium and transferred to vitrogen (Cohesion) coated T75cm2 Flasks, 24 well plates 

(40,000 cells/ well) or 96 well plates (20,000 cells/ well). The cells were then cultured until they 

reached 90% confluency. I performed experiments on epithelial cells from different transplant 

patients (first passage “PI”, and second passage “PII”). All of these steps were carried 

out under strict sterile conditions in a laminar flow hood. The major difficulty at this 
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stage involved infections developing in the cells. Some problems were faced with innate 

infection from patient derived organisms resistant to the antibiotics in the growth medium 

because of the nature of many of the cells gained (e.g. early post-transplant brushings obtained 

from the recipients). There were also occasional problems with infection introduced during 

culturing regardless of following a strict sterile technique. Infected cells were bleached and 

discarded from the study. The brushings produced 4x104 cells with ~90% of the cells being 

epithelial cells and the rest being made up of neutrophils, macrophages and lymphocytes [27]. 

A few cells types (including primary) did not optimally attach to standard tissue culture 

plastic or glass unless it was coated with a suitable substrate, mimicking the natural environment 

of the cells [104]. In vivo airway epithelial cells are attached to a basement membrane which 

includes collagen. The primary airway cell cultures were, therefore, carried out on collagen coated 

tissue culture containers, as previously described by our lab [27, 28]. 

Confluency is a measure of the density of cells in a culture dish or a flask and refers to the 

coverage of the dish or flask by the cells [105]. It is useful to determine when to passage cells 

or when to induce a perturbation such as a cell stimulus or challenge [106]. Cell lines must 

be maintained in the exponential growth phase for the best culture results. In other words, 

they must be sub-cultured on a regular basis before they reach 100% confluence when they 

enter a stationary growth phase. If the cells are around 70% to 90% confluent (i.e cover 70-

90% of the flask), they need to be sub-cultured [107]. Examples of cell confluency are given 

in Figure 5. It is hard to count Calu-3 in images because they grow in clusters. Therefore, the 

degree of confluency was assessed by an estimation of confluency. 
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Figure 5. Images taken when 100% confluency reached for 500K in Calu-3 cells. 80% 

confluency of 400K cell density. 60% confluency of 300K cell density. 40% confluency of 

200K cell density. 20% confluency of 100K cell density. Scale bar 500 µm. 
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2.1.2. Calu-3: 

The Calu-3 cells are an adenocarcinoma cell line which was developed by Jørgen Fogh 

in 1975 using a pleural effusion from a lung cancer patient. Calu-3 cells express CFTR 

lysozyme, lactoferrin and the serous cell markers [108]. They are deficient in the dense 

granules that characterize serous cells in vivo. They also secrete mucus in around 25% of the 

cells and in an air-liquid interface culture, they contain translucent mucin granules. These are 

1-2 µm in diameter and have the mucins MUC5AC and MUC5B characteristic of airway 

goblet cells and submucosal glands [109]. Despite this, Calu-3 cells lack normal chromosomes 

1, 13, 15 and 17 [110]. Calu-3 cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 50 mg/ml penicillin and streptomycin, MEM non-essential 

amino acids, 100 U/mL penicillin/streptomycin, 100µg/mL GlutaMAX equivalent to 2mM l-

glutamine (all from Invitrogen, Carlsbad, CA) and 10% fetal bovine serum (Hyclone, Logan, 

UT). The cells were maintained at 37 ºC in an incubator with 90% humidity and 5% CO2. 

After they had grown to 90% confluency, cells were trypsinized and seeded into 24 (50,000 

cells/ well) or 96 (20,000 cells/ well) well plates for cytotoxicity and inflammation studies. 

Experiments were performed with cells of passage numbers 25–45. 

 

The Calu-3 cells (Calu-3 (ATCC® HTB-55™) are a lung adenocarcinoma derived cell 

line produced from a metastatic site. The American Type Culture Collection (ATCC) protocol 

for culture of Calu-3 cells does not recommend the use of coated tissue culture ware so the 

Calu-3 cells were cultured on non-coated tissue culture flasks, following the ATCC protocol 

[111]. 
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2.2.Nanoparticles: 

2.2.1. Nanoparticle Characterizations: 

I have used three different poly nanoparticles (DL-lactide-co-glycolide in a 50:50 molar 

ratio) (PDLG) (NP1-3). These were received in suspension from Nanomi (Nanomi B.V 

Oldenzaal, Netherlands) and three different poly (lactic-co-glycolic acid) (PLGA) (NP4-6) 

received in dry powder form from Aristotle University of Thessaloniki (AUTH, Greece) 

(Table 8). In addition, the two polystyrene nanoparticles used in this study were obtained as 

dispersion in DI water from Corpuscular Company (New York, NY). The primary sizes as 

initially received were 52 and 100nm based on photon correlation spectroscopy and/or laser 

diffraction provided by the company. All of these nanoparticles were tested in Chapter 3. 
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Table 8. Physiochemical characterizations of NPs used in this study. 
 

Nanoparticle 

Types 

Identification 

Name 

Concentrations 

as Received 

Fluorescent 

Marker 

Suspended 

in 

Colour Size 

nm 

Zeta 

Potential 

mV 

NP1 PDLG 

5002A 

1.7mg/ml Lumogen 

red 305 

Water Light 

pink 

160 N/A 

NP2 PDLG 

5002B 

3mg/ml Lumogen 

red 305 

Water+0,5% 

pluronic 

F108 (w/w) 

Light 

pink 

122 N/A 

NP3 PDLG 5002 0.7 mg/ml Lumogen 
red 305 

Water Light 
pink 

160 N/A 

NP4 PLGA- 
trypsin 

15.34 mg 0.93% w/w 
trypsin 

Lyophilized 
powder 

White 329 -1.17 

NP5 PLGA- 
papain 

15.04 mg 10.8% w/w 
papain 

Lyophilized 
powder 

White 388 3.16 

NP6 PLGA- 
bromelain 

15.04 mg 5.13% w/w 
bromelain 

Lyophilized 
powder 

White 549.5 -5.28 

It should be noted that each NP 1-3 was loaded with 0.1% w/w fluorescent dye and 0.02% (w/v) of 

sodium azide have been added to the samples. PDLG: poly DL-lactide/glycolide copolymer, PLGA: 

poly (lactic-co-glycolic acid). Trypsin: a serine protease from the proteases of mixed nucleophile 

(superfamily A) which can be found in the digestive systems of many vertebrates to hydrolyse proteins. 

Papain: a cysteine protease of the peptidase C1 family, used to tenderize meat and as a food 

supplement to help digestion. Bromelain: a proteolytic extract derived from the stems of pineapples 

and constituted an unusually complex mixture of different thiol-endopeptidase and other not yet 

completely  characterized  component  such  as  phosphatases,  glucosidases,  peroxidases,  cellulases, 

glycoproteins and carbohydrates. N/A=not available. 
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Table 9 shows the self nanoemulsion drug delivery systems (SNEDDS) that were used 

in chapter 4. These nanoparticles were prepared by Aristotle University of Thessaloniki, 

Greece. 
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Table 9. Characterizations of nanoparticles. 
 

Nanoparticles Size Lipids Chromophore 

SNEDDS-a 35nm Cremophor EL, 

lauroglycol FCC, 

and labrafil 

M1944CS. 

Lumogen 

SNEDDS-b 15nm Transcutol P, 

cremophor RH 40, 

and ethanol. 

Lumogen 

SNEDDS-c 15nm Transcutol P, 
cremophor RH 40, 
and PEG 400. 

Lumogen 



75 
 

2.2.2. Dispersion Protocol for Nanoparticles: 

The nanoparticles were vortexed for 10 seconds at maximum speed on a whirlmixer and 

then placed in a sonication bath (220-240V, 50-60 Hertz, 2000 Watts, module U300H, Module 

number F0001602, 03/7/2012, Ultrawave LTD, Cardiff) for 5 minutes at 25ºC.  This was 

followed by vortexing for 10 seconds at maximum speed. All the materials used to prepare 

the stock and working concentration were sterilized and prepared in a laminar flow cabinet. 
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2.3.Sandwich ELISA: 

The sandwich ELISA for measuring IL-8 was carried out as described in the commercial 

human CXCL8/IL-8 DuoSet kit (Catalogue number DY208, R&D systems). In summary, 96 

well plates were coated with 100µl of capture antibody solution and the plate was sealed and 

incubated overnight at room temperature. After 24 hours, the solution was disposed of. The 

plate was washed with 400µl of washing buffer two times followed by an extra wash of PBS 

twice. 300µl of blocking buffer was added to the plate and plate was sealed and incubated for 

1 hour at room temperature. Then the plates was washed with washing buffer and PBS two 

times. After that, 100µl of serial dilutions of IL-8 standard were added to the plate (ranging 

from 2000 to 31.25 pg/ml of standard solution). At the same time, the samples were added to 

the plate. Both the standard solution and the samples were incubated for 2 hours at room 

temperature. The plate was then washed with washing buffer and PBS two times. 100µl of 

detection antibody was added to the plate and the plate was sealed and incubated for 2 hours at 

room temperature. The plate was then washed two times with washing buffer and PBS. 100µl 

of horseradish peroxidase solution was added to the plate and the plate was sealed and 

incubated for 30 minutes at room temperature. The plate was then washed twice with 

washing buffer and PBS. Then 100µl of substrate solution was added to the plate and it was 

sealed and incubated for 20 minutes at room temperature. 50µl of stop solution was then added 

to the plates. The samples were quantitated within 30 minutes by subtracting readings at 540nm 

from the readings at 450nm. Standard NPs curves were done to detect the interference of NPs 

with the ELISA. A concentration of 250μg/ml NPs (20µl of working concentration of NPs) 

was added to 80μl of standard IL-8 in each well. Therefore, the total concentration of IL-8 NPs 

standard was 50μg/ml in the total volume of 100µl. 



77 
 

2.4.Cell Viability: 

2.4.1. CellTiter Blue: 

The viability of a population of cells in vitro can be determined using a variety of 

experimental methods. One parameter used to define cell viability is whether or not metabolic 

processes remain active. Viable cells must carry out metabolic reactions to generate the energy 

required to maintain homeostatic processes including synthesis of critical components and 

maintenance of membrane potential. When cells lose membrane integrity in vitro, their ability to 

carry out metabolic processes ceases. In other words, they die [112]. The methods to monitor 

and track cell viability essentially fall into two categories: those that detect changes in cell 

membrane integrity and those that function based on the ability of a viable cell to incorporate or 

metabolize a particular substrate [113]. One method for monitoring cell viability is the 

conversion of indicator dyes to form a measurable end product. The CellTiter-Blue™ Cell 

Viability Assay – a buffered solution containing highly purified resazurin – depends on the 

capacity of living cells to convert a redox dye (resazurin) into a fluorescent end product 

(resorufin). The assay affords a homogeneous, fluorometric technique for assessing the number of 

viable cells in multiwell plates. Viable cells maintain the capability to metabolise resazurin into 

resorufin. However, nonviable cells quickly lose metabolic capability and, therefore, do not 

produce a fluorescent signal. Resazurin penetrates cells in where it is reduced to the fluorescent 

resorufin, as a result of the action of redox enzymes. After that, the fluorescent resorufin will 

diffuse into the surrounding medium.  Resazurin is dark blue and has slight fundamental 

fluorescence until it is reduced to resorufin, which is pink and very fluorescent [112]. It is also 

possible to measure reazurin and resorufin levels using absorbance. The absorbance maximum 

of resazurin is 605nm, and the reduced resorufin has a maximum at 573nm. Therefore, a 

subtraction of absorbance 570nm-600nm was done in this thesis to get the accurate value of how 

much reszaurin had been reduced to resorufin by the cells as fluorescent analysis was not 
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available. The assay was designed for use as an endpoint assay rather than as a kinetic method of 

monitoring cell growth. The reagent should be added near the end of the period of exposure to 

the compound being tested [112].  The advantages of this assay are summarized in table 

10. 

The CTB assay was purchased from Promega (catalogue number G8082). This assay relies 

on cell reduction reactions to convert resazurin to resorufin which fluoresces at 590nm. In 

addition, when using non-fluorescent measurements, resazurin absorbs at 605nm and resorufin 

absorbs at 573nm. Cells were incubated in 100µl of culture medium and 20 µl of cellTiter blue 

reagent was added. The plates were shaken for 10 seconds and then incubated at 37oC for 1-4h, 

before being shaken for 10 seconds. Absorbance was then read at 570nm, and the 600nm value 

was subtracted from the 570nm value to correct for any background interference. Standard 

curves were constructed using mixtures of live and methanol killed cells in the ratios of live:dead: 

100:0, 75:25, 50:50, 25:75, and 0:100 (positive control).
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Table 10: The Advantage of using CellTiter-Blue assay. 

Advantage Comments 

speed Cell washing, removal of medium, and multiple 

pipetting steps are not required. 

The assay is suitable for manual use as well as for 

high-throughput automated screening assays. 

The homogeneous add-incubate-measure format 

reduces the number of handling steps 

Allows Your Choice of Assay Format and 

Method of Detection. 

Can be used with 96- or 384-well formats, and 

data can be recorded using fluorescence or 

absorbance. 

Allows You to Perform More than One Assay on 

the Same Sample 

The reagent is relatively non-destructive to cells 

during short-term exposure; it is possible to use 

the same culture wells to do more than one type 

of assay. 

Safe The reagent is generally nontoxic to cells, 

allowing extended incubation periods in some 

situations. 

Requires no scintillation cocktail, radioactive 

waste disposal (unlike [3H]-thymidine 

incorporation assays) or use of hazardous 

solvents (required for MTT-based assays). 

It can be stopped The fluorescence/ absorbance generated in the 

CellTiter-Blue® Assay can be stopped and 

stabilized by adding 3% SDS. 

Purified The resazurin supplied with the CellTiter-

Blue® Cell Viability Assay is purified to ensure 

that there will be no significant background from 

residual levels of resorufin in the Reagent.  
 

Adapted from [114]. 
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2.4.2. MTT: 

The  in  vitro  mitochondrial  dehydrogenase  activity  was  evaluated  using  the  3-[4,5- 

dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide (MTT) test, adapted from the protocol 

previously described [115] and purchased from Sigma. The MTT assay is one of the most 

common cell viability assays. This assay determines mitochondrial function by evaluating the 

activity of mitochondrial enzymes such as succinate dehydrogenase [39]. MTT is assumed 

to be entirely reduced into its formazan intracellularly. The quantity of formazan formed is 

directly related to the number of metabolically active cells in the culture which can be 

measured spectrophotometrically when dissolving the formazan in an organic solvent. 

Reduction of the water-soluble MTT salt by metabolically active cells causes the formation of 

MTT-formazan crystals. Reduction of MTT in isolated cells is considered as a display of ‘‘cell 

redox activity’’ [116].The MTT assay produces a coloured product – a purple formazan – 

which can be measured by light absorbance at an exact wavelength. The absorbance value 

results describe both the cell number and the functional viability of those cells [39]. The cells 

were seeded into 96 well plates and pre-incubated until 90% confluency. Cytotoxicity studies 

were done after 24 hours of nanoparticles exposure. Then the cells were washed with PBS 

twice. The cells then received 10µl of MTT solution per well. After 3h incubation at 37ºC, I 

added 100µl of MTT solubilisation solution (10% triton X-100. 0.1M HCl in anhydrous propan-

2-ol) to dissolve the formazan crystals per well. Measurements were performed at wavelengths 

of 570nm and background at 690nm. The recorded value was A570nm-A690nm. Cells killed with 

methanol were considered as 100% dead cells. 
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2.5.Light Microscopy: 

Pictures were taken immediately after stimulation with NPs and after 24 hour of 

exposure. The microscope used was an EVOS XL core transmitted light microscope from 

Advanced Microscopy Group (AMG) Company. The pictures (phase contrast) were taken on 

100, 200 and 400x magnification. 
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2.6.Cleaned Porcine Intestinal Mucus: 

Porcine mucus was prepared in house from freshly scraped pig stomachs as described 

previously [117]. In brief, 1g of mucus (wet weight) was added to 5ml of sodium chloride 

(0.1M) and stirred for one hour at 4oC. The sample was centrifuged at 9000rpm (10,400g) at 

10oC for 2 hours. After this, the supernatant and granular material at the bottom were discarded. 

The pellet was re-suspended in half the volume of sodium chloride (0.1M) used for the first 

extraction. The re-suspended pellet was stirred for 1 hour at 4oC. Then it was centrifuged at 

9000rpm (10,400g) at 10oC for 2 hours. Finally, the supernatant was discard. The cleaned 

mucus was used immediately of stored frozen until required. 
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2.7.Rheology: 

Rheology was carried out as described previously [117]. 4.5g of cleaned porcine small 

intestinal mucus was loaded onto 40 mm serrated parallel plates, with gap of 1000µm. 

Excess mucus was removed from the side of the plates using a clean nylon spatula and the 

samples were covered to prevent dehydration and sample loss. The rheology was analysed 

using a Kinexus Pro (Malvern Instruments, UK). The sample was allowed to equilibrate and 

stabilise at 37oC for 5 minutes before any experiments were performed. The initial experiment 

was a non-destructive amplitude sweep set at 1Hz, starting at 0.01% complex shear strain to 

calculate the linear viscoelastic region (LVER). The end of the LVER was determined as the 

shear strain that caused the G’ to deviate from the initial reading by more than 10%. The LVER 

was used as the fixed amplitude in the second experiment, the frequency sweep with cross over. 

The frequency sweep was set to run between 0.1 and 10 Hz. The final series of tests were 

destructive amplitude sweeps. The complex shear strain was set to start at 0.1% up to a 

maximum of 1000%; however, the test was stopped once the mucus gel became a viscous 

liquid, which was generally before the test reached a complex shear strain of 600%. This test 

was repeated three times. The G’, G’’ and phase angle were measured within LVER for each 

repeat as well as the complex shear strain of the breakdown point for each repeat. 
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2.8.Permeation Studies: 

The permeation studies were carried out as described previously [118]. In brief, 50 mg 

of porcine mucus was used in 24 well transwell plates (Greiner-BioOne, Kremsm¨unster, 

Upper Austria, Austria). The basolateral chamber was filled with 500µl of 0.1M phosphate 

buffer at pH 6.8 and the apical chamber was filled with 250 µl of fluorescent labelled SNEDD 

formulation diluted 1:100 in the buffer as shown on Figure 6. The 24 well plate was then 

covered with a plate lid and incubated at 37ºC on a shaking board (Vibramax 100; Heidolph 

Instruments, Schwabach, Bavaria, Germany). At 0, 1, 2, 3, 4, 5 and 6 hours, samples of 100 

µl were removed from the basolateral (acceptor) compartment and replaced with the same 

volume of the buffer. The samples were measured in 96 well plates at an excitation wavelength 

of 480nm and an emission wavelength of 520nm (Fluostar Galaxy, Ortenberg, Hesse, 

Germany). The amount of SNEDD permeation as calculated as compared to the control value. 

In other words, permeation measurements of each formulation performed without mucus to 

determine the 100% control value. A further control to measure the background level of 

fluorescence and, therefore, 0% of SNEDD permeation was performed. 250µl of the buffer used 

for the SNEDD suspension was added to the apical chamber without the SNEDDs. This 

was to determine background fluorescence released from the mucus. 

Figure  7  illustrates  how  the  time  course  of  permeation  was  assessed.  Diffusion 

experiments  were  carried  out  without  mucus  to  allow  determination  of  the  amount  of 

fluorescent labelled particles that penetrate the membrane and reach the acceptor side. The 

percentage of penetrated particles was calculated using the following equation: 

Percentage  of  permeation  =  [(fluorescence  of  test  NP– fluorescence  of  0%  control)  / 

(fluorescence of 100% control at 6 hours - fluorescence of 0% control)] * 100.  

The percentage of permeation can be calculated for the nanoparticle at each hour 

interval compared to the 100% control at 6 hours. 
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Figure 6. Transwell inserts covered with mucus and particle suspension. 
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Figure 7: Time course of permeation. 0% control refers to test the permeation of mucus only (no 

NPs tested). Test NP refer to test the permeation of NPs through the mucus. 100% control refer to 

test the permeation of NPs without mucus.  
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2.9.Statistics: 

Statistical testing is composed of two types:  parametric and nonparametric methods. 

Parametric methods are used where data follows a normal distribution. Nonparametric methods 

are employed when the probability distribution cannot be defined. T test is a parametric 

statistical method used to compare the means of two groups. It is also known as the Student’s T 

test and is a statistical analysis technique developed by William Sealy Gosset in 1908 as a 

means to control the quality of dark beers. T tests are used when the data in question fulfils 

the conditions of normality, equal variance and independence. They can be divided into two types: 

independent and paired. The independent or unpaired T test is used when the two groups under 

comparison are independent of each other. The paired t test is used when the two groups under 

comparison are dependent on each other. It can be considered as a type of T test for a single 

sample since it tests the difference between two paired results [119]. 

Bar charts with error bars are the most common way of describing sample means with 

associated error [120]. There are two main purposes for the use of error bars. They indicate the 

spread of data by displaying the standard deviation around the mean [121]. Error bars can also 

indicate the reliability of the mean by showing the standard error of the mean (SEM) [121, 

122]. Standard   deviation   (SD) defines the difference of the ‘‘observed  data’’   calculated  as the 

average distance from each observation to the sample mean. If the data is normally distributed, 

95% of the observations should fall in the range of the mean ± 2SD. The standard error of the 

mean defines the precision of the sample mean calculated. The SEM is defined as (SD/√n) where 

n indicates the sample size and √n is the square root of n. The SEM can be related to a statistical 

significance; 95% confidence intervals (CI) can be derived from SEM values (95%CI = mean 

±2SE) [122]. 

All the statistics were performed using Prism 6 from GraphPad software. Paired T tests 

were used to analyse differences between the viability of cells and IL-8 levels without NPs and 
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cells with NPs using human primary lung epithelial cells. Correlation analysis was used to 

analyse the differences produced by the cell density of Calu-3 cells using the CellTiter Blue 

assay. Unpaired T  tests were used to analyse the permeation of SNEDDS at 6 hours. P ≤ 

0.05 were considered statistically different. 
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Chapter Three: Nanoparticles and Lung Epithelial Cells 

3.1.Abstract: 

3.1.1. Introduction: 

The aim of this study was to evaluate the safety profile of different novel nanoparticles 

when interacting with human primary lung bronchial epithelial cells in vitro. More specifically, 

I was investigating the role of inflammation and cytotoxicity. 

3.1.2. Methods: 

Primary bronchial epithelial cells (PBEC, passage I and II) and the human airway 

epithelial cell line (Calu-3) (passage 22-40) were cultured in 24 and 96 well plates. Three 

different formulations of NPs were used to measure IL-8 production by cells as a marker of 

inflammation (measured by sandwich ELISA). The Celltitire blue assay (CTB) was used to test 

cell viability. The effect of cell density on CTB were investigated (500k, 400k, 300k, 200k, 

100k, 50k, 42k, 33k, 25k, 17k and 8.3k) in 24 well plates. 

3.1.3. Results: 

After 24 hours of exposure, the viability of cell exposed to 52nm polystyrene nanoparticles 

showed no statistical difference between cells with nanoparticles and cells without 

nanoparticles. The cell density in 24 well plates had a major effect on the CTB assay when the 

cell seeding density decreased. Calu-3 cells grown in 96 wells plated at 20K density 

demonstrated that the CTB may not be sensitive enough to test the viability of cells in 96 well 

plates. In addition to my cytotoxicity results, IL-8 was shown to be slightly increased in 

human primary cells when stimulated with different concentrations of the nanoparticles. 

However, IL-8 increased significantly when cells were cultured with the same proportion of 

sterile water as the nanoparticles were delivered in (a control for osmolarity). 
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3.1.4 Conclusion: 

I have found that CTB may not be sensitive enough to test the viability of cells with 

NPs. Therefore, other assay systems need to investigate. Furthermore, I have also shown that 

these NPs do not cause a significant increase in IL-8 production in primary human airways 

bronchial epithelial cells. Any apparent increase in IL-8 with NPs may have been because 

of osmotic shock. 
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3.2.Introduction: 

The European Science Foundation (ESF) identified the five main areas in which 

nanomedicine is used: (i) analytical tools, (ii) nano-imaging, (iii) nanomaterials and 

nanodevices, (iv) novel therapeutics and drug delivery systems and (v) clinical, regulatory and 

toxicological issues [5]. Currently, nanotechnology is used for molecular imaging to achieve 

clearer diagnosis with better-quality images. Nanotechnology is also being used in biomarker- 

based proteomics and genomics technologies. These applications may allow clinicians to 

accurately diagnose disease at the very early stages, allowing more effective therapy [123]. 

Furthermore, the use of nanotechnology in drug delivery has been shown to enhance 

bioavailability, have minimal side effects and have decreased toxicity to other organs, as well 

as being less expensive. This can be administrated in many ways such as vascular 

injections or inhalation [124]. 

The increasing use of nanoparticles (NPs) in different areas has raised broad concerns about 

their safety [125]. Due to their small size, NPs have unique properties compared with bulk 

material, as they have a having larger surface area per unit mass ratio and, therefore, potentially 

larger biological reactivity and also quantum effects potentially leading to novel hazards 

[126]. In addition, NPs may interfere with traditional cytotoxicity tests because of their 

large surface area and chemically active surfaces, producing false positives or false negatives 

in assessments of toxicity, making it difficult to compare toxicity data. Possible interactions 

from particles are: (1) the particle optical properties could interfere with light absorption or 

fluorescence methods used for detection, (2) chemical interactions between the particles and 

the assay components, and (3) binding of assay molecules to the particle surface [127]. At the 

present time, a range of assays are used which measure cell viability through enzyme activity; 

for example, (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide [MTT] measures 

the activity of NADH dependent enzymes, thus measuring cell metabolic activity of NADH-

dependent cellular oxidoreductase enzymes. The CellTiter-Blue assay which relies on the 
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reduction of resazurin to resorufin or ATP level as in the CellTiter-Glo assay. However, little 

has been reported about the interactions between nanoparticles and the compounds used in 

these assays. The levels of interference in these assays requires further investigation [128]. For 

instance, Belyanskaya et al. 2007 found that the interference of single walled carbon 

nanotubes (SWCNTs) with the MTT assay can be influenced by surfactants used to suspend 

the SWCNTs. Moreover, depending on the purification procedure of SWCNTs, they are able 

to reduce MTT to its MTT-formazan form in the absence of cells or enzymes. It has been 

suggested that careful assay validation and controls are needed to avoid a potential bias in 

concluding results of cytotoxicity studies. Belyanskaya et al. reported that the amount of 

interference can be based on three factors: (1) the assay protocol, (2) surfactant interactions 

and (3) the chemical structure of the SWCNT. They concluded that extreme caution should be 

used when interpreting cell viability data without the appropriate controls in place [116]. In 

another study, Hoskins et al. 2012 investigated magnetic nanoparticles [MNPs] 100nm in 

diameter coated with poly (ethylenimine) [MNP-PEI] and poly (ethylene glycol) [MNP-

PEI-PEG] to provide a subtle difference in their surface charge and their cytotoxicity. This 

was analysed by three standard cell viability assays: 3-(4,5- dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium [MTS], CellTiter Blue and 

CellTiter-Glo in human neuroblastoma (SH-SY5Y) and mouse macrophage (RAW 264.7) 

cells. They found that in comparison to trypan blue manual counting, the MTS and Titer-Blue 

assays overestimated the viability while the Titer-Glo also showed a small but non-significant 

overestimation. For example, at 25µg/ml MNP-PEI nanoparticles, RAW 264.7 cells were all 

dead when measured using trypan blue, whereas cellTiter Blue showed ~400% viability and 

MTS showed ~150% viability. Their findings show that when interpreting cell viability data 

from commercial assays on novel nanoparticles, caution should be applied. Their data 

strongly suggested that analysis of nanotoxicity needs a different approach to conventional 

toxicity studies used for cytotoxic compounds and other molecules. Their results also 
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demonstrate that cell viability measurements must be allied with analysis of other cellular 

processes when determining the cytotoxicity and biocompatibility of nanoparticles [128]. 

Kroll et al. 2012 demonstrated that 24 engineered nanoparticles interfered with classic 

cytotoxicity assays using A549 cells in a concentration, particle and assay-specific dependent 

manner. They observed a concentration dependent interference of all 24 engineered NPs with 

the optical measurements used to determine the oxidative stress (dichlorofluorescein, DCF), 

cellular metabolic activity (MTT) and cell viability (lactate dehydrogenase, LDH). These 

results suggest that each in vitro test system has to be evaluated for each nanoparticle type to 

assess nanoparticle cytotoxicity [129]. Verifying cytotoxicity data with at least two or more 

independent test systems has been suggested earlier [130] but still may not be sufficient to 

eliminate inaccurate results and incorrect interpretations [129]. Darolles et al. 2013 found 

that Co3O4 nanoparticles interfere with CellTiter blue at high doses above 1250 µg/mL using 

BEAS-2B cells. They modified the assay protocol by introducing a centrifugation step to 

remove the nanoparticles before reading the luminescence. The results from this assay agreed 

with those from a clonogenic assay. They suggested that interference testing should be 

performed before assessing particle toxicity using in vitro tests to avoid false interpretations. In 

addition, in several cases of interference, the protocol could be adapted to allow the reliable use 

of these in vitro tests [125]. 

The aim of my study was to evaluate the safety profile of different novel NPs when 

interacting with human primary lung bronchial epithelial cells in vitro. More specifically, I am 

investigating inflammation and cytotoxicity. I also investigated the effect of cell density of 

Calu-3 cells on the CellTiter blue assay and the effect of nanoparticles on a standard curve for 

IL-8. 
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3.3. Methods: 

3.3.1 Cell Cultures: 

See chapter 2 for methods of primary bronchial epithelial cells and Calu-3 cells. 

3.3.2. Nanoparticles: 

The two polystyrene nanoparticles NP7 and NP8 (PNP; catalogue number 100111-10, 

100121-10, respectively) were obtained from the Corpuscular Company (New York, NY). 

The primary sizes as initially received were 52 and 100nm respectively, based on photon 

correlation spectroscopy and/or laser diffraction provided by the company. Furthermore, I have 

used three different poly (d-lactide-co-glycolide) (PDLG) (NP1-3) and three different poly 

(lactic-co-glycolic acid) (PLGA) (NP4-6). The details of the NP7 and 8 are shown in table 

11. The NPs were stored on the fridge at 4ºC until use. 

3.3.3. Dispersion Protocol: 

All materials used to prepare the stock and working concentration were sterilized and 

prepared in a laminar flow cabinet. Nanoparticles were used on the cells immediately after 

preparing the working concentration. Stock concentration were disposed of. See Chapter 2 for 

further information. 

3.3.4. IL-8 Measurement: 

See chapter 2. 

3.3.5. Cell Viability: see chapter 2 

The CellTiter-Blue assay was used. See chapter 2. 

3.3.6. Light Microscopy: 

See chapter 2. 
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3.3.7. Statistics: 

Details are given in chapter 2. 
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3.4. Results and Discussion: 

3.4.1. The Physiochemical Characterizations of the NPs: 

The characterization of the nanoparticles used is shown in table 11. 
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Table 11. Physiochemical characterizations of NPs 7 and 8 used in this study. 
 

Nanoparticle 

Types 

Identification 

Name 

Concentrations 

as Received  

Quantity  Fluorescent 

Marker  

Suspended 

in 

Colour Size 

nm 

Zeta 

potential 

mV 

NP7 polystyrene 

nanoparticles 

25 mg/ml 10 ml N/A  DI water white 52 N/A*

  

NP8 polystyrene 

nanoparticles 

25 mg/ml 10 ml N/A  DI water white 100 N/A*

  

N/A* = not available. 
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3.4.2. Light Microscopy: 

I  stimulated  human  primary  bronchial  epithelial  cells  with  52nm  polystyrene 

nanoparticles and took pictures of the cells after 24 hour exposure with different concentrations of 

NPs (Figure 8). There were no obvious differences in morphology between the controls (cells 

without NPs) and the cells with NPs. Cells exhibited the typical cobble stone appearance of 

viable epithelial cells and are phase bright to indicate their live appearance. There is no 

evidence of cells becoming fibroblastic (which would be recognised by a spindle shaped 

appearance).
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A)  

 

 

B)  

Figure 8: Primary epithelial cells A) control cells (cells treated with resting media only). B) 

50µg/ml of 52nm polystyrene. Scale bar 200µm. 
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3.4.3. Cell Viability: 

After 24 hours exposure of the 52nm Polystyrene nanoparticles (NP7) at 50µg/ml, I 

investigated the viability of cells. The results are presented in table 12 after CellTiter blue 

assay incubation for 2 hours (n=7). It showed there is no statistical difference between cells 

without NPs and those with NPs (P value 0.06). It can be seen from table 12 that cell viability 

with NPs was 100% and the cells exposed to PNP ranged from 67.8% up to 100% with a 

median value of 94.1. Three of the experiments (3, 4, and 6) showed cells remained 100% 

viable after polystyrene NP exposure, whereas experiments 1, 2, 5 and 7 showed a decrease 

in viability on exposure of the cells to nanoparticles (77.8, 74.3, 94.1, and 67.8, respectively). 

Overall, the four experiments showed a decrease in viability on exposure to nanoparticles, 

and the other three showed no change. 
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Table 12. The percentage of live cells in primary human bronchial epithelial cells after 24 hours 

exposure of 50µg/ml of 52nm PNP (NP7). 

 
Number of experiment 

The viability of control (cells without 
NPs) 

The viability of cells with 
NPs 

1 100 77.8 

2 100 74.3 

3 100 100 

4 100 100 

5 100 94.1 

6 100 100 

7 100 67.8 

P value is 0.06. There is no significant different between the viability of cells without NPs and cells with 

NPs. The viability of controls (100%) cells represent the viability of cells untreated with NPs (i.e. cells 

treated with resting media).  
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As a control I investigated the interference of polystyrene NPs (PNP) (size 100nm) with the 

Celltiter-blue assay in the absence of cells in 96 well plates. The results are presented in table 

13 and figure 9 after CTB incubation of 2 hours (n=5). The results were negative even with 

the control (resting media with CTB only). There was no colour change detected in any of the 

experiments. In other words, the CTB assay maintained a dark blue colour. In the absence of cells, 

resazurin was not converted into the end product of resorufin. When I subtracted 600nm 

(~maximum absorbance resazurin) from 570nm (~ maximum absorbance of resorufin), the 

absorbance of resorufin (product) was lower than that of resazurin (substrate). This indicated 

that there is no interference of PNP with the CTB assay itself in the absence of living cells. Hoskins 

et al. (2012) investigated the effect of magnetic NPs (MNPs) with CTB assay reagents in the 

absence of cells.  They demonstrated that there is no significant effect on absorbance, 

fluorescence or luminescent readout, proposing that the increase absorbance and fluorescence 

were only apparent and caused by the combination of cells, assay reagents, and NPs [128]. 
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Table 13: the OD absorbance of polystyrene NPs with CTB assay (without cells). 

Experiment/ 

Concentration 

1 2 3 4 5 Average  Standard 

deviation 

Control  -0.07 -0.29 -0.1 -0.14 -0.14 -0.15 0.09 

25 µg/ml -0.07 -0.23 -0.12 -0.14 -0.16 -0.15 0.06 

50 µg/ml -0.12 -0.16 -0.14 -0.15 -0.15 -0.14 0.02 

100 µg/ml -0.08 -0.21 -0.06 -0.16 -0.13 -0.13 0.06 

 

Control experiment refer to resting media only (no NPs) incubated with CTB assy. 
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Figure 9: the OD absorbance of polystyrene NPs with CTB assay (without cell culture). 
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Three primary human lung epithelial cells cultures were exposed to three different 

PDLG nanoparticles (NPs 1-3) (Table 8) for 24 hours in 24 well plates. In each experiment 

(Table 14), cells were washed with PBS twice before applying the assay to avoid possible 

interference with the assay. In PDLG 5002A NPs, the viability of 100µl and 200µl were 90.6% 

and 95.5% of alive cells. When I stimulated the cells with the same concentration of deionized 

water, the results of 100µl and 200µl were 100% and 82.1% of alive cells. In PDLG 45002B, 

all the concentrations tested of NPs and deionized water remained 100% alive cells. In 

PDLG 5002, all the concentration tested remained 100% alive, except for 100µl of deionized 

water (82.3% of alive cells). In addition to this, I noticed that some of the OD values were 

higher than 100% alive cells. For example, the OD values of 100µl and 500µl of PDLG 

45002B were 0.8 and 0.9 which were higher than the controls cells with an OD value of 0.6 

(cells without NPs). Even with the deionized water, the OD value of 100µl and 500µl (0.9 and 

1.1) were higher than the control cells (0.6) (cells without deionized water). These results might 

be due to differences in cell density. Therefore, I further investigated the effect of cell density 

on the CTB using Calu-3 cells in 24 well plates. 
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Table 14. Results of the CTB assay of three different PDLG NPs in human primary epithelial 

cells. 

 

NPs Concentration µl OD values of 570- 

600nm 

Percentage of alive 

cells 

PDLG 5002A Control 0.9 100 

100 0.9 90.6 

100a 1.1 100 

200 0.9 95.5 

200a 0.8 82.1 

PDLG 5002B Control 0.6 100 

100 0.8 100 

100a 0.9 100 

500 0.9 100 

500a 1.1 100 

PDLG 5002 Control 0.6 100 

50 0.7 100 

50a 0.7 100 

100 0.6 100 

100a 0.6 82.3 

Standard curves were constructed using mixtures of live and methanol killed cells in the ratios of live: 
dead, 100:0, 75:25, 50:50, 25:75, and 0:100. N/A= not applicable. a= concentrations of deionized H2O 

instead of NPs.  Please note that these results are for triplicates of exposure of NP1-NP3 (Table 8) on 
PBEC. 
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3.4.4. The Effect of Cell Density on the CTB Assay: 

Calu-3 cells were cultured at different seeding densities in 24 well plates to study their 

effect on the CTB assay (Table 15, Figures 10-12). In my first experiment (n=3), I cultured 

Calu-3 cells at different seeding densities of 500K, 400K, 300K, 200K, 100K and 50K. I 

applied the CTB assay only when the 500K density of Calu-3 was confluent at about 90%. It 

is shown that standard curves vary as the cell density decreased (Figure 10). Table 16 represents 

correlation analysis between these cell densities. There are significant differences between 500K 

and 400K (3.62e-004), 500K and 300K (P value is 0.0008), 500K and 100K (P value is 0.03), 

and 500K and 50K (P value is 0.008). There are also significant differences between 400K and 

300K (P value is 1.8e-004), 400K and 100K (P value is 0.03), and 400K and 50K (P value is 

0.02). Additionally, there is a significant difference between 300K and 100K (P value is 0.02), 

and 300K and 50K (P value is 0.02). There is a significant difference between 100K and 50K 

(P value is 0.03). In the second experiment (n=3), I cultured Calu-3 cells at different densities 

varying from 42K, 33K, 25K, 17K and 8.3K. I applied the CTB assay when the 42K density 

of Calu-3 was confluent at about 90%. It is also shown that standard curves vary as the cell 

density decreased (Figure 10). Table 17 represents correlation analysis between these cell 

densities. There are significant differences between all of the cell density tested (P values shown 

in table 17). Overall, it appears that seeding densities have a major effect on the CTB assay. 

As cell density decreased, the assay seems to lose accuracy. In higher numbers of cells, the 

standard curves appear to be closer to parallel due to a better signal (stronger). In lower numbers 

of cells, the signal of the assay is weak and becomes less accurate. The standard curves diverge 

as the density gets lower and the signal is affected. It should be noted that OD values in primary 

cells are higher than Calu-3 cells. This may be due to higher activity in primary cells, suggesting 

that those cells have more metabolic activity. After investigating the assay characteristics in 24 

well plates, I investigated the sensitivity of the CTB assay in 96 well plates. 
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Table 15. Summarized results of cell density effect on the CTB assay. For each cell density, 

experiments were done in duplicate at least. All of the experiments were done with Calu-3 in 24 

well plates. 

%DC Cell density 

500K 400K 300K 200K 100K 50K 42K 33K 25K 17K 8.3K 

100  

0.06 
 

0.05 
 

0.05 
 

0.06 
 

0.04 
 

0.05 
 

0.01 
 

0.02 
 

0.01 
 

0.01 
 

0.03 

75  

0.07 
 

0.07 
 

0.07 
 

0.05 
 

0.05 
 

0.05 
 

0.04 
 

0.04 
 

0.03 
 

0.03 
 

0.03 

50  

0.1 
 

0.1 
 

0.09 
 

0.04 
 

0.05 
 

0.06 
 

0.08 
 

0.08 
 

0.06 
 

0.05 
 

0.05 

25  

0.12 
 

0.12 
 

0.11 
 

0.1 
 

0.06 
 

0.06 
 

0.11 
 

0.11 
 

0.09 
 

0.07 
 

0.06 

0  

0.14 
 

0.14 
 

0.13 
 

0.13 
 

0.08 
 

0.07 
 

0.14 
 

0.13 
 

0.1 
 

0.08 
 

0.06 

Standard curves were constructed using mixtures of live and methanol killed cells in the ratio of 

live:dead: 100:0, 75:25, 50:50, 25:75, and 0:100. It should be noted that the OD values given in the table 
are the result of absorbance at 570 minus the absorbance at 600nm. 
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Table 16. Correlation analysis between cell densities of Calu-3. Cells seeded at 50K, 100K, 200K, 

300K, 400K and 500K. Numbers of experiments were in triplicate. 

Cell 
density 

500K 400K 300K 200K 100K 50K 

500K N/A 3.62e-004 0.0008 0.1 0.03 0.008 

400K 3.62e-004 N/A 1.80e-004 0.13 0.03 0.01 

300K 0.0008 1.8e-004 N/A 0.11 0.02 0.02 

200K 0.10 0.13 0.11 N/A 0.049 0.14 

100K 0.029 0.03 0.02 0.049 N/A 0.03 

50K 0.008 0.01 0.02 0.14 0.034 N/A 

N/A= Not applicable. It should be noted that the value in the table represent the P value. P value < 0.05 

is considered significant. CTB were used when 500K was at least 90% confluent. 
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Table 17. Correlation analysis between cell densities of Calu-3. Cells seeded at 8.3K, 17K, 25K, 

33K and 42K. Numbers of experiments were in triplicate. CTB were used when all the cells were 

at least 70% confluent. Experiments were carried out in 24 well plates. 

Cell density 42K 33K 25K 17K 8.3K 

42K N/A 0.0001 0.0006 0.0003 0.01 

33K 0.0002 N/A 0.0001 0.0004 0.006 

25K 0.0006 0.0001 N/A 0.0002 0.006 

17K 0.0003 0.0004 0.0002 N/A 0.01 

8.3K 0.012 0.006 0.006 0.01 N/A 

N/A= Not applicable. It should be noted that the value in the table represent the P value. P value < 0.05 

is considered significant. Numbers of experiments were in triplicate. The CTB assay was carried out 

when 42K cells were at least 90% confluent. 
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Figure 10. The effect of cell density in CTB assay in Calu-3. Cells were seeded between (serial 

dilutions) from 500K to 50K in 24 well plates. Numbers of experiments were in triplicate. CTB were 

used when 500K cells were at least 90% confluent. Standard curves were constructed using mixtures 

of live and methanol killed cells, in the ratios of live: dead, 100:0, 75:25, 50:50, 25:75, and 0:100. 

Data were normalized to 100% live cells for each condition. Then I have re-plotted to force to (0, 1) 

for each regression line. 
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Figure 11. The effect of cell density in CTB assays in Calu-3. Cells were seeded between on serial 

dilutions from 42K to 8.3K in 24 well plates.  Numbers of experiments were in triplicate. CTB were 

used when 42K cells were at least 90% confluent. Standard curves were constructed using mixtures 

of live and methanol killed cells, in the ratios of live: dead, 100:0, 75:25, 50:50, 25:75, and 0:100. 

Data were normalized to 100% live cells for each condition. Then I have re-plotted to force to (0, 1) 

for each regression line. 
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Figure 12.  Images taken illustrating different confluency of Calu-3 cells. 100% confluency reached 

for 500K. Scale bar 500 µm. The number of cells in Calu-3 cultures is hard to count in images 

because they grow in clusters. Therefore, a subjective estimate of confluency has been applied 

instead. The degree of confluency was 80% for 400K, 60% for 300K, 40% for 200K and 20% for 

100K. 
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3.4.5. Measuring CTB Assays using 96 Well Plates: 

After studying the effect of cell density in 24 well plates, I cultured Calu-3 at a seeding 

density of 20K (per well) in 96 well plates and carried out a CTB assay (Figure 13, Table 18 

and 19). I found that the CTB assay could test the percentage of live and dead cells for Calu-

3 seeded at 20K cell density. 
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Figure 13. 100% confluent Calu-3 grown in well of 96-well plate. Seeding density 20K. Scale bar 

200 µm. 
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Table 18. The effect of 20K cell seeding density on the CTB assay. Triplicate experiments were 

done in 96 well plates with Calu-3 cells. 

 
Experiment number 

 
Percentage of dead cells 

OD value of 570-600nm at 
20K density per well 

 
 
 
 
 

 
1 

100% -0.16 

75% -0.01 

50% 0.11 

25% 0.27 

0% 0.39 
 
 
 
 
 

 
2 

100% -0.24 

75% -0.03 

50% 0.19 

25% 0.41 

0% 0.41 
 
 
 
 
 

 
3 

100% -0.21 

75% -0.03 

50% 0.01 

25% 0.29 

0% 0.36 

It should be noted that the value of 20K density per well is the OD value of subtraction of absorption 

at 570nm-600nm. Standard curves were constructed using mixtures of live and methanol killed cells 

in the ratios of live:dead: 100:0, 75:25, 50:50, 25:75 and 0:100. 
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Table 19. The average and standard division of 20K cell seeding density on CTB. 
 

Percentage of dead cells Mean Standard deviation 

100% -0.2 0.04 

75% 0.02 0.01 

50% 0.1 0.09 

25% 0.32 0.08 

0% 0.39 0.03 

The data are derived from table 18. 
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In addition to cell line experiments, I stimulated primary epithelial cells with three 

different NPs (NP4-6) (Table 8) for 24 hours and measure cytotoxicity in 96 well plates. I 

found that three types of nanoparticles interfered with the CTB assay (data not shown). In other 

words, my data were above the OD value of control cells. 

Hoskins et al. (2012) found that magnetic nanoparticles (MNP-PEI, and MNP-PEI- 

PEG) seems to have consistently overestimated the viability when using the Celltitre blue 

assay (CTB). They assumed that interactions were happening between the assay systems 

with the assay reagents and the nanoparticles, causing incorrect cell viability assessment. 

They suggested that interference was only presents when the cells, the NPs and the reagents 

were present [128]. Monterio-Riviere et al. (2009) investigated single wall carbon nanotubes 

(SWCNT), Fullerenes (C60), Carbon black (CB), nC60 and quantum dots (QD) on human skin 

epithelial cell line (keratinocytes) and applied CTB and MTT assays. They found that these 

assays produce unacceptable results with some nanoparticles due to nanoparticles/dye 

interaction and/or nanoparticles adsorption of the dye/dye products. They concluded that 

nanoparticles interact with assay markers to cause variable results with standard toxicology 

assays and may not be appropriate for measuring nanoparticles cytotoxicity. This suggests 

that more than one assay should be required during when measuring nanoparticle cytotoxicity 

as well as imaging techniques such as transmission electron microscopy, to validate 

chemical marker-based viability assays [130]. In addition, Oostingh et al. (2011) found that the 

CTB assay was incorrect for detecting cell viability since the fluorescence measurement 

showed a false rise in the cell viability, possibly due to the physical presence of the particles 

rather than particle induced effects [131]. AshaRani et al. (2009) investigated silver 

nanoparticles (Ag-np) on normal human lung fibroblast cells (IMR-90) and human 

glioblastoma cells (U251). They found that CTB shows a slow drop in metabolically active 

cells. However, these observations show the same interference as seen with the ATP assay 

where the NPs produce a large absorbance without the presence of the cells [132]. Schlinkert 
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et al. (2014) studied differently functionalized silver (Ag) and gold (Au) on A549 cells, BEAS-

2B cells and NHBE cells. They found that there is a small interference in the light emitted 

during the endpoint when measuring both of Ag and Au NPs with CTB assay, causing a 

small underestimation of the NPs induced reduction in cellular viability [133]. 

3.4.6. The Effect of Nanoparticles on the ELISA Standard Curve for IL-8: 

After 24 hours exposure with 50µg/ml of 52nm PNP, IL-8 cytokines were measured 

via the sandwich ELISA. In table 20 (the data was calculated on normal IL-8 standards as 

shown in Figure 14a), there is no statistical difference between cells without NPs (mean is 

549) and cells with NPs (mean is 532) (P value is 0.9, n=7). Moreover, it shows that these NPs 

do not downregulate IL-8 production. Ruenraroengsak et al. (2012) showed a significant increase 

in IL-8 with 50nm unmodified polystyrene latex nanoparticles (NPs) with transformed human 

alveolar epithelial type 1-like cells (TT1) at 50 µg/ml [134]. Thach and Finkelstein (2012) 

investigated the interaction of charged polystyrene bead particles consisting of 57nm amine 

conjugated, 780 nm amine conjugated, 60nm carboxyl conjugated and 820 nm carboxyl 

conjugated with A549 cells. They found that there is a reduction in IL-8 levels [135]. However, 

I cannot directly compare my results to these results due to different cell cultures and different 

incubation times. In addition to this, I used human primary bronchial epithelial cells which are 

closer to humans. I also investigated if the nanoparticles interfere with IL-8 assay, and if so, 

how (i.e. over or underestimate). Therefore, I did an extra three standard curves to answer 

these questions (Figure 14b). It seems that 52nm PNP at a concentration of 50µg/ml does not 

interfere with the level of IL-8. 
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Table 20. Concentration of IL-8 with control (cells without NPs) and with 50µg/ml of 52nm PNP. 
 

Experiment number Control (without NPs, pg/ml) With NPs (pg/ml) 

1 1198 812 

2 138 238 

3 877 911 

4 412 435 

5 198 259 

6 459 532 

7 558 610 

Mean 549 532 

There is no significant difference between control and cells with NPs (paired t test two tailed, P = 0. 
0.9). Experiments were carried out in 24 well plates. 
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Figure 14. The standard curves of IL-8. A) Mean standards data for IL-8 ELISA. b) IL-8 normal 

std. normal std= normal IL-8 standard of 0-2000 pg/ml. Normal std-20µl= normal standard of 

IL-8 of 0-1600 pg/ml, NP std= nanoparticle standard 0-16000 pg/ml, NP std without RD= IL-8 

standard with media with nanoparticles at a concentration of 50µg/ml (total concentration of IL-

8 was 0-1600 pg/ml). 
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3.4.7. The Effect of NPs on IL-8 Levels Using Primary Human Epithelial Cells: 

I stimulated epithelial cells from PHEC with three different NPs types (Table 8) and 

measured IL-8 levels using ELISA in 24 well plates (Table 21). I also stimulated the cells with 

the same concentration of deionized water as a control for osmotic shock because these NPs 

were made in deionized water. In PDLG 5002A NPs, there is an increase in IL-8 in both 

concentration tested (100 and 200µl) compared to untreated cells (control). When I used the 

same concentration of deionized water to test the osmotic effect, there was 16 fold increase in 

IL-8 for 200µl. Similarly to PDLG 5002A, PDLG 5002B NPs showed an increase in IL-8 in 

both concentrations tested (100 and 500µl) compared to untreated cells. In testing for osmotic 

shock, 500µl of deionized water showed a maximum increase of almost 19 fold compared to 

untreated cells. In PDLG 5002 NPs, there is only an increase at a concentration of 50µl. 100µl 

of these NPs show a downregulation in IL-8 production. 50µl of deionized water showed a 

slight increase in IL-8 and 100µl of water showed a 2 fold increase in IL-8. Overall, IL-8 

release increased slightly but not significantly with the three different formulations of PDLG 

NPs. The maximum osmotic shock occurred at the maximum tested volume of deionized water 

(500µl). 
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Table 21. IL-8 concentration with three different NPs. a*= water ratio as controls in IL-8. Each 

NP was done in duplicate experiments on primary epithelial cells patients. 

 

 
NPs types 

 
The concentrations of 500µl in 

NPs solution or H2O 

Volume 

of resting 

media µl 

 

 
IL-8 concentration pg/ml 

 
 
 
 
 

 
PDLG 5002A 

Untreated 500 142 

100 400 364 

100a* 400 245 

200 300 323 

200a 300 1964 
 
 
 
 
 

 
PDLG 5002B 

Untreated 500 142 

100 400 405 

100a 400 268 

500 0 371 

500a 0 2647 
 
 
 
 
 

 
PDLG 5002 

Untreated 500 154 

50 450 178 

50a 450 191 

100 400 144 

100a 400 314 

The characterizations of these NPs are listed in Table 8. All of these experiments are done with 24 well 
plates. It should be noted that the total volume of nanoparticles or water or resting media is 500µl. 
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Chapter Four: Mucosal Drug Delivery via Self-Nanoemulsifying 

Drug Delivery Systems 

4.1.Abstract: 

4.1.1. Introduction: 

The aim of this study was to evaluate the cytotoxicity of self-nanoemulsifying drug delivery 

systems (SNEDDS) and to assess the mucus permeation behaviour of SNEDDS within a novel 

mucus diffusion model utilizing standardized Transwell diffusion plates. 

4.1.2. Methods: 

Three different SNEDDS labelled with lumogen were produced (Aristotle University of 

Thessaloniki, Greece). Calu-3 cells were used to assess their cytotoxicity using the MTT assay. 

Permeation studies were carried out using a mucus diffusion model. The samples were 

measured in 96 well plates at an excitation wavelength of 480nm and an emission wavelength 

of 520nm. The amount of SNEDDS permeation was calculated as compared to the control value 

which was a permeation measurement of each formulation performed without mucus to 

determine the 100% maximal permeation. A further control to measure the background level 

of fluorescence from mucus and, therefore, 0% of SNEDDS permeation was performed. 250µl 

of the buffer used for the SNEDDS suspension was added to the apical chamber without the 

SNEDDS. The rheology of mucus was measured to assess the gel structure of mucus. 

Oscillation amplitude, oscillation frequency and amplitude sweep strain controlled were 

analysed in order to characterise the rheological properties of the mucus. 

4.1.3. Results: 

Although the plates were washed with PBS twice before applying the MTT assay, the 

results indicate that there is interference with the MTT assay. Despite this, SNEDDS-a 

associated cytotoxicity was seen at the highest concentration used. The data showed that there 

was no size dependent permeation of mucus (15nm vs 35nm); however, the composition of the 
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SNEDDS (such as lauroglycol) may play a major role in their ability to permeate mucus. Also, 

mucus is not homogenous and this resulted in variation of the permeation data. The elastic 

modulus (G`) is dominant over the viscous (Gʺ) parameter indicating that the mucus was still a 

gel. The phase angles (δ) were between 12.3 to 19.4º. The initial breakdown stress (Pa) values 

were highest compared to the repeated breakdown stress in all experiments. 

4.1.4. Conclusion: 

SNEDDS-a was cytotoxic at high concentrations. The mucus used in these experiments 

behaved as a gel. I showed that the composition of the SNEDDS played an important role in 

determining the permeation of the mucus gel layer. 



126  

4.2.Introduction: 

Mucus is a viscoelastic and adhesive gel which defend the lung airways, 

gastrointestinal (GI) tract, vagina, eye, and other mucosal surfaces [15, 136]. The mucus 

layers protect the mucosal tissues. They help in forming steric adhesive barriers which are 

frequently cleared and renewed. The mucus barrier generally contain negatively charged 

glycoproteins secreted by goblet cells and mucosal glands but not in the stomach. It is 

composed of mucins, which have cysteine rich subunits connected by disulphide bonds 

[118]. Many foreign particulates, including particle based drug delivery systems, are 

competently immobilized in mucus layers by the pores and/or by adhesion. The 

nanoparticles are then removed from the tissue within seconds to a few hours based on the 

location in the body, resulting in a  limitation in the duration of drug delivery locally. In 

order to bypass mucus, nanoparticles must avoid adhesion to mucins and be small enough to 

penetrate the pores in the dense fibre mesh [136]. The diffusion of poorly soluble drugs via 

the mucus gel layer is essential to allow interaction with the epithelium and to lead to an 

acceptable serum concentration. Nanoemulsions are such a formulation to ensure adequate 

drug dissolution and are spontaneously formed in the presence of water or gastric juice [118]. 

Self-nanoemulsifying drug delivery systems (SNEDDS) are isotropic mixtures of oil, 

surfactant and co-surfactant which naturally develop an oil/water nanoemulsion when 

mixed with water. It has been suggested  that  their  interactions  with  the  mucus  layer  

would  be  small  because  of  the hydrophobic  surface  of  the  formed  nanodroplets  [137].  

Self-emulsifying means that the formulation forms an emulsion spontaneously and this is a 

property of the components in the formulation and it does not require mechanical mixing. 

Therefore, the term derives as self- emulsifying [138]. However, this may not be the case 

as mucus does contain hydrophobic regions. Due to the greater surface area formed by 

nanoemulsions, drugs solubilized in SNEDDS have a high dissolution velocity [118]. 

The aim of this investigation was to assess the potential cytotoxicity of SNEDDS and 
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evaluate the mucus permeation behaviour of SNEDDS within a novel mucus diffusion 

model utilizing a standardized Transwell diffusion system. 
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4.3.Methods: 

4.3.1. Nanoparticles: 

Details are given in chapter 2. 

4.3.2. Nanoparticles Dispersion: 

Details are given in chapter 2. 

4.3.3. Calu-3: 

Details are given in chapter 2. 

4.3.4. MTT Assays: 

Details are given in chapter 2. 

4.3.5. Cleaned Porcine Intestinal Mucus: 

Details are given in chapter 2. 

4.3.6. Rheology of Mucus: 

Details are given in chapter 2. 

4.3.7. Permeation Studies: 

Details are given in chapter 2. 

4.3.8. Statistics: 

Details are given in chapter 2. 
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4.4.Results and Discussions: 

4.4.1. Nanoparticles Characterization: 

Nanoparticle Characterization is shown in table 5. 

4.4.2. Cytotoxicity: 

The cytotoxicity data of SNEDDS-a, -b, and –c is illustrated on tables 22, 23, and 24 

(n=5). The average percentage live cells for 2, 0.2, and 0.02 mg/ml of SNEDDS-a was 56, 93, 

and 97 respectively, demonstrating that SNEDDS-a are only cytotoxic at the highest 

concentration. The average percentage of live cells for 2, 0.2, and 0.02 mg/ml of SNEDDS-b 

was 88, 85, and 93 respectively, demonstrating that SNEDDS-b showed little cytotoxic at any 

of these concentrations. The average percentage of live cells for 2, 0.2, and 0.02 mg/ml of 

SNEDDS- c was 97, 97, and 98 respectively. As with SNEDDS-b, SNEDDS-c was not 

cytotoxic. Although the plates were washed with PBS twice before applying the MTT assay, 

the results show interference with the  MTT assay. The fact that interference happened even 

after washing with PBS suggests that the nanoparticles had attached to or were taken up by 

the cells. This could be explained by the fact that SNEDDS are lipid and, as such, are 

compatible with cell membranes. Furthermore, fluorescence did not affect the cytotoxicity 

result. Belyanskaya et al. (2007) found that the MTT assay may be influenced by surfactants 

used to suspend single wall carbon nanotubes (SWCNT). They suggested that interference in 

the MTT assays can be influenced by (i) the surfactant used to suspend SWCNTs; (ii) the 

MTT method used; and (iii) the types of SWCNTs [116]. Monteiro-Riviere et al. (2007) 

studied SWCNT, fullerenes (C60), carbon black (CB), and quantum dots (QD) in vitro with 

human epidermal keratinocytes to determine their cytotoxicity with the MTT assay. They 

found false positive reactions due the adsorption of cell metabolized formazan by 

nanoparticles. They suggested that more than one assay could be required when assessing 

nanoparticle cytotoxicity [130]. Furthermore, Kroll et al. (2012) assessed the validity of the  

MTT assay using 24 well characterized nanoparticles. They demonstrated that nanoparticles 
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interfere with MTT assays in a concentration and assay specific dependent way, suggesting 

that each in vitro test system has to be assessed with each nanoparticle type to accurately 

determine the nanoparticle cytotoxicity. They also indicated that extra washing steps should 

be included and nanoparticles concentrations should be limited to non-interfering levels. They 

also concluded that classic cytotoxicity assays have to undergo extra development and be 

validated for each particle tested [129]. Hoskins et al. (2012) investigated the viability of 

magnetic NPs using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium [MTS] in human neuroblastoma (SH-SY5Y) and mouse 

macrophage (RAW 264.7) cells. They showed that MTS assays have dependably 

overestimated the viability, suggesting that interactions were happening between the NPs and 

the assay system, causing an incorrect cell viability assessment [128]. Vrček et al. (2015) 

studied the interference of different surface coatings of silver (AgNPs) and maghenmite NP 

(ɣ- Fe2O3NPs) with the MTT assay and found false results. They suggested that the 

interference was dependent on the nature and the surface characteristics of the nanoparticles 

and their stability in physiological media. Their results also indicated that interference was 

concentration and assay type dependent [139]. However, Karamanidou et al. (2015) who 

developed SNEDDS formulations for oral insulin delivery containing a hydrophobic ion pair 

of insulin/dimyristoyl  phosphatidylglycerol  (INS/DMPG),  demonstrated  that  SNEDDS-c 

(27.2 nm) is the least cytotoxic, while SNEDDS-a (30.1 nm) and –b (36.7nm) are more 

cytotoxic with 2mg/ml showing around 80% of cell death in Caco-2 cells. These differences 

may be due to the presence of Lauroglycol FCC which was included only in SNEDDS-a and –

b [140]. It should be noted that the SNEDDs in my study are different in size, oil/surfactant/co-

surfactant and the cell cultures used in the Karamanidou et al. study. I demonstrated that 

SNEDDS- b (15 nm) and –c (15 nm) were the least cytotoxic, suggesting that size plays a rule in 

cytotoxicity similar to the Karamanidou et al. results. Perhaps the different in my cytotoxicity 

data was due to the presence of lauroglycol which was found only in SNEDDS-a.
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Table 22. Cytotoxicity results of SNEDDS-a. 
 

Experiments / 

Concentrations 

1 2 3 4 5 Average Standard 

Deviation 

Untreated 100 100 100 100 100 100 0 

2mg/ml 11 85 64 18 100 56 39.7 

0.2mg/ml 99 100 67 100 100 93 14.7 

0.02mg/ml 100 100 86 100 100 97 6.3 

These values are percentage of live cells (n=5). Experiments were made using 96 well plates of Calu-3 

cells. Calu-3 cells were incubated 24 hours with SNEDDS-a. Calu-3 cells were washed twice with PBS 

before applying MTT assay. It should be noted that SNEDDS -a contained lumogen which interferes 

with the MTT assay. Corrections were made by measuring this interference and subtracting it from 
values obtained with the cells. 
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Table 23. Cytotoxicity results of SNEDDS-b. 
 

Experiments / 
Concentrations 

1 2 3 4 5 Average Standard 
Deviation 

Untreated 100 100 100 100 100 100 0 

2mg/ml 71 68 100 100 100 88 16.74 

0.2mg/ml 61 65 100 100 100 85 20.32 

0.02mg/ml 100 66 100 100 100 93 15.21 

These values are percentage of live cells (n=5). Experiments were made using 96 well plates of Calu-3 
cells. Calu-3 cells were incubated 24 hours with SNEDDS-b. Calu-3 cells were washed twice with PBS 
before applying MTT assay. It should be noted that SNEDDS -b contained lumogen which interferes 

with the MTT assay. Corrections were made by measuring this interference and subtracting it from 

values obtained with the cells. 
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Table 24. Cytotoxicity results of SNEDDS-c. 
 

Experiments / 
Concentrations 

1 2 3 4 5 Average Standard 
Deviation 

Untreated 100 100 100 100 100 100 0 

2mg/ml 84 100 100 100 100 97 7.2 

0.2mg/ml 86 100 100 100 100 97 6.3 

0.02mg/ml 91 100 100 100 100 98 4.0 

These values are percentage of live cells (n=5). Experiments were made using 96 well plates of Calu-3 
cells. Calu-3 cells were incubated 24 hours with SNEDDS-c. Calu-3 cells were washed twice with PBS 

before applying MTT assay. It should be noted that SNEDDS -c contained lumogen which interferes 

with the MTT assay. Corrections were made by measuring this interference and subtracting it from 

values obtained with the cells. 
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4.4.3. Mucus Permeation by Nanoparticles (Permeation Study): 

The  results  of  my  permeation  studies  are  summarized  in  Figures  15-18. 

Percentage of permeation = [(fluorescence of test NP–fluorescence of 0% control) / (fluorescence 

of 100% control at 6 hours - fluorescence of 0% control)] * 100. 

The percentage of permeation of SNEDDS-a, -b, and –c after 6 hours was 41%, 40%, 

and 18% respectively. SNEDDS-a is not statistically different from SNEDDS-b (P=0.95) and 

–c (P=0.21). Moreover, SNEDDS-b is not statistically different from SNEDDS-c (P=0.07). 

As shown in table 9, SNEDDS-a is larger than b and c (35nm vs 15nm). There is no size 

dependency on mucus permeation because SNEDDS-a and –b have almost the same 

permeation but have different sizes (35nm for SNEDDS-a and 15nm for SNEDDS-b). 

However, my results indicate that nanoparticle composition may play a major role in 

determining the permeation of the mucus. This is because SNEDDS-b and –c have the same size 

(15nm) but are composed of different material and lipids. Both SNEDDS-b and –c have transutol 

and cremophor materials (Transcutol P and cremophor RH 40 lipids) but SNEDDS-b has ethanol 

and SNEDDS-c has PEG 400. The shape of the graphs show similar biphasic kinetics of 

permeation through mucus of the nanoparticles. SNEDDS-c achieves a slower rate; SNEDDS-

c shows a permeation rate over the first 2 hours of ~5% per hour, but over the next 4 hours the 

rate slows to ~2.5% per hour. Both SNEDDS-a and -b show a faster rate of ~10% per hour over 

the first 2 hours and then a halving of the rate to ~5% per hour over the next 4 hours. It should 

be noted that there is some variation in the results. For instance, in table 25, experiment 3 has 1 

hour permeations of 4% and 6 hour permeations of 19%. However, in experiment 4 there was 

12% of 1 hour permeations and 87% of 6 hour permeations. These differences could be related 

to the fact that mucus is not homogenous, sample variation and different components present 

within the mucus. It also could contain regions of lower density or pores and this potentially 

accounts for these variations. Friedl et al. (2013) studied different SNEDDS formulations and 
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investigated their diffusion behaviour through a porcine intestinal mucus layer. They found 

that the permeation of SNEDDS occurred in a size dependent manner; with a 70.3% 

permeation for a formulation with lower droplet size (12nm) compared to only 8.3% for a 

formulation with a higher size (455nm) [118]. Additionally, 455nm is in the range of the pores 

in mucus reported as 20-500nm [15], suggesting that SNEDDS of 455nm would be excluded 

from most of the pores and would, therefore, not permeate the mucus layer. Friedl et al. (2013) 

also showed that formulation composition was an essential determinant of drug permeation as 

SNEDDS formulations prepared using cremophor RH40 and triacetin were found to be the 

most effective formulations [118]. Karamanidou et al. (2015) showed that SNEDDS-c has 

around 40% permeation in comparison with SNEDDS-a and –b which have around 30% 

permeation. They suggested that these differences may be because of possible interaction 

between mucus and SNEDDS, depending on the structural characteristics of the SNEDDS 

ingredients (e.g., oil, surfactant, co-surfactant) and their composition [140]. 
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Table 25. SNEDDS-a percentage of permeation over 6 hour. 
 

Experiments/ 
Time (hour) 

1 2 3 4 Average Standard 
Deviation 

1 18 1 4 12 9 7.8 

2 17 2 9 41 17 17 

3 25 7 16 66 29 26.0 

4 26 14 18 59 29 21.0 

5 28 28 18 84 40 29.7 

6 28 29 19 87 41 31.3 

The amount of SNEDD permeation was calculated as compared to the control value. The permeation 

measurement of each formulation was additionally performed without mucus to determine the 100% 

control value. A further control containing mucus was only applied to see if it any of the background 

fluorescence is mucus related.
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Figure 15: Permeation results for SNEDDS-a. The amount of SNEDD permeation were calculated 

as compared to the control value. The permeation measurement of each formulation were 

additionally performed without mucus to determine the 100% control value. A further control 

containing mucus only was applied to see if it was any background fluorescence is mucus related. 

0% control refers to test the permeation of mucus only (no NPs tested). Test NP refers to a test of 

the permeation of NPs through the mucus. 100% control refers to a test of the permeation of NPs 

without mucus. 
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Table 26. : SNEDDS-b percentage of permeation over 6 hour 
 

Experiments/ 
Time (hour) 

1 2 3 4 Average Standard 
Deviation 

1 2.7 20 4.9 10 9 7. 6 

2 4 31 19 14 17 11.5 

3 9 44 20 18 23 14.9 

4 14 47 19 22 26 14.6 

5 28 45 20 24 29 11.0 

6 31 47 20 60 40 17.4 

The amount of SNEDD permeation was calculated as compared to the control value. The permeation 

measurement of each formulation was additionally performed without mucus to determine the 100% 

control value. A further control containing mucus was only applied to see if it any of the background 

fluorescence is mucus related. 
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Figure 16: Permeation results for SNEDDS-b. The amount of SNEDD permeation were calculated 

as compared to the control value. The permeation measurement of each formulation were 

additionally performed without mucus to determine the 100% control value. A further control 

containing mucus only was applied to see if it was any background fluorescence is mucus related. 

0% control refers to test the permeation of mucus only (no NPs tested). Test NP refers to a test of 

the permeation of NPs through the mucus. 100% control refers to a test of the permeation of NPs 

without mucus. 
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Table 27. SNEDDS-c percentage of permeation over 6 hour. 
 

Experiments/ 
Time (hour) 

1 2 3 4 Average Standard 
Deviation 

1 4 4 4 5 4 0.5 

2 4 6 9 19 9 6.4 

3 4 8 16 20 12 7.5 

4 4 11 18 19 13 7.0 

5 6 26 18 20 18 8.3 

6 8 26 19 20 18 7.5 

The amount of SNEDDS permeation was calculated as compared to the control value. The permeation 

measurement of each formulation was additionally performed without mucus to determine the 100% 

control value. A further control containing mucus was only applied to see if it any of the background 

fluorescence is mucus related. 
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Figure 17: Permeation results for SNEDDS-c. The amount of SNEDD permeation were calculated 

as compared to the control value. The permeation measurement of each formulation were 

additionally performed without mucus to determine the 100% control value. A further control 

containing mucus only was applied to see if it was any background fluorescence is mucus related. 

0% control refers to test the permeation of mucus only (no NPs tested). Test NP refers to a test of 

the permeation of NPs through the mucus. 100% control refers to a test of the permeation of NPs 

without mucus. 
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Figure 18: the permeation results of all SNEDDS together. The amount of SNEDD permeation were 

calculated as compared to the control value. The permeation measurement of each formulation were 

additionally performed without mucus to determine the 100% control value. A further control 

containing mucus only was applied to see if it was any background fluorescence is mucus related. 

0% control refers to test the permeation of mucus only (no NPs tested). Test NP refers to a test of 

the permeation of NPs through the mucus. 100% control refers to a test of the permeation of NPs 

without mucus. 
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4.4.4. Rheology of Porcine Intestinal Mucus: 

It was essential for the performance of valid permeation studies that the mucus used in the 

test system was verified to be in the gel state as this is the native state in vivo and, consequently, 

an understanding of this state is functionally important. Rheology is the study of the flow and 

deformation of materials and is a commonly used method in the study of biopolymers, 

encompassing viscosity, creep testing and oscillatory rheology. In the case of a pure solid, as 

the strain is directly correlated to the stress, maximum strain will be at the point of maximum 

applied stress. The stress wave and strain wave will be precisely in phase with each other and 

the material can be assumed to have a phase angle of 0º. In the case of a pure liquid, it is the 

strain rate that is directly correlated to the applied stress. The strain rate will be zero at the 

maximum applied stress; thus, the stress and the strain waves will be 90º out of phase with each 

other and, hence, have a phase angle of 90º. Many materials (including mucus) are said to be 

viscoelastic and they have phase angles between 0 and 90º. If the phase angle is below 45º 

then solid like behaviour takes over and these material are commonly reflected as gels. 

Accordingly, solid like behaviour (δ<45º) relates to G`>Gʺ. The lower the phase angle, the 

greater dominance of the solid like behaviour over liquid like behaviour and, hence, the 

stronger the gel [141]. 

Rheological characteristics of the porcine intestinal mucus from the small intestine are 

summarized in table 28 (figure 19). In all experiments (n=5), the elastic (G`) is dominant over 

the viscous (Gʺ), indicating that the mucus was in a gel state. The phase angle (δ) was between 

12.3 to 19.4º. In addition, my study also investigated the breakdown stress of the mucus which 

in the case of the mucus gel is fundamentally a function of the resistance to flow within the gel. 

The breakdown stress can be measured as the point at which G`=Gʺ or δ=45º [141]. I 

demonstrated that the initial breakdown stress (Pa) (213.9) was dominant over the repeated 

breakdown stress (169.3) in all experiments (n=5) (Table 28). The first breakdown is higher 

than the next breakdown in all my experiments. This indicates that the gel never get back to its 
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original structure after multiple shear strain tests. In other words, whatever the initial 

interactions were,  when broken, they cannot reform. The most extensive rheological data of 

mucus gels were done by Taylor and her colleagues on gastric mucus [141-143]. Taylor (2002) 

found that the gel flowed (Gʺ>G`) rather than ruptured; this could yield gel fragments, in 

response to excess shear stress. Gel properties (G`>Gʺ) could be recovered with a phase angle 

representative of a gastric mucus gel as the shear stress was lowered below the level that induced 

breakdown. This suggest gel behaviour typical of a weak gel. The first increase-decrease 

stress sweep initiated a loss in the value of the moduli G` and Gʺ at minimum stress but 

instantly repeating the sweep up to 10 times resulted in no further loss in the moduli at 

minimum stress. Taylor et al. (2002) demonstrated that there was no significant difference 

between the stress at the point of breakdown (187 Pa) and the stress at the point of recovery. 

When the shear stress is increased above that essential for gel breakdown, the mucus flows as 

a viscous liquid. When the shear is reduced, the gel recovers its solid dominate behaviour 

(G`>Gʺ). This breakdown / recovery behaviour of the gel is very reproducible with continuous 

breakdown sweeps making very similar patterns of G` and Gʺ through the entire stress range 

for up to 10 repeats. After each successive breakdown, the material recovers to its unique phase 

angle and there is no significant difference between the stress at breakdown and the stress at 

recovery suggesting that there has been no decrease in the ability of mucus to form a gel. Mucus 

gels are different from the majority of biopolymer gels as it displays rheological reversibility. 

In other words, it is able to flow and re anneal. Many biopolymers form a strong physical gel 

which while not covalently linked, indicate a behaviour that is in numerous ways like covalently 

linked or chemical gels, although of a weaker nature. Normally, these gels will rupture 

in response to excessive force and after being ruptured, they retain only the properties of a 

broken gel. This is different to the behaviour of a physical gel or structured liquid which will 

usually flow in response to excess force and regain its gel properties upon rest, known as 

rheological reversibility [141]. 



145  

Taylor et al. (2004) investigated the mucus bilayer in the pig stomach. They found that both 

mucus secretions showed G` dominance over Gʺ across the frequency range (0.1-3 Hz), 

indicating a true gel. They also found that the phase angle (δ) of the shear-resistant mucus was 

significantly (P<0.001) lower than for the shear complaint mucus and was, thus, characterized 

as a stronger gel (15 vs 5-10). They also found that the shear resistant mucus stayed in the gel 

state (G`>Gʺ) over a much larger variety of shear stress with a typical breakdown stress of ~ 150 

Pa – two orders magnitude higher than the shear-compliant gel [142]. 

I found that G`, Gʺ, and δ were shear strain independent within the linear viscoelastic 

region (LVER) (figure 19). However, when the shear strain was increased, it showed that 

they are shear strain dependent. Furthermore, the gradient slopes of G` and Gʺ from a frequency 

sweep were analysed (n=5) as shown in table 29 and figure 20. At a lower frequency, G` and 

Gʺ from a frequency sweep were generally decreased, suggesting that the gel is weakening (i.e. 

going to flow). At a higher frequency, G` and Gʺ were generally increasing, indicating that the 

mucus is starting to thickening again (i.e. it became more gel). The phase angle (δ) was between 

10 and 25. Taylor et al. (2002) found that gastric mucus revealed very reproducible behaviour 

with the phase angle lying between 5 and 10. She also revealed that both G` and Gʺ showed only 

a small frequency dependence, dropping in value when the frequency was lowered. These 

results are similar to what I found for small intestine mucus. This suggests some impact 

from entanglements on the bulk properties of the gel. The gel showed no increased trend to 

flow at lower frequencies confirmed by the steady values for the phase angle. She showed that 

the gel worked as a viscoelastic solid with the elastic modulus G` being significantly higher 

than the viscous modulus Gʺ [141]. Taylor et al. (2005) also studied the frequency dependence 

of the rheological behaviour of three mucous system (native pig gastric mucus, purified mucin 

gel and mucin alginate gel). They found that a frequency dependence became clear when the 

effect of frequency on the stress-strain curves of purified mucus system was studied over a 

variety of stress sufficient to induce flow within the systems. They also showed that in all three 
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mucus systems the maximum stress was enough to induce a transition to viscous flow within 

the sample. They also reported that at 0.2 Hz, the stress/strain values for both native mucus gel 

and the mucin gel revealed an almost linear region followed by an increase before a  

more noticeable decrease. In the case of the mucin alginate gel, it showed a slightly decreased 

stress/strain when the applied stress increased followed by a noticeable decrease when the 

applied stress was increased further. These results indicated the behaviour was characteristic 

of a system weakening under applied stress, with the induced strain increasing more quickly 

than the applied stress as the applied stress increased and the system started to flow at lower 

frequencies. In addition, all the samples demonstrated a comprehensive linear region before 

an  increase in stress/strain at 1 Hz. This suggested that both systems became more resistant 

to deformation as the applied stress was increased, with the induced strain increasing more 

gradually than the applied stress at higher frequencies. In other words, when the system 

weakens, it is likely that it will become less capable to resist deformation and the induced strain 

will rise at a considerably larger rate than the applied stress and, consequently, stress/strain 

will decrease. Stress/strain increases as the applied stress increases, suggesting that the capacity 

of the gel to resist deformation increased as the applied stress increased (i.e., the gel 

undergoes stress hardening). They assumed that the system is capable of adsorbing and storing 

energy, especially at higher frequencies, therefore, reducing the amount of energy existing to 

induce strain within the network and additionally weaken the gel. This stored energy can be 

rearranged into the network when the stress is removed and solid like properties are recovered. 

They also suggested that the energy may be stored by changes in the packing of mucin 

molecules within the system or by conformational changes within the mucin molecules. 

Increasing the applied stress could force the molecules to adopt high energy conformations 

or packing structures which then return, freeing their stored energy, when the stress is 

removed. This model is companionable with the frequency dependent behaviour because at 

lower frequencies, the relaxation time is longer and thus statistically less elements could be 
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stuck in high energy conformations or structures. They also suggested that at lower frequencies 

where the value of stress/strain decreases with increasing stress, there is significant weakening 

and the system keeps the capacity to store a substantial amount of energy, suggesting that at 

least a definite degree of rheological reversibility. This could reflect the lubricating capability 

of bottle brush structures, for example, the glycosylated regions present on the mucin molecules 

[143]. 

The above arguments suggest that mucus gels have some degree of frequency dependency. 

The small intestine gel showed frequency dependency over the ranges tested. Between 0.1 and 

1 Hz, there was a decrease in G` and Gʺ followed by an increase over 1-10 Hz. The Gʺ increase 

was greater than the increase in G`, indicating a tendency to flow. This change at high frequency 

is demonstrated by an increase in δ, indicating a weaker gel. This biphasic behaviour could be 

explained by the gel forming interactions which have time to break and make at low frequency 

but at a higher frequency, they do not have time to reform. 
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Figure 19. Amplitude sweep of cleaned porcine intestinal mucus. Amplitude sweep 

was run at 1 Hz. a) An example of one experiment of mucus. b) An example showing 

linear viscoelastic region (LVER), breakdown stress, shear strain independent 

region of mucus and shear strain dependent region of mucus. 
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Table 28. Rheological characteristics of the porcine intestinal mucus from the small intestine. 
 

Samples Linear viscoelastic region Breakdown 
stress (Pa) 

 

Shear Strain 
% 

G`(Pa) Gʺ(Pa) δº Initial Repeated 

1 10 204.9 71.9 19.4 201.5 126.8 

2 15.9 100.3 29.5 16.4 201.7 159.2 

3 12.6 145.7 46.5 17.7 253.4 179.8 

4 5 141.2 30.8 12.3 159.8 155 

5 10 153.4 44.1 16.1 253.2 226.1 

Average 10.7 149.1 44.6 16.4 213.9 169.3 

Standard 
Deviation 

3.9 37.4 17.1 2.6 39.8 36.9 

The breakdown point is where G` is equal to Gʺ and phase angle (δ) is 45º. In order to do multiple 
breakdowns of the mucus, the shear strain were increased from 10-1 to around 103 for the first 

breakdown. For the repeated breakdown of the mucus, the shear strain were restarted from 10-1 and 

increased to around 103. 
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Figure 20. Gradient slopes of G` and Gʺ. A) Slope one was negative and slope two was positive. 

B) Slope one was negative and slope two was positive. C) Slope one was negative and slope two 

was positive. D) Both slopes were positive. E) Slope one was negative and slope two was positive. 
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Table 29. Gradient Slopes of G` and Gʺ 
 

Experiments G` Gʺ 

Slope 1 Slope 2 Slope 1 Slope 2 

1 -208.6 12.9 -76.3 10.1 

2 -222.2 2.4 -124.9 2.8 

3 -357.5 2.9 -144.5 3.8 

4 N/A 7.6 N/A 3.4 

5 -30.2 7.7 -2.4 6 

N/A= not applicable. The value of slopes were taken as shown in figure 10 (a). It should be noted that 

I used an amplitude sweep to determine LVER and the frequency sweep was carried out at a shear strain 

in the LVER. 
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Chapter Five: General Discussion, Conclusion, and Future Works 

5.1.Introduction: 

The current burden of lung disease in the world means that there is a clear need for research into 

new drug treatments and new ways of delivering drugs. Nanotechnology may have an important 

role in this. 

Chronic obstructive pulmonary disease (COPD) is a leading chronic respiratory disease in 

the world and is characterized by persistent airflow restriction which is normally progressive. 

This is linked to a higher inflammatory response in the airways and the lung due to noxious 

particles or gases [144, 145]. The World Health Organization (WHO) estimates that about 63 

million people suffer from COPD and 3 million people died of COPD in 2010 which matches 

around 5% of all deaths globally [145, 146]. More than 90% of COPD deaths happen in low 

and middle-income countries. WHO expects that COPD will become the third leading cause of 

death globally by 2030 [146]. COPD is more common in men than in women; however, the 

increase in tobacco smoking among women and the higher risk of exposure to indoor air 

pollution might result in matching occurrence in the sexes in the future [147]. The annual cost of 

COPD is expected to be close to 55 billion US dollars yearly as indicated by the European 

Respiratory Society. Most of these costs are linked to losses in productivity because of work 

disability and severe restrictions in functionality. However, costs are commonly undervalued 

because the cost of home care and home health visits are understated and hard to monetize 

[145]. 

Asthma is a chronic inflammatory disease of the conducting airways where several cells of 

the innate and adaptive immune systems act together with epithelial cells, resulting in bronchial 

hyper-reactivity (BHR) (the tendency of smooth muscle cells in people with asthma to respond to 

general stimuli, for example,  cold air and exercise), mucus overproduction, airway wall 

remodelling and airway reduction. This may cause frequent attacks of shortness of breath, 
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wheezing and chest tightness [148]. Although, asthma affects people from all age groups, the 

highest occurrence is in childhood. Asthma effects females more than males. It has been 

estimated  that  1-18%  of  population  in  the  world  suffer  from  lifetime  asthma  [149]. 

Accordingly, it is predictable that more than 300 million people have asthma global and at least 

10% of all Europeans [149, 150]. By 2025, it is estimated that more than 100 million could 

have asthma [149]. Nearly 250,000 people die prematurely from asthma yearly [151]. Over 

80% of asthma death happens in low and lower-middle income countries [152]. It has been 

estimated that the mean cost per patient per year in Europe is $USD 1,900 which is lower than 

USA with an estimated mean of $USD 3,100. The overall cost of asthma in the UK has been 

predicted as around $5 billion. Almost 20 million working-days are missed as a result of asthma 

yearly [149]. 

Cystic fibrosis (CF) is a common autosomal recessive genetic disorder and is caused by 

the mutation of a gene that encodes a chloride-conducting transmembrane channel called the 

cystic fibrosis transmembrane conductance regulator (CFTR). CFTR regulates anion transport 

and mucociliary clearance in the airways. CFTR dysfunction leads to mucus retention and 

chronic infection and, subsequently, local airway inflammation which is damaging to the lungs. 

CF is common in Europe, North America, and Australia. In Europe, the number of CF patients 

is expected to increase by about 70% by 2025 [153]. Cystic fibrosis happens in about 1 in 2500 

live births in the UK with around 200–300 new diagnoses yearly. CF patients consequently 

need intensive support from family and health care services. Most patients die prematurely 

from their disease via respiratory failure [154]. Given the above background, there is a clear 

need for further research relevant to COPD, asthma, and CF treatment. 

Animal studies are most costly in term of money and time in addition to ethical issues and 

may not be optimum for studying human diseases. Therefore, tissue and cell studies are very 

useful for the toxicity screening of new compounds. This may offer endpoint result which are 
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directly related to specific organs [155]. Cultured cells are an important and crucial tool to 

investigate biological processes [156]. Cell lines are regularly used instead of primary cells to 

study biological processes. However, as cell lines are genetically manipulated, this might change 

their phenotype, native functions and their reaction to stimuli. Serial passage of cell lines may 

further lead to genotypic and phenotypic difference over a long time and genetic drift may also 

result in heterogeneity in cultures at a single point of time. Therefore, care needs be taken 

when interpreting the results because cell lines do not always precisely mirror primary cells. 

Hence, important control experiments using primary cells should continually be done to 

strengthen the results [157]. In COPD, exacerbation may lead to an increase in disease severity, 

while repeated exacerbations can lead to constant injuries to the airway epithelium and if 

common, could shorten the time available for epithelial repair. This results in further damage 

to the integrity of the epithelium because of continuing inflammation. More investigation of 

the function and structure of airway epithelial in COPD can result in a better understanding of the 

mechanisms of disease and to improved therapies. Although airway epithelial cells were 

considered a simple barrier that stops entry of inhaled matter into the lung, the epithelial cells are 

at present known to have a significant role in the inflammatory response of the respiratory system 

to inhaled exposures; irregularities in these responses are assumed to be central to asthma 

pathogenesis [158]. Asthma represents part o f  an important unmet medical requirement with 

few new drugs making it to the clinic in the past 50 years. Considerable asthma research is 

now carried out in non-human models. Nevertheless, it is hard to translate findings from these 

models to effective therapies since asthma is an exclusively human condition. It has been 

suggested that the use of human tissue studies are needed to offer more appropriate models that 

better translate to the clinic and which decrease the dependence of the asthma community on less 

predictive animal models [159]. Brodlie et al. (2010) have successfully cultured primary 

epithelial cells from 14 of 22 patients with cystic fibrosis in our lab. They demonstrated that the 

cells show typical epithelial morphology, cytokine profile and remained viable after storage in 
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liquid nitrogen, indicating that these cells are likely to retain the behaviour of bronchial epithelial 

cells in vivo [28]. Brodlie et al. (2011) investigated the role of IL-17 in the lower airway in 

cystic fibrosis using our primary epithelial cells. They found that IL-17 levels are increased in 

the lower airway of people with CF and localised to both neutrophils and mononuclear cells, 

suggesting the potential for a positive feedback element in airway inflammation [160]. The 

main benefit of primary cell models is that they are closer to lung cell physiology [161]. 

However, there are some limitations to using primary cells: 1) Preparation of primary cell 

cultures remains difficult and since most primary cultures ultimately stop dividing, a continuous 

supply of fresh cells is needed; 2) Almost all cells undergo major phenotypic changes once 

removed from their physiological environment and put into a culture flask [156]; 3) Inter-

individual variability; 4) The limited resource; and 5) The limited life span does not permit long 

term genetic manipulation [161]. 

COPD is characterised by chronic inflammation and mucus production affecting the lung 

parenchyma and peripheral airways causing largely permanent and progressive airflow 

restriction. The inflammation is categorised by enlarged amounts of alveolar macrophages, 

neutrophils, T lymphocytes and innate lymphoid cells recruited from the circulation [162]. 

Emphysema and small airway inflammation and injury causes the increase of alveolar air 

spaces, airway wall fibrosis, smooth muscle hypertrophy, loss of elastic recoil, goblet cell 

hyperplasia and mucus plugging. Furthermore, remodeling leads to thickening of the small airway 

walls, resulting in airflow obstruction and hyperinflation, causing the cardinal symptom of 

breathlessness. In the advanced stages of COPD, this causes progressive ventilator failure and 

death [163]. Asthma is considered as a chronic inflammatory disorder that is linked to hyper-

responsiveness and tissue remodelling of the airway structure [164]. It is characterized by the 

penetration of airway T cells, CD4+ (T helper) cells, basophils, mast cells, macrophages and 

eosinophils [165]. These inflammatory cells release mediators which then initiate 
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bronchoconstriction, mucus secretion and remodeling. These mediators include chemokines, 

growth factors, lipid mediators, immunoglobulins and histamine [166]. Cystic fibrosis is 

categorised by an excessively exuberant neutrophilic inflammatory response to pathogens and 

other stimuli which begins very early in the disease [167]. In addition, the inflammation in CF is 

also characterised by a large release of soluble pro-inflammatory mediators such as 

interleukin (IL)-6, IL-1β and IL-8 cytokines.  However, release of the anti-inflammatory 

mediator IL-10 is decreased, accordingly reproducing a pro-/anti-inflammatory imbalance 

[168]. 

I have shown that different PDLG NPs do not effecting the productions of IL-8 and were 

not toxic to primary epithelial cells. Therefore, these NPs could potentially be used for the 

delivery of anti-inflammatory therapies for these lung diseases. 

5.2.The Oxidative Stress Model Approach: 

Nanoparticles may lead to the formation of pro-oxidants, causing the disruption of the 

balance between the  biological  system’s  capability  to   produce  and detoxify reactive  oxygen 

species (ROS) [1]. Nel et al. (2006) have considered oxidative stress models as an approach to 

assessing an extensive collection of cellular injury responses caused by NPs (Figure 22) [48]. A 

predictive  toxicological  method  can  be  defined  as  creating  and  using  mechanisms  and 

pathways of injury at cellular and molecular levels to develop screening for adverse biological 

effects and health consequences in vivo. As it is associated with NPs, a predictive method has to 

take into account the physicochemical properties of NPs which causes molecular or cellular injury 

and also has to be useful in terms of disease progression in whole organisms [169]. At tier 1 

(lowest level of oxidative stress) the induction of protective cellular responses occurs. At tier 2 (a 

higher level of oxidative stress), there is activation of pro-inflammatory signalling pathways 

that control the activation of pro-inflammatory responses, potentially leading to the release of 

cytokines and chemokines that are characteristic for specific cellular phenotypes. At tier 3, 
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which is the highest level of oxidative stress, damage of mitochondria may trigger cellular 

apoptosis and cytotoxicity [48, 170-172]. Examples of toxicity paradigms are given in table 

30. For example, it is possible to test Tier 2 oxidative stress responses either by assessing 

cytokines release into the cell culture supernatant or by monitoring the activation of signaling 

cascades linked to transcriptional activation of cytokine promoters. The most common method to 

measure the production of cytokines or chemokines is by classical ELISAs and TR-FRET 

technology [172]. 

There are several sequences of pathological events that happen due to NP-mediated ROS 

generation (Figure 22). These include inflammation, fibrosis, genotoxicity and carcinogenesis. 

These pathological events are controlled by physicochemical features of NPs (e.g. size, charge, 

surface area, and chemical structure) and NPs internalization. Nanotoxicity may cause expression 

of pro-inflammatory and fibrotic cytokines, as well as activation of inflammatory cells (e.g. 

macrophages and neutrophils) which are able to produce further generation of ROS. 

Mitochondria are considered a key organelle involved in NP-mediated cellular ROS in which 

NPs interfere with the electron transport chain via activation of NADPH-related enzymes. NP-

induced production of free radicals causes a  decrease of GSH into its oxidized form – 

glutathione disulphide, which is associated with oxidative stress. When exposed to low NP 

concentrations, it has been shown that potent antioxidant defence was able to overcome oxidative 

stress and improve the redox balance. On exposure to high NP concentrations, the antioxidant 

systems becomes overwhelmed which may lead to cytotoxicity and inflammation [173]. 

Large scale investigation of the effect of oxidative stress was out of the scope of my thesis. 

However, the results showing no significant difference in IL-8 production when I stimulated 

the cells with different concentrations of polystyrene and PDLG NPs, and the low levels of 

cytotoxicity would suggest a lack of tier 2 or 3 oxidative damage.  In future studies, oxidative 

stress could be studied using a plasmid assay, DCFH, luminol-enhanced chemiluminescence, 
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O2·− detection by the cytochrome C reduction assay or by lucigenin-enhanced 

chemiluminescence, H2O2 detection using horseradish peroxidase and so on. My cytotoxicity 

data showed interference with the CTB and MTT assays. However, other assays could be used 

for future study to assess the cytotoxicity. These assay could include a variation of the MTT 

assay (MTS,  XTT,  WEST-1, etc),  the  LDH  assay,  trypan  blue  exclusion,  the  fluorescent  

dye propidium iodide (PI) and many others. In future studies, different cytokines and 

chemokines could be investigated using ELISA techniques and mRNA expression using PCR 

techniques [39]. 
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Figure 21: The use of oxidative stress models as methods for predictions of nanoparticles hazard. 

(A) nanoparticle-induced oxidative stress include a series of cellular responses. These responses can 

be classified as antioxidant defence, pro-inflammatory effects, and cytotoxicity. Each of these 

response tiers are originated by particular biological sensors and activation mechanisms. (B) 

Application of the oxidative stress model to monitor groups of engineered nanomaterials that are 

able to produce reactive oxygen species production under experimental conditions. Adapted from 

[169]. 
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Table 30: Examples of toxicity paradigms. Possible analysis, readout modes and potential 

problems when using various readouts for NPs toxicity screening. 

Toxicity type 

or 

paradigm 

Analysis Probes Readout 

mode 

Utility Potential 

problem 

Cytotoxicity Cell number/ 

proliferation 

Hoechst 

33342/DAPI 

 

Fluorimetry/ 

High content 

assay 

 

Cell 

quantification,  

nuclear 

content 

 

Background 

signal from 

NPs with 

blue 

fluorescence 

 

Membrane 

leakage 

Propidium 

iodide/ 

Syto 9 

Fluorimetry/ 

High content 

assay 

 

compromised 

cell membrane 

integrity 

 

Background 

signal from 

NPs with red 

fluorescence 

(e.g. QDs) 

 

Membrane 

integrity 

LDH assay 

 

Absorbance 

at 490 nm 

 

Cell viability  

 

NPs may 

inhibit 

enzyme 

and/or 

absorb at 

490nm 

(CNTs, Ag) 

 

ATP ATPliteTM luminescence  

 

Mitochondrial 

activity and 

viability status 

of cells  

 

Not 

appropriate 

for NPs that 

may inhibit 

enzyme 

and/or 

absorb light 

e.g. CNTs 

 

Mitochondria

l membrane 

potential 

JC1/TMRM/ 

chlorrmethyl-X-

rodhamine 

 

Fluorimetry/  

high content 

assay 

 

Loss of MMP 

 

Background 

signal from 

NPs with red 

or green 

fluorescence 

Metabolic 

activity 

MTT, WST-1, 

XTT  

 

Absorbance 

 

Mitochondrial 

activity and 

viability status 

of cells 

 

NPs may 

inhibit 

enzyme 

and/or 

absorb light 

or substrates 

Intracellular 

calcium flux 

Fluo-4/Fura 2-

AM/Rho 2-AM 

 

Fluorometry/ 

high content 

assay 

 

Increased 

intra-cellular 

calcium level 

 

Background 

signal from 

NPs with 

green 

fluorescence 

Apoptosis Calcein-AM Fluorometry/ 

high content 

assay 

 

Mitochondrial 

membrane 

permeability 

transition 

(MPT) 

Background 

signal from 

NPs with 

green 

fluorescence 
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Genotoxicity 
DNA 

cleavage 

Micro-nuclei 

assay (HCS), 

BrDU 

incorporation 

High Content 

Screening 

Chromosome 

damage 

Background 

signal from 

NPs with 

blue 

fluorescence 

inflammation 

IL-1, IL-8, 

TNF-α 

Antibody based 

ELISA or TR-

FRET 

Luminescenc

/ 

TR-FRET 

Expression 

level of 

inflammatory 

markers 

Not 

appropriate 

for NPs that 

interfere 

with TR-

FRET (e.g. 

absorb 

protein) or 

luminescenc

e reactions 

NF-kB and 

AP-1 

activation 

Reporter genes luminescence 

Activation of 

inflammatory 

pathways 

Not 

appropriate 

for NPs that 

may inhibit 

enzyme 

and/or 

absorb light 

Oxidative 

stress 
GSH, ROS 

Absorbance/HCS 

using 161 

luorescence 

probes 

Fluorometry/ 

High content 

assay 

Free radical 

generation, 

Glutathione 

depletion 

Not 

appropriate 

for NPs that 

may 

interfere 

with 

fluorescence 

output 

 

Adapted from [172].
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5.3.Interference with Viability Assays: 

Recently, nanotechnology have been in increasing development with the generation of 

a wide range of consumer products including nanoparticles which are at least one dimension 

<100nm. Nanoparticles have unique properties because of their small size, resulting in 

greater surface area per unit mass ratio and, hence, the potential for greater biological 

reactivity and perhaps novel hazards. Although the human health effects are uncertain 

now, it is essential that researchers develop a clear understanding of any risks related to 

exposure of NPs. Cytotoxicity assays offer a common method for measuring the safety of new 

chemicals and drugs, and are mostly plate-reader based with readouts. These can include 

luminescence, absorbance, fluorescence, time-resolved fluorescence or fluorescence 

polarization [174]. Nanoparticles have a high potential to influence classical cytotoxicity 

assays because of high adsorption capacity and optical activity. As a consequence of their 

large surface area and high surface energy, nanoparticles may adsorb assay reagents or 

reporting dyes, thus, changing the assay outcome [129]. Additionally, the physicochemical 

properties of nanoparticles may be accountable for unforeseen interactions with components 

of classical toxicity assays. Prior to assessing particle toxicity using in vitro toxicity tests, 

interference testing should be done to avoid false readings [125]. 

A detailed physicochemical characterization of the nanoparticles may allow us to 

predict interferences as specific nanoparticle properties could be problematic for specific 

techniques and assays (figure 23). Interference with spectrophotometric and fluorimetric 

analyses depends on the optical properties of the nanoparticles. The chemical composition, 

particularly the surface chemistry, defines these properties and, consequently, coatings might 

affect light absorption. For example, the light scattering properties of TiO2 nanoparticles can 

alter OD measurements and fluorimetric analyses. The agglomeration of nanoparticles 

appears to have  a  minor  part  in  interference  with  spectrophotometric  and  fluorimetric  
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analyses. Furthermore, the surface reactivity of the nanoparticles controls their adsorption 

capacities and responses with assay reagents or biomolecules [174]. It has been proposed that 

results achieved may not be consistent due to nanoparticle interference with assay 

components, hence, cell death indexes may be either underestimated or overestimated. 

Possible interference may include nanoparticle interference with light absorption, chemical 

reactions between nanoparticles and reactants, and dye adsorption on the nanoparticle surface 

[175]. 
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Figure 22. Nanoparticles Characterization and Interference with Assays. Adapted from [92]. 
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5.3.1. The Mechanism of NPs Interference with CTB Assay: 

Oostingh et al. (2011) found that the CTB assay was not suitable for testing viability for 

metal oxide NPs. They showed that the fluorescence measurement displayed an artificial 

increase in cell viability, probably as a result of the physical presence of NPs rather than to real 

NPs-induced effects [131]. Hoskins et al. (2012) studied the effect of magnetic NPs (MNPs) 

cytotoxicity in human neuroblastoma (SH-SY5Y) and mouse macrophage (RAW 264.7) cells. 

They showed that the Celltiter blue assay seems to overestimate the cell viability, suggesting 

that interactions were happening between the assay systems  and NPs,  causing incorrect  cell 

viability measurements. They demonstrated that polymer coated MNPs resulted in a significant 

rise in the fluorescent measurement, indicating that the existence of the NPs in cellular 

environments increases the fluorescent intensity exhibited by the resorufin dye. They also 

studied the effect of NPs with assay reagents in the absence of cells. They suggested that the 

false increase in the CTB assay could result from the physical interference by the NPs and/or 

from changes in cellular activities, involved in redox reactions, in response to MNPs [128]. 

Breznan et al. (2015) investigated the viability of different carbon nanotubes (CNT) with A549 

and murine macrophage (J774A.1) cell lines. They found that there was no indication of 

reduction of resazurin by CNTs. They also assessed the stability of resorufin (the fluorescent 

product of resazurin reduction) and found that polar CNTs may reduce the florescent signal of 

resorufin. This could be a result of chemical interference in the assay, possibly by re-oxidation 

of resorufin or hyper-reduction of resorufin to non-fluorescent hydroresorufin [176]. 

5.3.2. The Mechanism of NPs Interference with MTT Assay: 

Belyanskaya et al. (2007) studied the effect of single walled carbon nanotubes (SWCNTs) 

on A549 cells using the MTT assay. SWCNTs were capable of changing MTT into its MTT- 

formazan insoluble form in the absence of cells. They suggested that the interference of carbon 

nanotubes with the MTT assay can be influenced by the MTT protocol used, the surfactant used 
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to suspend carbon nanotubes and the types of CNT products [116]. Kroll et al. (2012) 

investigated 24 NPs with the MTT assay and found that interference occurred. They found 

a concentration-dependent increase in MTT-formazan light absorption for each NP, indicating 

NPs may adsorb to MTT-formazan. Light scattering effects could also be the reason for this 

interference [129]. Vinković Vrčeketal. (2015) suggested that the optical properties of NPs could 

be the main reason for interference during optical readouts of the MTT assay. Therefore, they 

investigated the absorbance of NPs alone at the wavelengths used for MTT assay. They showed 

a significant absorbance increase compared to tetrazolium salt (TS) controls, leading to an 

underestimation of NP toxicity.  In my experiments, a subtraction of background absorbance on 

the plate reader was done to avoid this problem. They also investigated other modes of 

interference such as reaction with or binding of assay components. While it is questionable 

that formazan would be formed from MTT in the absence of cells, they showed an increase in 

absorbance with an increase in NP concentration even after the subtraction of the NPs background 

absorbance. They also compared the adsorption of MTT or their formazan products on the NPs 

by adding a centrifugation step after the formazan solubilisation step (i.e. addition of DMSO). 

Centrifugation could be helpful in solving interference problems if the NPs do not adsorb 

assay dyes, accordingly inhibiting their measurement. They found that centrifugation was 

effective in decreasing optical signals as both types of formazan products bound to the NP 

surface, suggesting that the addition of DMSO could weaken their binding with MTT-formazan 

[139]. 

5.3.3. Summary of Cytotoxicity Results: 

I demonstrated that there was no statistical difference between cells with polystyrene NPs 

(52nm) and cells without NPs (control cells) in terms of cell viability. I also showed that three 

different PDLG NPs seem to have little or no effect on the viability of human primary 

epithelial cells. Despite this, I found that many of my viability results were higher in OD values 

than 100% alive cells (untreated cells), suggesting that these difference may be because of 
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different cell density and/or interference with the CTB assay. I proved that seeding densities 

on Calu-3 seems to have a major effect on the CTB assay. When I used a different viability 

assay (MTT), I found that SNEDDS-a was only cytotoxic at the highest concentration. I also 

revealed that SNEDDS-b and –c were not cytotoxic. However, these results also indicate 

interference with the MTT assay even after washing the cells with PBS twice before applying 

the viability assays, suggesting that these SNEDDS had attached to or were taken up by the 

cells. This can be explained by the fact that SNEDDS are lipid and are, therefore, compatible 

with cell membranes. Finally, it appears that fluorescence labelling did not affect cytotoxicity 

results. 

Hoskins et al. (2012) demonstrated that magnetic nanoparticles appears to have steadily 

overestimated the viability when using CTB and MTS. They suggested that interactions 

occurred between the nanoparticles and the assay systems, resulting in incorrect cell viability 

investigations [128]. Monterio-Riviere et al. (2009) showed that CTB and MTT assays produce 

incorrect results with some nanoparticles as a result of nanoparticle adsorption of the dye/dye 

products and/or nanoparticles/dye interaction. They suggested that more than one assay needs 

to be used to assess the nanoparticles cytotoxicity besides imaging techniques to confirm 

chemical marker-based viability assays [130]. Furthermore, Oostingh et al. (2011) found that 

the CTB assay was unacceptable for measuring cell viability as the fluorescence measurement 

indicated a false increase in the cell viability, perhaps as a consequence of the physical presence 

of the particles rather than to real particle induced effects [131]. Belyanskaya et al. (2007) 

suggested that an interference with MTT assays could be related to the types of nanoparticles 

products, surfactant used to suspend nanoparticles and the MTT protocol used [116]. Kroll et 

al. (2012) showed that 24 nanoparticles interfere with classic cytotoxicity assays in a particle 

and assay specific manner, and was highly concentration dependent. They suggested that 

interference would be avoided by lowering particle concentrations and altering assay protocols 

[129]. Guadagnini et al. (2015) also found that many nanoparticles characteristics such as 
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coatings, size, composition and agglomeration, interfere with variety of in vitro cytotoxicity 

assays (WST-1, MTT, LDH, neutral red, popidium iodide, H3-thymidine incorporation, and 

cell counting) [174]. Vinković Vrček et al. (2015) demonstrated that the cell viability assays 

leads to false interpretation due to interference, indicating that interference was dependent on 

the type and surface coating of nanoparticles as well as their stability in biological media [139]. 

5.3.4. Approaches to Avoid Cytotoxicity Interferences: 

Possible reasons for interference could be nanoparticle interference with light absorption, 

chemical reactions between nanoparticles and reactants, and dye adsorption on the nanoparticle 

surface.  Several  approaches  have  been  used  to  avoid  interference  between nanoparticles  

and  assay  reading.  These include the use of cells treated with the same concentration of 

nanoparticles but without assay reagents as blanks, plate centrifugation before absorbance 

measurements, use of cell-free systems (wells without cells but with all assay reagents) as 

blanks, or cell washing after the incubation period to remove the remaining nanoparticles 

[175]. In the final step of the MTT assay, solubilization of the cells and the formazan product 

using a solvent is necessary. It has been suggested that centrifugation of the plates at this stage, 

followed by transfer of the supernatant to a new plate, could eliminate this interference. Extra 

control experiments should be done before assessing NP cytotoxicity. Therefore, a subtraction 

of the background absorbance of the cells in the presence of the particles without the assay is 

needed to control this interference. The large surface area or other surface properties may cause 

a high adsorptive capability which allows the NPs to remove some of the coloured product 

from the cell extract, resulting in an underestimation of cell viability. An alternative assay is 

recommended when this adsorption happens. NPs may also display oxidative surface properties, 

resulting in colour production. Therefore, it is important to assess whether the NPs without the 

cells could trigger an increase in absorbance. Finally, it is essential to include positive and negative 

control NPs to benchmark against the NPs under investigation [39].  
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5.4.Nanoparticles and the Mucus Barrier: 

Mucus gels can be a major a problem in relation to drug delivery. It is hard to obtain 

human mucus as post mortem samples are usually degraded and only restricted amounts can 

be obtained from resection specimens and these may well have abnormal mucus. If the mucus 

is isolated immediately after death, then animal sources can be used. Pig is the animal of choice 

for the digestive tract, due to its close match to the human digestive tract. The mucus layer 

varies in thickness depending on the anatomical site, therefore, to develop active penetration, 

the following nanoparticle properties should be defined: size, surface functional groups and 

charge density. Two mechanisms can stop nanoparticles penetrating a mucus gel: 1) size 

filtering based on the pore size of the mucus; and 2) interaction filtering based on the ability 

of the nanoparticle to avoid interaction with the gel (figure 24) [15]. 
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Figure 23. Characterization of permeation through the pores in the mucus gel. 4a) shows small 

particles can permeate while large particles are delayed. 4b) shows that if the particles interact, 

size becomes redundant. Interacting particles are symbolised in purple, non-interacting particles 

are in blue. The blue particles pass through when they are small, whereas, even small purple 

particles are delayed because of their interaction with the mucus. 4c) Particles with surface 

mucolytic agents can increase the pores of mucus and, thus, permeate the mucus barrier. Particles 

with red surface and nobs are mucolytic particles. Adapted from [14]. 
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I demonstrated that there was no difference in permeation of mucus. These results 

suggested that there is no size dependency of mucus permeation. On the other hand, I showed 

that SNEDDS composition could play a major role in determining the permeation of mucus. In 

the rheological characterization of small intestine mucus, I found that G` is dominant over Gʺ, 

suggesting that the mucus was in gel state. I also showed that the phase angle was between 

12.3 to 19.4º. Moreover, I found that the initial breakdown stress were dominant over the 

repeated breakdown stress, demonstrating that whatever the initial interactions, when broken, 

they cannot reform. I also showed that G`, Gʺ, and δ were shear strain independent within 

the linear viscoelastic region; however, it revealed that they are dependent as the shear 

strain was increased. At low frequency, G` and Gʺ were generally decreased, indicating that 

the gel is going to flow. At a higher frequency, G` and Gʺ were generally increase, 

demonstrating that the mucus became more gel-like. This variation at high frequency is 

confirmed by an increase in the phase angle demonstrating a weaker gel. This biphasic 

behaviour might be described by the gel forming interactions taking time to break and make 

at low frequency but at high frequency, they do not have time to reform. 

5.5 Future Works to Overcome the Mucus Barrier: 

It has been suggested that strategies should be directed to nanocarrier systems able to 

permeate the mucus without any or with only very limited damage to it. In general, there are 

two types of mucus permeating particle: active and passive systems. Active systems interact 

with the mucus, making it permeable for the particles. These systems are basically established 

from disulphide bridge breaking agents and proteolytic enzymes (see figure 24). In addition 

to this, strategies to escape back diffusion of particles out of the mucus gel layer are based 

on thiomers and zeta potential changing systems. In contrast to active systems, passive 

systems try to escape as many of the interaction of the particle with mucus as possible. 

Particles demonstrating a slippery surface and SNEDDS are the most favourable systems [137]. 
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There are several strategies to overcome the mucus gel barrier which are potential future 

works. These include slippery surface strategies, SNEDDS strategies, disulphide breaking 

strategies, the proteolytic enzyme strategies, and the thiomer and zeta potential changing 

systems [137]. In slippery surface strategies, it has been shown that unmodified polystyrene 

nanoparticles (59nm) were able to penetrate deeply into human cervical mucus while carboxyl- 

modified polystyrene nanoparticles of the same size were totally immobilized in the mucus gel 

layer [136, 137, 177]. In other words, Olmsted et al. (2001) showed that polystyrene NPs (both 

unmodified and carboxyl- modified) mixed into mucus stuck strongly to mucins and collapsed 

the mucus gel into thick collections of aggregated mucin strands. Both of these NPs were 

capable of diffusion in mucus as quickly as they diffuse in water, suggesting that the size of 

the mesh- spacings in the mucus did not significantly delay or block the diffusion [177]. 

These results indicate that surface chemistry of the nanoparticle plays a vital rule on the mucus 

permeating behaviour of nanoparticles. Moreover, it has been argued that a great and equal 

density of positive and negative surface charges can help particles be transported through a 

mucus layer by decreasing the electrostatic interactions with mucus. In SNEDDS strategies, 

their interactions with the mucus layer would be small because of the hydrophobic surface 

of the shaped nanodroplets. Furthermore, SNEDDS deformation capability can permit their 

diffusion through mucus gel layers of small mesh size as a result of their small size and 

changing shape of the nanodroplets. In disulphide breaking strategies, it has been shown that 

the effectiveness of mucolytic agents like N-acetylcysteine (NAC), in penetrating the mucus 

gel barrier. NAC is able to minimize the cross-linking of mucin fibres by cutting the disulphide 

bonds causing a decrease of the bulk mucus viscosity. The proteolytic enzyme strategy is 

centred on the immobilization of the mucolytic enzymes –  trypsin, papain and bromelain 

–  on the surface of polymer nanoparticles. These enzymes, which are capable of cleaving the 

mucus glycoprotein cross-linked networks, could act as mucolytic agents, thus, allowing local 

interference of the mucus layer. Enzyme immobilization on the surface of nanoparticles can be 
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gained by covalent bonding with and without spacers or ionic interactions [137]. 

In addition to the strategies to overcome the mucus gel barrier, there are some strategies 

to avoid back- diffusion. After nanoparticles have come into contact with the epithelium, they 

should remain there and discharge their load in a concentration dependent manner. Particles 

on the surface of the mucus are quickly removed because the surface of the mucus layer 

is continuously being shed into the lumen and, hence, the concentration gradient of particles 

goes in the reverse direction causing a back-diffusion of them out of the mucus. In other words, 

the more quickly particles can move in the mucus layer, the more quickly they are moving 

back out of it. There are two strategies so far to avoid back diffusion: the thiomer and zeta 

potential changing systems. Thiomers are able to form disulfide bonds with cysteine-rich 

subdomains of mucus glycoproteins by thiol-disulphide exchange reaction as a result of the 

immobilization of thiol groups on well-established polymers. Thiol groups immobilized on 

polymers show a pH dependent reactivity. The concentration of thiolate anions can be 

increased at greater pH values as the negative thiolate anion S- is the reactive form of 

thiomers which can form disulphide bonds with mucus glycoproteins. Thiomer-based 

nanoparticles would be capable of overcoming the more luminal mucus gel layer without 

reacting by disulfide bond formation because the mucus gel layer of various mucosal 

membranes like the duodenal mucosa or vaginal mucosa, displays a pH gradient from acidic in 

the lumen to almost neutral at the mucosal surface. Nevertheless, once they are near to the 

absorption membrane with a greater pH value, their thiol groups become more reactive and 

form disulphide bonds with the mucus glycoproteins causing greater mucoadhesion to the 

applied particles. The approaches acceptable to avoid back-diffusion are centred on thiolated 

polymers reacting to a greater extent with the cysteine subunits of the mucus at pH 7 in 

deeper mucus regions than at pH 5 which is dominant in the luminal mucus regions of the 

duodenal and vaginal mucosa. In zeta potential changing systems, nanoparticles are able to 

change their zeta potential once they have overcome the mucus gel layer and reached the 
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epithelium. This is an encouraging method to overcome the mucus gel barrier. The mucus 

barrier exhibits a negative net charge due to sialic acid and ester sulphate; therefore, negatively 

charged particles can transfer without difficulty within the mucus as long as the three-

dimensional network of mucus glycoproteins is sufficiently open. In contrast, nanoparticles 

demonstrating a positive zeta potential are immobilized within the mucus caused by charge: 

charge interactions. Despite this, nanoparticles need to have positive zeta potential to initiate 

their endocytosis into epithelial cells. Only very few nanoparticles will reach epithelial 

cells during administration to mucosal membranes as a result of the ionic immobilization of 

positively charged nanoparticles. Hence, nanoparticles which are able to change their zeta 

potential in a controlled manner could be a favourable approach to escape back-diffusion and 

to enhance the interaction of particles with epithelial cells [137]. 
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Appendix 1: Calculate Osmolarity as controls. 

 

A) If I need 250μg/500μl. I must dilute the 500 μg/ 500μl stock by 1(water):1(resting media; 

RM). Therefore, this means I had 250μl of H2O and 250 μl of RM. 

B) If I need 50 μg/500 μl. I must dilute the 500 μg/ 500μl stock by 1(water):9(resting media; 

RM). Therefore, I had 50 μl of H2O and 450 μl of RM. 
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